Science.gov

Sample records for accretionary prism sediments

  1. Synchrotron texture analysis of clay-rich sediments from the Nankai trench and accretionary prism

    NASA Astrophysics Data System (ADS)

    Schumann, Kai; Stipp, Michael; Leiss, Bernd; Behrmann, Jan-Hinrich

    2013-04-01

    Synchrotron diffraction is the most suitable tool for fast multi-mineral phase texture analysis of water-containing clay rich sediment samples due to short wavelengths (in the range of 0.12 Å), high energy radiation and a resulting mm- to cm-scale sample penetration. We carried out synchrotron texture analysis on a sample set from the Nankai trench and accretionary prism offshore Japan. Samples were encountered by IODP Expeditions 315, 316 and 333 of the NanTroSEIZE project from a depth range between 25 mbsf (meters below seafloor) and 522 mbsf. The accretionary prism sediments have a relatively uniform composition of approximately 40% clay minerals, 25% quartz, 25% feldspar, and up to 10% calcite. A first sample set analyzed was taken as recovered from drilling; a second sample set was additionally experimentally deformed in a triaxial deformation apparatus up to axial strains of 60%. Measurements were carried out at DESY (German Electron Synchrotron source) in Hamburg. In order to measure complete pole figures sample cylinders of 2 cm in diameter and 2 cm in length were measured in a phi angle-range from -90 to +90° in 5° steps. Rietveld refinement results using the MAUD program package show that the composition of the IODP Expedition 333 samples from the incoming plate differs slightly from the relatively uniform IODP Expedition 315 and 316 samples of the accretionary prism. They contain ~35% clay minerals, ~30% quartz and ~35% feldspar. For IODP Expedition 315 and 316 samples the Rietveld refinement results correspond to the standard XRD data. The synchrotron texture results of the recovered samples without experimental deformation show an increasingly strong preferred orientation of the clay minerals with increasing sediment depth for the incoming plate. Interestingly, also feldspar shows a significant texture, which is likely due to a shape fabric of the grains. The sediment texture can be explained by compaction and porosity reduction with increasing

  2. Physical properties of the Nankai inner accretionary prism sediments at Site C0002, IODP Expedition 348.

    NASA Astrophysics Data System (ADS)

    Kitamura, M.; Kitajima, H.; Henry, P.; Valdez, R. D., II; Josh, M.; Tobin, H. J.; Saffer, D. M.; Hirose, T.; Toczko, S.; Maeda, L.

    2014-12-01

    Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Expedition 348 focused on deepening the existing riser hole at Site C0002 to ~3000 meters below seafloor (mbsf) to access the deep interior of the Miocene inner accretionary prism. This unique tectonic environment, which has never before been sampled in situ by ocean drilling, was characterized through riser drilling, logging while drilling (LWD), mud gas monitoring and sampling, and cuttings and core analysis. Shipboard physical properties measurements including moisture and density (MAD), electrical conductivity, P-wave, natural gamma ray, and magnetic susceptibility measurements were performed mainly on cuttings samples from 870.5 to 3058.5 mbsf, but also on core samples from 2163 and 2204 mbsf. MAD measurements were conducted on seawater-washed cuttings ("bulk cuttings") in two size fractions of >4 mm and 1-4 mm from 870.5 to 3058.5 mbsf, and hand-picked intact cuttings from the >4 mm size fractions within 1222.5-3058.5 mbsf interval. The bulk cuttings show grain density of ~2.7 g/cm3, bulk density of 1.9 g/cm3 to 2.2 g/cm3, and porosity of 50% to 32%. Compared to the values on bulk cuttings, the intact cuttings show almost the same grain density, but higher bulk density and lower porosity, respectively. Combined with the MAD measurements on hand-picked intact cuttings and discrete core samples from previous expeditions, porosity generally decreases from ~60% to ~20% from the seafloor to 3000 mbsf at Site C0002. Electrical conductivity and P-wave velocity on discrete samples, which were prepared from both cuttings and core samples in the depth interval of 1745.5-3058.5 mbsf, range 0.15-0.9 S/m and 1.7-4.5 km/s, respectively. The electrical resistivity on discrete samples is higher than the LWD resistivity data but the overall depth trends are similar. The electrical conductivity and P-wave velocity on discrete samples corrected for in-situ pressure and temperature

  3. Tectonic and Sedimentation Interactions in the East Caribbean Subduction Zone: AN Overview from the Orinoco Delta to the Barbados Accretionary Prism

    NASA Astrophysics Data System (ADS)

    Deville, E.

    2011-12-01

    Recent marine geophysical acquisitions and piston-coring allow to better understand the close interactions between the sand-rich Orinoco turbidite system and the compressional structures of the Barbados prism. Because of the morphologic and tectonic control in the east-Caribbean active margin, the Orinoco turbiditic pattern system does not exhibit a classic fan geometry. The sea-floor geometry between the slope of the front of the Barbados prism and the slope of the South-American margin induces the convergence of the turbidite channels toward the abyssal plain, at the front of the accretionary prism. Also, whereas in most passive margins the turbidite systems are organized upstream to downstream as canyon, then channel-levee, then lobes, here, due to the tectonic control, the sedimentary system is organized as channel-levee, then canyons, then channelized lobes. At the edge of the Orinoco platform, the system has multiple sources with several distributaries and downward the channel courses are complex with frequent convergences or divergences that are emphasized by the effects of the undulating seafloor tectonic morphologies associated with active thrust tectonics and mud volcanism. On top of the accretionary prism, turbidite sediments are filling transported piggy-back basins whose timing of sedimentation vs. deformation is complex. Erosion processes are almost absent on the highly subsiding Orinoco platform and in the upper part of the turbidite system. Erosion processes develop mostly between 2000 and 4000 m of water depth, above the compressional structures of the Barbados prism (canyons up to 3 km wide and 300 m deep). In the abyssal plain, turbiditic channels develop on very long distance (> 1000 km) joining the mid-Atlantic channel (sourced mostly by the Amazon), filling several elongated basins corresponding to transform faults (notably the Barracuda Basin), and finally sourcing the Puerto-Rico trench, the deepest morphologic depression of this region

  4. Causes and consequences of the great strength variability among soft Nankai accretionary prism sediments from offshore SW-Japan

    NASA Astrophysics Data System (ADS)

    Stipp, Michael; Schumann, Kai; Leiss, Bernd; Ullemeyer, Klaus

    2014-05-01

    The Nankai Trough Seismogenic Zone Experiment of the International Ocean Discovery Program (IODP) is the very first attempt to drill into the seismogenic part of a subduction zone. Offshore SW-Japan the oceanic Philippine sea plate is subducted beneath the continental Eurasian plate causing earthquakes of magnitude 8.0 to 8.5 and related tsunamis with a recurrence rate of 80-100 years. For the tsunamigenic potential of the forearc slope and accreted sediments their mechanical strength, composition and fabrics have been investigated. 19 drill core samples of IODP Expeditions 315, 316 and 333 were experimentally deformed in a triaxial cell under consolidated and undrained conditions at confining pressures of 400-1000 kPa, room temperature, axial shortening rates of 0.01-9.0 mm/min, and up to an axial strain of ˜64% (Stipp et al., 2013). With respect to the mechanical behavior, two distinct sample groups could be distinguished. Weak samples from the upper and middle forearc slope of the accretionary prism show a deviatoric peak stress after only a few percent strain (< 10%) and a continuous stress decrease after a maximum combined with a continuous increase in pore pressure. Strong samples from the accretionary prism toe display a constant residual stress at maximum level or even a continuous stress increase together with a decrease in pore pressure towards high strain (Stipp et al., 2013). Synchrotron texture and composition analysis of the experimentally deformed and undeformed samples using the Rietveld refinement program MAUD indicates an increasing strength of the illite and kaolinite textures with increasing depth down to 523 m below sea floor corresponding to a preferred mineral alignment due to compaction. Experimentally deformed samples have generally stronger textures than related undeformed core samples and they show also increasing strength of the illite and kaolinite textures with increasing axial strain. Mechanically weak samples have a bulk clay plus

  5. Mixing of methane and sulphate due to fluid flow in the Barbados accretionary prism

    SciTech Connect

    Laier, T. )

    1996-01-01

    Methane concentrations above background level in sulphate-containing (15 mmol/l) pore waters have been observed in the d6collement zone of the Barbados accretionary prism. The peak in methane concentration in the decollement was found at a number of sites by headspace analysis of cores retrieved during ODP Legs 110 156 at the toe of the accretionary prism. [delta][sup 13]C[sub 1] values between -22[per thousand] and -36[per thousand] indicate that methane oxidation occurs possibly due to sulphate reduction. Thus, the presence of both methane and sulphate at the same depths suggests mixing of fluids due to fluid flow. Fluid flow is also indicated by the distinct minima in chloride concentrations at the same depths. In the case of on-going methane oxidation, mixing of sulphate and methane fluids is anticipated to have occurred fairly recently. Sulphate concentration decreases only little with depth in the Pleistocene to lower Miocene sediments where TOC is very low, <0.2 %. Sulphate decreases more rapidly with depth in the Oligocene to Eocene sediments where numerous relatively thin turbidites occur. The turbidites have significantly higher TOC, 0.5-1.5 %, than the interbedded hemipelagic sediments, TOC <0.2 %. High methane concentrations were not found in any of the boreholes, but the trends in sulphate and methane in boreholes indicate that high methane concentrations exist in older sediments not reached by drilling. The decollement zone is composed of lower Miocene to upper Oligocene sediments near the toe of the prism, but deepens into stratigraphically lower sediments prism ward. Thus, methane originating from these older sediments may have been brought to shallower depths by active fluid flow in the decollement.

  6. Mixing of methane and sulphate due to fluid flow in the Barbados accretionary prism

    SciTech Connect

    Laier, T.

    1996-12-31

    Methane concentrations above background level in sulphate-containing (15 mmol/l) pore waters have been observed in the d6collement zone of the Barbados accretionary prism. The peak in methane concentration in the decollement was found at a number of sites by headspace analysis of cores retrieved during ODP Legs 110 & 156 at the toe of the accretionary prism. {delta}{sup 13}C{sub 1} values between -22{per_thousand} and -36{per_thousand} indicate that methane oxidation occurs possibly due to sulphate reduction. Thus, the presence of both methane and sulphate at the same depths suggests mixing of fluids due to fluid flow. Fluid flow is also indicated by the distinct minima in chloride concentrations at the same depths. In the case of on-going methane oxidation, mixing of sulphate and methane fluids is anticipated to have occurred fairly recently. Sulphate concentration decreases only little with depth in the Pleistocene to lower Miocene sediments where TOC is very low, <0.2 %. Sulphate decreases more rapidly with depth in the Oligocene to Eocene sediments where numerous relatively thin turbidites occur. The turbidites have significantly higher TOC, 0.5-1.5 %, than the interbedded hemipelagic sediments, TOC <0.2 %. High methane concentrations were not found in any of the boreholes, but the trends in sulphate and methane in boreholes indicate that high methane concentrations exist in older sediments not reached by drilling. The decollement zone is composed of lower Miocene to upper Oligocene sediments near the toe of the prism, but deepens into stratigraphically lower sediments prism ward. Thus, methane originating from these older sediments may have been brought to shallower depths by active fluid flow in the decollement.

  7. Structure and Stratigraphy of the Barbados Accretionary Prism and the Tobago Forearc Basin

    NASA Astrophysics Data System (ADS)

    Chaderton, N. A.; Wood, L. J.; Mann, P.

    2004-12-01

    The relationship between the Lesser Antilles island arc, the Tobago forearc basin, and the Barbados accretionary prism shows classic convergent margin geometry. Barbados is the only emergent part of the accretionary prism with 80% of the island's land area being covered by Pleistocene limestone. Erosion of the limestone cap in the northeastern part of the island exposes older rocks of the prism. A 450-km2 2-D seismic data volume allows extension of these stratigraphic units offshore and definition of a regional structural framework. The relationship between the unit identified onshore as the Early Eocene to Middle Miocene Oceanic Formation and the basal unit, the intensively folded and faulted Eocene prism rocks of the Scotland Group, has long been debated. Previous proposals claim that the Oceanic Formation, consisting of pelagic clays with some ash beds, is allochthonous and has been thrusted into its present position above accreted sediments of the Scotland Group. However, seismic data show no evidence of nappes-the basis for the overthrusting hypothesis. Seismic interpretation presented here supports the opposing view that the Oceanic Formation and its offshore equivalent in the offshore Tobago forearc basin was deposited in situ and onlap the older, more highly deformed rocks of the accretionary prism. Previous workers proposed that the region's extensive mud diapirism (identified onshore as the Joes River Formation) has caused the emergence of Barbados, which continues to rise 0.44 mm/yr. However, seismic lines suggest that the island's emergence and present-day uplift is related to footwall uplift along a large, NE-striking normal fault off the east coast of the island.

  8. A Three-Dimensional Reflection Seismic Investigation of Seismogenic Zone, in the eastern Nankai accretionary prism

    NASA Astrophysics Data System (ADS)

    Ike, T.; Tokuyama, H.; Ashi, J.; Kuramoto, S.; Matsushima, J.; Yokota, T.; Pascal, G.; Lallemant, S.

    2001-12-01

    We carried out a 3-D reflection seismic survey [SFJ-KAIKO] in the eastern Nankai accretionary prism from June to July 2000. The crustal deformation of the eastern Nankai accretionary prism affected by a nearby collision between the Izu-Bonin arc and the central Japan. Several active fault systems were described by many high-resolution seismic data, and proposed that the Tokai and Kodaiba fault systems were derived from a decollement plane. The main objective of our experiment was to image the plate boundary and identify the up-dip limit of seismogenic zone. The 3-D survey covers 45km long and 5km wide area with 51 seismic lines, located about 50km southwest from Omaezaki. We applied the non-iterative Kirchhoff pre-stack time migration method (Matsushima et.,al 2001) with stacking velocity analysis to our 3-D data. The processed 3-D data gives us a significantly clear image of the thrust faults and the relationship between sediment deformation and thrust activity. A preliminary 3-D interpretation was conducted and leaded the following results.1) The Tokai and Kodaiba thrusts are clearly imaged as out-of-sequence thrusts. 2) Both thrusts are active fault that revealed by the structure of deformed sediments near seafloor. 3) A strong and low frequency reflector can be traced in the entire profile that should be a decollement plane. Tokai and Kodaiba fault systems merged to the decollement plane at same depth. The contact area of the thrust faults and the decollement may be suggesting the up-dip limit of seismogenic zone of the eastern Nankai accretionary prism .The 3-D image will contribute to reveal the mechanism of disastrous earthquakes in the Tokai area.

  9. Regional Variation of CH4 and N2 Production Processes in the Deep Aquifers of an Accretionary Prism.

    PubMed

    Matsushita, Makoto; Ishikawa, Shugo; Nagai, Kazushige; Hirata, Yuichiro; Ozawa, Kunio; Mitsunobu, Satoshi; Kimura, Hiroyuki

    2016-09-29

    Accretionary prisms are mainly composed of ancient marine sediment scraped from the subducting oceanic plate at a convergent plate boundary. Large amounts of anaerobic groundwater and natural gas, mainly methane (CH4) and nitrogen gas (N2), are present in the deep aquifers associated with an accretionary prism; however, the origins of these gases are poorly understood. We herein revealed regional variations in CH4 and N2 production processes in deep aquifers in the accretionary prism in Southwest Japan, known as the Shimanto Belt. Stable carbon isotopic and microbiological analyses suggested that CH4 is produced through the non-biological thermal decomposition of organic matter in the deep aquifers in the coastal area near the convergent plate boundary, whereas a syntrophic consortium of hydrogen (H2)-producing fermentative bacteria and H2-utilizing methanogens contributes to the significant production of CH4 observed in deep aquifers in midland and mountainous areas associated with the accretionary prism. Our results also demonstrated that N2 production through the anaerobic oxidation of organic matter by denitrifying bacteria is particularly prevalent in deep aquifers in mountainous areas in which groundwater is affected by rainfall.

  10. Regional Variation of CH4 and N2 Production Processes in the Deep Aquifers of an Accretionary Prism

    PubMed Central

    Matsushita, Makoto; Ishikawa, Shugo; Nagai, Kazushige; Hirata, Yuichiro; Ozawa, Kunio; Mitsunobu, Satoshi; Kimura, Hiroyuki

    2016-01-01

    Accretionary prisms are mainly composed of ancient marine sediment scraped from the subducting oceanic plate at a convergent plate boundary. Large amounts of anaerobic groundwater and natural gas, mainly methane (CH4) and nitrogen gas (N2), are present in the deep aquifers associated with an accretionary prism; however, the origins of these gases are poorly understood. We herein revealed regional variations in CH4 and N2 production processes in deep aquifers in the accretionary prism in Southwest Japan, known as the Shimanto Belt. Stable carbon isotopic and microbiological analyses suggested that CH4 is produced through the non-biological thermal decomposition of organic matter in the deep aquifers in the coastal area near the convergent plate boundary, whereas a syntrophic consortium of hydrogen (H2)-producing fermentative bacteria and H2-utilizing methanogens contributes to the significant production of CH4 observed in deep aquifers in midland and mountainous areas associated with the accretionary prism. Our results also demonstrated that N2 production through the anaerobic oxidation of organic matter by denitrifying bacteria is particularly prevalent in deep aquifers in mountainous areas in which groundwater is affected by rainfall. PMID:27592518

  11. Regional Variation of CH4 and N2 Production Processes in the Deep Aquifers of an Accretionary Prism.

    PubMed

    Matsushita, Makoto; Ishikawa, Shugo; Nagai, Kazushige; Hirata, Yuichiro; Ozawa, Kunio; Mitsunobu, Satoshi; Kimura, Hiroyuki

    2016-09-29

    Accretionary prisms are mainly composed of ancient marine sediment scraped from the subducting oceanic plate at a convergent plate boundary. Large amounts of anaerobic groundwater and natural gas, mainly methane (CH4) and nitrogen gas (N2), are present in the deep aquifers associated with an accretionary prism; however, the origins of these gases are poorly understood. We herein revealed regional variations in CH4 and N2 production processes in deep aquifers in the accretionary prism in Southwest Japan, known as the Shimanto Belt. Stable carbon isotopic and microbiological analyses suggested that CH4 is produced through the non-biological thermal decomposition of organic matter in the deep aquifers in the coastal area near the convergent plate boundary, whereas a syntrophic consortium of hydrogen (H2)-producing fermentative bacteria and H2-utilizing methanogens contributes to the significant production of CH4 observed in deep aquifers in midland and mountainous areas associated with the accretionary prism. Our results also demonstrated that N2 production through the anaerobic oxidation of organic matter by denitrifying bacteria is particularly prevalent in deep aquifers in mountainous areas in which groundwater is affected by rainfall. PMID:27592518

  12. Relationship between carbonate deposits and fluid venting: Oregon Accretionary Prism

    NASA Astrophysics Data System (ADS)

    Kulm, Laverne D.; Suess, Erwin

    1990-06-01

    Active fluid venting and its surface manifestations (unique animals and carbonates) occur over the accretionary prism in the Cascadia subduction zone located off central Oregon. A large variety of authigenic carbonate deposits and unique carbonate structures have been observed from submersibles and remotely operated vehicles and recovered with aid of submersibles and bottom trawls from the outermost continental shelf and lower continental slope. The carbonate deposits range from relatively thin crusts and slabs to irregular edifices and well-formed circular chimneys that rise from 1 to 2 m above the seafloor. Mineralogically, the carbonate cement consists of aragonite, calcite, Mg-calcite, or dolomite with varying amounts of detrital constituents. Stable carbon and oxygen isotope data identify four distinct subgroups of methane-derived carbonates from several different vent sites and different fluid source zones. Subgroup I represents one vent site on the lower slope and is characterized by oxygen isotope values ranging from +6.8‰ to +4.7‰ PDB. Subgroup II represents another vent site about 1 km away and exhibits oxygen values of +3.4‰ to +4.9‰ PDB. Carbon isotopic values range from -40.96 to -30.23‰ versus -44.26 to -53.44‰ PDB, respectively, for the two vents. An irregular edifice from the outer shelf has the same isotopic composition as subgroup II. A companion study shows that the expelled fluids contain largely biogenic methane and methane-derived dissolved carbonate; a shallow fluid source zone (<1 km) is indicated. The isotopic carbon values of the subgroup I and II carbonates are consistent with the carbon composition of the expelled fluids and apparently represent a historical record of the composition of these fluids. In subgroup III, strong 18O enrichment and heavier carbon values characterize the dolomitic chimneys from the outer continental shelf. Cemented sandstones from a "window" in the accretionary complex of the lower slope (subgroup

  13. Fluid generation and distribution in the highest sediment input accretionary margin, the Makran

    NASA Astrophysics Data System (ADS)

    Smith, Gemma L.; McNeill, Lisa C.; Henstock, Timothy J.; Arraiz, Daniel; Spiess, Volkhard

    2014-10-01

    Fluids in subduction zones can influence seismogenic behaviour and prism morphology. The Eastern Makran subduction zone, offshore Pakistan, has a very thick incoming sediment section of up to 7.5 km, providing a large potential fluid source to the accretionary prism. A hydrate-related bottom simulating reflector (BSR), zones of high amplitude reflectivity, seafloor seep sites and reflective thrust faults are present across the accretionary prism, indicating the presence of fluids and suggesting active fluid migration. High amplitude free gas zones and seep sites are primarily associated with anticlinal hinge traps, and fluids here appear to be sourced from shallow biogenic sources and migrate to the seafloor along minor normal faults. There are no observed seep sites associated with the surface expression of the wedge thrust faults, potentially due to burial of the surface trace by failure of the steep thrust ridge slopes. Thrust fault reflectivity is restricted to the upper 3 km of sediment and the deeper décollement is non-reflective. We interpret that fluids and overpressure are not common in the deeper stratigraphic section. Thermal modelling of sediments at the deformation front suggests that the deeper sediment section is relatively dewatered and not currently contributing to fluid expulsion in the Makran accretionary prism.

  14. A Three-dimensional Reflection Seismic Survey In The Earstern Nankai Accretionary Prism.

    NASA Astrophysics Data System (ADS)

    Ike, T.; Tokuyama, H.; Kuramoto, S.; Matsushima, J.; Yokota, T.; Pascal, G.; Lalememant, S.

    The Three-Dimensional Multi-Channel Seismic (3D-MCS) reflection survey using a tuned air gun source was held in the eastern Nankai accretionary prism from June to July 2000. The crustal deformation of the eastern Nankai accretionary prism is affected by a nearby collision between the Izu-Bonin arc and the central Japan. Sev- eral active fault systems were described by many high-resolution seismic data, and proposed that the Tokai and Kodaiba fault systems were derived from a decollement plane. From the deformation style in the Nankai Trough, we concern about the oc- currence of a great earthquake in recent years. The main objective of our experiment is to resolve the structural image of the plate boundary and identify the up-dip limit of seismogenic zone. The 3-D survey covers 45km long and 5km wide area with 51 seismic lines, located about 50km southwest from Omaezaki. We applied the non- iterative Kirchhoff pre-stack time migration method (Matsushima et.,al 2001) with stacking velocity analysis to our 3-D data. The derived 3-D prestack time migra- tion profile shows a better development at the deep structure on the top of oceanic crust, compared with preliminary 2-D prestack time migration processed profile. The processed 3-D data gives us a significantly clear image of the thrust faults and the relationship between sediment deformation and thrust activity. A preliminary 3-D in- terpretation was conducted and leaded the following results.1) The Tokai and Kodaiba thrusts are confirmed to be sets of out-of-sequence thrusts. 2) Both thrusts are ac- tive fault that revealed by the structure of the deformation of surface sediments. 3) A strong and low frequency reflector can be identified in the entire profile at two-way- time 7-7.5sec that should be a decollement plane. 4)Tokai and Kodaiba fault systems merged to the decollement plane at same depth. The contact area of the thrust faults to the decollement corresponds to south end of seismic coupling region presumed

  15. Fluid expulsion sites on the Cascadia accretionary prism: mapping diagenetic deposits with processed GLORIA imagery

    USGS Publications Warehouse

    Carson, Bobb; Seke, Erol; Paskevich, Valerie F.; Holmes, Mark L.

    1994-01-01

     Point-discharge fluid expulsion on accretionary prisms is commonly indicated by diagenetic deposition of calcium carbonate cements and gas hydrates in near-surface (<10 m below seafloor; mbsf) hemipelagic sediment. The contrasting clastic and diagenetic lithologies should be apparent in side scan images. However, sonar also responds to variations in bottom slope, so unprocessed images mix topographic and lithologic information. We have processed GLORIA imagery from the Oregon continental margin to remove topographic effects. A synthetic side scan image was created initially from Sea Beam bathymetric data and then was subtracted iteratively from the original GLORIA data until topographic features disappeared. The residual image contains high-amplitude backscattering that we attribute to diagenetic deposits associated with fluid discharge, based on submersible mapping, Ocean Drilling Program drilling, and collected samples. Diagenetic deposits are concentrated (1) near an out-of-sequence thrust fault on the second ridge landward of the base of the continental slope, (2) along zones characterized by deep-seated strikeslip faults that cut transversely across the margin, and (3) in undeformed Cascadia Basin deposits which overlie incipient thrust faults seaward of the toe of the prism. There is no evidence of diagenetic deposition associated with the frontal thrust that rises from the dècollement. If the dècollement is an important aquifer, apparently the fluids are passed either to the strike-slip faults which intersect the dècollement or to the incipient faults in Cascadia Basin for expulsion. Diagenetic deposits seaward of the prism toe probably consist dominantly of gas hydrates

  16. Deformation of the Nankai Trough inner accretionary prism: The role of inherited structures

    NASA Astrophysics Data System (ADS)

    Boston, Brian; Moore, Gregory F.; Jurado, María. José; Sone, Hiroki

    2016-02-01

    Accretionary prisms commonly grow seaward, with the strata of the inner prism consisting of older, previously accreted outer prism rocks overlain by thick fore-arc basin strata. We focus on the Nankai Trough inner accretionary prism using three-dimensional (3-D) seismic data and logging data from the Integrated Ocean Drilling Program (IODP). We update the 3-D seismic volume using well velocity data to better constrain deeper horizons. Interpretation of these horizons reveals multiple folds with axial surfaces that strike near parallel to modern outer prism thrust faults, and we interpret that these folds formed as a result of thrust faulting. Reactivation of one inner prism thrust fault continued until at least ˜0.44 Ma, after the modern fore-arc basin formed, indicating that the inner prism had continued deformation until that time. Structural restorations of these folded seismic horizons demonstrate that ˜580 m of slip occurred on this steeply dipping reactivated thrust after fore-arc basin formation. Structural interpretation and analysis of logging-while-drilling data, including borehole images, in the deep inner prism revealed intense deformation of a generally homogenous lithology characterized by bedding that dips steeply (60°-90°), intersected by faults and fractures that have a range of dips and densities. Our study of the deep Kumano Basin provides new insights into the structure of the inner prism and reveals that although the inner prism has partially preserved inherited outer prism structures, these older folds and faults are steeply rotated and cut by multiple fracture populations during subsequent deformation.

  17. Very-low-frequency earthquakes indicate a transpressional stress regime in the Nankai accretionary prism

    NASA Astrophysics Data System (ADS)

    Ito, Yoshihiro; Asano, Youichi; Obara, Kazushige

    2009-10-01

    We investigated the stress field within the Nankai accretionary prism of southwestern Japan, where very-low-frequency (VLF) earthquakes occur associated with thrust faulting. A northwest-southeast azimuth of the maximum horizontal principal stress previously estimated from borehole breakouts in wells drilled in the region by deep-sea drilling vessel Chikyu suggests trench-normal shortening, although strike-slip and normal faulting are also possible within a thrust-dominated tectonic environment. We estimated stress orientations and stress ratios by using stress tensor inversion to derive moment tensor solutions for VLF earthquakes in three regions along the Nankai Trough: off Kumano, off Muroto, and Hyuga-nada. The stress orientations we obtained indicate that the regions off Kumano and off Muroto are within a transpressional stress regime with trench-normal shortening, whereas the Hyuga-nada region on the westernmost edge of the Nankai accretionary prism is in a reverse-faulting regime.

  18. Seismic structure of the southern Cascadia subduction zone and accretionary prism north of the Mendocino triple junction

    USGS Publications Warehouse

    Gulick, S.P.S.; Meltzer, A.M.; Clarke, S.H.

    1998-01-01

    Four multichannel-seismic reflection profiles, collected as part of the Mendocino triple junction seismic experiment, image the toe of the southern Cascadia accretionary prism. Today, 250-600 m of sediment is subducting with the Gorda plate, and 1500-3200 m is accreting to the northern California margin. Faults imaged west and east of the deformation front show mixed structural vergence. A north-south trending, 20 km long portion of the central margin is landward vergent for the outer 6-8 km of the toe of the prism. This region of landward vergence exhibits no frontal thrust, is unusually steep and narrow, and is likely caused by a seaward-dipping backstop close to the deformation front. The lack of margin-wide preferred seaward vergence and wedge-taper analysis suggests the prism has low basal shear stress. The three southern lines image wedge-shaped fragments of oceanic crust 1.1-7.3 km in width and 250-700 m thick near the deformation front. These wedges suggest shortening and thickening of the upper oceanic crust. Discontinuities in the seafloor west of the prism provide evidence for mass wasting in the form of slump blocks and debris fans. The southernmost profile extends 75 km west of the prism imaging numerous faults that offset both the Gorda basin oceanic crust and overlying sediments. These high-angle faults, bounding basement highs, are interpreted as strike-slip faults reactivating structures originally formed at the spreading ridge. Northeast or northwest trending strike-slip faults within the basin are consistent with published focal mechanism solutions and are likely caused by north-south Gorda-Pacific plate convergence. Copyright 1998 by the American Geophysical Union.

  19. GPS Velocity Field in Bangladesh: Delta Subsidence, Seasonal Water Loading and Shortening Across the Burma Accretionary Prism and Shillong Massif

    NASA Astrophysics Data System (ADS)

    Steckler, M. S.; Mondal, D. R.; Nooner, S. L.; Akhter, S. H.; Seeber, L.; Bettadpur, S. V.; Sazedul Karim, C.; Howe, M.; Masson, F.; Maurin, T.; Rangin, C.

    2013-12-01

    We installed a suite of 25 GPS receivers between 2003 to 2012 covering the deltaic country of Bangladesh, which lies near the junction of the Indian Shield, the Himayalan collision belt and the Indo-Burman wedge. The crust of the Indian Shield thins southeastward in Bengal Basin across the hinge zone of an Early Cretaceous continental margin. The thin continental and/or oceanic crust of the Bengal Basin beyond the hinge zone is overlain by the southwest prograding Ganges-Brahmaputra Delta (GBD) creating a total sediment thickness of ≥16 km. The GBD is formed by the convergence of these great rivers which together supply >1GT/y of sediment. Their flow, the second largest on earth, is strongly seasonal and causes widespread flooding during the summer monsoon. The heavily-sedimented GBD is being overridden from the north by the Shillong Massif, a 2-km high basement-cored anticlinorium exposing Indian Shield, and from the east by the accretionary prism of the Indo-Burma wedge. The soft, oblique collision of the Burma platelet with the Bengal Basin and the GBD has built a large accretionary prism that widens northwards to 250-300 km. The prism extends westward up to half way across the GBD. The outer folds and thrust front are blind due to burial by the rapid sedimentation of the GBD. The GPS data in Bangladesh cover the frontal region of this unusual subaerial accretionary prism, while observations from India and Myanmar provide velocities for more internal parts of the system. The GPS velocities provide data on multiple processes taking place in the region. The vertical component shows both long-term and seasonal signals. The horizontal components quantify the shortening and lateral motion between the GBD and both the Indo-Burman wedge and Shillong Massif. The Indo-Burman convergence is oblique and partitioned into multiple strike-slip faults and a large number of thrust folds, presumably rooted into a basal megathrust.. The velocity gradients across the

  20. Effective stress and pore pressure in the Nankai accretionary prism off the Muroto Peninsula, southwestern Japan

    NASA Astrophysics Data System (ADS)

    Tsuji, Takeshi; Tokuyama, Hidekazu; Costa Pisani, Patrizia; Moore, Gregory

    2008-11-01

    We developed a theoretical method for predicting effective stress and pore pressure based on rock physics model. We applied the method to reveal the pore pressure distribution within the Nankai accretionary prism off southwestern Japan and to investigate variations in pore pressure associated with evolution of the plate boundary décollement. From the crack aspect ratio spectrum estimated from laboratory and well-log data, we calculated a theoretical relationship between acoustic velocity and mean effective stress by using differential effective medium theory. By iteratively fitting the theoretically calculated velocity to the seismic velocities derived from 3D tomographic inversion, we estimated in situ mean effective stress within the accretionary prism. Pore pressure is then the difference between the effective stress and the confining stress. When we calculated pore pressure, we considered compressive state of stress in the accretionary prism. Our results confirm that pore fluid pressure is high within the subducting sedimentary sequence below the décollement; we determined a normalized pore pressure ratio (λ*) of 0.4-0.7. Abnormal pore pressures develop in the underthrust sequence as a result of the increase in overburden load because of the thickened overlying prism and a low permeability barrier across the décollement. Overpressuring within the accreted sequence is initiated at the deformation front and proceeds landward. The increase in horizontal compaction within the accreted sequence may raise pore pressures within the accreted sequence, and the pore pressure (mean effective stress) contrast at the décollement becomes smaller landward of the deformation front.

  1. Episodic vs. Continuous Accretion in the Franciscan Accretionary Prism and Direct Plate Motion Controls vs. More Local Tectonic Controls on Prism Evolution

    NASA Astrophysics Data System (ADS)

    Dumitru, T. A.; Ernst, W. G.; Wakabayashi, J.

    2011-12-01

    blocks in olistotromes and the bulk of the terrane may be mid-Cretaceous trench sediments. (4) New data from the Central mélange belt are pending. (5) Detrital zircon ages suggest much of the voluminous Coastal belt was deposited in a short, rapid surge in the Middle Eocene, coincident with major extension, core complex development, volcanism, and erosion in sediment source areas in Idaho-Montana. Rapid Tyee Fm deposition in coastal Oregon occurred at virtually the same time from the same sources. (6) Exposed post-Eocene Franciscan rocks are rare. It is tempting to ascribe subduction zone tectonic events directly to changes in relative motions between the subducting and overriding lithospheric plates. However, in modern subduction zones, varying sediment supply to the trench appears to be a more important control on accretionary prism evolution and this seems to be the case in the Franciscan as well. Franciscan accretion was apparently influenced primarily by complex continental interior tectonics controlling sediment supply from the North American Cordillera (which may in part reflect plate motion changes), rather than directly by changes in the motions of tectonic plates.

  2. The 50 Ma granodiorite of the eastern Gulf of Alaska - Melting in an accretionary prism in the forearc

    NASA Astrophysics Data System (ADS)

    Barker, Fred; Farmer, G. L.; Ayuso, R. A.; Plafker, George; Lull, J. S.

    1992-05-01

    The paper addresses the generation of granitic rocks by the melting of flyschoid sediments in an accretionary prism as part of an investigation of 50-Ma silicic igneous rocks in the Gulf of Alaska, near Cordova, Alaska. Three intrusive bodies exhibiting a range of chemical and initial isotopic compositions were chosen: the McKinley Peak, Rude River, and Sheep Bay plutons. The present chemical data, modeling, and comparison with melting experiments of graywacke by Conrad et al. (1988) indicate that the granodiorite originated by large fractions (65-90 percent) of melting of the Orca Group graywacke and argillite. Plagioclase, pyroxene, and biotite were residual to melting at about 850-950 C and at low H2O activities. It is suggested that the distinct chemical and isotopic compositions of the McKinley Peak pluton result from variations in the character of the flysch at depth in the prism, rather than from mixing between melts of the flysch and mafic magmas injected into the prism itself.

  3. Microbial methane production in deep aquifer associated with the accretionary prism in Japan.

    PubMed

    Kimura, Hiroyuki; Nashimoto, Hiroaki; Shimizu, Mikio; Hattori, Shohei; Yamada, Keita; Koba, Keisuke; Yoshida, Naohiro; Kato, Kenji

    2010-04-01

    To identify the methanogenic pathways present in a deep aquifer associated with an accretionary prism in Southwest Japan, a series of geochemical and microbiological studies of natural gas and groundwater derived from a deep aquifer were performed. Stable carbon isotopic analysis of methane in the natural gas and dissolved inorganic carbon (mainly bicarbonate) in groundwater suggested that the methane was derived from both thermogenic and biogenic processes. Archaeal 16S rRNA gene analysis revealed the dominance of H(2)-using methanogens in the groundwater. Furthermore, the high potential of methane production by H(2)-using methanogens was shown in enrichments using groundwater amended with H(2) and CO(2). Bacterial 16S rRNA gene analysis showed that fermentative bacteria inhabited the deep aquifer. Anaerobic incubations using groundwater amended with organic substrates and bromoethanesulfonate (a methanogen inhibitor) suggested a high potential of H(2) and CO(2) generation by fermentative bacteria. To confirm whether or not methane is produced by a syntrophic consortium of H(2)-producing fermentative bacteria and H(2)-using methanogens, anaerobic incubations using the groundwater amended with organic substrates were performed. Consequently, H(2) accumulation and rapid methane production were observed in these enrichments incubated at 55 and 65 degrees C. Thus, our results suggested that past and ongoing syntrophic biodegradation of organic compounds by H(2)-producing fermentative bacteria and H(2)-using methanogens, as well as a thermogenic reaction, contributes to the significant methane reserves in the deep aquifer associated with the accretionary prism in Southwest Japan.

  4. Origin and transport of pore fluids in the Nankai accretionary prism inferred from chemical and isotopic compositions of pore water at cold seep sites off Kumano

    NASA Astrophysics Data System (ADS)

    Toki, Tomohiro; Higa, Ryosaku; Ijiri, Akira; Tsunogai, Urumu; Ashi, Juichiro

    2014-12-01

    We used push corers during manned submersible dives to obtain sediment samples of up to 30 cm from the subseafloor at the Oomine Ridge. The concentrations of B in pore water extracted from the sediment samples from cold seep sites were higher than could be explained by organic matter decomposition, suggesting that the seepage fluid at the site was influenced by B derived from smectite-illite alteration, which occurs between 50°C and 160°C. Although the negative δ18OH2O and δDH2O values of the pore fluids cannot be explained by freshwater derived from clay mineral dehydration (CMD), we considered the contribution of pore fluids in the shallow sediments of the accretionary prism, which showed negative δ18OH2O and δDH2O values according to the results obtained during Integrated Ocean Drilling Program (IODP) Expeditions 315 and 316. We calculated the mixing ratios based on a four-end-member mixing model including freshwater derived from CMD, pore fluids in the shallow (SPF) accretionary prism sediment, seawater (SW), and freshwater derived from methane hydrate (MH) dissociation. However, the Oomine seep fluids were unable to be explained without four end members, suggesting that deep-sourced fluids in the accretionary prism influenced the seeping fluids from this area. This finding presents the first evidence of deep-sourced fluids at cold seep sites in the Oomine Ridge, indicating that a megasplay fault is a potential pathway for the deep-sourced fluids.

  5. Fluid circulation in the depths of accretionary prisms: an example of the Shimanto Belt, Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Raimbourg, Hugues; Vacelet, Maxime; Ramboz, Claire; Famin, Vincent; Augier, Romain; Palazzin, Giulia; Yamaguchi, Asuka; Kimura, Gaku

    2015-08-01

    Accretionary prisms constitute ideal targets to study fluid circulation and fluid-rock interactions at depths beyond the reach of active margin deep drilling. The highest-grade rocks from the Shimanto Belt on Kyushu were buried under 3-5 kbars at ~ 300°C (Toriumi and Teruya, 1988). They contain abundant quartz veins, formed throughout burial and exhumation and variably affected by brittle and ductile deformation. Cathodoluminescence (CL) reveals the existence of two distinct types of quartz, characterized by a blue and brown color, respectively. CL-blue quartz fills macro-veins (width ≥ 10μm), while CL-brown quartz is present in micro-veins (width ~ 1 - 10μm) and ductilely recrystallized domains. On the basis of microstructures, the fluids associated with the CL-blue and CL-brown quartz are interpreted as "external" and "local", respectively. Quartz growth rims of alternating CL colors as well as mutually cross-cutting veins show that the two fluids cyclically wetted the host rock. From fluid inclusions analysis, the fluid associated with CL-blue quartz has a salinity similar to seawater, while the fluid associated with CL-brown quartz is less saline. In addition, CL-blue quartz is richer in aluminum than the CL-brown one. In contrast to the salinity/aluminum signature, the δ18O isotopic signature of both quartz types is similar and buffered by host rock. The difference between the preservation of the salinity signature of the fluid and the loss of its δ18O signature is explained by quicker exchange kinetics and larger host rock buffering capacity for isotopic reequilibration. The "local" fluid, associated with CL-brown quartz, reflects the dilution of pore water by the pure water produced by prograde dehydration reactions of clay minerals. The "external" fluid associated with CL-blue quartz is interpreted as seawater or pore water from shallow (depth < 1-2 km below seafloor) sediments. We propose that downward percolation of shallow water to depths ~ 10 km

  6. Paleotemperature of the Nankai accretionary prism estimated by vitrinite reflectance of carbonaceous materials retrieved during the IODP Expedition 348

    NASA Astrophysics Data System (ADS)

    Fukuchi, R.; Yamaguchi, A.; Yamamoto, Y.; Ashi, J.

    2015-12-01

    Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Expedition 348 took place from 13 September 2013 to 29 January 2014. During the Exp. 348, cuttings, mud gas, and logging data were collected from Holes C0002N and C0002P down to 3058.5 mbsf. Cores were collected from 2163 to 2218 mbsf of Hole C0002P. Three lithologic units were identified at Site C0002 based on geological and geochemical characteristics of core and cuttings samples: Unit III (875.5-975.5 mbsf in Hole C0002N), Unit IV (975.5-1665.5 mbsf in Hole C0002N), and Unit V (1665.5-2325.5 mbsf in Hole C0002N, and 1965.5-3058.5 mbsf in Hole C0002P) (Tobin et al., 2015). To evaluate whole thermal structure of the Site C0002, we performed vitrinite reflectance analysis for cuttings samples collected every ~100 m, and for borehole core samples collected every ~10 m of Hole C0002N and C0002P. Vitrinite reflectance (Ro) is an indicator to estimate maximum paleotemperature, which has been widely applied to reveal tectonic evolution of on-land accretionary complex in Southwest Japan (e.g. Underwood et al., 1992; Ohomori et al., 1997) and thermal anomalies along fault slip zones reflecting frictional heating due to seismic slip (e.g. Sakaguchi et al., 2011). This is the first study that applied vitrinite analyses systematically to the deep portion of modern accretionary prisms. In this presentation, we report preliminary results of vitrinite reflectance analysis. Ro values are 0.15 to 0.20 in Unit III (forearc basin strata), 0.21 to 0.27 in Unit IV (accretionary prism strata), and 0.26 to 0.38 in Unit V (hemipelagic sediment), respectively. In general, Ro values tend to be gradually and continuously increasing with depth. Estimated paleotemperatures are ~67°C in Unit IV and ~77°C in Unit V. Estimated paleotemperatures are lower than estimated modern temperatures based on borehole temperature measurements and their downward extrapolations (Sugihara et al., 2014). Gaps on

  7. Landward vergence in accretionary prism, evidence for frontal propagation of earthquakes?

    NASA Astrophysics Data System (ADS)

    cubas, Nadaya; Souloumiac, Pauline

    2016-04-01

    Landward vergence in accretionary wedges is rare and have been described at very few places: along the Cascadia subduction zone and more recently along Sumatra where the 2004 Mw 9.1 Sumatra-Andaman event and the 2011 tsunami earthquake occurred. Recent studies have suggested a relation between landward thrust faults and frontal propagation of earthquakes for the Sumatra subduction zone. The Cascadia subduction zone is also known to have produced in 1700 a Mw9 earthquake with a large tsunami across the Pacific. Based on mechanical analysis, we propose to investigate if specific frictional properties could lead to a landward sequence of thrusting. We show that landward thrust requires very low effective friction along the megathrust with a rather high internal effective friction. We also show that landward thrust appears close to the extensional critical limit. Along Cascadia and Sumatra, we show that to get landward vergence, the effective basal friction has to be lower than 0.08. This very low effective friction is most likely due to high pore pressure. This high pore pressure could either be a long-term property or due to dynamic effects such as thermal pressurization. The fact that landward vergence appears far from the compressional critical limit favors a dynamic effect. Landward vergence would then highlight thermal pressurization due to occasional or systematic propagation of earthquakes to the trench. As a consequence, the vergence of thrusts in accretionary prism could be used to improve seismic and tsunamigenic risk assessment.

  8. Fluid Overpressure and Connections to Seismicity, Cascadia Tertiary Accretionary Prism, Olympic Peninsula

    NASA Astrophysics Data System (ADS)

    Rotman, H.; Mattinson, C. G.

    2010-12-01

    Metamorphic dehydration reactions and fluid movement in accretionary prisms have been linked to the recently discovered episodic tremor and slip (ETS) earthquake events along subduction zones, but prior studies lack the detail to effectively test the hypothesis that fluid flow triggers ETS events. I conducted field work along a 52.5 km transect on the Olympic Peninsula metasedimentary accretionary prism of the Cascadia subduction zone, and collected approximately 40 representative samples of sandstone and mudrock that were buried to 6-15 km. This depth range intersects the 10-50 km depth range of ETS events. My objectives are to quantify the water flow recorded in rocks of the Olympic Peninsula via petrographic, whole rock, and isotopic analyses to test the prediction that water release increases at ~10 km depth, creating fluid overpressure needed to trigger seismicity. I calculated that on the Olympic Peninsula 1 km3 of 50% sandstone and 50% mudrock loses ~105 kg H2O/yr during burial from 6-14 km depth, comparable to the values expected from large-scale fluid budget models. Quartz veins that compose 0.5-1% of the Obstruction Peak site (~14 km burial depth) are important records of fluid flow quantity and origin. δ18O values of +11.8‰ to +15.2‰ indicate that vein H2O originated from metamorphic reactions. Flow recorded by 1 km3 of rock containing 0.5-1% quartz veins is >106 kg H2O/yr, comparable to the values 2 × 107 to 2 × 108 kg H2O/yr modeled at compositionally similar subduction zones to produce fluid overpressure conditions. I observed fibrous quartz veins, which also indicate fluid overpressure conditions were reached and support my H2O flow estimates. Therefore, Olympic Peninsula rocks at depths of ~10-14 km record dehydration and fluid overpressure large enough to trigger subduction zone seismicity.

  9. Permeability of Silty Claystone and Turbidite Samples from IODP Expedition 348, Hole C0002P, Nankai Trough Accretionary Prism

    NASA Astrophysics Data System (ADS)

    Song, C.; Underwood, M.

    2014-12-01

    One of the main objectives of IODP Expedition 348 was to characterize the variations of lithology and structure with depth in the interior of the Nankai Trough accretionary complex beneath the Kumano forearc basin (offshore SW Japan). Six cores were recovered from Hole C0002P between 2163 and 2218 mbsf. Four whole-round (WR) specimens from depths of 2174.98 to 2209.64 mbsf were tested for constant-flow permeability with a focus on thin interbeds of silty claystone and fine-grained turbidites. Samples are from lithostratigraphic Unit V (accreted trench or Shikoku Basin hemipelagic deposits). Coarser interbeds are important for assessing the prospects of flow through stratigraphic conduits. Our primary objective is to better understand how hydrogeologic properties of different lithologies respond to deformation within the accretionary prism. Equipment for permeability tests consists of a withdrawal-infuse syringe pump to simultaneously inject and extract pore fluid from the top and bottom of the specimen to generate hydraulic head difference. Specimens were trimmed for tests in both vertical direction (along-core) and horizontal direction (cross-core) with the diameter of 3.8 cm (1.5 in). The isotropic effective stress is set at 0.55 MPa. The WR specimens are heterogeneous. The major lithology is silty claystone to fine-grained silty claystone. Some intervals contain thin (~1.3 cm) oblique sandy layers and black organic bands. Bedding is steep to vertical (~70-80˚). One goal is to determine how this lithologic variability affects the anisotropy of permeability. Environmental SEM was used to image the cores (in multiple directions) to evaluate the relation between sediment microstructure and anisotropy of permeability.

  10. A lithium isotopic study of sub-greenschist to greenschist facies metamorphism in an accretionary prism, New Zealand

    NASA Astrophysics Data System (ADS)

    Qiu, Lin; Rudnick, Roberta L.; Ague, Jay J.; McDonough, William F.

    2011-01-01

    fluids, 2) the slab-derived fluids will have heavy δ7Li of > + 10 after reacting with the prism sediments during their ascent, and 3) the [Li] of the slab-derived fluids is likely in the range of 0 < [Li] ≤ 41(μg/g). Thus, isotopically heavy slab-derived fluids that traverse sediments in accretionary prisms may leave little trace in the rocks and their surface compositional characteristics will reflect the net result of their interaction with the sediments of the prism.

  11. Understanding tectonic stress and rock strength in the Nankai Trough accretionary prism, offshore SW Japan

    NASA Astrophysics Data System (ADS)

    Huffman, Katelyn A.

    Understanding the orientation and magnitude of tectonic stress in active tectonic margins like subduction zones is important for understanding fault mechanics. In the Nankai Trough subduction zone, faults in the accretionary prism are thought to have historically slipped during or immediately following deep plate boundary earthquakes, often generating devastating tsunamis. I focus on quantifying stress at two locations of interest in the Nankai Trough accretionary prism, offshore Southwest Japan. I employ a method to constrain stress magnitude that combines observations of compressional borehole failure from logging-while-drilling resistivity-at-the-bit generated images (RAB) with estimates of rock strength and the relationship between tectonic stress and stress at the wall of a borehole. I use the method to constrain stress at Ocean Drilling Program (ODP) Site 808 and Integrated Ocean Drilling Program (IODP) Site C0002. At Site 808, I consider a range of parameters (assumed rock strength, friction coefficient, breakout width, and fluid pressure) in the method to constrain stress to explore uncertainty in stress magnitudes and discuss stress results in terms of the seismic cycle. I find a combination of increased fluid pressure and decreased friction along the frontal thrust or other weak faults could produce thrust-style failure, without the entire prism being at critical state failure, as other kinematic models of accretionary prism behavior during earthquakes imply. Rock strength is typically inferred using a failure criterion and unconfined compressive strength from empirical relations with P-wave velocity. I minimize uncertainty in rock strength by measuring rock strength in triaxial tests on Nankai core. I find strength of Nankai core is significantly less than empirical relations predict. I create a new empirical fit to our experiments and explore implications of this on stress magnitude estimates. I find using the new empirical fit can decrease stress

  12. Results from SCS Profiling of the Sumatra accretionary prism: insights into tsnamigenesis

    NASA Astrophysics Data System (ADS)

    Fisher, D.; Mosher, D.; Austin, J.; Gulick, S.; Moran, K.; Masterlark, T.

    2007-12-01

    The SEATOS high resolution single-channel seismic reflection survey of the Sumatran accretionary prism depicts a landward-vergent thrust front, with active folding characterizing part of the December 2004 Mw9.2 earthquake rupture zone. Structure and bathymetry co-vary at distinct wavelengths along a 220-km-long profile crossing the prism and the Aceh (forearc) Basin. At the largest wavelength (tens of kms), the prism surface is defined by a steep (8-12 degrees), 55-km-wide outer slope, a 110-km-wide upper slope forming a broad depression between two forearc highs, and a 25 km-wide, steep inner slope between the landward high and the forearc basin. Anticlinal ridges spaced ~13 km apart display landward- and seaward-vergent folds along the inner and outer slopes, respectively; symmetric folding occurs across the upper slope. We suggest that the long-wavelength variations are consistent with the existence of a strong inner wedge beneath the upper slope. The ~13 km anticline spacing implies deformation of a slope apron deforming independently of this stronger wedge interior. Seismic profiles crossing the toe of the prism image a series of landward vergent, fault-related folds, suggesting that the shallow fill of the Sunda Trench is delaminated from the predominantly seaward-vergent plate boundary system and is uptilted along a triangle zone. Profiles crossing the seaward flank of the Aceh Basin reveal a near- vertical, undulatory deformation front that appears to mark the location of the West Andaman-Mentawai right- lateral strike-slip fault zone. Our model for prism architecture based on these geophysical results involves advance of the strong inner wedge during great earthquakes like the 2004 event, which then peels up shallower and less competent trench fill, deforming the toe and the upper slope of the forearc, producing massive uplift that is likely tsunamigenic. Seismic rupture was limited to the megathrust westward of the West Andaman fault and ROV observations

  13. In-situ stress and strength in the Nankai inner accretionary prism at Site C0002, IODP NanTroSEIZE

    NASA Astrophysics Data System (ADS)

    Kitajima, H.; Valdez, R. D.; Kitamura, M.; Sone, H.; Saffer, D. M.; Tobin, H. J.; Hirose, T.; Kuo, S. T.

    2015-12-01

    As a part of the International Ocean Discovery Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE), a deep riser borehole has been drilled into the Kumano forearc basin and the underlying inner accretionary wedge at Site C0002, located ~35 km landward from the trench. One of the primary objectives of drilling the riser site was to characterize in-situ stress and pore pressure in the hanging wall above the locked plate boundary. Here, we: (1) investigate the mechanical strength and deformation behavior of prism sediment via laboratory experiments on core samples; and (2) quantify in-situ stress (Sv, Sh, and SH), and pore pressure (Pp) in the Kumano basin and the inner prism. We conducted triaxial compression experiments on core samples recovered from ~ 2200 meters below sea floor (mbsf) during IODP Expedition 348, at effective pressures (Pe) ranging from 8 and 36 MPa, and at temperatures of either 25°C or 60°C. Our preliminary results indicate that the prism (20 - 42% porosity) rocks deform brittlely at Pe < 22 MPa, but exhibit strain hardening at Pe = 36 MPa. This pressure-porosity condition for a brittle-ductile transition is consistent with previous work defining yield models for incoming sediments at the Nankai Trough (Kitajima and Saffer, 2012). Combining P-wave velocity logs and downhole measurements of leak-off pressure at Site C0002 with an empirical relationship between P-wave velocity, porosity, and effective stress, we show that the Kumano forearc basin is in a uniaxial-strain loading path, which defines a normal faulting stress regime (Sv>SH>=Sh), whereas the inner accretionary prism is in a triaxial-strain loading path that defines a strike-slip faulting regime (SH>Sv>Sh). We estimate excess pore pressure below ~2000 mbsf ranging from 0-12 MPa, corresponding to a pore pressure ratio λ* of 0 - 0.40.

  14. Drilling into the deep interior of the Nankai accretionary prism: Preliminary results of IODP NanTroSEIZE Expedition 348

    NASA Astrophysics Data System (ADS)

    Tobin, H. J.; Hirose, T.; Saffer, D. M.; Toczko, S.; Maeda, L.

    2014-12-01

    International Ocean Discovery Program (IODP) Expedition 348, the latest advance of the NanTroSEIZE project, started on 13 September 2013 and was completed on 29 January 2014. During Expedition 348, the drilling vessel Chikyu advanced the ultra-deep riser hole at Site C0002, located 80 km offshore of the Kii Peninsula, from a depth of 860 meters below sea floor (mbsf) to 3058.5 mbsf, the world record for the deepest scientific ocean drilling, and cased it for future deepening. The drilling operation successfully obtained data on formation physical properties from logging while drilling (LWD) tools, as well as from lithological analyses of cuttings and core from the interior of the active accretionary prism at the Nankai Trough. IODP Site C0002 is the currently only borehole to access the deep interior of an active convergent margin. Preliminary scientific results of Expedition 348 are as follows: (1) Fine-grained turbiditic mudstones with coarser silty and sandy interbeds, exhibiting steep dips (between ~60 and 90 degrees) are predominant in the prism down to ~3000 mbsf. The biostratigraphic age of the sediments in the lowermost part of the hole is thought to be 9-11 Ma, with an assumed age of accretion of 3-5 Ma. (2) Slickenlined surfaces, deformation bands and mineral veins are present throughout the drilled interval, while well-developed scaly clay fabrics are increasingly observed below ~2200 mbsf. A substantial fault zone with well-developed foliation was successfully cored from the deep interior of the prism at ~2205 mbsf. (3) Porosity generally decreases from ~60% to ~20% from the seafloor to 3000 mbsf. However, physical properties including grain density, electrical conductivity and P-wave velocity suggest fairly homogeneous properties in the interior of the prism between ~2000 and 3000 mbsf. (4) Mud gas analysis during the riser drilling indicates that a source of methane gas shifts from microbial origin to thermogenic at around 2325 mbsf. (5) The maximum

  15. Fluid circulations in the depths of accretionary prism: the record of quartz from the Shimanto Belt, Japan

    NASA Astrophysics Data System (ADS)

    Raimbourg, Hugues; Vacelet, Maxime; Ramboz, Claire; Famin, Vincent; Augier, Romain; Palazzin, Giulia

    2014-05-01

    Fluids present in the depths of subduction zones play a major role on seismogenesis, although fluid circulations paths and physico-chemical conditions are still largely unknown. Two main reservoirs of water, either in the pores of sediments or bound to hydrous minerals, release large amounts of water in the relatively shallow and deep domains of subduction zones, respectively. The usual model of circulation assumes then a bottom-up circulation driven by fluid pressure gradients. This study aims at reassessing this model, using the record of rocks from a paleo-accretionary prism, the Shimanto Belt in Japan. These rocks, buried to 5kbars and 300° C (Toriumi and Teruya, Modern Geology, 1988), were affected by pervasive fracturing throughout their history, from burial to exhumation. The quartz filling these fractures and the fluid inclusions that it contains keep the track of the fluid associated with the rock evolution. Using a combined approach of microstructural observations by optical microscopy and cathodoluminescence (CL), and chemical characterization by electron and ion microprobe as well as microthermometry, we show that there are actually two distinct fluids that have cyclically wetted the rock at depth. The first one is an 'external' fluid penetrating through macroscopic fractures and precipitating a quartz blue in CL. In contrast, a 'local' fluid attended the formation of quartz brown in CL, precipitating in microfractures or associated with ductile recrystallization. The two fluids are also chemically distinct: Both have a salinity close to seawater, but the local fluid is fresher than the external one. In addition, the external fluid is richer in aluminum than the local one. Finally, the external fluid is very slightly depleted in δ18O, although the difference is probably not significant and the first-order isotopic signal is a buffering by host rock. Our interpretation of microstructures and chemical signatures is that the external fluid is seawater

  16. Initiation and development of slickenlined surfaces in clay-rich material of the Nankai Trough accretionary prism

    NASA Astrophysics Data System (ADS)

    Crespo-Blanc, Ana; Schleicher, Anja

    2016-04-01

    During the International Ocean Discovery Program (IODP) Expedition 348, which is part of the Nankai Trough Seismogenic Zone Experiment (stage 3), the drilling vessel Chikyu advanced the deep riser hole at Site C0002, located 80 km offshore of the Kii Peninsula (Japan), from a depth of 860 meters below sea floor (mbsf) to 3058.5 mbsf. Underlying the Kumano Basin sediments, the Nankai accretionary prism appears, below 975.5 mbsf. It accreted during Upper Miocene to Pliocene times and is formed mainly by turbiditic silty claystone with rarely observed sandstone intercalations. Cuttings from both the 1-4 mm and >4 mm size fractions were investigated, showing slickenlined surfaces and deformation bands together with carbonate veins throughout the entire section from 1045.5 until 3058.5 mbsf. A scaly fabric is increasingly observed below approximately 2400 mbsf. Clay-rich cuttings were selected at different depth for specific SEM-EDS analysis, in order to investigate the initiation and development of the slickenlined surfaces, from both a structural and mineralogical point of view. Two end-members of the slickenlined surface types were observed: a) isolated smooth and uniform planes, between 20 and 50 μm long, formed by single grains of smectite with marked lineations and frequently jagged boundaries and b) microfaults (longer than 100 μm) with sharp boundaries to the undeformed rock, formed by aggregates of illite and smectite and with a well-developed lineation. In transition between these two end-member types, planes that are apparently unconnected draw a single plane and show subparallel lineations. Concerning the orientation of the slickenlines, it seems to be coherent with that observed in an array of conjugated faults, i.e. all the slickenlines belong to the same plane, in turn sub-perpendicular to the intersection of conjugated planes. These observations suggest that the slickenlined surfaces initiated along single grains of smectite and that with increasing

  17. Relationship between tectonics, argilokinetic structures, and environmental patterns at the south boundary of the Barbados accretionary prism

    SciTech Connect

    Griboulard, R.; Bobier, C.; Faugeres, J.C.; Gonthier, E.

    1993-02-01

    Recent studies have been carried out on limited sectors of the South Barbados accretionary prism. They are supported by SeaBeam map analysis, high resolution seismic data, time-lapse and video camera tracks, numerous cores and Side Scan Sonar data. The analysis of these data point out numerous evidences of an active and present tectonic activity on the southern part of this domain. The development of very large indurate sea-bottoms on which deep-sea communities frequently occur and where we can observe some [open quotes]sigmoidal[close quotes] features and network of conjugate fractures which suggest the presence of shear deformation zone. In addition, tracks of important and probably deep faults extend across both soft and indurated bottom sediments. The regional morphological anomalies are comparable to analogical deformation model for a thick cover sticking out of its sub-stratum and the tectonic activity is closely associated to the presence of deep dysharmonic levels which control, obviously, an important clay-diapirism. This is an effect of both the structural location of this region, at the junction of three lithospheric plates (Caribbean, Atlantic, and South-American) and paleogeographical and sedimentological changes since Neogene time, with the very important terrigeneous supplies coming from the Orinoco River. Consequently, the main deformations that we observed in this region are rather under influence of shearing and transpressive than compressive movements.

  18. Seafloor distribution and last glacial to postglacial activity of mud volcanoes on the Calabrian accretionary prism, Ionian Sea

    NASA Astrophysics Data System (ADS)

    Ceramicola, Silvia; Praeg, Daniel; Cova, Andrea; Accettella, Daniela; Zecchin, Massimo

    2014-06-01

    Mud volcanoes (MVs) are abundant along the eastern Mediterranean subduction zones, recording mud breccia extrusion over long timescales (106 years), but to date relatively few have been recognised in the northern Ionian Sea on the Calabrian accretionary prism (CAP). In the present study, the seafloor distribution and recent activity of MVs is investigated across a 35,600 km2 sector of the CAP using a regional acoustic dataset (multibeam bathymetric and backscatter imagery, integrated with subbottom profiles) locally ground-truthed by sediment cores. A total of 54 MVs are identified across water depths of 150-2,750 m using up to four geophysical criteria: distinctive morphology, high backscatter, unstratified subbottom facies and, in one case, a hydroacoustic flare. Fourteen MVs are identified from 3-4 criteria, of which five have been previously proven by cores containing mud breccia beneath up to 1.6 m of hemipelagic sediments (Madonna dello Ionio MVs 1-3, Pythagoras MV and the newly named Sartori MV), while nine others are identified for the first time (Athena, Catanzaro, Cerere, Diana, Giunone, Minerva, `right foot', Venere 1 and 2). Forty other as yet unnamed MVs are inferred from 1-2 geophysical criteria (three from distinctive morphology alone). All but one possible MV lie on the inner plateau of the CAP, landwards of the Calabrian Escarpment in a zone up to 120 km wide that includes the inner pre-Messinian wedge and the fore-arc basins, where they are interpreted to record the ascent from depth of overpressured fluids that interacted with tectonic structures and with evaporitic or shale seals within the fore-arc basins. The rise of fluids may have been triggered by post-Messinian out-of-sequence tectonism that affected the entire pre-Messinian prism, but Plio-Quaternary sedimentation rates and depositional styles support the inference that significant mud volcanism has taken place only on the inner plateau. Sedimentation rates across the CAP applied to a 12

  19. Temporal variation of the Rayleigh admittance: Implication for S-wave velocity changes in the toe of the Nankai accretionary prism

    NASA Astrophysics Data System (ADS)

    Tonegawa, Takashi; Araki, Eiichiro; Kimura, Toshinori; Nakamura, Takeshi

    2016-04-01

    implies that S-wave velocity within the accretionary prism tended to be high. This change may indicate fluid emissions from marine sediments due to the horizontal compaction.

  20. Biogas production using anaerobic groundwater containing a subterranean microbial community associated with the accretionary prism

    PubMed Central

    Baito, Kyohei; Imai, Satomi; Matsushita, Makoto; Otani, Miku; Sato, Yu; Kimura, Hiroyuki

    2015-01-01

    In a deep aquifer associated with an accretionary prism, significant methane (CH4) is produced by a subterranean microbial community. Here, we developed bioreactors for producing CH4 and hydrogen (H2) using anaerobic groundwater collected from the deep aquifer. To generate CH4, the anaerobic groundwater amended with organic substrates was incubated in the bioreactor. At first, H2 was detected and accumulated in the gas phase of the bioreactor. After the H2 decreased, rapid CH4 production was observed. Phylogenetic analysis targeting 16S rRNA genes revealed that the H2-producing fermentative bacterium and hydrogenotrophic methanogen were predominant in the reactor. The results suggested that syntrophic biodegradation of organic substrates by the H2-producing fermentative bacterium and the hydrogenotrophic methanogen contributed to the CH4 production. For H2 production, the anaerobic groundwater, amended with organic substrates and an inhibitor of methanogens (2-bromoethanesulfonate), was incubated in a bioreactor. After incubation for 24 h, H2 was detected from the gas phase of the bioreactor and accumulated. Bacterial 16S rRNA gene analysis suggested the dominance of the H2-producing fermentative bacterium in the reactor. Our study demonstrated a simple and rapid CH4 and H2 production utilizing anaerobic groundwater containing an active subterranean microbial community. PMID:25267392

  1. Biogas production using anaerobic groundwater containing a subterranean microbial community associated with the accretionary prism.

    PubMed

    Baito, Kyohei; Imai, Satomi; Matsushita, Makoto; Otani, Miku; Sato, Yu; Kimura, Hiroyuki

    2015-09-01

    In a deep aquifer associated with an accretionary prism, significant methane (CH₄) is produced by a subterranean microbial community. Here, we developed bioreactors for producing CH₄ and hydrogen (H₂) using anaerobic groundwater collected from the deep aquifer. To generate CH₄, the anaerobic groundwater amended with organic substrates was incubated in the bioreactor. At first, H₂ was detected and accumulated in the gas phase of the bioreactor. After the H₂ decreased, rapid CH₄ production was observed. Phylogenetic analysis targeting 16S rRNA genes revealed that the H₂ -producing fermentative bacterium and hydrogenotrophic methanogen were predominant in the reactor. The results suggested that syntrophic biodegradation of organic substrates by the H₂ -producing fermentative bacterium and the hydrogenotrophic methanogen contributed to the CH₄ production. For H₂ production, the anaerobic groundwater, amended with organic substrates and an inhibitor of methanogens (2-bromoethanesulfonate), was incubated in a bioreactor. After incubation for 24 h, H₂ was detected from the gas phase of the bioreactor and accumulated. Bacterial 16S rRNA gene analysis suggested the dominance of the H₂ -producing fermentative bacterium in the reactor. Our study demonstrated a simple and rapid CH4 and H2 production utilizing anaerobic groundwater containing an active subterranean microbial community. PMID:25267392

  2. Characterizing the Inner Accretionary Prism of the Nankai Trough with 3D Seismic and Logging While Drilling at IODP Site C0002

    NASA Astrophysics Data System (ADS)

    Boston, B.; Moore, G. F.; Jurado, M. J.; Sone, H.; Tobin, H. J.; Saffer, D. M.; Hirose, T.; Toczko, S.; Maeda, L.

    2014-12-01

    The deeper, inner parts of active accretionary prisms have been poorly studied due the lack of drilling data, low seismic image quality and typically thick overlying sediments. Our project focuses on the interior of the Nankai Trough inner accretionary prism using deep scientific drilling and a 3D seismic cube. International Ocean Discovery Program (IODP) Expedition 348 extended the existing riser hole to more than 3000 meters below seafloor (mbsf) at Site C0002. Logging while drilling (LWD) data included gamma ray, resistivity, resistivity image, and sonic logs. LWD analysis of the lower section revealed on the borehole images intense deformation characterized by steep bedding, faults and fractures. Bedding plane orientations were measured throughout, with minor gaps at heavily deformed zones disrupting the quality of the resistivity images. Bedding trends are predominantly steeply dipping (60-90°) to the NW. Interpretation of fractures and faults in the image log revealed the existence of different sets of fractures and faults and variable fracture density, remarkably high at fault zones. Gamma ray, resistivity and sonic logs indicated generally homogenous lithology interpretation along this section, consistent with the "silty-claystone" predominant lithologies described on cutting samples. Drops in sonic velocity were observed at the fault zones defined on borehole images. Seismic reflection interpretation of the deep faults in the inner prism is exceedingly difficult due to a strong seafloor multiple, high-angle bedding dips, and low frequency of the data. Structural reconstructions were employed to test whether folding of seismic horizons in the overlying forearc basin could be from an interpreted paleothrust within the inner prism. We used a trishear-based restoration to estimate fault slip on folded horizons landward of C0002. We estimate ~500 m of slip from a steeply dipping deep thrust within the last ~0.9 Ma. Folding is not found in the Kumano sediments

  3. Geological Controls of a Gas-Hydrate System in the Frontal Taiwan Accretionary Prism

    NASA Astrophysics Data System (ADS)

    Liao, W.; Lin, A.; Liu, C.; Hsu, S.; Lin, C.; Chen, G.; Schn Êrle, P.

    2008-12-01

    The frontal accretionary wedge offshore southwest Taiwan is characterized by rapid sedimentation, erosion along submarine canyons, and tectonic uplift due to folding and thrusting. The possible existence of gas hydrates beneath the seafloor has been indicated by geophysical and geological data. The interplays between the processes of sedimentation, erosion, and tectonic uplift therefore maintain a dynamic equilibrium system in which gas hydrates are preserved in the strata. In order to understand this system, we use data of chirp sonar, reflection seismics, and seafloor sediment samples to characterize the geological controls on the gas-hydrate system in the study area. The study area lies in the lower slope domain of the accretionary wedge. Seismic data reveals that, in the west of the study area (i.e., the frontal segment), it consists of a series of folds cored by blind thrusts; in the east of the study area (i.e., the rear segment), it consists of an array of emergent thrusts. The most frontal emergent thrust separates the frontal and rear segments of the lower slope. There are different in sedimentary features, structural styles, distributions of bottom simulating reflectors (BSRs) in the frontal and rear segments. In the frontal segment, sedimentation prevails in this region. Areas of major erosion and mass-wasting processes occur mostly in the reaches of submarine canyons. The spatial distribution of BSRs is sparse in this region and BSRs occur mostly beneath the anticlinal and bathymetric ridges. In the rear segment, it typically shows west-vergent and asymmetric fold profiles with long and planar backlimbs versus short forelimbs. The forelimbs are absent or very short in profile, and the east-dipping backlimbs are steeper beneath bathymetric ridge with its stratal dip decreasing and exhibit a homoclinal feature. There is usually a significant stratigraphic section deposited on backlimbs, showing evidences of limb rotation during fold growth. A few seafloor

  4. Consolidation patterns during initiation and evolution of a plate-boundary decollement zone: northern Barbados accretionary prism

    USGS Publications Warehouse

    Moore, J.C.; Klaus, A.; Bangs, N.L.; Bekins, B.; Bucker, C.J.; Bruckmann, W.; Erickson, S.N.; Hansen, O.; Horton, T.; Ireland, P.; Major, C.O.; Moore, G.F.; Peacock, S.; Saito, S.; Screaton, E.J.; Shimeld, J.W.; Stauffer, P.H.; Taymaz, T.; Teas, P.A.; Tokunaga, T.

    1998-01-01

    Borehole logs from the northern Barbados accretionary prism show that the plate-boundary decollement initiates in a low-density radiolarian claystone. With continued thrusting, the decollement zone consolidates, but in a patchy manner. The logs calibrate a three-dimensional seismic reflection image of the decollement zone and indicate which portions are of low density and enriched in fluid, and which portions have consolidated. The seismic image demonstrates that an underconsolidated patch of the decollement zone connects to a fluid-rich conduit extending down the decollement surface. Fluid migration up this conduit probably supports the open pore structure in the underconsolidated patch.

  5. Observations and Rock Analyses in a Kumano Mud Volcano in Nankai Accretionary Prism

    NASA Astrophysics Data System (ADS)

    Morita, S.; Aoike, K.; Sawada, T.; Ashi, J.; Gulick, S. P.; Flemings, P. B.; Kuramoto, S.; Saito, S.; Mikada, H.; Kinoshita, M.

    2002-12-01

    Kumano Basin is a forearc basin on the eastern Nankai Accretionary Prism off southwest Japan. Recent bathymetric survey showed existence of small knolls in the Kumano Basin. Submersible and ROV dives, sidescan sonar and deep-towed camera investigations revealed so far that at least five of the small knolls are mud volcanoes erupted on the Kumano Basin floor. In June and August, 2002, Dive 677 and 681 by submersible SHINKAI 6500 (YK02-02: R/V Yokosuka) and Dive 267 by ROV KAIKO (KR02-10: R/V Kairei) were performed in one of the mud volcanoes, Kumano Knoll No.4, which is 100 m high and 800 m in diameter at the foot of the knoll. The knoll has a plateau of about 300 m diameter on the top, which shows bumpy surface where there are waves, steps and craters of several meters in diameter. The craters imply active or dead cold seeps and are occasionally accompanied by Calyptogena colonies. The plateau is mostly covered with mud. Rock gravels and boulders were observed mainly on outer slope of the knoll. Sidescan sonar and subbottom profiler data by KAIKO system show marked contrasts in sonic reflectivity and penetration between the Kumano Knoll No.4 and the Kumano Basin floor. The high sonic reflectivity and the low penetration on the knoll indicate that main body of the knoll is composed of clastic ejecta as a mud volcano. On the Kumano Knoll No.4, the dives obtained semi-consolidated mudstone, mud breccia, and biotite arkose sandstone. Chronological analysis on nannofossil indicates the sedimentary rocks are in the late Early Miocene through the Middle Miocene. According to this age and geological information on land, it is likely that the sedimentary rocks on the knoll were originally deposited at the beginning of formation of the Kumano Basin. Porosity of these sedimentary rocks is very low (< 18 %). Some mud breccias contain calcite veins that cut the angular mud gravels. These features lead to finding processes until when the sedimentary rocks reached to the seafloor

  6. Sequence stratigraphy, structural style, and age of deformation of the Malaita accretionary prism (Solomon arc-Ontong Java Plateau convergent zone)

    NASA Astrophysics Data System (ADS)

    Phinney, Eric J.; Mann, Paul; Coffin, Millard F.; Shipley, Thomas H.

    2004-10-01

    Possibilities for the fate of oceanic plateaus at subduction zones range from complete subduction of the plateau beneath the arc to complete plateau-arc accretion and resulting collisional orogenesis. Deep penetration, multi-channel seismic reflection (MCS) data from the northern flank of the Solomon Islands reveal the sequence stratigraphy, structural style, and age of deformation of an accretionary prism formed during late Neogene (5-0 Ma) convergence between the ˜33-km-thick crust of the Ontong Java oceanic plateau and the ˜15-km-thick Solomon island arc. Correlation of MCS data with the satellite-derived, free-air gravity field defines the tectonic boundaries and internal structure of the 800-km-long, 140-km-wide accretionary prism. We name this prism the "Malaita accretionary prism" or "MAP" after Malaita, the largest and best-studied island exposure of the accretionary prism in the Solomon Islands. MCS data, gravity data, and stratigraphic correlations to islands and ODP sites on the Ontong Java Plateau (OJP) reveal that the offshore MAP is composed of folded and thrust faulted sedimentary rocks and upper crystalline crust offscraped from the Solomon the subducting Ontong Java Plateau (Pacific plate) and transferred to the Solomon arc. With the exception of an upper, sequence of Quaternary? island-derived terrigenous sediments, the deformed stratigraphy of the MAP is identical to that of the incoming Ontong Java Plateau in the North Solomon trench. We divide the MAP into four distinct, folded and thrust fault-bounded structural domains interpreted to have formed by diachronous, southeast-to-northwest, and highly oblique entry of the Ontong Java Plateau into a former trench now marked by the Kia-Kaipito-Korigole (KKK) left-lateral strike-slip fault zone along the suture between the Solomon arc and the MAP. The structural style within each of the four structural domains consists of a parallel series of three to four fault propagation folds formed by the

  7. Physical properties of the Nankai inner accretionary prism at Site C0002, IODP Expedition 348

    NASA Astrophysics Data System (ADS)

    Kitamura, Manami; Kitajima, Hiroko; Henry, Pierre; Valdez, Robert; Josh, Matthew

    2014-05-01

    Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Expedition 348 focused on deepening the existing riser hole at Site C0002 to ~3000 meters below seafloor (mbsf) to access the deep interior of the Miocene inner accretionary prism. This unique tectonic environment, which has never before been sampled in situ by ocean drilling, was characterized through riser drilling, logging while drilling (LWD), mud gas monitoring and sampling, and cuttings and core analysis. Shipboard physical properties measurements including moisture and density (MAD), electrical conductivity, P-wave, natural gamma ray, and magnetic susceptibility measurements were performed mainly on cuttings samples from 870.5 to 3058.5 mbsf, but also on core samples from 2163 and 2204 mbsf. MAD measurements were conducted on seawater-washed cuttings ("bulk cuttings") in two size fractions of >4 mm and 1-4 mm from 870.5 to 3058.5 mbsf, and hand-picked intact cuttings from the >4 mm size fractions within 1222.5-3058.5 mbsf interval. The bulk cuttings show grain density of 2.68 g/cm3 and 2.72 g/cm3, bulk density of 1.9 g/cm3 to 2.2 g/cm3, and porosity of 50% to 32%. Compared to the values on bulk cuttings, the intact cuttings show almost the same grain density (2.66-2.70 g/cm3), but higher bulk density (2.05-2.41 g/cm3) and lower porosity (37-18%), respectively. The grain density agreement suggests that the measurements on both bulk cuttings and intact cuttings are of good quality, and the differences in porosity and density are real, but the values from the bulk cuttings are affected strongly by artifacts of the drilling process. Thus, the bulk density and porosity data on handpicked cuttings are better representative of formation properties. Combined with the MAD measurements on hand-picked intact cuttings and discrete core samples from previous expeditions, porosity generally decreases from ~60% to ~20% from the seafloor to 3000 mbsf at Site C0002. Electrical

  8. New insights into the active deformation of accretionary prisms: examples from the Western Makran, Iran

    NASA Astrophysics Data System (ADS)

    Penney, Camilla; Copley, Alex; Oveisi, Benham

    2016-04-01

    The Makran subduction zone, along the southern coasts of Iran and Pakistan, hosts one of the largest exposed accretionary wedges in the world. The western Makran has been characterised by a lack of shallow and thrust seismicity in both the instrumental and historical periods. The Mw 6.1 2013 Minab earthquake thus provides a rare opportunity to study the deformation of the accretionary wedge in the transition region between continent-continent collision, in the Zagros, and oceanic subduction, in the Makran. We study the source parameters and slip distribution of this earthquake using seismology, geodesy and field observations. We observe left-lateral strike-slip motion on a fault striking ENE-WSW; approximately perpendicular to the faults of the Minab-Zendan-Palami fault zone, the main structure previously thought to accommodate the right-lateral shear between the Zagros and the Makran. The fault that ruptured in 2013 is one of a series of approximately E-W striking left-lateral faults visible in the geology and geomorphology. These accommodate a velocity field equivalent to right-lateral shear on N-S striking planes by clockwise rotations about vertical axes. The longitudinal range of shear in the western Makran is likely to be controlled by the distance over which the underthrusting Arabian lithosphere deepens in the transition from continent-continent collision to oceanic subduction. The lack of observed megathrust seismicity in the western Makran has led to assertions that the convergence in this region may be aseismic, in contrast to the eastern Makran, which experienced an Mw8.1 earthquake in 1945. The right-lateral Sistan Suture Zone, which runs ~N-S along the Iran-Afghanistan border to the north of the Makran, appears to separate these regimes. However, right-lateral faulting is not observed south of ~27°N, within the wedge. The Minab earthquake and the 2013 Balochistan earthquake show that the Makran accretionary wedge is dominated by strike-slip faulting

  9. The effect of fault-bend folding on seismic velocity in the marginal ridge of accretionary prisms

    USGS Publications Warehouse

    Cai, Y.; Wang, Chun-Yong; Hwang, W.-t.; Cochrane, G.R.

    1995-01-01

    Fluid venting in accretionary prisms, which feeds chemosynthetic biological communities, occurs mostly on the marginal thrust ridge. New seismic data for the marginal ridge of the Cascadia prism show significantly lower velocity than that in the adjacent oceanic basin and place important constraints on the interpretations of why fluid venting occurs mostly on the marginal ridge. We employed a finite-element method to analyze a typical fault-bend folding model to explain the phenomenon. The fault in the model is simulated by contact elements. The elements are characterized not only by finite sliding along a slide line, but also by elastoplastic deformation. We present the results of a stress analysis which show that the marginal ridge is under subhorizontal extension and the frontal thrust is under compression. This state of stress favors the growth of tensile cracks in the marginal ridge, facilitates fluid flow and reduces seismic velocities therein; on the other hand, it may close fluid pathways along the frontal thrust and divert fluid flow to the marginal ridge. ?? 1995 Birkha??user Verlag.

  10. The Imbert Formation of northern Hispaniola: a tectono-sedimentary record of arc-continent collision and ophiolite emplacement in the northern Caribbean subduction-accretionary prism

    NASA Astrophysics Data System (ADS)

    Escuder-Viruete, J.; Suárez-Rodríguez, Á.; Gabites, J.; Pérez-Estaún, A.

    2016-01-01

    In northern Hispaniola, the Imbert Formation (Fm) has been interpreted as an orogenic "mélange" originally deposited as trench-fill sediments, an accretionary (subduction) complex formed above a SW-dipping subduction zone, or the sedimentary result of the early oblique collision of the Caribbean plate with the Bahama Platform in the middle Eocene. However, new stratigraphical, structural, geochemical and geochronological data from northern Hispaniola indicate that the Imbert Fm constitutes a coarsening-upward stratigraphic sequence that records the transition of the sedimentation from a pre-collisional forearc to a syn-collisional basin. This basin was transported on top of the Puerto Plata ophiolitic complex slab and structurally underlying accreted units of the Rio San Juan complex, as it was emplaced onto the North America continental margin units.

    The Imbert Fm unconformably overlies different structural levels of the Caribbean subduction-accretionary prism, including a supra-subduction zone ophiolite, and consists of three laterally discontinuous units that record the exhumation of the underlying basement. The distal turbiditic lower unit includes the latest volcanic activity of the Caribbean island arc; the more proximal turbiditic intermediate unit is moderately affected by syn-sedimentary faulting; and the upper unit is a (chaotic) olistostromic unit, composed of serpentinite-rich polymictic breccias, conglomerates and sandstones, strongly deformed by syn-sedimentary faulting, slumping and sliding processes. The Imbert Fm is followed by subsidence and turbiditic deposition of the overlying El Mamey Group.

    The 40Ar / 39Ar plagioclase plateau ages obtained in gabbroic rocks from the Puerto Plata ophiolitic complex indicate its exhumation at ˜ 45-40 Ma (lower-to-middle Eocene), contemporaneously to the sedimentation of the overlying Imbert Fm. These cooling ages imply the uplift to the surface and submarine erosion of the complex to

  11. The Imbert Formation of northern Hispaniola: a tectono-sedimentary record of arc-continent collision and ophiolite emplacement in the northern Caribbean subduction-accretionary prism

    NASA Astrophysics Data System (ADS)

    Escuder-Viruete, J.; Suárez-Rodríguez, A.; Gabites, J.; Pérez-Estaún, A.

    2015-06-01

    In northern Hispaniola, the Imbert Formation (Fm) has been interpreted as an orogenic "mélange" originally deposited as trench-fill sediments, an accretionary (subduction) complex formed above a SW-dipping subduction zone, or the sedimentary result of the early oblique collision of the Caribbean plate with the Bahama Platform in the middle Eocene. However, new stratigraphical, structural, geochemical and geochronological data from northern Hispaniola indicate that the Imbert Fm constitutes a coarsening-upward stratigraphic sequence that records the transition of the sedimentation from a pre-collisional forearc to a syn-collisional piggy-back basin. This piggy-back basin was transported on top of the Puerto Plata ophiolitic complex slab and structurally underlying accreted units of the Rio San Juan complex, as it was emplaced onto the North America continental margin units. The Imbert Fm unconformably overlies different structural levels of the Caribbean subduction-accretionary prism, including a supra-subduction zone ophiolite, and consists of three laterally discontinuous units that record the exhumation of the underlying basement. The distal turbiditic lower unit includes the latest volcanic activity of the Caribbean island arc; the more proximal turbiditic intermediate unit is moderately affected by syn-sedimentary faulting; and the upper unit is a (caotic) olistostromic unit, composed of serpentinite-rich polymictic breccias, conglomerates and sandstones, strongly deformed by syn-sedimentary faulting, slumping and sliding processes. The Imbert Fm is followed by subsidence and turbiditic deposition of the overlying El Mamey Group. The 40Ar / 39Ar plagioclase plateau ages obtained in gabbroic rocks from the Puerto Plata ophiolitic complex indicate its exhumation at ∼ 45-40 Ma (lower-to-middle Eocene), contemporaneously to the sedimentation of the overlying Imbert Fm. These cooling ages imply the uplift to the surface and submarine erosion of the complex to

  12. Fault-Propagation Fold vs. Fault-Bend Fold: Two Different Modes of Deformation in Accretionary Prisms

    NASA Astrophysics Data System (ADS)

    Ogawa, Y.

    2015-12-01

    Well exposed on land accretionary prisms of Neogene age in the Miura and Boso Peninsulas in central Japan offer excellent examples for consideration of the significance and implication of two different modes of layer-parallel shortening: fault-propagation folds and fault-bend folds. Some folds in the beds in the Misaki and Shiramazu Formations of middle Miocene to early Pliocene and early Pleistocene age respectively explain long distant layer-parallel slip made of many small scale (tens of cm order) duplex structures of antiformal stack or hinterland-dipping type, or both. The duplexed layer parts are unconformably overlain by liquefied or fluidized turbidite layers on top, suggesting very shallow burial depths during deformation or duplication as slide or slump deposits. Some blocks of hinterland-dipping type duplexes are involved in breccia beds that are formed by liquefaction or mud diapiric intrusion. In addition, in the Misaki Formations, large scale duplex structures of hinterland-dipping type with bi-divergent thrust system on orders of hundreds of meters are mapped in stratified layers. Those duplex systems of various scales are a type of fault-bend fold that is characterized by layer parallel slip within a single, specific bed, that then propagated upward to slip again within the other specific bed. Many of the examples of fault-bend folds formed at shallow burial depths, probably just after the deposition. Another type of layer parallel shortening in the Misaki and Shiramazu Formations is fault-propagation folds that are characterized by propagation of thrust faults by forming synclines and anticlines, resulting in an upward concave thrust system that splays out from the basal slip to develop. These two different types of folds are developed within layers in one side, and in another side cutting through the layers, and could be applied to the submarine Nankai prism of the same ages.

  13. In situ stress magnitudes at the toe of the Nankai Trough Accretionary Prism, offshore Shikoku Island, Japan

    NASA Astrophysics Data System (ADS)

    Huffman, K. A.; Saffer, D. M.

    2016-02-01

    Quantifying the orientation and magnitude of tectonic stresses is essential toward understanding deformation and faulting in subduction zones. However, constraints on in situ horizontal stress magnitudes (Shmin and SHmax) are rare. We estimate Shmin and SHmax at Ocean Drilling Program Site 808 at the toe of the Nankai accretionary prism offshore Japan, using coupled constraints from (1) the width of wellbore breakouts together with estimates of rock strength and a model describing stress redistribution at the borehole wall and (2) limits on regional differential stress defined by failure on preexisting faults. Our analysis extends from 175 to 915 m below seafloor (mbsf) and spans the active frontal thrust. For an upper bound on rock unconfined compressive strength (UCS) and assuming hydrostatic formation pore pressure, Shmin and SHmax (referenced to the seafloor) increase from 6.5 MPa at 175 mbsf to 17.4 MPa at 915 mbsf, with the stress state gradually transitioning from a thrust or strike-slip faulting regime above 800 mbsf to a normal faulting regime below. For cases with higher formation pore pressure, horizontal stresses are slightly lower but follow a similar pattern. We show that estimated Shmin and SHmax are strongly dependent on UCS, breakout width, and friction coefficient, all of which are characterized by uncertainty. Our results suggest that the prism is near thrust failure in the upper ~300 mbsf, but far from failure below. This may be reconciled with active thrusting if thrust faults are locally weaker than the surrounding rock or if SHmax fluctuates during the seismic cycle.

  14. The relationship between mud volcanoes, petroleum migration and accretionary prisms: Lessons from the Caucasus, the Australian margin and Venezuela

    SciTech Connect

    Ware, P.

    1996-08-01

    Mud volcanoes have been widely documented in areas of overpressure where explosive expansion of trapped methane has occurred during argillokinesis. In an area with high sedimentation rate, such as the Gulf of Mexico, there may be no time for fine-grained sediment to de-water before being covered by impermeable material. In an accretionary wedge this process is complicated by overthrusting of off-scraped material which increases the overburden pressure and provides many more avenues for the migration of fluids through the system. In some cases, such as is seen in the Caribbean, the fluids may escape directly to the surface (or seabottom) through high permeability beds. When this happens there may be no diapirism. In other cases, such as in Venezuela, the forearc may be the site of rapid, laterally-derived, sedimentation, and fluids from the overthrusted rocks may be forced to escape through several kilometers of recent deltaic sediments. Since these fluids may include petroleum, this has obvious exploration potential. If there are no suitable reservoir rocks, such as in Timor, there may be no commercial accumulations. However, many giant fields are associated, world-wide, with mud volcanoes, such as those in Azerbaijan.

  15. Magnetic fabrics of soft-sediment folded strata within a neogene accretionary complex, the Miura group, central Japan

    NASA Astrophysics Data System (ADS)

    Kanamatsu, Toshiya; Herrero-Bervera, Emilio; Taira, Asahiko

    2001-05-01

    Anisotropy of magnetic susceptibility (AMS) on the middle Miocene-Pleistocene sedimentary sequence in the Boso and Miura Peninsulas of central Japan was used to study 18 sites in the northern tectonic setting and 37 sites in the southern setting. This sequence is associated with abundant synsedimentary deformation structures of folding and faulting generated in accretionary tectonics. AMS results in different deformation settings such as the forearc, the accretionary prism and the trench were analyzed. The shapes of the dissimilar magnetic fabrics are compared using the shape parameter ( T) and the corrected anisotropy degree ( P') in the so-called T- P' diagrams. Our results have implied that the oblate fabric of the trench sediments can be regarded as the result of depositional and compactional processes alone. The AMS shape parameters obtained from the northern sequence (forearc) closely resemble an indication of undeformed trench sediments. In contrast, a different pattern is observed in the highly prolate-shaped AMS results of the southern sequence. The difference apparently reflects the degree of deformation in the three tectonic provinces. In order to understand the deformation mechanism of the sedimentary fabric, a detailed AMS study was made on one anticline system. An AMS evolution from an oblate fabric to a prolate fabric in the anticline system was observed. We also found that an AMS tectonic fabric occurred in the center of the anticline. Thickness correlations of the strata under study indicate that strained sediments formed in the central portion of the fold. As a consequence, one can say that this mechanism can modify the magnetic fabric from the sedimentary form to the tectonic form in a compressional regime.

  16. Diversity and biogeochemical structuring of bacterial communities across the Porangahau ridge accretionary prism, New Zealand

    USGS Publications Warehouse

    Hamdan, L.J.; Gillevet, P.M.; Pohlman, J.W.; Sikaroodi, M.; Greinert, J.; Coffin, R.B.

    2011-01-01

    Sediments from the Porangahau ridge, located off the northeastern coast of New Zealand, were studied to describe bacterial community structure in conjunction with differing biogeochemical regimes across the ridge. Low diversity was observed in sediments from an eroded basin seaward of the ridge and the community was dominated by uncultured members of the Burkholderiales. Chloroflexi/GNS and Deltaproteobacteria were abundant in sediments from a methane seep located landward of the ridge. Gas-charged and organic-rich sediments further landward had the highest overall diversity. Surface sediments, with the exception of those from the basin, were dominated by Rhodobacterales sequences associated with organic matter deposition. Taxa related to the Desulfosarcina/Desulfococcus and the JS1 candidates were highly abundant at the sulfate-methane transition zone (SMTZ) at three sites. To determine how community structure was influenced by terrestrial, pelagic and in situ substrates, sequence data were statistically analyzed against geochemical data (e.g. sulfate, chloride, nitrogen, phosphorous, methane, bulk inorganic and organic carbon pools) using the Biota-Environmental matching procedure. Landward of the ridge, sulfate was among the most significant structuring factors. Seaward of the ridge, silica and ammonium were important structuring factors. Regardless of the transect location, methane was the principal structuring factor on SMTZ communities. FEMS Microbiology Ecology ?? 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.

  17. Seismic slip propagation along a fault in the Shimanto accretionary prism detected by vitrinite reflectance studies

    NASA Astrophysics Data System (ADS)

    Kitamura, M.; Mukoyoshi, H.; Hirose, T.

    2011-12-01

    Quantitative assessment of heat generation along faults during fault movement is of primary importance in understanding the dynamics of earthquakes. Last several years localized heat anomaly in a fault zone due to rapid seismic sliding has been detected by various analyses of fault zone materials, such as ferromagnetic resonance signal (Fukuchi et al., 2005), trace elements and isotopes (e.g., Ishikawa et al., 2008) and mineralogical change of clay (e.g., Hirono et al., 2008) and vitrinite reflectance (O'Hara, 2004). Here we report a heat anomaly found in a fault zone in the Shimanto accretionary complex by vitrinite reflectance measurements. Mature faults in nature mostly experience multiple seismic events, resulting in integrated heat anomaly. Thus, in addition to vitrinite reflectance measurements across natural faults, we performed high-velocity friction experiments on a mixture of quartz and vitrinite grains to evaluate how multiple rapid-slip events affect vitrinite reflectance in a fault zone. A localized heat anomaly is found in one of fault zones which are developed within a mélange unit in the Cretaceous Shimanto belt, SW Japan. A principle slip zone with thickness of ~5 mm forms within cataclastic damage zone with thickness of ~3 m. The slip zone is mainly composed of well-foliated clay minerals. Host rocks are characterized by a block-in-matrix texture: aligned sandstone and chert blocks embedded in mudstone matrix. We measured vitrinite reflectance across the fault zone by the same method as reported in Sakaguchi et al., (2011). The measurement reveals that the principle slip zone underwent localized temperature of more than 220°C, while background temperature of both damage zone and host rocks is ~170°C. Since fault motion along most active faults occurs seismological, that inevitably generates frictional heat, the localized heat anomaly is possibly caused by the rapid seismic slip. In order to evaluate the change in vitrinite reflectance by

  18. The Variscan accretionary prism in the Kaczawa Mountains (W Sudetes, SW Poland): lithostratigraphic, sedimentological, volcanic, metamorphic and structural evidence

    NASA Astrophysics Data System (ADS)

    Kryza, Ryszard; Kostylew, Joanna; Zalasiewicz, Jan

    2013-04-01

    The Sudetes (SW Poland) at the NE edge of the Bohemian Massif (Central-European Variscides) are a structural mosaic comprising various basement units, some interpreted as fragments of a Variscan accretionary prism (Baranowski et al., 1990; Collins et al., 2000; Kryza & Zalasiewicz, 2008). The best example is the Kaczawa structural unit in the West Sudetes. Its accretionary nature is evident from: Lithostratigraphy, sedimentology and volcanism. Neighbouring tectonic units of the Kaczawa Mountains contain different fragments of Palaeozoic successions: (a) a Cambrian (and Neoproterozoic?) - Ordovician volcano-sedimentary sequence (with WP type bimodal volcanic and shallow-water sedimentary rocks), (b) Silurian - Devonian MORB-type metabasalts, shales and cherts (with graptolites and conodonts), and (c) Late Devonian - Early Carboniferous polygenetic mélange bodies that record overlapping dynamic sedimentary and tectonic processes. This suggests evolving palaeotectonic environments, from initial rift within continental crust, through mature basin likely underlined by oceanic-type lithosphere, to a subduction setting (mélanges; Baranowski et al., 1990; Collins et al., 2000; Kryza & Zalasiewicz, 2008, and refs. therein). Metamorphism. Diverse PT metamorphic paths detected in various tectonic units of the Kaczawa Mountains are strong evidence for the subduction/accretionary affinity. Relatively higher-grade metamorphic units bear evidence of blueschist-facies metamorphism, overprinted by a low-T greenschist facies event (pseudosection modelling yielded: ~270oC and 8.5 kb for the peak-P, and ~310oC and 6 kb for the peak-T stages). The estimated P/T gradient of ~10 oC/km is typical of a subduction setting (Kryza et al., 2011). Other tectonic units, including the mélange bodies, experienced lower-grade metamorphic parageneses (e.g. widespread pumpellyite) and white-mica structural data (Kostylew et al., 2013; and refs. therein). The diverse metamorphic PT paths indicate

  19. P-T-t deformation framework of an accretionary prism, southern New England Orogen, eastern Australia: Implications for blueschist exhumation and metamorphic switching

    NASA Astrophysics Data System (ADS)

    Phillips, G.; Hand, M.; Offler, R.

    2008-12-01

    The Tia Complex is located in the southern New England Orogen of eastern Australia and provides a detailed record of the structural-metamorphic evolution of an ancient accretionary prism. This record is characterized by six stages of deformation that were accompanied by a transition from moderate-pressure-low-temperature to low-pressure-high-temperature metamorphism. The composition of jadeitic pyroxene (subduction), magnesioriebeckite (exhumation), and actinolite (heating) have been used to model P-T conditions during these structural events, which range from P = 6.3-6.7 kbar and T = 320-350°C (subduction) to 1.5-2.0 kbar and 400-420°C (heating). On the basis of new structural and metamorphic data combined with preexisting age data, the evolution of this accretionary prism can be divided into two main stages: (1) blueschist formation and exhumation and (2) elevated heat flow and anatexis. To explain these features, a new model is presented that requires (1) wedge underthrusting and rear wedge extension associated with a stationary subduction hinge and (2) subduction hinge migration resulting in the relocation of the accretionary wedge onto the upper plate and heating during exposure to the mantle wedge. To explain the event chronology preserved in the Tia Complex, both extensional collapse and subduction hinge migration models are required.

  20. Interrelationship of fluid venting and structural evolution: Alvin observations from the frontal accretionary prism, Oregon

    SciTech Connect

    Moore, J.C.; Orange, D. ); Kulm, L.D. )

    1990-06-10

    Seismic reflection and Sea Beam bathymetric data plus submarine geological measurements define a ramp anticline at the deformatoin front of the central Oregon subduction zone. At its northern termination the ramp anticline is deeply incised by a large 500-m-deep submarine canyon and cut by a probable backthrust. To the south along the strike of the fold, a smaller submarine canyon shallowly erodes the anticline, and backthrusting is not apparent in the submersible observations. Two Alvin dives along a transect through the southern canyon show active fluid vents demarked by biological communities at the frontal thrust and at the breached crest of the anticline. Along a northern transect, encompassing the large submarine canyon, 10 Alvin dives indicated no venting on the formal thrust, limited venting in the canyon, but numerous biological communities along a scarp interpreted as the surface trace of the backthrust. These observations suggest a scenario of vent and structural-geomorphic development consisting of (1) frontal thrust faulting and associated venting, facilitated by high fluid pressure; (2) erosion of the oversteepened seaward flank of the ramp anticline assisted by seepage forces and leading to fluid flow out of stratigraphically controlled conduits in the limbs of the overthrust deposits; (3) locking of the frontal thrust due to dewatering or a local decrease in wedge taper associated with development of the large canyon, leading to failure along the backthrust; and (4) redirection of fluid flow by the backthrust. Thus, within {le}0.3 m.y., deformation of the relatively permeable sediments of the Oregon margin results in stratigraphically controlled flow being partially captured by faults.

  1. Tectonic implications for the occurrence of ocean floor, hotspot, and island arc materials within accretionary prisms: Examples from the Mesozoic-Cenozoic NW Pacific Rim

    NASA Astrophysics Data System (ADS)

    Ogawa, Y.; Hirano, N.; Hirano, N.; Taniguchi, H.; Taniguchi, H.; Taniguchi, H.

    2001-12-01

    On-land Mesozoic-Cenozoic accretionary prisms exposed in Japan commonly have basaltic rocks incorporated as blocks into melanges or fault zones during a prolonged history of subduction and/or obduction. Chemical signatures of these basaltic rocks and their mode of occurrence with sedimentary covers and/or associated sedimentary rocks indicate that most of these isolated small basaltic blocks consistently display a WPB chemistry, whereas large slabs of basaltic rocks around the Izu Arc collision zone show MORB chemistry with rare examples of IAT, BABB, and/or WPB affinities. Comparing with the present uniformitarian examples of convergent plate boundaries in the western Pacific that we know through the DSDP and ODP projects and submersible and seismic surveys, we can interpret some of the basaltic material with WPB affinity in the Japanese accretionary prisms as relict edifices of seamounts with hotspot origin. These hotspot-related basaltic rocks are commonly associated with reefal limestones and were incorporated into continental margin melanges either by submarine sliding from the downgoing oceanic plate or by shallow-level offscraping along decollement surfaces during the subduction of oceanic plates. Older, uplifted parts of the fossil accretionary prisms on the continent side further inward from the trench where the deeper levels of accreted material are exposed include larger amounts of basaltic blocks. This observation suggests that significant amount of underplating might have occurred in the deeper levels of oceanic crust along decollement zones at structurally lower depths. The metamorphic belts (e.g.Sambagawa, Chichibu, Shimanto etc.) have commonly alkaline rocks or plateau-type E-MORB basalts without any trace of N-MORB rocks with rare special exceptions. Besides these ordinary accretionary prism examples formed by a simple plate subduction system, another type of accretion resulting from island arc or ridge collision is observed to have occurred in

  2. Fate of sediment during plate convergence at the Mediterranean Ridge accretionary complex: Volume balance of mud extrusion versus subduction and/or accretion

    NASA Astrophysics Data System (ADS)

    Kopf, Achim

    1999-01-01

    Drilling results from two mud volcanoes on the Mediterranean Ridge accretionary complex as well as extensive geophysical surveys have provided new insights about the geometry of these domes at depth. Mud extrusion is related to buoyancy and plate convergence between Africa and Eurasia that caused back-thrust faulting of accreted strata containing overpressured mud at depth. The domes mainly consist of mud breccia formed of as much as 65% polymictic clasts embedded in a clayey matrix of presumed late Miocene age. Volumetric estimates of extruded mud in a well-studied area around the Olimpi mud-volcano field were balanced against sediment input at the deformation front. The results demonstrate that only a small fraction of rock mass having entered the subduction zone since the Messinian is needed to compensate for the mud expelled in the study area. Most of the sediment (95% or more) is either subducted or incorporated into the accretionary prism. The volume of gas expelled with the liquefied, overpressured mud was estimated to range between 1.68 × 106 and 2.85 × 107 m3/yr.

  3. Evaluation of Coseismic Fluid-Rock Interaction in Fault Zones on the Basis of Geochemistry of Fault Rocks in Accretionary Prisms

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Hirono, T.; Honda, G.

    2011-12-01

    Recent studies revealed that concentration and isotopic composition of fluid-mobile trace elements such as Li, Rb, Cs and Sr in slip-zone rocks can change significantly during coseismic fluid-rock interaction at high temperatures (e.g., Ishikawa et al., 2008). In this study, we summarize the results obtained for fault-zone rocks recovered from various depths of the subduction zones. Analysis of a slip-zone sample recovered from shallow portion (0.27 km bsf) of the magasplay fault at Site C0004, IODP Exp. 316, Nankai Trough showed no clear fluid-induced geochemical signals, although a peak temperature over 300 deg. C is estimated on the basis of vitrinite reflectance data (Sakaguchi et al., 2011). In contrast, a major reverse fault in a fossil accretionary prism, the Emi Group (burial depth, 1-2 km) exhibited marked decreases of Li, Rb and Cs relative to adjacent host rocks, suggesting coseismic fluid-rock interactions at >350 deg. C. Geochemical signals observed in the Emi slip zone have a strong resemblance to those observed in the Taiwan chelungpu fault at comparable depths (1.1-1.2 km). Slip-zone samples collected from a fossil out-of-sequence thrust at greater depth (2.5-5.5 km) adjacent to the Kure Melange in the Shimanto accretionary prism showed unique geochemical characteristics, in which effects from disequilibrium flash melting to generate pseudotachylyte coexist with those from fluid-rock interactions at >350 deg. C. In the cases of Emi and Chelungpu, it is possible that the fluid-induced geochemical signatures, together with fluidization structures observed in these samples, resulted from thermal pressurization. On the other hand, the Kure data suggest a slip process in which high-temperature pore fluids were generated by frictional slip, but the thermally-enhanced pressure might not have reached a sufficient level to cause thermal pressurization, and the temperature continued to increase to attain melting. Kinetic estimation suggests that fluid

  4. Predicting the Evolution of Faulting in Accretionary Prisms with Work Optimization: Insights from Numerical Simulations of Analog Experiments

    NASA Astrophysics Data System (ADS)

    McBeck, J.; Cooke, M. L.; Herbert, J. W.; Souloumiac, P.; Maillot, B.

    2015-12-01

    Accretionary wedges develop through the episodic, discrete propagation of imbricate thrust faults at the deformation front and advancement of the decollement surface. In this process, diffuse compaction, propagation of new fractures, and slip and opening along preexisting fractures accommodate cumulative deformation to differing degrees throughout the evolution of the wedge. Previous analyses suggest that the energy budget reveals how strain is partitioned within this episodic system near the onset of thrust faulting. In this contribution, we perform a work optimization analysis with 2D, boundary element method, Fric2D numerical models of accretionary wedges. We use the displacement field captured through particle image velocimetry analysis of scaled physical experiments in dry sand to inform the loading applied to the numerical models. We introduce planar faults of various dips and locations within the wedge, and calculate the gain in efficiency (ΔWext) produced by adding each fault to the wedge. We consider the faults that produce the largest ΔWext to be most energetically favorable, and thus likely to develop at the onset of discrete failure in the wedge. We compare the predictions of this parametric work optimization approach to the geometry of through-going faults observed in the physical analog experiment. We find that the numerical work analysis closely predicts the dip and location of the first forethrust observed in the experiment, as well as the dip of the first backthrust in the experiment. A similar parametric study with planar faults of differing lengths in the modeled wedge shows that the dip of the fault that optimizes work can vary with fault length, and that forethrusts consistently produce a greater gain in efficiency than backthrusts of equal lengths.

  5. A new method of reconstituting the P-T conditions of fluid circulation in an accretionary prism (Shimanto, Japan) from microthermometry of methane-bearing aqueous inclusions

    NASA Astrophysics Data System (ADS)

    Raimbourg, Hugues; Thiéry, Régis; Vacelet, Maxime; Ramboz, Claire; Cluzel, Nicolas; Le Trong, Emmanuel; Yamaguchi, Asuka; Kimura, Gaku

    2014-01-01

    In paleo-accretionary prisms and the shallow metamorphic domains of orogens, circulating fluids trapped in inclusions are commonly composed of a mixture of salt water and methane, producing two types of fluid inclusions: methane-bearing aqueous and methane-rich gaseous fluid inclusions. In such geological settings, where multiple stages of deformation, veining and fluid influx are prevalent, textural relationships between aqueous and gaseous inclusions are often ambiguous, preventing the microthermometric determination of fluid trapping pressure and temperature conditions. To assess the P-T conditions of deep circulating fluids from the Hyuga unit of the Shimanto paleo-accretionary prism on Kyushu, Japan, we have developed a new computational code, applicable to the H2O-CH4-NaCl system, which allows the characterization of CH4-bearing aqueous inclusions using only the temperatures of their phase transitions estimated by microthermometry: Tmi, the melting temperature of ice; Thyd, the melting temperature of gas hydrate and Th,aq, homogenization temperature. This thermodynamic modeling calculates the bulk density and composition of aqueous inclusions, as well as their P-T isochoric paths in a P-T diagram with an estimated precision of approximatively 10%. We use this computational tool to reconstruct the entrapment P-T conditions of aqueous inclusions in the Hyuga unit, and we show that these aqueous inclusions cannot be cogenetic with methane gaseous inclusions present in the same rocks. As a result, we propose that pulses of a high-pressure, methane-rich fluid transiently percolated through a rock wetted by a lower-pressure aqueous fluid. By coupling microthermometric results with petrological data, we infer that the exhumation of the Hyuga unit from the peak metamorphic conditions was nearly isothermal and ended up under a very hot geothermal gradient. In subduction or collision zones, modeling aqueous fluid inclusions in the ternary H2O-CH4-NaCl system and not

  6. Wellbore failures and its constraints on the in-situ stress state in the Nankai Trough accretionary prism, Site C0002, IODP Expedition 348

    NASA Astrophysics Data System (ADS)

    Sone, H.; Jurado, M. J.; Boston, B.; Yamamoto, Y.; Tobin, H. J.; Saffer, D. M.; Hirose, T.

    2014-12-01

    The International Ocean Discovery Program (IODP) Expedition 348 extended the borehole of Site C0002, Nankai Trough, down to over 3000 meters below sea floor (mbsf) collecting core samples and in-situ geophysical data from the inner accretionary prism. In order to investigate the in-situ stress state within the prism, we characterized the occurrence and shapes of wellbore failures as observed by resistivity image logs and sonic caliper logs collected in the vertical well of Hole C0002P. Most wellbore failures were observed in the top 70 meters of Hole C0002P (2150 to 2218.5 mbsf), where resistivity images were acquired several days after the borehole was initially exposed by previous drilling and coring runs. Wide breakouts spanning up to 140 degrees are observed in the NW/SE to NNW/SSE direction suggesting that the maximum horizontal principal stress in the cored interval is in the direction generally consistent with those observed in the shallower sections of Site C0002 from earlier expeditions. In the remaining section of the borehole below, wellbore failures are much sparse and subtle in the resistivity image possibly due to the short exposure time between drilling and image acquisition (about 2 hours). Preliminary examination suggest that these features are breakouts aligned in the direction consistent with the upper section, but examination in combination with the sonic caliper data is required for further confirmation. These observations suggest that the occurrence of breakouts exhibit significant time-dependence due to processes such as pore pressure diffusion or time-dependent rock deformation. Moreover, sonic caliper data suggests that shapes and width of the wellbore failures in the studied dataset is influenced by the formation strength anisotropy (in the horizontal direction) enhanced by the steeply dipping bedding planes (60-90 degrees). Thus, constraints on in-situ stress magnitudes will be provided through comparison of wellbore failures, borehole

  7. Generation, migration, and resource potential for hydrocarbons in accretionary subduction systems - a large, unconventional hydrocarbon resource

    SciTech Connect

    Stevenson, A.J. )

    1993-01-01

    Methane and other gaseous and liquid hydrocarbons are common components of accretionary complexes and have been observed in all environments within modern and fossil accretionary accumulations. Methane is generated in this setting by both microbial and thermal processes, but the limited number of samples analyzed prevents an accurate assessment of the relative importance of these two gas generation mechanisms. Large accretionary prisms are geologic settings which, owing to the large amounts of organic detritus cycling through them, represent a large potential source of methane. Organic detritus in accretionary systems is primarily terrestrial in origin and thus gas prone. Variations in the sediment input, thermal structure, fluid flow regime, and structural style of accretionary prisms have a substantial effect on the amount of sediment that enters the gas generation window and on the amount and type of hydrocarbons generated. Factors favorable for maximum evolution of gas include a large, thick accretionary prism, a thick incoming sedimentary section, substantial axial trench sedimentation fed with continental detritus, development of the decollement near the top of the incoming section, substantial underplating, a young subducting plate, and slow to moderate plate convergence rates. On a worldwide basis, long-term methane generation potential is estimated at 1.5x10[sup 10] m[sup 3] (0.5 trillion cubic feet or Tcf) per year in the accretionary subduction setting. No commercial accumulations of gas have yet been identified in this setting; this lack of accumulations implies that much of the gas generated may escape to the oceans and the atmosphere. However, accretionary complexes have not been extensively explored for hydrocarbons, and the trapping of even a small part of the gas generated could result in a substantial commercial resource. 37 refs., 5 figs.

  8. Cold seep communities as indicators of fluid expulsion patterns through mud volcanoes seaward of the Barbados accretionary prism

    NASA Astrophysics Data System (ADS)

    Olu, Karine; Lance, Sophie; Sibuet, Myriam; Henry, Pierre; Fiala-Médioni, Aline; Dinet, Alain

    1997-05-01

    Cold seep communities are sustained by massive methane-rich fluid expulsion through mud volcanoes located at about 5000 m in the Barbados Trench. These communities, dependent on chemosynthetic processes, are dominated by a vesicomyid bivalve assumed to be a new species related to the genus Calyptogena, and by large bushes of the sponge Cladorhizidae. Both are associated with symbiotic bacteria and are indicative of methane release in seawater and sulphide production in sediments. Non-symbiotic organisms, such as large fields of filter-feeding polychaetes and high densities of meiofauna are indicative of enhanced biological production in the sediments. The spatial distribution of the bivalve populations was mapped using video observations and a computer method based on a simple calculation of the area covered by a submersible camera. The observation of clam beds of variable densities allows us to define two types of fine-scale fluid expulsion pattern: dense Calyptogena beds (up to 150 ind.m -2) are associated with"vents" with relatively high fluid discharge velocities of about 10 cm s -1 and focused by high permeability conduits, whereas dispersed clams (1-10 ind.m -2) are probably sustained only by slow, diffusive "seepages". The distribution of the chemosynthetic zones from the centre to the edges of the volcano, highlighting the heterogeneity of the concentric zones from the centre to the edges of the volcano, highlighting the heterogeneity of the fluid expulsion pattern at the scale of the volcano. The spatial distribution of the chemosynthetic communities characterizes the fluid expulsion on several types of volcanoes: two mud volcanoes, identified as diatremes, named Atalante and Cyclope, are flat with a central lake of warm fluid mud that is devoid of life, whereas Calyptogena beds are located in the outer regions. On the two other structures, mounds shaped as cones, all activity is concentrated near the summit and seems to be related to higher flow vents

  9. Paleozoic subduction erosion involving accretionary wedge sediments in the South Tianshan Orogen: Evidence from geochronological and geochemical studies on eclogites and their host metasediments

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Su, Wen; Gao, Jun; Li, Jilei; Jiang, Tuo; Zhang, Xi; Ge, Xiaomei

    2014-12-01

    Geochronological and geochemical data regarding eclogites and their metasedimentary host rocks exposed in two localities of the South Tianshan (U)HP-LT metamorphic belt are presented to reveal the protolith of the eclogites and the provenance of the metasediments. The rim domains of zircon grains from the eclogites contain omphacite, phengite and rutile inclusions and give a U-Pb Concordia age of 321.4 ± 2.4 Ma, representing the peak of eclogite-facies metamorphism. The core domains of zircon grains with magmatic oscillatory zoning yield a U-Pb Concordia age of 453.9 ± 9.4 Ma, suggesting a Late Ordovician age for the eclogites' protolith. Furthermore, the inherited cores of some zircon grains have apparent U-Pb ages between 609 Ma and 2305 Ma, implying the involvement of the Precambrian basement in the formation of the eclogites' protolith. The depletion of high field strength elements and the trace element ratios indicate the eclogite protolith's continental arc affinity. The zircon U-Pb age data of the high-pressure micaschists yield seven age groups ranging from 401 Ma to 3201 Ma and cluster at a pronounced peak of ~ 445 Ma. The major and trace element compositions of the micaschists overlap those of the average upper continental crust. The protolith of the micaschist seems to have formed at an accretionary wedge, which is predominantly composed of sediments derived from Ordovician-Silurian arc-type magmatic rocks and Precambrian basement rocks in an active continental margin. The basic blocks represented by the protolith of the eclogites were most likely scraped from the basement of a continental arc by basal erosion during the subduction of the South Tianshan Ocean in Late Paleozoic. At the same time, the fragments composing the micaschists' protolith are believed to have been dragged into the subduction channel by the frontal erosion of the accretionary prism. Both the basic blocks and the sediment fragments were forced into the subduction channel, mingled

  10. Structural signature of sediment accretion in a Palaeozoic accretionary complex, southeastern Australia

    NASA Astrophysics Data System (ADS)

    Miller, John McL.; Gray, David R.

    1996-10-01

    Chaotic block-in-matrix melange, broken formation along high strain zones associated with large scale imbrication, early bedding-parallel cleavage, recumbent folds in turbidites, and structural complexity in cherts are key elements of a mid-Palaeozoic subduction complex in the eastern part of the Lachlan Fold Belt, southeastern Australia. The complex consists of an imbricated turbidite, chert and basalt sequence of mid-Cambrian to Late Ordovician age. Structural and biostratigraphic controls require a complexly imbricated sequence with reversals in younging seawards towards the inferred former trench/subduction zone, as in young subduction accretionary complexes such as the Kodiak accretionary complex in the Aleutians and the Shimanto complex of Japan. Subduction accretion or underplating in the Narooma accretionary complex is not typified by duplexing, but shows a strain-dependent transition from an "inland" belt of chevron-folding cut by reverse faults, to a coastal belt with an early bedding-parallel fabric, isoclinal-recumbent folding, poly-deformation and differentiated layering in quartzrich turbiditic greywackes. Greywacke units show multiple cleavage fabrics formed in one folding event. Cherts below the turbidites show multiple folding events and zones of broken formation with intense veining and stylolitisation. The structurally lowest units, including deformed pillow basalts and block-in-matrix melange, show strong planar-linear fabrics. In the block-in-matrix melange, prolate-shaped pods of greywacke and chert are aligned sub-parallel to the bulk extension direction defined by mica pull-aparts and pressure shadows on pyrite within the mudstone matrix. Mica neocrystallisation and pressure solution are the dominant deformation mechanisms at the base of the complex.

  11. Thermochronology of the Torlesse accretionary complex, Wellington region, New Zealand

    NASA Astrophysics Data System (ADS)

    Kamp, Peter J. J.

    2000-08-01

    The Torlesse Complex comprises several Mesozoic accretionary prism complexes together forming continental basement over large parts of New Zealand. This study focuses on the thermal history of relatively low grade graywacke rocks exposed in a transect in southern North Island that crosses the structural grain of the Torlesse Complex, including its older and younger parts. Zircon fission track (FT) ages for the Late Triassic Rakaia Terrane, which is the most inboard of the accretionary complexes, are partially annealed, some possibly reset, and may indicate early Cretaceous (134±10 Ma) cooling from maximum temperatures (Tmax), probably related to imbrication of younger complexes of the Pahau Terrane. Numerical modeling of the zircon FT ages and published 40ArA/39Ar muscovite and biotite ages for the Rakaia Terrane suggest Tmax values of 265-310°C and exhumation from depths of 10-12 km. The rocks underlying the Aorangi Range and involving the youngest accretionary complex have experienced much lower Tmax values of ≤210° and ≥110°C, bracketed by reset apatite FT ages and detrital zircon FT ages. The occurrence of a circa 100 Ma component of zircon FT ages in both the weakly and highly indurated rocks beneath the Aorangi Range, as well as in remnants of an overlying Albian accretionary slope basin (Whatarangi Formation), imply multistorey accretion and incorporation of sediment into the youngest prism. This circa 100 Ma zircon FT age component also places a maximum age on the termination of Mesozoic subduction beneath the New Zealand region. The occurrence of reset apatite FT ages across the whole of the Wellington transect indicates that at least 4 km of exhumation occurred during the late Miocene.

  12. Triassic deformation of Permian Early Triassic arc-related sediments in the Beishan (NW China): Last pulse of the accretionary orogenesis in the southernmost Altaids

    NASA Astrophysics Data System (ADS)

    Tian, Zhonghua; Xiao, Wenjiao; Sun, Jimin; Windley, Brian F.; Glen, Richard; Han, Chunming; Zhang, Zhiyong; Zhang, Ji'en; Wan, Bo; Ao, Songjian; Song, Dongfang

    2015-11-01

    The Beishan orogenic collage (BOC) in the southernmost Altaids provides evidence of the final stage of evolution of the Paleo-Asian Ocean. However, the closure time of the Paleo-Asian Ocean in the BOC is controversial. From field mapping, and structural analysis of mesoscale, superposed folds in Early Triassic sediments in the Hongyanjing Basin in the central BOC, we define at least two phases of deformation, which we can bracket in age as end-Permian to Early-Late Triassic. The sandstones in the basin are poorly sorted with angular clasts, which indicates immaturity characteristic of proximal and rapid deposition. Geochemical data indicate that the Hongyanjing Basin probably developed in an arc-related setting near an active continental margin or mature island arc. Combined with published regional geological data, we interpret the Hongyanjing Basin as a Permian-Early Triassic inter-arc basin between the Carboniferous Mazongshan arc to the north and the Ordovician to Permian Huaniushan-Dundunshan arc to the south. In addition, the age distribution of our sediments shows that the active continental margin or continental arc on which the Hongyanjing arc-related basin sat was somehow independently distributed in the Paleo-Asian Ocean without any major contribution of provenance from the Tarim Craton and Dunhuang Block to the south and Southern Mongolia accretionary system to the north. Deformation of the superposed folds began in the end-Permian, continued in the Early Triassic, and ended before the middle Late Triassic (219 Ma). Therefore the accretionary orogenesis in the Beishan part of the southernmost Altaids was still ongoing in the early to middle Triassic, and it finished in the Late Triassic, which might have been the last pulse of the accretionary orogenesis in the southernmost Altaids. We correlate this terminal event with tectonic developments in the Kunlun and Qinling orogens in the Tethyan domain.

  13. Interaction between hydrocarbon seepage, chemosynthetic communities and bottom water redox at cold seeps of the Makran accretionary prism: insights from habitat-specific pore water sampling and modeling

    NASA Astrophysics Data System (ADS)

    Fischer, D.; Sahling, H.; Nöthen, K.; Bohrmann, G.; Zabel, M.; Kasten, S.

    2011-09-01

    The interaction between fluid seepage, bottom water redox, and chemosynthetic communities was studied at cold seeps across one of the world's largest oxygen minimum zones (OMZ) located at the Makran convergent continental margin. Push cores were obtained from seeps within and at the lower boundary of the core-OMZ with a remotely operated vehicle. Extracted pore water was analyzed for sulfide and sulfate contents. Depending on oxygen availability, seeps were either colonized by microbial mats or by mats and macrofauna. The latter, including ampharetid polychaetes and vesicomyid clams, occurred in distinct benthic habitats which were arranged in a concentric fashion around gas orifices. At most sites colonized by microbial mats, hydrogen sulfide was exported into the bottom water. Where macrofauna was widely abundant, hydrogen sulfide was consumed within the sediment. Numerical modeling of pore water profiles was performed in order to assess rates of fluid advection and bioirrigation. While the magnitude of upward fluid flow decreased from 11 cm yr-1 to <1 cm yr-1 and the sulfate/methane transition zone (SMTZ) deepened with increasing distance from the central gas orifice, the fluxes of sulfate into the SMTZ did not significantly differ (6.6-9.3 mol m-2 yr-1). Depth-integrated rates of bioirrigation increased from 162 cm yr-1 in central habitats characterized by microbial mats and sparse macrofauna to 348 cm yr-1 in habitats of large and small vesicomyid clams. These results reveal that chemosynthetic macrofauna inhabiting the outer seep habitats at the lower boundary of the OMZ efficiently bioirrigate and thus transport sulfate into the upper 10 to 15 cm of the sediment. In this way bioirrigation compensates for the lower upward flux of methane in outer habitats and stimulates rates of anaerobic oxidation of methane (AOM) with sulfate high enough to provide sulfide for chemosynthesis. Through bioirrigation macrofauna engineer their geochemical environment and fuel

  14. Metatranscriptomic Analysis of Diminutive Thiomargarita-Like Bacteria (“Candidatus Thiopilula” spp.) from Abyssal Cold Seeps of the Barbados Accretionary Prism

    PubMed Central

    Flood, Beverly E.

    2015-01-01

    Large sulfur-oxidizing bacteria in the family Beggiatoaceae are important players in the global sulfur cycle. This group contains members of the well-known genera Beggiatoa, Thioploca, and Thiomargarita but also recently identified and relatively unknown candidate taxa, including “Candidatus Thiopilula” spp. and “Ca. Thiophysa” spp. We discovered a population of “Ca. Thiopilula” spp. colonizing cold seeps near Barbados at a ∼4.7-km water depth. The Barbados population consists of spherical cells that are morphologically similar to Thiomargarita spp., with elemental sulfur inclusions and a central vacuole, but have much smaller cell diameters (5 to 40 μm). Metatranscriptomic analysis revealed that when exposed to anoxic sulfidic conditions, Barbados “Ca. Thiopilula” organisms expressed genes for the oxidation of elemental sulfur and the reduction of nitrogenous compounds, consistent with their vacuolated morphology and intracellular sulfur storage capability. Metatranscriptomic analysis further revealed that anaerobic methane-oxidizing and sulfate-reducing organisms were active in the sediment, which likely provided reduced sulfur substrates for “Ca. Thiopilula” and other sulfur-oxidizing microorganisms in the community. The novel observations of “Ca. Thiopilula” and associated organisms reported here expand our knowledge of the globally distributed and ecologically successful Beggiatoaceae group and thus offer insight into the composition and ecology of deep cold seep microbial communities. PMID:25724961

  15. A stochastic prediction of in situ stress magnitudes from the distributions of rock strength and breakout width at IODP Hole C0002A in Nankai accretionary prism, SW Japan

    NASA Astrophysics Data System (ADS)

    Song, Insun; Chang, Chandong; Lee, Hikweon

    2015-04-01

    . The results from this new approach of stress estimation are comparable with previous other results (e.g., Chang et al., 2010, G3; Lee et al., 2013, MPG). This stochastic model is prominent because it gives not only both values of SHmax and Shmin simultaneously but also information about statistical reliability of the determined values quantified by sensitivity and uncertainty. Our result shows that the two stress magnitudes in Nankai accretionary prism are not completely independent in terms of sensitivity, suggesting that other independent measure of one of the two stresses might be definitely useful (e.g., from leak-off test).

  16. Sediment flux and accretion history on the Cascadia and Sumatra margins

    NASA Astrophysics Data System (ADS)

    McNeill, L. C.; Geersen, J.; Springett, J.; Trehu, A. M.; Wilson, D. J.

    2013-12-01

    The growth of accretionary prisms and continental margins, and the properties of the prism interior and plate boundary are a function of input sediment through time and the history of accretion, erosion, and sediment subduction on the margin. Input sediment volumes are affected by changing sediment sources and pathways, climate, oceanic basement topography, and erosion and reworking of material from the forearc itself. Seismic reflection data have been compiled on the Cascadia margin, imaging the oceanic plate structure and stratigraphy, and forearc structure to analyse these processes at several locations along the margin, providing more detail than earlier compilations of sediment flux. These seismic data are integrated with ocean drilling data on the oceanic plate to establish the history of deposition on the oceanic plate and in the trench. Sediment flux into the subduction zone since the late Miocene can then be estimated and compared with the volume of the currently active prism. Several specific factors are considered, including: décollement position; compaction; reaccretion of sediment eroded from the prism into the trench; prism age; reduction in sediment flux prior to Pleistocene glaciation on the margin; mixing of older prism mélange with the modern prism on the Washington margin; potential changes in convergence rate and direction with time; margin-parallel motion of forearc material. In some cases, these parameters or their temporal change generate significant uncertainty. Initial results suggest that on the southern Washington margin, input sediment since late Miocene broadly balances with prism volume, supporting predominant accretion. On the central Oregon margin (where the prism may be younger), the prism volume is similar or slightly less than the sediment input, and on the southern Oregon margin, the prism volume is significantly less than the sediment input. This supports the hypothesis that basal and surface erosion of the prism and sediment

  17. Rate of outward growth of the Mediterranean ridge accretionary complex

    NASA Astrophysics Data System (ADS)

    Kastens, Kim A.

    1991-12-01

    The position as a function time of the deformation front on the southwest flank of the Mediterranean Ridge accretionary complex is constrained as follows: (a) the deformation front is now active; (b) the site of core BAN84-05GC was still near the abyssal plain when displaced shallow water benthic foraminifera of inferred African provenance were redeposited within an upper Pliocene age unit; (c) the site of core BAN84-05GC on the outer flank of the Mediterranean Ridge was already within the topographically rugged accretionary complex when a Pliocene debris flow was emplaced; (d) DSDP Site 125 had already been uplifted into a topographically elevated position when lower Pliocene pelagic ooze was deposited; (e) a gypsum-bearing breccia in DSDP Site 125 requires that the site was either on the abyssal plain or within the tectonically active outer perimeter of the accretionary complex during the Messinian salinity crisis; (f) DSDP Site 377 had already been uplifted into a topographically elevated position when middle Miocene age pelagic marl was deposited; (g) DSDP Site 377 was still on or near the abyssal plain when early to lower-middle Miocene age, smectite-bearing turbidites of inferred African provenance were deposited; and (h) the Mediterranean Ridge began to grow by offscraping against a backstop formed by the Alpine nappes of the Hellenic Arc at the time that subduction began (> 33 Ma). Together, these constraints define a range of potential growth curves for the Mediterranean Ridge, with a rate of outward growth of approximately 0.5 to 2 cm/yr. This growth rate is faster than that inferred for most other modern accretionary prisms, both as an absolute value, and as a fraction of the subduction velocity. An unusually thick incoming section and/or an unusually weak (evaporitic) décollement may contribute to the rapid growth rate. The inferred age of accretion does not increase linearly with distance from the deformation front; rather, there is an apparent

  18. Accretionary orogens through Earth history

    USGS Publications Warehouse

    Cawood, Peter A.; Kroner, A.; Collins, W.J.; Kusky, T.M.; Mooney, W.D.; Windley, B.F.

    2009-01-01

    Accretionary orogens form at intraoceanic and continental margin convergent plate boundaries. They include the supra-subduction zone forearc, magmatic arc and back-arc components. Accretionary orogens can be grouped into retreating and advancing types, based on their kinematic framework and resulting geological character. Retreating orogens (e.g. modern western Pacific) are undergoing long-term extension in response to the site of subduction of the lower plate retreating with respect to the overriding plate and are characterized by back-arc basins. Advancing orogens (e.g. Andes) develop in an environment in which the overriding plate is advancing towards the downgoing plate, resulting in the development of foreland fold and thrust belts and crustal thickening. Cratonization of accretionary orogens occurs during continuing plate convergence and requires transient coupling across the plate boundary with strain concentrated in zones of mechanical and thermal weakening such as the magmatic arc and back-arc region. Potential driving mechanisms for coupling include accretion of buoyant lithosphere (terrane accretion), flat-slab subduction, and rapid absolute upper plate motion overriding the downgoing plate. Accretionary orogens have been active throughout Earth history, extending back until at least 3.2 Ga, and potentially earlier, and provide an important constraint on the initiation of horizontal motion of lithospheric plates on Earth. They have been responsible for major growth of the continental lithosphere through the addition of juvenile magmatic products but are also major sites of consumption and reworking of continental crust through time, through sediment subduction and subduction erosion. It is probable that the rates of crustal growth and destruction are roughly equal, implying that net growth since the Archaean is effectively zero. ?? The Geological Society of London 2009.

  19. Modeling consolidation and dewatering near the toe of the northern Barbados accretionary complex

    USGS Publications Warehouse

    Stauffer, P.; Bekins, B.A.

    2001-01-01

    At the toe of the northern Barbados accretionary complex, temperature and pore water chemistry data indicate that fluid flow is channeled along the de??collement and other shallow thrust faults. We examine mechanisms that may prevent consolidation and maintain high permeability over large sections of the de??collement. High-resolution bulk density data from five boreholes show that the de??collement is well consolidated at some sites while other sites remain underconsolidated. Underconsolidated de??collement behavior is associated with kilometer-scale negative-polarity seismic reflections from the de??collement plane that have been interpreted to be fluid conduits. We use a coupled fluid flow/consolidation model to simulate the loading response of a 10-km-long by 680-m-thick slice of sediment as it enters the accretionary complex. The simulations capture 185 ka (5 km) of subduction, with a load function representing the estimated effective stress of the overriding accretionary prism (3.8?? taper angle). Simulation results of bulk density in the de??collement 3.2 km arcward of the deformation front are compared with observations. The results show that persistent high pore pressures at the arcward edge of the simulation domain can explain underconsolidated behavior. The scenario is consistent with previous modeling results showing that high pore pressures can propagate intermittently along the de??collement from deeper in the complex. Simulated seaward fluxes in the de??collement (1-14 cm yr-1) lie between previous estimates from modeling studies of steady state (1 m yr-1) flow. Maximum simulated instantaneous fluid sources (2.5??10-13 s-1) are comparable to previous estimates. The simulations show minor swelling of incoming sediments (fluid sources ??? -3 ?? 1015 s-1) up to 3 km before subduction that may help to explain small-scale shearing and normal faulting proximal to the protode??collement. Copyright 2001 by the American Geophysical Union.

  20. Timing of deformational events in the Río San Juan complex: Implications for the tectonic controls on the exhumation of high-P rocks in the northern Caribbean subduction-accretionary prism

    NASA Astrophysics Data System (ADS)

    Escuder-Viruete, Javier; Valverde-Vaquero, Pablo; Rojas-Agramonte, Yamirka; Gabites, Janet; Castillo-Carrión, Mercedes; Pérez-Estaún, Andrés

    2013-09-01

    An integrated structural, petrological and geochronological study was undertaken to constrain the tectonic history and controls on the exhumation of the high-P rocks of the Río San Juan complex in the northern Caribbean subduction-accretionary wedge. In the main structural units of the complex, microtextural analyses were performed to identify the fabrics formed at peak of metamorphism in eclogite-facies conditions and during the main retrogressive event toward the low-P amphibolite or blueschist/greenschist-facies conditions. U-Pb SHRIMP dating on zircon rims (71.3 ± 0.7 Ma) coupled with 40Ar-39Ar analyses on phengite (~ 70-69 Ma) in felsic sills placed temporal constraints on the exhumation of the Jagua Clara serpentinite-matrix mélange during the blueschist-facies stage at the early Maastrichtian. In the Cuaba unit, U-Pb TIMS zircon ages of 89.7 ± 0.1 Ma and 90.1 ± 0.2 Ma obtained for the crystallization of tonalitic/trondhjemitic melts in the lower Guaconejo and upper Jobito subunits, respectively, are similar. These ages coupled with a U-Pb SHRIMP zircon age of 87 ± 1.8 Ma obtained in a garnet amphibolite and a group of older 40Ar-39Ar cooling ages on calcic amphibole constrain the exhumation of the Guaconejo subunit from the high-P stage to the low-P stage at the ~ 90-83 Ma time interval. Further, the age data collectively supports a genetic relationship between the distributed extensional ductile shearing, the related decompression and the local partial anatexis in the subunit, at least from the Turonian-Coniacian boundary to the early Campanian. A group of younger 40Ar-39Ar ages obtained in the mylonitized amphibolites of the basal Jobito detachment zone indicates late ductile deformation and exhumation/cooling in the late Campanian to Maastrichtian (~ 75-70 Ma). Therefore, structural and age data established deformation partitioning and reworking of retrograde fabrics during ~ 20 Ma in the Cuaba unit. The different exhumation rates obtained for the

  1. Megathrust propagation and accretionary wedge development at the front of a sediment-rich subduction system, central Hikurangi Margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Barnes, P.; Ghisetti, F.; Ellis, S. M.; Barker, D. H. N.; Henrys, F.; Henrys, S. A.

    2014-12-01

    The central Hikurangi margin imbricated wedge is characteristic of wide (>100 km), low taper (4-5°) accretionary thrust systems associated with a relatively smooth subducting plate, thick input sedimentary sequence (~4 km in the trench), moderate convergence rate (~ 40 mm/yr), and a relatively weak interplate fault. The >65 km-wide frontal part of the wedge comprises late Cenozoic accreted turbidites and the upper pelagic sequence of the subducting Hikurangi Plateau. Whilst the deeper (10-30 km) part of the subduction interface beneath land is interseismically strongly coupled (with slow slip events reported beneath the adjacent continental shelf), the style of megathrust slip beneath the outer accretionary wedge is unknown. To support numerical forward modelling of interplate rheological and frictional properties, in a related study, we use 2D seismic reflection profiles to define the geometry of the shallow portion of the interplate megathrust, frontal wedge, and a spectacular protothrust zone outboard of the stepped frontal thrust. We reconstruct the evolution of the frontal wedge and the trench-ward propagation of the megathrust fault through progressive restoration, decompaction, and back-stripping of depth-converted seismic sections, in four stages (~0.6, 1.0, 2.0, and ≥3.5 Ma old. Folding in the fault hanging wall sequences is restored by mechanisms of fault-propagation folding and trishear. Whilst protothrusts develop as conjugate arrays with up-dip and down-dip propagation, back-thrusting on major thrust faults is relatively minor. Our preliminary results indicate spatial variations in finite shortening (~15-30%) and timing of megathrust propagation, with occurrence of out-of-sequence thrusting. Megathrust propagation may have occurred earlier than suggested in previous interpretations, with the highest shortening rates in the interval ~ 1-2 Ma. Estimated shortening rate is <10 mm/yr across the outer wedge, representing ~10-30% of total convergence.

  2. Sediment Accretion During Horst and Graben Subduction associated with the Tohoku Oki M9 Earthquake, Northern Japan

    NASA Astrophysics Data System (ADS)

    Moore, J. C.; Chester, F. M.

    2015-12-01

    The stratigraphic sequence within the frontal accretionary prism of the Japan Trench, the site of large slip during the Tohoku earthquake, is unique due to horst and graben subduction. Boreholes at IODP Site C0019, penetrating the toe of the Tohoku accretionary prism, document a younger over older intraprism thrust contact with a 9 Ma age gap across the basal plate boundary fault. The anomalously young (Quaternary to Pliocene), fault-bounded sediment package is 130 m thick, of a total of 820 m of sediment above the plate boundary fault. In contrast, typical accretionary prism structure consists of stacked sediment packages on imbricate faults above the basal decollement resulting in an overall increase in age downward. Site C0019 penetrates the prism directly above a horst of the subducting Pacific oceanic crust. Here the plate-boundary fault consists of a thin, weak smectitic pelagic clay that is probably the principal slip surface of ~50 m offset in the 2011 Tohoku earthquake. The fault continues seaward deepening off the seaward edge of the horst and beneath the sediment fill of the adjacent graben, dying out at the landward base of the next incoming horst. The plate boundary fault and its splays in the graben form a narrow-taper protoprism and a small sedimentary basin of trench fill marking the seaward edge of the upper plate. The modern fault and sediment distributions within the graben are used to motivate a viable model for the presence of anomalously young sediments directly above the plate boundary fault. In this model sediments in the trench are thrust over the incoming horst by propagation of the plate boundary thrust up the landward-dipping fault of the incoming horst and along the smectitic clay layer to emplace Quaternary and Pliocene trench deposits directly on top of the incoming horst. These young deposits are in turn overlain by sediments 9 Ma or older that have been transported out of the graben along imbricate faults associated with the

  3. Landward thrusting in accretionary wedges: evidence for seafloor rupture?

    NASA Astrophysics Data System (ADS)

    Cubas, N.; Souloumiac, P.

    2015-12-01

    The 2004 Sumatra and 2011 Japan earthquakes took the community by surprise because they ruptured frontal sections of megathrust thought to slip aseismically. Studying the deformation of accretionary prisms can help in characterizing the specific structures associated to frontal propagation and determining the mechanical properties leading to this behavior. Recent observations suggest a correlation between landward faults and frontal propagation of earthquakes along the Sumatra subduction zone. Large sections of landward thrusts are also observed along Cascadia known to have ruptured in 1700 with a M~9 generating a large tsunami. In this study, we propose to investigate if specific frictional properties could lead to a landward sequence of thrusting with the limit analysis approach. We first show that such sequence requires very low effective friction along the megathrust with a rather high internal effective friction. We also show that landward sequence appears close to the extensional critical limit. We retrieve the megathrust effective friction for three wedges with different sediment incomes. For Cascadia, we find a maximal effective friction of 0.032. For northern and southern Sumatra, we find μ≤0.02 and μ≤ 0.08 respectively. This very low effective friction is probably due to lithostatic pore pressure. This high pore pressure could either be a long-term property or due to dynamic effects such as thermal pressurization. The fact that landward vergence appears far from the compressional critical limit favors a dynamic effect. Indeed, a wedge would move away from this limit if material is added synchronously to the deformation or if it is suddenly submitted to a lower effective friction. In addition, the long-term high pore pressure could be due to a low permeability enhancing thermal pressurization and co-seismic slip along the frontal part of the megathrust.

  4. Lithospheric cooling as a basin forming mechanism within accretionary crust.

    NASA Astrophysics Data System (ADS)

    Holt, P. J.; Allen, M.; van Hunen, J.; Björnseth, H. M.

    2009-04-01

    Widely accepted basin forming mechanisms are limited to flexure of the lithosphere, lithospheric stretching, lithospheric cooling following rifting and, possibly, dynamic topography. In this work forward models have been used to investigate lithospheric growth due to cooling beneath accretionary crust, as a new basin forming mechanism. Accretionary crust is formed from collision of island arcs, accretionary complexes and fragments of reworked older crust at subduction zones, and therefore has thin lithosphere due to melting and increased convection. This is modeled using a 1D infinite half space cooling model similar to lithospheric cooling models for the oceans. The crustal composition and structure used in the models has been varied around average values of accretionary crust to represent the heterogeneity of accretionary crust. The initial mantle lithosphere thickness used in the model was 20 km. The model then allows the lithosphere to thicken as it cools and calculates the subsidence isostatically. The model produces sediment loaded basins of 2-7 km for the various crustal structures over 250 Myrs. Water-loaded tectonic subsidence curves from the forward models were compared to tectonic subsidence curves produced from backstripping wells from the Kufrah and Ghadames basins, located on the accretionary crust of North Africa. A good match between the subsidence curves for the forward model and backstripping is produced when the best estimates for the crustal structure, composition and the present day thickness of the lithosphere for North Africa are used as inputs for the forward model. This shows that lithospheric cooling provides a good method for producing large basins with prolonged subsidence in accretionary crust without the need for initial extension.

  5. Fluid venting and seepage at accretionary ridges: the Four Way Closure Ridge offshore SW Taiwan

    NASA Astrophysics Data System (ADS)

    Klaucke, Ingo; Berndt, Christian; Crutchley, Gareth; Chi, Wu-Cheng; Lin, Saulwood; Muff, Sina

    2016-06-01

    Within the accretionary prism offshore SW Taiwan, widespread gas hydrate accumulations are postulated to occur based on the presence of a bottom simulating reflection. Methane seepage, however, is also widespread at accretionary ridges offshore SW Taiwan and may indicate a significant loss of methane bypassing the gas hydrate system. Four Way Closure Ridge, located in 1,500 m water depth, is an anticlinal ridge that would constitute an ideal trap for methane and consequently represents a site with good potential for gas hydrate accumulations. The analysis of high-resolution bathymetry, deep-towed sidescan sonar imagery, high-resolution seismic profiling and towed video observations of the seafloor shows that Four Way Closure Ridge is and has been a site of intensive methane seepage. Continuous seepage is mainly evidenced by large accumulations of authigenic carbonate precipitates, which appear to be controlled by the creation of fluid pathways through faulting. Consequently, Four Way Closure Ridge is not a closed system in terms of fluid migration and seepage. A conceptual model of the evolution of gas hydrates and seepage at accretionary ridges suggests that seepage is common and may be a standard feature during the geological development of ridges in accretionary prisms. The observation of seafloor seepage alone is therefore not a reliable indicator of exploitable gas hydrate accumulations at depth.

  6. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust

    USGS Publications Warehouse

    Von Huene, R.; Scholl, D. W.

    1991-01-01

    At ocean margins where two plates converge, the oceanic plate sinks or is subducted beneath an upper one topped by a layer of terrestrial crust. This crust is constructed of continental or island arc material. The subduction process either builds juvenile masses of terrestrial crust through arc volcanism or new areas of crust through the piling up of accretionary masses (prisms) of sedimentary deposits and fragments of thicker crustal bodies scraped off the subducting lower plate. At convergent margins, terrestrial material can also bypass the accretionary prism as a result of sediment subduction, and terrestrial matter can be removed from the upper plate by processes of subduction erosion. Sediment subduction occurs where sediment remains attached to the subducting oceanic plate and underthrusts the seaward position of the upper plate's resistive buttress (backstop) of consolidated sediment and rock. Sediment subduction occurs at two types of convergent margins: type 1 margins where accretionary prisms form and type 2 margins where little net accretion takes place. At type 2 margins (???19,000 km in global length), effectively all incoming sediment is subducted beneath the massif of basement or framework rocks forming the landward trench slope. At accreting or type 1 margins, sediment subduction begins at the seaward position of an active buttress of consolidated accretionary material that accumulated in front of a starting or core buttress of framework rocks. Where small-to-mediumsized prisms have formed (???16,300 km), approximately 20% of the incoming sediment is skimmed off a detachment surface or decollement and frontally accreted to the active buttress. The remaining 80% subducts beneath the buttress and may either underplate older parts of the frontal body or bypass the prism entirely and underthrust the leading edge of the margin's rock framework. At margins bordered by large prisms (???8,200 km), roughly 70% of the incoming trench floor section is

  7. The impact of thick subduction zone sediment input sections on earthquake and tsunami potential

    NASA Astrophysics Data System (ADS)

    McNeill, L. C.; Smith, G. L.; Henstock, T.

    2012-12-01

    The role of input sediments at subduction zones in controlling fault properties and seismogenic behavior is an ongoing focus area of geohazard research. This includes the effect of sediment burying oceanic basement topography, smoothing the plate interface and reducing the potential for earthquake rupture-stopping barriers. The impact of extremely thick sediment sections on the position of the updip limit of the seismogenic zone has, however, not been examined in detail. At some margins, convergent margin seismicity (including recent megathrust ruptures, aftershocks, and smaller magnitude plate boundary earthquakes) has recorded activity on the plate boundary significantly further seaward than conventionally expected, i.e., beneath the prism and extending close to the trench. Example margins include those with very thick input sediment sections e.g., North Sumatra and Makran, where trench sediment thicknesses reach 5-7 km. These results prove that the accretionary wedge can behave seismogenically, resulting in a potentially significant impact on rupture width, and earthquake and tsunami magnitude. On the North Sumatra margin, rupture during the 2004 earthquake propagated far seaward beneath the prism with possible evidence for aftershock activity to the trench. On the Makran margin, several 20th Century M5-8 earthquakes appear to originate from the plate boundary beneath the outer/offshore prism, including a M 8 earthquake in 1945, but this margin's seismic and tsunamigenic hazard potential has often been under-acknowledged. The base of the input sediment sections at these two margins are dense and likely lithified, hence not conforming to the expectation of thick sediment sections being overpressured and weak. In addition, the accreted sediments of the North Sumatran prism interior are high density. Thermal modeling of the Makran margin, with the thickest global sediment input section and the widest prism, places the 150°C isotherm or updip seismogenic limit at

  8. Composite Spectrometer Prisms

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Page, N. A.; Rodgers, J. M.

    1985-01-01

    Efficient linear dispersive element for spectrometer instruments achieved using several different glasses in multiple-element prism. Good results obtained in both two-and three-element prisms using variety of different glass materials.

  9. Sedimentation in the central segment of the Aleutian Trench: Sources, transport, and depositional style

    SciTech Connect

    Stevenson, A.J.; Scholl, D.W.; Vallier, T.L. ); Underwood, M.B. )

    1990-05-01

    The central segment of the Aleutian Trench (162{degree}W to 175{degree}E) is an intraoceanic subduction zone that contains an anomalously thick sedimentary fill (4 km maximum). The fill is an arcward-thickening and slightly tilted wedge of sediment characterized acoustically by laterally continuous, closely spaced, parallel reflectors. These relations are indicative of turbidite deposition. The trench floor and reflection horizons are planar, showing no evidence of an axial channel or any transverse fan bodies. Cores of surface sediment recover turbidite layers, implying that sediment transport and deposition occur via diffuse, sheetlike, fine-grained turbidite flows that occupy the full width of the trench. The mineralogy of Holocene trench sediments document a mixture of island-arc (dominant) and continental source terranes. GLORIA side-scan sonar images reveal a westward-flowing axial trench channel that conducts sediment to the eastern margin of the central segment, where channelized flow cases. Much of the sediment transported in this channel is derived from glaciated drainages surrounding the Gulf of Alaska which empty into the eastern trench segment via deep-sea channel systems (Surveyor and others) and submarine canyons (Hinchinbrook and others). Insular sediment transport is more difficult to define. GLORIA images show the efficiency with which the actively growing accretionary wedge impounds sediment that manages to cross a broad fore-arc terrace. It is likely that island-arc sediment reaches the trench either directly via air fall, via recycling of the accretionary prism, or via overtopping of the accretionary ridges by the upper parts of thick turbidite flows.

  10. Australopithecine enamel prism patterns.

    PubMed

    Vrba, E S; Grine, F E

    1978-11-24

    Following a recent suggestion that tooth enamel prism shape differs within Hominoidea, the teeth of a number of extinct and extant hominoid species were analyzed by scanning electron microscopy. The enamel prism patterns of some gracile and robust australopithecine specimens from Sterkfontein, Swartkrans, and Kromdraai are recorded. The characteristic arrangements of enamel prisms in all modern and extinct hominoid species were found to be essentially similar. The implications of enamel prisms for phylogenetic deduction in Hominoidea are discussed. PMID:102032

  11. Tectonic and Sedimentary Interactions on the Initiation and the Architecture of the Accretionary Wedges in the Southwestern Edge of the Caribbean, off Panama and Colombia

    NASA Astrophysics Data System (ADS)

    Mercier De Lepinay, B. F.; Maurin, T.; Barat, F.; Auxietre, J.

    2013-12-01

    The structurally and stratigraphically complex area of North Panama deformed belt, Sinu-Uraba accretionary prism and south Caribbean deformed belt holds the key to understand the plate tectonic evolution of the southwestern margins of the Caribbean Sea. New geological fieldworks, sedimentary and structural analysis, detailed offshore and onshore seismic interpretation provide insights into the regional structural and stratigraphic evolution of those margins. Detailed results constraint the geodynamic history of these complex wedge architecture which registered successive changes of sedimentary supplies and gravity collapses. During the Paleocene and Eocene time, the southeastward subduction of the Caribbean plate below the northwestern edge of South America is characterized by the development of an accretionary wedge off the Caribbean margin of Colombia, due to the accumulation of a large amount of sediments provided by the Magdalena and the Sinu rivers. The Atrato river, at that time, was providing sediments to the basins restricted within the Panama Isthmus. During the Middle Miocene, the Panama Isthmus began to collide against South America, inducing the uplift of the San Jacinto/Sinu Belt in Colombia. As a consequence, the Magdalena river was deviated northward. The Sinu river was also deviated to the North and started to load the back of the the Sinu accretionary wedge which then began to collapse as convergence has ceased. In the same way, the uplift of the Darien Shear Zone, east of the Atrato basin, has deflected the sedimentary supply from the Chucunaque/Tuira basins to the northern margin of the isthmus, allowing the development of a sedimentary basin and the initiation of the North Panama Deformed Belt. Thus, on one hand, the structure of the Colombian Wedge, the Sinu Wedge and the North Panama Deformed belt, was controlled by the tectonic forces, a consequence of the convergence and progressive accretion of the Central American isthmus against the

  12. Testing alternative tectono-stratigraphic interpretations of the Late Palaeozoic-Early Mesozoic Karakaya Complex in NW Turkey: support for an accretionary origin related to northward subduction of Palaeotethys

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair; Ustaömer, Timur

    2010-05-01

    The mainly Permian-Triassic rocks of the Karakaya Complex exposed E-W across Turkey are critical to reconstruction of Tethys in the E Mediterranean region. Their origin remains controversial with both stratigraphic layer-cake and accretionary-type settings being advocated. Suggested tectonic settings range from back-arc rift, to accretionary prism- related to either northward or southward subduction. To test alternatives we have studied the contact relations and the internal fabric of each of the main litho-tectonic units making up the Karakaya Complex and related "basement" in nine outcrop areas across NW Turkey, also taking account of existing chemical and dating evidence. Our results show that the Karakaya Complex was assembled by regional-scale thrust faulting without evidence of layer cake-type stratigraphical contacts, or even of deformed sedimentary contacts separating the major lithotectonic units. In several areas (e.g. Havran) the outcrops of meta-siliciclastic sediments of presumed Palaeozoic-age (~Kalabak Unit) are locally cut by Early-Mid Devonian granites. These outcrops represent one or more high-level crustal imbricates made up of basement rocks together with depositionally overlying U. Triassic siliciclastic rocks. Evidence from structurally lower, high pressure-low temperature Karakaya rocks (~Nilüfer Unit) reveals an imbricated, mainly volcaniclastic-carbonate sequence. Both these relatively high-grade Karakaya rocks and the structurally overlying, lower-grade Karakaya rocks (i.e. Çal and Ortaoba units) are interpreted as tectonically emplaced accretionary melange rather than sedimentary "olistostromes". MOR-type basalts (Ortaoba Unit) are locally overlain by red ribbon radiolarites that then pass upwards into feldspar-rich siliciclastics. Triassic oceanic crust and oceanic siliceous sediments were overlain by terrigenous turbidites derived from the north (Sakarya continent), followed by tectonic accretion at a subduction trench bordering the

  13. Soil Accretionary Dynamics, Sea-Level Rise and the Survival of Wetlands in Venice Lagoon: A Field and Modelling Approach

    NASA Astrophysics Data System (ADS)

    Day, J. W.; Rybczyk, J.; Scarton, F.; Rismondo, A.; Are, D.; Cecconi, G.

    1999-11-01

    Over the past century, Venice Lagoon (Italy) has experienced a high rate of wetland loss. To gain an understanding of the factors leading to this loss, from March 1993 until May 1996 the soil accretionary dynamics of these wetlands were studied. Vertical accretion, short term sedimentation, soil vertical elevation change and horizontal shoreline change were measured at several sites with varying sediment availability and wave energy. Short term sedimentation averaged 3-7 g dry m -2day -1per site with a maximum of 76 g m -2 day -1. The highest values were measured during strong pulsing events, such as storms and river floods, that mobilized and transported suspended sediments. Accretion ranged from 2-23 mm yr -1and soil elevation change ranged from -32 to 13·8 mm yr -1. The sites with highest accretion were near a river mouth and in an area where strong wave energy resuspended bottom sediments that were deposited on the marsh surface. A marsh created with dredged spoil had a high rate of elevation loss, probably due mainly to compaction. Shoreline retreat and expansion of tidal channels also occurred at several sites due to high wave energy and a greater tidal prism. The current rate of elevation gain at some sites was not sufficient to offset relative sea-level rise. The results suggest that reduction of wave energy and increasing sediment availability are needed to offset wetland loss in different areas of the lagoon. Using the data collected as part of this project, we developed a wetland elevation model designed to predict the effect of increasing rates of eustatic sea-level rise on wetland sustainability. The advantage of this model, in conjunction with measured short-term rates of soil elevation change, to determine sustainability is that the model integrates the effects of long term processes (e.g. compaction and decomposition) and takes into account feedback mechanisms that affect elevation. Specifically, changes in elevation can result in changes in

  14. Long-distance multistep sediment transfer at convergent plate margins (Barbados, Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Limonta, Mara; Garzanti, Eduardo; Resentini, Alberto; Andò, Sergio; Boni, Maria; Bechstädt, Thilo

    2015-04-01

    We present a regional provenance study of the compositional variability and long distance multicyclic transport of terrigenous sediments along the convergent and transform plate boundaries of Central America, from the northern termination of the Andes to the Lesser Antilles arc-trench system. We focus on high-resolution bulk-petrography and heavy-mineral analyses of modern beach and fluvial sediments and Cenozoic sandstones of Barbados island, one of the places in the world where an active accretionary prism is subaerially exposed (Speed et al., 2012). The main source of siliciclastic sediment in the Barbados accretionary prism is off-scraped quartzose to feldspatho-litho-quartzose metasedimentaclastic turbidites, ultimately supplied from South America chiefly via the Orinoco fluvio-deltaic system. Modern sand on Barbados island is either quartzose with depleted heavy-mineral suites recycled from Cenozoic turbidites and including epidote, zircon, tourmaline, andalusite, garnet, staurolite and chloritoid, or calcareous and derived from Pleistocene coral reefs. The ubiquitous occurrence of clinopyroxene and hypersthene, associated with green-brown kaersutitic hornblende in the north or olivine in the south, points to reworking of ash-fall tephra erupted from andesitic (St. Lucia) and basaltic (St. Vincent) volcanic centers in the Lesser Antilles arc transported by the prevailing anti-trade winds in the upper troposphere. Modern sediments on Barbados island and those shed by other accretionary prisms such as the Indo- Burman Ranges and Andaman-Nicobar Ridge (Garzanti et al., 2013) define the distinctive mineralogical signature of Subduction Complex Provenance, which is invariably composite. Detritus recycled dominantly from accreted turbidites and oceanic mudrocks is mixed in various proportions with detritus from the adjacent volcanic arc or carbonate reefs widely developed at tropical latitudes. Ophiolitic detritus may be locally prominent. Quantitative provenance

  15. Optical Switch Using Risley Prisms

    DOEpatents

    Sweatt, William C.; Christenson, Todd R.

    2005-02-22

    An optical switch using Risley prisms and rotary microactuators to independently rotate the wedge prisms of each Risley prism pair is disclosed. The optical switch comprises an array of input Risley prism pairs that selectively redirect light beams from a plurality of input ports to an array of output Risley prism pairs that similarly direct the light beams to a plurality of output ports. Each wedge prism of each Risley prism pair can be independently rotated by a variable-reluctance stepping rotary microactuator that is fabricated by a multi-layer LIGA process. Each wedge prism can be formed integral to the annular rotor of the rotary microactuator by a DXRL process.

  16. Optical switch using Risley prisms

    SciTech Connect

    Sweatt, William C.; Christenson, Todd R.

    2003-04-15

    An optical switch using Risley prisms and rotary microactuators to independently rotate the wedge prisms of each Risley prism pair is disclosed. The optical switch comprises an array of input Risley prism pairs that selectively redirect light beams from a plurality of input ports to an array of output Risley prism pairs that similarly direct the light beams to a plurality of output ports. Each wedge prism of each Risley prism pair can be independently rotated by a variable-reluctance stepping rotary microactuator that is fabricated by a multi-layer LIGA process. Each wedge prism can be formed integral to the annular rotor of the rotary microactuator by a DXRL process.

  17. An evaluation of factors influencing pore pressure in accretionary complexes: Implications for taper angle and wedge mechanics

    USGS Publications Warehouse

    Saffer, D.M.; Bekins, B.A.

    2006-01-01

    At many subduction zones, accretionary complexes form as sediment is off-scraped from the subducting plate. Mechanical models that treat accretionary complexes as critically tapered wedges of sediment demonstrate that pore pressure controls their taper angle by modifying basal and internal shear strength. Here, we combine a numerical model of groundwater flow with critical taper theory to quantify the effects of sediment and de??collement permeability, sediment thickness, sediment partitioning between accretion and underthrusting, and plate convergence rate on steady state pore pressure. Our results show that pore pressure in accretionary wedges can be viewed as a dynamically maintained response to factors which drive pore pressure (source terms) and those that limit flow (permeability and drainage path length). We find that sediment permeability and incoming sediment thickness are the most important factors, whereas fault permeability and the partitioning of sediment have a small effect. For our base case model scenario, as sediment permeability is increased, pore pressure decreases from near-lithostatic to hydrostatic values and allows stable taper angles to increase from ??? 2.5?? to 8??-12.5??. With increased sediment thickness in our models (from 100 to 8000 m), increased pore pressure drives a decrease in stable taper angle from 8.4??-12.5?? to 15?? to <4??) with increased sediment thickness (from <1 to 7 km). One key implication is that hydrologic properties may strongly influence the strength of the crust in a wide range of geologic settings. Copyright 2006 by the American Geophysical Union.

  18. Origin and evolution of fluids from mud volcanoes in the Barbados accretionary complex

    NASA Astrophysics Data System (ADS)

    Godon, Arnaud; Jendrzejewski, Nathalie; Castrec-Rouelle, Maryse; Dia, Aline; Pineau, Françoise; Boulègue, Jacques; Javoy, Marc

    2004-05-01

    A large collection of fluids (54 interstitial fluids and four expelled fluids) were sampled at the Manon site, at the outer edge of the Barbados accretionary complex. These warm fluids (up to 20°C) are expelled by sub-marine (5000 mbsl) mud volcanoes consisting of diapirs (unchanneled flow) and diatremes (channeled). Chlorine stable isotope ratios of these fluids were measured by IRMS with a reproducibility of ± 0.05‰ (1σ) versus SMOC (Standard Mean Ocean Chloride). A large range of δ 37Cl between -5.3‰ and +0.1‰ is observed. Data from each volcanic structure describe a mixing between seawater and a low-δ 37Cl fluid. The whole set of data is interpreted as the result of a mixing between two deep components and seawater. The two deep fluids are chemically distinct (e.g., in Ca, Mg, K, Li, Sr and Br contents and Br/Cl ratio). They display low and significantly different 87Sr/ 86Sr ratios (0.707790 and 0.707892, respectively) and δ 37Cl values (-4.51 and -5.24‰, respectively). Physicochemical processes such as mineralogical transformation, diffusion, compaction or ion filtration are known to fractionate chlorine stable isotopes and can produce fluids with negative δ 37Cl values. Ion filtration due to sediment compaction appears to be the more likely process to explain the negative δ 37Cl values observed at the Manon site. A model for the generation of these signatures is proposed where a residual negative δ 37Cl fluid reservoir is created at the bottom of the prism or the sediment pile. Further compaction/fracturing and/or dewatering of the slab may flush out these fluids and focus them towards the décollement zone. Mixing between the fluids and ultimately with seawater and water released during gas hydrate destabilizations may explain the data set within the individual cores and between the different structures.

  19. Slow and delayed deformation and uplift of the outermost subduction prism following ETS and seismogenic slip events beneath Nicoya Peninsula, Costa Rica

    NASA Astrophysics Data System (ADS)

    Davis, Earl E.; Villinger, Heinrich; Sun, Tianhaozhe

    2015-01-01

    Two ODP CORK (Ocean Drilling Program circulation obviation retrofit kit) borehole hydrologic observatory sites deployed in 2002 at the toe of the subduction prism off Nicoya Peninsula, Costa Rica were visited in December 2013. The five years of seafloor and formation fluid pressure data collected since the previous visit include clear signals associated with an episodic tremor and slip (ETS) event off the coast of Nicoya Peninsula in 2009, and a Mw 7.6 subduction thrust earthquake beneath the Peninsula in 2012. Formation pressure anomalies associated with the ETS event are similar to ones observed following ETS events observed previously here, as well as ones following very low frequency earthquake swarms within the Nankai accretionary prism off southwestern Japan. Positive and negative impulsive transients in the hanging wall and foot wall of the subduction thrust, respectively, suggest contractional and dilatational strain generated by local slip propagating up the thrust fault beneath the outermost prism. In the case of the 2009 event, the transients occurred roughly two weeks after the initiation of slip observed at GPS sites along the adjacent coast. At the same time, a decrease in seafloor pressure at the prism site relative to the subducting plate was observed, indicating concurrent uplift of the prism of 1.2 cm. Other events at the prism toe following ETS events closer to the coast are seen in 2006, 2007, 2008, 2010, and 2011. The time between the initiation of ETS slip constrained by GPS and the onset of the prism toe transients suggest up-dip “rupture” propagation along the seaward part of the subduction thrust at rates of a few km/day. In the case of the 2009 event, the slip at the prism toe (c. 11 cm), estimated from the 1.2 cm uplift and the local dip on the decollement (6°), is roughly a factor of 5 greater than the slip further landward estimated from GPS data by Dixon et al. (in press). In other cases, slip at the toe is less or unresolvable

  20. Prism users guide.

    SciTech Connect

    Weirs, V. Gregory

    2012-03-01

    Prism is a ParaView plugin that simultaneously displays simulation data and material model data. This document describes its capabilities and how to use them. A demonstration of Prism is given in the first section. The second section contains more detailed notes on less obvious behavior. The third and fourth sections are specifically for Alegra and CTH users. They tell how to generate the simulation data and SESAME files and how to handle aspects of Prism use particular to each of these codes.

  1. Prism adaptation by mental practice.

    PubMed

    Michel, Carine; Gaveau, Jérémie; Pozzo, Thierry; Papaxanthis, Charalambos

    2013-09-01

    The prediction of our actions and their interaction with the external environment is critical for sensorimotor adaptation. For instance, during prism exposure, which deviates laterally our visual field, we progressively correct movement errors by combining sensory feedback with forward model sensory predictions. However, very often we project our actions to the external environment without physically interacting with it (e.g., mental actions). An intriguing question is whether adaptation will occur if we imagine, instead of executing, an arm movement while wearing prisms. Here, we investigated prism adaptation during mental actions. In the first experiment, participants (n = 54) performed arm pointing movements before and after exposure to the optical device. They were equally divided into six groups according to prism exposure: Prisms-Active, Prisms-Imagery, Prisms-Stationary, Prisms-Stationary-Attention, No Conflict-Prisms-Imagery, No Prisms-Imagery. Adaptation, measured by the difference in pointing errors between pre-test and post-test, occurred only in Prisms-Active and Prisms-Imagery conditions. The second experiment confirmed the results of the first experiment and further showed that sensorimotor adaptation was mainly due to proprioceptive realignment in both Prisms-Active (n = 10) and Prisms-Imagery (n = 10) groups. In both experiments adaptation was greater following actual than imagined pointing movements. The present results are the first demonstration of prism adaptation by mental practice under prism exposure and they are discussed in terms of internal forward models and sensorimotor plasticity.

  2. PRISM Spectrograph Optical Design

    NASA Technical Reports Server (NTRS)

    Chipman, Russell A.

    1995-01-01

    The objective of this contract is to explore optical design concepts for the PRISM spectrograph and produce a preliminary optical design. An exciting optical configuration has been developed which will allow both wavelength bands to be imaged onto the same detector array. At present the optical design is only partially complete because PRISM will require a fairly elaborate optical system to meet its specification for throughput (area*solid angle). The most complex part of the design, the spectrograph camera, is complete, providing proof of principle that a feasible design is attainable. This camera requires 3 aspheric mirrors to fit inside the 20x60 cm cross-section package. A complete design with reduced throughput (1/9th) has been prepared. The design documents the optical configuration concept. A suitable dispersing prism material, CdTe, has been identified for the prism spectrograph, after a comparison of many materials.

  3. In situ stress magnitude and rock strength in the Nankai accretionary complex: a novel approach using paired constraints from downhole data in two wells

    NASA Astrophysics Data System (ADS)

    Huffman, K. A.; Saffer, D. M.; Dugan, B.

    2016-07-01

    We present a method to simultaneously constrain both far-field horizontal stress magnitudes ( S hmin and S Hmax) and in situ rock unconfined compressive strength (UCS), using geophysical logging data from two boreholes located 70 m apart that access the uppermost accretionary prism of the Nankai subduction zone . The boreholes sample the same sediments and are affected by the same tectonic stress field, but were drilled with different annular pressures, thus providing a unique opportunity to refine estimates of both in situ stress magnitudes and rock strength. We develop a forward model to predict the angular width of compressional wellbore failures (borehole breakouts), and identify combinations of S Hmax and UCS that best match breakout widths observed in resistivity images from the two boreholes. The method requires knowledge of S hmin, which is defined by leak-off tests conducted during drilling. Our results define a normal to strike-slip stress regime from 900 to 1386 m below seafloor, consistent with observations from seismic and core data. Our analysis also suggests that in situ values of UCS are generally slightly lower that commonly assumed on the basis of published empirical relations between UCS and P-wave velocity.

  4. Large Erosional Features on the Cascadia Accretionary Wedge Imaged with New High-Resolution Multibeam Bathymetry and Seismic Datasets

    NASA Astrophysics Data System (ADS)

    Beeson, J. W.; Goldfinger, C.

    2013-12-01

    Utilizing new high resolution multibeam bathymetric data along with chirp sub-bottom and multichannel seismic reflection (MCS) data, we identified remarkable erosional features on the toe of the Cascadia accretionary wedge near Willapa Canyon, offshore Washington, USA. Bathymetric data was compiled from the Cascadia Open-Access Seismic Transects (COAST) cruise and from the site survey cruise for the Cascadia Initiative. These features loosely resemble slope failures of the frontal thrust, but can be distinguished from such failures by several key features: They incise the crest of the frontal thrust and encompass the landward limb; They have floors below the level of the abyssal plain, similar to plunge pool morphology; They show no evidence of landslide blocks at the base of the slope indicative of block sliding. The features where likely formed during the latest Pleistocene based on post event deposition, cross-cutting relationships with Juan de Fuca Channel and the Willapa Channel levees and wave field, and post event slip on the frontal thrust of the Cascadia accretionary prism. The Holocene levees of both Willapa Channel and Juan de Fuca Channel overlap these older features, and clearly place an upper bound on the age of the erosional features in the latest Pleistocene. A lower bound is estimated from a sub-bottom profile that images ~30 meters of post scour sediment fill. Using existing literature of Holocene and Pleistocene sedimentation rates we estimate a lower age bound between ~23,000 - 56,000 y.b.p. We also map a fault scarp within the erosional feature, with ~60 m of vertical offset. Using multi-channel seismic reflection profiles from the COAST cruise we interpret this scarp as the surface expression of the landward vergent frontal thrust fault. The apparent short duration of the erosional event along the seaward margin of the accretionary wedge, coupled with the presence of the fresh fault scarp within the erosion zone, are indicative of a dormant

  5. Insights on frictional processes in sheared clastic marine sediments using ultrasonic nondestructive testing

    NASA Astrophysics Data System (ADS)

    Knuth, M. W.; Tobin, H. J.; Marone, C.; Ikari, M.

    2010-12-01

    We investigate changes in the elastic properties of deforming core materials recovered from the Nankai Trough Accretionary Prism along the IODP NanTroSEIZE transect. We shear clastic marine sediments while simultaneously making ultrasonic velocity measurements across the deforming layers. Examining the resulting changes in elastic moduli at the laboratory scale allows us to identify characteristic “fingerprints” of deformation style during direct-shear experiments, which may then be compared with measurements conducted at the field scale to infer how deformation is localized within the accretionary prism. Identifying relationships between hold time and attenuation may also shed light on fault healing mechanisms taking place immediately following a rupture. Together the effects of sliding rate and hold time on elastic moduli provide us with new ways of constraining the mechanical behavior of large plat-boundary settings throughout the seismic cycle. We tested intact core material, remolded layers, and disaggregated granular powders derived from a range of depths from IODP sites C0007 and C0004 penetrating the frontal thrust and a large out-of-sequence thrust in the outer prism, respectively. Samples were deformed in a double-direct shear configuration, varying first the strain rate and then subjecting the gouge layer to a series of slides and holds of increasing duration. Elastic wave propagation depends on micromechanical interactions and gouge layer strength, so as the shear zone evolves changes in elastic wavespeed provide a means to interrogate strain materials non-destructively, providing insight into frictional processes and mechanics as that deformation is taking place. Our results suggest that there are characteristic changes in P and S-wave velocity and attenuation for marine clastic to hemipelagic sediments as a function of sliding rate and hold time. Ultimately, examining variation in elastic moduli during a simulated seismic cycle may provide insight

  6. Oceanic, island arc, and back-arc remnants into eastern Kamchatka accretionary complexes

    SciTech Connect

    Fedorchuk, A.V.; Vishnevskaya, V.S.; Izvekov, I.N. )

    1990-06-01

    The Kamchatsky Mts. accretionary complex in the Eastern Kamchatka orogenic belt was studied for identification of the oceanic and suprasubduction components into accretionary wedges. That complex is divided into two tectonic units. The Lower unit is formed sedimentary and tectonic melanges containing arc-related components (Late Senonian volcaniclastics and boninitic gabbro) and oceanic fragments (Fe-Ti-tholeiites, ocean island basalts, and pelagic sediments of Valanginian to Turonian age). The Upper unit consists of ductile deformed oceanic cumulates from troctolites to Fe-Ti-gabbro, 151 to 172 Ma, which are intruded MORB-like diabases with suprasubduction characteristics, 122 to 141 Ma, and are overlain by basalts similar to latter. The Lower and Upper units are separated by a SW-dipping thrust, which is related by an ophiolitoclastic olistostrome of Late Campanian to Early Maestrichtian age. Both units are covered by Paleocene authoclastic deposits. They are all thrusted over the early Neogene island arc complex, 16 to 20 Ma. The Lower unit of the Kamchatsky Mys accretionary complex was originated in a shear zone between a Late Cretaceous island arc and an Early Cretaceous oceanic plate. The Upper unit represents a Jurassic oceanic remnant that formed a basement of Early Cretaceous back-arc or fore-arc basin. Both units were superposed in the latest Cretaceous. The Kamchatsky Mys accretionary complex was emplaced into the Eastern Kamchatka orogenic belt during late Neogene by collision of the early Neogene island arc.

  7. Paleozoic accretionary orogenesis in the eastern Beishan orogen: constraints from zircon U-Pb and 40Ar/39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Ao, Songjian; Xiao, Wenjiao; Windley, Brian; Mao, Qigui

    2016-04-01

    The continental growth mechanism of the Altaids in Central Asia is still in controversy between models of continuous subduction-accretion versus punctuated accretion by closure of multiple oceanic basins. The Beishan orogenic belt, located in the southern Altaids, is a natural laboratory to address this controversy. Key questions that are heavily debated are: the closure time and subduction polarity of former oceans, the emplacement time of ophiolites, and the styles of accretion and collision. This paper reports new structural data, zircon ages and Ar-Ar dates from the eastern Beishan Orogen that provide information on the accretion process and tectonic affiliation of various terranes. Our geochronological and structural results show that the younging direction of accretion was northwards and the subduction zone dipped southwards under the northern margin of the Shuangyingshan micro-continent. This long-lived and continuous accretion process formed the Hanshan accretionary prism. Our field investigations show that the emplacement of the Xiaohuangshan ophiolite was controlled by oceanic crust subduction beneath the forearc accretionary prism of the Shuangyingshan-Mazongshan composite arc to the south. Moreover, we address the age and terrane affiliation of lithologies in the eastern Beishan orogen through detrital zircon geochronology of meta-sedimentary rocks. We provide new information on the ages, subduction polarities, and affiliation of constituent structural units, as well as a new model of tectonic evolution of the eastern Beishan orogen. The accretionary processes and crustal growth of Central Asia were the result of multiple sequences of accretion and collision of manifold terranes. Reference: Ao, S.J., Xiao, W., Windley, B.F., Mao, Q., Han, C., Zhang, J.e., Yang, L., Geng, J., Paleozoic accretionary orogenesis in the eastern Beishan orogen: Constraints from zircon U-Pb and 40Ar/39Ar geochronology. Gondwana Research, doi: http://dx.doi.org/10.1016/j

  8. PRISM project optical instrument

    NASA Technical Reports Server (NTRS)

    Taylor, Charles R.

    1994-01-01

    The scientific goal of the Passively-cooled Reconnaissance of the InterStellar Medium (PRISM) project is to map the emission of molecular hydrogen at 17.035 micrometers and 28.221 micrometers. Since the atmosphere is opaque at these infrared wavelengths, an orbiting telescope is being studied. The availability of infrared focal plane arrays enables infrared imaging spectroscopy at the molecular hydrogen wavelengths. The array proposed for PRISM is 128 pixels square, with a pixel size of 75 micrometers. In order to map the sky in a period of six months, and to resolve the nearer molecular clouds, each pixel must cover 0.5 arcminutes. This sets the focal length at 51.6 cm. In order for the pixel size to be half the diameter of the central diffraction peak at 28 micrometers would require a telescope aperture of 24 cm; an aperture of 60 cm has been selected for the PRISM study for greater light gathering power.

  9. Permissive tracts for sediment-hosted copper deposits in Mauritania (phase V, deliverable 74): Chapter K1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Taylor, Cliff D.; Horton, John D.

    2012-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  10. Permissive tracts for sediment-hosted lead-zinc-silver deposits in Mauritania (phase V, deliverable 72): Chapter J1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Mauk, Jeffrey L.; Horton, John D.

    2012-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  11. Less-expensive Rochon prisms

    NASA Technical Reports Server (NTRS)

    Ammann, E. O.; Massey, G. A.

    1970-01-01

    Inexpensive Rochon prisms can be produced by substituting easily polished glass for one-half of the calcite. Reciprocal polarizing properties of a conventional Rochon prism are retained, and angular separation between ordinary and extraordinary rays is the same as in all-calcite prism.

  12. Acoustic dispersive prism

    PubMed Central

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz–1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium. PMID:26739504

  13. Prism Adaptation in Schizophrenia

    ERIC Educational Resources Information Center

    Bigelow, Nirav O.; Turner, Beth M.; Andreasen, Nancy C.; Paulsen, Jane S.; O'Leary, Daniel S.; Ho, Beng-Choon

    2006-01-01

    The prism adaptation test examines procedural learning (PL) in which performance facilitation occurs with practice on tasks without the need for conscious awareness. Dynamic interactions between frontostriatal cortices, basal ganglia, and the cerebellum have been shown to play key roles in PL. Disruptions within these neural networks have also…

  14. Generalization of Prism Adaptation

    ERIC Educational Resources Information Center

    Redding, Gordon M.; Wallace, Benjamin

    2006-01-01

    Prism exposure produces 2 kinds of adaptive response. Recalibration is ordinary strategic remapping of spatially coded movement commands to rapidly reduce performance error. Realignment is the extraordinary process of transforming spatial maps to bring the origins of coordinate systems into correspondence. Realignment occurs when spatial…

  15. Reflection by Porro Prisms

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2010-04-01

    Students all know that reflection from a plane mirror produces an image that is reversed right to left and so cannot be read by anyone but Leonardo da Vinci, who kept his notes in mirror writing. A useful counter-example is the Porro prism, which produces an image that is not reversed.

  16. Hydrogeochemistry of the northern Barbados accretionary complex transect: Ocean Drilling Project leg 110

    SciTech Connect

    Gieskes, J.M. ); Vrolijk, P. ); Blanc, G. )

    1990-06-10

    Detailed studies of the major element geochemistry, oxygen and hydrogen isotope ratios of pore fluids, and the {sup 87}Sr/{sup 86}Sr ratio of dissolved strontium have made it possible to unravel physical and chemical processes that affect the pore fluid chemistry in a transect of drill holes across the northern Barbados accretionary complex. These processes include (1) alteration of volcanic ash buried in the Pleisticene-Pliocene sediment column; (2) alteration of underlying basalts of layer 2 of the oceanic crust; (3) movement of fluids from deep in the accretionary complex along fault zones (particularly the decollement) and minor permeable layers; these fluids from deeper in the complex are characterized by low chloride concentrations and increased {sup {delta}18}O(H{sub 2}O) values, presumably as a result of dehydration of smectite interlayers; and (4) mixing processes involving the migrating fluids cause incongruities in the geochemical anomalies of these fluids.

  17. Evolution of antivergent folds on a Paleozoic accretionary prism, Arkansas: An alternative view

    SciTech Connect

    Babaei, A. )

    1990-10-01

    Rocks around the western plunge of the Benton uplift in the Ouachita Mountains of western Arkansas show multiple periods of deformation during the Ouachita orogeny. Seismic-reflection interpretations and surface geology are consistent with a thick section of highly deformed Paleozoic rocks that are separated as thrust sheets by north-vergent regional-scale thrust faults. North-vergent folds develop is such a setting; however, south-vergent folds with the axial planes dipping opposite to the direction of underthrusting are also observed on the Benton uplift. Development of such folds has been explained by models such as mechanical decoupling along zones of low shear strength in trenches, backthrusting, and backfolding, but none explains the south-vergent folds of the Benton uplift, mostly because of lack of adequate field data. Geometrical analyses show the reactivation of thrust faults during a secondary phase of deformation tightened and reoriented open folds of an initial phase and, as a result, developed the macroscopic and mesoscopic antivergent folds in the Benton uplift. Curvilinear map traces of the thrust faults and broad open folds that refold earlier structures indicate that there was continuous deformation after the development of antivergent folds.

  18. Tectonic wedging in the forearc basin - Accretionary prism transition, Lesser Antilles forearc

    NASA Technical Reports Server (NTRS)

    Torrini, Rudolph, Jr.; Speed, Robert C.

    1989-01-01

    This paper describes regional structure of the inner forearc of the southern Lesser Antilles, which contains an extensive 50-70 km wide inner forearc deformation belt (IFDB) developed above crystalline basement of the undeformed forearc basin (FAB), close to and perhaps above its probable subduction trace with Atlantic lithosphere. The IFDB is analyzed, with emphasis placed on five transects across the belt, using mainly migrated seismic sections and balanced model cross sections. The IFDB features and its evolution are discussed, with special attention given to the major structures divided by early and late stages of development, paleobathymetric history, event timing, displacement and strain, and alternative tectonic explanations.

  19. Acoustic Velocity Of The Sediments Offshore Southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Tsai, C.; Liu, C.; Huang, P.

    2004-12-01

    Along the Manila Trench south of 21øXN, deep-sea sediments are being underthrusted beneath the Taiwan accretionary prism which is composed of the Kaoping Slope and Hengchun Ridge. Offshore southwestern Taiwan, foreland sediments and Late Miocene strata of the Tainan Basin are being accreted onto the fold-and thrust belt of the syn-collision accretionary wedge of the Kaoping Slope. The Kaoping Slope consists of thick Neogene to Recent siliciclastics deformed by fold-and-thrust structures and mud diapers. These Pliocene-Quaternary sediments deposited in the Kaoping Shelf and upper slope area are considered to be paleo-channel deposits confined by NNE-SSW trend mud diapiric structure. Seismic P-wave velocities of the sediment deposited in the Kaoping Shelf and Kaoping Slope area are derived from mutichannel seismic reflection data and wide-angle reflection and refraction profiles collected by sonobuoys. Sediment velocity structures constrained from mutichannel seismic reflection data using velocity spectrum analysis method and that derived from sonobuoy data using tau-sum inversion method are compared, and they both provide consistent velocity structures. Seismic velocities were analyzed along the seismic profile from the surface to maximum depths of about 2.0 km below the seafloor. Our model features a sediment layer1 with 400 ms in thickness and a sediment layer2 with 600 ms in thickness. For the shelf sediments, we observe a linear interval velocity trend of V=1.53+1.91T in layer1, and V=1.86+0.87T in layer2, where T is the one way travel time within the layer. For the slop sediment, the trend of V=1.47+1.93T in layer1, and V=1.70+1.55T in layer2. The layer1¡¦s velocities gradients are similar between the shelf (1.91 km/sec2) and the slope(1.93 km/sec2). It means layer1 distributes over the slope and shelf widely. The result of the sediment velocity gradients in this area are in good agreement with that reported for the south Atlantic continental margins.

  20. Accretion in the wake of terrane collision: The Neogene accretionary wedge off Kenai Peninsula, Alaska

    USGS Publications Warehouse

    Fruehn, J.; Von Huene, R.; Fisher, M.A.

    1999-01-01

    Subduction accretion and repeated terrane collision shaped the Alaskan convergent margin. The Yakutat Terrane is currently colliding with the continental margin below the central Gulf of Alaska. During the Neogene the terrane's western part was subducted after which a sediment wedge accreted along the northeast Aleutian Trench. This wedge incorporates sediment eroded from the continental margin and marine sediments carried into the subduction zone on the Pacific plate. Prestack depth migration was performed on six seismic reflection lines to resolve the structure within this accretionary wedge and its backstop. The lateral extent of the structures is constrained by high-resolution swath bathymetry and seismic lines collected along strike. Accretionary structure consists of variably sized thrust slices that were deformed against a backstop during frontal accretion and underplating. Toward the northeast the lower slope steepens, the wedge narrows, and the accreted volume decreases notwith-standing a doubling of sediments thickness in the trench. In the northeasternmost transect, near the area where the terrane's trailing edge subducts, no frontal accretion is observed and the slope is eroded. The structures imaged along the seismic lines discussed here most likely result from progressive evolution from erosion to accretion, as the trailing edge of the Yakutat Terrane is subducting.

  1. Neoproterozoic and Paleozoic accretionary orogens exposed at different crustal levels

    NASA Astrophysics Data System (ADS)

    Kroener, A.

    2002-12-01

    Accretionary orogens in the upper crust are dominated by trench and forearc deposits, obducted ophiolite fragments, exotic terranes and well defined structural boundaries such as major shear zones. The Neoproterozoic Arabian-Nubian shield (ANS) of western Arabia and NE Africa, the huge terrain of the Neoproterozoic to Palaeozoic Central Asian mobile belt (CAMB) and the present Indonesian Archipelago are prime examples of such orogens. In the ANS and CAMB, field relationships, rock associations, differences in structural style and metamorphic grade, and geochronology have led to the recognition of terrane assemblages that are related to processes of lateral accretion as now observed in the southwest Pacific and lasting for several hundred my. In the ANS, ocean crust and arc formation began about 900 Ma ago, and terrane accretion was completed by ~600 Ma, whereas in the CAMB the oldest oceanic crust formed some 1000 Ma ago, and terrane accretion continued into the late Palaeozoic. Typical rock associations are trench and forearc sediments, island-arc volcanics, calc-alkaline granitoids, dismembered ophiolite suites and gneissic rocks (microcontinents?) constituting exotic terranes and mostly of distinctly older age and more complex tectono-metamorphic history than the surrounding lower grade rocks. Shear zones frequently separate the terranes and in the ANS also constitue seismic discontinuities extending to the lower crust. The middle to lower crustal high grade assemblages of the Neoproterozoic Mozambique belt (MB) of East Africa, Madagascar, southernmost India, Sri Lanka and East Antarctica are considered to be a deep crustal analogue to the upper crustal accretionary belts described above. Typical characteristics are (1) voluminous calc-alkaline granitoid suites, now layered gneisses, and interpreted as root zones of arc terranes, (2) tectonic interdigitation of Archaean to Palaeoproterozoic gneisses with Neoproterozoic rocks, probably brought about during

  2. Provenance of Cretaceous trench slope sediments from the Mesozoic Wandashan Orogen, NE China: Implications for determining ancient drainage systems and tectonics of the Paleo-Pacific

    NASA Astrophysics Data System (ADS)

    Sun, Ming-Dao; Xu, Yi-Gang; Wilde, Simon A.; Chen, Han-Lin

    2015-06-01

    The Wandashan Orogen of NE China is a typical accretionary orogen related to Paleo-Pacific subduction. The Raohe Complex, as a major part of the orogen, consists of mid-Triassic to mid-Jurassic radiolarian chert and intraoceanic igneous rocks in an accretionary prism overlain by weakly sheared terrestrial-sourced clastic trench slope sediments. Sensitive high-resolution ion microprobe U-Pb dating and LA-MC-ICPMS Hf isotopic analysis of detrital zircons from the terrestrial-sourced Yongfuqiao Formation sandstone show that most zircons are Phanerozoic (90%): 140-150 Ma (10%), 180-220 Ma (25%), 240-270 Ma (15%), 300-360 Ma (15%), 391-395 Ma (3%), and 450-540 Ma (20%), whereas 10% are Precambrian in age. About 90% of the zircons have ɛHf(t) values ranging from +11.1 to -12.8. This suggests that the major provenance of the trench slope sediments was from the adjacent eastern segment of the Central Asian Orogenic Belt and the Jiamusi Block. The age of the Yongfuqiao Formation is constrained to the earliest Cretaceous, which represents the accretion time of the mid-Triassic to mid-Jurassic oceanic complexes. When compared with the Mino Complex in Japan and the Tananao Complex in Taiwan, three different provenances are identified suggesting three ancient drainage systems which transported sediments from NE China, North China, and South China to the Paleo-Pacific subduction-accretion system.

  3. Thrust fault growth within accretionary wedges: New Insights from 3D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Orme, H.; Bell, R. E.; Jackson, C. A. L.

    2015-12-01

    The shallow parts of subduction megathrust faults are typically thought to be aseismic and incapable of propagating seismic rupture. The 2011 Tohoku-Oki earthquake, however, ruptured all the way to the trench, proving that in some locations rupture can propagate through the accretionary wedge. An improved understanding of the structural character and physical properties of accretionary wedges is therefore crucial to begin to assess why such anomalously shallow seismic rupture occurs. Despite its importance, we know surprisingly little regarding the 3D geometry and kinematics of thrust network development in accretionary prisms, largely due to a lack of 3D seismic reflection data providing high-resolution, 3D images of entire networks. Thus our current understanding is largely underpinned by observations from analogue and numerical modelling, with limited observational data from natural examples. In this contribution we use PSDM, 3D seismic reflection data from the Nankai margin (3D Muroto dataset, available from the UTIG Academic Seismic Portal, Marine Geoscience Data System) to examine how imbricate thrust fault networks evolve during accretionary wedge growth. Previous studies have reported en-echelon thrust fault geometries from the NW part of the dataset, and have related this complex structure to seamount subduction. We unravel the evolution of faults within the protothrust and imbricate thrust zones by interpreting multiple horizons across faults and measuring fault displacement and fold amplitude along-strike; by doing this, we are able to investigate the three dimensional accrual of strain. We document a number of local displacement minima along-strike of faults, suggesting that, the protothrust and imbricate thrusts developed from the linkage of smaller, previously isolated fault segments. We also demonstrate that the majority of faults grew upward from the décollement, although there is some evidence for downward fault propagation. Our observations

  4. Thrust fault segmentation and downward fault propagation in accretionary wedges: New Insights from 3D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Orme, Haydn; Bell, Rebecca; Jackson, Christopher

    2016-04-01

    The shallow parts of subduction megathrust faults are typically thought to be aseismic and incapable of propagating seismic rupture. The 2011 Tohoku-Oki earthquake, however, ruptured all the way to the trench, proving that in some locations rupture can propagate through the accretionary wedge. An improved understanding of the structural character and physical properties of accretionary wedges is therefore crucial to begin to assess why such anomalously shallow seismic rupture occurs. Despite its importance, we know surprisingly little regarding the 3D geometry and kinematics of thrust network development in accretionary prisms, largely due to a lack of 3D seismic reflection data providing high-resolution, 3D images of entire networks. Thus our current understanding is largely underpinned by observations from analogue and numerical modelling, with limited observational data from natural examples. In this contribution we use PSDM, 3D seismic reflection data from the Nankai margin (3D Muroto dataset, available from the UTIG Academic Seismic Portal, Marine Geoscience Data System) to examine how imbricate thrust fault networks evolve during accretionary wedge growth. We unravel the evolution of faults within the protothrust and imbricate thrust zones by interpreting multiple horizons across faults and measuring fault displacement and fold amplitude along-strike; by doing this, we are able to investigate the three dimensional accrual of strain. We document a number of local displacement minima along-strike of faults, suggesting that, the protothrust and imbricate thrusts developed from the linkage of smaller, previously isolated fault segments. Although we often assume imbricate faults are likely to have propagated upwards from the décollement we show strong evidence for fault nucleation at shallow depths and downward propagation to intersect the décollement. The complex fault interactions documented here have implications for hydraulic compartmentalisation and pore

  5. Pre-collisional accretionary growth of the southern Laurasian active margin, Central Pontides, Turkey

    NASA Astrophysics Data System (ADS)

    Aygül, Mesut; Okay, Aral I.; Oberhänsli, Roland; Sudo, Masafumi

    2016-03-01

    Cretaceous subduction-accretionary complexes crop out over wide areas in the central part of the Pontides, northern Turkey. To the north, the wedge consists of a low-grade metaflysch sequence with blocks of marble, Na-amphibole-bearing metabasite (PT = 7-12 kbar; 400 ± 70 °C) and serpentinite. 40Ar/39Ar phengite ages from the phyllites of the metaflysch are ca. 100 Ma. The metaflysch sequence is underlain by oceanic crust-derived HP/LT metabasites and micaschists along a major detachment fault. The metabasites are epidote-blueschists consisting of glaucophane, epidote, titanite, and phengite locally with garnet. Fresh lawsonite-blueschists are exposed as blocks along the detachment fault. Peak metamorphic conditions of a garnet-blueschist are constrained to 17 ± 1 kbar and 500 ± 40 °C and of a lawsonite-blueschist to 14 ± 2 kbar and 370-440 °C. 40Ar/39Ar phengite dating on the micaschists constrains the HP/LT metamorphism as 101-92 Ma, younging southward. Middle Jurassic (ca. 160 Ma) accretionary complexes consisting of blueschist to lower greenschist facies metabasites, marble and volcanogenic metasediment intercalations are exposed at the southern part of the Cretaceous wedge. In the studied area, the North Anatolian Fault forms the contact between Cretaceous and Middle Jurassic HP/LT metamorphic rocks. Wide distribution of Cretaceous subduction-accretionary complexes implies accretionary tectonic continental growth along the Laurasian active margin. High amount of clastic sediment flux into the trench has a major effect on enlarging the wedge during the Albian. Tectonic thickening of the oceanic HP/LT metamorphic sequence, however, was possibly achieved by propagation of the décollement along the retreating slab which can create the space necessary for progressive deep level basal underplating and extension of the wedge for subsequent syn-subduction exhumation.

  6. Compound prism design principles, II: triplet and Janssen prisms.

    PubMed

    Hagen, Nathan; Tkaczyk, Tomasz S

    2011-09-01

    Continuing the work of the first paper in this series [Appl. Opt. 50, 4998-5011 (2011)], we extend our design methods to compound prisms composed of three independent elements. The increased degrees of freedom of these asymmetric prisms allow designers to achieve greatly improved dispersion linearity. They also, however, require a more careful tailoring of the merit function to achieve design targets, and so we present several new operands for manipulating the compound prisms' design algorithm. We show that with asymmetric triplet prisms, one can linearize the angular dispersion such that the spectral sampling rate varies by no more than 4% across the entire visible spectral range. Doing this, however, requires large prisms and causes beam compression. By adding a beam compression penalty to the merit function, we show that one can compromise between dispersion linearity and beam compression in order to produce practical systems. For prisms that do not deviate the beam, we show that Janssen prisms provide a form that maintains the degrees of freedom of the triplet and that are capable of up to 32° of dispersion across the visible spectral range. Finally, in order to showcase some of the design flexibility of three-element prisms, we also show how to design for higher-order spectral dispersion to create a two-dimensional spectrum.

  7. Through a prism darkly: re-evaluating prisms and neglect.

    PubMed

    Striemer, Christopher L; Danckert, James A

    2010-07-01

    Many studies have demonstrated that prism adaptation can reduce several symptoms of visual neglect: a disorder in which patients fail to respond to information in contralesional space. The dominant framework to explain these effects proposes that prisms influence higher order visuospatial processes by acting on brain circuits that control spatial attention and perception. However, studies that have directly examined the influence of prisms on perceptual biases inherent to neglect have revealed very few beneficial effects. We propose an alternative explanation whereby many of the beneficial effects of prisms arise via the influence of adaptation on circuits in the dorsal visual stream controlling attention and visuomotor behaviors. We further argue that prisms have little influence on the pervasive perceptual biases that characterize neglect.

  8. Multibeam collimator uses prism stack

    NASA Technical Reports Server (NTRS)

    Minott, P. O.

    1981-01-01

    Optical instrument creates many divergent light beams for surveying and machine element alignment applications. Angles and refractive indices of stack of prisms are selected to divert incoming laser beam by small increments, different for each prism. Angles of emerging beams thus differ by small, precisely-controlled amounts. Instrument is nearly immune to vibration, changes in gravitational force, temperature variations, and mechanical distortion.

  9. A review of tectonics and sedimentation in a forearc setting: Hellenic Thrace Basin, North Aegean Sea and Northern Greece

    NASA Astrophysics Data System (ADS)

    Maravelis, A. G.; Boutelier, D.; Catuneanu, O.; Seymour, K. St.; Zelilidis, A.

    2016-04-01

    Exposure of the forearc region of the North Aegean Sea, Greece, offers insight into evolving convergent margins. The sedimentary fill of the Thrace Basin during the Late Eocene to Oligocene time provides a record of subduction-driven processes, such as growth of magmatic arcs and construction of accretionary complexes. This large sediment repository received sediment from two sources. The southern (outboard) basin margin reflects the active influence of the exhumed accretionary prism (e.g. Pindic Cordillera or Biga peninsula), while the northern (inboard) margin records the effect of the magmatic arc in the Rhodope region. The forearc basin sedimentary fills shoal upward into shallow-marine strata but are dominated mainly by deep-marine facies. The depositional trend and stacking pattern are dominated by progradational patterns. This trend, which is observed in both basin margins, is related to tectonic deformation rather than sea-level fluctuations. Additional evidence for this tectonic uplift comes from the backstripping analysis. The accretionary complex provided material into the forearc basin. This material was transported northeast and formed a sand-rich turbidity system that evolved upslope into shallow-marine deposits. Stratigraphic data indicate that this turbidity system exhibits a successive landward (inboard) migration of the depocenter. Provenance data utilizing sandstone petrography, conglomerate clast composition, and bulk-rock geochemistry suggest that this system reflects an increased influx of mafic material into the basin. Volcanic arc-derived material was transported south and east and accumulated in deep-marine settings. Both stratigraphic and provenance data indicate a seaward (outboard) migration of the basin depocenter and a significant increase in felsic detritus into the forearc.

  10. Compound prism design principles, I

    PubMed Central

    Hagen, Nathan; Tkaczyk, Tomasz S.

    2011-01-01

    Prisms have been needlessly neglected as components used in modern optical design. In optical throughput, stray light, flexibility, and in their ability to be used in direct-view geometry, they excel over gratings. Here we show that even their well-known weak dispersion relative to gratings has been overrated by designing doublet and double Amici direct-vision compound prisms that have 14° and 23° of dispersion across the visible spectrum, equivalent to 800 and 1300 lines/mm gratings. By taking advantage of the multiple degrees of freedom available in a compound prism design, we also show prisms whose angular dispersion shows improved linearity in wavelength. In order to achieve these designs, we exploit the well-behaved nature of prism design space to write customized algorithms that optimize directly in the nonlinear design space. Using these algorithms, we showcase a number of prism designs that illustrate a performance and flexibility that goes beyond what has often been considered possible with prisms. PMID:22423145

  11. Nature and Role of Subducting Sediments on the Megathrust and Forearc Evolution in the 2004 Great Sumatra Earthquake Rupture Zone: Results from Full Waveform Inversion of Long Offset Seismic Data

    NASA Astrophysics Data System (ADS)

    Singh, S. C.; Qin, Y.

    2015-12-01

    On active accretionary margins, the nature of incoming sediments defines the locking mechanism on the megathrust, and the development and evolution of the accretionary wedge. Drilling is the most direct method to characterise the nature of these sediments, but the drilling is very expensive, and provide information at only a few locations. In north Sumatra, an IODP drilling is programmed to take place in July-August 2016. We have performed seismic full waveform inversion of 12 km long offset seismic reflection data acquired by WesternGeco in 2006 over a 35 km zone near the subduction front in the 2004 earthquake rupture zone area that provide detailed quantitative information on the characteristics of the incoming sediments. We first downward continue the surface streamer data to the seafloor, which removes the effect of deep water (~5 km) and brings out the refraction arrivals as the first arrivals. We carry out travel time tomography, and then performed full waveform inversion of seismic refraction data followed by the full waveform inversion of reflection data providing detailed (10-20 m) velocity structure. The sediments in this area are 3-5 km thick where the P-wave velocity increases from 1.6 km/s near the seafloor to more than 4.5 km/s above the oceanic crust. The high velocity of sediments above the basement suggests that the sediments are highly compacted, strengthened the coupling near the subduction front, which might have been responsible for 2004 earthquake rupture propagation up to the subduction front, enhancing the tsunami. We also find several thin velocity layers within the sediments, which might be due to high pore-pressure fluid or free gas. These layers might be responsible for the formation of pseudo-decollement within the forearc sediments that acts as a conveyer belt between highly compacted subducting lower sediments and accreted sediments above. The presence of well intact sediments on the accretionary prism supports this interpretation

  12. 21 CFR 886.1660 - Gonioscopic prism.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Gonioscopic prism. 886.1660 Section 886.1660 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1660 Gonioscopic prism. (a) Identification. A gonioscopic prism is a device that is a prism intended to be placed on the eye to study the anterior...

  13. 21 CFR 886.1660 - Gonioscopic prism.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gonioscopic prism. 886.1660 Section 886.1660 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1660 Gonioscopic prism. (a) Identification. A gonioscopic prism is a device that is a prism intended to be placed on the eye to study the anterior...

  14. 21 CFR 886.1660 - Gonioscopic prism.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Gonioscopic prism. 886.1660 Section 886.1660 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1660 Gonioscopic prism. (a) Identification. A gonioscopic prism is a device that is a prism intended to be placed on the eye to study the anterior...

  15. 21 CFR 886.1660 - Gonioscopic prism.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gonioscopic prism. 886.1660 Section 886.1660 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1660 Gonioscopic prism. (a) Identification. A gonioscopic prism is a device that is a prism intended to be placed on the eye to study the anterior...

  16. 21 CFR 886.1660 - Gonioscopic prism.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gonioscopic prism. 886.1660 Section 886.1660 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1660 Gonioscopic prism. (a) Identification. A gonioscopic prism is a device that is a prism intended to be placed on the eye to study the anterior...

  17. Spatial and Temporal Variations of Sediment Input to the Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Underwood, M. B.

    2003-12-01

    The abundance of expandable clay (smectite) in subducting sediments is an important parameter to consider during studies of plate-boundary seismogenic zones because the mineral has an unusually low coefficient of internal friction. Furthermore, interlayer water is released during smectite-to-illite diagenesis, which increases the likelihood of excess pore pressure and low effective stress. In theory, the up-dip limit of a seismogenic zones might coincide with the down-dip dissipation of excess pore pressure. In the specific case of Cascadia Basin, the amount and types of clay on the abyssal floor change considerably in both time and space. Those variations probably influence the strength of the plate-boundary fault, the vergence of imbricate thrusts within the frontal accretionary prism, and the fluid budget in 3-D. New data from more than 200 gravity-piston cores show that distal parts of Cascadia Basin contain 4% to 70% smectite in the clay fraction (Biscaye weighting factors). Smectite is more abundant within a plume of discharge that emanates from the Columbia River, but spatial variations are not clear-cut, even within the upper meter of Holocene mud. This complexity is a product of interplay among autocyclic factors (e.g., channel switching, migration of surface currents), allocyclic variables (e.g., continental glaciation, volcanism, balance of chemical to mechanical weathering, earthquake trigger of turbidity currents), and eustatic forcing (e.g., attachment-detachment of river-canyon connections). In addition, new data from ODP Site 888 (Nitinat Fan) and DSDP Site 174 (Astoria Fan) show substantial changes in clay composition with depth. Smectite at Site 888 varies erratically from 13% to 55%. Smectite content is 11% to 64% at Site 174, with a marked increase from the younger submarine-fan facies (average 22%) to the underlying abyssal-plain facies (average 42%). Models of fault-zone mechanics and accretionary-prism hydrogeology should take this

  18. Prism Window for Optical Alignment

    NASA Technical Reports Server (NTRS)

    Tang, Hong

    2008-01-01

    A prism window has been devised for use, with an autocollimator, in aligning optical components that are (1) required to be oriented parallel to each other and/or at a specified angle of incidence with respect to a common optical path and (2) mounted at different positions along the common optical path. The prism window can also be used to align a single optical component at a specified angle of incidence. Prism windows could be generally useful for orienting optical components in manufacture of optical instruments. "Prism window" denotes an application-specific unit comprising two beam-splitter windows that are bonded together at an angle chosen to obtain the specified angle of incidence.

  19. Prism beamswitch for radio telescopes.

    PubMed

    Payne, J M; Ulich, B L

    1978-12-01

    A dielectric prism and switching mechanism have been constructed for beamswitching a Cassegrain radio telescope. Spatially extended radio sources may be mapped without significant confusion utilizing the sensitivity and stability inherent in the conventional Dicke radiometer.

  20. The PRISM concept

    SciTech Connect

    Circeo, L.J. Jr.; Jacobs, G.K.; Camacho, S.L.; Tixier, J.S.

    1994-09-01

    Contaminated soils and buried wastes represent one of the most widespread and costly remediation problems in the United States and other developed countries around the world. This concept of in situ remediation using a plasma arc torch should be directly applicable to many of the contaminated soil remediation needs described the DOE, EPA, and DoD. Plasma Remediation of In Situ Materials (PRISM) could provide a highly efficient, cost-effective, reliable and controllable technique to selectively melt and vitrify any contaminated/buried volume of soils, materials, or objects at any depth underground. If necessary, it could pinpoint underground objects such as buried drums for selective remediation. Plasma arc technology was developed over 30 years ago by NASA for the US space program to simulate reentry temperatures on heat shields. Only recently has this technology begun to emerge as a commercial tool in several industries such as steelmaking, metallurgy, precious metal recovery, and waste disposal. Conceptually, a plasma torch could be used on the ground surface or lowered to the bottom of a small diameter, cased borehole. By raising and operating the torch at progressively higher levels a column of contaminated material would be vitrified and converted into an environmentally safe, glassy residue, highly resistant to leaching. With proper borehole spacing the vitrified columns could be coalesced together to form a contiguous, homogeneous mass of vitrified material which is environmentally safe and highly resistant to leaching.

  1. Progressive deformation of the Chugach accretionary complex, Alaska, during a paleogene ridge-trench encounter

    NASA Astrophysics Data System (ADS)

    Kusky, Timothy M.; Bradley, Dwight C.; Haeussler, Peter

    1997-02-01

    the west and 50 Ma in the east. Exhumation of deeper levels of the southern Alaska accretionary wedge and formation of this late fault array is interpreted as a critical taper adjustment to subduction of progressively younger oceanic lithosphere yielding a shallower basal décollement dip as the Kula-Farallon ridge approached the accretionary prism. The late structures also record different kinematic regimes associated with subduction of different oceanic plates, before and after ridge subduction. Prior to triple junction passage, subduction of the Farallon plate occurred at nearly right angles to the trench axis, whereas after triple junction migration, subduction of the Kula plate involved a significant component of dextral transpression and northward translation of the Chugach terrane. The changes in kinematics are apparent in the sequence of late structures from: (1) thrusting; (2) near-trench plutonism associated with normal + strike-slip faulting; (3) very late gouge-filled dextral faults.

  2. Episodic fluid flow in the Nankai accretionary complex: Timescale, geochemistry, flow rates, and fluid budget

    USGS Publications Warehouse

    Saffer, D.M.; Bekins, B.A.

    1998-01-01

    Down-hole geochemical anomalies encountered in active accretionary systems can be used to constrain the timing, rates, and localization of fluid flow. Here we combine a coupled flow and solute transport model with a kinetic model for smectite dehydration to better understand and quantify fluid flow in the Nankai accretionary complex offshore of Japan. Compaction of sediments and clay dehydration provide fluid sources which drive the model flow system. We explicitly include the consolidation rate of underthrust sediments in our calculations to evaluate the impact that variations in this unknown quantity have on pressure and chloride distribution. Sensitivity analysis of steady state pressure solutions constrains bulk and flow conduit permeabilities. Steady state simulations with 30% smectite in the incoming sedimentary sequence result in minimum chloride concentrations at site 808 of 550 mM, but measured chlorinity is as low as 447 mM. We simulate the transient effects of hydrofracture or a strain event by assuming an instantaneous permeability increase of 3-4 orders of magnitude along a flow conduit (in this case the de??collement), using steady state results as initial conditions. Transient results with an increase in de??collement permeability from 10-16 m2 to 10-13 m2 and 20% smectite reproduce the observed chloride profile at site 808 after 80-160 kyr. Modeled chloride concentrations are highly sensitive to the consolidation rate of underthrust sediments, such that rapid compaction of underthrust material leads to increased freshening. Pressures within the de??collement during transient simulations rise rapidly to a significant fraction of lithostatic and remain high for at least 160 kyr, providing a mechanism for maintaining high permeability. Flow rates at the deformation front for transient simulations are in good agreement with direct measurements, but steady state flow rates are 2-3 orders of magnitude smaller than observed. Fluid budget calculations

  3. Ferromanganese nodules from MANOP Sites H, S, and R-Control of mineralogical and chemical composition by multiple accretionary processes

    USGS Publications Warehouse

    Dymond, J.; Lyle, M.; Finney, B.; Piper, D.Z.; Murphy, K.; Conard, R.; Pisias, N.

    1984-01-01

    The chemical composition of ferromanganese nodules from the three nodule-bearing MANOP sites in the Pacific can be accounted for in a qualitative way by variable contributions of distinct accretionary processes. These accretionary modes are: 1. (1) hydrogenous, i.e., direct precipitation or accumulation of colloidal metal oxides in seawater, 2. (2) oxic diagenesis which refers to a variety of ferromanganese accretion processes occurring in oxic sediments; and 3. (3) suboxic diagenesis which results from reduction of Mn+4 by oxidation of organic matter in the sediments. Geochemical evidence suggests processes (1) and (2) occur at all three MANOP nodule-bearing sites, and process (3) occurs only at the hemipelagic site, H, which underlies the relatively productive waters of the eastern tropical Pacific. A normative model quantitatively accounts for the variability observed in nearly all elements. Zn and Na, however, are not well explained by the three end-member model, and we suggest that an additional accretionary process results in greater variability in the abundances of these elements. Variable contributions from the three accretionary processes result in distinct top-bottom compositional differences at the three sites. Nodule tops from H are enriched in Ni, Cu, and Zn, instead of the more typical enrichments of these elements in nodule bottoms. In addition, elemental correlations typical of most pelagic nodules are reversed at site H. The three accretionary processes result in distinct mineralogies. Hydrogenous precipitation produces ??MnO2. Oxic diagenesis, however, produces Cu-Ni-rich todorokite, and suboxic diagenesis results in an unstable todorokite which transforms to a 7 A?? phase ("birnessite") upon dehydration. The presence of Cu and Ni as charge-balancing cations influence the stability of the todorokite structure. In the bottoms of H nodules, which accrete dominantly by suboxic diagenesis, Na+ and possibly Mn+2 provide much of the charge balance for

  4. Rotatable prism for pan and tilt

    NASA Technical Reports Server (NTRS)

    Ball, W. B.

    1980-01-01

    Compact, inexpensive, motor-driven prisms change field of view of TV camera. Camera and prism rotate about lens axis to produce pan effect. Rotating prism around axis parallel to lens produces tilt. Size of drive unit and required clearance are little more than size of camera.

  5. Preserving with Prisms: Producing Nets

    ERIC Educational Resources Information Center

    Prummer, Kathy E.; Amador, Julie M.; Wallin, Abraham J.

    2016-01-01

    Two mathematics teachers in a small rural school decided to create a task that would engage seventh graders. The goal of the real-world activity was to help students develop geometric and spatial reasoning and to support their understanding of volume of rectangular prisms. The impetus for the task came from the teachers' desire to engage students…

  6. Diffractively corrected counter-rotating Risley prisms.

    PubMed

    Nie, Xin; Yang, Hongfang; Xue, Changxi

    2015-12-10

    Using the vector refraction equation and the vector diffraction equation, we obtain the expressions of the direction cosines of the refractive rays for the two wedge prisms, and the direction cosines of the diffractive rays for two wedge grisms, in which diffractive gratings were etched into the prism faces to correct the chromatic aberrations. A mathematical model between the two vector equations is proposed to compare the difference angle chromatic aberrations when the Risley prisms/grisms are rotating at different angles. We conclude that the use of diffractively corrected prisms offers a new method to correct chromatic aberrations in Risley prisms. PMID:26836873

  7. A Liquid Prism for Refractive Index Studies

    NASA Astrophysics Data System (ADS)

    Edmiston, Michael D.

    2001-11-01

    A hollow glass prism filled with liquid becomes a "liquid prism". A simple method for constructing hollow glass prisms is presented. A method is given for a demonstration that uses the liquid prism with a laser or laser pointer so the audience can observe differences in refractive index for various liquids. The demonstration provides a quick and easy determination of the sugar content of soft drinks and juices. The prism makes it easy to determine a numerical value for the refractive index of a liquid.

  8. Diffractively corrected counter-rotating Risley prisms.

    PubMed

    Nie, Xin; Yang, Hongfang; Xue, Changxi

    2015-12-10

    Using the vector refraction equation and the vector diffraction equation, we obtain the expressions of the direction cosines of the refractive rays for the two wedge prisms, and the direction cosines of the diffractive rays for two wedge grisms, in which diffractive gratings were etched into the prism faces to correct the chromatic aberrations. A mathematical model between the two vector equations is proposed to compare the difference angle chromatic aberrations when the Risley prisms/grisms are rotating at different angles. We conclude that the use of diffractively corrected prisms offers a new method to correct chromatic aberrations in Risley prisms.

  9. Geochemical Characteristics of Sediments Potentially Subducted in Western and Eastern Philippines

    NASA Astrophysics Data System (ADS)

    Solidum, R. U.; Castillo, P. R.

    2001-12-01

    section similar to that at DSDP291 is subducted. In contrast, the presence of accretionary prisms at the western margin suggests that part of the incoming sediments is not subducted. If only the basal section of the sediment columns at ODP767 and 768 gets subducted, the chemical characteristics of sediment inputs at the western margin will differ. Although the two sites are dominated by the same lithological types, basal sediments at ODP767 are continental whereas those at ODP768 are volcaniclastic.

  10. Mechanics of Slip-to-the-Trench and Frontal Prism Deformation for the 2011 Tohoku-oki Earthquake

    NASA Astrophysics Data System (ADS)

    Chester, F. M.

    2014-12-01

    The slip magnitude of the 2011 Mw 9.0 Tohoku-oki earthquake rupture was as much as ~50 m below the ~20-km-wide frontal prism of accreted sediments at the trench. Mechanical explanations for prism deformation and shallow slip consider the rate-dependence and dynamic weakening of friction along the basal thrust, dynamic unloading of the thrust from wave propagation into a compliant wedge with a free upper surface, and large magnitude stress release at depth that propagates slip to shallow depths. Borehole data and core samples from IODP expedition 343/343T are used to understand frontal prism behavior over the seismic cycle. Wedge taper, experimental determination of Coulomb failure strength of the prism, and measurements of pore pressure and sediment density are used to determine apparent friction of the basal thrust and stress in the prism for compressively critical and extensionally critical conditions assuming an elastic - perfectly Coulomb plastic wedge. Model results are compared to independent measures of in situ stress in the prism from borehole deformation, sliding friction of basal thrust material at quasi-static and seismic slip-rates in experiments, and the average coseismic shear strength of the thrust from borehole temperature-profiles. These data define the pre-seismic, co-seismic, and post-seismic stress states and suggest the prism remains in a stable, elastic state over the seismic cycle with a dynamic stress drop of approximately 1 MPa in the vicinity of the borehole. Results likely describe the state of the frontal prism ~15-20 km landward from the borehole. Trenchward, however, the prism has a much smaller taper and undergoes coseismic shortening under a compressively critical state and diminishing basal slip. Variations in shallow slip magnitude along the trench could partly reflect changes in prism geometry associated with roughness of the subducting slab and sediment input, and variations in frictional properties of the basal thrust.

  11. PRISM Polarimetry of Massive Stars

    NASA Astrophysics Data System (ADS)

    Kerkstra, Brennan; Lomax, Jamie R.; Bjorkman, Karen S.; Bjorkman, Jon Eric; Skiff, Brian; Covey, Kevin R.; Wisniewski, John P.

    2016-01-01

    We present the early results from our long-term, multi-epoch filter polarization survey of massive stars in and around young Galactic clusters. These BVRI polarization data were obtained using the PRISM instrument mounted on the 1.8m Perkins Telescope at Lowell Observatory. We first detail the creation of our new semi-automated polarization data reduction pipeline that we developed to process these data. Next, we present our analysis of the instrumental polarization properties of the PRISM instrument, via observations of polarized and unpolarized standard stars. Finally, we present early results on the total and intrinsic polarization behavior of several isolated, previously suggested classical Be stars, and discuss these results in the context of the larger project.BK acknowledges support from a NSF/REU at the University of Oklahoma. This program was also supported by NSF-AST 11411563, 1412110, and 1412135.

  12. Redistribution of material and formation of polygenic mélanges in the External Ligurian accretionary complex (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Codegone, G.; Festa, A.; Dilek, Y.; Pini, G.

    2011-12-01

    Tectonic, sedimentary and diapiric processes may strongly control the dynamics of the shallower part of subduction-accretionary complexes, and formation of polygenic mélanges at different scales. In modern accretionary complexes, drill cores and seismic images provide in-situ samples and measurements about large-scale features, and crucial informations on the structural processes that control their dynamics. However, minor-scale geological features and processes that are responsible for their formation are still difficult to decipher based on these techniques alone. On-land, exhumed accretionary complexes, on the other hand, can provide essential informations at all scales about (i) 3D features and structural architecture of mélanges, (ii) the role and interplay of different processes of mélange formation, and (iii) the redistribution of material in shallower parts of accretionary complexes (Festa et al., 2010). Detailed structural-stratigraphic observations in the exhumed Ligurian accretionary complex in the westernmost Northern Apennines show that a larger part of it (i.e., the Argille varicolori Formation) represents a composite chaotic unit consisting of diverse scale mélange types formed by tectonic, sedimentary and diapiric processes and their mutual superposition. Here, the spatial and temporal relationships between these mélange types resulted from two main episodes of deformation: (i) late Cretaceous-middle Eocene accretion, producing tectonic deformation of sediments at the wedge-front and formation of tectonically disrupted bodies through layer-parallel extension and contraction. Episodes of dynamic instability of the wedge-front alternating with steady-state accretion caused the removal of material locally and the subsequent emplacement of gravity-driven chaotic bodies within the tectonically disrupted bodies; (ii) late Oligocene-middle Miocene out-of-sequence thrusting, overprinting the previously formed chaotic bodies and producing a new and

  13. PRISM3/GISS Topographic Reconstruction

    USGS Publications Warehouse

    Sohl, Linda E.; Chandler, Mark A.; Schmunk, Robert B.; Mankoff, Ken; Jonas, Jeffrey A.; Foley, Kevin M.; Dowsett, Harry J.

    2009-01-01

    The PRISM3/GISS topographic reconstruction is one of the global data sets incorporated into a new reconstruction for the mid-Piacenzian warm interval of the Pliocene, at about 3.3 to 3.0 Ma. The PRISM3/GISS topography-gridded data set is a digitization of a graphical reconstruction, provided at 2 deg x 2 deg resolution and based on updated paleoaltimetry data and a refined land/ocean mask. Mid-Piacenzian topography as shown in this data set is generally quite similar to modern topography, with three notable differences: (1) the coastline as shown is 25 meters higher than modern sea level, reflecting the hypothesized reduction in ice sheet volume; (2) Hudson Bay is filled in to low elevation, in the absence of evidence for submergence at that time; and (3) the West Antarctic ice sheet is absent, permitting open seaways to exist in Ellsworth and Marie Byrd Lands. Two alternate ice sheet configurations with corresponding vegetation schemes are available; one is a minor modification of the PRISM2 ice reconstruction, and one is derived from the British Antarctic Survey Ice Sheet Model (BAS ISM).

  14. Mineral potential for sediment-hosted copper deposits in the Islamic Republic of Mauritania (phase V, deliverable 75): Chapter K in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Taylor, Cliff D.; Giles, Stuart A.

    2015-01-01

    Although mineral occurrence data and descriptive geological information are adequate to delineate areas favorable for sediment-hosted copper deposits, this review indicates that potential for this type of deposit in Mauritania is low.

  15. Accretionary lapilli: what’s holding them together?

    USGS Publications Warehouse

    Adams, Paul M.; Lynch, David K.; Buesch, David C.

    2016-01-01

    Accretionary lapilli from Tagus cone, Isla Isabela, Galápagos were analyzed using scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) techniques. Our main findings are (1) the lapilli formed and hardened in a few minutes while still aloft in the dispersing eruption column. (2) Palagonite rinds developed first on the basaltic glass clasts, and subsequently crystallized (3) The crystallization products contain submicron lamellar crystals of a clay (probably smectite) on the surfaces of basaltic glass clasts and (4) The interlocking of these lamellar clays from adjacent clasts binds and cements them together to form the accretionary lapillus. We argue that palagonite and possibly clay formation occur primarily in the presence of hot water vapor.

  16. A two-dimensional model of the methane cycle in a sedimentary accretionary wedge

    NASA Astrophysics Data System (ADS)

    Archer, D. E.; Buffett, B. A.

    2012-03-01

    A two-dimensional model of sediment column geophysics and geochemistry has been adapted to the problem of an accretionary wedge formation, patterned after the margin of the Juan de Fuca plate as it subducts under the North American plate. Much of the model description was given in a companion paper about application of the model to a passive margin setting; here we build on that formulation to simulate the deformation of the sediment wedge as it approaches the subduction zone. The active margin configuration of the model shares sensitivities with the passive margin configuration, in that sensitivities to organic carbon deposition and respiration kinetics, and to vertical bubble transport and redissolution in the sediment, are stronger than the sensitivity to ocean temperature. The active margin simulation also shows a sensitivity to plate subduction velocity, with higher plate velocities producing less hydrate per meter of coastline than slower velocities or the passive margin configuration. However, the local hydrate concentrations, as pore volume saturation, are higher in the active setting than the passive, as generally observed in the field.

  17. A two-dimensional model of the methane cycle in a sedimentary accretionary wedge

    NASA Astrophysics Data System (ADS)

    Archer, D. E.; Buffett, B. A.

    2012-08-01

    A two-dimensional model of sediment column geophysics and geochemistry has been adapted to the problem of an accretionary wedge formation, patterned after the margin of the Juan de Fuca plate as it subducts under the North American plate. Much of the model description is given in a companion paper about the application of the model to an idealized passive margin setting; here we build on that formulation to simulate the impact of the sediment deformation, as it approaches the subduction zone, on the methane cycle. The active margin configuration of the model shares sensitivities with the passive margin configuration, in that sensitivities to organic carbon deposition and respiration kinetics, and to vertical bubble transport and redissolution in the sediment, are stronger than the sensitivity to ocean temperature. The active margin simulation shows a complex sensitivity of hydrate inventory to plate subduction velocity, with results depending strongly on the geothermal heat flux. In low heat-flux conditions, the model produces a larger inventory of hydrate per meter of coastline in the passive margin than active margin configurations. However, the local hydrate concentrations, as pore volume saturation, are higher in the active setting than in the passive, as generally observed in the field.

  18. Inverse solutions for tilting orthogonal double prisms.

    PubMed

    Li, Anhu; Ding, Ye; Bian, Yongming; Liu, Liren

    2014-06-10

    An analytical reverse solution and actual examples are given to show how to direct a laser beam from a pair of orthogonal prisms to given targets in free space. Considering the influences of double-prism structural parameters, a lookup table method to seek the numerical reverse solution of each prism's tilting angle is also proposed for steering the double-prism orientation to track a target position located in the near field. Some case studies, as well as a specified elliptical target trajectory scanned by the cam-based driving double prisms, exhibit the significant application values of the theoretical derivation. The analytic reverse and numerical solutions can be generalized to investigate the synthesis of scanning patterns and the controlling strategy of double-prism tilting motion, the potentials of which can be explored to perform the orientation and position tracking functions in applications of precision engineering fields.

  19. Test procedure for prism compression testing

    SciTech Connect

    Not Available

    1992-05-26

    This procedure describes the setup and procedure for testing hollow clay tile (HCT) masonry prisms. The prism test is the standard engineering test used to determine values for f'{sub m} (specified compressive strength at 28 days) which are then used to obtain Code design allowable values. The prism compression test described herein produces load vs. deflection data which can be used to determine various properties such as the compressive strength, Modulus of Elasticity, and Poisson's ratio. The test prisms are obtained either by extraction from an existing wall or by fabrication using new materials. Prisms obtained from existing walls are fragile and tedious to extract and handle, but are very important because they provide data on the properties of existing walls. Laboratory-built prisms, used to supplement the in-situ prism test data, are easier to obtain, and allow for better control of the prism. Tests are to be made on prism specimens in two directions with respect to the cores: normal and parallel to the cores. Typically, in the Y-12 Plant buildings that have the HCT infill walls, the walls are constructed such that the cores in the HCT units run horizontally. Loading normal to the cores simulates vertical loading (gravity and vertical earthquake motions) on the walls, and loading parallel to the cores simulates the earthquake forces applied to a building wall in the horizontal direction. Prisms of single wythe 8-in. walls and the composite wythe 13-in. walls will be tested. A special Test Fixture (frame) has been designed and built to perform the in-house testing of prisms. Special handling fixtures have been designed to protect the prisms during removal from the wall site and transportation to the Test Fixture. The Test Fixture was designed for approximately a 400 kip allowable load limit.

  20. Test procedure for prism compression testing

    SciTech Connect

    Not Available

    1992-05-26

    This procedure describes the setup and procedure for testing hollow clay tile (HCT) masonry prisms. The prism test is the standard engineering test used to determine values for f`{sub m} (specified compressive strength at 28 days) which are then used to obtain Code design allowable values. The prism compression test described herein produces load vs. deflection data which can be used to determine various properties such as the compressive strength, Modulus of Elasticity, and Poisson`s ratio. The test prisms are obtained either by extraction from an existing wall or by fabrication using new materials. Prisms obtained from existing walls are fragile and tedious to extract and handle, but are very important because they provide data on the properties of existing walls. Laboratory-built prisms, used to supplement the in-situ prism test data, are easier to obtain, and allow for better control of the prism. Tests are to be made on prism specimens in two directions with respect to the cores: normal and parallel to the cores. Typically, in the Y-12 Plant buildings that have the HCT infill walls, the walls are constructed such that the cores in the HCT units run horizontally. Loading normal to the cores simulates vertical loading (gravity and vertical earthquake motions) on the walls, and loading parallel to the cores simulates the earthquake forces applied to a building wall in the horizontal direction. Prisms of single wythe 8-in. walls and the composite wythe 13-in. walls will be tested. A special Test Fixture (frame) has been designed and built to perform the in-house testing of prisms. Special handling fixtures have been designed to protect the prisms during removal from the wall site and transportation to the Test Fixture. The Test Fixture was designed for approximately a 400 kip allowable load limit.

  1. Arc-parallel extension and fluid flow in an ancient accretionary wedge: The San Juan Islands, Washington

    USGS Publications Warehouse

    Schermer, E.R.; Gillaspy, J.R.; Lamb, R.

    2007-01-01

    Structural analysis of the Lopez Structural Complex, a major Late Cretaceous terrane-bounding fault zone in the San Juan thrust system, reveals a sequence of events that provides insight into accretionary wedge mechanics and regional tectonics. After formation of regional ductile flattening and shear-related fabrics, the area was crosscut by brittle structures including: (1) southwest-vergent thrusts, (2) extension veins and normal faults related to northwest-southeast extension, and (3) conjugate strike-slip structures that record northwest-southeast extension and northeast-southwest shortening. Aragonite-bearing veins are associated with thrust and normal faults, but only rarely with strike-slip faults. High-pressure, low-temperature (HP-LT) minerals constrain the conditions for brittle deformation to ???20 km and <250 ??C. The presence of similar structures elsewhere indicates that the brittle structural sequence is typical of the San Juan nappes. Sustained HP-LT conditions are possible only if structures formed in an accretionary prism during active subduction, which suggests that these brittle structures record internal wedge deformation at depth and early during uplift of the San Juan nappes. The structures are consistent with orogen-normal shortening and vertical thickening followed by vertical thinning and along-strike extension. The kinematic evolution may be related initially to changes in wedge strength, followed by response to overthickening of the wedge in an unbuttressed, obliquely convergent setting. The change in vein mineralogy indicates that exhumation occurred prior to the strike-slip event. The pressure and temperature conditions and spatial and temporal extent of small faults associated with fluid flow suggest a link between these structures and the silent earthquake process. ?? 2007 Geological Society of America.

  2. Flexural bending-induced plumelets and their seamounts in accretionary (Japanese-style) and collisional (Tethyan-style) orogenic belts

    NASA Astrophysics Data System (ADS)

    Hirano, N.; Dilek, Y.

    2015-12-01

    Seamounts and seamount chains are common in both the upper and lower plates of active subduction zones. Their OIB-type volcanic products are distinctly different from suprasubduction zone (arc, forearc and backarc) generated volcanic rocks in terms of their compositions and mantle sources. Tectonic accretion of such seamounts into the Japanese archipelago in the NW Pacific and into subduction-accretion complexes and active margins of continents/microcontinents within the Tethyan realm during the Cretaceous played a significant role in continental growth. Seamount assemblages comprise alkaline volcanic rocks intercalated with radiolarian and hemipelagic chert, and limestone, and may also include hypabyssal dolerite and gabbro intrusions. In the Tethyan orogenic belts these seamount rocks commonly occur as km-scale blocks in mélange units beneath the late Jurassic - Cretaceous ophiolites nappes, whereas on the Japanese islands they form discrete, narrow tectonic belts within the late Jurassic - Cretaceous accretionary prism complexes. We interpret some of these OIB occurrences in the Japanese and Tethyan mountain belts as asperities in downgoing oceanic plates that formed in <10 million years before their accretion. Their magmas were generated by decompressional melting of upwelling asthenosphere, without any significant mantle plume component, and were brought to the seafloor along deep-seated brittle fractures that developed in the flexed, downgoing lithosphere as it started bending near a trench. The modern occurrences of these "petit-spot volcanoes" are well established in the northwestern Pacific plate, off the coast of Japan. The proposed mechanism of the formation of these small seamounts better explains the lack of hotspot trails associated with their occurrence in the geological record. Magmatic outputs of such flexural bending-induced plumelets should be ubiquitious in the accretionary (Japanese-style) and collisional (Tethyan-style) orogenic belts.

  3. Reconciling the detrital zircon record and crustal growth within juvenile accretionary orogens

    NASA Astrophysics Data System (ADS)

    Spencer, C. J.; Cawood, P. A.; Roberts, N. M. W.

    2014-12-01

    Ancient cratons are generally characterised by Archaean cores surrounded by Proterozoic accretionary belts with large volumes of juvenile crust. Their crustal growth histories provide important insights into the genesis of continents and orogenic evolution. Whole-rock and detrital zircon isotopic studies are often used to deduce those histories, but the extent to which representative lithologies within the orogens are reliably sampled for such studies is not well established. This is especially true in cases where juvenile, zircon-poor mafic crust comprises a significant proportion of an orogen such as the East African (0.8-0.5 Ga), Namaqua-Natal (1.2-1.0 Ga), Trans-Hudson (1.9-1.8 Ga), and Kola (2.5 Ga). In particular, the Mesoproterozoic Namaqua-Natal orogenic belt (NNO) fringing the Kalahari Craton is a case in point in which Nd isotopic studies of whole-rock outcrop samples and U-Pb-Hf isotopic studies of detrital zircons from sediments of the Orange River (which drains the NNO) show different crust-formation ages and proportions of new and reworked crustal material. We hypothesise that this discrepancy is due to biasing of the detrital zircon record towards felsic rocks. Understanding the representative nature of the crustal archive preserved in detrital zircons remains critical for many studies of crustal evolution. We present data that: (a) addresses the scale of potential bias within an accretionary orogen containing large proportions of juvenile material, (b) demonstrates how the whole-rock and detrital zircon records can be reconciled for the Namaqua-Natal orogen to start, and (c) can be used to evaluate the effect of zircon bias on previous crustal growth models.

  4. In North Ecuador - South Colombia margin (0-4°N), the sedimentation rate in the trench and the tectonic deformation co-control the location of the seismogenic zone.

    NASA Astrophysics Data System (ADS)

    Marcaillou, Boris; Jean-Yves, Collot; Allessandra, Ribodetti; Elia, D'acremont

    2010-05-01

    The North Ecuador - South Colombia convergent margin shows along strike variations in tectonic, thermal and seismogenic features that offer a great opportunity to study the relation between subduction zone tectono-structure, thermal regime and location of the thermally-defined seismogenic zone. Multichannel seismic reflections and conventional bathymetric data were collected in 2000 and 2005 during the SISTEUR and AMADEUS cruises. 6 selected lines perpendicular to the margin were processed with a pre-stack depth migration using a preserved amplitude approach (alias Ray+Born diffraction tomography). The first heat flow measurements in this area were also acquired, completed by heat flow derived from numerous bottom simulating reflectors. The margin is divided in Esmeraldas, Patia, Tumaco and Manglares segments. 1/ Tectonically, the tectonic deformation at the margin front drastically vary from North to South: The Patia segment is fronted by a 35 km- long active accretionary prism, the Tumaco segment by a less than 10 km-long active accretionary prism, no accretion occur in the Manglares segment, while the southern Esmeraldas segment undergoes a strong tectonic erosion. It is noteworthy that this regime is independent from the sediment thickness in the trench which is thinner where the prism is longer. 2/ Thermally, these segments also shows clear variations in heat flow that is, in the trench and in the lower slope, two-fold lower in the Tumaco segment than in the others. 3/ Sismogenically, large subduction earthquakes have ruptured the plate interface beneath the Manglares segment in 1958 and the Tumaco-Patia segments en 1979. Based on the aftershocks distribution and the rupture zone location, the seismogenic zone extends trenchward nearby the deformation front in the Patia-Tumaco segments but is restricted 30 km landward in the Manglares segment. The integrated interpretation of heat flow and sismic data indicate that: 1/ The thermal segmentation is mainly

  5. Error and adjustment of reflecting prisms

    NASA Astrophysics Data System (ADS)

    Mao, Wenwei

    1997-12-01

    A manufacturing error in the orientation of the working planes of a reflecting prism, such as an angle error or an edge error, will cause the optical axis to deviate and the image to lean. So does an adjustment (position error) of a reflecting prism. A universal method to be used to calculate the optical axis deviation and the image lean caused by the manufacturing error of a reflecting prism is presented. It is suited to all types of reflecting prisms. A means to offset the position error against the manufacturing error of a reflecting prism and the changes of image orientation is discussed. For the calculation to be feasible, a surface named the 'separating surface' is introduced just in front of the real exit face of a real prism. It is the image of the entrance face formed by all reflecting surfaces of the real prism. It can be used to separate the image orientation change caused by the error of the prism's reflecting surfaces from the image orientation change caused by the error of the prism's refracting surface. Based on ray tracing, a set of simple and explicit formulas of the optical axis deviation and the image lean for a general optical wedge is derived.

  6. Deformation processes at the down-dip limit of the seismogenic zone: The example of Shimanto accretionary complex

    NASA Astrophysics Data System (ADS)

    Palazzin, G.; Raimbourg, H.; Famin, V.; Jolivet, L.; Kusaba, Y.; Yamaguchi, A.

    2016-09-01

    In order to constrain deformation processes close to the brittle-ductile transition in seismogenic zone, we have carried out a microstructural study in the Shimanto accretionary complex (Japan), the fossil equivalent of modern Nankai accretionary prisms. The Hyuga Tectonic Mélange was sheared along the plate interface at mean temperatures of 245 °C ± 30 °C, as estimated by Raman spectroscopy of carbonaceous material (RSCM). It contains strongly elongated quartz ribbons, characterized by very high fluid inclusions density, as well as micro-veins of quartz. Both fluid inclusion planes and micro-veins are preferentially developed orthogonal to the stretching direction. Furthermore, crystallographic preferred orientation (CPO) of quartz c-axes in the ribbons has maxima parallel to the stretching direction. Recrystallization to a small grain size is restricted to rare deformation bands cutting across the ribbons. In such recrystallized quartz domains, CPO of quartz c-axes are orthogonal to foliation plane. The evolution of deformation micro-processes with increasing temperature can be further analyzed using the Foliated Morotsuka, a slightly higher-grade metamorphic unit (342 ± 30 °C by RSCM) from the Shimanto accretionary complex. In this unit, in contrast to Hyuga Tectonic Mélange, recrystallization of quartz veins is penetrative. CPO of quartz c-axes is concentrated perpendicularly to foliation plane. These variations in microstructures and quartz crystallographic fabric reflect a change in the dominant deformation mechanism with increasing temperatures: above ~ 300 °C, dislocation creep is dominant and results in intense quartz dynamic recrystallization. In contrast, below ~ 300 °C, quartz plasticity is not totally activated and pressure solution is the major deformation process responsible for quartz ribbons growth. In addition, the geometry of the quartz ribbons with respect to the phyllosilicate-rich shear zones shows that bulk rheology is controlled by

  7. Deformation processes at the down-dip limit of the seismogenic zone: The example of Shimanto accretionary complex

    NASA Astrophysics Data System (ADS)

    Palazzin, G.; Raimbourg, H.; Famin, V.; Jolivet, L.; Kusaba, Y.; Yamaguchi, A.

    2016-09-01

    In order to constrain deformation processes close to the brittle-ductile transition in seismogenic zone, we have carried out a microstructural study in the Shimanto accretionary complex (Japan), the fossil equivalent of modern Nankai accretionary prisms. The Hyuga Tectonic Mélange was sheared along the plate interface at mean temperatures of 245 °C ± 30 °C, as estimated by Raman spectroscopy of carbonaceous material (RSCM). It contains strongly elongated quartz ribbons, characterized by very high fluid inclusions density, as well as micro-veins of quartz. Both fluid inclusion planes and micro-veins are preferentially developed orthogonal to the stretching direction. Furthermore, crystallographic preferred orientation (CPO) of quartz c-axes in the ribbons has maxima parallel to the stretching direction. Recrystallization to a small grain size is restricted to rare deformation bands cutting across the ribbons. In such recrystallized quartz domains, CPO of quartz c-axes are orthogonal to foliation plane. The evolution of deformation micro-processes with increasing temperature can be further analyzed using the Foliated Morotsuka, a slightly higher-grade metamorphic unit (342 ± 30 °C by RSCM) from the Shimanto accretionary complex. In this unit, in contrast to Hyuga Tectonic Mélange, recrystallization of quartz veins is penetrative. CPO of quartz c-axes is concentrated perpendicularly to foliation plane. These variations in microstructures and quartz crystallographic fabric reflect a change in the dominant deformation mechanism with increasing temperatures: above 300 °C, dislocation creep is dominant and results in intense quartz dynamic recrystallization. In contrast, below 300 °C, quartz plasticity is not totally activated and pressure solution is the major deformation process responsible for quartz ribbons growth. In addition, the geometry of the quartz ribbons with respect to the phyllosilicate-rich shear zones shows that bulk rheology is controlled by

  8. Detrital zircon geochronology and provenance analysis applied to the onshore Makran accretionary wedge, SE Iran

    NASA Astrophysics Data System (ADS)

    Mohammadi, A.; Burg, J.; Winkler, W.; Ruh, J. B.; Von Quadt, A.

    2013-12-01

    The Makran is one of the largest accretionary wedges in the world, located in Southeast Iran. The Makran Basin is composed of turbidity sediments ranging in age from late Cretaceous to Holocene. The analysis of detrital zircons is important to interpret the provenance of the sediments and to clarify the geological history of the sedimentary basins and their surrounding source regions. We present about 2777 new U-Pb ages (ICP laser ablation mass spectrometry) from individual detrital zircons of 18 sandstone samples collected throughout the onshore Makran. 101 detrital zircon ages from a late Cretaceous fine grained sandstone ranges from 180-160 Ma (Mid-Jurassic). 478 detrital zircon ages obtained from the mid to late Eocene sandstone reveals different sources for the NE and NW parts of the Makran Basin. Zircon grains in the NE basin belong to two populations peaked at Mid-Jurassic and Mid-Eocene, with the noticeable absence of Cretaceous grains. In the NW basin, detrital zircons are Mid-Cretaceous to Mid-Eocene. 587 detrital zircon grains from fine to medium grained Oligocene sandstones collected in different parts of the basin range from Mid-Cretaceous to Mid-Eocene. 1611 detrital zircon age from Early Miocene sandstones collected in the eastern and western parts of the basin show distinctly different detrital zircon ages. They range from Mid-Cretaceous to Mid-Eocene in the eastern basin, from Late Cretaceous to Mid-Eocene in the west. Detrital zircon ages from Mid and Late Miocene sandstones rang from Late Cretaceous to Mid-Eocene. These new detrital zircon U-Pb age data show that the eastern and western parts of the Makran Basin received sediments from different source areas during Eocene and Early Miocene times. Mid and Late Miocene sediment are recycled (cannibalism) from the Oligocene units of the basin.

  9. Hybrid accretionary/collisional mechanism of Paleozoic Asian continental growth

    NASA Astrophysics Data System (ADS)

    Schulmann, Karel; Lexa, Ondrej; Janousek, Vojtech; Pavla, Stipska; Yingde, Jiang; Alexandra, Guy; Min, Sun

    2016-04-01

    Continental crust is formed above subduction zones by well-known process of "juvenile crust growth". This new crust is in modern Earth assembled into continents by two ways: (i) short-lived collisions of continental blocks with the Eurasian continent along the "Alpine-Himalayan collisional/interior orogens" in the heart of the Pangean continental plates realm; and (ii) long lived lateral accretion of ocean-floor fragments along "circum-Pacific accretionary/peripheral orogens" at the border of the Pacific oceanic plate. This configuration has existed since the late Proterozoic, when the giant accretionary Terra Australis Orogen developed at periphery of an old Palaeo-Pacific ocean together with collisional Caledonian and Variscan orogens. At the same time, the large (ca. 9 millions km2) Central Asian Orogenic Belt (CAOB) developed in the NE part of the Pangea. This orogen reveals features of both peripheral and interior orogens, which implies that the generally accepted "peripheral-accretionary" and "interior- collisional" paradigm is not applicable here. To solve this conundrum a new model of unprecedented Phanerozoic continental growth is proposed. In this model, the CAOB precursor evolved at the interface of old exterior and young interior oceans. Subsequently, the new lithospheric domain was transferred by advancing subduction into the interior of the Pangean mostly continental realm. During this process the oceanic crust was transformed into continental crust and it was only later when this specific lithosphere was incorporated into the Asian continent. If true, this concept represents revolutionary insight into processes of crustal growth explaining the enigma of anchoring hybrid lithosphere inside a continent without its subduction or Tibetan-type thickening.

  10. Provenance of Marine Sediment in the Gulf of Alaska, IODP Expedition 341: Links Between Sediment Derivation, Glacial Systems, and Exhumation of the Coastal Mountain Belts

    NASA Astrophysics Data System (ADS)

    Allen, W. K.; Dunn, C. A.; Enkelmann, E.; Ridgway, K.; Colliver, L.

    2015-12-01

    Provenance analysis of Neogene sand and diamict beds from marine boreholes drilled by the IODP Expedition 341 provides a marine sedimentary record of the interactions between tectonics, climate and sediment deposition along a glaciated convergent margin. The 341 boreholes represent a cross-margin transect that sampled the continental shelf, slope, and deep sea Surveyor Fan of the Gulf of Alaska. Our dataset currently consists of ~ 650 detrital zircons selected for double dating method utilizing both detrital zircon fission track (FT) and U-Pb analysis from sand and diamict beds, as well as zircon U-Pb geochronology and apatite FT from igneous and gneissic clasts. Detrital zircon U-Pb geochronology of sand records dominant peak ages of 53, 62, 70, and 98 Ma with minor populations of 117, 154, and 170 Ma. Most of these ages can be correlated to primary igneous sources in the Coast Plutonic Complex, the Chugach Metamorphic Complex, the plutonic rocks of Wrangellia, and the Sanak-Baranoff plutonic belt. All samples analyzed to date, covering a 10 Myr range, share nearly identical detrital zircon populations suggesting similar primary sediment sources and reworking of sediment in thrust belts and accretionary prisms along this convergent margin. Plutonic and gneissic clasts collected from the boreholes on the shelf have already been double dated. These clasts have general U-Pb zircon crystallization ages of 52-54 Ma and apatite fission track cooling ages of 10-12 Ma. These results, along with previous published studies, indicate that these clasts were derived from the Chugach Metamorphic Complex and were eroded and transported by the Bagley Ice Field and Bering Glacier. Future results using this approach should allow us to pinpoint which parts of the exhumed onshore ranges and which glacial systems provided sediment to marine environments in the Gulf of Alaska.

  11. Accretionary origin for the late Archean Ashuanipi Complex of Canada

    NASA Technical Reports Server (NTRS)

    Percival, J. A.

    1988-01-01

    The Ashuanipi complex is one of the largest massif granulite terrains of the Canadian Shield. It makes up the eastern end of the 2000 km long, lower-grade, east-west belts of the Archean Superior Province, permitting lithological, age and tectonic correlation. Numerous lithological, geochemical and metamorphic similarities to south Indian granulites suggest common processes and invite comparison of tectonic evolution. The Ashuanipi granulite terrain of the Cannadian Superior Province was studied in detail, and an origin through self-melting of a 55 km thick accretionary wedge seems possible.

  12. Structural controls on the development of submarine channel/fan systems since the Pleistocene in the accretionary wedge off SW Taiwan

    NASA Astrophysics Data System (ADS)

    Shen, Kang-Nien; Tien-Shun Lin, Andrew; Lin, Che-Chuan; Liu, Char-Shine; Wang, Yunshuen

    2016-04-01

    The accretionary wedge off SW Taiwan is the result of incipient arc-continent collision between the Luzon volcanic arc and the northern rifted margin of the South China Sea (SCS). Dynamic interactions of thrusting, folding and a rigorous sediment supply from the Taiwan mountain belts have resulted in two arrays of canyons/channels and slope-fan systems in the accretionary wedge. The Penghu canyon/fan system lies in the lower wedge and near the northern rifted margin of the SCS. The Penghu canyon is a river-fed canyon and receives sediments from southern Taiwan and SE China during eustatic lowstands. It becomes detached from river inputs during eustatic highstands as it is in the present-day. The Gaoping canyon/fan system in the south traverses both the upper slope and lower slope domains of the accretionary wedge. This system is a river-fed system during a full eustatic cycle and it drains sediments from the onshore Gaoping River. We interpreted multiple grids of multichannel seismic reflection data of MCS994, MCS1000-6, MCS1014, MCS1046 collected onboard Ocean Research I during 2012 April to 2013 August to map out thrust/fold structures and channel/fan systems in the study area. Seismic facies analyses were performed on seismic sections and key stratal surfaces of base of Pliocene and base of Pleistocene are correlated from boreholes drilled in the shelf of the northern SCS margin. Our results show that the upper Gaoping Canyon has been confined by structural ridges with limited switching of canyon courses, whereas the lower Gaoping canyon/fan system has been developed on lower slope with channel/levee deposition in multiple slope fans since early Pleistocene. Pleistocene lateral aggrading channel-and-levee systems are especially evident near the modern canyon course in the lower slope. The Penghu can/fan system in the lower accretionary wedge is also evident by seismic facies showing channel cut-and-fill, channel abandonment and channel-and-levee systems. This

  13. Subsea Gas Emissions from the Barbados Accretionary Complex

    NASA Astrophysics Data System (ADS)

    Barnard, A.; Sager, W. W.; Snow, J. E.; Max, M. D.

    2015-12-01

    We study newly identified gas plumes in the water column from the Barbados Accretionary Complex using multibeam echo soundings from cruise AT21-02. The multibeam data were used to define a region with several ~600 - 900 m tall gas plumes in the water column directly above cratered hummocky regions of the sea floor that have relatively high backscatter, at a water depth of ~1500 m. The natural gas hydrate stability zone reaches a minimum depth of ~600 m in the water column, similar to that of the tallest imaged bubble plumes, implying hydrate shells on the gas bubbles. Maximum tilt of the plume shows current shear in a direction from northwest to southeast (~128°), similar to the transport direction of North Atlantic Deep Water. The source of hydrocarbons, determined from existing geochemical data, suggests the gas source was subjacent marine Cretaceous source rocks. North-south trending faults, craters and mud volcanoes associated with the gas plumes point to the presence of a deep plumbing system and indicate that gas is a driver of mud volcanism. The widespread occurrence of seafloor morphology related to venting indicates that subsea emissions from the Barbados Accretionary Complex are substantial.

  14. Formation of forearc basins by collision between seamounts and accretionary wedges: an example from the New Hebrides subduction zone

    USGS Publications Warehouse

    Collot, J.-Y.; Fisher, M.A.

    1989-01-01

    Seabeam data reveal two deep subcircular reentrants in the lower arc slope of the New Hebrides island arc that may illustrate two stages in the development of a novel type of forearc basin. The Malekula reentrant lies just south of the partly subducted Bougainville seamount. This proximity, as well as the similarity in morphology between the reentrant and an indentation in the lower arc slope off Japan, suggests that the Malekula reentrant formed by the collision of a seamount with the arc. An arcuate fold-thrust belt has formed across the mouth of the reentrant, forming the toe of a new accretionary wedge. The Efate reentrant may show the next stage in basin development. This reentrant lies landward of a lower-slope ridge that may have begun to form as an arcuate fold-thrust belt across the mouth of a reentrant. This belt may have grown by continued accretion at the toe of the wedge, by underplating beneath the reentrant, and by trapping of sediment shed from the island arc. These processes could result in a roughly circular forearc basin. Basins that may have formed by seamount collision lie within the accretionary wedge adjacent to the Aleutian trenches. -Authors

  15. Geophysical evidence of mud diapirism on the Mediterranean Ridge accretionary complex

    NASA Astrophysics Data System (ADS)

    Camerlenghi, A.; Cita, M. B.; Della Vedova, B.; Fusi, N.; Mirabile, L.; Pellis, G.

    1995-04-01

    Mud volcanoes, mud cones, and mud ridges have been identified on the inner portion of the crestal area, and possibly on the inner escarpment, of the Mediterranean Ridge accretionary complex. Four areas containing one or more mud diapirs have been investigated through bathymetric profiling, single channel seismic reflection profiling, heat flow measurements, and coring. A sequence of events is identified in the evolution of the mud diapirs: initially the expulsion on the seafloor of gasrich mud produces a seafloor depression outlined in the seismic record by downward dip of the host sediment reflectors towards the mud conduit; subsequent eruptions of fluid mud may create a flat topped mud volcano with step-like profile; finally, the intrusion of viscous mud produces a mud cone. The origin of the diapirs is deep within the Mediterranean Ridge. Although a minimum depth of about 400 m below the seafloor has been computed from the hydrostatic balance between the diapiric sediments and the host sediments, a maximum depth, suggested by geometric considerations, ranges between 5.3 and 7 km. The presence of thermogenic gas in the diapiric sediments suggests a better constrained origin depth of at least 2.2 km. The heat flow measured within the Olimpi mud diapir field and along a transect orthogonal to the diapiric field is low, ranging between 16 ± 5 and 41 ± 6 mW m-2. Due to the presence of gas, the thermal conductivity of the diapiric sediments is lower than that of the host hemipelagic oozes (0.6 0.9 and 1.0 1.15 W m-1 K-1 respectively). We consider the distribution of mud diapirs to be controlled by the presence of tectonic features such as reverse faults or thrusts (inner escarpment) that develop where the thickness of the Late Miocene evaporites appears to be minimum. An upward migration through time of the position of the décollement within the stratigraphic column from the Upper Oligocene (diapiric sediments) to the Upper Miocene (present position) is identified.

  16. 21 CFR 886.1650 - Ophthalmic bar prism.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ophthalmic bar prism. 886.1650 Section 886.1650...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1650 Ophthalmic bar prism. (a) Identification. An ophthalmic bar prism is a device that is a bar composed of fused prisms of gradually...

  17. 21 CFR 886.1650 - Ophthalmic bar prism.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ophthalmic bar prism. 886.1650 Section 886.1650...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1650 Ophthalmic bar prism. (a) Identification. An ophthalmic bar prism is a device that is a bar composed of fused prisms of gradually...

  18. An Easily Constructed Trigonal Prism Model.

    ERIC Educational Resources Information Center

    Yamana, Shukichi

    1984-01-01

    A model of a trigonal prism which is useful for teaching stereochemistry (especially of the neodymium enneahydrate ion), can be made easily by using a sealed, empty envelope. The steps necessary to accomplish this task are presented. (JN)

  19. OPERA: Objective Prism Enhanced Reduction Algorithms

    NASA Astrophysics Data System (ADS)

    Universidad Complutense de Madrid Astrophysics Research Group

    2015-09-01

    OPERA (Objective Prism Enhanced Reduction Algorithms) automatically analyzes astronomical images using the objective-prism (OP) technique to register thousands of low resolution spectra in large areas. It detects objects in an image, extracts one-dimensional spectra, and identifies the emission line feature. The main advantages of this method are: 1) to avoid subjectivity inherent to visual inspection used in past studies; and 2) the ability to obtain physical parameters without follow-up spectroscopy.

  20. Controls on accretion of flysch and melange belts at convergent margins: evidence from the Chugach Bay thrust and Iceworm melange, Chugach accretionary wedge, Alaska

    USGS Publications Warehouse

    Kusky, T.M.; Bradley, D.C.; Haeussler, P.J.; Karl, S.

    1997-01-01

    Controls on accretion of flysch and melange terranes at convergent margins are poorly understood. Southern Alaska's Chugach terrane forms the outboard accretionary margin of the Wrangellia composite terrane, and consists of two major lithotectonic units, including Triassic-Cretaceous melange of the McHugh Complex and Late Cretaceous flysch of the Valdez Group. The contact between the McHugh Complex and the Valdez Group on the Kenai Peninsula is a tectonic boundary between chaotically deformed melange of argillite, chert, greenstone, and graywacke of the McHugh Complex and a less chaotically deformed melange of argillite and graywacke of the Valdez Group. We assign the latter to a new, informal unit of formational rank, the Iceworm melange, and interpret it as a contractional fault zone (Chugach Bay thrust) along which the Valdez Group was emplaced beneath the McHugh Complex. The McHugh Complex had already been deformed and metamorphosed to prehnite-pumpellyite facies prior to formation of the Iceworm melange. The Chugach Bay thrust formed between 75 and 55 Ma, as shown by Campanian-Maastrichtian depositional ages of the Valdez Group, and fault-related fabrics in the Iceworm melange that are cut by Paleocene dikes. Motion along the Chugach Bay thrust thus followed Middle to Late Cretaceous collision (circa 90-100 Ma) of the Wrangellia composite terrane with North America. Collision related uplift and erosion of mountains in British Columbia formed a submarine fan on the Farallon plate, and we suggest that attempted subduction of this fan dramatically changed the subduction/accretion style within the Chugach accretionary wedge. We propose a model in which subduction of thinly sedimented plates concentrates shear strains in a narrow zone, generating melanges like the McHugh in accretionary complexes. Subduction of thickly sedimented plates allows wider distribution of shear strains to accommodate plate convergence, generating a more coherent accretionary style

  1. Accretionary Complexes: Recorders of Plate Tectonism and Environmental Conditions Through Time on Earth and Possibly Those Early Noachian (Hadean-equivalent) in Age on Mars

    NASA Astrophysics Data System (ADS)

    Dohm, J. M.; Maruyama, S.; Miyamoto, H.; Viviano-Beck, C. E.; Anderson, R. C.

    2014-12-01

    On Earth, highlighted in Japan, North America, Europe, and Greenland, accretionary complexes comprehensively record information compiled while the oceanic crust is en route from the mid-oceanic ridge to the subduction zone, spanning hundreds of millions of years. At the zone, oceanic crustal materials are stacked along thrust faults and/or subducted to be eventually recycled into the mantle. The surviving accretionary-complex materials include Ocean Plate Stratigraphy (OPS). The ideal succession of the OPS (from oldest to youngest) is mid-ocean ridge basalt, pelagic sediment including radiolarian chert, hemipelagic sediment including siliceous shale, and trench turbidite deposits. Therefore, accretionary complexes often record diverse environmental conditions from deep- to shallow-marine environments, including those perturbed by magmatic, impact, and possibly extrasolar events. Stratigraphic, impact-crater, paleotectonic, and magnetic-anomaly information point to Early Noachian (Hadean-equivalent) Martian geologic terrains; they are extremely ancient environmental records compared to those destroyed on Earth due to differences in planetary mass and evolutional states. Such record a dynamic phase of the evolution of Mars, including interacting ocean, landmass, and atmosphere, as well as possible plate tectonism during an operating dynamo. A candidate accretionary complex and nearby outcrops of steeply dipping beds comprising olistostrome-like blocks, nearby and in the Claritas rise, respectively, may be key evidence of major crustal shortening related to plate tectonism, in addition to being extremely ancient environmental records. Claritas rise is a rugged promontory about 250 km across, which forms the northwest part of an extremely ancient and large mountain range, Thaumasia highlands, with a length nearing 2,400 km, or approximating that of the Himalayas. Future investigation of the ancient Martian basement, which includes geochemical analyses for possible OPS

  2. Accretionary rims on inclusions in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Macpherson, G. J.; Hashimoto, A.; Grossman, L.

    1985-01-01

    The origin and composition of the rim sequence on the refractory inclusion in the Allende meteorite are studied. The different textures, mineralogy, and mineral-chemistry of the four layers of the rim are described. The layers are composed of: pyroxene, needles, olivine, hedenbergite, and andradite. Tables of the element and chemical compositions of the layers are presented. The data reveals that: (1) the layers are highly porous masses of euhedral crystals with no intergrowth; (2) layers contain highly disequilibrium mineral assemblages; and (3) the thickness of the layers varies with the underlying topography. These results support the theory that rim structures are accretionary aggregates formed from accretion of independently grown particles onto the surface of inclusions. The formation of the grains in the layers and matrix from nebular condensates is studied.

  3. Morphology, seismic characteristics and development of the sediment dispersal system along the Taiwan-Luzon convergent margin

    NASA Astrophysics Data System (ADS)

    Hsiung, Kan-Hsi; Su, Chih-Chieh; Yu, Ho-Shing; Chang, Jih-Hsin

    2015-12-01

    The sediment dispersal system along the convergent margin between Taiwan and Luzon links the terrestrial and shallow marine sediments from the source areas nearby Taiwan orogen to the ultimate sink in the northern Manila Trench. Using seismic reflection profiles and bathymetry mapping we determine three distinct morpho-tectonic features of the Penghu Submarine Canyon, deep-sea Penghu Channel and oceanic Manila Trench which are linearly interconnected to form a longitudinal sediment route. Seismic profiles show characteristic features of truncated strata along canyon walls and cut-and-fills in canyon bottom. Deformed and uplifted bathymetric ridges and troughs and volcanic intrusions with unstratified and chaotic seismic facies are associated with the Penghu Channel. The seismic facies of the trench wedge are characterized by sub-horizontal and conformable layers of sediment stacking upwards to the trench floor. The sediment wedge adjacent to the inner lower slope is deformed to blind folds and thrust faults as precursors of the accretionary prism. The most prominent seismic characteristics is wide-spread undulating reflectors on the seafloor along the west edge of the sediment dispersal system and the toe of the South China Sea Basin floor, suggesting a large sediment wave field with a turbidity currents origin. The location, orientation and geometry of this sediment routing system are mainly controlled by underlying tectonics in progressive changes from arc-continental collision in transition to subduction. The deep-sea Penghu Channel is formed by compression in transitional zone of the North Luzon Ridge region, neither subduction nor channel erosion. The sediments in northern Manila Trench are mainly transported by turbidity currents via the upslope deep-sea Penghu Channel and Penghu Canyon and trench axis is filled up to a flat-floor trench wedge without sediment ponding. A four-stage development of sediment dispersal system in Taiwan-Luzon convergent margin

  4. Accretionary margin of north-western Hispaniola: morphology, structure and development of part of the northern Caribbean plate boundary

    USGS Publications Warehouse

    Dillon, William P.; Austin, James A.; Scanlon, K.M.; Terence, Edgar N.; Parson, L.M.

    1992-01-01

    Broad-range side-scan sonar (GLORIA) images and single- and multi-channel seismic reflection profiles demonstrate that the margin of north-western Hispaniola has experienced compression as a consequence of oblique North American-Caribbean plate convergence. Two principal morphological or structural types of accretionary wedges are observed along this margin. The first type is characterized by a gently sloping (???4??) sea floor and generally margin-parallel linear sets of sea-floor ridges that gradually deepen towards the flat Hispaniola Basin floor to the north. The ridges are caused by an internal structure consisting of broad anticlines bounded by thrust faults that dip southwards beneath Hispaniola. Anticlines form at the base of the slope and are eventually sheared and underthrust beneath the slope. In contrast, the second type of accretionary wedge exhibits a steeper (???6-16??) sea-floor slope characterized by local slumping and a more abrupt morphological transition to the adjacent basin. The internal structure appears chaotic on seismic reflection profiles and probably consists of tight folds and closely spaced faults. We suggest that changes in sea-floor declivity and internal structure may result from variations in the dip or frictional resistance of the de??collement, or possibly from changes in the cohesive strength of the wedge sediments. The observed pattern of thickening of Hispaniola Basin turbidites towards the insular margin suggests differential southwards tilting of the Hispaniola Basin strata, probably in response to North America-Caribbean plate interactions since the Early Tertiary. Based upon indirect age control from adjacent parts of the northern caribbean plate boundary, we infer a Late Eocene to Early Miocene episode of transcurrent motion (i.e. little or no tilting), an Early Miocene to Late Pliocene period of oblique convergence (i.e. increased tilt) during which the accretionary wedge began to be constructed, and a Late Pliocene to

  5. Change in stress with seismic cycles identified at an out of sequence thrust in an on-land accretionary complex: The Nobeoka thrust, Shimanto Belt, Kyusyu, SW Japan

    NASA Astrophysics Data System (ADS)

    Yamaguchi, M.; Hashimoto, Y.; Yamaguchi, A.; Kimura, G.

    2011-12-01

    Seismic surveys along accretionary prisms have revealed that the out-of sequence thrusts (OSTs) are commonly developed within accretionary wedges branching from seismogenic subduction plate boundaries. The OSTs are also recognized in on-land accretionary complexes as large thrust faults cutting paleo-thermal structures. The OSTs are thought to play a role in tsunami genesis at a coseismic event. Stress history on OSTs is significant to understand the OSTs' role in seismic cycles. We estimated, thus palaeostresses from micro-faults along an OST in an on-land accretionary complexes. We focused on the Nobeoka fault which is an OST in an on-land accretionary complex, the Shimato Belt, Kyusyu, SW Japan. A gap in paleothermal temperature (up to 70 degree C) is observed at the fault. The Nobeoka thrust strikes almost EW at coastline. The Cretaceous Makimine formation and Paleogene Kitagawa formation are located at the hanging wall of the fault, comprising mainly of pelitic schist. The footwall of the fault is the Paleogene Hyuga formation composed mainly of shale. A lot of micro-faults are well developed just below the thrust for a few hundred meters to the south. Those micro faults are considered to be related to the Nobeoka thurst because slip direction and sense of the micro-faults are consistent with that of the Nobeoka thrust. The micro-faults are commonly accompanied by mineral veins of quartz and ankerite. Yamaguchi et al. (2010) suggested that the differences of mineral veins are possibly related to the seismic cycle. In this study, we conducted stress inversion analysis for the micro-faults to examine the change in stress between them, which might be related to the seismic cycle. We divided the micro-fault into two as a micro-fault with quartz veins and that with ankerite veins. Slip direction from slicken fibers and slip sense by slicken steps were obtained. HIM (hough inversion method) by Yamaji et al. (2006) was used to estimate the stress. Two stress states

  6. A portable direct view configuration prism spectrometer using a double Amici prism

    NASA Astrophysics Data System (ADS)

    Sun, Lanjun; Zhang, Yanchao; Tian, Zhaoshuo; Ren, Xiuyun; Fu, Shiyou

    2015-10-01

    In this paper, we present a prism spectrometer that exploits a double Amici prism dispersion structure. The system consists of a slit, a collimating lens, a double Amici prism, an imaging lens and a CCD. The incident light enter into slit, and then is paralleled by a collimating lens to the double Amici prism. The double Amici prism is used to realize spectral dispersion. The dispersed light is collected by an imaging lens and image on the photosensitive surface of the CCD. The dispersion resolution is theoretical analyzed from the ray tracing point of view. In addition, the imaging position on CCD element at different wavelength is presented according to nonlinear curve of dispersion. The designed prism spectrometer can obtain a high light throughput and less optical distortion spectrum in the spectral range of 370-700nm. In experiment, we measured the spectral resolution of the designed prism spectrometer at five wavelength used a grating monochromator. The designed in-line, direct view configuration prism spectrometer owns the advantages of high light throughput, less optical distortions, compact structure, small volume and easy operation, which has important role in application of laser spectral measurement especially laser remote sensing spectral detection.

  7. LED light recycling using double prisms

    NASA Astrophysics Data System (ADS)

    Ouyang, George; Li, Kenneth

    2013-09-01

    A novel LED recycling scheme using double prisms is presented. Two identical triangular prisms with square bases, one cross-stacked on top of the other, are tight-fit into a mirrored light tunnel. The whole prism/light tunnel assembly is then mounted on top of a square LED source, whose emitting area is the same as that of the base plane of the said prism/light tunnel assembly. Each prism acts as a tapered-down light guide in one dimension, which selectively retro-reflects high angle light along that direction. The outer light tunnel serves as a mirrored wall that folds back any light that escapes outside the two prisms. For a given collection cone angle, the height of the two prisms is optimized using ASAP, a commercial ray-tracing software. Simulation and experimental results show promise in significantly increasing the brightness of the LED sources within the collection cone. Specifically for a 4x recycling ratio a 70% recycling gain in center illuminance has been achieved (i.e., illuminance measured in the forward direction). This scheme has advantages over previous recycling configurations due to its compactness and ease of mounting. For example, compared to Wavien's spherical reflector approach that has been previously published, the current recycling configuration is much smaller in size because instead of fitting a much larger mirrored reflector on top of the LED source, this time we're using a structure that has the same lateral dimensions as those of the LED source itself. Further improvement is also possible if optimization of various system parameters is carried out.

  8. Eocene extension in Idaho generated massive sediment floods into Franciscan trench and into Tyee, Great Valley, and Green River basins

    USGS Publications Warehouse

    Dumitru, Trevor A.; Ernst, W.G.; Wright, James E.; Wooden, Joseph L.; Wells, Ray E.; Farmer, Lucia P.; Kent, Adam J.R.; Graham, Stephan A.

    2013-01-01

    The Franciscan Complex accretionary prism was assembled during an ∼165-m.y.-long period of subduction of Pacific Ocean plates beneath the western margin of the North American plate. In such fossil subduction complexes, it is generally difficult to reconstruct details of the accretion of continent-derived sediments and to evaluate the factors that controlled accretion. New detrital zircon U-Pb ages indicate that much of the major Coastal belt subunit of the Franciscan Complex represents a massive, relatively brief, surge of near-trench deposition and accretion during Eocene time (ca. 53–49 Ma). Sediments were sourced mainly from the distant Idaho Batholith region rather than the nearby Sierra Nevada. Idaho detritus also fed the Great Valley forearc basin of California (ca. 53–37 Ma), the Tyee forearc basin of coastal Oregon (49 to ca. 36 Ma), and the greater Green River lake basin of Wyoming (50–47 Ma). Plutonism in the Idaho Batholith spanned 98–53 Ma in a contractional setting; it was abruptly superseded by major extension in the Bitterroot, Anaconda, Clearwater, and Priest River metamorphic core complexes (53–40 Ma) and by major volcanism in the Challis volcanic field (51–43 Ma). This extensional tectonism apparently deformed and uplifted a broad region, shedding voluminous sediments toward depocenters to the west and southeast. In the Franciscan Coastal belt, the major increase in sediment input apparently triggered a pulse of massive accretion, a pulse ultimately controlled by continental tectonism far within the interior of the North American plate, rather than by some tectonic event along the plate boundary itself.

  9. The PRISM3D paleoenvironmental reconstruction

    USGS Publications Warehouse

    Dowsett, H.; Robinson, M.; Haywood, A.M.; Salzmann, U.; Hill, Daniel; Sohl, L.E.; Chandler, M.; Williams, Mark; Foley, K.; Stoll, D.K.

    2010-01-01

    The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) paleoenvironmental reconstruction is an internally consistent and comprehensive global synthesis of a past interval of relatively warm and stable climate. It is regularly used in model studies that aim to better understand Pliocene climate, to improve model performance in future climate scenarios, and to distinguish model-dependent climate effects. The PRISM reconstruction is constantly evolving in order to incorporate additional geographic sites and environmental parameters, and is continuously refined by independent research findings. The new PRISM three dimensional (3D) reconstruction differs from previous PRISM reconstructions in that it includes a subsurface ocean temperature reconstruction, integrates geochemical sea surface temperature proxies to supplement the faunal-based temperature estimates, and uses numerical models for the first time to augment fossil data. Here we describe the components of PRISM3D and describe new findings specific to the new reconstruction. Highlights of the new PRISM3D reconstruction include removal of Hudson Bay and the Great Lakes and creation of open waterways in locations where the current bedrock elevation is less than 25m above modern sea level, due to the removal of the West Antarctic Ice Sheet and the reduction of the East Antarctic Ice Sheet. The mid-Piacenzian oceans were characterized by a reduced east-west temperature gradient in the equatorial Pacific, but PRISM3D data do not imply permanent El Niño conditions. The reduced equator-to-pole temperature gradient that characterized previous PRISM reconstructions is supported by significant displacement of vegetation belts toward the poles, is extended into the Arctic Ocean, and is confirmed by multiple proxies in PRISM3D. Arctic warmth coupled with increased dryness suggests the formation of warm and salty paleo North Atlantic Deep Water (NADW) and a more vigorous thermohaline circulation system that may

  10. How to Get the Full Prism Effect.

    PubMed

    Pochopien, Klaudia; Fahle, Manfred

    2015-08-01

    We investigate how the immediate correction effect decreases mispointing under prisms. Subjects performed rhythmic pointing movements under different conditions with horizontally shifting prisms. Even the first (initial) pointing error is much smaller than the prismatic shift, a phenomenon called the immediate correction effect. Knowledge about the structure of the room and of objects in the room obtained before the prisms were worn may limit the amount of the prismatic displacement perceived. We therefore compared the direct prism effect as well as prismatic adaptation with room illumination switched on versus switched off. Our 44 subjects participated in two experiments, with varying amounts of information about room structure available. The results show a direct effect corresponding to the optical power of the prisms in the dark condition, when in addition body position was slightly rotated in direction of the prismatic shift. But even in the dark, a significant immediate correction effect arises with the fixed body position. The largest immediate correction amounting to almost half of optical displacement arose in the standard condition of bright light and fixed body position. PMID:27433319

  11. The Cimmerian accretionary wedge of Anarak, Central Iran

    NASA Astrophysics Data System (ADS)

    Zanchi, Andrea; Malaspina, Nadia; Zanchetta, Stefano; Berra, Fabrizio; Benciolini, Luca; Bergomi, Maria; Cavallo, Alessandro; Javadi, Hamid Reza; Kouhpeyma, Meyssam

    2015-04-01

    The occurrence in Iran of several ophiolite belts dating between Late Palaeozoic to Triassic poses several questions on the possible existence of various sutures marking the closure of the Palaeotethys ocean between Eurasia and this Gondwana-derived microplate. In this scenario, the Anarak region in Central Iran still represents a conundrum. Contrasting geochronological, paleontological, paleomagnetic data and reported field evidence suggest different origins for the Anarak Metamorphic Complex (AMC). The AMC is either interpreted, as: (1) relict of an accretionary wedge developed at the Eurasia margin during the Palaeotethys subduction as part of the Cimmerian suture zone of NE Iran, displaced to Central Iran by a large counter-clockwise rotation of the central Iranian blocks; (2) autochthonous unit forming a secondary branch of the main suture zone. Our structural, petrographic and geochemical data indicate that the AMC consists of several metamorphic units also including dismembered "ophiolites" which display different tectono-metamorphic evolutions. Three main ductile deformational events can be distinguished in the AMC. The Morghab and Chah Gorbeh complexes preserve a different M1 metamorphism, characterized by blueschist relics in the S1 foliation of the former unit, and greenschist assemblages in the latter. They share a subsequent similar D2 deformational and M2 metamorphic history, showing a prograde metamorphism with syn- to post-deformation growth of blueschist facies mineral assemblages on pre-existing greenschist facies associations. High pressure, low temperature (HP/LT) metamorphism responsible for the growth of sodic amphibole has been recognized also within marble lenses at the contact between the Chah Gorbeh Complex and serpentinites. Evidence of HP/LT metamorphism also occurs in glaucophane-bearing meta-pillow lavas and serpentinites, which contain antigorite and form most of the "ophiolites" within the AMC. Structural relationships show that the

  12. Fluid flow in and around a mud volcano field seaward of the Barbados accretionary wedge: Results from Manon cruise

    NASA Astrophysics Data System (ADS)

    Henry, Pierre; Le Pichon, Xavier; Lallemant, Siegfried; Lance, Sophie; Martin, Jonathan B.; Foucher, Jean-Paul; Fiala-MéDioni, Aline; Rostek, Frauke; Guilhaumou, Nicole; Pranal, Vincent; Castrec, Maryse

    1996-09-01

    A field of mud diapirs and mud volcanoes situated in the Barbados trench at 13°50'N and extending along an old oceanic fracture zone (Mercurus) was investigated during the Manon cruise using both surface ship and Nautile submersible sampling and measurements. The entire zone from 13°50'N up to 14°20'N has an anomalously high heat flow which implies that fluids are drained into it from a segment of the accretionary wedge a few hundred kilometers wide. Two structures interpreted as diatremes, Atalante and Cyclops, expell large amounts of water and methane. We propose that they were formed from the release of a light fluid when gas hydrates were dissociated in the sediment as the result of the circulation of warm fluid in the area. However they expell only a small fraction of the incoming fluid, implying that disperse flow is the dominant mode of expulsion in this area. The chemoautotrophic communities on the surface of the structures rely mostly on sulfides. Submersible observations, temperature measurements in the sediment, and the chemistry of the pore fluid indicate that convection of seawater occurs within the first few meters of sediment through high-permeability channels, such as cemented carbonate conduits. We propose that this convection is driven by the density difference between the pore fluid and seawater, but fresh water released by the dissolution of shallow hydrates may also contribute. This shallow convection may be a frequent process in cold seep environments.

  13. PRISM: a general purpose programming system

    SciTech Connect

    Rogers, C.R.; O'Hara, S.A.

    1983-03-01

    This paper describes the development, uses, and features of the general purpose programming system PRISM, which is the foundation for future program development by the Computer Programming Branch and is available to all personnel within the Air Force Human Resources Laboratory (AFHRL). PRISM was designed to meet the need for an efficient and reliable programming tool that could be used like a high-order programming language but still provide the operating system interface and hardware controls of assembly language. It has special features that make it an especially powerful tool for new software development. These features were derived from an extensive analysis of coding sequences in existing library programs, interactions between library programs, and the identification of common programming procedures. PRISM was specifically designed for the development of general purpose programs by the Technical Services Division of AFHRL within the Computer Programming Branch; however, it is also an effective and efficient tool for applications programmers.

  14. Test procedure for prism compression testing of laboratory built prisms. Hollow clay tile wall testing program

    SciTech Connect

    Fricke, K.E.; Butala, M.B.

    1992-04-01

    This procedure describes the fabrication and testing of hollow clay tile (HCT) prisms under laboratory conditions. Objective of the HCT prism compression tests is to determine the compressive strength, Modulus of Elasticity, and Poissons`s ratio of the HCT walls as they exist in the Y-12 plant walls. Load versus displacement behavior, including the maximum load and post-peak deformation characteristics will be obtained. The prism test is the standard test used to determine values for f`{sub m} (specified compressive strength at 28 days) which are then used to obtain Code design allowable values. Reason for using laboratory built prisms is that it is a cumbersome process to remove prism specimens from existing walls, transport them to the test site, and then load them into a testing fixture. The wall prisms would be quite fragile as they come out of the walls, and thus the use of laboratory built prisms will permit the testing of more specimens under better controlled conditions.

  15. Test procedure for prism compression testing of laboratory built prisms. [Hollow clay tile walls

    SciTech Connect

    Fricke, K.E.; Butala, M.B.

    1992-04-01

    This procedure describes the fabrication and testing of hollow clay tile (HCT) prisms under laboratory conditions. Objective of the HCT prism compression tests is to determine the compressive strength, Modulus of Elasticity, and Poissons's ratio of the HCT walls as they exist in the Y-12 plant walls. Load versus displacement behavior, including the maximum load and post-peak deformation characteristics will be obtained. The prism test is the standard test used to determine values for f'{sub m} (specified compressive strength at 28 days) which are then used to obtain Code design allowable values. Reason for using laboratory built prisms is that it is a cumbersome process to remove prism specimens from existing walls, transport them to the test site, and then load them into a testing fixture. The wall prisms would be quite fragile as they come out of the walls, and thus the use of laboratory built prisms will permit the testing of more specimens under better controlled conditions.

  16. X-ray Interferometer Using Prism Optics

    SciTech Connect

    Suzuki, Yoshio

    2004-05-12

    Two-beam X-ray interferometer using refractive optics has been developed. A prism made of acrylic resin is used as the beam deflector for hard X-ray wavefront dividing interferometer. This configuration is the same as that of the Fresnel's bi-prism interferometer or the Leith-Upatnieks type two-beam holography in visible light region. Therefore, quantitative analysis of the degree of transversal coherence can be performed by measuring the visibility of interference fringes. It is also possible to realize two-beam holographic imaging in hard X-ray regions.

  17. Unraveling the New England orocline, east Gondwana accretionary margin

    NASA Astrophysics Data System (ADS)

    Cawood, P. A.; Pisarevsky, S. A.; Leitch, E. C.

    2011-10-01

    The New England orocline lies within the Eastern Australian segment of the Terra Australis accretionary orogen and developed during the late Paleozoic to early Mesozoic Gondwanide Orogeny (310-230 Ma) that extended along the Pacific margin of the Gondwana supercontinent. The orocline deformed a pre-Permian arc assemblage consisting of a western magmatic arc, an adjoining forearc basin and an eastern subduction complex. The orocline is doubly vergent with the southern and northern segments displaying counter-clockwise and clockwise rotation, respectively, and this has led to contrasting models of formation. We resolve these conflicting models with one that involves buckling of the arc system about a vertical axis during progressive northward translation of the southern segment of the arc system against the northern segment, which is pinned relative to cratonic Gondwana. Paleomagnetic data are consistent with this model and show that an alternative model involving southward motion of the northern segment relative to the southern segment and cratonic Gondwana is not permissible. The timing of the final stage of orocline formation (˜270-265 Ma) overlaps with a major gap in magmatic activity along this segment of the Gondwana margin, suggesting that northward motion and orocline formation were driven by a change from orthogonal to oblique convergence and coupling between the Gondwana and Pacific plates.

  18. Linking magmatism with collision in an accretionary orogen

    NASA Astrophysics Data System (ADS)

    Li, Shan; Chung, Sun-Lin; Wilde, Simon A.; Wang, Tao; Xiao, Wen-Jiao; Guo, Qian-Qian

    2016-05-01

    A compilation of U-Pb age, geochemical and isotopic data for granitoid plutons in the southern Central Asian Orogenic Belt (CAOB), enables evaluation of the interaction between magmatism and orogenesis in the context of Paleo-Asian oceanic closure and continental amalgamation. These constraints, in conjunction with other geological evidence, indicate that following consumption of the ocean, collision-related calc-alkaline granitoid and mafic magmatism occurred from 255 ± 2 Ma to 251 ± 2 Ma along the Solonker-Xar Moron suture zone. The linear or belt distribution of end-Permian magmatism is interpreted to have taken place in a setting of final orogenic contraction and weak crustal thickening, probably as a result of slab break-off. Crustal anatexis slightly post-dated the early phase of collision, producing adakite-like granitoids with some S-type granites during the Early-Middle Triassic (ca. 251–245 Ma). Between 235 and 220 Ma, the local tectonic regime switched from compression to extension, most likely caused by regional lithospheric extension and orogenic collapse. Collision-related magmatism from the southern CAOB is thus a prime example of the minor, yet tell-tale linking of magmatism with orogenic contraction and collision in an archipelago-type accretionary orogen.

  19. Linking magmatism with collision in an accretionary orogen.

    PubMed

    Li, Shan; Chung, Sun-Lin; Wilde, Simon A; Wang, Tao; Xiao, Wen-Jiao; Guo, Qian-Qian

    2016-01-01

    A compilation of U-Pb age, geochemical and isotopic data for granitoid plutons in the southern Central Asian Orogenic Belt (CAOB), enables evaluation of the interaction between magmatism and orogenesis in the context of Paleo-Asian oceanic closure and continental amalgamation. These constraints, in conjunction with other geological evidence, indicate that following consumption of the ocean, collision-related calc-alkaline granitoid and mafic magmatism occurred from 255 ± 2 Ma to 251 ± 2 Ma along the Solonker-Xar Moron suture zone. The linear or belt distribution of end-Permian magmatism is interpreted to have taken place in a setting of final orogenic contraction and weak crustal thickening, probably as a result of slab break-off. Crustal anatexis slightly post-dated the early phase of collision, producing adakite-like granitoids with some S-type granites during the Early-Middle Triassic (ca. 251-245 Ma). Between 235 and 220 Ma, the local tectonic regime switched from compression to extension, most likely caused by regional lithospheric extension and orogenic collapse. Collision-related magmatism from the southern CAOB is thus a prime example of the minor, yet tell-tale linking of magmatism with orogenic contraction and collision in an archipelago-type accretionary orogen. PMID:27167207

  20. Linking magmatism with collision in an accretionary orogen

    PubMed Central

    Li, Shan; Chung, Sun-Lin; Wilde, Simon A.; Wang, Tao; Xiao, Wen-Jiao; Guo, Qian-Qian

    2016-01-01

    A compilation of U-Pb age, geochemical and isotopic data for granitoid plutons in the southern Central Asian Orogenic Belt (CAOB), enables evaluation of the interaction between magmatism and orogenesis in the context of Paleo-Asian oceanic closure and continental amalgamation. These constraints, in conjunction with other geological evidence, indicate that following consumption of the ocean, collision-related calc-alkaline granitoid and mafic magmatism occurred from 255 ± 2 Ma to 251 ± 2 Ma along the Solonker-Xar Moron suture zone. The linear or belt distribution of end-Permian magmatism is interpreted to have taken place in a setting of final orogenic contraction and weak crustal thickening, probably as a result of slab break-off. Crustal anatexis slightly post-dated the early phase of collision, producing adakite-like granitoids with some S-type granites during the Early-Middle Triassic (ca. 251–245 Ma). Between 235 and 220 Ma, the local tectonic regime switched from compression to extension, most likely caused by regional lithospheric extension and orogenic collapse. Collision-related magmatism from the southern CAOB is thus a prime example of the minor, yet tell-tale linking of magmatism with orogenic contraction and collision in an archipelago-type accretionary orogen. PMID:27167207

  1. Plutons and accretionary episodes of the Klamath Mountains, California and Oregon

    USGS Publications Warehouse

    Irwin, William P.; Wooden, Joseph L.

    1999-01-01

    The Klamath Mountains consist of various accreted terranes and include many plutons that range in composition from gabbro to granodiorite. Some of the plutons (preaccretionary plutons) were parts of terranes before the terranes accreted; others (accretionary plutons) intruded during or after the accretion of their host terrane(s). This report attempts to (1) graphically illustrate how the Klamath Mountains grew by the accretion of allochthonous oceanic terranes during early Paleozoic to Cretaceous times, (2) identify the plutons as either preaccretionary or accretionary, and (3) genetically relate the plutonic intrusions to specific accretionary episodes. The eight accretionary episodes portrayed in this report are similar to those shown by Irwin and Mankinen (1998) who briefly described the basis for the timing of the episodes and who illustrated the ~110 degrees of clockwise rotation of the Klamath Mountains since Early Devonian time. Each episode is named for the accreting terrane. In all episodes (Figs. 1-8), the heavy black line represents a fault that separates the accreting oceanic rocks on the left from earlier accreted terranes on the right. The preaccretionary plutons are shown within the accreting oceanic crustal rocks to the left of the heavy black line, and the accretionary plutons in most instances are shown intruding previously accreted terranes to the right. Episodes earlier than the Central Metamorphic episode (Fig. 1), and that may have been important in the formation of the early Paleozoic nucleous of the province (the Eastern Klamath terrane), are not known. The 'Present Time' distribution of the accreted terranes and plutons is shown at a large scale in Figure 9. The schematic vertical section (Fig. 10) depicts the terranes as a stack of horizontal slabs that include or are intruded by vertical plutons. Note that at their base the ~170 Ma preaccretionary plutons of the Western Hayfork subterrane are truncated by the ~164 Ma Salt Creek

  2. Deformation and fluid flow of a major out-of-sequence thrust located at seismogenic depth in an accretionary complex: Nobeoka Thrust in the Shimanto Belt, Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Kondo, Hideki; Kimura, Gaku; Masago, Hideki; Ohmori-Ikehara, Kotoe; Kitamura, Yujin; Ikesawa, Eisei; Sakaguchi, Arito; Yamaguchi, Asuka; Okamoto, Shin'ya

    2005-12-01

    Nobeoka Thrust in Kyushu, southwest Japan, was investigated to understand the relationship between the seismogenic out-of-sequence thrust (OST) and fluid flow in accretionary prisms. The Nobeoka Thrust is a fossilized OST, being active at seismogenic depth. The hanging wall exhibits a penetrative plastic deformation, while a brittle, cataclastic mélange-like occurrence characterizes the footwall, although both of them have same shale and sandstone-dominant protolith. Vitrinite reflectance analyses indicate that the maximum temperatures of the hanging wall and footwall are approximately 320 and 250°C, respectively. This thermal gap across the thrust corresponds to 8.6-14.4 km of displacement assuming a 28-47°C/km geothermal gradient. The brittle damage zone of the thrust is asymmetric: only 2 m for hanging wall side and 100 m for footwall. Three types of mineral veins, quartz, and carbonate are well developed, especially in the damaged footwall: the tension crack-filling vein, the fault-filling vein, and postmélange one. The first is harmonious with fabric, perpendicular to the P surface. Fluid inclusion geothermobarometry indicates the P-T of fluid in the intensively damaged zone of the footwall is ˜300°C, 230-250 MPa, higher than that from vitrinite reflectance, which suggests that hydrothermal fluid flow is associated with deformation. The same type vein in the lowest portion of the footwall-damaged zone includes a much lower P-T fluid. This difference suggests that continuous underplating caused the damaged zone to propagate downward with cooling and shallowing, which differs from faults characterized by shear localization and might be unique to aquiferous OST in accretionary complexes.

  3. Ultradispersive adaptive prism based on a coherently prepared atomic medium

    SciTech Connect

    Sautenkov, Vladimir A.; Li Hebin; Rostovtsev, Yuri V.; Scully, Marlan O.

    2010-06-15

    We have experimentally demonstrated an ultra-dispersive optical prism made from a coherently driven Rb atomic vapor. The prism possesses spectral angular dispersion that is 6 orders of magnitude higher than that of a prism made of optical glass; such angular dispersion allows one to spatially resolve light beams with different frequencies separated by a few kilohertz. The prism operates near the resonant frequency of atomic vapor and its dispersion is optically controlled by a coherent driving field.

  4. Magnetic prism alignment system for measuring large-angle strabismus.

    PubMed

    Bishop, John Edward

    2014-02-01

    Prismatic measurement of large-angle strabismus requires the simultaneous use of two or more prisms for neutralization. To facilitate the clinical measurement of large-angle strabismus a new prism system was designed utilizing a flat plate and a ferrous metal surface coupled with prisms containing rare earth magnets implanted in their base and bottom surfaces. PMID:24569000

  5. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings...

  6. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings...

  7. Symmetry Breaking Analysis of Prism Adaptation's Latent Aftereffect

    ERIC Educational Resources Information Center

    Frank, Till D.; Blau, Julia J. C.; Turvey, Michael T.

    2012-01-01

    The effect of prism adaptation on movement is typically reduced when the movement at test (prisms off) differs on some dimension from the movement at training (prisms on). Some adaptation is latent, however, and only revealed through further testing in which the movement at training is fully reinstated. Applying a nonlinear attractor dynamic model…

  8. 21 CFR 886.1665 - Ophthalmic rotary prism.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ophthalmic rotary prism. 886.1665 Section 886.1665...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1665 Ophthalmic rotary prism. (a) Identification. An ophthalmic rotary prism is a device with various prismatic powers intended to be handheld...

  9. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings...

  10. 21 CFR 886.5810 - Ophthalmic prism reader.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ophthalmic prism reader. 886.5810 Section 886.5810...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5810 Ophthalmic prism reader. (a) Identification. An ophthalmic prism reader is a device intended for use by a patient who is in a supine...

  11. 21 CFR 886.5810 - Ophthalmic prism reader.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ophthalmic prism reader. 886.5810 Section 886.5810...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5810 Ophthalmic prism reader. (a) Identification. An ophthalmic prism reader is a device intended for use by a patient who is in a supine...

  12. 21 CFR 886.5810 - Ophthalmic prism reader.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic prism reader. 886.5810 Section 886.5810...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5810 Ophthalmic prism reader. (a) Identification. An ophthalmic prism reader is a device intended for use by a patient who is in a supine...

  13. 21 CFR 886.1665 - Ophthalmic rotary prism.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic rotary prism. 886.1665 Section 886.1665...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1665 Ophthalmic rotary prism. (a) Identification. An ophthalmic rotary prism is a device with various prismatic powers intended to be handheld...

  14. 21 CFR 886.1665 - Ophthalmic rotary prism.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ophthalmic rotary prism. 886.1665 Section 886.1665...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1665 Ophthalmic rotary prism. (a) Identification. An ophthalmic rotary prism is a device with various prismatic powers intended to be handheld...

  15. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings...

  16. 21 CFR 886.1665 - Ophthalmic rotary prism.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ophthalmic rotary prism. 886.1665 Section 886.1665...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1665 Ophthalmic rotary prism. (a) Identification. An ophthalmic rotary prism is a device with various prismatic powers intended to be handheld...

  17. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings...

  18. 21 CFR 886.5810 - Ophthalmic prism reader.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ophthalmic prism reader. 886.5810 Section 886.5810...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5810 Ophthalmic prism reader. (a) Identification. An ophthalmic prism reader is a device intended for use by a patient who is in a supine...

  19. 21 CFR 886.5810 - Ophthalmic prism reader.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ophthalmic prism reader. 886.5810 Section 886.5810...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5810 Ophthalmic prism reader. (a) Identification. An ophthalmic prism reader is a device intended for use by a patient who is in a supine...

  20. 21 CFR 886.1665 - Ophthalmic rotary prism.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ophthalmic rotary prism. 886.1665 Section 886.1665...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1665 Ophthalmic rotary prism. (a) Identification. An ophthalmic rotary prism is a device with various prismatic powers intended to be handheld...

  1. Magnetic prism alignment system for measuring large-angle strabismus.

    PubMed

    Bishop, John Edward

    2014-02-01

    Prismatic measurement of large-angle strabismus requires the simultaneous use of two or more prisms for neutralization. To facilitate the clinical measurement of large-angle strabismus a new prism system was designed utilizing a flat plate and a ferrous metal surface coupled with prisms containing rare earth magnets implanted in their base and bottom surfaces.

  2. Reflecting Schmidt/Littrow Prism Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Page, N. A.; Shack, R. V.; Shannon, R. R.

    1985-01-01

    High resolution achieved with wide field of view. Imaging Spectrometer features off-axis reflecting optics, including reflecting "slit" that also serves as field flattener. Only refracting element is prism. By scanning slit across object or scene and timing out signal, both spectral and spatial information in scene are obtained.

  3. Comparing Volumes of Prisms and Pyramids

    ERIC Educational Resources Information Center

    Vinogradova, Natalya

    2012-01-01

    Students' experience in using formulas for volumes is often limited to substituting numbers into given formulas. An activity presented in this article may help students make connections between the formulas for volumes of prisms and volumes of pyramids. In addition, some interesting facts from number theory arise, demonstrating strong connections…

  4. Dual-prism interferometer for collimation testing

    SciTech Connect

    Hii, King Ung; Kwek, Kuan Hiang

    2009-01-10

    An air-wedge lateral-shear interferometer using two prisms is presented. With a variable shear, the interferometer is suitable for testing collimation of a wide range of beam sizes down to a few millimeters in diameter. No antireflection coatings are necessary. Collimation for a light source with short coherent length is also demonstrated.

  5. Comparing the Volumes of Rectangular Prisms

    ERIC Educational Resources Information Center

    Assuah, Charles K.; Wiest, Lynda R.

    2010-01-01

    Can middle-grades students determine which of two rectangular prisms has a larger volume? Can they do so without using a formula? Geometry, and particularly the concept of volume, is important in many subjects, such as physics and chemistry. Students greatly enhance their mathematics knowledge when they make generalizations and construct arguments…

  6. Prisms Throw Light on Developmental Disorders

    ERIC Educational Resources Information Center

    Brookes, Rebecca L.; Nicolson, Roderick I.; Fawcett, Angela J.

    2007-01-01

    Prism adaptation, in which the participant adapts to prismatic glasses that deflect vision laterally, is a specific test of cerebellar function. Fourteen dyslexic children (mean age 13.5 years); 14 children with developmental coordination disorder (DCD): 6 of whom had comorbid dyslexia; and 12 control children matched for age and IQ underwent…

  7. Behavioral Consultant Application. PRISM Project Technical Report.

    ERIC Educational Resources Information Center

    Smith, Jesse

    This brief paper describes the Peer Coaching Rural In-Service Model (PRISM) Behavioral Consultant (PBC) program, an online tool for teachers that provides advice on handling simple classroom behavior problems. PBC's advice is based on a series of rules and expressions used by the computer program to make inferences and eliminate inappropriate…

  8. Structural development of the western Makran Accretionary Complex, Offshore Iran

    NASA Astrophysics Data System (ADS)

    Burberry, C. M.; Jackson, C. A.

    2013-12-01

    The Makran Accretionary Complex (MAC), which straddles the southern offshore regions of Iran and Pakistan, is a fold-thrust system bound by the Murray Ridge and Ornach Nal Fault to the east, and the Minab Fault System (MFS) to the west. It is c. 1000 km wide and the frontal c. 125 km of the system is submerged beneath the Gulf of Oman. Relatively little is known about this system, despite the fact that constitutes a large portion of the Central Tethyan Orogen and is one of the largest accretionary complexes in the world. We use offshore 2D seismic reflection data to investigate the structural style and evolution of the Iranian segment of the MAC. The MAC is divided into two morphologically distinct domains: (i) a northern domain (Domain 1), which is located landward of a prominant break-in-slope on the seabed and is characterised by a series of normal fault-bound sub-basins that are approximately 50 km wide, and which contain numerous, unconformity-bound seismic units; and (ii) a southern domain (Domain 2), which is located basinward of the prominent seabed slope break, and is characterised by alternating ridges and troughs. Seismic data indicate that these structures are laterally continuous (over 100 km long) north-dipping thrust faults, which are overlain by south-verging, non-cylindrical, fault-propagation folds. Towards the western end of the study area, immediately offshore of the prominent onshore trace of the MFS, there is no single structure that can be reliably interpreted as the offshore extension of the MFS. Instead, a series of oblique-slip faults with thrust and strike-slip components are identified, spanning a zone that is c. 40 km wide. In the north and close to the coastline, the faults are dominantly strike-slip, whereas further south, closer to the deformation front, the thrust-sense component is more important. Irrespective of their slip sense, faults in this zone have a similar N-S strike to the onshore trace of the MFS. In addition, the basin

  9. High-Power Prismatic Devices for Oblique Peripheral Prisms

    PubMed Central

    Peli, Eli; Bowers, Alex R.; Keeney, Karen; Jung, Jae-Hyun

    2016-01-01

    ABSTRACT Purpose Horizontal peripheral prisms for hemianopia provide field expansion above and below the horizontal meridian; however, there is a vertical gap leaving the central area (important for driving) without expansion. In the oblique design, tilting the bases of both prism segments toward the horizontal meridian moves the field expansion area vertically and centrally (closing the central gap) while the prisms remain in the peripheral location. However, tilting the prisms results also in a reduction of the lateral field expansion. Higher prism powers are needed to counter this effect. Methods We developed, implemented, and tested a series of designs aimed at increasing the prism power to reduce the central gap while maintaining wide lateral expansion. The designs included inserting the peripheral prisms into carrier lenses that included yoked prism in the opposite direction, combination of two Fresnel segments attached at the base and angled to each other (bi-part prisms), and creating Fresnel prism–like segments from nonparallel periscopic mirror pairs (reflective prisms). Results A modest increase in lateral power was achieved with yoked-prism carriers. Bi-part combination of 36Δ Fresnel segments provided high power with some reduction in image quality. Fresnel reflective prism segments have potential for high power with superior optical quality but may be limited in field extent or by interruptions of the expanded field. Extended apical scotomas, even with unilateral fitting, may limit the utility of very high power prisms. The high-power bi-part and reflective prisms enable a wider effective eye scanning range (more than 15 degrees) into the blind hemifield. Conclusions Conventional prisms of powers higher than the available 57Δ are limited by the binocular impact of a wider apical scotoma and a reduced effective eye scanning range to the blind side. The various designs that we developed may overcome these limitations and find use in various other

  10. Olistostromes are the Source of Melange in Diapirs in the Cascadia-Olympics Accretionary Wedge , NW USA

    NASA Astrophysics Data System (ADS)

    Cowan, D. S.; Brandon, M. T.

    2011-12-01

    Diapirs consisting of block-in-matrix mélange are common in the ocean-ward part of the active Cascadia-Olympics wedge. Some of these bodies and similar Neogene mélanges ["Hoh mélange"] have been interpreted as having originated in shear zones related to accretion as oceanic crust of the Juan de Fuca plate was thrust beneath the wedge. However, this interpretation is untenable. The Hoh mélange contains fragments and blocks, ranging from centimeters to kilometers in size, of basalt. The chemistry of the basalt, and the microfossils in associated mudstone, prove that the basalt is Eocene: these basalts were derived from the Crescent Formation, not the much younger oceanic crust of the Juan de Fuca plate. The Crescent basalts originally formed the lid beneath which the Cascadia-Olympics wedge of sediments was underplated. Much of the lid has been eroded, but in Miocene time it extended to the coast and contributed fragments and blocks to muddy debris flows, which were deposited as olistostromes on the subducting Juan de Fuca plate. Younger sediments buried the olistostromes, which became overpressured and mobilized as mobile masses that have intruded as diapirs and anticlinal ridges. Analogous diapiric bodies, in the broad sense, are present in other active accretionary wedges, such as the in the Lesser Antilles.

  11. Self-referenced prism deflection measurement schemes with microradian precision

    SciTech Connect

    Olson, Rebecca; Paul, Justin; Bergeson, Scott; Durfee, Dallin S

    2005-08-01

    We have demonstrated several inexpensive methods that can be used to measure the deflection angles of prisms with microradian precision. The methods are self-referenced, where various reversals are used to achieve absolute measurements without the need of a reference prism or any expensive precision components other than the prisms under test. These techniques are based on laser interferometry and have been used in our laboratory to characterize parallel-plate beam splitters, penta prisms, right-angle prisms, and corner cube reflectors using only components typically available in an optics laboratory.

  12. Mud volcano venting induced gas hydrate formation at the upper slope accretionary wedge, offshore SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Saulwood; Tseng, Yi-Ting; Cheng, Wan-Yen; Chou, Cheng-Tien; Chen, NeiChen; Hsieh, I.-Chih

    2016-04-01

    TsanYao Mud Volcano (TYMV) is the largest mud volcano cone in the Hengchun Mud Volcano Group (HCMVG), located at the upper slope of the accrretionary wedge, southwest of Taiwan. The region is under active tectonic activity with the Philippine Plate, moving northwestward at a rate of ~8 cm/year. This region also receives huge quantity of suspended particle load of ~100 mT/year at present time from adjacent small rivers of the Island of Taiwan. Large loads of suspended sediments influx become a major source of organic carbon and later gas and other hydrocarbon. Gas and fluid in the mud volcano are actively venting from deep to the sea floor on the upper slope of the accretionary wedge. In order to understand venting on the HCMVG, echo sounder, towcam and coring were carried out. Pore water sulfate, chloride, potassium, calcium, stable isotope O-18, gas compositions, dissolved sulfide were analysed. The HCMVG consists of 12 volcano cones of different sizes. Large quantity of gas and fluid are venting directly from deep to the TYMV structure high, as well as 50+ other vents as appeared as flares on the echo sounder. Some flares are reaching to the atmosphere and likely a source of green house gases to the atmosphere. Venting fluids include gas bubbles, suspended particle, mud, and breccia. Breccia size could reach more than 12 cm in diameter. Circular bands in different color appeared around the cone may represent stages of vent eruptions. Compositions of vent gas include methane, ethane and propane. High proportions of ethane and propane in the vent gas demonstrated that source of gas are thermogenic in origin. Patchy authigenic carbonate, bacterial mats, bivalves, tube worms and other chemosynthesis organisms were supported by venting gas AOM process near the sea floor. Pore water chloride concentrations show distinct variation pattern from center cone to the side of the volcano, with low in the center and high away from the cone. Pore water with higher than seawater

  13. SW Grenville Province, Canada: the case against post 1.4 Ga accretionary tectonics

    NASA Astrophysics Data System (ADS)

    Hanmer, S.; Corrigan, D.; Pehrsson, S.; Nadeau, L.

    2000-03-01

    Seven accretionary sutures, formed between 1.16 and 1.03 Ga, have been identified by different authors in the Ontario-Quebec-Adirondack (OQA) segment of the Mesoproterozoic Grenville orogen in Canada. With one exception, the inferred accretionary terrane boundaries lie within, or at the margins of the Central Metasedimentary Belt (CMB), located between the Central Gneiss Belt and the Adirondack Highlands (Central Granulite Terrane). However, geological, geochronological, and petrological data suggest that the Grenville orogen on both sides of the proposed terrane boundaries (sutures) preserves a common 1.4-1.03 Ga tectonomagmatic history, inconsistent with its origin as a post-1.4 Ga collage of exotic tectonic blocks. Features which straddle the proposed 1.16-1.03 Ga 'sutures', from the Central Gneiss Belt, via the Adirondack Highlands, to the Mauricie area, include: (1) Mesoproterozoic continental crust (1.5-1.4 Ga) forming the host and/or basement to younger magmatic and supracrustal suites. (2) A 1.35-1.3 Ga continental arc, remnants of which occur from the CMB boundary zone (CMBBZ) in Ontario to the Appalachians in the United States, built on the 1.5-1.4 Ga continental crust. (3) Intrusions of 1.17-1.13 Ga age in the Central Gneiss Belt (mafic suite), and the Adirondack Highlands and their Quebec extension (AMCG suite, i.e. anorthosite massifs and related granitoids). (4) Relics of 1.18-1.14 Ga sedimentary basins in the northwestern CMB and the Mauricie area. We propose that an alternative model can adequately account for the observed geology of this part of the Grenville orogen wherein, the rocks of the OQA segment were part of an Andean-type margin between 1.4 and 1.2 Ga. At 1.35-1.3 Ga, a continental magmatic arc was built upon the southeastern margin of Laurentia represented by the 1.5-1.4 Ga Mesoproterozoic continental crust. The arc split at 1.3 Ga forming an ensialic back arc basin, relics of which now occur in the northwestern part of the CMB, and the

  14. Effects of Prism Eyeglasses on Objective and Subjective Fixation Disparity.

    PubMed

    Schroth, Volkhard; Joos, Roland; Jaschinski, Wolfgang

    2015-01-01

    In optometry of binocular vision, the question may arise whether prisms should be included in eyeglasses to compensate an oculomotor and/or sensory imbalance between the two eyes. The corresponding measures of objective and subjective fixation disparity may be reduced by the prisms, or the adaptability of the binocular vergence system may diminish effects of the prisms over time. This study investigates effects of wearing prisms constantly for about 5 weeks in daily life. Two groups of 12 participants received eyeglasses with prisms having either a base-in direction or a base-out direction with an amount up to 8 prism diopters. Prisms were prescribed based on clinical fixation disparity test plates at 6 m. Two dependent variables were used: (1) subjective fixation disparity was indicated by a perceived offset of dichoptic nonius lines that were superimposed on the fusion stimuli and (2) objective fixation disparity was measured with a video based eye tracker relative to monocular calibration. Stimuli were presented at 6 m and included either central or more peripheral fusion stimuli. Repeated measurements were made without the prisms and with the prisms after about 5 weeks of wearing these prisms. Objective and subjective fixation disparity were correlated, but the type of fusion stimulus and the direction of the required prism may play a role. The prisms did not reduce the fixation disparity to zero, but induced significant changes in fixation disparity with large effect sizes. Participants receiving base-out prisms showed hypothesized effects, which were concurrent in both types of fixation disparity. In participants receiving base-in prisms, the individual effects of subjective and objective effects were negatively correlated: the larger the subjective (sensory) effect, the smaller the objective (motor) effect. This response pattern was related to the vergence adaptability, i.e. the individual fusional vergence reserves.

  15. Effects of Prism Eyeglasses on Objective and Subjective Fixation Disparity.

    PubMed

    Schroth, Volkhard; Joos, Roland; Jaschinski, Wolfgang

    2015-01-01

    In optometry of binocular vision, the question may arise whether prisms should be included in eyeglasses to compensate an oculomotor and/or sensory imbalance between the two eyes. The corresponding measures of objective and subjective fixation disparity may be reduced by the prisms, or the adaptability of the binocular vergence system may diminish effects of the prisms over time. This study investigates effects of wearing prisms constantly for about 5 weeks in daily life. Two groups of 12 participants received eyeglasses with prisms having either a base-in direction or a base-out direction with an amount up to 8 prism diopters. Prisms were prescribed based on clinical fixation disparity test plates at 6 m. Two dependent variables were used: (1) subjective fixation disparity was indicated by a perceived offset of dichoptic nonius lines that were superimposed on the fusion stimuli and (2) objective fixation disparity was measured with a video based eye tracker relative to monocular calibration. Stimuli were presented at 6 m and included either central or more peripheral fusion stimuli. Repeated measurements were made without the prisms and with the prisms after about 5 weeks of wearing these prisms. Objective and subjective fixation disparity were correlated, but the type of fusion stimulus and the direction of the required prism may play a role. The prisms did not reduce the fixation disparity to zero, but induced significant changes in fixation disparity with large effect sizes. Participants receiving base-out prisms showed hypothesized effects, which were concurrent in both types of fixation disparity. In participants receiving base-in prisms, the individual effects of subjective and objective effects were negatively correlated: the larger the subjective (sensory) effect, the smaller the objective (motor) effect. This response pattern was related to the vergence adaptability, i.e. the individual fusional vergence reserves. PMID:26431525

  16. Linking megathrust earthquakes to brittle deformation in a fossil accretionary complex.

    PubMed

    Dielforder, Armin; Vollstaedt, Hauke; Vennemann, Torsten; Berger, Alfons; Herwegh, Marco

    2015-01-01

    Seismological data from recent subduction earthquakes suggest that megathrust earthquakes induce transient stress changes in the upper plate that shift accretionary wedges into an unstable state. These stress changes have, however, never been linked to geological structures preserved in fossil accretionary complexes. The importance of coseismically induced wedge failure has therefore remained largely elusive. Here we show that brittle faulting and vein formation in the palaeo-accretionary complex of the European Alps record stress changes generated by subduction-related earthquakes. Early veins formed at shallow levels by bedding-parallel shear during coseismic compression of the outer wedge. In contrast, subsequent vein formation occurred by normal faulting and extensional fracturing at deeper levels in response to coseismic extension of the inner wedge. Our study demonstrates how mineral veins can be used to reveal the dynamics of outer and inner wedges, which respond in opposite ways to megathrust earthquakes by compressional and extensional faulting, respectively.

  17. Linking megathrust earthquakes to brittle deformation in a fossil accretionary complex

    PubMed Central

    Dielforder, Armin; Vollstaedt, Hauke; Vennemann, Torsten; Berger, Alfons; Herwegh, Marco

    2015-01-01

    Seismological data from recent subduction earthquakes suggest that megathrust earthquakes induce transient stress changes in the upper plate that shift accretionary wedges into an unstable state. These stress changes have, however, never been linked to geological structures preserved in fossil accretionary complexes. The importance of coseismically induced wedge failure has therefore remained largely elusive. Here we show that brittle faulting and vein formation in the palaeo-accretionary complex of the European Alps record stress changes generated by subduction-related earthquakes. Early veins formed at shallow levels by bedding-parallel shear during coseismic compression of the outer wedge. In contrast, subsequent vein formation occurred by normal faulting and extensional fracturing at deeper levels in response to coseismic extension of the inner wedge. Our study demonstrates how mineral veins can be used to reveal the dynamics of outer and inner wedges, which respond in opposite ways to megathrust earthquakes by compressional and extensional faulting, respectively. PMID:26105966

  18. Linking megathrust earthquakes to brittle deformation in a fossil accretionary complex.

    PubMed

    Dielforder, Armin; Vollstaedt, Hauke; Vennemann, Torsten; Berger, Alfons; Herwegh, Marco

    2015-01-01

    Seismological data from recent subduction earthquakes suggest that megathrust earthquakes induce transient stress changes in the upper plate that shift accretionary wedges into an unstable state. These stress changes have, however, never been linked to geological structures preserved in fossil accretionary complexes. The importance of coseismically induced wedge failure has therefore remained largely elusive. Here we show that brittle faulting and vein formation in the palaeo-accretionary complex of the European Alps record stress changes generated by subduction-related earthquakes. Early veins formed at shallow levels by bedding-parallel shear during coseismic compression of the outer wedge. In contrast, subsequent vein formation occurred by normal faulting and extensional fracturing at deeper levels in response to coseismic extension of the inner wedge. Our study demonstrates how mineral veins can be used to reveal the dynamics of outer and inner wedges, which respond in opposite ways to megathrust earthquakes by compressional and extensional faulting, respectively. PMID:26105966

  19. The Eurekan Orogeny: convergent intraplate deformation through accretionary tectonics?

    NASA Astrophysics Data System (ADS)

    Heron, Philip; Pysklywec, Russell; Stephenson, Randell

    2015-04-01

    The Eurekan Orogeny, which created much of the high topography (~1-2km) of Ellesmere Island and adjacent Greenland, exhibits a crustal architecture linked to intraplate orogenesis in the Cenozoic. These features occurred as a result of mountain-building processes the dynamics of which are not well understood. It is generally considered that the rotation of Greenland in the Eocene (related to sedimentary basin formation in Baffin Bay) produced compressional tectonics between Greenland and Ellesmere Island. As part of this process, the Eurekan Orogeny formed away from a traditional convergent ocean-closure plate boundary, and may represent a style of intraplate deformation. One hypothesis is the amalgamation of continental material (i.e., micro-plates) leave deformational `scars' in the crust and mantle lithosphere (specifically in the Ellesmere Island case through accretionary orogenesis in the Palaeozoic). This weakening of the lithosphere may produce episodic reactivation of faults within continental interiors. For example, lithospheric shortening at a time after continental collision could cause the previously deformed crust and mantle lithosphere to produce intraplate deformation. In this work, the geodynamic evolution of the Eurekan Orogeny and its relationship to the tectonics of the Canadian polar margin and northern Baffin Basin is explored using high-resolution thermal-mechanical numerical experiments with the modelling code SOPALE. The modelling of the High Arctic is constrained by the first-order crustal structure of the region (deduced by local gravity field and passive seismological data). Presented are suites of numerical experiments that investigate how the pre-existing lithospheric structures (both crustal and sub-crustal) control the evolution of the resulting intraplate orogen. The influence of other primary modelling parameters, such as crustal thickness and assumed rheology, is also explored. To highlight the role of surface processes on plate

  20. PRISM3 DOT1 Atlantic Basin Reconstruction

    USGS Publications Warehouse

    Dowsett, Harry; Robinson, Marci; Dwyer, Gary; Chandler, Mark; Cronin, Thomas

    2006-01-01

    PRISM3 DOT1 (Pliocene Research, Interpretation and Synoptic Mapping 3, Deep Ocean Temperature 1) provides a three-dimensional temperature reconstruction for the mid-Pliocene Atlantic basin, the first of several regional data sets that will comprise a global mid-Pliocene reconstruction. DOT1 is an alteration of modern temperature values for the Atlantic Ocean in 4 degree x 5 degree cells in 13 depth layers for December 1 based on Mg/Ca-derived BWT estimates from seventeen DSDP and ODP Sites and SST estimates from the PRISM2 reconstruction (Dowsett et al., 1999). DOT1 reflects a vaguely modern circulation system, assuming similar processes of deep-water formation; however, North Atlantic Deep Water (NADW) production is increased, and Antarctic Bottom Water (AABW) production is decreased. Pliocene NADW was approximately 2 degreesC warmer than modern temperatures, and Pliocene AABW was approximately 0.3 degreesC warmer than modern temperatures.

  1. Accretionary complex structure and kinematics during Paleozoic arc continent collision in the southern Urals

    NASA Astrophysics Data System (ADS)

    Alvarez-Marron, J.; Brown, D.; Perez-Estaun, A.; Puchkov, V.; Gorozhanina, Y.

    2000-10-01

    The southern Urals contain a well-preserved accretionary complex that has overthrust the continental margin during arc-continent collision between the East European Craton (EEC) and the Magnitogorsk island arc in the Late Devonian. Within the accretionary complex, we study three tectonic units that differ in deformation style, and each provides a unique geodynamic implication. The Zilair Nappe, the largest and best exposed unit, consists of 5-6 km of syncollisional, arc-derived Upper Devonian to Lower Carboniferous polymictic and graywacke turbidites that were deposited across the continental margin and incorporated by frontal accretion into the accretionary complex. The Zilair Nappe is a bivergent thrust imbricate where the west-vergent thrusts dominate and have associated kilometer-scale ramp anticlines with well developed east-dipping axial planar cleavage. Along its eastern contact, however, the cleavage fans until it dips moderately westward and the folds are east-vergent. Following its emplacement, west-vergent, basement-involved thrusting that breached the whole accretionary complex imbricated the Zilair Nappe. The Timirovo Duplex is structurally beneath the Zilair Nappe, and outcrops for several tens of kilometers along its northwestern margin. The duplex forms a west-vergent thrust stack composed of a highly deformed and sheared Lower and Middle Devonian reef carbonates of the former EEC margin platform. These rocks were shallowly underplated at the base of the accretionary complex during emplacement over the margin. The Suvanyak Complex outcrops along the eastern contact of the Zilair Nappe, and consists of polydeformed greenschist facies metasediments of the former EEC slope that were offscraped, underplated and incorporated at the rear of the accretionary complex.

  2. Splay Faults and Associated Mass Transport Deposits in the Manila Accretionary Wedge near Taiwan: Implications for Geohazards

    NASA Astrophysics Data System (ADS)

    Lin, A. T.; Liu, C. S.; Dirgantara, F.

    2015-12-01

    Plate interface megathrusts are major seismogenic faults in subduction zone, capable of generating great earthquakes with widespread submarine landslides and damaging tsunami. Upward branching of megathrusts results in splay faults in the accretionary wedge. Reflection seismic data across the accretionary wedge off southern Taiwan, reveal at least two strands of splay faults as well as multiple stacked mass transport deposits (MTDs) nearby the faults. With the help of sediment coring and age datings in the vicinity of the splay fault, implications for temporal evolution of the mass wasting processes and episodic activities of splay faults are discussed in this paper. Seismic data show two branches of arcward and gently-dipping splay faults with two slope basins lying in the footwall and hangingwall of the faults, respectively. The older and buried splay fault is inactive as the fault tip is covered by up to 1000 m thick sediments in the footwall slope basin, indicating that it ceased to be active around 0.5 Ma ago. Repeated slip of this fault prior to ~0.5 Ma ago may also result in 4 stacked and multiple mass transport deposits (MTDs) of up to 700-m thick found in vicinity of this fault. This fossil splay fault is characterized by reflection polarity similar to that of seafloor, indicative of low water saturation along the fault zone and hence not an active fluid conduit. The younger and overlying splay fault cuts through the seafloor and the emergent fault tip lying at the toe of steep slope (~ 15 degree) with significant slope break. There is also a 500-m horizontal offset, between the buried paleo-seafloor in the footwall and the present-day seafloor on the hangingwall. The reflection polarity of this fault zone is reversed to that of seafloor, indicating fluid rich for this fault patch. These lines of evidence suggest that this young splay fault is an active fault with active fluid circulation along the fault. Our results indicate that the old splay fault

  3. Forward Versus Back Thrusts in Accretionary Wedges: Effects of Rheology and Thickness of the Décollement Layer

    NASA Astrophysics Data System (ADS)

    Ito, Garrett; Olive, Jean-Arthur; Moore, Gregory; Gutscher, Marc-Andre; Weiss, Jonathan

    2016-04-01

    The mechanical processes that control whether major thrusts in accretionary wedges verge forward toward the foreland, versus backward toward the hinterland has long been a topic of debate. Whereas forethrusts are the most common major thrusts, the importance of the globally rare back thrusts has recently been highlighted given their prominence along the Cascadia margin off of the NW coast of North America as well as along the Andaman-Sumatra subduction zone, in the rupture area of the great 2004 earthquake. We address this problem using 2-D numerical models that use a finite-difference, particle-in-cell method with a viscoelastic-plastic rheology for simulating thrusting in accretionary wedges. Simulations of a weak frictional décollement confirm prior numerical and analogue modeling studies in that they predict lower wedge tapers and repeated sequences of doubly verging conjugate thrusts. A forward dipping backstop was shown in prior laboratory experiments to promote backthrusting, and our results confirm that backthrusting occurs near the backstop but as the wedge widens away from the backstop forethrusts become dominant. Other laboratory experimental studies have found that a non-brittle, viscously deforming décollement can promote backthrusting. Our numerical models show that if the viscosity of the décollement layer η is too high, such that the stress scale, ηU/H (where U is the convergence rate and H is the décollement layer thickness), is comparable to the frictional strength at the base, then forethrusts dominate. For ηU/H less than the basal frictional strength, doubly verging faults are prominent over a wide range of décollement layer thicknesses. Only for cases with relatively low ηU/H and décollement layer thicknesses H that are 25-33% of the thickness of the whole, incoming sediment layer do backthrusts dominate. Thus backthrusting appears to require unusual rheological properties of the deepest sediments, which is consistent with the rarity

  4. Refractive index measurement by prism autocollimation

    NASA Astrophysics Data System (ADS)

    Cheng, Chao-Chia

    2014-03-01

    An autocollimation-based method for measuring the refractive indices of solid or liquids using a Littrow prism is presented. Measurement accuracy is enhanced by use of a telescope. In solids, the refractive index is accurate to three decimal places. Similar accuracy is obtained in liquids by correcting for the wedge angle of the liquid container window. The proposed prismatic method confers high accuracy, compactness, and automation. It is suitable for index measurement applications in undergraduate laboratories.

  5. Prisms to Shift Pain Away: Pathophysiological and Therapeutic Exploration of CRPS with Prism Adaptation

    PubMed Central

    Volckmann, Pierre; Jacquin-Courtois, Sophie

    2016-01-01

    Complex Regional Pain Syndrome (CRPS) is an invalidating chronic condition subsequent to peripheral lesions. There is growing consensus for a central contribution to CRPS. However, the nature of this central body representation disorder is increasingly debated. Although it has been repeatedly argued that CRPS results in motor neglect of the affected side, visual egocentric reference frame was found to be deviated toward the pain, that is, neglect of the healthy side. Accordingly, prism adaptation has been successfully used to normalize this deviation. This study aimed at clarifying whether 7 CRPS patients exhibited neglect as well as exploring the pathophysiological mechanisms of this manifestation and of the therapeutic effects of prism adaptation. Pain and quality of life, egocentric reference frames (visual and proprioceptive straight-ahead), and neglect tests (line bisection, kinematic analyses of motor neglect and motor extinction) were repeatedly assessed prior to, during, and following a one-week intense prism adaptation intervention. First, our results provide no support for visual and motor neglect in CRPS. Second, reference frames for body representations were not systematically deviated. Third, intensive prism adaptation intervention durably ameliorated pain and quality of life. As for spatial neglect, understanding the therapeutic effects of prism adaptation deserves further investigations.

  6. Prisms to Shift Pain Away: Pathophysiological and Therapeutic Exploration of CRPS with Prism Adaptation

    PubMed Central

    Volckmann, Pierre; Jacquin-Courtois, Sophie

    2016-01-01

    Complex Regional Pain Syndrome (CRPS) is an invalidating chronic condition subsequent to peripheral lesions. There is growing consensus for a central contribution to CRPS. However, the nature of this central body representation disorder is increasingly debated. Although it has been repeatedly argued that CRPS results in motor neglect of the affected side, visual egocentric reference frame was found to be deviated toward the pain, that is, neglect of the healthy side. Accordingly, prism adaptation has been successfully used to normalize this deviation. This study aimed at clarifying whether 7 CRPS patients exhibited neglect as well as exploring the pathophysiological mechanisms of this manifestation and of the therapeutic effects of prism adaptation. Pain and quality of life, egocentric reference frames (visual and proprioceptive straight-ahead), and neglect tests (line bisection, kinematic analyses of motor neglect and motor extinction) were repeatedly assessed prior to, during, and following a one-week intense prism adaptation intervention. First, our results provide no support for visual and motor neglect in CRPS. Second, reference frames for body representations were not systematically deviated. Third, intensive prism adaptation intervention durably ameliorated pain and quality of life. As for spatial neglect, understanding the therapeutic effects of prism adaptation deserves further investigations. PMID:27668094

  7. Development of rotating prism mechanism and athermalized prism mounting for space

    NASA Astrophysics Data System (ADS)

    Beebe, Chip R.; Brooks, Mark J.; Davis, Michael W.; Klar, Robert A.; Roberts, John M.; Roming, Peter W. A.; Rose, Randall J.; Winters, Gregory S.

    2013-09-01

    Space and launch environments demand robust, low mass, and thermally insensitive mechanisms and optical mount designs. The rotating prism mechanism (RPM), a component of the stabilized dispersive focal plane system (SDFPS), is a spectral disperser mechanism that enables the SDFPS to deliver spectroscopic or direct imaging functionality using only a single optical path. The RPM is a redundant, vacuum-compatible, self-indexing, motorized mechanism that provides robust, athermalized prism mounting for two sets of matching prisms. Each set is composed of a BK7 and a CaF2 prism, both 70 mm in diameter. With the prism sets separated by 1 mm, the RPM rotates the two sets relative to one another over a 180° range, and maintains their alignment over a wide temperature range (190-308K). The RPM design incorporates self-indexing and backlash prevention features as well as redundant motors, bearings, and drive trains. The RPM was functionally tested in a thermal vacuum chamber at 210K and <1.0x10-6 mbar, and employed in the top-level SDFPS system testing. This paper presents the mechanical design, analysis, alignment measurements, and test results from the prototype RPM development effort.

  8. Strengthening of synthetic quartz-rich sediments during time-dependent compaction due to pressure solution-precipitation compaction creep

    NASA Astrophysics Data System (ADS)

    Noda, H.; Okazaki, K.; Katayama, I.

    2013-12-01

    During diagenesis, incohesive sediments are compacted and gain strength against shear deformation for a geologically long time scale. The evolution of shear strength as well as the change in the mechanical and hydraulic characteristics under shear deformation is of significant importance in considering deformation at shallow part of the subduction zones and in accretionary prisms. Sediments after induration due to time-dependent diagenesis process probably deform with increases in porosity and permeability much more significantly than normally compacted incohesive sediments. An active fault in a shallow incohesive medium may favor thermal pressurization of pore fluid when slid rapidly, while the lack of time-dependent healing effect may cause stable (e.g., rate-strengthening) frictional property there. On the other hand, indurated sediments may deform with significant post-failure weakening, and thus exhibit localization of deformation or unstable behavior. In order to investigate how the time-dependent compaction and induration affect the mechanical and hydraulic characteristics of sediments under deformation, we have conducted a series of compaction experiments under hydrothermal conditions (at temperatures from R.T. to 500 °C, 200 MPa confining pressure, 100 MPa pore water pressure, and for various time), and following triaxial deformation experiments for the compacted samples, with monitoring permeability and storage capacity with pore pressure oscillation method [Fischer and Paterson, 1992]. Previous work [e.g., Niemeijer et at., 2003] reported that under the adopted conditions, quartz aggregate deforms by pressure solution-precipitation creep. The initial synthetic sediments have been prepared by depositing commercially available crushed quartzite the grain size of which is about 6 μm on average. 4 cm long samples have been extracted from the middle of 10 cm long deposited columns. The experiments have been performed with a gas-medium apparatus in Hiroshima

  9. Evaluations of 1990 PRISM design revisions

    SciTech Connect

    Van Tuyle, G.J.; Slovik, G.C.; Chan, B.C.; Aronson, A.L.; Kennett, R.J.

    1992-03-01

    Analyses of the 1990 version of the PRISM Advanced Liquid Metal Reactor (ALMR) design are presented and discussed. Most of the calculations were performed using BNL computer codes, particularly SSC and MINET. In many cases, independent BNL calculations were compared against analyses presented by General Electric when they submitted the PRISM design revisions for evaluation by the Nuclear Regulatory Commission (NRC). The current PRISM design utilizes the metallic fuel developed by Argonne National Laboratory (ANL) which facilitates the passive/``inherent`` shutdown mechanism that acts to shut down reactor power production whenever the system overheats. There are a few vulnerabilities in the passive shutdown, with the most worrisome being the positive feedback from sodium density decreases or sodium voiding. Various postulated unscrammed events were examined by GE and/or BNL, and much of the analysis discussed in this report is focused on this category of events. For the most part, the BNL evaluations confirm the information submitted by General Electric. The principal areas of concern are related to the performance of the ternary metal fuel, and may be resolved as ANL continues with its fuel development and testing program.

  10. Compound prism design principles, III: linear-in-wavenumber and optical coherence tomography prisms.

    PubMed

    Hagen, Nathan; Tkaczyk, Tomasz S

    2011-09-01

    We extend the work of the first two papers in this series [Appl. Opt. 50, 4998-5011 (2011), Appl. Opt. 50, 5012-5022 (2011)] to design compound prisms for linear-in-wavenumber dispersion, especially for application in spectral domain optical coherence tomography (OCT). These dispersive prism designs are believed to be the first to meet the requirements of high resolution OCT systems in direct-view geometry, where they can be used to shrink system size, to improve light throughput, to reduce stray light, and to reduce errors resulting from interpolating between wavelength- and wavenumber-sampled domains. We show prism designs that can be used for thermal sources or for wideband superluminescent diodes centered around wavelengths 850, 900, 1300, and 1375 nm.

  11. Boron Isotopic Fractionation During the First ~50 km of Sediment Subduction in the Nankai Trough, Japan

    NASA Astrophysics Data System (ADS)

    Feineman, M. D.; Hudak, M. R.; Saffer, D. M.; Agostini, S.

    2015-12-01

    Subduction zones are the primary locus for recycling of crustal material into the Earth's mantle, with important implications for mantle and crustal evolution. Subducted sediments contribute volatiles, trace elements, and unique isotopic signatures to arc magmas and some mantle domains. While some elements appear to be conservative during sediment subduction, others may be mobilized and isotopically fractionated during the first several tens of kilometers of subduction - well before reaching sub-arc depths. Characterization of the geochemical processes occurring in this early stage of subduction is relatively limited and largely based on the compositions of fluids expelled from the accretionary prism. In order to better understand the life cycle of boron as it is processed through the subduction system, B concentrations and isotope ratios were measured in a suite of shales from the Shimanto Belt, Shikoku Island, Japan. These shales represent pelagic and neritic sediments from the Nankai Trough that have been partially subducted, underplated, and exhumed. As a counterpoint to the mobile and potentially fractionated boron, Pb isotopes (which are not expected to be fractionated by shallow subduction processes) were used to ensure that the sediments studied were derived from a homogeneous source. Peak temperatures of 140-280˚C are constrained by offshore vitrinite reflectance studies. We find that δ11B in the subducted sediment ranges from -6.6 to -9.9‰, with a negative correlation between δ11B and temperature. In contrast, B concentrations show no systematic relationship with temperature. Measured δ11B of -9.7 in the Sanbagawa schist, possibly a high-pressure-temperature analog of the Shimanto shale, is consistent with previous studies. However, 208Pb/204Pb and 207Pb/204Pb ratios indicate that the pelitic schist analyzed in this study was not derived from the same source rock as the Shimanto shale. Further work is needed to determine if there exists an

  12. Characterization of Metabolically Active Bacterial Populations in Subseafloor Nankai Trough Sediments above, within, and below the Sulfate–Methane Transition Zone

    PubMed Central

    Mills, Heath J.; Reese, Brandi Kiel; Shepard, Alicia K.; Riedinger, Natascha; Dowd, Scot E.; Morono, Yuki; Inagaki, Fumio

    2012-01-01

    A remarkable number of microbial cells have been enumerated within subseafloor sediments, suggesting a biological impact on geochemical processes in the subseafloor habitat. However, the metabolically active fraction of these populations is largely uncharacterized. In this study, an RNA-based molecular approach was used to determine the diversity and community structure of metabolically active bacterial populations in the upper sedimentary formation of the Nankai Trough seismogenic zone. Samples used in this study were collected from the slope apron sediment overlying the accretionary prism at Site C0004 during the Integrated Ocean Drilling Program Expedition 316. The sediments represented microbial habitats above, within, and below the sulfate–methane transition zone (SMTZ), which was observed approximately 20 m below the seafloor (mbsf). Small subunit ribosomal RNA were extracted, quantified, amplified, and sequenced using high-throughput 454 pyrosequencing, indicating the occurrence of metabolically active bacterial populations to a depth of 57 mbsf. Transcript abundance and bacterial diversity decreased with increasing depth. The two communities below the SMTZ were similar at the phylum level, however only a 24% overlap was observed at the genus level. Active bacterial community composition was not confined to geochemically predicted redox stratification despite the deepest sample being more than 50 m below the oxic/anoxic interface. Genus-level classification suggested that the metabolically active subseafloor bacterial populations had similarities to previously cultured organisms. This allowed predictions of physiological potential, expanding understanding of the subseafloor microbial ecosystem. Unique community structures suggest very diverse active populations compared to previous DNA-based diversity estimates, providing more support for enhancing community characterizations using more advanced sequencing techniques. PMID:22485111

  13. Identification and Analysis of Methane Plumes from the Barbados Accretionary Complex Identified in Multibeam Sonar Data

    NASA Astrophysics Data System (ADS)

    Barnard, A.; Casey, J.

    2013-12-01

    Integration of modern high-resolution multibeam deliverables can relate water column features to seafloor geologic structures. As well as providing coverage of wide areas, the data can also be used to infer volume and variability of gas seeps and characterize the spatial relationships with seafloor features. As part of cruise AT21-02 to the Barbados Accretionary Complex a ~12 kHz Kongsberg EM122 hull-mounted multibeam system was deployed. We processed the multibeam data using the QPS modules to produce a subsea 4D multi-resolution scene files containing bathymetry, acoustic backscatter and midwater data. Within the scene we have identified a region of giant mud volcanoes and a second region along strike containing several ~1000 m tall flares in the water column data directly above cratered hummocky seafloor with high amplitude backscatter at ~-1500 m water depth that are interpreted as ebullition craters beneath gas plumes. From the acoustic returns we relate the bubble diameter or volume to the received signal strength. Evidence exists for armoring of the gas bubbles in the water column by hydrate: the modeled gas hydrate stability zone reaches ~600 m above the seafloor but the acoustic resolution of our dataset is similar to the maximum depth of disappearance of the bubble plume. The shear observed in the rising gas plume may be the result of transport in the current direction of the lowest water mass from the northwest to southeast at 128°, a direction similar to the transport direction of the lowest water mass in this region, or the presence of abyssal undular vortices. Seismic data from this area has bottom simulating reflectors indicating the presence of methane hydrate and it is likely that the observed flares are related to dissociation of methane in the subsurface. The release of gasses may be related to changes in the thickness of the gas hydrate stability zone in the underlying sediments responding to temperature changes in the lowest water mass. To

  14. Wollaston prism phase-stepping point diffraction interferometer and method

    DOEpatents

    Rushford, Michael C.

    2004-10-12

    A Wollaston prism phase-stepping point diffraction interferometer for testing a test optic. The Wollaston prism shears light into reference and signal beams, and provides phase stepping at increased accuracy by translating the Wollaston prism in a lateral direction with respect to the optical path. The reference beam produced by the Wollaston prism is directed through a pinhole of a diaphragm to produce a perfect spherical reference wave. The spherical reference wave is recombined with the signal beam to produce an interference fringe pattern of greater accuracy.

  15. Prism fingerprint sensor that uses a holographic optical element

    NASA Astrophysics Data System (ADS)

    Bahuguna, R. D.; Corboline, Tom

    1996-09-01

    A prism fingerprint sensor is described that uses a holographic grating glued to a right-angled prism. A light source normally illuminates the hypotenuse side of the prism with the finger pressed against the grating. The ridges and valleys of the finger are sensed on the basis of the principle of total internal reflection. The grating is used essentially to correct the distortion usually present with prism sensors. The quality of the fingerprint is very good: the pores on the ridges can be seen.

  16. Major and trace element geochemistry and Os isotopic composition of metalliferous umbers from the Late Cretaceous Japanese accretionary complex

    NASA Astrophysics Data System (ADS)

    Kato, Yasuhiro; Fujinaga, Koichiro; Suzuki, Katsuhiko

    2005-07-01

    Metalliferous umbers and red shales occur as unique products of the Kula-Pacific ridge-forearc collision in the Late Cretaceous Shimanto Supergroup, an accretionary complex in Japan. These umbers are closely associated with greenstones of mid-ocean ridge basalt (MORB) origin and are regarded as hydrothermal metalliferous precipitates related to MOR-type volcanism. The umbers and red shales were deposited in the trench area where both terrigenous detritus from land and hydrothermal metalliferous particulates from a MOR were supplied simultaneously. Besides a predominance of Fe and Mn, the umbers exhibit remarkable enrichments in P, V, Co, Ni, Zn, Y, Mo, rare earth elements (REEs), and Os relative to continental crustal abundances. The X/Fe (X = Mn, P, V, Co, Ni, Zn, Y, and REEs) ratios and PAAS-normalized REE patterns of the umbers are very similar to those of modern hydrothermal plume fallout precipitates deposited on flanks of MOR. This indicates that the umbers preserve primary geochemical signatures of hydrothermal metalliferous sediments that scavenged seawater-derived elements and thus can be used as a proxy for Late Cretaceous seawater. The marine 187Os/188Os ratios reconstructed from the late Maastrichtian umbers range from 0.42 to 0.56 and are very consistent with recent data obtained from the Pacific and Atlantic pelagic carbonates that record an abrupt decline from 0.55 to 0.4 during the period between 67.0 Ma and 65.7 Ma.

  17. Controls on accretion of flysch and mélange belts at convergent margins: Evidence from the Chugach Bay thrust and Iceworm mélange, Chugach accretionary wedge, Alaska

    NASA Astrophysics Data System (ADS)

    Kusky, Timothy M.; Bradley, Dwight C.; Haeussler, Peter J.; Karl, Sue

    1997-12-01

    Controls on accretion of flysch and mélange terranes at convergent margins are poorly understood. Southern Alaska's Chugach terrane forms the outboard accretionary margin of the Wrangellia composite terrane, and consists of two major lithotectonic units, including Triassic-Cretaceous mélange of the McHugh Complex and Late Cretaceous flysch of the Valdez Group. The contact between the McHugh Complex and the Valdez Group on the Kenai Peninsula is a tectonic boundary between chaotically deformed melange of argillite, chert, greenstone, and graywacke of the McHugh Complex and a less chaotically deformed mélange of argillite and graywacke of the Valdez Group. We assign the latter to a new, informal unit of formational rank, the Iceworm mélange, and interpret it as a contractional fault zone (Chugach Bay thrust) along which the Valdez Group was emplaced beneath the McHugh Complex. The McHugh Complex had already been deformed and metamorphosed to prehnite-pumpellyite facies prior to formation of the Iceworm mélange. The Chugach Bay thrust formed between 75 and 55 Ma, as shown by Campanian-Maastrichtian depositional ages of the Valdez Group, and fault-related fabrics in the Iceworm mélange that are cut by Paleocene dikes. Motion along the Chugach Bay thrust thus followed Middle to Late Cretaceous collision (circa 90-100 Ma) of the Wrangellia composite terrane with North America. Collision related uplift and erosion of mountains in British Columbia formed a submarine fan on the Farallon plate, and we suggest that attempted subduction of this fan dramatically changed the subduction/accretion style within the Chugach accretionary wedge. We propose a model in which subduction of thinly sedimented plates concentrates shear strains in a narrow zone, generating mélanges like the McHugh in accretionary complexes. Subduction of thickly sedimented plates allows wider distribution of shear strains to accommodate plate convergence, generating a more coherent accretionary style

  18. Pressure Wave Propagation along the Décollement of the Nankai Accretionary Wedge: Implications for Aseismic Slip Events

    NASA Astrophysics Data System (ADS)

    Joshi, A.; Appold, M. S.

    2015-12-01

    Seismic and hydrologic observations of the Nankai subduction zone made by the Ocean Drilling Program suggest that pore fluid pressures within the accretionary wedge décollement are highly overpressured to near lithostatic values below depths of 2 km beneath the sea floor as a result of sediment diagenesis and dehydration of the subducting oceanic plate. This overpressured zone is also observed to discharge pulses of high fluid pressure that migrate up-dip along the décollement at rates of 1's of km/day. These high pressure pulses along the décollement may cause large enough reductions in the local effective stress to account for aseismic slip events that have been found to propagate also at rates of 1's of km/day. Because elevated fluid pressure and correspondingly decreased effective stress can lead to a dilation of porosity, the pressure waves may become effective agents of fluid transport that can travel more quickly than fluids flowing in the background Darcian flow regime. The purpose of the present study was to seek theoretical confirmation that pressure waves are able to travel quickly enough to account for the seismic and hydrological observations documented. This confirmation was sought through a transient one-dimensional numerical solution to the differential fluid mass conservation equation for an elastic porous medium. Results of the numerical simulations show that when overpressures at depths greater than 2 km in the décollement exceed lithostatic pressure by at least 3%, pressure waves are formed that migrate up-dip at rates fast enough to account for aseismic slip over a broad range of geologic conditions. Pressure waves spawned from these depths in the décollement may travel fast enough to account for aseismic slip when overpressures there are as low as 99% of lithostatic pressure, but require low specific storage of 3×10-6 m-1, high sensitivity of permeability to effective stress, low permeability no higher than about 10-21 m2 at depths below

  19. Formation of ophiolite-bearing tectono-sedimentary mélanges in accretionary wedges by gravity driven submarine erosion: Insights from analogue models and case studies

    NASA Astrophysics Data System (ADS)

    Malavieille, Jacques; Molli, Giancarlo; Genti, Manon; Dominguez, Stephane; Beyssac, Olivier; Taboada, Alfredo; Vitale-Brovarone, Alberto; Lu, Chia-Yu; Chen, Chih-Tung

    2016-10-01

    Orogenic wedges locally present chaotic tectonostratigraphic units that contain exotic blocks of various size, origin, age and lithology, embedded in a sedimentary matrix. The occurrence of ophiolitic blocks, sometimes huge, in such "mélanges" raises questions on (i) the mechanisms responsible for the incorporation of oceanic basement rocks into an accretionary wedge and (ii) the mechanisms allowing exhumation and redeposition of these exotic elements in "mélanges" during wedge growth. To address these questions, we present the results of a series of analogue experiments performed to characterize the processes and parameters responsible for accretion, exhumation and tectonosedimentary reworking of oceanic basement lithospheric fragments in an accretionary wedge. The experimental setup is designed to simulate the interaction between tectonics, erosion and sedimentation. Different configurations are applied to study the impact of various parameters, such as irregular oceanic floor due to structural inheritance, or the presence of layers with contrasted rheology that can affect deformation partitioning in the wedge (frontal accretion vs basal accretion) influencing its growth. Image correlation technique allows extracting instantaneous velocity field, and tracking of passive particles. By retrieving the particle paths determined from models, the pressure-temperature path of mélange units or elementary blocks can be discussed. The experimental results are then compared with observations from ophiolite-bearing mélanges in Taiwan (Lichi and Kenting mélanges) and Raman spectroscopy of carbonaceous material (RSCM) Thermometry data on rocks from the northern Apennines (Casanova mélange). A geological scenario is proposed following basic observations. The tectonic evolution of the retroside of doubly vergent accretionary wedges is mainly controlled by backthrusting and backfolding. The retro wedge is characterized by steep slopes that are prone to gravitational

  20. Effect of lateral stress on the consolidation state of sediment from the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Valdez, R. D., II; Kitajima, H.; Saffer, D. M.

    2015-12-01

    In order to better understand the mechanics of seismogenesis and stress state along subduction plate boundaries, the Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) program has focused on drilling a transect of boreholes across the subduction zone offshore SW Japan to collect core samples and geophysical logs. One primary target of the drilling effort is a major splay fault (the "megasplay") that branches from the décollement ~55 km landward of the trench and reaches the seafloor ~30 km from the trench. Three drillsites near the tip of the megasplay sampled the same 1.24-1.65 Ma slope apron sediment section at a reference location 0.75 km seaward of the megasplay fault tip (Site C0008), at the fault tip (Site C0022), and 0.30 km landward (Site C0004) where the section is overridden by accretionary prism sediment. We report on a suite of laboratory experiments conducted on coeval core samples from the three sites, to test the hypothesis that increasing horizontal stress with proximity to the megasplay fault leads to overconsolidation. We conducted uniaxial constant rate of strain (CRS) and triaxial consolidation experiments to define consolidation state and yield behavior of the sediment, and to estimate in situ effective stress magnitudes. The consolidation state is described in terms of the over-consolidation ratio (OCR), which is the ratio of stress at yield in the experiments to the in situ vertical stress expected for normal consolidation. Values of OCR increase with proximity to the fault, with values ranging from 0.5-1 at the reference Site C0008, to 1.4-1.5 at Site C0022 at the tip of the fault, to 1.7-2.1 in the footwall of the fault at Site C0004, defining a trend of progressively increasing overconsolidation. We attribute this pattern to increasing horizontal stress as the megasplay fault is approached. Assuming that the sediment is at a critical state (i.e. on the verge of shear failure) at the tip of the

  1. Infrared hyperspectral imaging polarimeter using birefringent prisms.

    PubMed

    Craven-Jones, Julia; Kudenov, Michael W; Stapelbroek, Maryn G; Dereniak, Eustace L

    2011-03-10

    A compact short-wavelength and middle-wavelength infrared hyperspectral imaging polarimeter (IHIP) is introduced. The sensor includes a pair of sapphire Wollaston prisms and several high-order retarders to form an imaging Fourier transform spectropolarimeter. The Wollaston prisms serve as a birefringent interferometer with reduced sensitivity to vibration versus an unequal path interferometer, such as a Michelson. Polarimetric data are acquired through the use of channeled spectropolarimetry to modulate the spectrum with the Stokes parameter information. The collected interferogram is Fourier filtered and reconstructed to recover the spatially and spectrally varying Stokes vector data across the image. The IHIP operates over a ±5° field of view and implements a dual-scan false signature reduction technique to suppress polarimetric aliasing artifacts. In this paper, the optical layout and operation of the IHIP sensor are presented in addition to the radiometric, spectral, and polarimetric calibration techniques used with the system. Spectral and spectropolarimetric results from the laboratory and outdoor tests with the instrument are also presented. PMID:21394189

  2. Infrared hyperspectral imaging polarimeter using birefringent prisms.

    PubMed

    Craven-Jones, Julia; Kudenov, Michael W; Stapelbroek, Maryn G; Dereniak, Eustace L

    2011-03-10

    A compact short-wavelength and middle-wavelength infrared hyperspectral imaging polarimeter (IHIP) is introduced. The sensor includes a pair of sapphire Wollaston prisms and several high-order retarders to form an imaging Fourier transform spectropolarimeter. The Wollaston prisms serve as a birefringent interferometer with reduced sensitivity to vibration versus an unequal path interferometer, such as a Michelson. Polarimetric data are acquired through the use of channeled spectropolarimetry to modulate the spectrum with the Stokes parameter information. The collected interferogram is Fourier filtered and reconstructed to recover the spatially and spectrally varying Stokes vector data across the image. The IHIP operates over a ±5° field of view and implements a dual-scan false signature reduction technique to suppress polarimetric aliasing artifacts. In this paper, the optical layout and operation of the IHIP sensor are presented in addition to the radiometric, spectral, and polarimetric calibration techniques used with the system. Spectral and spectropolarimetric results from the laboratory and outdoor tests with the instrument are also presented.

  3. Priorities in School Mathematics: Executive Summary of the PRISM Project.

    ERIC Educational Resources Information Center

    National Council of Teachers of Mathematics, Inc., Reston, VA.

    The Priorities in School Mathematics Project (PRISM) was designed by the National Council of Teachers of Mathematics to collect information on current beliefs and reactions to possible mathematics curriculum changes during the 1980's. The first component of PRISM was a survey of preferences for alternative content topics, instructional goals,…

  4. New Light on a Prism: The Concert for All Reasons

    ERIC Educational Resources Information Center

    Linaberry, Robin

    2004-01-01

    The prism concert concept was introduced in this country at the Eastman School of Music in 1975. The development of Eastman's inaugural prism concert is commonly attributed to Donald Hunsberger and Gustav Meier, conductors of the wind ensemble and orchestra, respectively. The basic idea is that different styles of music performed by different…

  5. The Eocimmerian history of Central Iran: the accretionary wedge of Anarak

    NASA Astrophysics Data System (ADS)

    Malaspina, Nadia; Zanchi, Andrea; Berra, Fabrizio; Javadi, Hamid Reza; Koohpeyma, Meysam; Ghassemi, Mohammad R.; Sheikholeslami, Mohammad Reza; Bergomi, Maria; Tunesi, Annalisa; Zanchetta, Stefano

    2013-04-01

    The Anarak region of Central Iran is a key area for the understanding of the Late Palaeozoic to Triassic Cimmerian evolution of Iran. The Anarak Metamorphic Complex (AMC) forms an E-W trending mountain ridge, which separates the Triassic of Nakhlak to the north from a continuous non-metamorphic Palaeozoic to Mesozoic sedimentary succession to the south and was interpreted as an accretionary wedge active from Late Palaeozoic to Triassic times. The AMC is sharply cross-cut westward by the Upper Cretaceous "Coloured Melange", consisting of low- to medium- grade metamorphic rocks with tectonically intercalated slivers of serpentinite often associated to blue schists. The occurrence of this rock association in Central Iran poses several questions regarding its evolution and especially on the number of Cimmerian (Palaeotethys) sutures (single rather than multiple) between Eurasia and Iran. The AMC includes several subunits (Morghab, Chah Gorbeh, Patyar, Palhavand Gneiss, Lakh Marble and Doshak) which differ for composition and/or metamorphic evolution. Based on field observations, the Morghab and Chah Gorbeh units suggest a common deformation and a similar metamorphic history, characterised by three major folding events. The first two events developed pervasive axial plane foliations causing a complete transposition of the primary stratigraphic characters. Folding was accompanied by two main metamorphic events, the latter showing retrogression from possible medium to low grade conditions. During the third folding stage, large-scale plunging to vertical open folds were superposed on previous folds in the area north of the Kuh-e Chah Gorbeh, deforming the previous penetrative foliations. In this frame, the Palhavand Gneiss can be considered as part of the same metamorphic unit which escaped a more pervasive low grade retrogression. Concerning the Patyar unit, previous studies considered the Lakh Marble as the lagoonal sediments of an atoll. Field analyses indicate that the

  6. Neutral density filters with Risley prisms: analysis and design.

    PubMed

    Duma, Virgil-Florin; Nicolov, Mirela

    2009-05-10

    We achieve the analysis and design of optical attenuators with double-prism neutral density filters. A comparative study is performed on three possible device configurations; only two are presented in the literature but without their design calculus. The characteristic parameters of this optical attenuator with Risley translating prisms for each of the three setups are defined and their analytical expressions are derived: adjustment scale (attenuation range) and interval, minimum transmission coefficient and sensitivity. The setups are compared to select the optimal device, and, from this study, the best solution for double-prism neutral density filters, both from a mechanical and an optical point of view, is determined with two identical, symmetrically movable, no mechanical contact prisms. The design calculus of this optimal device is developed in essential steps. The parameters of the prisms, particularly their angles, are studied to improve the design, and we demonstrate the maximum attenuation range that this type of attenuator can provide.

  7. Rankine combined vortex interaction with a rectangular prism

    NASA Astrophysics Data System (ADS)

    Gorecki, Piotr; Panneer Selvam, Rathinam

    2015-01-01

    Large eddy simulation is utilised to study the three-dimensional interaction between a travelling Rankine combined vortex and a rectangular prism. The study examines the strength and the topology of a vortex during the interaction with a prism that is much wider than the vortex core diameter. The physics of the interaction is revealed for the straight (β = 0°) and the oblique (β = 45°) impacts. For both cases, the low-level portion of the vortex undergoes displacements in the streamwise and the lateral directions. Also the vortex shape and the core vorticity are substantially disrupted. Behind the prism the full vortex circulation is recovered after a considerable distance. This created a low-velocity region. The sheltering effect of the prism is noticed for both straight and oblique impacts. The flow velocities in the sheltering region, right behind the prism, are reduced by more than 42% compared to the maximum flow speeds before the interaction.

  8. Different sources of suspended sediment according to particle size determined by natural radionuclides

    NASA Astrophysics Data System (ADS)

    Mizugaki, S.; Ohtsuka, J.; Maruyama, M.; Hamamoto, S.; Murakami, Y.

    2012-12-01

    Extensive human activity and climate change have given great impacts on the sediment balance and connectivity between fluvial and coastal systems, causing sediment-related problems such as sedimentation in reservoir, coastal erosion and water pollution by prolonged turbid water. The dynamics of suspended sediment is one of the most important issues in watershed and coastal management. Suspended sediment load transported to ocean by a river commonly represents a mixture of sediments delivered from different locations and source types within the contributing catchment. In our previous study, we have found that the three natural radionuclides are available to discriminate the source areas of suspended sediment represented by six different bed rock type (sedimentary rock, accretionary sedimentary rock, accretionary basalt block, accretionary volcanic rock, plutonic rock and metamorphic rock), and that the contribution of each source areas to suspended sediment can be estimated (Mizugaki et al., 2012). To elucidate the sources of suspended sediment from mountain to coastal area, the fingerprinting was conducted using natural radionuclide tracers across a couple of adjacent watersheds, the Saru River and Mu River watersheds in central Hokkaido, northern Japan. We collected suspended sediments at outlets of the 13 sub-catchments (0.7-27.2 km2) and 12 stream channels with mid- to large-scaled watershed areas (17-1,333 km2), deposited sediments across a dam reservoir and coastal sediments, in total 389 samples. For collected sediment samples, grain size distributions were measured by laser-diffraction particle size analyzer. The specific surface areas of the samples were estimated using their grain size distribution and the spherical approximation of the particles in each class. For fingerprint the source of suspended sediment, three natural radionuclide activities, 212Pb, 228Ac and 40K, were measured by gamma-ray spectrometry. Specific surface area of the sediment showed

  9. Motion control of the wedge prisms in Risley-prism-based beam steering system for precise target tracking.

    PubMed

    Zhou, Yuan; Lu, Yafei; Hei, Mo; Liu, Guangcan; Fan, Dapeng

    2013-04-20

    Two exact inverse solutions of Risley prisms have been given by previous authors, based on which we calculate the gradients of the scan field that open a way to investigate the nonlinear relationship between the slewing rate of the beam and the required angular velocities of the two wedge prisms in the Risley-prism-based beam steering system for target tracking. The limited regions and singularity point at the center and the edge of the field of regard are discussed. It is found that the maximum required rotational velocities of the two prisms for target tracking are nearly the same and are dependent on the altitude angle. The central limited region is almost independent of the prism parameters. The control singularity at the crossing center path can be avoided by switching the two solutions.

  10. Origin of accretionary lapilli from the Pompeii and Avellino deposits of Vesuvius

    SciTech Connect

    Sheridan, M.F.; Wohletz, K.H.

    1983-01-01

    Accretionary lapilli from the Pompeii and Avellino Plinian ash deposits of Vesuvius consist of centimeter-sized spheroids composed of glass, crystal, and lithic fragments of submillimeter size. The typical structure of the lapilli consists of a central massive core surrounded by concentric layers of fine ash with concentrations of larger clasts and vesicles and a thin outer layer of dust. Clasts within the lapilli larger than 125 ..mu..m are extremely rare. The median grain-size of the fine ash is about 50 ..mu..m and the size-distribution is well sorted. Most constituent particles of accretionary lapilli display blocky shapes characteristic of grains produced by phreatomagmatic hydroexplosions. We have used the scanning electron microscope (SEM) in conjunction with energy dispersive spectral analysis (EDS) to investigate the textural and chemical variation along traverses from the core to the rim of lapilli from Vesuvius.

  11. Prisms and neglect: what have we learned?

    PubMed

    Newport, Roger; Schenk, Thomas

    2012-05-01

    Since Rossetti et al. (1998) reported that prism adaptation (PA) can lead to a substantial reduction of neglect symptoms PA has become a hot topic in neglect-research. More than 280 articles have been published in this area. Not all of those studies investigated the therapeutic potential of this technique, many studies examined the responsiveness to PA as a way to subdivide neglect into separate subsyndromes, other studies focussed on the process of PA itself in an effort to illuminate its underlying neurobiological mechanisms. In this article we will review research in all of these three areas to determine whether and to what extent research on PA in neglect patients has fulfilled its promise as a new way to improve the treatment of neglect, enhance our understanding of this complex syndrome and provide new insights into the neurobiology of sensorimotor learning.

  12. Active stereo vision routines using PRISM-3

    NASA Astrophysics Data System (ADS)

    Antonisse, Hendrick J.

    1992-11-01

    This paper describes work in progress on a set of visual routines and supporting capabilities implemented on the PRISM-3 real-time vision system. The routines are used in an outdoor robot retrieval task. The task requires the robot to locate a donor agent -- a Hero2000 -- which holds the object to be retrieved, to navigate to the donor, to accept the object from the donor, and return to its original location. The routines described here will form an integral part of the navigation and wide-area search tasks. Active perception is exploited to locate the donor using real-time stereo ranging directed by a pan/tilt/verge mechanism. A framework for orchestrating visual search has been implemented and is briefly described.

  13. Mechanisms underlying neglect recovery after prism adaptation.

    PubMed

    Serino, Andrea; Angeli, Valentina; Frassinetti, Francesca; Làdavas, Elisabetta

    2006-01-01

    Prism adaptation (PA) has been demonstrated to be effective in improving hemispatial neglect. However not all patients seem to benefit from this procedure. Thus, the objective of the present work is to provide behavioural and neuroanatomical predictors of recovery by exploring the reorganization of low-order visuo-motor behaviour and high-order visuo-spatial representation induced by PA. To this end, 16 neglect patients (experimental group) were submitted to a PA treatment for 10 daily sessions. Neglect and oculo-motor responses were assessed before the treatment, 1 week, 1 and 3 months after the treatment. Eight control patients, who received general cognitive stimulation, were submitted to the same tests at the same time interval. The results showed that experimental patients obtained, as a consequence of PA, a long lasting neglect recovery, a reorganization of low-order visuo-motor behaviour during and after prism exposure (error reduction and after-effect, respectively) and a leftward deviation of oculo-motor responses. Importantly, the level of error reduction obtained in the first week of treatment was predictive of neglect recovery and the amelioration of oculo-motor responses, and the degree of eye movement deviation was positively related to neglect amelioration. Finally, the study of patients' neuroanatomical data showed that severe occipital lesions were associated with a lack of error reduction, poor neglect recovery and reduced oculo-motor system amelioration. In conclusion, the present results suggest that low-order visuo-motor reorganization induced by PA promotes a resetting of the oculo-motor system leading to an improvement in high-order visuo-spatial representation able to ameliorate neglect. PMID:16330055

  14. Large beam deflection using cascaded prism array

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Tsui, Chi-Leung

    2012-04-01

    Endoscopes have been utilize in the medical field to observe the internals of the human body to assist the diagnosis of diseases, such as breathing disorders, internal bleeding, stomach ulcers, and urinary tract infections. Endoscopy is also utilized in the procedure of biopsy for the diagnosis of cancer. Conventional endoscopes suffer from the compromise between overall size and image quality due to the required size of the sensor for acceptable image quality. To overcome the size constraint while maintaining the capture image quality, we propose an electro-optic beam steering device based on thermal-plastic polymer, which has a small foot-print (~5mmx5mm), and can be easily fabricated using conventional hot-embossing and micro-fabrication techniques. The proposed device can be implemented as an imaging device inside endoscopes to allow reduction in the overall system size. In our previous work, a single prism design has been used to amplify the deflection generated by the index change of the thermal-plastic polymer when a voltage is applied; it yields a result of 5.6° deflection. To further amplify the deflection, a new design utilizing a cascading three-prism array has been implemented and a deflection angle to 29.2° is observed. The new design amplifies the beam deflection, while keeping the advantage of simple fabrication made possible by thermal-plastic polymer. Also, a photo-resist based collimator lens array has been added to reduce and provide collimation of the beam for high quality imaging purposes. The collimator is able to collimate the exiting beam at 4 μm diameter for up to 25mm, which potentially allows high resolution image capturing.

  15. Large aerial bursts: an important class of terrestrial accretionary events.

    PubMed

    Wasson, John T

    2003-01-01

    Large aerial bursts similar to the 1908 Tunguska bolide but much larger in magnitude have surely been responsible for many catastrophic events in the history of the Earth. Because aerial bursts produce shallow (or even negligible) craters, their existence is difficult to document in the geological record. Even aerial bursts as small as Tunguska deposit enough energy to melt approximately 1mm of dry soil. Silica-rich glass formed in such melts has the potential to survive in the soil for many Ma, thus a potential indicator of large aerial bursts is glass that was formed as thick regions within silicate melt sheets. The layered tektites from Southeast Asia and the Libyan desert glass may have formed by a combination of sedimentation and downslope flow of silicate melt heated by radiation from large aerial bursts. The alternative, formation of layered tektites as crater ejecta, cannot account for observations such as uniformly high 10Be contents, the orientation of the magnetic remanence field, and the absence of splash-form (e.g., teardrop or dumbbell) tektites in regions where layered tektites are common. The largest asteroids or comets make craters no matter what their strength. Recent reviews suggest that, for events in the energy range up to 10(19)-10(20) J (about two orders of magnitude larger than the Meteor Crater impact), aerial bursts are more likely than cratering events, and the layered tektites of Southeast Asia imply the existence of aerial bursts one to two orders of magnitude larger still. PMID:12809134

  16. Large Aerial Bursts: An Important Class of Terrestrial Accretionary Events

    NASA Astrophysics Data System (ADS)

    Wasson, John T.

    2003-01-01

    Large aerial bursts similar to the 1908 Tunguska bolide but much larger in magnitude have surely been responsible for many catastrophic events in the history of the Earth. Because aerial bursts produce shallow (or even negligible) craters, their existence is difficult to document in the geological record. Even aerial bursts as small as Tunguska deposit enough energy to melt ~1mm of dry soil. Silica-rich glass formed in such melts has the potential to survive in the soil for many Ma, thus a potential indicator of large aerial bursts is glass that was formed as thick regions within silicate melt sheets. The layered tektites from Southeast Asia and the Libyan desert glass may have formed by a combination of sedimentation and downslope flow of silicate melt heated by radiation from large aerial bursts. The alternative, formation of layered tektites as crater ejecta, cannot account for observations such as uniformly high 10Be contents, the orientation of the magnetic remanence field, and the absence of splash-form (e.g., teardrop or dumbbell) tektites in regions where layered tektites are common. The largest asteroids or comets make craters no matter what their strength. Recent reviews suggest that, for events in the energy range up to 1019-1020 J (about two orders of magnitude larger than the Meteor Crater impact), aerial bursts are more likely than cratering events, and the layered tektites of Southeast Asia imply the existence of aerial bursts one to two orders of magnitude larger still.

  17. Rotational and accretionary evolution of the Klamath Mountains, California and Oregon, from Devonian to present time

    USGS Publications Warehouse

    Irwin, William P.; Mankinen, Edward A.

    1998-01-01

    The purpose of this report is to show graphically how the Klamath Mountains grew from a relatively small nucleus in Early Devonian time to its present size while rotating clockwise approximately 110°. This growth occurred by the addition of large tectonic slices of oceanic lithosphere, volcanic arcs, and melange during a sequence of accretionary episodes. The Klamath Mountains province consists of eight lithotectonoic units called terranes, some of which are divided into subterranes. The Eastern Klamath terrane, which was the early Paleozoic nucleus of the province, is divided into the Yreka, Trinity, and Redding subterranes. Through tectonic plate motion, usually involving subduction, the other terranes joined the early Paleozoic nucleus during seven accretionary episodes ranging in age from Early Devonian to Late Jurassic. The active terrane suture is shown for each episode by a bold black line. Much of the western boundary of the Klamath Mountains is marked by the South Fork and correlative faults along which the Klamath terranes overrode the Coast Range rocks during an eighth accretionary episode, forming the South Fork Mountain Schist in Early Cretaceous time.

  18. Goldmann Tonometer Prism with an Optimized Error Correcting Applanation Surface

    PubMed Central

    McCafferty, Sean; Lim, Garrett; Duncan, William; Enikov, Eniko; Schwiegerling, Jim

    2016-01-01

    Purpose We evaluate solutions for an applanating surface modification to the Goldmann tonometer prism, which substantially negates the errors due to patient variability in biomechanics. Methods A modified Goldmann or correcting applanation tonometry surface (CATS) prism is presented which was optimized to minimize the intraocular pressure (IOP) error due to corneal thickness, stiffness, curvature, and tear film. Mathematical modeling with finite element analysis (FEA) and manometric IOP referenced cadaver eyes were used to optimize and validate the design. Results Mathematical modeling of the optimized CATS prism indicates an approximate 50% reduction in each of the corneal biomechanical and tear film errors. Manometric IOP referenced pressure in cadaveric eyes demonstrates substantial equivalence to GAT in nominal eyes with the CATS prism as predicted by modeling theory. Conclusion A CATS modified Goldmann prism is theoretically able to significantly improve the accuracy of IOP measurement without changing Goldmann measurement technique or interpretation. Clinical validation is needed but the analysis indicates a reduction in CCT error alone to less than ±2 mm Hg using the CATS prism in 100% of a standard population compared to only 54% less than ±2 mm Hg error with the present Goldmann prism. Translational Relevance This article presents an easily adopted novel approach and critical design parameters to improve the accuracy of a Goldmann applanating tonometer.

  19. Pure rotation of a prism on a ramp

    PubMed Central

    Zhao, Zhen; Liu, Caishan; Ma, Daolin

    2014-01-01

    In this work, we study a prism with a cross section in polygon rolling on a ramp inclined at a small angle. The prism under gravity rolls purely around each individual edge, intermittently interrupted by a sequence of face collisions between the side face of the prism and the ramp. By limiting the prism in a planar motion, we propose a mathematical model to deal with the events of the impacts. With a pair of laser-Doppler vibrometers, experiments are also conducted to measure the motions of various prisms made of different materials and with different edge number. Not only are good agreements achieved between our numerical and experimental results, but also an intriguing physical phenomenon is discovered: the purely rolling motion is nearly independent of the prism's materials, yet it is closely related to the prism's geometry. Imagine that an ideal circular section can be approximately equivalent to a polygon with a large enough edge number N, the finding presented in this paper may help discover the physical mechanism of rolling friction. PMID:25197242

  20. Goldmann Tonometer Prism with an Optimized Error Correcting Applanation Surface

    PubMed Central

    McCafferty, Sean; Lim, Garrett; Duncan, William; Enikov, Eniko; Schwiegerling, Jim

    2016-01-01

    Purpose We evaluate solutions for an applanating surface modification to the Goldmann tonometer prism, which substantially negates the errors due to patient variability in biomechanics. Methods A modified Goldmann or correcting applanation tonometry surface (CATS) prism is presented which was optimized to minimize the intraocular pressure (IOP) error due to corneal thickness, stiffness, curvature, and tear film. Mathematical modeling with finite element analysis (FEA) and manometric IOP referenced cadaver eyes were used to optimize and validate the design. Results Mathematical modeling of the optimized CATS prism indicates an approximate 50% reduction in each of the corneal biomechanical and tear film errors. Manometric IOP referenced pressure in cadaveric eyes demonstrates substantial equivalence to GAT in nominal eyes with the CATS prism as predicted by modeling theory. Conclusion A CATS modified Goldmann prism is theoretically able to significantly improve the accuracy of IOP measurement without changing Goldmann measurement technique or interpretation. Clinical validation is needed but the analysis indicates a reduction in CCT error alone to less than ±2 mm Hg using the CATS prism in 100% of a standard population compared to only 54% less than ±2 mm Hg error with the present Goldmann prism. Translational Relevance This article presents an easily adopted novel approach and critical design parameters to improve the accuracy of a Goldmann applanating tonometer. PMID:27642540

  1. [Thermal spectral property of prism in hyper spectral imager].

    PubMed

    Liang, Jiu-Sheng; Wu, Qing-Wen; Li, Ze-Xue; Chen, Li-Heng; Guo, Liang

    2010-06-01

    Prism is one of the most key parts in the hyper spectral imager (HSI). Consequently, to set thermal control target and make thermal control design, the thermal spectral property of prism in the HSI was studied. The working principle of the HSI and the definition of its thermal spectral property were introduced. The working environment of prism and its thermal effect were analyzed; also the study contents and technical route of the prism's thermal spectral property were discussed. The effects of different uniform temperature field on deflexion angle and angular dispersion of the prism in the HSI were deduced, and the changes in displacement of the spectra and the spectral bandwidth under different uniform temperature were obtained. For one instance, the thermal spectral property of the K9 prism and the fused silica prism were compared based on FEM and combined experiments, furthermore, its thermal control target was ascertained and a thermal spectral property test was carried out to validate the rationality of the thermal spectral property analysis. The results of analysis indicated that the changes in spectral bandwidth and spectrum resolution brought by thermal distortions can be ignored according to current fixing mode, and the displacement of the spectra is mainly determined by thermal coefficient of material refractive index; because of it's the lower thermal coefficient of material refractive index, the displacement of the spectra of the K9 prism is smaller under the same temperature changes; the material deflexion changes (dn/dlambda) of prism are not sensitive to the temperature, so the changes in spectral bandwidth caused by them are not obvious. And the results of test proved that the studied method of thermal spectral property is reasonable and essential, and the results are authentic and credible. So it can provide some guidance for setting thermal control target and optimizing thermal control design. PMID:20707180

  2. Petrology of blueschist from the Western Himalaya (Ladakh, NW India): Exploring the complex behavior of a lawsonite-bearing system in a paleo-accretionary setting

    NASA Astrophysics Data System (ADS)

    Groppo, Chiara; Rolfo, Franco; Sachan, Himanshu K.; Rai, Santosh K.

    2016-05-01

    Although the Himalaya is the archetype of collisional orogens, formed as a consequence of the closure of the Neo-Tethyan ocean separating India from Asia, high-pressure metamorphic rocks are rare. Beside few eclogites, corresponding to the metamorphosed continental Indian crust dragged below Asia or underthrusted beneath southern Tibet, blueschists occur seldom along the Yarlung-Tsangpo Suture zone, i.e. the suture marking the India-Asia collision. These blueschists, mostly interpreted as related to paleo-accretionary prisms formed in response to the subduction of the Neo-Tethyan ocean below the Asian plate, are crucial for constraining the evolution of the India-Asia convergence zone during the closure of the Neo-Tethyan Ocean. In the Western Himalaya, the best occurrence of blueschist is that of the Sapi-Shergol Ophiolitic Mélange in Ladakh. This unit is dominated by volcanoclastic sequences rich in mafic material with subordinate interbedding of metasediments, characterized by very fresh lawsonite blueschist-facies assemblages. In this paper, the lawsonite blueschist-facies metasediments have been petrologically investigated with the aims of (i) constraining the P-T evolution of the Sapi-Shergol Ophiolitic Mélange, (ii) evaluating the influence of Fe2O3 and of H2O on the stability of the high-pressure mineral assemblages, (iii) understanding the processes controlling lawsonite formation and preservation, and (iv) interpreting the P-T evolution of the Sapi-Shergol blueschists in the framework of India-Asia collision. Our results indicate that (i) the Sapi-Shergol blueschists experienced a cold subduction history along a low thermal gradient, up to peak conditions of ca. 470 °C, 19 kbar; furthermore, in order to preserve lawsonite in the studied lithologies, exhumation must have been coupled with significant cooling, i.e. the resulting P-T path is characterized by a clockwise hairpin loop along low thermal gradients (< 8-9 °C/km); (ii) the presence of ferric

  3. Packing confined hard spheres denser with adaptive prism phases.

    PubMed

    Oğuz, Erdal C; Marechal, Matthieu; Ramiro-Manzano, Fernando; Rodriguez, Isabelle; Messina, René; Meseguer, Francisco J; Löwen, Hartmut

    2012-11-21

    We show that hard spheres confined between two parallel hard plates pack denser with periodic adaptive prismatic structures which are composed of alternating prisms of spheres. The internal structure of the prisms adapts to the slit height which results in close packings for a range of plate separations, just above the distance where three intersecting square layers fit exactly between the plates. The adaptive prism phases are also observed in real-space experiments on confined sterically stabilized colloids and in Monte Carlo simulations at finite pressure.

  4. Diffraction intensity analysis of a transmission prism grating

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyu; Zhang, Guosheng

    2010-11-01

    Because of the inherent structures, most common gratings always produce an unexpected loss of the input signal, which limits the use of gratings in many fields to some extent. Considering that, a design of grating with many periodical micro isosceles prisms is proposed. Based on the scalar diffraction theory, the transmittance is derived from the definition of an optical path when a parallel light passes through a singular prism element. And according to the multi-slit Fraunhofer diffraction, the expression of light intensity distribution for the prism grating on the frequency plane is deduced and analyzed by means of Fourier transform.

  5. Control of structural inheritance on thrust initiation and material transfer in accretionary wedges

    NASA Astrophysics Data System (ADS)

    Leever, Karen; Geersen, Jacob; Ritter, Malte; Lieser, Kathrin; Behrmann, Jan

    2016-04-01

    Faults in the incoming sediment layer are commonly observed in subduction zone settings and well developed in the incoming plate off Sumatra. To investigate how they affect the structural development of the accretionary wedge, we conducted a series of 2D analogue tectonic experiments in which a 2 cm thick quartz sand layer on top of a thin detachment layer of glass beads was pulled against a rigid backstop by a basal conveyor belt in a 20cm wide box with glass walls. A gap at the base of the back wall avoids entrainment of the glass beads. At regular spacing of either 2.3, 5.5 or 7.8 cm (fractions of the thrust sheet length in the reference model), conjugate pairs of weakness zones dipping 60deg were created by cutting the sand layer with a thin (1 mm) metal blade. Both the undisturbed sand and the pre-cuts have an angle of internal friction of ~29o, but their cohesion is different by 50 Pa (110 Pa for the undisturbed material, 60 Pa along the pre-cuts). Friction of the glass beads is ~24deg. The experiments are monitored with high resolution digital cameras; displacement fields derived from digital image correlation are used to constrain fault activity. In all experiments, a critically tapered wedge developed with a surface slope of 7.5deg. In the reference model (no weakness zones in the input section), the position of new thrust faults is controlled by the frontal slope break. The average length of the thrust sheets is 11 cm and the individual thrusts accommodate on average 8 cm displacement each. The presence of weakness zones causes thrust initiation at a position different from the reference case, and affects their dip. For a fault spacing of 7.8 cm (or 75% of the reference thrust sheet length), every single incoming weakness zone causes the formation of a new thrust, thus resulting in thrust sheets shorter than the equilibrium case. In addition, less displacement is accommodated on each thrust. As a consequence, the frontal taper is smaller than expected

  6. First results from the NEAREST-SEIS deep seismic cruise across the Gulf of Cadiz accretionary wedge

    NASA Astrophysics Data System (ADS)

    Gailler, A.; Gutscher, M.-A.; Graindorge, D.; Sallarès, V.; Bartolome, R.; Gracia, E.

    2009-04-01

    The Gulf of Cadiz lies offshore of Southwest Iberia and Northwest Morocco, bounded to the West by the Azores-Gibraltar transform and to the East by the Betic-Rif mountain belt. The region is famous for the great 1755 Lisbon earthquake and tsunami. Here the plate boundary between Africa and Eurasia is complex, marked by a broad region of deformation spanning about 200 km in a north-south direction. One of the most striking structures characterizing the Gulf of Cadiz is the presence of a thick tectonically deformed sedimentary wedge, which is interpreted as an accretionary wedge formed by the W to SW migration of the Rif-Betic block. Two types of geodynamic models have been proposed to explain the recent tectonics and formation of this region: those invoking delamination of continental lithosphere beneath the Betic-Rif Alboran Sea region, and those favouring subduction of oceanic lithosphere, with associated roll-back. Numerous marine geophysical surveys were performed in the Gulf of Cadiz area during the last years, many as part of the NEAREST European project. Multi-beam bathymetry and multi-channel seismic (MCS) data were acquired, which help constrain the upper crustal structures. Deep structural maps demonstrate that sediment thicknesses in the central Gulf of Cadiz (beneath the accretionary wedge) reach a maximum of 12-13 km. Additional wide-angle seismic records acquired during the SISMAR experiment (2001) testify to the difficulty of even low-frequency waves to penetrate below this thick sedimentary body. Nevertheless, from the resulting models a 7-to-10-km thick basement is inferred beneath the western and central Gulf, which forms a roughly E-W oriented trough between the thicker (20-30 km) continental crust of SW Iberia and NW Morocco. During the NEAREST-SEIS cruise on the B/O Hesperides (nov. 2008), two wide-angle seismic lines were acquired in the Gulf of Cadiz area using a seismic source composed of seven 1500LL Bolt airguns (4520 in3), shot at 90 s

  7. Strongly-Refractive One-Dimensional Photonic Crystal Prisms

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor)

    2004-01-01

    One-dimensional (1D) photonic crystal prisms can separate a beam of polychromatic electromagnetic waves into constituent wavelength components and can utilize unconventional refraction properties for wavelength dispersion over significant portions of an entire photonic band rather than just near the band edges outside the photonic band gaps. Using a ID photonic crystal simplifies the design and fabrication process and allows the use of larger feature sizes. The prism geometry broadens the useful wavelength range, enables better optical transmission, and exhibits angular dependence on wavelength with reduced non-linearity. The properties of the 1 D photonic crystal prism can be tuned by varying design parameters such as incidence angle, exit surface angle, and layer widths. The ID photonic crystal prism can be fabricated in a planar process, and can be used as optical integrated circuit elements.

  8. Prism design based on changes in image orientation.

    PubMed

    Tsai, Chuang-Yu; Lin, Psang Dain

    2006-06-10

    We present a method of designing a prism to produce an image with a specific orientation. Traditional prism design of this kind is done by trial and error with the aid of geometrical drawing and cannot provide analytical results. Using skew ray tracing sensitivity analysis, we present a merit function that can specify changes in image orientation after the image is reflected by an arbitrary number of flat boundary surfaces. Two design approaches are proposed. One can produce a prism with a minimum number of flat boundary surfaces with the aid of an auxiliary unit vector. The other can produce many configurations of prisms but without the above feature. An illustrative example is used to demonstrate the validity of the proposed approaches. Eight new configurations, which can produce the same change in image orientation, are obtained from the proposed design approaches.

  9. 3. ELEVATION. FROM SOUTH WITH CANAL PRISM. Canal Road ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. ELEVATION. FROM SOUTH WITH CANAL PRISM. - Canal Road Bridge, Canal Road spanning Delaware Canal Diversion, Locks 22 & 23 in Delaware Canal State Park in Williams Township, Raubsville, Northampton County, PA

  10. Prisms with total internal reflection as solar reflectors

    DOEpatents

    Rabl, Arnulf; Rabl, Veronika

    1978-01-01

    An improved reflective wall for radiant energy collection and concentration devices is provided. The wall is comprised of a plurality of prisms whose frontal faces are adjacent and which reflect the desired radiation by total internal reflection.

  11. NORTHERLY STRETCH OF MILLBURY PORTION; GENERAL VIEW ACROSS CANAL PRISM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHERLY STRETCH OF MILLBURY PORTION; GENERAL VIEW ACROSS CANAL PRISM TO TOWPATH BERM (LATER FILL ENCROACHING LEFT) NEAR CENTER OF THIS STRETCH; VIEW TO SOUTHWEST - Blackstone Canal Worcester-Millbury Segment, Eastern bank of Blackstone River, Millbury, Worcester County, MA

  12. Development of an unbonded capping system for clay masonry prisms

    SciTech Connect

    Crouch, L.K.; Henderson, R.C.; Sneed, W.A. Jr.

    1999-07-01

    To ascertain if an unbonded capping system was feasible for clay masonry prisms, the compressive strengths of thirty clay masonry prisms capped with an unbonded capping system modeled after ASTM C 1231 were compared with those of thirty masonry prisms capped with ASTM C 67 approved high-strength gypsum cement at the ages of 7 and 28 days. All prisms were constructed by a professional mason using Grade SW, Type FBS cored face brick from the same lot and ASTM C 270 Type S PC-lime mortar. There was no significant difference in mean compressive strength for the two capping methods at either age. In addition, capping with the unbonded capping system was faster and easier. Further, 28-day results obtained using the unbonded capping system had a lower coefficient of variation and higher mean compressive strength than those obtained with high-strength gypsum.

  13. 5. VIEW NORTHWEST SHOWING AQUEDUCT PRISM. NOTE INTERIOR STONE WORK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW NORTHWEST SHOWING AQUEDUCT PRISM. NOTE INTERIOR STONE WORK OF THE PARAPET WALL AND REMAINS OF 1920 TIMBER AND CONCRETE FLOORING SYSTEM. - Chesapeake & Ohio Canal, Conococheague Creek Aqueduct, Milepost 99.80, Williamsport, Washington County, MD

  14. Contrasting décollement and prism properties over the Sumatra 2004-2005 earthquake rupture boundary.

    PubMed

    Dean, Simon M; McNeill, Lisa C; Henstock, Timothy J; Bull, Jonathan M; Gulick, Sean P S; Austin, James A; Bangs, Nathan L B; Djajadihardja, Yusuf S; Permana, Haryadi

    2010-07-01

    Styles of subduction zone deformation and earthquake rupture dynamics are strongly linked, jointly influencing hazard potential. Seismic reflection profiles across the trench west of Sumatra, Indonesia, show differences across the boundary between the major 2004 and 2005 plate interface earthquakes, which exhibited contrasting earthquake rupture and tsunami generation. In the southern part of the 2004 rupture, we interpret a negative-polarity sedimentary reflector approximately 500 meters above the subducting oceanic basement as the seaward extension of the plate interface. This predécollement reflector corresponds to unusual prism structure, morphology, and seismogenic behavior that are absent along the 2005 rupture zone. Although margins like the 2004 rupture zone are globally rare, our results suggest that sediment properties influence earthquake rupture, tsunami hazard, and prism development at subducting plate boundaries.

  15. Ipsidirectional impairment of prism adaptation after unilateral lesion of anterior cerebellum.

    PubMed

    Pisella, L; Rossetti, Y; Michel, C; Rode, G; Boisson, D; Pélisson, D; Tilikete, C

    2005-07-12

    In a patient with damage of the left cerebellar cortex (SCA territory), the authors tested four combinations of exposure to optical shift (leftward prisms, right hand; rightward prisms, right hand; leftward prisms, left (ataxic) hand; rightward prisms, left (ataxic) hand). He adapted to rightward but not leftward prisms, independent of which hand was used during exposure. This suggests a role of anterior cerebellar cortex in the computation or compensation of ipsidirectional visual error.

  16. Negative Refraction experiments in Photonic Crystal prisms

    NASA Astrophysics Data System (ADS)

    Vodo, Plarenta; Parimi, Patanjali. V.; Lu, Wentao. T.; di Gennaro, Emiliano; Sridhar, Srinivas

    2004-03-01

    We have experimentally demonstrated negative refraction in metallic photonic crystal (PC) prisms [1]. The refracted fields in the parallel plate waveguide (PPW) are measured by an automated dipole antenna, which scans the desired area, while the free space (FS) measurements, performed in a anechoic chamber, are measured by a rectangular X-band horn that swings in an arc in far field area. Both TE and TM excitation modes are used in FS experiments. Numerical calculations of the band structure and equi-frequency surface simulations are used to determine frequency regions of negative refraction of the triangular lattice PC. Angle of refraction determined by theoretical simulations and experimental results, are in exceptional good agreement, yielding the negative refraction index. FS and PPW refraction experimental results agree remarkably with simulations. 1. "Negative Refraction and Left-handed electromagnetism in Microwave Photonic Crystals", P.V Parimi, W.T Lu, P.Vodo J. Sokoloff and S.Sridhar, cond-mat/0306109 (2003)

  17. APEX - the Hyperspectral ESA Airborne Prism Experiment

    PubMed Central

    Itten, Klaus I.; Dell'Endice, Francesco; Hueni, Andreas; Kneubühler, Mathias; Schläpfer, Daniel; Odermatt, Daniel; Seidel, Felix; Huber, Silvia; Schopfer, Jürg; Kellenberger, Tobias; Bühler, Yves; D'Odorico, Petra; Nieke, Jens; Alberti, Edoardo; Meuleman, Koen

    2008-01-01

    The airborne ESA-APEX (Airborne Prism Experiment) hyperspectral mission simulator is described with its distinct specifications to provide high quality remote sensing data. The concept of an automatic calibration, performed in the Calibration Home Base (CHB) by using the Control Test Master (CTM), the In-Flight Calibration facility (IFC), quality flagging (QF) and specific processing in a dedicated Processing and Archiving Facility (PAF), and vicarious calibration experiments are presented. A preview on major applications and the corresponding development efforts to provide scientific data products up to level 2/3 to the user is presented for limnology, vegetation, aerosols, general classification routines and rapid mapping tasks. BRDF (Bidirectional Reflectance Distribution Function) issues are discussed and the spectral database SPECCHIO (Spectral Input/Output) introduced. The optical performance as well as the dedicated software utilities make APEX a state-of-the-art hyperspectral sensor, capable of (a) satisfying the needs of several research communities and (b) helping the understanding of the Earth's complex mechanisms.

  18. PRISM: a planned risk information seeking model.

    PubMed

    Kahlor, LeeAnn

    2010-06-01

    Recent attention on health-related information seeking has focused primarily on information seeking within specific health and health risk contexts. This study attempts to shift some of that focus to individual-level variables that may impact health risk information seeking across contexts. To locate these variables, the researcher posits an integrated model, the Planned Risk Information Seeking Model (PRISM). The model, which treats risk information seeking as a deliberate (planned) behavior, maps variables found in the Theory of Planned Behavior (TPB; Ajzen, 1991) and the Risk Information Seeking and Processing Model (RISP; Griffin, Dunwoody, & Neuwirth, 1999), and posits linkages among those variables. This effort is further informed by Kahlor's (2007) Augmented RISP, the Theory of Motivated Information Management (Afifi & Weiner, 2004), the Comprehensive Model of Information Seeking (Johnson & Meischke, 1993), the Health Information Acquisition Model (Freimuth, Stein, & Kean, 1989), and the Extended Parallel Processing Model (Witte, 1998). The resulting integrated model accounted for 59% of the variance in health risk information-seeking intent and performed better than the TPB or the RISP alone. PMID:20512716

  19. Advanced prism-grating-prism imaging spectrograph in online industrial applications

    NASA Astrophysics Data System (ADS)

    Vaarala, Tapio; Aikio, Mauri; Keraenen, Heimo

    1997-08-01

    Imaging spectrographs have traditionally been utilized in aerial and remote sensing applications. A novel, compact and inexpensive imaging spectrograph developed by VTT Electronics is now available. It contains a multichannel fiber optic sensor head, a dispersive prism-grating-prism (PGP) component and digital CCD matrix camera capable of area integration. In rolled steel manufacturing, a protective oil film is applied on steel to resist corrosion while in transport and storage. The main problems in the oiling machine are film thickness control and jet failures. In this application, the spectrum of fluorescence of an oil film was measured simultaneously with parallel fibers. A relatively simple calibration and analysis procedure was used to calculate the oil film thickness. On-line color control for color reproduction is essential in both consumer and industrial products. The instrument was tested and analyzed for measuring differences in color by multivariate analysis of the spectra and by color space coordinate estimation. In general, a continuous spectrum is not absolute requirement. In these two examples, filter-based measurement would probably cost less thana PGP spectrograph solution. On the other hand, by measuring the spectrum and using an advanced signal processing algorithm one production version will cover all installations in both applications. In practice, only the fiber sensor mechanics need to be modified.

  20. Effect of increased shear stress along a plate boundary fault on the formation of an out-of-sequence thrust and a break in surface slope within an accretionary wedge, based on numerical simulations

    NASA Astrophysics Data System (ADS)

    Miyakawa, Ayumu; Yamada, Yasuhiro; Matsuoka, Toshifumi

    2010-03-01

    We investigated the effect on accretionary wedge structure of increased shear stress, which describes the frictional sliding resistance along a decollement arising from an increase in material friction or reduction in pore pressure. To clarify the nature of the effect, we performed numerical simulations using two models: a Stable Friction model and an Increased Friction model. The Stable Friction model produced a low-angle, smooth, surface slope and an in-sequence thrust, whereas the Increased Friction model produced a break in surface slope (scarp) and an out-of-sequence thrust (OST) that cuts through the thrust sheet. The OST formed via the connection of segments of two adjacent thrusts, and its formation resulted in a change in the thickening mode of the wedge from thrust-sheet rotation and back-thrust activity to underplating. This contrast in thickening mode between the landward high-friction zone and seaward low-friction zone resulted in the formation of a clear break in slope, as the landward zone is steeper than the seaward zone, consistent with critical taper theory. The subduction of a basement slice or seamount can produce similar structures arising from an increase in resistance to basal shear sliding. However the distinctive structures arising in an accretionary wedge as a result of increased shear sliding resistance include a flat basal plane and absence of slope-failure sediments beneath the OST. These structural features are observed in accretionary wedges of the Nankai Trough off Muroto (Japan), the Sunda Strait, and the Barbados Ridge.

  1. A Middle Permian-Middle Triassic accretionary complex and a Late Triassic foredeep basin: Forerunners of an Indosinian (Late Triassic) thrust complex in the Thailand-Malaysia border area

    NASA Astrophysics Data System (ADS)

    Ridd, Michael F.

    2013-10-01

    The Semanggol Formation of NW Peninsular Malaysia is a Middle Permian-Late Triassic sequence of predominantly radiolarian chert, sandstone and mudstone (including turbidites), and conglomerate. The belt of country occupied by this unit extends into Thailand where various names including Na Thawi formation have been applied to its correlatives. Fossil evidence, particularly radiolarian, has established its age but also revealed that it is tectonically complex, with numerous out-of-sequence slices interpreted here to be caused by thrusting. The model proposed here involves, initially, in the Middle Permian, accumulation in the oceanward part of an accretionary complex as Palaeotethys began subducting beneath Indochina/East Malaya. This regime, it is proposed, continued until about the end of the Middle Triassic when Sibumasu collided with Indochina/East Malaya bringing an end to subduction. But as crustal shortening continued into the Late Triassic a foredeep basin formed in front of the now-inactive subduction zone and accretionary complex, and the youngest part of the Semanggol Formation was deposited. During this final stage the whole package of rocks comprising those in the accretionary complex and those deposited in the foredeep basin underwent lateral compression resulting in a thrust complex. The Semanggol Formation and its Thailand correlatives occupy part of a N-S belt of imbricately-thrust, deeper-water, sediments which include slope-deposited Carboniferous and Lower Permian beds. That belt is interpreted as a series of thrust slices juxtaposing rocks of different ages, referred to here as the Songkhla-Semanggol terrane. Its western boundary is a N-S line of inferred thrusting which coincides with a major westward facies change to platform carbonates of Middle Permian to Late Triassic age, called here the Rattaphum-Kodiang tectonic line.

  2. Late Cretaceous to early Tertiary transtension and strain partitioning in the Chugach Accretionary Complex, SE Alaska

    USGS Publications Warehouse

    Davis, J.S.; Roeske, S.M.; Karl, S.M.

    1998-01-01

    Shear zones in the Late Cretaceous Sitka Graywacke of the Chugach accretionary complex in southeast Alaska record constrictional finite strains, with maximum principal s tretches plunging shallowly subparallel to strike of the shear zones. Macrostructural analysis indicates the finite strain formed during one deformation event. Microstructural analysis of the shear zones shows that this deformation is ductile, promoted mostly through deformation of low-strength lithic clasts and pressure solution. Kinematic indicators from some of the shear zones indicate dominantly dextral motion. Although multiple scenarios can explain constrictional finite strains in a shear zone, these dextral strike-slip shear zones must have experienced a component of extension across them in order to generate constrictional finite strains. Therefore, the shear zones are dextral transtensional shear zones, an uncommon tectinic regime in an accretionary complex. The transtensional shear zones reflect strike-slip motion related to partitioning of Late Cretaceous to Early Tertiary right-oblique convergence between North America and the Farallon plate. The extensional component that was superposed on the strike-slip shear zones to generate transtension resulted from contemporaneous collapse of the forearc following thickening related to underplating.Shear zones in the Late Cretaceous Sitka Graywacke of the Chugach accretionary complex in southeast Alaska record constrictional finite strains, with maximum principal stretches plunging shallowy sub-parallel to strike of the shear zones. Macrostructural analysis indicates the finite strain formed during one deformation event. Microstructural analysis of the shear zones shows that this deformation is ductile, promoted mostly through deformation of low-strength lithic clasts and pressure solution. Kinematic indicators from some of the shear zones indicate dominantly dextral motion. Although multiple scenarios can explain constrictional finite strains

  3. PRISM3 Global Paleoclimate Reconstruction: A Global Warming Data Set

    NASA Astrophysics Data System (ADS)

    Dowsett, H. J.; Chandler, M. A.; Cronin, T. M.; Dwyer, G. S.; Haywood, A. M.; Hill, D. J.; Robinson, M. M.; Salzmann, U.; Williams, M.

    2007-12-01

    The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) Project provides a conceptual model and synoptic view of the earth during the last interval considerably warmer than modern (3.3 to 3.0 Ma) through reconstruction of sea-surface temperature (SST) and other paleoenvironmental parameters. The first PRISM reconstruction, with its foundation in a global network of paleontological analyses, was completed in the early 1990s. Since then, several significant revisions have been released culminating in the PRISM2 data set. The primary goal of PRISM remains a better understanding of the Earth's climate system during the mid-Pliocene, and to that end, includes the development of digital data sets for use with climate models. The new PRISM3 reconstruction, slated to be released early in 2008, has revised SST fields based upon integration of previous and new faunal and floral analyses with new geochemical proxies and biomarkers, a revised vegetation/land cover data set utilizing the BIOME 4 vegetation classification scheme, 3-dimensional land ice distribution based upon ice-sheet model experiments, new sea level estimates based upon stable isotopes and bottom water temperatures, and revised sea-ice distribution. A deep ocean temperature reconstruction, PRISM3D, adds a 3- dimensional component, which can be used for initiating coupled ocean-atmosphere GCM simulations. PRISM3 is a collaborative effort between the U.S. Geological Survey (USGS), National Science Foundation (NSF), National Aeronautics and Space Administration (NASA), British Antarctic Survey (BAS), and several national and international academic institutions (Columbia University, Duke University, George Mason University, University of Leeds and University of Leicester).

  4. The response to prism deviations in human infants.

    PubMed

    Riddell, P M; Horwood, A M; Houston, S M; Turner, J E

    1999-09-23

    Previous research has suggested that infants are unable to make a corrective eye movement in response to a small base-out prism placed in front of one eye before 14-16 weeks [1]. Three hypotheses have been proposed to explain this early inability, and each of these makes different predictions for the time of onset of a response to a larger prism. The first proposes that infants have a 'degraded sensory capacity' and so require a larger retinal disparity (difference in the position of the image on the retina of each eye) to stimulate disparity detectors [2]. This predicts that infants might respond at an earlier age than previously reported [1] when tested using a larger prism. The second hypothesis proposes that infants learn to respond to larger retinal disparities through practice with small disparities [3]. According to this theory, using a larger prism will not result in developmentally earlier responses, and may even delay the response. The third hypothesis proposes that the ability to respond to prismatic deviation depends on maturational factors indicated by the onset of stereopsis (the ability to detect depth in an image on the basis of retinal disparity cues only) [4] [5], predicting that the size of the prism is irrelevant. To differentiate between these hypotheses, we tested 192 infants ranging from 2 to 52 weeks of age using a larger prism. Results showed that 63% of infants of 5-8 weeks of age produced a corrective eye movement in response to placement of a prism in front of the eye when in the dark. Both the percentage of infants who produced a response, and the speed of the response, increased with age. These results suggest that infants can make corrective eye movements in response to large prismatic deviations before 14-16 weeks of age. This, in combination with other recent results [6], discounts previous hypotheses.

  5. Study of dose calculation on breast brachytherapy using prism TPS

    NASA Astrophysics Data System (ADS)

    Fendriani, Yoza; Haryanto, Freddy

    2015-09-01

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the first case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm3. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm3. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy.

  6. Prism adaptation changes the subjective proprioceptive localization of the hands.

    PubMed

    Scarpina, Federica; Van der Stigchel, Stefan; Nijboer, Tanja Cornelia Wilhelmina; Dijkerman, Hendrik Christiaan

    2015-03-01

    Prism adaptation involves a proprioceptive, a visual and a motor component. As the existing paradigms are not able to distinguish between these three components, the contribution of the proprioceptive component remains unclear. In the current study, a proprioceptive judgement task, in the absence of motor responses, was used to investigate how prism adaptation would specifically influences the felt position of the hands in healthy participants. The task was administered before and after adaptation to left and right displacing prisms using either the left or the right hand during the adaptation procedure. The results appeared to suggest that the prisms induced a drift in the felt position of the hands, although the after-effect depended on the combination of the pointing hand and the visual deviation induced by prisms. The results are interpreted as in line with the hypothesis of an asymmetrical neural architecture of somatosensory processing. Moreover, the passive proprioception of the hand position revealed different effects of proprioceptive re-alignment compared to active pointing straight ahead: different mechanisms about how visuo-proprioceptive discrepancy is resolved were hypothesized.

  7. Research on beam splitting prism in laser heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Fu, Xiu-hua; Xiong, Shi-fu; Kou, Yang; Pan, Yong-gang; Chen, Heng; Li, Zeng-yu; Zhang, Chuan-xin

    2014-08-01

    With the rapid development of optical testing technology, laser heterodyne interferometer has been used more and more widely. As the testing precision requirements continue to increase, the technical prism is an important component of heterodyne interference. The research utilizing thin film technology to improve optical performance of interferometer has been a new focus. In the article, based on the use requirements of interferometer beam splitting prism, select Ta2O5 and SiO2 as high and low refractive index materials respectively, deposit on substrate K9. With the help of TFCalc design software and Needle method, adopting electron gun evaporation and ion assisted deposition, the beam splitting prism is prepared successfully and the ratio of transmittance and reflectance for this beam splitting prism in 500~850 nm band, incident angle 45 degree is 8:2. After repeated tests, solved the difference problem of film deposition process parameters ,controlled thickness monitoring precision effectively and finally prepared the ideal beam splitting prism which is high adhesion and stable optics properties. The film the laser induced damage threshold and it meet the requirements of heterodyne interferometer for use.

  8. The Program for Regional and International Shorebird Monitoring (PRISM)

    USGS Publications Warehouse

    Bart, J.; Andres, B.; Brown, S.; Donaldson, G.; Harrington, B.; Johnston, V.; Jones, S.; Morrison, R.I.G.; Skagen, S.K.

    2005-01-01

    This report describes the a??Program for Regional and International Shorebird Monitoringa?? (PRISM). PRISM is being implemented by a Canada-United States Shorebird Monitoring and Assessment Committee formed in 2001 by the Canadian Shorebird Working Group and the U.S. Shorebird Council. PRISM provides a single blueprint for implementing the shorebird conservation plans recently completed in Canada and the United States. The goals of PRISM are to (1) estimate the size of breeding population of 74 shorebird taxa in North America; (2) describe the distribution, abundance, and habitat relationships for each of these taxa; (3) monitor trends in shorebird population size; (4) monitor shorebird numbers at stopover locations, and; (5) assist local managers in meeting their shorebird conservation goals. PRISM has four main components: arctic and boreal breeding surveys, temperate breeding surveys, temperate non-breeding surveys, and neotropical surveys. Progress on, and action items for, each major component are described. The more important major tasks for immediate action are carrying out the northern surveys, conducting regional analyses to design the program of migration counts, and evaluating aerial photographic surveys for migration and winter counts.

  9. Prism-based single-camera system for stereo display

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Cui, Xiaoyu; Wang, Zhiguo; Chen, Hongsheng; Fan, Heyu; Wu, Teresa

    2016-06-01

    This paper combines the prism and single camera and puts forward a method of stereo imaging with low cost. First of all, according to the principle of geometrical optics, we can deduce the relationship between the prism single-camera system and dual-camera system, and according to the principle of binocular vision we can deduce the relationship between binoculars and dual camera. Thus we can establish the relationship between the prism single-camera system and binoculars and get the positional relation of prism, camera, and object with the best effect of stereo display. Finally, using the active shutter stereo glasses of NVIDIA Company, we can realize the three-dimensional (3-D) display of the object. The experimental results show that the proposed approach can make use of the prism single-camera system to simulate the various observation manners of eyes. The stereo imaging system, which is designed by the method proposed by this paper, can restore the 3-D shape of the object being photographed factually.

  10. Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM)

    PubMed Central

    Skinnider, Michael A.; Dejong, Chris A.; Rees, Philip N.; Johnston, Chad W.; Li, Haoxin; Webster, Andrew L. H.; Wyatt, Morgan A.; Magarvey, Nathan A.

    2015-01-01

    Microbial natural products are an invaluable source of evolved bioactive small molecules and pharmaceutical agents. Next-generation and metagenomic sequencing indicates untapped genomic potential, yet high rediscovery rates of known metabolites increasingly frustrate conventional natural product screening programs. New methods to connect biosynthetic gene clusters to novel chemical scaffolds are therefore critical to enable the targeted discovery of genetically encoded natural products. Here, we present PRISM, a computational resource for the identification of biosynthetic gene clusters, prediction of genetically encoded nonribosomal peptides and type I and II polyketides, and bio- and cheminformatic dereplication of known natural products. PRISM implements novel algorithms which render it uniquely capable of predicting type II polyketides, deoxygenated sugars, and starter units, making it a comprehensive genome-guided chemical structure prediction engine. A library of 57 tailoring reactions is leveraged for combinatorial scaffold library generation when multiple potential substrates are consistent with biosynthetic logic. We compare the accuracy of PRISM to existing genomic analysis platforms. PRISM is an open-source, user-friendly web application available at http://magarveylab.ca/prism/. PMID:26442528

  11. Late Cretaceous to Early Tertiary transtension and strain partitioning in the Chugach accretionary complex, SE Alaska

    NASA Astrophysics Data System (ADS)

    Davis, J. Steven; Roeske, Sarah M.; Karl, Sue M.

    1998-05-01

    Shear zones in the Late Cretaceous Sitka Graywacke of the Chugach accretionary complex in southeast Alaska record constrictional finite strains, with maximum principal stretches plunging shallowly subparallel to strike of the shear zones. Macrostructural analysis indicates the finite strain formed during one deformation event. Microstructural analysis of the shear zones shows that this deformation is ductile, promoted mostly through deformation of low-strength lithic clasts and pressure solution. Kinematic indicators from some of the shear zones indicate dominantly dextral motion. Although multiple scenarios can explain constrictional finite strains in a shear zone, these dextral strike-slip shear zones must have experienced a component of extension across them in order to generate constrictional finite strains. Therefore, the shear zones are dextral transtensional shear zones, an uncommon tectonic regime in an accretionary complex. The transtensional shear zones reflect strike-slip motion related to partitioning of Late Cretaceous to Early Tertiary right-oblique convergence between North America and the Farallon plate. The extensional component that was superposed on the strike-slip shear zones to generate transtension resulted from contemporaneous collapse of the forearc following thickening related to underplating.

  12. Provenance analysis and detrital zircon geochronology on the onshore Makran accretionary wedge, SE Iran: implication for the geodynamic setting

    NASA Astrophysics Data System (ADS)

    Mohammadi, Ali; Burg, Jean-Pierre; Winkler, Wilfried; Ruh, Jonas

    2014-05-01

    The Makran, located in Southeast Iran and South Pakistan, is one of the largest accretionary wedges on Earth. In Iran it comprises turbiditic sediments ranging in age from Late Cretaceous to Holocene. We present a provenance analysis on sandstones, which is aimed at reconstructing the assemblages of source rocks and the tectonic setting from which the clastic material was derived. Sandstone samples collected from different units span the regional stratigraphy from Late Cretaceous to Miocene. Laser ablation ICP-MS resulted in ca 2800 new U-Pb ages of individual detrital zircons from 18 samples collected in onshore Makran. 101 detrital zircons from a Late Cretaceous fine grained sandstone range from 180 to 160 Ma (Middle Jurassic). 478 detrital zircons from mid- to late Eocene sandstones allow differentiating a NE and NW sector of the Makran Basin. Zircon grains in the NE basin belong to two populations peaking at 180 to 160 Ma (late Early to Middle Jurassic) and 50 to 40 Ma (Mid-Eocene), with the noticeable absence of Cretaceous grains. In the NW basin, detrital zircons are 120 to 40 Ma (late Early Cretaceous to Lutetian, Eocene). 587 detrital zircon grains from fine to medium grained Oligocene sandstones collected over the whole area also range from 120 to 40 Ma (late Early Cretaceous to Eocene, Lutetian). 1611 detrital zircons from early Miocene sandstones show again distinctly different ages in the eastern and western parts of the basin. They range from 120 to 40 Ma (late Early Cretaceous to Eocene) in the eastern and from 80 to 40 Ma (Late Cretaceous to Eocene) in the western basin. Hf isotopes analyses were performed on 120 zircon grains from 6 samples. Negative values (-2 to -15) in Middle Jurassic and late Early Cretaceous zircons indicate minor or no influence of mantle reservoirs which implies a rifting setting during crystallization of the zircons. Low negative to positive (-5 to +10) values in Late Cretaceous and Eocene zircons indicate mixed crustal and

  13. Effects of stress paths on physical properties of sediments at the Nankai Trough subduction zone

    NASA Astrophysics Data System (ADS)

    Kitajima, H.; Saffer, D. M.

    2011-12-01

    Stress states are one of the most important factors governing deformation modes and fault strength. In subduction systems where tectonic stress is large, sediments are subjected to complicated stress conditions in time and space. Because direct measurements of stress are very limited, stress conditions at depths have been estimated by combining seismic reflection data with empirical relations between compressional-wave, porosity, and effective stress [Tsuji et al., 2008; Tobin and Saffer, 2009]. However, most of the empirical relations are derived from experiments conducted under isotropic conditions, and do not account for the more complicated stress states expected in active subduction-accretion complexes. In this study, we aim to derive relations between physical properties and stress states from triaxial deformation experiments on sediments. During the Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Expeditions 314, 315, 319, 322, and 333, core samples were recovered from shallow boreholes into the accretionary prism and two sites seaward of the deformation front (reference sites). We used core samples from reference sites (Sites C0011 and C0012) for this study because they represent input material for the subduction system, and have not been subjected to tectonic compression in the accretionary wedge. In our deformation tests, samples are loaded under a range of different stress paths including isotropic loading, triaxial compression, and triaxial extension by controlling axial stress (up to 100 MPa), confining pressure (up to 100 MPa), and pore pressure (0.5-28 MPa). During tests, all pressures, axial displacement, and pore volume change were monitored. Permeability, and ultrasonic velocity were also measured during the tests. Two experiments have been conducted on samples taken from the core 322-C0011B-19R-5 (Lower Shikoku Basin hemipelagic mudstone, initial porosity of 43 %). The first test was conducted

  14. Enhanced scanning agility using a double pair of Risley prisms.

    PubMed

    Roy, Gilles; Cao, Xiaoying; Bernier, Robert; Roy, Simon

    2015-12-01

    Scanners with one pair of Risley prisms are robust and precise and they can be operated continuously. In this paper, we present a new scanner based on the use of two pairs of Risley prisms. The concept was driven by the need to add flexibility to Risley prism scanners used for lidar 3D mapping applications, while maintaining compactness and robustness. The first pair covers a FOV narrower than the second pair. The second pair is used to position the first Risley pair scan pattern anywhere within its own, larger, FOV. Doing so, it becomes possible, without additional scanner components, to increase the sampling point density at a specific location, to increase the sampling uniformity of the scanned area, and, while in motion, to maintain the sampling of a specific area of interest. PMID:26836680

  15. Interpretation of the Faust equation for a conventional refracting prism

    NASA Astrophysics Data System (ADS)

    Tewari, R. D.; Ghodgaonkar, A. M.; Gokhale, V. D.

    1995-10-01

    The Faust formula for a conventional refracting prism is interpreted in terms of the angle of incidence ( i1) and the angle of deviation (δ). Three new possibilities emerge, namely: (a) keeping the angle of incidence ( i1) constant and varying the angle of deviation (δ); (b) keeping the angle of deviation constant and varying the angle of incidence ( i1); (c) modification of the closed forms of Murty's expression and its equivalence to (b). Using paraxial approximation and keeping the angle of incidence ( i1) and angle of deviation (δ) constant we obtain a relation between the refractive index and the base length ( b) of a prism and, in principle, this is equivalent to the Marcuse variation for optical fibres. The condition for a Littrow prism, as well as for polarized radiation is derived. An expression to estimate the spectral bandwidth (SBW) of the instrument is also derived. Experimental values of refractive index at different wavelengths are within confidence limits.

  16. The PRISM4 (mid-Piacenzian) Palaeoenvironmental Reconstruction

    NASA Technical Reports Server (NTRS)

    Dowsett, Harry; Dolan, Aisling; Rowley, David; Moucha, Robert; Forte, Alessandro M.; Mitrovica, Jerry X.; Pound, Matthew; Salzmann, Ulrich; Robinson, Marci; Chandler, Mark; Foley, Kevin; Haywood, Alan

    2016-01-01

    The mid-Piacenzian is known as a period of relative warmth when compared to the present day. A comprehensive understanding of conditions during the Piacenzian serves as both a conceptual model and a source for boundary conditions as well as means of verification of global climate model experiments. In this paper we present the PRISM4 reconstruction, a paleoenvironmental reconstruction of the mid-Piacenzian (approximately 3 Ma) containing data for paleogeography, land and sea ice, sea-surface temperature, vegetation, soils, and lakes. Our retrodicted paleogeography takes into account glacial isostatic adjustments and changes in dynamic topography. Soils and lakes, both significant as land surface features, are introduced to the PRISM reconstruction for the first time. Sea-surface temperature and vegetation reconstructions are unchanged but now have confidence assessments. The PRISM4 reconstruction is being used as boundary condition data for the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) experiments.

  17. The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction

    NASA Astrophysics Data System (ADS)

    Dowsett, Harry; Dolan, Aisling; Rowley, David; Moucha, Robert; Forte, Alessandro M.; Mitrovica, Jerry X.; Pound, Matthew; Salzmann, Ulrich; Robinson, Marci; Chandler, Mark; Foley, Kevin; Haywood, Alan

    2016-07-01

    The mid-Piacenzian is known as a period of relative warmth when compared to the present day. A comprehensive understanding of conditions during the Piacenzian serves as both a conceptual model and a source for boundary conditions as well as means of verification of global climate model experiments. In this paper we present the PRISM4 reconstruction, a paleoenvironmental reconstruction of the mid-Piacenzian ( ˜ 3 Ma) containing data for paleogeography, land and sea ice, sea-surface temperature, vegetation, soils, and lakes. Our retrodicted paleogeography takes into account glacial isostatic adjustments and changes in dynamic topography. Soils and lakes, both significant as land surface features, are introduced to the PRISM reconstruction for the first time. Sea-surface temperature and vegetation reconstructions are unchanged but now have confidence assessments. The PRISM4 reconstruction is being used as boundary condition data for the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) experiments.

  18. Enhanced scanning agility using a double pair of Risley prisms.

    PubMed

    Roy, Gilles; Cao, Xiaoying; Bernier, Robert; Roy, Simon

    2015-12-01

    Scanners with one pair of Risley prisms are robust and precise and they can be operated continuously. In this paper, we present a new scanner based on the use of two pairs of Risley prisms. The concept was driven by the need to add flexibility to Risley prism scanners used for lidar 3D mapping applications, while maintaining compactness and robustness. The first pair covers a FOV narrower than the second pair. The second pair is used to position the first Risley pair scan pattern anywhere within its own, larger, FOV. Doing so, it becomes possible, without additional scanner components, to increase the sampling point density at a specific location, to increase the sampling uniformity of the scanned area, and, while in motion, to maintain the sampling of a specific area of interest.

  19. Quartz-Enhanced Photoacoustic Spectroscopy with Right-Angle Prism

    PubMed Central

    Liu, Yongning; Chang, Jun; Lian, Jie; Liu, Zhaojun; Wang, Qiang; Qin, Zengguang

    2016-01-01

    A right-angle prism was used to enhance the acoustic signal of a quartz-enhanced photoacoustic spectroscopy (QEPAS) system. The incident laser beam was parallelly inverted by the right-angle prism and passed through the gap between two tuning fork prongs again to produce another acoustic excitation. Correspondingly, two pairs of rigid metal tubes were used as acoustic resonators with resonance enhancement factors of 16 and 12, respectively. The QEPAS signal was enhanced by a factor of 22.4 compared with the original signal, which was acquired without resonators or a prism. In addition, the system noise was reduced a little with double resonators due to the Q factor decrease. The signal-to-noise ratio (SNR) was greatly improved. Additionally, a normalized noise equivalent absorption coefficient (NNEA) of 5.8 × 10−8 W·cm−1·Hz−1/2 was achieved for water vapor detection in the atmosphere. PMID:26861344

  20. The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction

    USGS Publications Warehouse

    Dowsett, Harry J.; Dolan, Aisling M.; Rowley, David; Moucha, Robert; Forte, Alessandro; Mitrovica, Jerry X.; Pound, Matthew; Salzmann, Ulrich; Robinson, Marci M.; Chandler, Mark; Foley, Kevin M.; Haywood, Alan M.

    2016-01-01

    The mid-Piacenzian is known as a period of relative warmth when compared to the present day. A comprehensive understanding of conditions during the Piacenzian serves as both a conceptual model and a source for boundary conditions as well as means of verification of global climate model experiments. In this paper we present the PRISM4 reconstruction, a paleoenvironmental reconstruction of the mid-Piacenzian ( ∼ 3 Ma) containing data for paleogeography, land and sea ice, sea-surface temperature, vegetation, soils, and lakes. Our retrodicted paleogeography takes into account glacial isostatic adjustments and changes in dynamic topography. Soils and lakes, both significant as land surface features, are introduced to the PRISM reconstruction for the first time. Sea-surface temperature and vegetation reconstructions are unchanged but now have confidence assessments. The PRISM4 reconstruction is being used as boundary condition data for the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) experiments.

  1. Cerebellar inactivation impairs memory of learned prism gaze-reach calibrations

    PubMed Central

    Hathaway, Emily N.; Taylor, Jordan A.; Thach, W. Thomas

    2011-01-01

    Three monkeys performed a visually guided reach-touch task with and without laterally displacing prisms. The prisms offset the normally aligned gaze/reach and subsequent touch. Naive monkeys showed adaptation, such that on repeated prism trials the gaze-reach angle widened and touches hit nearer the target. On the first subsequent no-prism trial the monkeys exhibited an aftereffect, such that the widened gaze-reach angle persisted and touches missed the target in the direction opposite that of initial prism-induced error. After 20–30 days of training, monkeys showed long-term learning and storage of the prism gaze-reach calibration: they switched between prism and no-prism and touched the target on the first trials without adaptation or aftereffect. Injections of lidocaine into posterolateral cerebellar cortex or muscimol or lidocaine into dentate nucleus temporarily inactivated these structures. Immediately after injections into cortex or dentate, reaches were displaced in the direction of prism-displaced gaze, but no-prism reaches were relatively unimpaired. There was little or no adaptation on the day of injection. On days after injection, there was no adaptation and both prism and no-prism reaches were horizontally, and often vertically, displaced. A single permanent lesion (kainic acid) in the lateral dentate nucleus of one monkey immediately impaired only the learned prism gaze-reach calibration and in subsequent days disrupted both learning and performance. This effect persisted for the 18 days of observation, with little or no adaptation. PMID:21389311

  2. Kaleidoscope modes in large aperture Porro prism resonators.

    PubMed

    Burger, Liesl; Forbes, Andrew

    2008-08-18

    We apply a new method of modeling Porro prism resonators, using the concept of rotating loss screens, to study stable and unstable Porro prism resonator. We show that the previously observed petal--like modal output is in fact only the lowest order mode, and reveal that a variety of kaleidoscope beam modes will be produced by these resonators when the intra--cavity apertures are sufficiently large to allow higher order modes to oscillate. We also show that only stable resonators will produce these modes. PMID:18711509

  3. Imaging of neuronal tissue using a prism adjunct

    NASA Astrophysics Data System (ADS)

    Broadbridge, Philip; Bradu, Adrian; Lall, Gurprit; Podoleanu, Adrian G.

    2014-03-01

    We present the use of a prism as an imaging adjunct with a multimodal system of optical coherence tomography and confocal microscopy operating at 1320 nm and 970 nm respectively. A comparison is performed between en-face OCT images acquired using the system and cross section OCT images obtained through a prism inserted into neuronal tissue of an intact ex-vivo murine brain. The en-face images and cross section images are scans of the same area; however each method has shown different aspects, allowing for greater interpretation of the neuronal tissue.

  4. Beam distortion of rotation double prisms with an arbitrary incident angle.

    PubMed

    Li, Anhu; Zuo, Qiyou; Sun, Wansong; Yi, Wanli

    2016-07-01

    The distortion of beam shape in rotation Risley prisms is discussed in this paper. Using the ray-tracing method based on vector refraction theorem, a rigorous theoretical model of beam distortion with an arbitrary incident angle is established to explore the influencing factors. For a specified double-prism pair, the emergent beam is squeezed in one direction while stretched in the mutual perpendicular direction, the distortion of which is determined by the relative rotation angle. Moreover, the distortion of beam shape is greatly influenced by the wedge angles and the refractive indices of the prisms, as well as different double-prism configurations, while uncorrelated to the prism thickness and the distance between two prisms. This paper demonstrates the regular change of the beam shape with multiparameter variations in rotation double prisms, which can be applied to the design of rotation double-prism systems. PMID:27409205

  5. Beam distortion of rotation double prisms with an arbitrary incident angle.

    PubMed

    Li, Anhu; Zuo, Qiyou; Sun, Wansong; Yi, Wanli

    2016-07-01

    The distortion of beam shape in rotation Risley prisms is discussed in this paper. Using the ray-tracing method based on vector refraction theorem, a rigorous theoretical model of beam distortion with an arbitrary incident angle is established to explore the influencing factors. For a specified double-prism pair, the emergent beam is squeezed in one direction while stretched in the mutual perpendicular direction, the distortion of which is determined by the relative rotation angle. Moreover, the distortion of beam shape is greatly influenced by the wedge angles and the refractive indices of the prisms, as well as different double-prism configurations, while uncorrelated to the prism thickness and the distance between two prisms. This paper demonstrates the regular change of the beam shape with multiparameter variations in rotation double prisms, which can be applied to the design of rotation double-prism systems.

  6. Middle Jurassic oceanic island igneous rocks of the Raohe accretionary complex, northeastern China: Petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Hui; Ge, Wen-Chun; Yang, Hao; Zhang, Yan-Long; Bi, Jun-Hui; Tian, De-Xin; Xu, Wen-Liang

    2015-11-01

    Whole-rock major and trace element, and Sr, Nd, and Hf isotopic data, together with zircon U-Pb ages and in situ zircon Hf isotopes, are reported for Middle Jurassic igneous rocks of the Raohe accretionary complex, northeastern China, to investigate their petrogenesis and tectonic implications. The igneous rocks consist of pillow basalt, pyroxenite, gabbro, plagioclasite, and plagiogranite. The zircons from one plagioclasite and one plagiogranite are euhedral-subhedral and display fine-scale oscillatory growth zoning, indicating a magmatic origin. Zircon U-Pb dating gives an emplacement age of 169-167 Ma. The basalts are associated with late Paleozoic to middle Mesozoic sediments typical of ocean plate stratigraphy; i.e., limestone, bedded chert, and siliceous shale. The basalts, which show geochemical features similar to those of oceanic island basalts (OIBs), are enriched in TiO2, light rare earth elements (LREEs) (average: La/Smn = 2.12), and Nb (average: Zr/Nb = 12.24), and are characterized by positive Nb anomalies (averages: Nb/Thpm = 1.46, Nb/Lapm = 1.31). The rocks are depleted in heavy rare earth elements (HREEs) (average: Gd/Ybn = 2.03) and exhibit high εNd(t) (+8.2 to +8.3) and εHf(t) (+9.0 to +9.1) values. The geochemical features indicate the Jurassic OIB-like basalts were derived by a low degree of partial melting (<5%) of peridotite in the garnet stability field. The intermediate-mafic intrusive rocks show typical OIB affinities and are geochemically similar to the basalts. Most of the intermediate-mafic intrusive rocks are enriched in LREEs and Nb, depleted in HREEs, and show low Zr/Nb ratios and high εNd(t) (+7.2 to +8.2) and εHf(t) (+8.8 to +10.3) values, indicating they were derived from a common source and are the products of fractional crystallization of the OIB-like basalts. All of the igneous rocks are likely fragments of oceanic islands/seamounts. The identification of OIB-like basalts and associated intermediate-mafic intrusive rocks

  7. Experimental volcanic ash aggregation: Internal structuring of accretionary lapilli and the role of liquid bonding

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Ayris, Paul M.; Jacob, Michael; Dingwell, Donald B.

    2016-01-01

    Explosive volcanic eruptions can release vast quantities of pyroclastic material into Earth's atmosphere, including volcanic ash, particles with diameters less than two millimeters. Ash particles can cluster together to form aggregates, in some cases reaching up to several centimeters in size. Aggregation alters ash transport and settling behavior compared to un-aggregated particles, influencing ash distribution and deposit stratigraphy. Accretionary lapilli, the most commonly preserved type of aggregates within the geologic record, can exhibit complex internal stratigraphy. The processes involved in the formation and preservation of these aggregates remain poorly constrained quantitatively. In this study, we simulate the variable gas-particle flow conditions which may be encountered within eruption plumes and pyroclastic density currents via laboratory experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH. In this apparatus, solid particles are set into motion in a fluidized bed over a range of well-controlled boundary conditions (particle concentration, air flow rate, gas temperature, humidity, liquid composition). Experiments were conducted with soda-lime glass beads and natural volcanic ash particles under a range of experimental conditions. Both glass beads and volcanic ash exhibited the capacity for aggregation, but stable aggregates could only be produced when materials were coated with high but volcanically-relevant concentrations of NaCl. The growth and structure of aggregates was dependent on the initial granulometry, while the rate of aggregate formation increased exponentially with increasing relative humidity (12-45% RH), before overwetting promoted mud droplet formation. Notably, by use of a broad granulometry, we generated spherical, internally structured aggregates similar to some accretionary pellets found in volcanic deposits. Adaptation of a powder-technology model offers an explanation for the origin of natural accretionary

  8. Accretionary lapilli, tektites, or concretions: the ubiquitous spherules of Meridiani Planum

    NASA Astrophysics Data System (ADS)

    DiGregorio, Barry E.

    2004-11-01

    One of the most enigmatic discoveries made by the NASA Mars Exploration Rover Opportunity (MER-B) at the Meridiani Planum landing site are the ubiquitous spherules referred to as "blueberries" by the science team. They cover the entire landing area and can be seen in every direction within view of the rover cameras. Subsequent analysis of a small grouping of the spherules laying on top of a rock outcrop by Mossbauer spectroscopy showed an intense hematite signature not found on the rock or in the surrounding basaltic soils. Spherules were also found attached to and embedded within sedimentary sulfate rock outcrops found at the landing area that have been determined by the MER science team as having been formed in an acidic liquid water environment. The appearance of most of the Meridiani spherules is strikingly similar to the morphology and size of terrestrial accretionary lapilli and show similarities to terrestrial tektites. Accretionary lapilli are spherical balls and fragments with a concentric layered structure that are formed by a variety of mechanisms including hydrovolcanic eruptions, geysers and large meteorite impacts in water. Tektites are glassy impact spherules that form as a result of large meteorite impacts and also seem apparent in some of the rover images. Tektites can be perfectly spherical or have teardrop and dumbbell shapes. A lack of a visible volcanic source capable of producing high volumes of accretionary lapilli as seen in the MER-B images, in combination with the strong spectral signature of hematite, that some of the spherules display, led the MER science team to favor a concretion hypothesis thus far. All of these types of spherules involve interaction of with surface water or ice to form. Problems exist in explaining how the Martian "concretions", if that is indeed what they are, are of such uniform size and have such a wide distribution. Evidence from Martian orbit and on the surface indicate that the Meridiani Planum landing ellipse

  9. Simple Method For Testing Of The 90° Angle Of A Reflecting Prism

    NASA Astrophysics Data System (ADS)

    Ghodgaonkar, A. M.; Tiwari, R. D.; Ramani, K.

    1982-12-01

    A simple method for testing the 90° angle of a reflecting prism by placing two prisms in contact with one another on a standard test plate and counting the number of fringes is outlined. An angle accuracy of less than a second for the angle of a 90° reflecting prism has been obtained.

  10. 49 CFR 390.203 - PRISM State registration/biennial updates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false PRISM State registration/biennial updates. 390.203... FEDERAL MOTOR CARRIER SAFETY REGULATIONS; GENERAL Unified Registration System § 390.203 PRISM State... the Performance and Registration Information Systems Management (PRISM) program (authorized...

  11. 49 CFR 390.203 - PRISM State registration/biennial updates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false PRISM State registration/biennial updates. 390.203... FEDERAL MOTOR CARRIER SAFETY REGULATIONS; GENERAL Unified Registration System § 390.203 PRISM State... the Performance and Registration Information Systems Management (PRISM) program (authorized...

  12. Early Jurassic Volcanic Rocks from the Raohe Accretionary Complex of NE China: Petrogenesis and Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Ge, Wenchun

    2016-04-01

    The Raohe accretionary complex is located at the boundary between the Russian Far East and Northeast China, and is an important part of the Western Pacific Ocean tectonic regime. However, owing to the lack of precise age and geochemical constraints, the tectonic setting and petrogenesis of magmatic rocks in this area have been controversial, which has led to the debate on crustal growth mechanisms and subduction accretionary processes in the Northeast China. Herein, we report newly-defined calc-alkaline andesites, dacites, rhyolites, Nb-enriched basaltic-andesites and andesites, and N-MORB type basalts and basaltic-andesites from the Raohe accretionary complex, NE China. All these volcanic rocks are collected from rocks mapped previously as the Late Triassic to Early Jurassic stratums. LA-ICP-MS zircon U-Pb dating for one andesite, one dacites and three rhyolites indicate the occurrence of magmatic events in the Early Jurassic (186-174 Ma). They have positive ɛHf(t) values of +3.4 to +10.6 and relatively high (87Sr/86Sr)i values of 0.704711 to 0.710235. The calc-alkaline andesites, dacites and rhyolites are typical arc magmas, with moderately enriched LILEs and LREEs, distinctly negative HFSEs, consistent with the chemistry of volcanic rocks from an active continental margin setting. The Nb-enriched basaltic-andesites and andesites have higher TiO2, Nb, and Zr contents, higher Nb/Ta (24.03-87.60), Nb/U (11.89-75.94), (Nb/Th)PM (0.67-2.70), and (Nb/La)PM (1.95-5.00) ratios than typical arc basalts. They are relatively enriched in Nb, Zr, Hf and Ti. They have negative ɛNd(t) values of -5.47 to -6.04 and relatively variable (87Sr/86Sr)i values of 0.704648 to 0.711430, suggesting that they were possibly generated by a partial melting of mantle wedge peridotites metasomatized by slab-derived adakitic melts and minor fluids. The N-MORB type basalts and basaltic-andesites have comparatively low TiO2 concentrations (1.18-1.42 wt.%), show almost flat REE patterns with

  13. Mechanics of fold-and-thrust belts and accretionary wedges Cohesive Coulomb theory

    NASA Technical Reports Server (NTRS)

    Dahlen, F. A.; Suppe, J.; Davis, D.

    1984-01-01

    A self-consistent theory for the mechanics of thin-skinned accretionary Coulomb wedges is developed and applied to the active fold-and-thrust belt of western Taiwan. The state of stress everywhere within a critical wedge is determined by solving the static equilibrium equations subject to the appropriate boundary conditions. The influence of wedge cohesion, which gives rise to a concave curvature of the critical topographic surface and affects the orientation of the principal stresses and Coulomb fracture within the wedge, is considered. The shape of the topographic surface and the angles at which thrust faults step up from the basal decollement in the Taiwanese belt is analyzed taking into account the extensive structural and fluid-pressure data available there. It is concluded that the gross geometry and structure of the Taiwan wedge are consistent with normal laboratory frictional and fracture strengths of sedimentary rocks.

  14. Synthesis and photocatalytic activity of porous bismuth oxychloride hexagonal prisms.

    PubMed

    Ding, Liyong; Chen, Huan; Wang, Qingqian; Zhou, Tengfei; Jiang, Qingqing; Yuan, Yuhong; Li, Jinlin; Hu, Juncheng

    2016-01-18

    Porous BiOCl hexagonal prisms have been successfully prepared through a simple solvothermal route. These novel BiOCl HPs with porous structures are assembled from nanoparticles and exhibit high activity and selectivity toward the photocatalytic aerobic oxidation of benzyl alcohol to benzaldehyde and degradation of methyl orange. PMID:26592759

  15. Design of airborne imaging spectrometer based on curved prism

    NASA Astrophysics Data System (ADS)

    Nie, Yunfeng; Xiangli, Bin; Zhou, Jinsong; Wei, Xiaoxiao

    2011-11-01

    A novel moderate-resolution imaging spectrometer spreading from visible wavelength to near infrared wavelength range with a spectral resolution of 10 nm, which combines curved prisms with the Offner configuration, is introduced. Compared to conventional imaging spectrometers based on dispersive prism or diffractive grating, this design possesses characteristics of small size, compact structure, low mass as well as little spectral line curve (smile) and spectral band curve (keystone or frown). Besides, the usage of compound curved prisms with two or more different materials can greatly reduce the nonlinearity inevitably brought by prismatic dispersion. The utilization ratio of light radiation is much higher than imaging spectrometer of the same type based on combination of diffractive grating and concentric optics. In this paper, the Seidel aberration theory of curved prism and the optical principles of Offner configuration are illuminated firstly. Then the optical design layout of the spectrometer is presented, and the performance evaluation of this design, including spot diagram and MTF, is analyzed. To step further, several types of telescope matching this system are provided. This work provides an innovational perspective upon optical system design of airborne spectral imagers; therefore, it can offer theoretic guide for imaging spectrometer of the same kind.

  16. Liquid-crystal prisms for tip-tilt adaptive optics.

    PubMed

    Love, G D; Major, J V; Purvis, A

    1994-08-01

    Results from an electrically addressed liquid-crystal cell producing continuous phase profiles are presented. The adaptive deflection of a beam of light for use in a tip-tilt adaptive optics system is demonstrated. We compare the optical performance of liquid-crystal prisms with experimental data on atmospheric seeing at the William Herschel Telescope.

  17. A Precision Variable, Double Prism Attenuator for CO(2) Lasers.

    PubMed

    Oseki, T; Saito, S

    1971-01-01

    A precision, double prism attenuator for CO(2) lasers, calibrated by its gap capacitance, was constructed to evaluate its possible use as a standard for attenuation measurements. It was found that the accuracy was about 0.1 dB with a dynamic range of about 40 dB.

  18. Liquid-crystal prisms for tip-tilt adaptive optics.

    PubMed

    Love, G D; Major, J V; Purvis, A

    1994-08-01

    Results from an electrically addressed liquid-crystal cell producing continuous phase profiles are presented. The adaptive deflection of a beam of light for use in a tip-tilt adaptive optics system is demonstrated. We compare the optical performance of liquid-crystal prisms with experimental data on atmospheric seeing at the William Herschel Telescope. PMID:19844566

  19. The Portable Remote Imaging Spectrometer (PRISM) Coastal Ocean Sensor

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; VanGorp, Byron E.; Green, Robert O.; Eastwppd, Michael; Wilson, Daniel W.; Richardson, Brandon; Dierssen, Heidi

    2012-01-01

    PRISM is an airborne pushbroom imaging spectrometer intended to address the needs of airborne coastal ocean science research. Its critical characteristics are high throughput and signal-to-noise ratio, high uniformity of response to reduce spectral artifacts, and low polarization sensitivity. We give a brief overview of the instrument and results from laboratory calibration measurements regarding the spatial, spectral, radiometric and polarization characteristics.

  20. Portable Remote Imaging Spectrometer (PRISM): Laboratory and Field Calibration

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; Van Gorp, Byron; Green, Robert O.; Eastwood, Michael; Boardman, Joseph; Richardson, Brandon S.; Rodriguez, Jose I.; Urquiza, Eugenio; Franklin, Brian D.; Gao, Bo-Cai

    2012-01-01

    We report the characteristics of the Portable Remote Imaging Spectrometer, an airborne sensor specifically designed for the challenges of coastal ocean research. PRISM has high signal to noise ratio and uniformity, as well as low polarization sensitivity. Acquisition of high quality data has been demonstrated with the first engineering flight.

  1. Cardiac rate detection method based on the beam splitter prism

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Liu, Xiaohua; Liu, Ming; Zhao, Yuejin; Dong, Liquan; Zhao, Ruirui; Jin, Xiaoli; Zhao, Jingsheng

    2013-09-01

    A new cardiac rate measurement method is proposed. Through the beam splitter prism, the common-path optical system of transmitting and receiving signals is achieved. By the focusing effect of the lens, the small amplitude motion artifact is inhibited and the signal-to-noise is improved. The cardiac rate is obtained based on the PhotoPlethysmoGraphy (PPG). We use LED as the light source and use photoelectric diode as the receiving tube. The LED and the photoelectric diode are on the different sides of the beam splitter prism and they form the optical system. The signal processing and display unit is composed by the signal processing circuit, data acquisition device and computer. The light emitted by the modulated LED is collimated by the lens and irradiates the measurement target through the beam splitter prism. The light reflected by the target is focused on the receiving tube through the beam splitter prism and another lens. The signal received by the photoelectric diode is processed by the analog circuit and obtained by the data acquisition device. Through the filtering and Fast Fourier Transform, the cardiac rate is achieved. We get the real time cardiac rate by the moving average method. We experiment with 30 volunteers, containing different genders and different ages. We compare the signals captured by this method to a conventional PPG signal captured concurrently from a finger. The results of the experiments are all relatively agreeable and the biggest deviation value is about 2bmp.

  2. 2. GENERAL VIEW ACROSS CANAL PRISM TO TOWPATH BERM SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW ACROSS CANAL PRISM TO TOWPATH BERM SOUTH OF THE SPILLWAY; VIEW TO SOUTHWEST FROM ROUTE 146 EMBANKMENT. - Blackstone Canal Millbury Segment, Beginning northwest of State Route 146 & McCracken Road, running along west side of Route 146, Millbury, Worcester County, MA

  3. 4. VIEW SOUTH SHOWING AQUEDUCT PRISM. NOTE 1920 TIMBER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW SOUTH SHOWING AQUEDUCT PRISM. NOTE 1920 TIMBER AND CONCRETE FLOORING SYSTEM, POCKETS FOR VERTICAL POSTS AND BRIDGING, STEEL BRACES ADDED BY THE NATIONAL PARK SERVICE CIRCA 1962. - Chesapeake & Ohio Canal, Conococheague Creek Aqueduct, Milepost 99.80, Williamsport, Washington County, MD

  4. 3. VIEW SOUTH SHOWING AQUEDUCT PRISM. NOTE 1920 TIMBER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW SOUTH SHOWING AQUEDUCT PRISM. NOTE 1920 TIMBER AND CONCRETE FLOORING SYSTEM, CUT STONE FACE OF PARAPET WALL, AND WROUGHT IRON BOLTS USED TO SECURE THE RUBBING RAIL. - Chesapeake & Ohio Canal, Conococheague Creek Aqueduct, Milepost 99.80, Williamsport, Washington County, MD

  5. 3. GENERAL VIEW ACROSS CANAL PRISM TO TOWPATH BERM NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. GENERAL VIEW ACROSS CANAL PRISM TO TOWPATH BERM NORTH OF THE SPILLWAY; VIEW TO WEST FROM ROUTE 146 EMBANKMENT. - Blackstone Canal Millbury Segment, Beginning northwest of State Route 146 & McCracken Road, running along west side of Route 146, Millbury, Worcester County, MA

  6. Budding Architects: Exploring the Designs of Pyramids and Prisms

    ERIC Educational Resources Information Center

    Leavy, Aisling; Hourigan, Mairéad

    2015-01-01

    The context of students as architects is used to examine the similarities and differences between prisms and pyramids. Leavy and Hourigan use the Van Hiele Model as a tool to support teachers to develop expectations for differentiating geometry in the classroom using practical examples.

  7. Simulation of electrically controlled nematic liquid crystal Rochon prism

    NASA Astrophysics Data System (ADS)

    Buczkowska, M.; Derfel, G.

    2016-09-01

    Operation of an electrically controlled beam steering device based on Rochon prism made by use of nematic liquid crystal is modelled numerically. Deflection angles and angular distribution of light intensity in the deflected beam are calculated. Dynamics of the device is studied. Advantage of application of dual frequency nematic liquid crystal is demonstrated. Role of flexoelectric properties of the nematic is analyzed.

  8. The Pacific Oaks College's Prism Principles Professional Development Approach

    ERIC Educational Resources Information Center

    Beyer, Kalani

    2012-01-01

    In a struggling atmosphere for education, one college is optimistic about the future by offering school districts its PRISM Principles professional development as a means to ensure that "no child is left behind." Pacific Oaks College & Children's School is known for its premiere programs in early childhood education, human…

  9. Synthesis and photocatalytic activity of porous bismuth oxychloride hexagonal prisms.

    PubMed

    Ding, Liyong; Chen, Huan; Wang, Qingqian; Zhou, Tengfei; Jiang, Qingqing; Yuan, Yuhong; Li, Jinlin; Hu, Juncheng

    2016-01-18

    Porous BiOCl hexagonal prisms have been successfully prepared through a simple solvothermal route. These novel BiOCl HPs with porous structures are assembled from nanoparticles and exhibit high activity and selectivity toward the photocatalytic aerobic oxidation of benzyl alcohol to benzaldehyde and degradation of methyl orange.

  10. Compact prisms for polarisation splitting of fibre laser beams

    SciTech Connect

    Davydov, B L; Yagodkin, D I

    2005-11-30

    Simple compact monoprisms for spatial splitting of polarised laser beams with relatively small diameters (no more than 1 mm) are considered. Prisms can be made of optically inactive CaCO{sub 3}, {alpha}-BaB{sub 2}O{sub 4} ({alpha}-BBO), LiIO{sub 3}, LiNbO{sub 3}, YVO{sub 4}, and TiO{sub 2} crystals known in polarisation optics. The exact solution of the Snell equation for the extraordinary wave reflected from a surface arbitrarily tilted to its wave vector is obtained. The analysis of variants of the solution allows the fabrication of prisms with any deviation angles of the extraordinary wave by preserving the propagation direction of the ordinary wave. Three variants of prisms are considered: with minimised dimensions, with the Brewster output of the extraordinary beam, and with the deviation of the extraordinary wave by 90{sup 0}. Calcite prisms with the deviation angles for the extraordinary beam {approx}19{sup 0} and 90{sup 0} are tested experimentally. (control of laser radiation parameters)

  11. 1. GENERAL VIEW, TOWPATH BERM (CENTER) AND CANAL PRISM (LEFT) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW, TOWPATH BERM (CENTER) AND CANAL PRISM (LEFT) SOUTH OF THE SPILLWAY; VIEW TO SOUTH. - Blackstone Canal Millbury Segment, Beginning northwest of State Route 146 & McCracken Road, running along west side of Route 146, Millbury, Worcester County, MA

  12. Prism adaptation for spatial neglect after stroke: translational practice gaps

    PubMed Central

    Barrett, A. M.; Goedert, Kelly M.; Basso, Julia C.

    2012-01-01

    Spatial neglect increases hospital morbidity and costs in around 50% of the 795,000 people per year in the USA who survive stroke, and an urgent need exists to reduce the care burden of this condition. However, effective acute treatment for neglect has been elusive. In this article, we review 48 studies of a treatment of intense neuroscience interest: prism adaptation training. Due to its effects on spatial motor ‘aiming’, prism adaptation training may act to reduce neglect-related disability. However, research failed, first, to suggest methods to identify the 50–75% of patients who respond to treatment; second, to measure short-term and long-term outcomes in both mechanism-specific and functionally valid ways; third, to confirm treatment utility during the critical first 8 weeks poststroke; and last, to base treatment protocols on systematic dose–response data. Thus, considerable investment in prism adaptation research has not yet touched the fundamentals needed for clinical implementation. We suggest improved standards and better spatial motor models for further research, so as to clarify when, how and for whom prism adaptation should be applied. PMID:22926312

  13. Smectite Dehydration, Membrane Filtration, and Pore-Water Freshening in Deep Ultra-Low Permeability Formations: Deep Processes in the Nankai Accretionary Wedge

    NASA Astrophysics Data System (ADS)

    Brown, K. M.; Sample, J. C.; Even, E.; Poeppe, D.; Henry, P.; Tobin, H. J.; Saffer, D. M.; Hirose, T.; Toczko, S.; Maeda, L.

    2014-12-01

    We address the fundamental questions surrounding the nature of water and chemical transport processes deep within sedimentary basin and accretionary-wedge environments. Consolidation and permeability studies conducted to 165 MPa (~10km depth) indicate that ultra-tight clay formations (10-18 m2 to10-21 m2) can substantially modify the fluids migrating through then. Pore-water extractions conducted on smectite/illite rich core samples obtained from 1-3 km depths at IODP (NanTroSEIZE, Chikyu) deep-riser drilling Site C0002, at the elevated loads required to squeeze waters from such deeply buried sediment (stresses up to 100 MPa),resulted in anomalous patterns of sequential freshening with progressive loading. More accurate laboratory investigations (both incremental loading and Constant Rate of Strain test) revealed that such freshening initiates above 20 MPa and progresses with consolidation to become greater than 20% by effective normal load of 165 MPa. Log-log plots of stress vs. hydraulic conductivity reveal that trends remain linear to elevated stresses and total porosities as low at 14%. The implications are that stress induced smectite dehydration and/or membrane filtration effects cause remarkable changes in pore water chemistry with fluid migration through deep, tight, clay-rich formations. These changes should occur in addition to any thermally induced diagenetic and clay-dehydration effects on pore water chemistry. Work is progressing to evaluate the impact of clay composition and temperature to ascertain if purely illitic compositions show similar trends and if the mass fractionation of water and other isotopes also occurs. Such studies will ascertain if the presence of smectite is a prerequisite for freshening or if membrane filtration is a major process in earth systems containing common clay minerals. The results have major implications for interpretations of mass chemical balances, pore water profiles, and the hydrologic, geochemical, and stress state

  14. Ophiolites in the Xing'an-Inner Mongolia accretionary belt of the CAOB: Implications for two cycles of seafloor spreading and accretionary orogenic events

    NASA Astrophysics Data System (ADS)

    Song, Shuguang; Wang, Ming-Ming; Xu, Xin; Wang, Chao; Niu, Yaoling; Allen, Mark B.; Su, Li

    2015-10-01

    The Xing'an-Inner Mongolia accretionary belt in the southeastern segment of the Central Asian Orogenic Belt (CAOB) was produced by the long-lived subduction and eventual closure of the Paleo-Asian Ocean and by the convergence between the North China Craton and the Mongolian microcontinent. Two ophiolite belts have been recognized: the northern Erenhot-Hegenshan-Xi-Ujimqin ophiolite belt and the southern Solonker-Linxi ophiolite belt. Most basalts in the northern ophiolite belt exhibit characteristics of normal-type to enriched-type mid-ocean ridge basalt affinities with depleted Nd isotopic composition (ɛNd(t) > +5), comparable to modern Eastern Pacific mid-ocean ridge basalts. Most basaltic rocks in the southern belt show clear geochemical features of suprasubduction zone-type oceanic crust, probably formed in an arc/back-arc environment. The inferred back-arc extension along the Solonker-Linxi belt started at circa 280 Ma. Statistics of all the available age data for the ophiolites indicates two cycles of seafloor spreading/subduction, which gave rise to two main epochs of magmatic activity at 500-410 Ma and 360-220 Ma, respectively, with a gap of ~50 million years (Myr). The spatial and temporal distribution of the ophiolites and concurrent igneous rocks favor bilateral subduction toward the two continental margins in the convergence history, with final collision at ~230-220 Ma. In the whole belt, signals of continental collision and Himalayan-style mountain building are lacking. We thus conclude that the Xing'an-Inner Mongolia segment of the CAOB experienced two cycles of seafloor subduction, back-arc extension, and final "Appalachian-type" soft collision.

  15. Prism adaptation contrasts perceptual habituation for repetitive somatosensory stimuli.

    PubMed

    Torta, D M; Tatu, M K; Cotroneo, D; Alamia, A; Folegatti, A; Trojan, J

    2016-03-01

    Prism adaptation (PA) is a non-invasive procedure that requires performing a visuo-motor pointing task while wearing prism goggles inducing a visual displacement of the pointed target. This procedure involves a reorganization of sensorimotor coordination, and induces long-lasting effects on numerous higher-order cognitive functions in healthy volunteers and neglect patients. Prismatic displacement (PD) of the visual field can be induced when prisms are worn but no sensorimotor task is required. In this case, it is unlikely that any subsequent reorganization takes place. The effects of PD are short-lived in the sense that they last as long as prisms are worn. In this study we aimed, to the best of our knowledge for the first time, at investigating whether PA and PD induce changes in the perception of intensity of nociceptive and non- nociceptive somatosensory stimuli. We induced, in healthy volunteers, PD (experiment 1), or PA (experiment 2) and asked participants to rate the intensity of the stimuli applied to the hand undergoing the visuo-proprioceptive conflict (experiment 1) or adaptation (experiment 2). Our results indicate that: 1) the visuo-proprioceptive conflict induced by PD does not reduce the perceived intensity of the stimuli, 2) PA prevents perceptual habituation for both nociceptive and non-nociceptive somatosensory stimuli. Moreover, to investigate the possible underlying mechanisms of the effects of PA we conducted a third experiment in which stimuli were applied both at the adapted and the non-adapted hand. In line with the results of experiment 2, we found that perceptual habituation was prevented for stimuli applied onto the adapted hand. Moreover, we observed the same finding for stimuli applied onto the non-adapted hand. This result suggests that the detention of habituation is not merely driven by changes in spatial attention allocation. Taken together, these data indicate that prisms can affect the perceived intensity of somatosensory stimuli

  16. Superconducting magnetic Wollaston prism for neutron spin encoding

    SciTech Connect

    Li, F. Parnell, S. R.; Wang, T.; Baxter, D. V.; Hamilton, W. A.; Maranville, B. B.; Semerad, R.; Cremer, J. T.; Pynn, R.

    2014-05-15

    A magnetic Wollaston prism can spatially split a polarized neutron beam into two beams with different neutron spin states, in a manner analogous to an optical Wollaston prism. Such a Wollaston prism can be used to encode the trajectory of neutrons into the Larmor phase associated with their spin degree of freedom. This encoding can be used for neutron phase-contrast radiography and in spin echo scattering angle measurement (SESAME). In this paper, we show that magnetic Wollaston prisms with highly uniform magnetic fields and low Larmor phase aberration can be constructed to preserve neutron polarization using high temperature superconducting (HTS) materials. The Meissner effect of HTS films is used to confine magnetic fields produced electromagnetically by current-carrying HTS tape wound on suitably shaped soft iron pole pieces. The device is cooled to ∼30 K by a closed cycle refrigerator, eliminating the need to replenish liquid cryogens and greatly simplifying operation and maintenance. A HTS film ensures that the magnetic field transition within the prism is sharp, well-defined, and planar due to the Meissner effect. The spin transport efficiency across the device was measured to be ∼98.5% independent of neutron wavelength and energizing current. The position-dependent Larmor phase of neutron spins was measured at the NIST Center for Neutron Research facility and found to agree well with detailed simulations. The phase varies linearly with horizontal position, as required, and the neutron beam shows little depolarization. Consequently, the device has advantages over existing devices with similar functionality and provides the capability for a large neutron beam (20 mm × 30 mm) and an increase in length scales accessible to SESAME to beyond 10 μm. With further improvements of the external coupling guide field in the prototype device, a larger neutron beam could be employed.

  17. Study of dose calculation on breast brachytherapy using prism TPS

    SciTech Connect

    Fendriani, Yoza; Haryanto, Freddy

    2015-09-30

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the first case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm{sup 3}. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm{sup 3}. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy.

  18. Geochronological and Geochemical evidence of amphibolite from the Hualong Group, northwest China: Implication for the early Paleozoic accretionary tectonics of the Central Qilian belt

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Wang, Zongqi; Yan, Zhen; Ma, Zhenhui; He, Shengfei; Fu, Changlei; Wang, Dongsheng

    2016-04-01

    The Hualong Group, located in the Central Qilian belt, northwest China, consists mainly of schist, amphibolite, quartzite, and marble, ranging from greenschist to amphibolite facies metamorphism. On the basis of the medium-grade metamorphism, the group has been considered to comprise Proterozoic basement rocks. In this study, geochemical, Sr-Nd isotopic, and zircon U-Pb geochronological analyses were performed on lentoid amphibolites from the Hualong Group, to characterize their age, petrogensis, and tectonic setting. Uranium-lead zircon dating of amphibolite revealed a formation age of 456 ± 2 Ma and a metamorphic age of 440 ± 1 Ma. Major, trace, and rare earth element data indicate that the amphibolites are predominantly basaltic-andesitic to andesitic rocks, with island arc affinities. The trace element patterns show enrichment in large-ion lithophile elements and depletion in high field strength elements relative to the N-MORB which confirm their island arc signatures. Obviously enriched light REEs ((La/Yb)N = 2.5-16.9) to chondrite normalized REE patterns further support this interpretation. The εNd(t) values for the amphibolites range from 4.6 to + 2.1, indicating subducted sediments as a larger endmember in the source. Geochemical data for these rocks suggest an island arc setting, and the rocks were derived from the depleted mantle that was enriched by melts of subducted sediments in an active continental margin setting at ca. 456 Ma. Together with regional evidence it suggests that the Hualong Group is an accretionary complex that was incorporated into the Central Qilian belt during the 440-400 Ma orogenic event.

  19. Experimental static aerodynamics of a regular hexagonal prism in a low density hypervelocity flow

    NASA Technical Reports Server (NTRS)

    Guy, R. W.; Mueller, J. N.; Lee, L. P.

    1972-01-01

    A regular hexagonal prism, having a fineness ratio of 1.67, has been tested in a wind tunnel to determine its static aerodynamic characteristics in a low-density hypervelocity flow. The prism tested was a 1/4-scale model of the graphite heat shield which houses the radioactive fuel for the Viking spacecraft auxiliary power supply. The basic hexagonal prism was also modified to simulate a prism on which ablation of one of the six side flats had occurred. This modified hexagonal prism was tested to determine the effects on the aerodynamic characteristics of a shape change caused by ablation during a possible side-on stable reentry.

  20. Slipstream: an early Holocene slump and turbidite record from the frontal ridge of the Cascadia accretionary wedge off western Canada and paleoseismic implications

    USGS Publications Warehouse

    Hamilton, T. S.; Enkin, Randolph J.; Riedel, Michael; Rogers, Gary C.; Pohlman, John W.; Benway, Heather M.

    2015-01-01

    Slipstream Slump, a well-preserved 3 km wide sedimentary failure from the frontal ridge of the Cascadia accretionary wedge 85 km off Vancouver Island, Canada, was sampled during Canadian Coast Guard Ship (CCGS) John P. Tully cruise 2008007PGC along a transect of five piston cores. Shipboard sediment analysis and physical property logging revealed 12 turbidites interbedded with thick hemipelagic sediments overlying the slumped glacial diamict. Despite the different sedimentary setting, atop the abyssal plain fan, this record is similar in number and age to the sequence of turbidites sampled farther to the south from channel systems along the Cascadia Subduction Zone, with no extra turbidites present in this local record. Given the regional physiographic and tectonic setting, megathrust earthquake shaking is the most likely trigger for both the initial slumping and subsequent turbidity currents, with sediments sourced exclusively from the exposed slump face of the frontal ridge. Planktonic foraminifera picked from the resedimented diamict of the underlying main slump have a disordered cluster of 14C ages between 12.8 and 14.5 ka BP. For the post-slump stratigraphy, an event-free depth scale is defined by removing the turbidite sediment intervals and using the hemipelagic sediments. Nine14C dates from the most foraminifera-rich intervals define a nearly constant hemipelagic sedimentation rate of 0.021 cm/year. The combined age model is defined using only planktonic foraminiferal dates and Bayesian analysis with a Poisson-process sedimentation model. The age model of ongoing hemipelagic sedimentation is strengthened by physical property correlations from Slipstream events to the turbidites for the Barkley Canyon site 40 km south. Additional modelling addressed the possibilities of seabed erosion or loss and basal erosion beneath turbidites. Neither of these approaches achieves a modern seabed age when applying the commonly used regional marine 14C reservoir age of

  1. Sedimentary Record of Paleodeformation of the Saint Martin Anticline Reveals the Interaction Between Tectonics, Sedimentation Processes and Relative Sea-level Changes: Ganges-Brahmaputra Delta Burma Arc Collision, SE Bangladesh

    NASA Astrophysics Data System (ADS)

    Bastas-Hernandez, A.; McHugh, C. M.; Mondal, D. R.; Seeber, L.; Steckler, M. S.; Gurung, D.; Mustaque, S.; Marsh, J.; Akhter, S. H.

    2014-12-01

    Along the Ganges-Brahmaputra Delta Burma Arc collision zone, the Indian plate is converging obliquely with the Burma arc with a shortening GPS rate of 14 mm/yr. In this region tectonics, huge sediment supply from the erosion of the Himalayas (>1 GT/yr) and relative sea level changes interact. The extremely thick sediments of the Ganges-Brahmaputra Delta and Fan (~20 km) are being gradually accreted into a very wide thrust-fold belt along this subduction/collision zone. This interaction has led to the formation of a fold-and-thrust belt and wide accretionary prism that is exposed on land and on the shelf of the Burma forearc. Sedimentary sequence and structure document the seismo-tectonic and sedimentary evolution of St Martin's Island, which is an expression of an anticline in the outer part of the accretion forearc. During late Pleistocene sea-level low stands, the anticline and most of the rest of the shelf were exposed. The anticline ridge could then grow, receiving little erosion by local drainages. At some point during sea level rise, the coast advanced over the ridge and bevelled it. Then sea-level continued to rise and new sediment deposited forming an angular unconformity. A low-relief unconformity, in fact, separates the folded strata below from overlying strata of Holocene age. Where now exposed on the island above sea level, the unconformity is ~8000 y old. At that time, sea level was 30 m below the current level and thus rapid tectonic uplift is necessary to account for its current elevation. Dead coral heads of the species Porities that populate the coast were dated with U-Th (Mondal et al., 2013). They document a megathurst rupture and ~ 2m uplift that occurred during the Great Arakan earthquake in 1762 and further earthquakes are likely at ~ 1100 and 800 AD. Studies of the 1762 rupture suggest that the anticline rises during megathrust earthquakes (~2m) and subsides in the interseismic period (a few mm/yr; Steckler and Mondal 2014). Radiocarbon ages

  2. Tectonic imbrication of Palaeo- and Neo-Tethyan accretionary complexes in the central Pontides, Turkey

    NASA Astrophysics Data System (ADS)

    Okay, A. I.; Tuysuz, O.; Satir, M.; Eren, R. H.

    2003-04-01

    -eclogite thrust slice was previously also regarded as part of the Palaeo-Tethyan (Triassic) subduction-accretion complex. However, recent isotopic dating of the Elekdag eclogites have yielded Cretaceous ages, indicating that Palaeo- and Neo-Tethyan accretionary complexes were thrust imbricated during the Late Cretaceous subduction. A similar observation was recently reported from the Eskisehir region, 370 km to the west, where Triassic blueschists and eclogites are imbricated with the Upper Cretaceous accretionary complexes. Close association of Paleo- and Neo-Tethyan accretionary complexes along the Izmir-Ankara suture indicates that the latest Triassic-earliest Jurassic Cimmeride orogeny in Turkey was of accretional rather than collisional nature, and that the Izmir-Ankara suture represents a long-lived plate boundary of late Palaeozoic to early Tertiary age.

  3. Planar prism spectrometer based on adiabatically connected waveguiding slabs

    NASA Astrophysics Data System (ADS)

    Civitci, F.; Hammer, M.; Hoekstra, H. J. W. M.

    2016-04-01

    The device principle of a prism-based on-chip spectrometer for TE polarization is introduced. The spectrometer exploits the modal dispersion in planar waveguides in a layout with slab regions having two different thicknesses of the guiding layer. The set-up uses parabolic mirrors, for the collimation of light of the input waveguide and focusing of the light to the receiver waveguides, which relies on total internal reflection at the interface between two such regions. These regions are connected adiabatically to prevent unwanted mode conversion and loss at the edges of the prism. The structure can be fabricated with two wet etching steps. The paper presents basic theory and a general approach for device optimization. The latter is illustrated with a numerical example assuming SiON technology.

  4. Precambrian accretionary history and phanerozoic structures-A unified explanation for the tectonic architecture of the nebraska region, USA

    USGS Publications Warehouse

    Carlson, M.P.

    2007-01-01

    The Phanerozoic history in Nebraska and adjacent regions contains many patterns of structure and stratigraphy that can be directly related to the history of the Precambrian basement rocks of the area. A process is proposed that explains the southward growth of North America during the period 1.8-1.6 Ga. A series of families of accretionary events during the Proterozoic emplaced sutures that remained as fundamental basement weak zones. These zones were rejuvenated in response to a variety of continental stress events that occurred during the Phanerozoic. By combining the knowledge of basement history with the history of rejuvenation during the Phanerozoic, both the details of Proterozoic accretionary growth and an explanation for the patterns of Phanerozoic structure and stratigraphy is provided. ?? 2007 The Geological Society of America. All rights reserved.

  5. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles

    NASA Astrophysics Data System (ADS)

    Cawood, Peter A.; Strachan, Robin A.; Pisarevsky, Sergei A.; Gladkochub, Dmitry P.; Murphy, J. Brendan

    2016-09-01

    Periodic assembly and dispersal of continental fragments has been a characteristic of the solid Earth for much of its history. Geodynamic drivers of this cyclic activity are inferred to be either top-down processes related to near surface lithospheric stresses at plate boundaries or bottom-up processes related to mantle convection and, in particular, mantle plumes, or some combination of the two. Analysis of the geological history of Rodinian crustal blocks suggests that internal rifting and breakup of the supercontinent were linked to the initiation of subduction and development of accretionary orogens around its periphery. Thus, breakup was a top-down instigated process. The locus of convergence was initially around north-eastern and northern Laurentia in the early Neoproterozoic before extending to outboard of Amazonia and Africa, including Avalonia-Cadomia, and arcs outboard of Siberia and eastern to northern Baltica in the mid-Neoproterozoic (∼760 Ma). The duration of subduction around the periphery of Rodinia coincides with the interval of lithospheric extension within the supercontinent, including the opening of the proto-Pacific at ca. 760 Ma and the commencement of rifting in east Laurentia. Final development of passive margin successions around Laurentia, Baltica and Siberia was not completed until the late Neoproterozoic to early Paleozoic (ca. 570-530 Ma), which corresponds with the termination of convergent plate interactions that gave rise to Gondwana and the consequent relocation of subduction zones to the periphery of this supercontinent. The temporal link between external subduction and internal extension suggests that breakup was initiated by a top-down process driven by accretionary tectonics along the periphery of the supercontinent. Plume-related magmatism may be present at specific times and in specific places during breakup but is not the prime driving force. Comparison of the Rodinia record of continental assembly and dispersal with that

  6. Stereovision Imaging in Smart Mobile Phone Using Add on Prisms

    NASA Astrophysics Data System (ADS)

    Bar-Magen Numhauser, Jonathan; Zalevsky, Zeev

    2014-03-01

    In this work we present the use of a prism-based add on component installed on top of a smart phone to achieve stereovision capabilities using iPhone mobile operating system. Through these components and the combination of the appropriate application programming interface and mathematical algorithms the obtained results will permit the analysis of possible enhancements for new uses to such system, in a variety of areas including medicine and communications.

  7. Prism-coupled light emission from tunnel junctions

    NASA Technical Reports Server (NTRS)

    Ushioda, S.; Rutledge, J. E.; Pierce, R. M.

    1985-01-01

    Completely p-polarized light emission has been observed from smooth Al-AlO(x)-Au tunnel junctions placed on a prism coupler. The angle and polarization dependence demonstrate unambiguously that the emitted light is radiated by the fast-mode surface plasmon polariton. The emission spectra suggest that the dominant process for the excitation of the fast mode is through conversion of the slow mode to the fast mode mediated by residual roughness on the junction surface.

  8. Spatial compression impairs prism adaptation in healthy individuals.

    PubMed

    Scriven, Rachel J; Newport, Roger

    2013-01-01

    Neglect patients typically present with gross inattention to one side of space following damage to the contralateral hemisphere. While prism-adaptation (PA) is effective in ameliorating some neglect behaviors, the mechanisms involved and their relationship to neglect remain unclear. Recent studies have shown that conscious strategic control (SC) processes in PA may be impaired in neglect patients, who are also reported to show extraordinarily long aftereffects compared to healthy participants. Determining the underlying cause of these effects may be the key to understanding therapeutic benefits. Alternative accounts suggest that reduced SC might result from a failure to detect prism-induced reaching errors properly either because (a) the size of the error is underestimated in compressed visual space or (b) pathologically increased error-detection thresholds reduce the requirement for error correction. The purpose of this study was to model these two alternatives in healthy participants and to examine whether SC and subsequent aftereffects were abnormal compared to standard PA. Each participant completed three PA procedures within a MIRAGE mediated reality environment with direction errors recorded before, during and after adaptation. During PA, visual feedback of the reach could be compressed, perturbed by noise, or represented veridically. Compressed visual space significantly reduced SC and aftereffects compared to control and noise conditions. These results support recent observations in neglect patients, suggesting that a distortion of spatial representation may successfully model neglect and explain neglect performance while adapting to prisms. PMID:23675332

  9. Controllable Sonar Lenses and Prisms Based on ERFs

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Chang, Zensheu; Bao, Xiaoqi; Paustian, Iris; Lopes, Joseph; Folds, Donald

    2004-01-01

    Sonar-beam-steering devices of the proposed type would contain no moving parts and would be considerably smaller and less power-hungry, relative to conventional multiple-beam sonar arrays. The proposed devices are under consideration for installation on future small autonomous underwater vehicles because the sizes and power demands of conventional multiple-beam arrays are excessive, and motors used in single-beam mechanically scanned systems are also not reliable. The proposed devices would include a variety of electrically controllable acoustic prisms, lenses, and prism/lens combinations both simple and compound. These devices would contain electrorheological fluids (ERFs) between electrodes. An ERF typically consists of dielectric particles floating in a dielectric fluid. When an electric field is applied to the fluid, the particles become grouped into fibrils aligned in rows, with a consequent increase in the viscosity of the fluid and a corresponding increase in the speed of sound in the fluid. The change in the speed of sound increases with an increase in the applied electric field. By thus varying the speed of sound, one varies the acoustic index of refraction, analogously to varying the index of refraction of an optical lens or prism. In the proposed acoustic devices, this effect would be exploited to control the angles of refraction of acoustic beams, thereby steering the beams and, in the case of lenses, controlling focal lengths.

  10. Effect of prism adaptation on thermoregulatory control in humans.

    PubMed

    Calzolari, Elena; Gallace, Alberto; Moseley, G Lorimer; Vallar, Giuseppe

    2016-01-01

    The physiological regulation of skin temperature can be modulated not only by autonomic brain regions, but also by a network of higher-level cortical areas involved in the maintenance of a coherent representation of the body. In this study we assessed in healthy participants if the sensorimotor changes taking place during motor adaptation to the lateral displacement of the visual scene induced by wearing prismatic lenses (prism adaptation, PA), and the aftereffects, after prisms' removal, on the ability to process spatial coordinates, were associated with skin temperature regulation changes. We found a difference in thermoregulatory control as a function of the direction of the prism-induced displacement of the visual scene, and the subsequent sensorimotor adaptation. After PA to rightward displacing lenses, with leftward aftereffects (the same directional procedure efficaciously used for ameliorating left spatial neglect in right-brain-damaged patients) the hands' temperature decreased. Conversely, after adaptation to neutral lenses, and PA to leftward displacing lenses, with rightward aftereffects, the temperature of both hands increased. These results suggest a lateral asymmetry in the effects of PA on skin temperature regulation, and a relationship between body spatial representations and homeostatic control in humans.

  11. Control system design for a double-prism scanner

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Yuan, Yan; Zhao, Yanyan; Su, Lijuan

    2013-12-01

    A control system designed for a Double-Prism scanner is discussed in this paper. This control system is required to regulate the speed of prisms accurately and change the scan pattern as quickly as possible. Therefore, we designed a digital double closed-loop control system which consists of an inner loop and an outer loop to achieve that function. In this double closed-loop control system, the inner loop uses linear Proportional-Integral (PI) controller for the current control and the outer loop uses saturated Proportional-Integral controller for the speed control. To verify the feasibility and rationality of this control method, simulation based on MATLAB was performed. And the simulation results indicate that the step response of prism speed is stable and there is no steady state error. After building the digital control system, many experiments were performed to obtain key characteristics. The experiment results show that the speed regulation time is about 0.4s when the reference speed is 1rps. The accuracy of speed regulation reaches 10-4 level, and the fluctuation ratio of speed regulation reaches 10-2 level over its operation range(0rps-3rps).

  12. Stabilization of a self-referenced, prism-based, Cr:forsterite laser frequency comb using an intracavity prism

    SciTech Connect

    Tillman, Karl A.; Thapa, Rajesh; Knabe, Kevin; Wu Shun; Lim, Jinkang; Washburn, Brian R.; Corwin, Kristan L.

    2009-12-20

    The frequency comb from a prism-based Cr:forsterite laser has been frequency stabilized using intracavity prism insertion and pump power modulation. Absolute frequency measurements of a CW fiber laser stabilized to the P(13) transition of acetylene demonstrate a fractional instability of {approx}2x10{sup -11} at a 1 s gate time, limited by a commercial Global Positioning System (GPS)-disciplined rubidium oscillator. Additionally, absolute frequency measurements made simultaneously using a second frequency comb indicate relative instabilities of 3x10{sup -12} for both combs for a 1 s gate time. Estimations of the carrier-envelope offset frequency linewidth based on relative intensity noise and the response dynamics of the carrier-envelope offset to pump power changes confirm the observed linewidths.

  13. Ganges-Brahmaputra Delta: Balance of Subsidence, Sea level and Sedimentation in a Tectonically-Active Delta (Invited)

    NASA Astrophysics Data System (ADS)

    Steckler, M. S.; Goodbred, S. L.; Akhter, S. H.; Seeber, L.; Reitz, M. D.; Paola, C.; Nooner, S. L.; DeWolf, S.; Ferguson, E. K.; Gale, J.; Hossain, S.; Howe, M.; Kim, W.; McHugh, C. M.; Mondal, D. R.; Petter, A. L.; Pickering, J.; Sincavage, R.; Williams, L. A.; Wilson, C.; Zumberge, M. A.

    2013-12-01

    Bangladesh is vulnerable to a host of short and long-term natural hazards - widespread seasonal flooding, river erosion and channel avulsions, permanent land loss from sea level rise, natural groundwater arsenic, recurrent cyclones, landslides and huge earthquakes. These hazards derive from active fluvial processes related to the growth of the delta and the tectonics at the India-Burma-Tibet plate junctions. The Ganges and Brahmaputra rivers drain 3/4 of the Himalayas and carry ~1 GT/y of sediment, 6-8% of the total world flux. In Bangladesh, these two great rivers combine with the Meghna River to form the Ganges-Brahmaputra-Meghna Delta (GBMD). The seasonality of the rivers' water and sediment discharge is a major influence causing widespread flooding during the summer monsoon. The mass of the water is so great that it causes 5-6 cm of seasonal elastic deformation of the delta discerned by our GPS data. Over the longer-term, the rivers are also dynamic. Two centuries ago, the Brahmaputra River avulsed westward up to 100 km and has since captured other rivers. The primary mouth of the Ganges has shifted 100s of km eastward from the Hooghly River over the last 400y, finally joining the Brahmaputra in the 19th century. These avulsions are influenced by the tectonics of the delta. On the east side of Bangladesh, the >16 km thick GBMD is being overridden by the Burma Arc where the attempted subduction of such a thick sediment pile has created a huge accretionary prism. The foldbelt is up to 250-km wide and its front is buried beneath the delta. The main Himalayan thrust front is <100 km north, but adjacent to the GBMD is the Shillong Massif, a 300-km long, 2-km high block of uplifted Indian basement that is overthrusting and depressing GBMD sediments to the south. The overthrusting Shillong Massif may represent a forward jump of the Himalayan front to a new plate boundary. This area ruptured in a ~M8 1897 earthquake. Subsidence from the tectonics and differential

  14. Forest Biomass Mapping from Prism Triplet, Palsar and Landsat Data

    NASA Astrophysics Data System (ADS)

    Ranson, J.; Sun, G.; Ni, W.

    2014-12-01

    The loss of sensitivity at higher biomass levels is a common problem in biomass mapping using optical multi-spectral data or radar backscattering data due to the lack of information on canopy vertical structure. Studies have shown that adding implicit information of forest vertical structure improves the performance of forest biomass mapping from optical reflectance and radar backscattering data. LiDAR, InSAR and stereo imager are the data sources for obtaining forest structural information. The potential of providing information on forest vertical structure by stereoscopic imagery data has drawn attention recently due to the availability of high-resolution digital stereo imaging from space and the advances of digital stereo image processing software. The Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) onboard the Advanced Land Observation Satellite (ALOS) has acquired multiple global coverage from June 2006 to April 2011 providing a good data source for regional/global forest studies. In this study, five PRISM triplets acquired on June 14, 2008, August 19 and September 5, 2009; PALSAR dual-pol images acquired on July 12, 2008 and August 30, 2009; and LANDSAT 5 TM images acquired on September 5, 2009 and the field plot data collected in 2009 and 2010 were used to map forest biomass at 50m pixel in an area of about 4000 km2in Maine, USA ( 45.2 deg N 68.6 deg W). PRISM triplets were used to generate point cloud data at 2m pixel first and then the average height of points above NED (National Elevation Dataset) within a 50m by 50m pixel was calculated. Five images were mosaicked and used as canopy height information in the biomass estimation along with the PALSAR HH, HV radar backscattering and optical reflectance vegetation indices from L-5 TM data. A small portion of this region was covered by the Land Vegetation and Ice Sensor (LVIS) in 2009. The biomass maps from the LVIS data was used to evaluate the results from combined use of PRISM, PALSAR and

  15. Hydrocarbon gas potential of accretionary melange terranes: an example from the olympic peninsula, Washington

    SciTech Connect

    Kvenvolden, K.A.; Snavely, P.D. Jr.

    1985-01-01

    Convergence between the oceanic and North American plates during middle late Eocene and late middle Miocene times produced two principal accretionary terranes of melange and broken formation on the continental margin of Washington. Hydrocarbon analyses of these melange units were undertaken to evaluate their source rock potential for oil and gas and to assess the generative processes operating in these thick melange wedges. The results of pyrolysis, vitrinite reflectance, and visual kerogen analyses of samples of these melanges are consistent and in good agreement, showing mainly Type III organic matter that is marginally mature to mature with respect to gas generation. Coastal exposure of Ozette melange commonly have a petroliferous odor which contains methane through at least the pentanes as prominent constitutents. Hydrocarbon gases from seeps and from an abandoned well in the study area have been molecular compositions and methane carbon isotopic values indicating related sources. The authors evidence suggest that the Ozette assemblage melange is the principal source for thermogenic hydrocarbon gases. Potential exploration targets may exist in western Washington where melange and broken formation are thrust beneath the Eocene oceanic crust (Crescent Formation). Gas generated from the underplated rocks could have migrated through the upper plate into structures in the Tertiary strata that overlie these Eocene basalts.

  16. Rock varnish in New York: An accelerated snapshot of accretionary processes

    NASA Astrophysics Data System (ADS)

    Krinsley, David H.; Dorn, Ronald I.; DiGregorio, Barry E.; Langworthy, Kurt A.; Ditto, Jeffrey

    2012-02-01

    Samples of manganiferous rock varnish collected from fluvial, bedrock outcrop and Erie Barge Canal settings in New York state host a variety of diatom, fungal and bacterial microbial forms that are enhanced in manganese and iron. Use of a Dual-Beam Focused Ion Beam Scanning Electron Microscope to manipulate the varnish in situ reveals microbial forms that would not have otherwise been identified. The relative abundance of Mn-Fe-enriched biotic forms in New York samples is far greater than varnishes collected from warm deserts. Moisture availability has long been noted as a possible control on varnish growth rates, a hypothesis consistent with the greater abundance of Mn-enhancing bioforms. Sub-micron images of incipient varnish formation reveal that varnishing in New York probably starts with the mortality of microorganisms that enhanced Mn on bare mineral surfaces; microbial death results in the adsorption of the Mn-rich sheath onto the rock in the form of filamentous networks. Clay minerals are then cemented by remobilization of the Mn-rich material. Thus, the previously unanswered question of what comes first - clay mineral deposition or enhancement of Mn - can be answered in New York because of the faster rate of varnish growth. In contrast, very slow rates of varnishing seen in warm deserts, of microns per thousand years, make it less likely that collected samples will reveal varnish accretionary processes than samples collected from fast-accreting moist settings.

  17. Impact of Mississippi River freshwater reintroduction on enhancing marsh accretionary processes in a Louisiana estuary

    NASA Astrophysics Data System (ADS)

    DeLaune, R. D.; Jugsujinda, A.; Peterson, G. W.; Patrick, W. H.

    2003-11-01

    To counteract extensive wetland loss a series of diversion projects have been implemented to introduce freshwater and sediment from the Mississippi River into Louisiana coastal wetlands. To keep pace with increases in water level due to subsidence Louisiana coastal marshes must vertically accrete through the accumulation of both organic matter and mineral sediment. The impact of Mississippi River freshwater diversion on enhancing vertical marsh accretion (mineral and organic matter accumulation) was examined in Breton Sound estuary, a coastal wetland experiencing marsh deterioration as result of subsidence and salt water intrusion. Using 137Cs dating and artificial marker horizons, increases in the rate of vertical marsh accretion were measured at marsh sites along a spatial gradient which has been receiving diverted water from the Mississippi River (Caernarvon diversion) since 1991. Vertical accretion and accumulation of mineral sediment organic matter and nutrients in the marsh soil profile, increased at marsh sites receiving freshwater and sediment input. Iron and manganese content of the marsh surface sediment were shown to be an excellent signature of riverine sediment deposition. Soil extractable phosphorus was higher and extractable sodium was lower at sites nearest freshwater and sediment input. Results demonstrated that freshwater diversion through sediment input and lowering of salinity will enhance marsh accretion and stability, slowing or reversing the rate of wetland loss.

  18. The effect of diagenesis and fluid migration on rare earth element distribution in pore fluids of the northern Cascadia accretionary margin

    USGS Publications Warehouse

    Kim, Ji-Hoon; Torres, Marta E.; Haley, Brian A.; Kastner, Miriam; Pohlman, John W.; Riedel, Michael; Lee, Young-Joo

    2012-01-01

    Analytical challenges in obtaining high quality measurements of rare earth elements (REEs) from small pore fluid volumes have limited the application of REEs as deep fluid geochemical tracers. Using a recently developed analytical technique, we analyzed REEs from pore fluids collected from Sites U1325 and U1329, drilled on the northern Cascadia margin during the Integrated Ocean Drilling Program (IODP) Expedition 311, to investigate the REE behavior during diagenesis and their utility as tracers of deep fluid migration. These sites were selected because they represent contrasting settings on an accretionary margin: a ponded basin at the toe of the margin, and the landward Tofino Basin near the shelf's edge. REE concentrations of pore fluid in the methanogenic zone at Sites U1325 and U1329 correlate positively with concentrations of dissolved organic carbon (DOC) and alkalinity. Fractionations across the REE series are driven by preferential complexation of the heavy REEs. Simultaneous enrichment of diagenetic indicators (DOC and alkalinity) and of REEs (in particular the heavy elements Ho to Lu), suggests that the heavy REEs are released during particulate organic carbon (POC) degradation and are subsequently chelated by DOC. REE concentrations are greater at Site U1325, a site where shorter residence times of POC in sulfate-bearing redox zones may enhance REE burial efficiency within sulfidic and methanogenic sediment zones where REE release ensues. Cross-plots of La concentrations versus Cl, Li and Sr delineate a distinct field for the deep fluids (z > 75 mbsf) at Site U1329, and indicate the presence of a fluid not observed at the other sites drilled on the Cascadia margin. Changes in REE patterns, the presence of a positive Eu anomaly, and other available geochemical data for this site suggest a complex hydrology and possible interaction with the igneous Crescent Terrane, located east of the drilled transect.

  19. Prism adaptation magnitude has differential influences on perceptual versus manual responses.

    PubMed

    Striemer, Christopher L; Russell, Karyn; Nath, Priya

    2016-10-01

    Previous research has indicated that rightward prism adaptation can reduce symptoms of spatial neglect following right brain damage. In addition, leftward prism adaptation can create "neglect-like" patterns of performance in healthy adults on tasks that measure attention and spatial biases. Although a great deal of research has focused on which behaviors are influenced by prism adaptation, very few studies have focused directly on how the magnitude of visual shift induced by prisms might be related to the observed aftereffects, or the effects of prisms on measures of attentional and spatial biases. In the current study, we examined these questions by having groups of healthy adult participants complete manual line bisection and landmark tasks prior to and following adaptation to either 8.5° (15 diopter; n = 22) or 17° (30 diopter; n = 25) leftward shifting prisms. Our results demonstrated a significantly larger rightward shift in straight-ahead pointing (a measure of prism aftereffect) following adaptation to 17°, compared to 8.5° leftward shifting prisms. In addition, only 17° leftward shifting prisms resulted in a significant rightward shift in line bisection following adaptation. However, there was a significant change in performance on the landmark task pre- versus post-adaptation in both the 8.5° and 17° leftward shifting prism groups. Interestingly, correlation analyses indicated that changes in straight-ahead pointing pre- versus post-adaptation were positively correlated with changes in performance on the manual line bisection task, but not the landmark task. These data suggest that larger magnitudes of prism adaptation seem to have a greater influence on tasks that require a response with the adapted hand (i.e., line bisection), compared to tasks that only require a perceptual judgment (i.e., the landmark task). In addition, these data provide further evidence that the effects of prisms on manual and perceptual responses are not related to one

  20. Prism adaptation magnitude has differential influences on perceptual versus manual responses.

    PubMed

    Striemer, Christopher L; Russell, Karyn; Nath, Priya

    2016-10-01

    Previous research has indicated that rightward prism adaptation can reduce symptoms of spatial neglect following right brain damage. In addition, leftward prism adaptation can create "neglect-like" patterns of performance in healthy adults on tasks that measure attention and spatial biases. Although a great deal of research has focused on which behaviors are influenced by prism adaptation, very few studies have focused directly on how the magnitude of visual shift induced by prisms might be related to the observed aftereffects, or the effects of prisms on measures of attentional and spatial biases. In the current study, we examined these questions by having groups of healthy adult participants complete manual line bisection and landmark tasks prior to and following adaptation to either 8.5° (15 diopter; n = 22) or 17° (30 diopter; n = 25) leftward shifting prisms. Our results demonstrated a significantly larger rightward shift in straight-ahead pointing (a measure of prism aftereffect) following adaptation to 17°, compared to 8.5° leftward shifting prisms. In addition, only 17° leftward shifting prisms resulted in a significant rightward shift in line bisection following adaptation. However, there was a significant change in performance on the landmark task pre- versus post-adaptation in both the 8.5° and 17° leftward shifting prism groups. Interestingly, correlation analyses indicated that changes in straight-ahead pointing pre- versus post-adaptation were positively correlated with changes in performance on the manual line bisection task, but not the landmark task. These data suggest that larger magnitudes of prism adaptation seem to have a greater influence on tasks that require a response with the adapted hand (i.e., line bisection), compared to tasks that only require a perceptual judgment (i.e., the landmark task). In addition, these data provide further evidence that the effects of prisms on manual and perceptual responses are not related to one

  1. Asymmetric transmission in prisms using structures and materials with isotropic-type dispersion.

    PubMed

    Gundogdu, Funda Tamara; Serebryannikov, Andriy E; Cakmak, A Ozgur; Ozbay, Ekmel

    2015-09-21

    It is demonstrated that strong asymmetry in transmission can be obtained at the Gaussian beam illumination for a single prism based on a photonic crystal (PhC) with isotropic-type dispersion, as well as for its analog made of a homogeneous material. Asymmetric transmission can be realized with the aid of refraction at a proper orientation of the interfaces and wedges of the prism, whereas neither contribution of higher diffraction orders nor anisotropic-type dispersion is required. Furthermore, incidence toward a prism wedge can be used for one of two opposite directions in order to obtain asymmetry. Thus, asymmetric transmission is a general property of the prism configurations, which can be obtained by using simple geometries and quite conventional materials. The obtained results show that strong asymmetry can be achieved in PhC prisms with (nearly) circular shape of equifrequency dispersion contours, in both cases associated with the index of refraction 01. For the comparison purposes, results are also presented for solid uniform non-magnetic prisms made of a material with the same value of n. It is shown in zero-loss approximation that the PhC prism and the ultralow-index material prism (0prism and the solid dielectric prism can show the same scenario at n>1. Possible contributions of scattering on the individual rods and diffraction on the wedge to the resulting mechanism are discussed. Analogs of unidirectional splitting and unidirectional deflection regimes, which are known from the studies of PhC gratings, are obtained in PhC prisms and solid uniform prisms, i.e. without higher diffraction orders.

  2. Separation of multiple images via directional guidance using structured prism and pyramid arrays.

    PubMed

    Lee, Hyemin; Seo, Hyein; Kang, Sunghwan; Yoon, Hyunsik

    2016-09-01

    We propose a new concept of separating images through a directional guide of multi-visuals by using structured prism or pyramid arrays. By placing prism arrays onto two different image arrays, the two collective images below the facets are guided to different directions. Using optical calculations, we identify a condition for successful image separation. Transparent pyramid arrays are used to separate four images into four directions. The direction of refracted rays can be controlled by the refractive index of prisms and liquid filled into the voids. In addition, the images can be switched by stretching and releasing an elastomeric prism array. PMID:27607698

  3. Separation of multiple images via directional guidance using structured prism and pyramid arrays.

    PubMed

    Lee, Hyemin; Seo, Hyein; Kang, Sunghwan; Yoon, Hyunsik

    2016-09-01

    We propose a new concept of separating images through a directional guide of multi-visuals by using structured prism or pyramid arrays. By placing prism arrays onto two different image arrays, the two collective images below the facets are guided to different directions. Using optical calculations, we identify a condition for successful image separation. Transparent pyramid arrays are used to separate four images into four directions. The direction of refracted rays can be controlled by the refractive index of prisms and liquid filled into the voids. In addition, the images can be switched by stretching and releasing an elastomeric prism array.

  4. Overland Tidal Power Generation Using Modular Tidal Prism

    SciTech Connect

    Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

    2010-03-01

    Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (≈ 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

  5. Patterns of sediment accumulation in the tidal marshes of Maine

    USGS Publications Warehouse

    Wood, M.E.; Kelley, J.T.; Belknap, D.F.

    1989-01-01

    One year's measurements of surficial sedimentation rates (1986-1987) for 26 Maine marsh sites were made over marker horizons of brick dust. Observed sediment accumulation rates, from 0 to 13 mm yr-1, were compared with marsh morphology, local relative sea-level rise rate, mean tidal range, and ice rafting activity. Marshes with four different morphologies (back-barrier, fluvial, bluff-toe, and transitional) showed distinctly different sediment accumulation rates. In general, back-barrier marshes had the highest accumulation rates and blufftoe marshes had the lowest rates, with intermediate values for transitional and fluvial marshes. No causal relationship between modern marsh sediment accumulation rate and relative sea-level rise rate (from tide gauge records) was observed. Marsh accretionary balance (sediment accumulation rate minus relative sea-level rise rate) did not correlate with mean tidal range for this meso- to macro-tidal area. Estimates of ice-rafted debris on marsh sites ranged from 0% to >100% of measured surficial sedimentation rates, indicating that ice transport of sediment may make a significant contribution to surficial sedimentation on Maine salt marshes. ?? 1989 Estuarine Research Federation.

  6. 3D stability of accretionary wedges by application of the maximum strength theorem

    NASA Astrophysics Data System (ADS)

    Souloumiac, P.; Leroy, Y. M.; Krabbenhoft, K.; Maillot, B.

    2009-04-01

    The objective is to capture the 3D failure modes in accretionary wedges and their analogue experiments in the laboratory from the sole knowledge of the material and interface strengths. The proposed methodology relies on the maximum strength theorem inherited from classical limit analysis. The virtual velocity field is constructed by spatial discretization. The numerical scheme is first applied to a perfectly-triangular 2D wedge. It is shown that the 2D critical slope αc for stability is captured precisely by the numerical scheme, the ramp and the back thrust corresponding to regions of localized virtual strain. The influence of the back-wall friction on αc is explored, explained by the Mohr construction and by analogue experiments with sand. The first 3D problem concerns a wedge with a lateral variation in its topographic slope α so that it is sub-critical (α < αc) and super-critical (α > αc) to the right and to the left boundary, respectively. It is shown that the localized deformation of the ramp on the right side, is getting diffuse as one moves to the left side where more décollement is activated. The influence of the two lateral boundaries is felt for wedge widths even greater than the length. The second 3D problem explores the influence of the side wall friction on the results of laboratory experiments. It is found that the deformation is diffuse close to the side wall with a vertical stretching and less dcollement activated. The side wall influences the rest of the wedge over a width 1.5 times the wedge thickness, for realistic friction angles. Comparison with analogue experiments shows the connection between the virtual 3D velocity field and the actual deformation.

  7. Insights on deep, accretionary subduction processes from the Sistan ophiolitic "mélange" (Eastern Iran)

    NASA Astrophysics Data System (ADS)

    Angiboust, S.; Agard, P.; De Hoog, J. C. M.; Omrani, J.; Plunder, A.

    2013-01-01

    The Sistan ophiolitic belt, formed by the closure of the N-S trending Sistan Ocean during late Cretaceous times, comprises several branches and basins across a 100 × 700 km area along the Iran-Afghanistan border. One of these, the Ratuk complex, exposes disrupted HP ophiolitic blocks from a paleo-subduction complex generally interpreted as a tectonic "mélange". In order to better understand its overall structure and evaluate the degree of mixing within this mélange, an extensive set of serpentinized peridotites, mafic rocks and metasediments was collected in the Sulabest area (Ratuk complex). A detailed geological and structural map of the Sulabest area is herein provided, in which three main units (the Western, Upper and Eclogitic Units) separated by relatively sharp tectonic contacts were identified. The latter two of these slices exhibit metamorphic evidence for burial along the same HP-LT gradient (up to blueschist and eclogite facies, respectively). Sharp differences in peak metamorphic conditions and retrograde parageneses nevertheless suggest that they followed two distinct P-T trajectories. Geochemical signatures of ultramafic rocks indicate an abyssal origin for the non-metamorphic Western Unit while the presence of mantle wedge serpentinites is inferred for some samples from the high-pressure units. The differences in peak temperatures (between 520 and 650 °C) and the geochemical heterogeneity of mafic rocks suggest that tectonic mixing occurred (only) within the high-pressure units, possibly within the hydrated mantle wedge. Our results show that this portion of the Sistan ophiolitic belt did not form, as earlier proposed, by chaotic tectonic "mélange" (i.e. where small tectonic blocks with distinct P-T histories are mixed in a mechanically weak matrix). We instead propose that this segment of the ophiolitic belt formed via accretionary processes deep in the subduction zone, whereby distinct slices with different P-T histories were tectonically

  8. Headless submarine canyons and fluid flow on the toe of the Cascadia accretionary complex

    USGS Publications Warehouse

    Orange, D.L.; McAdoo, B.G.; Moore, J.C.; Tobin, H.; Screaton, E.; Chezar, H.; Lee, H.; Reid, M.; Vail, R.

    1997-01-01

    Headless submarine canyons with steep headwalls and shallowly sloping floors occur on both the second and third landward vergent anticlines on the toe of the Cascadia accretionary complex off central Oregon (45 ??N, 125?? 30??W). In September 1993, we carried out a series of nine deep tow camera sled runs and nine ALVIN dives to examine the relationship between fluid venting, structure and canyon formation. We studied four canyons on the second and third landward vergent anticlines, as well as the apparently unfailed intercanyon regions along strike. All evidence of fluid expulsion is associated with the canyons; we found no evidence of fluid flow between canyons. Even though all fluid seeps are related to canyons, we did not find seeps in all canyons, and the location of the seeps within the canyons differed. On the landward facing limb of the second landward vergent anticline a robust cold seep community occurs at the canyon's inflection point. This seep is characterized by chemosynthetic vent clams, tube worms and extensive authigenic carbonate. Fluids for this seep may utilize high-permeability flow paths either parallel to bedding within the second thrust ridge or along the underlying thrust fault before leaking into the overriding section. Two seaward facing canyons on the third anticlinal ridge have vent clam communities near the canyon mouths at approximately the intersection between the anticlinal ridge and the adjacent forearc basin. No seeps were found along strike at the intersection of the slope basin and anticlinal ridge. We infer that the lack of seepage along strike and the presence of seeps in canyons may be related to fluid flow below the forearc basin/slope unconformity (overpressured by the impinging thrust fault to the west?) directed toward canyons at the surface.

  9. The PRISM palaeoclimate reconstruction and Pliocene sea-surface temperature

    USGS Publications Warehouse

    Dowsett, H.J.

    2007-01-01

    In this paper, I present a summary of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) palaeoenvironmental reconstruction, with emphasis on its historical development and range of boundary condition datasets. Sea-surface temperature (SST), sea level, sea ice, land cover (vegetation and ice) and topography are discussed as well as many of the assumptions required to create an integrated global-scale reconstruction. New multiproxy research shows good general agreement on the magnitude of mid-Pliocene SST warming. Future directions, including maximum and minimum SST analyses and deep ocean temperature estimates aimed at a full three-dimensional reconstruction, are presented. ?? The Micropalaeontological Society 2007.

  10. Ultrafine Metal-Organic Right Square Prism Shaped Nanowires.

    PubMed

    Otake, Ken-Ichi; Otsubo, Kazuya; Sugimoto, Kunihisa; Fujiwara, Akihiko; Kitagawa, Hiroshi

    2016-05-23

    We report the structural design and control of electronic states of a new series of ultrafine metal-organic right square prism-shaped nanowires. These nanowires have a very small inner diameter of about 2.0 Å, which is larger than hydrogen and similar to xenon atomic diameters. The electronic states of nanowires can be widely controlled by substitution of structural components. Moreover, the platinum homometallic nanowire shows a 100 times higher proton conductivity than a palladium/platinum heterometallic one depending on the electronic states.

  11. Sealed One Piece Battery Having A Prism Shape Container

    DOEpatents

    Verhoog, Roelof; Barbotin, Jean-Loup

    2000-03-28

    A sealed one-piece battery having a prism-shaped container including: a tank consisting of a single plastic material, a member fixed and sealed to the tank and to partitions on the side of the tank opposite the transverse wall to seal the tank, two flanges fixed and sealed to longitudinal walls defining flow compartments for a heat-conducting fluid, and two tubes on the transverse wall of the tank forming an inlet and an outlet for fluid common to the compartments.

  12. Asymmetrical prism for beam shaping of laser diode stacks.

    PubMed

    Zeng, Xiaodong; Cao, Changqing; An, Yuying

    2005-09-10

    A beam-shaping scheme for a laser diode stack to obtain a flattop output intensity profile is proposed. The shaping element consists of an asymmetrical glass prism. The large divergence-angle compression in the direction perpendicular to the junction plane and the small divergence-angle expansion in the parallel direction are performed simultaneously by a single shaping element. The transformation characteristics are presented, and the optimization performance is investigated based on the ray-tracing method. Analysis shows that a flattop intensity profile can be obtained. This beam-shaping system can be fabricated easily and has a large alignment tolerance.

  13. Ultrafine Metal-Organic Right Square Prism Shaped Nanowires.

    PubMed

    Otake, Ken-Ichi; Otsubo, Kazuya; Sugimoto, Kunihisa; Fujiwara, Akihiko; Kitagawa, Hiroshi

    2016-05-23

    We report the structural design and control of electronic states of a new series of ultrafine metal-organic right square prism-shaped nanowires. These nanowires have a very small inner diameter of about 2.0 Å, which is larger than hydrogen and similar to xenon atomic diameters. The electronic states of nanowires can be widely controlled by substitution of structural components. Moreover, the platinum homometallic nanowire shows a 100 times higher proton conductivity than a palladium/platinum heterometallic one depending on the electronic states. PMID:27080935

  14. A Pilot Study of Perceptual-Motor Training for Peripheral Prisms

    PubMed Central

    Houston, Kevin E.; Bowers, Alex R.; Fu, Xianping; Liu, Rui; Goldstein, Robert B.; Churchill, Jeff; Wiegand, Jean-Paul; Soo, Tim; Tang, Qu; Peli, Eli

    2016-01-01

    Purpose Peripheral prisms (p-prisms) shift peripheral portions of the visual field of one eye, providing visual field expansion for patients with hemianopia. However, patients rarely show adaption to the shift, incorrectly localizing objects viewed within the p-prisms. A pilot evaluation of a novel computerized perceptual-motor training program aiming to promote p-prism adaption was conducted. Methods Thirteen patients with hemianopia fitted with 57Δ oblique p-prisms completed the training protocol. They attended six 1-hour visits reaching and touching peripheral checkerboard stimuli presented over videos of driving scenes while fixating a central target. Performance was measured at each visit and after 3 months. Results There was a significant reduction in touch error (P = 0.01) for p-prism zone stimuli from pretraining median of 16.6° (IQR 12.1°–19.6°) to 2.7° ( IQR 1.0°–8.5°) at the end of training. P-prism zone reaction times did not change significantly with training (P > 0.05). P-prism zone detection improved significantly (P = 0.01) from a pretraining median 70% (IQR 50%–88%) to 95% at the end of training (IQR 73%–98%). Three months after training improvements had regressed but performance was still better than pretraining. Conclusions Improved pointing accuracy for stimuli detected in prism-expanded vision of patients with hemianopia wearing 57Δ oblique p-prisms is possible and training appears to further improve detection. Translational Relevance This is the first use of this novel software to train adaptation of visual direction in patients with hemianopia wearing peripheral prisms. PMID:26933522

  15. A unified model for gold mineralisation in accretionary orogens and implications for regional-scale exploration targeting methods

    NASA Astrophysics Data System (ADS)

    Hronsky, Jon M. A.; Groves, David I.; Loucks, Robert R.; Begg, Graham C.

    2012-04-01

    Accretionary orogens are the sites of long-lived convergent margin tectonics, both compressional and extensional. They are also the hosts to the majority of the world's important gold deposits. A very diverse range of deposit types occurs within accretionary orogens, commonly in close proximity in space and time to each other. These include porphyry and associated high-sulphidation Au-Cu-Ag deposits, classic low-sulphidation Au-Ag deposits, low-sulphidation Au deposits centred on alkalic intrusive complexes, Carlin-type Au deposits, Au-rich volcanic-hosted massive sulphide deposits, orogenic Au deposits, intrusion-related Au deposits and iron oxide Cu-Au deposits. Empirical patterns of spatial distribution of these deposits suggest there must be fundamental generic controls on gold metallogeny. Various lines of evidence lead to the proposal that the underlying key generic factor controlling accretionary orogen gold metallogeny is regional-scale, long-term, pre- and syn-subduction heterogeneous fertilisation of the lithospheric mantle that becomes a source of mineralisation-associated arc magma or hydrothermal fluid components. This process provides a gold-enriched reservoir that can be accessed later in a diverse range of tectonomagmatic settings. Based on this concept, a unified model is proposed in which the formation of a major gold deposit of any type requires the conjunction in time and space of three essential factors: a fertile upper-mantle source region, a favourable transient remobilisation event, and favourable lithospheric-scale plumbing structure. This framework provides the basis for a practical regional-scale targeting methodology that is applicable to data-poor regions.

  16. The PRISM (Pliocene Palaeoclimate) reconstruction: Time for a paradigm shift

    USGS Publications Warehouse

    Dowsett, Harry J.; Robinson, Marci M.; Stoll, Danielle K.; Foley, Kevin M.; Johnson, Andrew L. A.; Williams, Mark; Riesselman, Christina

    2013-01-01

    Global palaeoclimate reconstructions have been invaluable to our understanding of the causes and effects of climate change, but single-temperature representations of the oceanic mixed layer for data–model comparisons are outdated, and the time for a paradigm shift in marine palaeoclimate reconstruction is overdue. The new paradigm in marine palaeoclimate reconstruction stems the loss of valuable climate information and instead presents a holistic and nuanced interpretation of multi-dimensional oceanographic processes and responses. A wealth of environmental information is hidden within the US Geological Survey's Pliocene Research,Interpretation and Synoptic Mapping (PRISM) marine palaeoclimate reconstruction, and we introduce here a plan to incorporate all valuable climate data into the next generation of PRISM products. Beyond the global approach and focus, we plan to incorporate regional climate dynamics with emphasis on processes, integrating multiple environmental proxies wherever available in order to better characterize the mixed layer, and developing a finer time slice within the Mid-Piacenzian Age of the Pliocene, complemented by underused proxies that offer snapshots into environmental conditions. The result will be a proxy-rich, temporally nested, process-oriented approach in a digital format—a relational database with geographic information system capabilities comprising a three-dimensional grid representing the surface layer, with a plethora of data in each cell.

  17. Thermal camouflage pattern prediction using PRISM and PMO

    NASA Astrophysics Data System (ADS)

    BoBo, Geralyn; Gonda, Teresa G.; Bacon, Fred W.

    2001-09-01

    This paper describes the initial phase of an evaluation study on the performance of PMO, the Paint Map Optimizer, for long wave infrared (LWIR) modeling. In this phase, we will evaluate using PRIMS, the Physically Reasonable Infrared Signature Modeler, to predict the thermal signature of a simplified tank geometry, and then PMO to predict the optimal thermal camouflage pattern from a range of emissivities in a given scenario. Prism is a thermal modeling code that has been used extensively to model thermal signatures of military ground vehicles. PMO was developed by Aerodyne Research to provide a computer-aided design tool for camouflage pattern design and optimization in a given scenario and a given band for the US Army Aviation Technology Directorate, AATD. At the end of this phase, we hope to determine the basic effectiveness of the process and identify areas of improvement if necessary. The geometry was modeled in PRISM. which output the thermal signature for input into PMO. The optimizer was used to predict the thermal camouflage pattern in the 8-12micrometers IR band for a range of emissivities with the geometry in three different locations in the background image.

  18. Spectra of Eta Carina from Objective Prism Photographic Plates

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Castelaz, M.; Barker, T.

    2008-05-01

    Brightness and spectral variations of Eta Carina occur over a 5.5 year cycle. Emission lines were observed to fade in 1948, 1962, 1981, 1987, and 1992 (Damineli 1996, ApJ, 460, L49), and 1997 (Eta Carinae at the Millennium, ASP Conf. Ser. 179, ed. J.A. Morse, R.M. Humphreys, and A. Damineli). Gaps in the observation of spectra occur in 1970 and 1975 when two other such occurrences of the 5.5 year cycle were expected. Objective prism photographic plates of Eta Carina were found in the Astronomical Photographic Data Archive located at Pisgah Astronomical Research Institute. The plates belong to the University of Michigan survey (Houk 1978, Michigan Catalogue of Two-dimensional Spectral Types for the HD Stars). One plate, IN emulsion + RG1 filter, was taken on 1968 July 4 UT. The other plate, IIaO emulsion, was taken on 1972 March 12 UT. These plates were taken between the 5.5 year cyclic events of 1970 and 1975 and therefore represent the usual emission line spectra. The spectrum of Eta Car was extracted from each of the objective prism plates and will be presented.

  19. The PRISM (Pliocene palaeoclimate) reconstruction: time for a paradigm shift.

    PubMed

    Dowsett, Harry J; Robinson, Marci M; Stoll, Danielle K; Foley, Kevin M; Johnson, Andrew L A; Williams, Mark; Riesselman, Christina R

    2013-10-28

    Global palaeoclimate reconstructions have been invaluable to our understanding of the causes and effects of climate change, but single-temperature representations of the oceanic mixed layer for data-model comparisons are outdated, and the time for a paradigm shift in marine palaeoclimate reconstruction is overdue. The new paradigm in marine palaeoclimate reconstruction stems the loss of valuable climate information and instead presents a holistic and nuanced interpretation of multi-dimensional oceanographic processes and responses. A wealth of environmental information is hidden within the US Geological Survey's Pliocene Research, Interpretation and Synoptic Mapping (PRISM) marine palaeoclimate reconstruction, and we introduce here a plan to incorporate all valuable climate data into the next generation of PRISM products. Beyond the global approach and focus, we plan to incorporate regional climate dynamics with emphasis on processes, integrating multiple environmental proxies wherever available in order to better characterize the mixed layer, and developing a finer time slice within the Mid-Piacenzian Age of the Pliocene, complemented by underused proxies that offer snapshots into environmental conditions. The result will be a proxy-rich, temporally nested, process-oriented approach in a digital format-a relational database with geographic information system capabilities comprising a three-dimensional grid representing the surface layer, with a plethora of data in each cell.

  20. Standardization of motion sickness induced by left-right and up-down reversing prisms

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Vanderploeg, J. M.; Brumley, E. A.; Kolafa, J. J.; Wood, S. J.

    1990-01-01

    Reversing prisms are known to produce symptoms of motion sickness, and have been used to provide a chronic stimulus for training subjects on symptom recognition and regulation. However, testing procedures with reversing prisms have not been standardized. A set of procedures were evaluated which could be standardized using prisms for provocation and to compare the results between Right/Left Reversing Prisms (R/L-RP) and Up/Down Reversing Prisms (U/D-RP). Fifteen subjects were tested with both types of prisms using a self paced walking course throughout the laboratory with work stations established at specified intervals. The work stations provided tasks requiring eye-hand-foot coordination and various head movements. Comparisons were also made between these prism tests and two other standardized susceptibility tests, the KC-135 parabolic static chair test and the Staircase Velocity Motion Test (SVMT). Two different types of subjective symptom reports were compared. The R/L-RP were significantly more provocative than the U/D-RP. The incidence of motion sickness symptoms for the R/L-RP was similar to the KC-135 parabolic static chair test. Poor correlations were found between the prism tests and the other standardized susceptibility tests, which might indicate that different mechanisms are involved in provoking motion sickness for these different tests.

  1. Hierarchically triangular prism structured Co3O4: Self-supported fabrication and photocatalytic property

    EPA Science Inventory

    The formation of ammonium cobalt (II) phosphate was utilized to synthesize unprecedented 3D structures of Co3O4, triangular prisms and trunk-like structures, via a self-supported and organics-free method. The length of a triangular side of the prepared 3D triangular prisms is ~1...

  2. Electron sharing and anion-π recognition in molecular triangular prisms.

    PubMed

    Schneebeli, Severin T; Frasconi, Marco; Liu, Zhichang; Wu, Yilei; Gardner, Daniel M; Strutt, Nathan L; Cheng, Chuyang; Carmieli, Raanan; Wasielewski, Michael R; Stoddart, J Fraser

    2013-12-01

    Stacking on a full belly: Triangular molecular prisms display electron sharing among their triangularly arranged naphthalenediimide (NDI) redox centers. Their electron-deficient cavities encapsulate linear triiodide anions, leading to the formation of supramolecular helices in the solid state. Chirality transfer is observed from the six chiral centers of the filled prisms to the single-handed helices.

  3. Investigating First Year Elementary Mathematics Teacher Education Students' Knowledge of Prism

    ERIC Educational Resources Information Center

    Bozkurt, Ali; Koc, Yusuf

    2012-01-01

    The purpose of this study was to investigate first year elementary mathematics teacher education students' knowledge of prism. For this goal, the participants were asked to define the geometric concept of prism. The participants were 158 first year elementary mathematics teacher education students from a public university in Southern Turkey. The…

  4. Prism Foil from an LCD Monitor as a Tool for Teaching Introductory Optics

    ERIC Educational Resources Information Center

    Planinsic, Gorazd; Gojkosek, Mihael

    2011-01-01

    Transparent prism foil is part of a backlight system in LCD monitors that are widely used today. This paper describes the optical properties of the prism foil and several pedagogical applications suitable for undergraduate introductory physics level. Examples include experiments that employ refraction, total internal reflection, diffraction and…

  5. Impact of high power and angle of incidence on prism corrections for visual field loss

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Hyun; Peli, Eli

    2014-06-01

    Prism distortions and spurious reflections are not usually considered when prescribing prisms to compensate for visual field loss due to homonymous hemianopia. Distortions and reflections in the high-power Fresnel prisms used in peripheral prism placement can be considerable, and the simplifying assumption that prism deflection power is independent of angle of incidence into the prisms results in substantial errors. We analyze the effects of high prism power and incidence angle on the field expansion, size of the apical scotomas, and image compression/expansion. We analyze and illustrate the effects of reflections within the Fresnel prisms, primarily due to reflections at the bases, and secondarily due to surface reflections. The strength and location of these effects differs materially depending on whether the serrated prismatic surface is placed toward or away from the eye, and this affects the contribution of the reflections to visual confusion, diplopia, false alarms, and loss of contrast. We conclude with suggestions for controlling and mitigating these effects in clinical practice.

  6. Electron sharing and anion-π recognition in molecular triangular prisms.

    PubMed

    Schneebeli, Severin T; Frasconi, Marco; Liu, Zhichang; Wu, Yilei; Gardner, Daniel M; Strutt, Nathan L; Cheng, Chuyang; Carmieli, Raanan; Wasielewski, Michael R; Stoddart, J Fraser

    2013-12-01

    Stacking on a full belly: Triangular molecular prisms display electron sharing among their triangularly arranged naphthalenediimide (NDI) redox centers. Their electron-deficient cavities encapsulate linear triiodide anions, leading to the formation of supramolecular helices in the solid state. Chirality transfer is observed from the six chiral centers of the filled prisms to the single-handed helices. PMID:24227594

  7. Diffraction theory applied to X-ray imaging with clessidra prism array lenses.

    PubMed

    De Caro, Liberato; Jark, Werner

    2008-03-01

    Clessidra (hourglass) lenses, i.e. two large prisms each composed of smaller identical prisms or prism-like objects, can focus X-rays. As these lenses have a periodic structure perpendicular to the incident radiation, they will diffract the beam like a diffraction grating. Refraction in the prisms is responsible for blazing, i.e. for the concentration of the diffracted intensity into only a few diffraction peaks. It is found that the diffraction of coherent radiation in clessidra lenses needs to be treated in the Fresnel, or near-field, regime. Here, diffraction theory is applied appropriately to the clessidra structure in order to show that blazing in a perfect structure with partly curved prisms can indeed concentrate the diffracted intensity into only one peak. When the lens is entirely composed of identical perfect prisms, small secondary peaks are found. Nevertheless, the loss in intensity in the central peak will not lead to any significant widening of this peak. Clessidras with perfect prisms illuminated by full coherent X-ray radiation can then provide spatial resolutions, which are consistent with the increased aperture, and which are far below the height of the single small prisms.

  8. A unit structure Rochon prism based on the extraordinary refraction of uniaxial birefringent crystals.

    PubMed

    Wu, Wendi; Wu, Fuquan; Shi, Meng; Su, Fufang; Han, Peigao; Ma, Lili

    2013-06-01

    Based on the Fermat's principle, the universal theory of refraction and reflection of extraordinary rays (e-rays) in the uniaxial crystal is formulated. Using this theory, a new unit structure prism is designed, and its properties are studied. Based on the theoretical results, such a prism is achieved experimentally by using the Iceland crystal. In both theoretical and experimental studies, this new prism shows excellent polarization splitting performances such as big and adjustable splitting angle, comparing to the conventional Rochon prism. For the sample prism with the optical axis angle of 45°, the splitting angle reaches 19.8°in the normal incidence, and the maximum splitting angle reaches 28.44° while the incidence angle is -4°. PMID:23736569

  9. ePRISM: A case study in multiple proxy and mixed temporal resolution integration

    USGS Publications Warehouse

    Robinson, Marci M.; Dowsett, Harry J.

    2010-01-01

    As part of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) Project, we present the ePRISM experiment designed I) to provide climate modelers with a reconstruction of an early Pliocene warm period that was warmer than the PRISM interval (similar to 3.3 to 3.0 Ma), yet still similar in many ways to modern conditions and 2) to provide an example of how best to integrate multiple-proxy sea surface temperature (SST) data from time series with varying degrees of temporal resolution and age control as we begin to build the next generation of PRISM, the PRISM4 reconstruction, spanning a constricted time interval. While it is possible to tie individual SST estimates to a single light (warm) oxygen isotope event, we find that the warm peak average of SST estimates over a narrowed time interval is preferential for paleoclimate reconstruction as it allows for the inclusion of more records of multiple paleotemperature proxies.

  10. Controlling Orientational Order in 1-D Assemblies of Multivalent Triangular Prisms.

    PubMed

    Kohlstedt, Kevin L; Olvera de la Cruz, Monica; Schatz, George C

    2013-01-01

    Multivalent nanostructures are becoming an increasingly important player in the self-assembly of supramolecular lattices. Understanding the role that shape plays in the coordination of the assemblies is crucial for the functional response of the material. We develop a simple design rule for the assembly of multivalent Au triangular nanoprisms into 1-D ordered arrays based on both the length of the valent DNA and the aspect ratio of the prism. Using MD simulations, we describe an order parameter that captures the short-range order of the assembly controlled by the design parameters. The order parameter shows that even short chains (N = 4) of prisms have a high degree of orientational order that transitions to no orientational order when the DNA length is similar to the prism length. Unlike isotropic polyvalent assemblies, we find that the highly oriented chains of prisms lose orientational order in discrete steps during melting as the prisms in the arrays dissociate.

  11. The use of prisms for vision rehabilitation after macular function loss: an evidence-based review.

    PubMed

    Markowitz, Samuel N; Reyes, Sophia V; Sheng, Li

    2013-05-01

    To determine the efficacy of prisms used for redirection of incoming images towards the peripheral retina in cases with macular function loss. Meta-analysis of published work reporting outcomes from interventions using prisms was performed. The primary outcome measure selected for analysis was visual acuity (VA) used for viewing distance targets. Pooled data from 449 cases where prisms were prescribed for wearing in distance glasses were analysed. Visual acuity was better after using prisms (1.05 versus 0.89 logMAR units, p < 0.044). Mean effect size for improving VA was 79 bigger than the effect size calculated for the control group (0.158 versus 0.002). Most patients (76%) reported compliance with the therapy and also reported other benefits directly derived from the realized VA improvement. Published studies collectively offer positive evidence in support of using prisms for low vision rehabilitation after macular function loss. Further research is required to reach definitive binding conclusions.

  12. Light propagation tuned by periodic junction-prisms within well-faceted ZnO fibers.

    PubMed

    Huang, Lisheng; Pu, Lin; Shi, Yi; Zhang, Rong; Gu, Benxi; Du, Youwei; Zheng, Youdou

    2005-07-11

    Well-faceted ZnO fibers with periodic junction-prisms were synthesized using conventional chemical vapor deposition. The characterization of the fibers by optical and fluorescence microscopy showed that the outer facets of the crystalline fibers provide excellent mirror-like surfaces for guiding light propagation along the fiber stem as well as the periodic junction-prisms. The structure-related optical properties can be fully explained by a microstructural model. The proposed model explains as the decrease in luminance at the junction-prisms is caused by refraction and total or partial reflection of light. The model also explains the luminance enhancement at the junction-prisms is related to waveguiding of the green emission of the ZnO fibers. Further integration of the ZnO junction-prisms into microdevices should provide the microscale modulation for light with different wavelengths, and could be potentially used for enhanced light-illumination arrays.

  13. The Calm Before the Storm: Exploring the Post Accretionary Doldrums Prior to the Late Heavy Bombardment

    NASA Astrophysics Data System (ADS)

    Bottke, W. F., Jr.

    2015-12-01

    The early bombardment of the inner solar system played a critical role in planetary evolution, but there is still considerable uncertainty about what happened when. Dynamical models suggest two major bombardment phases may have taken place: (i) a post-accretionary period where newly-formed worlds were struck by leftover planetesimals, and (ii) a late heavy bombardment period, possibly produced by conditions related to a violent reshuffling of the planets ~4.1-4.2 Gyr ago (Ga). If valid, a relative impact lull took place between the two bombardment phases. We explore the evidence for such doldrums in this talk. Consider: a) Mars. Geochemical and meteorite evidence indicates the giant 10,600 × 8,500 km Borealis basin formed > 4.5 Ga. Many postulated basins forming afterwards, however, can be ruled out by the surprisingly pristine nature of the Borealis boundary in topography and gravity. Three of the four largest remaining basins, Hellas, Isidis, and Argyre, have superposed craters counts indicating they are < 4.1 Ga. b) Asteroids. The oldest and most extensive sets of 39Ar-40Ar shock degassing ages, found within meteorites that were heavily shocked, shock-melted, or otherwise showed some evidence for having been part of a large collision, show age clusters between ~3.5-4.1 Ga and ~4.4-4.54 Ga. Using dynamical/impact heating models, it can be argued that relatively few projectiles were on planet-crossing orbits between ~4.1-4.4 Ga. c) Moon. The Moon is probably 4.47 Ga, yet most sample evidence for basin-sized impacts may be < 4.2 Ga. The age gap is curious unless many basins were created close in time to the solidification of the lunar crust. Using collisional/dynamical models, it can be shown that many early basins and craters formed > 4.4 Ga. Here the early impactors may be surviving debris from the Moon-forming giant impact event; note that ejecta initially escaping the Earth-Moon system can come back over many tens of Myr. This would leave doldrums between ~4

  14. Aquatic Sediments.

    ERIC Educational Resources Information Center

    Sanville, W. D.; And Others

    1978-01-01

    Presents a literature review of aquatic sediments and its effect upon water quality, covering publications of 1976-77. This review includes: (1) sediment water interchange; (2) chemical and physical characterization; and (3) heavy water in sediments. A list of 129 references is also presented. (HM)

  15. Foreword: contributions of Arctic PRISM to monitoring western hemispheric shorebirds

    USGS Publications Warehouse

    Skagen, Susan K.; Smith, Paul A.; Andres, Brad A.; Donaldson, Garry; Brown, Stephen

    2012-01-01

    listing under the U.S. Endangered Species Act and the Canadian Species at Risk Act. To meet the need for information on population size and trends, shorebird biologists from Canada and the United States proposed a shared blueprint for shorebird monitoring across the Western Hemisphere in the late 1990s; this effort was undertaken in concert with the development of the Canadian and the U.S. Shorebird Conservation Plans. Soon thereafter, partners in the monitoring effort adopted the name "Program for Regional and International Shorebird Monitoring" (PRISM). Among the primary objectives of PRISM were to estimate the population sizes and trends of breeding North American shorebirds and describe their distributions. PRISM members evaluated ongoing and potential monitoring approached to address 74 taxa (including subspecies) and proposed a combination of arctic and boreal breeding surveys, temperate breeding and non-breeding surveys, and neotropical surveys.

  16. Contributions of Arctic PRISM to monitoring western hemispheric shorebirds

    USGS Publications Warehouse

    Skagen, Susan K.; Smith, Paul A.; Andres, Brad A.; Donaldson, Garry; Brown, Stephen

    2012-01-01

    for assessing its vulnerability and subsequent listing under the U.S. Endangered Species Act and the Canadian Species at Risk Act. To meet the need for information on population size and trends, shorebird biologists from Canada and the United States proposed a shared blueprint for shorebird monitoring across the Western Hemisphere in the late 1990s; this effort was undertaken in concert with the development of the Canadian and U.S. Shorebird Conservation Plans (Donaldson et al. 2000, Brown et aL 2001). Soon thereafter, partners in the monitoring effort adopted the name "Program for Regional and International Shorebird Monitoring" (PRISM). Among the primary objectives of PRISM were to estimate the population sizes and trends of breeding North American shorebirds and describe their distributions (Bart et al. 2002). PRISM members evaluated ongoing and potential monitoring approaches to address 74 taxa (including subspecies) and proposed a combination of arctic andboreal breeding surveys, temperate breeding and non-breeding surveys, and neotropical surveys.

  17. Triple Wollaston-prism complete-Stokes imaging polarimeter.

    PubMed

    Perreault, John D

    2013-10-01

    Imaging polarimetry is emerging as a powerful tool for remote sensing in space science, Earth science, biology, defense, national security, and industry. Polarimetry provides complementary information about a scene in the visible and infrared wavelengths. For example, surface texture, material composition, and molecular structure will affect the polarization state of reflected, scattered, or emitted light. We demonstrate an imaging polarimeter design that uses three Wollaston prisms, addressing several technical challenges associated with moving remote-sensing platforms. This compact design has no moving polarization elements and separates the polarization components in the pupil (or Fourier) plane, analogous to the way a grating spectrometer works. In addition, this concept enables simultaneous characterization of unpolarized, linear, and circular components of optical polarization. The results from a visible-wavelength prototype of this imaging polarimeter are presented, demonstrating remote sensitivity to material properties. This work enables new remote sensing capabilities and provides a viable design concept for extensions into infrared wavelengths. PMID:24081075

  18. The PRISM project: Infrastructure and algorithms for parallel eigensolvers

    SciTech Connect

    Bischof, C.; Sun, X.; Huss-Lederman, S.; Tsao, A.

    1993-12-31

    The goal of the PRISM project is the development of infrastructure and algorithms for the parallel solution of eigenvalue problems. We are currently investigating a complete eigensolver based on the Invariant Subspace Decomposition Algorithm for dense symmetric matrices (SYISDA). After briefly reviewing the SYISDA approach, we discuss the algorithmic highlights of a distributed-memory implementation of an eigensolver based on this approach. These include a fast matrix-matrix multiplication algorithm, a new approach to parallel band reduction and tridiagonalization, and a harness for coordinating the divide-and-conquer parallelism in the problem. We also present performance results of these kernels as well as the overall SYISDA implementation on the Intel Touchstone Delta prototype and the IBM SP/1.

  19. Hybrid-integrated prism array optoelectronic targeting system

    NASA Astrophysics Data System (ADS)

    Chang, C. C.; Chang, H. C.; Tang, L. C.; Young, W. K.; Wang, J. C.; Huang, K. L.

    2005-11-01

    This investigation proposes a cost-effective, compact, and robust optoelectronic targeting system for measuring ballistic impact velocity and the distribution of projectile motion. The major elements of this system are four photo-gates hybridized by compound one-dimensional prism array and analog/digital electronic components. The number of light sources and photodetectors used in a photo-gate was reduced to one pair of light source and photodetector. The average velocity and location of the projectile are determined according to the measured time intervals ( ˜10 -8 s) passing each pair. The system can accurately measure the velocity of a bullet as it leaves a gun barrel, as well as the velocity at specific points along the trajectory outside the firearm. Additionally, the system uses a widespread low-powered laser pointer as a light source. Compared with other optoelectronic targeting systems that use high-powered lasers, the proposed system is both economical and safe.

  20. Dove prism based rotating dual beam bidirectional Doppler OCT.

    PubMed

    Blatter, Cedric; Coquoz, Séverine; Grajciar, Branislav; Singh, Amardeep S G; Bonesi, Marco; Werkmeister, René M; Schmetterer, Leopold; Leitgeb, Rainer A

    2013-07-01

    Traditional Doppler OCT is highly sensitive to motion artifacts due to the dependence on the Doppler angle. This limits its accuracy in clinical practice. To overcome this limitation, we use a bidirectional dual beam technique equipped with a novel rotating scanning scheme employing a Dove prism. The volume is probed from two distinct illumination directions with variable controlled incidence plane, allowing for reconstruction of the true flow velocity at arbitrary vessel orientations. The principle is implemented with Swept Source OCT at 1060nm with 100,000 A-Scans/s. We apply the system to resolve pulsatile retinal absolute blood velocity by performing segment scans around the optic nerve head and circumpapillary scan time series.

  1. Optical device with conical input and output prism faces

    DOEpatents

    Brunsden, Barry S.

    1981-01-01

    A device for radially translating radiation in which a right circular cylinder is provided at each end thereof with conical prism faces. The faces are oppositely extending and the device may be severed in the middle and separated to allow access to the central part of the beam. Radiation entering the input end of the device is radially translated such that radiation entering the input end at the perimeter is concentrated toward the output central axis and radiation at the input central axis is dispersed toward the output perimeter. Devices are disclosed for compressing beam energy to enhance drilling techniques, for beam manipulation of optical spatial frequencies in the Fourier plane and for simplification of dark field and color contrast microscopy. Both refracting and reflecting devices are disclosed.

  2. Larmor labeling of neutron spin using superconducting Wollaston prisms

    NASA Astrophysics Data System (ADS)

    Li, Fankang

    Neutron spin Larmor labeling using magnetic Wollaston prisms (WP) provides a way to overcome some of the limitations arising from the nature of neutron beams: low flux and divergence. Using superconducting films and tapes, a series of strong, well-defined shaped magnetic fields can be produced due to both the zero-resistance and Meissner effect in superconductors. Using finite element simulations, the criterion to build a superconducting magnetic Wollaston prism with high encoding efficiency and low Larmor phase aberrations are presented. To achieve a high magnetic field and simplify the maintenance, we optimize the design using careful thermal analysis. The measured neutron spin flipping efficiency is measured to be independent of both the neutron wavelength and energizing current, which is a significant improvement over other devices with similar functions. A highly linear variation of the Larmor phase is measured across the device, which ensures a highly uniform encoding of scattering angles into the neutron spin Larmor phase. Using two WPs, the correlation function for a colloidal silica sample was measured by spin echo modulated small angle neutron scattering (SEMSANS) and agrees well with other techniques. Using Monte Carlo code (McStas), we further investigated the SEMSANS setup and showed the requirements to improve its performance. We have proposed a new technique to implement neutron spin echo on a triple axis neutron spectrometer to achieve high resolution measurements of the lifetime of dispersive phonon excitations. The spin echo is tuned by appropriate choice of magnetic fields instead of physically tilting the coils used in traditional methods. This new approach allows a higher energy resolution and a larger effective tilting angle and hence larger group velocity to be measured.

  3. The effect of a compliant accretionary wedge on earthquake rupture and tsunamigenesis

    NASA Astrophysics Data System (ADS)

    Lotto, Gabriel; Jeppson, Tamara; Dunham, Eric; Tobin, Harold

    2016-04-01

    The 11 March 2011 Tohoku megathrust earthquake ruptured through the shallowest part of the subduction zone boundary, resulting in tens of meters of displacement at the seafloor. This extreme shallow slip generated a devastating tsunami. The elastic properties of off-fault materials have an important role in determining slip along a fault. Laboratory ultrasonic velocity measurements performed on samples of rock obtained from the area surrounding the Tohoku earthquake principal fault zone during the Japan Trench Fast Drilling Project (JFAST) have shown that shallow off-fault materials are extremely compliant - P-wave velocities of 2.0-2.4 km/s, S-wave velocities of 0.7-1.0 km/s, and shear moduli ranging from 1.0-2.2 GPa. Seismic imaging around the JFAST drill site corroborates the presence of a compliant, low-velocity frontal prism at the toe of the hanging wall. This compliant wedge is likely a fairly robust feature across the horizontal extent of the Japan Trench and may have contributed to the large amount of displacement recorded. In order to investigate the impact of compliant off fault materials on earthquake rupture and tsunamigenesis, we employ a 2-D finite difference method that models the full seismic and tsunami wavefield associated with dynamic rupture on a dipping fault in a heterogeneous medium. Our numerical method rigorously couples the elastodynamic response of the solid Earth to that of a compressible ocean in the presence of gravity. Idealized models of subduction zone earthquakes show that the presence of a compliant wedge leads to increased slip, greater seafloor displacement, and a larger tsunami. However, preliminary results for a representative Tohoku geometry were not so simple; the compliant wedge enhanced slip and seafloor deformation but only in a localized zone, and tsunami height was not significantly affected. This surprising result indicates that the details of geometry and material structure we observe in real subduction zones are

  4. The Effect of a Compliant Accretionary Wedge on Earthquake Rupture and Tsunamigenesis

    NASA Astrophysics Data System (ADS)

    Lotto, G. C.; Jeppson, T.; Tobin, H. J.; Dunham, E. M.

    2015-12-01

    The 11 March 2011 Tohoku megathrust earthquake ruptured through the shallowest part of the subduction zone boundary, resulting in tens of meters of displacement at the seafloor. This extreme shallow slip generated a devastating tsunami. The elastic properties of off-fault materials have an important role in determining slip along a fault. Laboratory ultrasonic velocity measurements performed on samples of rock obtained from the area surrounding the Tohoku earthquake principal fault zone during the Japan Trench Fast Drilling Project (JFAST) have shown that shallow off-fault materials are extremely compliant - P-wave velocities of 2.0-2.4 km/s, S-wave velocities of 0.7-1.0 km/s, and shear moduli ranging from 1.0-2.2 GPa. Seismic imaging around the JFAST drill site corroborates the presence of a weak, low-velocity frontal prism at the toe of the hanging wall. This compliant wedge is likely a fairly robust feature across the horizontal extent of the Japan Trench and may have contributed to the large amount of displacement recorded. In order to investigate the impact of weak off fault materials on earthquake rupture and tsunamigenesis, we employ a 2-D finite difference method that models the full seismic and tsunami wavefield associated with dynamic rupture on a dipping fault in a heterogeneous medium. Our numerical method rigorously couples the elastodynamic response of the solid Earth to that of a compressible ocean in the presence of gravity. Preliminary results of Tohoku-like models indicate that the presence of compliant off-fault elastic materials leads to greatly increased slip velocity, slip, and seafloor deformation.

  5. Jones matrix formulation of a Porro prism laser resonator with waveplates: theoretical and experimental analysis

    NASA Astrophysics Data System (ADS)

    Agrawal, L.; Bhardwaj, A.; Pal, S.; Kumar, A.

    2007-11-01

    This article presents the results of a detailed theoretical and experimental analysis carried out on a folded Z-shaped polarization coupled, electro-optically Q-switched laser resonator with Porro prisms and waveplates. The advantages of adding waveplates in a Porro prism resonator have been explored for creating high loss condition prior to Q-switching and obtaining variable reflectivity with fixed orientation of Porro prism. Generalized expressions have been derived in terms of azimuth angles and phase shifts introduced by the polarizing elements. These expressions corroborate with known reported results under appropriate substitutions. A specific case of a crossed Porro prism diode-pumped Nd:YAG laser has been theoretically and experimentally investigated. In the feedback arm, a 0.57λ waveplate oriented at 135° completely compensates the phase shift of a fused silica Porro prism and provides better tolerances than a BK-7 prism/0.60λ waveplate combination to stop prelasing. The fused silica prism/0.57λ combination with waveplate at 112° acts like a 100% mirror and was utilized for optimization of free running performance. The effective reflectivity was determined for various orientations of the quarter waveplate in the gain arm to numerically estimate the Q-switched laser pulse parameters through rate equation analysis. Experimental results match well with the theoretical analysis.

  6. [Improving laser center wavelength detection accuracy based on multi-level combination prisms].

    PubMed

    Liu, Xiao-Dong; Zhang, Zhi-Jie

    2011-08-01

    In order to improve the spectral resolution of birefringence prism under the conditions of ensuring the quality of interference fringes image, the system used multi-level combination prisms and designed the method of interferometer fringes splice. According to calculation of the interferometer fringes intensity of multi-level combination prisms, the optical path difference function and the spectrum resolution, the present paper analyzed that the least spectrum resolution is 2.875 cm(-1) in multi-level combination prisms of four prisms structure. The method of interferometer fringes splice was designed to splice the section interferometer fringes, and in experiment the size of multi-level combination prisms is 30 mm x 28 mm x 10 mm. The standard 635 nm laser for getting the interferometer fringes was dealed with. Experimental data show that the detection spectrum distribution of the 635.0 nm laser was distorted by the direct splicing of the interference fringes, while the detection spectrum distribution of the 635.0 nm laser was consistent with the standard spectrum by the method of interferometer fringes splice. So the method can effectively avoid spectrum distortion by interferometer fringes splice in multi-level combination prisms.

  7. Adaptation to Leftward-shifting Prisms Enhances Local Processing in Healthy Individuals

    PubMed Central

    Reed, Scott A.; Dassonville, Paul

    2014-01-01

    In healthy individuals, adaptation to left-shifting prisms has been shown to simulate the symptoms of hemispatial neglect, including a reduction in global processing that approximates the local bias observed in neglect patients. The current study tested whether leftward prism adaptation can more specifically enhance local processing abilities. In three experiments, the impact of local and global processing was assessed through tasks that measure susceptibility to illusions that are known to be driven by local or global contextual effects. Susceptibility to the rod-and-frame illusion – an illusion disproportionately driven by both local and global effects depending on frame size – was measured before and after adaptation to left- and right-shifting prisms. A significant increase in rod-and-frame susceptibility was found for the left-shifting prism group, suggesting that adaptation caused an increase in local processing effects. The results of a second experiment confirmed that leftward prism adaptation enhances local processing, as assessed with susceptibility to the simultaneous-tilt illusion. A final experiment employed a more specific measure of the global effect typically associated with the rod-andframe illusion, and found that although the global effect was somewhat diminished after leftward prism adaptation, the trend failed to reach significance (p = .078). Rightward prism adaptation had no significant effects on performance in any of the experiments. Combined, these findings indicate that leftward prism adaptation in healthy individuals can simulate the local processing bias of neglect patients primarily through an increased sensitivity to local visual cues, and confirm that prism adaptation not only modulates lateral shifts of attention, but also prompts shifts from one level of processing to another. PMID:24560913

  8. Exploring the effects of ecological activities during exposure to optical prisms in healthy individuals.

    PubMed

    Fortis, Paola; Ronchi, Roberta; Calzolari, Elena; Gallucci, Marcello; Vallar, Giuseppe

    2013-01-01

    Prism adaptation improves a wide range of manifestations of left spatial neglect in right-brain-damaged patients. The typical paradigm consists in repeated pointing movements to visual targets, while patients wear prism goggles that displace the visual scene rightwards. Recently, we demonstrated the efficacy of a novel adaptation procedure, involving a variety of every-day visuo-motor activities. This "ecological" procedure proved to be as effective as the repetitive pointing adaptation task in ameliorating symptoms of spatial neglect, and was better tolerated by patients. However, the absence of adaptation and aftereffects measures for the ecological treatment did not allow for a full comparison of the two procedures. This is important in the light of recent findings showing that the magnitude of prism-induced aftereffects may predict recovery from spatial neglect. Here, we investigated prism-induced adaptation and aftereffects after ecological and pointing adaptation procedures. Forty-eight neurologically healthy participants (young and aged groups) were exposed to rightward shifting prisms while they performed the ecological or the pointing procedures, in separate days. Before and after prism exposure, participants performed proprioceptive, visual, and visual-proprioceptive tasks to assess prism-induced aftereffects. Participants adapted to the prisms during both procedures. Importantly, the ecological procedure induced greater aftereffects in the proprioceptive task (for both the young and the aged groups) and in the visual-proprioceptive task (young group). A similar trend was found for the visual task in both groups. Finally, participants rated the ecological procedure as more pleasant, less monotonous, and more sustainable than the pointing procedure. These results qualify ecological visuo-motor activities as an effective prism-adaptation procedure, suitable for the rehabilitation of spatial neglect.

  9. Adaptation to leftward-shifting prisms enhances local processing in healthy individuals.

    PubMed

    Reed, Scott A; Dassonville, Paul

    2014-04-01

    In healthy individuals, adaptation to left-shifting prisms has been shown to simulate the symptoms of hemispatial neglect, including a reduction in global processing that approximates the local bias observed in neglect patients. The current study tested whether leftward prism adaptation can more specifically enhance local processing abilities. In three experiments, the impact of local and global processing was assessed through tasks that measure susceptibility to illusions that are known to be driven by local or global contextual effects. Susceptibility to the rod-and-frame illusion - an illusion disproportionately driven by both local and global effects depending on frame size - was measured before and after adaptation to left- and right-shifting prisms. A significant increase in rod-and-frame susceptibility was found for the left-shifting prism group, suggesting that adaptation caused an increase in local processing effects. The results of a second experiment confirmed that leftward prism adaptation enhances local processing, as assessed with susceptibility to the simultaneous-tilt illusion. A final experiment employed a more specific measure of the global effect typically associated with the rod-and-frame illusion, and found that although the global effect was somewhat diminished after leftward prism adaptation, the trend failed to reach significance (p=.078). Rightward prism adaptation had no significant effects on performance in any of the experiments. Combined, these findings indicate that leftward prism adaptation in healthy individuals can simulate the local processing bias of neglect patients primarily through an increased sensitivity to local visual cues, and confirm that prism adaptation not only modulates lateral shifts of attention, but also prompts shifts from one level of processing to another.

  10. Constraining sediment subduction: A converted phase study of the Aleutians and Marianas

    NASA Astrophysics Data System (ADS)

    Horleston, A. C.; Helffrich, G. R.

    2012-12-01

    This paper presents a new method for constraining the thickness of the thin low-velocity layer observed at the upper surface of subducting slabs using the differential travel time between direct P and converted SP phases. To aid detection of these phases a three-component, frequency dependent, data-adaptive polarization filter was also developed. An inversion scheme was applied to the data from two areas previously characterised by different sediment subduction regimes: accretionary (Alaska) and non-accretionary (Marianas). In both areas, our results are consistent with the hypothesis that the entire oceanic crust and sedimentary column is subducted intact to depths of > 150 km. Assuming that our study areas are representative of all subduction zones we have recalculated the global CO2 cycle to include the increased volume of sediment subducted under this new regime. A brief box-model calculation suggests that continued pelagic sediment deposition and subduction will lead to a net sink of carbon into the mantle on geological timescales and that the amount of carbon that is deep subducted increases by 13%. A recalculation of GLOSS (Plank and Langmuir, 1998) with complete sediment subduction at all regions leads to an average 19% increase in the subduction flux of all components of the sedimentary column implying a greater flux of sedimentary elements into the lower mantle than previously estimated.

  11. Energy related studies utilizing microcline thermochronology: Progress report, May 1, 1987-April 30, 1988

    SciTech Connect

    Not Available

    1988-04-30

    Rock samples from the Salton Sea Geothermal Field (sandstone, tuff, granite) and from accretionary prism sediments along the convergent margins in southeast Alaska and southwest Japan have been dated by the /sup 40/Ar/sup 39/Ar method. Paleotemperatures have been calculated. (ACR

  12. A bi-prism interferometer for hard x-ray photons

    SciTech Connect

    Isakovic, A.F.; Siddons, D.; Stein, A.; Warren, J.B.; Sandy, A.R.; Narayanan, M.S.; Ablett, J.M.; Metzler, M. and Evans-Lutterodt, K.

    2010-04-06

    Micro-fabricated bi-prisms have been used to create an interference pattern from an incident hard X-ray beam, and the intensity of the pattern probed with fluorescence from a 30 nm-thick metal film. Maximum fringe visibility exceeded 0.9 owing to the nano-sized probe and the choice of single-crystal prism material. A full near-field analysis is necessary to describe the fringe field intensities, and the transverse coherence lengths were extracted at APS beamline 8-ID-I. It is also shown that the maximum number of fringes is dependent only on the complex refractive index of the prism material.

  13. Properties of YMnO{sub 3} self-assembled nanocrystalline prisms on GaN

    SciTech Connect

    Keenan, Cameron; Chandril, Sandeep; Myers, Thomas H.; Lederman, David; Ramos-Moore, E.; Cabrera, A. L.

    2008-01-07

    Growth of YMnO{sub 3} on GaN (0001) using molecular beam epitaxy at temperatures greater than 850 deg. C resulted in the spontaneous formation of crystalline prisms, ranging from 20 to 60 nm in height and 50 to 500 nm in lateral size, surrounded by a 6 nm thick continuous YMnO{sub 3} film. The local dielectric properties were measured using scanning surface probe microscopy. The prisms were ferroelectric at room temperature and their ferroelectric properties were enhanced for taller prisms. This is consistent with these structures being less constrained than the continuous layer, which is clamped by the surrounding unpolarized film.

  14. Post-self-assembly covalent chemistry of discrete multicomponent metallosupramolecular hexagonal prisms.

    PubMed

    Wang, Ming; Lan, Wen-Jie; Zheng, Yao-Rong; Cook, Timothy R; White, Henry S; Stang, Peter J

    2011-07-20

    The multicomponent coordination-driven self-assembly of hexakis[4-(4-pyridyl)phenyl]benzene, cis-(PEt(3))(2)Pt(II)(OTf)(2), and amine- or maleimide-functionalized isophthalate forms discrete hexagonal prisms as single reaction products. The amino or maleimide groups decorating the isophthalate pillars of the prisms provide reactive sites for post-self-asssembly modifications. In this communication, we demonstrate that the hexagonal prisms can be functionalized without disrupting the prismatic cores, enabling the incorporation of new functionalities under mild conditions.

  15. CLESSIDRA: Focusing Hard X-Rays Efficiently with Arrays Composed of Small Prisms

    SciTech Connect

    Jark, Werner; Perennes, Frederic; Matteucci, Marco; Mancini, Lucia; Menk, Ralf H.; Rigon, Luigi

    2007-01-19

    Small prisms arranged such that the number of prisms to traverse by an x-ray beam is linearly increasing with distance from the symmetry axis of the device will direct an incident wave to a common cross over point. This structure can be understood as a special form of the Fresnel version of a concave refractive x-ray lens. Indeed it is obtained by removing blocks of optically passive material of equal height from the concave lens shape. It will be shown that the structure has a high refraction efficiency and that the losses are produced by problems in the fabrication of sufficiently sharp tips for the prisms.

  16. Volumetric display using rotating prism sheets arranged in a symmetrical configuration.

    PubMed

    Maeda, Yuki; Miyazaki, Daisuke; Mukai, Takaaki; Maekawa, Satoshi

    2013-11-01

    A volumetric display that creates a distortion-free three-dimensional (3D) image in midair is described. The proposed system consists of rotating prism sheets used as an optical scanner and a dihedral corner reflector array (DCRA), which is a distortion-free imaging element. Two prism sheets are arranged in a symmetrical configuration to reduce an unnatural motion parallax caused by optical aberrations. A cross-section of the 3D image is formed by the DCRA in midair and moved by the rotating prism sheets to create a 3D displayable space. A 3D volume image was displayed without image distortion or unnatural motion parallax.

  17. Size and aspect ratio distributions of blocks in a mélange of the Shimanto accretionary complex, southwest Japan

    NASA Astrophysics Data System (ADS)

    Tabuchi, Y.; Tonai, S.

    2015-12-01

    Block-in-matrix fabrics in accretionary complex have variety based on their deformation processes. We report characteristics of blocks in the Hioki mélange, which constitutes part of the youngest (late Oligocene to early Miocene) portion of the Shimanto accretionary complex, Shikoku, southwest Japan. The Hioki mélange is regarded as a tectonic mélange which has formed at a few km depth below the surface (e.g., Hibbard et al., 1993; Underwood et al., 1993). The ample exposure of the mélange in the study area provides a good opportunity to observe detailed structure of the block-in-matrix fabrics. The matrix, which is partly folded, is composed of dark gray shale and some green tuff and dark brown shale. Foliations of the matrix, which are manifested by cleavages, roughly strike ENE-WSW and steeply dip mostly toward the north. Blocks consist mainly of sandstone. The size of blocks ranges from millimeter to meter in length of major axes. These blocks are divided into brecciated, boudinage, and playted types on the basis of their shapes. Each type of blocks can be observed throughout the study area. We measured size and aspect ratio of blocks that are more than 10 cm in length of major axes. The average and standard deviation of the block size are 28.5 cm and 41.0 cm, respectively. The median of the aspect ratio is 2.0. To compare with the characteristics of blocks, we also measured length of the major axis and the aspect ratio for blocks of a sedimentary mélange (the Cretaceous Ukibuchi Formation), which also constitutes part of the Shimanto accretionary complex. The Ukibuchi Formation consists mainly of dark-gray shale matrix containing sandstone blocks. The average and standard deviation of block size are 12.2 cm and 8.6 cm, respectively. The median of aspect ratio is 1.6. Each parameter is lower than those of blocks in the Hioki mélange.

  18. Plate Tectonics at 3.8-3.7 Ga: Field Evidence from the Isua Accretionary Complex, Southern West Greenland.

    PubMed

    Komiya; Maruyama; Masuda; Nohda; Hayashi; Okamoto

    1999-09-01

    A 1&rcolon;5000 scale mapping was performed in the Isukasia area of the ca. 3.8-Ga Isua supracrustal belt, southern West Greenland. The mapped area is divided into three units bounded by low-angle thrusts: the Northern, Middle, and Southern Units. The Southern Unit, the best exposed, is composed of 14 subunits (horses) with similar lithostratigraphy, bound by layer-parallel thrusts. Duplex structures are widespread in the Isua belt and vary in scale from a few meters to kilometers. Duplexing proceeded from south to north and is well documented in the relationship between link- and roof-thrusts. The reconstructed lithostratigraphy of each horse reveals a simple pattern, in ascending order, of greenstone with low-K tholeiitic composition with or without pillow lava structures, chert/banded iron-formation, and turbidites. The cherts and underlying low-K tholeiites do not contain continent- or arc-derived material. The lithostratigraphy is quite similar to Phanerozoic "oceanic plate stratigraphy," except for the abundance of mafic material in the turbidites. The evidence of duplex structures and oceanic plate stratigraphy indicates that the Isua supracrustal belt is the oldest accretionary complex in the world. The dominantly mafic turbidite composition suggests that the accretionary complex was formed in an intraoceanic environment comparable to the present-day western Pacific Ocean. The duplex polarity suggests that an older accretionary complex should occur to the south of the Isua complex. Moreover, the presence of seawater (documented by a thick, pillow, lava unit at the bottom of oceanic plate stratigraphy) indicates that the surface temperature was less than ca. 100 degrees C in the Early Archean. The oceanic geotherm for the Early Archean lithosphere as a function of age was calculated based on a model of transient half-space cooling at given parameters of surface and mantle temperatures of 100 degrees and 1450 degrees C, respectively, suggesting that the

  19. Preferential accumulation of gas hydrate in the Andaman accretionary wedge and relationship to anomalous porosity preservation

    NASA Astrophysics Data System (ADS)

    Rose, K.; Torres, M. E.; Johnson, J. E.; Hong, W.; Giosan, L.; Solomon, E. A.; Kastner, M.; Cawthern, T.; Long, P.; Schaef, T.

    2015-12-01

    In the marine environment, sediments in the gas hydrate stability zone often correspond to slope and basin settings. These settings are dominantly composed of fine-grained silt and clay lithofacies with typically low vertical permeability, and pore fluids frequently under-saturated with respect to methane. As a result, the pressure-temperature conditions requisite for a GHSZ to be present occur widely worldwide across marine settings, however, the distribution of gas hydrate in these settings is neither ubiquitous nor uniform. This study uses sediment core and borehole related data recovered by drilling at Site 17 in the Andaman Sea during the Indian National Gas Hydrate Program Expedition 1 in 2006, to investigate reservoir-scale controls on gas hydrate distribution. In particular, this study finds that conditions beyond reservoir pressure, temperature, salinity, and gas concentration, appear to influence the concentration of gas hydrate in host sediments. Using field-generated datasets along with newly acquired sedimentology, physical property, imaging and geochemical data with mineral saturation and ion activity products of key mineral phases such as amorphous silica and calcite, we document the presence and nature of secondary precipitates that contributed to anomalous porosity preservation at Site 17 in the Andaman Sea. This study demonstrates the importance of grain-scale subsurface heterogeneities in controlling the occurrence and distribution of concentrated gas hydrate accumulations in marine sediments, and document the importance that increased permeability and enhanced porosity play in supporting gas concentrations sufficient to support gas hydrate formation. This illustrates the complex balance and lithology-driven controls on hydrate accumulations of higher concentrations and offers insights into what may control the occurrence and distribution of gas hydrate in other sedimentary settings.

  20. Using Satellite Gravity to Map and Model Forearc Basins and Thickness of Trench Sediment Worldwide: Implications for Great Earthquakes

    NASA Astrophysics Data System (ADS)

    Blakely, R. J.; Scholl, D. W.; Wells, R. E.; von Huene, R.; Barckhausen, U.

    2006-12-01

    There is growing evidence that historic great earthquakes (M>8) favor segments of subduction zones that exhibit key geologic factors, such as high sediment influx into the trench (e.g., Ruff, 1989), the presence of young accretionary prisms (von Huene and Scholl, 1991), the presence of trench-slope forearc basins (Wells et al., 2003; Song and Simons, 2003), and the mineralogical structure of the upper plate. The USGS Tsunami Sources Working Group (http://walrus.wr.usgs.gov/tsunami/workshop/index.html) recently described and quantified these factors for all eastern Pacific subduction margins. Although the level of knowledge of subduction zones world-wide is highly uneven, free-air gravity anomalies observed at satellite altitudes provide a consistent measure of some of these geologic factors. Satellite gravity demonstrates, for example, that regions of greatest slip during past megathrust earthquakes around the circum-Pacific spatially correlate with forearc basins and their associated deep-sea terrace gravity lows, with amplitudes typically >20 mGal. Basins may evolve because interseismic subsidence, possibly linked to basal erosion of the forearc by the subducting plate, does not fully recover after earthquakes. By inference, therefore, forearc basin gravity lows should be predictors of the location of large moment release during future great earthquakes. Moreover, great earthquakes have a statistical propensity to occur at trenches with excess sediments, in contrast to trenches dominated by horst-and-graben bathymetry. After removing the effects of bathymetric depth, low densities associated with trench fill are evident in satellite gravity anomalies and thus permit identification of trench segments with high sediment influx. Additional studies using satellite gravity anomalies may lead to new avenues in understanding the geologic processes that accompany great megathrust earthquakes, but we must confirm the ability of satellite gravity data to serve as a

  1. Preliminary evaluation of the petroleum potential of the Tertiary accretionary terrane, west side of the Olympic Peninsula, Washington

    SciTech Connect

    Not Available

    1989-01-01

    Convergence between the Pacific and North American plates during late Eocene and late middle Miocene times produced two principal terranes of melange and broken formation (Eocene, Ozette Melange and Miocene, Hoh Melange) exposed onshore along the west side of the Olympic Peninsula. Organic geochemical analyses of 150 samples collected from these two accretionary terranes indicate that they are marginally mature and have a low content of type III organic matter, therefore, they are gas prone rather than oil prone. Geochemical analyses, using molecular markers, indicate that the oil in the Sunshine Mining Co. Medina No. 1 is related to oil extracted from middle Eocene siltstone of the Ozette Melange located as much as 140 km north of the well. The stable carbon and hydrogen isotopic abundance of methane in natural gas seeps and gas in the melange along the west side of the Olympic Peninsula indicate that the gas is mainly thermogenic; however, the relation between these two sources of gas is uncertain.

  2. Highly Sideophile Element Abundance Constraints on the Nature of the Late Accretionary Histories of Earth, Moon and Mars

    NASA Technical Reports Server (NTRS)

    Walker, R. J.; Puchtel, I. S.; Brandon, A. D.; Horan, M. F.; James, O. B.

    2007-01-01

    The highly siderophile elements (HSE) include Re, Os, Ir, Ru, Pt and Pd. These elements are initially nearly-quantitatively stripped from planetary silicate mantles during core segregation. They then may be re-enriched in mantles via continued accretion sans continued core segregation. This suite of elements and its included long-lived radiogenic isotopes systems (Re-187 (right arrow) Os-187; Pt-190 (right arrow) Os-186) can potentially be used to fingerprint the characteristics of late accreted materials. The fingerprints may ultimately be useful to constrain the prior nebular history of the dominant late accreted materials, and to compare the proportion and genesis of late accretionary materials added to the inner planets. The past ten years have seen considerable accumulation of isotopic and compositional data for HSE present in the Earth's mantle, lunar mantle and impact melt breccias, and Martian meteorites. Here we review some of these data and consider the broader implications of the compiled data.

  3. Cavity Enhanced Absorption Spectroscopy Using a Broadband Prism Cavity and a Supercontinuum Source

    NASA Astrophysics Data System (ADS)

    Johnston, Paul S.; Lehmann, Kevin K.

    2009-06-01

    The multiplex advantage of current cavity enhanced spectrometers is limited by the high reflectivity bandwidth of the mirrors used to construct the high finesse cavity. Previously, we reported the design and construction of a new spectrometer that circumvents this limitation by utilizing Brewster^{,}s angle prism retroreflectors. The prisms, made from fused silica and combined with a supercontinuum source generated by pumping a highly nonlinear photonic crystal fiber, yields a spectral window ranging from 500 nm to 1750 nm. Recent progress in the instruments development will be discussed, including work on modeling the prism cavity losses, alternative prism material for use in the UV and mid-IR spectral regions, and a new high power supercontinuum source based on mode-locked picosecond laser.

  4. Modelling and design of modified Wollaston prisms and the application in differential interference contrast microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Site; Zhong, Huiying; Wyrowski, Frank

    2016-03-01

    Wollaston prisms and the modified Wollaston prisms, which are interesting for various applications like optical metrology, topography of surfaces and biological imaging, has been theoretically studied and also been practically applied. The previous studies are mostly based on ray tracing analysis and, as a result, the information that can be obtained are somehow restricted. In this paper, we propose a geometric field tracing technique for the simulation of light propagation through Wollaston prisms. In geometric field tracing we seek for the solutions to Maxwell's equations under the geometrical optics approximation, so that all the properties of light as electromagnetic field are retained. Using the proposed simulation technique, we present the simulation of a differential interference contrast (DIC) microscopy, in which the modified Wollaston prism is used as the key component.

  5. C&O Canal prism, with towpath (left) and fill under WM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    C&O Canal prism, with towpath (left) and fill under WM roadbed (right), milepost 142 vicinity, looking southwest. - Western Maryland Railway, Cumberland Extension, Pearre to North Branch, from WM milepost 125 to 160, Pearre, Washington County, MD

  6. Measurement of two-dimensional small angle deviation with a prism interferometer

    SciTech Connect

    Chatterjee, Sanjib; Kumar, Y. Pavan

    2008-09-20

    A new technique for the measurement of two-dimensional small angular deviation is presented. A compound prism, which effectively produces a combination of two right-angled prisms in orthogonal directions, and plane reference surfaces have been utilized for the measurement of the orthogonal components of the angular tilt of an incident plane wavefront. Each orthogonal component of the angular tilt is separately measured from the angular rotation of the resultant wedge fringes between two plane wavefronts generated due to splitting of the incident plane wavefront by the corresponding set of right-angled prism and plane reference surface. The technique is shown to have high sensitivity for the measurement of small angle deviation. A monolithic prism interferometer, which is practically insensitive to vibration, is also proposed. Results obtained for the measurement of a known tilt angle are presented.

  7. Effects of prism adaptation on motor-intentional spatial bias in neglect

    PubMed Central

    Fortis, Paola; Chen, Peii; Goedert, Kelly M.; Barrett, Anna M.

    2011-01-01

    Prism adaptation may alleviate some symptoms of spatial neglect. However, the mechanism through which this technique works is still unclear. The current study investigated whether prism adaptation differentially affects dysfunction in perceptual-attentional “where” versus motor-intentional “aiming” bias. Five neglect patients performed a line bisection task in which lines were viewed under both normal and right-left reversed viewing conditions, allowing for the fractionation of “where” and “aiming” spatial bias components. Following two consecutive days of prism adaptation, participants demonstrated a significant improvement in “aiming” spatial bias, with no effect on “where” spatial bias. These findings suggest that prism adaptation may primarily affect motor-intentional “aiming” bias in post-stroke spatial neglect patients. PMID:21817924

  8. Paleozoic accretionary and collisional tectonics of the eastern Chinese Tianshan: implications for crustal growth of central Asia

    NASA Astrophysics Data System (ADS)

    Xiao, W. J.; Qin, K. Z.; Sun, S.; Li, J. L.

    2003-04-01

    The Paleozoic tectonics of Chinese Tianshan was complicated in the east by jointing of the NWW-trending Junggar and the E-W-trending East Tianshan belts. From South to North, this orogenic collage is subdivided into several tectonics terranes, which have recorded the Middle to Late Paleozoic geological history in framework of a complicated collision between two archipelago system lying along the northern Tarim and the southern Siberian margins, respectively. The southern archipelago system, constructed followed collapse of the northern passive margin of the Tarim, was mainly active in the Silurian to Early Carboniferous time, and was characterized by suturing of a Neoproterozoic to Late Devonian passive margin, the Tarim, in the south and a Silurian-Mid-Devonian arc terrane, the Kawabulak-Central Tianshan arc, in the north with squeezed intervening Late Devonian to Early Carboniferous backarc basins. The northern archipelago system was a Devonian-Carboniferous composite arc, which comprises the Carboniferous the Yamansu arc, the Early- to Mid-Carboniferous Kanguer accretionary forearc basin, the Devonian-Carboniferous Dananhu arc, the Xiaopu intra-arc basin, the Harlik arc, and the Kelameili composite arc system. These two archipelagos collided softly leaving a cryptic suture zone represented by the Late Carboniferous to Permian Mishigou-Weiya accretionary complex including ophiolitic fragments. Predominant northward subduction during final formation of the suture gave rise to a large-scale, post-collisional, south-directed thrust-and-fold belt in the Early Triassic. By deciphering the various tectonic terranes, this paper presents a new model for the evolution of this portion of Central Asia.

  9. Numerical Simulation on Ramp Initiation and Propagation in a Fold-and-thrust Belt and Accretionary Wedge

    NASA Astrophysics Data System (ADS)

    Hu, C.; Liu, X.; Shi, Y.

    2015-12-01

    Fold-and-thrust belts and accretionary wedge develop along compressive plate boundaries, both in hinterland and foreland. Under the long-term compressive tectonic loading, a series ramps will initiate and propagate along the wedge. How do the ramps initiate? What are the timing and spacing intervals between the ramps? How many patterns are there for the ramp propagation? These questions are basic for the study of ramp initiation and propagation. Many scholars used three different methods, critical coulomb wedge theory, analogue sandbox models, and numerical simulation to research the initiation and propagation of the ramps, respectively. In this paper, we set up a 2-D elastic-plastic finite element model, with a frictional contact plane, to simulate the initiation and propagation of the ramps. In this model, the material in upper wedge is homogenous, but considering the effects of gravity and long-term tectonic loading. The model is very simple but simulated results are very interesting. The simulated results indicate that the cohesion of upper wedge and dip angle of detachment plane have strong effects on the initiation and propagation of ramps. There are three different patterns of ramp initiation and propagation for different values of the cohesion. The results are different from those by previous analogue sandbox models, and numerical simulation, in which there is usually only one pattern for the ramp initiation and propagation. The results are consistent with geological survey for the ramp formation in an accretionary wedge. This study will provide more knowledge of mechanism of the ramp initiation and propagation in Tibetan Plateau and central Taiwan.

  10. Field evidence for fault controlled intrusion of blue-schist-bearing melange into an accretionary wedge, Island Mountain, California

    SciTech Connect

    Lamons, R.

    1985-01-01

    Two lithologic units of the Franciscan are well exposed along a loop of the Eel River at Island Mountain. They are 1) zeolite or lower grade lithic graywackes, and 2) a 0.5 km wide band of black shaly melange containing blueschist, chert, greenstone, metagraywacke, and a graywacke-hosted copper deposit. Sedimentary features were not observed in the melange. The graywacke was subdivided on the basis of presence or absence of sodium-cobaltonitrate stained K-spar. Field relationships suggest that the blueschist-bearing melange was emplaced along steep NW-dipping faults in an accretionary wedge. Mapping of S. Jewett Rock and SW Lake Mountain quadrangles show narrow anastomosing bands of the melange following NW-trending faults. East of this band, graywackes without K-spar are folded along NW/SE axes. No folds were found to the west. Other Melange bands pinch out into faults which juxtapose graywackes of different facies. The sheared melange bands are not folded and shale beds in the graywacke show little shear so the melange bands are unlikely to be sheared olistostromes. The areal extent of graywacke is about ten times that of melange shales. Assuming this pattern continues laterally and at depth, the amount of ductile material in the melange is far less than that assumed by Cloos (1982) in his flow model for melange. The ductile melange may have been forced upward by metamorphically produced volatiles, or as a result of relative plate motion. It originated at depth, moved up along the top of a subducting slab, plucking clasts, then splayed upward into pre-existing faults in the accretionary wedge.

  11. Early Paleozoic accretionary orogenesis along northern margin of Gondwana constrained by high-Mg metaigneous rocks, SW Yunnan

    NASA Astrophysics Data System (ADS)

    Xing, Xiaowan; Wang, Yuejun; Cawood, Peter A.; Zhang, Yuzhi

    2015-12-01

    SW Yunnan of China constituted part of the northern margin of Gondwana facing the proto-Tethys ocean in the early Paleozoic. However, the evolution of the region and its relationship with the accretionary orogenism have been poorly established. This paper reports a set of new zircon U-Pb age data and whole-rock major oxides, elemental and Sr-Nd isotopic data for early Paleozoic metavolcanic rocks from the previously defined Lancang Group and reveals the development of an Ordovician suprasubduction zone in SW Yunnan. Zircon U-Pb ages of 462 ± 6 and 454 ± 27 Ma for two representative samples indicate eruption of the volcanic rocks in the Late Ordovician. Geochemical data for the metavolcanic rocks together with other available data indicate a calc-alkaline affinity with high Al2O3 (13.04-18.77 wt%) and low TiO2 (0.64-1.00 wt%). They have Mg-numbers ranging from 62 to 50 with SiO2 of 53.57-69.10 wt%, compositionally corresponding to the high-Mg andesitic rocks. They display enrichments in LREEs and LILEs with significant Eu negative anomalies (δEu = 0.20-0.33), and depletions in HFSEs, similar to arc volcanic rocks. Their initial 87Sr/86Sr ratios range from 0.721356 to 0.722521 and ɛNd(t) values from -7.63 to -7.62 with Nd model ages of 2.06-2.10 Ga. Integration of ages and geochemical data with available geological observations, we propose the presence of Ordovician magmatism related to proto-Tethyan evolution in SW Yunnan and the metaigneous rocks formed in an island-arc setting. They were part of a regional accretionary orogen that extended along the northern margin of Gondwana during Neoproterozoic to early Paleozoic period.

  12. [The effect of treatment with prisms on head position in persons with nystagmus--preliminary report].

    PubMed

    Baranowska-George, T

    1996-03-01

    The aim of the work is to inspect the influence of the treatment by using hyper-correcting prisms on the vertical deviations of the eyes and on the head's position in persons with nystagmus. We observed 4 persons with nystagmus without strabismus and 3 persons with convergent squint. In persons without strabismus the prismatic correction placed with an edge in the direction of the "calm's zone" (quiet's zone) to obtain the straight position of the head when looking forwards was applied. Twice a day during 10 minutes the patients were making the movement's exercises in the vertical and horizontal direction looking by the prism separately by each eye. This prism (often 35 D prism) was placed with the edge in the direction of greater deviation of the oblique inferior muscles and the left rectus inferior muscle. Patients with convergent strabismus were treated according to the principles of localization method with consideration of the localize exercises by using hyper-correcting prisms in the vertical and horizontal directions. Two patients had a surgery in order to eliminate not aesthetic and strong prisms which were applied because of large horizontal squint. One patient with convergent alternate squint with hyperactivity of both inferior oblique muscles and inferior rectus muscle of the left eye was treated without surgery, only by the conservative treatment with prisms. In all patients we obtained a straight position of the head despite of the nystagmus still existing during the eyes movements in some directions. The treatment by using hyper-correcting prisms can completely replace the surgical treatment or is able to supplement it and prevent relapses.

  13. Aquatic sediments

    SciTech Connect

    Bonner, J.S.; Autenrieth, R.L.; Schreiber, L. )

    1990-06-01

    The authors present a literature review concerning sediment properties, interactions, and conditions. Topics of discussion include the following: biological activity and toxicity; nutrients; metals; organic compounds; dredging; radionuclides; oxygen demand and organic carbon; mathematical modeling; sediment transport and suspension; and paleolimnology.

  14. Northern Papua New Guinea: Structure and sedimentation in a modern arc-continent collision

    SciTech Connect

    Abbott, L.; Silver, E. )

    1990-05-01

    Northern Papua New Guinea and the Solomon Sea are the site of a modern oblique, arc-continent collision, which is progressing from northwest to southeast. By combining offshore seismic data from the Solomon Sea with geologic mapping in the Markham Valley area of northern Papua New Guinea the authors are predicting the outcome of this collision. The Huon Gulf is the present site of initial collision. Seismic profiles show this area is dominated by thin thrust sheets. Onshore, the bulk of the uplifted accretionary wedge is a melange with exotic blocks of a variety of lithologies. Structurally below the melange lies the Leron Formation composed of thick channelized sandstone and conglomerate. It dips north at approximately 40{degree} and is cut by several thrust fault with associated folds. Limestone blocks within the melange are reported to be 2 Ma, and Beryllium 10 anomalies from Bismarck arc volcanoes suggest that initial collision of the Finisterre block (375 km northwest of the present collision point) began no earlier than 3 Ma. This implies the collision is propagating laterally at about 125 km/m.y.. Large outcrops of basalt and gabbro within the melange suggest that segments of oceanic crust were incorporated into the accretionary wedge. Modern sedimentation within the collision zone grades from fluvial sediments in the Markham Valley to deep-water turbidites ponded behind a structural ridge near the point of incipient collision. The Markham submarine canyon occupies the collision front here, and efficiently erodes the accretionary wedge. This setting may serve as a modem analog for deposition of much of the Leron Formation which exhibits tremendous sediment reworking.

  15. Solar concentrator constructed with a circular prism array.

    PubMed

    Huang, Jia-hong; Fei, Wun-Ciang; Hsu, Wei-Chi; Tsai, Jui-che

    2010-08-10

    We present a novel idea to construct a solar concentrator with a circular prism array. FRED ray tracing software is used to evaluate our proposed structure in which the incident light rays are deflected by total internal reflection and the optical energy is concentrated and collected at the center. The light rays to be collected travel within the disk once they enter the module, saving the space that is reserved for ray propagation in other concentrators. Simulations for both single-wavelength and broadband light are performed. Our device can be used alone or serve as a secondary concentrator when combined with another solar-energy focusing module. For the proposed concentrator, an optical efficiency of 90% (single wavelength, 0.87 microm) is achieved under normal incidence and with antireflection coating, and a high geometric concentration ratio of 93 is reached. When combined with a Fresnel lens, which is used as a primary concentrator, the overall efficiency and concentration ratio can reach 92% (single wavelength, 0.87 microm) and 837, respectively.

  16. PRISM: A DATA-DRIVEN PLATFORM FOR MONITORING MENTAL HEALTH.

    PubMed

    Kamdar, Maulik R; Wu, Michelle J

    2016-01-01

    Neuropsychiatric disorders are the leading cause of disability worldwide and there is no gold standard currently available for the measurement of mental health. This issue is exacerbated by the fact that the information physicians use to diagnose these disorders is episodic and often subjective. Current methods to monitor mental health involve the use of subjective DSM-5 guidelines, and advances in EEG and video monitoring technologies have not been widely adopted due to invasiveness and inconvenience. Wearable technologies have surfaced as a ubiquitous and unobtrusive method for providing continuous, quantitative data about a patient. Here, we introduce PRISM-Passive, Real-time Information for Sensing Mental Health. This platform integrates motion, light and heart rate data from a smart watch application with user interactions and text entries from a web application. We have demonstrated a proof of concept by collecting preliminary data through a pilot study of 13 subjects. We have engineered appropriate features and applied both unsupervised and supervised learning to develop models that are predictive of user-reported ratings of their emotional state, demonstrating that the data has the potential to be useful for evaluating mental health. This platform could allow patients and clinicians to leverage continuous streams of passive data for early and accurate diagnosis as well as constant monitoring of patients suffering from mental disorders. PMID:26776198

  17. PRISM: A DATA-DRIVEN PLATFORM FOR MONITORING MENTAL HEALTH.

    PubMed

    Kamdar, Maulik R; Wu, Michelle J

    2016-01-01

    Neuropsychiatric disorders are the leading cause of disability worldwide and there is no gold standard currently available for the measurement of mental health. This issue is exacerbated by the fact that the information physicians use to diagnose these disorders is episodic and often subjective. Current methods to monitor mental health involve the use of subjective DSM-5 guidelines, and advances in EEG and video monitoring technologies have not been widely adopted due to invasiveness and inconvenience. Wearable technologies have surfaced as a ubiquitous and unobtrusive method for providing continuous, quantitative data about a patient. Here, we introduce PRISM-Passive, Real-time Information for Sensing Mental Health. This platform integrates motion, light and heart rate data from a smart watch application with user interactions and text entries from a web application. We have demonstrated a proof of concept by collecting preliminary data through a pilot study of 13 subjects. We have engineered appropriate features and applied both unsupervised and supervised learning to develop models that are predictive of user-reported ratings of their emotional state, demonstrating that the data has the potential to be useful for evaluating mental health. This platform could allow patients and clinicians to leverage continuous streams of passive data for early and accurate diagnosis as well as constant monitoring of patients suffering from mental disorders.

  18. PrismTech Data Distribution Service Java API Evaluation

    NASA Technical Reports Server (NTRS)

    Riggs, Cortney

    2008-01-01

    My internship duties with Launch Control Systems required me to start performance testing of an Object Management Group's (OMG) Data Distribution Service (DDS) specification implementation by PrismTech Limited through the Java programming language application programming interface (API). DDS is a networking middleware for Real-Time Data Distribution. The performance testing involves latency, redundant publishers, extended duration, redundant failover, and read performance. Time constraints allowed only for a data throughput test. I have designed the testing applications to perform all performance tests when time is allowed. Performance evaluation data such as megabits per second and central processing unit (CPU) time consumption were not easily attainable through the Java programming language; they required new methods and classes created in the test applications. Evaluation of this product showed the rate that data can be sent across the network. Performance rates are better on Linux platforms than AIX and Sun platforms. Compared to previous C++ programming language API, the performance evaluation also shows the language differences for the implementation. The Java API of the DDS has a lower throughput performance than the C++ API.

  19. Application of derivative matrices of skew rays to design of compound dispersion prisms.

    PubMed

    Lin, Psang Dain

    2016-09-01

    Numerous optimization methods have been developed in recent decades for optical system design. However, these methods rely heavily on ray tracing and finite difference techniques to estimate the derivative matrices of the rays. Consequently, the accuracy of the results obtained from these methods is critically dependent on the incremental step size used in the tuning stage. To overcome this limitation, the present study proposes a comprehensive methodology for the design of compound dispersion prisms based on the first- and second-order derivative matrices of skew rays. The proposed method facilitates the analysis and design of prisms with respect to arbitrary system variables and provides an ideal basis for automatic prism design applications. Four illustrative examples are given. It is shown that the optical quantities required to evaluate the prism performance can be extracted directly from the proposed derivative matrices. In addition, it is shown in this study that the single-element 3D prism can have the same deviation angle and spectral dispersion as the 2D compound prism. PMID:27607509

  20. Rhomboid prism pair for rotating the plane of parallel light beams

    NASA Technical Reports Server (NTRS)

    Orloff, K. L. (Inventor); Yanagita, H.

    1982-01-01

    An optical system is described for rotating the plane defined by a pair of parallel light beams. In one embodiment a single pair of rhomboid prisms have their respective input faces disposed to receive the respective input beams. Each prism is rotated about an axis of revolution coaxial with each of the respective input beams by means of a suitable motor and gear arrangement to cause the plane of the parallel output beams to be rotated relative to the plane of the input beams. In a second embodiment, two pairs of rhomboid prisms are provided. In a first angular orientation of the output beams, the prisms merely decrease the lateral displacement of the output beams in order to keep in the same plane as the input beams. In a second angular orientation of the prisms, the input faces of the second pair of prisms are brought into coincidence with the input beams for rotating the plane of the output beams by a substantial angle such as 90 deg.

  1. Optical system design of the Dyson imaging spectrometer based on the Fery prism

    NASA Astrophysics Data System (ADS)

    Pei, Linlin; Xiangli, Bin; Lv, Qunbo; Shao, Xiaopeng

    2016-08-01

    Imaging spectrometer has obtained wide development since rich feature information can be obtained by it; now, we focus on its high spectral resolution and miniaturization. In this paper, we design the Dyson imaging spectrometer system based on Fery prism. The average spectral resolution is 4.3 nm and the structure of the total length is 229 mm. It is a small, high-spectrometer imaging system. The front and rear surface of the traditional prism are plane, but the surfaces of the Fery prism are spherical, which can provide some optical power to realize imaging function and produce the dispersion effect. The Fery prism does not need to be placed in the parallel optical path, which simplifies the collimator lens and the imaging lens and are necessary in the prism spectrometer, making it possible to obtain a compact spectrometer. Full-spectrum transmittance of the prism is up to 94 %. Compared to the convex grating, the energy efficiency is greatly improved, and the free spectral range is wider, and its dispersion will not bring higher-order spectral aliasing problem. The small high spectrometer only includes two components. Its spectral range is from 400 to 1000 nm, covering the near-ultraviolet to near-infrared. The various aberrations of the typical spectrum are corrected. The spectrometer is excellent in performance.

  2. Modelling the differential effects of prisms on perception and action in neglect.

    PubMed

    Leigh, Steven; Danckert, James; Eliasmith, Chris

    2015-03-01

    Damage to the right parietal cortex often leads to a syndrome known as unilateral neglect in which the patient fails to attend or respond to stimuli in left space. Recent work attempting to rehabilitate the disorder has made use of rightward-shifting prisms that displace visual input further rightward. After a brief period of adaptation to prisms, many of the symptoms of neglect show improvements that can last for hours or longer, depending on the adaptation procedure. Recent work has shown, however, that differential effects of prisms can be observed on actions (which are typically improved) and perceptual biases (which often remain unchanged). Here, we present a computational model capable of explaining some basic symptoms of neglect (line bisection behaviour), the effects of prism adaptation in both healthy controls and neglect patients and the observed dissociation between action and perception following prisms. The results of our simulations support recent contentions that prisms primarily influence behaviours normally thought to be controlled by the dorsal stream.

  3. Application of derivative matrices of skew rays to design of compound dispersion prisms.

    PubMed

    Lin, Psang Dain

    2016-09-01

    Numerous optimization methods have been developed in recent decades for optical system design. However, these methods rely heavily on ray tracing and finite difference techniques to estimate the derivative matrices of the rays. Consequently, the accuracy of the results obtained from these methods is critically dependent on the incremental step size used in the tuning stage. To overcome this limitation, the present study proposes a comprehensive methodology for the design of compound dispersion prisms based on the first- and second-order derivative matrices of skew rays. The proposed method facilitates the analysis and design of prisms with respect to arbitrary system variables and provides an ideal basis for automatic prism design applications. Four illustrative examples are given. It is shown that the optical quantities required to evaluate the prism performance can be extracted directly from the proposed derivative matrices. In addition, it is shown in this study that the single-element 3D prism can have the same deviation angle and spectral dispersion as the 2D compound prism.

  4. Patients with homonymous hemianopia become visually qualified to drive using novel monocular sector prisms.

    PubMed

    Moss, Adam M; Harrison, Andrew R; Lee, Michael S

    2014-03-01

    Patients with homonymous hemianopia (HH) often fail to meet visual field (VF) requirements for a driver's license. We describe 2 patients with complete HH, who met the minimum VF requirements for driving using a novel, high-power, monocular sector prism system. Baseline VFs were assessed using automated and kinetic perimetry. Patients were fitted with glasses and press-on 57-PD peripheral monocular sector prisms placed on the lens ipsilateral to the VF defect above and below the visual axis with prisms oriented obliquely. Kinetic perimetry was reassessed both monocularly and binocularly, with and without prisms. The 2 patients had 95° and 82° angle of continuous, horizontal, binocular VF. With the use of the prism system, the binocular VF increased to 115° and 112° angles. Both patients reported improvement in quality of life and each holds a valid driver's license and has successfully operated a motor vehicle without any restrictions or accidents. These findings suggest that the addition of oblique 57-PD prisms to the ipsilateral spectacle lens above and below the visual axis for patients with complete HH can significantly increase horizontal VF, which may help an individual become visually qualified to obtain a driver's license.

  5. Asymmetrical effects of adaptation to left- and right-shifting prisms depends on pre-existing attentional biases.

    PubMed

    Goedert, Kelly M; Leblanc, Andrew; Tsai, Sen-Wei; Barrett, Anna M

    2010-09-01

    Proposals that adaptation with left-shifting prisms induces neglect-like symptoms in normal individuals rely on a dissociation between the postadaptation performance of individuals trained with left- versus right-shifting prisms (e.g., Colent, Pisella, & Rossetti, 2000). A potential problem with this evidence is that normal young adults have an a priori leftward bias (e.g., Jewell & McCourt, 2000). In Experiment 1, we compared the line bisection performance of young adults to that of aged adults, who as a group may lack a leftward bias in line bisection. Participants trained with both left- and right-shifting prisms. Consistent with our hypothesis, while young adults demonstrated aftereffects for left, but not right prisms, aged adults demonstrated reliable aftereffects for both prisms. In Experiment 2, we recruited a larger sample of young adults, some of whom were right-biased at baseline. We observed an interaction between baseline bias and prism-shift, consistent with the results of Experiment 1: Left-biased individuals showed a reduced aftereffect when training with right-shifting prisms and right-biased individuals showed a reduced aftereffect when training with left-shifting prisms. These results suggest that previous failures to find generalizable aftereffects with right-shifting prisms may be driven by participants' baseline biases rather than specific effects of the prism itself.

  6. Origin of Mineral Springs on the East Coast, North Island, NZ

    SciTech Connect

    Hunt, T.M.; Glover, R.B.

    1995-01-01

    Strongly mineralized waters emerge as warm and cold springs from parts of a Cenozoic accretionary prism which extends along the East Coast of the North Island. The chemistry of these waters is consistent with them having been derived from connate sea water in deeply-buried marine sediments and is distinct from springs in other parts of the prism and elsewhere in New Zealand. Most of these mineral springs are associated with three, long-wavelength, magnetic anomalies which modeling suggests are caused by deeply-buried ophiolite bodies within the prism or by seamounts on the top of the subducted Pacific Plate underlying the prism. It is postulated that these deep-seated bodies have facilitated the dewatering of marine sediments from deep within the prism or from the subducted plate. This ''devolved sea water'' has then risen, been modified by contact with overlying sediments and mixed with near-surface meteoric waters, before emerging at the mineral springs.

  7. Accretionary history of the Archean Barberton Greenstone Belt (3.55-3.22 Ga), southern Africa.

    PubMed

    Lowe, D R

    1994-12-01

    The 3.55-3.22 Ga Barberton Greenstone Belt, South Africa and Swaziland, and surrounding coeval plutons can be divided into four tectono-stratigraphic blocks that become younger toward the northwest. Each block formed through early mafic to ultramafic volcanism (Onverwacht Group), probably in oceanic extensional, island, or plateau settings. Volcanism was followed by magmatic quiescence and deposition of fine-grained sediments, possibly in an intraplate setting. Late evolution involved underplating of the mafic crust by tonalitic intrusions along a subduction-related magmatic arc, yielding a thickened, buoyant protocontinental block. The growth of larger continental domains occurred both through magmatic accretion, as new protocontinental blocks developed along the margins of older blocks, and when previously separate blocks were amalgamated through tectonic accretion. Evolution of the Barberton Belt may reflect an Early Archean plate tectonic cycle that characterized a world with few or no large, stabilized blocks of sialic crust.

  8. Mud volcanoes, shale diapirs, wrench faults, and melanges in accretionary complexes, eastern Indonesia

    SciTech Connect

    Barber, A.J.; Tjokrosapoetro, S.; Charlton, T.R.

    1986-11-01

    In Timor, eastern Indonesia, where the northern margin of the Australian continent is colliding with the Banda Arc, Australian continental margin sediments are being incorporated into an imbricate wedge, which passes northward into a foreland fold and thrust belt. Field mapping in Timor has shown that scale clays, containing irregularly shaped or phacoidal blocks (up to several meters long) and composed of a wide range of lithologies derived from local stratigraphic units, occur in three environments: along wrench faults, as crosscutting shale diapirs, and associated with mud volcanoes. A model is proposed linking these phenomena. Shales become overpressured as a result of overthrusting; this overpressure is released along vertical wrench faults, which cut through the overthrust units; overpressured shales containing blocks of consolidated units rise along the fault zones as shale diapirs; and escaping water, oil, and gas construct mud volcanoes at the surface. 6 figures, 1 table.

  9. Planar scanning method for detecting refraction characteristics of two-dimensional photonic quasi-crystal wedge-shaped prisms.

    PubMed

    Liu, Jianjun; Tan, Wei; Liu, Exian; Hu, Haili; Fan, Zhigang; Zhang, Tianhua; Zhang, Xiong

    2016-05-01

    In this study, a planar scanning method is proposed. This novel method adapts two monitors moving along double planar tracks that can be used to detect refraction characteristics of two-dimensional (2D) photonic quasi-crystal (PQC) wedge-shaped prisms. Refraction of a decagonal Penrose-type PQC prism is analyzed for a given incident beam and two polarization modes at different incident positions in the prism using this method. Refraction from the prism is irregular, indicating that nonuniformity in the arrangement of scatterers in the prism causes Bragg-like scattering irregularities. Numerical results show that this method can be used for guiding the design of a 2D PQC prism and for the analysis of its refraction characteristics. PMID:27140896

  10. Planar scanning method for detecting refraction characteristics of two-dimensional photonic quasi-crystal wedge-shaped prisms.

    PubMed

    Liu, Jianjun; Tan, Wei; Liu, Exian; Hu, Haili; Fan, Zhigang; Zhang, Tianhua; Zhang, Xiong

    2016-05-01

    In this study, a planar scanning method is proposed. This novel method adapts two monitors moving along double planar tracks that can be used to detect refraction characteristics of two-dimensional (2D) photonic quasi-crystal (PQC) wedge-shaped prisms. Refraction of a decagonal Penrose-type PQC prism is analyzed for a given incident beam and two polarization modes at different incident positions in the prism using this method. Refraction from the prism is irregular, indicating that nonuniformity in the arrangement of scatterers in the prism causes Bragg-like scattering irregularities. Numerical results show that this method can be used for guiding the design of a 2D PQC prism and for the analysis of its refraction characteristics.

  11. Extended-Range Ultrarefractive 1D Photonic Crystal Prisms

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    by use of conventional prisms and diffraction gratings and is highly nonlinear.

  12. Prism Adaptation and Aftereffect: Specifying the Properties of a Procedural Memory System

    PubMed Central

    Fernández-Ruiz, Juan; Díaz, Rosalinda

    1999-01-01

    Prism adaptation, a form of procedural learning, is a phenomenon in which the motor system adapts to new visuospatial coordinates imposed by prisms that displace the visual field. Once the prisms are withdrawn, the degree and strength of the adaptation can be measured by the spatial deviation of the motor actions in the direction opposite to the visual displacement imposed by the prisms, a phenomenon known as aftereffect. This study was designed to define the variables that affect the acquisition and retention of the aftereffect. Subjects were required to throw balls to a target in front of them before, during, and after lateral displacement of the visual field with prismatic spectacles. The diopters of the prisms and the number of throws were varied among different groups of subjects. The results show that the adaptation process is dependent on the number of interactions between the visual and motor system, and not on the time spent wearing the prisms. The results also show that the magnitude of the aftereffect is highly correlated with the magnitude of the adaptation, regardless of the diopters of the prisms or the number of throws. Finally, the results suggest that persistence of the aftereffect depends on the number of throws after the adaptation is complete. On the basis of these results, we propose that the system underlying this kind of learning stores at least two different parameters, the contents (measured as the magnitude of displacement) and the persistence (measured as the number of throws to return to the baseline) of the learned information. PMID:10355523

  13. XeCl excimer laser with new prism resonator configurations and its performance characteristics.

    PubMed

    Benerji, N S; Singh, A; Varshnay, N; Singh, Bijendra

    2015-07-01

    New resonator cavity configurations, namely, the prism resonator and unstable prism resonator, are demonstrated for the first time in an excimer (XeCl) laser with interesting and novel results. High misalignment tolerance ∼50 mrad is achieved with considerably reduced beam divergence of less than ∼1 mrad without reduction in output power capabilities of the laser. The misalignment tolerance of ∼50 mrad is a dramatic improvement of ∼25 times compared to ∼2 mrad normally observed in standard excimer laser with plane-plane cavity. Increase in depth of focus from 3 mm to 5.5 mm was also achieved in case of prism resonator configuration with an improvement of about 60%. Unstable prism resonator configuration is demonstrated here in this paper with further reduction in beam divergence to about 0.5 mrad using plano-convex lens as output coupler. The misalignment tolerance in case of unstable prism resonator was retained at about 30 mrad which is a high value compared to standard unstable resonators. The output beam spot was completely filled with flat-top profile with prism resonator configurations, which is desired for various material processing applications. Focusing properties and beam divergence in case of prism resonator have been investigated using SEM (scanning electron microscope) images. SEM images of the focused spot size (∼20 μm holes) on metal sheet indicate beam divergence of about 0.05 mrad which is about 1.5 times diffraction limit. Energy contained in this angle is thus sufficient for micro-machining applications. Clean and sharp edges of the micro-holes show high pointing stability with multiple shot exposures. Such characteristics of the excimer laser system will be extremely useful in micro-machining and other field applications. PMID:26233361

  14. XeCl excimer laser with new prism resonator configurations and its performance characteristics

    SciTech Connect

    Benerji, N. S. E-mail: bsingh@rrcat.gov.in; Singh, A.; Varshnay, N.; Singh, Bijendra E-mail: bsingh@rrcat.gov.in

    2015-07-15

    New resonator cavity configurations, namely, the prism resonator and unstable prism resonator, are demonstrated for the first time in an excimer (XeCl) laser with interesting and novel results. High misalignment tolerance ∼50 mrad is achieved with considerably reduced beam divergence of less than ∼1 mrad without reduction in output power capabilities of the laser. The misalignment tolerance of ∼50 mrad is a dramatic improvement of ∼25 times compared to ∼2 mrad normally observed in standard excimer laser with plane-plane cavity. Increase in depth of focus from 3 mm to 5.5 mm was also achieved in case of prism resonator configuration with an improvement of about 60%. Unstable prism resonator configuration is demonstrated here in this paper with further reduction in beam divergence to about 0.5 mrad using plano-convex lens as output coupler. The misalignment tolerance in case of unstable prism resonator was retained at about 30 mrad which is a high value compared to standard unstable resonators. The output beam spot was completely filled with flat-top profile with prism resonator configurations, which is desired for various material processing applications. Focusing properties and beam divergence in case of prism resonator have been investigated using SEM (scanning electron microscope) images. SEM images of the focused spot size (∼20 μm holes) on metal sheet indicate beam divergence of about 0.05 mrad which is about 1.5 times diffraction limit. Energy contained in this angle is thus sufficient for micro-machining applications. Clean and sharp edges of the micro-holes show high pointing stability with multiple shot exposures. Such characteristics of the excimer laser system will be extremely useful in micro-machining and other field applications.

  15. Adaptation to leftward-shifting prisms reduces the global processing bias of healthy individuals.

    PubMed

    Bultitude, Janet H; Woods, Jill M

    2010-05-01

    When healthy individuals are presented with peripheral figures in which small letters are arranged to form a large letter, they are faster to identify the global- than the local-level information, and have difficulty ignoring global information when identifying the local level. The global reaction time (RT) advantage and global interference effect imply preferential processing of global-level information in the normal brain. This contrasts with the local processing bias demonstrated following lesions to the right temporo-parietal junction (TPJ), such as those that lead to hemispatial neglect (neglect). Recent research from our lab demonstrated that visuo-motor adaptation to rightward-shifting prisms, which ameliorates many leftward performance deficits of neglect patients, improved the local processing bias of patients with right TPJ lesions (Bultitude, Rafal, & List, 2009). Here we demonstrate that adaptation to leftward-shifting prisms, which can induce neglect-like performance in neurologically healthy individuals, also reduces the normal global processing bias. Forty-eight healthy participants were asked to identify the global or local forms of hierarchical figures before and after adaptation to leftward- or rightward-shifting prisms. Prior to prism adaptation, both groups had greater difficulty ignoring irrelevant global information when identifying the local level (global interference) compared to their ability to ignore irrelevant local-level information when identifying the global level (local interference). Participants who adapted to leftward-shifting prisms showed a significant reduction in global interference, but there was no change in the performance of the rightward-shifting Prism Group. These results show, for the first time, that in addition to previously demonstrated effects on lateralised attention, prism adaptation can influence non-lateralised spatial attention in healthy individuals.

  16. A potential record of slow slip earthquakes from the Kodiak Accretionary Complex and the role of silica redistribution

    NASA Astrophysics Data System (ADS)

    Fisher, D. M.

    2013-12-01

    Slow slip earthquakes are observed along both accretionary and nonaccretionary subduction zones with continuous GPS networks, so one would expect that deeply exhumed paleo-decollements in ancient accretionary complexes would carry a record of these events in the form of fault fabrics, microstructures, or veins. One potential example is within the Central Belt of the Late Cretaceous Kodiak Formation, a 10's of meters thick, subhorizontal paleo-decollement zone from the Kodiak accretionary complex in southwest Alaska that is exposed for over 100 km along strike in a regional culmination in the Kodiak archipelago. Here, the main criteria that are likely necessary for slow slip earthquakes are satisfied: 1) proximity to the downdip transition from velocity weakening to velocity strengthening, 2) low effective stresses driven by high fluid pressures related to the onset of dehydration reactions in low permeability rocks, 3) dilation, with hundreds of events of cracking and crack closure, and 4) a regime of simple shear. The central belt is pervasively veined at the scale of mm's, but there are larger veins organized into en echelon sets that lie in seaward dipping arrays regularly spaced at ~0.5 m with small vugs in many cases. There are two types of microstructures in these veins that represent different crack closure mechanisms: crack seal bands and collapse residues. All the early, closely spaced veins close only by sealing (continuous crack seal bands of metamorphic chlorite grown from the seeds on the crack wall), but the center of the larger veins in en echelon sets show a temporal transition from continuous crack seal bands, to discontinuous crack seal bands, to inclusion free growth of euhedral crystals, with bands of collapse residues of dissolved wall rock. Crack seal bands indicate ~10 microns as the median crack aperture, with a large tail in the distribution toward larger values. Fluid inclusion trails that track the crack displacement path systematically

  17. Synthesis of hexagonal wurtzite Cu2ZnSnS4 prisms by an ultrasound-assisted microwave solvothermal method

    NASA Astrophysics Data System (ADS)

    Long, Fei; Chi, Shangsen; He, Jinyun; Wang, Jilin; Wu, Xiaoli; Mo, Shuyi; Zou, Zhengguang

    2015-09-01

    Wurtzite Cu2ZnSnS4 (CZTS) hexagonal prisms were synthesized by a simple ultrasound-microwave solvothermal method. The product was characterized by XRD, FESEM, EDS, TEM, Raman and UV-vis spectrometer. The hexagonal prisms were 0.5-2 μm wide and 5-12 μm long. The PVP played an important role in the formation of the CZTS hexagonal prisms. In addition, the ultrasound-assisted microwave process was helpful for synthesis of wurtzite rather than kesterite phase CZTS. A nucleation-dissolution-recrystallization mechanism was also proposed to explain the growth of the CZTS hexagonal prisms.

  18. Timing of magmatism and migmatization in the 2.0-1.8 Ga accretionary Svecokarelian orogen, south-central Sweden

    NASA Astrophysics Data System (ADS)

    Johansson, Åke; Stephens, Michael B.

    2016-07-01

    Hedesunda-Tierp sample area. The close spatial and temporal interplay between ductile deformation, magmatism and migmatization, the P-T metamorphic conditions, and the continuation of similar magmatic activity around and after 1.8 Ga support solely accretionary rather than combined accretionary and collisional orogenic processes as an explanation for the metamorphism. The generally lower metamorphic grade and restricted influence of the younger metamorphic episode, at least at the ground surface level, distinguishes the central part of the Bergslagen lithotectonic unit from the migmatite belts further north and south.

  19. All-prism achromatic phase matching for tunable second-harmonic generation

    SciTech Connect

    Richman, Bruce A.; Bisson, Scott E.; Trebino, Rick; Jacobson, Alexander

    1999-05-01

    Achromatic phase matching (APM) involves dispersing the light entering a nonlinear optical crystal so that a wide range of wavelengths is simultaneously phase matched. We constructed an APM apparatus consisting of six prisms, the final dispersion angle of which was optimized to match to second order in wavelength the type I phase-matching angle of {beta} barium borate (BBO). With this apparatus, we doubled tunable fundamental light from 620 to 700 nm in wavelength using a 4-mm-long BBO crystal. An analogous set of six prisms after the BBO crystal, optimized to second order in second-harmonic wavelength, realigned the output second-harmonic beams. Computer simulations predict that adjustment of a single prism can compensate angular misalignment of any or all the prisms before the crystal, and similarly for the prisms after the crystal. We demonstrated such compensations with the experimental device. The simulations also indicate that the phase-matching wavelength band can be shifted and optimized for different crystal lengths. {copyright} 1999 Optical Society of America

  20. A conceptual design of PRISM-2 for Advanced Land Observing Satellite-3(ALOS-3)

    NASA Astrophysics Data System (ADS)

    Imai, Hiroko; Katayama, Haruyoshi; Sagisaka, Masakazu; Hatooka, Yasushi; Suzuki, Shinichi; Osawa, Yuji; Takahashi, Masuo; Tadono, Takeo

    2012-09-01

    The Japan Aerospace Exploration Agency (JAXA) is planning a satellite system including Advanced Land Observing Satellites 2 and 3 (ALOS-2 and ALOS-3) for the ALOS follow-on program. ALOS-3 will carry the optical sensor named "PRISM-2" and extend the capabilities of earlier ALOS missions. PRISM-2 will be able to collect high-resolution (0.8m) and wide-swath (50 km) imagery with high geo-location accuracy, as well as provide precise digital surface models (DSMs) using stereo pair images acquired by two telescopes. These capabilities are ideal for obtaining large-scale geographical information such as elevation and land cover-maps for use in many research areas and practical applications, including disaster management support. JAXA has conducted a phase A study of the ALOS-3 spacecraft and PRISM-2, and is now working on prototype models of key components of PRISM-2's telescope, focal plane, and data compressor. This paper introduces a conceptual design for PRISM-2 and the ALOS-3 system.

  1. Sufficient conditions for the avoidance of spectral dispersion in optical prisms.

    PubMed

    Lin, Psang Dain

    2016-07-01

    Prisms are common optical elements consisting of only flat boundary surfaces. Two conditions need to be fulfilled to avoid chromatic aberration for a prism, namely, no mutual image tilt and no mutual image shift for different wavelengths. Mutual image tilt occurs when the unit directional vector of the exit ray varies as a function of the prism's refractive index, resulting in spectral dispersion. In a previous study by the present group [Appl. Opt.45, 3951 (2006)APOPAI0003-693510.1364/AO.45.003951], it was shown that when the rays enter and exit a prism perpendicularly, image reorientation is achieved without spectral dispersion. The present study derives a further sufficient condition to avoid spectral dispersion caused by refraction. The condition explains the ability of Dove prisms and solid glass corner cubes to produce the required image orientation even when the entrance and exit rays are not normal to the respective boundary surfaces. In general, the proposed condition provides a useful analytical guideline for avoiding spectral dispersion in a wide variety of optical systems. PMID:27409681

  2. Investigation of beam steering performances in rotation Risley-prism scanner.

    PubMed

    Li, Anhu; Sun, Wansong; Yi, Wanli; Zuo, Qiyou

    2016-06-13

    Rotation Risley-prism scanner appears to be the most promising solution to high-accuracy beam scanning and target tracking. In the paper, some important issues crucial to the function implementation are thoroughly investigated. First the forming law of scan blind zone relative to double-prism structural parameters is explored by a quantitative analysis method. Then the nonlinear relationship between the rotation speeds of double prisms and the change rate of beam deviation angle is presented, and the beam scan singularity is indicated as an essential factor that confines the beam scan region. Finally, the high-accuracy radial scan theory is verified to illustrate the important application owing to the high reduction ratio from the rotation angles of double prisms to the deviation angles of the emergent beam. The research not only reveals the inner mechanisms of the Risley-prism beam scanning in principle, but also provide a foundation for the nonlinear control of various beam scan modes. PMID:27410303

  3. Spatial effects of shifting prisms on properties of posterior parietal cortex neurons

    PubMed Central

    Karkhanis, Anushree N; Heider, Barbara; Silva, Fabian Muñoz; Siegel, Ralph M

    2014-01-01

    The posterior parietal cortex contains neurons that respond to visual stimulation and motor behaviour. The objective of the current study was to test short-term adaptation in neurons in macaque area 7a and the dorsal prelunate during visually guided reaching using Fresnel prisms that displaced the visual field. The visual perturbation shifted the eye position and created a mismatch between perceived and actual reach location. Two non-human primates were trained to reach to visual targets before, during and after prism exposure while fixating the reach target in different locations. They were required to reach to the physical location of the reach target and not the perceived, displaced location. While behavioural adaptation to the prisms occurred within a few trials, the majority of neurons responded to the distortion either with substantial changes in spatial eye position tuning or changes in overall firing rate. These changes persisted even after prism removal. The spatial changes were not correlated with the direction of induced prism shift. The transformation of gain fields between conditions was estimated by calculating the translation and rotation in Euler angles. Rotations and translations of the horizontal and vertical spatial components occurred in a systematic manner for the population of neurons suggesting that the posterior parietal cortex retains a constant representation of the visual field remapping between experimental conditions. PMID:24928956

  4. THREE-DIMENSIONAL IGNITION AND GROWTH REACTIVE FLOW MODELING OF PRISM FAILURE TESTS ON PBX 9502

    SciTech Connect

    Garcia, M L; Tarver, C M

    2006-06-20

    The Ignition and Growth reactive flow model for shock initiation and detonation of solid explosives based on triaminotirnitrobenzene (TATB) is applied to three-dimensional detonation wave propagation. The most comprehensive set of three-dimensional detonation wave propagation data is that measured using the trapezoidal prism test. In this test, a PBX 9501 (95% HMX, 2.5% Estane, and 2.5% BDNPA/F) line detonator initiates a detonation wave along the trapezoidal face of a PBX 9502 (95% TATB and 5% Kel-F binder) prism. The failure thickness, which has been shown experimentally to be roughly half of the failure diameter of a long cylindrical charge, is measured after 50 mm of detonation wave propagation by impact with an aluminum witness plate. The effects of confinement impedance on the PBX 9502 failure thickness have been measured using air (unconfined), water, PMMA, magnesium, aluminum, lead, and copper placed in contact with the rectangular faces of the prism parallel to the direction of detonation propagation. These prism test results are modeled using the two-dimensional PBX 9502 Ignition and Growth model parameters determined by calculating failure diameter and tested on recent corner turning experiments. Good agreement between experimentally measured and calculated prism failure thicknesses for unconfined and confined PBX 9502 is reported.

  5. DSM Generation from ALSO/PRISM Images Using SAT-PP

    NASA Astrophysics Data System (ADS)

    Wolff, Kirsten; Gruen, Armin

    2008-11-01

    One of the most important products of ALOS/PRISM image data are accurate DSMs. To exploit the full potential of the full resolution of PRISM for DSM generation, a highly developed image matcher is needed. As a member of the validation and calibration team for PRISM we published earlier results of DSM generation using PRISM image triplets in combination with our software package SAT-PP. The overall accuracy across all object and image features for all tests lies between 1-5 pixels in matching, depending primarily on surface roughness, vegetation, image texture and image quality. Here we will discuss some new results. We focus on four different topics: the use of two different evaluation methods, the difference between a 5m and a 10m GSD for the final PRISM DSM, the influence of the level of initial information and the comparison of the quality of different combinations of the three different views forward, nadir and backward. All tests have been conducted with our testfield Bern/Thun, Switzerland.

  6. Affective three-dimensional brain-computer interface created using a prism array-based display

    NASA Astrophysics Data System (ADS)

    Mun, Sungchul; Park, Min-Chul

    2014-12-01

    To avoid the vergence-accommodation mismatch and provide a strong sense of presence to users, we applied a prism array-based display when presenting three-dimensional (3-D) objects. Emotional pictures were used as visual stimuli to increase the signal-to-noise ratios of steady-state visually evoked potentials (SSVEPs) because involuntarily motivated selective attention by affective mechanisms can enhance SSVEP amplitudes, thus producing increased interaction efficiency. Ten male and nine female participants voluntarily participated in our experiments. Participants were asked to control objects under three viewing conditions: two-dimension (2-D), stereoscopic 3-D, and prism. The participants performed each condition in a counter-balanced order. One-way repeated measures analysis of variance showed significant increases in the positive predictive values in the prism condition compared to the 2-D and 3-D conditions. Participants' subjective ratings of realness and engagement were also significantly greater in the prism condition than in the 2-D and 3-D conditions, while the ratings for visual fatigue were significantly reduced in the prism condition than in the 3-D condition. The proposed methods are expected to enhance the sense of reality in 3-D space without causing critical visual fatigue. In addition, people who are especially susceptible to stereoscopic 3-D may be able to use the affective brain-computer interface.

  7. Prism-patterned Nafion membrane for enhanced water transport in polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Sang Moon; Kang, Yun Sik; Ahn, Chiyeong; Jang, Segeun; Kim, Minhyoung; Sung, Yung-Eun; Yoo, Sung Jong; Choi, Mansoo

    2016-06-01

    Here, we report a simple and effective strategy to enhance the performance of the polymer electrolyte membrane fuel cell by imprinting prism-patterned arrays onto the Nafion membrane, which provides three combined effects directly related to the device performance. First, a locally thinned membrane via imprinted micro prism-structures lead to reduced membrane resistance, which is confirmed by electrochemical impedance spectroscopy. Second, increments of the geometrical surface area of the prism-patterned Nafion membrane compared to a flat membrane result in the increase in the electrochemical active surface area. Third, the vertically asymmetric geometry of prism structures in the cathode catalyst layer lead to enhanced water transport, which is confirmed by oxygen gain calculation. To explain the enhanced water transport, we propose a simple theoretical model on removal of water droplets existing in the asymmetric catalyst layer. These three combined effects achieved via incorporating prism patterned arrays into the Nafion membrane effectively enhance the performance of the polymer electrolyte membrane fuel cell.

  8. All-prism achromatic phase matching for tunable second-harmonic generation.

    PubMed

    Richman, B A; Bisson, S E; Trebino, R; Sidick, E; Jacobson, A

    1999-05-20

    Achromatic phase matching (APM) involves dispersing the light entering a nonlinear optical crystal so that a wide range of wavelengths is simultaneously phase matched. We constructed an APM apparatus consisting of six prisms, the final dispersion angle of which was optimized to match to second order in wavelength the type I phase-matching angle of beta barium borate (BBO). With this apparatus, we doubled tunable fundamental light from 620 to 700 nm in wavelength using a 4-mm-long BBO crystal. An analogous set of six prisms after the BBO crystal, optimized to second order in second-harmonic wavelength, realigned the output second-harmonic beams. Computer simulations predict that adjustment of a single prism can compensate angular misalignment of any or all the prisms before the crystal, and similarly for the prisms after the crystal. We demonstrated such compensation with the experimental device. The simulations also indicate that the phase-matching wavelength band can be shifted and optimized for different crystal lengths.

  9. Sufficient conditions for the avoidance of spectral dispersion in optical prisms.

    PubMed

    Lin, Psang Dain

    2016-07-01

    Prisms are common optical elements consisting of only flat boundary surfaces. Two conditions need to be fulfilled to avoid chromatic aberration for a prism, namely, no mutual image tilt and no mutual image shift for different wavelengths. Mutual image tilt occurs when the unit directional vector of the exit ray varies as a function of the prism's refractive index, resulting in spectral dispersion. In a previous study by the present group [Appl. Opt.45, 3951 (2006)APOPAI0003-693510.1364/AO.45.003951], it was shown that when the rays enter and exit a prism perpendicularly, image reorientation is achieved without spectral dispersion. The present study derives a further sufficient condition to avoid spectral dispersion caused by refraction. The condition explains the ability of Dove prisms and solid glass corner cubes to produce the required image orientation even when the entrance and exit rays are not normal to the respective boundary surfaces. In general, the proposed condition provides a useful analytical guideline for avoiding spectral dispersion in a wide variety of optical systems.

  10. Spatial effects of shifting prisms on properties of posterior parietal cortex neurons.

    PubMed

    Karkhanis, Anushree N; Heider, Barbara; Silva, Fabian Muñoz; Siegel, Ralph M

    2014-08-15

    The posterior parietal cortex contains neurons that respond to visual stimulation and motor behaviour. The objective of the current study was to test short-term adaptation in neurons in macaque area 7a and the dorsal prelunate during visually guided reaching using Fresnel prisms that displaced the visual field. The visual perturbation shifted the eye position and created a mismatch between perceived and actual reach location. Two non-human primates were trained to reach to visual targets before, during and after prism exposure while fixating the reach target in different locations. They were required to reach to the physical location of the reach target and not the perceived, displaced location. While behavioural adaptation to the prisms occurred within a few trials, the majority of neurons responded to the distortion either with substantial changes in spatial eye position tuning or changes in overall firing rate. These changes persisted even after prism removal. The spatial changes were not correlated with the direction of induced prism shift. The transformation of gain fields between conditions was estimated by calculating the translation and rotation in Euler angles. Rotations and translations of the horizontal and vertical spatial components occurred in a systematic manner for the population of neurons suggesting that the posterior parietal cortex retains a constant representation of the visual field remapping between experimental conditions.

  11. Digital Beam Steering Device Based on Decoupled Birefringent Prism Deflector and Polarization Rotator

    NASA Technical Reports Server (NTRS)

    Pishnyak, Oleg; Kreminska, Lyubov; Laventovich, Oleg D.; Pouch, John J.; Miranda, Felix A.; Winker, Bruce K.

    2004-01-01

    We describe digital beam deflectors (DBDs) based on liquid crystals. Each stage of the device comprises a polarization rotator and a birefringent prism deflector. The birefringent prism deflects the beam by an angle that depends on polarization of the incident beam. The prism can be made of the uniaxial smectic A (SmA) liquid crystal (LC) or a solid crystal such as yttrium orthovanadate (YVO4). SmA prisms have high birefringence and can be constructed in a variety of shapes, including single prisms and prismatic blazed gratings of different angles and profiles. We address the challenges of uniform alignment of SmA, such as elimination of focal conic domains. Rotation of linear polarization is achieved by an electrically switched twisted nematic (TN) cell. A DBD composed of N rotator-deflector pairs steers the beam into 2(sup N) directions. As an example, we describe a four-stage DBD deflecting normally incident laser beam within the range of +/- 56 mrad with 8 mrad steps. Redirection of the beam is achieved by switching the TN cells.

  12. Beyond the Sensorimotor Plasticity: Cognitive Expansion of Prism Adaptation in Healthy Individuals

    PubMed Central

    Michel, Carine

    2016-01-01

    Sensorimotor plasticity allows us to maintain an efficient motor behavior in reaction to environmental changes. One of the classical models for the study of sensorimotor plasticity is prism adaptation. It consists of pointing to visual targets while wearing prismatic lenses that shift the visual field laterally. The conditions of the development of the plasticity and the sensorimotor after-effects have been extensively studied for more than a century. However, the interest taken in this phenomenon was considerably increased since the demonstration of neglect rehabilitation following prism adaptation by Rossetti et al. (1998). Mirror effects, i.e., simulation of neglect in healthy individuals, were observed for the first time by Colent et al. (2000). The present review focuses on the expansion of prism adaptation to cognitive functions in healthy individuals during the last 15 years. Cognitive after-effects have been shown in numerous tasks even in those that are not intrinsically spatial in nature. Altogether, these results suggest the existence of a strong link between low-level sensorimotor plasticity and high-level cognitive functions and raise important questions about the mechanisms involved in producing unexpected cognitive effects following prism adaptation. Implications for the functional mechanisms and neuroanatomical network of prism adaptation are discussed to explain how sensorimotor plasticity may affect cognitive processes. PMID:26779088

  13. Prism adaptation in Parkinson disease: comparing reaching to walking and freezers to non-freezers

    PubMed Central

    Nemanich, Samuel T.

    2015-01-01

    Visuomotor adaptation to gaze-shifting prism glasses requires recalibration of the relationship between sensory input and motor output. Healthy individuals flexibly adapt movement patterns to many external perturbations; however, individuals with cerebellar damage do not adapt movements to the same extent. People with Parkinson disease (PD) adapt normally, but exhibit reduced after-effects, which are negative movement errors following the removal of the prism glasses and are indicative of true spatial realignment. Walking is particularly affected in PD, and many individuals experience freezing of gait (FOG), an episodic interruption in walking, that is thought to have a distinct pathophysiology. Here, we examined how individuals with PD with (PD + FOG) and without (PD − FOG) FOG, along with healthy older adults, adapted both reaching and walking patterns to prism glasses. Participants completed a visually guided reaching and walking task with and without rightward-shifting prism glasses. All groups adapted at similar rates during reaching and during walking. However, overall walking adaptation rates were slower compared to reaching rates. The PD − FOG group showed smaller after-effects, particularly during walking, compared to PD + FOG, independent of adaptation magnitude. While FOG did not appear to affect characteristics of prism adaptation, these results support the idea that the distinct neural processes governing visuomotor adaptation and storage are differentially affected by basal ganglia dysfunction in PD. PMID:25976516

  14. Analytical models for the groundwater tidal prism and associated benthic water flux

    USGS Publications Warehouse

    King, Jeffrey N.; Mehta, Ashish J.; Dean, Robert G.

    2010-01-01

    The groundwater tidal prism is defined as the volume of water that inundates a porous medium, forced by one tidal oscillation in surface water. The pressure gradient that generates the prism acts on the subterranean estuary. Analytical models for the groundwater tidal prism and associated benthic flux are presented. The prism and flux are shown to be directly proportional to porosity, tidal amplitude, and the length of the groundwater wave; flux is inversely proportional to tidal period. The duration of discharge flux exceeds the duration of recharge flux over one tidal period; and discharge flux continues for some time following low tide. Models compare favorably with laboratory observations and are applied to a South Atlantic Bight study area, where tide generates an 11-m3 groundwater tidal prism per m of shoreline, and drives 81 m3 s −1 to the study area, which describes 23% of an observational estimate. In a marine water body, the discharge component of any oscillatory benthic water flux is submarine groundwater discharge. Benthic flux transports constituents between groundwater and surface water, and is a process by which pollutant loading and saltwater intrusion may occur in coastal areas.

  15. Stratigraphy, geochronology, and accretionary terrane settings of two Bronson Hill arc sequences, northern New England

    USGS Publications Warehouse

    Moench, R.H.; Aleinikoff, J.N.

    2002-01-01

    off the southern Laurentian margin, but northwest of the principal Iapetan suture, or Red Indian line (RIL). The Boil Mountain-Jim Pond-Hurricane Mountain sequence was ramped northwestward over the Chain Lakes massif at ???475 Ma, on the basal Boil Mountain surface. This obduction probably occurred slightly before obduction on the Baie Verte-Brompton surface (BBL), farther NW, over the Laurentian margin, and was followed by Dead River flysch sedimentation, which ended with the abrupt onset of Ammonoosuc-sequence arc magmatism at ???470 Ma. Ammonoosuc eruptions probably ended at ???460 Ma, when Iapetus closed along the Red Indian line. During a following magmatic hiatus of ???3-5 m.y., now represented by portions of the Partridge Formation that overlie the Ammonoosuc Volcanics, subduction polarity reversed, and subduction resumed below the northwest-dipping Brunswick subduction complex (BSC) of New Brunswick, Canada. Quimby-sequence magmatism (???456-435 Ma) on the the newly accreted Laurentian margin occurred above the BSC, whose footwall is now buried to the southeast by mainly Silurian clastic sediments of the Merrimack-Fredericton trough, deposited in the "Fredericton Sea". In Silurian to Early Devonian time, the NW-dipping BSC footwall was paired with a SE-dipping subduction zone that produced arc magmas of the Coastal Volcanic belt, built on the composite Avalon and adjacent peri-Avalonian terranes. Orogen-normal extension produced by rapid rollback of both subduction zones narrowed the Fredericton Sea, produced the Central Maine and Connecticut Valley-Gaspe?? basins, and culminated in the Acadian orogeny when the sea completely closed in Early Devonian time. Published by Elsevier Science Ltd.

  16. Stratigraphy, geochronology, and accretionary terrane settings of two Bronson Hill arc sequences, northern New England

    USGS Publications Warehouse

    Moench, R.H.; Aleinikoff, J.N.

    2003-01-01

    the southern Laurentian margin, but northwest of the principal Iapetan suture, or Red Indian line. The Boil Mountain-Jim Pond-Hurricane Mountain sequence was ramped northwestward over the Chain Lakes massif at ???475 Ma, on the basal Boil Mountain surface. This obduction probably occurred slightly before obduction on the Baie Vert-Brompton surface (BBL), farther NW, over the Laurentian margin, and was followed by Dead River flysch sedimentation, which ended with the abrupt onset of Ammonoosuc-sequence arc magmatism at ???470 Ma. Ammonoosuc eruptions probably ended at ???460 Ma, when Iapetus closed along the Red Indian line. During a following magmatic hiatus of ???3-5 m.y., now represented by portions of the Partridge Formation that overlie the Ammonoosuc Volcanics, subduction polarity reversed, and subduction resumed below the northwest-dipping Brunswick subduction complex (BSC) of New Brunswick, Canada. Quimby-sequence magmatism (???456-435 Ma) on the newly accreted Laurentian margin occurred above the BSC, whose footwall is now buried to the southeast by mainly Silurian clastic sediments of the Merrimack-Fredericton trough, deposited in the "Fredericton Sea". In Silurian to Early Devonian time, the NW-dipping BSC footwall was paired with a SE-dipping subduction zone that produced arc magmas of the Coastal Volcanic belt, built on the composite Avalon and adjacent peri-Avalonian terranes. Orogen-normal extension produced by rapid rollback of both subduction zones narrowed the Fredericton Sea, produced the Central Maine and Connecticut Valley-Gaspe?? basins, and culminated in the Acadian orogeny when the sea completely closed in Early Devonian time. Published by Elsevier Science Ltd.

  17. Stratigraphy, geochronology, and accretionary terrane settings of two Bronson Hill arc sequences, northern New England

    NASA Astrophysics Data System (ADS)

    Moench, Robert H.; Aleinikoff, John N.

    2002-01-01

    southern Laurentian margin, but northwest of the principal Iapetan suture, or Red Indian line (RIL). The Boil Mountain-Jim Pond-Hurricane Mountain sequence was ramped northwestward over the Chain Lakes massif at ∼475 Ma, on the basal Boil Mountain surface. This obduction probably occurred slightly before obduction on the Baie Verte-Brompton surface (BBL), farther NW, over the Laurentian margin, and was followed by Dead River flysch sedimentation, which ended with the abrupt onset of Ammonoosuc-sequence arc magmatism at ∼470 Ma. Ammonoosuc eruptions probably ended at ∼460 Ma, when Iapetus closed along the Red Indian line. During a following magmatic hiatus of ∼3-5 m.y., now represented by portions of the Partridge Formation that overlie the Ammonoosuc Volcanics, subduction polarity reversed, and subduction resumed below the northwest-dipping Brunswick subduction complex (BSC) of New Brunswick, Canada. Quimby-sequence magmatism (∼456-435 Ma) on the the newly accreted Laurentian margin occurred above the BSC, whose footwall is now buried to the southeast by mainly Silurian clastic sediments of the Merrimack-Fredericton trough, deposited in the “Fredericton Sea”. In Silurian to Early Devonian time, the NW-dipping BSC footwall was paired with a SE-dipping subduction zone that produced arc magmas of the Coastal Volcanic belt, built on the composite Avalon and adjacent peri-Avalonian terranes. Orogen-normal extension produced by rapid rollback of both subduction zones narrowed the Fredericton Sea, produced the Central Maine and Connecticut Valley-Gaspé basins, and culminated in the Acadian orogeny when the sea completely closed in Early Devonian time.

  18. Stratigraphy, geochronology, and accretionary terrane settings of two Bronson Hill arc sequences, northern New England

    NASA Astrophysics Data System (ADS)

    Moench, Robert H.; Aleinikoff, John N.

    the southern Laurentian margin, but northwest of the principal Iapetan suture, or Red Indian line. The Boil Mountain-Jim Pond-Hurricane Mountain sequence was ramped northwestward over the Chain Lakes massif at ∼475 Ma, on the basal Boil Mountain surface. This obduction probably occurred slightly before obduction on the Baie Vert-Brompton surface (BBL), farther NW, over the Laurentian margin, and was followed by Dead River flysch sedimentation, which ended with the abrupt onset of Ammonoosuc-sequence arc magmatism at ∼470 Ma. Ammonoosuc eruptions probably ended at ∼460 Ma, when Iapetus closed along the Red Indian line. During a following magmatic hiatus of ∼3-5 m.y., now represented by portions of the Partridge Formation that overlie the Ammonoosuc Volcanics, subduction polarity reversed, and subduction resumed below the northwest-dipping Brunswick subduction complex (BSC) of New Brunswick, Canada. Quimby-sequence magmatism (∼456-435 Ma) on the newly accreted Laurentian margin occurred above the BSC, whose footwall is now buried to the southeast by mainly Silurian clastic sediments of the Merrimack-Fredericton trough, deposited in the “Fredericton Sea”. In Silurian to Early Devonian time, the NW-dipping BSC footwall was paired with a SE-dipping subduction zone that produced arc magmas of the Coastal Volcanic belt, built on the composite Avalon and adjacent peri-Avalonian terranes. Orogen-normal extension produced by rapid rollback of both subduction zones narrowed the Fredericton Sea, produced the Central Maine and Connecticut Valley-Gaspé basins, and culminated in the Acadian orogeny when the sea completely closed in Early Devonian time.

  19. Flip-chip assembly of VCSELs to silicon grating couplers via laser fabricated SU8 prisms.

    PubMed

    Kaur, K S; Subramanian, A Z; Cardile, P; Verplancke, R; Van Kerrebrouck, J; Spiga, S; Meyer, R; Bauwelinck, J; Baets, R; Van Steenberge, G

    2015-11-01

    This article presents the flip-chip bonding of vertical-cavity surface-emitting lasers (VCSELs) to silicon grating couplers (GCs) via SU8 prisms. The SU8 prisms are defined on top of the GCs using non-uniform laser ablation process. The prisms enable perfectly vertical coupling from the bonded VCSELs to the GCs. The VCSELs are flip-chip bonded on top of the silicon GCs employing the laser-induced forward transfer (LIFT)-assisted thermocompression technique. An excess loss of < 1 dB at 1.55 µm measured from the bonded assemblies is reported in this paper. The results of high speed transmission experiments performed on the bonded assemblies with clear eye openings up to 20 Gb/s are also presented. PMID:26561097

  20. Sub-wavelength imaging using silver-dielectric metamaterial layered prism

    NASA Astrophysics Data System (ADS)

    Stolarek, Marcin; Pastuszczak, Anna; Pniewski, Jacek; Kotyński, Rafał

    2010-12-01

    In this paper we study the propagation of light through silver-dielectric metamaterial layered prism which operates in the canalization regime. The prism is illuminated with TM-polarized light and is designed using the effective medium theory as strongly anisotropic and impedance matched to air. The structure has an infinite value of the effective permittivity in the direction perpendicular to layer surfaces. Therefore it is able to couple a broad spectrum of incident spatial frequencies, including evanescent waves, into propagating modes. As a result, subwavelength resolution at the output interface of the structure is observed. Further the device is characterised with the transfer matrix method (TMM), and investigate