Science.gov

Sample records for accumbens lateral septum

  1. Morphine withdrawal produces ERK-dependent and ERK-independent epigenetic marks in neurons of the nucleus accumbens and lateral septum.

    PubMed

    Ciccarelli, Alessandro; Calza, Arianna; Santoru, Francesca; Grasso, Fabrizio; Concas, Alessandra; Sassoè-Pognetto, Marco; Giustetto, Maurizio

    2013-07-01

    Epigenetic changes such as covalent modifications of histone proteins represent complex molecular signatures that provide a cellular memory of previously experienced stimuli without irreversible changes of the genetic code. In this study we show that new gene expression induced in vivo by morphine withdrawal occurs with concomitant epigenetic modifications in brain regions critically involved in drug-dependent behaviors. We found that naloxone-precipitated withdrawal, but not chronic morphine administration, caused a strong induction of phospho-histone H3 immunoreactivity in the nucleus accumbens (NAc) shell/core and in the lateral septum (LS), a change that was accompanied by augmented H3 acetylation (lys14) in neurons of the NAc shell. Morphine withdrawal induced the phosphorylation of the epigenetic factor methyl-CpG-binding protein 2 (MeCP2) in Ser421 both in the LS and the NAc shell. These epigenetic changes were accompanied by the activation of members of the ERK pathway as well as increased expression of the immediate early genes (IEG) c-fos and activity-regulated cytoskeleton-associated protein (Arc/Arg3.1). Using a pharmacological approach, we found that H3 phosphorylation and IEG expression were partially dependent on ERK activation, while MeCP2 phosphorylation was fully ERK-independent. These findings provide new important information on the role of the ERK pathway in the regulation of epigenetic marks and gene expression that may concur to regulate in vivo the cellular changes underlying the onset of the opioid withdrawal syndrome.

  2. Electrophysiological identification of mesencephalic ventromedial tegmental (VMT) neurons projecting to the frontal cortex, septum and nucleus accumbens.

    PubMed

    Deniau, J M; Thierry, A M; Feger, J

    1980-05-12

    The electrophysiological properties of neurons located in the mesencephalic ventromedial tegmentum (VMT) and the organization of the efferents of these neurons to the frontal cortex, the septum, the nucleus accumbens and the head of the striatum were studied in ketamine-anesthetized rats. The projections of the VMT cells were determined through use of the antidromic activation method. Our results show that VMT projections to different target areas originate mainly from different VMT neurons. However, in some cases single VMT neurons were found to send axon collaterals to two different areas. Three branching patterns were observed: septum-cortex, septum--nucleus accumbens and septum--striatum. The occasional observation of temporally distinct antodromic responses from a single area was considered to result from activation of different branches of the arborizing axon. The distribution of antidromic response latencies for VMT projections to each structure is discussed in relation to the question of dopaminergic versus non-dopaminergic mesolimbic and mesocortical systems.

  3. Deep brain stimulation of the medial septum or nucleus accumbens alleviates psychosis-relevant behavior in ketamine-treated rats.

    PubMed

    Ma, Jingyi; Leung, L Stan

    2014-06-01

    Deep brain stimulation (DBS) has been shown to be effective for relief of Parkinson's disease, depression and obsessive-compulsive disorder in humans, but the effect of DBS on psychosis is largely unknown. In previous studies, we showed that inactivation of the medial septum or nucleus accumbens normalized the hyperactive and psychosis-related behaviors induced by psychoactive drugs. We hypothesized that DBS of the medial septum or nucleus accumbens normalizes the ketamine-induced abnormal behaviors and brain activity in freely moving rats. Male Long-Evans rats were subcutaneously injected with ketamine (3 mg/kg) alone, or given ketamine and DBS, or injected with saline alone. Subcutaneous injection of ketamine resulted in loss of gating of hippocampal auditory evoked potentials (AEPs), deficit in prepulse inhibition (PPI) and hyperlocomotion, accompanied by increased hippocampal gamma oscillations of 70-100 Hz. Continuous 130-Hz stimulation of the nucleus accumbens, or 100-Hz burst stimulation of the medial septum (1s on and 5s off) significantly attenuated ketamine-induced PPI deficit and hyperlocomotion. Medial septal stimulation also prevented the loss of gating of hippocampal AEPs and the increase in hippocampal gamma waves induced by ketamine. Neither septal or accumbens DBS alone without ketamine injection affected spontaneous locomotion or PPI. The results suggest that DBS of the medial septum or nucleus accumbens may be an effective method to alleviate psychiatric symptoms of schizophrenia. The effect of medial septal DBS in suppressing both hippocampal gamma oscillations and abnormal behaviors induced by ketamine suggests that hippocampal gamma oscillations are a correlate of disrupted behaviors.

  4. Dissociated Roles for the Lateral and Medial Septum in Elemental and Contextual Fear Conditioning

    ERIC Educational Resources Information Center

    Calandreau, Ludovic; Jaffard, Robert; Desmedt, Aline

    2007-01-01

    Extensive evidence indicates that the septum plays a predominant role in fear learning, yet the direction of this control is still a matter of debate. Increasing data suggest that the medial (MS) and lateral septum (LS) would be differentially required in fear conditioning depending on whether a discrete conditional stimulus (CS) predicts, or not,…

  5. Repeated mild traumatic brain injury causes focal response in lateral septum and hippocampus

    PubMed Central

    Acabchuk, Rebecca; Briggs, Denise I; Angoa-Pérez, Mariana; Powers, Meghan; Wolferz, Richard; Soloway, Melanie; Stern, Mai; Talbot, Lillian R; Kuhn, Donald M; Conover, Joanne C

    2016-01-01

    Aim To advance our understanding of regional and temporal cellular responses to repeated mild traumatic brain injury (rmTBI), we used a mouse model of rmTBI that incorporated acceleration, deceleration and rotational forces. Materials & methods A modified weight-drop method was used to compare two inter-injury intervals, rmTBI-short (five hits delivered over 3 days) and rmTBI-long (five hits delivered over 15 days). Regional investigations of forebrain and midbrain histological alterations were performed at three post-injury time points (immediate, 2 weeks and 6 weeks). Results The rmTBI-short protocol generated an immediate, localized microglial and astroglial response in the dorsolateral septum and hippocampus, with the astroglial response persisting in the dorsolateral septum. The rmTBI-long protocol showed only a transitory astroglial response in the dorsolateral septum. Conclusion Our results indicate that the lateral septum and hippocampus are particularly vulnerable regions in rmTBI, possibly contributing to memory and emotional impairments associated with repeated concussions. PMID:28078102

  6. An excitatory ventral hippocampus to lateral septum circuit that suppresses feeding

    PubMed Central

    Sweeney, Patrick; Yang, Yunlei

    2015-01-01

    Previous research has focused on feeding circuits residing in the hindbrain and midbrain that govern homeostatic or hedonic control of food intake. However, the feeding circuits controlling emotional or cognitive aspects of food intake are largely unknown. Here we use chemical genetics and optogenetic techniques to dissect appetite control circuits originating from ventral hippocampus (vHPC), a brain region implicated in emotion and cognition. We find that the vHPC projects functional glutamatergic synaptic inputs to the lateral septum (LS) and optogenetic activation of vHPC projections in LS reduces food intake. Consistently, food intake is suppressed by chemogenetic activation of glutamatergic neurons in the vHPC that project to the LS and inactivation of LS neurons blunts vHPC-induced suppression of feeding. Collectively, our results identify an anorexigenic neural circuit originating from vHPC to LS in the brain, revealing a potential therapeutic target for the treatment of anorexia or other appetite disorders. PMID:26666960

  7. On Lateral Septum-Like Characteristics of Outputs From the Accumbal Hedonic “Hotspot” of Peciña and Berridge With Commentary on the Transitional Nature of Basal Forebrain “Boundaries”

    PubMed Central

    Zahm, Daniel S.; Parsley, Kenneth P.; Schwartz, Zachary M.; Cheng, Anita Y.

    2014-01-01

    Peciña and Berridge (2005; J Neurosci 25:11777–11786) observed that an injection of the μ-opioid receptor agonist DAMGO (D-ala2-N-Me-Phe4-Glycol5-enkephalin) into the rostrodorsal part of the accumbens shell (rdAcbSh) enhances expression of hedonic “liking” responses to the taste of an appetitive sucrose solution. Insofar as the connections of this hedonic “hotspot” were not singled out for special attention in the earlier neuroanatomical literature, we undertook to examine them. We observed that the patterns of inputs and outputs of the rdAcbSh are not qualitatively different from those of the rest of the Acb, except that outputs from the rdAcbSh to the lateral preoptic area and anterior and lateral hypothalamic areas are anomalously robust and overlap extensively with those of the lateral septum. We also detected reciprocal interconnections between the rdAcbSh and lateral septum. Whether and how these connections subserve hedonic impact remains to be learned, but these observations lead us to hypothesize that the rdAcbSh represents a basal forebrain transition area, in the sense that it is invaded by neurons of the lateral septum, or possibly transitional neuronal forms sharing properties of both structures. We note that the proposed transition zone between lateral septum and rdAcbSh would be but one of many in the basal forebrain and conclude by reiterating the longstanding argument that the transitional nature of such boundary areas has functional importance, of which the precise nature will remain elusive until the neurophysiological and neuropharmacological implications of such zones of transition are more generally acknowledged and better addressed. PMID:22628122

  8. Species and individual differences in juvenile female alloparental care are associated with oxytocin receptor density in the striatum and the lateral septum.

    PubMed

    Olazábal, D E; Young, L J

    2006-05-01

    The neuropeptide oxytocin has been implicated in the regulation of affiliative behavior and maternal responsiveness in several mammalian species. Rodent species vary considerably in the expression of juvenile alloparental behavior. For example, alloparental behavior is spontaneous in juvenile female prairie voles (approximately 20 days of age), takes 1-3 days of pup exposure to develop in juvenile rats, and is nearly absent in juvenile mice and meadow voles. Here, we tested the hypothesis that species differences in pup responsiveness in juvenile rodents are associated with oxytocin receptor (OTR) density in specific brain regions. We found that OTR density in the nucleus accumbens (NA) is highest in juvenile prairie voles, intermediate in juvenile rats, and lowest in juvenile mice and meadow voles. In the caudate putamen (CP), OTR binding was highest in prairie voles, intermediate in rats and meadow voles, and lowest in mice. In contrast, the lateral septum (LS) shows an opposite pattern, with OTR binding being high in mice and meadow voles and low in prairie voles and rats. Thus, alloparental responsiveness in juvenile rodents is positively correlated with OTR density in the NA and CP and negatively correlated with OTR density in the LS. We then investigated whether a similar receptor-behavior relationship exists among juvenile female prairie voles by correlating individual variation in alloparental behavior with variation in OTR density. The time spent adopting crouching postures, the most distinctive component of alloparental behavior in juveniles, was positively correlated with OTR density in the NA (r = 0.47) and CP (r = 0.45) and negatively correlated with OTR density in the lateral septum (r = -0.53). Thus, variation in OTR density in the NA, CP, and LS may underlie both species and individual differences in alloparental care in rodents.

  9. Enhanced frustrative nonreward effect following 6-hydroxydopamine lesions of the lateral septum in the rat.

    PubMed

    Taghzouti, K; Le Moal, M; Simon, H

    1985-12-01

    The effect of local injections of 6-hydroxydopamine (6-OHDA) into the lateral septum was tested in a paradigm known to lead to an energizing behavior, through a possible frustrative effect, induced by partial or total omission of reward in hungry rats. Biochemical assays in the septum showed that 6-OHDA reduced endogenous dopamine and, to a lesser extent, noradrenaline concentrations and left intact noncatecholaminergic neurons such as serotoninergic terminals. The first behavioral experiment was conducted in a double straight alley. The animals were submitted to three phases of testing with differing degrees of reinforcement: (a) an acquisition phase, in which the reinforcement was continuously delivered in the goal box of the two alleys, (b) a partial reinforced phase, in which animals received 50% partial reinforcement in the first alley and continuous reinforcement in the second alley, and (c) an extinction phase performed in one alley without any reinforcement. Animals with lesions ran faster for food than controls in the partial reinforcement or extinction situation, although there was no difference between the two groups in the acquisition phase of the continuous schedule of reinforcement or in the 50% reinforced trials of the partial reinforcement phase. The two groups also behaved similarly after the first six trials of the extinction phase. In a second experiment, the animals were tested in a lever-press conditioning task. Animals with lesions and control animals learned this task equally well, both with respect to the number of lever presses and the time to obtain a fixed number of food pellets.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Effective Modulation of Male Aggression through Lateral Septum to Medial Hypothalamus Projection.

    PubMed

    Wong, Li Chin; Wang, Li; D'Amour, James A; Yumita, Tomohiro; Chen, Genghe; Yamaguchi, Takashi; Chang, Brian C; Bernstein, Hannah; You, Xuedi; Feng, James E; Froemke, Robert C; Lin, Dayu

    2016-03-07

    Aggression is a prevalent behavior in the animal kingdom that is used to settle competition for limited resources. Given the high risk associated with fighting, the central nervous system has evolved an active mechanism to modulate its expression. Lesioning the lateral septum (LS) is known to cause "septal rage," a phenotype characterized by a dramatic increase in the frequency of attacks. To understand the circuit mechanism of LS-mediated modulation of aggression, we examined the influence of LS input on the cells in and around the ventrolateral part of the ventromedial hypothalamus (VMHvl)-a region required for male mouse aggression. We found that the inputs from the LS inhibited the attack-excited cells but surprisingly increased the overall activity of attack-inhibited cells. Furthermore, optogenetic activation of the projection from LS cells to the VMHvl terminated ongoing attacks immediately but had little effect on mounting. Thus, LS projection to the ventromedial hypothalamic area represents an effective pathway for suppressing male aggression.

  11. Age differences in the impact of forced swimming test on serotonin transporter levels in lateral septum and dorsal raphe

    PubMed Central

    2014-01-01

    Background Forced swimming test (FST) is an animal model which evaluates behavioral despair and the effect of antidepressants such as the selective serotonin reuptake inhibitors; the FST modifies the expression of some receptors related to antidepressant response, but it is not known whether serotonin transporter (SERT), their main target, is affected by this test in animals of different ages. Antidepressant response has shown age-dependent variations which could be associated with SERT expression. The aim of the present study was to analyze changes in the SERT immunoreactivity (SERT-IR) in dorsal raphe and lateral septum of male rats from different age groups with or without behavioral despair induced by their exposure to the FST, since these two structures are related to the expression of this behavior. Methods Prepubertal (24 PN), pubertal (40 PN), young adult (3–5 months) and middle-aged (12 months) male rats were assigned to a control group (non-FST) or depressed group (FST, two sessions separated by 24 h). Changes in SERT-IR in dorsal raphe and lateral septum were determined with immunofluorescence. Results Pubertal and middle-aged rats showed higher levels of immobility behavior compared to prepubertal rats on the FST. SERT-IR showed an age-dependent increase followed by a moderate decrease in middle-aged rats in both structures; a decreased in SERT-IR in lateral septum and dorsal raphe of pubertal rats was observed after the FST. Conclusions Age differences were observed in the SERT-IR of structures related to behavioral despair; SERT expression was modified by the FST in lateral septum and dorsal raphe of pubertal rats. PMID:24490994

  12. Neuroanatomy and sex differences of the lordosis-inhibiting system in the lateral septum

    PubMed Central

    Tsukahara, Shinji; Kanaya, Moeko; Yamanouchi, Korehito

    2014-01-01

    Female sexual behavior in rodents, termed lordosis, is controlled by facilitatory and inhibitory systems in the brain. It has been well demonstrated that a neural pathway from the ventromedial hypothalamic nucleus (VMN) to the midbrain central gray (MCG) is essential for facilitatory regulation of lordosis. The neural pathway from the arcuate nucleus to the VMN, via the medial preoptic nucleus, in female rats mediates transient suppression of lordosis, until female sexual receptivity is induced. In addition to this pathway, other regions are involved in inhibitory regulation of lordosis in female rats. The lordosis-inhibiting systems exist not only in the female brain but also in the male brain. The systems contribute to suppression of heterotypical sexual behavior in male rats, although they have the potential ability to display lordosis. The lateral septum (LS) exerts an inhibitory influence on lordosis in both female and male rats. This review focuses on the neuroanatomy and sex differences of the lordosis-inhibiting system in the LS. The LS functionally and anatomically links to the MCG to exert suppression of lordosis. Neurons of the intermediate part of the LS (LSi) serve as lordosis-inhibiting neurons and project axons to the MCG. The LSi-MCG neural connection is sexually dimorphic, and formation of the male-like LSi-MCG neural connection is affected by aromatized testosterone originating from the testes in the postnatal period. The sexually dimorphic LSi-MCG neural connection may reflect the morphological basis of sex differences in the inhibitory regulation of lordosis in rats. PMID:25278832

  13. Glutamate, GABA, and glutamine are synchronously upregulated in the mouse lateral septum during the postpartum period.

    PubMed

    Zhao, Changjiu; Gammie, Stephen C

    2014-12-03

    Dramatic structural and functional remodeling occurs in the postpartum brain for the establishment of maternal care, which is essential for the growth and development of young offspring. Glutamate and GABA signaling are critically important in modulating multiple behavioral performances. Large scale signaling changes occur in the postpartum brain, but it is still not clear to what extent the neurotransmitters glutamate and GABA change and whether the ratio of glutamate/GABA remains balanced. In this study, we examined the glutamate/GABA-glutamine cycle in the lateral septum (LS) of postpartum female mice. In postpartum females (relative to virgins), tissue levels of glutamate and GABA were elevated in LS and increased mRNA was found for the respective enzymes producing glutamate and GABA, glutaminase (Gls) and glutamate decarboxylase 1 and 2 (Gad1 and Gad2). The common precursor, glutamine, was elevated as was the enzyme that produces it, glutamate-ammonia ligase (Glul). Additionally, glutamate, GABA, and glutamine were positively correlated and the glutamate/GABA ratio was almost identical in the postpartum and virgin females. Collectively, these findings indicate that glutamate and GABA signaling are increased and that the ratio of glutamate/GABA is well balanced in the maternal LS. The postpartum brain may provide a useful model system for understanding how glutamate and GABA are linked despite large signaling changes. Given that some mental health disorders, including depression and schizophrenia display dysregulated glutamate/GABA ratio, and there is increased vulnerability to mental disorders in mothers, it is possible that these postpartum disorders emerge when glutamate and GABA changes are not properly coordinated.

  14. Maternal Defense is Modulated by Beta Adrenergic Receptors in Lateral Septum in Mice

    PubMed Central

    Scotti, Melissa-Ann L.; Lee, Grace; Gammie, Stephen C.

    2011-01-01

    Maternal defense (offspring protection) is a critical and highly conserved component of maternal care in mammalian systems that involves dramatic shifts in a female’s behavioral response to social cues. Numerous changes occur in neuronal signaling and connectivity in the postpartum female, including decreases in norepinephrine (NE) signaling in subregions of the CNS. In this study using a strain of mice selected for maternal defense, we examined whether possible changes in NE signaling in the lateral septum (LS) could facilitate expression of maternal aggression. In separate studies that utilized a repeated measures design, mice were tested for maternal defense following intra-LS injections of either the β adrenergic receptor agonist isoproterenol (10 μg or 30 μg) or vehicle (Experiment 1), the β-adrenergic receptor antagonist propranolol (2 μg) or vehicle (Experiment 2), or the β1 receptor antagonist, atenolol (Experiment 3). Mice were also evaluated for light-dark performance and pup retrieval. 30 μg of the agonist isoproterenol significantly decreased number of attacks and time aggressive relative to vehicle without affecting pup retrieval or light/dark box performance. In contrast, the antagonist propranolol significantly increased maternal aggression (lowered latency to attack and increased total attack time) without altering light/dark box test. The β1 specific antagonist, atenolol, significantly decreased latency to attack (1 μg v. vehicle) without altering other measures. Although the findings were identified in a unique strain of mice that may or may not apply to other strains, the results of these studies support the hypothesis that changes in NE signaling in LS during the postpartum period contribute to the expression of offspring protection. PMID:21480688

  15. MicroRNA Expression is Altered in Lateral Septum Across Reproductive Stages

    PubMed Central

    Saul, Michael C.; Zhao, Changjiu; Driessen, Terri M.; Eisinger, Brian E.; Gammie, Stephen C.

    2015-01-01

    MicroRNAs (miRNAs) inhibit RNA targets and may contribute to postpartum CNS gene expression changes, although this has never been tested. In the present study, we directly evaluated miRNA levels using RNA sequencing during reproduction in female mice in lateral septum (LS). We found the reliable and robust changes of miRNAs away from the virgin stage at the three other stages, namely pregnant, day 1 postpartum, and day 8 postpartum. For a given miRNA that was significantly different from the virgin condition in more than one group, the direction of change was always the same. Overall, we identified 32 upregulated miRNAs and 25 downregulated miRNAs that were consistently different from the virgin state. ‘Arm switching’ occurs for miR-433-3 and miR-7b. Unexpectedly, a third of upregulated miRNAs (relative to virgin) were highly localized within the 12qF1 region of chromosome 12 that includes the Dlk1-Dio3 gene cluster implicated in stem cell and neuronal differentiation. Over 1500 genes were targeted by multiple upregulated miRNAs with about 100 genes targeted by 5 or more miRNAs. Over 1000 genes were targeted by multiple downregulated miRNAs with about 50 genes targeted by 5 or more miRNAs. Half of the target genes were regulated by up and downregulated miRNAs, indicating homeostatic regulation. Transcriptional regulation was the most enriched pathway for genes linked to up or down regulated miRNAs. Other enriched pathways included protein kinase activity (e.g., MAP kinase), CNS development, axon guidance, neurotrophin signaling, neuron development/differentiation, and neurogenesis. Previously published postpartum LS gene expression changes were enrichment for LS miRNA targets, as expected. Surprisingly, postpartum gene expression changes from other regions were also enriched against LS miRNA targets, suggesting a core group of miRNAs may act across the CNS during reproduction. Together, we directly examine miRNAs and find significant alterations in the

  16. MicroRNA expression is altered in lateral septum across reproductive stages.

    PubMed

    Saul, M C; Zhao, C; Driessen, T M; Eisinger, B E; Gammie, S C

    2016-01-15

    MicroRNAs (miRNAs) inhibit RNA targets and may contribute to postpartum central nervous system (CNS) gene expression changes, although this has never been tested. In the present study, we directly evaluated miRNA levels using RNA sequencing during reproduction in female mice in the lateral septum (LS). We found the reliable and robust changes of miRNAs away from the virgin stage at the three other stages, namely pregnant, day 1 postpartum, and day 8 postpartum. For a given miRNA that was significantly different from the virgin condition in more than one group, the direction of change was always the same. Overall, we identified 32 upregulated miRNAs and 25 downregulated miRNAs that were consistently different from the virgin state. 'Arm switching' occurs for miR-433-3 and miR-7b. Unexpectedly, a third of upregulated miRNAs (relative to virgin) were highly localized within the 12qF1 region of chromosome 12 that includes the Dlk1-Dio3 gene cluster implicated in stem cell and neuronal differentiation. Over 1500 genes were targeted by multiple upregulated miRNAs with about 100 genes targeted by five or more miRNAs. Over 1000 genes were targeted by multiple downregulated miRNAs with about 50 genes targeted by five or more miRNAs. Half of the target genes were regulated by up and downregulated miRNAs, indicating homeostatic regulation. Transcriptional regulation was the most enriched pathway for genes linked to up or down regulated miRNAs. Other enriched pathways included protein kinase activity (e.g., MAP kinase), CNS development, axon guidance, neurotrophin signaling, neuron development/differentiation, and neurogenesis. Previously published postpartum LS gene expression changes were enrichment for LS miRNA targets, as expected. Surprisingly, postpartum gene expression changes from other regions were also enriched against LS miRNA targets, suggesting a core group of miRNAs may act across the CNS during reproduction. Together, we directly examine miRNAs and find

  17. Electrophysiological and autoradiographical evidence of V1 vasopressin receptors in the lateral septum of the rat brain

    SciTech Connect

    Raggenbass, M.; Tribollet, E.; Dreifuss, J.J.

    1987-11-01

    Extracellular recordings were obtained from single neurons located in the lateral septum, an area known to receive a vasopressinergic innervation in the rat brain. Approximately half of the neurons tested responded to 8-L-arginine vasopressin (AVP) by a marked increase in firing rate at concentrations greater than 1 nM. The effect of vasopressin was blocked by synthetic structural analogues possessing antagonistic properties on peripheral vasopressin and oxytocin receptors. Oxytocin was much less potent than vasopressin in firing septal neurons, and a selective oxytocic agonist was totally ineffective. The action of vasopressin on neuronal firing was mimicked by the vasopressor agonist (2-phenylalanine,8-ornithine)vasotocin but not by the selective antidiuretic agonist 1-deamino(8-D-arginine)vasopressin. In a parallel study, sites that bind (/sup 3/H)AVP at low concentration (1.5 nM) were found by in vitro autoradiography in the lateral septum. Adjacent sections were also incubated with 1.5 mM (/sup 3/H)AVP and, in addition, with 100 nM (2-phenylalanine,8-ornithine)vasotocin or 1-deamino(8-D-arginine)vasopressin--i.e., the same compounds as those used for the electrophysiological study. Results showed that the vasopressor agonist, but not the antidiuretic agonist, displaced (/sup 3/H)AVP, thus indicating that the vasopressin binding sites detected by autoradiography in the septum were V1 (vasopressor type) rather than V2 (antidiuretic type) receptors. Based on the electrophysiological evidence, we conclude that these receptors, when occupied, lead to increased firing of lateral septal neurons.

  18. Beer self-administration provokes lateralized nucleus accumbens dopamine release in male heavy drinkers

    PubMed Central

    Oberlin, Brandon Gregg; Dzemidzic, Mario; Tran, Stella Maria; Soeurt, Christina Marie; O’Connor, Sean Joseph; Yoder, Karmen Kay; Kareken, David Alexander

    2014-01-01

    Rationale Although striatal dopamine (DA) is important in alcohol abuse, the nature of DA release during actual alcohol drinking is unclear, since drinking includes self-administration of both conditioned flavor stimuli (CS) of the alcoholic beverage and subsequent intoxication, the unconditioned stimulus (US). Objectives Here we used a novel self-administration analog to distinguish nucleus accumbens (NAcc) DA responses specific to the CS and US. Methods Right-handed male heavy drinkers (n=26) received 3 positron emission tomography (PET) scans with the D2/D3 radioligand [11C]raclopride (RAC), and performed a pseudo self-administration task that separately administered a flavor CS of either a habitually consumed beer or the appetitive control Gatorade®, concomitant with the US of ethanol intoxication (0.06 g/dL IV administration) or IV saline. Scan conditions were Gatorade flavor + saline (Gat&Sal); Gatorade flavor + ethanol (Gat&Eth); and beer flavor + ethanol (Beer&Eth). Results Ethanol (US) reduced RAC binding (inferring DA release) in the left (L) NAcc [Gat&Sal > Gat&Eth]. Beer flavor (CS) increased DA in the right (R) NAcc [Gat&Eth > Beer&Eth]. The combination of beer flavor and ethanol (CS + US), [Gat&Sal > Beer&Eth], induced DA release in bilateral NAcc. Self-reported intoxication during scanning correlated with L NAcc DA release. Relative to saline, infusion of ethanol increased alcoholic drink wanting. Conclusions Our findings suggest lateralized DA function in the NAcc, with L NAcc DA release most reflecting intoxication, R NAcc DA release most reflecting the flavor CS, and the conjoint CS+US producing a bilateral NAcc response. PMID:25163422

  19. Infusions of muscimol into the lateral septum do not reduce rats' defensive behaviors toward a cat odor stimulus.

    PubMed

    Chee, San-San A; Patel, Ronak; Menard, Janet L

    2015-01-01

    The lateral septum (LS) is implicated in behavioral defense. We tested whether bilateral infusions of the GABAA receptor agonist muscimol into the LS suppress rats' defensive responses to cat odor. Rats received intra-LS infusions of either saline or muscimol (40 ng/rat) and were exposed to either a piece of a cat collar that had been previously worn by a cat or to a control (cat odor free) collar. Rats exposed to the cat odor collar displayed more head-out postures, while intra-LS application of muscimol reduced the number of head-out postures. However, this reduction was also present in rats exposed to a control (cat odor free) collar. This latter finding suggests that despite its involvement in other defensive behaviors (e.g., open arm avoidance in the elevated plus maze), the LS does not selectively regulate rats' receptor defensive responding to the olfactory cues present in our cat odor stimulus.

  20. Efferent projections of the septum in the Tegu lizard, Tupinambis nigropunctatus.

    PubMed

    Sligar, C M; Voneida, T J

    1981-09-01

    A H3 proline or H3 leucine mixture was injected into the septal region of the Tegu lizard in order to determine its efferent projections. The brains were processed according to standard autoradiographic technique and counterstained with cresyl violet. Septal projections were limited to either telencephalic or diencephalic areas. Intratelencephalic projections consisted of efferents to medial pallium, nucleus accumbens, bed nucleus of the anterior commissure, preoptic area and septum itself. Fibers entering the diencephalon projected to medial habenular nucleus, dorsomedial thalamic nucleus, dorsolateral thalamic area, periventricular nucleus of the hypothalamus, lateral hypothalamic area and mammillary nucleus. The results are discussed in relation to the efferent projections of the septum in other vertebrates.

  1. Allopregnanolone microinjected into the lateral septum or dorsal hippocampus reduces immobility in the forced swim test: participation of the GABAA receptor.

    PubMed

    Rodríguez-Landa, Juan Francisco; Contreras, Carlos M; García-Ríos, Rosa Isela

    2009-10-01

    Allopregnanolone is a 5α-reduced metabolite of progesterone with actions on γ-aminobutyric acid-A (GABAA) receptors that produce antidepressant-like effects. However, little is known about the target brain regions that mediate its antidepressant-like effects. In this study, allopregnanolone (2.0 μg/0.3 μl/rat) or its vehicle (35% cyclodextrin solution) were microinjected into the lateral septum, septofimbrial, or dorsal hippocampus of male Wistar rats that had previously received intraperitoneal injections of either saline or the GABAA antagonist bicuculline (1.0 mg/kg), and its effects were evaluated in the open field and forced swim tests. Allopregnanolone microinjected into the lateral septum or dorsal hippocampus, but not septofimbrial nucleus, induced a longer latency to the first immobility and a shorter total immobility time in the forced swim test compared with vehicle. Bicuculline pretreatment reversed the effect of allopregnanolone. None of the treatments produced significant changes in crossings in the open field test. In conclusion, allopregnanolone produces an antidepressant-like effect in rats submitted to the forced swim test through actions on GABAA receptors located in the lateral septum and dorsal hippocampus, which is consistent with the antistress effect of GABAA agonists in these particular brain structures.

  2. Glutamic acid decarboxylase 65 and 67 expression in the lateral septum is up-regulated in association with the postpartum period in mice.

    PubMed

    Zhao, Changjiu; Driessen, Terri; Gammie, Stephen C

    2012-08-27

    The postpartum period in mammals undergoes a variety of physiological adaptations, including metabolic, behavioral and neuroendocrine alterations. GABA signaling has been strongly linked to various emotional states, stress responses and offspring protection. However, whether GABA signaling may change in the lateral septum (LS), a core brain region for regulating behavioral, emotional and stress responses in postpartum mice has not previously been examined. In this study, we tested whether the expression of two isoforms of glutamic acid decarboxylase (GAD), GAD65 (GAD2) and GAD67 (GAD1), the rate-limiting enzyme for GABA synthesis, exhibits altered expression in postpartum mice relative to nonmaternal, virgin mice. Using microdissected septal tissue from virgin and age-matched postpartum females, quantitative real-time PCR and Western blotting were carried out to assess GAD mRNA and protein expression, respectively. We found both protein and mRNA expression of GAD67 in the whole septum was up-regulated in postpartum mice. By contrast, no significant difference in the whole septum was observed in GAD65 expression. We then conducted a finer level of analysis using smaller microdissections and found GAD67 to be significantly increased in rostral LS, but not in caudal LS or medial septum (MS). Further, GAD65 mRNA expression in rostral LS, but not in caudal LS or MS was also significantly elevated in postpartum mice. These findings suggest that an increased GABA production in rostral LS of the postpartum mice via elevated GAD65 and GAD67 expression may contribute to multiple alterations in behavioral and emotional states, and responses to stress that occur during the postpartum period. Given that rostral LS contains GABA neurons that are projection neurons or local interneurons, it still needs to be determined whether the function of elevated GABA is for local or distant action or both.

  3. Survival of a Novel Subset of Midbrain Dopaminergic Neurons Projecting to the Lateral Septum Is Dependent on NeuroD Proteins

    PubMed Central

    Chabrat, Audrey; Spencer-Dene, Bradley

    2017-01-01

    Midbrain dopaminergic neurons are highly heterogeneous. They differ in their connectivity and firing patterns and, therefore, in their functional properties. The molecular underpinnings of this heterogeneity are largely unknown, and there is a paucity of markers that distinguish these functional subsets. In this paper, we report the identification and characterization of a novel subset of midbrain dopaminergic neurons located in the ventral tegmental area that expresses the basic helix-loop-helix transcription factor, Neurogenic Differentiation Factor-6 (NEUROD6). Retrograde fluorogold tracing experiments demonstrate that Neurod6+ midbrain dopaminergic neurons neurons project to two distinct septal regions: the dorsal and intermediate region of the lateral septum. Loss-of-function studies in mice demonstrate that Neurod6 and the closely related family member Neurod1 are both specifically required for the survival of this lateral-septum projecting neuronal subset during development. Our findings underscore the complex organization of midbrain dopaminergic neurons and provide an entry point for future studies of the functions of the Neurod6+ subset of midbrain dopaminergic neurons. SIGNIFICANCE STATEMENT Midbrain dopaminergic neurons regulate diverse brain functions, including voluntary movement and cognitive and emotive behaviors. These neurons are heterogeneous, and distinct subsets are thought to regulate different behaviors. However, we currently lack the means to identify and modify gene function in specific subsets of midbrain dopaminergic neurons. In this study, we identify the transcription factor NEUROD6 as a specific marker for a novel subset of midbrain dopaminergic neurons in the ventral midbrain that project to the lateral septum, and we reveal essential roles for Neurod1 and Neurod6 in the survival of these neurons during development. Our findings highlight the molecular and anatomical heterogeneity of midbrain dopaminergic neurons and contribute to a

  4. Suckling induces a daily rhythm in the preoptic area and lateral septum but not in the bed nucleus of the stria terminalis in lactating rabbit does

    PubMed Central

    Meza, Enrique; Aguirre, Juan; Waliszewski, Stefan; Caba, Mario

    2014-01-01

    Maternal behavior in the rabbit is restricted to a brief nursing period every day. Previously we demonstrated that this event induces daily rhythms of PER1 protein, the product of the clock gene Per1, in oxytocinergic and dopaminergic populations in the hypothalamus of lactating rabbit does. This is significant for the periodic production and ejection of milk, but the activation of other areas of the brain has not been explored. Here we hypothesized that daily suckling will induce a rhythm in the preoptic area, lateral septum and bed nucleus of the stria terminalis, which are important areas for the expression of maternal behavior in mammals including the rabbit. To this end, we analyzed PER1 expression in those areas through a complete 24-h cycle at lactation day 7. Does were scheduled to nurse during either the day at 10:00 (ZT03) or the night at 02:00 (ZT19) h. Non-pregnant, non-lactating females were used as controls. In contrast to control females, lactating does show a clear, significant rhythm of PER1 that shifts in parallel to timing of nursing in the preoptic area and lateral septum. We determined that the maximal expression of PER1 at 8 h after scheduled nursing decreased significantly at 24 and 48 h after the absence of suckling. This effect was more pronounced in the lateral septum than in the preoptic area. We conclude that daily suckling is a powerful stimulus that induces rhythmic activity in brain structures in the rabbit that appear to be part of a maternal entrainable circuit. PMID:25370159

  5. Suckling induces a daily rhythm in the preoptic area and lateral septum but not in the bed nucleus of the stria terminalis in lactating rabbit does.

    PubMed

    Meza, Enrique; Aguirre, Juan; Waliszewski, Stefan; Caba, Mario

    2015-01-01

    Maternal behavior in the rabbit is restricted to a brief nursing period every day. Previously, we demonstrated that this event induces daily rhythms of Period1 (PER1) protein, the product of the clock gene Per1, in oxytocinergic and dopaminergic populations in the hypothalamus of lactating rabbit does. This is significant for the periodic production and ejection of milk, but the activation of other areas of the brain has not been explored. Here, we hypothesised that daily suckling would induce a rhythm in the preoptic area, lateral septum, and bed nucleus of the stria terminalis, which are important areas for the expression of maternal behavior in mammals, including the rabbit. To this end, we analysed PER1 expression in those areas through a complete 24-h cycle at lactation day 7. Does were scheduled to nurse during either the day at 10:00 h [zeitgeber time (ZT)03] or the night at 02:00 h (ZT19). Non-pregnant, non-lactating females were used as controls. In contrast to control females, lactating does showed a clear, significant rhythm of PER1 that shifted in parallel with the timing of nursing in the preoptic area and lateral septum. We determined that the maximal expression of PER1 at 8 h after scheduled nursing decreased significantly at 24 and 48 h after the absence of suckling. This effect was more pronounced in the lateral septum than in the preoptic area. We conclude that daily suckling is a powerful stimulus inducing rhythmic activity in brain structures in the rabbit that appear to form part of a maternal entrainable circuit.

  6. MC4-R signaling within the nucleus accumbens shell, but not the lateral hypothalamus, modulates ethanol palatability in rats

    PubMed Central

    Lerma-Cabrera, Jose M.; Carvajal, Francisca; Chotro, Gabriela; Gaztañaga, Mirari; Navarro, Montserrat; Thiele, Todd E.; Cubero, Inmaculada

    2012-01-01

    The Melanocortin (MC) system is one of the crucial neuropeptidergic systems that modulate energy balance. The roles of endogenous MC and MC-4 receptor (MC4-R) signaling within the hypothalamus in the control of homeostatic aspects of feeding are well established. Additional evidence points to a key role for the central MC system in ethanol consumption. Recently, we have shown that nucleus accumbens (NAc), but not lateral hypothalamic (LH), infusion of a selective MC4-R agonist decreases ethanol consumption. Given that MC signaling might contribute to non-homeostatic aspects of feeding within limbic circuits, we assessed here whether MC4-R signaling within the NAc and the lateral hypothalamus (LH) alters normal ingestive hedonic and/or aversive responses to ethanol in rats as measured by a taste reactivity test. Adult male Sprague-Dawley rats were given NAc- or LH- bilateral infusion of the selective MC4-R agonist cyclo (NH-CH2-CH2-CO-His-D-Phe-Arg-Trp-Glu)-NH2 (0, 0.75 or 1.5 µg/0.5µl/site) and following 30 min, the animals received 1 ml of ethanol solution (6% w/v) intraoral for 1 minute and aversive and hedonic behaviors were recorded. We found that NAc-, but not LH-administration, of a selective MC4-R agonist decreased total duration of hedonic reactions and significantly increased aversive reactions relative to saline-infused animals which support the hypothesis that MC signaling within the NAc may contribute to ethanol consumption by modulating non-homeostatic aspects (palatability) of intake. PMID:23146409

  7. Optogenetic stimulation of accumbens shell or shell projections to lateral hypothalamus produce differential effects on the motivation for cocaine.

    PubMed

    Larson, Erin B; Wissman, Anne M; Loriaux, Amy L; Kourrich, Saïd; Self, David W

    2015-02-25

    Previous studies suggest that pharmacological or molecular activation of the nucleus accumbens shell (AcbSh) facilitates extinction of cocaine-seeking behavior. However, overexpression of CREB, which increases excitability of AcbSh neurons, enhances cocaine-seeking behavior while producing depression-like behavior in tests of mood. These discrepancies may reflect activity in differential AcbSh outputs, including those to the lateral hypothalamus (LH), a target region known to influence addictive behavior and mood. Presently, it is unknown whether there is a causal link between altered activity in the AcbSh-LH pathway and changes in the motivation for cocaine. In this study, we used an optogenetics approach to either globally stimulate AcbSh neurons or to selectively stimulate AcbSh terminal projections in the LH, in rats self-administering cocaine. We found that stimulation of the AcbSh-LH pathway enhanced the motivation to self-administer cocaine in progressive ratio testing, and led to long-lasting facilitation of cocaine-seeking behavior during extinction tests conducted after withdrawal from cocaine self-administration. In contrast, global AcbSh stimulation reduced extinction responding. We compared these opposing motivational effects with effects on mood using the forced swim test, where both global AcbSh neuron and selective AcbSh-LH terminal stimulation facilitated depression-like behavioral despair. Together, these findings suggest that the AcbSh neurons convey complex, pathway-specific modulation of addiction and depression-like behavior, and that these motivation and mood phenomenon are dissociable.

  8. Bidirectional Control of Anxiety-Related Behaviours in Mice: Role of Inputs Arising from the Ventral Hippocampus to the Lateral Septum and Medial Prefrontal Cortex.

    PubMed

    Parfitt, Gustavo Morrone; Nguyen, Robin; Bang, Jee Yoon; Aqrabawi, Afif; Tran, Matthew M; Seo, D Kanghoon; Richards, Blake A; Kim, Jun Chul

    2017-03-15

    Anxiety is an adaptive response to potentially threatening situations. Exaggerated and uncontrolled anxiety responses become maladaptive and lead to anxiety disorders. Anxiety is shaped by a network of forebrain structures, including the hippocampus, septum, and prefrontal cortex. In particular, neural inputs arising from the ventral hippocampus (vHPC) to the lateral septum (LS) and medial prefrontal cortex (mPFC) are thought to serve as principal components of the anxiety circuit. However, the role of vHPC-to-LS and vHPC-to-mPFC signals in anxiety is unclear, as no study has directly compared their behavioural contribution at circuit level. We targeted LS-projecting vHPC cells and mPFC-projecting vHPC cells by injecting the retrogradely propagating canine adenovirus encoding Cre recombinase into the LS or mPFC, and injecting a Cre-responsive AAV (AAV8-hSyn-FLEX-hM3D or hM4D) into the vHPC. Consequences of manipulating these neurons were examined in well-established tests of anxiety. Chemogenetic manipulation of LS-projecting vHPC cells led to bidirectional changes in anxiety: activation of LS-projecting vHPC cells decreased anxiety whereas inhibition of these cells produced opposite anxiety-promoting effects. The observed anxiety-reducing function of LS-projecting cells was in contrast with the function of mPFC-projecting cells, which promoted anxiety. Additionally, double retrograde tracing demonstrated that LS- and mPFC-projecting cells represent two largely anatomically distinct cell groups. Together, our findings suggest that the vHPC houses discrete populations of cells that either promote or suppress anxiety through differences in their projection targets. Disruption of the intricate balance in the activity of these two neuron populations may drive inappropriate behavioural responses seen in anxiety disorders.Neuropsychopharmacology accepted article preview online, 15 March 2017. doi:10.1038/npp.2017.56.

  9. Metabotropic glutamate receptor 3 is downregulated and its expression is shifted from neurons to astrocytes in the mouse lateral septum during the postpartum period.

    PubMed

    Zhao, Changjiu; Gammie, Stephen C

    2015-06-01

    The inhibitory metabotropic glutamate receptor 3 (mGluR3) plays diverse and complex roles in brain function, including synaptic plasticity and neurotransmission. We recently found that mGluR3 is downregulated in the lateral septum (LS) of postpartum females using microarray and qPCR analysis. In this study, we used double fluorescence immunohistochemical approaches to characterize mGluR3 changes in LS of the postpartum brain. The number of mGluR3-immunoractive cells was significantly reduced in the dorsal (LSD) and intermediate (LSI) but not ventral (LSV) parts of the LS in postpartum versus virgin females. mGluR3 immunoreactivity in the LS was found predominantly in neurons (~70%), with a smaller portion (~20%-30%) in astrocytes. Colocalization analysis revealed a reduced mGluR3 expression in neurons but an increased astrocytic localization in postpartum LSI. This change in the pattern of expression suggests that mGluR3 expression is shifted from neurons to astrocytes in postpartum LS, and the decrease in mGluR3 is neuron-specific. Because mGluR3 is inhibitory and negatively regulates glutamate and GABA release, decreases in neuronal expression would increase glutamate and GABA signaling. Given our recent finding that ~90% of LS neurons are GABAergic, the present data suggest that decreases in mGluR3 are a mechanism for elevated GABA in LS in the postpartum state.

  10. Oxytocin mediates rodent social memory within the lateral septum and the medial amygdala depending on the relevance of the social stimulus: male juvenile versus female adult conspecifics.

    PubMed

    Lukas, Michael; Toth, Iulia; Veenema, Alexa H; Neumann, Inga D

    2013-06-01

    Brain oxytocin (OXT) plays an important role in short-term social memory in laboratory rodents. Here we monitored local release of OXT and its functional involvement in the maintenance and retrieval of social memory during the social discrimination test. We further assessed, if the local effects of OXT within the medial amygdala (MeA) and lateral septum (LS) on social discrimination abilities were dependent on the biological relevance of the social stimulus, thus comparing male juvenile versus adult female conspecifics. OXT release was increased in the LS of male rats during the retrieval, but not during the acquisition or maintenance, of social memory for male juvenile stimuli. Blockade of OXT activity by intracerebroventricular (ICV) administration of a specific OXT receptor antagonist (OXTR-A, rats: 0.75 μg/5 μl, mice: 2 μg/2 μl) immediately after acquisition of social memory impaired the maintenance of social memory, and consequently discrimination abilities during retrieval of social memory. In contrast, ICV OXTR-A was without effect when administered 20 min prior to retrieval of social memory in both species. Non-social memory measured in the object discrimination test was not affected by ICV OXTR-A in male mice, indicating that brain OXT is mainly required for memory formation in a social context. The biological relevance of the social stimulus seems to importantly determine social memory abilities, as male rats recognized a previously encountered female adult stimulus for at least 2h (versus 60 min for male juveniles), with a region-dependent contribution of endogenous OXT; while bilateral administration of OXTR-A into the MeA (0.1 μg/1 μl) impaired social memory for adult females only, administration of OXTR-A into the LS via retrodialysis (10 μg/ml, 1.0 μl/min) impaired social memory for both male juveniles and female adults. Overall, these results indicate that brain OXT is a critical mediator of social memory in male rodents and that, depending

  11. Enhanced Upregulation of CRH mRNA Expression in the Nucleus Accumbens of Male Rats after a Second Injection of Methamphetamine Given Thirty Days Later

    PubMed Central

    Cadet, Jean Lud; Brannock, Christie; Ladenheim, Bruce; McCoy, Michael T.; Krasnova, Irina N.; Lehrmann, Elin; Becker, Kevin G.; Jayanthi, Subramaniam

    2014-01-01

    Methamphetamine (METH) is a widely abused amphetamine analog. Few studies have investigated the molecular effects of METH exposure in adult animals. Herein, we determined the consequences of an injection of METH (10 mg/kg) on transcriptional effects of a second METH (2.5 mg/kg) injection given one month later. We thus measured gene expression by microarray analyses in the nucleus accumbens (NAc) of 4 groups of rats euthanized 2 hours after the second injection: saline-pretreated followed by saline-challenged (SS) or METH-challenged (SM); and METH-pretreated followed by saline-challenged (MS) or METH-challenged (MM). Microarray analyses revealed that METH (2.5 mg/kg) produced acute changes (1.8-fold; P<0.01) in the expression of 412 (352 upregulated, 60 down-regulated) transcripts including cocaine and amphetamine regulated transcript, corticotropin-releasing hormone (Crh), oxytocin (Oxt), and vasopressin (Avp) that were upregulated. Injection of METH (10 mg/kg) altered the expression of 503 (338 upregulated, 165 down-regulated) transcripts measured one month later (MS group). These genes also included Cart and Crh. The MM group showed altered expression of 766 (565 upregulated, 201 down-regulated) transcripts including Avp, Cart, and Crh. The METH-induced increased Crh expression was enhanced in the MM group in comparison to SM and MS groups. Quantitative PCR confirmed the METH-induced changes in mRNA levels. Therefore, a single injection of METH produced long-lasting changes in gene expression in the rodent NAc. The long-term increases in Crh, Cart, and Avp mRNA expression suggest that METH exposure produced prolonged activation of the endogenous stress system. The METH-induced changes in oxytocin expression also suggest the possibility that this neuropeptide might play a significant role in the neuroplastic and affiliative effects of this drug. PMID:24475032

  12. Enhanced upregulation of CRH mRNA expression in the nucleus accumbens of male rats after a second injection of methamphetamine given thirty days later.

    PubMed

    Cadet, Jean Lud; Brannock, Christie; Ladenheim, Bruce; McCoy, Michael T; Krasnova, Irina N; Lehrmann, Elin; Becker, Kevin G; Jayanthi, Subramaniam

    2014-01-01

    Methamphetamine (METH) is a widely abused amphetamine analog. Few studies have investigated the molecular effects of METH exposure in adult animals. Herein, we determined the consequences of an injection of METH (10 mg/kg) on transcriptional effects of a second METH (2.5 mg/kg) injection given one month later. We thus measured gene expression by microarray analyses in the nucleus accumbens (NAc) of 4 groups of rats euthanized 2 hours after the second injection: saline-pretreated followed by saline-challenged (SS) or METH-challenged (SM); and METH-pretreated followed by saline-challenged (MS) or METH-challenged (MM). Microarray analyses revealed that METH (2.5 mg/kg) produced acute changes (1.8-fold; P<0.01) in the expression of 412 (352 upregulated, 60 down-regulated) transcripts including cocaine and amphetamine regulated transcript, corticotropin-releasing hormone (Crh), oxytocin (Oxt), and vasopressin (Avp) that were upregulated. Injection of METH (10 mg/kg) altered the expression of 503 (338 upregulated, 165 down-regulated) transcripts measured one month later (MS group). These genes also included Cart and Crh. The MM group showed altered expression of 766 (565 upregulated, 201 down-regulated) transcripts including Avp, Cart, and Crh. The METH-induced increased Crh expression was enhanced in the MM group in comparison to SM and MS groups. Quantitative PCR confirmed the METH-induced changes in mRNA levels. Therefore, a single injection of METH produced long-lasting changes in gene expression in the rodent NAc. The long-term increases in Crh, Cart, and Avp mRNA expression suggest that METH exposure produced prolonged activation of the endogenous stress system. The METH-induced changes in oxytocin expression also suggest the possibility that this neuropeptide might play a significant role in the neuroplastic and affiliative effects of this drug.

  13. THE AGS ELECTROSTATIC SEPTUM.

    SciTech Connect

    HOCK,J.RUSSO,T.GLEN,J.BROWN,K.

    2003-05-12

    The previous slow beam extraction electro static septum in the AGS was designed in 1981. Research documented at the Fermi Laboratory was used as the base line for this design. The septum consisted of a ground plane of .002 inch diameter wire tungsten-rhenium alloy (75%W 25%Re) with a hollow welded titanium cathode assembly. The vacuum chamber is stationary and the septum is moved with a pair of high vacuum linear feed throughs. After years of beam time, the frequency of failures increased. The vacuum system design was poor by today's standards and resulted in long pump down times after repairs. The failures ranged from broken septum wires to a twisted cathode. In addition to the failures, the mechanical drive system had too much backlash, making the operating position difficult to repeat. The new septum needed to address all of these issues in order to become a more reliable septum.

  14. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat.

    PubMed

    van der Plasse, Geoffrey; Schrama, Regina; van Seters, Sebastiaan P; Vanderschuren, Louk J M J; Westenberg, Herman G M

    2012-01-01

    Following the successful application of deep brain stimulation (DBS) in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders have yet to be established. Thus, there is a great need to examine site-specific effects of DBS on a behavioural level and to understand how DBS may modulate pathological behaviour. In view of the possible application of DBS in the treatment of disorders characterized by impaired processing of reward and motivation, like addiction and eating disorders, we examined the effect of DBS of the nucleus accumbens (NAcc) on food-directed behavior. Rats were implanted with bilateral stimulation electrodes in one of three anatomically and functionally distinct sub-areas of the NAcc: the core, lateral shell (lShell) and medial shell (mShell). Subsequently, we studied the effects of DBS on food consumption, and the motivational and appetitive properties of food. The data revealed a functional dissociation between the lShell and mShell. DBS of the lShell reduced motivation to respond for sucrose under a progressive ratio schedule of reinforcement, mShell DBS, however, profoundly and selectively increased the intake of chow. DBS of the NAcc core did not alter any form of food-directed behavior studied. DBS of neither structure affected sucrose preference. These data indicate that the intake of chow and the motivation to work for palatable food can independently be modulated by DBS of subregions of the NAcc shell. As such, these findings provide important leads for the possible future application of DBS as a treatment for eating disorders such as anorexia nervosa.

  15. Control of food intake by MC4-R signaling in the lateral hypothalamus, nucleus accumbens shell and ventral tegmental area: Interactions with ethanol

    PubMed Central

    Lerma-Cabrera, Jose M.; Carvajal, Francisca; de la Torre, Lourdes; de la Fuente, Leticia; Navarro, Montserrat; Thiele, Todd E.; Cubero, Inmaculada

    2012-01-01

    The Melanocortin system is involved in animal models of obesity and anorexia-cachexia and MC4 receptors (MC4-R) are currently a target system for the development of drugs aimed to treat obesity and eating disorders in humans. Previous evidence suggest that feeding peptides might lack their orexigenic activity while stimulate ethanol intake. The present study comparatively evaluated food intake (4-h interval) in Sprague-Dawley (SD) rats drinking ethanol (6% w/v, 2 bottle choice paradigm) (EE group) and ethanol-naïve (EN) rats in response to bilateral infusion of the selective MC4-R antagonist HS014 (0, 0.02 or 0.05 μg/0.5μl/site) or the selective MC4-R agonist cyclo(NH-CH2-CH2-CO-His-D-Phe-Arg-Trp-Glu)-NH2 (0, 0.75 or 1.5 μg/0.5μl/site), into the lateral hypothalamus (LH), the nucleus accumbens (NAc), or the ventral tegmental area (VTA). The main findings in the study are: 1) LH-infusions of the MC4-R antagonist increased and the agonist reduced feeding and total calories consumed, while ethanol intake remained unaltered. 2) NAc- and VTA-infusions of the selective agonist reduced food, ethanol and total calories intake. 3) NAc- and VTA-infusions of the MC4-R antagonist increased feeding in EN rats, but not in EE animals which showed a mild increase in ethanol intake, while total calories consumed remained unaltered. Present data show that having ethanol available reduces feeding elicited by NAc and VTA-MC4-R blockade. Additionally, while MC4-R signalling in the LH appears to modulate homeostatic aspects of feeding, it may contribute to non-homeostatic aspects of ingestive behaviours in the VTA and the NAc. PMID:22713514

  16. Functional interaction between the orexin-1 and CB1 receptors within the nucleus accumbens in the conditioned place preference induced by the lateral hypothalamus stimulation.

    PubMed

    Fatahi, Zahra; Assar, Nasim; Mahmoudi, Dorna; Pahlevani, Pouyan; Moradi, Marzieh; Haghparast, Abbas

    2015-02-28

    Several studies have shown that chemical stimulation of the lateral hypothalamus (LH) by carbachol induces the conditioned place preference (CPP) in rats. LH is the main source of the orexinergic neurons and sends projections to some areas of the brain such as the nucleus accumbens (NAc). We tried to determine the role of intra-accumbal orexin-1 (OX1) receptors in development (acquisition) and expression of reward-related behaviors induced by LH stimulation and involvement of CB1 cannabinoid receptors in this area. Adult male Wistar rats were unilaterally implanted by two separate cannulae into the LH and NAc. The CPP paradigm was done; conditioning scores and locomotor activities were recorded. The results showed that intra-accumbal administration of SB334867 as a selective OX1 receptor antagonist (1, 3, 10 and 30nM/0.5μl DMSO) 5min before intra-LH carbachol (250nM/0.5μl saline) during 3-day conditioning phase, could dose-dependently inhibit the development of LH-induced CPP. In expression experiments, intra-NAc administration of SB334867 on the test day could decrease the expression of LH stimulation-induced CPP. Furthermore, concurrent intra-accumbal administration of effective/ineffective doses of SB334867 and AM251 (45 and 15μM) as a CB1 receptor antagonist, before carbachol during the conditioning phase, could attenuate the development of LH stimulation-induced CPP. It seems that the orexinergic projection from the LH to the NAc is involved in the LH stimulation-induced CPP and OX1 receptor in the NAc has a substantial role in this phenomenon. Our findings also suggest the existence a functional interaction between OX1 and CB1 receptors within the NAc in place preference.

  17. A Relationship between Reduced Nucleus Accumbens Shell and Enhanced Lateral Hypothalamic Orexin Neuronal Activation in Long-Term Fructose Bingeing Behavior

    PubMed Central

    Rorabaugh, Jacki M.; Stratford, Jennifer M.; Zahniser, Nancy R.

    2014-01-01

    Fructose accounts for 10% of daily calories in the American diet. Fructose, but not glucose, given intracerebroventricularly stimulates homeostatic feeding mechanisms within the hypothalamus; however, little is known about how fructose affects hedonic feeding centers. Repeated ingestion of sucrose, a disaccharide of fructose and glucose, increases neuronal activity in hedonic centers, the nucleus accumbens (NAc) shell and core, but not the hypothalamus. Rats given glucose in the intermittent access model (IAM) display signatures of hedonic feeding including bingeing and altered DA receptor (R) numbers within the NAc. Here we examined whether substituting fructose for glucose in this IAM produces bingeing behavior, alters DA Rs and activates hedonic and homeostatic feeding centers. Following long-term (21-day) exposure to the IAM, rats given 8–12% fructose solutions displayed fructose bingeing but unaltered DA D1R or D2R number. Fructose bingeing rats, as compared to chow bingeing controls, exhibited reduced NAc shell neuron activation, as determined by c-Fos-immunoreactivity (Fos-IR). This activation was negatively correlated with orexin (Orx) neuron activation in the lateral hypothalamus/perifornical area (LH/PeF), a brain region linking homeostatic to hedonic feeding centers. Following short-term (2-day) access to the IAM, rats exhibited bingeing but unchanged Fos-IR, suggesting only long-term fructose bingeing increases Orx release. In long-term fructose bingeing rats, pretreatment with the Ox1R antagonist SB-334867 (30 mg/kg; i.p.) equally reduced fructose bingeing and chow intake, resulting in a 50% reduction in calories. Similarly, in control rats, SB-334867 reduced chow/caloric intake by 60%. Thus, in the IAM, Ox1Rs appear to regulate feeding based on caloric content rather than palatability. Overall, our results, in combination with the literature, suggest individual monosaccharides activate distinct neuronal circuits to promote feeding behavior

  18. A New Septum in the Female Breast

    PubMed Central

    Awad, Mostafa Abdel Rahman; Sherif, Mahmoud Magdi; Sadek, Eaman Yahya; Hamid, Wafaa Raafat Abdel

    2017-01-01

    Background Understanding the female breast fascial system is of paramount importance in breast surgery. Little was written about breast ligaments. Most articles refer to Cooper's work without further anatomical studies. Lately, a horizontal septum has been described conveying nerves and vessels to the nipple areola complex. Methods During the surgical dissection of the lower part of the breast, in supero-medial technique for breast reduction operations, a fascial septum between the lower two quadrants was detected. This fibrous septum was studied through anatomic dissection of breast tissues during routine breast reshaping procedures that was done on 30 female patients. Magnetic resonance imaging (MRI) was performed preoperatively in all cases and correlated with the intraoperative findings. In the other five cases, outside the clinical study, the imaging was done during routine investigation for breast swellings. Results A vertical septum was identified in the lower part of the breast, lying at the breast meridian between the two lower quadrants. It is a tough bi-laminated structure that extends from the middle of the infra-mammary crease caudally to nipple-areola complex cranially and from the pectoral fascia posteriorly to the overlying skin anteriorly. This was proved by MRI findings. Conclusions This study describes a new inferior vertical septum which separates the lower half of the breast into two definite anatomical compartments: medial and lateral. PMID:28352598

  19. Dyadic social interaction inhibits cocaine-conditioned place preference and the associated activation of the accumbens corridor.

    PubMed

    Zernig, Gerald; Pinheiro, Barbara S

    2015-09-01

    accumbens, but was observed in all regions medial to the anterior commissure ('accumbens corridor'), including (from medial to lateral), the vertical limb of the diagonal band and the medial septum (VDB+MS), the major island of Calleja and the intermediate nucleus of the lateral septum (ICjM+LSI), the AcbShm, and the AcbCm. All effects were limited to GABAergic projection neurons (called 'medium spiny neurons', in the accumbens), encompassing both dopamine D1 receptor-expressing and D2 receptor-expressing medium spiny neuron subtypes. Our EGR1 expression findings were mirrored in multielectrode array recordings. Finally, we have validated our paradigm in C57BL/6 mice to make use of the plethora of transgenic models available in this genus.

  20. Dyadic social interaction inhibits cocaine-conditioned place preference and the associated activation of the accumbens corridor

    PubMed Central

    Pinheiro, Barbara S.

    2015-01-01

    accumbens, but was observed in all regions medial to the anterior commissure (‘accumbens corridor’), including (from medial to lateral), the vertical limb of the diagonal band and the medial septum (VDB+MS), the major island of Calleja and the intermediate nucleus of the lateral septum (ICjM+LSI), the AcbShm, and the AcbCm. All effects were limited to GABAergic projection neurons (called ‘medium spiny neurons’, in the accumbens), encompassing both dopamine D1 receptor-expressing and D2 receptor-expressing medium spiny neuron subtypes. Our EGR1 expression findings were mirrored in multielectrode array recordings. Finally, we have validated our paradigm in C57BL/6 mice to make use of the plethora of transgenic models available in this genus. PMID:26221832

  1. Sylvius aqueduct septum.

    PubMed

    Coolen, T; Médart, L; Tebache, M; Collignon, L

    2013-01-01

    We present a case of chronic hydrocephalus discovered in adulthood through an episode of acute decompensation. Multimodal imaging revealed the cause of this hydrocephalus to be a membranous septum of the aqueduct of Sylvius, a condition for which few reports exist.

  2. Dynamic changes in extracellular release of GABA and glutamate in the lateral septum during social play behavior in juvenile rats: Implications for sex-specific regulation of social play behavior.

    PubMed

    Bredewold, R; Schiavo, J K; van der Hart, M; Verreij, M; Veenema, A H

    2015-10-29

    Social play is a motivated and rewarding behavior that is displayed by nearly all mammals and peaks in the juvenile period. Moreover, social play is essential for the development of social skills and is impaired in social disorders like autism. We recently showed that the lateral septum (LS) is involved in the regulation of social play behavior in juvenile male and female rats. The LS is largely modulated by GABA and glutamate neurotransmission, but their role in social play behavior is unknown. Here, we determined whether social play behavior is associated with changes in the extracellular release of GABA and glutamate in the LS and to what extent such changes modulate social play behavior in male and female juvenile rats. Using intracerebral microdialysis in freely behaving rats, we found no sex difference in extracellular GABA concentrations, but extracellular glutamate concentrations are higher in males than in females under baseline conditions and during social play. This resulted in a higher glutamate/GABA concentration ratio in males vs. females and thus, an excitatory predominance in the LS of males. Furthermore, social play behavior in both sexes is associated with significant increases in extracellular release of GABA and glutamate in the LS. Pharmacological blockade of GABA-A receptors in the LS with bicuculline (100 ng/0.5 μl, 250 ng/0.5 μl) dose-dependently decreased the duration of social play behavior in both sexes. In contrast, pharmacological blockade of ionotropic glutamate receptors (NMDA and AMPA/kainate receptors) in the LS with AP-5+CNQX (2mM+0.4mM/0.5 μl, 30 mM+3mM/0.5 μl) dose-dependently decreased the duration of social play behavior in females, but did not alter social play behavior in males. Together, these data suggest a role for GABA neurotransmission in the LS in the regulation of juvenile social play behavior in both sexes, while glutamate neurotransmission in the LS is involved in the sex-specific regulation of juvenile social

  3. Chondrosarcoma of the nasal septum

    PubMed Central

    Bahgat, Mohammed; Bahgat, Yassin; Bahgat, Ahmed; Elwany, Yasmine

    2012-01-01

    Chondrosarcoma of the nasal septum is a rare malignancy. When it occurs, early diagnosis is difficult because patients generally present with common, non-specific sinonasal complaints. This is the report of a 62-year-old woman who presented with a 1-month history of nasal obstruction, headache and anosmia. Nasal endoscopy showed a nasal mass obstructing both nasal cavities not separable from the septum. A wedge biopsy of the nasal mass was taken. Histopathology was suggestive of chondrosarcoma. The tumour was removed by an endoscopic approach. The clinical presentation, diagnosis and treatment of this case as well as a review of the literature are discussed. PMID:22669930

  4. Quilting sutures for nasal septum.

    PubMed

    Hari, C; Marnane, C; Wormald, P J

    2008-05-01

    Suturing of the nasal septum after septal surgery is a commonly performed procedure designed to prevent complications such as septal haematoma and bleeding. It is also useful for closing any inadvertent tears of the septal mucosa and providing additional support for the cartilage pieces retained in septoplasty. In addition, the suture can be placed through the middle turbinates, stabilising them during the healing process. Placing knots for interrupted sutures in the posterior and middle part of the nasal septum can be technically difficult. We describe a continuous suturing technique for approximating the mucosal flaps following septal surgery.

  5. [Endoscopic pleomorphic adenoma of nasal septum resection assisted by low-temperature plasm radiofrequency: a case report].

    PubMed

    Zhang, Dagong; Xiao, Liu; Tian, Huan

    2014-11-01

    We present an extremely rare case of pleomorphic adenoma of the nasal septum in a 24-year old woman who went to consultation because of right nasal neoplasm. The radiologic discoveries by computerized tomography showed a tumor in the right nasal septum. Incisional biopsy was done, with a histopathological report of pleomorphic adenoma. Later, nasal endoscopy was used to remove the neoplasm and histology revealed pleomorphic adenoma of the nasal septum.

  6. Electrostatic septum for kilowatt heavy ion beams

    NASA Astrophysics Data System (ADS)

    Alfredson, S.; Marti, F.; Miller, P.; Poe, D.; Stork, G.

    2001-12-01

    A septum of improved design has replaced the standard tungsten septum with uniform thickness used in the deflector for the K1200 cyclotron at Michigan State University [1]. A V-notch in the leading edge enhanced radiation cooling, and an increased septum thickness away from the median plane enhanced conduction of heat to the water cooled housing. Previously observed degradation of beam transmission attributed to thermally induced deformation of the septum was greatly improved with the new septum. The demonstrated power dissipation with an Ar beam was 900 W.

  7. Cystic choroid plexus papilloma in the cavum septum pellucidum.

    PubMed

    Tuchman, Alexander; Kalhorn, Stephen P; Mikolaenko, Irina; Wisoff, Jeffrey H

    2009-12-01

    A choroid plexus papilloma is a rare CNS neoplasm arising from the neuroepithelial lining of the choroid plexus. A third ventricular location of a choroid plexus papilloma is rare compared with the more common sites in the lateral and fourth ventricles. Cystic choroid plexus papilloma represents an infrequent subtype that may present diagnostic ambiguity. The authors present a case of cystic choroid plexus papilloma within a cavum septum pellucidum that radiographically mimicked neurocysticercosis.

  8. Some observations on the septum pellucidum.

    PubMed

    Pearce, J M S

    2008-01-01

    The thin, vertically placed partition consisting of two laminae separated by a narrow chink constitutes the cavity of the septum pellucidum, known from the time of Sylvius. Traumatic lesions in boxers, rare congenital expanding cysts causing hydrocephalus, and a number of septo-optic dysplasias give clinical significance to the septum and its related cavum.

  9. Dissection of the interventricular septum

    PubMed Central

    Gu, Xiaoyan; He, Yihua; Luan, Shurong; Zhao, Ying; Sun, Lin; Zhang, Hongjia; Nixon, J.V. Ian

    2017-01-01

    Abstract Dissection of the interventricular septum (IVS) is an extremely rare entity. An institutional echocardiographic database was retrospectively reviewed; 13 patients with a diagnosis of IVS dissection were found and confirmed by cardiac surgery. The purposes of the study were: to determine the value of transthoracic echocardiography (TTE) in establishing the diagnosis of IVS dissection, and to detail the TTE features of IVS dissection. Thirteen patients with IVS dissection diagnosed by TTE, 8 males and 5 females were taken from 789,114 TTE studies performed between 1985 and 2014. All underwent cardiac surgery during which their diagnosis was confirmed. The etiology, location, 2-dimensional morphology, and color Doppler findings of IVS dissection were noted. The right sinus of Valsalva (SOV) was involved in 11 of the 13 patients. In 5 patients, a single aneurysm of the right SOV was seen dissecting into the IVS. One patient with a combination of a bicuspid aortic valve and a right SOV aneurysm dissected into the IVS. In 4 patients, aortic valve infective endocarditis resulted in IVS dissection. In 1 patient, mechanical aortic valve prosthetic replacement was complicated by annular detachment and a severe paravalvular leak causing IVS dissection. In all 11 patients, TTE showed a dissecting cystic-like mass in the IVS from the base to the mid-septum or confined to the septal base. The path of the dissection in these 11 patients was traced to the right SOV and communications between the IVS dissection and the aortic root were identified. In the remaining 2 patients, IVS dissection followed septal rupture due to a myocardial infarction, and communication was seen between the IVS dissection and the right ventricle. The study showed that most of the dissections of the IVS commence in the right SOV, due to either congenital anomalies or infective endocarditis, or following aortic valve replacement or myocardial infarction. The TTE characteristic of IVS dissection is

  10. Hysteroscopic Transcervical Resection of Uterine Septum

    PubMed Central

    Shi, Xiaoyan; Hua, Xiangdong; Gu, Xiaoyan; Yang, Dazhen

    2013-01-01

    Objective: To explore the method of diagnosis for uterine septum and the clinical effect of hysteroscopic transcervical resection of the septum. Methods: One-hundred ninety cases of patients with uterine septum who were diagnosed and treated at our hospital during 2007–2011 were selected, and their general information, perioperative status, postoperative recovery treatment, and postoperative pregnancy rates were statistically analyzed. Results: All 190 patients were cured with one surgery, with an average hysteroscopic operating time of 22.60 ± 10.67 minutes and intraoperative blood loss of 15.74 ± 9.64 mL. There were no complications such as uterine perforation, water intoxication, infection, or heavy bleeding. Among the 115 patients that we followed up, 86 became pregnant and delivered infants, 81 of which were born at term and 5 that were born premature. Conclusion: The combination of hysteroscopy and laparoscopy is still the most reliable method for the diagnosis of uterine septum. With a shorter operative time, less blood loss, a significantly increased postoperative pregnancy rate and live birth rate, and a significantly lower spontaneous abortion rate, transcervical resection of the septum was the preferred method for the treatment of uterine septum, and surgical instruments and skills were critical to the prognosis of uterine septum. PMID:24398191

  11. Direct hypothalamic and indirect trans-pallidal, trans-thalamic, or trans-septal control of accumbens signaling and their roles in food intake

    PubMed Central

    Urstadt, Kevin R.; Stanley, B. Glenn

    2015-01-01

    Due in part to the increasing incidence of obesity in developed nations, recent research aims to elucidate neural circuits that motivate humans to overeat. Earlier research has described how the nucleus accumbens shell (AcbSh) motivates organisms to feed by activating neuronal populations in the lateral hypothalamus (LH). However, more recent research suggests that the LH may in turn communicate with the AcbSh, both directly and indirectly, to re-tune the motivation to consume foods with homeostatic and food-related sensory signals. Here, we discuss the functional and anatomical evidence for an LH to AcbSh connection and its role in eating behaviors. The LH appears to modulate Acb activity directly, using neurotransmitters such as hypocretin/orexin or melanin concentrating hormone (MCH). The LH also indirectly regulates AcbSh activity through certain subcortical “relay” regions, such as the lateral septum (LS), ventral pallidum (VP), and paraventricular thalamus, using a variety of neurotransmitters. This review aims to summarize studies on these topics and outline a model by which LH circuits processing energy balance can modulate AcbSh neural activity to regulate feeding behavior. PMID:25741246

  12. Two-piece nasal septum prosthesis for a large nasal septum perforation: a clinical report.

    PubMed

    Sashi Purna, C R; Annapurna, P D; Ahmed, Syed Basheer; Vurla, Samyuktha; Nalla, Sandeep; Abhishek, S M

    2013-02-01

    Nasal septum perforation presents with the symptoms of epistaxis and crusting. Obturation of the defect will decrease the symptoms and increase patient comfort. Prosthetic closure is more predictable and thus the treatment of choice in larger defects. This article describes a procedure for construction of a magnet-retained, heat-processed acrylic nasal septum prosthesis. The two-piece nasal septum prosthesis was processed and joined together in situ by magnets. Each piece of the septum prosthesis conforms to the remaining medial wall of each nostril and forms the missing half of the nasal septum. The prosthesis not only alleviates symptoms, but also provides structural support to the saddle-shaped nose and improves esthetics.

  13. Increased conditioned place preference for cocaine in high anxiety related behavior (HAB) mice is associated with an increased activation in the accumbens corridor

    PubMed Central

    Prast, Janine M.; Schardl, Aurelia; Sartori, Simone B.; Singewald, Nicolas; Saria, Alois; Zernig, Gerald

    2014-01-01

    Anxiety disorders and substance use disorders are strongly associated in humans. Accordingly, a widely held but controversial concept in the addiction field, the so-called “self-medication hypothesis,” posits that anxious individuals are more vulnerable for drug dependence because they use drugs of abuse to alleviate their anxiety. We tested this hypothesis under controlled experimental conditions by quantifying the conditioned place preference (CPP) to 15 mg/kg i.p. cocaine given contingently (COCAINE) in CD1 mice selectively bred for high anxiety-related behavior (HAB) vs. normal anxiety-related behavior (NAB). Cocaine was conditioned to the initially non-preferred compartment in an alternate day design (cocaine vs. saline, four pairings each). HAB and NAB mice were also tested for the effects of non-contingent (NONCONT) cocaine administration. HAB mice showed a slightly higher bias for one of the conditioning compartments during the pretest than NAB mice that became statistically significant (p = 0.045) only after pooling COCAINE and NONCONT groups. Cocaine CPP was higher (p = 0.0035) in HAB compared to NAB mice. The increased cocaine CPP was associated with an increased expression of the immediate early genes (IEGs) c-Fos and Early Growth Related Protein 1 (EGR1) in the accumbens corridor, i.e., a region stretching from the anterior commissure to the interhemispheric border and comprising the medial nucleus accumbens core and shell, the major island of Calleja and intermediate part of the lateral septum, as well as the vertical limb of the diagonal band and medial septum. The cocaine CPP-induced EGR1 expression was only observed in D1- and D2-medium spiny neurons, whereas other types of neurons or glial cells were not involved. With respect to the activation by contingent vs. non-contingent cocaine EGR1 seemed to be a more sensitive marker than c-Fos. Our findings suggest that cocaine may be more rewarding in high anxiety individuals, plausibly due to an

  14. Lipomatous Hypertrophy of the Atrial Septum in a Patient Undergoing Coronary Artery Bypass Surgery

    PubMed Central

    Weyand, Michael; Agaimy, Abbas

    2016-01-01

    Background. Lipomatous hypertrophy of the atrial septum (LHAS) is a rare entity characterized by mass-forming deposition of fatty tissue within the atrial septum. To date, <300 cases have been reported; many of them were autopsy findings. The clinical presentation of LHAS varies from incidental asymptomatic mass (most frequent form) to severe life-threatening cardiovascular complications necessitating emergency cardiac surgery. Case Presentation. Here, we present the successful surgical resection of such a massive LHAS which was found incidentally on preoperative investigation of a 71-year-old patient with progressive coronary heart disease. Histology confirmed the diagnosis of lipomatous hypertrophy of the atrial septum. Conclusions. The described case report illustrates an unusual example of LHAS in a patient undergoing a planned coronary artery bypass surgery. In this case, surgical intervention was justified to avoid later outflow obstructions. PMID:28078155

  15. The malar septum: the anatomic basis of malar mounds and malar edema.

    PubMed

    Pessa, J E; Garza, J R

    1997-01-01

    The anatomy of malar mounds and malar edema is evaluated in a series of 18 fresh cadaver dissections. Dye injection, histologic evaluation, and gross anatomic dissection are used to identify a previously unrecognized fascial structure of the lower eyelid and cheek. The malar septum originates from orbital rim periosteum superiorly and inserts into cheek skin 2.5 to 3 cm inferior to the lateral canthus. This fascial structure acts as a relatively impermeable barrier that allows tissue edema and hemoglobin pigment to accumulate above its cutaneous insertion. The malar septum, which acts as both a functional and a structural barrier, defines the lower boundary of several clinical entities: malar mounds, malar edema, malar festoons, and periorbital ecchymosis. The permeability characteristics of the malar septum suggest that, at least in some persons, malar mounds may be accentuated by chronic lower eyelid edema, and these characteristics may imply a time course in the progressive development from malar edema to malar mounds and, ultimately, to malar festoons. The anatomy of the malar septum is clinically relevant because it defines the four anatomic compartments of the malar mound that should be considered during surgery: the superior compartment of suborbicularis oculi fat, orbicularis oculi muscle, and superficial cheek fat and cheek skin superior to the cutaneous insertion of the malar septum.

  16. Relief memory consolidation requires protein synthesis within the nucleus accumbens.

    PubMed

    Bruning, Johann E A; Breitfeld, Tino; Kahl, Evelyn; Bergado-Acosta, Jorge R; Fendt, Markus

    2016-06-01

    Relief learning refers to the association of a stimulus with the relief from an aversive event. The thus-learned relief stimulus then can induce, e.g., an attenuation of the startle response or approach behavior, indicating positive valence. Previous studies revealed that the nucleus accumbens is essential for the acquisition and retrieval of relief memory. Here, we ask whether the nucleus accumbens is also the brain site for consolidation of relief memory into a long-term form. In rats, we blocked local protein synthesis within the nucleus accumbens by local infusions of anisomycin at different time points during a relief conditioning experiment. Accumbal anisomycin injections immediately after the relief conditioning session, but not 4 h later, prevented the consolidation into long-term relief memory. The retention of already consolidated relief memory was not affected by anisomycin injections. This identifies a time window and site for relief memory consolidation. These findings should complement our understanding of the full range of effects of adverse experiences, including cases of their distortion in humans such as post-traumatic stress disorder and/or phobias.

  17. Nasal septum giant pyogenic granuloma after a long lasting nasal intubation: case report.

    PubMed

    Neves-Pinto, Roberto M; Carvalho, Adolpho; Araujo, Elizabeth; Alberto, Carlos; Basilio-De-Oliveira; De Carvalho, Gustavo Adolpho

    2005-03-01

    The authors present a case of Pyogenic Granuloma (PG) arising from the nasal septum in the posterior nasal cavity of a patient male sex, caucasian, 32 years old, with a previous history of cranioencephalic trauma, several neurosurgeries for different subsequent neurological problems and the use of a nasogastric tube for feeding (nasal intubation) during 30 days. He underwent surgery in St. Vincent de Paul Hospital (Rio de Janeiro) on May 18, 1993, for the tumor removal and straightening of the nasal septum. Under endoscopic guidance the complete excision of the tumor mass was perfectly done thanks to the excellent exposure of the lesion, provided by the enlarged telescopic view, and the wide access afforded by the septum straighttening plus the cartilaginous septum mobilization through the maxilla-premaxilla approach of Cottle, allied to the lateralization and volume reduction of the right inferior nasal concha, simultaneously performed, thus making lateral rhinotomy or "degloving" unnecessary. The patient is until now (2004) completely free of the lesion operated on. This is the first report in the literature of such a lesion associated to nasal intubation as the triggering agent.

  18. Forebrain medial septum region facilitates nociception in a rat formalin model of inflammatory pain.

    PubMed

    Lee, Andy Thiam-Huat; Ariffin, Mohammed Zacky; Zhou, Mingyi; Ye, Jenn Zhou; Moochhala, Shabbir M; Khanna, Sanjay

    2011-11-01

    The medial septum is anatomically and functionally linked to the hippocampus, a region implicated in nociception. However, the role of medial septum in nociception remains unclear. To investigate the role of the region in nociception in rats, muscimol, a GABA agonist, or zolpidem, a positive allosteric modulator of GABA(A) receptors, was microinjected into medial septum to attenuate the activity of neurons in the region. Electrophysiological studies in anesthetized rats indicated that muscimol evoked a stronger and longer-lasting suppression of medial septal-mediated activation of hippocampal theta field activity than zolpidem. Similarly, microinjection of muscimol (1 or 2 μg/0.5 μl) into the medial septum of awake rats suppressed both licking and flinching behaviors in the formalin test of inflammatory pain, whereas only the latter behavior was affected by zolpidem (8 or 12 μg/0.5 μl) administered into the medial septum. Interestingly, both drugs selectively attenuated nociceptive behaviors in the second phase of the formalin test that are partly driven by central plasticity. Indeed, muscimol reduced the second phase behaviors by 30% to 60%, which was comparable to the reduction seen with systemic administration of a moderate dose of the analgesic morphine. The reduction was accompanied by a decrease in formalin-induced expression of spinal c-Fos protein that serves as an index of spinal nociceptive processing. The drug effects on nociceptive behaviors were without overt sedation and were distinct from the effects observed after septal lateral microinjections. Taken together, these findings suggest that the activation of medial septum is pro-nociceptive and facilitates aspects of central neural processing underlying nociception.

  19. Genetic sex and the volumes of the caudate-putamen, nucleus accumbens core and shell: original data and a review.

    PubMed

    Wong, Jordan E; Cao, Jinyan; Dorris, David M; Meitzen, John

    2016-11-01

    Sex differences are widespread across vertebrate nervous systems. Such differences are sometimes reflected in the neural substrate via neuroanatomical differences in brain region volume. One brain region that displays sex differences in its associated functions and pathologies is the striatum, including the caudate-putamen (dorsal striatum), nucleus accumbens core and shell (ventral striatum). The extent to which these differences can be attributed to alterations in volume is unclear. We thus tested whether the volumes of the caudate-putamen, nucleus accumbens core, and nucleus accumbens shell differed by region, sex, and hemisphere in adult Sprague-Dawley rats. As a positive control for detecting sex differences in brain region volume, we measured the sexually dimorphic nucleus of the medial preoptic area (SDN-POA). As expected, SDN-POA volume was larger in males than in females. No sex differences were detected in the volumes of the caudate-putamen, nucleus accumbens core or shell. Nucleus accumbens core volume was larger in the right than left hemisphere across males and females. These findings complement previous reports of lateralized nucleus accumbens volume in humans, and suggest that this may possibly be driven via hemispheric differences in nucleus accumbens core volume. In contrast, striatal sex differences seem to be mediated by factors other than striatal region volume. This conclusion is presented within the context of a detailed review of studies addressing sex differences and similarities in striatal neuroanatomy.

  20. Special function of nestin(+) neurons in the medial septum-diagonal band of Broca in adult rats.

    PubMed

    Zhao, Yuhong; Guo, Kaihua; Li, Dongpei; Yuan, Qunfang; Yao, Zhibin

    2014-02-01

    Nestin(+) neurons have been shown to express choline acetyltransferase (ChAT) in the medial septum-diagonal band of Broca in adult rats. This study explored the projection of nestin(+) neurons to the olfactory bulb and the time course of nestin(+) neurons in the medial septum-diagonal band of Broca in adult rats during injury recovery after olfactory nerve transection. This study observed that all nestin(+) neurons were double-labeled with ChAT in the medial septum-diagonal band of Broca. Approximately 53.6% of nestin(+) neurons were projected to the olfactory bulb and co-labeled with fast blue. A large number of nestin(+) neurons were not present in each region of the medial septum-diagonal band of Broca. Nestin(+) neurons in the medial septum and vertical limb of the diagonal band of Broca showed obvious compensatory function. The number of nestin(+) neurons decreased to a minimum later than nestin(-)/ChAT(+) neurons in the medial septum-diagonal band of Broca. The results suggest that nestin(+) cholinergic neurons may have a closer connection to olfactory bulb neurons. Nestin(+) cholinergic neurons may have a stronger tolerance to injury than Nestin(-)/ChAT(+) neurons. The difference between nestin(+) and nestin(-)/ChAT(+) neurons during the recovery process requires further investigations.

  1. Dynamic risk control by human nucleus accumbens.

    PubMed

    Nachev, Parashkev; Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio; Strange, Bryan

    2015-12-01

    Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established.

  2. Dynamic risk control by human nucleus accumbens

    PubMed Central

    Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio

    2015-01-01

    Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established. PMID:26428667

  3. Social interaction and cocaine conditioning in mice increase spontaneous spike frequency in the nucleus accumbens or septal nuclei as revealed by multielectrode array recordings.

    PubMed

    Kummer, Kai K; El Rawas, Rana; Kress, Michaela; Saria, Alois; Zernig, Gerald

    2015-01-01

    Both cocaine and social interaction place preference conditioning lead to increased neuronal expression of the immediate early gene EGR1 in the nucleus accumbens, a central region of the reward pathway, suggesting that both drug and natural rewards may be processed in similar brain regions. In order to gain novel insights into the intrinsic in vitro electrical activity of the nucleus accumbens and adjacent brain regions and to explore the effects of reward conditioning on network activity, we performed multielectrode array recordings of spontaneous firing in acute brain slices of mice conditioned to either cocaine or social interaction place preference. Cocaine conditioning increased the spike frequency of neurons in the septal nuclei, whereas social interaction conditioning increased the spike frequency in the nucleus accumbens compared to saline control animals. In addition, social interaction conditioning decreased the amount of active neuron clusters in the nucleus accumbens. Our findings suggest that place preference conditioning for both drug and natural rewards may induce persistent changes in neuronal network activity in the nucleus accumbens and the septum that are still preserved in acute slice preparations.

  4. Diastolic Function in Paced Children with Cardiac Defects: Septum vs Apex

    PubMed Central

    Ortega, Michel Cabrera; Morejon, Adel Eladio Gonzalez; Serrano, Giselle Ricardo; Ramos, Dunia Barbara Benitez

    2015-01-01

    In children with structural congenital heart disease (CHD), the effects of chronic ventricular pacing on diastolic function are not well known. On the other hand, the beneficial effect of septal pacing over apical pacing is still controversial. The aim of this study was to evaluate the influence of different right ventricular (RV) pacing site on left ventricular (LV) diastolic function in children with cardiac defects. Twenty-nine pediatric patients with complete atrioventricular block (CAVB) and CHD undergoing permanent pacing were prospectively studied. Pacing sites were RV apex (n = 16) and RV septum (n = 13). Echocardiographic assessment was performed before pacemaker implantation and after it, during a mean follow‑up of 4.9 years. Compared to RV septum, transmitral E-wave was significantly affected in RV apical pacing (95.38 ± 9.19 vs 83 ± 18.75, p = 0.038). Likewise, parameters at the lateral annular tissue Doppler imaging (TDI) were significantly affected in children paced at the RV apex. The E´ wave correlated inversely with TDI lateral myocardial performance index (Tei index) (R2= 0.9849, p ≤ 0.001). RV apex pacing (Odds ratio, 0.648; confidence interval, 0.067-0.652; p = 0.003) and TDI lateral Tei index (Odds ratio, 31.21; confidence interval, 54.6-177.4; p = 0.025) predicted significantly decreased LV diastolic function. Of the two sites studied, RV septum prevents pacing-induced reduction of LV diastolic function. PMID:26352178

  5. Monitoring Chitin Deposition During Septum Assembly in Budding Yeast.

    PubMed

    Arcones, Irene; Roncero, Cesar

    2016-01-01

    The synthesis of the septum is a critical step during cytokinesis in the fungal cell. Moreover, in Saccharomyces cerevisiae septum assembly depends mostly on the proper synthesis and deposition of chitin and, accordingly, on the timely regulation of chitin synthases. In this chapter, we will see how to follow chitin synthesis by two complementary approaches: monitoring chitin deposition in vivo at the septum by calcofluor staining and fluorescence microscopy, and measuring the chitin synthase activities responsible for this synthesis.

  6. Music and the nucleus accumbens.

    PubMed

    Mavridis, Ioannis N

    2015-03-01

    Music is a universal feature of human societies over time, mainly because it allows expression and regulation of strong emotions, thus influencing moods and evoking pleasure. The nucleus accumbens (NA), the most important pleasure center of the human brain (dominates the reward system), is the 'king of neurosciences' and dopamine (DA) can be rightfully considered as its 'crown' due to the fundamental role that this neurotransmitter plays in the brain's reward system. Purpose of this article was to review the existing literature regarding the relation between music and the NA. Studies have shown that reward value for music can be coded by activity levels in the NA, whose functional connectivity with auditory and frontal areas increases as a function of increasing musical reward. Listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the NA. The functional connectivity between brain regions mediating reward, autonomic and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. Musical stimuli can significantly increase extracellular DA levels in the NA. NA DA and serotonin were found significantly higher in animals exposed to music. Finally, passive listening to unfamiliar although liked music showed activations in the NA.

  7. Reproductive Outcome Following Hysteroscopic Treatment of Uterine Septum

    PubMed Central

    Esmaeilzadeh, Seddigheh; Delavar, Mouloud Agajani; Andarieh, Maryam Ghanbari

    2014-01-01

    Background: Septate uterus is the most common uterine anomaly and a cause for miscarriage and infertility. Existing data suggested a better reproductive outcome of uterine septum following hysteroscopic septum resection. Objective: Current study was administered to share our experience in hystroscopic septum resection for reproductive outcome following hysteroscopic treatment of uterine septum and specifically focusing on different treatment protocols after hysteroscopic septum resection. Methods& materials: This study was a cross-sectional study based on secondary data that was obtained from medical records of infertile women who had undergone transvaginal hysteroscopy and used different treatment protocols after hysteroscopic correction of uterine septum in Infertility and Reproductive Health Research Center between April 2005 and February 2014. Results: The total number of infertile women underwent hysteroscopy uterine septoplasty was 106. The hysteroscopy septoplasty resulted in an overall pregnancy rate of 67% and a live birth 57.5%. Pregnancy rate for patients who had not male infertility was 92.1%. The chi-square test did not reveal any statistically significant difference in side affect, pregnancy, live birth, abortion, preterm deliveries, and term deliveries rate between these patients either with consistent hormone therapy plus IUD insertion or with alternate hormone therapy plus IUD after hysteroscopic metroplasty. Conclusion: The findings of the present study indicated hysteroscopic septum resection to remove a uterine septum in women with infertility is safe and may be an efficacious procedure. Treatment following hysteroscopic septum resection, either the consistent or the alternate protocol is both beneficial to improve pregnancy rate. PMID:25685079

  8. Nucleus accumbens invulnerability to methamphetamine neurotoxicity.

    PubMed

    Kuhn, Donald M; Angoa-Pérez, Mariana; Thomas, David M

    2011-01-01

    Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure.

  9. Dopamine in the nucleus accumbens modulates the memory of social defeat in Syrian hamsters (Mesocricetus auratus).

    PubMed

    Gray, C L; Norvelle, A; Larkin, T; Huhman, K L

    2015-06-01

    Conditioned defeat (CD) is a behavioral response that occurs in Syrian hamsters after they experience social defeat. Subsequently, defeated hamsters no longer produce territorial aggression but instead exhibit heightened levels of avoidance and submission, even when confronted with a smaller, non-aggressive intruder. Dopamine in the nucleus accumbens is hypothesized to act as a signal of salience for both rewarding and aversive stimuli to promote memory formation and appropriate behavioral responses to significant events. The purpose of the present study was to test the hypothesis that dopamine in the nucleus accumbens modulates the acquisition and expression of behavioral responses to social defeat. In Experiment 1, bilateral infusion of the non-specific D1/D2 receptor antagonist cis(z)flupenthixol (3.75 μg/150 nl saline) into the nucleus accumbens 5 min prior to defeat training significantly reduced submissive and defensive behavior expressed 24h later in response to a non-aggressive intruder. In Experiment 2, infusion of 3.75 μg cis-(Z)-flupenthixol 5 min before conditioned defeat testing with a non-aggressive intruder significantly increased aggressive behavior in drug-infused subjects. In Experiment 3, we found that the effect of cis-(Z)-flupenthixol on aggression was specific to defeated animals as infusion of drug into the nucleus accumbens of non-defeated animals did not significantly alter their behavior in response to a non-aggressive intruder. These data demonstrate that dopamine in the nucleus accumbens modulates both acquisition and expression of social stress-induced behavioral changes and suggest that the nucleus accumbens plays an important role in the suppression of aggression that is observed after social defeat.

  10. Gustatory Reward and the Nucleus Accumbens

    PubMed Central

    Norgren, R.; Hajnal, A.; Mungarndee, S.S.

    2011-01-01

    The concept of reward is central to psychology, but remains a cipher for neuroscience. Considerable evidence implicates dopamine in the process of reward and much of the data derives from the nucleus accumbens. Gustatory stimuli are widely used for animal studies of reward, but the connections between the taste and reward systems are unknown. In a series of experiments, our laboratory has addressed this issue using functional neurochemistry and neuroanatomy. First, using microdialysis probes, we demonstrated that sapid sucrose releases dopamine in the nucleus accumbens. The effect is dependent on oral stimulation and concentration. We subsequently determined that this response was independent of the thalamocortical gustatory system, but substantially blunted by damage to the parabrachial limbic taste projection. Further experiments using c-fos histochemistry confirmed that the limbic pathway was the prime carrier for the gustatory afferent activity that drives accumbens dopamine release. PMID:16822531

  11. Repercussions of Surgically Assisted Maxillary Expansion on Nose Width and Position of Septum and Inferior Nasal Conchae

    PubMed Central

    Landim, Fabrício Souza; Freitas, George Borba; Malouf, Andreana Braga; Studart, Liana P. Carvalho; Rocha, Nelson Studart; de Souza Andrade, Emanuel Sávio; Caubi, Antônio Figueiredo; Filho, José Rodrigues Laureano; Oliveira e Silva, Emanuel Dias

    2011-01-01

    The aim of the present study was to assess the clinical and radiographic repercussions of surgically assisted maxillary expansion on the septum, nasal cavity and nasal conchae. The sample was made up of 15 patients with skeletal maturity (9 females and 6 males between 16 and 45 years of age) and maxillary transverse deficiency. Assessments were performed through anterior rhinoscopy and frontal cephalometric radiographs on three occasions: (T0) preoperative period, (T1) locking of the expander and (T2) six months following the locking procedure. An increase was observed in the basal portion of the pyriform aperture and distances between the lateral wall of the basal portion of the pyriform aperture and the septum. The radiographic exam revealed that the nasal septum did not undergo any statistically significant change in its position. Moreover, no significant changes in the position of the nasal septum or nasal conchae were detected throughout the three evaluation times. The results suggest that surgically assisted maxillary expansion is capable of widening the basal portion of the pyriform aperture, with little repercussion on the anterior position of the nasal septum and inferior nasal conchae. PMID:22135612

  12. DESIGN OF BEAM-EXTRACTION SEPTUM MAGNET FOR THE SNS.

    SciTech Connect

    TSOUPAS,N.; LEE,Y.Y.; RANK,J.; TUOZZOLO,J.

    2001-06-18

    The beam-extraction process from the SNS accumulator ring [1,2] requires a Lambertson septum magnet. In this paper we discuss the geometrical and magnetic field requirements of the magnet and present results obtained from two and three dimensional magnetic field calculations that shows the field quality in the regions of interest of the septum magnet.

  13. Nonlinear excited waves on the interventricular septum

    NASA Astrophysics Data System (ADS)

    Bekki, Naoaki; Harada, Yoshifumi; Kanai, Hiroshi

    2012-11-01

    Using a novel ultrasonic noninvasive imaging method, we observe some phase singularities in propagating excited waves on a human cardiac interventricular septum (IVS) for a healthy young male. We present a possible physical model explaining one-dimensional dynamics of phase singularities in nonlinearly excited waves on the IVS. We show that at least one of the observed phase singularities in the excited waves on the IVS can be explained by the Bekki-Nozaki hole solution of the complex Ginzburg-Landau equation without any adjustable parameters. We conclude that the complex Ginzburg-Landau equation is such a suitable model for one-dimensional dynamics of cardiac phase singularities in nonlinearly excited waves on the IVS.

  14. Medial septum regulates the hippocampal spatial representation

    PubMed Central

    Mamad, Omar; McNamara, Harold M.; Reilly, Richard B.; Tsanov, Marian

    2015-01-01

    The hippocampal circuitry undergoes attentional modulation by the cholinergic medial septum. However, it is unclear how septal activation regulates the spatial properties of hippocampal neurons. We investigated here what is the functional effect of selective-cholinergic and non-selective septal stimulation on septo-hippocampal system. We show for the first time selective activation of cholinergic cells and their differential network effect in medial septum of freely-behaving transgenic rats. Our data show that depolarization of cholinergic septal neurons evokes frequency-dependent response from the non-cholinergic septal neurons and hippocampal interneurons. Our findings provide vital evidence that cholinergic effect on septo-hippocampal axis is behavior-dependent. During the active behavioral state the activation of septal cholinergic projections is insufficient to evoke significant change in the spiking of the hippocampal neurons. The efficiency of septo-hippocampal processing during active exploration relates to the firing patterns of the non-cholinergic theta-bursting cells. Non-selective septal theta-burst stimulation resets the spiking of hippocampal theta cells, increases theta synchronization, entrains the spiking of hippocampal place cells, and tunes the spatial properties in a timing-dependent manner. The spatial properties are augmented only when the stimulation is applied in the periphery of the place field or 400–650 ms before the animals approached the center of the field. In summary, our data show that selective cholinergic activation triggers a robust network effect in the septo-hippocampal system during inactive behavioral state, whereas the non-cholinergic septal activation regulates hippocampal functional properties during explorative behavior. Together, our findings uncover fast septal modulation on hippocampal network and reveal how septal inputs up-regulate and down-regulate the encoding of spatial representation. PMID:26175674

  15. Medial septum regulates the hippocampal spatial representation.

    PubMed

    Mamad, Omar; McNamara, Harold M; Reilly, Richard B; Tsanov, Marian

    2015-01-01

    The hippocampal circuitry undergoes attentional modulation by the cholinergic medial septum. However, it is unclear how septal activation regulates the spatial properties of hippocampal neurons. We investigated here what is the functional effect of selective-cholinergic and non-selective septal stimulation on septo-hippocampal system. We show for the first time selective activation of cholinergic cells and their differential network effect in medial septum of freely-behaving transgenic rats. Our data show that depolarization of cholinergic septal neurons evokes frequency-dependent response from the non-cholinergic septal neurons and hippocampal interneurons. Our findings provide vital evidence that cholinergic effect on septo-hippocampal axis is behavior-dependent. During the active behavioral state the activation of septal cholinergic projections is insufficient to evoke significant change in the spiking of the hippocampal neurons. The efficiency of septo-hippocampal processing during active exploration relates to the firing patterns of the non-cholinergic theta-bursting cells. Non-selective septal theta-burst stimulation resets the spiking of hippocampal theta cells, increases theta synchronization, entrains the spiking of hippocampal place cells, and tunes the spatial properties in a timing-dependent manner. The spatial properties are augmented only when the stimulation is applied in the periphery of the place field or 400-650 ms before the animals approached the center of the field. In summary, our data show that selective cholinergic activation triggers a robust network effect in the septo-hippocampal system during inactive behavioral state, whereas the non-cholinergic septal activation regulates hippocampal functional properties during explorative behavior. Together, our findings uncover fast septal modulation on hippocampal network and reveal how septal inputs up-regulate and down-regulate the encoding of spatial representation.

  16. Effects of maternal separation and methamphetamine exposure on protein expression in the nucleus accumbens shell and core.

    PubMed

    Dimatelis, J J; Russell, V A; Stein, D J; Daniels, W M

    2012-09-01

    Early life adversity has been suggested to predispose an individual to later drug abuse. The core and shell sub-regions of the nucleus accumbens are differentially affected by both stressors and methamphetamine. This study aimed to characterize and quantify methamphetamine-induced protein expression in the shell and core of the nucleus accumbens in animals exposed to maternal separation during early development. Isobaric tagging (iTRAQ) which enables simultaneous identification and quantification of peptides with tandem mass spectrometry (MS/MS) was used. We found that maternal separation altered more proteins involved in structure and redox regulation in the shell than in the core of the nucleus accumbens, and that maternal separation and methamphetamine had differential effects on signaling proteins in the shell and core. Compared to maternal separation or methamphetamine alone, the maternal separation/methamphetamine combination altered more proteins involved in energy metabolism, redox regulatory processes and neurotrophic proteins. Methamphetamine treatment of rats subjected to maternal separation caused a reduction of cytoskeletal proteins in the shell and altered cytoskeletal, signaling, energy metabolism and redox proteins in the core. Comparison of maternal separation/methamphetamine to methamphetamine alone resulted in decreased cytoskeletal proteins in both the shell and core and increased neurotrophic proteins in the core. This study confirms that both early life stress and methamphetamine differentially affect the shell and core of the nucleus accumbens and demonstrates that the combination of early life adversity and later methamphetamine use results in more proteins being affected in the nucleus accumbens than either treatment alone.

  17. Retrograde cell changes in medial septum and diagonal band following fimbria-fornix transection: quantitative temporal analysis.

    PubMed

    Gage, F H; Wictorin, K; Fischer, W; Williams, L R; Varon, S; Bjorklund, A

    1986-09-01

    Complete unilateral fimbria-fornix transections, including the overlying cingulate cortex, were administered to female rats. At time points from 1 day to 6 weeks, the septal-diagonal band region was examined using acetylcholinesterase histochemistry, Cresyl Violet cell staining, and choline acetyltransferase biochemistry. As early as 1 day following the transection a decrease in acetylcholinesterase positive cell body staining was observed in the medial septum; however, no loss of Nissl-stained neurons was measured in Cresyl Violet stained sections until 1 week after the lesion. Maximal loss of acetylcholinesterase-positive cells, as visualized after irreversible acetylcholinesterase inhibition, was measured at 1 week, and no further change was observed at time points up to 6 weeks after operation. The loss of acetyltransferase-positive cells was greatest in the medial septal area (-65%) and the vertical limb of the diagonal band (-55%). Little cell loss was measured in the horizontal limb of the diagonal band. This is consistent with the known projections of these cell bodies. Remaining acetylcholinesterase-positive cell bodies in the medial septum had shrunk by about 20% (measured as the diameter along the major axis). A marked neuronal cell loss (about 50%) was demonstrable in the medial septum and vertical limb of the diagonal band in the Cresyl Violet-stained sections, too. A pile-up of acetylcholinesterase-stained material was observed in the dorsal-lateral quadrant of the septal area just proximal to the lesion at 1 day following transection. This pile-up occurred in the medial septum and diagonal band area up to 1 week following the transection, and had nearly disappeared by 2 weeks post-transection. Choline acetyltransferase biochemical activity, measured in samples of whole septum, decreased significantly at 1 day but subsequently returned to control levels. By 2 weeks following transection, an increase in acetylcholinesterase-positive stained fibers was

  18. Activation of the medial septum reverses age-related hippocampal encoding deficits: a place field analysis.

    PubMed

    Sava, Simona; Markus, Etan J

    2008-02-20

    When a rat runs through a familiar environment, the hippocampus retrieves a previously stored spatial representation of the environment. When the environment is modified a new representation is seen, presumably corresponding to the hippocampus encoding the new information. The medial septum is hypothesized to modulate whether the hippocampus engages in retrieval or encoding. The cholinergic agonist carbachol was infused into the medial septum, and hippocampal CA1 place cells were recorded in freely moving rats. In a familiar environment, septal activation impaired the retrieval of a previously stored hippocampal place cell representation regardless of age. When the environment was changed, medial septal activation impaired the encoding process in young, but facilitated the encoding of the new information in aged rats. Moreover, the improved encoding was evident during a subsequent exposure to the modified environment 24 h later. The findings support the role the septum plays in modulating hippocampal retrieval/encoding states. Furthermore, our data indicate a mechanism of age-related cognitive impairment.

  19. Fabrication techniques for septum magnets at the APS.

    SciTech Connect

    Jaski, M.; Thompson, K.; Kim, S.; Friedsam, H.; Toter, W.; Humbert, J.

    2002-09-16

    The design, construction, and installation of pulsed septum magnets for particle accelerators presents many challenges for the magnet engineer. Issues associated with magnet core structure design, component alignment, weldment design, and electrical insulation choices are among those requiring careful attention. The designs of the six septum magnets required for the APS facility have evolved since operation began in 1996. Improvements in the designs have provided better injection/extraction performance parameters and extended the machine reliability to meet the requirements of a world-class, third-generation synchrotron radiation facility. Details of the techniques used to address issues involved in producing septum magnets at the APS are described here to aid magnet engineers in the fabrication of future septum magnets.

  20. Septum development in Neurospora crassa: the septal actomyosin tangle.

    PubMed

    Delgado-Álvarez, Diego Luis; Bartnicki-García, Salomón; Seiler, Stephan; Mouriño-Pérez, Rosa Reyna

    2014-01-01

    Septum formation in Neurospora crassa was studied by fluorescent tagging of actin, myosin, tropomyosin, formin, fimbrin, BUD-4, and CHS-1. In chronological order, we recognized three septum development stages: 1) septal actomyosin tangle (SAT) assembly, 2) contractile actomyosin ring (CAR) formation, 3) CAR constriction together with plasma membrane ingrowth and cell wall construction. Septation began with the assembly of a conspicuous tangle of cortical actin cables (SAT) in the septation site >5 min before plasma membrane ingrowth. Tropomyosin and myosin were detected as components of the SAT from the outset. The SAT gradually condensed to form a proto-CAR that preceded CAR formation. During septum development, the contractile actomyosin ring remained associated with the advancing edge of the septum. Formin and BUD-4 were recruited during the transition from SAT to CAR and CHS-1 appeared two min before CAR constriction. Actin patches containing fimbrin were observed surrounding the ingrowing septum, an indication of endocytic activity. Although the trigger of SAT assembly remains unclear, the regularity of septation both in space and time gives us reason to believe that the initiation of the septation process is integrated with the mechanisms that control both the cell cycle and the overall growth of hyphae, despite the asynchronous nature of mitosis in N. crassa.

  1. Septum Development in Neurospora crassa: The Septal Actomyosin Tangle

    PubMed Central

    Delgado-Álvarez, Diego Luis; Bartnicki-García, Salomón; Seiler, Stephan; Mouriño-Pérez, Rosa Reyna

    2014-01-01

    Septum formation in Neurospora crassa was studied by fluorescent tagging of actin, myosin, tropomyosin, formin, fimbrin, BUD-4, and CHS-1. In chronological order, we recognized three septum development stages: 1) septal actomyosin tangle (SAT) assembly, 2) contractile actomyosin ring (CAR) formation, 3) CAR constriction together with plasma membrane ingrowth and cell wall construction. Septation began with the assembly of a conspicuous tangle of cortical actin cables (SAT) in the septation site >5 min before plasma membrane ingrowth. Tropomyosin and myosin were detected as components of the SAT from the outset. The SAT gradually condensed to form a proto-CAR that preceded CAR formation. During septum development, the contractile actomyosin ring remained associated with the advancing edge of the septum. Formin and BUD-4 were recruited during the transition from SAT to CAR and CHS-1 appeared two min before CAR constriction. Actin patches containing fimbrin were observed surrounding the ingrowing septum, an indication of endocytic activity. Although the trigger of SAT assembly remains unclear, the regularity of septation both in space and time gives us reason to believe that the initiation of the septation process is integrated with the mechanisms that control both the cell cycle and the overall growth of hyphae, despite the asynchronous nature of mitosis in N. crassa. PMID:24800890

  2. Analysis of cardiac interventricular septum motion in different respiratory states

    NASA Astrophysics Data System (ADS)

    Tautz, Lennart; Feng, Li; Otazo, Ricardo; Hennemuth, Anja; Axel, Leon

    2016-03-01

    The interaction between the left and right heart ventricles (LV and RV) depends on load and pressure conditions that are affected by cardiac contraction and respiration cycles. A novel MRI sequence, XD-GRASP, allows the acquisition of multi-dimensional, respiration-sorted and cardiac-synchronized free-breathing image data. In these data, effects of the cardiac and respiratory cycles on the LV/RV interaction can be observed independently. To enable the analysis of such data, we developed a semi-automatic exploration workflow. After tracking a cross-sectional line positioned over the heart, over all motion states, the septum and heart wall border locations are detected by analyzing the grey-value profile under the lines. These data are used to quantify septum motion, both in absolute units and as a fraction of the heart size, to compare values for different subjects. In addition to conventional visualization techniques, we used color maps for intuitive exploration of the variable values for this multi-dimensional data set. We acquired short-axis image data of nine healthy volunteers, to analyze the position and the motion of the interventricular septum in different breathing states and different cardiac cycle phases. The results indicate a consistent range of normal septum motion values, and also suggest that respiratory phase-dependent septum motion is greatest near end-diastolic phases. These new methods are a promising tool to assess LV/RV ventricle interaction and the effects of respiration on this interaction.

  3. Upflow bioreactor with septum and pressure release mechanism

    DOEpatents

    Hansen, Conly L.; Hansen, Carl S.; Pack, Kevin; Milligan, John; Benefiel, Bradley C.; Tolman, C. Wayne; Tolman, Kenneth W.

    2010-04-20

    An upflow bioreactor includes a vessel having an inlet and an outlet configured for upflow operation. A septum is positioned within the vessel and defines a lower chamber and an upper chamber. The septum includes an aperture that provides fluid communication between the upper chamber and lower chamber. The bioreactor also includes means for releasing pressure buildup in the lower chamber. In one configuration, the septum includes a releasable portion having an open position and a closed position. The releasable portion is configured to move to the open position in response to pressure buildup in the lower chamber. In the open position fluid communication between the lower chamber and the upper chamber is increased. Alternatively the lower chamber can include a pressure release line that is selectively actuated by pressure buildup. The pressure release mechanism can prevent the bioreactor from plugging and/or prevent catastrophic damage to the bioreactor caused by high pressures.

  4. The nasal septum and the development of the midface. A longitudinal study of a pair of monozygotic twins.

    PubMed

    Grymer, L F; Bosch, C

    1997-03-01

    The development of the nose and the growth of the midface has been followed in a pair of identical twins. One of them (twin A) had nasal septum destruction after septal haematoma and abscess at the age of 7 years, and was treated by immediate implantation of homologous septal cartilage from a tissue bank. From 7-17 years of age the growth and development of the nose and face were followed. Lateral cephalograms, photographs, acoustic rhinometry and rhinoscopy were performed. Twin B presented a normal nasal and facial growth and served as control. Twin A developed a saddle nose, an upward displacement of the anterior part of the maxilla, diminished vertical development of the nasal cavity, and a retrognathically positioned maxilla due to decreased anteroposterior maxillary growth. This case report seems to indicate that the cartilaginous nasal septum is an important factor influencing vertical and sagittal growth of the maxilla.

  5. Differential effects of blockade of dopamine D1-family receptors in nucleus accumbens core or shell on reinstatement of heroin seeking induced by contextual and discrete cues.

    PubMed

    Bossert, Jennifer M; Poles, Gabriela C; Wihbey, Kristina A; Koya, Eisuke; Shaham, Yavin

    2007-11-14

    In humans, exposure to environmental contexts previously associated with heroin intake can provoke drug relapse, but the neuronal mechanisms mediating this relapse are unknown. Using a drug relapse model, we found previously that reexposing rats to heroin-associated contexts, after extinction of drug-reinforced responding in different contexts, reinstates heroin seeking. This effect is attenuated by inhibition of glutamate transmission in the ventral tegmental area and medial accumbens shell, components of the mesolimbic dopamine system. Here, we explored the role of dopamine of the accumbens in context-induced reinstatement by using the D1-family receptor antagonist SCH 23390 [R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride]. Rats were trained to self-administer heroin for 12 d; drug infusions were paired with a discrete tone-light cue. Subsequently, the heroin-reinforced lever pressing was extinguished in the presence of the discrete cue in a context that differed from the drug self-administration context in terms of visual, auditory, tactile, and circadian cues. When tested in the original drug self-administration context, systemic and medial or lateral accumbens shell SCH 23390 injections attenuated context-induced reinstatement of heroin seeking, whereas accumbens core SCH 23390 injections were ineffective. In contrast, core but not lateral or medial shell SCH 23390 injections attenuated discrete-cue-induced reinstatement in a nondrug context after extinction of lever presses without this cue. Results indicate that activation of medial and lateral accumbens shell D1-family dopamine receptors mediate context-induced reinstatement of heroin seeking and provide the first demonstration for a role of lateral shell dopamine in conditioned drug effects. Results also demonstrate novel dissociable roles of accumbens core and shell in context- versus discrete-cue-induced reinstatement of heroin seeking.

  6. Operative balloon dilatation for pulmonary atresia with intact ventricular septum.

    PubMed Central

    Hamilton, J R; Fonseka, S F; Wilson, N; Dickinson, D F; Walker, D R

    1987-01-01

    In six infants with pulmonary atresia and intact ventricular septum operative balloon dilatation was used to achieve continuity between the right ventricle and the main pulmonary artery as the initial procedure. Two of the six subsequently needed an aortico pulmonary shunt. All six are alive and well. Images Fig PMID:3676024

  7. Tune Variations due to Septum Stray Field F. Pederson &

    SciTech Connect

    Rinolfi, L.

    1986-10-12

    Two types of antiproton instabilities due to trapped ions are harmful in the AA. One is a coherent instability occurring when an ion pocket resonates with a 3-Q mode (hiccups), the other is excitation of 11th and 15th order non-linear resonances due to the non-linear focusing fields from localized ion clouds trapped in uncleared potential well pockets. Accumulation with a good injection yield of antiprotons forces us to locate the tune of the dense core in the general area of the array of 15th order resonances. To avoid harmful blow-up of the dense core the tune is located between the resonances 11Q{sub H} + 4Q{sub V} = 34, 10Q{sub H} + 5Q{sub V} = 34, and 11Q{sub H} = 25, requiring a tune of Q{sub H} = 2.2722 to be maintained with a precision of a few 10{sup -4} (Fig. 4). Different angles of the injection and ejection trajectories require the septum current to be changed from 3860 A during accumulation to 3920 A, during ejection mode. Variations in the septum stray field due to these changes in current cause tune changes in the order of 10{sup -3}. In addition, at a given septum current, a pronounced hysteresis of the stray field causes tune variations of about the same order of magnitude, so also the past history of the septum excitation must be carefully controlled to obtain a reproducible tune.

  8. A 77-118 GHz RESONANCE-FREE SEPTUM POLARIZER

    SciTech Connect

    Chen, Yen-Lin; Chiueh, Tzihong; Teng, Hsiao-Feng

    2014-03-01

    Measurements of polarized radiation often reveal specific physical properties of emission sources, such as the strengths and orientations of magnetic fields offered by synchrotron radiation and Zeeman line emission, and the electron density distribution caused by free-free emission. Polarization-capable, millimeter/sub-millimeter telescopes are normally equipped with either septum polarizers or ortho-mode transducers (OMT) to detect polarized radiation. Though the septum polarizer is limited to a significantly narrower bandwidth than the OMT, it possesses advantageous features unparalleled by the OMT when it comes to determining astronomical polarization measurements. We design an extremely wide-band circular waveguide septum polarizer, covering 42% bandwidth, from 77 GHz to 118 GHz, without any undesired resonance, challenging the conventional bandwidth limit. Stokes parameters, constructed from the measured data between 77 GHz and 115 GHz, show that the leakage from I to Q and U is below ±2%, and the Q – U mutual leakage is below ±1%. Such a performance is comparable to other modern polarizers, but the bandwidth of this polarizer can be at least twice as wide. This extremely wide-band design removes the major weakness of the septum polarizer and opens up a new window for future astronomical polarization measurements.

  9. [Use of Solcoseryl DAP after nasal septum surgery].

    PubMed

    Krzeski, A; Makowska, W

    1991-01-01

    Solcoseryl is a biological agent, which accelerates the healing tissue procedure. This influence was studied during the nasal septum surgery. In 25 patients the postoperational nasal plug was inserted with the Solcoseryl and in 10 (control) with the paraffin. The cytologic verifications were performed before and after the surgery. In the solcoseryl group the mucosa regeneration procedure was accelerated and the inflammation reduced.

  10. Prefrontal Cortex to Accumbens Projections in Sleep Regulation of Reward

    PubMed Central

    Liu, Zheng; Wang, Yao; Cai, Li; Li, Yizhi; Chen, Bo; Dong, Yan

    2016-01-01

    Sleep profoundly affects the emotional and motivational state. In humans and animals, loss of sleep often results in enhanced motivation for reward, which has direct implications for health risks as well as potential benefits. Current study aims at understanding the mechanisms underlying sleep deprivation (SDe)-induced enhancement of reward seeking. We found that after acute SDe, mice had an increase in sucrose seeking and consumption but not food intake, suggesting a selective enhancement of motivation for reward. In the nucleus accumbens (NAc), a key brain region regulating emotional and motivational responses, we observed a decrease in the ratio of the overall excitatory over inhibitory synaptic inputs onto NAc principle neurons after SDe. The shift was partly mediated by reduced glutamatergic transmission of presynaptic origin. Further analysis revealed that there was selective reduction of the glutamate release probability at the medial prefrontal cortex (mPFC)-to-NAc synapses, but not those from the hippocampus, thalamus, or the basal lateral amygdala. To reverse this SDe-induced synaptic alteration, we expressed the stabilized step function opsin (SSFO) in the mPFC; optogenetic stimulation of SSFO at mPFC-to-NAc projection terminals persistently enhanced the action potential-dependent glutamate release. Intra-NAc optogenetic stimulation of SSFO selectively at mPFC-to-NAc terminals restored normal sucrose seeking in mice after SDe without affecting food intake. These results highlight the mPFC-to-NAc projection as a key circuit-based target for sleep to regulate reward-motivated behaviors. SIGNIFICANCE STATEMENT Sleep loss, a costly challenge of modern society, has profound physiological and psychological consequences, including altered reward processing of the brain. The current study aims at understanding the mechanisms underlying sleep deprivation-induced enhancement of reward seeking. We identify that the medial prefrontal cortex (m

  11. The efficacy of N-2-butyl cyanoacrylate in the fixation of nasal septum to the anterior nasal spine in rabbits: experimental study.

    PubMed

    Alkan, Seyhan; Dadaş, Burhan; Celik, Deniz; Coskun, Berna Uslu; Yilmaz, Fahrettin; Başak, Tülay

    2007-12-01

    In nasal septal surgery, fixing the caudal portion of the nasal septum to the anterior nasal spine is difficult with the present techniques. N-2-butyl cyanoacrylate is a form of cyanoacrylate which is bioabsorbable and biocompatible. The feasibility and efficacy of the compound, which is easy to apply to the tissues, for the above purpose is investigated in this experimental study. Fourteen New Zealand rabbits were included in the study. The nasal septum was exposed with the open approach (transcolumellar). In the study group (n=10), the septum was detached from the nasal floor and attached to a point 3 mm lateral to the nasal spine on the right side, using 2-butyl cyanoacrylate. In control group (n=4) it was deviated 3 mm to the right side and left for spontaneous healing without using any fixation method. Beginning on the third postoperative week, one animal was sacrificed under general anesthesia, every week in the study group and every third week in the control group, and the septum was analysed. Foreign body reaction, histotoxicity, and the structure of the regenerative tissue in the junction of bone and cartilage were analysed with histopathology. The success of stabilization in the study group, where the septum was attached with N-2-butyl cyanoacrylate, was significantly superior to the control group where no fixation method was used (P<0.05). Histopathologically, there were no differences between the two groups with respect to foreign body reaction, histotoxicity, and the tissue that formed between the bone and cartilage (P>0.05). This study demonstrated that N-2-Butyl cyanoacrylate was successful in the fixation of the caudal edge of the nasal septum to the anterior nasal spine. No serious infections, foreign body reaction, necrosis or histotoxicity were observed.

  12. Isolated gonadotropin deficiency secondary to glioma in septum pellucidum.

    PubMed

    Kitamura, M; Namiki, M; Okuyama, A; Arita, N; Mizutani, S; Sonoda, T

    1988-01-01

    A 21-year-old man, who had had normal sexuality beforehand, noticed a decrease in libido and potency, as well as loss of ejaculation. Endocrine evaluation showed normal serum levels of gonadotropins but a low testosterone level. The response to clomiphene citrate was poor while those to luteinizing hormone-releasing hormone and human chorionic gonadotropin were within normal limits. A tumor found in the septum pellucidum through brain-computerized tomography was resected. Histologically it proved to be a mixed tumor composed of astrocytoma and oligodendroglioma. Three months after the operation the patient had recovered normal sexual functions and endocrine evaluations, including the responsiveness to clomiphene citrate, had been restored. This case suggests the existence of some stimulatory fiber for the secretion of luteinizing hormone in the septum pellucidum.

  13. Echinococcal Cyst of the Interventricular Septum with Right Ventricular Protrusion

    PubMed Central

    Eren, E. Ergin; Aykut, Serap; Kayihan, Attila; Aydogan, Hakki; Dagsali, Sabri

    1989-01-01

    Although echinococcosis (echinococcal hydatidosis) is common in sheep-raising countries such as Turkey, cardiac involvement is rare; the presence of a hydatid cyst in the interventricular septum is rarer still. We report a case of hydatid cyst of the interventricular septum that was first revealed by 2-dimensional echocardiography and then confirmed by right ventricular angiography. The cyst was removed surgically under cardiopulmonary bypass. Within the context of the medical literature concerning this rare lesion, we discuss this case and 10 other cases of cardiac hydatidosis, previously unreported in the world literature, that we have treated from January 1967 through January 1987. (Texas Heart Institute Journal 1989;16:292-5) Images PMID:15227384

  14. Crisscross heart with dextrocardia and intact interventricular septum.

    PubMed

    Muneer, P Kader; Kalathingathodika, Sajeer; Chakanalil, Govindan Sajeev; Sony, Manuel M

    2014-01-01

    Crisscross heart is a rare congenital heart disease characterized by a twisted atrioventricular connection, as a result of rotation of the ventricular mass along its long axis. We report an asymptomatic 48-year-old woman referred to us for evaluation of a cardiac murmur. Further evaluation showed situs solitus, dextrocardia with normal atrioventricular and ventriculoarterial connection, and a crisscross relation of the atrioventricular valves. Unlike the usual case of crisscross heart, our patient had an intact ventricular septum.

  15. As the Nasal Spine Goes, So Goes the Septum

    PubMed Central

    Jagade, Mohan; Kale, Vitthal; Attakil, Anoop; Kar, Rajesh; Singhal, Arpita; Rao, Karthik; Gupta, Pallavi

    2016-01-01

    Introduction "As the septum goes, so goes the nose". A well-known phrase by Maurice Cottle forms the pillar of septoplasty. Since the inception of septal surgeries, numerous methods of septoplasty have been described. But, if not performed meticulously, may lead to deformity. For a successful surgery, understanding the anatomy and addressing the anterior nasal spine and maintaining the tip integrity is vital. Aim To study the outcomes of “ROUND ABOUT technique” to correct deviated nasal septum which focuses on the importance of anterior spine and hence maintain the tip integrity. Materials and Methods This was a prospective, single-centre outcome study of 35 patients with symptomatic nasal obstruction. Here, we describe a method of elevating the mucoperichondrial and mucoperiosteal flaps bilaterally, without transecting the quadrilateral cartilage of the septum. The Sino Nasal Outcome Test-22 (SNOT-22) Questionnaire was administered pre-operatively and after 3 months following surgery. The post-operative follow-up period ranged from 3 to 6 months (mean= 4.5 months) to evaluate the functional and aesthetic outcomes of the performed procedure. Results A total of 35 patients underwent surgery by this technique who presented with deviated nasal septum and variable degrees of nasal obstruction. To assess the statistical outcome, Paired t-test was applied. Mean SNOT-22 scores decreased significantly from 40.02 pre-operatively to 18.65 three months after surgery. The results sustained after 6 months (p-value <0.0001), 85% of these patients had improved breathing post-operatively and none of the patients complained any aesthetic criticisms. The patients were content and the requirement of medications post-operatively were minimal. Conclusion The ROUND ABOUT technique is a very effective and safe method in correcting the septal deviations especially the ones with caudal or dorsal deflections. It also helps in maintaining the tip integrity and addressing the anterior

  16. Control of nucleus accumbens activity with neurofeedback.

    PubMed

    Greer, Stephanie M; Trujillo, Andrew J; Glover, Gary H; Knutson, Brian

    2014-08-01

    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be presented as "neurofeedback." In an fMRI-based neurofeedback experiment designed to elicit NAcc activity, we found that subjects could increase their own NAcc activity, and that display of neurofeedback significantly enhanced their ability to do so. Subjects were not as capable of decreasing their NAcc activity, however, and enhanced control did not persist after subsequent removal of neurofeedback. Further analyses suggested that individuals who recruited positive aroused affect were better able to increase NAcc activity in response to neurofeedback, and that NAcc neurofeedback also elicited functionally correlated activity in the medial prefrontal cortex. Together, these findings suggest that humans can modulate their own NAcc activity and that fMRI-based neurofeedback may augment their efforts. The observed association between positive arousal and effective NAcc control further supports an anticipatory affect account of NAcc function.

  17. Accumbens shell-hypothalamus interactions mediate extinction of alcohol seeking.

    PubMed

    Millan, E Zayra; Furlong, Teri M; McNally, Gavan P

    2010-03-31

    The nucleus accumbens shell (AcbSh) is required to inhibit drug seeking after extinction training. Conversely, the lateral hypothalamus (LH), which receives projections from AcbSh, mediates reinstatement of previously extinguished drug seeking. We hypothesized that reversible inactivation of AcbSh using GABA agonists (baclofen/muscimol) would reinstate extinguished alcohol seeking and increase neuronal activation in LH. Rats underwent self-administration training for 4% (v/v) alcoholic beer followed by extinction. AcbSh inactivation reinstated extinguished alcohol seeking when infusions were made after, but not before, extinction training. We then used immunohistochemical detection of c-Fos as a marker of neuronal activity, combined with immunohistochemical detection of the orexin and cocaine- and amphetamine-related transcript (CART) peptides, to study the profile and phenotype of neural activation during reinstatement produced by AcbSh inactivation. AcbSh inactivation increased c-Fos expression in hypothalamus, as well as in paraventricular thalamus and amygdala. Within hypothalamus, there was an increase in the number of orexin and CART cells expressing c-Fos. Finally, we hypothesized that concurrent inactivation of LH would prevent reinstatement produced by inactivation of AcbSh alone. Our results confirmed this. Together, these findings suggest that AcbSh mediates extinction of reward seeking by inhibiting hypothalamic neuropeptide neurons. Reversible inactivation of the AcbSh removes this influence, thereby releasing hypothalamus from AcbSh inhibition and enabling reinstatement of reward seeking. These ventral striatal-hypothalamic circuits for extinction overlap with those that mediate satiety, and we suggest that extinction training inhibits drug seeking because it co-opts neural circuits originally selected to produce satiety.

  18. Distribution of doublecortin expressing cells near the lateral ventricles in the adult mouse brain.

    PubMed

    Yang, Helen K C; Sundholm-Peters, Nikki L; Goings, Gwendolyn E; Walker, Avery S; Hyland, Kenneth; Szele, Francis G

    2004-05-01

    Doublecortin (Dcx) is a microtubule-associated protein expressed by migrating neuroblasts in the embryo and in the adult subventricular zone (SVZ). The adult SVZ contains neuroblasts that migrate in the rostral migratory stream (RMS) to the olfactory bulbs. We have examined the distribution and phenotype of Dcx-positive cells in the adult mouse SVZ and surrounding regions. Chains of Dcx-positive cells in the SVZ were distributed in a tight dorsal population contiguous with the RMS, with a separate ventral population comprised of discontinuous chains. Unexpectedly, Dcx-positive cells were also found outside of the SVZ: dorsally in the corpus callosum, and ventrally in the nucleus accumbens, ventromedial striatum, ventrolateral septum, and bed nucleus of the stria terminalis. Dcx-positive cells outside the SVZ had the morphology of migrating cells, occurred as individual cells or in chain-like clusters, and were more numerous anteriorly. Of the Dcx-positive cells found outside of the SVZ, 47% expressed the immature neuronal protein class III beta-tubulin, 8% expressed NeuN, a marker of mature neurons. Dcx-positive cells did not express molecules found in astrocytes, oligodendrocytes, or microglia. Structural and immunoelectron microscopy revealed that cells with the ultrastructural features of neuroblasts in the SVZ were Dcx+, and that clusters of neuroblasts emanated ventrally from the SVZ into the parenchyma. Our results suggest that the distribution of cells comprising the walls of the lateral ventricle are more heterogeneous than was thought previously, that SVZ cells may migrate dorsally and ventrally away from the SVZ, and that some emigrated cells express a neuronal phenotype.

  19. Role of dopamine receptors subtypes, D1-like and D2-like, within the nucleus accumbens subregions, core and shell, on memory consolidation in the one-trial inhibitory avoidance task.

    PubMed

    Managò, Francesca; Castellano, Claudio; Oliverio, Alberto; Mele, Andrea; De Leonibus, Elvira

    2009-01-01

    Recent evidence demonstrated that dopamine within the nucleus accumbens mediates consolidation of both associative and nonassociative memories. However, the specific contribution of the nucleus accumbens subregions, core and shell, and of D1 and D2 receptors subtypes has not been yet clarified. The aim of this study was, therefore, to directly compare the effect of D1 and D2 dopamine receptor blockade within the core and the shell subregions of the nucleus accumbens on memory consolidation. Using the one-trial inhibitory avoidance task in CD1 mice, we demonstrated that SCH 23390 (vehicle, 12.5, 25, 50 ng/side) administration within the core, but not the shell, impaired step-through latency 24 h after the administration if injected immediately, but not 120 min post-training. Interestingly, sulpiride (vehicle, 25, 50 ng/side) injection in both the core and the shell of the accumbens affected step-through latency 24 h later; also, in this case the impairment was time dependent. These data provide the most complete and direct demonstration to date that early consolidation of aversive memory requires D2 receptor activation in both nucleus accumbens subregions, and D1 activation selectively in the nucleus accumbens core.

  20. Transcatheter pulmonary valve perforation using chronic total occlusion wire in pulmonary atresia with intact ventricular septum

    PubMed Central

    Bakhru, Shweta; Marathe, Shilpa; Saxena, Manish; Verma, Sudeep; Saileela, Rajan; Dash, Tapan K; Koneti, Nageswara Rao

    2017-01-01

    Background: Perforation of pulmonary valve using radiofrequency ablation in pulmonary atresia with intact ventricular septum (PA IVS) is a treatment of choice. However, significant cost of the equipment limits its utility, especially in the developing economies. Objective: To assess the feasibility, safety, and efficacy of perforation of pulmonary valve using chronic total occlusion (CTO) wires in patients with PA IVS as an alternative to radiofrequency ablation. Methods: This is a single-center, nonrandomized, retrospective study conducted during June 2008 to September 2015. Twenty-four patients with PA IVS were selected for the procedure during the study period. The median age and weight of the study population were 8. days and 2.65 kg, respectively. Four patients were excluded after right ventricular angiogram as they showed right ventricular-dependent coronary circulation. The pulmonary valve perforation was attempted using various types of CTO wires based on the tip load with variable penetrating characteristics. Results: The procedure was successful in 16 of twenty patients using CTO wires: Shinobi in nine, Miracle in four, CROSS-IT in two, and Conquest Pro in one. Two patients had perforation of right ventricular outflow tract (RVOT). Pericardiocentesis was required in one patient to relieve cardiac tamponade. Later, the same patient underwent successful hybrid pulmonary valvotomy. The other patient underwent ductus arteriosus (DA) stenting. Balloon atrial septostomy was needed in three cases with systemic venous congestion. Desaturation was persistent in five cases necessitating DA or RVOT stenting to augment pulmonary blood flow. There were two early and two late deaths. The mean follow-up was 22.66 ± 16 months. Three patients underwent one and half ventricle repair and one Blalock–Taussig shunt during follow-up. Conclusion: Perforation of the pulmonary valve can be done successfully using CTO wires in selected cases of pulmonary atresia with intact

  1. Cavum Septum Pellucidum in Retired American Pro-Football Players

    PubMed Central

    Hess, Christopher P.; Brus-Ramer, Marcel; Possin, Katherine L.; Cohn-Sheehy, Brendan I.; Kramer, Joel H.; Berger, Mitchel S.; Yaffe, Kristine; Miller, Bruce; Rabinovici, Gil D.

    2016-01-01

    Abstract Previous studies report that cavum septum pellucidum (CSP) is frequent among athletes with a history of repeated traumatic brain injury (TBI), such as boxers. Few studies of CSP in athletes, however, have assessed detailed features of the septum pellucidum in a case-control fashion. This is important because prevalence of CSP in the general population varies widely (2% to 85%) between studies. Further, rates of CSP among American pro-football players have not been described previously. We sought to characterize MRI features of the septum pellucidum in a series of retired pro-football players with a history of repeated concussive/subconcussive head traumas compared with controls. We retrospectively assessed retired American pro-football players presenting to our memory clinic with cognitive/behavioral symptoms in whom structural MRI was available with slice thickness ≤2 mm (n=17). Each player was matched to a memory clinic control patient with no history of TBI. Scans were interpreted by raters blinded to clinical information and TBI/football history, who measured CSP grade (0–absent, 1–equivocal, 2–mild, 3–moderate, 4–severe) and length according to a standard protocol. Sixteen of 17 (94%) players had a CSP graded ≥2 compared with 3 of 17 (18%) controls. CSP was significantly higher grade (p<0.001) and longer in players than controls (mean length±standard deviation: 10.6 mm±5.4 vs. 1.1 mm±1.3, p<0.001). Among patients presenting to a memory clinic, long high-grade CSP was more frequent in retired pro-football players compared with patients without a history of TBI. PMID:25970145

  2. Cavum Septum Pellucidum in Retired American Pro-Football Players.

    PubMed

    Gardner, Raquel C; Hess, Christopher P; Brus-Ramer, Marcel; Possin, Katherine L; Cohn-Sheehy, Brendan I; Kramer, Joel H; Berger, Mitchel S; Yaffe, Kristine; Miller, Bruce; Rabinovici, Gil D

    2016-01-01

    Previous studies report that cavum septum pellucidum (CSP) is frequent among athletes with a history of repeated traumatic brain injury (TBI), such as boxers. Few studies of CSP in athletes, however, have assessed detailed features of the septum pellucidum in a case-control fashion. This is important because prevalence of CSP in the general population varies widely (2% to 85%) between studies. Further, rates of CSP among American pro-football players have not been described previously. We sought to characterize MRI features of the septum pellucidum in a series of retired pro-football players with a history of repeated concussive/subconcussive head traumas compared with controls. We retrospectively assessed retired American pro-football players presenting to our memory clinic with cognitive/behavioral symptoms in whom structural MRI was available with slice thickness ≤2 mm (n=17). Each player was matched to a memory clinic control patient with no history of TBI. Scans were interpreted by raters blinded to clinical information and TBI/football history, who measured CSP grade (0-absent, 1-equivocal, 2-mild, 3-moderate, 4-severe) and length according to a standard protocol. Sixteen of 17 (94%) players had a CSP graded ≥2 compared with 3 of 17 (18%) controls. CSP was significantly higher grade (p<0.001) and longer in players than controls (mean length±standard deviation: 10.6 mm±5.4 vs. 1.1 mm±1.3, p<0.001). Among patients presenting to a memory clinic, long high-grade CSP was more frequent in retired pro-football players compared with patients without a history of TBI.

  3. Photoelectrolysis of water in semiconductor septum electrochemical photovoltaic cells

    SciTech Connect

    Tien, H.T.; Chen, J.W. )

    1992-01-01

    Producing hydrogen from water has been the dream of generations of energy-conscious scientists and engineers. That dream may at last be realized in the semiconductor septum electrochemical photovoltaic (SC-SEP) cell, which is modeled after nature's photosynthetic thylakoid membrane. The novel SC-SEP cell arose from studies of pigmented bilayer lipid membranes. The cell is easy to construct and simple to operate. It appears to offer a practical approach to the photochemical conversion and storage of solar energy. This report describes how hydrogen is produced from artificial sea water when an SC-SEP cell is irradiated by the visible light of the solar spectrum.

  4. Papillary muscle approximation to septum for functional tricuspid regurgitation.

    PubMed

    Lohchab, Shamsher Singh; Chahal, Ashok Kumar; Agrawal, Nilesh

    2015-07-01

    Current techniques for repair of functional tricuspid regurgitation are associated with a significant degree of residual or recurrent regurgitation. We describe a technique of anterior papillary muscle attachment to the septum to correct residual tricuspid regurgitation persisting after annuloplasty. In our early experience in 15 patients (6 men and 9 women) with a mean age of 32 ± 11 years, who underwent annuloplasty for severe functional tricuspid regurgitation secondary to rheumatic mitral valve disease, this technique effectively eliminated residual tricuspid regurgitation.

  5. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study.

    PubMed

    Verimli, Ural; Sehirli, Umit S

    2016-09-01

    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p < 0.0001 for LS, p < 0.01 for MS). This study is the first to reveal the dominance of glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice.

  6. Nasal septum injury in preterm infants using nasal prongs 1

    PubMed Central

    Bonfim, Suely de Fátima Santos Freire; de Vasconcelos, Maria Gorete Lucena; de Sousa, Nayara Francisca Cabral; da Silva, Daiana Vieira Câmara; Leal, Luciana Pedrosa

    2014-01-01

    OBJECTIVE: to assess the incidence and risk factors associated with nasal septum injury in premature infants using reused and new nasal prongs. METHOD: the study was a cohort from an open therapeutic intervention. The sample included 70 infants with a gestational age inferior to 37 weeks, who used nasal prongs and were hospitalized at the neonatal service of a hospital in Recife-PE, in the Northeast of Brazil. The data were collected in patient files through the assessment of the application of the device and of the nasal septum. Multinomial Logistic Regression and Survival analyses were applied. RESULTS: the incidence of nasal injury corresponded to 62.9%. In the multiple analysis, only the length of the infant's treatment was a determinant factor for the occurrence and severity of the injuries. CONCLUSION: the type of nasal prong does not serve as a risk factor for the nasal injury. The high incidence of nasal injury indicates the need to adapt the nursing care with emphasis on prevention. PMID:25493679

  7. Characterizing Septum Inhibition in Mycobacterium tuberculosis for Novel Drug Discovery

    SciTech Connect

    Respicio,L.; Nair, P.; Huang, Q.; Anil, B.; Tracz, S.; Truglio, J.; Kisker, C.; Raleigh, D.; Ojima, I.; et al

    2008-01-01

    A temperature sensitive mutation in the cell division protein FtsZ was used in combination with transcriptional analysis to identify biomarkers for inhibition of septum formation. Crystallography and modeling revealed that the glycine for aspartate substitution at amino acid 210 was located in helix 8 of the protein, adjacent to the T7 synergy loop. To verify the molecular behavior of FtsZD210G, the in vitro activity and structural stability were evaluated as a function of temperature. These analyses confirmed that the FtsZD210G mutant had reduced GTPase and polymerization activity compared to wild-type FtsZ, and CD spectroscopy demonstrated that both FtsZD210G and wild-type FtsZ had similar structure and stability. Significantly, the FtsZD210G merodiploid strain of M. tuberculosis had compromised growth at 37 C, substantiating the suitability of FtsZD210G as a molecular tool for global analysis in response to improper FtsZ polymerization and septum inhibition. Advanced model-based bioinformatics and transcriptional mapping were used to identify high-content multiple features that provide biomarkers for the development of a rational drug screening platform for discovering novel chemotherapeutics that target cell division.

  8. Excessive disgust caused by brain lesions or temporary inactivations: Mapping hotspots of nucleus accumbens and ventral pallidum

    PubMed Central

    Ho, Chao-Yi; Berridge, Kent C.

    2014-01-01

    Disgust is a prototypical type of negative affect. In animal models of excessive disgust, only a few brain sites are known in which localized dysfunction (lesions or neural inactivations) can induce intense ‘disgust reactions’ (e.g., gapes) to a normally pleasant sensation such as sweetness. Here we aimed to map forebrain candidates more precisely to identify where either local neuronal damage (excitotoxin lesions) or local pharmacological inactivation (muscimol-baclofen microinjections) caused rats to emit excessive sensory disgust reactions to sucrose. Our study compared subregions of nucleus accumbens shell, ventral pallidum, lateral hypothalamus and adjacent extended amygdala. Results indicated the posterior half of ventral pallidum to be the only forebrain site where intense sensory disgust gapes to sucrose were induced by both lesions and temporary inactivations (this site was previously identified as a hedonic hotspot for enhancements of sweetness ‘liking’). By comparison, for the nucleus accumbens, temporary GABA inactivations in the caudal half of the medial shell also generated sensory disgust but lesions never did at any site. Further, even inactivations failed to induce disgust in the rostral half of accumbens shell (which also contains a hedonic hotspot). In other structures, neither lesions nor inactivations induced disgust as long as the posterior ventral pallidum remained spared. We conclude that the posterior ventral pallidum is an especially crucial hotspot for producing excessive sensory disgust by local pharmacological/lesion dysfunction. By comparison, the nucleus accumbens appears to segregate sites for pharmacological disgust induction and hedonic enhancement into separate posterior versus rostral halves of medial shell. PMID:25229197

  9. Gene Expression Changes in the Septum: Possible Implications for MicroRNAs in Sculpting the Maternal Brain

    PubMed Central

    Zhao, Changjiu; Saul, Michael C.; Driessen, Terri; Gammie, Stephen C.

    2012-01-01

    The transition from the non-maternal to the maternal state is characterized by a variety of CNS alterations that support the care of offspring. The septum (including lateral and medial portions) is a brain region previously linked to various emotional and motivational processes, including maternal care. In this study, we used microarrays (PLIER algorithm) to examine gene expression changes in the septum of postpartum mice and employed gene set enrichment analysis (GSEA) to identify possible regulators of altered gene expression. Genes of interest identified as differentially regulated with microarray analysis were validated with quantitative real-time PCR. We found that fatty acid binding protein 7 (Fabp7) and galanin (Gal) were downregulated, whereas insulin-like growth factor binding protein 3 (Igfbp3) was upregulated in postpartum mice compared to virgin females. These genes were previously found to be differentially regulated in other brain regions during lactation. We also identified altered expression of novel genes not previously linked to maternal behavior, but that could play a role in postpartum processes, including glutamate-ammonia ligase (Glul) and somatostatin receptor 1 (Sstr1) (both upregulated in postpartum). Genes implicated in metabolism, cell differentiation, or proliferation also exhibited altered expression. Unexpectedly, enrichment analysis revealed a high number of microRNAs, transcription factors, or conserved binding sites (177 with corrected P-value <0.05) that were significantly linked to maternal upregulated genes, while none were linked to downregulated genes. MicroRNAs have been linked to placenta and mammary gland development, but this is the first indication they may also play a key role in sculpting the maternal brain. Together, this study provides new insights into genes (along with possible mechanisms for their regulation) that are involved in septum-mediated adaptations during the postpartum period. PMID:22701680

  10. Genetic risk for obesity predicts nucleus accumbens size and responsivity to real-world food cues.

    PubMed

    Rapuano, Kristina M; Zieselman, Amanda L; Kelley, William M; Sargent, James D; Heatherton, Todd F; Gilbert-Diamond, Diane

    2017-01-03

    Obesity is a major public health concern that involves an interaction between genetic susceptibility and exposure to environmental cues (e.g., food marketing); however, the mechanisms that link these factors and contribute to unhealthy eating are unclear. Using a well-known obesity risk polymorphism (FTO rs9939609) in a sample of 78 children (ages 9-12 y), we observed that children at risk for obesity exhibited stronger responses to food commercials in the nucleus accumbens (NAcc) than children not at risk. Similarly, children at a higher genetic risk for obesity demonstrated larger NAcc volumes. Although a recessive model of this polymorphism best predicted body mass and adiposity, a dominant model was most predictive of NAcc size and responsivity to food cues. These findings suggest that children genetically at risk for obesity are predisposed to represent reward signals more strongly, which, in turn, may contribute to unhealthy eating behaviors later in life.

  11. Genetic risk for obesity predicts nucleus accumbens size and responsivity to real-world food cues

    PubMed Central

    Rapuano, Kristina M.; Zieselman, Amanda L.; Kelley, William M.; Sargent, James D.; Heatherton, Todd F.

    2017-01-01

    Obesity is a major public health concern that involves an interaction between genetic susceptibility and exposure to environmental cues (e.g., food marketing); however, the mechanisms that link these factors and contribute to unhealthy eating are unclear. Using a well-known obesity risk polymorphism (FTO rs9939609) in a sample of 78 children (ages 9–12 y), we observed that children at risk for obesity exhibited stronger responses to food commercials in the nucleus accumbens (NAcc) than children not at risk. Similarly, children at a higher genetic risk for obesity demonstrated larger NAcc volumes. Although a recessive model of this polymorphism best predicted body mass and adiposity, a dominant model was most predictive of NAcc size and responsivity to food cues. These findings suggest that children genetically at risk for obesity are predisposed to represent reward signals more strongly, which, in turn, may contribute to unhealthy eating behaviors later in life. PMID:27994159

  12. Bilateral deep brain stimulation of the nucleus accumbens for comorbid obsessive compulsive disorder and Tourette's syndrome.

    PubMed

    Sachdev, Perminder Singh; Cannon, Elisabeth; Coyne, Terry J; Silburn, Peter

    2012-09-12

    We present the case of a 32-year-old Caucasian woman with severe treatment-refractory obsessive compulsive disorder (OCD) and Tourette's syndrome. Both conditions were present prior to age 5 and impacted significantly on the patient's functioning. Multiple trials of evidence-based pharmacological and behavioural therapies had not achieved remission of symptoms. Bilateral deep brain stimulation of the nucleus accumbens was undertaken to treat both illnesses but with a particular focus on OCD, as the patient identified this as the more debilitating of the two disorders. Following surgery there was an immediate improvement in OCD and tic severity. At follow-up 8 months later, there was a 90% improvement in OCD symptoms and a 57% improvement in tic severity. No intraoperative or postoperative complications or adverse events occurred and there were no undesired effects of stimulation.

  13. Management of Recurrent Stricture Formation after Transverse Vaginal Septum Excision

    PubMed Central

    Gupta, Ridhima; Bozzay, Joseph D.; Williams, David L.; DePond, Robert T.; Gantt, Pickens A.

    2015-01-01

    Background. A transverse vaginal septum (TVS) is a rare obstructing anomaly, caused due to improper fusion of Müllerian ducts and urogenital sinus during embryogenesis. Case. A 15-year-old girl presented with primary amenorrhea. She had multiple congenital anomalies. Initial examination and imaging investigation revealed the presence of a unicornuate uterus and a TVS. The TVS was excised; however the patient was unable to perform vaginal dilation postoperatively leading to recurrent stricture formation. She underwent multiple surgeries for excision of the stricture. The patient was eventually evaluated every day in the clinic until she was able to demonstrate successful vaginal dilatation in the presence of a clinician. Summary and Conclusion. Properly guided regular and intensive vaginal dilation after TVS excision may decrease the need of reoperations due to recurrent stricture formation. PMID:26078895

  14. Early depictions of the human anterior nasal septum.

    PubMed

    Pirsig, Wolfgang; Sokiranski, Roman

    2006-06-01

    In the literature, remarks on the depiction of the anterior nasal septum in prehistoric times cannot be found. Studying works of art from some archaeological sites of Asia, Asia Minor, Near East, Egypt, and Southeastern Europe the anatomical depiction of the columella and the nostrils in human figures are shown. These figures or heads, partly appearing as masks, were made of ivory, stone, marble, terracotta, steatite, reeds and clay, or of burned limestone. Faces and figures sculpted in the time between the Upper Palaeolithic (30,000 - 25,000 BC) and the Early Bronze Age (3,300 - 2,400 BC) are presented as examples of our ancestors' outstanding skill to create works of art with an astonishing ability to observe anatomical details. The tendency to create a human nose in a natural manner can already be recognized in the figurines of the Upper Palaeolithic.

  15. Hemangioma of the Interatrial Septum: CT and MRI Features

    SciTech Connect

    Hrabak-Paar, Maja; Huebner, Marisa; Stern-Padovan, Ranka; Lusic, Mario

    2011-02-15

    Hemangioma of the heart is a rare primary benign tumor mainly appearing as enhancing, homogenous, well-circumscribed mass. We report a case of a 61-year-old asymptomatic woman, whose echocardiography showed a cardiac mass, which was described as the atypical myxoma of the right atrium. For further imaging, contrast-enhanced computed tomography and cardiac magnetic resonance imaging were undertaken, which showed a tumor located in the interatrial septum with imaging characteristics of hemangioma. In the literature, cardiac hemangioma is usually described as an intensely enhancing mass. In our opinion, early peripheral puddling of contrast material with filling in on delayed images is a typical pattern of its enhancement. This characteristic, in addition to high signal intensity on T2-weighted images, allows differentiation of a hemangioma from other benign and malignant tumors.

  16. Individual Differences in Ethanol Locomotor Sensitization Are Associated with Dopamine D1 Receptor Intra-Cellular Signaling of DARPP-32 in the Nucleus Accumbens

    PubMed Central

    Abrahao, Karina Possa; Oliveira Goeldner, Francine; Souza-Formigoni, Maria Lucia Oliveira

    2014-01-01

    In mice there are clear individual differences in the development of behavioral sensitization to ethanol, a progressive potentiation of its psychomotor stimulant effect. Variability in the behavioral responses to ethanol has been associated with alcohol preference. Here we investigated if the functional hyperresponsiveness of D1 receptors observed in ethanol sensitized mice leads to an increased activation of DARPP-32, a central regulatory protein in medium spiny neurons, in the nucleus accumbens - a brain region known to play a role in drug reinforcement. Swiss Webster mice received ethanol (2.2 g/kg/day) or saline i.p. administrations for 21 days and were weekly evaluated regarding their locomotor activity. From those treated with ethanol, the 33% with the highest levels of locomotor activity were classified as “sensitized” and the 33% with the lowest levels as "non-sensitized”. The latter presented similar locomotor levels to those of saline-treated mice. Different subgroups of mice received intra-accumbens administrations of saline and, 48 h later, SKF-38393, D1 receptor agonist 0.1 or 1 µg/side. Indeed, sensitized mice presented functional hyperresponsiveness of D1 receptors in the accumbens. Two weeks following the ethanol treatment, other subgroups received systemic saline or SKF 10 mg/kg, 20 min before the euthanasia. The nucleus accumbens were dissected for the Western Blot analyses of total DARPP-32 and phospho-Thr34-DARPP-32 expression. D1 receptor activation induced higher phospho-Thr34-DARPP-32 expression in sensitized mice than in non-sensitized or saline. The functionally hyperresponsiveness of D1 receptors in the nucleus accumbens is associated with an increased phospho-Thr34-DARPP-32 expression after D1 receptor activation. These data suggest that an enduring increase in the sensitivity of the dopamine D1 receptor intracellular pathway sensitivity represents a neurobiological correlate associated with the development of locomotor

  17. Developmental stage-dependent protective effect of NGF against lead cholinotoxicity in the rat septum.

    PubMed

    Zhou, M; Tian, X; Suszkiw, J B

    2000-06-02

    The ability of nerve growth factor (NGF) to ameliorate developmental cholinotoxicity of inorganic lead (Pb) for the septal neurons was investigated by making intracerebroventricular injections of single doses of 30 microg 2.5S NGF into maternally lead-exposed suckling rats on postnatal days P2, P4, P11, or P18. Administration of NGF on P4 or later induced septal choline acetyltransferase (ChAT) activity to the same relative extent in both Pb-exposed as in control rats but failed to reverse the net reductions of ChAT activity induced by Pb. In contrast, injection of NGF at P2 completely restored ChAT activity in Pb-exposed pups to control levels by preventing the loss of ChAT-immunoreactive cells in the septum. It is concluded that although NGF retains the capacity to upregulate ChAT throughout the period of Pb exposure, it protects against the Pb-induced loss of septal cholinergic neurons only when applied within the critical period of Pb-vulnerability between postnatal days 2 and 4.

  18. Effects of cytotoxic nucleus accumbens lesions on instrumental conditioning in rats.

    PubMed

    de Borchgrave, R; Rawlins, J N P; Dickinson, A; Balleine, B W

    2002-05-01

    In two experiments the involvement of the nucleus accumbens in instrumental conditioning was investigated using rats as subjects. In experiment 1, extensive bilateral cytotoxic lesions of the nucleus accumbens mildly suppressed instrumental responding reinforced with food, but had no detectable effect on the sensitivity of the rats' performance either to outcome devaluation or to degradation of the instrumental contingency. In experiment 2, restricted accumbens lesions reliably attenuated the excitatory effect of systemically administered d-amphetamine on lever pressing for a conditioned reinforcer, and completely abolished Pavlovian-instrumental transfer. Taken together these results give a picture of the involvement of the rat nucleus accumbens in instrumental conditioning. They support the widely held theory that the nucleus accumbens mediates the excitatory effects of appetitively conditioned Pavlovian signals on instrumental performance and refute the hypothesis that the nucleus accumbens is part of the neural circuitry by which incentive value is attached to the representations of instrumental outcomes.

  19. Effects of systemic L-tyrosine on dopamine release from rat corpus striatum and nucleus accumbens

    NASA Technical Reports Server (NTRS)

    During, Matthew J.; Acworth, Ian N.; Wurtman, Richard J.

    1988-01-01

    Intracerebral dialysis was used to monitor extracellular fluid from rat striatum and nucleus accumbens following the intraperitoneal administration of tyrosine. Dopamine concentrations in dialysates from both the striatum and the nucleus accumbens increased significantly in response to the tyrosine. The magnitude of the tyrosine effect was greater in the nucleus accumbens than in the striatum. Hence, mesolimbic dopaminergic neurons may be especially responsive to precursor availability.

  20. Double-outlet right ventricle with intact ventricular septum in a foetus with trisomy-18.

    PubMed

    Patel, C R; Muise, K L; Redline, R W

    1999-07-01

    A rare case of double-outlet right ventricle with intact ventricular septum diagnosed by foetal echocardiography at 21 weeks of gestation is described. Amniocentesis revealed trisomy-18. The cardiac diagnosis was confirmed at autopsy.

  1. The case of a cyst hydatid localized within the interatrial septum.

    PubMed

    Karabay, Ozalp; Onen, Ahmet; Yildiz, Fidan; Yilmaz, Erkan; Erdal, Cenk A; Sanli, Aydin; Kilci, Göksel; Algin, Ibrahim; Itil, Oya; Açikel, Unal

    2004-07-01

    The ratio of cardiac involvement of Echinoccocus granulosus is 0.02-2% and although seen rarely, involvement of the interatrial septum has also been reported in the published literature. The present case was a 19-year-old male university student admitted to hospital with complaints of headache and dizziness. Computerized tomography of the cranium revealed a cystic mass located at the frontal region and enucleation of the cyst was performed during surgery. A cystic lesion 5 x 4 cm in size was detected within the interatrial septum on two-dimensional transthoracic echocardiography during the postoperative period and the patient was referred to our clinic. Open heart surgery was performed and a hydatid cyst that involved the interatrial septum was enucleated. The cyst wall was sutured to the interatrial septum. No complications developed during the postoperative period. The patient was discharged on the fifth day of hospitalization and medical therapy was started with albendazole.

  2. Deviated nasal septum hinders intranasal sprays: A computer simulation study

    PubMed Central

    Frank, Dennis O.; Kimbell, Julia S.; Cannon, Daniel; Pawar, Sachin S.; Rhee, John S.

    2013-01-01

    Background This study investigates how deviated nasal septum affects the quantity and distribution of spray particles, and examines the effects of inspiratory airflow and head position on particle transport. Methods Deposition of spray particles was analysed using a three-dimensional computational fluid dynamics model created from a computed tomography scan of a human nose with leftward septal deviation and a right inferior turbinate hypertrophy. Five simulations were conducted using Fluent™ software, with particle sizes ranging from 20-110μm, a spray speed of 3m/s, plume angle of 68°, and with steady state inspiratory airflow either present (15.7L/min) or absent at varying head positions. Results With inspiratory airflow present, posterior deposition on the obstructed side was approximately four times less than the contralateral side, regardless of head position, and was statistically significant (p<0.05). When airflow was absent, predicted deposition beyond the nasal valve on the left and right sides were between 16% and 69% lower and positively influenced by a dependent head position. Conclusions Simulations predicted that septal deviation significantly diminished drug delivery on the obstructed side. Furthermore, increased particle penetration was associated with presence of nasal airflow. Head position is an important factor in particle deposition patterns when inspiratory airflow is absent. PMID:22888490

  3. Right ventricular outflow obstruction with intact ventricular septum in adults.

    PubMed Central

    Werner, A M; Darrell, J C; Pallegrini, R V; Woelfel, G F; Grant, K; Marrangoni, A G

    1997-01-01

    Cardiothoracic surgeons whose practice is limited to adults rarely see patients with right ventricular outflow obstruction and an intact ventricular septum. Of more than 10,000 open-heart procedures performed at our institution from 1983 to 1993 (in patients 18 to 75 years old), only 5 procedures were for correction of this problem. Both the pulmonary valve and the subvalvular area were abnormal in these 5 patients, and 4 of the 5 had subvalvular stenosis. The gradient across the right ventricular outflow tract was measured by cardiac catheterization before repair in all patients and averaged 118 mmHg. Various surgical approaches were used for repair. In the 2 patients whose pressures were measured postoperatively, the gradients were 25 mmHg and 45 mmHg, respectively. There were no operative deaths. At follow-up (range, 2 months to 5 years after surgery), all patients were in New York Heart Association functional class I and all had murmurs. Those who underwent echocardiography were found to have minimal gradients across the right ventricular outflow tract. Images PMID:9205983

  4. Surgical repair of rupture of the membranous septum after blunt chest trauma.

    PubMed

    Tarmiz, Amine; Lopez, Stéphane; Honton, Ben; Riu, Béatrice

    2011-01-01

    Rupture of the membranous septum is a very rare complication of blunt chest trauma. In this report, we describe a 22-year-old man who sustained multiple blunt trauma injuries during a motor vehicle accident. Rupture of the membranous septum was diagnosed 48 hours after the initial trauma and the defect was closed with Gore-Tex (W.L. Gore & Assoc, Flagstaff, AZ). However, the operation was complicated by complete atrioventricular block requiring implantation of a permanent DDD pacemaker.

  5. Comparison of Nasal Septum and Ear Cartilage as a Graft for Lower Eyelid Reconstruction.

    PubMed

    Suga, Hirotaka; Ozaki, Mine; Narita, Keigo; Kurita, Masakazu; Shiraishi, Tomohiro; Ohura, Norihiko; Takushima, Akihiko; Harii, Kiyonori

    2016-03-01

    In lower eyelid reconstruction, several types of grafts from the nasal septum, ear cartilage, buccal mucosa, and hard palate mucosa have been used for an inner layer of the lower eyelid, but there have been no studies comparing these grafts. The authors retrospectively reviewed our cases of lower eyelid reconstruction, and compared chondromucosal grafts from the nasal septum (N = 8) and ear cartilage grafts (N = 10) for an inner layer of the lower eyelid. The authors observed no significant difference in operative time, blood loss, or length of hospital stay between the "nasal septum" and "ear cartilage" groups. The final results were aesthetically and functionally satisfactory in both groups. In the nasal septum group, 1 patient suffered from perforation of the nasal septum and another patient suffered from nasal bleeding postoperatively. There were no donor site complications in the ear cartilage group. These findings indicate that both a chondromucosal graft from the nasal septum and an ear cartilage graft are good grafts for an inner layer of the lower eyelid. Regarding the donor site, however, an ear cartilage graft has the advantage of a lower complication rate.

  6. Medial septum lesions disrupt exploratory trip organization: evidence for septohippocampal involvement in dead reckoning.

    PubMed

    Martin, Megan M; Horn, Katharine L; Kusman, Kelly J; Wallace, Douglas G

    2007-02-28

    Rats organize their open field behavior into a series of exploratory trips focused around a central location or home base. In addition, differences in movement kinematics have been used to fractionate the exploratory trip into tour (i.e., sequences of linear movement or progressions punctuated by stops) and homeward (i.e., single progression direct to the home base) segments. The observation of these characteristics independent of environmental familiarity and visual cue availability has suggested a role for self-movement information or dead reckoning in organizing exploratory behavior. Although previous work has implicated a role for the septohippocampal system in dead reckoning based navigation, as of yet, no studies have investigated the contribution of the medial septum to dead reckoning. First, the present study examined the organization of exploratory behavior under dark and light conditions in control rats and rats receiving either electrolytic or sham medial septum lesions. Medial septum lesions produced a significant increase in homeward segment path circuity and variability of temporal pacing of linear speeds. Second, as an independent assessment of the effectiveness of the medial septum lesions, rats were trained to locate a hidden platform in the standard water maze procedure. Consistent with previous research, medial septum lesions attenuated learning the location of the hidden platform. These results demonstrate a role for the medial septum in organizing exploratory behavior and provide further support for the role of the septohippocampal system in dead reckoning based navigation.

  7. The contractile ring coordinates curvature-dependent septum assembly during fission yeast cytokinesis

    PubMed Central

    Zhou, Zhou; Munteanu, Emilia Laura; He, Jun; Ursell, Tristan; Bathe, Mark; Huang, Kerwyn Casey; Chang, Fred

    2015-01-01

    The functions of the actin-myosin–based contractile ring in cytokinesis remain to be elucidated. Recent findings show that in the fission yeast Schizosaccharomyces pombe, cleavage furrow ingression is driven by polymerization of cell wall fibers outside the plasma membrane, not by the contractile ring. Here we show that one function of the ring is to spatially coordinate septum cell wall assembly. We develop an improved method for live-cell imaging of the division apparatus by orienting the rod-shaped cells vertically using microfabricated wells. We observe that the septum hole and ring are circular and centered in wild-type cells and that in the absence of a functional ring, the septum continues to ingress but in a disorganized and asymmetric manner. By manipulating the cleavage furrow into different shapes, we show that the ring promotes local septum growth in a curvature-dependent manner, allowing even a misshapen septum to grow into a more regular shape. This curvature-dependent growth suggests a model in which contractile forces of the ring shape the septum cell wall by stimulating the cell wall machinery in a mechanosensitive manner. Mechanical regulation of the cell wall assembly may have general relevance to the morphogenesis of walled cells. PMID:25355954

  8. The S. pombe orthologue of the S. cerevisiae mob1 gene is essential and functions in signalling the onset of septum formation.

    PubMed

    Salimova, E; Sohrmann, M; Fournier, N; Simanis, V

    2000-05-01

    We have isolated the Schizosaccharomyces pombe orthologue of the Saccharomyces cerevisiae MOB1 gene in a screen designed to enrich for septation mutants. The gene is essential, and cells lacking it display a phenotype typical of septation signalling network mutants. mob1p is located on both spindle pole bodies throughout mitosis. In addition it is also co-localised with the medial ring later in mitosis, and flanks the septum as the medial ring contracts. We also demonstrate that mob1p can be precipitated from cells in a complex with the septation regulating kinase sid2p.

  9. Reacquisition of cocaine conditioned place preference and its inhibition by previous social interaction preferentially affect D1-medium spiny neurons in the accumbens corridor

    PubMed Central

    Prast, Janine M.; Schardl, Aurelia; Schwarzer, Christoph; Dechant, Georg; Saria, Alois; Zernig, Gerald

    2014-01-01

    We investigated if counterconditioning with dyadic (i.e., one-to-one) social interaction, a strong inhibitor of the subsequent reacquisition of cocaine conditioned place preference (CPP), differentially modulates the activity of the diverse brain regions oriented along a mediolateral corridor reaching from the interhemispheric sulcus to the anterior commissure, i.e., the nucleus of the vertical limb of the diagonal band, the medial septal nucleus, the major island of Calleja, the intermediate part of the lateral septal nucleus, and the medial accumbens shell and core. We also investigated the involvement of the lateral accumbens core and the dorsal caudate putamen. The anterior cingulate 1 (Cg1) region served as a negative control. Contrary to our expectations, we found that all regions of the accumbens corridor showed increased expression of the early growth response protein 1 (EGR1, Zif268) in rats 2 h after reacquisition of CPP for cocaine after a history of cocaine CPP acquisition and extinction. Previous counterconditioning with dyadic social interaction inhibited both the reacquisition of cocaine CPP and the activation of the whole accumbens corridor. EGR1 activation was predominantly found in dynorphin-labeled cells, i.e., presumably D1 receptor-expressing medium spiny neurons (D1-MSNs), with D2-MSNs (immunolabeled with an anti-DRD2 antibody) being less affected. Cholinergic interneurons or GABAergic interneurons positive for parvalbumin, neuropeptide Y or calretinin were not involved in these CPP-related EGR1 changes. Glial cells did not show any EGR1 expression either. The present findings could be of relevance for the therapy of impaired social interaction in substance use disorders, depression, psychosis, and autism spectrum disorders. PMID:25309368

  10. Piezoelectric sensing: Evaluation for clinical investigation of deviated nasal septum

    PubMed Central

    Manjunatha, Roopa G.; Mahapatra, Roy D.; Dorasala, Srinivas

    2013-01-01

    Noninvasive objective evaluation of nasal airflow is one of the important clinical aspects. The developed polyvinylidene fluoride (PVDF) sensor enables measurement of airflow through each side of the nose using its piezoelectric property. This study was designed to evaluate the diagnostic capability of the PVDF sensor in assessing the deviated nasal septum (DNS). PVDF nasal sensor uses its piezoelectric property to measure the peak-to-peak amplitude (Vp-p) of nasal airflow in both of the nostrils: right nostril (RN) and left nostril (LN), separately and simultaneously. We have compared the results of PVDF nasal sensor, visual analog scale (VAS), and clinician scale for 34 DNS patients and 28 healthy controls. Additionally, the results were further analyzed by receiver operating characteristic curve and correlation between PVDF nasal sensor and VAS in detecting DNS. We found a significant difference in the peak-to-peak amplitude values of the test group and the control group. The correlation between the PVDF nasal sensor measurements and VAS (RN and LN combined) for test group was statistically significant (−0.807; p < 0.001). Sensitivity and specificity of the PVDF nasal sensor measurements in the detection of DNS (RN and LN combined) was 85.3 and 74.4%, respectively, with optimum cutoff value ≤0.34 Vp-p. The developed PVDF nasal sensor is noninvasive and requires less patient efforts. The sensitivity and specificity of the PVDF nasal sensor are reliable. According to our findings, we propose that the said PVDF nasal sensor can be used as a new diagnostic tool to evaluate the DNS in routine clinical practice. PMID:24498519

  11. Characterization of a folate-induced hypermotility response after bilateral injection into the rat nucleus accumbens

    SciTech Connect

    Stephens, R.L. Jr.

    1986-01-01

    The objective of these studies was to pharmacologically characterize the mechanism responsible for a folate-induced stimulation of locomotor activity in rats after bilateral injection into the nucleus accumbens region of the brain. Folic acid (FA) and 5-formyltetrahydrofolic acid (FTHF) produced this hypermotility response after intra-accumbens injection, while other reduced folic acid derivatives dihydrofolic acid, tetrahydrofolic acid, and 5-methyltetrahydrofolic acid were ineffective. Studies were designed to determine the role of catecholamines in the nucleus accumbens in the folate-induced hypermotility response. The findings suggest that the folate-induced response is dependent on intact neuronal dopamine stores, and is mediated by stimulation of dopamine receptors of the nucleus accumbens. However the folates do not appear to enhance dopaminergic neutransmission. Thus, FA and FTHF were inefficient at 1 mM concentrations in stimulating /sup 3/H-dopamine release from /sup 3/H-dopamine preloaded nucleus accumbens slices or dopamine from endogenous stores. Pteroic acid, the chemical precursor of folic acid which lacks the glutamate moiety, was ineffective in producing a stimulation of locomotor activity after intra-accumbens injection. Since glutamate is an excitatory amino acid (EAA), compounds characterized as EAA receptor antagonists were utilized to determine if the folate-induced hypermotility response is mediated by activation of EAA receptors in the nucleus accumbens. These results suggest that activation of quisqualate receptors of the nucleus accumbens may mediate the folate-induced hypermotility response.

  12. The germinal zones of the basal ganglia but not the septum generate GABAergic interneurons for the cortex.

    PubMed

    Rubin, Anna N; Alfonsi, Fabienne; Humphreys, Michael P; Choi, Christina K P; Rocha, Susana F; Kessaris, Nicoletta

    2010-09-08

    Cortical interneurons originate from subpallial precursors and migrate into the cortex during development. Using genetic lineage tracing in transgenic mice we examine the contribution of two germinal zones, the septum and the lateral ganglionic eminence/caudal ganglionic eminence (LGE/CGE) to interneurons of the cortex. We find that the septal neuroepithelium does not generate interneurons for the neocortex. There is, however, clear migration of cells from the LGE/CGE to the cortex. Comparison of the dynamics of cortical colonization by the two major cohorts of interneurons originating in the medial ganglionic eminence (MGE) and the LGE/CGE has shown differences in the timing of migration and initial route of entry into the cortex. LGE/CGE-derived interneurons enter the cortex later than the MGE-derived ones. They invade the cortex through the subventricular/intermediate zone route and only later disperse within the cortical plate and the marginal zone. During the first postnatal week MGE interneurons move extensively to acquire their laminar position within the cortical plate whereas LGE/CGE-derived cells remain largely within the upper layers of the cortex. The two populations intermingle in the adult cortex but have distinct neurochemical properties and different overall distributions. LGE/CGE-derived interneurons account for one third of the total GABAergic interneuron population in the adult cortex.

  13. Effect of local infusion of glutamate analogues into the nucleus accumbens of rats: an electrochemical and behavioural study.

    PubMed

    Svensson, L; Zhang, J; Johannessen, K; Engel, J A

    1994-04-18

    In vivo voltammetry at electrochemically pretreated carbon fibre electrodes was used to investigate the effect of local infusion of glutamate analogues on dopamine (DA) release in rat nucleus accumbens. Infusion of a low dose of NMDA or AMPA (1 mM/0.2 microliter), but not L-glutamate or kainate, was followed a few minutes later by a large but short-lived increase in the extracellular concentration of DA. The involvement of spreading depression was indicated since this response could be repeated only after a short refractory period, and the response magnitude did not seem to be dependent on the dose infused. Furthermore, the increase in DA release was accompanied by a marked negative shift in brain field potential and a similar increase in release could be induced by local infusion of K+. The infusion of NMDA, AMPA or kainate was followed by behavioural activation of the animals but not convulsions. The behavioural response induced by NMDA was dose-dependently reduced by haloperidol, which suggests the involvement of a DA-dependent mechanism in this effect. Co-infusion of the DA transport inhibitors, nomifensine or GBR 12909, failed to alter the DA response to NMDA, while this response was completely blocked by co-infusion of tetrodotoxin or pretreatment with reserpine. It is evident from this study that local infusion of NMDA or AMPA may induce spreading depression in rat nucleus accumbens and that this condition is associated with a vast release of DA and behavioural activation.

  14. The cdc7 protein kinase is a dosage dependent regulator of septum formation in fission yeast.

    PubMed Central

    Fankhauser, C; Simanis, V

    1994-01-01

    Mutation of the Schizosaccharomyces pombe cdc7 gene prevents formation of the division septum and cytokinesis. We have cloned the cdc7 gene and show that it encodes a protein kinase which is essential for cell division. In the absence of cdc7 function, spore germination, DNA synthesis and mitosis are unaffected, but cells are unable to initiate formation of the division septum. Overexpression of p120cdc7 causes cell cycle arrest; cells complete mitosis and then undergo multiple rounds of septum formation without cell cleavage. This phenotype, which is similar to that resulting from inactivation of cdc16 protein, requires the kinase activity of p120cdc7. Mutations inactivating the early septation gene, cdc11, suppress the formation of multiple septa and allow cells to proliferate normally. If formation of the division septum is prevented by inactivation of either cdc14 or cdc15, p120cdc7 overproduction does not interfere with other events in the mitotic cell cycle. Septation is not induced by overexpression of p120cdc7 in G2 arrested cells, indicating that it does not bypass the normal dependency of septation upon initiation of mitosis. These findings indicate that the p120cdc7 protein kinase plays a key role in initiation of septum formation and cytokinesis in fission yeast and suggest that p120cdc7 interacts with the cdc11 protein in the control of septation. Images PMID:8039497

  15. Upflow bioreactor having a septum and an auger and drive assembly

    DOEpatents

    Hansen, Carl S.; Hansen, Conly L.

    2007-11-06

    An upflow bioreactor includes a vessel having an inlet and an outlet configured for upflow operation. A septum is positioned within the vessel and defines a lower chamber and an upper chamber. The septum includes an aperture that provides fluid communication between the upper chamber and lower chamber. The bioreactor also includes an auger positioned in the aperture of the septum. The vessel includes an opening in the top for receiving the auger. The auger extends from a drive housing, which is position over the opening and provides a seal around the opening. The drive housing is adjustable relative to the vessel. The position of the auger in the aperture can be adjusted by adjusting the drive housing relative to the vessel. The auger adjustment mechanism allows the auger to be accurately positioned within the aperture. The drive housing can also include a fluid to provide an additional seal around the shaft of the auger.

  16. Lipomatous hypertrophy of the interatrial septum: a pathological and clinical approach.

    PubMed

    Xanthos, Theodoros; Giannakopoulos, Nikodimos; Papadimitriou, Lila

    2007-09-14

    Lipomatous hypertrophy of the interatrial septum (LHIS) is a rare benign disorder that is characterized by accumulation and deposition of fat in the interatrial septum. Its etiology is still unknown, despite the theories that have been suggested. It usually occurs in older, obese people with a higher incidence in women. In most cases, it remains asymptomatic, thus its diagnosis is rarely made during a person's lifetime and it is made incidentally or during autopsy. LHIS can cause atrial arrhythmias, obstructive flow symptoms and sometimes death. The diagnosis of LHIS can be made by the use of imaging techniques, with the best results given by multislice-CT (MSCT) scanning. Surgical intervention is usually avoided and the best management is early diagnosis, reassurance and inactivity. However, in cases of severe superior vena cava obstruction or intractable rhythm disturbance, surgical excision is performed together with reconstruction of the interatrial septum.

  17. Glutamate microinjection in the medial septum of rats decreases paradoxical sleep and increases slow wave sleep.

    PubMed

    Mukherjee, Didhiti; Kaushik, Mahesh K; Jaryal, Ashok Kumar; Kumar, Velayudhan Mohan; Mallick, Hruda Nanda

    2012-05-09

    The role of the medial septum in suppressing paradoxical sleep and promoting slow wave sleep was suggested on the basis of neurotoxic lesion studies. However, these conclusions need to be substantiated with further experiments, including chemical stimulation studies. In this report, the medial septum was stimulated in adult male rats by microinjection of L-glutamate. Sleep-wakefulness was electrophysiologically recorded, through chronically implanted electrodes, for 2 h before the injection and 4 h after the injection. There was a decrease in paradoxical sleep during the first hour and an increase in slow wave sleep during the second hour after the injection. The present findings not only supported the lesion studies but also showed that the major role of the medial septum is to suppress paradoxical sleep.

  18. Endoscopic transnasal approach for treatment of the medial orbital blowout fracture using nasal septum graft.

    PubMed

    Ballin, Carlos R; Sava, Luiz C; Maeda, Carlos A S; Nogueira, Gustavo F; Jebahi, Yasser; Sava, Henrique W; Koladicz, Karyn R J

    2009-02-01

    We present the experience of the Ear, Nose, and Throat Department of Santa Casa de Misericórdia de Curitiba and Hospital Universitário Cajuru PUC-PR in the transnasal endoscopic approach to medial orbital blowout fractures using nasal septum grafts. Seventeen patients have undergone endoscopic repair since June 2005, and septum grafts were used to maintain the orbital contents in position. All 17 patients were treated with this method. Two patients had diplopia on immediate postoperative evaluation. This symptom was corrected with orthoptic exercises in one patient, and the other had a little residual diplopia. Postoperative computed tomography scans showed anatomic reduction in 14 of 17 cases. There were no complications in these surgeries. The transnasal endoscopic approach is a reasonable method for the treatment of medial orbital blowout fractures. Use of septum graft is another surgical alternative for this technique.

  19. Role of the medial septum cholinoceptors in anxiogenic-like effects of nicotine.

    PubMed

    Zarrindast, Mohammad-Reza; Tajik, Rohjan; Ebrahimi-Ghiri, Mohaddeseh; Nasehi, Mohammad; Rezayof, Ameneh

    2013-07-02

    The medial septum which is extensively connected to the hippocampus is involved in cholinergic theta oscillation control as well as the anxiety related disorders. In the present study, we aimed to investigate the possible involvement of the medial septum cholinoceptors in the nicotine-induced anxiogenic-like behaviors in rats, using the elevated plus-maze (EPM) test. Intraperitoneal administration of nicotine at 0.6 and 0.8 mg/kg, decreased the open-arms time percentage (%OAT) and open-arms entries percentage (%OAE); indicating an anxiogenic-like response. Intra-medial septum microinjection of mecamylamine, a nicotinic acetylcholine receptor (nAChR) antagonist at the doses of 1-4 μg/rat, increased %OAT (4 μg/rat), suggesting an anxiolytic-like effect. This however, did not alter the anxiogenic-like response induced by the effective dose of nicotine (0.6 mg/kg). Moreover, co-administration of the subthreshold dose of mecamylamine (2 μg/rat) plus nicotine at the dose of 0.5 or 0.6 mg/kg, increased or decreased the anxiolytic-like behaviors, respectively. On the other hand, sole intra-medial septum infusion of atropine, a muscarinic acetylcholine receptor (mAChR) antagonist, induced an anxiolytic (0.05 μg/rat) and anxiogenic (0.25 μg/rat)-like effects, respectively. The dose of 0.05 μg/rat however, blocked the nicotine response. Furthermore, intra-medial septum microinjection of the highest dose of mecamylamine (4 μg/rat) plus nicotine (0.6 mg/kg) decreased the locomotor activity, while other treatments had no effect on this parameter. Our results suggested that, nicotine-induced anxiogenic-like behaviors may be mediated via the activation of cholinoceptors and possibly other receptor mechanism(s) in the medial septum.

  20. Histaminergic receptors of medial septum and conditioned place preference: D1 dopamine receptor mechanism.

    PubMed

    Zarrindast, Mohammad-Reza; Moghimi, Maryam; Rostami, Parvin; Rezayof, Ameneh

    2006-09-13

    In the present study, the effects of intra-medial septum injections of histamine and/or the histamine H1 or H2 receptor antagonists on the acquisition of conditioned place preference (CPP) in male Wistar rats have been investigated. Our data showed that the conditioning treatments with intra-medial septum injection of different doses of histamine (0.5-15 microg/rat) induced a significant CPP for the drug-associated place. Using a 3-day schedule of conditioning, it was found that the histamine H1 receptor antagonist, pyrilamine (10 and 15 microg/rat, intra-medial septum) also induced a significant place preference. In addition, pyrilamine inhibited the histamine (7.5 microg/rat)-induced place preference. Intra-medial septum administration of the histamine H2 receptor antagonist, ranitidine (5-15 microg/rat) alone or in combination with histamine did not produce a significant place preference or place aversion. On the other hand, intra-medial septum administration of the dopamine D1 receptor antagonist, SCH 233390 (0.5, 0.75 and 1 microg/rat) inhibited the histamine (7.5 microg/rat) or pyrilamine (15 microg/rat)-induced place preference in a dose-dependent manner, but no effect was observed for the dopamine D2 receptor antagonist, sulpiride on the histamine or pyrilamine response. The administration of histamine (2.5-15 microg/rat) or pyrilamine (10 and 15 microg/rat) during acquisition increased locomotor activity of the animals on the testing days. The results suggest that histaminergic receptors of the medial septum may be involved in CPP and thus it is postulated that dopamine D1 receptors may play an important role in this effect.

  1. Recognition of novel objects and their location in rats with selective cholinergic lesion of the medial septum.

    PubMed

    Cai, Li; Gibbs, Robert B; Johnson, David A

    2012-01-11

    The importance of cholinergic neurons projecting from the medial septum (MS) of the basal forebrain to the hippocampus in memory function has been controversial. The aim of this study was to determine whether loss of cholinergic neurons in the MS disrupts object and/or object location recognition in male Sprague-Dawley rats. Animals received intraseptal injections of either vehicle, or the selective cholinergic immunotoxin 192 IgG-saporin (SAP). 14 days later, rats were tested for novel object recognition (NOR). Twenty-four hours later, these same rats were tested for object location recognition (OLR) (recognition of a familiar object moved to a novel location). Intraseptal injections of SAP produced an 86% decrease in choline acetyltransferase (ChAT) activity in the hippocampus, and a 31% decrease in ChAT activity in the frontal cortex. SAP lesion had no significant effect on NOR, but produced a significant impairment in OLR in these same rats. The results support a role for septo-hippocampal cholinergic projections in memory for the location of objects, but not for novel object recognition.

  2. [One case of papillary adenocarcinoma located in the back-end of nasal septum].

    PubMed

    Zang, Jian; Liu, Qian; Jiang, Xuejun

    2015-02-01

    Patients with nasopharyngeal foreign body sensation for 3 years, and had nasal obstruction in the past six months. electric nasopharyngoscopy: a irregular ellipse shape mass occupied in the nasopharynx, the mass surface is not smooth, with erosion ulcer and filthy secretions, the mass had a root in the back-end of nasal septum, and was adjacent to the bilateral round pillow. Sinus CT showed an irregular soft tissue shadow connected to the nasal septum backend in the nasopharynx, the size is about 2.8 cm X 3.5 cm, CT value is about 43 HU. Pathological examination: papillary adenocarcinoma.

  3. Extrasynaptic δ-containing GABAA receptors in the nucleus accumbens dorsomedial shell contribute to alcohol intake

    PubMed Central

    Nie, Hong; Rewal, Mridula; Gill, T. Michael; Ron, Dorit; Janak, Patricia H.

    2011-01-01

    Recent findings suggest that extrasynaptic δ-subunit–containing GABAA receptors are sensitive to low-to-moderate concentrations of alcohol, raising the possibility that these receptors mediate the reinforcing effects of alcohol after consumption of one or a few drinks. We used the technique of viral-mediated RNAi to reduce expression of the GABAA receptor δ-subunit in adult rats in localized regions of the nucleus accumbens (NAc) to test the hypothesis that δ-subunit–containing GABAA receptors in the NAc are necessary for oral alcohol consumption. We found that knockdown of the δ-subunit in the medial shell region of the NAc, but not in the ventral or lateral shell or in the core, reduced alcohol intake. In contrast, δ-subunit knockdown in the medial shell did not affect intake of a 2% sucrose solution, suggesting that the effects of GABAA receptor δ-subunit reduction are specific to alcohol. These results provide strong evidence that extrasynaptic δ-subunit–containing GABAA receptors in the medial shell of the NAc are critical for the reinforcing effects of oral ethanol. PMID:21368141

  4. Functional Magnetic Resonance Imaging of Electrical and Optogenetic Deep Brain Stimulation at the Rat Nucleus Accumbens

    PubMed Central

    Albaugh, Daniel L.; Salzwedel, Andrew; Van Den Berge, Nathalie; Gao, Wei; Stuber, Garret D.; Shih, Yen-Yu Ian

    2016-01-01

    Deep brain stimulation of the nucleus accumbens (NAc-DBS) is an emerging therapy for diverse, refractory neuropsychiatric diseases. Although DBS therapy is broadly hypothesized to work through large-scale neural modulation, little is known regarding the neural circuits and networks affected by NAc-DBS. Using a healthy, sedated rat model of NAc-DBS, we employed both evoked- and functional connectivity (fc) MRI to examine the functional circuit and network changes achieved by electrical NAc stimulation. Optogenetic-fMRI experiments were also undertaken to evaluate the circuit modulation profile achieved by selective stimulation of NAc neurons. NAc-DBS directly modulated neural activity within prefrontal cortex and a large number of subcortical limbic areas (e.g., amygdala, lateral hypothalamus), and influenced functional connectivity among sensorimotor, executive, and limbic networks. The pattern and extent of circuit modulation measured by evoked-fMRI was relatively insensitive to DBS frequency. Optogenetic stimulation of NAc cell bodies induced a positive fMRI signal in the NAc, but no other detectable downstream responses, indicating that therapeutic NAc-DBS might exert its effect through antidromic stimulation. Our study provides a comprehensive mapping of circuit and network-level neuromodulation by NAc-DBS, which should facilitate our developing understanding of its therapeutic mechanisms of action. PMID:27601003

  5. Acute and prolonged effects of clocinnamox and methoclocinnamox on nucleus accumbens dopamine overflow.

    PubMed

    Zernig, G; Fibiger, H C

    1998-01-01

    The mu opioid antagonist clocinnamox (CCAM) insurmountably inhibits opioid self-administration. In contrast, CCAM's prodrug, methoclocinnamox (MCCAM), acts as a weak partial agonist in this paradigm when given acutely and inhibits opioid self-administration for up to 5 days. In vivo microdialysis was employed to determine if these effects are paralleled in basal and opioid-stimulated dopamine (DA) overflow in the rat nucleus accumbens (NAC). When given acutely, CCAM (10 mg/kg s.c.) was essentially without effect. CCAM also markedly attenuated the overflow of DA induced by heroin (0.5 mg/kg s.c.; 200% of DA baseline) 24 h later. In contrast, MCCAM (10 mg/kg s.c.) acutely increased NAC DA overflow to 200-245% baseline within 30 min. NAC DA remained at this elevated level for the whole 3-h period of the experiment. Even after 24 h, NAC DA overflow of MCCAM-pretreated animals remained elevated at 165% of VEH-treated animals. Administration of heroin did not result in any further elevation of NAC DA release under these conditions. Thus, the suggested therapeutic profile of MCCAM, i.e., an acute partial agonistic reinforcing effect followed by antagonism of the reinforcing effects of subsequently abused opioids, was confirmed in NAC DA overflow, a neurochemical correlate of the reinforcing effects of drugs of abuse. The most parsimonious explanation for MCCAM's effect on NAC DA overflow is that it acted as an essentially irreversible partial agonist.

  6. Dopamine in nucleus accumbens: salience modulation in latent inhibition and overshadowing.

    PubMed

    Nelson, A J D; Thur, K E; Marsden, C A; Cassaday, H J

    2011-12-01

    Latent inhibition (LI) is demonstrated when non-reinforced pre-exposure to a to-be-conditioned stimulus retards later learning. Learning is similarly retarded in overshadowing, in this case using the relative intensity of competing cues to manipulate associability. Electrolytic/excitotoxic lesions to shell accumbens (NAc) and systemic amphetamine both reliably abolish LI. Here a conditioned emotional response procedure was used to demonstrate LI and overshadowing and to examine the role of dopamine (DA) within NAc. Experiment 1 showed that LI but not overshadowing was abolished by systemic amphetamine (1.0 mg/kg i.p.). In Experiment 2, 6-hydroxydopamine (6-OHDA) was used to lesion DA terminals within NAc: both shell- and core- (plus shell-)lesioned rats showed normal LI and overshadowing. Experiment 3 compared the effects of amphetamine microinjected at shell and core coordinates prior to conditioning: LI, but not overshadowing, was abolished by 10.0 but not 5.0 µg/side amphetamine injected in core but not shell NAc. These results suggest that the abolition of LI produced by NAc shell lesions is not readily reproduced by regionally restricted DA depletion within NAc; core rather than shell NAc mediates amphetamine-induced abolition of LI; overshadowing is modulated by different neural substrates.

  7. Inhibitory avoidance memory deficit induced by scopolamine: interaction with glutamatergic system in the nucleus accumbens.

    PubMed

    Pakpour, Bahareh; Ahmadi, Shamseddin; Nayer-Nouri, Touraj; Oryan, Shahrbanoo; Zarrindast, Mohammad Reza

    2010-12-01

    The possible involvement of N-methyl-D-aspartate (NMDA) receptors of the nucleus accumbens (NAc) in amnesia induced by scopolamine was investigated. An inhibitory (passive) avoidance task was used for memory assessment in male Wistar rats. The results revealed that intra-NAc administration of a nonselective muscarinic acetylcholine antagonist, scopolamine (1 and 2 g/rat) impaired memory consolidation in the animals when tested 24 h later. Post-training intra-NAc administration of NMDA (0.005 and 0.01 g/rat) also impaired memory consolidation, whereas post-training intra-NAc administration of the NMDA receptor antagonist, MK-801 (0.5, 1 and 1.5 g/rat) did not. Intra-NAc co-administration of an ineffective dose of NMDA with ineffective doses of scopolamine (0.25 and 0.5 g/rat) after training had no significant effect on memory consolidation, but intra-NAc injections of effective doses of NMDA (0.005 and 0.01 g/rat) prevented the amnesic effect of an effective dose of scopolamine (2 g/rat). In contrast, intra-NAc co-administration of MK-801 (0.5, 1 and 1.5 g/rat) along with an effective dose of scopolamine (2 g/rat) did not prevent the effect of the latter drug. It can be concluded that NMDA receptors in the NAc are involved in the modulation of memory consolidation that was affected by scopolamine.

  8. [Extracellular aminoacids in the amygdala and nucleus accumbens in the rat during acute pain].

    PubMed

    Silva, Elizabeth; Hernández, Luis

    2007-06-01

    In the present experiments extracellular arginine, glutamate and aspartate were studied in the basolateral nucleus of the amygdala and core of the nucleus accumbens during the formalin test (phase I). A combination of capillary zone electrophoresis with laser induced fluorescence detection and microdialysis in freely moving rats was used. Glutamate and arginine significantly increased in the nucleus accumbens after formalin injection; glutamate, arginine and aspartate significantly increased in the basolateral nucleus of the amygdala, after formalin injection. These experiments suggest that rapid neurotransmitters changes observed in the nucleus accumbens and amygdala, are possibly related to immobility and emotional states such as anxiety, aversion and/or depression caused by pain.

  9. Rapid induction of dopamine sensitization in the nucleus accumbens shell induced by a single injection of cocaine.

    PubMed

    Singer, Bryan F; Bryan, Myranda A; Popov, Pavlo; Robinson, Terry E; Aragona, Brandon J

    2017-05-01

    Repeated intermittent exposure to cocaine results in the neurochemical sensitization of dopamine (DA) transmission within the nucleus accumbens (NAc). Indeed, the excitability of DA neurons in the ventral tegmental area (VTA) is enhanced within hours of initial psychostimulant exposure. However, it is not known if this is accompanied by a comparably rapid change in the ability of cocaine to increase extracellular DA concentrations in the ventral striatum. To address this question we used fast-scan cyclic voltammetry (FSCV) in awake-behaving rats to measure DA responses in the NAc shell following an initial intravenous cocaine injection, and then again 2-h later. Both injections quickly elevated DA levels in the NAc shell, but the second cocaine infusion produced a greater effect than the first, indicating sensitization. This suggests that a single injection of cocaine induces sensitization-related plasticity very rapidly within the mesolimbic DA system.

  10. [Disturbances of nasal aerodynamics in patients with the curved nasal septum and the rationale for its surgical correction].

    PubMed

    Tulebaev, R K; Mustafin, A A; Zholdybaeva, Z T

    2011-01-01

    Serious disturbances of nasal aerodynamics contribute to the development of diseases of the broncho-pulmonary apparatus. The early recognition of ventilation problems in patients with the curved nasal septum is paramount for the efficacious prevention and treatment of respiratory complications. The authors describe principles of rhinosurgical correction of affected nasal aerodynamics in patients with the curved nasal septum.

  11. [The infundibular septum in congenital heart defects. Morphologico-angiocardiographic study of the double-outlet heart ventricle].

    PubMed

    Tůma, S; Povýsilová, V; Skovránek, J; Tax, P

    1990-10-19

    The authors investigated the infundibular septum in 40 archival heart preparations with a double outlet right ventricle. They compared the post-mortem findings with the previous angiocardiographic examination and the skiagram of the preparation made post mortem. They present also the corresponding findings obtained by echocardiography. The infundibular septum was in all instances the dominating intracardiac structure influencing the direction of the blood flow from the ventricles into outflow tracts in the direction towards the large arteries. In 15 instances the infundibular septum was shifted in an anterosuperior direction beneath the orifice of the pulmonary artery and it derived the blood current from the left ventricle through the defect in the ventricular septum into the aorta. The restricted blood flow through the aorta led to its hypoplasia, which in 11 instances was associated with coarctation or interruption of the aorta. In seven instances of posteroinferior shift the infundibular septum was straight. These cases were associated with coarctation or interruption of the aorta. In ventricular septum and with stenosis of the pulmonary artery. Based on these findings the authors assume that the shift of the infundibular septum in a double outlet right ventricle has a decisive position as regards haemodynamic manifestations of the defect and in the development of outflow tracts and large arteries. Last not least, information on the infundibular septum is also important for surgery of the defect.

  12. Reward and reinforcement activity in the nucleus accumbens during learning

    PubMed Central

    Gale, John T.; Shields, Donald C.; Ishizawa, Yumiko; Eskandar, Emad N.

    2014-01-01

    The nucleus accumbens core (NAcc) has been implicated in learning associations between sensory cues and profitable motor responses. However, the precise mechanisms that underlie these functions remain unclear. We recorded single-neuron activity from the NAcc of primates trained to perform a visual-motor associative learning task. During learning, we found two distinct classes of NAcc neurons. The first class demonstrated progressive increases in firing rates at the go-cue, feedback/tone and reward epochs of the task, as novel associations were learned. This suggests that these neurons may play a role in the exploitation of rewarding behaviors. In contrast, the second class exhibited attenuated firing rates, but only at the reward epoch of the task. These findings suggest that some NAcc neurons play a role in reward-based reinforcement during learning. PMID:24765069

  13. Glutamatergic signaling by mesolimbic dopamine neurons in the nucleus accumbens.

    PubMed

    Tecuapetla, Fatuel; Patel, Jyoti C; Xenias, Harry; English, Daniel; Tadros, Ibrahim; Shah, Fulva; Berlin, Joshua; Deisseroth, Karl; Rice, Margaret E; Tepper, James M; Koos, Tibor

    2010-05-19

    Recent evidence suggests the intriguing possibility that midbrain dopaminergic (DAergic) neurons may use fast glutamatergic transmission to communicate with their postsynaptic targets. Because of technical limitations, direct demonstration of the existence of this signaling mechanism has been limited to experiments using cell culture preparations that often alter neuronal function including neurotransmitter phenotype. Consequently, it remains uncertain whether glutamatergic signaling between DAergic neurons and their postsynaptic targets exists under physiological conditions. Here, using an optogenetic approach, we provide the first conclusive demonstration that mesolimbic DAergic neurons in mice release glutamate and elicit excitatory postsynaptic responses in projection neurons of the nucleus accumbens. In addition, we describe the properties of the postsynaptic glutamatergic responses of these neurons during experimentally evoked burst firing of DAergic axons that reproduce the reward-related phasic population activity of the mesolimbic projection. These observations indicate that, in addition to DAergic mechanisms, mesolimbic reward signaling may involve glutamatergic transmission.

  14. Glutamatergic Signaling by Mesolimbic Dopamine Neurons in the Nucleus Accumbens

    PubMed Central

    Tecuapetla, Fatuel; Patel, Jyoti C.; Xenias, Harry; English, Daniel; Tadros, Ibrahim; Shah, Fulva; Berlin, Joshua; Deisseroth, Karl; Rice, Margaret E.; Tepper, James M.

    2010-01-01

    Recent evidence suggests the intriguing possibility that midbrain dopaminergic (DAergic) neurons may use fast glutamatergic transmission to communicate with their postsynaptic targets. Because of technical limitations, direct demonstration of the existence of this signaling mechanism has been limited to experiments using cell culture preparations that often alter neuronal function including neurotransmitter phenotype. Consequently, it remains uncertain whether glutamatergic signaling between DAergic neurons and their postsynaptic targets exists under physiological conditions. Here, using an optogenetic approach, we provide the first conclusive demonstration that mesolimbic DAergic neurons in mice release glutamate and elicit excitatory postsynaptic responses in projection neurons of the nucleus accumbens. In addition, we describe the properties of the postsynaptic glutamatergic responses of these neurons during experimentally evoked burst firing of DAergic axons that reproduce the reward-related phasic population activity of the mesolimbic projection. These observations indicate that, in addition to DAergic mechanisms, mesolimbic reward signaling may involve glutamatergic transmission. PMID:20484653

  15. The nucleus accumbens: an interface between cognition, emotion, and action.

    PubMed

    Floresco, Stan B

    2015-01-03

    Nearly 40 years of research on the function of the nucleus accumbens (NAc) has provided a wealth of information on its contributions to behavior but has also yielded controversies and misconceptions regarding these functions. A primary tenet of this review is that, rather than serving as a "reward" center, the NAc plays a key role in action selection, integrating cognitive and affective information processed by frontal and temporal lobe regions to augment the efficiency and vigor of appetitively or aversively motivated behaviors. Its involvement in these functions is most prominent when the appropriate course of action is ambiguous, uncertain, laden with distractors, or in a state of flux. To this end, different subregions of the NAc play dissociable roles in refining action selection, promoting approach toward motivationally relevant stimuli, suppressing inappropriate actions so that goals may be obtained more efficiently, and encoding action outcomes that guide the direction of subsequent ones.

  16. Characterization of cognitive deficits in rats overexpressing human alpha-synuclein in the ventral tegmental area and medial septum using recombinant adeno-associated viral vectors.

    PubMed

    Hall, Hélène; Jewett, Michael; Landeck, Natalie; Nilsson, Nathalie; Schagerlöf, Ulrika; Leanza, Giampiero; Kirik, Deniz

    2013-01-01

    Intraneuronal inclusions containing alpha-synuclein (a-syn) constitute one of the pathological hallmarks of Parkinson's disease (PD) and are accompanied by severe neurodegeneration of A9 dopaminergic neurons located in the substantia nigra. Although to a lesser extent, A10 dopaminergic neurons are also affected. Neurodegeneration of other neuronal populations, such as the cholinergic, serotonergic and noradrenergic cell groups, has also been documented in PD patients. Studies in human post-mortem PD brains and in rodent models suggest that deficits in cholinergic and dopaminergic systems may be associated with the cognitive impairment seen in this disease. Here, we investigated the consequences of targeted overexpression of a-syn in the mesocorticolimbic dopaminergic and septohippocampal cholinergic pathways. Rats were injected with recombinant adeno-associated viral vectors encoding for either human wild-type a-syn or green fluorescent protein (GFP) in the ventral tegmental area and the medial septum/vertical limb of the diagonal band of Broca, two regions rich in dopaminergic and cholinergic neurons, respectively. Histopathological analysis showed widespread insoluble a-syn positive inclusions in all major projections areas of the targeted nuclei, including the hippocampus, neocortex, nucleus accumbens and anteromedial striatum. In addition, the rats overexpressing human a-syn displayed an abnormal locomotor response to apomorphine injection and exhibited spatial learning and memory deficits in the Morris water maze task, in the absence of obvious spontaneous locomotor impairment. As losses in dopaminergic and cholinergic immunoreactivity in both the GFP and a-syn expressing animals were mild-to-moderate and did not differ from each other, the behavioral impairments seen in the a-syn overexpressing animals appear to be determined by the long term persisting neuropathology in the surviving neurons rather than by neurodegeneration.

  17. Ultrasonographic Evaluation of the Prevalence of an Intracompartmental Septum in Patients With de Quervain's Disease.

    PubMed

    Sato, Junko; Ishii, Yoshinori; Noguchi, Hideo

    2016-01-01

    It has been reported that more patients with de Quervain's disease who had undergone surgical treatment had a septated dorsal compartment than did normal cadavers. The purpose of this study was to sonographically evaluate the prevalence of an intracompartmental septum in patients with de Quervain's disease and to compare the prevalence between groups categorized by sex, age, and peripartum status. The authors performed an ultrasonographic examination of 112 wrists from 103 patients with de Quervain's disease. The prevalence of a septum-like structure in the first compartment was compared between men and women, between older (≥40 years) and younger (≤39 years) patients, and between pregnant or lactating women and other patients. The prevalence of intracompartmental septum in patients with de Quervain's disease was 61.6% (69 of 112). Of the 69 wrists with an intracompartmental septum-like structure, 53 showed this structure completely through the level of the radial styloid, and 16 showed it partially on the level of the distal radial styloid. There was no significant difference between any 2 groups categorized by the patients' demographics. The prevalence of intracompartmental septation in the patients with de Quervain's disease was higher than the previously reported prevalence in cadavers and lower than that of patients who underwent surgery. This result was consistent with a previous report that patients with a septated dorsal compartment may be more at risk of contracting de Quervain's disease and more prone to failure of nonoperative treatment.

  18. Transcatheter pulmonary valve perforation and balloon dilatation in neonates with pulmonary atresia and intact ventricular septum

    PubMed Central

    Gerestein, C.G.; Berger, R.M.F.; Dalinghaus, M.; Bogers, A.J.J.C.; Witsenburg, M.

    2003-01-01

    Background Pulmonary atresia and intact ventricular septum is characterised by a great morphological variety. Treatment is not uniform. Objective To evaluate our experience with transcatheter valvotomy and balloon dilatation in neonates with pulmonary atresia and intact ventricular septum. Design Retrospective. Methods Between January 1997 and September 2000 five neonates with pulmonary atresia and intact ventricular septum underwent transcatheter valvotomy and balloon dilatation. Results The catheter intervention was performed at a mean age of 27 days (range 3-95 days). The atretic pulmonary valve was successfully perforated in all neonates. Subsequent balloon dilatation was successful in four neonates. Balloon dilatation was unsuccessful in one patient, who underwent an elective surgical valvotomy of the pulmonary valve after five days. Three patients needed a modified Blalock-Taussig shunt after a mean of 23 days. Four patients required repeated balloon dilatation after a mean of 227 days. Mean follow-up was 2.7 years (range 1-5 years). Conclusions Transcatheter perforation of the pulmonary valve membrane and balloon dilatation is a good, safe initial therapy in selected neonates with pulmonary atresia and intact ventricular septum. This procedure can prevent open-heart surgery in these patients in the first months of life. ImagesFigure 1Figure 2 PMID:25696158

  19. Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry

    DOEpatents

    Siminovitch, M.

    1998-02-10

    A novel design is described for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment. 9 figs.

  20. Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry

    DOEpatents

    Siminovitch, Michael

    1998-01-01

    A novel design for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment.

  1. The Retrograde Connections and Anatomical Segregation of the Göttingen Minipig Nucleus Accumbens

    PubMed Central

    Meidahl, Anders C.; Orlowski, Dariusz; Sørensen, Jens C. H.; Bjarkam, Carsten R.

    2016-01-01

    Nucleus accumbens (NAcc) has been implicated in several psychiatric disorders such as treatment resistant depression (TRD), and obsessive-compulsive disorder (OCD), and has been an ongoing experimental target for deep brain stimulation (DBS) in both rats and humans. In order to translate basic scientific results from rodents to the human setting a large animal model is needed to thoroughly study the effect of such therapeutic interventions. The aim of the study was, accordingly, to describe the basic anatomy of the Göttingen minipig NAcc and its retrograde connections. Tracing was carried out by MRI-guided stereotactic unilateral fluorogold injections in the NAcc of Göttingen minipigs. After 2 weeks the brains were sectioned and subsequently stained with Nissl-, autometallographic (AMG) development of myelin, and DARPP-32 and calbindin immunohistochemistry. The minipig NAcc was divided in a central core and an outer medial, ventral and lateral shell. We confirmed the NAcc to be a large and well-segregated structure toward its medial, ventral and lateral borders. The fluorogold tracing revealed inputs to NAcc from the medial parts of the prefrontal cortex, BA 25 (subgenual cortex), insula bilaterally, amygdala, the CA1-region of hippocampus, entorhinal cortex, subiculum, paraventricular and anterior parts of thalamus, dorsomedial parts of hypothalamus, substantia nigra, ventral tegmental area (VTA), the retrorubral field and the dorsal and median raphe nuclei. In conclusion the Göttingen minipig NAcc is a large ventral striatal structure that can be divided into a core and shell with prominent afferent connections from several subrhinal and infra-/prelimbic brain areas. PMID:27994542

  2. The role of the nucleus accumbens in instrumental conditioning: Evidence of a functional dissociation between accumbens core and shell.

    PubMed

    Corbit, L H; Muir, J L; Balleine, B W

    2001-05-01

    In three experiments we examined the effect of bilateral excitotoxic lesions of the nucleus accumbens core or shell subregions on instrumental performance, outcome devaluation, degradation of the instrumental contingency, Pavlovian conditioning, and Pavlovian-instrumental transfer. Rats were food deprived and trained to press two levers, one delivering food pellets and the other a sucrose solution. All animals acquired the lever-press response although the rate of acquisition and overall response rates in core-lesioned animals were depressed relative to that in the shell- or sham-lesioned animals. Furthermore, in shell- and sham-lesioned rats, post-training devaluation of one of the two outcomes using a specific satiety procedure produced a selective reduction in performance on the lever that, in training, delivered the prefed outcome. In contrast, the core-lesioned rats failed to show a selective devaluation effect and reduced responding on both levers. Subsequent tests revealed that these effects of core lesions were not caused by an impairment in their ability to recall the devalued outcome, to discriminate the two outcomes, or to encode the instrumental action-outcome contingencies to which they were exposed. Additionally, the core lesions did not have any marked effect on Pavlovian conditioning or on Pavlovian-instrumental transfer. Importantly, although shell-lesioned rats showed no deficit in any test of instrumental conditioning or in Pavlovian conditioning, they failed to show any positive transfer in the Pavlovian-instrumental transfer test. This double dissociation suggests that nucleus accumbens core and shell differentially mediate the impact of instrumental and Pavlovian incentive processes, respectively, on instrumental performance.

  3. Persistent cue-evoked activity of accumbens neurons after prolonged abstinence from self-administered cocaine.

    PubMed

    Ghitza, Udi E; Fabbricatore, Anthony T; Prokopenko, Volodymyr; Pawlak, Anthony P; West, Mark O

    2003-08-13

    Persistent neural processing of information regarding drug-predictive environmental stimuli may be involved in motivating drug abusers to engage in drug seeking after abstinence. The addictive effects of various drugs depend on the mesocorticolimbic dopamine system innervating the nucleus accumbens. We used single-unit recording in rats to test whether accumbens neurons exhibit responses to a discriminative stimulus (SD) tone previously paired with cocaine availability during cocaine self-administration. Presentation of the tone after 3-4 weeks of abstinence resulted in a cue-induced relapse of drug seeking under extinction conditions. Accumbens neurons did not exhibit tone-evoked activity before cocaine self-administration training but exhibited significant SD tone-evoked activity during extinction. Under extinction conditions, shell neurons exhibited significantly greater activity evoked by the SD tone than that evoked by a neutral tone (i.e., never paired with reinforcement). In contrast, core neurons responded indiscriminately to presentations of the SD tone or the neutral tone. Accumbens shell neurons exhibited significantly greater SD tone-evoked activity than did accumbens core neurons. Although the onset of SD tone-evoked activity occurred well before the earliest movements commenced (150 msec), this activity often persisted beyond the onset of tone-evoked movements. These results indicate that accumbens shell neurons exhibit persistent processing of information regarding reward-related stimuli after prolonged drug abstinence. Moreover, the accumbens shell appears to be involved in discriminating the motivational value of reward-related associative stimuli, whereas the accumbens core does not.

  4. [Left atrial thrombosis in patients with antiphospholipid antibody syndrome and mesenchymal abnormal septum].

    PubMed

    Ghirarduzzi, A; Galimberti, D; Silingardi, M; Cerioli, G C; Parravicini, R; Salvarani, C; Iori, I

    2001-10-01

    Antiphospholipid antibodies are a heterogeneous family of immunoglobulins that includes lupus anticoagulant and anticardiolipin antibodies. They are strongly associated with a clinical syndrome characterized by venous and arterial thrombosis and spontaneous fetal losses. This syndrome may be primary or else secondary to autoimmune or neoplastic diseases. The cardiovascular system is frequently involved with mitral or aortic insufficiency, juvenile myocardial infarction, and primitive pulmonary hypertension. However, the occurrence of intracardiac thrombi is rare. We describe a case of an intracardiac right atrial thrombus in a 19-year-old asymptomatic woman who was admitted in December 1998 to the Thrombosis Center owing to the finding, during routine work-up, of a prolonged activated partial thromboplastin time (71 s) and thrombocytopenia (71 x 1000/mm3), a positive antinuclear antibody test (1/320), positivity for lupus anticoagulant, and increased IgG (92 GPL-U/ml) and IgM (27 MPL-U/ml) anticardiolipin antibodies. Six months later, the patient presented with headache, edema and cyanosis of the face and jugular swelling. Transthoracic and transesophageal echocardiography revealed a right atrial mass which was clearly distinguishable from the tricuspid valve and extended to the superior vena cava. The patient was successfully submitted to surgical excision of the thrombus. Histology revealed that the mass was adherent to an abnormal septum consisting of mesenchymal tissue. Although the American Rheumatology Association criteria for the diagnosis of systemic lupus erythematosus were not fulfilled, the positivity of antinuclear antibody test is in favor of a lupus-like syndrome. The decision to opt for surgical excision of the thrombus was determined by the unclear nature of the atrial mass. It may be necessary that such patients be submitted to anticoagulant therapy for the rest of their lives or temporarily (6-12 months). This underscores the importance of the

  5. Switching from Contextual to Tone Fear Conditioning and Vice Versa: The Key Role of the Glutamatergic Hippocampal-Lateral Septal Neurotransmission

    ERIC Educational Resources Information Center

    Calandreau, Ludovic; Desgranges, Bertrand; Jaffard, Robert; Desmedt, Aline

    2010-01-01

    The aim of the present experiment was to directly assess the role of the glutamatergic hippocampal-lateral septal (HPC-LS) neurotransmission in tone and contextual fear conditioning. We found that pretraining infusion of glutamatergic acid into the lateral septum promotes tone conditioning and concomitantly disrupts contextual conditioning.…

  6. Direct interaction of FtsZ and MreB is required for septum synthesis and cell division in Escherichia coli.

    PubMed

    Fenton, Andrew K; Gerdes, Kenn

    2013-07-03

    How bacteria coordinate cell growth with division is not well understood. Bacterial cell elongation is controlled by actin-MreB while cell division is governed by tubulin-FtsZ. A ring-like structure containing FtsZ (the Z ring) at mid-cell attracts other cell division proteins to form the divisome, an essential protein assembly required for septum synthesis and cell separation. The Z ring exists at mid-cell during a major part of the cell cycle without contracting. Here, we show that MreB and FtsZ of Escherichia coli interact directly and that this interaction is required for Z ring contraction. We further show that the MreB-FtsZ interaction is required for transfer of cell-wall biosynthetic enzymes from the lateral to the mature divisome, allowing cells to synthesise the septum. Our observations show that bacterial cell division is coupled to cell elongation via a direct and essential interaction between FtsZ and MreB.

  7. Lateral Mixing

    DTIC Science & Technology

    2013-09-30

    apl.uw.edu/dasaro LONG-TERM GOALS I seek to understand the processes controlling lateral mixing in the ocean, particularly at the submesoscale ...APPROACH During AESOP, Lee and D’Asaro pioneered an innovative approach to measuring submesoscale structure in strong fronts. An adaptive measurement...injection of potential vorticity and scalars is predicted to create an intense ‘ submesoscale soup’ of high small-scale variance. The combination of small

  8. Lateral Mixing

    DTIC Science & Technology

    2012-11-08

    to mesoscale forcing. APPROACH Figure 1: MVP system deployed from stern of R/V Endeavor in Sargasso Sea . 1 DISTRIBUTION STATEMENT A. Approved for...integrative efforts with other sea -going investigators and numerical modelers. The Lateral Mixing Experiment project was an ideal opportunity to...2011 I also participated in the sea -going part of this project, taking my group on the R/V Endeavor in June 2011. Our role was to sample around the

  9. Lateral Mixing

    DTIC Science & Technology

    2011-09-30

    ocean as it responds to mesoscale forcing. APPROACH Figure 1: MVP system deployed from stern of R/V Endeavor in Sargasso Sea . My approach for...therefore requires integrative efforts with other sea -going investigators and numerical modelers. The Lateral Mixing Experiment project was an ideal...also participated in the sea -going part of this project, taking my group on the R/V Endeavor in June 2011. Our role was to sample around the center of

  10. [The application of the nanostructured bioplastic material for the plastic reconstruction of perforations in the nasal septum].

    PubMed

    Grigor'eva, M V; Akimov, A V; Bagautdinov, A A

    2014-01-01

    The objective of the present work was to estimate the effectiveness of the application of the nanostructured bioplastic material for the plastic reconstruction of perforations in the nasal septum. A total of 80 patients were recruited for the study. Half of them underwent plastic reconstruction of perforations in the nasal septum with the application of the nanostructured bioplastic material. Forty patients were treated using no biotransplants. The functional state of nasal cavity mucosa was evaluated before and after surgery. It is concluded that the nanostructured bioplastic material used in the present study ensures efficacious reconstruction of nasal septum integrity after plastic correction of septal perforations.

  11. Morphological interaction between the nasal septum and nasofacial skeleton during human ontogeny.

    PubMed

    Goergen, Matthew J; Holton, Nathan E; Grünheid, Thorsten

    2017-05-01

    The nasal septal cartilage is thought to be a key growth center that contributes to nasofacial skeletal development. Despite the developmental influence of the nasal septum however, humans often exhibit a high frequency of septal deviation suggesting discordance in the growth between the septum and surrounding nasofacial skeleton. While there are numerous etiological factors that contribute to septal deviation, the surrounding nasofacial skeleton may also act to constrain the septum, resulting in altered patterns of growth. That is, while the nasal septum has a direct morphogenetic influence on aspects of the nasofacial skeleton, other nasofacial skeletal components may restrict septal growth resulting in deviation. Detailing the developmental relationship between these structures is important not only for understanding the causal determinants of nasal septal deviation, but also for developing a broader understanding of the complex interaction between the facial skeleton and chondrocranium. We selected 66 non-syndromic subjects from the University of Minnesota Orthodontic Clinic who ranged from 7 to 18 years in age and had an existing pretreatment cone-beam computed tomography (CBCT) scan. Using CBCT data, we examined the developmental relationship between nasal septal deviation and the surrounding nasofacial skeleton. We measured septal deviation as a percentage of septal volume relative to a modeled non-deviated septum. We then collected a series of coordinate landmark data in the region immediately surrounding the nasal septum in the midsagittal plane representing the nasofacial skeleton. First, we examined ontogenetic changes in the magnitude of nasal septal deviation relative to chronological age and nasofacial size. Next, using Procrustes-based geometric morphometric techniques, we assessed the morphological relationship between nasal septal deviation and nasofacial skeletal shape. Our results indicate that variation in the magnitude of nasal septal

  12. Reduced volume of the nucleus accumbens in heroin addiction.

    PubMed

    Seifert, Christian L; Magon, Stefano; Sprenger, Till; Lang, Undine E; Huber, Christian G; Denier, Niklaus; Vogel, Marc; Schmidt, André; Radue, Ernst-Wilhelm; Borgwardt, Stefan; Walter, Marc

    2015-12-01

    The neural mechanisms of heroin addiction are still incompletely understood, even though modern neuroimaging techniques offer insights into disease-related changes in vivo. While changes on cortical structure have been reported in heroin addiction, evidence from subcortical areas remains underrepresented. Functional imaging studies revealed that the brain reward system and particularly the nucleus accumbens (NAcc) play a pivotal role in the pathophysiology of drug addiction. The aim of this study was to investigate whether there was a volume difference of the NAcc in heroin addiction in comparison to healthy controls. A further aim was to correlate subcortical volumes with clinical measurements on negative affects in addiction. Thirty heroin-dependent patients under maintenance treatment with diacetylmorphine and twenty healthy controls underwent structural MRI scanning at 3T. Subcortical segmentation analysis was performed using FMRIB's Integrated Registration and Segmentation Tool function of FSL. The State-Trait Anxiety Inventory and the Beck Depression Inventory were used to assess trait anxiety and depressive symptoms, respectively. A decreased volume of the left NAcc was observed in heroin-dependent patients compared to healthy controls. Depression score was negatively correlated with left NAcc volume in patients, whereas a positive correlation was found between the daily opioid dose and the volume of the right amygdala. This study indicates that there might be structural differences of the NAcc in heroin-dependent patients in comparison with healthy controls. Furthermore, correlations of subcortical structures with negative emotions and opioid doses might be of future relevance for the investigation of heroin addiction.

  13. Oxytocin excites nucleus accumbens shell neurons in vivo.

    PubMed

    Moaddab, Mahsa; Hyland, Brian I; Brown, Colin H

    2015-09-01

    Oxytocin modulates reward-related behaviors. The nucleus accumbens shell (NAcSh) is a major relay in the brain reward pathway and expresses oxytocin receptors, but the effects of oxytocin on the activity of NAcSh neurons in vivo are unknown. Hence, we used in vivo extracellular recording to show that intracerebroventricular (ICV) oxytocin administration (0.2μg) robustly increased medial NAcSh neuron mean firing rate; this increase was almost exclusively evident in slow-firing neurons and was not associated with any change in firing pattern. To determine whether oxytocin excitation of medial NAcSh neurons is modulated by drugs that impact the brain reward pathway, we next tested the effects of ICV oxytocin following repeated morphine treatment. In morphine-treated rats, ICV oxytocin did not affect the mean firing rate of medial NAcSh neurons. Taken together, these results show that oxytocin excites medial NAcSh neurons but does not do so after repeated morphine. This could be an important factor in oxytocin modulation of reward-related behaviors, such as drug addiction.

  14. A thalamic input to the nucleus accumbens mediates opiate dependence

    PubMed Central

    Zhu, Yingjie; Wienecke, Carl F.R.; Nachtrab, Gregory; Chen, Xiaoke

    2016-01-01

    Chronic opiate use induces opiate dependence, which is characterized by extremely unpleasant physical and emotional feelings after drug use is terminated. Both rewarding effects of drug and the desire to avoid withdrawal symptoms motivate continued drug use1-3, and the nucleus accumbens (NAc) is important for orchestrating both processes4,5. While multiple inputs to the NAc regulate reward6-9, little is known about the NAc circuitry underlying withdrawal. Here we identify the paraventricular nucleus of the thalamus (PVT) as a prominent input to the NAc mediating the expression of opiate withdrawal induced physical signs and aversive memory. Activity in the PVT to NAc pathway is necessary and sufficient to mediate behavioral aversion. Selectively silencing this pathway abolishes aversive symptoms in two different mouse models of opiate withdrawal. Chronic morphine exposure selectively potentiates excitatory transmission between the PVT and D2-receptor-expressing medium spiny neurons (D2-MSNs) via synaptic insertion of GluA2-lacking AMPA receptors. Notably, in vivo optogenetic depotentiation restores normal transmission at PVT→D2-MSNs synapses and robustly suppresses morphine withdrawal symptoms. These results link morphine-evoked pathway- and cell type-specific plasticity in the PVT→NAc circuit to opiate dependence, and suggest that reprogramming this circuit holds promise for treating opiate addiction. PMID:26840481

  15. Reconstruction of internal nasal valve, septum, dorsum, and anterior structures of the nose in a single procedure with a molded bone graft: the sail graft.

    PubMed

    Guneren, Ethem; Ciftci, Mehmet; Karaaltin, Mehmet Veli; Yildiz, Kemalettin

    2012-05-01

    Excessive surgical removal or traumatic loss of the tissues supporting the nasal roof can result in the "saddle nose" deformity. It involves both cartilage and bone deficiencies. Two main resources are used to reconstruct this difficult deformity: autogenous bone and cartilage grafts and alloplastic materials. This study presents the reconstruction of the dorsum, septum, internal nasal valve, and anterior structures and the tip of the nose using a block of molded autogenous bone graft. We called it the "sail graft," because it looks like a sail from a lateral view. The mast of the sail is oriented in a superior-to-inferior direction, beginning in the frontonasal region to the tip of the nose to form a straight, well-rounded dorsum. The longest postoperative follow-up of 13 cases is now 10 years; the median follow-up is 2 years. The results have been satisfactory.

  16. Treatment of Virgin OHVIRA Syndrome with Haematometrocolpos by Complete Incision of Vaginal Septum without Hymenotomy

    PubMed Central

    Tug, Niyazi; Çelik, Ayhan; Alp, Turgut; Yenidede, Ilter

    2015-01-01

    Mullerian malformations result from defective fusion of the Mullerian ducts during development of the female reproductive system and have an incidence of 2-3%. The American Fertility Society classification of Mullerian anomalies is the most commonly utilized standardized classification. The least common form of these malformations is Herlyn-Werner-Wunderlich syndrome characterized by obstructed hemivagina and ipsilateral renal anomaly (OHVIRA). This syndrome has been described with case reports since 1922. Early diagnosis and surgery that include drainage of fluid and resection of the vaginal septum is necessary for OHVIRA to prevent late complications (i.e. pyocolpos, chronic cryptomenorrhea). Here in we report a case of Herlyn-Werner-Wunderlich syndrome that hymen has been preserved during the operation of non-fenestrated transverse vaginal septum resection with hysteroscopy. PMID:26676254

  17. Persistent Truncus Arteriosus With Intact Ventricular Septum: Clinical, Hemodynamic and Short-term Surgical Outcome

    PubMed Central

    Ajami, Gholamhossein; Amirghofran, Ahmad Ali; Amoozgar, Hamid; Borzouee, Mohammad

    2015-01-01

    Introduction: Truncus arteriosus with intact ventricular septum is a rare and unique variant of persistent truncus arteriosus (PTA) which usually presents with central cyanosis and congestive heart failure in neonate and early infancy. Associated cardiac and non-cardiac anomalies may affect morbidity and mortality of these patients. Case Presentation: We describe clinical presentation, echocardiography and angiographic features of a 7-month old boy with PTA and intact ventricular septum who underwent surgical repair of the anomaly at our institution. Operative findings, surgical procedure and short-term outcome are reported. Conclusions: While our patient had systemic pulmonary arterial pressure at the time of complete surgical repair, it was improved after surgery. PMID:26495090

  18. It takes two DNA translocases to untangle chromosomes from the division septum.

    PubMed

    Wu, Ling Juan

    2009-11-01

    The DNA translocase function of Bacillus subtilis SpoIIIE is essential for spore development and is important during vegetative growth for moving trapped chromosomal DNA away from division septa. Two papers in this issue of Molecular Microbiology, from the teams of Peter Graumann and William Burkholder, have characterized a second SpoIIIE/FtsK-like protein in B. subtilis, SftA. This protein lacks any recognizable transmembrane domain possessed by the other characterized members of the family, yet the protein is shown to be associated with the division septum and, like SpoIIIE, is required for clearing DNA from the septum. However, SftA and SpoIIIE act at different stages of septation and together they ensure maximum fidelity in chromosome segregation.

  19. Locomotor conditioning by amphetamine requires cyclin-dependent kinase 5 signaling in the nucleus accumbens.

    PubMed

    Singer, Bryan F; Neugebauer, Nichole M; Forneris, Justin; Rodvelt, Kelli R; Li, Dongdong; Bubula, Nancy; Vezina, Paul

    2014-10-01

    Intermittent systemic exposure to psychostimulants leads to several forms of long-lasting behavioral plasticity including nonassociative sensitization and associative conditioning. In the nucleus accumbens (NAcc), the protein serine/threonine kinase cyclin-dependent kinase 5 (Cdk5) and its phosphorylation target, the guanine-nucleotide exchange factor kalirin-7 (Kal7), may contribute to the neuroadaptations underlying the formation of conditioned associations. Pharmacological inhibition of Cdk5 in the NAcc prevents the increases in dendritic spine density normally observed in this site following repeated cocaine. Mice lacking the Kal7 gene display similar effects. As increases in spine density may relate to the formation of associative memories and both Cdk5 and Kal7 regulate the generation of spines following repeated drug exposure, we hypothesized that either inhibiting Cdk5 or preventing its phosphorylation of Kal7 in the NAcc may prevent the induction of drug conditioning. In the present experiments, blockade in rats of NAcc Cdk5 activity with roscovitine (40 nmol/0.5 μl/side) prior to each of 4 injections of amphetamine (1.5 mg/kg; i.p.) prevented the accrual of contextual locomotor conditioning but spared the induction of locomotor sensitization as revealed on tests conducted one week later. Similarly, transient viral expression in the NAcc exclusively during amphetamine exposure of a threonine-alanine mutant form of Kal7 [mKal7(T1590A)] that is not phosphorylated by Cdk5 also prevented the accrual of contextual conditioning and spared the induction of sensitization. These results indicate that signaling via Cdk5 and Kal7 in the NAcc is necessary for the formation of context-drug associations, potentially through the modulation of dendritic spine dynamics in this site.

  20. Increases in cytoplasmic dopamine compromise the normal resistance of the nucleus accumbens to methamphetamine neurotoxicity.

    PubMed

    Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M

    2009-06-01

    Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the caudate-putamen (CPu) where long-term DA depletion and microglial activation are most evident. Even damage within the CPu is remarkably heterogenous with lateral and ventral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared of the damage that accompanies binge METH intoxication. Increases in cytoplasmic DA produced by reserpine, L-DOPA or clorgyline prior to METH uncover damage in the NAc as evidenced by microglial activation and depletion of DA, tyrosine hydroxylase (TH), and the DA transporter. These effects do not occur in the NAc after treatment with METH alone. In contrast to the CPu where DA, TH, and DA transporter levels remain depleted chronically, DA nerve ending alterations in the NAc show a partial recovery over time. None of the treatments that enhance METH toxicity in the NAc and CPu lead to losses of TH protein or DA cell bodies in the substantia nigra or the ventral tegmentum. These data show that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of METH to include brain structures not normally targeted for damage by METH alone. The resistance of the NAc to METH-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of METH neurotoxicity by alterations in DA homeostasis is significant in light of the important roles played by this brain structure.

  1. Serotonin2C receptors in the nucleus accumbens are involved in enhanced alcohol-drinking behavior.

    PubMed

    Yoshimoto, Kanji; Watanabe, Yoshihisa; Tanaka, Masaki; Kimura, Minoru

    2012-04-01

    Dopamine and serotonin (5-HT) in the nucleus accumbens (ACC) and ventral tegmental area of the mesoaccumbens reward pathways have been implicated in the mechanisms underlying development of alcohol dependence. We used a C57BL/6J mouse model with increased voluntary alcohol-drinking behavior by exposing the mice to alcohol vapor for 20 consecutive days. In the alcohol-exposed mice, the expression of 5-HT(2C) receptor mRNA increased in the ACC, caudate nucleus and putamen, dorsal raphe nucleus (DRN), hippocampus and lateral hypothalamus, while the protein level of 5-HT(2C) receptor significantly increased in the ACC. The expression of 5-HT(7) receptor mRNA increased in the ACC and DRN. Contents of 5-HT decreased in the ACC shell (ACC(S) ) and DRN of the alcohol-exposed mice. The basal extracellular releases of dopamine (DA) and 5-HT in the ACC(S) increased more in the alcohol-exposed mice than in alcohol-naïve mice. The magnitude of the alcohol-induced ACC(S) DA and 5-HT release in the alcohol-exposed mice was increased compared with the control mice. Intraperitoneal (i.p.) administration or local injection into ACC(S) of the 5-HT(2C) receptor antagonist, SB-242084, suppressed voluntary alcohol-drinking behavior in the alcohol-exposed mice. But the i.p. administration of the 5-HT(7) receptor antagonist, SB-258719, did not have significant effects on alcohol-drinking behavior in the alcohol-exposed mice. The effects of the 5-HT(2C) receptor antagonist were not observed in the air-exposed control mice. These results suggest that adaptations of the 5-HT system, especially the upregulation of 5-HT(2C) receptors in the ACC(S) , are involved in the development of enhanced voluntary alcohol-drinking behavior.

  2. Ghrelin regulates phasic dopamine and nucleus accumbens signaling evoked by food-predictive stimuli

    PubMed Central

    Cone, Jackson J.; Roitman, Jamie D.; Roitman, Mitchell F.

    2015-01-01

    Environmental stimuli that signal food availability hold powerful sway over motivated behavior and promote feeding, in part, by activating the mesolimbic system. These food-predictive cues evoke brief (phasic) changes in nucleus accumbens (NAc) dopamine concentration and in the activity of individual NAc neurons. Phasic fluctuations in mesolimbic signaling have been directly linked to goal-directed behaviors, including behaviors elicited by food-predictive cues. Food-seeking behavior is also strongly influenced by physiological state (i.e. hunger vs. satiety). Ghrelin, a stomach hormone that crosses the blood-brain barrier, is linked to the perception of hunger and drives food intake, including intake potentiated by environmental cues. Notwithstanding, whether ghrelin regulates phasic mesolimbic signaling evoked by food-predictive stimuli is unknown. Here, rats underwent Pavlovian conditioning in which one cue predicted the delivery of rewarding food (CS+) and a second cue predicted nothing (CS−). After training, we measured the effect of ghrelin infused into the lateral ventricle (LV) on sub-second fluctuations in NAc dopamine using fast-scan cyclic voltammetry and individual NAc neuron activity using in vivo electrophysiology in separate groups of rats. LV ghrelin augmented both phasic dopamine and phasic increases in the activity of NAc neurons evoked by the CS+. Importantly, ghrelin did not affect the dopamine nor NAc neuron response to the CS−, suggesting that ghrelin selectively modulated mesolimbic signaling evoked by motivationally significant stimuli. These data demonstrate that ghrelin, a hunger signal linked to physiological state, can regulate cue-evoked mesolimbic signals that underlie food-directed behaviors. PMID:25708523

  3. ALOBAR HOLOPROSENCEPHALY, CLEFT LIP/PALATE, URORECTAL SEPTUM MALFORMATION SEQUENCE AND CONGENITAL PERINEAL HERNIA IN A FETUS.

    PubMed

    Girisha, K M; Nayak, S S; Shukla, A; Bhat, S K

    2015-01-01

    We report on a fetus with alobar holoprosencephaly, complete cleft lip and palate, urorectal septum malformation sequence and perineal hernia. To our knowledge this appears to be a novel fetal malformation syndrome.

  4. Lupus vulgaris leading to perforation of nasal septum in a child.

    PubMed

    Singal, Archana; Arora, Rahul; Pandhi, Deepika

    2015-01-01

    Lupus vulgaris (LV) is a common form of cutaneous tuberculosis in India, mostly involving the lower half of the body. Facial involvement is uncommon. Untreated disease may lead to significant morbidity due to atrophic scarring, mutilation, and deformity. We report a case of multi-focal LV in a 10-year-old boy affecting the nose and cheek that resulted in perforation of the nasal septum, a rarely reported complication.

  5. Types and synaptic connections of hippocampal inhibitory neurons reciprocally connected with the medial septum.

    PubMed

    Takács, Virág T; Freund, Tamás F; Gulyás, Attila I

    2008-07-01

    The morphological properties and connectivity of gamma-aminobutyric acid (GABA)ergic hippocampal cells projecting to the medial septum (HS cells) were examined in the rat. Two types of HS cells are located in different layers of the hippocampus: sparsely-spiny cells are in CA1-3 str. oriens and CA3 str. radiatum, where recurrent axons of pyramidal cells arborize. Densely-spiny HS cells with spiny somata are located in the termination zone of granule cell axons. In the hilus, intermediate morphologies can also be found. HS cells receive GABAergic medial septal afferents in all layers where they occur, thus the connectivity of the septum and the hippocampus is reciprocal at cell level. HS cells receive extremely dense innervation, sparsely-spiny cells are innervated by approximately 19,000 excitatory inputs, while densely-spiny cells get an even larger number (approximately 37,000). While 14% of the inputs are inhibitory for the sparsely-spiny cells, it is only 2.3% in the case of densely-spiny cells. Because a high proportion (up to 54.5% on somata and 27.5% on dendrites) of their GABAergic inputs derived from labelled septal terminals, their predominant inhibitory input probably arises from the medial septum. CA1 area HS cells possessed myelinated projecting axons, as well as local collaterals, which targeted mostly pyramidal cell dendrites and spines in str. oriens and radiatum. The synaptic organization suggests that by sampling the activity of large populations of principal cells HS cells can reliably broadcast hippocampal activity level to the medial septum.

  6. Beamstrahlung Photon Load on the TESLA Extraction Septum Blade(LCC-0104)

    SciTech Connect

    Seryi, A

    2003-10-02

    This note describes work performed in the framework of the International Linear Collider Technical Review Committee [1] to estimate the power load on the TESLA extraction septum blade due to beamstrahlung photons. It is shown, that under realistic conditions the photon load can be several orders of magnitude higher than what was estimated in the TESLA TDR [2] for the ideal Gaussian beams, potentially representing a serious limitation of the current design.

  7. [Aneurysms of the interauricular septum. Review of the literature apropos of 8 cases].

    PubMed

    Herpin, D; Ciber, M A; Boutaud, P; Amiel, A; Gaudeau, B; Guillem, J P; Demange, J

    1986-01-01

    The authors present 8 cases of aneurysms of the interauricular septum (AIAS). The diagnosis was established in all cases by two-dimensional echocardiography (E2D) which was requested, three times following a cerebral vascular accident (CVA). The AIAS manifest themselves as localised "hernias" of the inter-auricular septum, mobile during the cardiac cycle. Their topography was strictly right inter-auricular in 6 cases, whereas in the other 2 patients the AIAS passed into the left atrium at protosystole and returned to the right atrium at telesystole. Catheterization with angiography was carried out 5 times: the inter-auricular septum was crossed 4 times without gasometric reasons for an associated shunt; the AIAS was opacified in all cases. An anti-coagulant treatment was prescribed for 3 patients who had suffered a CVA, and for a fourth presenting numerous supraventricular extrasystoles which were sometimes grouped. A review of the literature of the last fifty years enabled a compilation of 93 cases of AIAS to be made, 49 of which had been examined by E2D, 35 had had a hemodynamic and angiographic exploration and 47 an anatomical and/or surgical confirmation. The main results obtained are described and commented on. The diagnostic, etiopathological and prognostic problems raised by the "updating" of this pathology are discussed.

  8. Phospholipase C beta 4 in the medial septum controls cholinergic theta oscillations and anxiety behaviors.

    PubMed

    Shin, Jonghan; Gireesh, Gangadharan; Kim, Seong-Wook; Kim, Duk-Soo; Lee, Sukyung; Kim, Yeon-Soo; Watanabe, Masahiko; Shin, Hee-Sup

    2009-12-09

    Anxiety is among the most prevalent and costly diseases of the CNS, but its underlying mechanisms are not fully understood. Although attenuated theta rhythms have been observed in human subjects with increased anxiety, no study has been done on the possible physiological link between these two manifestations. We found that the mutant mouse for phospholipase C beta 4 (PLC-beta 4(-/-)) showed attenuated theta rhythm and increased anxiety, presenting the first animal model for the human condition. PLC-beta 4 is abundantly expressed in the medial septum, a region implicated in anxiety behavior. RNA interference-mediated PLC-beta 4 knockdown in the medial septum produced a phenotype similar to that of PLC-beta 4(-/-) mice. Furthermore, increasing cholinergic signaling by administering an acetylcholinesterase inhibitor cured the anomalies in both cholinergic theta rhythm and anxiety behavior observed in PLC-beta 4(-/-) mice. These findings suggest that (1) PLC-beta 4 in the medial septum is involved in controlling cholinergic theta oscillation and (2) cholinergic theta rhythm plays a critical role in suppressing anxiety. We propose that defining the cholinergic theta rhythm profile may provide guidance in subtyping anxiety disorders in humans for more effective diagnosis and treatments.

  9. [Mediolateral gradient of the nucleus accumbens nitrergic activation during exploratory behavior].

    PubMed

    Saul'skaia, N B; Sudorgina, P V

    2012-04-01

    In Sprague-Dawley rats, by means of in vivo microdialysis combined with HPLC analysis it has been shown that an exploratory behavior in a new environment is accompanied by a rise in extracellular levels of citrulline (an NO co-product) in the mediolateral regions of the n. accumbens with the maximum observed in the medial n. accumbens. Infusions of 7-nitroindazole (0.5 mM), a neuronal NO synthase inhibitor, into the medial n. accumbens prevented the exploration-induced rise of extracellular citrulline levels in this area. The second presentation of the same chamber did not produce any significant changes of extracellular citrulline levels in the medial n. accumbens, although there was a tendency of a small increase. The presentation of a familiar chamber did not affect citrulline extracellular levels in this area. The data obtained indicate for the first time that exploratory activity in a new environment is accompanied by the nitrergic activation in the entire n. accumbens with the maximal activation in the medial part of this brain area.

  10. Out of phase: relevance of the medial septum for directional hearing and phonotaxis in the natural habitat of field crickets.

    PubMed

    Hirtenlehner, Stefan; Römer, Heiner; Schmidt, Arne K D

    2014-02-01

    A modified tracheal system is the anatomical basis for a pressure difference receiver in field crickets, where sound has access to the inner and outer side of the tympanum of the ear in the forelegs. A thin septum in the midline of a connecting trachea coupling both ears is regarded to be important in producing frequency-dependent interaural intensity differences (IIDs) for sound localization. However, the fundamental role of the septum in directional hearing has recently been challenged by the finding that the localization ability is ensured even with a perforated septum, at least under controlled laboratory conditions. Here, we investigated the influence of the medial septum on phonotaxis of female Gryllus bimaculatus under natural conditions. Surprisingly, even with a perforated septum, females reliably tracked a male calling song in the field. Although reduced by 5.2 dB, IIDs still averaged at 7.9 dB and provided a reliable proximate basis for the observed behavioural performance of operated females in the field. In contrast, in the closely related species Gryllus campestris the same septum perforation caused a dramatic decline in IIDs over all frequencies tested. We discuss this discrepancy with respect to a difference in the phenotype of their tracheal systems.

  11. A reduced progenitor pool population accounts for the rudimentary appearance of the septum, medial pallium and dorsal pallium in birds.

    PubMed

    Charvet, Christine J

    2010-01-01

    To date, most studies comparing birds and mammals have focused on the similarities in brain development, architecture and connectivity. However, major differences in size, anatomy and organization exist in the telencephalon of adult birds and mammals. For instance, the septum, medial pallium and dorsal pallium of birds appear rudimentary compared with those of mammals. To identify the developmental processes that give rise to this difference in size and anatomy of the septum, medial pallium and dorsal pallium, the thickness of the ventricular zone that encompasses these regions was measured in embryonic birds (i.e. chickens, sparrows) and mammals (i.e. rabbits, hedgehogs, shrews, platypus). Cumulative bromodeoxyuridine (BrdU) labeling in chickens at embryonic day 7 and 8 was also used to examine levels of cell proliferation in the ventricular zone of the septum, medial pallium and dorsal pallium. The study's main finding is that the ventricular zone of the septum, medial pallium and dorsal pallium is thinner in birds than in mammals. In chickens, the septum, medial pallium and dorsal pallium ventricular zone harbor few proliferating (i.e. BrdU+) cells. Collectively, these findings suggest that a reduced progenitor pool population account for the 'rudimentary' appearance of the avian septum, medial pallium and dorsal pallium.

  12. Encoding of aversion by dopamine and the nucleus accumbens.

    PubMed

    McCutcheon, James E; Ebner, Stephanie R; Loriaux, Amy L; Roitman, Mitchell F

    2012-01-01

    Adaptive motivated behavior requires rapid discrimination between beneficial and harmful stimuli. Such discrimination leads to the generation of either an approach or rejection response, as appropriate, and enables organisms to maximize reward and minimize punishment. Classically, the nucleus accumbens (NAc) and the dopamine projection to it are considered an integral part of the brain's reward circuit, i.e., they direct approach and consumption behaviors and underlie positive reinforcement. This reward-centered framing ignores important evidence about the role of this system in encoding aversive events. One reason for bias toward reward is the difficulty in designing experiments in which animals repeatedly experience punishments; another is the challenge in dissociating the response to an aversive stimulus itself from the reward/relief experienced when an aversive stimulus is terminated. Here, we review studies that employ techniques with sufficient time resolution to measure responses in ventral tegmental area and NAc to aversive stimuli as they are delivered. We also present novel findings showing that the same stimulus - intra-oral infusion of sucrose - has differing effects on NAc shell dopamine release depending on the prior experience. Here, for some rats, sucrose was rendered aversive by explicitly pairing it with malaise in a conditioned taste aversion paradigm. Thereafter, sucrose infusions led to a suppression of dopamine with a similar magnitude and time course to intra-oral infusions of a bitter quinine solution. The results are discussed in the context of regional differences in dopamine signaling and the implications of a pause in phasic dopamine release within the NAc shell. Together with our data, the emerging literature suggests an important role for differential phasic dopamine signaling in aversion vs. reward.

  13. Nucleus accumbens GLP-1 receptors influence meal size and palatability.

    PubMed

    Dossat, Amanda M; Diaz, Ryan; Gallo, Lindsay; Panagos, Alyssa; Kay, Kristen; Williams, Diana L

    2013-06-15

    Recent evidence suggests that the glucagon-like peptide-1 (GLP-1) neuronal projection to the nucleus accumbens core (NAcC) contributes to food intake control. To investigate the role of endogenous stimulation of GLP-1 receptors (GLP-1R) in NAcC, we examined the effects of the GLP-1R antagonist exendin-(9-39) (Ex9) on meal pattern and microstructure of ingestive behavior in rats. Intra-NAcC Ex9 treatment selectively increased meal size relative to vehicle in rats consuming 0.25 M sucrose solution or sweetened condensed milk. Microstructural analysis revealed effects of NAcC Ex9 on initial lick rate and the size and duration of licking bursts in rats consuming 0.1 or 0.25 M sucrose, suggesting that blockade of NAcC GLP-1R increases palatability. Because NAcC Ex9 did not affect licking for nonnutritive saccharin (0.1%), we suggest that the presence of nutrients in the gut may be required for endogenous stimulation of NAcC GLP-1R. Consistent with this, we also found that the meal size-suppressive effects of intragastric nutrient infusion were attenuated by NAcC delivery of Ex9 at a dose that had no effect when delivered alone. Analysis of licking patterns revealed that NAcC Ex9 did not reverse intragastric nutrient-induced suppression of burst number but rather blunted the effect of nutrient infusion on meal size primarily by increasing the size and duration of licking bursts. Together, our results suggest that NAcC Ex9 influences taste evaluation. We conclude that GLP-1 released in NAcC in response to gastrointestinal nutrients reduces the hedonic value of food.

  14. Opioids in the nucleus accumbens stimulate ethanol intake.

    PubMed

    Barson, Jessica R; Carr, Ambrose J; Soun, Jennifer E; Sobhani, Nasim C; Leibowitz, Sarah F; Hoebel, Bartley G

    2009-10-19

    The nucleus accumbens (NAc) participates in the control of both motivation and addiction. To test the possibility that opioids in the NAc can cause rats to select ethanol in preference to food, Sprague-Dawley rats with ethanol, food, and water available, were injected with two doses each of morphine, the mu-receptor agonist [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-Enkephalin (DAMGO), the delta-receptor agonist D-Ala-Gly-Phe-Met-NH2 (DALA), the k-receptor agonist (+/-)-trans-U-50488 methanesulfonate (U-50,488H), or the opioid antagonist naloxone methiodide (m-naloxone). As an anatomical control for drug reflux, injections were also made 2mm above the NAc. The main result was that morphine in the NAc significantly increased ethanol and food intake, whereas m-naloxone reduced ethanol intake without affecting food or water intake. Of the selective receptor agonists, DALA in the NAc increased ethanol intake in preference to food. This is in contrast to DAMGO, which stimulated food but not ethanol intake, and the k-agonist U-50,488H, which had no effect on intake. When injected in the anatomical control site 2mm dorsal to the NAc, the opioids had no effects on ethanol intake. These results demonstrate that ethanol intake produced by morphine in the NAc is driven in large part by the delta-receptor. In light of other studies showing ethanol intake to increase enkephalin expression in the NAc, the present finding of enkephalin-induced ethanol intake suggests the existence of a positive feedback loop that fosters alcohol abuse. Naltrexone therapy for alcohol abuse may then act, in part, in the NAc by blocking this opioid-triggered cycle of alcohol intake.

  15. The Nucleus Accumbens and Ketamine Treatment in Major Depressive Disorder.

    PubMed

    Abdallah, Chadi G; Jackowski, Andrea; Salas, Ramiro; Gupta, Swapnil; Sato, João R; Mao, Xiangling; Coplan, Jeremy D; Shungu, Dikoma C; Mathew, Sanjay J

    2017-03-29

    Animal models of depression repeatedly showed stress-induced nucleus accumbens (NAc) hypertrophy. Recently, ketamine was found to normalize this stress-induced NAc structural growth. Here, we investigated NAc structural abnormalities in major depressive disorder (MDD) in two cohorts. Cohort A included a cross-sectional sample of 34 MDD and 26 healthy control (HC) subjects, with high-resolution magnetic resonance imaging (MRI) to estimate NAc volumes. Proton MR spectroscopy ((1)H MRS) was used to divide MDD subjects into two subgroups: glutamate-based depression (GBD) and non-GBD. A separate longitudinal sample (cohort B) included 16 MDD patients who underwent MRI at baseline then 24 h following intravenous infusion of ketamine (0.5 mg/kg). In cohort A, we found larger left NAc volume in MDD compared to controls (Cohen's d=1.05), but no significant enlargement in the right NAc (d=0.44). Follow-up analyses revealed significant subgrouping effects on the left (d⩾1.48) and right NAc (d⩾0.95) with larger bilateral NAc in non-GBD compared to GBD and HC. NAc volumes were not different between GBD and HC. In cohort B, ketamine treatment reduced left NAc, but increased left hippocampal, volumes in patients achieving remission. The cross-sectional data provided the first evidence of enlarged NAc in patients with MDD. These NAc abnormalities were limited to patients with non-GBD. The pilot longitudinal data revealed a pattern of normalization of left NAc and hippocampal volumes particularly in patients who achieved remission following ketamine treatment, an intriguing preliminary finding that awaits replication.Neuropsychopharmacology advance online publication, 29 March 2017; doi:10.1038/npp.2017.49.

  16. Behavioral Flexibility Is Increased by Optogenetic Inhibition of Neurons in the Nucleus Accumbens Shell during Specific Time Segments

    ERIC Educational Resources Information Center

    Aquili, Luca; Liu, Andrew W.; Shindou, Mayumi; Shindou, Tomomi; Wickens, Jeffery R.

    2014-01-01

    Behavioral flexibility is vital for survival in an environment of changing contingencies. The nucleus accumbens may play an important role in behavioral flexibility, representing learned stimulus-reward associations in neural activity during response selection and learning from results. To investigate the role of nucleus accumbens neural activity…

  17. A case of musical preference for Johnny Cash following deep brain stimulation of the nucleus accumbens

    PubMed Central

    Mantione, Mariska; Figee, Martijn; Denys, Damiaan

    2014-01-01

    Music is among all cultures an important part of the live of most people. Music has psychological benefits and may generate strong emotional and physiological responses. Recently, neuroscientists have discovered that music influences the reward circuit of the nucleus accumbens (NAcc), even when no explicit reward is present. In this clinical case study, we describe a 60-year old patient who developed a sudden and distinct musical preference for Johnny Cash following deep brain stimulation (DBS) targeted at the NAcc. This case report substantiates the assumption that the NAcc is involved in musical preference, based on the observation of direct stimulation of the accumbens with DBS. It also shows that accumbens DBS can change musical preference without habituation of its rewarding properties. PMID:24834035

  18. Neurons in the Nucleus Accumbens Promote Selection Bias for Nearer Objects

    PubMed Central

    Morrison, Sara E.

    2014-01-01

    Both animals and humans often prefer rewarding options that are nearby over those that are distant, but the neural mechanisms underlying this bias are unclear. Here we present evidence that a proximity signal encoded by neurons in the nucleus accumbens drives proximate reward bias by promoting impulsive approach to nearby reward-associated objects. On a novel decision-making task, rats chose the nearer option even when it resulted in greater effort expenditure and delay to reward; therefore, proximate reward bias was unlikely to be caused by effort or delay discounting. The activity of individual neurons in the nucleus accumbens did not consistently encode the reward or effort associated with specific alternatives, suggesting that it does not participate in weighing the values of options. In contrast, proximity encoding was consistent and did not depend on the subsequent choice, implying that accumbens activity drives approach to the nearest rewarding option regardless of its specific associated reward size or effort level. PMID:25319709

  19. Autoregulation of dopamine synthesis in subregions of the rat nucleus accumbens.

    PubMed

    Heidbreder, C A; Baumann, M H

    2001-01-05

    The discovery of a core-shell dichotomy within the nucleus accumbens has opened new lines of investigation into the neuronal basis of psychiatric disorders and drug dependence. In the present study, the autoregulation of dopamine synthesis in subdivisions of the rat nucleus accumbens was examined. We measured the accumulation of L-3,4-dihydroxyphenylalanine (DOPA) after the inhibition of aromatic L-amino acid decarboxylase with 3-hydroxylbenzylhydrazine (NSD-1015, 100 mg kg(-1)) as an in vivo index of dopamine synthesis. The effect of the dopamine D(1)/D(2) receptor agonist apomorphine (0, 20, 100, 500 microgram kg(-1)) and the dopamine D(2)/D(3) receptor agonist quinpirole (0, 20, 100, 500 microgram kg(-1)) on dopamine synthesis was determined in the dorsolateral core, ventromedial shell, and rostral pole of the nucleus accumbens. DOPA accumulation was also measured in the frontal cortex, olfactory tubercle, and caudate nucleus of the same rats for comparative purposes. The results show that the three sectors of the nucleus accumbens had similar basal levels of DOPA. Both apomorphine and quinpirole produced a decrease in the dopamine synthesis rate in all brain regions examined. In general, the dopamine D(2)/D(3) receptor agonist quinpirole produced a significantly greater decrease in DOPA accumulation than the dopamine D(1)/D(2) receptor agonist apomorphine. Within the nucleus accumbens, we found no core-shell differences in the agonist-induced suppression of dopamine synthesis, but the rostral pole was less sensitive to the highest dose of both dopamine agonists. These results suggest that differences in dopamine function between the core and shell might not involve region-specific differences in the receptor-mediated autoregulation of dopamine neurotransmission. Moreover, the blunted effect of dopamine agonists in the rostral pole illustrates that this region of the accumbens is functionally distinct, possibly due to a lower dopamine receptor reserve when

  20. Ceftriaxone attenuates acute cocaine‐evoked dopaminergic neurotransmission in the nucleus accumbens of the rat

    PubMed Central

    Rasmussen, B A; Tallarida, C S; Scholl, J L; Forster, G L; Unterwald, E M; Rawls, S M

    2015-01-01

    Background and Purpose Ceftriaxone is a β‐lactam antibiotic and glutamate transporter activator that reduces the reinforcing effects of psychostimulants. Ceftriaxone also reduces locomotor activation following acute psychostimulant exposure, suggesting that alterations in dopamine transmission in the nucleus accumbens contribute to its mechanism of action. In the present studies we tested the hypothesis that pretreatment with ceftriaxone disrupts acute cocaine‐evoked dopaminergic neurotransmission in the nucleus accumbens. Experimental Approach Adult male Sprague–Dawley rats were pretreated with saline or ceftriaxone (200 mg kg−1, i.p. × 10 days) and then challenged with cocaine (15 mg kg−1, i.p.). Motor activity, dopamine efflux (via in vivo microdialysis) and protein levels of tyrosine hydroxylase (TH), the dopamine transporter and organic cation transporter as well as α‐synuclein, Akt and GSK3β were analysed in the nucleus accumbens. Key Results Ceftriaxone‐pretreated rats challenged with cocaine displayed reduced locomotor activity and accumbal dopamine efflux compared with saline‐pretreated controls challenged with cocaine. The reduction in cocaine‐evoked dopamine levels was not counteracted by excitatory amino acid transporter 2 blockade in the nucleus accumbens. Pretreatment with ceftriaxone increased Akt/GSK3β signalling in the nucleus accumbens and reduced levels of dopamine transporter, TH and phosphorylated α‐synuclein, indicating that ceftriaxone affects numerous proteins involved in dopaminergic transmission. Conclusions and Implications These results are the first evidence that ceftriaxone affects cocaine‐evoked dopaminergic transmission, in addition to its well‐described effects on glutamate, and suggest that its ability to attenuate cocaine‐induced behaviours, such as psychomotor activity, is due in part to reduced dopaminergic neurotransmission in the nucleus accumbens. PMID:26375494

  1. Social interaction reward decreases p38 activation in the nucleus accumbens shell of rats.

    PubMed

    Salti, Ahmad; Kummer, Kai K; Sadangi, Chinmaya; Dechant, Georg; Saria, Alois; El Rawas, Rana

    2015-12-01

    We have previously shown that animals acquired robust conditioned place preference (CPP) to either social interaction alone or cocaine alone. Recently it has been reported that drugs of abuse abnormally activated p38, a member of mitogen-activated protein kinase family, in the nucleus accumbens. In this study, we aimed to investigate the expression of the activated form of p38 (pp38) in the nucleus accumbens shell and core of rats expressing either cocaine CPP or social interaction CPP 1 h, 2 h and 24 h after the CPP test. We hypothesized that cocaine CPP will increase pp38 in the nucleus accumbens shell/core as compared to social interaction CPP. Surprisingly, we found that 24 h after social interaction CPP, pp38 neuronal levels were decreased in the nucleus accumbens shell to the level of naïve rats. Control saline rats that received saline in both compartments of the CPP apparatus and cocaine CPP rats showed similar enhanced p38 activation as compared to naïve and social interaction CPP rats. We also found that the percentage of neurons expressing dopaminergic receptor D2R and pp38 was also decreased in the shell of the nucleus accumbens of social interaction CPP rats as compared to controls. Given the emerging role of p38 in stress/anxiety behaviors, these results suggest that (1) social interaction reward has anti-stress effects; (2) cocaine conditioning per se does not affect p38 activation and that (3) marginal stress is sufficient to induce p38 activation in the shell of the nucleus accumbens.

  2. Social interaction reward decreases p38 activation in the nucleus accumbens shell of rats

    PubMed Central

    Salti, Ahmad; Kummer, Kai K.; Sadangi, Chinmaya; Dechant, Georg; Saria, Alois; El Rawas, Rana

    2016-01-01

    We have previously shown that animals acquired robust conditioned place preference (CPP) to either social interaction alone or cocaine alone. Recently it has been reported that drugs of abuse abnormally activated p38, a member of mitogen-activated protein kinase family, in the nucleus accumbens. In this study, we aimed to investigate the expression of the activated form of p38 (pp38) in the nucleus accumbens shell and core of rats expressing either cocaine CPP or social interaction CPP 1 h, 2 h and 24 h after the CPP test. We hypothesized that cocaine CPP will increase pp38 in the nucleus accumbens shell/core as compared to social interaction CPP. Surprisingly, we found that 24 h after social interaction CPP, pp38 neuronal levels were decreased in the nucleus accumbens shell to the level of naïve rats. Control saline rats that received saline in both compartments of the CPP apparatus and cocaine CPP rats showed similar enhanced p38 activation as compared to naïve and social interaction CPP rats. We also found that the percentage of neurons expressing dopaminergic receptor D2R and pp38 was also decreased in the shell of the nucleus accumbens of social interaction CPP rats as compared to controls. Given the emerging role of p38 in stress/anxiety behaviors, these results suggest that (1) social interaction reward has anti-stress effects; (2) cocaine conditioning per se does not affect p38 activation and that (3) marginal stress is sufficient to induce p38 activation in the shell of the nucleus accumbens. PMID:26300300

  3. Glutamatergic ionotropic blockade within accumbens disrupts working memory and might alter the endocytic machinery in rat accumbens and prefrontal cortex.

    PubMed

    Baiardi, G; Ruiz, A M; Beling, A; Borgonovo, J; Martínez, G; Landa, A I; Sosa, M A; Gargiulo, P A

    2007-01-01

    Effects of blocking N-methyl-D-aspartic acid (NMDA) and non-NMDA glutamatergic receptors on performance in the hole board test was studied in male rats bilaterally cannulated into the nucleus accumbens (Acc). Rats, divided into 5 groups, received either 1 microl injections of saline, (+/-) 2-amino-7-phosphonoheptanoic acid (AP-7) (0.5 or 1 microg) or 2,3-dioxo-6-nitro-1,2,3,4,tetrahydrobenzo-(f)quinoxaline-7-sulphonamide disodium (NBQX, 0.5 or 1 microg) 10 min before testing. An increase by AP-7 was observed in ambulatory movements (0.5 microg; p < 0.05), non-ambulatory movements and number of movements (1 microg; p < 0.05); sniffing and total exploration (1 microg; p < 0.01). When holes were considered in order from the first to the fifth by the number of explorations, the most visited holes (first and second) of the AP-7 group were significantly higher than the corresponding holes of saline group (p < 0.05 for 0.5 microg and p < 0.001 for 1 microg). When the second hole was compared with the first of his group, a difference was only observed in the AP-7 1 microg group (p < 0.001). Increasing differences between the other holes and the first were observed by drug treatment. At molecular level, it was observed that AP-7 induced an increase of the coat protein AP-2 expression in Acc, but not AP-180 neither the synaptic protein synaptophysin. The increase of AP-2 was also observed in the medial prefrontal cortex by the action of AP-7 but not NBQX. We conclude that NMDA glutamatergic blockade might induce an activation of the endocytic machinery into the Acc, leading to stereotypies and perseverations, lacking cortical intentional direction.

  4. Modulation of extracellular neurotransmitter levels in the nucleus accumbens by a taurine uptake inhibitor.

    PubMed

    Olive, M F; Mehmert, K K; Hodge, C W

    2000-12-15

    Using in vivo microdialysis, we examined the effect of local perfusion of the taurine uptake inhibitor guanidinoethyl sulfonate on extracellular levels of various neurotransmitters in the rat nucleus accumbens. Guanidinoethyl sulfonate (500 microM-50 mM) produced a concentration-dependent increase in extracellular taurine levels. While 500 microM and 5 mM concentrations of guanidinoethyl sulfonate were largely without effect, 50 mM guanidinoethyl sulfonate produced a significant decrease in extracellular levels of aspartate, glutamate and glycine, with no effect on extracellular dopamine levels. These results indicate that guanidinoethyl sulfonate can modulate extracellular amino acid levels in the nucleus accumbens.

  5. Modulation of nucleus accumbens connectivity by alcohol drinking and naltrexone in alcohol-preferring rats: A manganese-enhanced magnetic resonance imaging study.

    PubMed

    Dudek, Mateusz; Canals, Santiago; Sommer, Wolfgang H; Hyytiä, Petri

    2016-03-01

    The nonselective opioid receptor antagonist naltrexone is now used for the treatment of alcoholism, yet naltrexone's central mechanism of action remains poorly understood. One line of evidence suggests that opioid antagonists regulate alcohol drinking through interaction with the mesolimbic dopamine system. Hence, our goal here was to examine the role of the nucleus accumbens connectivity in alcohol reinforcement and naltrexone's actions using manganese-enhanced magnetic resonance imaging (MEMRI). Following long-term free-choice drinking of alcohol and water, AA (Alko Alcohol) rats received injections of MnCl2 into the nucleus accumbens for activity-dependent tracing of accumbal connections. Immediately after the accumbal injections, rats were imaged using MEMRI, and then allowed to drink either alcohol or water for the next 24h. Naltrexone was administered prior to the active dark period, and the second MEMRI was performed 24h after the first scan. Comparison of signal intensity at 1 and 24h after accumbal MnCl2 injections revealed an ipsilateral continuum through the ventral pallidum, bed nucleus of the stria terminalis, globus pallidus, and lateral hypothalamus to the substantia nigra and ventral tegmental area. Activation was also seen in the rostral part of the insular cortex and regions of the prefrontal cortex. Alcohol drinking resulted in enhanced activation of these connections, whereas naltrexone suppressed alcohol-induced activity. These data support the involvement of the accumbal connections in alcohol reinforcement and mediation of naltrexone's suppressive effects on alcohol drinking through their deactivation.

  6. Nucleus accumbens μ-opioid receptors mediate social reward.

    PubMed

    Trezza, Viviana; Damsteegt, Ruth; Achterberg, E J Marijke; Vanderschuren, Louk J M J

    2011-04-27

    Positive social interactions are essential for emotional well-being and proper behavioral development of young individuals. Here, we studied the neural underpinnings of social reward by investigating the involvement of opioid neurotransmission in the nucleus accumbens (NAc) in social play behavior, a highly rewarding social interaction in adolescent rats. Intra-NAc infusion of morphine (0.05-0.1 μg) increased pinning and pouncing, characteristic elements of social play behavior in rats, and blockade of NAc opioid receptors with naloxone (0.5 μg) prevented the play-enhancing effects of systemic morphine (1 mg/kg, s.c.) administration. Thus, stimulation of opioid receptors in the NAc was necessary and sufficient for morphine to increase social play. Intra-NAc treatment with the selective μ-opioid receptor agonist [D-Ala(2),N-MePhe(4),Gly(5)-ol]enkephalin (DAMGO) (0.1-10 ng) and the μ-opioid receptor antagonist Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP) (0.3-3 μg) increased and decreased social play, respectively. The δ-opioid receptor agonist DPDPE ([D-Pen(2),D-Pen(5)]-enkephalin) (0.3-3 μg) had no effects, whereas the κ-opioid receptor agonist U69593 (N-methyl-2-phenyl-N-[(5R,7S,8S)-7-(pyrrolidin-1-yl)-1-oxaspiro[4.5]dec-8-yl]acetamide) (0.01-1 μg) decreased social play. Intra-NAc treatment with β-endorphin (0.01-1 μg) increased social play, but met-enkephalin (0.1-5 μg) and the enkephalinase inhibitor thiorphan (0.1-1 μg) were ineffective. DAMGO (0.1-10 ng) increased social play after infusion into both the shell and core subregions of the NAc. Last, intra-NAc infusion of CTAP (3 μg) prevented the development of social play-induced conditioned place preference. These findings identify NAc μ-opioid receptor stimulation as an important neural mechanism for the attribution of positive value to social interactions in adolescent rats. Altered NAc μ-opioid receptor function may underlie social impairments in psychiatric disorders such as autism

  7. Amyloid-beta expression in retrosplenial cortex of triple transgenic mice: relationship to cholinergic axonal afferents from medial septum.

    PubMed

    Robertson, R T; Baratta, J; Yu, J; LaFerla, F M

    2009-12-15

    Triple transgenic (3xTg-AD) mice harboring the presenilin 1, amyloid precursor protein, and tau transgenes (Oddo et al., 2003b) display prominent levels of amyloid-beta (Abeta) immunoreactivity in forebrain regions. The Abeta immunoreactivity is first seen intracellularly in neurons and later as extracellular plaque deposits. The present study examined Abeta immunoreactivity that occurs in layer III of the granular division of retrosplenial cortex (RSg). This pattern of Abeta immunoreactivity in layer III of RSg develops relatively late, and is seen in animals older than 14 months. The appearance of the Abeta immunoreactivity is similar to an axonal terminal field and thus may offer a unique opportunity to study the relationship between afferent projections and the formation of Abeta deposits. Axonal tract tracing techniques demonstrated that the pattern of axon terminal labeling in layer III of RSg, following placement of DiI in medial septum, is remarkably similar to the pattern of cholinergic axons in RSg, as detected by acetylcholinesterase histochemical staining, choline acetyltransferase immunoreactivity, or p75 receptor immunoreactivity; this pattern also is strikingly similar to the band of Abeta immunoreactivity. In animals sustaining early damage to the medial septal nucleus (prior to the advent of Abeta immunoreactivity), the band of Abeta in layer III of RSg does not develop; the corresponding band of cholinergic markers also is eliminated. In older animals (after the appearance of the Abeta immunoreactivity) damage to cholinergic afferents by electrolytic lesions, immunotoxin lesions, or cutting the cingulate bundle, result in a rapid loss of the cholinergic markers and a slower reduction of Abeta immunoreactivity. These results suggest that the septal cholinergic axonal projections transport Abeta or amyloid precursor protein (APP) to layer III of RSg.

  8. Expression of c-Fos protein in medial septum/diagonal band of Broca and CA3 region, associated with the temporary inactivation of the supramammillary area.

    PubMed

    Aranda, Lourdes

    2016-07-01

    The supramammillary (SuM) area is part of the diencephalic nuclei comprising the mammillary bodies, and is a key structure in the memory and spatial learning processes. It is a critical region in the modulation/generation of hippocampal theta rhythm. In addition, many papers have recently shown a clear involvement of this structure in the processes of spatial learning and memory in animal models, although it is still not known how it modulates spatial navigation and response emotional. The aim of the present research was to study the effect of the temporary inactivation of the SuM area on synaptic plasticity of crucial structures in the formation of spatial memory and emotional response. Sprague-Dawley rats were asigned in three groups: a control group where the animals were not subjected to any treatment, and two groups where the rats received microinjections of tetrodotoxin (TTX) in the SuM area (5ng diluted in 0.5μl of saline) or saline (0.5μl). The microinjections were administered 90min before the perfusion. Later, cellular activity in medial septum/diagonal band of Broca (MS/DBB) and CA3 region of the dorsal hippocampus was assessed, by measuring the immediate early gene c-fos. The results show a clear hiperactivity cellular in medial septum/diagonal band of Broca and a clear hypoactivity cellular in the CA3 region of the hippocampus when there was a functional inactivation of the SuM area. It suggests that the SuM area seems to be part of the connection and information input pathways to CA3 region of the hippocampal formation, key for proper functioning in spatial memory and emotional response.

  9. Increased frequency of mitral valve prolapse in patients with deviated nasal septum.

    PubMed

    Arslan, Hasan Huseyin; Aparci, Mustafa; Arslan, Zekeriya; Ozturk, Cengiz; Isilak, Zafer; Balta, Sevket; Celik, Turgay; Iyisoy, Atila

    2015-07-01

    Any abnormality of collagen may affect the tissues with higher collagen content, e.g., joints, heart valves, and great arteries. Mitral valve prolapse (MVP) is a characteristic of generalized collagen abnormality. Nasal septum (NS) is constituted by osseous and cartilaginous septums that are highly rich in collagen. We evaluated the co-existence of deviation of NS (DNS) in patients with MVP. We retrospectively evaluated the recordings of echocardiographic and nasal examinations of subjects with MVP and DNS. We analyzed the features of MVP and anatomical classification of DNS among subjects. Totally, 74 patients with DNS and 38 subjects with normal nasal passage were enrolled to the study. Presence of MVP was significantly higher in patients with DNS compared to normal subjects (63 vs 26%, p < 0.001). Prolapse of anterior, posterior and both leaflets was higher in patients with DNS. Thickness of anterior mitral leaflet was significantly increased in patients with DNS (3.57 ± 0.68 vs 4.59 ± 1.1 mm, p < 0.001) compared to normal subjects. Type I, II, and III, IV DNS were higher in frequency in patients with MVP while type V and VI were higher in normal subjects. DNS is highly co-existent with MVP and increased thickness of mitral anterior leaflet. Generalized abnormality of collagen which is the main component of mitral valves and nasal septum may be accounted for co-existence of MVP and DNS. Also co-existence of them may exaggerate the symptoms of patients with MVP due to limited airflow through the nasal passage.

  10. Stimulation of the medial septum should benefit patients with temporal lobe epilepsy.

    PubMed

    Fisher, Robert S

    2015-06-01

    Electrical stimulation of the septal nuclei via deep brain stimulating electrodes is proposed as a potentially beneficial therapy for medication-resistant temporal lobe epilepsy. In a multicenter study, stimulation of anterior thalamus was shown to reduce numbers of seizures, but decrease was only in the range of 40%. This might be improved with septal stimulation, which has strong and direct reciprocal connections with the hippocampal formation, the structure most involved in temporal lobe epilepsy. Medial septal neurons drive a 3-12 Hz theta rhythm in hippocampus of rodents. Theta rhythm is less obvious in human hippocampus, but it is present and it varies with cognitive tasks. The hippocampal theta rhythm is disrupted by seizures. In animal models, restoration of theta by sensory stimulation, septal electrical stimulation or cholinergic drugs infused into septum ameliorates seizures. Seizure activity in hippocampus is faithfully reflected in septal nuclei, and septum sometimes leads the seizure activity. A subset of patients with temporal lobe epilepsy have structural enlargement of their septal nuclei. At high levels of intensity, septal stimulation is subjectively pleasurable and strongly reinforcing. Rats will repeatedly press a bar to stimulate their septum. Initial experience with human septal stimulation in the 1950s was not favorable, with ineffective therapy for schizophrenia and a high rate of surgical complications. Subsequent experience in 50-100 pain patients employing modern neurosurgical techniques was more favorable and demonstrated septal stimulation to be safe and tolerable. The current state of knowledge is sufficient to consider design of a clinical trial of medial septal stimulation in selected patients with medication-resistant temporal lobe epilepsy.

  11. Ulnar entrapment neuropathy along the medial intermuscular septum in the midarm.

    PubMed

    Nakajima, Masashi; Ono, Nobuko; Kojima, Tomoko; Kusunose, Koichi

    2009-05-01

    We report a patient with primary ulnar entrapment neuropathy in the midarm. Stimulation of multiple sites along the ulnar nerve showed a motor conduction block at a distance of 7.5-10 cm proximal to the medial epicondyle, where the nerve was compressed by the medial intermuscular septum. Anatomically, the possibility of ulnar nerve entrapment in this segment has long been suggested, and stimulation at least 10 cm above the medial epicondyle may reveal the entrapment. Muscle Nerve 39: 707-710, 2009.

  12. Deviated Septum

    MedlinePlus

    ... Copyright © 2016 American Academy of Otolaryngology–Head and Neck Surgery. Reproduction or republication strictly prohibited without prior written ... Copyright 2017. American Academy of Otolaryngology — Head and Neck Surgery 1650 Diagonal Rd Alexandria, VA 22314 tel (703) ...

  13. The medial septum mediates impairment of prepulse inhibition of acoustic startle induced by a hippocampal seizure or phencyclidine.

    PubMed

    Ma, Jingyi; Shen, Bixia; Rajakumar, N; Leung, L Stan

    2004-11-05

    The involvement of the septohippocampal system on the impaired sensorimotor gating induced by phencyclidine (PCP) or by an electrically induced hippocampal seizure was examined in behaving rats. An impaired sensorimotor gating, measured by prepulse inhibition (PPI) of the acoustic startle response, was observed following a hippocampal afterdischarge (AD) or systemic injection of PCP and was accompanied with an increase in hippocampal gamma waves (30-70 Hz). The medial septum infusion with muscimol (0.25 microg), a GABA(A) receptor agonist, 15 min prior to PCP or a hippocampal AD, prevented the impairment of sensorimotor gating and the increase in gamma waves. By itself, muscimol (0.25 microg) injection into the medial septum did not affect PPI, although it significantly suppressed spontaneous gamma waves. In order to identify subpopulations of neurons mediating the sensorimotor gating deficit and the hippocampal gamma wave increase, 0.14-0.21 microg of p75 antibody conjugated to saporin (192 IgG-saporin) was injected into the medial septum to selectively lesion the septohippocampal cholinergic neurons. Neither the PPI deficit nor the gamma wave increase induced by PCP or a hippocampal AD was affected by 192 IgG-saporin lesion of the medial septum. It is concluded that increase in neural activity in the medial septum participates in the impairment of sensorimotor gating and the increase in hippocampal gamma waves induced by PCP or a hippocampal AD. It is suggested that the GABAergic but not the cholinergic septohippocampal neurons mediate the sensorimotor gating deficit.

  14. The onion skin-like organization of the septum arises from multiple embryonic origins to form multiple adult neuronal fates.

    PubMed

    Wei, B; Huang, Z; He, S; Sun, C; You, Y; Liu, F; Yang, Z

    2012-10-11

    In the past several decades, tremendous progress has been achieved through developmental studies of the central nervous system structures such as the cerebral cortex. The septum, which receives reciprocal connections from a variety of brain structures, contains diverse projection neurons but few interneurons. However, the mechanisms underlying its development remain poorly understood. Here we show that the septum is organized into an onion skin-like structure composed of five groups of neurons. These neurons are parvalbumin, choline acetyltransferase, neuronal nitric oxide synthase, calretinin and calbindin immunoreactive. Using the BrdU birth-dating method, we found that these five groups of neurons in the septum are grossly generated following an outside-in pattern. Interestingly, the distinct molecular identities of these neuronal subtypes correspond to their heterogeneous subpallial origins. Using three specific transgenic mouse lines and focal in utero electroporation of Cre-reporter plasmid, we showed that septal neurons originate from not only local progenitor regions but also neighboring progenitor regions including the medial ganglionic eminence and preoptic area. Thus, the neuronal diversity of the septum is achieved through both temporal and spatial control. Our results also suggest that multiple neuronal subtypes arrive to the septum through both radial and tangential migration. Based on these findings, we proposed a novel developmental model involving multiple spatial-temporal origins of septal neurons. This study presents new perspectives for comprehensively exploring septal functions in brain circuits.

  15. Excitant amino acid projections from rat amygdala and thalamus to nucleus accumbens

    SciTech Connect

    Robinson, T.G.; Beart, P.M.

    1988-04-01

    High affinity uptake of D-(/sup 3/H)aspartate, (/sup 3/H)choline and (/sup 3/H)GABA was examined in synaptosomal-containing preparations of rat nucleus accumbens septi 7 to 10 days after unilateral or bilateral N-methyl-D-aspartate lesions confined to the parataenial nucleus of the thalamus or the basolateral nucleus of the amygdala. Uptake of both D-(/sup 3/H)aspartate and (/sup 3/H)choline was significantly reduced (11% and 14% less than control, respectively) by unilateral lesion of the thalamus, whereas (/sup 3/H)GABA uptake was unaffected. Bilateral thalamic lesions significantly reduced D-(/sup 3/H)aspartate uptake (11% less than control) into homogenates of the nucleus accumbens, whilst (/sup 3/H)GABA uptake was unaltered. D-(/sup 3/H)aspartate uptake was significantly reduced (26% less than control) following unilateral lesion of the amygdala, whereas both (/sup 3/H)GABA and (/sup 3/H)choline uptake were unaffected. Bilateral amygdaloid lesions significantly increased D-(/sup 3/H)aspartate uptake (39% greater than control), whilst uptake of (/sup 3/H)GABA was not affected. The results implicate glutamate and/or aspartate as putative neurotransmitters in afferent projections from the basolateral amygdala and the parataenial thalamus to the nucleus accumbens. Thalamic afferents to the nucleus accumbens may also utilize acetylcholine as their transmitter.

  16. Invigoration of reward-seeking by cue and proximity encoding in the nucleus accumbens

    PubMed Central

    McGinty, Vincent B.; Lardeux, Sylvie; Taha, Sharif A.; Kim, James J.; Nicola, Saleem M.

    2014-01-01

    Summary A key function of the nucleus accumbens is to promote vigorous reward-seeking, but the corresponding neural mechanism has not been identified despite many years of research. Here we study cued flexible approach behavior, a form of reward-seeking that strongly depends on the accumbens, and we describe a robust, single-cell neural correlate of behavioral vigor in the excitatory response of accumbens neurons to reward-predictive cues. Well before locomotion begins, this cue-evoked excitation predicts both the movement initiation latency and speed of subsequent flexible approach responses, but not of stereotyped, inflexible responses. Moreover, the excitation simultaneously signals the subject’s proximity to the approach target, a signal that appears to mediate greater response vigor on trials that begin with the subject closer to the target. These results demonstrate a neural mechanism for response invigoration whereby accumbens neuronal encoding of reward availability and target proximity together drive the onset and speed of reward-seeking locomotion. PMID:23764290

  17. Individual Differences in Dopamine Efflux in Nucleus Accumbens Shell and Core during Instrumental Learning

    ERIC Educational Resources Information Center

    Cheng, Jingjun; Feenstra, Matthijs G. P.

    2006-01-01

    Combined activation of dopamine D1- and NMDA-glutamate receptors in the nucleus accumbens has been strongly implicated in instrumental learning, the process in which an individual learns that a specific action has a wanted outcome. To assess dopaminergic activity, we presented rats with two sessions (30 trials each) of a one-lever appetitive…

  18. The Role of the Nucleus Accumbens in Knowing when to Respond

    ERIC Educational Resources Information Center

    Singh, Teghpal; McDannald, Michael A.; Takahashi, Yuji K.; Haney, Richard Z.; Cooch, Nisha K.; Lucantonio, Federica; Schoenbaum, Geoffrey

    2011-01-01

    While knowing what to expect is important, it is equally important to know when to expect it and to respond accordingly. This is apparent even in simple Pavlovian training situations in which animals learn to respond more strongly closer to reward delivery. Here we report that the nucleus accumbens core, an area well-positioned to represent…

  19. Cytoarchitectural impairments in the medium spiny neurons of the Nucleus Accumbens core of hyperactive juvenile rats.

    PubMed

    González-Burgos, I; García-Martínez, S; Velázquez-Zamora, D A; Ponce-Rolón, R

    2010-10-01

    Dopaminergic activity in the Nucleus Accumbens has been strongly implicated in the motor hyperactivity associated with Attention deficit hyperactivity disorder. Dopaminergic and glutamatergic terminals converge on the dendritic spines of medium spiny neurons of the nucleus accumbens core, which modulate the excitatory glutamatergic activity. In this work, a Golgi study was carried out to investigate the effects of dopamine depletion on the cytoarchitecture of dendritic spines of nucleus accumbens core medium spiny neurons. The dopaminergic system of newborn male rats was lesioned intracisternally by using 6-hydroxydopamine, and subsequently, the motor activity, spine density, and the proportion of thin, stubby, mushroom, wide, branched, and double spines was compared to those in control and intact animals. Motor activity was significantly increased in the dopamine-depleted animals and while the spine density was reduced, there was no change in the proportion of the specific types of spines. Larger thin spines were observed in the dopamine-depleted animals. Indeed, dopamine depletion may lead to spine retraction due to the disregulation of spine development, and/or an increase in glutamatergic activity. The enlargement of thin spines may suggest a compensatory mechanism to increase the efficiency of synaptic inputs in response to a decrease in spines number. Together, the present findings suggest an alteration to the excitatory/inhibitory balance on dendritic spines of medium spiny neurons of the nucleus accumbens core in hyperactive juvenile rats following early dopamine depletion.

  20. Role of the prefrontal cortex and nucleus accumbens in reinstating methamphetamine seeking.

    PubMed

    Rocha, Angelica; Kalivas, Peter W

    2010-03-01

    Although the involvement of the medial prefrontal cortex projection to the nucleus accumbens in the reinstatement of cocaine seeking has been well studied, it is not known if this projection plays a similar role in the reinstatement of cue- and methamphetamine-induced drug seeking in animals extinguished from methamphetamine self-administration. Accordingly, following extinction from long-access methamphetamine self-administration, rats were bilaterally microinjected with either a combination of the GABA agonists baclofen/muscimol or vehicle (artificial cerebrospinal fluid) into the infralimbic or prelimbic subcompartments of the medial prefrontal cortex or into the shell or core subcompartments of the nucleus accumbens. Similar to cocaine seeking, inactivation of either the prelimbic cortex or accumbens core eliminated cue- and methamphetamine-induced reinstatement, and inactivation of neither the infralimbic cortex nor shell subcompartments inhibited methamphetamine-induced drug seeking. However, in contrast to previous reports with cocaine, cue-induced reinstatement of methamphetamine seeking was inhibited by inactivation of the infralimbic cortex. In conclusion, although a primary role in reinstated drug seeking by the prelimbic and the accumbens core is similar between cocaine and methamphetamine, the recruitment of the infralimbic cortex by conditioned cues differs between these two psychostimulant drugs.

  1. Accumbens Shell AMPA Receptors Mediate Expression of Extinguished Reward Seeking through Interactions with Basolateral Amygdala

    ERIC Educational Resources Information Center

    Millan, E. Zayra; McNally, Gavan P.

    2011-01-01

    Extinction is the reduction in drug seeking when the contingency between drug seeking behavior and the delivery of drug reward is broken. Here, we investigated a role for the nucleus accumbens shell (AcbSh). Rats were trained to respond for 4% (v/v) alcoholic beer in one context (Context A) followed by extinction in a second context (Context B).…

  2. Good Vibrations: Cross-Frequency Coupling in the Human Nucleus Accumbens during Reward Processing

    ERIC Educational Resources Information Center

    Cohen, Michael X.; Axmacher, Nikolai; Lenartz, Doris; Elger, Christian E.; Sturm, Volker; Schlaepfer, Thomas E.

    2009-01-01

    The nucleus accumbens is critical for reward-guided learning and decision-making. It is thought to "gate" the flow of a diverse range of information (e.g., rewarding, aversive, and novel events) from limbic afferents to basal ganglia outputs. Gating and information encoding may be achieved via cross-frequency coupling, in which bursts of…

  3. Hedonic and Nucleus Accumbens Neural Responses to a Natural Reward Are Regulated by Aversive Conditioning

    ERIC Educational Resources Information Center

    Roitman, Mitchell F.; Wheeler, Robert A.; Tiesinga, Paul H. E.; Roitman, Jamie D.; Carelli, Regina M.

    2010-01-01

    The nucleus accumbens (NAc) plays a role in hedonic reactivity to taste stimuli. Learning can alter the hedonic valence of a given stimulus, and it remains unclear how the NAc encodes this shift. The present study examined whether the population response of NAc neurons to a taste stimulus is plastic using a conditioned taste aversion (CTA)…

  4. Atypical nucleus accumbens morphology in psychopathy: another limbic piece in the puzzle.

    PubMed

    Boccardi, Marina; Bocchetta, Martina; Aronen, Hannu J; Repo-Tiihonen, Eila; Vaurio, Olli; Thompson, Paul M; Tiihonen, Jari; Frisoni, Giovanni B

    2013-01-01

    Psychopathy has been associated with increased putamen and striatum volumes. The nucleus accumbens - a key structure in reversal learning, less effective in psychopathy - has not yet received specific attention. Moreover, basal ganglia morphology has never been explored. We examined the morphology of the caudate, putamen and accumbens, manually segmented from magnetic resonance images of 26 offenders (age: 32.5 ± 8.4) with medium-high psychopathy (mean PCL-R=30 ± 5) and 25 healthy controls (age: 34.6 ± 10.8). Local differences were statistically modeled using a surface-based radial distance mapping method (p<0.05; multiple comparisons correction through permutation tests). In psychopathy, the caudate and putamen had normal global volume, but different morphology, significant after correction for multiple comparisons, for the right dorsal putamen (permutation test: p=0.02). The volume of the nucleus accumbens was 13% smaller in psychopathy (p corrected for multiple comparisons <0.006). The atypical morphology consisted of predominant anterior hypotrophy bilaterally (10-30%). Caudate and putamen local morphology displayed negative correlation with the lifestyle factor of the PCL-R (permutation test: p=0.05 and 0.03). From these data, psychopathy appears to be associated with an atypical striatal morphology, with highly significant global and local differences of the accumbens. This is consistent with the clinical syndrome and with theories of limbic involvement.

  5. Paradoxical augmented relapse in alcohol-dependent rats during deep-brain stimulation in the nucleus accumbens

    PubMed Central

    Hadar, R; Vengeliene, V; Barroeta Hlusicke, E; Canals, S; Noori, H R; Wieske, F; Rummel, J; Harnack, D; Heinz, A; Spanagel, R; Winter, C

    2016-01-01

    Case reports indicate that deep-brain stimulation in the nucleus accumbens may be beneficial to alcohol-dependent patients. The lack of clinical trials and our limited knowledge of deep-brain stimulation call for translational experiments to validate these reports. To mimic the human situation, we used a chronic-continuous brain-stimulation paradigm targeting the nucleus accumbens and other brain sites in alcohol-dependent rats. To determine the network effects of deep-brain stimulation in alcohol-dependent rats, we combined electrical stimulation of the nucleus accumbens with functional magnetic resonance imaging (fMRI), and studied neurotransmitter levels in nucleus accumbens-stimulated versus sham-stimulated rats. Surprisingly, we report here that electrical stimulation of the nucleus accumbens led to augmented relapse behavior in alcohol-dependent rats. Our associated fMRI data revealed some activated areas, including the medial prefrontal cortex and caudate putamen. However, when we applied stimulation to these areas, relapse behavior was not affected, confirming that the nucleus accumbens is critical for generating this paradoxical effect. Neurochemical analysis of the major activated brain sites of the network revealed that the effect of stimulation may depend on accumbal dopamine levels. This was supported by the finding that brain-stimulation-treated rats exhibited augmented alcohol-induced dopamine release compared with sham-stimulated animals. Our data suggest that deep-brain stimulation in the nucleus accumbens enhances alcohol-liking probably via augmented dopamine release and can thereby promote relapse. PMID:27327255

  6. Paradoxical augmented relapse in alcohol-dependent rats during deep-brain stimulation in the nucleus accumbens.

    PubMed

    Hadar, R; Vengeliene, V; Barroeta Hlusicke, E; Canals, S; Noori, H R; Wieske, F; Rummel, J; Harnack, D; Heinz, A; Spanagel, R; Winter, C

    2016-06-21

    Case reports indicate that deep-brain stimulation in the nucleus accumbens may be beneficial to alcohol-dependent patients. The lack of clinical trials and our limited knowledge of deep-brain stimulation call for translational experiments to validate these reports. To mimic the human situation, we used a chronic-continuous brain-stimulation paradigm targeting the nucleus accumbens and other brain sites in alcohol-dependent rats. To determine the network effects of deep-brain stimulation in alcohol-dependent rats, we combined electrical stimulation of the nucleus accumbens with functional magnetic resonance imaging (fMRI), and studied neurotransmitter levels in nucleus accumbens-stimulated versus sham-stimulated rats. Surprisingly, we report here that electrical stimulation of the nucleus accumbens led to augmented relapse behavior in alcohol-dependent rats. Our associated fMRI data revealed some activated areas, including the medial prefrontal cortex and caudate putamen. However, when we applied stimulation to these areas, relapse behavior was not affected, confirming that the nucleus accumbens is critical for generating this paradoxical effect. Neurochemical analysis of the major activated brain sites of the network revealed that the effect of stimulation may depend on accumbal dopamine levels. This was supported by the finding that brain-stimulation-treated rats exhibited augmented alcohol-induced dopamine release compared with sham-stimulated animals. Our data suggest that deep-brain stimulation in the nucleus accumbens enhances alcohol-liking probably via augmented dopamine release and can thereby promote relapse.

  7. Neuromodulatory action of dopamine in the nucleus accumbens: an in vivo intracellular study.

    PubMed

    Yim, C Y; Mogenson, G J

    1988-08-01

    Intracellular recordings were made from neurons in the nucleus accumbens in situ to determine how dopamine produces the selective neuromodulatory action in the accumbens observed in previous studies. Electrical stimulation of the basolateral nucleus of the amygdala was found to produce monosynaptically evoked depolarizing and hyperpolarizing postsynaptic potential sequences in a large proportion of the accumbens neurons sampled. Dopamine applied iontophoretically or released endogenously by stimulation of the ventral tegmental area produced consistent membrane depolarization and an increase in membrane conductance but not an increase in spontaneous activity of the accumbens neurons. Stimulation of the ventral tegmental area with trains of 10 pulses at 10 Hz prior to stimulation of the amygdala produced 8-58% reduction in the amplitude of the depolarizing postsynaptic potential but no change in the late hyperpolarizing postsynaptic potential. Although attenuation of the depolarizing postsynaptic potential amplitude from ventral tegmental area stimulation was often accompanied by membrane depolarization, it appeared that the two responses were not causally related. The effect of ventral tegmental area stimulation on the evoked depolarizing postsynaptic potential and the membrane potential were blocked by haloperidol indicating the involvement of dopamine. Iontophoretically applied dopamine produced responses similar to ventral tegmental area stimulation with two exceptions: (i) iontophoretically applied dopamine produced consistently stronger maximal attenuation of the depolarizing postsynaptic potential than did ventral tegmental area stimulation; and (ii) iontophoretically applied dopamine always attenuated both the depolarizing postsynaptic potential and hyperpolarizing postsynaptic potential whereas ventral tegmental area stimulation produced selective attenuation of the depolarizing postsynaptic potential only. These electrophysiological results are

  8. Role of nucleus accumbens glutamatergic plasticity in drug addiction.

    PubMed

    Quintero, Gabriel C

    2013-01-01

    Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR). These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance's effects, disregard of basic aspects of life (for example, family), and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc) is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC) to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors at the level of the NAc. Also, cocaine self-administration and withdrawal induce the formation of subunit glutamate receptor 2 (GluA2), lacking the Ca(2+)-permeable AMPA receptors (CP-AMPARs) at the level of the NAc

  9. Role of nucleus accumbens glutamatergic plasticity in drug addiction

    PubMed Central

    Quintero, Gabriel C

    2013-01-01

    Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR). These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance’s effects, disregard of basic aspects of life (for example, family), and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc) is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC) to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors at the level of the NAc. Also, cocaine self-administration and withdrawal induce the formation of subunit glutamate receptor 2 (GluA2), lacking the Ca2+-permeable AMPA receptors (CP-AMPARs) at the level of the NAc

  10. Violence as a source of pleasure or displeasure is associated with specific functional connectivity with the nucleus accumbens

    PubMed Central

    Porges, Eric C.; Decety, Jean

    2013-01-01

    The appraisal of violent stimuli is dependent on the social context and the perceiver's individual characteristics. To identify the specific neural circuits involved in the perception of violent videos, forty-nine male participants were scanned with functional MRI while watching video-clips depicting Mixed Martial Arts (MMA) and Capoeira as a baseline. Prior to scanning, a self-report measure of pleasure or displeasure when watching MMA was collected. Watching MMA was associated with activation of the anterior insula (AI), brainstem, ventral tegmental area (VTA), striatum, medial, and lateral prefrontal cortex, orbitofrontal cortex, somatosensory cortex, and supramarginal gyrus. While this pattern of brain activation was not related to participants' reported experience of pleasure or displeasure, pleasurable ratings of MMA predicted increased functional connectivity (FC) seeded in the nucleus accumbens (NAcc) (a structure known to be responsive to anticipating both positive and negative outcomes) with the subgenual anterior cingulate cortex (ACC) and anterior insular cortex (AIC) (regions involved in positive feelings and visceral somatic representations). Displeasure ratings of MMA were related to increased FC with regions of the prefrontal cortex and superior parietal lobule, structures implicated in cognitive control and executive attention. These data suggest that functional connectivity is an effective approach to investigate the relationship between subjective feelings of pleasure and pain of neural structures known to respond to both the anticipation of positive and negative outcomes. PMID:23964226

  11. Individual Differences in Nucleus Accumbens Activity to Food and Sexual Images Predict Weight Gain and Sexual Behavior

    PubMed Central

    Demos, K. E.; Heatherton, T. F.; Kelley, W. M.

    2012-01-01

    Failures of self-regulation are common, leading to many of the most vexing problems facing contemporary society, from overeating and obesity to impulsive sexual behavior and HIV/AIDS. One reason that people may be prone to engaging in unwanted behaviors is because of heightened sensitivity to cues related to those behaviors; people may overeat because of hyper responsiveness to food cues, addicts may relapse following exposure to their drug of choice, and some people might engage in impulsive sexual activity because they are easily aroused by erotic stimuli. An open question is the extent to which individual differences in neural cue reactivity relate to actual behavioral outcomes. Here we show that individual differences in human reward-related brain activity in the nucleus accumbens to food and sexual images predict subsequent weight gain and sexual activity six months later. These findings suggest that heightened reward responsivity in the brain to food and sexual cues is associated with indulgence in overeating and sexual activity, respectively, and provide evidence for a common neural mechanism associated with appetitive behaviors. PMID:22514316

  12. Nucleus accumbens shell and core dopamine responsiveness to sucrose in rats: role of response contingency and discriminative/conditioned cues.

    PubMed

    Bassareo, V; Cucca, F; Musio, P; Lecca, D; Frau, R; Di Chiara, G

    2015-03-01

    This study investigated by microdialysis the role of response contingency and food-associated cues in the responsiveness of dopamine transmission in the nucleus accumbens shell and core to sucrose feeding. In naive rats, single-trial non-contingent presentation and feeding of sucrose pellets increased dialysate shell dopamine and induced full habituation of dopamine responsiveness to sucrose feeding 24 and 48 h later. In rats trained to respond for sucrose pellets on a fixed ratio 1 (FR1) schedule, dialysate dopamine increased in the shell but not in the core during active responding as well as under extinction in the presence of sucrose cues. In rats yoked to the operant rats, the presentation of sucrose cues also increased dialysate dopamine selectively in the shell. In contrast, non-contingent sucrose presentation and feeding in FR1-trained and in yoked rats increased dialysate dopamine to a similar extent in the shell and core. It is concluded that, whereas non-contingent sucrose feeding activated dopamine transmission in the shell and core, response-contingent feeding activated, without habituation, dopamine transmission selectively in the shell as a result of the action of sucrose conditioned cues. These observations are consistent with a critical role of conditioned cues acquired during training and differential activation of shell vs. core dopamine for response-contingent sucrose feeding.

  13. Violence as a source of pleasure or displeasure is associated with specific functional connectivity with the nucleus accumbens.

    PubMed

    Porges, Eric C; Decety, Jean

    2013-01-01

    The appraisal of violent stimuli is dependent on the social context and the perceiver's individual characteristics. To identify the specific neural circuits involved in the perception of violent videos, forty-nine male participants were scanned with functional MRI while watching video-clips depicting Mixed Martial Arts (MMA) and Capoeira as a baseline. Prior to scanning, a self-report measure of pleasure or displeasure when watching MMA was collected. Watching MMA was associated with activation of the anterior insula (AI), brainstem, ventral tegmental area (VTA), striatum, medial, and lateral prefrontal cortex, orbitofrontal cortex, somatosensory cortex, and supramarginal gyrus. While this pattern of brain activation was not related to participants' reported experience of pleasure or displeasure, pleasurable ratings of MMA predicted increased functional connectivity (FC) seeded in the nucleus accumbens (NAcc) (a structure known to be responsive to anticipating both positive and negative outcomes) with the subgenual anterior cingulate cortex (ACC) and anterior insular cortex (AIC) (regions involved in positive feelings and visceral somatic representations). Displeasure ratings of MMA were related to increased FC with regions of the prefrontal cortex and superior parietal lobule, structures implicated in cognitive control and executive attention. These data suggest that functional connectivity is an effective approach to investigate the relationship between subjective feelings of pleasure and pain of neural structures known to respond to both the anticipation of positive and negative outcomes.

  14. Sex differences in interactions between nucleus accumbens and visual cortex by explicit visual erotic stimuli: an fMRI study.

    PubMed

    Lee, S W; Jeong, B S; Choi, J; Kim, J-W

    2015-01-01

    Men tend to have greater positive responses than women to explicit visual erotic stimuli (EVES). However, it remains unclear, which brain network makes men more sensitive to EVES and which factors contribute to the brain network activity. In this study, we aimed to assess the effect of sex difference on brain connectivity patterns by EVES. We also investigated the association of testosterone with brain connection that showed the effects of sex difference. During functional magnetic resonance imaging scans, 14 males and 14 females were asked to see alternating blocks of pictures that were either erotic or non-erotic. Psychophysiological interaction analysis was performed to investigate the functional connectivity of the nucleus accumbens (NA) as it related to EVES. Men showed significantly greater EVES-specific functional connection between the right NA and the right lateral occipital cortex (LOC). In addition, the right NA and the right LOC network activity was positively correlated with the plasma testosterone level in men. Our results suggest that the reason men are sensitive to EVES is the increased interaction in the visual reward networks, which is modulated by their plasma testosterone level.

  15. Low-Velocity Nail-Gun Injuries to the Interventricular Septum: Report of Two Cases, One in a Child

    PubMed Central

    Michalsen, Kara L.; Iguidbashian, John P.; Kyser, James P.

    2015-01-01

    Nail-gun injury to the heart is rare. Nail-gun injury to the interventricular septum is rarer: we could find only 5 reported cases, and none involving a child. We report 2 additional cases, in which nails penetrated the interventricular septum without causing acute pericardial tamponade, heart block, or shunt across the septum. Transesophageal echocardiography provides a dynamic way to evaluate the patient preoperatively, intraoperatively, and postoperatively. In the cases reported here, both the adult with multiple interventricular nails and the child with a single nail underwent foreign-object removal via median sternotomy. The child needed cardiopulmonary bypass for removal of the nail. There were no short-term or long-term sequelae from these interventricular septal injuries. PMID:26413027

  16. Effect of Deviated Nasal Septum on Mean Platelet Volume: A Prospective Study.

    PubMed

    Poorey, Vijay Kumar; Thakur, Pooja

    2014-12-01

    In E.N.T clinical practice, patients with nasal obstruction due to deviated nasal septum is a common presentation. Nasal airway obstruction is a common cause of upper airway obstruction further leading to obstructive and hypoxic manifestations. Mean platelet volume (MPV) levels increase in hypoxic conditions. MPV is one of the platelet activation index which reflects the platelet production rate. Present prospective study conducted in the department of Otorhinolaryngology and Head and Neck surgery, Gandhi Medical College and Hamidia Hospital, Bhopal, on 63 patients with the clinical evidence of DNS and 63 healthy age matched subjects as control group, aimed to evaluate the relationship between MPV levels and nasal obstruction due to deviated nasal septum (DNS). The diagnosis of patients with DNS was based on anterior rhinoscopy and endoscopic nasal examination. Blood samples were collected before surgical correction. In present study, the authors found that there is preponderance of DNS in the age group of 25-45 years being the most active age group, males having the higher incidence. Majority of cases of DNS being left sided and of obstructed type. MPV were significantly higher in patients with DNS than the control group. Among the cases MPV being higher in females and in the impacted type of DNS. Present study reemphasized the concept that MPV is increased in chronic nasal obstruction due to DNS and this increase is in accordance with the severity of DNS.

  17. Interaction of a vasopressin antagonist with vasopressin receptors in the septum of the rat brain

    SciTech Connect

    Dorsa, D.M.; Brot, M.D.; Shewey, L.M.; Meyers, K.M.; Szot, P.; Miller, M.A.

    1988-01-01

    The ability of d(CH2)5-Tyr(Me)-arginine-8-vasopressin, an antagonist of peripheral pressoric (V1-type) vasopressin receptors, to label vasopressin binding sites in the septum of the rat brain was evaluated. Using crude membrane preparations from the septum, /sup 3/H-arginine-8-vasopressin (AVP) specifically labels a single class of binding sites with a Kd of 2.9 nM and maximum binding site concentration of 19.8 fmole/mg protein. /sup 3/H-Antag also labels a single class of membrane sites but with higher affinity (Kd = 0.47 nM) and lower capacity (10.1 fmole/mg protein) than /sup 3/H-AVP. The rank order of potency of various competitor peptides for /sup 3/H-AVP and /sup 3/H-Antag binding was similar. Oxytocin was 100-1,000 fold less potent than AVP in competing for binding with both ligands. /sup 3/H-AVP and /sup 3/H-Antag showed similar labeling patterns when incubated with septal tissue slices. Unlabeled Antag also effectively antagonized vasopressin-stimulated phosphatidylinositol hydrolysis in septal tissue slices.

  18. CyDiv, a Conserved and Novel Filamentous Cyanobacterial Cell Division Protein Involved in Septum Localization

    PubMed Central

    Mandakovic, Dinka; Trigo, Carla; Andrade, Derly; Riquelme, Brenda; Gómez-Lillo, Gabriela; Soto-Liebe, Katia; Díez, Beatriz; Vásquez, Mónica

    2016-01-01

    Cell division in bacteria has been studied mostly in Escherichia coli and Bacillus subtilis, model organisms for Gram-negative and Gram-positive bacteria, respectively. However, cell division in filamentous cyanobacteria is poorly understood. Here, we identified a novel protein, named CyDiv (Cyanobacterial Division), encoded by the all2320 gene in Anabaena sp. PCC 7120. We show that CyDiv plays a key role during cell division. CyDiv has been previously described only as an exclusive and conserved hypothetical protein in filamentous cyanobacteria. Using polyclonal antibodies against CyDiv, we showed that it localizes at different positions depending on cell division timing: poles, septum, in both daughter cells, but also in only one of the daughter cells. The partial deletion of CyDiv gene generates partial defects in cell division, including severe membrane instability and anomalous septum localization during late division. The inability to complete knock out CyDiv strains suggests that it is an essential gene. In silico structural protein analyses and our experimental results suggest that CyDiv is an FtsB/DivIC-like protein, and could therefore, be part of an essential late divisome complex in Anabaena sp. PCC 7120. PMID:26903973

  19. CyDiv, a Conserved and Novel Filamentous Cyanobacterial Cell Division Protein Involved in Septum Localization.

    PubMed

    Mandakovic, Dinka; Trigo, Carla; Andrade, Derly; Riquelme, Brenda; Gómez-Lillo, Gabriela; Soto-Liebe, Katia; Díez, Beatriz; Vásquez, Mónica

    2016-01-01

    Cell division in bacteria has been studied mostly in Escherichia coli and Bacillus subtilis, model organisms for Gram-negative and Gram-positive bacteria, respectively. However, cell division in filamentous cyanobacteria is poorly understood. Here, we identified a novel protein, named CyDiv (Cyanobacterial Division), encoded by the all2320 gene in Anabaena sp. PCC 7120. We show that CyDiv plays a key role during cell division. CyDiv has been previously described only as an exclusive and conserved hypothetical protein in filamentous cyanobacteria. Using polyclonal antibodies against CyDiv, we showed that it localizes at different positions depending on cell division timing: poles, septum, in both daughter cells, but also in only one of the daughter cells. The partial deletion of CyDiv gene generates partial defects in cell division, including severe membrane instability and anomalous septum localization during late division. The inability to complete knock out CyDiv strains suggests that it is an essential gene. In silico structural protein analyses and our experimental results suggest that CyDiv is an FtsB/DivIC-like protein, and could therefore, be part of an essential late divisome complex in Anabaena sp. PCC 7120.

  20. Fine structure and synaptology of the nitrergic neurons in medial septum of the rat brain.

    PubMed

    Halasy, Katalin; Szőke, Balázs; Janzsó, Gergely

    2017-03-01

    The nitrergic neuron population and certain aspects of their connectivity (peptidergic inputs, co-localization with GABA, synaptic target distribution) were studied in the medial septum of the rat brain. The histochemical localization of NADPH diaphorase and immunohistochemical identification of nNOS at light and electron microscopic level was applied. Double-labeling experiments with galanin and leucine enkephalin, moreover the postembedding GABA immunogold staining was also carried out. NADPH diaphorase- and nNOS-immunopositive neurons could be identified inside the borders of medial septum. Out of their peptidergic inputs galanin- and leucine enkephaline-immunopositive varicose fibers were found in close apposition with nNOS-immunopositive neurons. Based on fine structural characteristics (large indented nucleus, thin cytoplasmic rim, lack of axosomatic synapses) the nitrergic neurons are suggested to be identical with the septal cholinergic nerve cells. Their boutons established asymmetrical synapses mainly on dendritic shafts and spines, some of which were also nNOS-immunopositive. A lower amount of nNOS-immunopositive boutons of presumably extrinsic origin were found to be GABAergic.

  1. Maturation and maintenance of cholinergic medial septum neurons require glucocorticoid receptor signaling.

    PubMed

    Guijarro, Christian; Rutz, Susanne; Rothmaier, Katharina; Turiault, Marc; Zhi, Qixia; Naumann, Thomas; Frotscher, Michael; Tronche, Francois; Jackisch, Rolf; Kretz, Oliver

    2006-05-01

    Glucocorticoids have been shown to influence trophic processes in the nervous system. In particular, they seem to be important for the development of cholinergic neurons in various brain regions. Here, we applied a genetic approach to investigate the role of the glucocorticoid receptor (GR) on the maturation and maintenance of cholinergic medial septal neurons between P15 and one year of age by using a mouse model carrying a CNS-specific conditional inactivation of the GR gene (GRNesCre). The number of choline acetyltransferase and p75NTR immuno-positive neurons in the medial septum (MS) was analyzed by stereology in controls versus mutants. In addition, cholinergic fiber density, acetylcholine release and cholinergic key enzyme activity of these neurons were determined in the hippocampus. We found that in GRNesCre animals the number of medial septal cholinergic neurons was significantly reduced during development. In addition, cholinergic cell number further decreased with aging in these mutants. The functional GR gene is therefore required for the proper maturation and maintenance of medial septal cholinergic neurons. However, the loss of cholinergic neurons in the medial septum is not accompanied by a loss of functional cholinergic parameters of these neurons in their target region, the hippocampus. This pinpoints to plasticity of the septo-hippocampal system, that seems to compensate for the septal cell loss by sprouting of the remaining neurons.

  2. Myoepithelioma of the Nasal Septum: A Rare Case of Extrasalivary Gland Involvement

    PubMed Central

    Camurugy, Tatiane Costa; Ribeiro, Thiago Cavalcante; Costa, Nara Nunes Barbosa; Azevedo, Amanda Canário Andrade; Vinhaes, Eriko Soares de Azevedo; de Andrade, Nilvano Alves

    2017-01-01

    Introduction. The myoepithelioma is a rare benign tumor, most frequently found in the salivary glands. The extrasalivary gland involvement is even rarer and few cases involving the nasal cavity have been reported in the literature. Case Report. MES, a 54-year-old woman, complaining of progressive nasal obstruction and mild epistaxis through the right nostril which had developed 1 year previously. Computed tomography scan showed tumor with heterogeneous contrast enhancement occupying the right nasal cavity, moving contralaterally in the nasal septum. Excisional biopsy was performed through endoscopic surgery of the mass that was inserted at the nasal septum. Pathological and immunohistochemical exams concluded myoepithelioma. Discussion. The main symptoms of nasal myoepitheliomas are nasal obstruction and epistaxis. Immunohistochemistry is necessary to confirm the diagnosis, typically positive for cytokeratin and S-100, calponin, smooth muscle actin, myosin, vimentin, glial fibrillary acidic protein (GFAP), and carcinoembryonic antigen. The main marker for myoepithelioma is the S-100 protein. In our case, it was positive for cytokeratin, S-100, calponin, actin smooth muscle, and GFAP. In all cases reported in the literature surgical treatment was performed and the recurrence was associated with incomplete tumor resection. Final Comments. The myoepithelioma is a rare differential diagnosis of nasal tumors and its treatment is the total lesion excision. PMID:28168074

  3. Nasal septum changes in adolescent patients treated with rapid maxillary expansion

    PubMed Central

    Aziz, Tehnia; Wheatley, Francis Carter; Ansari, Kal; Lagravere, Manuel; Major, Michael; Flores-Mir, Carlos

    2016-01-01

    Objective: To analyze cone-beam computed tomography (CBCT) scans to measure changes in nasal septal deviation (NSD) after rapid maxillary expansion (RME) treatment in adolescent patients. Methods: This retrospective study involved 33 patients presenting with moderate to severe nasal septum deviation as an incidental finding. Out of these 33 patients, 26 were treated for transverse maxillary constriction with RME and seven, who did not undergo RME treatment, were included in the study as control group. CBCT scans were taken before appliance insertion and after appliance removal. These images were analyzed to measure changes in nasal septum deviation (NSD). Analysis of variance for repeated measures (ANOVA) was used. Results: No significant changes were identified in NSD regardless of the application or not of RME treatment and irrespective of the baseline deviation degree. Conclusion: This study did not provide strong evidence to suggest that RME treatment has any effect on NSD in adolescent patients; however, the results should be interpreted with caution, due to the small sample size and large variation amongst individual patient characteristics. PMID:27007761

  4. A New Membrane Protein Sbg1 Links the Contractile Ring Apparatus and Septum Synthesis Machinery in Fission Yeast

    PubMed Central

    Sethi, Kriti; Palani, Saravanan; Cortés, Juan C. G.; Sato, Mamiko; Sevugan, Mayalagu; Ramos, Mariona; Vijaykumar, Shruthi; Osumi, Masako; Naqvi, Naweed I.; Ribas, Juan Carlos; Balasubramanian, Mohan

    2016-01-01

    Cytokinesis in many organisms requires a plasma membrane anchored actomyosin ring, whose contraction facilitates cell division. In yeast and fungi, actomyosin ring constriction is also coordinated with division septum assembly. How the actomyosin ring interacts with the plasma membrane and the plasma membrane-localized septum synthesizing machinery remains poorly understood. In Schizosaccharomyces pombe, an attractive model organism to study cytokinesis, the β-1,3-glucan synthase Cps1p / Bgs1p, an integral membrane protein, localizes to the plasma membrane overlying the actomyosin ring and is required for primary septum synthesis. Through a high-dosage suppressor screen we identified an essential gene, sbg1+ (suppressor of beta glucan synthase 1), which suppressed the colony formation defect of Bgs1-defective cps1-191 mutant at higher temperatures. Sbg1p, an integral membrane protein, localizes to the cell ends and to the division site. Sbg1p and Bgs1p physically interact and are dependent on each other to localize to the division site. Loss of Sbg1p results in an unstable actomyosin ring that unravels and slides, leading to an inability to deposit a single contiguous division septum and an important reduction of the β-1,3-glucan proportion in the cell wall, coincident with that observed in the cps1-191 mutant. Sbg1p shows genetic and / or physical interaction with Rga7p, Imp2p, Cdc15p, and Pxl1p, proteins known to be required for actomyosin ring integrity and efficient septum synthesis. This study establishes Sbg1p as a key member of a group of proteins that link the plasma membrane, the actomyosin ring, and the division septum assembly machinery in fission yeast. PMID:27749909

  5. Pyroglutamyl peptidase II inhibition enhances the analeptic effect of thyrotropin-releasing hormone in the rat medial septum.

    PubMed

    Lazcano, Ivan; Uribe, Rosa Maria; Martínez-Chávez, Erick; Vargas, Miguel Angel; Matziari, Magdalini; Joseph-Bravo, Patricia; Charli, Jean-Louis

    2012-07-01

    Thyrotropin-releasing hormone (TRH; pGlu-His-Pro-NH(2)) has multiple, but transient, homeostatic functions in the brain. It is hydrolyzed in vitro by pyroglutamyl peptidase II (PPII), a narrow specificity ectoenzyme with a preferential localization in the brain, but evidence that PPII controls TRH communication in the brain in vivo is scarce. We therefore studied in male Wistar rats the distribution of PPII mRNA in the septum and the consequence of PPII inhibition on the analeptic effect of TRH injected into the medial septum. Twelve to 14% of cell profiles expressed PPII mRNA in the medial septum-diagonal band of Broca; in this region the specific activity of PPII was relatively high. Twenty to 35% of PPII mRNA-labeled profiles were positive for TRH-receptor 1 (TRH-R1) mRNA. The intramedial septum injection of TRH reduced, in a dose-dependent manner, the duration of ethanol-induced loss of righting reflex (LORR). Injection of the PPII inhibitor pGlu-Asn-Pro-7-amido-4-methylcoumarin into the medial septum enhanced the effect of TRH. The injection of a phosphinic TRH analog, a higher-affinity inhibitor of PPII, diminished the duration of LORR by itself. In contrast, the intraseptal injection of pGlu-Asp-Pro-NH(2), a peptide that did not inhibit PPII activity, or an inhibitor of prolyl oligopeptidase did not change the duration of LORR. We conclude that in the medial septum PPII activity may limit TRH action, presumably by reducing the concentration of TRH in the extracellular fluid around cells coexpressing PPII and TRH-R1.

  6. Double-outlet right ventricle with an intact interventricular septum and concurrent hypoplastic left ventricle in a calf.

    PubMed

    Newhard, D K; Jung, S W; Winter, R L; Kuca, T; Bayne, J; Passler, T

    2017-01-19

    A 3-day-old Hereford heifer calf presented for evaluation of lethargy and dyspnea, with persistent hypoxia despite supplemental oxygen therapy. A grade III/VI right apical systolic murmur was noted during cardiac auscultation. Echocardiography revealed a double-outlet right ventricle with an intact interventricular septum and concurrent hypoplastic left ventricle and tricuspid valve dysplasia. Post-mortem examination revealed additional congenital anomalies of ductus arteriosus, patent foramen ovale, and persistent left cranial vena cava. This report illustrates the use of echocardiographic images to diagnose a double-outlet right ventricle with an intact interventricular septum and a hypoplastic left ventricle in a calf.

  7. Nicotine Withdrawal Increases Stress-Associated Genes in the Nucleus Accumbens of Female Rats in a Hormone-Dependent Manner

    PubMed Central

    Torres, Oscar V.; Pipkin, Joseph A.; Ferree, Patrick; Carcoba, Luis M.

    2015-01-01

    Introduction: Previous work led to our hypothesis that sex differences produced by nicotine withdrawal are modulated by stress and dopamine systems in the nucleus accumbens (NAcc). We investigated our hypothesis by studying intact females to determine whether the mechanisms that promote withdrawal are ovarian-hormone mediated. Methods: Female rats were ovariectomized (OVX) or received sham surgery (intact) on postnatal day (PND 45–46). On PND 60, they received sham surgery (controls) or were prepared with nicotine pumps. Fourteen days later, half of the rats had their pumps removed (nicotine withdrawal) and the other half received sham surgery (nicotine exposure). Twenty-four hours later, the rats were tested for anxiety-like behavior using the elevated plus maze and light/dark transfer procedures. The NAcc was then dissected for analysis of several genes related to stress (CRF, UCN, CRF-R1, CRF-R2, CRF-BP, and Arrb2) or receptors for dopamine (Drd1 and Drd2) and estradiol (Esr2). Results: During withdrawal, intact females displayed an increase in anxiety-like behavior in both tests and CRF, UCN, and Drd1 gene expression. During nicotine exposure, intact females displayed a decrease in CRF-R1, CRF-R2, Drd3, and Esr2 gene expression and an increase in CRF-BP. This pattern of results was absent in OVX females. Conclusions: Nicotine withdrawal produced an increase in anxiety-like behavior and stress-associated genes in intact females that is distinct from changes produced by nicotine exposure. The latter effects were absent in OVX females, suggesting that stress produced by withdrawal is ovarian-hormone mediated. These findings have important implications towards understanding tobacco use liability among females. PMID:25762751

  8. Effects of acute and chronic clozapine on dopamine release and metabolism in the striatum and nucleus accumbens of conscious rats.

    PubMed

    Invernizzi, R; Morali, F; Pozzi, L; Samanin, R

    1990-08-01

    1. The effect of single and repeated (once daily for 23 days) oral doses of 20 and 60 mg kg-1 clozapine on dopamine release and metabolism were studied by intracerebral dialysis in the striatum and nucleus accumbens of conscious rats. 2. The basal output of dopamine, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the striatum and nucleus accumbens of rats given clozapine 20 or 60 mg kg-1 chronically, measured one day after the last drug dose, was not significantly different from that of vehicle-treated animals. 3. Challenge doses of 20 or 60 mg kg-1 clozapine produced similar increases in dopamine levels in the striatum and nucleus accumbens of animals which had received vehicle or clozapine 20 or 60 mg kg-1 once daily for 23 days, except that 1 h after administration 60 mg kg-1 clozapine had a greater effect in the nucleus accumbens. 4. In animals treated chronically with clozapine 20 and 60 mg kg-1 or vehicle, DOPAC levels in the striatum and nucleus accumbens were increased to the same extent by challenge doses of clozapine (20 or 60 mg kg-1). In animals treated chronically with clozapine, a challenge dose of 60 mg kg-1 had significantly greater effect on HVA only in the nucleus accumbens. 5. When DOPAC and HVA were measured post mortem in the striatum and nucleus accumbens 2 h after various oral doses of clozapine, it was found that 10 mg kg-1 significantly increased dopamine metabolites only in the nucleus accumbens whereas 100 mg kg-1 had this effect in both regions. Clozapine, 30mgkg-' significantly raised DOPAC levels in both regions but HVA was elevated only in the nucleus accumbens. 6. There appeared to be no appreciable changes in dopamine release and metabolism nor any reduction in the effect of clozapine in the nucleus accumbens after chronic drug treatment. In fact the effect was greater in chronically treated rats, particularly in the nucleus accumbens of animals given 60mgkg' clozapine. 7. It was confirmed that measurement of

  9. Nucleus accumbens injections of the mGluR2/3 agonist LY379268 increase cue-induced sucrose seeking following adult, but not adolescent sucrose self-administration.

    PubMed

    Myal, S; O'Donnell, P; Counotte, D S

    2015-10-01

    Adolescence is often portrayed as a period of enhanced sensitivity to reward, with long-lasting neurobiological changes upon reward exposure. However, we previously found that time-dependent increases in cue-induced sucrose seeking were more pronounced in rats trained to self-administer sucrose as adults than as adolescents. In addition, adult, but not adolescent sucrose self-administration led to a decreased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-Methyl-D-aspartate (AMPA/NMDA) ratio in the nucleus accumbens core, suggesting that long-lasting changes in glutamatergic transmission may affect adult processing of natural rewards. Here we tested whether altering glutamatergic transmission in the nucleus accumbens core via local injection of an mGluR2/3 agonist and antagonist affects cue-induced sucrose seeking following abstinence and whether this is different in the two age groups. Rats began oral sucrose self-administration training (10 days) on postnatal day (P) 35 (adolescents) or P70 (adults). Following 21 days of abstinence, rats received microinjections of the mGluR2/3 agonist LY379268 (0.3 or 1.0 μg/side) or vehicle into the nucleus accumbens core, and 15 min later cue-induced sucrose seeking was assessed. An additional group of rats trained as adults received nucleus accumbens core microinjections of the mGluR2/3 antagonist (RS)-α-Methyl-4-phosphonophenylglycine (MPPG) (0.12 or 0.5 μg/side). Confirming our previous results, adult rats earned more sucrose reinforcers, while sucrose intake per body weight was similar across ages. On abstinence day 22, local injection of the mGluR2/3 agonist LY379268 increased cue-induced sucrose seeking only in adult rats, and had no effect in adolescents. Local injections of the mGluR2/3 antagonist MPPG had no effect on sucrose seeking in adult rats. These data suggest an important developmental difference in the neural substrates of natural reward, specifically a difference in glutamatergic transmission in

  10. Stimulation of the medial septum improves performance in spatial learning following pilocarpine-induced status epilepticus.

    PubMed

    Lee, Darrin J; Izadi, Ali; Melnik, Mikhail; Seidl, Stacey; Echeverri, Angela; Shahlaie, Kiarash; Gurkoff, Gene G

    2017-02-01

    Temporal lobe epilepsy often leads to hippocampal sclerosis and persistent cognitive deficits, including difficulty with learning and memory. Hippocampal theta oscillations are critical in optimizing hippocampal function and facilitating plasticity. We hypothesized that pilocarpine-induced status epilepticus would disrupt oscillations and behavioral performance and that electrical neuromodulation to entrain theta would improve cognition specifically in injured rats. Rats received a pilocarpine (n=30) or saline injection (n=27) and unilateral bi-polar electrodes were implanted into the medial septum and hippocampus the following day. Hippocampal and septal theta were recorded in a Plexiglas box over the first week following implantation. Control and pilocarpine-treated rats were split into stimulation (continuous 7.7Hz, 80μA, 1ms pulse width) and non-stimulation groups for behavioral analysis. Continuous stimulation was initiated one-minute prior to and throughout an object exploration task (post-injury day seven) and again for each of six trials on the Barnes maze (post-injury days 12-14). There was a significant reduction in hippocampal theta power (p<0.05) and percentage of time oscillating in theta (p<0.05). In addition there was a significant decrease in object exploration in rats post-pilocarpine (p<0.05) and an impairment in spatial learning. Specifically, pilocarpine-treated rats were more likely to use random search strategies (p<0.001) and had an increase in latency to find the hidden platform (p<0.05) on the Barnes maze. Stimulation of the medial septum at 7.7Hz in pilocarpine-treated rats resulted in performance similar to shams in both the object recognition and Barnes maze tasks. Stimulation of sham rats resulted in impaired object exploration (p<0.05) with no difference in Barnes maze latency or strategy. In conclusion, pilocarpine-induced seizures diminished hippocampal oscillations and impaired performance in both an object exploration and a

  11. Behavioral flexibility is increased by optogenetic inhibition of neurons in the nucleus accumbens shell during specific time segments

    PubMed Central

    Aquili, Luca; Liu, Andrew W.; Shindou, Mayumi; Shindou, Tomomi; Wickens, Jeffery R.

    2014-01-01

    Behavioral flexibility is vital for survival in an environment of changing contingencies. The nucleus accumbens may play an important role in behavioral flexibility, representing learned stimulus–reward associations in neural activity during response selection and learning from results. To investigate the role of nucleus accumbens neural activity in behavioral flexibility, we used light-activated halorhodopsin to inhibit nucleus accumbens shell neurons during specific time segments of a bar-pressing task requiring a win–stay/lose–shift strategy. We found that optogenetic inhibition during action selection in the time segment preceding a lever press had no effect on performance. However, inhibition occurring in the time segment during feedback of results—whether rewards or nonrewards—reduced the errors that occurred after a change in contingency. Our results demonstrate critical time segments during which nucleus accumbens shell neurons integrate feedback into subsequent responses. Inhibiting nucleus accumbens shell neurons in these time segments, during reinforced performance or after a change in contingencies, increases lose–shift behavior. We propose that the activity of nucleus shell accumbens shell neurons in these time segments plays a key role in integrating knowledge of results into subsequent behavior, as well as in modulating lose–shift behavior when contingencies change. PMID:24639489

  12. LocZ Is a New Cell Division Protein Involved in Proper Septum Placement in Streptococcus pneumoniae

    PubMed Central

    Holečková, Nela; Molle, Virginie; Buriánková, Karolína; Benada, Oldřich; Kofroňová, Olga; Ulrych, Aleš; Branny, Pavel

    2014-01-01

    ABSTRACT How bacteria control proper septum placement at midcell, to guarantee the generation of identical daughter cells, is still largely unknown. Although different systems involved in the selection of the division site have been described in selected species, these do not appear to be widely conserved. Here, we report that LocZ (Spr0334), a newly identified cell division protein, is involved in proper septum placement in Streptococcus pneumoniae. We show that locZ is not essential but that its deletion results in cell division defects and shape deformation, causing cells to divide asymmetrically and generate unequally sized, occasionally anucleated, daughter cells. LocZ has a unique localization profile. It arrives early at midcell, before FtsZ and FtsA, and leaves the septum early, apparently moving along with the equatorial rings that mark the future division sites. Consistently, cells lacking LocZ also show misplacement of the Z-ring, suggesting that it could act as a positive regulator to determine septum placement. LocZ was identified as a substrate of the Ser/Thr protein kinase StkP, which regulates cell division in S. pneumoniae. Interestingly, homologues of LocZ are found only in streptococci, lactococci, and enterococci, indicating that this close phylogenetically related group of bacteria evolved a specific solution to spatially regulate cell division. PMID:25550321

  13. The Relationship between Large Cavum Septum Pellucidum and Antisocial Behavior, Callous-Unemotional Traits and Psychopathy in Adolescents

    ERIC Educational Resources Information Center

    White, Stuart F.; Brislin, Sarah; Sinclair, Stephen; Fowler, Katherine A.; Pope, Kayla; Blair, R. James R.

    2013-01-01

    Background: The presence of a large cavum septum pellucidum (CSP) has been previously associated with antisocial behavior/psychopathic traits in an adult community sample. Aims: The current study investigated the relationship between a large CSP and symptom severity in disruptive behavior disorders (DBD; conduct disorder and oppositional defiant…

  14. Prevalence and Characteristics of Cavum Septum Pellucidum in Schizophrenia: A 16 Slice Computed Tomography Study

    PubMed Central

    Khanra, Sourav; Srivastava, Naveen Kumar; Chail, Vivek; Khess, Christoday Raja Jayant

    2016-01-01

    Objective: Several significant midline abnormalities including cavum septum pellucidum (CSP) have been reported in schizophrenia. However, not all studies were able to replicate similar findings. Furthermore, very few of them were conducted with large samples. Methods: CSP was identified and graded with 16 slice computed tomography (CT) machine in 138 patients of schizophrenia and 64 controls. Results: We found 21.0% of patients in schizophrenia group had abnormal CSP compared to only 9.4% in control group (P = 0.047). Grade III was most frequent type (19.6%) in schizophrenia group. Conclusions: Our study adds to the existing literature suggesting abnormal CSP may reflect neurodevelopmental process in schizophrenia. The strength of our study was larger sample size. Limitations were use of CT, male predominance in schizophrenia group, the inclusion of nonpsychiatric patients in control group. PMID:27833230

  15. Static lung compliance and body pressures in Tupinambis merianae with and without post-hepatic septum.

    PubMed

    Klein, Wilfried; Abe, Augusto S; Perry, Steven F

    2003-04-15

    The surgical removal of the post-hepatic septum (PHS) in the tegu lizard, Tupinambis merianae, significantly reduces resting lung volume (V(Lr)) and maximal lung volume (V(Lm)) when compared with tegus with intact PHS. Standardised for body mass (M(B)), static lung compliance was significantly less in tegus without PHS. Pleural and abdominal pressures followed, like ventilation, a biphasic pattern. In general, pressures increased during expiration and decreased during inspiration. However, during expiration pressure changes showed a marked intra- and interindividual variation. The removal of the PHS resulted in a lower cranio-caudal intracoelomic pressure differential, but had no effect on the general pattern of pressure changes accompanying ventilation. These results show that a perforated PHS that lacks striated muscle has significant influence on static breathing mechanics in Tupinambis and by analogy provides valuable insight into similar processes that led to the evolution of the mammalian diaphragm.

  16. An unusual cause of necrosis and nasal septum perforation after septoplasty: Enterobacter cloacae.

    PubMed

    Binar, M; Arslan, F; Tasli, H; Karakoc, O; Kilic, A; Aydin, U

    2015-11-01

    A 20-year-old man with nasal obstruction underwent septoplasty due to nasal septal deviation. Nasal packs were inserted at the end of surgery and removed 48 hours after surgery. Twenty-four hours after removal of nasal packs, there was necrosis in both sides of septal mucosa and in bilateral inferior turbinates. Nasal swab culture was performed from both nasal cavities. Enterobacter cloacae was isolated from samples. Two weeks after surgery, nasal septum perforation was unavoidable. To our knowledge, this is the first case in literature describing septal mucosal necrosis caused by this pathogen after septoplasty. Mucosal necrosis and perforation as septoplasty complications should be kept in mind, the result of causes both common and, as in the present case, unusual.

  17. Basal cell adenoma of nasal septum: report of a case and review of literature.

    PubMed

    Wang, Qinying; Chen, Haihong; Wang, Shenqing

    2015-01-01

    Basal cell adenoma is an uncommon benign salivary gland neoplasm, presenting isomorphic basaloid cells with a prominent basal cell layer. Basal cell adenoma arising from the nasal septum is exceptionally rare. Reports on positron emission tomography with 2-deoxy-2-fluorine-18-fluoro-D-glucose (18FDG-PET) imaging for basal cell adenoma are limited. Here, we present the case of a 49-year-old man who had the symptoms of intermittent repeated bleeding from the left nose for half a year. 18FDG-PET scanning showed increased accumulation of 18FDG with its characteristic benign pathology has a potential to malignancy. After removal of the mass, the patient became symptom free. Pathology showed basal cell adenoma. The evidence of active and growing cells was present in the specimen.

  18. Direct carotid cavernous fistula after submucous resection of the nasal septum.

    PubMed

    Bizri, A R; al-Ajam, M; Zaytoun, G; al-Kutoubi, A

    2000-01-01

    A carotid cavernous fistula (CCF) is an abnormal arteriovenous anastomosis between the carotid artery and the cavernous sinus. Etiologies of this condition reported in the literature so far include facial trauma, rupture of an intracavernous aneurysm of the carotid artery, Ehler-Danlos syndrome and fibromuscular dysplasia of the cerebral arteries. Such fistulae were reported as complications of rhinoplasty, transsphenoidal surgery, embolization of cavernous sinus meningioma, and rhinocerebral mucormycosis. CCF may also occur spontaneously in children or as a congenital malformation. However, to our knowledge, submucous resection of the nasal septum has not been reported before to cause direct carotid-cavernous fistula. CT and angiographic findings are presented and a review of the literature for reported causes of CCF is made as well as a brief discussion of the possible pathophysiology.

  19. Partial urorectal septum malformation sequence in a kitten with disorder of sexual development.

    PubMed

    Reynolds, Brice S; Pain, Amélie; Meynaud-Collard, Patricia; Nowacka-Woszuk, Joanna; Szczerbal, Izabela; Switonski, Marek; Chastant-Maillard, Sylvie

    2014-12-01

    A 2-month-old kitten exhibited simultaneously an imperforate anus, hypospadias, rectourethral fistula and genital dysgenesis (penis restricted to the glans, absence of prepuce and bifid scrotum). Surgical correction consisted of separation of the urinary and digestive tracts, perineal urethrostomy and connection of the rectum to the newly made anal opening. Pathological examination of the testes, conventionally removed at 9 months of age, showed no mature spermatozoa and underdevelopment of germ and Leydig cells. In humans, the absence of an anal opening in association with abnormal sexual development defines the urorectal septum malformation sequence. Here, we describe the first case of this syndrome in a kitten with a normal male karyotype (38,XY) and a normal coding sequence for the SRY gene. Both the rectourethral fistula and observed genital abnormalities might have been induced by a disturbance in the hedgehog signalling pathway. However, although four polymorphic sites were identified by DHH gene sequencing, none cosegregated with the malformation.

  20. Modified Quilting Sutures: ANew Technique for Hematoma and Abscess of Nasal Septum.

    PubMed

    Ahmed, Shoaib; Ashfaq, Muhammed; Shabbir, Asad

    2016-06-01

    This study aimed to analyze the results of a modified continuous quilting sutures technique in a series of patients presenting with hematoma and/or abscess of nasal septum (HANS). Only patients with a confirmed diagnosis of HANS without co-morbid conditions (which could predispose to a bleeding tendency), were selected. Following incision and drainage, nasal septal flaps were coapted by applying continuous quilting sutures only. The success rate of this technique in terms of recurrence requiring re-exploration and drainage was 100%. Quilting sutures were generally well tolerated with few complaints. Saddle deformity was the most obvious complication of HANS, seen with septal abscess. Quilting sutures can be considered as an alternative treatment option for HANS. The modified technique employed in this study demonstrated impressive results and avoided the morbidity of nasal packing with fewer complications.

  1. The Embryonic Septum and Ventral Pallium, New Sources of Olfactory Cortex Cells

    PubMed Central

    de Carlos, Juan A.

    2012-01-01

    The mammalian olfactory cortex is a complex structure located along the rostro-caudal extension of the ventrolateral prosencephalon, which is divided into several anatomically and functionally distinct areas: the anterior olfactory nucleus, piriform cortex, olfactory tubercle, amygdaloid olfactory nuclei, and the more caudal entorhinal cortex. Multiple forebrain progenitor domains contribute to the cellular diversity of the olfactory cortex, which is invaded simultaneously by cells originating in distinct germinal areas in the dorsal and ventral forebrain. Using a combination of dye labeling techniques, we identified two novel areas that contribute cells to the developing olfactory cortices, the septum and the ventral pallium, from which cells migrate along a radial and then a tangential path. We characterized these cell populations by comparing their expression of calretinin, calbindin, reelin and Tbr1 with that of other olfactory cell populations. PMID:22984546

  2. Conservative treatment of cysts of the cavum septum pellucidum presenting in childhood: report of 3 cases.

    PubMed

    Bot, Gyang Markus; Constantini, Shlomi; Roth, Jonathan

    2015-09-01

    Cavum septum pellucidum (CSP) cysts are relatively rare. The most common presenting symptom is headache, which is thought to be secondary to elevated intracranial pressure. Many CSP cysts are treated surgically; conservative treatment is seldom recommended. The authors describe 3 cases of pediatric CSP cysts that were managed without surgery. The patients ranged in age from 5 months to 8 years old. Two presented with headaches, which were associated with mild ventricular enlargement in 1 case. Over the course of 5-15 months, 2 cysts became markedly reduced in size, and in one of these 2 cases a substantial reduction in ventricle size was also observed. At last follow-up, all 3 children were asymptomatic. The authors note that CSP cysts are often associated with headaches. In the absence of hydrocephalus, they recommend conservative management with clinical and radiological follow-up.

  3. Cell-Type Specific Increases in Female Hamster Nucleus Accumbens Spine Density following Female Sexual Experience

    PubMed Central

    Staffend, Nancy A.; Hedges, Valerie L.; Chemel, Benjamin R.; Watts, Val J.; Meisel, Robert L.

    2013-01-01

    Female sexual behavior is an established model of a naturally motivated behavior which is regulated by activity within the mesolimbic dopamine system. Repeated activation of the mesolimbic circuit by female sexual behavior elevates dopamine release and produces persistent postsynaptic alterations to dopamine D1 receptor signaling within the nucleus accumbens. Here we demonstrate that sexual experience in female Syrian hamsters significantly increases spine density and alters morphology selectively in D1 receptor expressing medium spiny neurons within the nucleus accumbens core, with no corresponding change in dopamine receptor binding or protein expression. Our findings demonstrate that previous life experience with a naturally motivated behavior has the capacity to induce persistent structural alterations to the mesolimbic circuit that can increase reproductive success and are analogous to the persistent structural changes following repeated exposure to many drugs of abuse. PMID:23934655

  4. Disinhibition of rat hippocampal pyramidal cells by GABAergic afferents from the septum.

    PubMed Central

    Tóth, K; Freund, T F; Miles, R

    1997-01-01

    1. Slices were prepared from rat forebrain to include both the septum and the hippocampus in order to examine the effects of septal stimulation on hippocampal inhibitory circuits. 2. Repetitive stimulation of septo-hippocampal fibres caused a maintained decrease in the frequency of spontaneous IPSPs recorded from CA3 pyramidal cells in the presence of antagonists of excitatory amino acid receptors and of muscarine receptors. 3. In records made from pyramidal cells with CsCl-filled electrodes, IPSPs were examined at potentials both more positive and more negative than their reversal potential. Single septal stimuli hyperpolarized pyramidal cells when IPSPs were depolarizing events and depolarized them when IPSPs were hyperpolarizing. The GABAA receptor antagonist picrotoxin abolished the effects of septal stimulation. 4. Activation of septal afferents initiated an IPSP in hippocampal inhibitory cells but not in pyramidal cells. Septal IPSPs had similar kinetics to those initiated by local hippocampal stimulation and could suppress inhibitory cell discharge. 5. In pyramidal cells recorded with potassium acetate-filled electrodes, septal stimuli initiated a depolarization that increased with the driving force for Cl- and that could cause firing. 6. Rhythmic stimulation of septo-hippocampal fibres at 5 Hz initiated, in the hippocampus, a maintained out-of-phase oscillation of pyramidal cell discharge and inhibitory cell firing, as detected by the occurrence of spontaneous IPSPs. 7. These results suggest that GABAergic septo-hippocampal afferents selectively inhibit hippocampal inhibitory cells and so disinhibit pyramidal cells. This disinhibition could contribute to the transmission of the theta rhythm from the septum to the hippocampus. Images Figure 1 PMID:9147330

  5. Acute and Subchronic Toxicity Study of the Median Septum of Juglans regia in Wistar Rats

    PubMed Central

    Ravanbakhsh, Asma; Mahdavi, Majid; Jalilzade-Amin, Ghader; Javadi, Shahram; Maham, Masoud; Mohammadnejad, Daryosh; Rashidi, Mohammad Reza

    2016-01-01

    Purpose: Median septum of Juglans regia L. (Juglandaceae) with anti-diabetic effects has been used in Iranian traditional medicine. The present study estimates both oral acute and subchronic toxicities. Methods: In the oral acute toxicity study, female Wistar rats were treated with doses of 10, 100, 1000, 1600, 2900 and 5000 mg/ kg of the Juglans regia septum of methanol extract (JRSME), and were monitored for 14 days. In subchronic study, JRSME was administered by gavage at dose of 1000 mg/kg daily in Wistar rats for 28 days. Antioxidant status and biochemical examinations were fulfilled, and the vital organs were subjected to pathological analyses. Results: The extract did not produce any toxic signs or deaths; the medium lethal dose must be higher than 5000 mg/kg. In subchronic study, No significant morphological and histopathological changes were observed in the studied tissues. There was a significant increase in serum malondialdehyde (MDA) level in treated group compared to control after 4 weeks of JRSME intake. The treatment of rats resulted in a significant reduction of serum urea level (p<0.05), kidney’s xanthine dehydrogenase (XDH) activity (p<0.001) and elevation of aldehyde oxidase (AO) activity (p<0.05) in kidney. In the treated group, the mean diameter of glomerulus and proximal urine tube epithelium stature was slightly greater than control group. A significant increase in serum MDA level is subject for further studies. Conclusion: This study showed that the extract has no acute or subacute adverse effects with dose of 1000 mg/kg. The administration of JRSME may improve kidney structure and function and help in treatment of some chronic diseases. PMID:28101461

  6. The presence of pacemaker HCN channels identifies theta rhythmic GABAergic neurons in the medial septum.

    PubMed

    Varga, Viktor; Hangya, Balázs; Kránitz, Kinga; Ludányi, Anikó; Zemankovics, Rita; Katona, István; Shigemoto, Ryuichi; Freund, Tamás F; Borhegyi, Zsolt

    2008-08-15

    The medial septum (MS) is an indispensable component of the subcortical network which synchronizes the hippocampus at theta frequency during specific stages of information processing. GABAergic neurons exhibiting highly regular firing coupled to the hippocampal theta rhythm are thought to form the core of the MS rhythm-generating network. In recent studies the hyperpolarization-activated, cyclic nucleotide-gated non-selective cation (HCN) channel was shown to participate in theta synchronization of the medial septum. Here, we tested the hypothesis that HCN channel expression correlates with theta modulated firing behaviour of MS neurons by a combined anatomical and electrophysiological approach. HCN-expressing neurons represented a subpopulation of GABAergic cells in the MS partly overlapping with parvalbumin (PV)-containing neurons. Rhythmic firing in the theta frequency range was characteristic of all HCN-expressing neurons. In contrast, only a minority of HCN-negative cells displayed theta related activity. All HCN cells had tight phase coupling to hippocampal theta waves. As a group, PV-expressing HCN neurons had a marked bimodal phase distribution, whereas PV-immunonegative HCN neurons did not show group-level phase preference despite significant individual phase coupling. Microiontophoretic blockade of HCN channels resulted in the reduction of discharge frequency, but theta rhythmic firing was perturbed only in a few cases. Our data imply that HCN-expressing GABAergic neurons provide rhythmic drive in all phases of the hippocampal theta activity. In most MS theta cells rhythm genesis is apparently determined by interactions at the level of the network rather than by the pacemaking property of HCN channels alone.

  7. The resistance of the septum of the medium giant axon of the earthworm

    PubMed Central

    Brink, P; Barr, L

    1977-01-01

    It is generally thought that nexuses constitute low-resistance pathways between cell interiors in epithelial, neural, muscular, and even connective tissues. However, there are no reliable estimates of the specific resistance of a nexus. The reason for this is that in most cases the surfaces of nexuses between cells are geometrically complex and therefore it has been very hard to accurately estimate nexal areas. However, the septa of the median giant axon have a relatively simple shape. Moreover, in this preparation, it is possible to make a measuring current flow parallel to the axon axis so that from the voltage difference appearing between intracellular electrodes during current flow, the specific septal membrane resistance could be calculated. The average specific nexal resistance obtained was 5.9 ω cm(2) if one assumes that 100 percent of the septum is nexus. The steady state I-V curve for the septum is linear (+/- 10 mV). Placement of electrodes was validated by septa even though the septa were found to be permeable to fluorescein and TEA. Exposure of the axon to hypertonic saline impedes the movement of fluorescein across the septa. By analogy with other tissues it is concluded that hypertonic solutions disrupt nexuses. A mathematical model was derived which predicts the steady- state transmembrane potential vs. distance from a point source of intracellular current. When the specific nexal membrane resistance is 5.9 ω cm(2), the prediction closely approximates the fall of transmembrane potential vs. distance in an ordinary infinite cable. This is commensurate with the electrophysiological behavior of this multicellular “axon.” PMID:864430

  8. Interneurons are the local targets of hippocampal inhibitory cells which project to the medial septum.

    PubMed

    Gulyás, A I; Hájos, N; Katona, I; Freund, T F

    2003-05-01

    A subset of GABAergic neurons projecting to the medial septum has long been described in the hippocampus. However, the lack of information about their local connectivity pattern or their correspondence with any of the well-established hippocampal interneuron types has hampered the understanding of their functional role. Retrograde tracing combined with immunostaining for neurochemical markers in the adult rat hippocampus showed that nearly all hippocampo-septal (HS) neurons express somatostatin (>95%) and, in the hilus and CA3 stratum lucidum, many contain calretinin (>45%). In contrast, in stratum oriens of the CA1 and CA3 subfields, the majority of HS neurons contain somatostatin (>86%) and calbindin (>73%), but not calretinin. Because somatostatin-positive hippocampal interneurons have been most extensively characterized in the stratum oriens of CA1, we focused our further analysis on HS cells found in this region. In 18-20-day-old rats, intracellularly filled CA1-HS cells had extensive local axon collaterals crossing subfield boundaries and innervating the CA3 region and the dentate gyrus. Electron microscopic analysis provided evidence that the axon terminals of CA1-HS cells form symmetrical synapses selectively on GABAergic interneurons, both locally and in the CA3 region. In addition, double retrograde labelling experiments revealed that many CA1-HS neurons of the dorsal hippocampus also have collateral projections to the ventral hippocampus. Thus, CA1-HS cells innervate inhibitory interneurons locally and in remote hippocampal regions, in addition to targeting mostly GABAergic neurons in the medial septum. This dual projection with striking target selectivity for GABAergic neurons may be ideally suited to synchronize neuronal activity along the septo-hippocampal axis.

  9. Apathy in Parkinson's disease is associated with nucleus accumbens atrophy: a magnetic resonance imaging shape analysis.

    PubMed

    Carriere, Nicolas; Besson, Pierre; Dujardin, Kathy; Duhamel, Alain; Defebvre, Luc; Delmaire, Christine; Devos, David

    2014-06-01

    Apathy is characterized by lack of interest, loss of initiative, and flattening of affect. It is a frequent, very disabling nonmotor complication of Parkinson's disease (PD). The condition may notably occur when dopaminergic medications are tapered after the initiation of subthalamic stimulation and thus can be referred to as "dopaminergic apathy." Even in the absence of tapering, some patients may develop a form of apathy as PD progresses. This form is often related to cognitive decline and does not respond to dopaminergic medications (dopa-resistant apathy). We aimed at determining whether dopa-resistant apathy in PD is related to striatofrontal morphological changes. We compared the shape of the striatum (using spherical harmonic parameterization and sampling in a three-dimensional point distribution model [SPHARM-PDM]), cortical thickness, and fractional anisotropy (using tract-based spatial statistics) in 10 consecutive patients with dopamine-refractory apathy, 10 matched nonapathetic PD patients and 10 healthy controls. Apathy in PD was associated with atrophy of the left nucleus accumbens. The SPHARM-PDM analysis highlighted (1) a positive correlation between the severity of apathy and atrophy of the left nucleus accumbens, (2) greater atrophy of the dorsolateral head of the left caudate in apathetic patients than in nonapathetic patients, and (3) greater atrophy in the bilateral nucleus accumbens in apathetic patients than in controls. There were no significant intergroup differences in cortical thickness or fractional anisotropy. Dopa-resistant apathy in PD was associated with atrophy of the left nucleus accumbens and the dorsolateral head of the left caudate.

  10. α2δ-1 Signaling in Nucleus Accumbens Is Necessary for Cocaine-Induced Relapse

    PubMed Central

    Brown, Robyn M.; Quintero, Gabriel C.; Kupchik, Yonatan M.; Thomas, Charles A.; Reissner, Kathryn J.; Kalivas, Peter W.

    2014-01-01

    Relapse to cocaine seeking is associated with potentiated excitatory synapses in nucleus accumbens. α2δ-1 is an auxiliary subunit of voltage-gated calcium channels that affects calcium-channel trafficking and kinetics, initiates extracellular signaling cascades, and promotes excitatory synaptogenesis. Previous data demonstrate that repeated exposure to alcohol, nicotine, methamphetamine, and morphine upregulates α2δ-1 in reward-related brain regions, but it was unclear whether this alteration generalized to cocaine. Here, we show that α2δ-1 protein was increased in nucleus accumbens after cocaine self-administration and extinction compared with saline controls. Furthermore, the endogenous ligand thrombospondin-1, responsible for the synaptogenic properties of the α2δ-1 receptor, was likewise elevated. Using whole-cell patch-clamp recordings of EPSCs in nucleus accumbens, we demonstrated that gabapentin, a specific α2δ-1 antagonist, preferentially reduced the amplitude and increased the paired-pulse ratio of EPSCs evoked by electrical stimulation in slices from cocaine-experienced rats compared with controls. In vivo, gabapentin microinjected in the nucleus accumbens core attenuated cocaine-primed but not cue-induced reinstatement. Importantly, gabapentin's effects on drug seeking were not due to a general depression of spontaneous or cocaine-induced locomotor activity. Moreover, gabapentin had no effect on reinstatement of sucrose seeking. These data indicate that α2δ-1 contributes specifically to cocaine-reinstated drug seeking, and identifies this protein as a target for the development of cocaine relapse medications. These results also inform ongoing discussion in the literature regarding efficacy of gabapentin as a candidate addiction therapy. PMID:24948814

  11. Deep brain stimulation of the nucleus accumbens shell attenuates cocaine reinstatement through local and antidromic activation.

    PubMed

    Vassoler, Fair M; White, Samantha L; Hopkins, Thomas J; Guercio, Leonardo A; Espallergues, Julie; Berton, Olivier; Schmidt, Heath D; Pierce, R Christopher

    2013-09-04

    Accumbal deep brain stimulation (DBS) is a promising therapeutic modality for the treatment of addiction. Here, we demonstrate that DBS in the nucleus accumbens shell, but not the core, attenuates cocaine priming-induced reinstatement of drug seeking, an animal model of relapse, in male Sprague Dawley rats. Next, we compared DBS of the shell with pharmacological inactivation. Results indicated that inactivation using reagents that influenced (lidocaine) or spared (GABA receptor agonists) fibers of passage blocked cocaine reinstatement when administered into the core but not the shell. It seems unlikely, therefore, that intrashell DBS influences cocaine reinstatement by inactivating this nucleus or the fibers coursing through it. To examine potential circuit-wide changes, c-Fos immunohistochemistry was used to examine neuronal activation following DBS of the nucleus accumbens shell. Intrashell DBS increased c-Fos induction at the site of stimulation as well as in the infralimbic cortex, but had no effect on the dorsal striatum, prelimbic cortex, or ventral pallidum. Recent evidence indicates that accumbens DBS antidromically stimulates axon terminals, which ultimately activates GABAergic interneurons in cortical areas that send afferents to the shell. To test this hypothesis, GABA receptor agonists (baclofen/muscimol) were microinjected into the anterior cingulate, and prelimbic or infralimbic cortices before cocaine reinstatement. Pharmacological inactivation of all three medial prefrontal cortical subregions attenuated the reinstatement of cocaine seeking. These results are consistent with DBS of the accumbens shell attenuating cocaine reinstatement via local activation and/or activation of GABAergic interneurons in the medial prefrontal cortex via antidromic stimulation of cortico-accumbal afferents.

  12. Gene expression profile of the nucleus accumbens of human cocaine abusers: evidence for dysregulation of myelin

    PubMed Central

    Albertson, Dawn N.; Pruetz, Barb; Schmidt, Carl J.; Kuhn, Donald M.; Kapatos, Gregory; Bannon, Michael J.

    2008-01-01

    Chronic cocaine abuse induces long-term neural adaptations as a consequence of alterations in gene expression. This study was undertaken to identify those transcripts differentially regulated in the nucleus accumbens of human cocaine abusers. Affymetrix microarrays were used to measure transcript abundance in 10 cocaine abusers and 10 control subjects matched for age, race, sex, and brain pH. As expected, gene expression of cocaine- and amphetamine-regulated transcript (CART) was increased in the nucleus accumbens of cocaine abusers. The most robust and consistent finding, however, was a decrease in the expression of a number of myelin-related genes, including myelin basic protein (MBP), proteolipid protein (PLP), and myelin-associated oligodendrocyte basic protein (MOBP). The differential expression seen by microarray for CART as well as MBP, MOBP, and PLP was verified by RT–PCR. In addition, immunohistochemical experiments revealed a decrease in the number of MBP-immunoreactive oligodendrocytes present in the nucleus accumbens and surrounding white matter of cocaine abusers. These findings suggest a dysregulation of myelin in human cocaine abusers. PMID:15009677

  13. Grit Is Associated with Structure of Nucleus Accumbens and Gains in Cognitive Training.

    PubMed

    Nemmi, Federico; Nymberg, Charlotte; Helander, Elin; Klingberg, Torkel

    2016-11-01

    There is a long-standing interest in the determinants of successful learning in children. "Grit" is an individual trait, reflecting the ability to pursue long-term goals despite temporary setbacks. Although grit is known to be predictive of future success in real-world learning situations, an understanding of the underlying neural basis and mechanisms is still lacking. Here we show that grit in a sample of 6-year-old children (n = 55) predicts the working memory improvement during 8 weeks of training on working memory tasks (p = .009). In a separate neuroimaging analysis performed on a partially overlapping sample (n = 27), we show that interindividual differences in grit were associated with differences in the volume of nucleus accumbens (peak voxel p = .021, x = 12, y = 11, z = -11). This was also confirmed in a leave-one-out analysis of gray matter density in the nucleus accumbens (p = .018). The results can be related to previous animal research showing the role of the nucleus accumbens to search out rewards regardless of delays or obstacles. The results provide a putative neural basis for grit and could contribute a cross-disciplinary connection of animal neuroscience to child psychology.

  14. Stimulation of the nucleus accumbens as behavioral reward in awake behaving monkeys.

    PubMed

    Bichot, Narcisse P; Heard, Matthew T; Desimone, Robert

    2011-08-15

    It has been known that monkeys will repeatedly press a bar for electrical stimulation in several different brain structures. We explored the possibility of using electrical stimulation in one such structure, the nucleus accumbens, as a substitute for liquid reward in animals performing a complex task, namely visual search. The animals had full access to water in the cage at all times on days when stimulation was used to motivate them. Electrical stimulation was delivered bilaterally at mirror locations in and around the accumbens, and the animals' motivation to work for electrical stimulation was quantified by the number of trials they performed correctly per unit of time. Acute mapping revealed that stimulation over a large area successfully supported behavioral performance during the task. Performance improved with increasing currents until it reached an asymptotic, theoretically maximal level. Moreover, stimulation with chronically implanted electrodes showed that an animal's motivation to work for electrical stimulation was at least equivalent to, and often better than, when it worked for liquid reward while on water control. These results suggest that electrical stimulation in the accumbens is a viable method of reward in complex tasks. Because this method of reward does not necessitate control over water or food intake, it may offer an alternative to the traditional liquid or food rewards in monkeys, depending on the goals and requirements of the particular research project.

  15. Estradiol in the Preoptic Area Regulates the Dopaminergic Response to Cocaine in the Nucleus Accumbens

    PubMed Central

    Tobiansky, Daniel J; Will, Ryan G; Lominac, Kevin D; Turner, Jonathan M; Hattori, Tomoko; Krishnan, Krittika; Martz, Julia R; Nutsch, Victoria L; Dominguez, Juan M

    2016-01-01

    The sex-steroid hormone estradiol (E2) enhances the psychoactive effects of cocaine, as evidenced by clinical and preclinical studies. The medial preoptic area (mPOA), a region in the hypothalamus, is a primary neural locus for neuroendocrine integration, containing one of the richest concentrations of estrogen receptors in the CNS and also has a key role in the regulation of naturally rewarding behaviors. However, whether estradiol enhances the neurochemical response to cocaine by acting in the mPOA is still unclear. Using neurotoxic lesions and microdialysis, we examined whether the mPOA modulates cocaine-induced neurochemical activity in the nucleus accumbens. Tract tracing and immunohistochemical staining were used to determine whether projections from the mPOA to the ventral tegmental area (VTA) are sensitive to estrogen signaling. Finally, estradiol microinjections followed by microdialysis were used to determine whether estrogenic signaling in the mPOA modulates cocaine-induced changes of dopamine in the nucleus accumbens. Results showed that lesions of the mPOA or microinjections of estradiol directly into the mPOA increased cocaine-induced release of dopamine in the nucleus accumbens. Immunohistochemical analyses revealed that the mPOA modulates cocaine responsiveness via projections to both dopaminergic and GABAergic neurons in the VTA, and that these projections are sensitive to estrogenic stimulation. Taken together, these findings point to a novel estradiol-dependent pathway that modulates cocaine-induced neurochemical activity in the mesolimbic system. PMID:26647972

  16. Response to anticipated reward in the nucleus accumbens predicts behavior in an independent test of honesty.

    PubMed

    Abe, Nobuhito; Greene, Joshua D

    2014-08-06

    This study examines the cognitive and neural determinants of honesty and dishonesty. Human subjects undergoing fMRI completed a monetary incentive delay task eliciting responses to anticipated reward in the nucleus accumbens. Subjects next performed an incentivized prediction task, giving them real and repeated opportunities for dishonest gain. Subjects attempted to predict the outcomes of random computerized coin-flips and were financially rewarded for accuracy. In some trials, subjects were rewarded based on self-reported accuracy, allowing them to gain money dishonestly by lying. Dishonest behavior was indexed by improbably high levels of self-reported accuracy. Nucleus accumbens response in the first task, involving only honest rewards, accounted for ∼25% of the variance in dishonest behavior in the prediction task. Individuals showing relatively strong nucleus accumbens responses to anticipated reward also exhibited increased dorsolateral prefrontal activity (bilateral) in response to opportunities for dishonest gain. These results address two hypotheses concerning (dis)honesty. According to the "Will" hypothesis, honesty results from the active deployment of self-control. According to the "Grace" hypothesis, honesty flows more automatically. The present results suggest a reconciliation between these two hypotheses while explaining (dis)honesty in terms of more basic neural mechanisms: relatively weak responses to anticipated rewards make people morally "Graceful," but individuals who respond more strongly may resist temptation by force of Will.

  17. Perimovement decrease of alpha/beta oscillations in the human nucleus accumbens

    PubMed Central

    Dürschmid, Stefan; Rutledge, Robb B.; Zaehle, Tino; Schmitt, Friedhelm C.; Kaufmann, Jörn; Voges, Jürgen; Heinze, Hans-Jochen; Dolan, Raymond J.; Schoenfeld, Mircea Ariel

    2016-01-01

    The human nucleus accumbens is thought to play an important role in guiding future action selection via an evaluation of current action outcomes. Here we provide electrophysiological evidence for a more direct, i.e., online, role during action preparation. We recorded local field potentials from the nucleus accumbens in patients with epilepsy undergoing surgery for deep brain stimulation. We found a consistent decrease in the power of alpha/beta oscillations (10–30 Hz) before and around the time of movements. This perimovement alpha/beta desynchronization was observed in seven of eight patients and was present both before instructed movements in a serial reaction time task as well as before self-paced, deliberate choices in a decision making task. A similar beta decrease over sensorimotor cortex and in the subthalamic nucleus has been directly related to movement preparation and execution. Our results support the idea of a direct role of the human nucleus accumbens in action preparation and execution. PMID:27486103

  18. Multiple amygdaloid divisions of arcopallium send convergent projections to the nucleus accumbens and neighboring subpallial amygdala regions in the domestic chicken: a selective pathway tracing and reconstruction study.

    PubMed

    Hanics, János; Teleki, Gyöngyi; Alpár, Alán; Székely, Andrea D; Csillag, András

    2017-01-01

    Retrograde tracing with choleratoxin B, injected into the nucleus accumbens (Ac) and bed nucleus of stria terminalis, lateral part (BSTL), yielded labeled perikarya in a ring-shaped area of arcopallium, including dorsal and hilar subdivisions, with a wedge-shaped node of dense accumulation in the amygdalopiriform area (APir). Also, the position of source neurons for this arcopallio-subpallial pathway was verified by anterograde tracing. Three subregions of arcopallium (amygdalopiriform, dorsal, hilar) were injected with dextran (10 kDa), and fibers and terminal fields were detected in Ac, BSTL and extended amygdala (EA). Most abundant projections to Ac arose from APir. The study enabled precise description of the main output fiber streams: the dorsal stream follows the dorsal border of arcopallium and, continuing in the ventral amygdalofugal tract, it traverses the EA and the BSTL before reaching the Ac. The ventral stream of fibers enters the EA along the ventral subpallial border and terminates in the basal nucleus and ventral pallidum. The course of the pathway was reconstructed in 3D. Retrogradely labeled arcopallial neurons were devoid of DARPP-32. DARPP-32 was present in the Ac but not the BSTL. No colocalization between the calcium binding proteins calbindin, parvalbumin and calretinin, and retrogradely labeled neurons was detected, despite a considerable territorial overlap. This finding further supports the excitatory nature of the arcopallial-accumbens pathway. Conjoint and convergent amygdalar input to EA, including BSTL, as well as to Ac subregions likely transmits fear and aggression related signals to both viscerolimbic (EA) and learned reward- and motivation-related (Ac) ventrobasal forebrain regions.

  19. Effects of adolescent methamphetamine and nicotine exposure on behavioral performance and MAP-2 immunoreactivity in the nucleus accumbens of adolescent mice.

    PubMed

    Buck, Jordan M; Morris, Alysse S; Weber, Sydney J; Raber, Jacob; Siegel, Jessica A

    2017-04-14

    The neurotoxic effects of methamphetamine (MA) exposure in the developing and adult brain can lead to behavioral alterations and cognitive deficits in adults. Previous increases in the rates of adolescent MA use necessitate that we understand the behavioral and cognitive effects of MA exposure during adolescence on the adolescent brain. Adolescents using MA exhibit high rates of nicotine (NIC) use, but the effects of concurrent MA and NIC in the adolescent brain have not been examined, and it is unknown if NIC mediates any of the effects of MA in the adolescent. In this study, the long-term effects of a neurotoxic dose of MA with or without NIC exposure during early adolescence (postnatal day 30-31) were examined later in adolescence (postnatal day 41-50) in male C57BL/6J mice. Effects on behavioral performance in the open field, Porsolt forced swim test, and conditioned place preference test, and cognitive performance in the novel object recognition test and Morris water maze were assessed. Additionally, the effects of MA and/or NIC on levels of microtubule associated-2 (MAP-2) protein in the nucleus accumbens and plasma corticosterone were examined. MA and NIC exposure during early adolescence separately decreased anxiety-like behavior in the open field test, which was not seen following co-administration of MA/NIC. There was no significant effect of early adolescent MA and/or NIC exposure on the intensity of MAP-2 immunoreactivity in the nucleus accumbens or on plasma corticosterone levels. These results show that early adolescent MA and NIC exposure separately decrease anxiety-like behavior in the open field, and that concurrent MA and NIC exposure does not induce the same behavioral change as either drug alone.

  20. Muscarinic acetylcholine receptors in the nucleus accumbens core and shell contribute to cocaine priming-induced reinstatement of drug seeking

    PubMed Central

    Yee, Judy; Famous, Katie R.; Hopkins, Thomas J.; McMullen, Michael C.; Pierce, R. Christopher; Schmidt, Heath D.

    2011-01-01

    Muscarinic acetylcholine receptors in the nucleus accumbens play an important role in mediating the reinforcing effects of cocaine. However, there is a paucity of data regarding the role of accumbal muscarinic acetylcholine receptors in the reinstatement of cocaine-seeking behavior. The goal of these experiments was to assess the role of muscarinic acetylcholine receptors in the nucleus accumbens core and shell in cocaine and sucrose priming-induced reinstatement. Rats were initially trained to self-administer cocaine or sucrose on a fixed-ratio schedule of reinforcement. Lever-pressing behavior was then extinguished and followed by a subsequent reinstatement phase during which operant responding was induced by either a systemic injection of cocaine in cocaine-experienced rats or non-contingent delivery of sucrose pellets in subjects with a history of sucrose self-administration. Results indicated that systemic administration of the muscarinic acetylcholine receptor antagonist scopolamine (5.0 mg/kg, i.p.) dose-dependently attenuated cocaine, but not sucrose, reinstatement. Furthermore, administration of scopolamine (36.0 μg) directly into the nucleus accumbens shell or core attenuated cocaine-priming induced reinstatement. In contrast, infusion of scopolamine (36.0 μg) directly into the accumbens core, but not shell, attenuated sucrose reinstatement, which suggests that muscarinic acetylcholine receptors in these two subregions of the nucleus accumbens have differential roles in sucrose seeking. Taken together, these results indicate that cocaine-priming induced reinstatement is mediated, in part, by increased signaling through muscarinic acetylcholine receptors in the shell subregion of the nucleus accumbens. Muscarinic acetylcholine receptors in the core of the accumbens, in contrast, appear to play a more general (i.e. not cocaine specific) role in motivated behaviors. PMID:21034738

  1. Nucleus accumbens response to incentive stimuli anticipation in children of alcoholics: relationships with precursive behavioral risk and lifetime alcohol use.

    PubMed

    Yau, Wai-Ying Wendy; Zubieta, Jon-Kar; Weiland, Barbara J; Samudra, Preeti G; Zucker, Robert A; Heitzeg, Mary M

    2012-02-15

    Children of alcoholics (COAs) are at elevated risk to develop alcohol and other substance use disorders. The neurobiological underpinnings of this heightened vulnerability are presently not well understood. This study investigated whether, in humans, COAs have different functioning of the mesolimbic reward circuitry beyond previous substance use confounds and examined potential group differences in neural response in relation to alcohol use and behavioral risk. We studied 20 18- to 22-year-old COAs and 20 controls, developmentally well characterized for substance use and selected to match on sex, age, IQ, lifetime substance use and associated problems, and precursive (ages 12-14 years) externalizing behavioral risk. None met criteria for Diagnostic and Statistical Manual of Mental Disorders IV diagnosis. Neural responses to anticipation of reward and loss were assessed using functional magnetic resonance imaging during a monetary incentive delay task. Overall, COAs showed reduced ventral striatum activation during anticipation of monetary reward and loss compared with controls. However, additional analysis revealed that blunted nucleus accumbens (NAcc) response was only observed in COAs who have not demonstrated any problem drinking behavior. In addition, uniquely in COAs, NAcc activation was positively correlated with precursive externalizing risk, as well as current and lifetime alcohol consumption. These findings suggest a multilevel developmental process whereby lower precursive behavioral risk appears protective of later problem alcohol use in COAs, which is further associated with a blunted NAcc response to incentive anticipation, potentially reflecting a resilience mechanism. Moreover, the results suggest that a close association between motivational responses, alcohol consumption, and behavioral risk may underlie addiction vulnerability in COAs.

  2. Kindled seizure in the prefrontal cortex activated behavioral hyperactivity and increase in accumbens gamma oscillations through the hippocampus.

    PubMed

    Ma, Jingyi; Leung, L Stan

    2010-01-05

    In previous studies, we reported that a single afterdischarge (AD) or repeated ADs (kindling) in the hippocampus resulted in schizophrenia-like behaviors such as hyperactivity and loss of sensorimotor gating. Given that medial prefrontal cortex (PFC) dysfunction is also found in models of schizophrenia, we hypothesized that a single AD in the PFC induces postictal hyperactivity, and PFC kindling results in loss in prepulse inhibition (PPI). An AD was induced by stimulating the PFC with a 5s stimulus train of 60 Hz frequency and 600-800 microA intensity. An initial AD evoked in the PFC was not accompanied by clear postictal behavioral change. After partial kindling (11+/-2 ADs) of the PFC, the PFC-AD propagated into the hippocampus and nucleus accumbens (NAC) and postictal hyperactivity lasted > 5 min. The postictal hyperactivity was accompanied by increased gamma EEG oscillations in both PFC and NAC. A single AD in hippocampal CA1 also induced > 5 min of postictal hyperactivity and increased gamma oscillations in the NAC and the PFC, with a transient increase in hippocampus-NAC gamma coherence occurring 2-3 min after a hippocampal AD. Electrolytic lesion or inactivation of the dorsal hippocampus abolished the behavioral hyperactivity and the NAC/PFC gamma wave increase induced by a PFC-AD. Kindling of the PFC (21 ADs) but not of the lateral frontal cortex resulted in a deficit of PPI to the acoustic startle response tested 3 days after the last AD. In summary, gamma waves in the NAC were found to accompany postictal hyperactivity induced by an AD in the PFC. Postictal gamma and hyperactivity required an intact hippocampus, perhaps through the hippocampal-NAC pathway. PFC kindling, similar to hippocampal CA1 kindling, resulted in a prolonged deficit in PPI.

  3. Relief learning requires a coincident activation of dopamine D1 and NMDA receptors within the nucleus accumbens.

    PubMed

    Bergado Acosta, Jorge R; Kahl, Evelyn; Kogias, Georgios; Uzuneser, Taygun C; Fendt, Markus

    2017-03-01

    Relief learning is the association of a stimulus with the offset of an aversive event. Later, the now conditioned relief stimulus induces appetitive-like behavioral changes. We previously demonstrated that the NMDA receptors within the nucleus accumbens (NAC) are involved in relief learning. The NAC is also important for reward learning and it has been shown that reward learning is mediated by an interaction of accumbal dopamine and NMDA glutamate receptors. Since conditioned relief has reward-like properties, we hypothesized that (a) acquisition of relief learning requires the activation of dopamine D1 receptors in the NAC, and (b) if D1 receptors are involved in this process as expected, a concurrent dopamine D1 and NMDA receptor activation may mediate this learning. The present study tested these hypotheses. Therefore, rats received intra-NAC injections of the dopamine D1 receptor antagonist SCH23390 and the NMDA antagonist AP5, either separately or together, at different time points of a relief conditioning procedure. First, we showed that SCH23390 dose-dependently blocked acquisition and the expression of conditioned relief. Next, we demonstrated that co-injections of SCH23390 and AP5 into the NAC, at doses that were ineffective when applied separately, blocked acquisition but not consolidation or expression of relief learning. Notably, neither of the injections affected the locomotor response of the animals to the aversive stimuli suggesting that their perception is not changed. This data indicates that a co-activation of dopamine D1 and NMDA receptors in the NAC is required for acquisition of relief learning.

  4. Tickling increases dopamine release in the nucleus accumbens and 50 kHz ultrasonic vocalizations in adolescent rats.

    PubMed

    Hori, Miyo; Shimoju, Rie; Tokunaga, Ryota; Ohkubo, Masato; Miyabe, Shigeki; Ohnishi, Junji; Murakami, Kazuo; Kurosawa, Mieko

    2013-03-27

    Adolescent rats emit 50 kHz ultrasonic vocalizations, a marker of positive emotion, during rough-and-tumble play or on tickling stimulation. The emission of 50 kHz ultrasonic vocalizations in response to tickling is suggested to be mediated by dopamine release in the nucleus accumbens; however, there is no direct evidence supporting this hypothesis. The present study aimed to elucidate whether play behavior (tickling) in adolescent rats can trigger dopamine release in the nucleus accumbens with hedonic 50 kHz ultrasonic vocalizations. The effect of tickling stimulation was compared with light-touch stimulation, as a discernible stimulus. We examined 35-40-day-old rats, which corresponds to the period of midadolescence. Tickling stimulation for 5 min significantly increased dopamine release in the nucleus accumbens (118±7% of the prestimulus control value). Conversely, light-touch stimulation for 5 min did not significantly change dopamine release. In addition, 50 kHz ultrasonic vocalizations were emitted during tickling stimulation but not during light-touch stimulation. Further, tickling-induced 50 kHz ultrasonic vocalizations were significantly blocked by the direct application of SCH23390 (D1 receptor antagonist) and raclopride (D2/D3 receptor antagonist) into the nucleus accumbens. Our study demonstrates that tickling stimulation in adolescent rats increases dopamine release in the nucleus accumbens, leading to the generation of 50 kHz ultrasonic vocalizations.

  5. Development of septum-free injector for gas chromatography and its application to the samples with a high boiling point.

    PubMed

    Ito, Hiroshi; Hayakawa, Kazuichi; Yamamoto, Atsushi; Murase, Atsushi; Hayakawa, Kazumi; Kuno, Minoru; Inoue, Yoshinori

    2006-11-03

    A novel apparatus with a simple structure has been developed for introducing samples into the vaporizing chamber of a gas chromatograph. It requires no septum due to the gas sealing structure over the carrier gas supply line. The septum-free injector made it possible to use injection port temperatures as high as 450 degrees C. Repetitive injection of samples with boiling points below 300 degrees C resulted in peak areas with relative standard deviations between 1.25 and 3.28% (n=5) and good linearity (r(2)>0.9942) for the calibration curve. In the analysis of polycyclic aromatic hydrocarbons and a base oil, the peak areas of components with high boiling points increased as the injection port temperature was increased to 450 degrees C.

  6. Magnetic resonance imaging of AMS (Aneurysm of the Membranous Septum), review of the literature and case report.

    PubMed

    Di Cesare, Ernesto; Di Sibio, Alessandra; Lanni, Giuseppe; Gennarelli, Antonio; Masciocchi, Carlo

    2014-05-01

    Aneurysm of the Membranous Septum (AMS) is a rare cardiac disease, mostly associated with other cardiac anomalies, very rare in the absence of other congenital heart defects. A prompt diagnosis is important, due to severe potential complications, but remain challenging. Most of the cases were earlier diagnosed using ventriculography, but, with the availability of echocardiography and cardiovascular magnetic resonance (CMR), this disease can be accurately assessed non-invasively. We report a case of a 62 years old female patient, without other cardiac congenital disease, who was incidentally diagnosed, by means of CMR with a true and isolated AMS. Our report underlines CMR usefulness in AMS diagnosis, thanks to accurate evaluation (both morphologic and functional) provided by this diagnostic tool, which is able to demonstrate clearly the presence of AMS (aneurysm of the membranous septum) and depict its features.

  7. [Lateral retinacular release].

    PubMed

    Verdonk, P; Bonte, F; Verdonk, R

    2008-09-01

    This overview of numerous studies discusses, based on short-term and long-term results, which diagnoses are indications for lateral retinacular release. No significant differences in outcome between arthroscopic and open lateral release could be documented. Isolated lateral release offers a good success rate for treating a stable patella with excessive lateral pressure. In patellar instability, the results are less favorable in long-term follow-up evaluation. Hyperlaxity with hypermobility of the patella is an absolute contraindication. Lateral release provides only temporary benefit for patellofemoral osteoarthritis. Proximal and/or distal realignment of the extensor mechanism gives better results than isolated lateral release.

  8. Hypoplastic left heart syndrome with restrictive atrial septum and advanced heart block documented with a novel fetal electrocardiographic monitor

    PubMed Central

    NARAYAN, H. K.; FIFER, W.; CARROLL, S.; KERN, J.; SILVER, E.; WILLIAMS, I. A.

    2012-01-01

    Hypoplastic left ventricle with congenital heart block has been reported previously in a fetus with concurrent left atrial isomerism and levo-transposition of the great arteries. We present the unusual case of an infant diagnosed in utero with hypoplastic left heart syndrome, a restrictive atrial septum and advanced heart block but with D-looping of the ventricles and no atrial isomerism. In addition, fetal heart rhythm was documented with the assistance of a new fetal electrocardiographic monitor. PMID:21374749

  9. Interactions between hippocampus and medial septum during sharp waves and theta oscillation in the behaving rat.

    PubMed

    Dragoi, G; Carpi, D; Recce, M; Csicsvari, J; Buzsáki, G

    1999-07-15

    The medial septal region and the hippocampus are connected reciprocally via GABAergic neurons, but the physiological role of this loop is still not well understood. In an attempt to reveal the physiological effects of the hippocamposeptal GABAergic projection, we cross-correlated hippocampal sharp wave (SPW) ripples or theta activity and extracellular units recorded in the medial septum and diagonal band of Broca (MSDB) in freely moving rats. The majority of single MSDB cells (60%) were significantly suppressed during SPWs. Most cells inhibited during SPW (80%) fired rhythmically and phase-locked to the negative peak of the CA1 pyramidal layer theta waves. Because both SPW and the negative peak of local theta waves correspond to the maximum discharge probability of CA1 pyramidal cells and interneuron classes, the findings indicate that the activity of medial septal neurons can be negatively (during SPW) or positively (during theta waves) correlated with the activity of hippocampal interneurons. We hypothesize that the functional coupling between medial septal neurons and hippocampal interneurons varies in a state-dependent manner.

  10. GABAergic Projections from the Medial Septum Selectively Inhibit Interneurons in the Medial Entorhinal Cortex

    PubMed Central

    Gonzalez-Sulser, Alfredo; Parthier, Daniel; Candela, Antonio; McClure, Christina; Pastoll, Hugh; Garden, Derek; Sürmeli, Gülşen

    2014-01-01

    The medial septum (MS) is required for theta rhythmic oscillations and grid cell firing in the medial entorhinal cortex (MEC). While GABAergic, glutamatergic, and cholinergic neurons project from the MS to the MEC, their synaptic targets are unknown. To investigate whether MS neurons innervate specific layers and cell types in the MEC, we expressed channelrhodopsin-2 in mouse MS neurons and used patch-clamp recording in brain slices to determine the response to light activation of identified cells in the MEC. Following activation of MS axons, we observed fast monosynaptic GABAergic IPSPs in the majority (>60%) of fast-spiking (FS) and low-threshold-spiking (LTS) interneurons in all layers of the MEC, but in only 1.5% of nonstellate principal cells (NSPCs) and in no stellate cells. We also observed fast glutamatergic responses to MS activation in a minority (<5%) of NSPCs, FS, and LTS interneurons. During stimulation of MS inputs at theta frequency (10 Hz), the amplitude of GABAergic IPSPs was maintained, and spike output from LTS and FS interneurons was entrained at low (25–60 Hz) and high (60–180 Hz) gamma frequencies, respectively. By demonstrating cell type-specific targeting of the GABAergic projection from the MS to the MEC, our results support the idea that the MS controls theta frequency activity in the MEC through coordination of inhibitory circuits. PMID:25505326

  11. The effect of septoplasty on pulmonary artery pressure and right ventricular function in nasal septum deviation.

    PubMed

    Ozkececi, Gulay; Akci, Onder; Bucak, Abdulkadir; Ulu, Sahin; Yalım, Zafer; Aycicek, Abdullah; Onrat, Ersel; Avsar, Alaettin

    2016-11-01

    Nasal septum deviation (NSD) can cause obstruction of the upper airway, which may lead to increased pulmonary artery pressure (PAP) and right ventricle dysfunction. The aim of the present study was to evaluate the effect of septoplasty on right ventricular function and mean PAP of patients with marked NSD. 25 patients with marked NSD (mean age = 31.8 ± 12.3 years) and 27 healthy volunteers (mean age = 34.5 ± 10.8 years) were enrolled. Echocardiography was performed for all subjects and right ventricular function and mean PAP were evaluated before and 3 months after septoplasty. Tricuspid annular plane systolic excursion (TAPSE) and tricuspid annulus early diastolic myocardial velocity (E') were significantly lower in patients with NSD than control subjects, while right ventricle myocardial performance index (RVMPI) and mean PAP were significantly higher (respectively, p = 0.006, 0.037, 0.049, 0.046). When preoperative and postoperative findings were compared, the mean PAP decreased whereas TAPSE increased significantly (respectively, p = 0.007, 0.03). The results of the present study demonstrated that mean PAP increased and right ventricular function worsened in patients with NSD. However, mean PAP decreased and right ventricular function tended to recover after septoplasty.

  12. Extracardiac septum transversum/proepicardial endothelial cells pattern embryonic coronary arterio-venous connections.

    PubMed

    Cano, Elena; Carmona, Rita; Ruiz-Villalba, Adrián; Rojas, Anabel; Chau, You-Ying; Wagner, Kay D; Wagner, Nicole; Hastie, Nicholas D; Muñoz-Chápuli, Ramón; Pérez-Pomares, José M

    2016-01-19

    Recent reports suggest that mammalian embryonic coronary endothelium (CoE) originates from the sinus venosus and ventricular endocardium. However, the contribution of extracardiac cells to CoE is thought to be minor and nonsignificant for coronary formation. Using classic (Wt1(Cre)) and previously undescribed (G2-Gata4(Cre)) transgenic mouse models for the study of coronary vascular development, we show that extracardiac septum transversum/proepicardium (ST/PE)-derived endothelial cells are required for the formation of ventricular coronary arterio-venous vascular connections. Our results indicate that at least 20% of embryonic coronary arterial and capillary endothelial cells derive from the ST/PE compartment. Moreover, we show that conditional deletion of the ST/PE lineage-specific Wilms' tumor suppressor gene (Wt1) in the ST/PE of G2-Gata4(Cre) mice and in the endothelium of Tie2(Cre) mice disrupts embryonic coronary transmural patterning, leading to embryonic death. Taken together, our results demonstrate that ST/PE-derived endothelial cells contribute significantly to and are required for proper coronary vascular morphogenesis.

  13. Pulmonary vascular disease in transposition of the great vessels and intact ventricular septum.

    PubMed

    Newfeld, E A; Paul, M H; Muster, A J; Idriss, F S

    1979-03-01

    Eight of 135 (6%) children with d-transposition of the great vessels and with intact ventricular septum and no patent ductus arteriosus had evidence of progressive pulmonary vascular disease. Seven of 101 (7%) patients for whom histologic data was available, had Heath-Edwards grades IV or V pulmonary vascular disease, six had grade II, and 88 had either normal or grade I findings. One of 34 patients for whom histologic data was not available had hemodynamic evidence of pulmonary vascular disease at cardiac catheterization after the Mustard operation. When infants younger than 3 months old were excluded, eight of 85 (9%) had advanced pulmonary vascular disease. Twenty-three patients had microthrombi in their pulmonary arteries and arterioles, and in one patient thrombi were observed before the development of pulmonary vascular disease. Clinically unrecognized pulmonary microthrombi are suggested as a possible etiologic agent in the development of pulmonary vascular disease in patients with transposition of the great vessels. Progressive pulmonary vascular disease can first be discovered after the Mustard operation, even in patients without preoperative evidence of pulmonary hypertension or elevated pulmonary vascular resistance.

  14. Extracardiac septum transversum/proepicardial endothelial cells pattern embryonic coronary arterio–venous connections

    PubMed Central

    Cano, Elena; Ruiz-Villalba, Adrián; Rojas, Anabel; Chau, You-Ying; Wagner, Kay D.; Wagner, Nicole; Hastie, Nicholas D.; Muñoz-Chápuli, Ramón; Pérez-Pomares, José M.

    2016-01-01

    Recent reports suggest that mammalian embryonic coronary endothelium (CoE) originates from the sinus venosus and ventricular endocardium. However, the contribution of extracardiac cells to CoE is thought to be minor and nonsignificant for coronary formation. Using classic (Wt1Cre) and previously undescribed (G2-Gata4Cre) transgenic mouse models for the study of coronary vascular development, we show that extracardiac septum transversum/proepicardium (ST/PE)-derived endothelial cells are required for the formation of ventricular coronary arterio–venous vascular connections. Our results indicate that at least 20% of embryonic coronary arterial and capillary endothelial cells derive from the ST/PE compartment. Moreover, we show that conditional deletion of the ST/PE lineage-specific Wilms’ tumor suppressor gene (Wt1) in the ST/PE ofG2-Gata4Cre mice and in the endothelium of Tie2Cre mice disrupts embryonic coronary transmural patterning, leading to embryonic death. Taken together, our results demonstrate that ST/PE-derived endothelial cells contribute significantly to and are required for proper coronary vascular morphogenesis. PMID:26739565

  15. GABAergic projections from the medial septum selectively inhibit interneurons in the medial entorhinal cortex.

    PubMed

    Gonzalez-Sulser, Alfredo; Parthier, Daniel; Candela, Antonio; McClure, Christina; Pastoll, Hugh; Garden, Derek; Sürmeli, Gülşen; Nolan, Matthew F

    2014-12-10

    The medial septum (MS) is required for theta rhythmic oscillations and grid cell firing in the medial entorhinal cortex (MEC). While GABAergic, glutamatergic, and cholinergic neurons project from the MS to the MEC, their synaptic targets are unknown. To investigate whether MS neurons innervate specific layers and cell types in the MEC, we expressed channelrhodopsin-2 in mouse MS neurons and used patch-clamp recording in brain slices to determine the response to light activation of identified cells in the MEC. Following activation of MS axons, we observed fast monosynaptic GABAergic IPSPs in the majority (>60%) of fast-spiking (FS) and low-threshold-spiking (LTS) interneurons in all layers of the MEC, but in only 1.5% of nonstellate principal cells (NSPCs) and in no stellate cells. We also observed fast glutamatergic responses to MS activation in a minority (<5%) of NSPCs, FS, and LTS interneurons. During stimulation of MS inputs at theta frequency (10 Hz), the amplitude of GABAergic IPSPs was maintained, and spike output from LTS and FS interneurons was entrained at low (25-60 Hz) and high (60-180 Hz) gamma frequencies, respectively. By demonstrating cell type-specific targeting of the GABAergic projection from the MS to the MEC, our results support the idea that the MS controls theta frequency activity in the MEC through coordination of inhibitory circuits.

  16. Medial entorhinal cortex and medial septum contribute to self-motion-based linear distance estimation.

    PubMed

    Jacob, Pierre-Yves; Gordillo-Salas, Marta; Facchini, Justine; Poucet, Bruno; Save, Etienne; Sargolini, Francesca

    2017-02-04

    Path integration is a navigation strategy that requires animals to integrate self-movements during exploration to determine their position in space. The medial entorhinal cortex (MEC) has been suggested to play a pivotal role in this process. Grid cells, head-direction cells, border cells as well as speed cells within the MEC collectively provide a dynamic representation of the animal position in space based on the integration of self-movements. All these cells are strongly modulated by theta oscillations, thus suggesting that theta rhythmicity in the MEC may be essential for integrating and coordinating self-movement information during navigation. In this study, we first show that excitotoxic MEC lesions, but not dorsal hippocampal lesions, impair the ability of rats to estimate linear distances based on self-movement information. Next, we report similar deficits following medial septum inactivation, which strongly impairs theta oscillations in the entorhinal-hippocampal circuits. Taken together, these findings demonstrate a major role of the MEC and MS in estimating distances to be traveled, and point to theta oscillations within the MEC as a neural mechanism responsible for the integration of information generated by linear self-displacements.

  17. Melanin concentrating hormone induces hippocampal acetylcholine release via the medial septum in rats.

    PubMed

    Lu, Zhi-Hong; Fukuda, Satoru; Minakawa, Yoichi; Yasuda, Atsushi; Sakamoto, Hidetoshi; Sawamura, Shigehito; Takahashi, Hidenori; Ishii, Noriko

    2013-06-01

    Among various actions of melanin concentrating hormone (MCH), its memory function has been focused in animal studies. Although MCH neurons project to various areas in the brain, one main target site of MCH is hippocampal formation for memory consolidation. Recent immunohistochemical study shows that MCH neurons directly project to the hippocampal formation and may indirectly affect the hippocampus through the medial septum nucleus (MS). It has been reported that sleep is necessary for memory and that hippocampal acetylcholine (ACh) release is indispensable for memory consolidation. However, there is no report how MCH actually influences the hippocampal ACh effluxes in accordance with the sleep-wake cycle changes. Thus, we investigated the modulatory function of intracerebroventricular (icv) injection of MCH on the sleep-wake cycle and ACh release using microdialysis techniques. Icv injection of MCH significantly increased the rapid eye movement (REM) and non-REM episode time and the hippocampal, not cortical, ACh effluxes. There was a significant correlation between REM episode time and hippocampal ACh effluxes, but not between REM episode time and cortical ACh effluxes. Microinjection of MCH into the MS increased the hippocampal ACh effluxes with no influence on the REM episode time. It appears that the effect sites of icv MCH for prolongation of REM episode time may be other neuronal areas than the cholinergic neurons in the MS. We conclude that MCH actually increases the hippocampal ACh release at least in part through the MS in rats.

  18. Autoimmune-related nasal septum perforation: A case report and systematic review

    PubMed Central

    Guntupalli, Lohitha; Patel, Kunjan; Faraji, Farhoud

    2017-01-01

    Background: Inflammatory injury of nasal respiratory mucosa is a common feature of multisystem autoimmune disease. Certain autoimmune disorders are associated with nasal septum perforation (NSP). We performed a systematic review of the literature to better understand the association of NSP with specific autoimmune disorders. This is a case report of a 29-year-old woman with a history of arthralgia, autoreactive antibody titers, platelet dysfunction, and NSP. The constellation of symptoms and potential familial involvement indicated that the NSP in this patient was an early sign of an autoimmune disorder, an unknown autoimmune disorder, or a known disease with incomplete penetrance. Methods: A systematic review of the literature was performed by two independent reviewers. Relevant articles were reviewed, and data that pertained to autoimmune-related NSP were extracted and analyzed. Results: Overall, 140 cases of autoimmune-associated NSPs were reported. Granulomatosis with polyangiitis (48%), relapsing polychondritis (26%), and cocaine-induced midline lesions (15%) constituted 89.3% of the reported cases. Conclusion: NSP is a potential sign of systemic disease. The identification of an NSP, especially in the context of other unexplained symptoms or workup suggestive of an autoimmune disorder, should prompt clinical evaluation for multisystem autoimmune disease with consideration of granulomatosis with polyangiitis, relapsing polychondritis, or cocaine-induced midline lesions. PMID:28381327

  19. Visualization and functional dissection of coaxial paired SpoIIIE channels across the sporulation septum

    DOE PAGES

    Shin, Jae Yen; Lopez-Garrido, Javier; Lee, Sang-Hyuk; ...

    2015-05-07

    SpoIIIE is a membrane-anchored DNA translocase that localizes to the septal midpoint to mediate chromosome translocation and membrane fission during Bacillus subtilis sporulation. Here we use cell-specific protein degradation and quantitative photoactivated localization microscopy in strains with a thick sporulation septum to investigate the architecture and function of the SpoIIIE DNA translocation complex in vivo. We were able to visualize SpoIIIE complexes with approximately equal numbers of molecules in the mother cell and the forespore. Cell-specific protein degradation showed that only the mother cell complex is required to translocate DNA into the forespore, whereas degradation in either cell reversesmore » membrane fission. Our data suggest that SpoIIIE assembles a coaxially paired channel for each chromosome arm comprised of one hexamer in each cell to maintain membrane fission during DNA translocation. We show that SpoIIIE can operate, in principle, as a bi-directional motor that exports DNA.« less

  20. The influence of the lower beak on the interorbital septum-prenasal process complex in the chick embryo.

    PubMed

    Wouterlood, F G; van Pelt, W

    1979-01-01

    The effect of removal of the lower beak on the development of the interorbital septumprenasal process (ISPP) complex was studied in chick embryos. In normal development the angle between the ventral contour of the interorbital septum and the long axis of the prenasal process increases. At the same time the angle between the ventral contour of the interorbital septum and the basal plate increases. After surgical removal of the prospective lower beak at stage 29, the position of the entire ISPP complex was altered in stage-38 embryos and the prenasal process showed elongation. In stage-38 embryos in which the prospective upper beak had been removed at stage 29, Meckel's cartilage was elongated. It is concluded that straightening of the angle between the ventral contour of the interorbital septum and the long axis of the prenasal process is not influenced by the lower beak, whereas the position of the entire ISPP complex and the size of the prenasal process are under the epigenetic influence of the lower beak. The position and size of Meckel's cartilage are under the epigenetic influence of the upper beak.

  1. Interaction of the tracheal tubules of Scutigera coleoptrata (Chilopoda, Notostigmophora) with glandular structures of the pericardial septum

    PubMed Central

    Hilken, Gero; Edgecombe, Gregory D.; Müller, Carsten H.G.; Sombke, Andy; Wirkner, Christian S.; Rosenberg, Jörg

    2015-01-01

    Abstract Notostigmophora (Scutigeromorpha) exhibit a special tracheal system compared to other Chilopoda. The unpaired spiracles are localized medially on the long tergites and open into a wide atrium from which hundreds of tracheal tubules originate and extend into the pericardial sinus. Previous investigators reported that the tracheal tubules float freely in the hemolymph. However, here we show for the first time that the tracheal tubules are anchored to a part of the pericardial septum. Another novel finding is this part of the pericardial septum is structured as an aggregated gland on the basis of its specialized epithelium being formed by hundreds of oligocellular glands. It remains unclear whether the pericardial septum has a differently structure in areas that lack a connection with tracheal tubules. The tracheal tubules come into direct contact with the canal cells of the glands that presumably secrete mucous substances covering the entire luminal cuticle of the tracheal tubules. Connections between tracheae and glands have not been observed in any other arthropods. PMID:26257546

  2. mRNA changes in nucleus accumbens related to methamphetamine addiction in mice

    NASA Astrophysics Data System (ADS)

    Zhu, Li; Li, Jiaqi; Dong, Nan; Guan, Fanglin; Liu, Yufeng; Ma, Dongliang; Goh, Eyleen L. K.; Chen, Teng

    2016-11-01

    Methamphetamine (METH) is a highly addictive psychostimulant that elicits aberrant changes in the expression of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the nucleus accumbens of mice, indicating a potential role of METH in post-transcriptional regulations. To decipher the potential consequences of these post-transcriptional regulations in response to METH, we performed strand-specific RNA sequencing (ssRNA-Seq) to identify alterations in mRNA expression and their alternative splicing in the nucleus accumbens of mice following exposure to METH. METH-mediated changes in mRNAs were analyzed and correlated with previously reported changes in non-coding RNAs (miRNAs and lncRNAs) to determine the potential functions of these mRNA changes observed here and how non-coding RNAs are involved. A total of 2171 mRNAs were differentially expressed in response to METH with functions involved in synaptic plasticity, mitochondrial energy metabolism and immune response. 309 and 589 of these mRNAs are potential targets of miRNAs and lncRNAs respectively. In addition, METH treatment decreases mRNA alternative splicing, and there are 818 METH-specific events not observed in saline-treated mice. Our results suggest that METH-mediated addiction could be attributed by changes in miRNAs and lncRNAs and consequently, changes in mRNA alternative splicing and expression. In conclusion, our study reported a methamphetamine-modified nucleus accumbens transcriptome and provided non-coding RNA-mRNA interaction networks possibly involved in METH addiction.

  3. mRNA changes in nucleus accumbens related to methamphetamine addiction in mice

    PubMed Central

    Zhu, Li; Li, Jiaqi; Dong, Nan; Guan, Fanglin; Liu, Yufeng; Ma, Dongliang; Goh, Eyleen L. K.; Chen, Teng

    2016-01-01

    Methamphetamine (METH) is a highly addictive psychostimulant that elicits aberrant changes in the expression of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the nucleus accumbens of mice, indicating a potential role of METH in post-transcriptional regulations. To decipher the potential consequences of these post-transcriptional regulations in response to METH, we performed strand-specific RNA sequencing (ssRNA-Seq) to identify alterations in mRNA expression and their alternative splicing in the nucleus accumbens of mice following exposure to METH. METH-mediated changes in mRNAs were analyzed and correlated with previously reported changes in non-coding RNAs (miRNAs and lncRNAs) to determine the potential functions of these mRNA changes observed here and how non-coding RNAs are involved. A total of 2171 mRNAs were differentially expressed in response to METH with functions involved in synaptic plasticity, mitochondrial energy metabolism and immune response. 309 and 589 of these mRNAs are potential targets of miRNAs and lncRNAs respectively. In addition, METH treatment decreases mRNA alternative splicing, and there are 818 METH-specific events not observed in saline-treated mice. Our results suggest that METH-mediated addiction could be attributed by changes in miRNAs and lncRNAs and consequently, changes in mRNA alternative splicing and expression. In conclusion, our study reported a methamphetamine-modified nucleus accumbens transcriptome and provided non-coding RNA-mRNA interaction networks possibly involved in METH addiction. PMID:27869204

  4. mRNA changes in nucleus accumbens related to methamphetamine addiction in mice.

    PubMed

    Zhu, Li; Li, Jiaqi; Dong, Nan; Guan, Fanglin; Liu, Yufeng; Ma, Dongliang; Goh, Eyleen L K; Chen, Teng

    2016-11-21

    Methamphetamine (METH) is a highly addictive psychostimulant that elicits aberrant changes in the expression of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the nucleus accumbens of mice, indicating a potential role of METH in post-transcriptional regulations. To decipher the potential consequences of these post-transcriptional regulations in response to METH, we performed strand-specific RNA sequencing (ssRNA-Seq) to identify alterations in mRNA expression and their alternative splicing in the nucleus accumbens of mice following exposure to METH. METH-mediated changes in mRNAs were analyzed and correlated with previously reported changes in non-coding RNAs (miRNAs and lncRNAs) to determine the potential functions of these mRNA changes observed here and how non-coding RNAs are involved. A total of 2171 mRNAs were differentially expressed in response to METH with functions involved in synaptic plasticity, mitochondrial energy metabolism and immune response. 309 and 589 of these mRNAs are potential targets of miRNAs and lncRNAs respectively. In addition, METH treatment decreases mRNA alternative splicing, and there are 818 METH-specific events not observed in saline-treated mice. Our results suggest that METH-mediated addiction could be attributed by changes in miRNAs and lncRNAs and consequently, changes in mRNA alternative splicing and expression. In conclusion, our study reported a methamphetamine-modified nucleus accumbens transcriptome and provided non-coding RNA-mRNA interaction networks possibly involved in METH addiction.

  5. Baclofen antagonizes nicotine-, cocaine-, and morphine-induced dopamine release in the nucleus accumbens of rat.

    PubMed

    Fadda, Paola; Scherma, Maria; Fresu, Alessandra; Collu, Maria; Fratta, Walter

    2003-10-01

    Evidence recently provided has suggested a specific involvement of the GABAergic system in modulating positive reinforcing properties of several drugs of abuse through an action on mesolimbic dopaminergic neurons. The GABA(B) receptor agonist baclofen has been proposed as a potential therapeutic agent for the clinical treatment of several forms of drug addiction. In the present study, using the in vivo microdialysis technique, we investigated the effect of baclofen on nicotine, cocaine, and morphine-induced increase in extracellular dopamine (DA) levels in the shell of the nucleus accumbens, a brain area supposedly involved in the modulation of the central effects of several drugs of abuse, of freely moving rats. As expected, nicotine (0.6 mg/kg s.c.), morphine (5 mg/kg s.c.), and cocaine (7.5 mg/kg i.p.) administration in rats induced a marked increase in extracellular DA concentrations in the nucleus accumbens, reaching a maximum value of +205 +/- 8.4%, +300 +/- 22.2%, and +370 +/- 30.7%, respectively. Pretreatment with baclofen (1.25 and 2.5 mg/kg i.p.) dose-dependently reduced the nicotine-, morphine-, and cocaine-evoked DA release in the shell of the nucleus accumbens. Furthermore, baclofen alone did not elicit changes in basal DA extracellular levels up to 180 min. Taken together, our data are in line with previous reports demonstrating the ability of baclofen to modulate the mesolimbic DAergic transmission and indicate baclofen as a putative candidate in the pharmacotherapy of polydrug abuse.

  6. The role of dopamine in the accumbens core in the expression of Pavlovian-conditioned responses.

    PubMed

    Saunders, Benjamin T; Robinson, Terry E

    2012-08-01

    The role of dopamine in reward is a topic of debate. For example, some have argued that phasic dopamine signaling provides a prediction-error signal necessary for stimulus-reward learning, whereas others have hypothesized that dopamine is not necessary for learning per se, but for attributing incentive motivational value ('incentive salience') to reward cues. These psychological processes are difficult to tease apart, because they tend to change together. To disentangle them we took advantage of natural individual variation in the extent to which reward cues are attributed with incentive salience, and asked whether dopamine (specifically in the core of the nucleus accumbens) is necessary for the expression of two forms of pavlovian-conditioned approach behavior--one in which the cue acquires powerful motivational properties (sign-tracking) and another closely related one in which it does not (goal-tracking). After acquisition of these conditioned responses (CRs), intra-accumbens injection of the dopamine receptor antagonist flupenthixol markedly impaired the expression of a sign-tracking CR, but not a goal-tracking CR. Furthermore, dopamine antagonism did not produce a gradual extinction-like decline in behavior, but maximally impaired expression of a sign-tracking CR on the very first trial, indicating the effect was not due to new learning (i.e. it occurred in the absence of new prediction-error computations). The data support the view that dopamine in the accumbens core is not necessary for learning stimulus-reward associations, but for attributing incentive salience to reward cues, transforming predictive conditional stimuli into incentive stimuli with powerful motivational properties.

  7. Tennis Elbow (Lateral Epicondylitis)

    MedlinePlus

    .org Tennis Elbow (Lateral Epicondylitis) Page ( 1 ) Tennis elbow, or lateral epicondyliti s, is a painful condition of the elbow caused by overuse. Not surprisingly, playing tennis or other racquet sports can cause ...

  8. Amyotrophic Lateral Sclerosis

    MedlinePlus

    Amyotrophic lateral sclerosis Overview By Mayo Clinic Staff Amyotrophic lateral sclerosis (a-my-o-TROE-fik LAT-ur-ul skluh-ROE-sis), or ALS, is a progressive nervous system (neurological) disease that ...

  9. Extracellular citrulline levels in the nucleus accumbens during the acquisition and extinction of a classical conditioned reflex with pain reinforcement.

    PubMed

    Savel'ev, S A; Saul'skaya, N B

    2007-03-01

    Studies on Sprague-Dawley rats using in vivo microdialysis and HPLC showed that the acquisition and performance of a classical conditioned reflex with pain reinforcement was accompanied by increases in the concentrations of citrulline (a side product of nitric oxide formation) and arginine (the substrate of NO synthase) in the intercellular space of the nucleus accumbens. During extinction of the reflex, there was a decrease in the elevation of extracellular citrulline in this brain structure, which correlated with the extent of extinction of the reflex. Recovery of the reflex led to increases in arginine and citrulline levels in the nucleus accumbens. These data suggest that there is an increase in nitric oxide production in the nucleus accumbens during the acquisition and performance of a classical conditioned reflex with pain reinforcement, which decreases as the reflex is extinguished and recovers with recovery of the reflex.

  10. Deep brain stimulation of the nucleus accumbens for the treatment of addiction.

    PubMed

    Müller, Ulf J; Voges, Jürgen; Steiner, Johann; Galazky, Imke; Heinze, Hans-Jochen; Möller, Michaela; Pisapia, Jared; Halpern, Casey; Caplan, Arthur; Bogerts, Bernhard; Kuhn, Jens

    2013-04-01

    Despite novel medications and other therapeutic strategies, addiction to psychotropic substances remains one of the most serious public health problems worldwide. In this review, beginning with an introduction of deep brain stimulation (DBS), we highlight the importance of the nucleus accumbens (NAc) in the context of the reward circuitry and addictive behavior. We will provide a short historic overview of other neurosurgical approaches to treat addiction and describe the experimental and preclinical data on DBS in addiction. Finally, we call attention to key ethical issues related to using DBS to treat addiction that are important for future research and the design of clinical trials.

  11. Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats.

    PubMed

    Sánchez-Catalán, María-José; Orrico, Alejandro; Hipólito, Lucía; Zornoza, Teodoro; Polache, Ana; Lanuza, Enrique; Martínez-García, Fernando; Granero, Luis; Agustín-Pavón, Carmen

    2017-01-01

    Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist β-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats.

  12. Dopamine-dependent hyperactivity in the rat following manipulation of GABA mechanisms in the region of the nucleus accumbens.

    PubMed

    Pycock, C J; Horton, R W

    1979-01-01

    The effect of manipulation of GABA mechanisms in the region of the nucleus accumbens on dopamine-dependent locomotor hyperactivity in the rat has been studied. Two models of hyperactivity were used: (1) the injection of dopamine into the region of the nucleus accumbens in nialamide-pretreated animals and (2) the systemic administration of d-amphetamine. Both GABA and the GABA agonist 3-aminopropane sulphonic acid (3-APS) depressed hyperactivity in a dose-related manner. High concentrations of GABA (greater than 100 micrograms) were required to produce a significant effect and the response was short-lived possibly reflecting the efficient GABA inactivating mechanisms. 3-APS proved to be approximately 10 times more potent as compared to GABA in the dopamine-accumbens hyperactivity model. Conversely GABA receptor antagonism with low doses of either picrotoxin or bicuculline enhanced the mild locomotor response induced by a low dose of dopamine injected into the nucleus accumbens. However such results were difficult to evaluate fairly as higher doses of the GABA antagonists resulted in varying degrees of generalized seizures. Blockade of GABA uptake systems with cis-1, 3-aminocyclohexane carboxylic acid (ACHC), nipecotic acid or beta-alanine within the region of the nucleus accumbens produced dose-related depression of dopamine-dependent hyperactivity in both models. GABA uptake blockade (nipecotic acid) significantly enhanced the GABA-mediated depression of hyperactivity induced by bilateral injection of dopamine into the nucleus accumbens. The results demonstrate an inhibitory action of GABA and drugs facilitating GABA-ergic transmission on dopamine-dependent hyperactivity in the rat. Although open to criticisms of not being able to distinguish between true GABA effects and the results of non-specific neuronal depression the hyperactivity model underlines the potency of the GABA uptake blocking compounds and their possible potential for future clinical use.

  13. Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats

    PubMed Central

    Sánchez-Catalán, María-José; Orrico, Alejandro; Hipólito, Lucía; Zornoza, Teodoro; Polache, Ana; Lanuza, Enrique; Martínez-García, Fernando; Granero, Luis; Agustín-Pavón, Carmen

    2017-01-01

    Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist β-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats. PMID:28280461

  14. Lateral flow strip assay

    SciTech Connect

    Miles, Robin R; Benett, William J; Coleman, Matthew A; Pearson, Francesca S; Nasarabadi, Shanavaz L

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  15. Metabotropic Glutamate Receptors 7 within the Nucleus Accumbens are Involved in Relief Learning in Rats

    PubMed Central

    Kahl, Evelyn; Fendt, Markus

    2016-01-01

    Relief learning is an appetitive association of a formally neutral cue with relief induced by the offset of an aversive stimulus. Since the nucleus accumbens mediates relief learning and accumbal metabotropic glutamate receptors 7 (mGluR7) modulate appetitive-like processes, we hypothesized that accumbal mGluR7 may be involved in the modulation of relief learning. Therefore, we injected the allosteric mGluR7 agonist AMN082 into the nucleus accumbens and tested the effects of these injections on acquisition and expression of relief memory, as well as on the reactivity to electric stimuli. AMN082 injections blocked acquisition but not expression of relief memory. In addition, accumbal AMN082 injections strongly reduced the locomotor reactivity to electric stimuli indicating antinociceptive effects. These antinociceptive effects might be causal for the blockade of relief learning after AMN082 injections. Taken together, the present study indicates that functional activation of accumbal mGluR7 has antinociceptive effects that interfere with relief learning. PMID:27296637

  16. Disruption of glutamate receptor-interacting protein in nucleus accumbens enhances vulnerability to cocaine relapse.

    PubMed

    Briand, Lisa A; Kimmey, Blake A; Ortinski, Pavel I; Huganir, Richard L; Pierce, R Christopher

    2014-02-01

    Trafficking and stabilization of AMPA receptors at synapses in response to cocaine exposure is thought to be critical for expression of cocaine addiction and relapse. Glutamate receptor-interacting protein (GRIP) is a neuronal scaffolding protein that stabilizes GluA2 AMPARs at synapses but its role in cocaine addiction has not been examined. The current study demonstrates that conditional deletion of GRIP within the nucleus accumbens potentiates cue-induced reinstatement of cocaine seeking without affecting operant learning, locomotor activity, or reinstatement of natural reward seeking. This is the first study to demonstrate a role for accumbal GRIP in behavior. Electrophysiological recordings revealed increased rectification of AMPAR-mediated currents in the nucleus accumbens and increased AMPAR sensitivity to the GluA2-lacking AMPAR antagonist, 1-naphthylacetyl spermine, indicative of an increased contribution of GluA2-lacking calcium-permeable AMPARs. In addition, accumbal GRIP deletion was associated with blunted long-term depression, similar to what is seen following cocaine self-administration. Taken together, these results indicate that GRIP may modulate addictive phenotypes through its regulation of synaptic AMPARs by controlling their subunit composition and susceptibility to LTD. These effects are associated with changes in vulnerability to cocaine relapse and highlight GRIP as a novel target for the development of cocaine addiction therapeutics.

  17. Prediction error as a linear function of reward probability is coded in human nucleus accumbens.

    PubMed

    Abler, Birgit; Walter, Henrik; Erk, Susanne; Kammerer, Hannes; Spitzer, Manfred

    2006-06-01

    Reward probability has been shown to be coded by dopamine neurons in monkeys. Phasic neuronal activation not only increased linearly with reward probability upon expectation of reward, but also varied monotonically across the range of probabilities upon omission or receipt of rewards, therefore modeling discrepancies between expected and received rewards. Such a discrete coding of prediction error has been suggested to be one of the basic principles of learning. We used functional magnetic resonance imaging (fMRI) to show that the human dopamine system codes reward probability and prediction error in a similar way. We used a simple delayed incentive task with a discrete range of reward probabilities from 0%-100%. Activity in the nucleus accumbens of human subjects strongly resembled the phasic responses found in monkey neurons. First, during the expectation period of the task, the fMRI signal in the human nucleus accumbens (NAc) increased linearly with the probability of the reward. Second, during the outcome phase, activity in the NAc coded the prediction error as a linear function of reward probabilities. Third, we found that the Nac signal was correlated with individual differences in sensation seeking and novelty seeking, indicating a link between individual fMRI activation of the dopamine system in a probabilistic paradigm and personality traits previously suggested to be linked with reward processing. We therefore identify two different covariates that model activity in the Nac: specific properties of a psychological task and individual character traits.

  18. Changes in dendritic spine density in the nucleus accumbens do not underlie ethanol sensitization.

    PubMed

    Nona, Christina N; Bermejo, Marie Kristel; Ramsey, Amy J; Nobrega, José N

    2015-12-01

    Behavioral sensitization to various drugs of abuse has been shown to change dendritic spine density and/or morphology of nucleus accumbens (NAc) medium spiny neurons, an effect seen across drug classes. However, is it not known whether behavioral sensitization to ethanol (EtOH) is also associated with structural changes in this region. Here we compared dendritic spine density and morphology between mice showing High vs. Low levels of EtOH sensitization and found that high levels of EtOH sensitization were not associated with changes in dendritic spine density or spine type. Unexpectedly, however, a significant increase in the density of stubby-type spines was seen in mice that were resistant to sensitization. Since the presence of this spine type has been associated with long-term depression and cognitive/learning deficits this may explain why these mice fail to sensitize and why they show poor performance in conditioning tasks, as previously shown. A possible causal role for structural plasticity in behavioral sensitization to various drugs has been debated. In the case of EtOH sensitization, our results suggest that drug-induced changes in structural plasticity in the accumbens neurons may not be the cause of sensitized behavior.

  19. RAPID DOPAMINE TRANSMISSION WITHIN THE NUCLEUS ACCUMBENS DRAMATICALLY DIFFERS FOLLOWING MORPHINE AND OXYCODONE DELIVERY

    PubMed Central

    Mabrouk, Omar S.; Lovic, Vedran; Singer, Bryan F.; Kennedy, Robert T.; Aragona, Brandon J.

    2014-01-01

    While most drugs of abuse increase dopamine neurotransmission, rapid neurochemical measurements show that different drugs evoke distinct dopamine release patterns within the nucleus accumbens. Rapid changes in dopamine concentration following psychostimulant administration have been well studied; however, such changes have never been examined following opioid delivery. Here, we provide novel measures of rapid dopamine release following intravenous infusion of two opioids, morphine and oxycodone, in drug naïve rats using fast-scan cyclic voltammetry and rapid (1 min) microdialysis coupled with mass spectrometry. In addition to measuring rapid dopamine transmission, microdialysis HPLC-MS measures changes in GABA, glutamate, monoamines, monoamine metabolites, and several other neurotransmitters. Although both opioids increased dopamine release in the nucleus accumbens, their patterns of drug-evoked dopamine transmission differed dramatically. Oxycodone evoked a robust and stable increase in dopamine concentration and a robust increase in the frequency and amplitude of phasic dopamine release events. Conversely, morphine evoked a brief (~ 1 min) increase in dopamine that was coincident with a surge in GABA concentration and then both transmitters returned to baseline levels. Thus, by providing rapid measures of neurotransmission, this study reveals previously unknown differences in opioid-induced neurotransmitter signaling. Investigating these differences may be essential for understanding how these two drugs of abuse could differentially usurp motivational circuitry and powerfully influence behavior. PMID:25208732

  20. Reduced dopamine function within the medial shell of the nucleus accumbens enhances latent inhibition.

    PubMed

    Nelson, A J D; Thur, K E; Horsley, R R; Spicer, C; Marsden, C A; Cassaday, H J

    2011-03-01

    Latent inhibition (LI) manifests as poorer conditioning to a CS that has previously been presented without consequence. There is some evidence that LI can be potentiated by reduced mesoaccumbal dopamine (DA) function but the locus within the nucleus accumbens of this effect is as yet not firmly established. Experiment 1 tested whether 6-hydroxydopamine (6-OHDA)-induced lesions of DA terminals within the core and medial shell subregions of the nucleus accumbens (NAc) would enhance LI under conditions that normally disrupt LI in controls (weak pre-exposure). LI was measured in a thirst motivated conditioned emotional response procedure with 10 pre-exposures (to a noise CS) and 2 conditioning trials. The vehicle-injected and core-lesioned animals did not show LI and conditioned to the pre-exposed CS at comparable levels to the non-pre-exposed controls. 6-OHDA lesions to the medial shell, however, produced potentiation of LI, demonstrated across two extinction tests. In a subsequent experiment, haloperidol microinjected into the medial shell prior to conditioning similarly enhanced LI. These results underscore the dissociable roles of core and shell subregions of the NAc in mediating the expression of LI and indicate that reduced DA function within the medial shell leads to enhanced LI.

  1. Olanzapine treatment of adolescent rats alters adult reward behaviour and nucleus accumbens function.

    PubMed

    Vinish, Monika; Elnabawi, Ahmed; Milstein, Jean A; Burke, Jesse S; Kallevang, Jonathan K; Turek, Kevin C; Lansink, Carien S; Merchenthaler, Istvan; Bailey, Aileen M; Kolb, Bryan; Cheer, Joseph F; Frost, Douglas O

    2013-08-01

    Antipsychotic drugs are increasingly used in children and adolescents to treat a variety of psychiatric disorders. However, little is known about the long-term effects of early life antipsychotic drug (APD) treatment. Most APDs are potent antagonists or partial agonists of dopamine (DA) D₂ receptors; atypical APDs also have multiple serotonergic activities. DA and serotonin regulate many neurodevelopmental processes. Thus, early life APD treatment can, potentially, perturb these processes, causing long-term behavioural and neurobiological sequelae. We treated adolescent, male rats with olanzapine (Ola) on post-natal days 28-49, under dosing conditions that approximate those employed therapeutically in humans. As adults, they exhibited enhanced conditioned place preference for amphetamine, as compared to vehicle-treated rats. In the nucleus accumbens core, DA D₁ receptor binding was reduced, D₂ binding was increased and DA release evoked by electrical stimulation of the ventral tegmental area was reduced. Thus, adolescent Ola treatment enduringly alters a key behavioural response to rewarding stimuli and modifies DAergic neurotransmission in the nucleus accumbens. The persistence of these changes suggests that even limited periods of early life Ola treatment may induce enduring changes in other reward-related behaviours and in behavioural and neurobiological responses to therapeutic and illicit psychotropic drugs. These results underscore the importance of improved understanding of the enduring sequelae of paediatric APD treatment as a basis for weighing the benefits and risks of adolescent APD therapy, especially prophylactic treatment in high-risk, asymptomatic patients.

  2. Prenatal sonographic diagnosis of urorectal septum malformation sequence and chromosomal microarray analysis

    PubMed Central

    Pei, Yan; Wu, Qingqing; Liu, Yan; Sun, Lijuan; Zhi, Wenxue; Zhang, Puqing

    2016-01-01

    Abstract Introduction: Urorectal septum malformation sequence (URSMS) is a rare congenital abnormal syndrome that is caused by the incomplete division of the cloaca. Based on whether the cloaca membrane breaks down or not, the URSMS are classified as full and partial forms. The prenatal diagnosis of URSMS remains challenging because of poor recognition to this malformation and the relatively non-specific sonographic features. We report a prenatally sonographic diagnosed case of the partial URSMS, and review the literature to summarize the prenatal features. Case report and review: A 37-year old woman was referred at 24 weeks of gestation for fetal abdominal cyst. Detailed sonographic examination was done and revealed the vesicocolic fistula, distended colon, absence of perianal hypoechoic ring, pyelectasis, and small stomach bubble. The URSMS was suspected. Amniocentesis was done and karyotyping revealed 46,XY. Furthermore, chromosomal microarray analysis (CMA) was performed for the first time in URSMS and an alteration of 111.8Kb deletion was detected in 16p13.3 which was located inside the RBFOX1 gene. Parental studies showed that the deletion was inherited from the father who has nomal clinical phenotype. The woman elected to terminate the pregnancy at 25 weeks gestation and postmortem examination confirmed the diagnosis of partial URSMS. The published studies were reviewed and 28 cases of URSMS with conducted prenatal ultrasonography were collected in this report. The most common sonographic description, as suspicious signs of URSMS, were severe oligohydramnios or anhydramnios, urinary tract anomalies, fetal intra-abdominal cysts, and dilated bowel. Also, enterolithiasis and vesicocolic fistula were relatively infrequent but highly specific feature of URSMS. Conclusions: URSMS is difficult to be diagnosed prenatally. However, it has characteristic features that can be detected by fetal ultrasonography, and a precise prenatal sonographic examination is crucial

  3. Antiplatelet effects of clopidogrel and aspirin after interventional patent foramen ovale/ atrium septum defect closure.

    PubMed

    Polzin, Amin; Dannenberg, Lisa; Sophia Popp, Valérie-; Kelm, Malte; Zeus, Tobias

    2016-06-01

    The optimal antiplatelet therapy after patent foramen ovale (PFO)/ atrium septum defect (ASD) closure is a matter of discussion. It is challenging as inter-individual responses to antiplatelet medication vary significantly and common complications are bleeding and ischemic events. In this study, we aimed to analyze the incidence of high on-treatment platelet reactivity (HTPR) to antiplatelet medication in patients undergoing PFO/ASD closure as well as clinical complications and thrombus formation on the occluder during six-month follow-up. This hypothesis generating pilot study was observed, which included 140 patients undergoing PFO/ASD closure. The primary endpoint was pharmacodynamic response to antiplatelet medication. A composite of death, myocardial infarction, bleeding, stroke and thrombus formation on the occluder during six-month follow-up was the secondary endpoint. HTPR to clopidogrel was analyzed using the vasodilator-stimulated protein phosphorylation (VASP), HTPR to aspirin by light-transmission aggregometry (LTA). In 71% of patients HTPR to clopidogrel was detected, HTPR to aspirin in only 4%. We observed 12 complications, 9 bleeding events (including 3 major bleeding events) and 3 transient ischemic attacks. No stroke and no thrombus formation on the occluder occurred. The primary endpoint was not associated with the secondary endpoint. The incidence of HTPR to clopidogrel in PFO/ASD closure patients is very high. Despite this high incidence, no stroke or thrombus formation on the occluder occurred at all. This leads to the hypothesis, that the benefit of additional clopidogrel medication is questionable and has to be investigated in large-scale clinical trials.

  4. [Left ventricular synchrony with septum stimulation vs. septal ventricular outflow tract in complete atrioventricular block].

    PubMed

    Rodríguez-Serrano, Gustavo; Lara-Vaca, Susano; Pereyra-Nobara, Texar; Bernal-Ruiz, Enrique

    2016-01-01

    Introducción: el objetivo del presente estudio fue determinar si existe diferencia en la función sistólica y la sincronía del ventrículo izquierdo con estimulación del septum medio o tracto de salida del ventrículo derecho en pacientes con bloqueo auriculoventricular portadores de marcapaso. Métodos: estudio observacional, analítico, transversal. Se seleccionaron todos los pacientes mayores de 18 años portadores de marcapaso con diagnóstico de bloqueo auriculoventricular. Se analizaron dos grupos acorde al sitio de colocación del electrodo de estimulación en región septal media o tracto de salida del ventrículo derecho. Se determinó la fracción de expulsión y sincronía del ventrículo izquierdo. Resultados: se incluyeron 54 pacientes por cada grupo, siendo las características de ambos similares, excepto el tiempo de colocación del electrodo de estimulación ventricular (p = < 0.001). No hubo diferencia significativa en la fracción de expulsión o sincronía del ventrículo izquierdo. Conclusiones: no se encontró diferencia en la fracción de expulsión o sincronía del ventrículo izquierdo independientemente del sitio de colocación del electrodo de estimulación.

  5. The role of NMDA receptors of the medial septum and dorsal hippocampus on memory acquisition.

    PubMed

    Khakpai, Fatemeh; Nasehi, Mohammad; Zarrindast, Mohammad-Reza

    2016-04-01

    The glutamatergic neurons in the medial septal/diagonal band of broca (MS/DB) affect the hippocampal functions by modulating the septo-hippocampal neurons. Our study investigated the possible role of NMDA receptors of the medial septum nucleus (MS) and dorsal hippocampus (CA1) on memory acquisition in male Wistar rats. Animals were bilaterally implanted with chronic cannulae in the MS and CA1. Rats were trained in a step-through type inhibitory avoidance task, and tested 24h after training to measure step-through latency as memory retrieval. Our results indicated that pre-training intra-MS or intra-CA1 infusions of NMDA (0.125 μg/rat) and D-AP7 (0.012 μg/rat) increased and decreased memory acquisition, respectively when compared to saline control group. Also, pre-training intra-CA1 and intra-MS injection of an effect dose of D-AP7 (0.012 μg/rat) along with an effect dose of NMDA (0.125 μg/rat) impaired memory acquisition. Interestingly, pre-training intra-CA1/MS infusion of D-AP7 (0.012 μg/rat) diminished memory response produced by pre-training injection of NMDA (0.125 μg/rat) in the MS/CA1, respectively (cross injection or bilateral injection). Also, all above doses of drugs did not alter locomotor activity. These results suggest that the glutamatergic pathway between the MS and CA1 regions is involved in memory acquisition process.

  6. Gain Modulation of Cholinergic Neurons in the Medial Septum-Diagonal Band of Broca Through Hyperpolarization.

    PubMed

    Melonakos, Eric D; White, John A; Fernandez, Fernando R

    2016-12-01

    Hippocampal network oscillations are important for learning and memory. Theta rhythms are involved in attention, navigation, and memory encoding, whereas sharp wave-ripple complexes are involved in memory consolidation. Cholinergic neurons in the medial septum-diagonal band of Broca (MS-DB) influence both types of hippocampal oscillations, promoting theta rhythms and suppressing sharp wave-ripples. They also receive frequency-dependent hyperpolarizing feedback from hippocamposeptal connections, potentially affecting their role as neuromodulators in the septohippocampal circuit. However, little is known about how the integration properties of cholinergic MS-DB neurons change with hyperpolarization. By potentially altering firing behavior in cholinergic neurons, hyperpolarizing feedback from the hippocampal neurons may, in turn, change hippocampal network activity. To study changes in membrane integration properties in cholinergic neurons in response to hyperpolarizing inputs, we used whole-cell patch-clamp recordings targeting genetically labeled, choline acetyltransferase-positive neurons in mouse brain slices. Hyperpolarization of cholinergic MS-DB neurons resulted in a long-lasting decrease in spike firing rate and input-output gain. Additionally, voltage-clamp measures implicated a slowly inactivating, 4-AP-insensitive, outward K(+) conductance. Using a conductance-based model of cholinergic MS-DB neurons, we show that the ability of this conductance to modulate firing rate and gain depends on the expression of an experimentally verified shallow intrinsic spike frequency-voltage relationship. Together, these findings point to a means through which negative feedback from hippocampal neurons can influence the role of cholinergic MS-DB neurons. © 2016 Wiley Periodicals, Inc.

  7. GABAergic neurons of the medial septum lead the hippocampal network during theta activity.

    PubMed

    Hangya, Balázs; Borhegyi, Zsolt; Szilágyi, Nóra; Freund, Tamás F; Varga, Viktor

    2009-06-24

    Information processing in the hippocampus critically relies on its reciprocal interaction with the medial septum (MS). Synchronization of the septo-hippocampal system was demonstrated during both major hippocampal activity states, the regular theta rhythm and the large amplitude irregular activity. Previous experimental and modeling data suggest that the MS provides rhythmic drive to the hippocampus, and hippocampo-septal feedback synchronizes septal pacemaker units. However, this view has recently been questioned based on the possibility of intrahippocampal theta genesis. Previously, we identified putative pacemaker neurons expressing parvalbumin (PV) and/or the pacemaker hyperpolarization-activated and cyclic nucleotide-gated nonselective cation channel (HCN) in the MS. In this study, by analyzing the temporal relationship of activity between the PV/HCN-containing medial septal neurons and hippocampal local field potential, we aimed to uncover whether the sequence of events during theta formation supports the classic view of septal drive or the challenging theory of hippocampal pacing of theta. Importantly, by implementing a circular statistical method, a temporal lead of these septal neurons over the hippocampus was observed on the course of theta synchronization. Moreover, the activity of putative hippocampal interneurons also preceded hippocampal local field theta, but by a shorter time period compared with PV/HCN-containing septal neurons. Using the concept of mutual information, the action potential series of PV/HCN-containing neurons shared higher amount of information with hippocampal field oscillation than PV/HCN-immunonegative cells. Thus, a pacemaker neuron population of the MS leads hippocampal activity, presumably via the synchronization of hippocampal interneurons.

  8. Effects of stimulation of glutamate receptors in medial septum on some immune responses in rats.

    PubMed

    Dutta, Goutam; Raj Goswami, Ananda; Ghosh, Tusharkanti

    2013-11-13

    The immunomodulatory role of medial septum (MS) has been explored so far only in MS lesioned rats. But in MS lesioned rats, all the nerve cells and fibres of the lesioned area are damaged and the specific role of the neural circuits of MS on immunomodulation cannot be assessed from the lesion of MS. Considering the presence of a large number of glutamate receptors in MS, the specific role of glutamate receptors stimulation on some immune responses has been investigated in the present study. Hyperreactive behaviour, TC and DC of WBC, phagocytic activity of peripheral leukocytes, adhesibility and cytotoxicity of splenic mononuclear cells (MNC), delayed type of hypersensitivity (DTH) responses and the serum corticosterone (CORT) were measured after microinfusion of glutamate into MS of rats. To ascertain the specific role of those glutamate receptors, the parameters were also measured after microinfusion of glutamate receptor blocker 6, 7-dinitroquinoxaline-2, 3-dione (DNQX). The hyperreactive behaviour, TC and DC of WBC remained unaltered after stimulation or blocking of glutamate receptors. The phagocytic activity, adhesibility and cytotoxicity of splenic MNC, and DTH responses were increased after infusion of 0.25 and 0.5µM glutamate. But after infusion of higher dose of glutamate (1µM), the phagocytic activity and the adhesibility of splenic MNC were decreased and other parameters remained unaltered in that condition. After infusion of 4 and 8mM DNQX all the observed immunological parameters were decreased. The CORT concentration was decreased after infusion of 0.25 and 0.5µM of glutamate but it was increased after infusion of 1µM glutamate or 4 and 8mM DNQX. Results indicate that the medial septal glutamate receptors play an important role in the modulation of some immune responses.

  9. Interconnection and synchronization of neuronal populations in the mouse medial septum/diagonal band of Broca.

    PubMed

    Leão, Richardson N; Targino, Zé H; Colom, Luis V; Fisahn, André

    2015-02-01

    The medial septum/diagonal band of Broca (MS/DBB) is crucial for hippocampal theta rhythm generation (4-12 Hz). However, the mechanisms behind theta rhythmogenesis are still under debate. The MS/DBB consists, in its majority, of three neuronal populations that use acetylcholine, GABA, or glutamate as neurotransmitter. While the firing patterns of septal neurons enable the MS/DBB to generate rhythmic output critical for the generation of the hippocampal theta rhythm, the ability to synchronize these action potentials is dependent on the interconnectivity between the three major MS/DBB neuronal populations, yet little is known about intraseptal connections. Here we assessed the connectivity between pairs of MS/DBB neurons with paired patch-clamp recordings. We found that glutamatergic and GABAergic neurons provide intraseptal connections and produce sizable currents in MS/DBB postsynaptic cells. We also analyzed linear and nonlinear relationships between the action potentials fired by pairs of neurons belonging to various MS/DBB neuronal populations. Our results show that while the synchrony index for action potential firing was significantly higher in pairs of GABAergic neurons, coherence of action potential firing in the theta range was similarly low in all pairs analyzed. Recurrence analysis demonstrated that individual action potentials were more recurrent in cholinergic neurons than in other cell types. Implementing sparse connectivity in a computer model of the MS/DBB network reproduced our experimental data. We conclude that the interplay between the intrinsic membrane properties of different MS/DBB neuronal populations and the connectivity among these populations underlie the ability of the MS/DBB network to critically contribute to hippocampal theta rhythmogenesis.

  10. Glutamatergic synaptic depression by synthetic amyloid beta-peptide in the medial septum.

    PubMed

    Santos-Torres, Julio; Fuente, Antonio; Criado, Jose Maria; Riolobos, Adelaida Sanchez; Heredia, Margarita; Yajeya, Javier

    2007-02-15

    The medial septum/diagonal band region, which participates in learning and memory processes via its cholinergic and GABAergic projection to the hippocampus, is one of the structures affected by beta amyloid (betaA) deposition in Alzheimer's disease (AD). The acute effects of betaA (25-35 and 1-40) on action potential generation and glutamatergic synaptic transmission in slices of the medial septal area of the rat brain were studied using current and patch-clamp techniques. The betaA mechanism of action through M1 muscarinic receptors and voltage-dependent calcium channels was also addressed. Excitatory evoked responses decreased (30-60%) in amplitude after betaA (2 microM) perfusion in 70% of recorded cells. However, the firing properties were unaltered at the same concentration. This depression was irreversible in most cases, and was not prevented or reversed by nicotine (5 microM). In addition, the results obtained using a paired-pulse protocol support pre- and postsynaptic actions of the peptide. The betaA effect was blocked by calcicludine (50 nM), a selective antagonist of L-type calcium channels, and also by blocking muscarinic receptors with atropine (5 muM) or pirenzepine (1 microM), a more specific M1-receptor blocker. We show that in the medial septal area this oligomeric peptide acts through calcium channels and muscarinic receptors. As blocking any of these pathways blocks the betaA effects, we propose a joint action through both mechanisms. These results may contribute to a better understanding of the pathophysiology at the onset of AD. This understanding will be required for the development of new therapeutic agents.

  11. Firing properties of anatomically identified neurons in the medial septum of anesthetized and unanesthetized restrained rats.

    PubMed

    Simon, Axelle Pascale; Poindessous-Jazat, Frédérique; Dutar, Patrick; Epelbaum, Jacques; Bassant, Marie-Hélène

    2006-08-30

    Cholinergic and GABAergic neurons in the medial septum-diagonal band of Broca (MS-DB) project to the hippocampus where they are involved in generating theta rhythmicity. So far, the functional properties of neurochemically identified MS-DB neurons are not fully characterized. In this study, MS-DB neurons recorded in urethane anesthetized rats and in unanesthetized restrained rats were labeled with neurobiotin and processed for immunohistochemistry against glutamic acid decarboxylase (GAD), parvalbumin (PV), and choline acetyltransferase (ChAT). The majority of the 90 labeled neurons (75.5%) were GAD+. Among them, 34.0% were also PV+, but none were ChAT+. Only 8.8% of the labeled neurons were found ChAT+. Remaining neurons (15.5%) were not identified. In anesthetized rats, all of the PV/GAD+ and 65% of GAD+ neurons exhibited burst-firing activity at the theta frequency. PV/GAD+ neurons displayed higher discharge rate and longer burst duration compared with GAD+ neurons. At variance, all of the ChAT+ neurons were slow-firing. Cluster-firing and tonic-firing were observed in GAD+ and unidentified neurons. In unanesthetized rats, during wakefulness or rapid eye movement sleep with hippocampal theta, the bursting neurons were PV/GAD+ or GAD+, whereas all of the ChAT+ neurons were slow-firing. Across the sleep-wake cycle, the GABAergic component of the septohippocampal pathway was always more active than the cholinergic one. The fact that cholinergic MS-DB neurons do not display theta-related bursting or tonic activity but have a very low firing rate questions how acetylcholine exerts its activating role in the septohippocampal system.

  12. Morphology of tricuspid valve in pulmonary atresia with intact ventricular septum.

    PubMed

    Choi, Y H; Seo, J W; Choi, J Y; Yun, Y S; Kim, S H; Lee, H J

    1998-01-01

    Pulmonary atresia with intact ventricular septum (PAIVS) is a rare congenital cardiac anomaly that has been classified into two types: one is a more frequent type having dysplasia of tricuspid valve (TV) with a small annulus, underdeveloped right ventricle (RV) with a hypoplastic cavity and a hypertrophic wall; the other type has severe dysplasia of TV and dilatation of RV, right atrium (RA), and right atrioventricular junction with thinning of the RV wall. We performed a morphologic study on 11 autopsied hearts with PAIVS, giving particular emphasis to the variation of morphology of the TV. We could classify these hearts into 3 groups according to the degree of right ventricular development. In the first group of 7 cases (type I), the RVs were underdeveloped. Thick leaflets, restricted valve apparatus with short chordae, and small annuli were characteristics of the TV. In the second group of 3 cases (type II), the RVs showed marked enlargement of the cavity and thinning of the wall. The TV showed redundant, dysplastic, sail-like anterior leaflets, and the downward displacement of septal leaflet and/or posterior leaflet, which are the findings frequently observed in Ebstein's malformation. The RVs were dilated and with partially unguarded tricuspid orifice. The septal leaflet of the TV was dysplastic and, in two cases, the septal leaflet showed chordal structure at the upper surface facing the RA, which is a peculiar finding that has not been described in the literature. The remaining case was a heart with a moderately developed RV (type III). The TV showed mildly dysplastic appearance and we classify this as a separate type, because we could expect the best surgical results in this type. This type had optimal size of RV and the mildest degree of dysplasia of TV. In PAIVS, the morphology of TV correlates well with the type of the right ventricular development.

  13. Selective lesion of cholinergic neurons in the medial septum by 192 IgG-saporin impairs learning in a delayed matching to position T-maze paradigm.

    PubMed

    Johnson, David A; Zambon, Natalie J; Gibbs, Robert B

    2002-07-05

    This study examined whether selective destruction of cholinergic neurons in the medial septum impairs acquisition of a delayed matching-to-position (DMP) spatial memory task. Either the selective immunotoxin 192 IgG-saporin (SAP; 0.22 or 1.0 microg) or the non-selective excitatory neurotoxin ibotenate (IBO; 5 microg), was infused directly into the medial septum of rats. Both doses of SAP, but not IBO, significantly impaired acquisition of the DMP task and blunted the initial alternating behavior of the rats in the T-maze. Histochemical staining revealed that both doses of SAP produced a near complete depletion of choline acetyltransferase (ChAT)-positive neurons in the medial septum. Some loss of parvalbumin staining was observed following administration of the higher dose, but not the lower dose, of SAP. In contrast, IBO produced a nearly complete depletion of parvalbumin-positive staining throughout the medial septum. IBO also produced a loss of ChAT-positive neurons and considerable local damage in the medial septum around the area of injection; however, many ChAT-positive neurons in the medial septum distal to the injection remained. A significant correlation between the number of days to reach criterion and ChAT activity in the frontal cortex and hippocampus was observed. The results suggest that low doses of SAP can be used to selectively destroy cholinergic neurons in the medial septum, and that selective destruction of these neurons significantly impairs acquisition of the DMP task. We propose that acquisition of the DMP task is a sensitive behavioral assay for the selective loss of basal forebrain cholinergic projections.

  14. Sulpiride injections into the medial septum reverse the influence of intra-medial septum injection of L-arginine on expression of place conditioning-induced by morphine in rats.

    PubMed

    Karami, Manizheh; Zarrindast, Mohammad Reza; Sepehri, Hori; Sahraei, Hedayat

    2003-06-20

    Effects of intra-medial septum injections of L-arginine, a precursor of nitric oxide, N(G)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase, and sulpiride, a selective antagonist of dopamine D2 receptor on morphine-induced conditioned place preference (CPP) in male Wistar rats were examined. Using a 3-day schedule of conditioning, morphine (0.5-7.5 mg/kg, s.c.) produced a significant place preference in a dose-dependent manner. The maximum response was observed with 5.0 mg/kg of opioid. Sulpiride (0.3, 1.0 and 3.0 microg/rat), but not L-arginine (0.3, 1.0 and 3.0 microg/rat) or L-NAME (0.3, 1.0 and 3.0 microg/rat), in combination with morphine (5.0 mg/kg), during conditioning, significantly altered morphine-induced CPP. Single doses (0.3, 1.0 and 3.0 microg/rat) of either L-arginine or L-NAME, during conditioning, did not induce CPP. Sulpiride at 0.3-3.0 microg/rat, intra-medial septum, during conditioning, produced a significant conditioned place aversion. Intra-medial septum injections of L-arginine but not L-NAME or sulpiride, 1-2 min before testing, increased the expression of morphine-induced CPP. The administration of sulpiride (0.3, 1.0 and 3.0 microg/rat), but not L-NAME (0.3, 1.0 and 3.0 microg/rat), 1-2 min before the injection of L-arginine (0.3 microg/rat) on day of test, significantly attenuated the response to L-arginine. L-Arginine (0.3-3.0 microg/rat), during conditioning, showed a statistically significant increase in locomotor activity compared with that to control group. Moreover, sulpiride decreased locomotion by itself or in combination with morphine during conditioning and on the test day of morphine CPP. It can be concluded that L-arginine, a precursor of nitric oxide, in the rat median septum may play a role in expression of morphine conditioning due to dopamine release in this area.

  15. Interactions between Brainstem Noradrenergic Neurons and the Nucleus Accumbens Shell in Modulating Memory for Emotionally Arousing Events

    ERIC Educational Resources Information Center

    Kerfoot, Erin C.; Williams, Cedric L.

    2011-01-01

    The nucleus accumbens shell (NAC) receives axons containing dopamine-[beta]-hydroxylase that originate from brainstem neurons in the nucleus of the solitary tract (NTS). Recent findings show that memory enhancement produced by stimulating NTS neurons after learning may involve interactions with the NAC. However, it is unclear whether these…

  16. Nucleus accumbens response to gains in reputation for the self relative to gains for others predicts social media use.

    PubMed

    Meshi, Dar; Morawetz, Carmen; Heekeren, Hauke R

    2013-01-01

    Our reputation is important to us; we've experienced natural selection to care about our reputation. Recently, the neural processing of gains in reputation (positive social feedback concerning one's character) has been shown to occur in the human ventral striatum. It is still unclear, however, how individual differences in the processing of gains in reputation may lead to individual differences in real-world behavior. For example, in the real-world, one way that people currently maintain their reputation is by using social media websites, like Facebook. Furthermore, Facebook use consists of a social comparison component, where users observe others' behavior and can compare it to their own. Therefore, we hypothesized a relationship between the way the brain processes specifically self-relevant gains in reputation and one's degree of Facebook use. We recorded functional neuroimaging data while participants received gains in reputation, observed the gains in reputation of another person, or received monetary reward. We demonstrate that across participants, when responding to gains in reputation for the self, relative to observing gains for others, reward-related activity in the left nucleus accumbens predicts Facebook use. However, nucleus accumbens activity in response to monetary reward did not predict Facebook use. Finally, a control step-wise regression analysis showed that Facebook use primarily explains our results in the nucleus accumbens. Overall, our results demonstrate how individual sensitivity of the nucleus accumbens to the receipt of self-relevant social information leads to differences in real-world behavior.

  17. Nucleus accumbens response to gains in reputation for the self relative to gains for others predicts social media use

    PubMed Central

    Meshi, Dar; Morawetz, Carmen; Heekeren, Hauke R.

    2013-01-01

    Our reputation is important to us; we've experienced natural selection to care about our reputation. Recently, the neural processing of gains in reputation (positive social feedback concerning one's character) has been shown to occur in the human ventral striatum. It is still unclear, however, how individual differences in the processing of gains in reputation may lead to individual differences in real-world behavior. For example, in the real-world, one way that people currently maintain their reputation is by using social media websites, like Facebook. Furthermore, Facebook use consists of a social comparison component, where users observe others' behavior and can compare it to their own. Therefore, we hypothesized a relationship between the way the brain processes specifically self-relevant gains in reputation and one's degree of Facebook use. We recorded functional neuroimaging data while participants received gains in reputation, observed the gains in reputation of another person, or received monetary reward. We demonstrate that across participants, when responding to gains in reputation for the self, relative to observing gains for others, reward-related activity in the left nucleus accumbens predicts Facebook use. However, nucleus accumbens activity in response to monetary reward did not predict Facebook use. Finally, a control step-wise regression analysis showed that Facebook use primarily explains our results in the nucleus accumbens. Overall, our results demonstrate how individual sensitivity of the nucleus accumbens to the receipt of self-relevant social information leads to differences in real-world behavior. PMID:24009567

  18. Neural encoding of psychomotor activation in the nucleus accumbens core, but not the shell, requires cannabinoid receptor signaling

    PubMed Central

    Morra, Joshua T.; Glick, Stanley D.; Cheer, Joseph F.

    2010-01-01

    The current study aimed to further elucidate the role of endocannabinoid signaling in methamphetamine-induced psychomotor activation. Rats were treated with bilateral, intracranial microinjections of the cannabinoid CB1 receptor antagonists rimonabant (1 μg; 1 μl) or AM251 (1 μg; 1 μl), or vehicle (1 μl), followed by intravenous methamphetamine (3 mg/kg). Antagonist pretreatment in the nucleus accumbens core, but not shell, attenuated methamphetamine-induced stereotypy, while treatment in either brain region had no effect on drug-induced locomotion. In a parallel experiment, we recorded multiple single-units in the nucleus accumbens of behaving rats treated with intravenous rimonabant (0.3 mg/kg) or vehicle, followed by methamphetamine (0.01, 0.1, 1, 3 mg/kg; cumulative dosing). We observed robust, phasic changes in neuronal firing time-locked to the onset of methamphetamine-induced locomotion and stereotypy. Stereotypy encoding was observed in the core and was attenuated by CB1 receptor antagonism, while locomotor correlates were observed uniformly across the accumbens and were not affected by rimonabant. Psychomotor activation encoding was expressed predominantly by putative fast-spiking interneurons. We therefore propose that endocannabinoid modulation of psychomotor activation is preferentially driven by CB1 receptor-dependent interneuron activity in the nucleus accumbens core. PMID:20371830

  19. The Role of Nucleus Accumbens Shell in Learning about Neutral versus Excitatory Stimuli during Pavlovian Fear Conditioning

    ERIC Educational Resources Information Center

    Bradfield, Laura A.; McNally, Gavan P.

    2010-01-01

    We studied the role of nucleus accumbens shell (AcbSh) in Pavlovian fear conditioning. Rats were trained to fear conditioned stimulus A (CSA) in Stage I, which was then presented in compound with a neutral stimulus and paired with shock in Stage II. AcbSh lesions had no effect on fear-learning to CSA in Stage I, but selectively prevented learning…

  20. Moderate intensity treadmill exercise alters food preference via dopaminergic plasticity of ventral tegmental area-nucleus accumbens in obese mice.

    PubMed

    Chen, Wei; Wang, Hai Jun; Shang, Ning Ning; Liu, Jun; Li, Juan; Tang, Dong Hui; Li, Qiong

    2017-02-22

    Obesity has been associated with the excessive intake of palatable food as well as physical inactivity. To investigate the neurobiological mechanism underlying the exercised-induced prevention and treatment of obesity, the present study examined the effect of treadmill exercise on the preference for palatable food in mice. Levels of tyrosine hydroxylase (TH) in the ventral tegmental area-nucleus accumbens system were also analysed, as well as levels of dopamine, dopamine transporter, and D2 receptors in the nucleus accumbens. Forty C57BL/6J mice were randomly divided into a control group (CG, n=10) and a high-fat diet group (HG, N=30). Mice of the HG group were fed a high-fat diet for 12 weeks in order to induce a model of obesity, following which the obese mice were randomly divided into an obese control group (OG, n=11) and an obese+exercise group (OEG, n=12). OEG mice received 8 weeks of treadmill exercise intervention. Our results indicate that, relative to animals in the OG group, OEG mice exhibited significant decreases in the preference for high-fat diets and insulin resistance, along with increases in the preference for sucrose and milk, TH and D2 receptor expression, and levels of dopamine in the ventral tegmental area-nucleus accumbens system. These results suggest that moderate-intensity treadmill exercise can alter food preference in obese mice, which may be mediated by dopaminergic plasticity of the ventral tegmental area-nucleus accumbens and enhanced insulin sensitivity.

  1. Amyloid-β expression in retrosplenial cortex of 3xTg-AD mice: relationship to cholinergic axonal afferents from medial septum

    PubMed Central

    Robertson, Richard T.; Baratta, Janie; Yu, Jen; LaFerla, Frank M.

    2009-01-01

    Triple transgenic (3xTg-AD) mice harboring the presenilin 1, amyloid precursor protein, and tau transgenes (Oddo et al., 2003) display prominent levels of amyloid-beta (Aβ) immunoreactivity in forebrain regions. The Aβ immunoreactivity is first seen intracellularly in neurons and later as extracellular plaque deposits. The present study examined Aβ immunoreactivity that occurs in layer III of the granular division of retrosplenial cortex (RSg). This pattern of Aβ immunoreactivity in layer III of RSg develops relatively late, and is seen in animals older than 14 mo. The appearance of the Aβ immunoreactivity is similar to an axonal terminal field and thus may offer a unique opportunity to study the relationship between afferent projections and the formation of Aβ deposits. Axonal tract tracing techniques demonstrated that the pattern of axon terminal labeling in layer III of RSg, following placement of DiI in medial septum, is remarkably similar to the pattern of cholinergic axons in RSg, as detected by acetylcholinesterase histochemical staining, choline acetyltransferase immunoreactivity, or p75 receptor immunoreactivity; this pattern also is strikingly similar to the band of Aβ immunoreactivity. In animals sustaining early damage to the medial septal nucleus (prior to the advent of Aβ immunoreactivity), the band of Aβ in layer III of RSg does not develop; the corresponding band of cholinergic markers also is eliminated. In older animals (after the appearance of the Aβ immunoreactivity) damage to cholinergic afferents by electrolytic lesions, immunotoxin lesions, or cutting the cingulate bundle, result in a rapid loss of the cholinergic markers and a slower reduction of Aβ immunoreactivity. These results suggest that the septal cholinergic axonal projections transport Aβ or APP to layer III of RSg. PMID:19772895

  2. Morphological and functional characterization of a novel Na+/K+-ATPase-immunoreactive, follicle-like structure on the gill septum of Japanese banded houndshark, Triakis scyllium.

    PubMed

    Takabe, Souichirou; Teranishi, Keitaro; Takaki, Shin; Kusakabe, Makoto; Hirose, Shigehisa; Kaneko, Toyoji; Hyodo, Susumu

    2012-04-01

    In teleost fishes, it is well-established that the gill serves as an important ionoregulatory organ in addition to its primary function of respiratory gas exchange. In elasmobranch fish, however, the ionoregulatory function of the gills is still poorly understood. Although mitochondria-rich (MR) cells have also been found in elasmobranch fish, these cells are considered to function primarily in acid-base regulation. In this study, we found a novel aggregate structure made up of cells with basolaterally-expressed Na(+)/K(+)-ATPase (NKA), in addition to NKA-immunoreactive MR cells that have already been described in the gill filament and lamella. The cell aggregates, named follicularly-arranged NKA-rich cells (follicular NRCs), were found exclusively in the epithelial lining of the venous web in the cavernous region of the filament and the inter-filamental space of the gill septum. The follicular NRCs form a single-layered follicular structure with a large lumen leading to the external environment. The follicular NRCs were characterized by: (i) well-developed microvilli on the apical membrane, (ii) less prominent infoldings of the basolateral membrane and (iii) typical junction structures including deep tight junction between cells. In addition, large numbers of vesicles were observed in the cytoplasm and some of them were fused to the lateral membrane. The follicular NRCs expressed Na(+)/H(+) exchanger 3 and Ca(2+) transporter 1. The follicular NRCs thus have the characteristics of absorptive ionoregulatory cells and this suggests that the elasmobranch gill probably contributes more importantly to body fluid homeostasis than previously thought.

  3. Pharmacological evidence for common mechanisms underlying the effects of neurotensin and neuroleptics on in vivo dopamine efflux in the rat nucleus accumbens.

    PubMed

    Blaha, C D; Phillips, A G

    1992-08-01

    The effects of the neuropeptide neurotensin and the typical neuroleptic haloperidol on dopamine efflux were compared in the posteromedial nucleus accumbens of the chloral hydrate-anesthetized rat using in vivo chronoamperometry. Both neurotensin and haloperidol administration elicited an immediate increase in dopamine efflux in the nucleus accumbens. Gamma-hydroxybutyric acid lactone, an agent known to block impulse flow in dopamine neurons, either prevented when given before neurotensin or reversed neurotensin-induced increases in accumbens dopamine efflux. Haloperidol-induced increases in accumbens dopamine efflux were similarly affected by gamma-hydroxybutyric acid lactone. The dopamine receptor agonist apomorphine reversed neurotensin- and haloperidol-induced increases in dopamine efflux. Amphetamine, administered during the peak dopamine stimulatory effects induced by neurotensin or haloperidol, resulted in increases above baseline which were significantly greater than the effects of amphetamine alone. These combined drug treatment effects on baseline dopamine efflux were additive, indicating that the effects of amphetamine were not potentiated by neurotensin or haloperidol pretreatments. These in vivo results suggest that neurotensin and haloperidol may augment dopamine efflux in the nucleus accumbens via common mechanisms of action which may involve activation of mesotelencephalic dopamine neuronal firing. The inability of neurotensin to block amphetamine-induced efflux in the nucleus accumbens further suggests that neurotensin blockade of amphetamine-elicited locomotor activity is mediated by an action of neurotensin postsynaptic to dopamine nerve terminals in the nucleus accumbens.

  4. Rat nucleus accumbens core astrocytes modulate reward and the motivation to self-administer ethanol after abstinence.

    PubMed

    Bull, Cecilia; Freitas, Kelen C C; Zou, Shiping; Poland, Ryan S; Syed, Wahab A; Urban, Daniel J; Minter, Sabrina C; Shelton, Keith L; Hauser, Kurt F; Negus, S Stevens; Knapp, Pamela E; Bowers, M Scott

    2014-11-01

    Our understanding of the active role that astrocytes play in modulating neuronal function and behavior is rapidly expanding, but little is known about the role that astrocytes may play in drug-seeking behavior for commonly abused substances. Given that the nucleus accumbens is critically involved in substance abuse and motivation, we sought to determine whether nucleus accumbens astrocytes influence the motivation to self-administer ethanol following abstinence. We found that the packing density of astrocytes that were expressing glial fibrillary acidic protein increased in the nucleus accumbens core (NAcore) during abstinence from EtOH self-administration. No change was observed in the nucleus accumbens shell. This increased NAcore astrocyte density positively correlated with the motivation for ethanol. Astrocytes can communicate with one another and influence neuronal activity through gap-junction hemichannels. Because of this, the effect of blocking gap-junction hemichannels on the motivation for ethanol was examined. The motivation to self-administer ethanol after 3 weeks abstinence was increased following microinjection of gap-junction hemichannel blockers into the NAcore at doses that block both neuronal and astrocytic channels. In contrast, no effect was observed following microinjection of doses that are not thought to block astrocytic channels or following microinjection of either dose into the nucleus accumbens shell. Additionally, the motivation for sucrose after 3 weeks abstinence was unaffected by NAcore gap-junction hemichannel blockers. Next, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) were selectively expressed in NAcore astrocytes to test the effect of astrocyte stimulation. DREADD activation increased cytosolic calcium in primary astrocytes, facilitated responding for rewarding brain stimulation, and reduced the motivation for ethanol after 3 weeks abstinence. This is the first work to modulate drug-seeking behavior with

  5. Reading Disability and Laterality.

    ERIC Educational Resources Information Center

    Sparrow, Sara S.

    The purpose of this study was to determine how retarded readers differed from normal readers in the various ways laterality is manifested. An additional purpose was to investigate the development of laterality as seen across several age levels. Subjects were 80 white male 9-, 10-, 11-, and 12-year-olds from regular classrooms in suburban…

  6. Comparative cephalopod shell strength and the role of septum morphology on stress distribution

    PubMed Central

    Zachow, Stefan; Hoffmann, René

    2016-01-01

    The evolution of complexly folded septa in ammonoids has long been a controversial topic. Explanations of the function of these folded septa can be divided into physiological and mechanical hypotheses with the mechanical functions tending to find widespread support. The complexity of the cephalopod shell has made it difficult to directly test the mechanical properties of these structures without oversimplification of the septal morphology or extraction of a small sub-domain. However, the power of modern finite element analysis now permits direct testing of mechanical hypothesis on complete, empirical models of the shells taken from computed tomographic data. Here we compare, for the first time using empirical models, the capability of the shells of extant Nautilus pompilius, Spirula spirula, and the extinct ammonite Cadoceras sp. to withstand hydrostatic pressure and point loads. Results show hydrostatic pressure imparts highest stress on the final septum with the rest of the shell showing minimal compression. S. spirula shows the lowest stress under hydrostatic pressure while N. pompilius shows the highest stress. Cadoceras sp. shows the development of high stress along the attachment of the septal saddles with the shell wall. Stress due to point loads decreases when the point force is directed along the suture as opposed to the unsupported chamber wall. Cadoceras sp. shows the greatest decrease in stress between the point loads compared to all other models. Greater amplitude of septal flutes corresponds with greater stress due to hydrostatic pressure; however, greater amplitude decreases the stress magnitude of point loads directed along the suture. In our models, sutural complexity does not predict greater resistance to hydrostatic pressure but it does seem to increase resistance to point loads, such as would be from predators. This result permits discussion of palaeoecological reconstructions on the basis of septal morphology. We further suggest that the ratio

  7. Comparative cephalopod shell strength and the role of septum morphology on stress distribution.

    PubMed

    Lemanis, Robert; Zachow, Stefan; Hoffmann, René

    2016-01-01

    The evolution of complexly folded septa in ammonoids has long been a controversial topic. Explanations of the function of these folded septa can be divided into physiological and mechanical hypotheses with the mechanical functions tending to find widespread support. The complexity of the cephalopod shell has made it difficult to directly test the mechanical properties of these structures without oversimplification of the septal morphology or extraction of a small sub-domain. However, the power of modern finite element analysis now permits direct testing of mechanical hypothesis on complete, empirical models of the shells taken from computed tomographic data. Here we compare, for the first time using empirical models, the capability of the shells of extant Nautilus pompilius, Spirula spirula, and the extinct ammonite Cadoceras sp. to withstand hydrostatic pressure and point loads. Results show hydrostatic pressure imparts highest stress on the final septum with the rest of the shell showing minimal compression. S. spirula shows the lowest stress under hydrostatic pressure while N. pompilius shows the highest stress. Cadoceras sp. shows the development of high stress along the attachment of the septal saddles with the shell wall. Stress due to point loads decreases when the point force is directed along the suture as opposed to the unsupported chamber wall. Cadoceras sp. shows the greatest decrease in stress between the point loads compared to all other models. Greater amplitude of septal flutes corresponds with greater stress due to hydrostatic pressure; however, greater amplitude decreases the stress magnitude of point loads directed along the suture. In our models, sutural complexity does not predict greater resistance to hydrostatic pressure but it does seem to increase resistance to point loads, such as would be from predators. This result permits discussion of palaeoecological reconstructions on the basis of septal morphology. We further suggest that the ratio

  8. Infusion of fluoxetine, a serotonin reuptake inhibitor, in the shell region of the nucleus accumbens increases blood glucose concentrations in rats.

    PubMed

    Diepenbroek, C; Rijnsburger, M; Eggels, L; van Megen, K M; Ackermans, M T; Fliers, E; Kalsbeek, A; Serlie, M J; la Fleur, S E

    2017-01-10

    The brain is well known to regulate blood glucose, and the hypothalamus and hindbrain, in particular, have been studied extensively to understand the underlying mechanisms. Nuclei in these regions respond to alterations in blood glucose concentrations and can alter glucose liver output or glucose tissue uptake to maintain blood glucose concentrations within strict boundaries. Interestingly, several cortico-limbic regions also respond to alterations in glucose concentrations and have been shown to project to hypothalamic nuclei and glucoregulatory organs. For instance, electrical stimulation of the shell of the nucleus accumbens (sNAc) results in increased circulating concentrations of glucose and glucagon and activation of the lateral hypothalamus (LH). Whether this is caused by the simultaneous increase in serotonin release in the sNAc remains to be determined. To study the effect of sNAc serotonin on systemic glucose metabolism, we implanted bilateral microdialysis probes in the sNAc of male Wistar rats and infused fluoxetine, a serotonin reuptake inhibitor, or vehicle after which blood glucose, endogenous glucose production (EGP) and glucoregulatory hormones were measured. Fluoxetine in the sNAc for 1h significantly increased blood glucose concentrations without an effect on glucoregulatory hormones. This increase was accompanied by a higher EGP in the fluoxetine infused rats compared to the controls. These data provide further evidence for a role of sNAc-serotonin in the regulation of glucose metabolism.

  9. Increased Dopamine Receptor Activity in the Nucleus Accumbens Shell Ameliorates Anxiety during Drug Withdrawal

    PubMed Central

    Radke, Anna K; Gewirtz, Jonathan C

    2012-01-01

    A number of lines of evidence suggest that negative emotional symptoms of withdrawal involve reduced activity in the mesolimbic dopamine system. This study examined the contribution of dopaminergic signaling in structures downstream of the ventral tegmental area to withdrawal from acute morphine exposure, measured as potentiation of the acoustic startle reflex. Systemic administration of the general dopamine receptor agonist apomorphine or a cocktail of the D1-like receptor agonist SKF82958 and the D2-like receptor agonist quinpirole attenuated potentiated startle during morphine withdrawal. This effect was replicated by apomorphine infusion into the nucleus accumbens shell. Finally, apomorphine injection was shown to relieve startle potentiation during nicotine withdrawal and conditioned place aversion to morphine withdrawal. These results suggest that transient activation of the ventral tegmental area mesolimbic dopamine system triggers the expression of anxiety and aversion during withdrawal from multiple classes of abused drugs. PMID:22692565

  10. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens.

    PubMed

    LaPlant, Quincey; Vialou, Vincent; Covington, Herbert E; Dumitriu, Dani; Feng, Jian; Warren, Brandon L; Maze, Ian; Dietz, David M; Watts, Emily L; Iñiguez, Sergio D; Koo, Ja Wook; Mouzon, Ezekiell; Renthal, William; Hollis, Fiona; Wang, Hui; Noonan, Michele A; Ren, Yanhua; Eisch, Amelia J; Bolaños, Carlos A; Kabbaj, Mohamed; Xiao, Guanghua; Neve, Rachael L; Hurd, Yasmin L; Oosting, Ronald S; Fan, Gouping; Morrison, John H; Nestler, Eric J

    2010-09-01

    Despite abundant expression of DNA methyltransferases (Dnmts) in brain, the regulation and behavioral role of DNA methylation remain poorly understood. We found that Dnmt3a expression was regulated in mouse nucleus accumbens (NAc) by chronic cocaine use and chronic social defeat stress. Moreover, NAc-specific manipulations that block DNA methylation potentiated cocaine reward and exerted antidepressant-like effects, whereas NAc-specific Dnmt3a overexpression attenuated cocaine reward and was pro-depressant. On a cellular level, we found that chronic cocaine use selectively increased thin dendritic spines on NAc neurons and that DNA methylation was both necessary and sufficient to mediate these effects. These data establish the importance of Dnmt3a in the NAc in regulating cellular and behavioral plasticity to emotional stimuli.

  11. Mefloquine in the nucleus accumbens promotes social avoidance and anxiety-like behavior in mice.

    PubMed

    Heshmati, Mitra; Golden, Sam A; Pfau, Madeline L; Christoffel, Daniel J; Seeley, Elena L; Cahill, Michael E; Khibnik, Lena A; Russo, Scott J

    2016-02-01

    Mefloquine continues to be a key drug used for malaria chemoprophylaxis and treatment, despite reports of adverse events like depression and anxiety. It is unknown how mefloquine acts within the central nervous system to cause depression and anxiety or why some individuals are more vulnerable. We show that intraperitoneal injection of mefloquine in mice, when coupled to subthreshold social defeat stress, is sufficient to produce depression-like social avoidance behavior. Direct infusion of mefloquine into the nucleus accumbens (NAc), a key brain reward region, increased stress-induced social avoidance and anxiety behavior. In contrast, infusion into the ventral hippocampus had no effect. Whole cell recordings from NAc medium spiny neurons indicated that mefloquine application increases the frequency of spontaneous excitatory postsynaptic currents, a synaptic adaptation that we have previously shown to be associated with increased susceptibility to social defeat stress. Together, these data demonstrate a role for the NAc in mefloquine-induced depression and anxiety-like behaviors.

  12. [GABA-NO interaction in the N. Accumbens during danger-induced inhibition of exploratory behavior].

    PubMed

    Saul'skaia, N V; Terekhova, E A

    2013-01-01

    In Sprague-Dawley rats by means of in vivo microdialysis combined with HPLC analysis, it was shown that presentation to rats during exploratory activity of a tone previously pared with footshock inhibited the exploration and prevented the exploration-induced increase in extracellular levels of citrulline (an NO co-product) in the medial n. accumbens. Intra-accumbal infusions of 20 μM bicuculline, a GABA(A)-receptor antagonist, firstly, partially restored the exploration-induced increase of extracellular citrulline levels in this brain area, which was inhibited by presentation of the tone, previously paired with foot-shock and, secondly, prevented the inhibition of exploratory behavior produced by this sound signal of danger. The data obtained indicate for the first time that signals of danger inhibit exploratory behavior and exploration-induced activation of the accumbal nitrergic system via GABA(A)-receptor mechanisms.

  13. Synaptic and Behavioral Profile of Multiple Glutamatergic Inputs to the Nucleus Accumbens

    PubMed Central

    Britt, Jonathan P.; Benaliouad, Faiza; McDevitt, Ross A.; Stuber, Garret D.; Wise, Roy A.; Bonci, Antonello

    2013-01-01

    SUMMARY Excitatory afferents to the nucleus accumbens (NAc) are thought to facilitate reward seeking by encoding reward-associated cues. Selective activation of different glutamatergic inputs to the NAc can produce divergent physiological and behavioral responses, but mechanistic explanations for these pathway-specific effects are lacking. Here, we compared the innervation patterns and synaptic properties of ventral hippocampus, basolateral amygdala, and prefrontal cortex input to the NAc. Ventral hippocampal input was found to be uniquely localized to the medial NAc shell, where it was predominant and selectively potentiated following cocaine exposure. In vivo, bidirectional optogenetic manipulations of this pathway attenuated and enhanced cocaine-induced locomotion. Challenging the idea that any of these inputs encode motivationally-neutral information, activation of each discrete pathway reinforced instrumental behaviors. Finally, direct optical activation of medium spiny neurons proved to be capable of supporting self-stimulation, demonstrating that behavioral reinforcement is an explicit consequence of strong excitatory drive to the NAc. PMID:23177963

  14. Cocaine Exposure Reorganizes Cell-Type and Input-Specific Connectivity in the Nucleus Accumbens

    PubMed Central

    MacAskill, Andrew F.; Cassel, John M.; Carter, Adam G.

    2014-01-01

    Exposure to cocaine alters the structural and functional properties of medium spiny neurons (MSNs) in the Nucleus Accumbens (NAc). These changes suggest a rewiring of the NAc circuit, with an enhancement of excitatory synaptic connections onto MSNs. However, it is unknown how drug exposure alters the balance of long-range afferents onto different cell types in the NAc. Here we use whole-cell recordings, two-photon microscopy, optogenetics and pharmacogenetics to show how repeated cocaine alters connectivity in the mouse NAc medial shell. We first determine that cocaine selectively enhances amygdala innervation of D1-MSNs relative to D2-MSNs. We then show that amygdala activity is required for cocaine-induced changes to behavior and connectivity. Finally, we establish how heightened amygdala innervation can explain the structural and functional changes induced by cocaine. Our findings reveal how exposure to drugs of abuse fundamentally reorganizes cell-type and input-specific connectivity in the NAc. PMID:25108911

  15. A Primary Role for Nucleus Accumbens and Related Limbic Network in Vocal Tics.

    PubMed

    McCairn, Kevin W; Nagai, Yuji; Hori, Yukiko; Ninomiya, Taihei; Kikuchi, Erika; Lee, Ju-Young; Suhara, Tetsuya; Iriki, Atsushi; Minamimoto, Takafumi; Takada, Masahiko; Isoda, Masaki; Matsumoto, Masayuki

    2016-01-20

    Inappropriate vocal expressions, e.g., vocal tics in Tourette syndrome, severely impact quality of life. Neural mechanisms underlying vocal tics remain unexplored because no established animal model representing the condition exists. We report that unilateral disinhibition of the nucleus accumbens (NAc) generates vocal tics in monkeys. Whole-brain PET imaging identified prominent, bilateral limbic cortico-subcortical activation. Local field potentials (LFPs) developed abnormal spikes in the NAc and the anterior cingulate cortex (ACC). Vocalization could occur without obvious LFP spikes, however, when phase-phase coupling of alpha oscillations were accentuated between the NAc, ACC, and the primary motor cortex. These findings contrasted with myoclonic motor tics induced by disinhibition of the dorsolateral putamen, where PET activity was confined to the ipsilateral sensorimotor system and LFP spikes always preceded motor tics. We propose that vocal tics emerge as a consequence of dysrhythmic alpha coupling between critical nodes in the limbic and motor networks. VIDEO ABSTRACT.

  16. Phasic dopamine release in the rat nucleus accumbens predicts approach and avoidance performance

    PubMed Central

    Gentry, Ronny N.; Lee, Brian; Roesch, Matthew R.

    2016-01-01

    Dopamine (DA) is critical for reward processing, but significantly less is known about its role in punishment avoidance. Using a combined approach-avoidance task, we measured phasic DA release in the nucleus accumbens (NAc) of rats during presentation of cues that predicted reward, punishment or neutral outcomes and investigated individual differences based on avoidance performance. Here we show that DA release within a single microenvironment is higher for reward and avoidance cues compared with neutral cues and positively correlated with poor avoidance behaviour. We found that DA release delineates trial-type during sessions with good avoidance but is non-selective during poor avoidance, with high release correlating with poor performance. These data demonstrate that phasic DA is released during cued approach and avoidance within the same microenvironment and abnormal processing of value signals is correlated with poor performance. PMID:27786172

  17. Emotional environments retune the valence of appetitive versus fearful functions in nucleus accumbens.

    PubMed

    Reynolds, Sheila M; Berridge, Kent C

    2008-04-01

    The nucleus accumbens mediates both appetitive motivation for rewards and fearful motivation toward threats, which are generated in part by glutamate-related circuits organized in a keyboard fashion. At rostral sites of the medial shell, localized glutamate disruptions typically generate intense appetitive behaviors in rats, but the disruption incrementally generates fearful behaviors as microinjection sites move more caudally. We found that exposure to stressful environments caused caudal fear-generating zones to expand rostrally, filling approximately 90% of the shell. Conversely, a preferred home environment caused fear-generating zones to shrink and appetitive-generating zones to expand caudally, filling approximately 90% of the shell. Thus, the emotional environments retuned the generation of motivation in corticolimbic circuits.

  18. Mefloquine in the nucleus accumbens promotes social avoidance and anxiety-like behavior in mice

    PubMed Central

    Heshmati, Mitra; Golden, Sam A.; Pfau, Madeline L.; Christoffel, Daniel J.; Seeley, Elena L.; Cahill, Michael E.; Khibnik, Lena A.; Russo, Scott J.

    2015-01-01

    Mefloquine continues to be a key drug used for malaria chemoprophylaxis and treatment, despite reports of adverse events like depression and anxiety. It is unknown how mefloquine acts within the central nervous system to cause depression and anxiety or why some individuals are more vulnerable. We show that intraperitoneal injection of mefloquine in mice, when coupled to subthreshold social defeat stress, is sufficient to produce depression-like social avoidance behavior. Direct infusion of mefloquine into the nucleus accumbens (NAc), a key brain reward region, increased stress-induced social avoidance and anxiety behavior. In contrast, infusion into the ventral hippocampus had no effect. Whole cell recordings from NAc medium spiny neurons indicated that mefloquine application increases the frequency of spontaneous excitatory postsynaptic currents, a synaptic adaptation that we have previously shown to be associated with increased susceptibility to social defeat stress. Together, these data demonstrate a role for the NAc in mefloquine-induced depression and anxiety-like behaviors. PMID:26471420

  19. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation.

    PubMed

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J

    2016-06-23

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1-D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated.

  20. Distinct Subpopulations of Nucleus Accumbens Dynorphin Neurons Drive Aversion and Reward.

    PubMed

    Al-Hasani, Ream; McCall, Jordan G; Shin, Gunchul; Gomez, Adrian M; Schmitz, Gavin P; Bernardi, Julio M; Pyo, Chang-O; Park, Sung Il; Marcinkiewcz, Catherine M; Crowley, Nicole A; Krashes, Michael J; Lowell, Bradford B; Kash, Thomas L; Rogers, John A; Bruchas, Michael R

    2015-09-02

    The nucleus accumbens (NAc) and the dynorphinergic system are widely implicated in motivated behaviors. Prior studies have shown that activation of the dynorphin-kappa opioid receptor (KOR) system leads to aversive, dysphoria-like behavior. However, the endogenous sources of dynorphin in these circuits remain unknown. We investigated whether dynorphinergic neuronal firing in the NAc is sufficient to induce aversive behaviors. We found that photostimulation of dynorphinergic cells in the ventral NAc shell elicits robust conditioned and real-time aversive behavior via KOR activation, and in contrast, photostimulation of dorsal NAc shell dynorphin cells induced a KOR-mediated place preference and was positively reinforcing. These results show previously unknown discrete subregions of dynorphin-containing cells in the NAc shell that selectively drive opposing behaviors. Understanding the discrete regional specificity by which NAc dynorphinerigic cells regulate preference and aversion provides insight into motivated behaviors that are dysregulated in stress, reward, and psychiatric disease.

  1. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation

    PubMed Central

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J.

    2016-01-01

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1–D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated. PMID:27337658

  2. Tracking the Fear Memory Engram: Discrete Populations of Neurons within Amygdala, Hypothalamus, and Lateral Septum Are Specifically Activated by Auditory Fear Conditioning

    ERIC Educational Resources Information Center

    Butler, Christopher W.; Wilson, Yvette M.; Gunnersen, Jenny M.; Murphy, Mark

    2015-01-01

    Memory formation is thought to occur via enhanced synaptic connectivity between populations of neurons in the brain. However, it has been difficult to localize and identify the neurons that are directly involved in the formation of any specific memory. We have previously used "fos-tau-lacZ" ("FTL") transgenic mice to identify…

  3. Tracking the fear memory engram: discrete populations of neurons within amygdala, hypothalamus, and lateral septum are specifically activated by auditory fear conditioning

    PubMed Central

    Wilson, Yvette M.; Gunnersen, Jenny M.; Murphy, Mark

    2015-01-01

    Memory formation is thought to occur via enhanced synaptic connectivity between populations of neurons in the brain. However, it has been difficult to localize and identify the neurons that are directly involved in the formation of any specific memory. We have previously used fos-tau-lacZ (FTL) transgenic mice to identify discrete populations of neurons in amygdala and hypothalamus, which were specifically activated by fear conditioning to a context. Here we have examined neuronal activation due to fear conditioning to a more specific auditory cue. Discrete populations of learning-specific neurons were identified in only a small number of locations in the brain, including those previously found to be activated in amygdala and hypothalamus by context fear conditioning. These populations, each containing only a relatively small number of neurons, may be directly involved in fear learning and memory. PMID:26179231

  4. Tracking the fear memory engram: discrete populations of neurons within amygdala, hypothalamus, and lateral septum are specifically activated by auditory fear conditioning.

    PubMed

    Butler, Christopher W; Wilson, Yvette M; Gunnersen, Jenny M; Murphy, Mark

    2015-08-01

    Memory formation is thought to occur via enhanced synaptic connectivity between populations of neurons in the brain. However, it has been difficult to localize and identify the neurons that are directly involved in the formation of any specific memory. We have previously used fos-tau-lacZ (FTL) transgenic mice to identify discrete populations of neurons in amygdala and hypothalamus, which were specifically activated by fear conditioning to a context. Here we have examined neuronal activation due to fear conditioning to a more specific auditory cue. Discrete populations of learning-specific neurons were identified in only a small number of locations in the brain, including those previously found to be activated in amygdala and hypothalamus by context fear conditioning. These populations, each containing only a relatively small number of neurons, may be directly involved in fear learning and memory.

  5. Serotonergic antidepressants decrease hedonic signals but leave learning signals in the nucleus accumbens unaffected.

    PubMed

    Graf, Heiko; Metzger, Coraline D; Walter, Martin; Abler, Birgit

    2016-01-06

    Investigating the effects of serotonergic antidepressants on neural correlates of visual erotic stimulation revealed decreased reactivity within the dopaminergic reward network along with decreased subjective sexual functioning compared with placebo. However, a global dampening of the reward system under serotonergic drugs is not intuitive considering clinical observations of their beneficial effects in the treatment of depression. Particularly, learning signals as coded in prediction error processing within the dopaminergic reward system can be assumed to be rather enhanced as antidepressant drugs have been demonstrated to facilitate the efficacy of psychotherapeutic interventions relying on learning processes. Within the same study sample, we now explored the effects of serotonergic and dopaminergic/noradrenergic antidepressants on prediction error signals compared with placebo by functional MRI. A total of 17 healthy male participants (mean age: 25.4 years) were investigated under the administration of paroxetine, bupropion and placebo for 7 days each within a randomized, double-blind, within-subject cross-over design. During functional MRI, we used an established monetary incentive task to explore neural prediction error signals within the bilateral nucleus accumbens as region of interest within the dopaminergic reward system. In contrast to diminished neural activations and subjective sexual functioning under the serotonergic agent paroxetine under visual erotic stimulation, we revealed unaffected or even enhanced neural prediction error processing within the nucleus accumbens under this antidepressant along with unaffected behavioural processing. Our study provides evidence that serotonergic antidepressants facilitate prediction error signalling and may support suggestions of beneficial effects of these agents on reinforced learning as an essential element in behavioural psychotherapy.

  6. Distinctive Profiles of Gene Expression in the Human Nucleus Accumbens Associated with Cocaine and Heroin Abuse

    PubMed Central

    Albertson, Dawn N; Schmidt, Carl J; Kapatos, Gregory; Bannon, Michael J

    2008-01-01

    Drug abuse is thought to induce long-term cellular and behavioral adaptations as a result of alterations in gene expression. Understanding the molecular consequences of addiction may contribute to the development of better treatment strategies. This study utilized highthroughput Affymetrix microarrays to identify gene expression changes in the post-mortem nucleus accumbens of chronic heroin abusers. These data were analyzed independently and in relation to our previously reported data involving human cocaine abusers, in order to determine which expression changes were drug specific and which may be common to the phenomenon of addiction. A significant decrease in the expression of numerous genes encoding proteins involved in presynaptic release of neurotransmitter was seen in heroin abusers, a finding not seen in the cocaine-abusing cohort. Conversely, the striking decrease in myelin-related genes observed in cocaine abusers was not evident in our cohort of heroin subjects. Overall, little overlap in gene expression profiles was seen between the two drug-abusing cohorts: out of the approximately 39 000 transcripts investigated, the abundance of only 25 was significantly changed in both cocaine and heroin abusers, with nearly one-half of these being altered in opposite directions. These data suggest that the profiles of nucleus accumbens gene expression associated with chronic heroin or cocaine abuse are largely unique, despite what are thought to be common effects of these drugs on dopamine neurotransmission in this brain region. A re-examination of our current assumptions about the commonality of molecular mechanisms associated with substance abuse seems warranted. PMID:16710320

  7. Nucleus accumbens shell and core dopamine: differential role in behavior and addiction.

    PubMed

    Di Chiara, Gaetano

    2002-12-02

    Drug addiction can be conceptualized as a disturbance of behavior motivated by drug-conditioned incentives. This abnormality has been explained by Incentive-Sensitization and Allostatic-Counteradaptive theories as the result of non-associative mechanisms acting at the stage of the expression of incentive motivation and responding for drug reinforcement. Each one of these theories, however, does not account per se for two basic properties of the motivational disturbance of drug addiction: (1). focussing on drug- at the expenses of non-drug-incentives; (2). virtual irreversibility. To account for the above aspects we have proposed an associative learning hypothesis. According to this hypothesis the basic disturbance of drug addiction takes place at the stage of acquisition of motivation and in particular of Pavlovian incentive learning. Drugs share with non-drug rewards the property of stimulating dopamine (DA) transmission in the nucleus accumbens shell but this effect does not undergo habituation upon repeated drug exposure, as instead is the case of non-drug rewards. Repetitive, non-decremental stimulation of DA transmission by drugs in the nucleus accumbens septi (NAc) shell abnormally strengthens stimulus-drug associations. Thus, stimuli contingent upon drug reward acquire powerful incentive properties after a relatively limited number of predictive associations with the drug and become particularly resistant to extinction. Non-contingent occurrence of drug-conditioned incentive cues or contexts strongly facilitates and eventually reinstates drug self-administration. Repeated drug exposure also induces a process of sensitization of drug-induced stimulation of DA transmission in the NAc core. The precise significance of this adaptive change for the mechanism of drug addiction is unclear given the complexity and uncertainties surrounding the role of NAc core DA in responding but might be more directly related to instrumental performance.

  8. Nitric oxide in the nucleus accumbens is involved in retrieval of inhibitory avoidance memory by nicotine.

    PubMed

    Zarrindast, Mohammad Reza; Piri, Morteza; Nasehi, Mohammad; Ebrahimi-Ghiri, Mohaddeseh

    2012-03-01

    In the present study, the possible effect of nitric oxide agents injected into the nucleus accumbens (NAc) in the presence or absence of nicotine on morphine state-dependent memory in adult male Wistar rats was investigated. As a model of memory, a step-through type inhibitory avoidance task was used. Post-training injection of morphine (4 and 6mg/kg) dose dependently induced the impairment of memory retention. Administration of morphine (4 and 6mg/kg) before retention induced state-dependent retrieval of the memory acquired under post-training morphine (6mg/kg) influence. Injection of nicotine before retention (0.25 and 0.5mg/kg) alone and nicotine (0.1, 0.25 and 0.5mg/kg) plus an ineffective dose of morphine (2mg/kg) reversed the post-training morphine-induced memory impairment. The amnesia elicited by morphine (6mg/kg) was also prevented by pre-retention intra-NAc administration of a nitric oxide synthase (NOS) inhibitor, l-NAME (0.24μg/rat, intra-NAc). Interestingly, an ineffective dose of nicotine (0.1mg/kg) in combination with low doses of l-NAME (0.06 and 0.12μg/rat, intra-NAc) synergistically improved memory performance impaired by morphine given after training. It is important to note that intra-NAc administration of l-NAME before retention impaired memory retrieval by itself. In contrast, pre-retention administration of l-arginine, a nitric oxide (NO) precursor (0.25 and 0.5μg/rat, intra-NAc), which had no effect alone, prevented the nicotine reversal of morphine effect on memory. The results suggest a possible role for nitric oxide of nucleus accumbens in the improving effect of nicotine on the morphine-induced amnesia and morphine state-dependent memory.

  9. Individual Variation in Incentive Salience Attribution and Accumbens Dopamine Transporter Expression and Function

    PubMed Central

    Singer, Bryan F.; Guptaroy, Bipasha; Austin, Curtis J.; Wohl, Isabella; Lovic, Vedran; Seiler, Jillian L; Vaughan, Roxanne A.; Gnegy, Margaret E.; Robinson, Terry E.; Aragona, Brandon J.

    2015-01-01

    Cues (conditioned stimuli; CSs) associated with rewards can come to motivate behavior, but there is considerable individual variation in their ability to do so. For example, a lever-CS that predicts food reward becomes attractive, wanted, and elicits reward-seeking behavior to a greater extent in some rats (“sign-trackers”; STs), than others (“goal-trackers”; GTs). Variation in dopamine (DA) neurotransmission in the nucleus accumbens (NAc) core is thought to contribute to such individual variation. Given that the DA transporter (DAT) exerts powerful regulation over DA signaling, we characterized the expression and function of the DAT in the accumbens of STs and GTs. STs showed greater DAT surface expression in ventral striatal synaptosomes than GTs, and ex vivo fast-scan cyclic voltammetry recordings of electrically-evoked DA release confirmed enhanced DAT function in STs, as indicated by faster DA uptake, specifically in the NAc core. Consistent with this, systemic amphetamine (AMPH) produced greater inhibition of DA uptake in STs than in GTs. Furthermore, injection of AMPH directly into the NAc core enhanced lever-directed approach in STs, presumably by amplifying the incentive value of the CS, but had no effect on goal tracking behavior. On the other hand, there were no differences between STs and GTs in electrically-evoked DA release in slices, or in total ventral striatal DA content. We conclude that greater DAT surface expression may facilitate the attribution of incentive salience to discrete reward cues. Investigating this variability in animal sub-populations may help explain why some people abuse drugs, while others do not. PMID:26613374

  10. The role of nucleus accumbens adenosine–opioid interaction in mediating palatable food intake

    PubMed Central

    Pritchett, Carolyn E.; Pardee, Alicia L.; McGuirk, Sophia R.; Will, Matthew J.

    2015-01-01

    Nucleus accumbens µ-opioid stimulation leads to robust increases in the intake of highly palatable foods, such as a high-fat diet. While interactions between opioids and certain striatal neurotransmitters underlying this phenomenon have been explored, many potential interactions have not. Striatal adenosine has been shown to have a significant influence on striatal neurotransmission and locomotor activity behavior, however the interaction between opioids and adenosine on feeding behaviors has received less attention. The present study explored this interaction within the context of opioid-driven consumption of a high-fat diet. Specifically, intra-accumbens administration of selective A1 and A2A adenosine receptor ligands, with or without concurrent administration of the µ-opioid agonist DAla2,N,Me-Phe4,Gly-ol5-enkaphalin (DAMGO), on high-fat consumption and associated locomotor activity was examined. The A1 receptor agonist 2-Chloro-N6-cyclopentyladenosine (CCPA) had no effect on either baseline or DAMGO-induced locomotor or consumption behaviors associated with the high-fat diet. However, the A2A receptor agonist 2-p-(2 carboxyethyl)-phenethylamino-5′-N-ethylcarboxamido adenosine hydrochloride (CGS 21680) and the prodrug of the A2A receptor antagonist MSX-2, 3-(3-hydroxypropyl)-8-(m-methoxystyryl)-7-methyl-1-propargylxanthine phosphate disodium salt (MSX-3) produced the expected decrease and increase in locomotor activity, respectively. CGS 21680 had no effect on baseline or DAMGO-driven consumption of the high-fat diet. MSX-3 had no effect on DAMGO-induced locomotor activity but increased DAMGO-induced consumption. Lastly, the increased activity and consumption produced by MSX-3 alone was blocked by prior administration of the opioid antagonist naltrexone. In summary, these results suggest a potential role of striatal adenosine A2A receptors in mediating baseline and striatal opioid-mediated intake of a high-fat diet. PMID:19822132

  11. The role of nucleus accumbens adenosine-opioid interaction in mediating palatable food intake.

    PubMed

    Pritchett, Carolyn E; Pardee, Alicia L; McGuirk, Sophia R; Will, Matthew J

    2010-01-08

    Nucleus accumbens micro-opioid stimulation leads to robust increases in the intake of highly palatable foods, such as a high-fat diet. While interactions between opioids and certain striatal neurotransmitters underlying this phenomenon have been explored, many potential interactions have not. Striatal adenosine has been shown to have a significant influence on striatal neurotransmission and locomotor activity behavior, however the interaction between opioids and adenosine on feeding behaviors has received less attention. The present study explored this interaction within the context of opioid-driven consumption of a high-fat diet. Specifically, intra-accumbens administration of selective A1 and A2(A) adenosine receptor ligands, with or without concurrent administration of the micro-opioid agonist (D)-Ala(2),N,Me-Phe(4),Gly-ol(5)-enkaphalin (DAMGO), on high-fat consumption and associated locomotor activity was examined. The A1 receptor agonist 2-Chloro-N6-cyclopentyladenosine (CCPA) had no effect on either baseline or DAMGO-induced locomotor or consumption behaviors associated with the high-fat diet. However, the A2(A) receptor agonist 2-p-(2 carboxyethyl)-phenethylamino-5'-N-ethylcarboxamido adenosine hydrochloride (CGS 21680) and the prodrug of the A2(A) receptor antagonist MSX-2, 3-(3-hydroxypropyl)-8-(m-methoxystyryl)-7-methyl-1-propargylxanthine phosphate disodium salt (MSX-3) produced the expected decrease and increase in locomotor activity, respectively. CGS 21680 had no effect on baseline or DAMGO-driven consumption of the high-fat diet. MSX-3 had no effect on DAMGO-induced locomotor activity but increased DAMGO-induced consumption. Lastly, the increased activity and consumption produced by MSX-3 alone was blocked by prior administration of the opioid antagonist naltrexone. In summary, these results suggest a potential role of striatal adenosine A2(A) receptors in mediating baseline and striatal opioid-mediated intake of a high-fat diet.

  12. A distinct group of non-cholinergic neurons along the mid-line of the septum and within the rat medial septal nucleus.

    PubMed

    Tsurusaki, Massashi; Gallagher, Joel P

    2006-12-13

    The septum is a critical and integral component of the limbic brain that serves as a link between diverse brain structures while being necessary for human cognition and emotionality. A major anatomical component of the septum is designated as the medial septum/diagonal band of Broca complex (MS/DB). A primary focus of much research has been to investigate cholinergic neurons within the MS/DB, as these are the rodent brain's main source of acetylcholine to the cortex and hippocampus. On the other hand, we have chosen to investigate a specific group of neurons that lie on the midline of the MS/DB in an area distinguished anatomically as the medial septal nucleus (MSN). Based on somatic morphology and electrophysiological characteristics we conclude that these neurons, characterized into three different types, are non-cholinergic.

  13. Roles of the novel coiled-coil protein Rng10 in septum formation during fission yeast cytokinesis

    PubMed Central

    Liu, Yajun; Lee, I-Ju; Sun, Mingzhai; Lower, Casey A.; Runge, Kurt W.; Ma, Jianjie; Wu, Jian-Qiu

    2016-01-01

    Rho GAPs are important regulators of Rho GTPases, which are involved in various steps of cytokinesis and other processes. However, regulation of Rho-GAP cellular localization and function is not fully understood. Here we report the characterization of a novel coiled-coil protein Rng10 and its relationship with the Rho-GAP Rga7 in fission yeast. Both rng10Δ and rga7Δ result in defective septum and cell lysis during cytokinesis. Rng10 and Rga7 colocalize on the plasma membrane at the cell tips during interphase and at the division site during cell division. Rng10 physically interacts with Rga7 in affinity purification and coimmunoprecipitation. Of interest, Rga7 localization is nearly abolished without Rng10. Moreover, Rng10 and Rga7 work together to regulate the accumulation and dynamics of glucan synthases for successful septum formation in cytokinesis. Our results show that cellular localization and function of the Rho-GAP Rga7 are regulated by a novel protein, Rng10, during cytokinesis in fission yeast. PMID:27385337

  14. In vitro study on the disinfectability of two split-septum needle-free connection devices using different disinfection procedures

    PubMed Central

    Engelhart, Steffen; Exner, Martin; Simon, Arne

    2015-01-01

    This in vitro study investigated the external disinfection of two needle-free connection devices (NFC) using Octeniderm® (spraying and wiping technique) vs. Descoderm® pads (wiping technique). The split-septum membrane of the NFC was contaminated with >105 CFU K. pneumoniae or S. epidermidis. The efficacy of the disinfection at 30 sec. exposure time was controlled by taking a swab sample and by flushing the NFC with sterile 0.9% sodium chloride solution. Disinfection with octenidine dihydrochloride 0.1 g, 1-Propanol 30.0 g, and 2-Propanol 45.0 g in 100 g solution was highly effective (CFU reduction ≥4 log) against both microorganisms, whereas the use of 63.1 g 2-Propanol in 100 ml solution led to residual contamination with S. epidermidis. Our investigation underlines that (i) in clinical practice disinfection of NFCs before use is mandatory, and that (ii) details of disinfection technique are of utmost importance regarding their efficacy. Our investigation revealed no significant differences between both split-septum NFC types. Clinical studies are needed to confirm a possible superiority of disinfectants with long-lasting residual antimicrobial activity. PMID:26693394

  15. The role of septoplasty in the management of nasal septum fracture: a randomized quality of life study.

    PubMed

    Younes, A; Elzayat, S

    2016-11-01

    Fracture of the nasal septum is a common injury. Fracture reduction using Ash forceps is the standard treatment for non-severely comminuted cases. In this study, septoplasty was compared to Ash forceps reduction of nasal septum fractures with regard to the quality of life outcome of patient breathing. Thirty consecutive patients with non-comminuted septal fractures were divided randomly into two groups. In group I, fractures were managed by closed reduction (using Ash forceps), while in group II, fractures were managed by septoplasty surgery. Each patient completed a validated quality of life scale for breathing (Nasal Obstruction Symptom Evaluation, NOSE) preoperatively and at 3 months postoperative. In group I, the mean difference between postoperative and preoperative NOSE scores was -28.33 (range -40 to -15), while in group II the mean difference was -44.33 (range -70 to -30). There was a significant improvement in nasal breathing quality of life in group II compared with group I (t-test, P=0.001). The results of this study showed a significant improvement in quality of life outcome with the use of septoplasty compared to closed reduction for acute septal fractures. Septoplasty could be recommended for patients with acute nasoseptal fractures to ensure better nasal breathing outcomes.

  16. A sporulation-specific, sigF-dependent protein, SspA, affects septum positioning in Streptomyces coelicolor

    PubMed Central

    Tzanis, Angelos; Dalton, Kate A; Hesketh, Andrew; den Hengst, Chris D; Buttner, Mark J; Thibessard, Annabelle; Kelemen, Gabriella H

    2014-01-01

    The RNA polymerase sigma factor SigF controls late development during sporulation in the filamentous bacterium Streptomyces coelicolor. The only known SigF-dependent gene identified so far, SCO5321, is found in the biosynthetic cluster encoding spore pigment synthesis. Here we identify the first direct target for SigF, the gene sspA, encoding a sporulation-specific protein. Bioinformatic analysis suggests that SspA is a secreted lipoprotein with two PepSY signature domains. The sspA deletion mutant exhibits irregular sporulation septation and altered spore shape, suggesting that SspA plays a role in septum formation and spore maturation. The fluorescent translational fusion protein SspA–mCherry localized first to septum sites, then subsequently around the surface of the spores. Both SspA protein and sspA transcription are absent from the sigF null mutant. Moreover, in vitro transcription assay confirmed that RNA polymerase holoenzyme containing SigF is sufficient for initiation of transcription from a single sspA promoter. In addition, in vivo and in vitro experiments showed that sspA is a direct target of BldD, which functions to repress sporulation genes, including whiG, ftsZ and ssgB, during vegetative growth, co-ordinating their expression during sporulation septation. PMID:24261854

  17. Perforation of the nasal septum as the first sign of histoplasmosis associated with AIDS and review of published literature.

    PubMed

    Jaimes, Angel; Muvdi, Sandra; Alvarado, Zulma; Rodríguez, Gerzaín

    2013-08-01

    Disseminated histoplasmosis in South America is associated with AIDS in 70-90 % of cases. It is visceral and cutaneous, compromising the oral, pharynx, and laryngeal mucous membranes. The involvement of the nasal mucosa is unusual. Two patients with perforation of the nasal septum as the only sign of their disease were clinically and histopathologically diagnosed as leishmaniasis. The revision of the biopsies and the culture of nasal discharge secretions showed that the pathogens seen were not amastigotes but Histoplasma capsulatum. Other mycotic lesions were not detected, nor there was history of cutaneous leishmaniasis. The leishmanin skin test, available only for the male patient, was negative. The PCR and immunofluorescence antibody titers for Leishmania were negative in both patients. They were HIV positive; in the male, his CD4+ T cell count was 60/mm(3) and in the female 133/mm(3). The nasal ulcer was the only manifestation of histoplasmosis and the first of AIDS in both patients. The male patient recovered with amphotericin B and itraconazole treatment. The female has improved with itraconazole. Both patients received antiretroviral treatment. Nasal mucous membrane ulcers should include histoplasmosis among the differential diagnosis. In conclusion, two patients had perforation of their nasal septum as the only manifestation of histoplasmosis, a diagnosis confirmed by nasal mucosa biopsy and by culture of H. capsulatum, findings which demonstrated that both patients had AIDS.

  18. Amyotrophic Lateral Sclerosis

    MedlinePlus

    Amyotrophic lateral sclerosis (ALS) is a nervous system disease that attacks nerve cells called neurons in your brain and spinal cord. These neurons ... breathing machine can help, but most people with ALS die from respiratory failure. The disease usually strikes ...

  19. [Amyotrophic lateral sclerosis].

    PubMed

    Veldink, J H; Weikamp, J; Schelhaas, H J; van den Berg, L H

    2010-01-01

    Amyotrophic lateral sclerosis is one of the most severe and disabling diseases of the nervous system. Amyotrophic lateral sclerosis leads to the progressive weakening of the muscles in the arms, legs, face, mouth and trunk. The onset of the disease is insidious, starting with weakness in the hands or feet or with slurred speech. The weakness worsens and patients pass away as a result of weakness of the respiratory muscles on average within 3 years of the onset of the disease. In the Netherlands, approximately 400 patients are diagnosed with amyotrophic lateral sclerosis every year. There is no diagnostic test for this neuro-muscular disease; the diagnosis is established by excluding other disorders that resemble amyotrophic lateral sclerosis. Only one drug is able to inhibit the progression of the disease to any extent: riluzole. Treatment, therefore, is mainly focused on supportive measures and those which enhance the quality of life optimally.

  20. Comparison of the offset distance of the tricuspid septal leaflet in neonates with Ebstein's anomaly and neonates with pulmonary atresia with intact ventricular septum.

    PubMed

    Kim, Min Jeong; Yu, Jeong Jin; Kang, So Yeon; Seo, Chang Deok; Baek, Jae Suk; Kim, Young-Hwue; Ko, Jae-Kon

    2015-01-01

    An indexed offset distance of the tricuspid septal leaflet ⩾8 mm/m2 is a quantitative criterion for the diagnosis of Ebstein's anomaly. The purpose of this study was to investigate the validity of this criterion for the discrimination of Ebstein's anomaly from pulmonary atresia with intact ventricular septum in neonatal patients. A total of 122 neonatal patients, 56 with Ebstein's anomaly and 66 with pulmonary atresia with intact ventricular septum, were enrolled. Diagnosis of each anomaly was based on typical morphologic features. Echocardiographic variables, including the offset distance of the tricuspid septal leaflet, were measured via an offline analysis of images recorded before 1 month of age. The offset distance of the tricuspid septal leaflet was indexed by the body surface area, and the indexed offset distances in the Ebstein's anomaly and pulmonary atresia with intact ventricular septum groups were 34.2 mm/m2 (7.1-119.1 mm/m2) and 7.2 mm/m2 (0.0-25.6 mm/m2), respectively. The indexed offset distance was ⩾8 mm/m2 in 29 (43.9%) of the patients with pulmonary atresia with intact ventricular septum; clinical and echocardiographic characteristics were comparable between these 29 patients and the remaining 37 patients with pulmonary atresia with intact ventricular septum. When an indexed offset distance ⩾8 mm/m2 was applied as a cut-off for the diagnosis of Ebstein's anomaly, the sensitivity was 0.963 and the specificity was 0.561. In conclusion, indexed offset distance ⩾8 mm/m2 cannot be used as a cut-off for the diagnosis of complicated Ebstein's anomaly in neonatal patients with pulmonary atresia with intact ventricular septum.

  1. Selective serotonin receptor stimulation of the medial nucleus accumbens causes differential effects on food intake and locomotion.

    PubMed

    Pratt, Wayne E; Blackstone, Kaitlin; Connolly, Megan E; Skelly, Mary Jane

    2009-10-01

    Substantial evidence suggests that pharmacological manipulations of neural serotonin pathways influence ingestive behaviors. Despite the known role of the nucleus accumbens in directing appetitive and consummatory behavior, there has been little examination of the influences that serotonin receptors may play in modulating feeding within nucleus accumbens circuitry. In these experiments, the authors examined the effects of bilateral nucleus accumbens infusions of the 5-HT1/7 receptor agonist 5-CT (at 0.0, 0.5, 1.0, or 4.0 microg/0.5 microl/side), the 5-HT receptor agonist EMD 386088 (at 0.0, 1.0, and 4.0 microg/0.5 microl/side), or the 5-HT2C preferential agonist RO 60-0175 (at 0.0, 2.0, or 5.0 microg/0.5 microl/side) on food intake and locomotor activity in the rat. Intra-accumbens infusions of 5-CT caused a dose-dependent reduction of food intake and rearing behavior, both in food-restricted animals given 2-hr free access to Purina Protab RMH 3000 Chow, as well as in nondeprived rats offered 2-hr access to a highly palatable fat/sucrose diet. In contrast, stimulation of 5-HT receptors with EMD 386088 caused a dose-dependent increase of intake under both feeding conditions, without affecting measures of locomotion. Infusions of the moderately selective 5-HT2C receptor agonist RO 60-0175 had no effects on feeding or locomotor measures in food-restricted animals, but did reduce intake of the fat/sucrose in nonrestricted animals at the 2.0 microg, but not the 5.0 microg dose. Intra-accumbens infusions of selective antagonists for the 5-HT (SB 269970), 5-HT (SB 252585), and 5-HT2C (RS 102221) receptors did not affect locomotion, and demonstrated no lasting changes in feeding for any of the groups tested. These data are the first to suggest that the activation of different serotonin receptor subtypes within the feeding circuitry of the medial nucleus accumbens differentially influence consummatory behavior.

  2. μ- and δ-Opioid-Related Processes in the Accumbens Core and Shell Differentially Mediate the Influence of Reward-Guided and Stimulus-Guided Decisions on Choice

    PubMed Central

    Laurent, Vincent; Leung, Beatrice; Maidment, Nigel

    2012-01-01

    Two motivational processes affect choice between actions: (1) changes in the reward value of the goal or outcome of an action and (2) changes in the predicted value of an action based on outcome-related stimuli. Here, we evaluated the role of μ-opioid receptor (MOR) and δ-opioid receptor (DOR) in the nucleus accumbens in the way these motivational processes influence choice using outcome revaluation and pavlovian-instrumental transfer tests. We first examined the effect of genetic deletion of MOR and DOR in specific knock-out mice. We then assessed the effect of infusing the MOR antagonist d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) or the DOR antagonist naltrindole into the core or shell subregions of the nucleus accumbens on these tests in rats. We found that, whereas MOR knock-outs showed normal transfer, they failed to show a selective outcome revaluation effect. Conversely, DOR knock-outs showed normal revaluation but were insensitive to the influence of outcome-related cues on choice. This double dissociation was also found regionally within the nucleus accumbens in rats. Infusion of naltrindole into the accumbens shell abolished transfer but had no effect on outcome revaluation and did not influence either effect when infused into the accumbens core. Conversely, infusion of CTAP into the accumbens core abolished sensitivity to outcome revaluation but had no effect on transfer and did not influence either effect when infused into the accumbens shell. These results suggest that reward-based and stimulus-based values exert distinct motivational influences on choice that can be doubly dissociated both neuroanatomically and neurochemically at the level of the nucleus accumbens. PMID:22302826

  3. Laterally bendable belt conveyor

    DOEpatents

    Peterson, William J.

    1985-01-01

    An endless, laterally flexible and bendable belt conveyor particularly adapted for coal mining applications in facilitating the transport of the extracted coal up- or downslope and around corners in a continuous manner is disclosed. The conveying means includes a flat rubber belt reinforced along the middle portion thereof along which the major portion of the belt tension is directed so as to cause rotation of the tubular shaped belt when trammed around lateral turns thus preventing excessive belt bulging distortion between adjacent belt supports which would inhibit belt transport. Pretension induced into the fabric reinforced flat rubber belt by conventional belt take-up means supports the load conveyed when the belt conveyor is making lateral turns. The carrying and return portions of the belt are supported and formed into a tubular shape by a plurality of shapers positioned along its length. Each shaper is supported from above by a monorail and includes clusters of idler rollers which support the belt. Additional cluster rollers in each shaper permit the belt supporting roller clusters to rotate in response to the belt's operating tension imposed upon the cluster rollers by induced lateral belt friction forces. The freely rotating roller clusters thus permit the belt to twist on lateral curves without damage to itself while precluding escape of the conveyed material by effectively enclosing it in the tube-shaped, inner belt transport length.

  4. Cholesterol granuloma of the lateral ventricle. Case report.

    PubMed

    Grossi, Peter M; Ellis, Michael J; Cummings, Thomas J; Gray, Linda L; Fukushima, Takanori; Sampson, John H

    2008-02-01

    Cholesterol granulomas (CGs) are benign lesions resulting from an inflammatory reaction to cholesterol and hemosiderin. These masses most often arise within the temporal bone or nasal sinuses; intracerebral CGs are extremely rare. In this report the authors present an unusual case of a CG arising within the lateral ventricle. The patient presented with transient hemiparesis and numbness. Computed tomography and magnetic resonance imaging demonstrated a cystic partially enhancing midline mass within the right lateral ventricle, expanding the ventricle and displacing the septum pellucidum. The patient underwent an interhemispheric, transcallosal resection of the lesion. Microscopic examination revealed a granulomatous inflammatory lesion containing cholesterol clefts, macrophages, and hemosiderin. Embedded within the granulomatous response were foci of tiny cystlike structures lined by nonciliated flattened cuboidal epithelium, consistent with the diagnosis of CG. To the authors' knowledge this is the first reported case of CG presenting as an intraventricular mass. The origin of this lesion is unclear, but it may relate to prior traumatic brain injury. The authors describe the presentation, imaging findings, histopathological characteristics, and surgical treatment of this rare lesion and related pathological entities.

  5. Bilateral lateral periodontal cyst.

    PubMed

    Govil, Somya; Gupta, Vishesh; Misra, Neeta; Misra, Pradyumna

    2013-05-10

    The bilateral lateral periodontal cyst is a rare nasological entity, which despite clinical and radiological presentation is being diagnosed by histological characteristics. It is asymptomatic in nature and is observed in routine radiography. The aim and objective of this article is to present a rare case of bilateral lateral periodontal cyst in a 14-year-old child. The clinical and radiographical findings, along with its management have been discussed. Enucleation of bilateral cyst without extraction of the adjacent tooth was performed. Lesion samples were sent for histopathological analysis. The histopathological analysis revealed a thin, non keratinised stratified squamous epithelium resembling reduced enamel epithelium. Epithelial plaques were also seen. A clinicopathological correlation incorporating the surgical, radiographical and gold standard histopathological findings was obtained to suggest the final diagnosis of the bilateral lateral periodontal cyst.

  6. Supersensitive Kappa Opioid Receptors Promotes Ethanol Withdrawal-Related Behaviors and Reduce Dopamine Signaling in the Nucleus Accumbens

    PubMed Central

    Rose, Jamie H.; Karkhanis, Anushree N.; Chen, Rong; Gioia, Dominic; Lopez, Marcelo F.; Becker, Howard C.; McCool, Brian A.

    2016-01-01

    Background: Chronic ethanol exposure reduces dopamine transmission in the nucleus accumbens, which may contribute to the negative affective symptoms associated with ethanol withdrawal. Kappa opioid receptors have been implicated in withdrawal-induced excessive drinking and anxiety-like behaviors and are known to inhibit dopamine release in the nucleus accumbens. The effects of chronic ethanol exposure on kappa opioid receptor-mediated changes in dopamine transmission at the level of the dopamine terminal and withdrawal-related behaviors were examined. Methods: Five weeks of chronic intermittent ethanol exposure in male C57BL/6 mice were used to examine the role of kappa opioid receptors in chronic ethanol-induced increases in ethanol intake and marble burying, a measure of anxiety/compulsive-like behavior. Drinking and marble burying were evaluated before and after chronic intermittent ethanol exposure, with and without kappa opioid receptor blockade by nor-binaltorphimine (10mg/kg i.p.). Functional alterations in kappa opioid receptors were assessed using fast scan cyclic voltammetry in brain slices containing the nucleus accumbens. Results: Chronic intermittent ethanol-exposed mice showed increased ethanol drinking and marble burying compared with controls, which was attenuated with kappa opioid receptor blockade. Chronic intermittent ethanol-induced increases in behavior were replicated with kappa opioid receptor activation in naïve mice. Fast scan cyclic voltammetry revealed that chronic intermittent ethanol reduced accumbal dopamine release and increased uptake rates, promoting a hypodopaminergic state of this region. Kappa opioid receptor activation with U50,488H concentration-dependently decreased dopamine release in both groups; however, this effect was greater in chronic intermittent ethanol-treated mice, indicating kappa opioid receptor supersensitivity in this group. Conclusions: These data suggest that the chronic intermittent ethanol-induced increase

  7. Latent inhibition-related dopaminergic responses in the nucleus accumbens are disrupted following neonatal transient inactivation of the ventral subiculum.

    PubMed

    Meyer, Francisca F; Louilot, Alain

    2011-06-01

    Schizophrenia would result from a defective connectivity between several integrative regions as a consequence of neurodevelopmental failure. Various anomalies reminiscent of early brain development disturbances have been observed in patients' left ventral subiculum of the hippocampus (SUB). Numerous data support the hypothesis of a functional dopaminergic dysregulation in schizophrenia. The common target structure for the action of antipsychotics appears to be a subregion of the ventral striatum, the dorsomedial shell part of the nucleus accumbens. Latent inhibition, a cognitive marker of interest for schizophrenia, has been found to be disrupted in acute patients. The present study set out to investigate the consequences of a neonatal functional inactivation of the left SUB by tetrodotoxin (TTX) in 8-day-old rats for the latent inhibition-related dopaminergic responses, as monitored by in vivo voltammetry in freely moving adult animals (11 weeks) in the left core and dorsomedial shell parts of the nucleus accumbens in an olfactory aversion procedure. Results obtained during the retention session of a three-stage latent inhibition protocol showed that the postnatal unilateral functional blockade of the SUB was followed in pre-exposed TTX-conditioned adult rats by a disruption of the behavioral expression of latent inhibition and induced a total and a partial reversal of the latent inhibition-related dopaminergic responses in the dorsomedial shell and core parts of the nucleus accumbens, respectively. The present data suggest that neonatal inactivation of the SUB has more marked consequences for the dopaminergic responses recorded in the dorsomedial shell part, than in the core part of the nucleus accumbens. These findings may provide new insight into the pathophysiology of schizophrenia.

  8. Conditional deletion of WT1 in the septum transversum mesenchyme causes congenital diaphragmatic hernia in mice

    PubMed Central

    Carmona, Rita; Cañete, Ana; Cano, Elena; Ariza, Laura; Rojas, Anabel; Muñoz-Chápuli, Ramon

    2016-01-01

    Congenital diaphragmatic hernia (CDH) is a severe birth defect. Wt1-null mouse embryos develop CDH but the mechanisms regulated by WT1 are unknown. We have generated a murine model with conditional deletion of WT1 in the lateral plate mesoderm, using the G2 enhancer of the Gata4 gene as a driver. 80% of G2-Gata4Cre;Wt1fl/fl embryos developed typical Bochdalek-type CDH. We show that the posthepatic mesenchymal plate coelomic epithelium gives rise to a mesenchyme that populates the pleuroperitoneal folds isolating the pleural cavities before the migration of the somitic myoblasts. This process fails when Wt1 is deleted from this area. Mutant embryos show Raldh2 downregulation in the lateral mesoderm, but not in the intermediate mesoderm. The mutant phenotype was partially rescued by retinoic acid treatment of the pregnant females. Replacement of intermediate by lateral mesoderm recapitulates the evolutionary origin of the diaphragm in mammals. CDH might thus be viewed as an evolutionary atavism. DOI: http://dx.doi.org/10.7554/eLife.16009.001 PMID:27642710

  9. Lateral Thinking of Prospective Teachers

    ERIC Educational Resources Information Center

    Lawrence, A. S. Arul; Xavier, S. Amaladoss

    2013-01-01

    Edward de Bono who invented the term "lateral thinking" in 1967 is the pioneer of lateral thinking. Lateral thinking is concerned with the generation of new ideas. Liberation from old ideas and the stimulation of new ones are twin aspects of lateral thinking. Lateral thinking is a creative skills from which all people can benefit…

  10. An investigation of the origin of extracellular GABA in rat nucleus accumbens measured in vivo by microdialysis.

    PubMed

    Smith, S E; Sharp, T

    1994-01-01

    GABA transmission in the nucleus accumbens is believed to play a central role in motivational processes and the expression of psychostimulant drug action. Here we report measurements of extracellular GABA in nucleus accumbens of the rat and investigate its origin. Extracellular GABA was detected using microdialysis in combination with a novel HPLC-based assay. In the awake rat, GABA in the microdialysates (1) increased 10-fold following perfusion with 0.5 mM nipecotic acid, a GABA releasing agent and uptake blocker, (2) increased 7-fold following local perfusion with 50 mM KCl, (3) decreased 50% following perfusion with tetrodotoxin, (4) decreased 50% following perfusion with a Ca(2+(-free medium and (5) decreased 40% following perfusion with high (12.5 mM) MgCl. Finally, in the anaesthetized rat, GABA in the microdialysates decreased 50% following i.p. injection of 100 mg/kg 3-mercaptoproprionic acid, a GABA synthesis inhibitor. We conclude that GABA in microdialysates from nucleus accumbens of the rat (awake) responds appropriately to selected pharmacological agents and derives at least in part (50%) from neurones.

  11. Intra-Accumbens Injection of a Dopamine Aptamer Abates MK-801-Induced Cognitive Dysfunction in a Model of Schizophrenia

    PubMed Central

    Holahan, Matthew R.; Madularu, Dan; McConnell, Erin M.; Walsh, Ryan; DeRosa, Maria C.

    2011-01-01

    Systemic administration of the noncompetitive NMDA-receptor antagonist, MK-801, has been proposed to model cognitive deficits similar to those seen in patients with schizophrenia. The present work investigated the ability of a dopamine-binding DNA aptamer to regulate these MK-801-induced cognitive deficits when injected into the nucleus accumbens. Rats were trained to bar press for chocolate pellet rewards then randomly assigned to receive an intra-accumbens injection of a DNA aptamer (200 nM; n = 7), tris buffer (n = 6) or a randomized DNA oligonucleotide (n = 7). Animals were then treated systemically with MK-801 (0.1 mg/kg) and tested for their ability to extinguish their bar pressing response. Two control groups were also included that did not receive MK-801. Data revealed that injection of Tris buffer or the random oligonucleotide sequence into the nucleus accumbens prior to treatment with MK-801 did not reduce the MK-801-induced extinction deficit. Animals continued to press at a high rate over the entire course of the extinction session. Injection of the dopamine aptamer reversed this MK-801-induced elevation in lever pressing to levels as seen in rats not treated with MK-801. Tests for activity showed that the aptamer did not impair locomotor activity. Results demonstrate the in vivo utility of DNA aptamers as tools to investigate neurobiological processes in preclinical animal models of mental health disease. PMID:21779401

  12. Intra-accumbens baclofen, but not muscimol, increases second order instrumental responding for food reward in rats.

    PubMed

    Pulman, Kim G T; Somerville, Elizabeth M; Clifton, Peter G

    2012-01-01

    Stimulation of either GABA(A) or GABA(B) receptors within the nucleus accumbens shell strongly enhances food intake in rats. However the effects of subtype-selective stimulation of GABA receptors on instrumental responses for food reward are less well characterized. Here we contrast the effects of the GABA(A) receptor agonist muscimol and GABA(B) receptor agonist baclofen on instrumental responding for food using a second order reinforcement schedule. Bilateral intra-accumbens administration of baclofen (220-440 pmol) stimulated responding but a higher dose (660 pmol) induced stereotyped oral behaviour that interfered with responding. Baclofen (220-660 pmol) also stimulated intake of freely available chow. Muscimol (220-660 pmol) was without effect on responding for food on this schedule but did stimulate intake of freely available chow. Unilateral administration of either baclofen or muscimol (220 pmol) induced similar patterns of c-fos immunoreactivity in several hypothalamic sites but differed in its induction in the central nucleus of the amygdala. We conclude that stimulation of GABA(A) or GABA(B) receptors in the nucleus accumbens shell of rats produces clearly distinguishable effects on operant responding for food.

  13. SIRT1 Mediates Depression-Like Behaviors in the Nucleus Accumbens

    PubMed Central

    Kim, Hee-Dae; Hesterman, Jennifer; Call, Tanessa; Magazu, Samantha; Keeley, Elizabeth; Armenta, Kristyna; Kronman, Hope; Neve, Rachael L.; Nestler, Eric J.

    2016-01-01

    Depression is a recurring and life-threatening illness that affects up to 120 million people worldwide. In the present study, we show that chronic social defeat stress, an ethologically validated model of depression in mice, increases SIRT1 levels in the nucleus accumbens (NAc), a key brain reward region. Increases in SIRT1, a well characterized class III histone deacetylase, after chronic social defeat suggest a role for this enzyme in mediating depression-like behaviors. When resveratrol, a pharmacological activator of SIRT1, was directly infused bilaterally into the NAc, we observed an increase in depression- and anxiety-like behaviors. Conversely, intra-NAc infusions of EX-527, a SIRT1 antagonist, reduced these behaviors; EX-527 also reduced acute stress responses in stress-naive mice. Next, we increased SIRT1 levels directly in NAc by use of viral-mediated gene transfer and observed an increase in depressive- and anxiety-like behaviors when mice were assessed in the open-field, elevated-plus-maze, and forced swim tests. Using a Cre-inducible viral vector system to overexpress SIRT1 selectively in dopamine D1 or D2 subpopulations of medium spiny neurons (MSNs) in the NAc, we found that SIRT1 promotes depressive-like behaviors only when overexpressed in D1 MSNs, with no effect seen in D2 MSNs. Conversely, selective ablation of SIRT1 in the NAc using viral-Cre in floxed Sirt1 mice resulted in decreased depression- and anxiety-like behaviors. Together, these results demonstrate that SIRT1 plays an essential role in the NAc in regulating mood-related behavioral abnormalities and identifies a novel signaling pathway for the development of innovative antidepressants to treat major depressive disorders. SIGNIFICANCE STATEMENT In this study, we demonstrate a pivotal role for SIRT1 in anxiety- and depression-like behaviors in the nucleus accumbens (NAc), a key brain reward region. We show that stress stably induces SIRT1 expression in this brain region and that altering

  14. Changes in Appetitive Associative Strength Modulates Nucleus Accumbens, But Not Orbitofrontal Cortex Neuronal Ensemble Excitability.

    PubMed

    Ziminski, Joseph J; Hessler, Sabine; Margetts-Smith, Gabriella; Sieburg, Meike C; Crombag, Hans S; Koya, Eisuke

    2017-03-22

    Cues that predict the availability of food rewards influence motivational states and elicit food-seeking behaviors. If a cue no longer predicts food availability, then animals may adapt accordingly by inhibiting food-seeking responses. Sparsely activated sets of neurons, coined "neuronal ensembles," have been shown to encode the strength of reward-cue associations. Although alterations in intrinsic excitability have been shown to underlie many learning and memory processes, little is known about these properties specifically on cue-activated neuronal ensembles. We examined the activation patterns of cue-activated orbitofrontal cortex (OFC) and nucleus accumbens (NAc) shell ensembles using wild-type and Fos-GFP mice, which express green fluorescent protein (GFP) in activated neurons, after appetitive conditioning with sucrose and extinction learning. We also investigated the neuronal excitability of recently activated, GFP+ neurons in these brain areas using whole-cell electrophysiology in brain slices. Exposure to a sucrose cue elicited activation of neurons in both the NAc shell and OFC. In the NAc shell, but not the OFC, these activated GFP+ neurons were more excitable than surrounding GFP- neurons. After extinction, the number of neurons activated in both areas was reduced and activated ensembles in neither area exhibited altered excitability. These data suggest that learning-induced alterations in the intrinsic excitability of neuronal ensembles is regulated dynamically across different brain areas. Furthermore, we show that changes in associative strength modulate the excitability profile of activated ensembles in the NAc shell.SIGNIFICANCE STATEMENT Sparsely distributed sets of neurons called "neuronal ensembles" encode learned associations about food and cues predictive of its availability. Widespread changes in neuronal excitability have been observed in limbic brain areas after associative learning, but little is known about the excitability changes that

  15. Idiopathic spinal cord herniation with duplicated dura mater and dorsal subarachnoid septum. Report of a case and review of the literature

    PubMed Central

    Yamamoto, Norio; Higashino, Kousaku; Sairyo, Koichi

    2014-01-01

    Background Idiopathic spinal cord herniation (ISCH) is a rare condition and its pathogenesis remains unclear. The purpose of this case report is to present an ISCH case with dorsal subarachnoid septum suggesting the pathogenesis of ISCH being adhesions from preexisting inflammation. Methods Single case report. Results A 60-year-old woman presented with Brown-Séquard syndrome below the level of T6. Magnetic resonance imaging revealed the thoracic spinal cord was displaced ventrally, and the dorsal subarachnoid space was enlarged and had a septum between the spinal cord and dura mater. Intraoperatively, the dorsal dura mater was seen to be adherent and the subarachnoid septum was identified after durotomy. The inner layer defect of the duplicated dura mater was found in the ventral dura mater, through which the spinal cord had herniated. After releasing the septum, the adhesions around the dura mater, and the hiatus, the spinal cord was reduced. Conclusions The present case indicates that adhesions around the dura mater can be the pathogenesis of ISCH. PMID:25694934

  16. Structure of the posthepatic septum and its influence on visceral topology in the tegu lizard, Tupinambis merianae (Teiidae: Reptilia).

    PubMed

    Klein, Wilfried; Abe, Augusto S; Andrade, Denis V; Perry, Steven F

    2003-11-01

    The posthepatic septum (PHS) divides the body cavity of Tupinambis merianae into two parts: the cranial one containing the lungs and liver and the caudal one containing the remaining viscera. The PHS is composed of layers of collagenous fibers and bundles of smooth muscle, neither of which show systematic orientation, as well as isolated blood vessels, lymphatic vessels, and nerves. Striated muscle of the abdominal wall does not invade the PHS. The contractions of the smooth muscles may stabilize the pleurohepatic cavity under conditions of elevated aerobic needs rather than supporting breathing on a breath-by-breath basis. Surgical removal of the PHS changes the anatomical arrangement of the viscera significantly, with stomach and intestine invading the former pleurohepatic cavity and reducing the space for the lungs. Thus, the PHS is essential to maintain the visceral topography in Tupinambis.

  17. A case report of aphallia with urorectal septum malformation sequence in a newborn: a very rarely seen condition

    PubMed Central

    Sharma, Deepak; Singh, Ravinder; Shastri, Sweta

    2015-01-01

    Aphallia (absence of penis) is an extremely rare abnormality which has rarely been described in medical literature and can be part of the urorectal septum malformation sequence (URSMS). URSMS has hardly been reported in medical literature and includes the absence of perineal and anal openings in association with ambiguous genitalia and urogenital, colonic, and lumbosacral anomalies. This case report tells the importance of detailed examination of infants that are diagnosed with aphallia. We report a case of a newborn who was diagnosed as aphallia with the URSMS syndrome after birth. The neonate had an endocardial cushion defect (atrial septal defect and ventricular septal defect) and bilateral agenesis of the kidney. The neonate succumbed to death secondary to hypoplastic lung leading to respiratory failure. PMID:26673776

  18. OTX2 Transcription Factor Controls Regional Patterning within the Medial Ganglionic Eminence and Regional Identity of the Septum.

    PubMed

    Hoch, Renée V; Lindtner, Susan; Price, James D; Rubenstein, John L R

    2015-07-21

    The Otx2 homeodomain transcription factor is essential for gastrulation and early neural development. We generated Otx2 conditional knockout (cKO) mice to investigate its roles in telencephalon development after neurulation (approximately embryonic day 9.0). We conducted transcriptional profiling and in situ hybridization to identify genes de-regulated in Otx2 cKO ventral forebrain. In parallel, we used chromatin immunoprecipitation sequencing to identify enhancer elements, the OTX2 binding motif, and de-regulated genes that are likely direct targets of OTX2 transcriptional regulation. We found that Otx2 was essential in septum specification, regulation of Fgf signaling in the rostral telencephalon, and medial ganglionic eminence (MGE) patterning, neurogenesis, and oligodendrogenesis. Within the MGE, Otx2 was required for ventral, but not dorsal, identity, thus controlling the production of specific MGE derivatives.

  19. Onset dominance in lateralization.

    PubMed

    Freyman, R L; Zurek, P M; Balakrishnan, U; Chiang, Y C

    1997-03-01

    Saberi and Perrott [Acustica 81, 272-275 (1995)] found that the in-head lateralization of a relatively long-duration pulse train could be controlled by the interaural delay of the single pulse pair that occurs at onset. The present study examined this further, using an acoustic pointer measure of lateralization, with stimulus manipulations designed to determine conditions under which lateralization was consistent with the interaural onset delay. The present stimuli were wideband pulse trains, noise-burst trains, and inharmonic complexes, 250 ms in duration, chosen for the ease with which interaural delays and correlations of select temporal segments of the stimulus could be manipulated. The stimulus factors studied were the periodicity of the ongoing part of the signal as well as the multiplicity and ambiguity of interaural delays. The results, in general, showed that the interaural onset delay controlled lateralization when the steady state binaural cues were relatively weak, either because the spectral components were only sparsely distributed across frequency or because the interaural time delays were ambiguous. Onset dominance can be disrupted by sudden stimulus changes within the train, and several examples of such changes are described. Individual subjects showed strong left-right asymmetries in onset effectiveness. The results have implications for understanding how onset and ongoing interaural delay cues contribute to the location estimates formed by the binaural auditory system.

  20. Mycobacterium tuberculosis proteins involved in mycolic acid synthesis and transport localize dynamically to the old growing pole and septum.

    PubMed

    Carel, Clément; Nukdee, Kanjana; Cantaloube, Sylvain; Bonne, Mélanie; Diagne, Cheikh T; Laval, Françoise; Daffé, Mamadou; Zerbib, Didier

    2014-01-01

    Understanding the mechanism that controls space-time coordination of elongation and division of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is critical for fighting the tubercle bacillus. Most of the numerous enzymes involved in the synthesis of Mycolic acid - Arabinogalactan-Peptidoglycan complex (MAPc) in the cell wall are essential in vivo. Using a dynamic approach, we localized Mtb enzymes belonging to the fatty acid synthase-II (FAS-II) complexes and involved in mycolic acid (MA) biosynthesis in a mycobacterial model of Mtb: M. smegmatis. Results also showed that the MA transporter MmpL3 was present in the mycobacterial envelope and was specifically and dynamically accumulated at the poles and septa during bacterial growth. This localization was due to its C-terminal domain. Moreover, the FAS-II enzymes were co-localized at the poles and septum with Wag31, the protein responsible for the polar localization of mycobacterial peptidoglycan biosynthesis. The dynamic localization of FAS-II and of the MA transporter with Wag31, at the old-growing poles and at the septum suggests that the main components of the mycomembrane may potentially be synthesized at these precise foci. This finding highlights a major difference between mycobacteria and other rod-shaped bacteria studied to date. Based on the already known polar activities of envelope biosynthesis in mycobacteria, we propose the existence of complex polar machinery devoted to the biogenesis of the entire envelope. As a result, the mycobacterial pole would represent the Achilles' heel of the bacillus at all its growing stages.

  1. Delta 9-tetrahydrocannabinol-induced catalepsy-like immobilization is mediated by decreased 5-HT neurotransmission in the nucleus accumbens due to the action of glutamate-containing neurons.

    PubMed

    Sano, K; Mishima, K; Koushi, E; Orito, K; Egashira, N; Irie, K; Takasaki, K; Katsurabayashi, S; Iwasaki, K; Uchida, N; Egawa, T; Kitamura, Y; Nishimura, R; Fujiwara, M

    2008-01-24

    Delta(9)-tetrahydrocannabinol (THC) has been reported to induce catalepsy-like immobilization, but the mechanism underlying this effect remains unclear. In the present study, in order to fully understand the neural circuits involved, we determined the brain sites involved in the immobilization effect in rats. THC dose-dependently induced catalepsy-like immobilization. THC-induced catalepsy-like immobilization is mechanistically different from that induced by haloperidol (HPD), because unlike HPD-induced catalepsy, animals with THC-induced catalepsy became normal again following sound and air-puff stimuli. THC-induced catalepsy was reversed by SR141716, a selective cannabinoid CB(1) receptor antagonist. Moreover, THC-induced catalepsy was abolished by lesions in the nucleus accumbens (NAc) and central amygdala (ACE) regions. On the other hand, HPD-induced catalepsy was suppressed by lesions in the caudate putamen (CP), substantia nigra (SN), globus pallidus (GP), ACE and lateral hypothalamus (LH) regions. Bilateral microinjection of THC into the NAc region induced catalepsy-like immobilization. This THC-induced catalepsy was inhibited by serotonergic drugs such as 5-hydroxy-L-tryptophan (5-HTP), a 5-HT precursor, and 5-methoxy-N,N-dimethyltryptamine (5-MeODMT), a 5-HT receptor agonist, as well as by anti-glutamatergic drugs such as MK-801 and amantadine, an N-methyl-d-aspartate (NMDA) receptor antagonist. THC significantly decreased 5-HT and glutamate release in the NAc, as shown by in vivo microdialysis. SR141716 reversed and MK-801 inhibited this decrease in 5-HT and glutamate release. These findings suggest that the THC-induced catalepsy is mechanistically different from HPD-induced catalepsy and that the catalepsy-like immobilization induced by THC is mediated by decreased 5-HT neurotransmission in the nucleus accumbens due to the action of glutamate-containing neurons.

  2. α4-Containing GABAA Receptors in the Nucleus Accumbens Mediate Moderate Intake of Alcohol

    PubMed Central

    Rewal, Mridula; Jurd, Rachel; Gill, T. Michael; He, Dao-Yao; Ron, Dorit; Janak, Patricia H.

    2009-01-01

    Alcohol has subjective and behavioral effects at the pharmacological levels typically reached during the consumption of one or two alcoholic drinks. Here we provide evidence that an α4-subunit-containing gamma-amino-butyric acid A (GABAA) receptor contributes to the consumption of low-to-moderate levels of alcohol. Using viral-mediated RNA-interference (RNAi), we found that reduced expression of the α4 subunit in the nucleus accumbens (NAc) shell of rats decreased their free consumption of and preference for alcohol. The time course for the reduced alcohol intake paralleled the time course of α4 mRNA reductions achieved after viral-mediated RNAi for α4. Further, the reduction in drinking was region- and alcohol-specific: there was no effect of reductions in α4 expression in the NAc core on alcohol intake, and reductions in α4 expression in the NAc shell did not alter sucrose or water intake. These results indicate that the GABAAR α4 subunit in the NAc shell mediates alcohol intake. PMID:19144854

  3. Increased sensitivity to cocaine by cholinergic cell ablation in nucleus accumbens

    PubMed Central

    Hikida, Takatoshi; Kaneko, Satoshi; Isobe, Tomohiro; Kitabatake, Yasuji; Watanabe, Dai; Pastan, Ira; Nakanishi, Shigetada

    2001-01-01

    Chronic exposure to cocaine causes long-lasting behavioral changes associated with cocaine reinforcement and addiction. An important neural substrate for cocaine addiction is the nucleus accumbens (NAc), which receives dopaminergic input from the ventral tegmental area. Although the neural circuit of the NAc is controlled by several other neurotransmitters, their involvement in cocaine addiction remains elusive. In this investigation, we ablated cholinergic interneurons from the adult NAc with immunotoxin-mediated cell targeting and examined the role of acetylcholine transmitter in adaptive behavioral changes associated with cocaine reinforcement and addiction. Acute exposure to cocaine induced abnormal rotation in unilaterally cholinergic cell-eliminated mice. This abnormal turning was enhanced by repeated exposure of cocaine. In bilaterally cholinergic cell-eliminated mice, chronic cocaine administration induced a prominent and progressive increase in locomotor activity. Moreover, these mice showed robust conditioned place preference with a lower dose of cocaine, compared with wild-type littermates. This investigation demonstrates that acetylcholine in the NAc plays a key role in both acute and chronic actions of cocaine. PMID:11606786

  4. Individual Variations in Nucleus Accumbens Responses Associated with Major Depressive Disorder Symptoms

    PubMed Central

    Misaki, Masaya; Suzuki, Hideo; Savitz, Jonathan; Drevets, Wayne C.; Bodurka, Jerzy

    2016-01-01

    Abnormal reward-related responses in the nucleus accumbens (NAcc) have been reported for major depressive disorder (MDD) patients. However, variability exists in the reported results, which could be due to heterogeneity in neuropathology of depression. To parse the heterogeneity of MDD we investigated variation of NAcc responses to gain and loss anticipations using fMRI. We found NAcc responses to monetary gain and loss were significantly variable across subjects in both MDD and healthy control (HC) groups. The variations were seen as a hyperactive response subtype that showed elevated activation to the anticipation of both gain and loss, an intermediate response with greater activation to gain than loss, and a suppressed-activity with reduced activation to both gain and loss compared to a non-monetary condition. While these response variability were seen in both MDD and HC subjects, specific symptoms were significantly associated with the right NAcc variation in MDD. Both the hyper- and suppressed-activity subtypes of MDD patients had severe suicidal ideation and anhedonia symptoms. The intermediate subjects had less severity in these symptoms. These results suggest that differing propensities in reward responsiveness in the NAcc may affect the development of specific symptoms in MDD. PMID:26880358

  5. The role of nucleus accumbens dopamine in outcome encoding in instrumental and Pavlovian conditioning.

    PubMed

    Lex, Bjoern; Hauber, Wolfgang

    2010-02-01

    Considerable evidence suggests that dopamine in the core subregion of the nucleus accumbens is not only involved in Pavlovian conditioning but also supports instrumental performance. However, it is largely unknown whether NAc dopamine is required for outcome encoding which plays an important role both in Pavlovian stimulus-outcome learning and instrumental action-outcome learning. Therefore, we tested rats with 6-hydroxydopamine (6-OHDA) induced dopamine depletion of the NAc core for their sensitivity to outcome devaluation in a Pavlovian and an instrumental task. Results indicate that 6-OHDA-lesioned animals were sensitive to outcome devaluation in an instrumental task. This finding provides support to the notion that NAc core dopamine may not be crucial in encoding action-outcome associations. However, during instrumental conditioning lever pressing rates in 6-OHDA-lesioned animals were markedly lower which could reflect an impaired behavioral activation. By contrast, after outcome-specific devaluation in a Pavlovian task, performance in 6-OHDA-lesioned animals was impaired, i.e. their magazine-directed responding was non-selectively reduced. One possibility to explain non-selective responding is that NAc core DA depletion impaired the ability of conditioned stimuli to activate the memory of the current value of the reinforcer.

  6. Dopamine release in the nucleus accumbens is altered following traumatic brain injury.

    PubMed

    Chen, Yuan-Hao; Huang, Eagle Yi-Kung; Kuo, Tung-Tai; Hoffer, Barry J; Miller, Jonathan; Chou, Yu-Ching; Chiang, Yung-Hsiao

    2017-04-21

    Mild-to-severe traumatic brain injury (TBI) is frequently associated with prolonged dysfunction of reward circuitry, including motivation and salience, which suggests alterations of dopamine (DA) processing within the core and shell of the nucleus accumbens (NAC). Using fast-scan cyclic voltammetry in a rodent model of traumatic brain injury, we found that stimulus-evoked DA release is distinct in the core and shell of the NAC, with the shell being less responsive to tonic stimulation and more sensitive to the number of pulses when phasic stimulation is applied. Exposure to TBI was associated with major changes in both release and reuptake of DA in both the core and shell of NAC, with greater changes seen in the core. These alterations evolved over time, becoming most severe 1-2weeks after injury with subsequent recovery, and the extent and progression of these abnormalities was correlated with severity of injury. Taken together, these data support behavior and anatomical studies suggesting the NAC core and striatum may subserve parallel functions, whereas the shell is distinct. These data offer a unique window on how different neurological systems respond to TBI and may help explain affective and cognitive changes that are seen.

  7. Sexual behavior in male rats after radiofrequency or dopamine-depleting lesions in nucleus accumbens.

    PubMed

    Liu, Y C; Sachs, B D; Salamone, J D

    1998-06-01

    Considerable neurochemical evidence links dopamine (DA) in nucleus accumbens (NAcc) to male sexual behavior. The present experiments were conducted to extend this information to the male's sexual response to remote stimuli from estrous female (noncontact erection; NCE). Male rats were tested for copulation and NCE after either 6-hydroxydopamine (6-OHDA) or radiofrequency (RF) lesions in NAcc). Males with an average 78% depletion of DA in NAcc had a lower incidence of NCE, longer latency to display NCE, and fewer erections. DA-depleted males also had less locomotor activity after injections of d-amphetamine, and reductions in apomorphine-induced yawning, but a normal incidence of penile erection. Males with RF lesions of the NAcc had longer NCE latencies. All males copulated to ejaculation after either 6-OHDA or RF lesions with little or no deficit, although the 6-OHDA-treated males had longer intromission latencies. The NCE deficit supports the hypothesized role of NAcc DA in arousal processes in responding to remote cues from estrous females. The minimal effect of lesions on copulation suggests that the presence of additional proximal stimulation during copulation may overcome the deficits induced by DA depletions or lesions in NAcc.

  8. Integrative Analysis of Sex-Specific microRNA Networks Following Stress in Mouse Nucleus Accumbens

    PubMed Central

    Pfau, Madeline L.; Purushothaman, Immanuel; Feng, Jian; Golden, Sam A.; Aleyasin, Hossein; Lorsch, Zachary S.; Cates, Hannah M.; Flanigan, Meghan E.; Menard, Caroline; Heshmati, Mitra; Wang, Zichen; Ma'ayan, Avi; Shen, Li; Hodes, Georgia E.; Russo, Scott J.

    2016-01-01

    Adult women are twice as likely as men to suffer from affective and anxiety disorders, although the mechanisms underlying heightened female stress susceptibility are incompletely understood. Recent findings in mouse Nucleus Accumbens (NAc) suggest a role for DNA methylation-driven sex differences in genome-wide transcriptional profiles. However, the role of another epigenetic process—microRNA (miR) regulation—has yet to be explored. We exposed male and female mice to Subchronic Variable Stress (SCVS), a stress paradigm that produces depression-like behavior in female, but not male, mice, and performed next generation mRNA and miR sequencing on NAc tissue. We applied a combination of differential expression, miR-mRNA network and functional enrichment analyses to characterize the transcriptional and post-transcriptional landscape of sex differences in NAc stress response. We find that male and female mice exhibit largely non-overlapping miR and mRNA profiles following SCVS. The two sexes also show enrichment of different molecular pathways and functions. Collectively, our results suggest that males and females mount fundamentally different transcriptional and post-transcriptional responses to SCVS and engage sex-specific molecular processes following stress. These findings have implications for the pathophysiology and treatment of stress-related disorders in women. PMID:28066174

  9. Nucleus Accumbens Core and Shell are Necessary for Reinforcer Devaluation Effects on Pavlovian Conditioned Responding.

    PubMed

    Singh, Teghpal; McDannald, Michael A; Haney, Richard Z; Cerri, Domenic H; Schoenbaum, Geoffrey

    2010-01-01

    The nucleus accumbens (NA) has been hypothesized to be part of a circuit in which cue-evoked information about expected outcomes is mobilized to guide behavior. Here we tested this hypothesis using a Pavlovian reinforcer devaluation task, previously applied to assess outcome-guided behavior after damage to regions such as the orbitofrontal cortex and amygdala that send projections to NA. Rats with sham lesions or neurotoxic lesions of either the core or shell subdivision of NA were trained to associate a 10-s CS+ with delivery of three food pellets. After training, half of the rats in each lesion group received food paired with illness induced by LiCl injections; the remaining rats received food and illness unpaired. Subsequently, responding to the CS+ was assessed in an extinction probe test. Both sham and lesioned rats conditioned to the CS+ and formed a conditioned taste aversion. However only sham rats reduced their conditioned responding as a result of reinforcer devaluation; devalued rats with lesions of either core or shell showed levels of responding that were similar to lesioned, non-devalued rats. This impairment was not due to the loss of motivational salience conferred to the CS+ in lesioned rats as both groups responded similarly for the cue in conditioned reinforcement testing. These data suggest that NA core and shell are part of a circuit necessary for the use of cue-evoked information about expected outcomes to guide behavior.

  10. Ethanol inhibits excitatory neurotransmission in the nucleus accumbens of adolescent mice through GABAA and GABAB receptors.

    PubMed

    Mishra, Devesh; Chergui, Karima

    2013-07-01

    Age-related differences in various acute physiological and behavioral effects of alcohol have been demonstrated in humans and in other species. Adolescents are more sensitive to positive reinforcing properties of alcohol than adults, but the cellular mechanisms that underlie such a difference are not clearly established. We, therefore, assessed age differences in the ability of ethanol to modulate glutamatergic synaptic transmission in the mouse nucleus accumbens (NAc), a brain region importantly involved in reward mechanisms. We measured field excitatory postsynaptic potentials/population spikes (fEPSP/PS) in NAc slices from adolescent (22-30 days old) and adult (5-8 months old) male mice. We found that 50mM ethanol applied in the perfusion solution inhibits glutamatergic neurotransmission in the NAc of adolescent, but not adult, mice. This effect is blocked by the gamma-aminobutyric acid (GABA)A receptor antagonist bicuculline and by the GABAB receptor antagonist CGP 55845. Furthermore, bicuculline applied alone produces a stronger increase in the fEPSP/PS amplitude in adult mice than in adolescent mice. Activation of GABAA receptors with muscimol produces a stronger and longer lasting depression of neurotransmission in adolescent mice as compared with adult mice. Activation of GABAB receptors with SKF 97541 also depresses neurotransmission more strongly in adolescent than in adult mice. These results demonstrate that an increased GABA receptor function associated with a reduced inhibitory tone underlies the depressant action of ethanol on glutamatergic neurotransmission in the NAc of adolescent mice.

  11. Increasing dopamine D2 receptor expression in the adult nucleus accumbens enhances motivation

    PubMed Central

    Trifilieff, Pierre; Feng, Bo; Urizar, Eneko; Winiger, Vanessa; Ward, Ryan D.; Taylor, Kathleen M.; Martinez, Diana M.; Moore, Holly; Balsam, Peter D.; Simpson, Eleanor H.; Javitch, Jonathan A.

    2014-01-01

    A decrease in dopamine D2 receptor (D2R) binding in the striatum is one of the most common findings in disorders that involve a dysregulation of motivation, including obesity, addiction, and attention deficit hyperactivity disorder. Since disruption of D2R signaling in the ventral striatum – including the Nucleus Accumbens (NAc) - impairs motivation, we sought to determine whether potentiating postsynaptic D2R-dependent signaling in the NAc would improve motivation. In this study, we used a viral vector strategy to overexpress postsynaptic D2Rs in either the NAc or the dorsal striatum. We investigated the effects of D2R overexpression on instrumental learning, willingness to work, use of reward value representations and modulation of motivation by reward associated cues. Overexpression of postsynaptic D2R in the NAc selectively increased motivation without altering consummatory behavior, the representation of the value of the reinforcer, or the capacity to use reward associated cues in flexible ways. In contrast, D2R overexpression in the dorsal striatum did not alter performance on any of the tasks. Thus, consistent with numerous studies showing that reduced D2R signaling impairs motivated behavior, our data show that post-synaptic D2R overexpression in the NAc specifically increases an animal’s willingness to expend effort to obtain a goal. Taken together, these results provide insight into the potential impact of future therapeutic strategies that enhance D2R signaling in the NAc. PMID:23711983

  12. Nucleus Accumbens Mediates Relative Motivation for Rewards in the Absence of Choice

    PubMed Central

    Clithero, John A.; Reeck, Crystal; Carter, R. McKell; Smith, David V.; Huettel, Scott A.

    2011-01-01

    To dissociate a choice from its antecedent neural states, motivation associated with the expected outcome must be captured in the absence of choice. Yet, the neural mechanisms that mediate behavioral idiosyncrasies in motivation, particularly with regard to complex economic preferences, are rarely examined in situations without overt decisions. We employed functional magnetic resonance imaging in a large sample of participants while they anticipated earning rewards from two different modalities: monetary and candy rewards. An index for relative motivation toward different reward types was constructed using reaction times to the target for earning rewards. Activation in the nucleus accumbens (NAcc) and anterior insula (aINS) predicted individual variation in relative motivation between our reward modalities. NAcc activation, however, mediated the effects of aINS, indicating the NAcc is the likely source of this relative weighting. These results demonstrate that neural idiosyncrasies in reward efficacy exist even in the absence of explicit choices, and extend the role of NAcc as a critical brain region for such choice-free motivation. PMID:21941472

  13. The involvement of norepinephrine in pain modulation in the nucleus accumbens of morphine-dependent rats.

    PubMed

    Zhang, Ying; Qu, Hui; Zhou, You; Wang, Yi; Zhang, Duo; Yang, Xu; Yang, ChunXiao; Xu, ManYing

    2015-01-12

    Opioids are effective analgesics used clinically for both acute and chronic pain management. However, repeated opioid treatment can induce serious side effects such as nausea, vomiting, drowsiness, respiratory depression, euphoria, dependence, hyperalgesia, and tolerance. The mechanism of noxious information transmission in the central nervous system following dependence is still not clear. Norepinephrine (NE), an important neurotransmitter, participates both in the process of opioid dependence and also pain modulation in the central nervous system. In this study, we examined the role of NE on the evoked discharges of pain-excitation neurons (PENs) and pain-inhibition neurons (PINs) in the nucleus accumbens (NAc) of rats, following the development of morphine dependence. Our results revealed that NE inhibited the evoked discharges of PENs and attenuated the inhibition of PINs, while phentolamine enhanced the evoked discharges of PENs and facilitated the inhibition of PINs. These results indicate that the inhibitory action of NE on pain modulation acts via alpha adrenoceptors in the NAc of morphine-dependent rats.

  14. beta-Alanine elevates dopamine levels in the rat nucleus accumbens: antagonism by strychnine.

    PubMed

    Ericson, Mia; Clarke, Rhona B C; Chau, PeiPei; Adermark, Louise; Söderpalm, Bo

    2010-04-01

    Glycine receptors (GlyRs) in the nucleus accumbens (nAc) have recently been suggested to be involved in the reinforcing and dopamine-elevating properties of ethanol via a neuronal circuitry involving the VTA. Apart from ethanol, both glycine and taurine have the ability to modulate dopamine output via GlyRs in the same brain region. In the present study, we wanted to explore whether yet another endogenous ligand for the GlyR, beta-alanine, had similar effects. To this end, we monitored dopamine in the nAc by means of in vivo microdialysis and found that local perfusion of beta-alanine increased dopamine output. In line with previous observations investigating ethanol, glycine and taurine, the competitive GlyR antagonist strychnine completely blocked the dopamine elevation. The present results suggest that beta-alanine has the ability to modulate dopamine levels in the nAc via strychnine-sensitive GlyRs, and are consistent with previous studies suggesting the importance of this receptor for modulating dopamine output.

  15. Elevated Excitatory Input to the Nucleus Accumbens in Schizophrenia: A Postmortem Ultrastructural Study

    PubMed Central

    McCollum, Lesley A.; Walker, Courtney K.; Roche, Joy K.; Roberts, Rosalinda C.

    2015-01-01

    The cause of schizophrenia (SZ) is unknown and no single region of the brain can be pinpointed as an area of primary pathology. Rather, SZ results from dysfunction of multiple neurotransmitter systems and miswiring between brain regions. It is necessary to elucidate how communication between regions is disrupted to advance our understanding of SZ pathology. The nucleus accumbens (NAcc) is a prime region of interest, where inputs from numerous brain areas altered in SZ are integrated. Aberrant signaling in the NAcc is hypothesized to cause symptoms of SZ, but it is unknown if these abnormalities are actually present. Electron microscopy was used to study the morphology of synaptic connections in SZ. The NAcc core and shell of 6 SZ subjects and 8 matched controls were compared in this pilot study. SZ subjects had a 19% increase in the density of asymmetric axospinous synapses (characteristic of excitatory inputs) in the core, but not the shell. Both groups had similar densities of symmetric synapses (characteristic of inhibitory inputs). The postsynaptic densities of asymmetric synapses had 22% smaller areas in the core, but not the shell. These results indicate that the core receives increased excitatory input in SZ, potentially leading to dysfunctional dopamine neurotransmission and cortico-striatal-thalamic stimulus processing. The reduced postsynaptic density size of asymmetric synapses suggests impaired signaling at these synapses. These findings enhance our understanding of the role the NAcc might play in SZ and the interaction of glutamatergic and dopaminergic abnormalities in SZ. PMID:25817135

  16. CHRONIC INTERMITTENT ETHANOL EXPOSURE REDUCES PRESYNAPTIC DOPAMINE NEUROTRANSMISSION IN THE MOUSE NUCLEUS ACCUMBENS

    PubMed Central

    Karkhanis, Anushree N.; Rose, Jamie H.; Huggins, Kimberly N.; Konstantopoulos, Joanne K.; Jones, Sara R.

    2015-01-01

    BACKGROUND Increasing evidence suggests that chronic ethanol exposure decreases dopamine (DA) neurotransmission in the nucleus accumbens (NAc), contributing to a hypodopaminergic state during withdrawal. However, few studies have investigated adaptations in presynaptic DA terminals after chronic intermittent ethanol (CIE) exposure. In monkeys and rats, chronic ethanol exposure paradigms have been shown to increase DA uptake and D2 autoreceptor sensitivity. METHODS The current study examined the effects of ethanol on DA terminals in CIE exposed mice during two time-points after the cessation of CIE exposure. DA release and uptake were measured using fast scan cyclic voltammetry in NAc core slices from C57BL/6J mice, 0 and 72 hours following three weekly cycles (4 days of 16 hrs ethanol vapor/8 hrs room air/day + 3 days withdrawal) of CIE vapor exposure. RESULTS Current results showed that DA release was reduced, uptake rates were increased, and inhibitory D2-type autoreceptor activity was augmented following CIE exposure in mice. CONCLUSIONS Overall, these CIE-induced adaptations in the accumbal DA system reduce DA signaling and therefore reveal several potential mechanisms contributing to a functional hypodopaminergic state during alcohol withdrawal. PMID:25765483

  17. Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving.

    PubMed

    Lee, Brian R; Ma, Yao-Ying; Huang, Yanhua H; Wang, Xiusong; Otaka, Mami; Ishikawa, Masago; Neumann, Peter A; Graziane, Nicholas M; Brown, Travis E; Suska, Anna; Guo, Changyong; Lobo, Mary Kay; Sesack, Susan R; Wolf, Marina E; Nestler, Eric J; Shaham, Yavin; Schlüter, Oliver M; Dong, Yan

    2013-11-01

    In rat models of drug relapse and craving, cue-induced cocaine seeking progressively increases after withdrawal from the drug. This 'incubation of cocaine craving' is partially mediated by time-dependent adaptations at glutamatergic synapses in nucleus accumbens (NAc). However, the circuit-level adaptations mediating this plasticity remain elusive. We studied silent synapses, often regarded as immature synapses that express stable NMDA receptors with AMPA receptors being either absent or labile, in the projection from the basolateral amygdala to the NAc in incubation of cocaine craving. Silent synapses were detected in this projection during early withdrawal from cocaine. As the withdrawal period progressed, these silent synapses became unsilenced, a process that involved synaptic insertion of calcium-permeable AMPA receptors (CP-AMPARs). In vivo optogenetic stimulation-induced downregulation of CP-AMPARs at amygdala-to-NAc synapses, which re-silenced some of the previously silent synapses after prolonged withdrawal, decreased incubation of cocaine craving. Our findings indicate that silent synapse-based reorganization of the amygdala-to-NAc projection is critical for persistent cocaine craving and relapse after withdrawal.

  18. Delay of gratification in childhood linked to cortical interactions with the nucleus accumbens.

    PubMed

    Luerssen, Anna; Gyurak, Anett; Ayduk, Ozlem; Wendelken, Carter; Bunge, Silvia A

    2015-12-01

    Delay of gratification (DG) is the ability to forego immediate temptations in the service of obtaining larger, delayed rewards. An extensive body of behavioral research has revealed that DG ability in childhood is associated with a host of important outcomes throughout development, and that attentional focus away from temptations underlies this ability. In this study, we conducted a functional magnetic resonance imaging study to identify the neural underpinnings of individual differences in DG among children. We observed a relationship between behavior during the classic DG task, a well-studied and ecologically valid measure, and functional connectivity during a modified version of this task in the scanner. Specifically, greater attentional focus away from temptations was associated with stronger functional coupling between the nucleus accumbens, a brain region that supports approach behavior, and several regions within prefrontal and parietal cortex that support self-control. These results shed light on the network interactions that contribute to DG and that account for individual differences in this capacity.

  19. Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis.

    PubMed

    Carlezon, William A; Thomas, Mark J

    2009-01-01

    The nucleus accumbens (NAc) is a critical element of the mesocorticolimbic system, a brain circuit implicated in reward and motivation. This basal forebrain structure receives dopamine (DA) input from the ventral tegmental area (VTA) and glutamate (GLU) input from regions including the prefrontal cortex (PFC), amygdala (AMG), and hippocampus (HIP). As such, it integrates inputs from limbic and cortical regions, linking motivation with action. The NAc has a well-established role in mediating the rewarding effects of drugs of abuse and natural rewards such as food and sexual behavior. However, accumulating pharmacological, molecular, and electrophysiological evidence has raised the possibility that it also plays an important (and sometimes underappreciated) role in mediating aversive states. Here we review evidence that rewarding and aversive states are encoded in the activity of NAc medium spiny GABAergic neurons, which account for the vast majority of the neurons in this region. While admittedly simple, this working hypothesis is testable using combinations of available and emerging technologies, including electrophysiology, genetic engineering, and functional brain imaging. A deeper understanding of the basic neurobiology of mood states will facilitate the development of well-tolerated medications that treat and prevent addiction and other conditions (e.g., mood disorders) associated with dysregulation of brain motivation systems.

  20. Exposure to Cocaine Regulates Inhibitory Synaptic Transmission in the Nucleus Accumbens

    PubMed Central

    Otaka, Mami; Ishikawa, Masago; Lee, Brian R.; Liu, Lei; Neumann, Peter A.; Cui, Ranji; Huang, Yanhua; Schlüter, Oliver M.; Dong, Yan

    2013-01-01

    Medium spiny neurons (MSNs) within the nucleus accumbens shell (NAc) function to gate and prioritize emotional/motivational arousals for behavioral output. The neuronal output NAc MSNs is mainly determined by the integration of membrane excitability and excitatory/inhibitory synaptic inputs. Whereas cocaine-induced alterations at excitatory synapses and membrane excitability have been extensively examined, the overall functional output of NAc MSNs following cocaine exposure still poorly defined because little is known about whether inhibitory synaptic input to these neurons is affected by cocaine. Here, our results demonstrate multidimensional alterations at inhibitory synapses in NAc neurons following cocaine self-administration in rats. Specifically, the amplitude of miniature (m) inhibitory postsynaptic currents (IPSCs) was decreased after 21-d withdrawal from 5-d cocaine self-administration. Upon re-exposure to cocaine after 21-day withdrawal, whereas the amplitude of mIPSCs remained down-regulated, the frequency became significantly higher. Furthermore, the reversal potential of IPSCs, which was not significantly altered during withdrawal, became more hyperpolarized upon cocaine re-exposure. Moreover, the relative weight of excitatory and inhibitory inputs to NAc MSNs was significantly decreased after 1-d cocaine withdrawal, increased after 21-d withdrawal, and returned to the basal level upon cocaine re-exposure after 21-d withdrawal. These results, taken together with previous results showing cocaine-induced adaptations at excitatory synapses and intrinsic membrane excitability of NAc MSNs, may provide a relatively thorough picture of the functional state of NAc MSNs following cocaine exposure. PMID:23595733

  1. Acetylcholine enhancement in the nucleus accumbens prevents addictive behaviors of cocaine and morphine.

    PubMed

    Hikida, Takatoshi; Kitabatake, Yasuji; Pastan, Ira; Nakanishi, Shigetada

    2003-05-13

    Drug addiction poses serious social, medical, and economic problems, but effective treatments for drug addiction are still limited. Cocaine and morphine elevate dopamine levels in the nucleus accumbens (NAc), and the overwhelming actions of dopamine are implicated in reinforcement and addiction of abusive drugs. In our previous studies, we reported the regulatory role of acetylcholine (ACh) in the NAc function by selectively ablating the NAc cholinergic neurons with use of immunotoxin-mediated cell targeting. These studies indicated that ACh and dopamine acted convergently but oppositely on the NAc circuit and that cholinergic cell ablation enhanced long-lasting behavioral changes of cocaine addiction. In this investigation, we showed that immunotoxin-mediated ablation of the NAc cholinergic neurons enhanced not only the sensitivity to morphine in conditioned place preference but also negative reinforcement of morphine withdrawal in conditioned place aversion. Remarkably, acetylcholinesterase (AChE) inhibitors that act on the brain AChE suppressed both cocaine- and morphine-induced conditioned place preference and blocked the induction and persistence of cocaine-evoked hyperlocomotion. Importantly, this inhibition was abolished by ablation of the NAc cholinergic neurons. These results demonstrate that centrally active AChE inhibitors prevent long-lasting behavioral abnormalities associated with cocaine and morphine addictions by potentiating the actions of ACh released from the NAc cholinergic neurons. Centrally active AChE inhibitors could thus be approached as novel and potential therapeutic agents for drug addiction.

  2. Selecting danger signals: dissociable roles of nucleus accumbens shell and core glutamate in predictive fear learning.

    PubMed

    Li, Susan S Y; McNally, Gavan P

    2015-06-01

    Conditioned stimuli (CSs) vary in their reliability as predictors of danger. Animals must therefore select among CSs those that are appropriate to enter into an association with the aversive unconditioned stimulus (US). The actions of prediction error instruct this stimulus selection so that when prediction error is large, attention to the CS is maintained and learning occurs but when prediction is small attention to the CS is withdrawn and learning is prevented. Here we studied the role of glutamate acting at rat nucleus accumbens shell (AcbSh) and core (AcbC) α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in this selection of danger signals. Using associative blocking and unblocking designs in rats, we show that antagonizing AcbSh AMPA receptors via infusions of 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo[f]quinoxaline-2,3-dione (NBQX; 0.5 μg) prevents the unblocking of fear learning, whereas antagonizing AcbC AMPA receptors via infusions of NBQX (0.5 μg) prevents both the blocking and unblocking of fear learning. These results identify dissociable but complementary roles for AcbSh and AcbC glutamate acting at AMPA receptors in selecting danger signals: AcbSh AMPA receptors upregulate attention and learning to CSs that signal surprising USs, whereas AcbC AMPA receptors encode the predicted outcome of each trial.

  3. Lesions of the nucleus accumbens disrupt reinforcement omission effects in rats.

    PubMed

    Judice-Daher, Danielle M; Bueno, José Lino O

    2013-09-01

    The reinforcement omission effects (ROEs) have been attributed to both motivational and attentional consequences of the surprising reinforcement omission. Some studies have been showed amygdala is part of a circuit involved in the ROEs modulation. The view that amygdala lesions interfere with the ROEs is supported by evidence involving amygdala in responses correlated with motivational processes. These processes depend on the operation of separate amygdala areas and their connections with other brain systems. It has been suggested the interaction between the amygdala and the nucleus accumbens (NAC) is important to the modulation of motivational processes. Recent neuroimaging studies in human revealed reward delivery enhances activity of subcortical structures (NAC and amygdala), whereas reward omission reduces the activity in these same structures. The present study aimed to clarify whether the mechanisms related to ROEs depend on NAC. Prior to acquisition training, rats received bilateral excitotoxic lesions of NAC (NAC group) or sham lesions (Sham group). Following postoperative recovery, the rats were trained on a fixed-interval with limited hold signaled schedule of reinforcement. After acquisition of stable performance, the training was changed from 100% to 50% schedule of reinforcement. Both NAC and Sham groups presented the ROEs. However, after nonreinforcement, the response rates of the NAC group were lower than those registered in the Sham group. The performance of the NAC group decreased in the period following nonreinforcement when compared to the period preceding reinforcement omission. These findings suggest the NAC is part of the neural substrate involved in the ROEs modulation.

  4. Accumbens shell AMPA receptors mediate expression of extinguished reward seeking through interactions with basolateral amygdala.

    PubMed

    Millan, E Zayra; McNally, Gavan P

    2011-07-01

    Extinction is the reduction in drug seeking when the contingency between drug seeking behavior and the delivery of drug reward is broken. Here, we investigated a role for the nucleus accumbens shell (AcbSh). Rats were trained to respond for 4% (v/v) alcoholic beer in one context (Context A) followed by extinction in a second context (Context B). Rats were subsequently tested in the training context, A (ABA), or the extinction context, B (ABB). Pre-test injections of the glutamate AMPA receptor antagonist, NBQX (1 µg) into AcbSh had no effect on renewal of alcoholic beer seeking when rats were returned to the training context (ABA). However, NBQX increased responding when rats were tested in the extinction context (ABB). In a second experiment, rats received training, extinction, and test in the same context. Pre-test injections of NBQX (0, 0.3, and 1 µg) into the AcbSh dose-dependently attenuated expression of extinction. We also found that NBQX in the AcbSh had no effect on initial acquisition of extinction or the motivation to respond for reward as measured by break point on a progressive ratio schedule. Finally, we show that pharmacological disconnection of a basolateral amygdala (BLA) → AcbSh pathway via NBQX in AcbSh combined with reversible inactivation of the contralateral BLA attenuates expression of extinction. Together, these results suggest that AcbSh AMPA receptors mediate expression of extinguished reward seeking through glutamatergic inputs from the BLA.

  5. Roles of nucleus accumbens and basolateral amygdala in autoshaped lever pressing.

    PubMed

    Chang, Stephen E; Wheeler, Daniel S; Holland, Peter C

    2012-05-01

    Initially-neutral cues paired with rewards are thought to acquire motivational significance, as if the incentive motivational value of the reward is transferred to the cue. Such cues may serve as secondary reinforcers to establish new learning, modulate the performance of instrumental action (Pavlovian-instrumental transfer, PIT), and be the targets of approach and other cue-directed behaviors. Here we examined the effects of lesions of the ventral striatal nucleus accumbens (ACb) and the basolateral amygdala (BLA) on the acquisition of discriminative autoshaped lever-pressing in rats. Insertion of one lever into the experimental chamber was reinforced by sucrose delivery, but insertion of another lever was not reinforced. Although sucrose was delivered independently of the rats' behavior, sham-lesioned rats rapidly came to press the reinforced but not the nonreinforced lever. Bilateral ACb lesions impaired the initial acquisition of sign-tracking but not its terminal levels. In contrast, BLA lesions produced substantial deficits in terminal levels of sign-tracking. Furthermore, whereas ACb lesions primarily affected the probability of lever press responses, BLA lesions mostly affected the rate of responding once it occurred. Finally, disconnection lesions that disrupted communication between ACb and BLA produced both sets of deficits. We suggest that ACb is important for initial acquisition of consummatory-like responses that incorporate hedonic aspects of the reward, while BLA serves to enhance such incentive salience once it is acquired.

  6. Nicotinic activation of mesolimbic neurons assessed by rubidium efflux in rat accumbens and ventral tegmentum.

    PubMed

    Rowell, Peter P; Volk, Kelly A

    2004-01-01

    Dopaminergic mesolimbic neurons, with cell bodies in the ventral tegmental area (VTA) projecting to the nucleus accumbens (NAc), have been shown to be involved in the development of drug dependence. The application of nicotine to either the VTA or NAc produces an increase in dopamine release; however, the positive reinforcement produced by the systemic injection of nicotine is primarily due to stimulation of nicotinic acetylcholine receptors (nAChRs) in the VTA. Because the brain levels of nicotine would likely be the same in both brain areas, the nAChRs in the NAc may be less sensitive than those in the VTA. This study was undertaken to make a direct comparison of the native nAChRs in intact slices of NAc and VTA by measuring nicotine-stimulated efflux of (86)Rb(+) in a superfusion assay. The potency of nicotine and several other agonists was similar in both brain areas, but nicotine was somewhat more efficacious in the NAc. The effects of treatment duration, calcium and nicotinic antagonists were also determined. The results suggest that the predominant effect of nicotine in the VTA following systemic administration is due to differences in neuronal circuitry or firing patterns rather than inherent differences in the two nAChR populations.

  7. Intrinsic connectivity between the hippocampus, nucleus accumbens, and ventral tegmental area in humans.

    PubMed

    Kahn, I; Shohamy, D

    2013-03-01

    Recent studies suggest that memory formation in the hippocampus is modulated by the motivational significance of events, allowing past experience to adaptively guide behavior. The effects of motivation on memory are thought to depend on interactions between the hippocampus, the ventral tegmental area (VTA), and the nucleus accumbens (NAcc). Indeed, animal studies reveal anatomical pathways for circuit-level interaction between these regions. However, a homologue circuit connectivity in humans remains to be shown. We characterized this circuitry in humans by exploiting spontaneous low-frequency modulations in the fMRI signal (termed resting-state functional connectivity), which are thought to reflect functionally related regions and their organization into functional networks in the brain. We examined connectivity in this network across two datasets (hi-resolution, n = 100; standard resolution, n = 894). Results reveal convergent connectivity between the hippocampus, and both the NAcc and the VTA centered on ventral regions in the body of the hippocampus. Additionally, we found individual differences in the strength of connectivity within this network. Together, these results provide a novel task-independent characterization of circuitry underlying interactions between the hippocampus, NAcc, and VTA and provide a framework with which to understand how connectivity might reflect and constrain the effects of motivation on memory.

  8. Dopamine and opioid systems interact within the nucleus accumbens to maintain monogamous pair bonds

    PubMed Central

    Resendez, Shanna L; Keyes, Piper C; Day, Jeremy J; Hambro, Caely; Austin, Curtis J; Maina, Francis K; Eidson, Lori N; Porter-Stransky, Kirsten A; Nevárez, Natalie; McLean, J William; Kuhnmuench, Morgan A; Murphy, Anne Z; Mathews, Tiffany A; Aragona, Brandon J

    2016-01-01

    Prairie vole breeder pairs form monogamous pair bonds, which are maintained through the expression of selective aggression toward novel conspecifics. Here, we utilize behavioral and anatomical techniques to extend the current understanding of neural mechanisms that mediate pair bond maintenance. For both sexes, we show that pair bonding up-regulates mRNA expression for genes encoding D1-like dopamine (DA) receptors and dynorphin as well as enhances stimulated DA release within the nucleus accumbens (NAc). We next show that D1-like receptor regulation of selective aggression is mediated through downstream activation of kappa-opioid receptors (KORs) and that activation of these receptors mediates social avoidance. Finally, we also identified sex-specific alterations in KOR binding density within the NAc shell of paired males and demonstrate that this alteration contributes to the neuroprotective effect of pair bonding against drug reward. Together, these findings suggest motivational and valence processing systems interact to mediate the maintenance of social bonds. DOI: http://dx.doi.org/10.7554/eLife.15325.001 PMID:27371827

  9. Extinction and reinstatement of phasic dopamine signals in the nucleus accumbens core during Pavlovian conditioning.

    PubMed

    Sunsay, Ceyhun; Rebec, George V

    2014-10-01

    The prediction-error model of dopamine (DA) signaling has largely been confirmed with various appetitive Pavlovian conditioning procedures and has been supported in tests of Pavlovian extinction. Studies have repeatedly shown, however, that extinction does not erase the original memory of conditioning as the prediction-error model presumes, putting the model at odds with contemporary views that treat extinction as an episode of learning rather than unlearning of conditioning. Here, we combined fast-scan cyclic voltammetry (FSCV) with appetitive Pavlovian conditioning to assess DA release directly during extinction and reinstatement. DA was monitored in the nucleus accumbens core, which plays a key role in reward processing. Following at least 4 daily sessions of 16 tone-food pairings, fast-scan cyclic voltammetry was performed while rats received additional tone-food pairings followed by tone alone presentations (i.e., extinction). Acquisition memory was reinstated with noncontingent presentations of reward and then tested with cue presentation. Tone-food pairings produced transient (1- to 3-s) DA release in response to tone. During extinction, the amplitude of the DA response decreased significantly. Following presentation of 2 noncontingent food pellets, subsequent tone presentation reinstated the DA signal. Our results support the prediction-error model for appetitive Pavlovian extinction but not for reinstatement.

  10. Activin A is increased in the nucleus accumbens following a cocaine binge

    PubMed Central

    Wang, Zi-Jun; Martin, Jennifer A.; Gancarz, Amy M.; Adank, Danielle N.; Sim, Fraser J.; Dietz, David M.

    2017-01-01

    Drug addiction is a long-lasting disease characterized by compulsive drug intake mediated in part by neuronal and biological adaptations in key brain areas, such as the nucleus accumbens (NAc). While we previously demonstrated involvement of the activin 2a receptor in drug taking, the role of its ligand, activin A, in cocaine relapse is unknown. Activin A levels in the NAc were assessed via ELISA and immunohistochemistry (in neurons, astrocytes, and microglia) following a cocaine binge paradigm. Cocaine exposure significantly increased the levels of activin A in the NAc of animals that had self-administered cocaine prior to the 14-day withdrawal compared with levels in saline controls. This was accompanied by an increase in the proportion of IBA1+ microglia in the NAc that were immunopositive for activin A. In contrast, the proportions of NeuN+ neurons and GFAP+ astrocytes that were immunopositive for activin A remained unaltered. In conclusion, these data suggest that increased secretion of activin A, particularly from microglia, in the NAc represents a novel potential target for the treatment of cocaine relapse. PMID:28272550

  11. Morphine conditioned place preference depends on glucocorticoid receptors in both hippocampus and nucleus accumbens.

    PubMed

    Dong, Zhifang; Han, Huili; Wang, Meina; Xu, Lin; Hao, Wei; Cao, Jun

    2006-01-01

    Learned association between drugs of abuse and context is essential for the formation of drug conditioned place preference (CPP), which is believed to engage many brain regions including hippocampus and nucleus accumbens (NAc). The underlying mechanisms are not fully understood. Here, we examined whether glucocorticoid receptors (GRs) of hippocampus and NAc influenced the formation of morphine CPP in Sprague Dawley rats. We found that systemic or intrahippocampal infused DMSO vehicle (DMSO 20% in saline) 30 min before daily morphine (10 mg/kg, s.c.) conditioning did not affect the formation of morphine CPP. In contrast, systemic administration (5 mg/kg, s.c.) or intrahippocampal infusion (0, 0.1, 1.0, 10, 20 microg per side) of the GR antagonist RU38486 blocked or impaired the formation of CPP in a dose-dependent manner, respectively. Furthermore, intra-NAc infused RU38486 (10 microg per side) but not DMSO vehicle also prevented the formation of CPP. These results demonstrate that both the GRs of hippocampus and NAc are necessary for the formation of morphine CPP, suggesting a neural network function of the GRs in forming the opiate-associated memory.

  12. Chronic cocaine administration induces opposite changes in dopamine receptors in the striatum and nucleus accumbens

    SciTech Connect

    Goeders, N.E.; Kuhar, M.J.

    1987-01-01

    A variety of clinical and animal data suggest that the repeated administration of cocaine and related psychomotor stimulants may be associated with a behavioral sensitization whereby the same dose of the drug results in increasing behavioral pathology. This investigation was designed to determine the effects of chronic cocaine administration on the binding of (/sup 3/H)sulpiride, a relatively specific ligand for D2 dopaminergic receptors, in the rat brain using in vitro homogenate binding and light microscopic quantitative autoradiographic methodologies. Chronic daily injections of cocaine (10 mg/kg, i.p.) for 15 days resulted in a significant decrease in the maximum concentration of sulpiride binding sites in the striatum and a significant increase in the maximum number of these binding sites in the nucleus accumbens. No significant differences in binding affinity were observed in either brain region. These data suggest that chronic cocaine administration may result in differential effects on D2 receptors in the nigro-striatal and mesolimbic dopaminergic systems.

  13. Activation of Dopamine Receptors in the Nucleus Accumbens Promotes Sucrose-Reinforced Cued Approach Behavior

    PubMed Central

    du Hoffmann, Johann; Nicola, Saleem M.

    2016-01-01

    Dopamine receptor activation in the nucleus accumbens (NAc) promotes vigorous environmentally-cued food-seeking in hungry rats. Rats fed ad libitum, however, respond to fewer food-predictive cues, particularly when the value of food reward is low. Here, we investigated whether this difference could be due to differences in the degree of dopamine receptor activation in the NAc. First, we observed that although rats given ad libitum access to chow in their home cages approached a food receptacle in response to reward-predictive cues, the number of such approaches declined as animals accumulated food rewards. Intriguingly, cued approach to food occurred in clusters, with several cued responses followed by successive non-responses. This pattern suggested that behavior was dictated by transitions between two states, responsive and non-responsive. Injection of D1 or D2 dopamine receptor agonists into the NAc dose-dependently increased cue responding by promoting transitions to the responsive state and by preventing transitions to the non-responsive state. In contrast, antagonists of either D1 or D2 receptors promoted long bouts of non-responding by inducing transitions to the non-responsive state and by preventing transitions to the responsive state. Moreover, locomotor behavior during the inter-trial interval was correlated with the responsive state, and was also increased by dopamine receptor agonists. These results suggest that activation of NAc dopamine receptors plays an important role in regulating the probability of approach to food under conditions of normative satiety. PMID:27471453

  14. Gamma-vinyl GABA inhibits methamphetamine, heroin, or ethanol-induced increases in nucleus accumbens dopamine.

    PubMed

    Gerasimov, M R; Ashby, C R; Gardner, E L; Mills, M J; Brodie, J D; Dewey, S L

    1999-10-01

    We examined the acute effect of the irreversible GABA-transaminase inhibitor, gamma-vinyl GABA (GVG, Sabril((R)), Vigabatrin((R))) on increases in nucleus accumbens (NAc) dopamine (DA) following acute administration of methamphetamine, heroin, or ethanol. Methamphetamine (2.5 mg/kg) produced a dose-dependent increase (2, 700%) in NAc DA. GVG preadministration (300 or 600 mg/kg), however, inhibited this response by approximately 39 and 61%, respectively. The lower dose of methamphetamine (1.25 mg/kg), increased DA by 1, 700%. This response was inhibited to a similar extent (44%) regardless of the GVG dose preadministered (300 or 600 mg/kg). In addition, heroin-induced increases in NAc DA (0.5 mg/kg, 170%) were inhibited or completely abolished by GVG (150 or 300 mg/kg, 65 and 100%, respectively). Finally, at half the dose necessary for heroin, GVG (150 mg/kg) also completely abolished ethanol-induced increases in NAc DA following a 0.25 g/kg challenge dose (140%). Taken with our previous findings using nicotine or cocaine as the challenge drug, these results indicate that GVG attenuates increases in NAc DA by a mechanism common to many drugs of abuse. However, it appears unlikely that an acute dose of GVG can completely inhibit increases in NAc DA following challenges with a drug whose mechanism of action is mediated primarily through the DA reuptake site.

  15. Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression

    PubMed Central

    Bagot, Rosemary C.; Parise, Eric M.; Peña, Catherine J.; Zhang, Hong-Xing; Maze, Ian; Chaudhury, Dipesh; Persaud, Brianna; Cachope, Roger; Bolaños-Guzmán, Carlos A.; Cheer, Joseph; Deisseroth, Karl; Han, Ming-Hu; Nestler, Eric J.

    2015-01-01

    Enhanced glutamatergic transmission in the nucleus accumbens (NAc), a region critical for reward and motivation, has been implicated in the pathophysiology of depression; however, the afferent source of this increased glutamate tone is not known. The NAc receives glutamatergic inputs from the medial prefrontal cortex (mPFC), ventral hippocampus (vHIP) and basolateral amygdala (AMY). Here, we demonstrate that glutamatergic vHIP afferents to NAc regulate susceptibility to chronic social defeat stress (CSDS). We observe reduced activity in vHIP in mice resilient to CSDS. Furthermore, attenuation of vHIP-NAc transmission by optogenetic induction of long-term depression is pro-resilient, whereas acute enhancement of this input is pro-susceptible. This effect is specific to vHIP afferents to the NAc, as optogenetic stimulation of either mPFC or AMY afferents to the NAc is pro-resilient. These data indicate that vHIP afferents to NAc uniquely regulate susceptibility to CSDS, highlighting an important, novel circuit-specific mechanism in depression. PMID:25952660

  16. Molecular architecture of the cannabinoid signaling system in the core of the nucleus accumbens.

    PubMed

    Mátyás, Ferenc; Watanabe, Masahiko; Mackie, Ken; Katona, István; Freund, Tamás F

    2007-03-30

    Several abused drugs are known to alter glutamatergic signaling in reward pathways of the brain, and these plastic changes may contribute to the establishment of addiction-related behaviour. Glutamatergic synapses of the prefrontal cortical projections to the nucleus accumbens (nAcb)--which are suggested to be under endocannabinoid (eCB) control - play a central role in the addiction process. The most abundant eCB in the brain is 2-arachi-donoyl-glycerol (2-AG). It is synthesized by diacylglycerol lipase alpha (DGL-alpha), and exerts its action via type 1 cannabinoid receptors (CB1). However, the precise localization of DGL-alpha and CB1 - i.e. the sites of synthesis and action of 2AG - is still unknown. At the light microscopic level, immunocytochemistry revealed a granular pattern of DGL-alpha distribution in the core of the nAcb. Electron microscopic analysis confirmed that these granules corresponded to the heads of dendritic spines. On the other hand, presynaptic axon terminals forming excitatory synapses on these spineheads were found to express CB1 receptors. Our results demonstrate that the molecular constituents for a retrograde endocannabinoid control of glutamatergic transmission are available in the core of the nAcb, and their relative subcellular location is consistent with a role of 2-AG in addiction-related plasticity of cortical excitatory synapses in this reward area.

  17. Resting state functional connectivity of the nucleus accumbens in youth with a family history of alcoholism.

    PubMed

    Cservenka, Anita; Casimo, Kaitlyn; Fair, Damien A; Nagel, Bonnie J

    2014-03-30

    Adolescents with a family history of alcoholism (FHP) are at heightened risk for developing alcohol use disorders (AUDs). The nucleus accumbens (NAcc), a key brain region for reward processing, is implicated in the development of AUDs. Thus, functional connectivity of the NAcc may be an important marker of risk in FHP youth. Resting state functional magnetic resonance imaging (rs-fcMRI) was used to examine the intrinsic connectivity of the NAcc in 47 FHP and 50 family history negative (FHN) youth, ages 10-16 years old. FHP and FHN adolescents showed significant group differences in resting state synchrony between the left NAcc and bilateral inferior frontal gyri and the left postcentral gyrus (PG). Additionally, FHP youth differed from FHN youth in right NAcc functional connectivity with the left orbitofrontal cortex (OFC), left superior temporal gyrus, right cerebellum, left PG, and right occipital cortex. These results indicate that FHP youth have less segregation between the NAcc and executive functioning brain regions, and less integration with reward-related brain areas, such as the OFC. The findings of the current study highlight that premorbid atypical connectivity of appetitive systems, in the absence of heavy alcohol use, may be a risk marker in FHP adolescents.

  18. Individual Variations in Nucleus Accumbens Responses Associated with Major Depressive Disorder Symptoms.

    PubMed

    Misaki, Masaya; Suzuki, Hideo; Savitz, Jonathan; Drevets, Wayne C; Bodurka, Jerzy

    2016-02-16

    Abnormal reward-related responses in the nucleus accumbens (NAcc) have been reported for major depressive disorder (MDD) patients. However, variability exists in the reported results, which could be due to heterogeneity in neuropathology of depression. To parse the heterogeneity of MDD we investigated variation of NAcc responses to gain and loss anticipations using fMRI. We found NAcc responses to monetary gain and loss were significantly variable across subjects in both MDD and healthy control (HC) groups. The variations were seen as a hyperactive response subtype that showed elevated activation to the anticipation of both gain and loss, an intermediate response with greater activation to gain than loss, and a suppressed-activity with reduced activation to both gain and loss compared to a non-monetary condition. While these response variability were seen in both MDD and HC subjects, specific symptoms were significantly associated with the right NAcc variation in MDD. Both the hyper- and suppressed-activity subtypes of MDD patients had severe suicidal ideation and anhedonia symptoms. The intermediate subjects had less severity in these symptoms. These results suggest that differing propensities in reward responsiveness in the NAcc may affect the development of specific symptoms in MDD.

  19. Elevated Excitatory Input to the Nucleus Accumbens in Schizophrenia: A Postmortem Ultrastructural Study.

    PubMed

    McCollum, Lesley A; Walker, Courtney K; Roche, Joy K; Roberts, Rosalinda C

    2015-09-01

    The cause of schizophrenia (SZ) is unknown and no single region of the brain can be pinpointed as an area of primary pathology. Rather, SZ results from dysfunction of multiple neurotransmitter systems and miswiring between brain regions. It is necessary to elucidate how communication between regions is disrupted to advance our understanding of SZ pathology. The nucleus accumbens (NAcc) is a prime region of interest, where inputs from numerous brain areas altered in SZ are integrated. Aberrant signaling in the NAcc is hypothesized to cause symptoms of SZ, but it is unknown if these abnormalities are actually present. Electron microscopy was used to study the morphology of synaptic connections in SZ. The NAcc core and shell of 6 SZ subjects and 8 matched controls were compared in this pilot study. SZ subjects had a 19% increase in the density of asymmetric axospinous synapses (characteristic of excitatory inputs) in the core, but not the shell. Both groups had similar densities of symmetric synapses (characteristic of inhibitory inputs). The postsynaptic densities of asymmetric synapses had 22% smaller areas in the core, but not the shell. These results indicate that the core receives increased excitatory input in SZ, potentially leading to dysfunctional dopamine neurotransmission and cortico-striatal-thalamic stimulus processing. The reduced postsynaptic density size of asymmetric synapses suggests impaired signaling at these synapses. These findings enhance our understanding of the role the NAcc might play in SZ and the interaction of glutamatergic and dopaminergic abnormalities in SZ.

  20. VTA glutamatergic inputs to nucleus accumbens drive aversion by acting on GABAergic interneurons

    PubMed Central

    Qi, Jia; Zhang, Shiliang; Wang, Hui-Ling; Barker, David J.; Miranda-Barrientos, Jorge; Morales, Marisela

    2016-01-01

    The ventral tegmental area (VTA) is best known for its dopamine neurons, some of which project to nucleus accumbens (nAcc). However, the VTA also has glutamatergic neurons that project to nAcc. The function of the mesoaccumbens-glutamatergic pathway remains unknown. Here, we report that nAcc photoactivation of mesoaccumbens-glutamatergic fibers promotes aversion. Although we found that these mesoaccumbens-glutamate-fibers lack GABA, the aversion evoked by their photoactivation depends on glutamate and GABA receptor signaling, and not on dopamine receptor signaling. We found that mesoaccumbens-glutamatergic-fibers establish multiple asymmetric synapses on single parvalbumin-GABAergic interneurons, and that nAcc photoactivation of these fibers drives AMPA-mediated cellular firing of parvalbumin-GABAergic interneurons. These parvalbumin-GABAergic-interneurons, in turn, inhibit nAcc medium spiny output neurons, as such, controlling inhibitory neurotransmission within nAcc. The mesoaccumbens-glutamatergic pathway is the first glutamatergic input to nAcc shown to mediate aversion, instead of reward, and the first pathway shown to establish excitatory synapses on nAcc parvalbumin-GABAergic interneurons. PMID:27019014

  1. Differential Dopamine Regulation of Ca2+ Signaling and Its Timing Dependence in the Nucleus Accumbens

    PubMed Central

    Swapna, Immani; Bondy, Brian; Morikawa, Hitoshi

    2016-01-01

    SUMMARY Dopamine action in the nucleus accumbens (NAc) is thought to drive appetitive behavior and Pavlovian reward learning. However, it remains controversial how dopamine achieves these behavioral effects by regulating medium spiny projection neurons (MSNs) of the NAc, especially on a behaviorally relevant timescale. Metabotropic glutamate receptor (mGluR)-induced Ca2+ signaling dependent on the Ca2+- releasing messenger inositol 1,4,5-triphosphate (IP3) plays a critical role in controlling neuronal excitability and synaptic plasticity. Here, we show that transient dopamine application facilitates mGluR/IP3-induced Ca2+ signals within a time window of ~2–10 s in a subpopulation of MSNs in the NAc core. Dopamine facilitation of IP3-induced Ca2+ signaling is mediated by D1 dopamine receptors. In dopamine-insensitive MSNs, activation of A2A adenosine receptors causes enhancement of IP3-evoked Ca2+ signals, which is reversed by D2 dopamine receptor activation. These results show that dopamine differentially regulates Ca2+ signaling on the order of seconds in two distinct MSN subpopulations. PMID:27068462

  2. Lateral Attitude Change.

    PubMed

    Glaser, Tina; Dickel, Nina; Liersch, Benjamin; Rees, Jonas; Süssenbach, Philipp; Bohner, Gerd

    2015-08-01

    The authors propose a framework distinguishing two types of lateral attitude change (LAC): (a) generalization effects, where attitude change toward a focal object transfers to related objects, and (b) displacement effects, where only related attitudes change but the focal attitude does not change. They bring together examples of LAC from various domains of research, outline the conditions and underlying processes of each type of LAC, and develop a theoretical framework that enables researchers to study LAC more systematically in the future. Compared with established theories of attitude change, the LAC framework focuses on lateral instead of focal attitude change and encompasses both generalization and displacement. Novel predictions and designs for studying LAC are presented.

  3. Lateral flow assays

    PubMed Central

    Koczula, Katarzyna M.

    2016-01-01

    Lateral flow assays (LFAs) are the technology behind low-cost, simple, rapid and portable detection devices popular in biomedicine, agriculture, food and environmental sciences. This review presents an overview of the principle of the method and the critical components of the assay, focusing on lateral flow immunoassays. This type of assay has recently attracted considerable interest because of its potential to provide instantaneous diagnosis directly to patients. The range and interpretation of results and parameters used for evaluation of the assay will also be discussed. The main advantages and disadvantages of LFAs will be summarized and relevant future improvements to testing devices and strategies will be proposed. Finally, the major recent advances and future diagnostic applications in the LFA field will be explored. PMID:27365041

  4. Amyotrophic lateral sclerosis.

    PubMed

    Malik, Rabia; Lui, Andrew; Lomen-Hoerth, Catherine

    2014-11-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting 20,000 to 30,000 people in the United States. The mainstay of care of patients affected by this disease is supportive and given the multifaceted nature of their needs is provided most efficiently through multidisciplinary clinics that have shown to prolong survival and improve quality of life. The authors discuss in detail evidence-based management of individuals affected by this condition.

  5. Conjugal amyotrophic lateral sclerosis

    PubMed Central

    Dewitt, John D.; Kwon, Julia; Burton, Rebecca

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is a disease characterized by progressive degeneration of motor neurons in the motor cortex, brainstem, and spinal cord. The incidence of sporadic ALS is 1.5 to 2.7 in 100,000, and the prevalence is 5.2 to 6.0 in 100,000. Conjugal ALS is even rarer than sporadic ALS. We report a case of conjugal ALS encountered in our outpatient neurology clinic. PMID:22275781

  6. Lateral Elbow Tendinopathy

    PubMed Central

    Bhabra, Gev; Wang, Allan; Ebert, Jay R.; Edwards, Peter; Zheng, Monica; Zheng, Ming H.

    2016-01-01

    Lateral elbow tendinopathy, commonly known as tennis elbow, is a condition that can cause significant functional impairment in working-age patients. The term tendinopathy is used to describe chronic overuse tendon disorders encompassing a group of pathologies, a spectrum of disease. This review details the pathophysiology of tendinopathy and tendon healing as an introduction for a system grading the severity of tendinopathy, with each of the 4 grades displaying distinct histopathological features. Currently, there are a large number of nonoperative treatments available for lateral elbow tendinopathy, with little guidance as to when and how to use them. In fact, an appraisal of the clinical trials, systematic reviews, and meta-analyses studying these treatment modalities reveals that no single treatment reliably achieves outstanding results. This may be due in part to the majority of clinical studies to date including all patients with chronic tendinopathy rather than attempting to categorize patients according to the severity of disease. We relate the pathophysiology of the different grades of tendinopathy to the basic science principles that underpin the mechanisms of action of the nonoperative treatments available to propose a treatment algorithm guiding the management of lateral elbow tendinopathy depending on severity. We believe that this system will be useful both in clinical practice and for the future investigation of the efficacy of treatments. PMID:27833925

  7. Hemispheric lateralization in reasoning.

    PubMed

    Turner, Benjamin O; Marinsek, Nicole; Ryhal, Emily; Miller, Michael B

    2015-11-01

    A growing body of evidence suggests that reasoning in humans relies on a number of related processes whose neural loci are largely lateralized to one hemisphere or the other. A recent review of this evidence concluded that the patterns of lateralization observed are organized according to two complementary tendencies. The left hemisphere attempts to reduce uncertainty by drawing inferences or creating explanations, even at the cost of ignoring conflicting evidence or generating implausible explanations. Conversely, the right hemisphere aims to reduce conflict by rejecting or refining explanations that are no longer tenable in the face of new evidence. In healthy adults, the hemispheres work together to achieve a balance between certainty and consistency, and a wealth of neuropsychological research supports the notion that upsetting this balance results in various failures in reasoning, including delusions. However, support for this model from the neuroimaging literature is mixed. Here, we examine the evidence for this framework from multiple research domains, including an activation likelihood estimation analysis of functional magnetic resonance imaging studies of reasoning. Our results suggest a need to either revise this model as it applies to healthy adults or to develop better tools for assessing lateralization in these individuals.

  8. Three-dimensional organization of dendrites and local axon collaterals of shell and core medium-sized spiny projection neurons of the rat nucleus accumbens.

    PubMed

    van Dongen, Yvette C; Mailly, Philippe; Thierry, Anne-Marie; Groenewegen, Henk J; Deniau, Jean-Michel

    2008-09-01

    Medium-sized spiny projection neurons (MSN) in the head of the primate caudate nucleus are thought to have preferred dendritic orientations that tend to parallel the orientations of the striosomes. Moreover, recurrent axon collaterals of MSN in the rat dorsal striatum have been categorized into two types, i.e., restricted and widespread. The nucleus accumbens (Acb) has a highly complex compartmental organization, and the spatial organization of dendritic and axonal arbors of MSN has not yet been systematically studied. In this study, using single-cell juxtacellular labeling with neurobiotin as well as anterograde neuroanatomical tracing with biotinylated dextran amine, we investigated the three-dimensional (3D) organization of dendrites and axons of MSN of the rat Acb in relation to subregional (shell-core) and compartmental (patch-matrix) boundaries. Our results show that dendritic arbors of MSN in both the Acb shell and core subregions are preferentially oriented, i.e., they are flattened in at least one of the 3D-planes. The preferred orientations are influenced by shell-core and patch-matrix boundaries, suggesting parallel and independent processing of information. Dendritic orientations of MSN of the Acb core are more heterogeneous than those of the shell and the dorsal striatum, suggesting a more complex distribution of striatal inputs within the core. Although dendrites respect the shell-core and patch-matrix boundaries, recurrent axon collaterals may cross these boundaries. Finally, different degrees of overlap between dendritic and axonal arborizations of individual MSN were identified, suggesting various possibilities of lateral inhibitory interactions within and between, functionally distinct territories of the Acb.

  9. Alterations in blood glucose and plasma glucagon concentrations during deep brain stimulation in the shell region of the nucleus accumbens in rats.

    PubMed

    Diepenbroek, Charlene; van der Plasse, Geoffrey; Eggels, Leslie; Rijnsburger, Merel; Feenstra, Matthijs G P; Kalsbeek, Andries; Denys, Damiaan; Fliers, Eric; Serlie, Mireille J; la Fleur, Susanne E

    2013-01-01

    Deep brain stimulation (DBS) of the nucleus accumbens (NAc) is an effective therapy for obsessive compulsive disorder (OCD) and is currently under investigation as a treatment for eating disorders. DBS of this area is associated with altered food intake and pharmacological treatment of OCD is associated with the risk of developing type 2 diabetes. Therefore we examined if DBS of the NAc-shell (sNAc) influences glucose metabolism. Male Wistar rats were subjected to DBS, or sham stimulation, for a period of 1 h. To assess the effects of stimulation on blood glucose and glucoregulatory hormones, blood samples were drawn before, during and after stimulation. Subsequently, all animals were used for quantitative assessment of Fos immunoreactivity in the lateral hypothalamic area (LHA) using computerized image analysis. DBS of the sNAc rapidly increased plasma concentrations of glucagon and glucose while sham stimulation and DBS outside the sNAc were ineffective. In addition, the increase in glucose was dependent on DBS intensity. In contrast, the DBS-induced increase in plasma corticosterone concentrations was independent of intensity and region, indicating that the observed DBS-induced metabolic changes were not due to corticosterone release. Stimulation of the sNAc with 200 μA increased Fos immunoreactivity in the LHA compared to sham or 100 μA stimulated animals. These data show that DBS of the sNAc alters glucose metabolism in a region- and intensity- dependent manner in association with neuronal activation in the LHA. Moreover, these data illustrate the need to monitor changes in glucose metabolism during DBS-treatment of OCD patients.

  10. Vulnerabilities of ventral mesencephalic neurons projecting to the nucleus accumbens following infusions of 6-hydroxydopamine into the medial forebrain bundle in the rat.

    PubMed

    Lancia, Andrew J; Williams, Evelyn A; McKnight, Lucas V; Zahm, Daniel S

    2004-01-30

    The terminal arbors of dopaminergic projections in the nucleus accumbens (Acb) core degenerate more rapidly, completely and permanently in a variety of neurotoxic circumstances than do those in the medial shell. It is unknown if this always reflects purely losses of the distal parts of axons from the core (as proposed in methamphetamine intoxication), or whether, in some circumstances, the disproportionate loss of core axons may also stem from an intrinsic vulnerability to degeneration of core-projecting neuronal perikarya. Experiments described here addressed this issue in the following manner. Three days after Fluoro-Gold (FG), a retrogradely transported tracer, had been iontophoresed selectively into the core or medial shell of male Sprague-Dawley rats, each received an infusion of saline vehicle containing or lacking 6-hydroxydopamine (6-OHDA) in the ipsilateral medial forebrain bundle (MFB). Twenty-one days later the brains were processed to exhibit ventral mesencephalic neurons containing FG. Application of an unbiased sampling method revealed substantially greater losses of FG labeled neurons relative to controls in rats that had received 6-OHDA lesions and deposition of FG in the Acb core as compared to the medial shell. Of the few core-projecting neurons that remained in the ventral mesencephalon after these lesions, 54% did not co-localize tyrosine hydroxylase immunoreactivity (TH-ir) and, thus, were not expected to degenerate. The capacity to selectively remove core-projecting dopaminergic neurons may be useful in the determination of molecular correlates of vulnerability and resistance to neurotoxicity and to possibly test the role of the core in reinforcement paradigms.

  11. Nicotine restores morphine-induced memory deficit through the D1 and D2 dopamine receptor mechanisms in the nucleus accumbens.

    PubMed

    Azizbeigi, Ronak; Ahmadi, Shamseddin; Babapour, Vahab; Rezayof, Ameneh; Zarrindast, Mohammad Reza

    2011-08-01

    Involvement of the dopamine D1 and D2 receptors in the nucleus accumbens (NAc) with interaction between morphine and nicotine on inhibitory avoidance (IA) memory was investigated. A step-through type of inhibitory avoidance tasks was used to assess memory in male Wistar rats. The results showed that subcutaneous (s.c.) administration of morphine (7.5 mg/kg) after training decreased retrieval of IA memory in the animals when tested 24 h later. Pre-test administration of the same dose of morphine significantly reversed the deficiency in retrieval. The results also showed that pre-test administration of nicotine (0.2 and 0.4 mg/kg, s.c.) by itself mimicked the effect of pre-test morphine, and lower doses of nicotine (0.1 and 0.2 mg/kg) also improved the effect of a low dose of morphine (2.5 mg/kg) on retrieval of IA memory. Pre-test intra-NAc administration of the dopamine D1 receptor antagonist, SCH 23390 (0.001 and 0.01 µg/rat), and the dopamine D2 receptor antagonist, sulpiride (0.5 and 1 µg/rat) caused no significant effects on IA memory by themselves, but both prevented reinstatement of the retrieval of IA memory by the effective dose of nicotine (0.4 mg/kg). It can be concluded that the dopaminergic mechanism(s) in the NAc is a crosslink for the effect of morphine and nicotine on reinstatement of retrieval of IA memory impaired by post-training administration of morphine.

  12. Protein expression changes in the nucleus accumbens and amygdala of inbred alcohol-preferring rats given either continuous or scheduled access to ethanol.

    PubMed

    Bell, R L; Kimpel, M W; Rodd, Z A; Strother, W N; Bai, F; Peper, C L; Mayfield, R D; Lumeng, L; Crabb, D W; McBride, W J; Witzmann, F A

    2006-08-01

    Chronic ethanol (EtOH) drinking produces neuronal alterations within the limbic system. To investigate changes in protein expression levels associated with EtOH drinking, inbred alcohol-preferring (iP) rats were given one of three EtOH access conditions in their home-cages: continuous ethanol (CE: 24h/day, 7days/week access to EtOH), multiple scheduled access (MSA: four 1-h sessions during the dark cycle/day, 5 days/week) to EtOH, or remained EtOH-naïve. Both MSA and CE groups consumed between 6 and 6.5g of EtOH/kg/day after the 3rd week of access. On the first day of EtOH access for the seventh week, access was terminated at the end of the fourth MSA session for MSA rats and the corresponding time point (2300h) for CE rats. Ten h later, the rats were decapitated, brains extracted, the nucleus accumbens (NAcc) and amygdala (AMYG) microdissected, and protein isolated for 2-dimensional gel electrophoretic analyses. In the NAcc, MSA altered expression levels for 12 of the 14 identified proteins, compared with controls, with six of these proteins altered by CE access, as well. In the AMYG, CE access changed expression levels for 22 of the 27 identified proteins, compared with controls, with 8 of these proteins altered by MSA, as well. The proteins could be grouped into functional categories of chaperones, cytoskeleton, intracellular communication, membrane transport, metabolism, energy production, or neurotransmission. Overall, it appears that EtOH drinking and the conditions under which EtOH is consumed, differentially affect protein expression levels between the NAcc and AMYG. This may reflect differences in neuroanatomical and/or functional characteristics associated with EtOH self-administration and possibly withdrawal, between these two brain structures.

  13. Mu-Opioid Stimulation in Rat Prefrontal Cortex Engages Hypothalamic Orexin/Hypocretin-Containing Neurons, and Reveals Dissociable Roles of Nucleus Accumbens and Hypothalamus in Cortically Driven Feeding

    PubMed Central

    Mena, Jesus D.; Selleck, Ryan A.

    2013-01-01

    Mu-opioid receptor (μOR) stimulation within ventral medial prefrontal cortex (vmPFC) induces feeding and hyperactivity, resulting possibly from recruitment of glutamate signaling in multiple vmPFC projection targets. We tested this hypothesis by analyzing Fos expression in vmPFC terminal fields after intra-vmPFC μOR stimulation, and by examining of the impact of glutamate receptor blockade in two feeding-related targets of vmPFC, the lateral-perifornical hypothalamic area (LH-PeF) and nucleus accumbens shell (Acb shell), upon behavioral effects elicited by intra-vmPFC μOR stimulation in rats. Intra-vmPFC infusion of the μOR agonist, DAMGO, provoked Fos expression in the dorsomedial sector of tuberal hypothalamus (including the perifornical area) and increased the percentage of Fos-expressing hypocretin/orexin-immunoreactive neurons in these zones. NMDA receptor blockade in the LH-PeF nearly eliminated intra-vmPFC DAMGO-induced food intake without altering DAMGO-induced hyperactivity. In contrast, blocking AMPA-type glutamate receptors within the Acb shell (the feeding-relevant subtype in this structure) antagonized intra-vmPFC DAMGO-induced hyperlocomotion but enhanced food intake. Intra-vmPFC DAMGO also elevated the breakpoint for sucrose-reinforced progressive-ratio responding; this effect was significantly enhanced by concomitant AMPA blockade in the Acb shell. Conversely, intra-Acb shell AMPA stimulation reduced breakpoint and increased nonspecific responding on the inactive lever. These data indicate intra-vmPFC μOR signaling jointly modulates appetitive motivation and generalized motoric activation through functionally dissociable vmPFC projection targets. These findings may shed light on the circuitry underlying disorganized appetitive responses in psychopathology; e.g., binge eating and opiate or alcohol abuse, disorders in which μORs and aberrant cortical activation have been implicated. PMID:24259576

  14. The effect of Gly-Gln [ß-endorphin30-31] on morphine-evoked serotonin and GABA efflux in the nucleus accumbens of conscious rats.

    PubMed

    Basaran, Nesrin F; Buyukuysal, R Levent; Sertac Yilmaz, M; Aydin, Sami; Cavun, Sinan; Millington, William R

    2016-08-01

    Glycyl-L-glutamine (Gly-Gln; β-endorphin30-31) is an endogenous dipeptide synthesized through the post-translational processing of β-endorphin1-31. Central Gly-Gln administration inhibits the rewarding properties of morphine and attenuates morphine tolerance, dependence and withdrawal although it does not interfere with morphine analgesia. In an earlier study, we found that Gly-Gln inhibits morphine-induced dopamine efflux in the nucleus accumbens (NAc), consistent with its ability to inhibit morphine reward. To further investigate the mechanism responsible for its central effects we tested whether i.c.v. Gly-Gln administration influences the rise in extracellular serotonin and GABA concentrations evoked by morphine in the NAc. Conscious rats were treated with Gly-Gln (100nmol/5μl) or saline i.c.v. followed, 2min later, by morphine (2.5mg/kg) or saline i.p. and extracellular serotonin and GABA concentrations were analyzed by microdialysis and HPLC. Morphine administration increased extracellular serotonin and GABA concentrations significantly within 20min, as shown previously. Unexpectedly, Gly-Gln also increased extracellular serotonin concentrations significantly in control animals. Combined treatment with Gly-Gln+morphine also elevated extracellular serotonin concentrations although the magnitude of the response did not differ significantly from the effect of Gly-Gln or morphine, given alone suggesting that Gly-Gln suppressed morphine induced serotonin efflux. Gly-Gln abolished the morphine-induced rise in extracellular GABA concentrations but had no effect on extracellular GABA when given alone to otherwise untreated animals. These data show that Gly-Gln stimulates NAc serotonin efflux and, together with earlier studies, support the hypothesis that Gly-Gln inhibits the rewarding effects of morphine by modulating morphine induced dopamine, GABA and serotonin efflux in the NAc.

  15. Craving in Alcohol-Dependent Patients After Detoxification Is Related to Glutamatergic Dysfunction in the Nucleus Accumbens and the Anterior Cingulate Cortex

    PubMed Central

    Bauer, Jochen; Pedersen, Anya; Scherbaum, Norbert; Bening, Johanna; Patschke, Johanna; Kugel, Harald; Heindel, Walter; Arolt, Volker; Ohrmann, Patricia

    2013-01-01

    The upregulation of glutamatergic excitatory neurotransmission is thought to be partly responsible for the acute withdrawal symptoms and craving experienced by alcohol-dependent patients. Most physiological evidence supporting this hypothesis is based on data from animal studies. In addition, clinical data show that GABAergic and anti-glutamatergic drugs ameliorate withdrawal symptoms, offering indirect evidence indicative of glutamatergic hyperexcitability in alcohol-dependent subjects. We used proton magnetic resonance spectroscopy to quantify the glutamate (Glu) levels in healthy control subjects and in alcohol-dependent patients immediately after detoxification. The volumes of interest were located in the nucleus accumbens (NAcc) and the anterior cingulate cortex (ACC), which are two brain areas that have important functions in reward circuitry. In addition to Glu, we quantified the levels of combined Glu and glutamine (Gln), N-acetylaspartate, choline-containing compounds, and creatine. The Glu levels in the NAcc were significantly higher in patients than in controls. Craving, which was measured using the Obsessive Compulsive Drinking Scale, correlated positively with levels of combined Glu and Gln in the NAcc and in the ACC. The levels of all other metabolites were not significantly different between patients and controls. The increased Glu levels in the NAcc in alcohol-dependent patients shortly after detoxification confirm the animal data and suggest that striatal glutamatergic dysfunction is related to ethanol withdrawal. The positive correlation between craving and glutamatergic metabolism in both key reward circuitry areas support the hypothesis that the glutamatergic system has an important role in the later course of alcohol dependence with respect to abstinence and relapse. PMID:23403696

  16. Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward "wanting" without enhanced "liking" or response reinforcement.

    PubMed

    Wyvell, C L; Berridge, K C

    2000-11-01

    Amphetamine microinjection into the nucleus accumbens shell enhanced the ability of a Pavlovian reward cue to trigger increased instrumental performance for sucrose reward in a pure conditioned incentive paradigm. Rats were first trained to press one of two levers to obtain sucrose pellets. They were separately conditioned to associate a Pavlovian cue (30 sec light) with free sucrose pellets. On test days, the rats received bilateral microinjection of intra-accumbens vehicle or amphetamine (0.0, 2.0, 10.0, or 20.0 microgram/0.5 microliter), and lever pressing was tested in the absence of any reinforcement contingency, while the Pavlovian cue alone was freely presented at intervals throughout the session. Amphetamine microinjection selectively potentiated the cue-elicited increase in sucrose-associated lever pressing, although instrumental responding was not reinforced by either sucrose or the cue during the test. Intra-accumbens amphetamine can therefore potentiate cue-triggered incentive motivation for reward in the absence of primary or secondary reinforcement. Using the taste reactivity measure of hedonic impact, it was shown that intra-accumbens amphetamine failed to increase positive hedonic reaction patterns elicited by sucrose (i.e., sucrose "liking") at doses that effectively increase sucrose "wanting." We conclude that nucleus accumbens dopamine specifically mediates the ability of reward cues to trigger "wanting" (incentive salience) for their associated rewards, independent of both hedonic impact and response reinforcement.

  17. Deep brain stimulation of the nucleus accumbens shell attenuates cue-induced reinstatement of both cocaine and sucrose seeking in rats.

    PubMed

    Guercio, Leonardo A; Schmidt, Heath D; Pierce, R Christopher

    2015-03-15

    Stimuli previously associated with drug taking can become triggers that can elicit craving and lead to relapse of drug-seeking behavior. Here, we examined the influence of deep brain stimulation (DBS) in the nucleus accumbens shell on cue-induced reinstatement of cocaine seeking, an animal model of relapse. Rats were allowed to self-administer cocaine (0.254 mg, i.v.) for 2 h daily for 21 days, with each infusion of cocaine being paired with a cue light. After 21 days of self-administration, cocaine-taking behavior was extinguished by replacing cocaine with saline in the absence of the cue light. Next, during the reinstatement phase, DBS was administered bilaterally into the nucleus accumbens shell through bipolar stainless steel electrodes immediately prior to re-exposure to cues previously associated with cocaine reinforcement. DBS continued throughout the 2 h reinstatement session. Parallel studies examined the influence of accumbens shell DBS on reinstatement induced by cues previously associated with sucrose reinforcement. Results indicated that DBS of the nucleus accumbens shell significantly attenuated cue-induced reinstatement of cocaine and sucrose seeking. Together, these results indicate that DBS of the accumbens shell disrupts cue-induced reinstatement associated with both a drug and a natural reinforcer.

  18. Diamond heteroepitaxial lateral overgrowth

    SciTech Connect

    Tang, Y. -H.; Bi, B.; Golding, B.

    2015-02-24

    A method of diamond heteroepitaxial lateral overgrowth is demonstrated which utilizes a photolithographic metal mask to pattern a thin (001) epitaxial diamond surface. Significant structural improvement was found, with a threading dislocation density reduced by two orders of magnitude at the top surface of a thick overgrown diamond layer. In the initial stage of overgrowth, a reduction of diamond Raman linewidth in the overgrown area was also realized. Thermally-induced stress and internal stress were determined by Raman spectroscopy of adhering and delaminated diamond films. As a result, the internal stress is found to decrease as sample thickness increases.

  19. Nucleus accumbens neuronal activity correlates to the animal's behavioral response to acute and chronic methylphenidate.

    PubMed

    Claussen, Catherine M; Chong, Samuel L; Dafny, Nachum

    2014-04-22

    Acute and chronic methylphenidate (MPD) exposure was recorded simultaneously for the rat's locomotor activity and the nucleus accumbens (NAc) neuronal activity. The evaluation of the neuronal events was based on the animal's behavior response to chronic MPD administration: 1) Animals exhibiting behavioral sensitization, 2) Animals exhibiting behavioral tolerance. The experiment lasted for 10days with four groups of animals; saline, 0.6, 2.5, and 10.0mg/kg MPD. For the main behavioral findings, about half of the animals exhibited behavioral sensitization or behavioral tolerance to 0.6, 2.5, and/or 10mg/kg MPD respectively. Three hundred and forty one NAc neuronal units were evaluated. Approximately 80% of NAc units responded to 0.6, 2.5, and 10.0mg/kg MPD. When the neuronal activity was analyzed based on the animals' behavioral response to chronic MPD exposure, significant differences were seen between the neuronal population responses recorded from animals that expressed behavioral sensitization when compared to the NAc neuronal responses recorded from animals exhibiting behavioral tolerance. Three types of neurophysiological sensitization and neurophysiological tolerance can be recognized following chronic MPD administration to the neuronal populations. Collectively, these findings show that the same dose of chronic MPD can elicit either behavioral tolerance or behavioral sensitization. Differential statistical analyses were used to verify our hypothesis that the neuronal activity recorded from animals exhibiting behavioral sensitization will respond differently to MPD compared to those animals exhibiting behavioral tolerance, thus, suggesting that it is essential to record the animal's behavior concomitantly with neuronal recordings.

  20. Gene expression changes in the nucleus accumbens of alcohol-preferring rats following chronic ethanol consumption

    PubMed Central

    Bell, Richard L.; Kimpel, Mark W.; McClintick, Jeanette N.; Strother, Wendy N.; Carr, Lucinda G.; Liang, Tiebing; Rodd, Zachary A.; Mayfield, R. Dayne; Edenberg, Howard J.; McBride, William J.

    2009-01-01

    The objective of this study was to determine the effects of binge-like alcohol drinking on gene expression changes in the nucleus accumbens (ACB) of alcohol-preferring (P) rats. Adult male P rats were given ethanol under multiple scheduled access (MSA; three 1-hr dark-cycle sessions/day) conditions for 8 weeks. For comparison purposes, a second ethanol drinking group was given continuous/daily alcohol access (CA; 24 hr/day). A third group was ethanol-naïve (W group). Average ethanol intakes for the CA and MSA groups were approximately 9.5 and 6.5 g/kg/day, respectively. Fifteen hr after the last drinking episode, rats were euthanized, the brains extracted, and the ACB dissected. RNA was extracted and purified for microarray analysis. The only significant differences were between the CA and W groups (p < 0.01; Storey false discovery rate = 0.15); there were 374 differences in named genes between these 2 groups. There were 20 significant Gene Ontology (GO) categories, which included negative regulation of protein kinase activity, anti-apoptosis, and regulation of G-protein-coupled receptor signaling. Ingenuity® analysis indicated a network of transcription factors, involving oncogenes (Fos, Jun, Junb had higher expression in the ACB of the CA group), suggesting increased neuronal activity. There were 43 genes located within rat QTLs for alcohol consumption and preference; 4 of these genes (Tgfa, Hspa5, Mtus1 and Creb3l2) are involved in anti-apoptosis and increased transcription, suggesting that they may be contributing to cellular protection and maintaining high alcohol intakes. Overall, these findings suggest that chronic CA drinking results in genomic changes that can be observed during the early acute phase of ethanol withdrawal. Conversely, chronic MSA drinking, with its associated protracted withdrawal periods, results in genomic changes that may be masked by tight regulation of these genes following repeated experiences of ethanol withdrawal. PMID:19666046

  1. Pavlovian-to-instrumental transfer effects in the nucleus accumbens relate to relapse in alcohol dependence.

    PubMed

    Garbusow, Maria; Schad, Daniel J; Sebold, Miriam; Friedel, Eva; Bernhardt, Nadine; Koch, Stefan P; Steinacher, Bruno; Kathmann, Norbert; Geurts, Dirk E M; Sommer, Christian; Müller, Dirk K; Nebe, Stephan; Paul, Sören; Wittchen, Hans-Ulrich; Zimmermann, Ulrich S; Walter, Henrik; Smolka, Michael N; Sterzer, Philipp; Rapp, Michael A; Huys, Quentin J M; Schlagenhauf, Florian; Heinz, Andreas

    2016-05-01

    In detoxified alcohol-dependent patients, alcohol-related stimuli can promote relapse. However, to date, the mechanisms by which contextual stimuli promote relapse have not been elucidated in detail. One hypothesis is that such contextual stimuli directly stimulate the motivation to drink via associated brain regions like the ventral striatum and thus promote alcohol seeking, intake and relapse. Pavlovian-to-Instrumental-Transfer (PIT) may be one of those behavioral phenomena contributing to relapse, capturing how Pavlovian conditioned (contextual) cues determine instrumental behavior (e.g. alcohol seeking and intake). We used a PIT paradigm during functional magnetic resonance imaging to examine the effects of classically conditioned Pavlovian stimuli on instrumental choices in n = 31 detoxified patients diagnosed with alcohol dependence and n = 24 healthy controls matched for age and gender. Patients were followed up over a period of 3 months. We observed that (1) there was a significant behavioral PIT effect for all participants, which was significantly more pronounced in alcohol-dependent patients; (2) PIT was significantly associated with blood oxygen level-dependent (BOLD) signals in the nucleus accumbens (NAcc) in subsequent relapsers only; and (3) PIT-related NAcc activation was associated with, and predictive of, critical outcomes (amount of alcohol intake and relapse during a 3 months follow-up period) in alcohol-dependent patients. These observations show for the first time that PIT-related BOLD signals, as a measure of the influence of Pavlovian cues on instrumental behavior, predict alcohol intake and relapse in alcohol dependence.

  2. Cannabinoids and Glucocorticoids in the Basolateral Amygdala Modulate Hippocampal–Accumbens Plasticity After Stress

    PubMed Central

    Segev, Amir; Akirav, Irit

    2016-01-01

    Acute stress results in release of glucocorticoids, which are potent modulators of learning and plasticity. This process is presumably mediated by the basolateral amygdala (BLA) where cannabinoids CB1 receptors have a key role in regulating the hypothalamic–pituitary–adrenal (HPA) axis. Growing attention has been focused on nucleus accumbens (NAc) plasticity, which regulates mood and motivation. The NAc integrates affective and context-dependent input from the BLA and ventral subiculum (vSub), respectively. As our previous data suggest that the CB1/2 receptor agonist WIN55,212-2 (WIN) and glucocorticoid receptor (GR) antagonist RU-38486 (RU) can prevent the effects of stress on emotional memory, we examined whether intra-BLA WIN and RU can reverse the effects of acute stress on NAc plasticity. Bilateral, ipsilateral, and contralateral BLA administration of RU or WIN reversed the stress-induced impairment in vSub–NAc long-term potentiation (LTP) and the decrease in cAMP response element-binding protein (CREB) activity in the NAc. BLA CB1 receptors were found to mediate the preventing effects of WIN on plasticity, but not the preventing effects of RU, after stress. Inactivating the ipsilateral BLA, but not the contralateral BLA, impaired LTP. The possible mechanisms underlying the effects of BLA on NAc plasticity are discussed; the data suggest that BLA-induced changes in the NAc may be mediated through neural pathways in the brain's stress circuit rather than peripheral pathways. The results suggest that glucocorticoid and cannabinoid systems in the BLA can restore normal function of the NAc and hence may have a central role in the treatment of a variety of stress-related disorders. PMID:26289146

  3. Family History Density of Alcoholism Relates to Left Nucleus Accumbens Volume in Adolescent Girls

    PubMed Central

    Cservenka, Anita; Gillespie, Alicia J; Michael, Paul G; Nagel, Bonnie J

    2015-01-01

    Objective: A family history of alcoholism is a significant risk factor for the development of alcohol use disorders (AUDs). Because common structural abnormalities are present in reward and affective brain regions in alcoholics and those with familial alcoholism, the current study examined the relationship between familial loading of AUDs and volumes of the amygdala and nucleus accumbens (NAcc) in largely alcohol-naive adolescents, ages 12–16 years (N = 140). Method: The amygdala and NAcc were delineated on each participant’s T1-weighted anatomical scan, using FMRIB Software Library’s FMRIB Integrated Registration & Segmentation Tool, and visually inspected for accuracy and volume outliers. In the 140 participants with accurate segmentation (75 male/65 female), subcortical volumes were represented as a ratio to intracranial volume (ICV). A family history density (FHD) score was calculated for each adolescent based on the presence of AUDs in first- and second-degree relatives (range: 0.03–1.50; higher scores represent a greater prevalence of familial AUDs). Multiple regressions, with age and sex controlled for, examined the association between FHD and left and right amygdala and NAcc volume/ICV. Results: There was a significant positive relationship between FHD and left NAcc volume/ICV (ΔR2 = .04, p = .02). Post hoc regressions indicated that this effect was only significant in females (ΔR2 = .11, p = .006). Conclusions: This finding suggests that the degree of familial alcoholism, genetic or otherwise, is associated with alterations in reward-related brain structure. Further work will be necessary to examine whether FHD is related to future alcohol-related problems and reward-related behaviors. PMID:25486393

  4. Oxytocin in the nucleus accumbens core reduces reinstatement of methamphetamine-seeking behaviour in rats.

    PubMed

    Baracz, Sarah J; Everett, Nicholas A; McGregor, Iain S; Cornish, Jennifer L

    2016-03-01

    The psychostimulant methamphetamine (METH) is an addictive illicit drug. Systemic administration of the neuropeptide oxytocin modulates METH-related reward and METH-seeking behaviour. Recent findings demonstrated a reduction in METH-induced reward by oxytocin administration into the nucleus accumbens (NAc) core. It is not known, however, if oxytocin acts in this region to reduce relapse to METH-seeking behaviour. Using the drug reinstatement paradigm in rats experienced at METH self-administration, we aimed to determine whether oxytocin pre-treatment within the NAc core would reduce relapse to METH use and if this could be reversed by the co-administration of the oxytocin receptor (OTR) antagonist desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT. Male Sprague-Dawley rats underwent surgery to implant an intravenous jugular vein catheter and bilateral microinjection cannulae in the NAc core. Rats were then trained to self-administer intravenous METH (0.1 mg/kg/infusion) by lever press during 2-hour fixed ratio 1 scheduled sessions for 20 days. Following extinction of lever press activity, the effect of microinjecting saline, oxytocin (0.5 pmol, 1.5 pmol, 4.5 pmol) or co-administration of oxytocin (1.5 pmol) and desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT (1 nmol, 3 nmol) in the NAc core (500 nl/side) was examined on METH-primed (1 mg/kg, i.p.) reinstatement of drug-seeking behaviour. Our results showed oxytocin directly administered into the NAc core decreased METH-primed reinstatement in a dose-dependent manner. Co-administration of the selective OTR antagonist did not specifically reverse the inhibitory effects of oxytocin on METH priming, suggesting mediation by receptors other than the OTR. These findings highlight an important modulatory effect of oxytocin in the NAc core on relapse to METH seeking.

  5. Nucleus accumbens cocaine-amphetamine regulated transcript mediates food intake during novelty conflict.

    PubMed

    Burghardt, P R; Krolewski, D M; Dykhuis, K E; Ching, J; Pinawin, A M; Britton, S L; Koch, L G; Watson, S J; Akil, H

    2016-05-01

    Obesity is a persistent and pervasive problem, particularly in industrialized nations. It has come to be appreciated that the metabolic health of an individual can influence brain function and subsequent behavioral patterns. To examine the relationship between metabolic phenotype and central systems that regulate behavior, we tested rats with divergent metabolic phenotypes (Low Capacity Runner: LCR vs. High Capacity Runner: HCR) for behavioral responses to the conflict between hunger and environmental novelty using the novelty suppressed feeding (NSF) paradigm. Additionally, we measured expression of mRNA, for peptides involved in energy management, in response to fasting. Following a 24-h fast, LCR rats showed lower latencies to begin eating in a novel environment compared to HCR rats. A 48-h fast equilibrated the latency to begin eating in the novel environment. A 24-h fast differentially affected expression of cocaine-amphetamine regulated transcript (CART) mRNA in the nucleus accumbens (NAc), where 24-h of fasting reduced CART mRNA in LCR rats. Bilateral microinjections of CART 55-102 peptide into the NAc increased the latency to begin eating in the NSF paradigm following a 24-h fast in LCR rats. These results indicate that metabolic phenotype influences how animals cope with the conflict between hunger and novelty, and that these differences are at least partially mediated by CART signaling in the NAc. For individuals with poor metabolic health who have to navigate food-rich and stressful environments, changes in central systems that mediate conflicting drives may feed into the rates of obesity and exacerbate the difficulty individuals have in maintaining weight loss.

  6. Taurine elevates dopamine levels in the rat nucleus accumbens; antagonism by strychnine.

    PubMed

    Ericson, Mia; Molander, Anna; Stomberg, Rosita; Söderpalm, Bo

    2006-06-01

    The mesolimbic dopamine (DA) system, projecting from the ventral tegmental area (VTA) to the nucleus accumbens (nAcc), is involved in reward-related behaviours and addictive processes, such as alcoholism and drug addiction. It was recently suggested that strychnine-sensitive glycine receptors (GlyR) in the nAcc regulate both basal and ethanol-induced mesolimbic DA activity via a neuronal loop involving endogenous activation of nicotinic acetylcholine receptors (nAChR) in the VTA. However, as the nAcc appears to contain few glycine-immunoreactive cell bodies or fibres, the question as to what may be the endogenous ligand for GlyRs in this brain region remains open. Here we have investigated whether the amino acid taurine could serve this purpose using in vivo microdialysis in awake, freely moving male Wistar rats. Local perfusion of taurine (1, 10 or 100 mm in the perfusate) increased DA levels in the nAcc. The taurine (10 mm)-induced DA increase was, similarly to that previously observed after ethanol, completely blocked by (i) perfusion of the competitive GlyR antagonist strychnine in the nAcc, (ii) perfusion of the nAChR antagonist mecamylamine (100 microm) in the VTA, and (iii) systemic administration of the acetylcholine-depleting drug vesamicol (0.4 mg/kg, i.p). The present results suggest that taurine may be an endogenous ligand for GlyRs in the nAcc and that the taurine-induced elevation of DA levels in this area, similarly to that observed after local ethanol, is mediated via a neuronal loop involving endogenous activation of nAChRs in the VTA.

  7. Rising taurine and ethanol concentrations in nucleus accumbens interact to produce dopamine release after ethanol administration.

    PubMed

    Ericson, Mia; Chau, PeiPei; Clarke, Rhona B; Adermark, Louise; Söderpalm, Bo

    2011-07-01

    We have previously demonstrated that glycine receptors in the nucleus accumbens (nAc) are involved in modulating both basal and ethanol-induced dopamine output in the same brain region. Ethanol is known to induce a release of both taurine and dopamine in the nAc, but the relationship between these two neuromodulators has not been investigated thoroughly. In vivo microdialysis was used to measure the effects of systemic ethanol diluted in isotonic (0.9% NaCl) or hypertonic (3.6% NaCl) saline on accumbal taurine and dopamine levels. We found that ethanol given in a hypertonic solution, contrary to an isotonic solution, failed to increase concentrations both of taurine and dopamine in the nAc. However, a modest, non-dopamine elevating concentration of taurine in the nAc disclosed a dopamine-elevating effect of systemic ethanol also when given in a hypertonic solution. In a second experiment, we investigated the effects of ethanol on taurine and dopamine in normal rats and rats with decreased levels of endogenous taurine. Lowering the level of taurine, approximately 40% by adding 5% β-alanine in the drinking water, did not influence taurine or dopamine output over time. We conclude that the elevations of taurine and dopamine in the nAc are closely related, and that in order for ethanol to induce dopamine release, a simultaneous increase of extracellular taurine levels in the nAc is required. These data also provide support for the notion that the nAc is the primary target for ethanol in its dopamine-activating effect after systemic administration.

  8. Chronic alcohol drinking alters neuronal dendritic spines in the brain reward center nucleus accumbens.

    PubMed

    Zhou, Feng C; Anthony, Bruce; Dunn, Kenneth W; Lindquist, W Brent; Xu, Zao C; Deng, Ping

    2007-02-23

    Alcohol is known to affect glutamate transmission. However, how chronic alcohol affects the synaptic structure mediating glutamate transmission is unknown. Repeated alcohol exposure in a subject with familial alcoholic history often leads to alcohol addiction. The current study adopts alcohol-preferring rats, which are known to develop high drinking. Two-photon microscopy analysis indicates that chronic alcohol of 14 weeks either, under continuous alcohol (C-Alc) or with repeated deprivation (RD-Alc), causes dysmorphology--thickened, beaded, and disoriented dendrites that are reminiscent of reactive astrocytes--in a subpopulation of medium spiny neurons. The density of dendritic spines was found differentially lower in the nucleus accumbens of RD-Alc and C-Alc groups as compared with those of Water groups. Large-sized spines and multiple-headed spines were increased in the RD-Alc group. The NMDA receptor subunit NR1 proteins, as analyzed with Western blot, were upregulated in C-Alc, but not in RD-Alc. The upregulated NMDA receptor subunits of NR1 however, are predominantly a splice variant isoform with truncated exon 21, which is required for membrane-bound trafficking or anchoring into a spine synaptic site. These maladaptations may contribute to the transformation of spines. The changes, in density and head-size of spines and the corresponding NMDA receptors, demonstrated an alteration of microcircuitry for glutamate reception. The current study demonstrates for the first time that chronic alcohol exposure causes structural alteration of dendrites and their spines in the key reward brain region in animals that have a genetic background leading to alcohol addiction.

  9. In Vivo Voltammetric Monitoring of Catecholamine Release in Subterritories of the Nucleus Accumbens Shell

    PubMed Central

    Park, Jinwoo; Aragona, Brandon J.; Kile, Brian M.; Carelli, Regina M.; Wightman, R. Mark

    2010-01-01

    Fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes has been used to demonstrate that sub-second changes in catecholamine concentration occur within the nucleus accumbens (NAc) shell during motivated behaviors, and these fluctuations have been attributed to rapid dopamine signaling. However, FSCV cannot distinguish between dopamine and norepinephrine, and caudal regions of the NAc shell receive noradrenergic projections. Therefore, in the present study, we examined the degree to which norepinephrine contributes to catecholamine release within rostral and caudal portion of NAc shell. Analysis of tissue content revealed that dopamine was the major catecholamine detectable in the rostral NAc shell, whereas both dopamine and norepinephrine were found in the caudal subregion. To examine releasable catecholamines, electrical stimulation was used to evoke release in anesthetized rats with either stimulation of the medial forebrain bundle, a pathway containing both dopaminergic and noradrenergic projections to the NAc, or the ventral tegmental area/substantia nigra, the origin of dopaminergic projections. The catecholamines were distinguished by their responses to different pharmacological agents. The dopamine autoreceptor blocker, raclopride, as well as the monoamine and dopamine transporter blockers, cocaine and GBR 12909, increased evoked catecholamine overflow in both the rostral and caudal NAc shell. The norepinephrine autoreceptor blocker, yohimbine, and the norepinephrine transporter blocker, desipramine, increased catecholamine overflow in the caudal NAc shell without significant alteration of evoked responses in the rostral NAc shell. Thus, the neurochemical and pharmacological results show that norepinephrine signaling is restricted to caudal portions of the NAc shell. Following raclopride and cocaine or raclopride and GBR 12909, robust catecholamine transients were observed within the rostral shell but these were far less apparent in the caudal

  10. Dissociation of prefrontal cortex and nucleus accumbens dopaminergic systems in conditional learning in rats.

    PubMed

    George, David N; Jenkins, Trisha A; Killcross, Simon

    2011-11-20

    There is converging evidence that the prefrontal and mesolimbic dopaminergic (DAergic) systems are involved in the performance of a variety of tasks that require the use of contextual, or task-setting, information to select an appropriate response from a number of candidate responses. Performance on tasks of this nature are impaired in schizophrenia and in rats exposed to psychotomimetics; impairments that are often attenuated by administration of dopamine (DA) antagonists. Rats were trained on either a complex instrumental discrimination task, that required the use of task-setting cues, or a simple discrimination task that did not. Following training, microdialysis probes were implanted unilaterally in either the medial prefrontal cortex (mPFC) or nucleus accumbens (NAc) and samples were collected in freely moving animals during a behavioural test session. In Experiment 1, we found no difference in levels of DA in the mPFC of rats while they were performing the two discrimination tasks. Rats that performed the complex task did, however, show significantly higher mPFC DA levels relative to rats in the simple discrimination condition following the end of the behavioural test session. In Experiment 2, rats performing the conditional discrimination showed lower levels of DA in the NAc compared to the simple discrimination group both during the test session and after it. These results provide direct evidence that conditional discrimination tasks engage frontal and mesolimbic DAergic systems and are consistent with the proposal that regulation of fronto-striatal DA is involved in aspects of cognitive control that are known to be impaired in individuals with schizophrenia.

  11. Antipsychotic treatment leading to dopamine supersensitivity persistently alters nucleus accumbens function.

    PubMed

    El Hage, Cynthia; Bédard, Anne-Marie; Samaha, Anne-Noël

    2015-12-01

    Chronic exposure to some antipsychotic medications can induce supersensitivity to dopamine receptor stimulation. This is linked to a worsening of clinical outcome and to antipsychotic treatment failure. Here we investigated the role of striatal subregions [nucleus accumbens (NAc) and caudate-putamen (CPu)] in the expression of antipsychotic-induced dopamine supersensitivity. We treated rats with haloperidol (HAL) or olanzapine (OLZ), using regimens that achieve clinically relevant kinetics of striatal D2 receptor occupancy. Under these conditions, HAL produces dopamine supersensitivity whereas OLZ does not. We then assessed behaviors evoked by the dopamine agonist amphetamine (AMPH). We either injected AMPH into the striatum or inhibited striatal function with microinjections of GABA receptor agonists prior to injecting AMPH systemically. HAL-treated rats were dopamine supersensitive, as indicated by sensitization to systemic AMPH-induced potentiation of both locomotor activity and operant responding for a conditioned reward (CR). Intra-CPu injections of AMPH had no effect on these behaviors, in any group. Intra-NAc injections of AMPH enhanced operant responding for CR in OLZ-treated and control rats, but not in HAL-treated rats. In HAL-treated rats, inhibition of the NAc also failed to disrupt systemic AMPH-induced potentiation of operant responding for CR. Furthermore, while intra-NAc AMPH enhanced locomotion in both HAL-treated and control animals, inhibition of the NAc disrupted systemic AMPH-induced locomotion only in control rats. Thus, antipsychotic-induced dopamine supersensitivity persistently disrupts NAc function, such that some behaviors that normally depend upon NAc dopamine no longer do so. This has implications for understanding dysfunctions in dopamine-mediated behaviors in patients undergoing chronic antipsychotic treatment.

  12. SIRT1-FOXO3a regulate cocaine actions in the nucleus accumbens.

    PubMed

    Ferguson, Deveroux; Shao, Ningyi; Heller, Elizabeth; Feng, Jian; Neve, Rachael; Kim, Hee-Dae; Call, Tanessa; Magazu, Samantha; Shen, Li; Nestler, Eric J

    2015-02-18

    Previous studies have shown that chronic cocaine administration induces SIRT1, a Class III histone deacetylase, in the nucleus accumbens (NAc), a key brain reward region, and that such induction influences the gene regulation and place conditioning effects of cocaine. To determine the mechanisms by which SIRT1 mediates cocaine-induced plasticity in NAc, we used chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-seq), 1 d after 7 daily cocaine (20 mg/kg) or saline injections, to map SIRT1 binding genome-wide in mouse NAc. Our unbiased results revealed two modes of SIRT1 action. First, despite its induction in NAc, chronic cocaine causes depletion of SIRT1 from most affected gene promoters in concert with enrichment of H4K16ac (itself a deacetylation target of SIRT1), which is associated with increased expression of these genes. Second, we deduced the forkhead transcription factor (FOXO) family to be a downstream mechanism through which SIRT1 regulates cocaine action. We proceeded to demonstrate that SIRT1 induction causes the deacetylation and activation of FOXO3a in NAc, which leads to the induction of several known FOXO3a gene targets in other systems. Finally, we directly establish a role for FOXO3a in promoting cocaine-elicited behavioral responses by use of viral-mediated gene transfer: we show that overexpressing FOXO3a in NAc enhances cocaine place conditioning. The discovery of these two actions of SIRT1 in NAc in the context of behavioral adaptations to cocaine represents an important step forward in advancing our understanding of the molecular adaptations underlying cocaine action.

  13. Assessment of individual differences in the rat nucleus accumbens transcriptome following taste-heroin extended access.

    PubMed

    Imperio, Caesar G; McFalls, Ashley J; Colechio, Elizabeth M; Masser, Dustin R; Vrana, Kent E; Grigson, Patricia S; Freeman, Willard M

    2016-05-01

    Heroin addiction is a disease of chronic relapse that harms the individual through devaluation of personal responsibilities in favor of finding and using drugs. Only some recreational heroin users devolve into addiction but the basis of these individual differences is not known. We have shown in rats that avoidance of a heroin-paired taste cue reliably identifies individual animals with greater addiction-like behavior for heroin. Here rats received 5min access to a 0.15% saccharin solution followed by the opportunity to self-administer either saline or heroin for 6h. Large Suppressors of the heroin-paired taste cue displayed increased drug escalation, motivation for drug, and drug loading behavior compared with Small Suppressors. Little is known about the molecular mechanisms of these individual differences in addiction-like behavior. We examined the individual differences in mRNA expression in the nucleus accumbens (NAc) of rats that were behaviorally stratified by addiction-like behavior using next-generation sequencing. We hypothesized that based on the avoidance of the drug-paired cue there will be a unique mRNA profile in the NAc. Analysis of strand-specific whole genome RNA-Seq data revealed a number of genes differentially regulated in NAc based on the suppression of the natural saccharine reward. Large Suppressors exhibited a unique mRNA prolife compared to Saline controls and Small Suppressors. Genes related to immunity, neuronal activity, and behavior were differentially expressed among the 3 groups. In total, individual differences in avoidance of a heroin-paired taste cue are associated with addiction-like behavior along with differential NAc gene expression.

  14. Interacting Cannabinoid and Opioid Receptors in the Nucleus Accumbens Core Control Adolescent Social Play

    PubMed Central

    Manduca, Antonia; Lassalle, Olivier; Sepers, Marja; Campolongo, Patrizia; Cuomo, Vincenzo; Marsicano, Giovanni; Kieffer, Brigitte; Vanderschuren, Louk J. M. J; Trezza, Viviana; Manzoni, Olivier J. J.

    2016-01-01

    Social play behavior is a highly rewarding, developmentally important form of social interaction in young mammals. However, its neurobiological underpinnings remain incompletely understood. Previous work has suggested that opioid and endocannabinoid neurotransmission interact in the modulation of social play. Therefore, we combined behavioral, pharmacological, electrophysiological, and genetic approaches to elucidate the role of the endocannabinoid 2-arachidonoylglycerol (2-AG) in social play, and how cannabinoid and opioid neurotransmission interact to control social behavior in adolescent rodents. Systemic administration of the 2-AG hydrolysis inhibitor JZL184 or the opioid receptor agonist morphine increased social play behavior in adolescent rats. These effects were blocked by systemic pretreatment with either CB1 cannabinoid receptor (CB1R) or mu-opioid receptor (MOR) antagonists. The social play-enhancing effects of systemic morphine or JZL184 treatment were also prevented by direct infusion of the CB1R antagonist SR141716 and the MOR antagonist naloxone into the nucleus accumbens core (NAcC). Searching for synaptic correlates of these effects in adolescent NAcC excitatory synapses, we observed that CB1R antagonism blocked the effect of the MOR agonist DAMGO and, conversely, that naloxone reduced the effect of a cannabinoid agonist. These results were recapitulated in mice, and completely abolished in CB1R and MOR knockout mice, suggesting that the functional interaction between CB1R and MOR in the NAcC in the modulation of social behavior is widespread in rodents. The data shed new light on the mechanism by which endocannabinoid lipids and opioid peptides interact to orchestrate rodent socioemotional behaviors. PMID:27899885

  15. Interacting Cannabinoid and Opioid Receptors in the Nucleus Accumbens Core Control Adolescent Social Play.