Science.gov

Sample records for accumbens nac dopamine

  1. Encoding of aversion by dopamine and the nucleus accumbens.

    PubMed

    McCutcheon, James E; Ebner, Stephanie R; Loriaux, Amy L; Roitman, Mitchell F

    2012-01-01

    Adaptive motivated behavior requires rapid discrimination between beneficial and harmful stimuli. Such discrimination leads to the generation of either an approach or rejection response, as appropriate, and enables organisms to maximize reward and minimize punishment. Classically, the nucleus accumbens (NAc) and the dopamine projection to it are considered an integral part of the brain's reward circuit, i.e., they direct approach and consumption behaviors and underlie positive reinforcement. This reward-centered framing ignores important evidence about the role of this system in encoding aversive events. One reason for bias toward reward is the difficulty in designing experiments in which animals repeatedly experience punishments; another is the challenge in dissociating the response to an aversive stimulus itself from the reward/relief experienced when an aversive stimulus is terminated. Here, we review studies that employ techniques with sufficient time resolution to measure responses in ventral tegmental area and NAc to aversive stimuli as they are delivered. We also present novel findings showing that the same stimulus - intra-oral infusion of sucrose - has differing effects on NAc shell dopamine release depending on the prior experience. Here, for some rats, sucrose was rendered aversive by explicitly pairing it with malaise in a conditioned taste aversion paradigm. Thereafter, sucrose infusions led to a suppression of dopamine with a similar magnitude and time course to intra-oral infusions of a bitter quinine solution. The results are discussed in the context of regional differences in dopamine signaling and the implications of a pause in phasic dopamine release within the NAc shell. Together with our data, the emerging literature suggests an important role for differential phasic dopamine signaling in aversion vs. reward.

  2. Deep brain stimulation of the nucleus accumbens shell increases impulsive behavior and tissue levels of dopamine and serotonin.

    PubMed

    Sesia, Thibaut; Bulthuis, Vincent; Tan, Sonny; Lim, Lee Wei; Vlamings, Rinske; Blokland, Arjan; Steinbusch, Harry W M; Sharp, Trevor; Visser-Vandewalle, Veerle; Temel, Yasin

    2010-10-01

    The nucleus accumbens (NAc) is gaining interest as a target for deep brain stimulation (DBS) in refractory neuropsychiatric disorders with impulsivity as core symptom. The nucleus accumbens is composed of two subterritories, core and shell, which have different anatomical connections. In animal models, it has been shown that DBS of the NAc changes impulsive action. Here, we tested the hypothesis that a change in impulsive action by DBS of the NAc is associated with changes in dopamine levels. Rats received stimulating electrodes either in the NAc core or shell, and underwent behavioral testing in a reaction time task. In addition, in a second experiment, the effect of DBS of the NAc core and shell on extracellular dopamine and serotonin levels was assessed in the NAc and medial prefrontal cortex. Control subjects received sham surgery. We have found that DBS of the NAc shell stimulation induced more impulsive action but less perseverative checking. These effects were associated with increased levels of dopamine and serotonin in the NAc, but not in the medial prefrontal cortex. DBS of the NAc core had no effect on impulsive action, but decreased perseverative responses indicative of a better impulse control. In these subjects, no effects were found on neurotransmitter levels. Our data point out that DBS of the NAc shell has negative effects on impulsive action which is accompanied by increases of dopamine and serotonin levels in the NAc, whereas DBS of the NAc core has beneficial behavioral effects.

  3. Rising taurine and ethanol concentrations in nucleus accumbens interact to produce dopamine release after ethanol administration.

    PubMed

    Ericson, Mia; Chau, PeiPei; Clarke, Rhona B; Adermark, Louise; Söderpalm, Bo

    2011-07-01

    We have previously demonstrated that glycine receptors in the nucleus accumbens (nAc) are involved in modulating both basal and ethanol-induced dopamine output in the same brain region. Ethanol is known to induce a release of both taurine and dopamine in the nAc, but the relationship between these two neuromodulators has not been investigated thoroughly. In vivo microdialysis was used to measure the effects of systemic ethanol diluted in isotonic (0.9% NaCl) or hypertonic (3.6% NaCl) saline on accumbal taurine and dopamine levels. We found that ethanol given in a hypertonic solution, contrary to an isotonic solution, failed to increase concentrations both of taurine and dopamine in the nAc. However, a modest, non-dopamine elevating concentration of taurine in the nAc disclosed a dopamine-elevating effect of systemic ethanol also when given in a hypertonic solution. In a second experiment, we investigated the effects of ethanol on taurine and dopamine in normal rats and rats with decreased levels of endogenous taurine. Lowering the level of taurine, approximately 40% by adding 5% β-alanine in the drinking water, did not influence taurine or dopamine output over time. We conclude that the elevations of taurine and dopamine in the nAc are closely related, and that in order for ethanol to induce dopamine release, a simultaneous increase of extracellular taurine levels in the nAc is required. These data also provide support for the notion that the nAc is the primary target for ethanol in its dopamine-activating effect after systemic administration.

  4. Antipsychotic treatment leading to dopamine supersensitivity persistently alters nucleus accumbens function.

    PubMed

    El Hage, Cynthia; Bédard, Anne-Marie; Samaha, Anne-Noël

    2015-12-01

    Chronic exposure to some antipsychotic medications can induce supersensitivity to dopamine receptor stimulation. This is linked to a worsening of clinical outcome and to antipsychotic treatment failure. Here we investigated the role of striatal subregions [nucleus accumbens (NAc) and caudate-putamen (CPu)] in the expression of antipsychotic-induced dopamine supersensitivity. We treated rats with haloperidol (HAL) or olanzapine (OLZ), using regimens that achieve clinically relevant kinetics of striatal D2 receptor occupancy. Under these conditions, HAL produces dopamine supersensitivity whereas OLZ does not. We then assessed behaviors evoked by the dopamine agonist amphetamine (AMPH). We either injected AMPH into the striatum or inhibited striatal function with microinjections of GABA receptor agonists prior to injecting AMPH systemically. HAL-treated rats were dopamine supersensitive, as indicated by sensitization to systemic AMPH-induced potentiation of both locomotor activity and operant responding for a conditioned reward (CR). Intra-CPu injections of AMPH had no effect on these behaviors, in any group. Intra-NAc injections of AMPH enhanced operant responding for CR in OLZ-treated and control rats, but not in HAL-treated rats. In HAL-treated rats, inhibition of the NAc also failed to disrupt systemic AMPH-induced potentiation of operant responding for CR. Furthermore, while intra-NAc AMPH enhanced locomotion in both HAL-treated and control animals, inhibition of the NAc disrupted systemic AMPH-induced locomotion only in control rats. Thus, antipsychotic-induced dopamine supersensitivity persistently disrupts NAc function, such that some behaviors that normally depend upon NAc dopamine no longer do so. This has implications for understanding dysfunctions in dopamine-mediated behaviors in patients undergoing chronic antipsychotic treatment.

  5. Differential Dopamine Regulation of Ca2+ Signaling and Its Timing Dependence in the Nucleus Accumbens

    PubMed Central

    Swapna, Immani; Bondy, Brian; Morikawa, Hitoshi

    2016-01-01

    SUMMARY Dopamine action in the nucleus accumbens (NAc) is thought to drive appetitive behavior and Pavlovian reward learning. However, it remains controversial how dopamine achieves these behavioral effects by regulating medium spiny projection neurons (MSNs) of the NAc, especially on a behaviorally relevant timescale. Metabotropic glutamate receptor (mGluR)-induced Ca2+ signaling dependent on the Ca2+- releasing messenger inositol 1,4,5-triphosphate (IP3) plays a critical role in controlling neuronal excitability and synaptic plasticity. Here, we show that transient dopamine application facilitates mGluR/IP3-induced Ca2+ signals within a time window of ~2–10 s in a subpopulation of MSNs in the NAc core. Dopamine facilitation of IP3-induced Ca2+ signaling is mediated by D1 dopamine receptors. In dopamine-insensitive MSNs, activation of A2A adenosine receptors causes enhancement of IP3-evoked Ca2+ signals, which is reversed by D2 dopamine receptor activation. These results show that dopamine differentially regulates Ca2+ signaling on the order of seconds in two distinct MSN subpopulations. PMID:27068462

  6. AMPA/Kainate, NMDA, and Dopamine D1 Receptor Function in the Nucleus Accumbens Core: A Context-Limited Role in the Encoding and Consolidation of Instrumental Memory

    ERIC Educational Resources Information Center

    Hernandez, Pepe J.; Andrzejewski, Matthew E.; Sadeghian, Kenneth; Panksepp, Jules B.; Kelley, Ann E.

    2005-01-01

    Neural integration of glutamate- and dopamine-coded signals within the nucleus accumbens (NAc) is a fundamental process governing cellular plasticity underlying reward-related learning. Intra-NAc core blockade of NMDA or D1 receptors in rats impairs instrumental learning (lever-pressing for sugar pellets), but it is not known during which phase of…

  7. beta-Alanine elevates dopamine levels in the rat nucleus accumbens: antagonism by strychnine.

    PubMed

    Ericson, Mia; Clarke, Rhona B C; Chau, PeiPei; Adermark, Louise; Söderpalm, Bo

    2010-04-01

    Glycine receptors (GlyRs) in the nucleus accumbens (nAc) have recently been suggested to be involved in the reinforcing and dopamine-elevating properties of ethanol via a neuronal circuitry involving the VTA. Apart from ethanol, both glycine and taurine have the ability to modulate dopamine output via GlyRs in the same brain region. In the present study, we wanted to explore whether yet another endogenous ligand for the GlyR, beta-alanine, had similar effects. To this end, we monitored dopamine in the nAc by means of in vivo microdialysis and found that local perfusion of beta-alanine increased dopamine output. In line with previous observations investigating ethanol, glycine and taurine, the competitive GlyR antagonist strychnine completely blocked the dopamine elevation. The present results suggest that beta-alanine has the ability to modulate dopamine levels in the nAc via strychnine-sensitive GlyRs, and are consistent with previous studies suggesting the importance of this receptor for modulating dopamine output.

  8. Activation of Dopamine Receptors in the Nucleus Accumbens Promotes Sucrose-Reinforced Cued Approach Behavior

    PubMed Central

    du Hoffmann, Johann; Nicola, Saleem M.

    2016-01-01

    Dopamine receptor activation in the nucleus accumbens (NAc) promotes vigorous environmentally-cued food-seeking in hungry rats. Rats fed ad libitum, however, respond to fewer food-predictive cues, particularly when the value of food reward is low. Here, we investigated whether this difference could be due to differences in the degree of dopamine receptor activation in the NAc. First, we observed that although rats given ad libitum access to chow in their home cages approached a food receptacle in response to reward-predictive cues, the number of such approaches declined as animals accumulated food rewards. Intriguingly, cued approach to food occurred in clusters, with several cued responses followed by successive non-responses. This pattern suggested that behavior was dictated by transitions between two states, responsive and non-responsive. Injection of D1 or D2 dopamine receptor agonists into the NAc dose-dependently increased cue responding by promoting transitions to the responsive state and by preventing transitions to the non-responsive state. In contrast, antagonists of either D1 or D2 receptors promoted long bouts of non-responding by inducing transitions to the non-responsive state and by preventing transitions to the responsive state. Moreover, locomotor behavior during the inter-trial interval was correlated with the responsive state, and was also increased by dopamine receptor agonists. These results suggest that activation of NAc dopamine receptors plays an important role in regulating the probability of approach to food under conditions of normative satiety. PMID:27471453

  9. Prelimbic to Accumbens Core Pathway Is Recruited in a Dopamine-Dependent Manner to Drive Cued Reinstatement of Cocaine Seeking

    PubMed Central

    McGlinchey, Ellen M.; James, Morgan H.; Mahler, Stephen V.; Pantazis, Caroline

    2016-01-01

    Glutamate inputs to nucleus accumbens (NAc) facilitate conditioned drug-seeking behavior and primarily originate from medial prefrontal cortex (mPFC), basolateral amygdala (BLA), and ventral subiculum of the hippocampus (vSub). These regions express Fos (a marker of neural activity) during cue-induced reinstatement of cocaine seeking, but only subpopulations of neurons within these regions drive drug seeking. One way to identify and functionally distinguish neural subpopulations activated during drug-seeking is to examine their projection targets. In rats, we examined Fos expression during cue-induced reinstatement of cocaine- and sucrose-seeking in prelimbic cortex (PL), infralimbic cortex (IL), BLA, and vSub neurons that project to NAc core (NAcC) or NAc shell (NAcSh). Neurons in PL, BLA, and vSub that project to NAcC, but not NAcSh, expressed Fos during cue-induced cocaine seeking, but not sucrose seeking. However, only activation of the PL-NAcC pathway positively correlated with cocaine reinstatement behavior, unlike BLA or vSub inputs to NAcC. To confirm a functional role for the PL-NAcC pathway, and to test the hypothesis that this pathway is recruited in a dopamine-dependent manner, we used a pharmacological disconnection approach whereby dopamine signaling was blocked in PL and glutamate signaling was blocked in the contralateral NAcC. This disconnection attenuated cue-induced reinstatement of cocaine seeking but had no effect on reinstatement of sucrose seeking. Our results highlight a role for the PL-NAcC pathway in cocaine seeking and show that these glutamatergic projections are recruited in a dopamine-dependent manner to drive reinstatement. SIGNIFICANCE STATEMENT Relapse represents a significant barrier to the successful treatment of cocaine addiction. Here, we characterize the relative activation of glutamatergic inputs to nucleus accumbens during cued reinstatement of cocaine seeking versus sucrose seeking. Prelimbic cortex (PL) projections to

  10. The role of nucleus accumbens dopamine in outcome encoding in instrumental and Pavlovian conditioning.

    PubMed

    Lex, Bjoern; Hauber, Wolfgang

    2010-02-01

    Considerable evidence suggests that dopamine in the core subregion of the nucleus accumbens is not only involved in Pavlovian conditioning but also supports instrumental performance. However, it is largely unknown whether NAc dopamine is required for outcome encoding which plays an important role both in Pavlovian stimulus-outcome learning and instrumental action-outcome learning. Therefore, we tested rats with 6-hydroxydopamine (6-OHDA) induced dopamine depletion of the NAc core for their sensitivity to outcome devaluation in a Pavlovian and an instrumental task. Results indicate that 6-OHDA-lesioned animals were sensitive to outcome devaluation in an instrumental task. This finding provides support to the notion that NAc core dopamine may not be crucial in encoding action-outcome associations. However, during instrumental conditioning lever pressing rates in 6-OHDA-lesioned animals were markedly lower which could reflect an impaired behavioral activation. By contrast, after outcome-specific devaluation in a Pavlovian task, performance in 6-OHDA-lesioned animals was impaired, i.e. their magazine-directed responding was non-selectively reduced. One possibility to explain non-selective responding is that NAc core DA depletion impaired the ability of conditioned stimuli to activate the memory of the current value of the reinforcer.

  11. Rising taurine and ethanol concentrations in nucleus accumbens interact to produce the dopamine-activating effects of alcohol.

    PubMed

    Ericson, Mia; Chau, Peipei; Adermark, Louise; Söderpalm, Bo

    2013-01-01

    Alcohol misuse and addiction is a worldwide problem causing enormous individual suffering as well as financial costs for the society. To develop pharmacological means to reduce suffering, we need to understand the mechanisms underlying the effects of ethanol in the brain. Ethanol is known to increase extracellular levels of both dopamine and taurine in the nucleus accumbens (nAc), a part of the brain reward system, but the two events have not been connected. In previous studies we have demonstrated that glycine receptors in the nAc are involved in modulating both basal- and ethanol-induced dopamine output in the same brain region. By means of in vivo microdialysis in freely moving rats we here demonstrate that the endogenous glycine receptor ligand taurine mimics ethanol in activating the brain reward system. Furthermore, administration of systemic ethanol diluted in an isotonic (0.9% NaCl) or hypertonic (3.6% NaCl) saline solution was investigated with respect to extracellular levels of taurine and dopamine in the nAc. We found that ethanol given in a hypertonic solution, contrary to an isotonic solution, failed to increase concentrations of both taurine and dopamine in the nAc. However, a modest, non-dopamine elevating concentration of taurine in the nAc disclosed a dopamine elevating effect of systemic ethanol also when given in a hypertonic solution. We conclude that the elevations of taurine and dopamine in the nAc are closely related and that in order for ethanol to induce dopamine release, a simultaneous increase of extracellular taurine levels in the nAc is required. These data also -provide support for the notion that the nAc is the primary target for ethanol in its dopamine-activating effect after systemic administration and that taurine is a prominent participant in activating the brain reward system.

  12. Nucleus accumbens core dopamine signaling tracks the need-based motivational value of food-paired cues.

    PubMed

    Aitken, Tara J; Greenfield, Venuz Y; Wassum, Kate M

    2016-03-01

    Environmental reward-predictive stimuli provide a major source of motivation for instrumental reward-seeking activity and this has been linked to dopamine signaling in the nucleus accumbens (NAc) core. This cue-induced incentive motivation can be quite general, not restricted to instrumental actions that earn the same unique reward, and is also typically regulated by one's current need state, such that cues only motivate actions when this is adaptive. But it remains unknown whether cue-evoked dopamine signaling is similarly regulated by need state. Here, we used fast-scan cyclic voltammetry to monitor dopamine concentration changes in the NAc core of rats during a Pavlovian-to-instrumental transfer task in which the motivating influence of two cues, each signaling a distinct food reward (sucrose or food pellets), over an action earning a third unique food reward (polycose) was assessed in a state of hunger and of satiety. Both cues elicited a robust NAc dopamine response when hungry. The magnitude of the sucrose cue-evoked dopamine response correlated with the Pavlovian-to-instrumental transfer effect that was selectively induced by this stimulus. Satiety attenuated these cue-evoked dopamine responses and behavioral responding, even though rats had never experienced the specific food rewards in this state. These data demonstrate that cue-evoked NAc core responses are sensitive to current need state, one critical variable that determines the current adaptive utility of cue-motivated behavior. Food-predictive stimuli motivate food-seeking behavior. Here, we show that food cues evoke a robust nucleus accumbens core dopamine response when hungry that correlates with the cue's ability to invigorate general food seeking. This response is attenuated when sated, demonstrating that food cue-evoked accumbens dopamine responses are sensitive to the need state information that determines the current adaptive utility of cue-motivated action.

  13. Acute and prolonged effects of clocinnamox and methoclocinnamox on nucleus accumbens dopamine overflow.

    PubMed

    Zernig, G; Fibiger, H C

    1998-01-01

    The mu opioid antagonist clocinnamox (CCAM) insurmountably inhibits opioid self-administration. In contrast, CCAM's prodrug, methoclocinnamox (MCCAM), acts as a weak partial agonist in this paradigm when given acutely and inhibits opioid self-administration for up to 5 days. In vivo microdialysis was employed to determine if these effects are paralleled in basal and opioid-stimulated dopamine (DA) overflow in the rat nucleus accumbens (NAC). When given acutely, CCAM (10 mg/kg s.c.) was essentially without effect. CCAM also markedly attenuated the overflow of DA induced by heroin (0.5 mg/kg s.c.; 200% of DA baseline) 24 h later. In contrast, MCCAM (10 mg/kg s.c.) acutely increased NAC DA overflow to 200-245% baseline within 30 min. NAC DA remained at this elevated level for the whole 3-h period of the experiment. Even after 24 h, NAC DA overflow of MCCAM-pretreated animals remained elevated at 165% of VEH-treated animals. Administration of heroin did not result in any further elevation of NAC DA release under these conditions. Thus, the suggested therapeutic profile of MCCAM, i.e., an acute partial agonistic reinforcing effect followed by antagonism of the reinforcing effects of subsequently abused opioids, was confirmed in NAC DA overflow, a neurochemical correlate of the reinforcing effects of drugs of abuse. The most parsimonious explanation for MCCAM's effect on NAC DA overflow is that it acted as an essentially irreversible partial agonist.

  14. Dopamine in nucleus accumbens: salience modulation in latent inhibition and overshadowing.

    PubMed

    Nelson, A J D; Thur, K E; Marsden, C A; Cassaday, H J

    2011-12-01

    Latent inhibition (LI) is demonstrated when non-reinforced pre-exposure to a to-be-conditioned stimulus retards later learning. Learning is similarly retarded in overshadowing, in this case using the relative intensity of competing cues to manipulate associability. Electrolytic/excitotoxic lesions to shell accumbens (NAc) and systemic amphetamine both reliably abolish LI. Here a conditioned emotional response procedure was used to demonstrate LI and overshadowing and to examine the role of dopamine (DA) within NAc. Experiment 1 showed that LI but not overshadowing was abolished by systemic amphetamine (1.0 mg/kg i.p.). In Experiment 2, 6-hydroxydopamine (6-OHDA) was used to lesion DA terminals within NAc: both shell- and core- (plus shell-)lesioned rats showed normal LI and overshadowing. Experiment 3 compared the effects of amphetamine microinjected at shell and core coordinates prior to conditioning: LI, but not overshadowing, was abolished by 10.0 but not 5.0 µg/side amphetamine injected in core but not shell NAc. These results suggest that the abolition of LI produced by NAc shell lesions is not readily reproduced by regionally restricted DA depletion within NAc; core rather than shell NAc mediates amphetamine-induced abolition of LI; overshadowing is modulated by different neural substrates.

  15. Ghrelin regulates phasic dopamine and nucleus accumbens signaling evoked by food-predictive stimuli

    PubMed Central

    Cone, Jackson J.; Roitman, Jamie D.; Roitman, Mitchell F.

    2015-01-01

    Environmental stimuli that signal food availability hold powerful sway over motivated behavior and promote feeding, in part, by activating the mesolimbic system. These food-predictive cues evoke brief (phasic) changes in nucleus accumbens (NAc) dopamine concentration and in the activity of individual NAc neurons. Phasic fluctuations in mesolimbic signaling have been directly linked to goal-directed behaviors, including behaviors elicited by food-predictive cues. Food-seeking behavior is also strongly influenced by physiological state (i.e. hunger vs. satiety). Ghrelin, a stomach hormone that crosses the blood-brain barrier, is linked to the perception of hunger and drives food intake, including intake potentiated by environmental cues. Notwithstanding, whether ghrelin regulates phasic mesolimbic signaling evoked by food-predictive stimuli is unknown. Here, rats underwent Pavlovian conditioning in which one cue predicted the delivery of rewarding food (CS+) and a second cue predicted nothing (CS−). After training, we measured the effect of ghrelin infused into the lateral ventricle (LV) on sub-second fluctuations in NAc dopamine using fast-scan cyclic voltammetry and individual NAc neuron activity using in vivo electrophysiology in separate groups of rats. LV ghrelin augmented both phasic dopamine and phasic increases in the activity of NAc neurons evoked by the CS+. Importantly, ghrelin did not affect the dopamine nor NAc neuron response to the CS−, suggesting that ghrelin selectively modulated mesolimbic signaling evoked by motivationally significant stimuli. These data demonstrate that ghrelin, a hunger signal linked to physiological state, can regulate cue-evoked mesolimbic signals that underlie food-directed behaviors. PMID:25708523

  16. Cue-Evoked Dopamine Release Rapidly Modulates D2 Neurons in the Nucleus Accumbens During Motivated Behavior

    PubMed Central

    Owesson-White, Catarina; Belle, Anna M.; Herr, Natalie R.; Peele, Jessica L.; Gowrishankar, Preethi; Carelli, Regina M.

    2016-01-01

    Dopaminergic neurons that project from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) fire in response to unpredicted rewards or to cues that predict reward delivery. Although it is well established that reward-related events elicit dopamine release in the NAc, the role of rapid dopamine signaling in modulating NAc neurons that respond to these events remains unclear. Here, we examined dopamine's actions in the NAc in the rat brain during an intracranial self-stimulation task in which a cue predicted lever availability for electrical stimulation of the VTA. To distinguish actions of dopamine at select receptors on NAc neurons during the task, we used a multimodal sensor that probes three aspects of neuronal communication simultaneously: neurotransmitter release, cell firing, and identification of dopamine receptor type. Consistent with prior studies, we first show dopamine release events in the NAc both at cue presentation and after lever press (LP). Distinct populations of NAc neurons encode these behavioral events at these same locations selectively. Using our multimodal sensor, we found that dopamine-mediated responses after the cue involve exclusively a subset of D2-like receptors (D2Rs), whereas dopamine-mediated responses proximal to the LP are mediated by both D1-like receptors (D1R) and D2Rs. These results demonstrate for the first time that dopamine-mediated responses after cues that predict reward availability are specifically linked to its actions at a subset of neurons in the NAc containing D2Rs. SIGNIFICANCE STATEMENT Successful reward procurement typically involves the completion of a goal-directed behavior in response to appropriate environmental cues. Although numerous studies link the mesolimbic dopamine system with these processes, how dopamine's effects are mediated on the receptor level within a key neural substrate, the nucleus accumbens, remains elusive. Here, we used a unique multimodal sensor that reveals three aspects of

  17. Increasing dopamine D2 receptor expression in the adult nucleus accumbens enhances motivation

    PubMed Central

    Trifilieff, Pierre; Feng, Bo; Urizar, Eneko; Winiger, Vanessa; Ward, Ryan D.; Taylor, Kathleen M.; Martinez, Diana M.; Moore, Holly; Balsam, Peter D.; Simpson, Eleanor H.; Javitch, Jonathan A.

    2014-01-01

    A decrease in dopamine D2 receptor (D2R) binding in the striatum is one of the most common findings in disorders that involve a dysregulation of motivation, including obesity, addiction, and attention deficit hyperactivity disorder. Since disruption of D2R signaling in the ventral striatum – including the Nucleus Accumbens (NAc) - impairs motivation, we sought to determine whether potentiating postsynaptic D2R-dependent signaling in the NAc would improve motivation. In this study, we used a viral vector strategy to overexpress postsynaptic D2Rs in either the NAc or the dorsal striatum. We investigated the effects of D2R overexpression on instrumental learning, willingness to work, use of reward value representations and modulation of motivation by reward associated cues. Overexpression of postsynaptic D2R in the NAc selectively increased motivation without altering consummatory behavior, the representation of the value of the reinforcer, or the capacity to use reward associated cues in flexible ways. In contrast, D2R overexpression in the dorsal striatum did not alter performance on any of the tasks. Thus, consistent with numerous studies showing that reduced D2R signaling impairs motivated behavior, our data show that post-synaptic D2R overexpression in the NAc specifically increases an animal’s willingness to expend effort to obtain a goal. Taken together, these results provide insight into the potential impact of future therapeutic strategies that enhance D2R signaling in the NAc. PMID:23711983

  18. Gamma-vinyl GABA inhibits methamphetamine, heroin, or ethanol-induced increases in nucleus accumbens dopamine.

    PubMed

    Gerasimov, M R; Ashby, C R; Gardner, E L; Mills, M J; Brodie, J D; Dewey, S L

    1999-10-01

    We examined the acute effect of the irreversible GABA-transaminase inhibitor, gamma-vinyl GABA (GVG, Sabril((R)), Vigabatrin((R))) on increases in nucleus accumbens (NAc) dopamine (DA) following acute administration of methamphetamine, heroin, or ethanol. Methamphetamine (2.5 mg/kg) produced a dose-dependent increase (2, 700%) in NAc DA. GVG preadministration (300 or 600 mg/kg), however, inhibited this response by approximately 39 and 61%, respectively. The lower dose of methamphetamine (1.25 mg/kg), increased DA by 1, 700%. This response was inhibited to a similar extent (44%) regardless of the GVG dose preadministered (300 or 600 mg/kg). In addition, heroin-induced increases in NAc DA (0.5 mg/kg, 170%) were inhibited or completely abolished by GVG (150 or 300 mg/kg, 65 and 100%, respectively). Finally, at half the dose necessary for heroin, GVG (150 mg/kg) also completely abolished ethanol-induced increases in NAc DA following a 0.25 g/kg challenge dose (140%). Taken with our previous findings using nicotine or cocaine as the challenge drug, these results indicate that GVG attenuates increases in NAc DA by a mechanism common to many drugs of abuse. However, it appears unlikely that an acute dose of GVG can completely inhibit increases in NAc DA following challenges with a drug whose mechanism of action is mediated primarily through the DA reuptake site.

  19. Positive reinforcement mediated by midbrain dopamine neurons requires D1 and D2 receptor activation in the nucleus accumbens.

    PubMed

    Steinberg, Elizabeth E; Boivin, Josiah R; Saunders, Benjamin T; Witten, Ilana B; Deisseroth, Karl; Janak, Patricia H

    2014-01-01

    The neural basis of positive reinforcement is often studied in the laboratory using intracranial self-stimulation (ICSS), a simple behavioral model in which subjects perform an action in order to obtain exogenous stimulation of a specific brain area. Recently we showed that activation of ventral tegmental area (VTA) dopamine neurons supports ICSS behavior, consistent with proposed roles of this neural population in reinforcement learning. However, VTA dopamine neurons make connections with diverse brain regions, and the specific efferent target(s) that mediate the ability of dopamine neuron activation to support ICSS have not been definitively demonstrated. Here, we examine in transgenic rats whether dopamine neuron-specific ICSS relies on the connection between the VTA and the nucleus accumbens (NAc), a brain region also implicated in positive reinforcement. We find that optogenetic activation of dopaminergic terminals innervating the NAc is sufficient to drive ICSS, and that ICSS driven by optical activation of dopamine neuron somata in the VTA is significantly attenuated by intra-NAc injections of D1 or D2 receptor antagonists. These data demonstrate that the NAc is a critical efferent target sustaining dopamine neuron-specific ICSS, identify receptor subtypes through which dopamine acts to promote this behavior, and ultimately help to refine our understanding of the neural circuitry mediating positive reinforcement.

  20. Distinct Effects of Enriched Environment on Dopamine Clearance in Nucleus Accumbens Shell and Core Following Systemic Nicotine Administration

    PubMed Central

    ZHU, JUN; BARDO, MICHAEL T.; DWOSKIN, LINDA P.

    2013-01-01

    Environmental enrichment during development may reduce drug abuse liability by modulating dopamine transporter (DAT) function. Nucleus accumbens (NAc) shell and core respond differentially to regulate the rewarding properties and locomotor stimulant effects of psychostimulants. The current study evaluated dopamine (DA) clearance (CLDA) in the NAc shell and core using in vivo voltammetry in rats raised in an enriched condition (EC) or an impoverished condition (IC) and determined the effect of nicotine (0.4 mg/kg) on CLDA. Baseline CLDA in NAc shell and core was not different between EC and IC rats. In the saline control group, CLDA in NAc shell was greater across time in IC when compared with EC rats, whereas CLDA in NAc core was greater in EC rats when compared with IC rats. Consistent with these findings, opposite effects of enrichment on DA clearance in shell and core were obtained following acute nicotine administration. In NAc shell, nicotine increased CLDA in EC rats, but not in IC rats. Conversely, in NAc core, nicotine increased CLDA in IC rats, but not in EC rats. The current results demonstrate that environmental enrichment differentially regulates the response to nicotine in NAc shell and core via alterations in DAT function, which may explain how environmental enrichment reduces the behavioral response to nicotine. PMID:23065942

  1. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation.

    PubMed

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J

    2016-06-23

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1-D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated.

  2. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation

    PubMed Central

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J.

    2016-01-01

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1–D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated. PMID:27337658

  3. Nucleus accumbens core dopamine signaling tracks the need-based motivational value of food-paired cues

    PubMed Central

    Aitken, Tara J.; Greenfield, Venuz Y.; Wassum, Kate M.

    2016-01-01

    Environmental reward-predictive stimuli provide a major source of motivation for instrumental reward-seeking activity and this has been linked to dopamine signaling in the nucleus accumbens (NAc). This cue-induced incentive motivation can be quite general, not restricted to instrumental actions that earn the same unique reward, and is also typically regulated by one’s current need state, such that cues only motivate actions when this is adaptive. But it is unknown whether cue-evoked dopamine signaling is similarly regulated by need state. Here we used fast-scan cyclic voltammetry to monitor dopamine concentration changes in the NAc core of rats during a Pavlovian-to-instrumental transfer (PIT) task in which the motivating influence of two cues, each signaling a distinct food reward (sucrose or food pellets), over an action earning a third unique food reward (grape-flavored polycose) was assessed in a state of hunger and of satiety. Both cues elicited a robust NAc dopamine response when hungry. The magnitude of the sucrose cue-evoked dopamine response correlated with the PIT effect that was selectively induced by this stimulus. Satiety attenuated these cue-evoked dopamine responses and behavioral responding, even though rats had never experienced the specific food rewards in this state. These data demonstrate that cue-evoked NAc core responses are sensitive to current need state, one critical variable that determines the current adaptive utility of cue-motivated behavior. PMID:26715366

  4. Nucleus Accumbens Dopamine D2-Receptor Expressing Neurons Control Behavioral Flexibility in a Place Discrimination Task in the IntelliCage

    ERIC Educational Resources Information Center

    Macpherson, Tom; Morita, Makiko; Wang, Yanyan; Sasaoka, Toshikuni; Sawa, Akira; Hikida, Takatoshi

    2016-01-01

    Considerable evidence has demonstrated a critical role for the nucleus accumbens (NAc) in the acquisition and flexibility of behavioral strategies. These processes are guided by the activity of two discrete neuron types, dopamine D1- or D2-receptor expressing medium spiny neurons (D1-/D2-MSNs). Here we used the IntelliCage, an automated…

  5. Modulation of Memory Consolidation by the Basolateral Amygdala or Nucleus Accumbens Shell Requires Concurrent Dopamine Receptor Activation in Both Brain Regions

    ERIC Educational Resources Information Center

    LaLumiere, Ryan T.; Nawar, Erene M.; McGaugh, James L.

    2005-01-01

    Previous findings indicate that the basolateral amygdala (BLA) and the nucleus accumbens (NAc) interact in influencing memory consolidation. The current study investigated whether this interaction requires concurrent dopamine (DA) receptor activation in both brain regions. Unilateral, right-side cannulae were implanted into the BLA and the…

  6. Changes in dopamine transporter binding in nucleus accumbens following chronic self-administration cocaine: heroin combinations.

    PubMed

    Pattison, Lindsey P; McIntosh, Scot; Sexton, Tammy; Childers, Steven R; Hemby, Scott E

    2014-10-01

    Concurrent use of cocaine and heroin (speedball) has been shown to exert synergistic effects on dopamine neurotransmission in the nucleus accumbens (NAc), as observed by significant increases in extracellular dopamine levels and compensatory elevations in the maximal reuptake rate of dopamine. The present studies were undertaken to determine whether chronic self-administration of cocaine, heroin or a combination of cocaine:heroin led to compensatory changes in the abundance and/or affinity of high- and low-affinity DAT binding sites. Saturation binding of the cocaine analog [(125) I] 3β-(4-iodophenyl)tropan-2β-carboxylic acid methyl ester ([(125) I]RTI-55) in rat NAc membranes resulted in binding curves that were best fit to two-site binding models, allowing calculation of dissociation constant (Kd ) and binding density (Bmax ) values corresponding to high- and low-affinity DAT binding sites. Scatchard analysis of the saturation binding curves clearly demonstrate the presence of high- and low- affinity binding sites in the NAc, with low-affinity sites comprising 85 to 94% of the binding sites. DAT binding analyses revealed that self-administration of cocaine and a cocaine:heroin combination increased the affinity of the low-affinity site for the cocaine congener RTI-55 compared to saline. These results indicate that the alterations observed following chronic speedball self-administration are likely due to the cocaine component alone; thus further studies are necessary to elaborate upon the synergistic effect of cocaine:heroin combinations on the dopamine system in the NAc.

  7. Effects of diet and insulin on dopamine transporter activity and expression in rat caudate-putamen, nucleus accumbens, and midbrain.

    PubMed

    Jones, Kymry T; Woods, Catherine; Zhen, Juan; Antonio, Tamara; Carr, Kenneth D; Reith, Maarten E A

    2017-03-01

    Food restriction (FR) and obesogenic (OB) diets are known to alter brain dopamine transmission and exert opposite modulatory effects on behavioral responsiveness to psychostimulant drugs of abuse. Mechanisms underlying these diet effects are not fully understood. In this study, we examined diet effects on expression and function of the dopamine transporter (DAT) in caudate-putamen (CPu), nucleus accumbens (NAc), and midbrain regions. Dopamine (DA) uptake by CPu, NAc or midbrain synapto(neuro)somes was measured in vitro with rotating disk electrode voltammetry or with [(3) H]DA uptake and was found to correlate with DAT surface expression, assessed by maximal [(3) H](-)-2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane binding and surface biotinylation assays. FR and OB diets were both found to decrease DAT activity in CPu with a corresponding decrease in surface expression but had no effects in the NAc and midbrain. Diet treatments also affected sensitivity to insulin-induced enhancement of DA uptake, with FR producing an increase in CPu and NAc, likely mediated by an observed increase in insulin receptor expression, and OB producing a decrease in NAc. The increased expression of insulin receptor in NAc of FR rats was accompanied by increased DA D2 receptor expression, and the decreased DAT expression and function in CPu of OB rats was accompanied by decreased DA D2 receptor expression. These results are discussed as partial mechanistic underpinnings of diet-induced adaptations that contribute to altered behavioral sensitivity to psychostimulants that target the DAT.

  8. Local Control of Extracellular Dopamine Levels in the Medial Nucleus Accumbens by a Glutamatergic Projection from the Infralimbic Cortex.

    PubMed

    Quiroz, César; Orrú, Marco; Rea, William; Ciudad-Roberts, Andrés; Yepes, Gabriel; Britt, Jonathan P; Ferré, Sergi

    2016-01-20

    It is generally assumed that infralimbic cortex (ILC) and prelimbic cortex, two adjacent areas of the medial prefrontal cortex (mPFC) in rodents, provide selective excitatory glutamatergic inputs to the nucleus accumbens (NAc) shell and core, respectively. It is also generally believed that mPFC influences the extracellular levels of dopamine in the NAc primarily by an excitatory collateral to the ventral tegmental area (VTA). In the present study, we first established the existence of a selective functional connection between ILC and the posteromedial portions of the VTA (pmVTA) and the mNAc shell (pmNAc shell), by measuring striatal neuronal activation (immunohistochemical analysis of ERK1/2 phosphorylation) and glutamate release (in vivo microdialysis) upon ILC electrical stimulation. A novel optogenetic-microdialysis approach allowed the measurement of extracellular concentrations of glutamate and dopamine in the pmNAc shell upon local light-induced stimulation of glutamatergic terminals from ILC. Cortical electrical and local optogenetic stimulation produced significant increases in the extracellular concentrations of glutamate and dopamine in the pmNAc shell. Local blockade of glutamate release by perfusion of an adenosine A2A receptor antagonist in the pmNAc shell blocked the dopamine release induced by local optogenetic stimulation but only partially antagonized dopamine release induced by cortical electrical stimulation. The results demonstrate that ILC excitatory afferents directly modulate the extracellular concentration of dopamine in the pmNAc shell, but also support the involvement of an indirect mechanism of dopamine control, through a concomitant ILC-mediated activation of the pmVTA. Significance statement: We established the existence of a functional connection between the infralimbic cortex (ILC) and the posteromedial portions of the ventral tegmental area (pmVTA) and the medial nucleus acumbens shell (pmNAc shell). A novel optogenetic

  9. Local Control of Extracellular Dopamine Levels in the Medial Nucleus Accumbens by a Glutamatergic Projection from the Infralimbic Cortex

    PubMed Central

    Quiroz, César; Orrú, Marco; Rea, William; Ciudad-Roberts, Andrés; Yepes, Gabriel; Britt, Jonathan P.

    2016-01-01

    It is generally assumed that infralimbic cortex (ILC) and prelimbic cortex, two adjacent areas of the medial prefrontal cortex (mPFC) in rodents, provide selective excitatory glutamatergic inputs to the nucleus accumbens (NAc) shell and core, respectively. It is also generally believed that mPFC influences the extracellular levels of dopamine in the NAc primarily by an excitatory collateral to the ventral tegmental area (VTA). In the present study, we first established the existence of a selective functional connection between ILC and the posteromedial portions of the VTA (pmVTA) and the mNAc shell (pmNAc shell), by measuring striatal neuronal activation (immunohistochemical analysis of ERK1/2 phosphorylation) and glutamate release (in vivo microdialysis) upon ILC electrical stimulation. A novel optogenetic-microdialysis approach allowed the measurement of extracellular concentrations of glutamate and dopamine in the pmNAc shell upon local light-induced stimulation of glutamatergic terminals from ILC. Cortical electrical and local optogenetic stimulation produced significant increases in the extracellular concentrations of glutamate and dopamine in the pmNAc shell. Local blockade of glutamate release by perfusion of an adenosine A2A receptor antagonist in the pmNAc shell blocked the dopamine release induced by local optogenetic stimulation but only partially antagonized dopamine release induced by cortical electrical stimulation. The results demonstrate that ILC excitatory afferents directly modulate the extracellular concentration of dopamine in the pmNAc shell, but also support the involvement of an indirect mechanism of dopamine control, through a concomitant ILC-mediated activation of the pmVTA. SIGNIFICANCE STATEMENT We established the existence of a functional connection between the infralimbic cortex (ILC) and the posteromedial portions of the ventral tegmental area (pmVTA) and the medial nucleus acumbens shell (pmNAc shell). A novel optogenetic

  10. Increases in cytoplasmic dopamine compromise the normal resistance of the nucleus accumbens to methamphetamine neurotoxicity.

    PubMed

    Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M

    2009-06-01

    Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the caudate-putamen (CPu) where long-term DA depletion and microglial activation are most evident. Even damage within the CPu is remarkably heterogenous with lateral and ventral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared of the damage that accompanies binge METH intoxication. Increases in cytoplasmic DA produced by reserpine, L-DOPA or clorgyline prior to METH uncover damage in the NAc as evidenced by microglial activation and depletion of DA, tyrosine hydroxylase (TH), and the DA transporter. These effects do not occur in the NAc after treatment with METH alone. In contrast to the CPu where DA, TH, and DA transporter levels remain depleted chronically, DA nerve ending alterations in the NAc show a partial recovery over time. None of the treatments that enhance METH toxicity in the NAc and CPu lead to losses of TH protein or DA cell bodies in the substantia nigra or the ventral tegmentum. These data show that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of METH to include brain structures not normally targeted for damage by METH alone. The resistance of the NAc to METH-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of METH neurotoxicity by alterations in DA homeostasis is significant in light of the important roles played by this brain structure.

  11. Dopamine release in the nucleus accumbens is altered following traumatic brain injury.

    PubMed

    Chen, Yuan-Hao; Huang, Eagle Yi-Kung; Kuo, Tung-Tai; Hoffer, Barry J; Miller, Jonathan; Chou, Yu-Ching; Chiang, Yung-Hsiao

    2017-04-21

    Mild-to-severe traumatic brain injury (TBI) is frequently associated with prolonged dysfunction of reward circuitry, including motivation and salience, which suggests alterations of dopamine (DA) processing within the core and shell of the nucleus accumbens (NAC). Using fast-scan cyclic voltammetry in a rodent model of traumatic brain injury, we found that stimulus-evoked DA release is distinct in the core and shell of the NAC, with the shell being less responsive to tonic stimulation and more sensitive to the number of pulses when phasic stimulation is applied. Exposure to TBI was associated with major changes in both release and reuptake of DA in both the core and shell of NAC, with greater changes seen in the core. These alterations evolved over time, becoming most severe 1-2weeks after injury with subsequent recovery, and the extent and progression of these abnormalities was correlated with severity of injury. Taken together, these data support behavior and anatomical studies suggesting the NAC core and striatum may subserve parallel functions, whereas the shell is distinct. These data offer a unique window on how different neurological systems respond to TBI and may help explain affective and cognitive changes that are seen.

  12. Acamprosate blocks the increase in dopamine extracellular levels in nucleus accumbens evoked by chemical stimulation of the ventral hippocampus.

    PubMed

    Cano-Cebrián, M J; Zornoza-Sabina, T; Guerri, C; Polache, A; Granero, L

    2003-10-01

    Recently, we have shown that acamprosate is able to modulate extracellular dopamine (DA) levels in the nucleus accumbens (NAc) and may act as an antagonist of N-methyl-D-aspartate (NMDA) receptors. Neurochemical studies show that chemical stimulation (using NMDA) of the ventral subiculum (vSub) of the hippocampus produces robust and sustained increases in extracellular DA levels in the NAc, an effect mediated through ionotropic glutamate (iGlu) receptors. The present study examines whether acamprosate locally infused in the NAc of rats could block or attenuate the increase in NAc extracellular DA elicited by chemical stimulation (with 5 mM NMDA) of the ventral subiculum of the hippocampus. The stimulation of the vSub during perfusion of artificial cerebrospinal fluid in NAc induced a significant and persistent increase in NAc DA levels. Reverse dialysis of 0.05 mM acamprosate in NAc blocked the increase in DA evoked by the chemical stimulation of the vSub. These data support the possibility that the antagonism at the NMDA receptors in NAc can explain, at least in part, the mechanism of action of this drug.

  13. Reduced dopamine function within the medial shell of the nucleus accumbens enhances latent inhibition.

    PubMed

    Nelson, A J D; Thur, K E; Horsley, R R; Spicer, C; Marsden, C A; Cassaday, H J

    2011-03-01

    Latent inhibition (LI) manifests as poorer conditioning to a CS that has previously been presented without consequence. There is some evidence that LI can be potentiated by reduced mesoaccumbal dopamine (DA) function but the locus within the nucleus accumbens of this effect is as yet not firmly established. Experiment 1 tested whether 6-hydroxydopamine (6-OHDA)-induced lesions of DA terminals within the core and medial shell subregions of the nucleus accumbens (NAc) would enhance LI under conditions that normally disrupt LI in controls (weak pre-exposure). LI was measured in a thirst motivated conditioned emotional response procedure with 10 pre-exposures (to a noise CS) and 2 conditioning trials. The vehicle-injected and core-lesioned animals did not show LI and conditioned to the pre-exposed CS at comparable levels to the non-pre-exposed controls. 6-OHDA lesions to the medial shell, however, produced potentiation of LI, demonstrated across two extinction tests. In a subsequent experiment, haloperidol microinjected into the medial shell prior to conditioning similarly enhanced LI. These results underscore the dissociable roles of core and shell subregions of the NAc in mediating the expression of LI and indicate that reduced DA function within the medial shell leads to enhanced LI.

  14. Dynamics of rapid dopamine release in the nucleus accumbens during goal-directed behaviors for cocaine versus natural rewards.

    PubMed

    Cameron, Courtney M; Wightman, R Mark; Carelli, Regina M

    2014-11-01

    Electrophysiological studies show that distinct subsets of nucleus accumbens (NAc) neurons differentially encode information about goal-directed behaviors for intravenous cocaine versus natural (food/water) rewards. Further, NAc rapid dopamine signaling occurs on a timescale similar to phasic cell firing during cocaine and natural reward-seeking behaviors. However, it is not known whether dopamine signaling is reinforcer specific (i.e., is released during responding for only one type of reinforcer) within discrete NAc locations, similar to neural firing dynamics. Here, fast-scan cyclic voltammetry (FSCV) was used to measure rapid dopamine release during multiple schedules involving sucrose reward and cocaine self-administration (n = 8 rats) and, in a separate group of rats (n = 6), during a sucrose/food multiple schedule. During the sucrose/cocaine multiple schedule, dopamine increased within seconds of operant responding for both reinforcers. Although dopamine release was not reinforcer specific, more subtle differences were observed in peak dopamine concentration [DA] across reinforcer conditions. Specifically, peak [DA] was higher during the first phase of the multiple schedule, regardless of reinforcer type. Further, the time to reach peak [DA] was delayed during cocaine-responding compared to sucrose. During the sucrose/food multiple schedule, increases in dopamine release were also observed relative to operant responding for both natural rewards. However, peak [DA] was higher relative to responding for sucrose than food, regardless of reinforcer order. Overall, the results reveal the dynamics of rapid dopamine signaling in discrete locations in the NAc across reward conditions, and provide novel insight into the functional role of this system in reward-seeking behaviors.

  15. Relief learning requires a coincident activation of dopamine D1 and NMDA receptors within the nucleus accumbens.

    PubMed

    Bergado Acosta, Jorge R; Kahl, Evelyn; Kogias, Georgios; Uzuneser, Taygun C; Fendt, Markus

    2017-03-01

    Relief learning is the association of a stimulus with the offset of an aversive event. Later, the now conditioned relief stimulus induces appetitive-like behavioral changes. We previously demonstrated that the NMDA receptors within the nucleus accumbens (NAC) are involved in relief learning. The NAC is also important for reward learning and it has been shown that reward learning is mediated by an interaction of accumbal dopamine and NMDA glutamate receptors. Since conditioned relief has reward-like properties, we hypothesized that (a) acquisition of relief learning requires the activation of dopamine D1 receptors in the NAC, and (b) if D1 receptors are involved in this process as expected, a concurrent dopamine D1 and NMDA receptor activation may mediate this learning. The present study tested these hypotheses. Therefore, rats received intra-NAC injections of the dopamine D1 receptor antagonist SCH23390 and the NMDA antagonist AP5, either separately or together, at different time points of a relief conditioning procedure. First, we showed that SCH23390 dose-dependently blocked acquisition and the expression of conditioned relief. Next, we demonstrated that co-injections of SCH23390 and AP5 into the NAC, at doses that were ineffective when applied separately, blocked acquisition but not consolidation or expression of relief learning. Notably, neither of the injections affected the locomotor response of the animals to the aversive stimuli suggesting that their perception is not changed. This data indicates that a co-activation of dopamine D1 and NMDA receptors in the NAC is required for acquisition of relief learning.

  16. Local acamprosate modulates dopamine release in the rat nucleus accumbens through NMDA receptors: an in vivo microdialysis study.

    PubMed

    Cano-Cebrián, M J; Zornoza-Sabina, T; Guerri, C; Polache, A; Granero, L

    2003-02-01

    The effects of acamprosate on the in vivo dopamine extracellular levels in the nucleus accumbens and the involvement of N-methyl-D-aspartate (NMDA) receptors in these effects were investigated. Microdialysis in freely moving rats was used to assess dopamine levels before and during simultaneous perfusion of acamprosate and/or different agonists or antagonists of NMDA receptors. Perfusion with acamprosate at concentrations of 0.5 and 5 mM provoked a concentration-dependent increase in extracellular dopamine in nucleus accumbens. The lowest concentration of acamprosate assayed (0.05 mM) had no effect on dopamine levels. Infusion of NMDA (25 and 500 microM) and the glutamate uptake blocker, L-trans-pyrrolidine-2,4-dicarboxilic acid (PDC) (0.5 mM) into the NAc caused a significant increase in DA, whereas acamprosate (0.05 mM) co-infusion with these compounds blocked or attenuated the NMDA and PDC-induced increases in DA levels. Co-infusion of the selective antagonist of NMDA receptors, DL-2-amino-5-phosphonopentanoic acid (AP5) (400 microM) with acamprosate (0.5 mM), did not reduce the increase of DA levels induced by acamprosate. These results demonstrate that acamprosate is able to modulate DA extracellular levels in NAc via NMDA receptors and suggest that acamprosate acts as an antagonist of NMDA receptors.

  17. Rapid induction of dopamine sensitization in the nucleus accumbens shell induced by a single injection of cocaine.

    PubMed

    Singer, Bryan F; Bryan, Myranda A; Popov, Pavlo; Robinson, Terry E; Aragona, Brandon J

    2017-05-01

    Repeated intermittent exposure to cocaine results in the neurochemical sensitization of dopamine (DA) transmission within the nucleus accumbens (NAc). Indeed, the excitability of DA neurons in the ventral tegmental area (VTA) is enhanced within hours of initial psychostimulant exposure. However, it is not known if this is accompanied by a comparably rapid change in the ability of cocaine to increase extracellular DA concentrations in the ventral striatum. To address this question we used fast-scan cyclic voltammetry (FSCV) in awake-behaving rats to measure DA responses in the NAc shell following an initial intravenous cocaine injection, and then again 2-h later. Both injections quickly elevated DA levels in the NAc shell, but the second cocaine infusion produced a greater effect than the first, indicating sensitization. This suggests that a single injection of cocaine induces sensitization-related plasticity very rapidly within the mesolimbic DA system.

  18. Phasic dopamine release in the rat nucleus accumbens predicts approach and avoidance performance

    PubMed Central

    Gentry, Ronny N.; Lee, Brian; Roesch, Matthew R.

    2016-01-01

    Dopamine (DA) is critical for reward processing, but significantly less is known about its role in punishment avoidance. Using a combined approach-avoidance task, we measured phasic DA release in the nucleus accumbens (NAc) of rats during presentation of cues that predicted reward, punishment or neutral outcomes and investigated individual differences based on avoidance performance. Here we show that DA release within a single microenvironment is higher for reward and avoidance cues compared with neutral cues and positively correlated with poor avoidance behaviour. We found that DA release delineates trial-type during sessions with good avoidance but is non-selective during poor avoidance, with high release correlating with poor performance. These data demonstrate that phasic DA is released during cued approach and avoidance within the same microenvironment and abnormal processing of value signals is correlated with poor performance. PMID:27786172

  19. Nitric Oxide Donors Enhance the Frequency Dependence of Dopamine Release in Nucleus Accumbens

    PubMed Central

    Hartung, Henrike; Threlfell, Sarah; Cragg, Stephanie J

    2011-01-01

    Dopamine (DA) neurotransmission in the nucleus accumbens (NAc) is critically involved in normal as well as maladaptive motivated behaviors including drug addiction. Whether the striatal neuromodulator nitric oxide (NO) influences DA release in NAc is unknown. We investigated whether exogenous NO modulates DA transmission in NAc core and how this interaction varies depending on the frequency of presynaptic activation. We detected DA with cyclic voltammetry at carbon-fiber microelectrodes in mouse NAc in slices following stimuli spanning a full range of DA neuron firing frequencies (1–100 Hz). NO donors 3-morpholinosydnonimine hydrochloride (SIN-1) or z-1-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium-1,2-diolate (PAPA/NONOate) enhanced DA release with increasing stimulus frequency. This NO-mediated enhancement of frequency sensitivity of DA release was not prevented by inhibition of soluble guanylyl cyclase (sGC), DA transporters, or large conductance Ca2+-activated K+ channels, and did not require glutamatergic or GABAergic input. However, experiments to identify whether frequency-dependent NO effects were mediated via changes in powerful acetylcholine–DA interactions revealed multiple components to NO modulation of DA release. In the presence of a nicotinic receptor antagonist (dihydro-β-erythroidine), NO donors increased DA release in a frequency-independent manner. These data suggest that NO in the NAc can modulate DA release through multiple GC-independent neuronal mechanisms whose net outcome varies depending on the activity in DA neurons and accumbal cholinergic interneurons. In the presence of accumbal acetylcholine, NO promotes the sensitivity of DA release to presynaptic activation, but with reduced acetylcholine input, NO will promote DA release in an activity-independent manner through a direct action on dopaminergic terminals. PMID:21508928

  20. Nucleus accumbens shell and core dopamine: differential role in behavior and addiction.

    PubMed

    Di Chiara, Gaetano

    2002-12-02

    Drug addiction can be conceptualized as a disturbance of behavior motivated by drug-conditioned incentives. This abnormality has been explained by Incentive-Sensitization and Allostatic-Counteradaptive theories as the result of non-associative mechanisms acting at the stage of the expression of incentive motivation and responding for drug reinforcement. Each one of these theories, however, does not account per se for two basic properties of the motivational disturbance of drug addiction: (1). focussing on drug- at the expenses of non-drug-incentives; (2). virtual irreversibility. To account for the above aspects we have proposed an associative learning hypothesis. According to this hypothesis the basic disturbance of drug addiction takes place at the stage of acquisition of motivation and in particular of Pavlovian incentive learning. Drugs share with non-drug rewards the property of stimulating dopamine (DA) transmission in the nucleus accumbens shell but this effect does not undergo habituation upon repeated drug exposure, as instead is the case of non-drug rewards. Repetitive, non-decremental stimulation of DA transmission by drugs in the nucleus accumbens septi (NAc) shell abnormally strengthens stimulus-drug associations. Thus, stimuli contingent upon drug reward acquire powerful incentive properties after a relatively limited number of predictive associations with the drug and become particularly resistant to extinction. Non-contingent occurrence of drug-conditioned incentive cues or contexts strongly facilitates and eventually reinstates drug self-administration. Repeated drug exposure also induces a process of sensitization of drug-induced stimulation of DA transmission in the NAc core. The precise significance of this adaptive change for the mechanism of drug addiction is unclear given the complexity and uncertainties surrounding the role of NAc core DA in responding but might be more directly related to instrumental performance.

  1. Individual Variation in Incentive Salience Attribution and Accumbens Dopamine Transporter Expression and Function

    PubMed Central

    Singer, Bryan F.; Guptaroy, Bipasha; Austin, Curtis J.; Wohl, Isabella; Lovic, Vedran; Seiler, Jillian L; Vaughan, Roxanne A.; Gnegy, Margaret E.; Robinson, Terry E.; Aragona, Brandon J.

    2015-01-01

    Cues (conditioned stimuli; CSs) associated with rewards can come to motivate behavior, but there is considerable individual variation in their ability to do so. For example, a lever-CS that predicts food reward becomes attractive, wanted, and elicits reward-seeking behavior to a greater extent in some rats (“sign-trackers”; STs), than others (“goal-trackers”; GTs). Variation in dopamine (DA) neurotransmission in the nucleus accumbens (NAc) core is thought to contribute to such individual variation. Given that the DA transporter (DAT) exerts powerful regulation over DA signaling, we characterized the expression and function of the DAT in the accumbens of STs and GTs. STs showed greater DAT surface expression in ventral striatal synaptosomes than GTs, and ex vivo fast-scan cyclic voltammetry recordings of electrically-evoked DA release confirmed enhanced DAT function in STs, as indicated by faster DA uptake, specifically in the NAc core. Consistent with this, systemic amphetamine (AMPH) produced greater inhibition of DA uptake in STs than in GTs. Furthermore, injection of AMPH directly into the NAc core enhanced lever-directed approach in STs, presumably by amplifying the incentive value of the CS, but had no effect on goal tracking behavior. On the other hand, there were no differences between STs and GTs in electrically-evoked DA release in slices, or in total ventral striatal DA content. We conclude that greater DAT surface expression may facilitate the attribution of incentive salience to discrete reward cues. Investigating this variability in animal sub-populations may help explain why some people abuse drugs, while others do not. PMID:26613374

  2. Differential dopamine release dynamics in the nucleus accumbens core and shell track distinct aspects of goal-directed behavior for sucrose.

    PubMed

    Cacciapaglia, Fabio; Saddoris, Michael P; Wightman, R Mark; Carelli, Regina M

    2012-04-01

    Mesolimbic dopamine projections to the nucleus accumbens (NAc) have been implicated in goal-directed behaviors for natural rewards and in learning processes involving cue-reward associations. The NAc has been traditionally subdivided into two anatomically distinct sub-regions with different functional properties: the shell and the core. The aim of the present study was to characterize rapid dopamine transmission across the two NAc sub-regions during cue-signaled operant behavior for a natural (sucrose) reward in rats. Using fast-scan cyclic voltammetry (FSCV) we observed differences in the magnitude and dynamics of dopamine release events between the shell and core. Specifically, although cue-evoked dopamine release was observed in both sub-regions, it was larger and longer lasting in the shell compared with the core. Further, secondary dopamine release events were observed following the lever press response for sucrose in the NAc shell, but not the core. These findings demonstrate that the NAc displays regional specificity in dopamine transmission patterns during cued operant behavior for natural reward.

  3. Differential activation of accumbens shell and core dopamine by sucrose reinforcement with nose poking and with lever pressing.

    PubMed

    Bassareo, V; Cucca, F; Frau, R; Di Chiara, G

    2015-11-01

    In order to investigate the role of modus operandi in the changes of nucleus accumbens (NAc) dopamine (DA) transmission in sucrose reinforcement, extracellular DA was monitored by microdialysis in the NAc shell and core of rats trained on a fixed-ratio 1 schedule to respond for sucrose pellets by nose poking and lever pressing respectively. After training, rats were tested on three different sessions: sucrose reinforcement, extinction and passive sucrose presentation. In rats responding by nose poking dialysate DA increased in the shell but not in the core under reinforced as well as under extinction sessions. In contrast, in rats responding by lever pressing dialysate DA increased both in the accumbens shell and core under reinforced and extinction sessions. Response non-contingent sucrose presentation increased dialysate DA in the shell and core of rats trained to respond for sucrose by nose poking as well as in those trained by lever pressing. In rats trained to respond for sucrose by nose poking on a FR5 schedule dialysate DA also increased selectively in the NAc shell during reinforced responding and in both the shell and core under passive sucrose presentation. These findings, while provide an explanation for the discrepancies existing in the literature over the responsiveness of shell and core DA in rats responding for food, are consistent with the notion that NAc shell and core DA encode different aspects of reinforcement.

  4. Differential Dopamine Release Dynamics in the Nucleus Accumbens Core and Shell Reveal Complementary Signals for Error Prediction and Incentive Motivation

    PubMed Central

    Cacciapaglia, Fabio; Wightman, R. Mark; Carelli, Regina M.

    2015-01-01

    Mesolimbic dopamine (DA) is phasically released during appetitive behaviors, though there is substantive disagreement about the specific purpose of these DA signals. For example, prediction error (PE) models suggest a role of learning, while incentive salience (IS) models argue that the DA signal imbues stimuli with value and thereby stimulates motivated behavior. However, within the nucleus accumbens (NAc) patterns of DA release can strikingly differ between subregions, and as such, it is possible that these patterns differentially contribute to aspects of PE and IS. To assess this, we measured DA release in subregions of the NAc during a behavioral task that spatiotemporally separated sequential goal-directed stimuli. Electrochemical methods were used to measure subsecond NAc dopamine release in the core and shell during a well learned instrumental chain schedule in which rats were trained to press one lever (seeking; SL) to gain access to a second lever (taking; TL) linked with food delivery, and again during extinction. In the core, phasic DA release was greatest following initial SL presentation, but minimal for the subsequent TL and reward events. In contrast, phasic shell DA showed robust release at all task events. Signaling decreased between the beginning and end of sessions in the shell, but not core. During extinction, peak DA release in the core showed a graded decrease for the SL and pauses in release during omitted expected rewards, whereas shell DA release decreased predominantly during the TL. These release dynamics suggest parallel DA signals capable of supporting distinct theories of appetitive behavior. SIGNIFICANCE STATEMENT Dopamine signaling in the brain is important for a variety of cognitive functions, such as learning and motivation. Typically, it is assumed that a single dopamine signal is sufficient to support these cognitive functions, though competing theories disagree on how dopamine contributes to reward-based behaviors. Here, we have

  5. Implications for glycine receptors and astrocytes in ethanol-induced elevation of dopamine levels in the nucleus accumbens.

    PubMed

    Adermark, Louise; Clarke, Rhona B C; Olsson, Torsten; Hansson, Elisabeth; Söderpalm, Bo; Ericson, Mia

    2011-01-01

    Elevated dopamine levels are believed to contribute to the rewarding sensation of ethanol (EtOH), and previous research has shown that strychnine-sensitive glycine receptors in the nucleus accumbens (nAc) are involved in regulating dopamine release and in mediating the reinforcing effects of EtOH. Furthermore, the osmoregulator taurine, which is released from astrocytes treated with EtOH, can act as an endogenous ligand for the glycine receptor, and increase extracellular dopamine levels. The aim of this study was to address if EtOH-induced swelling of astrocytes could contribute to elevated dopamine levels by increasing the extracellular concentration of taurine. Cell swelling was estimated by optical sectioning of fluorescently labeled astrocytes in primary cultures from rat, and showed that EtOH (25-150 mM) increased astrocyte cell volumes in a concentration- and ion-dependent manner. The EtOH-induced cell swelling was inhibited in cultures treated with the Na(+) /K(+) /2Cl⁻ cotransporter blocker furosemide (1 mM), Na(+) /K(+) -ATPase inhibitor ouabain (0.1 mM), potassium channel inhibitor BaCl₂ (50 µM) and in cultures containing low extracellular sodium concentration (3 mM). In vivo microdialysis performed in the nAc of awake and freely moving rats showed that local treatment with EtOH enhanced the concentrations of dopamine and taurine in the microdialysate, while glycine and β-alanine levels were not significantly modulated. EtOH-induced dopamine release was antagonized by local treatment with the glycine receptor antagonist strychnine (20 µM) or furosemide (100 µM or 1 mM). Furosemide also prevented EtOH-induced taurine release in the nAc. In conclusion, our data suggest that extracellular concentrations of dopamine and taurine are interconnected and that swelling of astrocytes contributes to the acute rewarding sensation of EtOH.

  6. Autoregulation of dopamine synthesis in subregions of the rat nucleus accumbens.

    PubMed

    Heidbreder, C A; Baumann, M H

    2001-01-05

    The discovery of a core-shell dichotomy within the nucleus accumbens has opened new lines of investigation into the neuronal basis of psychiatric disorders and drug dependence. In the present study, the autoregulation of dopamine synthesis in subdivisions of the rat nucleus accumbens was examined. We measured the accumulation of L-3,4-dihydroxyphenylalanine (DOPA) after the inhibition of aromatic L-amino acid decarboxylase with 3-hydroxylbenzylhydrazine (NSD-1015, 100 mg kg(-1)) as an in vivo index of dopamine synthesis. The effect of the dopamine D(1)/D(2) receptor agonist apomorphine (0, 20, 100, 500 microgram kg(-1)) and the dopamine D(2)/D(3) receptor agonist quinpirole (0, 20, 100, 500 microgram kg(-1)) on dopamine synthesis was determined in the dorsolateral core, ventromedial shell, and rostral pole of the nucleus accumbens. DOPA accumulation was also measured in the frontal cortex, olfactory tubercle, and caudate nucleus of the same rats for comparative purposes. The results show that the three sectors of the nucleus accumbens had similar basal levels of DOPA. Both apomorphine and quinpirole produced a decrease in the dopamine synthesis rate in all brain regions examined. In general, the dopamine D(2)/D(3) receptor agonist quinpirole produced a significantly greater decrease in DOPA accumulation than the dopamine D(1)/D(2) receptor agonist apomorphine. Within the nucleus accumbens, we found no core-shell differences in the agonist-induced suppression of dopamine synthesis, but the rostral pole was less sensitive to the highest dose of both dopamine agonists. These results suggest that differences in dopamine function between the core and shell might not involve region-specific differences in the receptor-mediated autoregulation of dopamine neurotransmission. Moreover, the blunted effect of dopamine agonists in the rostral pole illustrates that this region of the accumbens is functionally distinct, possibly due to a lower dopamine receptor reserve when

  7. CHRONIC INTERMITTENT ETHANOL EXPOSURE REDUCES PRESYNAPTIC DOPAMINE NEUROTRANSMISSION IN THE MOUSE NUCLEUS ACCUMBENS

    PubMed Central

    Karkhanis, Anushree N.; Rose, Jamie H.; Huggins, Kimberly N.; Konstantopoulos, Joanne K.; Jones, Sara R.

    2015-01-01

    BACKGROUND Increasing evidence suggests that chronic ethanol exposure decreases dopamine (DA) neurotransmission in the nucleus accumbens (NAc), contributing to a hypodopaminergic state during withdrawal. However, few studies have investigated adaptations in presynaptic DA terminals after chronic intermittent ethanol (CIE) exposure. In monkeys and rats, chronic ethanol exposure paradigms have been shown to increase DA uptake and D2 autoreceptor sensitivity. METHODS The current study examined the effects of ethanol on DA terminals in CIE exposed mice during two time-points after the cessation of CIE exposure. DA release and uptake were measured using fast scan cyclic voltammetry in NAc core slices from C57BL/6J mice, 0 and 72 hours following three weekly cycles (4 days of 16 hrs ethanol vapor/8 hrs room air/day + 3 days withdrawal) of CIE vapor exposure. RESULTS Current results showed that DA release was reduced, uptake rates were increased, and inhibitory D2-type autoreceptor activity was augmented following CIE exposure in mice. CONCLUSIONS Overall, these CIE-induced adaptations in the accumbal DA system reduce DA signaling and therefore reveal several potential mechanisms contributing to a functional hypodopaminergic state during alcohol withdrawal. PMID:25765483

  8. Dopamine and opioid systems interact within the nucleus accumbens to maintain monogamous pair bonds

    PubMed Central

    Resendez, Shanna L; Keyes, Piper C; Day, Jeremy J; Hambro, Caely; Austin, Curtis J; Maina, Francis K; Eidson, Lori N; Porter-Stransky, Kirsten A; Nevárez, Natalie; McLean, J William; Kuhnmuench, Morgan A; Murphy, Anne Z; Mathews, Tiffany A; Aragona, Brandon J

    2016-01-01

    Prairie vole breeder pairs form monogamous pair bonds, which are maintained through the expression of selective aggression toward novel conspecifics. Here, we utilize behavioral and anatomical techniques to extend the current understanding of neural mechanisms that mediate pair bond maintenance. For both sexes, we show that pair bonding up-regulates mRNA expression for genes encoding D1-like dopamine (DA) receptors and dynorphin as well as enhances stimulated DA release within the nucleus accumbens (NAc). We next show that D1-like receptor regulation of selective aggression is mediated through downstream activation of kappa-opioid receptors (KORs) and that activation of these receptors mediates social avoidance. Finally, we also identified sex-specific alterations in KOR binding density within the NAc shell of paired males and demonstrate that this alteration contributes to the neuroprotective effect of pair bonding against drug reward. Together, these findings suggest motivational and valence processing systems interact to mediate the maintenance of social bonds. DOI: http://dx.doi.org/10.7554/eLife.15325.001 PMID:27371827

  9. Effects of systemic L-tyrosine on dopamine release from rat corpus striatum and nucleus accumbens

    NASA Technical Reports Server (NTRS)

    During, Matthew J.; Acworth, Ian N.; Wurtman, Richard J.

    1988-01-01

    Intracerebral dialysis was used to monitor extracellular fluid from rat striatum and nucleus accumbens following the intraperitoneal administration of tyrosine. Dopamine concentrations in dialysates from both the striatum and the nucleus accumbens increased significantly in response to the tyrosine. The magnitude of the tyrosine effect was greater in the nucleus accumbens than in the striatum. Hence, mesolimbic dopaminergic neurons may be especially responsive to precursor availability.

  10. Repeated Cocaine Exposure Decreases Dopamine D2-Like Receptor Modulation of Ca2+ Homeostasis in Rat Nucleus Accumbens Neurons

    PubMed Central

    PEREZ, MARIELA F.; FORD, KERSTIN A.; GOUSSAKOV, IVAN; STUTZMANN, GRACE E.; HU, XIU-TI

    2013-01-01

    The nucleus accumbens (NAc) is a limbic structure in the forebrain that plays a critical role in cognitive function and addiction. Dopamine modulates activity of medium spiny neurons (MSNs) in the NAc. Both dopamine D1-like and D2-like receptors (including D1R or D1,5R and D2R or D2,3,4R, respectively) are thought to play critical roles in cocaine addiction. Our previous studies demonstrated that repeated cocaine exposure (which alters dopamine transmission) decreases excitability of NAc MSNs in cocaine-sensitized, withdrawn rats. This decrease is characterized by a reduction in voltage-sensitive Na+ currents and high voltage-activated Ca2+ currents, along with increased voltage-gated K+ currents. These changes are associated with enhanced activity in the D1R/cAMP/PKA/protein phosphatase 1 pathway and diminished calcineurin function. Although D1R-mediated signaling is enhanced by repeated cocaine exposure, little is known whether and how the D2R is implicated in the cocaine-induced NAc dysfunction. Here, we performed a combined electrophysiological, biochemical, and neuroimaging study that reveals the cocaine-induced dysregulation of Ca2+ homeostasis with involvement of D2R. Our novel findings reveal that D2R stimulation reduced Ca2+ influx preferentially via the L-type Ca2+ channels and evoked intracellular Ca2+ release, likely via inhibiting the cAMP/PKA cascade, in the NAc MSNs of drug-free rats. However, repeated cocaine exposure abolished the D2R effects on modulating Ca2+ homeostasis with enhanced PKA activity and led to a decrease in whole-cell Ca2+ influx. These adaptations, which persisted for 21 days during cocaine abstinence, may contribute to the mechanism of cocaine withdrawal. PMID:20665696

  11. Methamphetamine induces Shati/Nat8L expression in the mouse nucleus accumbens via CREB- and dopamine D1 receptor-dependent mechanism

    PubMed Central

    Uno, Kyosuke; Miyazaki, Toh; Sodeyama, Kengo; Miyamoto, Yoshiaki

    2017-01-01

    Shati/Nat8L significantly increased in the nucleus accumbens (NAc) of mice after repeated methamphetamine (METH) treatment. We reported that Shati/Nat8L overexpression in mouse NAc attenuated METH-induced hyperlocomotion, locomotor sensitization, and conditioned place preference. We recently found that Shati/Nat8L overexpression in NAc regulates the dopaminergic neuronal system via the activation of group II mGluRs by elevated N-acetylaspartylglutamate following N-acetylaspartate increase due to the overexpression. These findings suggest that Shati/Nat8L suppresses METH-induced responses. However, the mechanism by which METH increases the Shati/Nat8L mRNA expression in NAc is unclear. To investigate the regulatory mechanism of Shati/Nat8L mRNA expression, we performed a mouse Shati/Nat8L luciferase assay using PC12 cells. Next, we investigated the response of METH to Shati/Nat8L expression and CREB activity using mouse brain slices of NAc, METH administration to mice, and western blotting for CREB activity of specific dopamine receptor signals in vivo and ex vivo. We found that METH activates CREB binding to the Shati/Nat8L promoter to induce the Shati/Nat8L mRNA expression. Furthermore, the dopamine D1 receptor antagonist SCH23390, but not the dopamine D2 receptor antagonist sulpiride, inhibited the upregulation of Shati/Nat8L and CREB activities in the mouse NAc slices. Thus, the administration of the dopamine D1 receptor agonist SKF38393 increased the Shati/Nat8L mRNA expression in mouse NAc. These results showed that the Shati/Nat8L mRNA was increased by METH-induced CREB pathway via dopamine D1 receptor signaling in mouse NAc. These findings may contribute to development of a clinical tool for METH addiction. PMID:28319198

  12. Distinct Effects of Nalmefene on Dopamine Uptake Rates and Kappa Opioid Receptor Activity in the Nucleus Accumbens Following Chronic Intermittent Ethanol Exposure.

    PubMed

    Rose, Jamie H; Karkhanis, Anushree N; Steiniger-Brach, Björn; Jones, Sara R

    2016-07-27

    The development of pharmacotherapeutics that reduce relapse to alcohol drinking in patients with alcohol dependence is of considerable research interest. Preclinical data support a role for nucleus accumbens (NAc) κ opioid receptors (KOR) in chronic intermittent ethanol (CIE) exposure-induced increases in ethanol intake. Nalmefene, a high-affinity KOR partial agonist, reduces drinking in at-risk patients and relapse drinking in rodents, potentially due to its effects on NAc KORs. However, the effects of nalmefene on accumbal dopamine transmission and KOR function are poorly understood. We investigated the effects of nalmefene on dopamine transmission and KORs using fast scan cyclic voltammetry in NAc brain slices from male C57BL/6J mice following five weeks of CIE or air exposure. Nalmefene concentration-dependently reduced dopamine release similarly in air and CIE groups, suggesting that dynorphin tone may not be present in brain slices. Further, nalmefene attenuated dopamine uptake rates to a greater extent in brain slices from CIE-exposed mice, suggesting that dopamine transporter-KOR interactions may be fundamentally altered following CIE. Additionally, nalmefene reversed the dopamine-decreasing effects of a maximal concentration of a KOR agonist selectively in brain slices of CIE-exposed mice. It is possible that nalmefene may attenuate withdrawal-induced increases in ethanol consumption by modulation of dopamine transmission through KORs.

  13. Distinct Effects of Nalmefene on Dopamine Uptake Rates and Kappa Opioid Receptor Activity in the Nucleus Accumbens Following Chronic Intermittent Ethanol Exposure

    PubMed Central

    Rose, Jamie H.; Karkhanis, Anushree N.; Steiniger-Brach, Björn; Jones, Sara R.

    2016-01-01

    The development of pharmacotherapeutics that reduce relapse to alcohol drinking in patients with alcohol dependence is of considerable research interest. Preclinical data support a role for nucleus accumbens (NAc) κ opioid receptors (KOR) in chronic intermittent ethanol (CIE) exposure-induced increases in ethanol intake. Nalmefene, a high-affinity KOR partial agonist, reduces drinking in at-risk patients and relapse drinking in rodents, potentially due to its effects on NAc KORs. However, the effects of nalmefene on accumbal dopamine transmission and KOR function are poorly understood. We investigated the effects of nalmefene on dopamine transmission and KORs using fast scan cyclic voltammetry in NAc brain slices from male C57BL/6J mice following five weeks of CIE or air exposure. Nalmefene concentration-dependently reduced dopamine release similarly in air and CIE groups, suggesting that dynorphin tone may not be present in brain slices. Further, nalmefene attenuated dopamine uptake rates to a greater extent in brain slices from CIE-exposed mice, suggesting that dopamine transporter-KOR interactions may be fundamentally altered following CIE. Additionally, nalmefene reversed the dopamine-decreasing effects of a maximal concentration of a KOR agonist selectively in brain slices of CIE-exposed mice. It is possible that nalmefene may attenuate withdrawal-induced increases in ethanol consumption by modulation of dopamine transmission through KORs. PMID:27472317

  14. Depressive-like effects of the kappa opioid receptor agonist salvinorin A are associated with decreased phasic dopamine release in the nucleus accumbens

    PubMed Central

    Ebner, Stephanie R.; Roitman, Mitchell F.; Potter, David N.; Rachlin, Anna B.; Chartoff, Elena H.

    2010-01-01

    Rationale Kappa opioid receptors (KORs) have been implicated in depressive-like states associated with chronic administration of drugs of abuse and stress. Although KOR agonists decrease dopamine in the nucleus accumbens (NAc), KOR modulation of phasic dopamine release in the core and shell subregions of the NAc—which have distinct roles in reward processing—remains poorly understood. Objectives Studies were designed to examine whether the time course of effects of KOR activation on phasic dopamine release in the NAc core or shell are similar to effects on motivated behavior. Methods The effect of systemic administration of the KOR agonist salvinorin A (salvA)—at a dose (2.0 mg/kg) previously determined to have depressive-like effects—was measured on electrically evoked phasic dopamine release in the NAc core or shell of awake and behaving rats using fast scan cyclic voltammetry. In parallel, the effects of salvA on intracranial self-stimulation (ICSS) and sucrose-reinforced responding were assessed. For comparison, a threshold dose of salvA (0.25 mg/kg) was also tested. Results The active, but not threshold, dose of salvA significantly decreased phasic dopamine release without affecting dopamine reuptake in the NAc core and shell. SalvA increased ICSS thresholds and significantly lowered breakpoint on the progressive ratio schedule, indicating a decrease in motivation. The time course of the KOR-mediated decrease in dopamine in the core was qualitatively similar to the effects on motivated behavior. Conclusions These data suggest that the effects of KOR activation on motivation are due, in part, to inhibition of phasic dopamine signaling in the NAc core. PMID:20372879

  15. Role of Corticotropin-Releasing Factor (CRF) Receptor-1 on the Catecholaminergic Response to Morphine Withdrawal in the Nucleus Accumbens (NAc)

    PubMed Central

    Almela, Pilar; Navarro-Zaragoza, Javier; García-Carmona, Juan-Antonio; Mora, Lucía; Hidalgo, Juana; Milanés, María-Victoria; Laorden, María-Luisa

    2012-01-01

    Stress induces the release of the peptide corticotropin-releasing factor (CRF) into the ventral tegmental area (VTA), and also increases dopamine (DA) levels in brain regions receiving dense VTA input. Since the role of stress in drug addiction is well established, the present study examined the possible involvement of CRF1 receptor in the interaction between morphine withdrawal and catecholaminergic pathways in the reward system. The effects of naloxone-precipitated morphine withdrawal on signs of withdrawal, hypothalamo-pituitary-adrenocortical (HPA) axis activity, dopamine (DA) and noradrenaline (NA) turnover in the nucleus accumbens (NAc) and activation of VTA dopaminergic neurons, were investigated in rats pretreated with vehicle or CP-154,526 (selective CRF1R antagonist). CP-154,526 attenuated the increases in body weight loss and suppressed some of withdrawal signs. Pretreatment with CRF1 receptor antagonist resulted in no significant modification of the increased NA turnover at NAc or plasma corticosterone levels that were seen during morphine withdrawal. However, blockade of CRF1 receptor significantly reduced morphine withdrawal-induced increases in plasma adrenocorticotropin (ACTH) levels, DA turnover and TH phosphorylation at Ser40 in the NAc. In addition, CP-154,526 reduced the number of TH containing neurons expressing c-Fos in the VTA after naloxone-precipitated morphine withdrawal. Altogether, these results support the idea that VTA dopaminergic neurons are activated in response to naloxone-precipitated morphine withdrawal and suggest that CRF1 receptors are involved in the activation of dopaminergic pathways which project to NAc. PMID:23071721

  16. The absence of VGLUT3 predisposes to cocaine abuse by increasing dopamine and glutamate signaling in the nucleus accumbens.

    PubMed

    Sakae, D Y; Marti, F; Lecca, S; Vorspan, F; Martín-García, E; Morel, L J; Henrion, A; Gutiérrez-Cuesta, J; Besnard, A; Heck, N; Herzog, E; Bolte, S; Prado, V F; Prado, M A M; Bellivier, F; Eap, C B; Crettol, S; Vanhoutte, P; Caboche, J; Gratton, A; Moquin, L; Giros, B; Maldonado, R; Daumas, S; Mameli, M; Jamain, S; El Mestikawy, S

    2015-11-01

    Tonically active cholinergic interneurons (TANs) from the nucleus accumbens (NAc) are centrally involved in reward behavior. TANs express a vesicular glutamate transporter referred to as VGLUT3 and thus use both acetylcholine and glutamate as neurotransmitters. The respective roles of each transmitter in the regulation of reward and addiction are still unknown. In this study, we showed that disruption of the gene that encodes VGLUT3 (Slc17a8) markedly increased cocaine self-administration in mice. Concomitantly, the amount of dopamine (DA) release was strongly augmented in the NAc of VGLUT3(-/-) mice because of a lack of signaling by metabotropic glutamate receptors. Furthermore, dendritic spines and glutamatergic synaptic transmission on medium spiny neurons were increased in the NAc of VGLUT3(-/-) mice. Increased DA and glutamate signaling in the NAc are hallmarks of addiction. Our study shows that TANs use glutamate to reduce DA release and decrease reinforcing properties of cocaine in mice. Interestingly, we also observed an increased frequency of rare variations in SLC17A8 in a cohort of severe drug abusers compared with controls. Our findings identify VGLUT3 as an unexpected regulator of drug abuse.

  17. Individual differences in nucleus accumbens dopamine receptors predict development of addiction-like behavior: a computational approach.

    PubMed

    Piray, Payam; Keramati, Mohammad Mahdi; Dezfouli, Amir; Lucas, Caro; Mokri, Azarakhsh

    2010-09-01

    Clinical and experimental observations show individual differences in the development of addiction. Increasing evidence supports the hypothesis that dopamine receptor availability in the nucleus accumbens (NAc) predisposes drug reinforcement. Here, modeling striatal-midbrain dopaminergic circuit, we propose a reinforcement learning model for addiction based on the actor-critic model of striatum. Modeling dopamine receptors in the NAc as modulators of learning rate for appetitive--but not aversive--stimuli in the critic--but not the actor--we define vulnerability to addiction as a relatively lower learning rate for the appetitive stimuli, compared to aversive stimuli, in the critic. We hypothesize that an imbalance in this learning parameter used by appetitive and aversive learning systems can result in addiction. We elucidate that the interaction between the degree of individual vulnerability and the duration of exposure to drug has two progressive consequences: deterioration of the imbalance and establishment of an abnormal habitual response in the actor. Using computational language, the proposed model describes how development of compulsive behavior can be a function of both degree of drug exposure and individual vulnerability. Moreover, the model describes how involvement of the dorsal striatum in addiction can be augmented progressively. The model also interprets other forms of addiction, such as obesity and pathological gambling, in a common mechanism with drug addiction. Finally, the model provides an answer for the question of why behavioral addictions are triggered in Parkinson's disease patients by D2 dopamine agonist treatments.

  18. The effect of dopamine receptor blockade in the rodent nucleus accumbens on local field potential oscillations and motor activity in response to ketamine.

    PubMed

    Matulewicz, Pawel; Kasicki, Stefan; Hunt, Mark Jeremy

    2010-12-17

    Altered functioning of the nucleus accumbens (NAc) has been implicated in the psychotomimetic actions of NMDA receptor (NMDAR) antagonists and the pathophysiology of schizophrenia. We have shown previously that NMDAR antagonists enhance the power of high-frequency oscillations (HFO) in the NAc in a dose-dependent manner, as well as increase locomotor activity. Systemic administration of NMDAR antagonists is known to increase the release of dopamine in the NAc and dopamine antagonists can reduce ketamine-induced hyperactivity. In this study, we examined the effect of 0.5 μl intra-NAc infusion of 3.2 μg SCH23390 (D1 antagonist), 10 μg raclopride (D2 antagonist) and saline on ketamine-induced changes in motor and oscillatory activity. We found that local blockade of D1 receptors attenuated ketamine-induced increases in motor activity and blockade of D2 receptors produced a much weaker effect, with respect to saline-infused control groups. In contrast, none of the antagonists, infused separately or together, significantly modified the power or dominant frequency of ketamine-induced increases in HFO, but changes in delta and theta frequency bands were observed. Together, these findings suggest, that, in contrast to delta and theta frequency bands, the generation of ketamine enhanced-HFO in the NAc is not causally related to locomotor activation and occurs largely independently of local changes in dopamine receptor activation.

  19. Early social isolation disrupts latent inhibition and increases dopamine D2 receptor expression in the medial prefrontal cortex and nucleus accumbens of adult rats.

    PubMed

    Han, Xiao; Li, Nanxin; Xue, Xiaofang; Shao, Feng; Wang, Weiwen

    2012-04-04

    Adolescence is a critical period for neurodevelopment. In the present study, we investigated the effects of peri-adolescent social isolation on latent inhibition (LI) and dopamine D2 receptor expression in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) of young adult rats. Male Sprague-Dawley rats were randomly divided into adolescent isolation (ISO; isolated housing, 21-34 days of age) and social housing (SOC) groups. LI was tested at postnatal day 56. After behavioral testing, the number of dopamine D2 receptor-expressing cells was determined using immunohistochemistry. Adolescent social isolation impaired LI and increased the number of cells expressing the D2 receptor in the mPFC and NAc. The results suggest that adolescent social isolation produces profound effects on cognitive and dopaminergic function in adult rats, and could be used as an animal model of various neurodevelopmental disorders.

  20. The effect of forced swim stress on morphine sensitization: Involvement of D1/D2-like dopamine receptors within the nucleus accumbens.

    PubMed

    Charmchi, Elham; Zendehdel, Morteza; Haghparast, Abbas

    2016-10-03

    Nucleus accumbens (NAc) plays an essential role in morphine sensitization and suppression of pain. Repeated exposure to stress and morphine increases dopamine release in the NAc and may lead to morphine sensitization. This study was carried out in order to investigate the effect of forced swim stress (FSS), as a predominantly physical stressor and morphine on the development of morphine sensitization; focusing on the function of D1/D2-like dopamine receptors in the NAc in morphine sensitization. Eighty-five adult male Wistar rats were bilaterally implanted with cannulae in the NAc and various doses of SCH-23390 (0.125, 0.25, 1 and 4μg/0.5μl/NAc) as a D1 receptor antagonist and sulpiride (0.25, 1 and 4μg/0.5μl/NAc) as a D2 receptor antagonist were microinjected into the NAc, during a sensitization period of 3days, 5min before the induction of FSS. After 10min, animals received subcutaneous morphine injection (1mg/kg). The procedure was followed by 5days free of antagonist, morphine and stress; thereafter on the 9th day, the nociceptive response was evaluated by tail-flick test. The results revealed that the microinjection of sulpiride (at 1 and 4μg/0.5μl/NAc) or SCH-23390 (at 0.25, 1 and 4μg/0.5μl/NAc) prior to FSS and morphine disrupts the antinociceptive effects of morphine and morphine sensitization. Our findings suggest that FSS can potentiate the effect of morphine and causes morphine sensitization which induces antinociception.

  1. RAPID DOPAMINE TRANSMISSION WITHIN THE NUCLEUS ACCUMBENS DRAMATICALLY DIFFERS FOLLOWING MORPHINE AND OXYCODONE DELIVERY

    PubMed Central

    Mabrouk, Omar S.; Lovic, Vedran; Singer, Bryan F.; Kennedy, Robert T.; Aragona, Brandon J.

    2014-01-01

    While most drugs of abuse increase dopamine neurotransmission, rapid neurochemical measurements show that different drugs evoke distinct dopamine release patterns within the nucleus accumbens. Rapid changes in dopamine concentration following psychostimulant administration have been well studied; however, such changes have never been examined following opioid delivery. Here, we provide novel measures of rapid dopamine release following intravenous infusion of two opioids, morphine and oxycodone, in drug naïve rats using fast-scan cyclic voltammetry and rapid (1 min) microdialysis coupled with mass spectrometry. In addition to measuring rapid dopamine transmission, microdialysis HPLC-MS measures changes in GABA, glutamate, monoamines, monoamine metabolites, and several other neurotransmitters. Although both opioids increased dopamine release in the nucleus accumbens, their patterns of drug-evoked dopamine transmission differed dramatically. Oxycodone evoked a robust and stable increase in dopamine concentration and a robust increase in the frequency and amplitude of phasic dopamine release events. Conversely, morphine evoked a brief (~ 1 min) increase in dopamine that was coincident with a surge in GABA concentration and then both transmitters returned to baseline levels. Thus, by providing rapid measures of neurotransmission, this study reveals previously unknown differences in opioid-induced neurotransmitter signaling. Investigating these differences may be essential for understanding how these two drugs of abuse could differentially usurp motivational circuitry and powerfully influence behavior. PMID:25208732

  2. Neuromodulatory action of dopamine in the nucleus accumbens: an in vivo intracellular study.

    PubMed

    Yim, C Y; Mogenson, G J

    1988-08-01

    Intracellular recordings were made from neurons in the nucleus accumbens in situ to determine how dopamine produces the selective neuromodulatory action in the accumbens observed in previous studies. Electrical stimulation of the basolateral nucleus of the amygdala was found to produce monosynaptically evoked depolarizing and hyperpolarizing postsynaptic potential sequences in a large proportion of the accumbens neurons sampled. Dopamine applied iontophoretically or released endogenously by stimulation of the ventral tegmental area produced consistent membrane depolarization and an increase in membrane conductance but not an increase in spontaneous activity of the accumbens neurons. Stimulation of the ventral tegmental area with trains of 10 pulses at 10 Hz prior to stimulation of the amygdala produced 8-58% reduction in the amplitude of the depolarizing postsynaptic potential but no change in the late hyperpolarizing postsynaptic potential. Although attenuation of the depolarizing postsynaptic potential amplitude from ventral tegmental area stimulation was often accompanied by membrane depolarization, it appeared that the two responses were not causally related. The effect of ventral tegmental area stimulation on the evoked depolarizing postsynaptic potential and the membrane potential were blocked by haloperidol indicating the involvement of dopamine. Iontophoretically applied dopamine produced responses similar to ventral tegmental area stimulation with two exceptions: (i) iontophoretically applied dopamine produced consistently stronger maximal attenuation of the depolarizing postsynaptic potential than did ventral tegmental area stimulation; and (ii) iontophoretically applied dopamine always attenuated both the depolarizing postsynaptic potential and hyperpolarizing postsynaptic potential whereas ventral tegmental area stimulation produced selective attenuation of the depolarizing postsynaptic potential only. These electrophysiological results are

  3. Repeated cocaine enhances ventral hippocampal-stimulated dopamine efflux in the nucleus accumbens and alters ventral hippocampal NMDA receptor subunit expression.

    PubMed

    Barr, Jeffrey L; Forster, Gina L; Unterwald, Ellen M

    2014-08-01

    Dopaminergic neurotransmission in the nucleus accumbens is important for various reward-related cognitive processes including reinforcement learning. Repeated cocaine enhances hippocampal synaptic plasticity, and phasic elevations of accumbal dopamine evoked by unconditioned stimuli are dependent on impulse flow from the ventral hippocampus. Therefore, sensitized hippocampal activity may be one mechanism by which drugs of abuse enhance limbic dopaminergic activity. In this study, in vivo microdialysis in freely moving adult male Sprague-Dawley rats was used to investigate the effect of repeated cocaine on ventral hippocampus-mediated dopaminergic transmission within the medial shell of the nucleus accumbens. Following seven daily injections of saline or cocaine (20 mg/kg, ip), unilateral infusion of N-methyl-d-aspartate (NMDA, 0.5 μg) into the ventral hippocampus transiently increased both motoric activity and ipsilateral dopamine efflux in the medial shell of the nucleus accumbens, and this effect was greater in rats that received repeated cocaine compared to controls that received repeated saline. In addition, repeated cocaine altered NMDA receptor subunit expression in the ventral hippocampus, reducing the NR2A : NR2B subunit ratio. Together, these results suggest that repeated exposure to cocaine produces maladaptive ventral hippocampal-nucleus accumbens communication, in part through changes in glutamate receptor composition. A behaviorally sensitizing regimen of cocaine (20 mg/kg, ip 7 days) also sensitized ventral hippocampus (hipp)-mediated dopaminergic transmission within the nucleus accumbens (Nac) to NMDA stimulation (bolts). This was associated with reduced ventral hippocampal NR2A:NR2B subunit ratio, suggesting that repeated exposure to cocaine produces changes in hippocampal NMDA receptor composition that lead to enhanced ventral hippocampus-nucleus accumbens communication.

  4. Individual Differences in Dopamine Efflux in Nucleus Accumbens Shell and Core during Instrumental Learning

    ERIC Educational Resources Information Center

    Cheng, Jingjun; Feenstra, Matthijs G. P.

    2006-01-01

    Combined activation of dopamine D1- and NMDA-glutamate receptors in the nucleus accumbens has been strongly implicated in instrumental learning, the process in which an individual learns that a specific action has a wanted outcome. To assess dopaminergic activity, we presented rats with two sessions (30 trials each) of a one-lever appetitive…

  5. Nucleus accumbens dopamine D2-receptor expressing neurons control behavioral flexibility in a place discrimination task in the IntelliCage.

    PubMed

    Macpherson, Tom; Morita, Makiko; Wang, Yanyan; Sasaoka, Toshikuni; Sawa, Akira; Hikida, Takatoshi

    2016-07-01

    Considerable evidence has demonstrated a critical role for the nucleus accumbens (NAc) in the acquisition and flexibility of behavioral strategies. These processes are guided by the activity of two discrete neuron types, dopamine D1- or D2-receptor expressing medium spiny neurons (D1-/D2-MSNs). Here we used the IntelliCage, an automated group-housing experimental cage apparatus, in combination with a reversible neurotransmission blocking technique to examine the role of NAc D1- and D2-MSNs in the acquisition and reversal learning of a place discrimination task. We demonstrated that NAc D1- and D2-MSNs do not mediate the acquisition of the task, but that suppression of activity in D2-MSNs impairs reversal learning and increased perseverative errors. Additionally, global knockout of the dopamine D2L receptor isoform produced a similar behavioral phenotype to D2-MSN-blocked mice. These results suggest that D2L receptors and NAc D2-MSNs act to suppress the influence of previously correct behavioral strategies allowing transfer of behavioral control to new strategies.

  6. Dopamine in the nucleus accumbens modulates the memory of social defeat in Syrian hamsters (Mesocricetus auratus).

    PubMed

    Gray, C L; Norvelle, A; Larkin, T; Huhman, K L

    2015-06-01

    Conditioned defeat (CD) is a behavioral response that occurs in Syrian hamsters after they experience social defeat. Subsequently, defeated hamsters no longer produce territorial aggression but instead exhibit heightened levels of avoidance and submission, even when confronted with a smaller, non-aggressive intruder. Dopamine in the nucleus accumbens is hypothesized to act as a signal of salience for both rewarding and aversive stimuli to promote memory formation and appropriate behavioral responses to significant events. The purpose of the present study was to test the hypothesis that dopamine in the nucleus accumbens modulates the acquisition and expression of behavioral responses to social defeat. In Experiment 1, bilateral infusion of the non-specific D1/D2 receptor antagonist cis(z)flupenthixol (3.75 μg/150 nl saline) into the nucleus accumbens 5 min prior to defeat training significantly reduced submissive and defensive behavior expressed 24h later in response to a non-aggressive intruder. In Experiment 2, infusion of 3.75 μg cis-(Z)-flupenthixol 5 min before conditioned defeat testing with a non-aggressive intruder significantly increased aggressive behavior in drug-infused subjects. In Experiment 3, we found that the effect of cis-(Z)-flupenthixol on aggression was specific to defeated animals as infusion of drug into the nucleus accumbens of non-defeated animals did not significantly alter their behavior in response to a non-aggressive intruder. These data demonstrate that dopamine in the nucleus accumbens modulates both acquisition and expression of social stress-induced behavioral changes and suggest that the nucleus accumbens plays an important role in the suppression of aggression that is observed after social defeat.

  7. Choline transporter hemizygosity results in diminished basal extracellular dopamine levels in nucleus accumbens and blunts dopamine elevations following cocaine or nicotine.

    PubMed

    Dong, Yu; Dani, John A; Blakely, Randy D

    2013-10-15

    Dopamine (DA) signaling in the central nervous system mediates the addictive capacities of multiple commonly abused substances, including cocaine, amphetamine, heroin and nicotine. The firing of DA neurons residing in the ventral tegmental area (VTA), and the release of DA by the projections of these neurons in the nucleus accumbens (NAc), is under tight control by cholinergic signaling mediated by nicotinic acetylcholine (ACh) receptors (nAChRs). The capacity for cholinergic signaling is dictated by the availability and activity of the presynaptic, high-affinity, choline transporter (CHT, SLC5A7) that acquires choline in an activity-dependent matter to sustain ACh synthesis. Here, we present evidence that a constitutive loss of CHT expression, mediated by genetic elimination of one copy of the Slc5a7 gene in mice (CHT+/-), leads to a significant reduction in basal extracellular DA levels in the NAc, as measured by in vivo microdialysis. Moreover, CHT heterozygosity results in blunted DA elevations following systemic nicotine or cocaine administration. These findings reinforce a critical role of ACh signaling capacity in both tonic and drug-modulated DA signaling and argue that genetically imposed reductions in CHT that lead to diminished DA signaling may lead to poor responses to reinforcing stimuli, possibly contributing to disorders linked to perturbed cholinergic signaling including depression and attention-deficit hyperactivity disorder (ADHD).

  8. Extracellular dopamine and its metabolites in the nucleus accumbens of Fisher and Lewis rats: Basal levels and cocaine-induced changes

    SciTech Connect

    Strecker, R.E.; Eberle, W.F.; Ashby, C.R. Jr.

    1995-11-01

    Rats of the Lewis (LEW) strain show a greater preference for drugs of abuse than do Fisher 344 (F344) rats. The in vivo microdialysis procedure was used to examine basal and cocaine-evoked extracellular (EC) levels of dopamine (DA), DOPAC, and HVA in the nucleus accumbens (NAc) of F344 and LEW rats. The basal EC levels of the DA metabolites DOPAC and HVA in the NAc were markedly lower in LEW than in F344 rats. Although the increase in ECDA after 3, 10 or 30 mg/kg, i/p. of cocaine was similar in both strains, LEW rats had a smaller peak DA elevation followed by a slower return to basal DA levels at the 30 mg/kg dose. The neurochemical differences observed may contribute to the strain differences in the behavioral response to cocaine. 20 refs., 3 figs.

  9. Dysregulation of dopamine and glutamate release in the prefrontal cortex and nucleus accumbens following methamphetamine self-administration and during reinstatement in rats.

    PubMed

    Parsegian, Aram; See, Ronald E

    2014-03-01

    Methamphetamine (meth) addicts often exhibit enduring cognitive and neural deficits that likely contribute to persistent drug seeking and the high rates of relapse. These deficits may be related to changes in the prefrontal cortex (PFC) and its glutamatergic projections to the nucleus accumbens (NAc). Here, we performed in vivo microdialysis in the PFC and NAc in rats following either meth self-administration or yoked-saline control histories to assess baseline glutamate (GLU) levels, or reinstatement-evoked GLU and dopamine (DA) efflux in both regions simultaneously under cue-induced, meth-primed, or combined cues+meth reinstatement conditions. Our results show that meth self-administration (1) reduced basal GLU levels in both the dmPFC and NAc, (2) concurrently increased dmPFC and NAc GLU efflux during reinstatement, and (3) increased DA efflux in the dmPFC, but not in the NAc, under all reinstatement conditions when compared with yoked-saline controls. These data demonstrate for the first time that a history of psychostimulant self-administration alters GLU homeostasis not only in the NAc, but also in the dmPFC, its primary GLU projection source. Furthermore, combined cues+meth-primed reinstatement conditions produced the most pronounced increases in mPFC and NAc extracellular GLU, suggesting that the cue and meth prime conditions are additive in promoting reinstatement. Finally, increased efflux of DA in the dmPFC, but not in the NAc, across reinstatement conditions suggests that DA release in the dmPFC may be an important mediator of drug seeking initiated by multiple relapse triggers.

  10. The role of dopamine in the accumbens core in the expression of Pavlovian-conditioned responses.

    PubMed

    Saunders, Benjamin T; Robinson, Terry E

    2012-08-01

    The role of dopamine in reward is a topic of debate. For example, some have argued that phasic dopamine signaling provides a prediction-error signal necessary for stimulus-reward learning, whereas others have hypothesized that dopamine is not necessary for learning per se, but for attributing incentive motivational value ('incentive salience') to reward cues. These psychological processes are difficult to tease apart, because they tend to change together. To disentangle them we took advantage of natural individual variation in the extent to which reward cues are attributed with incentive salience, and asked whether dopamine (specifically in the core of the nucleus accumbens) is necessary for the expression of two forms of pavlovian-conditioned approach behavior--one in which the cue acquires powerful motivational properties (sign-tracking) and another closely related one in which it does not (goal-tracking). After acquisition of these conditioned responses (CRs), intra-accumbens injection of the dopamine receptor antagonist flupenthixol markedly impaired the expression of a sign-tracking CR, but not a goal-tracking CR. Furthermore, dopamine antagonism did not produce a gradual extinction-like decline in behavior, but maximally impaired expression of a sign-tracking CR on the very first trial, indicating the effect was not due to new learning (i.e. it occurred in the absence of new prediction-error computations). The data support the view that dopamine in the accumbens core is not necessary for learning stimulus-reward associations, but for attributing incentive salience to reward cues, transforming predictive conditional stimuli into incentive stimuli with powerful motivational properties.

  11. Terminal Dopamine Release Kinetics in the Accumbens Core and Shell Are Distinctly Altered after Withdrawal from Cocaine Self-Administration

    PubMed Central

    2016-01-01

    Abstract Repeated self-administration of cocaine is associated with impairments in motivated behaviors as well as alterations in both dopamine (DA) release and neural signaling within the nucleus accumbens (NAc). These impairments are present even after several weeks of abstinence from drug taking, suggesting that the self-administration experience induces long-lasting neuroplastic alterations in the mesolimbic DA circuit. To understand these changes at the terminal level, rats were allowed to self-administer either cocaine intravenously (∼1 mg/kg per infusion) or water to a receptacle (control) in 2-h sessions over 14 days, followed by 30 days of enforced abstinence. Fast-scan cyclic voltammetry was used to record real-time DA release in either NAc core or shell after electrical stimulations of the ventral tegmental area (VTA) in freely-moving animals. In controls, the kinetics of DA release in the core and shell strikingly differed, with shell displaying slower release and reuptake rates than core. However, cocaine experience differentially altered these signaling patterns by NAc subregion. In the shell, cocaine rats showed less sensitivity to the dynamic range of applied stimulations than controls. In the core, by contrast, cocaine rats displayed robustly reduced peak DA release given the same stimulation, while also showing slower release and reuptake kinetics. The differential effects of cocaine self-administration on terminal function between core and shell is consistent with a region-specific functional reorganization of the mesolimbic DA system after repeated exposure and may provide an anatomical substrate for altered cognitive function after chronic drug-taking and addiction. PMID:27752541

  12. Synergistic elevations in nucleus accumbens extracellular dopamine concentrations during self-administration of cocaine/heroin combinations (Speedball) in rats.

    PubMed

    Hemby, S E; Co, C; Dworkin, S I; Smith, J E

    1999-01-01

    The abuse of cocaine/opiate combinations (speedball) represents a growing trend in illicit drug use. Delineation of neurobiological substrates mediating the reinforcing effects of the combination may increase our knowledge of reinforcement mechanisms and provide useful new information for the development of pharmacotherapies. Several studies suggest dopaminergic innervations of the nucleus accumbens (NAc) have a central role in the brain processes underlying drug reinforcement. The present study was undertaken to determine the relationship between the self-administration of cocaine/heroin combinations and NAc extracellular dopamine concentrations ([DA]e) using in vivo microdialysis and microbore high-pressure liquid chromatography. Rats were assigned randomly to one of three groups to self-administer i.v. cocaine (125, 250, and 500 micrograms/infusion; n = 5), heroin (4.5, 9, and 18 micrograms/infusion; n = 5), or cocaine/heroin combinations (125/4.5; 250/9, and 500/18 micrograms/infusion; n = 4) under a fixed ratio (FR) 10: 20-s time-out schedule of reinforcement/multicomponent dosing session. After stable rates of responding were engendered and maintained, microdialysis samples were collected in 10-min intervals during the self-administration session. Self-administration of cocaine/heroin combinations produced synergisitic elevations in NAc [DA]e (1000% baseline) compared with cocaine (400% baseline) and heroin (not significantly different from baseline levels). Neither the number of infusions nor the interinfusion intervals was significantly different between the groups across the self-administration session. Moreover, cocaine concentrations were not significantly different between the cocaine and cocaine/heroin groups. These results demonstrate that heroin interacts with cocaine to produce synergistic elevations in [DA]e, providing a neurochemical basis for understanding the abuse liability of cocaine/opiate combinations.

  13. Cocaine Self-Administration Experience Induces Pathological Phasic Accumbens Dopamine Signals and Abnormal Incentive Behaviors in Drug-Abstinent Rats

    PubMed Central

    Wang, Xuefei; Sugam, Jonathan A.; Carelli, Regina M.

    2016-01-01

    Chronic exposure to drugs of abuse is linked to long-lasting alterations in the function of limbic system structures, including the nucleus accumbens (NAc). Although cocaine acts via dopaminergic mechanisms within the NAc, less is known about whether phasic dopamine (DA) signaling in the NAc is altered in animals with cocaine self-administration experience or if these animals learn and interact normally with stimuli in their environment. Here, separate groups of rats self-administered either intravenous cocaine or water to a receptacle (controls), followed by 30 d of enforced abstinence. Next, all rats learned an appetitive Pavlovian discrimination and voltammetric recordings of real-time DA release were taken in either the NAc core or shell of cocaine and control subjects. Cocaine experience differentially impaired DA signaling in the core and shell relative to controls. Although phasic DA signals in the shell were essentially abolished for all stimuli, in the core, DA did not distinguish between cues and was abnormally biased toward reward delivery. Further, cocaine rats were unable to learn higher-order associations and even altered simple conditioned approach behaviors, displaying enhanced preoccupation with cue-associated stimuli (sign-tracking; ST) but diminished time at the food cup awaiting reward delivery (goal-tracking). Critically, whereas control DA signaling correlated with ST behaviors, cocaine experience abolished this relationship. These findings show that cocaine has persistent, differential, and pathological effects on both DA signaling and DA-dependent behaviors and suggest that psychostimulant experience may remodel the very circuits that bias organisms toward repeated relapse. SIGNIFICANCE STATEMENT Relapsing to drug abuse despite periods of abstinence and sincere attempts to quit is one of the most pernicious facets of addiction. Unfortunately, little is known about how the dopamine (DA) system functions after periods of drug abstinence

  14. Glutamatergic signaling by mesolimbic dopamine neurons in the nucleus accumbens.

    PubMed

    Tecuapetla, Fatuel; Patel, Jyoti C; Xenias, Harry; English, Daniel; Tadros, Ibrahim; Shah, Fulva; Berlin, Joshua; Deisseroth, Karl; Rice, Margaret E; Tepper, James M; Koos, Tibor

    2010-05-19

    Recent evidence suggests the intriguing possibility that midbrain dopaminergic (DAergic) neurons may use fast glutamatergic transmission to communicate with their postsynaptic targets. Because of technical limitations, direct demonstration of the existence of this signaling mechanism has been limited to experiments using cell culture preparations that often alter neuronal function including neurotransmitter phenotype. Consequently, it remains uncertain whether glutamatergic signaling between DAergic neurons and their postsynaptic targets exists under physiological conditions. Here, using an optogenetic approach, we provide the first conclusive demonstration that mesolimbic DAergic neurons in mice release glutamate and elicit excitatory postsynaptic responses in projection neurons of the nucleus accumbens. In addition, we describe the properties of the postsynaptic glutamatergic responses of these neurons during experimentally evoked burst firing of DAergic axons that reproduce the reward-related phasic population activity of the mesolimbic projection. These observations indicate that, in addition to DAergic mechanisms, mesolimbic reward signaling may involve glutamatergic transmission.

  15. Glutamatergic Signaling by Mesolimbic Dopamine Neurons in the Nucleus Accumbens

    PubMed Central

    Tecuapetla, Fatuel; Patel, Jyoti C.; Xenias, Harry; English, Daniel; Tadros, Ibrahim; Shah, Fulva; Berlin, Joshua; Deisseroth, Karl; Rice, Margaret E.; Tepper, James M.

    2010-01-01

    Recent evidence suggests the intriguing possibility that midbrain dopaminergic (DAergic) neurons may use fast glutamatergic transmission to communicate with their postsynaptic targets. Because of technical limitations, direct demonstration of the existence of this signaling mechanism has been limited to experiments using cell culture preparations that often alter neuronal function including neurotransmitter phenotype. Consequently, it remains uncertain whether glutamatergic signaling between DAergic neurons and their postsynaptic targets exists under physiological conditions. Here, using an optogenetic approach, we provide the first conclusive demonstration that mesolimbic DAergic neurons in mice release glutamate and elicit excitatory postsynaptic responses in projection neurons of the nucleus accumbens. In addition, we describe the properties of the postsynaptic glutamatergic responses of these neurons during experimentally evoked burst firing of DAergic axons that reproduce the reward-related phasic population activity of the mesolimbic projection. These observations indicate that, in addition to DAergic mechanisms, mesolimbic reward signaling may involve glutamatergic transmission. PMID:20484653

  16. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids.

    PubMed

    Covey, Dan P; Bunner, Kendra D; Schuweiler, Douglas R; Cheer, Joseph F; Garris, Paul A

    2016-06-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement.

  17. A critical role of nucleus accumbens dopamine D1-family receptors in renewal of alcohol seeking after punishment-imposed abstinence.

    PubMed

    Marchant, Nathan J; Kaganovsky, Konstantin

    2015-06-01

    In humans, places or contexts previously associated with alcohol use often provoke relapse during abstinence. This phenomenon is modeled in laboratory animals using the ABA renewal procedure, in which extinction training in context (B) suppresses alcohol seeking, and renewal of this seeking occurs when the animal returns to the original training context (A). However, extinction training does not adequately capture the motivation for abstinence in human alcoholics who typically self-initiate abstinence in response to the negative consequences of excessive use. We recently developed a procedure to study renewal in laboratory rats after abstinence imposed by negative consequences (footshock punishment). The mechanisms of renewal of punished alcohol seeking are largely unknown. Here, we used the D1-family receptor antagonist SCH 23390 to examine the role of nucleus accumbens (NAc) shell and core dopamine in renewal of alcohol seeking after punishment-imposed abstinence. We trained alcohol-preferring "P rats" to self-administer 20% alcohol in Context A and subsequently suppressed alcohol taking via response-contingent footshock punishment in Context B. We tested the effects of systemic, NAc shell, or NAc core injections of SCH 23390 on renewal of alcohol seeking after punishment-imposed abstinence. We found that both systemic and NAc shell and core injections of SCH 23390 decreased renewal of punished alcohol seeking. Our results demonstrate a critical role of NAc dopamine in renewal of alcohol seeking after punishment-imposed abstinence. We discuss these results in reference to the brain mechanisms of renewal of alcohol seeking after extinction versus punishment.

  18. A critical role of nucleus accumbens dopamine D1-family receptors in renewal of alcohol seeking after punishment-imposed abstinence

    PubMed Central

    Marchant, Nathan J.; Kaganovsky, Konstantin

    2015-01-01

    In humans, places or contexts previously associated with alcohol use often provoke relapse during abstinence. This phenomenon is modeled in laboratory animals using the ABA renewal procedure, where alcohol seeking that is suppressed with extinction training in a context (B) renews when the animal returns to the original training context (A). However, extinction training does not adequately capture the motivation for abstinence in human alcoholics who typically self-initiate abstinence due to the negative consequences of excessive use. We recently developed a procedure to study renewal in laboratory rats after abstinence is imposed by negative consequences (footshock punishment). The mechanisms of renewal of punished alcohol seeking are largely unknown. Here we used the D1-family receptor antagonist SCH 23390 to examine the role of nucleus accumbens (NAc) shell and core dopamine in renewal of alcohol seeking after punishment-imposed abstinence. We trained alcohol preferring ‘P rats’ to self-administer 20% alcohol in context A and subsequently suppressed alcohol taking via response-contingent footshock punishment in context B. We tested the effects of systemic, NAc shell, or NAc core injections of SCH 23390 on renewal of alcohol seeking after punishment-imposed abstinence. We found that both systemic and NAc shell and core injections of SCH 23390 decreased renewal of punished alcohol seeking. Our results demonstrate a critical role of NAc dopamine in renewal of alcohol seeking after punishment-imposed abstinence. We discuss these results in reference to the brain mechanisms of renewal of alcohol seeking after extinction versus punishment. PMID:25914922

  19. Pharmacological evidence for common mechanisms underlying the effects of neurotensin and neuroleptics on in vivo dopamine efflux in the rat nucleus accumbens.

    PubMed

    Blaha, C D; Phillips, A G

    1992-08-01

    The effects of the neuropeptide neurotensin and the typical neuroleptic haloperidol on dopamine efflux were compared in the posteromedial nucleus accumbens of the chloral hydrate-anesthetized rat using in vivo chronoamperometry. Both neurotensin and haloperidol administration elicited an immediate increase in dopamine efflux in the nucleus accumbens. Gamma-hydroxybutyric acid lactone, an agent known to block impulse flow in dopamine neurons, either prevented when given before neurotensin or reversed neurotensin-induced increases in accumbens dopamine efflux. Haloperidol-induced increases in accumbens dopamine efflux were similarly affected by gamma-hydroxybutyric acid lactone. The dopamine receptor agonist apomorphine reversed neurotensin- and haloperidol-induced increases in dopamine efflux. Amphetamine, administered during the peak dopamine stimulatory effects induced by neurotensin or haloperidol, resulted in increases above baseline which were significantly greater than the effects of amphetamine alone. These combined drug treatment effects on baseline dopamine efflux were additive, indicating that the effects of amphetamine were not potentiated by neurotensin or haloperidol pretreatments. These in vivo results suggest that neurotensin and haloperidol may augment dopamine efflux in the nucleus accumbens via common mechanisms of action which may involve activation of mesotelencephalic dopamine neuronal firing. The inability of neurotensin to block amphetamine-induced efflux in the nucleus accumbens further suggests that neurotensin blockade of amphetamine-elicited locomotor activity is mediated by an action of neurotensin postsynaptic to dopamine nerve terminals in the nucleus accumbens.

  20. Effects of acute and chronic clozapine on dopamine release and metabolism in the striatum and nucleus accumbens of conscious rats.

    PubMed

    Invernizzi, R; Morali, F; Pozzi, L; Samanin, R

    1990-08-01

    1. The effect of single and repeated (once daily for 23 days) oral doses of 20 and 60 mg kg-1 clozapine on dopamine release and metabolism were studied by intracerebral dialysis in the striatum and nucleus accumbens of conscious rats. 2. The basal output of dopamine, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the striatum and nucleus accumbens of rats given clozapine 20 or 60 mg kg-1 chronically, measured one day after the last drug dose, was not significantly different from that of vehicle-treated animals. 3. Challenge doses of 20 or 60 mg kg-1 clozapine produced similar increases in dopamine levels in the striatum and nucleus accumbens of animals which had received vehicle or clozapine 20 or 60 mg kg-1 once daily for 23 days, except that 1 h after administration 60 mg kg-1 clozapine had a greater effect in the nucleus accumbens. 4. In animals treated chronically with clozapine 20 and 60 mg kg-1 or vehicle, DOPAC levels in the striatum and nucleus accumbens were increased to the same extent by challenge doses of clozapine (20 or 60 mg kg-1). In animals treated chronically with clozapine, a challenge dose of 60 mg kg-1 had significantly greater effect on HVA only in the nucleus accumbens. 5. When DOPAC and HVA were measured post mortem in the striatum and nucleus accumbens 2 h after various oral doses of clozapine, it was found that 10 mg kg-1 significantly increased dopamine metabolites only in the nucleus accumbens whereas 100 mg kg-1 had this effect in both regions. Clozapine, 30mgkg-' significantly raised DOPAC levels in both regions but HVA was elevated only in the nucleus accumbens. 6. There appeared to be no appreciable changes in dopamine release and metabolism nor any reduction in the effect of clozapine in the nucleus accumbens after chronic drug treatment. In fact the effect was greater in chronically treated rats, particularly in the nucleus accumbens of animals given 60mgkg' clozapine. 7. It was confirmed that measurement of

  1. Increased Dopamine Receptor Activity in the Nucleus Accumbens Shell Ameliorates Anxiety during Drug Withdrawal

    PubMed Central

    Radke, Anna K; Gewirtz, Jonathan C

    2012-01-01

    A number of lines of evidence suggest that negative emotional symptoms of withdrawal involve reduced activity in the mesolimbic dopamine system. This study examined the contribution of dopaminergic signaling in structures downstream of the ventral tegmental area to withdrawal from acute morphine exposure, measured as potentiation of the acoustic startle reflex. Systemic administration of the general dopamine receptor agonist apomorphine or a cocktail of the D1-like receptor agonist SKF82958 and the D2-like receptor agonist quinpirole attenuated potentiated startle during morphine withdrawal. This effect was replicated by apomorphine infusion into the nucleus accumbens shell. Finally, apomorphine injection was shown to relieve startle potentiation during nicotine withdrawal and conditioned place aversion to morphine withdrawal. These results suggest that transient activation of the ventral tegmental area mesolimbic dopamine system triggers the expression of anxiety and aversion during withdrawal from multiple classes of abused drugs. PMID:22692565

  2. Tickling increases dopamine release in the nucleus accumbens and 50 kHz ultrasonic vocalizations in adolescent rats.

    PubMed

    Hori, Miyo; Shimoju, Rie; Tokunaga, Ryota; Ohkubo, Masato; Miyabe, Shigeki; Ohnishi, Junji; Murakami, Kazuo; Kurosawa, Mieko

    2013-03-27

    Adolescent rats emit 50 kHz ultrasonic vocalizations, a marker of positive emotion, during rough-and-tumble play or on tickling stimulation. The emission of 50 kHz ultrasonic vocalizations in response to tickling is suggested to be mediated by dopamine release in the nucleus accumbens; however, there is no direct evidence supporting this hypothesis. The present study aimed to elucidate whether play behavior (tickling) in adolescent rats can trigger dopamine release in the nucleus accumbens with hedonic 50 kHz ultrasonic vocalizations. The effect of tickling stimulation was compared with light-touch stimulation, as a discernible stimulus. We examined 35-40-day-old rats, which corresponds to the period of midadolescence. Tickling stimulation for 5 min significantly increased dopamine release in the nucleus accumbens (118±7% of the prestimulus control value). Conversely, light-touch stimulation for 5 min did not significantly change dopamine release. In addition, 50 kHz ultrasonic vocalizations were emitted during tickling stimulation but not during light-touch stimulation. Further, tickling-induced 50 kHz ultrasonic vocalizations were significantly blocked by the direct application of SCH23390 (D1 receptor antagonist) and raclopride (D2/D3 receptor antagonist) into the nucleus accumbens. Our study demonstrates that tickling stimulation in adolescent rats increases dopamine release in the nucleus accumbens, leading to the generation of 50 kHz ultrasonic vocalizations.

  3. NMDA and dopamine D1 receptors within NAc-shell regulate IEG proteins expression in reward circuit during cocaine memory reconsolidation.

    PubMed

    Li, Y; Ge, S; Li, N; Chen, L; Zhang, S; Wang, J; Wu, H; Wang, X; Wang, X

    2016-02-19

    Reactivation of consolidated memory initiates a memory reconsolidation process, during which the reactivated memory is susceptible to strengthening, weakening or updating. Therefore, effective interference with the memory reconsolidation process is expected to be an important treatment for drug addiction. The nucleus accumbens (NAc) has been well recognized as a pathway component that can prevent drug relapse, although the mechanism underlying this function is poorly understood. We aimed to clarify the regulatory role of the NAc in the cocaine memory reconsolidation process, by examining the effect of applying different pharmacological interventions to the NAc on Zif 268 and Fos B expression in the entire reward circuit after cocaine memory reactivation. Through the cocaine-induced conditioned place preference (CPP) model, immunohistochemical and immunofluorescence staining for Zif 268 and Fos B were used to explore the functional activated brain nuclei after cocaine memory reactivation. Our results showed that the expression of Zif 268 and Fos B was commonly increased in the medial prefrontal cortex (mPFC), the infralimbic cortex (IL), the NAc-core, the NAc-shell, the hippocampus (CA1, CA2, and CA3 subregions), the amygdala, the ventral tegmental area (VTA), and the supramammillary nucleus (SuM) following memory reconsolidation, and Zif 268/Fos B co-expression was commonly observed (for Zif 268: 51-68%; for Fos B: 52-66%). Further, bilateral NAc-shell infusion of MK 801 and SCH 23390, but not raclopride or propranolol, prior to addictive memory reconsolidation, decreased Zif 268 and Fos B expression in the entire reward circuit, except for the amygdala, and effectively disturbed subsequent CPP-related behavior. In summary, N-methyl-d-aspartate (NMDA) and dopamine D1 receptors, but not dopamine D2 or β adrenergic receptors, within the NAc-shell, may regulate Zif 268 and Fos B expression in most brain nuclei of the reward circuit after cocaine memory reactivation

  4. Dopamine-dependent hyperactivity in the rat following manipulation of GABA mechanisms in the region of the nucleus accumbens.

    PubMed

    Pycock, C J; Horton, R W

    1979-01-01

    The effect of manipulation of GABA mechanisms in the region of the nucleus accumbens on dopamine-dependent locomotor hyperactivity in the rat has been studied. Two models of hyperactivity were used: (1) the injection of dopamine into the region of the nucleus accumbens in nialamide-pretreated animals and (2) the systemic administration of d-amphetamine. Both GABA and the GABA agonist 3-aminopropane sulphonic acid (3-APS) depressed hyperactivity in a dose-related manner. High concentrations of GABA (greater than 100 micrograms) were required to produce a significant effect and the response was short-lived possibly reflecting the efficient GABA inactivating mechanisms. 3-APS proved to be approximately 10 times more potent as compared to GABA in the dopamine-accumbens hyperactivity model. Conversely GABA receptor antagonism with low doses of either picrotoxin or bicuculline enhanced the mild locomotor response induced by a low dose of dopamine injected into the nucleus accumbens. However such results were difficult to evaluate fairly as higher doses of the GABA antagonists resulted in varying degrees of generalized seizures. Blockade of GABA uptake systems with cis-1, 3-aminocyclohexane carboxylic acid (ACHC), nipecotic acid or beta-alanine within the region of the nucleus accumbens produced dose-related depression of dopamine-dependent hyperactivity in both models. GABA uptake blockade (nipecotic acid) significantly enhanced the GABA-mediated depression of hyperactivity induced by bilateral injection of dopamine into the nucleus accumbens. The results demonstrate an inhibitory action of GABA and drugs facilitating GABA-ergic transmission on dopamine-dependent hyperactivity in the rat. Although open to criticisms of not being able to distinguish between true GABA effects and the results of non-specific neuronal depression the hyperactivity model underlines the potency of the GABA uptake blocking compounds and their possible potential for future clinical use.

  5. Nicotine restores morphine-induced memory deficit through the D1 and D2 dopamine receptor mechanisms in the nucleus accumbens.

    PubMed

    Azizbeigi, Ronak; Ahmadi, Shamseddin; Babapour, Vahab; Rezayof, Ameneh; Zarrindast, Mohammad Reza

    2011-08-01

    Involvement of the dopamine D1 and D2 receptors in the nucleus accumbens (NAc) with interaction between morphine and nicotine on inhibitory avoidance (IA) memory was investigated. A step-through type of inhibitory avoidance tasks was used to assess memory in male Wistar rats. The results showed that subcutaneous (s.c.) administration of morphine (7.5 mg/kg) after training decreased retrieval of IA memory in the animals when tested 24 h later. Pre-test administration of the same dose of morphine significantly reversed the deficiency in retrieval. The results also showed that pre-test administration of nicotine (0.2 and 0.4 mg/kg, s.c.) by itself mimicked the effect of pre-test morphine, and lower doses of nicotine (0.1 and 0.2 mg/kg) also improved the effect of a low dose of morphine (2.5 mg/kg) on retrieval of IA memory. Pre-test intra-NAc administration of the dopamine D1 receptor antagonist, SCH 23390 (0.001 and 0.01 µg/rat), and the dopamine D2 receptor antagonist, sulpiride (0.5 and 1 µg/rat) caused no significant effects on IA memory by themselves, but both prevented reinstatement of the retrieval of IA memory by the effective dose of nicotine (0.4 mg/kg). It can be concluded that the dopaminergic mechanism(s) in the NAc is a crosslink for the effect of morphine and nicotine on reinstatement of retrieval of IA memory impaired by post-training administration of morphine.

  6. The monoamine stabilizer (−)‐OSU6162 counteracts downregulated dopamine output in the nucleus accumbens of long‐term drinking Wistar rats

    PubMed Central

    Feltmann, Kristin; Fredriksson, Ida; Wirf, Malin; Schilström, Björn

    2015-01-01

    Abstract We recently established that the monoamine stabilizer (−)‐OSU6162 (OSU6162) decreased voluntary alcohol‐mediated behaviors, including alcohol intake and cue/priming‐induced reinstatement, in long‐term drinking rats, while blunting alcohol‐induced dopamine output in the nucleus accumbens (NAc) of alcohol‐naïve rats. Therefore, we hypothesized that OSU6162 attenuates alcohol‐mediated behaviors by blunting alcohol's rewarding effects. Here, we evaluated the effects of long‐term drinking and OSU6162 treatment (30 mg/kg, sc) on basal and alcohol‐induced (2.5 g/kg, ip) NAc dopamine outputs in Wistar rats after 10 months of intermittent access to 20% alcohol. The results showed that basal and alcohol‐induced NAc dopamine outputs were significantly lower in long‐term drinking rats, compared with alcohol‐naïve rats. In the long‐term drinking rats, OSU6162 slowly increased and maintained the dopamine output significantly elevated compared with baseline for at least 4 hours. Furthermore, OSU6162 pre‐treatment did not blunt the alcohol‐induced output in the long‐term drinking rats, a finding that contrasted with our previous results in alcohol‐naïve rats. Finally, OSU6162 did not induce conditioned place preference (CPP) in either long‐term drinking or alcohol‐naïve rats, indicating that OSU6162 has no reinforcing properties. To verify that the CPP results were not due to memory acquisition impairment, we demonstrated that OSU6162 did not affect novel object recognition. In conclusion, these results indicate that OSU6162 attenuates alcohol‐mediated behaviors by counteracting NAc dopamine deficits in long‐term drinking rats and that OSU6162 is not rewarding on its own. Together with OSU6162's beneficial side‐effect profile, the present study merits evaluation of OSU6162's clinical efficacy to attenuate alcohol use in alcohol‐dependent patients. PMID:26464265

  7. Nucleus accumbens neurotransmission and effort-related choice behavior in food motivation: effects of drugs acting on dopamine, adenosine, and muscarinic acetylcholine receptors.

    PubMed

    Nunes, Eric J; Randall, Patrick A; Podurgiel, Samantha; Correa, Mercè; Salamone, John D

    2013-11-01

    Mesolimbic dopamine (DA) is a critical component of the brain circuitry regulating behavioral activation and effort-related processes. Although nucleus accumbens (NAc) DA depletions or antagonism leave aspects of appetite and primary food motivation intact, rats with impaired DA transmission reallocate their instrumental behavior away from food-reinforced tasks with high response requirements, and instead select less effortful food-seeking behaviors. Previous work showed that adenosine A2A antagonists can reverse the effects of DA D2 antagonists on effort-related choice, and that stimulation of adenosine A2A receptors produces behavioral effects that are similar to those induced by DA antagonism. The present review summarizes the literature on the role of NAc DA and adenosine in effort-related processes, and also presents original data on the effects of local stimulation of muscarinic acetylcholine receptors in NAc core. Local injections of the muscarinic agonist pilocarpine directly into NAc core produces shifts in effort-related choice behavior similar to those induced by DA antagonism or A2A receptor stimulation, decreasing lever pressing but increasing chow intake in rats responding on a concurrent fixed ratio/chow feeding choice task. In contrast, injections into a neostriatal control site dorsal to the NAc were ineffective. The actions of pilocarpine on this task were attenuated by co-administration of the muscarinic antagonist scopolamine. Thus, drugs that act on DA, adenosine A2A, and muscarinic receptors regulate effort-related choice behavior, which may have implications for the treatment of psychiatric symptoms such as psychomotor slowing, fatigue or anergia that can be observed in depression and other disorders.

  8. Diazepam Inhibits Electrically Evoked and Tonic Dopamine Release in the Nucleus Accumbens and Reverses the Effect of Amphetamine.

    PubMed

    Gomez-A, Alexander; Fiorenza, Amanda M; Boschen, Suelen L; Sugi, Adam H; Beckman, Danielle; Ferreira, Sergio T; Lee, Kendall; Blaha, Charles D; Da Cunha, Claudio

    2017-02-15

    Diazepam is a benzodiazepine receptor agonist with anxiolytic and addictive properties. Although most drugs of abuse increase the level of release of dopamine in the nucleus accumbens, here we show that diazepam not only causes the opposite effect but also prevents amphetamine from enhancing dopamine release. We used 20 min sampling in vivo microdialysis and subsecond fast-scan cyclic voltammetry recordings at carbon-fiber microelectrodes to show that diazepam caused a dose-dependent decrease in the level of tonic and electrically evoked dopamine release in the nucleus accumbens of urethane-anesthetized adult male Swiss mice. In fast-scan cyclic voltammetry assays, dopamine release was evoked by electrical stimulation of the ventral tegmental area. We observed that 2 and 3 mg of diazepam/kg reduced the level of electrically evoked dopamine release, and this effect was reversed by administration of the benzodiazepine receptor antagonist flumazenil in doses of 2.5 and 5 mg/kg, respectively. No significant effects on measures of dopamine re-uptake were observed. Cyclic voltammetry experiments further showed that amphetamine (5 mg/kg, intraperitoneally) caused a significant increase in the level of dopamine release and in the half-life for dopamine re-uptake. Diazepam (2 mg/kg) significantly weakened the effect of amphetamine on dopamine release without affecting dopamine re-uptake. These results suggest that the pharmacological effects of benzodiazepines have a dopaminergic component. In addition, our findings challenge the classic view that all drugs of abuse cause dopamine release in the nucleus accumbens and suggest that benzodiazepines could be useful in the treatment of addiction to other drugs that increase the level of dopamine release, such as cocaine, amphetamines, and nicotine.

  9. Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats.

    PubMed

    Sánchez-Catalán, María-José; Orrico, Alejandro; Hipólito, Lucía; Zornoza, Teodoro; Polache, Ana; Lanuza, Enrique; Martínez-García, Fernando; Granero, Luis; Agustín-Pavón, Carmen

    2017-01-01

    Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist β-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats.

  10. Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats

    PubMed Central

    Sánchez-Catalán, María-José; Orrico, Alejandro; Hipólito, Lucía; Zornoza, Teodoro; Polache, Ana; Lanuza, Enrique; Martínez-García, Fernando; Granero, Luis; Agustín-Pavón, Carmen

    2017-01-01

    Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist β-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats. PMID:28280461

  11. Deep brain stimulation of the nucleus accumbens shell induces anti-obesity effects in obese rats with alteration of dopamine neurotransmission.

    PubMed

    Zhang, Chao; Wei, Nai-Li; Wang, Yao; Wang, Xiu; Zhang, Jian-Guo; Zhang, Kai

    2015-03-04

    The aim of this study was to assess the anti-obesity effects of nucleus accumbens shell (NAc-sh) deep brain stimulation (DBS) in diet-induced obese (DIO) and chow-fed (chow) rats. The influence of DBS on dopamine (DA) signaling in the NAc-sh was also evaluated. DIO and chow rats were subjected to DBS for 14 consecutive days. Food intake and weight gain were measured daily. The gene expression of the dopamine D1 and D2 receptors was evaluated by qPCR. In addition, the extracellular levels of DA and its metabolite, dihydroxyphenylacetic acid (DOPAC), were determined by microdialysis. We observed that chronic DBS induced significant reductions in total energy intake (596.0±65.0kcal vs. 1161.6±22.2kcal, p<0.001) and weight gain (1.45±0.57% vs. 9.64±0.38%, p<0.001) in DIO rats compared to sham-DIO rats. Up-regulated D2 receptor gene expression (2.43±0.12 vs. 0.64±0.04, p<0.001) and increased DA levels (2.73±0.15pmol/mL vs. 0.62±0.05pmol/mL, p<0.001) were observed in DIO rats compared to sham-DIO rats. DBS had no influence on food intake, weight gain, or DA neurotransmission in chow rats. Our results support an association of the anorexigenic effects of NAc-sh DBS with mesolimbic DA signaling and indicate that the positive alteration of DA function in DIO rats may be responsible for the different effects of DBS in DIO and chow rats.

  12. Baclofen antagonizes nicotine-, cocaine-, and morphine-induced dopamine release in the nucleus accumbens of rat.

    PubMed

    Fadda, Paola; Scherma, Maria; Fresu, Alessandra; Collu, Maria; Fratta, Walter

    2003-10-01

    Evidence recently provided has suggested a specific involvement of the GABAergic system in modulating positive reinforcing properties of several drugs of abuse through an action on mesolimbic dopaminergic neurons. The GABA(B) receptor agonist baclofen has been proposed as a potential therapeutic agent for the clinical treatment of several forms of drug addiction. In the present study, using the in vivo microdialysis technique, we investigated the effect of baclofen on nicotine, cocaine, and morphine-induced increase in extracellular dopamine (DA) levels in the shell of the nucleus accumbens, a brain area supposedly involved in the modulation of the central effects of several drugs of abuse, of freely moving rats. As expected, nicotine (0.6 mg/kg s.c.), morphine (5 mg/kg s.c.), and cocaine (7.5 mg/kg i.p.) administration in rats induced a marked increase in extracellular DA concentrations in the nucleus accumbens, reaching a maximum value of +205 +/- 8.4%, +300 +/- 22.2%, and +370 +/- 30.7%, respectively. Pretreatment with baclofen (1.25 and 2.5 mg/kg i.p.) dose-dependently reduced the nicotine-, morphine-, and cocaine-evoked DA release in the shell of the nucleus accumbens. Furthermore, baclofen alone did not elicit changes in basal DA extracellular levels up to 180 min. Taken together, our data are in line with previous reports demonstrating the ability of baclofen to modulate the mesolimbic DAergic transmission and indicate baclofen as a putative candidate in the pharmacotherapy of polydrug abuse.

  13. Interactions between Brainstem Noradrenergic Neurons and the Nucleus Accumbens Shell in Modulating Memory for Emotionally Arousing Events

    ERIC Educational Resources Information Center

    Kerfoot, Erin C.; Williams, Cedric L.

    2011-01-01

    The nucleus accumbens shell (NAC) receives axons containing dopamine-[beta]-hydroxylase that originate from brainstem neurons in the nucleus of the solitary tract (NTS). Recent findings show that memory enhancement produced by stimulating NTS neurons after learning may involve interactions with the NAC. However, it is unclear whether these…

  14. Supersensitive Kappa Opioid Receptors Promotes Ethanol Withdrawal-Related Behaviors and Reduce Dopamine Signaling in the Nucleus Accumbens

    PubMed Central

    Rose, Jamie H.; Karkhanis, Anushree N.; Chen, Rong; Gioia, Dominic; Lopez, Marcelo F.; Becker, Howard C.; McCool, Brian A.

    2016-01-01

    Background: Chronic ethanol exposure reduces dopamine transmission in the nucleus accumbens, which may contribute to the negative affective symptoms associated with ethanol withdrawal. Kappa opioid receptors have been implicated in withdrawal-induced excessive drinking and anxiety-like behaviors and are known to inhibit dopamine release in the nucleus accumbens. The effects of chronic ethanol exposure on kappa opioid receptor-mediated changes in dopamine transmission at the level of the dopamine terminal and withdrawal-related behaviors were examined. Methods: Five weeks of chronic intermittent ethanol exposure in male C57BL/6 mice were used to examine the role of kappa opioid receptors in chronic ethanol-induced increases in ethanol intake and marble burying, a measure of anxiety/compulsive-like behavior. Drinking and marble burying were evaluated before and after chronic intermittent ethanol exposure, with and without kappa opioid receptor blockade by nor-binaltorphimine (10mg/kg i.p.). Functional alterations in kappa opioid receptors were assessed using fast scan cyclic voltammetry in brain slices containing the nucleus accumbens. Results: Chronic intermittent ethanol-exposed mice showed increased ethanol drinking and marble burying compared with controls, which was attenuated with kappa opioid receptor blockade. Chronic intermittent ethanol-induced increases in behavior were replicated with kappa opioid receptor activation in naïve mice. Fast scan cyclic voltammetry revealed that chronic intermittent ethanol reduced accumbal dopamine release and increased uptake rates, promoting a hypodopaminergic state of this region. Kappa opioid receptor activation with U50,488H concentration-dependently decreased dopamine release in both groups; however, this effect was greater in chronic intermittent ethanol-treated mice, indicating kappa opioid receptor supersensitivity in this group. Conclusions: These data suggest that the chronic intermittent ethanol-induced increase

  15. Oxytocin receptors are expressed on dopamine and glutamate neurons in the mouse ventral tegmental area that project to nucleus accumbens and other mesolimbic targets.

    PubMed

    Peris, Joanna; MacFadyen, Kaley; Smith, Justin A; de Kloet, Annette D; Wang, Lei; Krause, Eric G

    2017-04-01

    The mesolimbic dopamine (DA) circuitry determines which behaviors are positively reinforcing and therefore should be encoded in the memory to become a part of the behavioral repertoire. Natural reinforcers, like food and sex, activate this pathway, thereby increasing the likelihood of further consummatory, social, and sexual behaviors. Oxytocin (OT) has been implicated in mediating natural reward and OT-synthesizing neurons project to the ventral tegmental area (VTA) and nucleus accumbens (NAc); however, direct neuroanatomical evidence of OT regulation of DA neurons within the VTA is sparse. To phenotype OT-receptor (OTR) expressing neurons originating within the VTA, we delivered Cre-inducible adeno-associated virus that drives the expression of fluorescent marker into the VTA of male mice that had Cre-recombinase driven by OTR gene expression. OTR-expressing VTA neurons project to NAc, prefrontal cortex, the extended amygdala, and other forebrain regions but less than 10% of these OTR-expressing neurons were identified as DA neurons (defined by tyrosine hydroxylase colocalization). Instead, almost 50% of OTR-expressing cells in the VTA were glutamate (GLU) neurons, as indicated by expression of mRNA for the vesicular GLU transporter (vGluT). About one-third of OTR-expressing VTA neurons did not colocalize with either DA or GLU phenotypic markers. Thus, OTR expression by VTA neurons implicates that OT regulation of reward circuitry is more complex than a direct action on DA neurotransmission. J. Comp. Neurol. 525:1094-1108, 2017. © 2016 Wiley Periodicals, Inc.

  16. Nucleus accumbens shell and core dopamine responsiveness to sucrose in rats: role of response contingency and discriminative/conditioned cues.

    PubMed

    Bassareo, V; Cucca, F; Musio, P; Lecca, D; Frau, R; Di Chiara, G

    2015-03-01

    This study investigated by microdialysis the role of response contingency and food-associated cues in the responsiveness of dopamine transmission in the nucleus accumbens shell and core to sucrose feeding. In naive rats, single-trial non-contingent presentation and feeding of sucrose pellets increased dialysate shell dopamine and induced full habituation of dopamine responsiveness to sucrose feeding 24 and 48 h later. In rats trained to respond for sucrose pellets on a fixed ratio 1 (FR1) schedule, dialysate dopamine increased in the shell but not in the core during active responding as well as under extinction in the presence of sucrose cues. In rats yoked to the operant rats, the presentation of sucrose cues also increased dialysate dopamine selectively in the shell. In contrast, non-contingent sucrose presentation and feeding in FR1-trained and in yoked rats increased dialysate dopamine to a similar extent in the shell and core. It is concluded that, whereas non-contingent sucrose feeding activated dopamine transmission in the shell and core, response-contingent feeding activated, without habituation, dopamine transmission selectively in the shell as a result of the action of sucrose conditioned cues. These observations are consistent with a critical role of conditioned cues acquired during training and differential activation of shell vs. core dopamine for response-contingent sucrose feeding.

  17. Abuse-Related Neurochemical Effects of Para-Substituted Methcathinone Analogs in Rats: Microdialysis Studies of Nucleus Accumbens Dopamine and Serotonin

    PubMed Central

    Suyama, Julie A.; Sakloth, Farhana; Kolanos, Renata; Glennon, Richard A.; Lazenka, Matthew F.; Negus, S. Stevens

    2016-01-01

    Methcathinone (MCAT) is a monoamine releaser and parent compound to a new class of designer drugs that includes the synthetic cathinones mephedrone and flephedrone. Using MCAT and a series of para-substituted (or 4-substituted) MCAT analogs, it has been previously shown that expression of abuse-related behavioral effects in rats correlates both with the volume of the para substituent and in vitro neurochemical selectivity to promote monoamine release via the dopamine (DA) versus serotonin (5-HT) transporters in rat brain synaptosomes. The present study used in vivo microdialysis to determine the relationship between these previous measures and the in vivo neurochemical selectivity of these compounds to alter nucleus accumbens (NAc) DA and 5-HT levels. Male Sprague-Dawley rats were implanted with bilateral guide cannulae targeting the NAc. MCAT and five para-substituted analogs (4-F, 4-Cl, 4-Br, 4-CH3, and 4-OCH3) produced dose- and time-dependent increases in NAc DA and/or 5-HT levels. Selectivity was determined as the dose required to increase peak 5-HT levels by 250% divided by the dose required to increase peak DA levels by 250%. This measure of in vivo neurochemical selectivity varied across compounds and correlated with 1) in vivo expression of abuse-related behavioral effects (r = 0.89, P = 0.02); 2) in vitro selectivity to promote monoamine release via DA and 5-HT transporters (r = 0.95, P < 0.01); and 3) molecular volume of the para substituent (r = −0.85, P = 0.03). These results support a relationship between these molecular, neurochemical, and behavioral measures and support a role for molecular structure as a determinant of abuse-related neurochemical and behavioral effects of MCAT analogs. PMID:26645638

  18. Abuse-Related Neurochemical Effects of Para-Substituted Methcathinone Analogs in Rats: Microdialysis Studies of Nucleus Accumbens Dopamine and Serotonin.

    PubMed

    Suyama, Julie A; Sakloth, Farhana; Kolanos, Renata; Glennon, Richard A; Lazenka, Matthew F; Negus, S Stevens; Banks, Matthew L

    2016-01-01

    Methcathinone (MCAT) is a monoamine releaser and parent compound to a new class of designer drugs that includes the synthetic cathinones mephedrone and flephedrone. Using MCAT and a series of para-substituted (or 4-substituted) MCAT analogs, it has been previously shown that expression of abuse-related behavioral effects in rats correlates both with the volume of the para substituent and in vitro neurochemical selectivity to promote monoamine release via the dopamine (DA) versus serotonin (5-HT) transporters in rat brain synaptosomes. The present study used in vivo microdialysis to determine the relationship between these previous measures and the in vivo neurochemical selectivity of these compounds to alter nucleus accumbens (NAc) DA and 5-HT levels. Male Sprague-Dawley rats were implanted with bilateral guide cannulae targeting the NAc. MCAT and five para-substituted analogs (4-F, 4-Cl, 4-Br, 4-CH3, and 4-OCH3) produced dose- and time-dependent increases in NAc DA and/or 5-HT levels. Selectivity was determined as the dose required to increase peak 5-HT levels by 250% divided by the dose required to increase peak DA levels by 250%. This measure of in vivo neurochemical selectivity varied across compounds and correlated with 1) in vivo expression of abuse-related behavioral effects (r = 0.89, P = 0.02); 2) in vitro selectivity to promote monoamine release via DA and 5-HT transporters (r = 0.95, P < 0.01); and 3) molecular volume of the para substituent (r = -0.85, P = 0.03). These results support a relationship between these molecular, neurochemical, and behavioral measures and support a role for molecular structure as a determinant of abuse-related neurochemical and behavioral effects of MCAT analogs.

  19. Effects of short-term abstinence from escalating doses of D-amphetamine on drug and sucrose-evoked dopamine efflux in the rat nucleus accumbens.

    PubMed

    Vacca, Giada; Ahn, Soyon; Phillips, Anthony G

    2007-04-01

    Abstinence from high doses of psychostimulant drugs, in both humans and rodents, is linked to adverse psychological effects including anhedonia, a core symptom of major depression, manifested behaviorally as decreased responding for rewarding stimuli. The present study used brain microdialysis in freely moving rats to examine the effect of D-amphetamine (D-amph) withdrawal on changes in extracellular dopamine (DA) levels in the nucleus accumbens (NAc) evoked by D-amph or behavior related to sucrose consumption. D-amph was administered intraperitoneally (i.p.) according to an escalating dose (ED) schedule (from 1 to 10 mg/kg, 3 doses/day). We first confirmed the development of tolerance by monitoring DA efflux in the NAc in response to 5 and 10 mg/kg doses of D-amph administered during the ED schedule of drug administration and again in response to the 5 mg/kg dose of D-amph 72 h following the last 10 mg/kg D-amph injection. In a separate study, DA efflux in the NAc was first shown to be increased significantly during both preparatory and consummatory phases of responding for a 4% sucrose solution. Withdrawal from the ED schedule of D-amph caused a selective attenuation of DA efflux only during the preparatory phase of the sucrose test. These results provided convincing evidence of neurochemical adaptation within the mesocorticolimbic DA pathway during and following the administration of an ED schedule of D-amph as well as suppressed neurochemical responses to a psychostimulant drug and cues associated with a natural reward after withdrawal from drug treatment. Accordingly, these findings support the hypothesis that downregulation of mesocorticolimbic DA function maintained during D-amph withdrawal may account for the selective disruption of motivated behavior reported in studies employing psychostimulant drug withdrawal as a model of depression in rodents.

  20. BK Channels Mediate Dopamine Inhibition of Firing in a Subpopulation of Core Nucleus Accumbens Medium Spiny Neurons

    PubMed Central

    Ji, Xincai; Martin, Gilles E.

    2014-01-01

    Dopamine, a key neurotransmitter mediating the rewarding properties of drugs of abuse, is widely believed to exert some of its effects by modulating neuronal activity of nucleus accumbens (NAcc) medium spiny neurons (MSNs). Although its effects on synaptic transmission have been well documented, its regulation of intrinsic neuronal excitability is less understood. In this study, we examined the cellular mechanisms of acute dopamine effects on core accumbens MSNs evoked firing. We found that 0.5 μM A-77636 and 10 μM quinpirole, dopamine D1 (DR1s) and D2 receptor (D2Rs) agonists, respectively, markedly inhibited MSN evoked action potentials. This effect, observed only in about 25% of all neurons, was associated with spike-timing-dependent (STDP) long-term potentiation (tLTP), but not long-term depression (tLTD). Dopamine inhibited evoked firing by compromising subthreshold depolarization, not by altering action potentials themselves. Recordings in voltage-clamp mode revealed that all MSNs expressed fast (IA), slowly inactivating delayed rectifier (Idr), and large conductance voltage- and calcium-activated potassium (BKs) channels . Although A-77636 and quinpirole enhanced IA, its selective blockade by 0.5 μM phrixotoxin-1 had no effect on evoked firing. In contrast, exposing tissue to low TEA concentrations and to 10 μM paxilline, a selective BK channel blocker, prevented D1R agonist from inhibiting MSN firing. This result indicates that dopamine inhibits MSN firing through BK channels in a subpopulation of core accumbens MSNs exclusively associated with spike-timing-dependent long-term potentiation. PMID:25219484

  1. Chronic ethanol self-administration in macaques shifts dopamine feedback inhibition to predominantly D2 receptors in nucleus accumbens core

    PubMed Central

    Siciliano, Cody A.; Calipari, Erin S.; Yorgason, Jordan T.; Mateo, Yolanda; Helms, Christa M.; Lovinger, David M.; Grant, Kathleen A.; Jones, Sara R.

    2015-01-01

    Background Given the high level of homology between nonhuman primates and humans in regard to anatomy, physiology and ethanol drinking patterns, nonhuman primates represent an unparalleled preclinical model for examining the neurobiological basis of ethanol abuse. Methods Here we examined the neurochemical consequences of chronic daily ethanol use using fast-scan cyclic voltammetry in brain slices containing the nucleus accumbens core or dorsolateral caudate taken from male cynomolgus macaques following ethanol drinking. Results We found that in both regions the ability of ethanol to decrease dopamine release was unchanged, indicating that ethanol self-administration does not produce tolerance or sensitization to ethanol effects on dopamine release at the dopamine terminal at this time point. We also found that in the nucleus accumbens core, autoregulation of dopamine release was shifted from equal D2 and D3 receptor involvement in control animals to primarily D2 receptor-mediated in drinkers. Specifically, the effect quinpirole, a D2/D3 receptor agonist, on dopamine release was equal across groups; however, dopamine signals were reversed to a greater extent by the selective D3 receptor antagonist SB-277,011A in control animals, indicating a greater contribution of D2 receptors in quinpirole-induced inhibition following ethanol self-administration. In the dorsolateral caudate, the effects of quinpirole and reversal with SB-277,011A was not different between ethanol and control slices. Conclusions This work provides novel insight into the dopaminergic adaptations resulting from chronic ethanol use in nonhuman primates and indicates that alterations in D2/D3 dopamine autoreceptor signaling may be an important neurochemical adaptation to ethanol consumption during early use. PMID:26627912

  2. Sexual behavior in male rats after radiofrequency or dopamine-depleting lesions in nucleus accumbens.

    PubMed

    Liu, Y C; Sachs, B D; Salamone, J D

    1998-06-01

    Considerable neurochemical evidence links dopamine (DA) in nucleus accumbens (NAcc) to male sexual behavior. The present experiments were conducted to extend this information to the male's sexual response to remote stimuli from estrous female (noncontact erection; NCE). Male rats were tested for copulation and NCE after either 6-hydroxydopamine (6-OHDA) or radiofrequency (RF) lesions in NAcc). Males with an average 78% depletion of DA in NAcc had a lower incidence of NCE, longer latency to display NCE, and fewer erections. DA-depleted males also had less locomotor activity after injections of d-amphetamine, and reductions in apomorphine-induced yawning, but a normal incidence of penile erection. Males with RF lesions of the NAcc had longer NCE latencies. All males copulated to ejaculation after either 6-OHDA or RF lesions with little or no deficit, although the 6-OHDA-treated males had longer intromission latencies. The NCE deficit supports the hypothesized role of NAcc DA in arousal processes in responding to remote cues from estrous females. The minimal effect of lesions on copulation suggests that the presence of additional proximal stimulation during copulation may overcome the deficits induced by DA depletions or lesions in NAcc.

  3. Extinction and reinstatement of phasic dopamine signals in the nucleus accumbens core during Pavlovian conditioning.

    PubMed

    Sunsay, Ceyhun; Rebec, George V

    2014-10-01

    The prediction-error model of dopamine (DA) signaling has largely been confirmed with various appetitive Pavlovian conditioning procedures and has been supported in tests of Pavlovian extinction. Studies have repeatedly shown, however, that extinction does not erase the original memory of conditioning as the prediction-error model presumes, putting the model at odds with contemporary views that treat extinction as an episode of learning rather than unlearning of conditioning. Here, we combined fast-scan cyclic voltammetry (FSCV) with appetitive Pavlovian conditioning to assess DA release directly during extinction and reinstatement. DA was monitored in the nucleus accumbens core, which plays a key role in reward processing. Following at least 4 daily sessions of 16 tone-food pairings, fast-scan cyclic voltammetry was performed while rats received additional tone-food pairings followed by tone alone presentations (i.e., extinction). Acquisition memory was reinstated with noncontingent presentations of reward and then tested with cue presentation. Tone-food pairings produced transient (1- to 3-s) DA release in response to tone. During extinction, the amplitude of the DA response decreased significantly. Following presentation of 2 noncontingent food pellets, subsequent tone presentation reinstated the DA signal. Our results support the prediction-error model for appetitive Pavlovian extinction but not for reinstatement.

  4. Presynaptic control of dopamine metabolism in the nucleus accumbens. Lack of effect of buspirone as demonstrated using in vivo voltammetry.

    PubMed

    Louilot, A; Le Moal, M; Simon, H

    1987-05-18

    Buspirone is a non-benzodiazepine drug with anxiolytic properties. It has been reported to induce a marked increase in the metabolism of dopamine in the striatum and the nucleus accumbens which is similar to that induced by neuroleptics. It has been suggested that the effect observed in the striatum reflects an action of buspirone on dopaminergic autoreceptors in both terminals and cell bodies. In the present study, presynaptic effects of buspirone on dopaminergic metabolism in the nucleus accumbens were investigated, and they were compared to the effects of the classical neuroleptic, haloperidol. Dopaminergic terminals were isolated by infusion of tetrodotoxin into the median forebrain bundle in order to evaluate the effects of buspirone and haloperidol on presynaptic receptors. Changes in dopamine metabolism were determined by in vivo voltammetry. Buspirone administered after interruption of the impulse flow did not affect dopamine metabolism. In contrast haloperidol treatment led to an increase in metabolism of dopamine. It is concluded that buspirone did not act at the presynaptic level and furthermore on dopaminergic autoreceptors.

  5. Intra-Accumbens Injection of a Dopamine Aptamer Abates MK-801-Induced Cognitive Dysfunction in a Model of Schizophrenia

    PubMed Central

    Holahan, Matthew R.; Madularu, Dan; McConnell, Erin M.; Walsh, Ryan; DeRosa, Maria C.

    2011-01-01

    Systemic administration of the noncompetitive NMDA-receptor antagonist, MK-801, has been proposed to model cognitive deficits similar to those seen in patients with schizophrenia. The present work investigated the ability of a dopamine-binding DNA aptamer to regulate these MK-801-induced cognitive deficits when injected into the nucleus accumbens. Rats were trained to bar press for chocolate pellet rewards then randomly assigned to receive an intra-accumbens injection of a DNA aptamer (200 nM; n = 7), tris buffer (n = 6) or a randomized DNA oligonucleotide (n = 7). Animals were then treated systemically with MK-801 (0.1 mg/kg) and tested for their ability to extinguish their bar pressing response. Two control groups were also included that did not receive MK-801. Data revealed that injection of Tris buffer or the random oligonucleotide sequence into the nucleus accumbens prior to treatment with MK-801 did not reduce the MK-801-induced extinction deficit. Animals continued to press at a high rate over the entire course of the extinction session. Injection of the dopamine aptamer reversed this MK-801-induced elevation in lever pressing to levels as seen in rats not treated with MK-801. Tests for activity showed that the aptamer did not impair locomotor activity. Results demonstrate the in vivo utility of DNA aptamers as tools to investigate neurobiological processes in preclinical animal models of mental health disease. PMID:21779401

  6. Metabolic hormones, dopamine circuits, and feeding

    PubMed Central

    Narayanan, Nandakumar S.; Guarnieri, Douglas J.; DiLeone, Ralph J.

    2009-01-01

    Recent evidence has emerged demonstrating that metabolic hormones such as ghrelin and leptin can act on ventral tegmental area (VTA) midbrain dopamine neurons to influence feeding. The VTA is the origin of mesolimbic dopamine neurons that project to the nucleus accumbens (NAc) to influence behavior. While blockade of dopamine via systemic antagonists or targeted gene delete can impair food intake, local NAc dopamine manipulations have little effect on food intake. Notably, non-dopaminergic manipulations in the VTA and NAc produce more consistent effects on feeding and food choice. More recent genetic evidence supports a role for the substantia nigra-striatal dopamine pathways in food intake, while the VTA-NAc circuit is more likely involved in higher-order aspects of food acquisition, such as motivation and cue associations. This rich and complex literature should be considered in models of how peripheral hormones influence feeding behavior via action on the midbrain circuits. PMID:19836414

  7. Intermittent-access binge consumption of sweet high-fat liquid does not require opioid or dopamine receptors in the nucleus accumbens

    PubMed Central

    Lardeux, Sylvie; Kim, James J.; Nicola, Saleem M.

    2015-01-01

    Binge eating disorders are characterized by episodes of intense consumption of high-calorie food. In recently developed animal models of binge eating, rats given intermittent access to such food escalate their consumption over time. Consumption of calorie-dense food is associated with neurochemical changes in the nucleus accumbens, including dopamine release and alterations in dopamine and opioid receptor expression. Therefore, we hypothesized that binge-like consumption on intermittent access schedules is dependent on opioid and/or dopamine neurotransmission in the accumbens. To test this hypothesis, we asked whether injection of dopamine and opioid receptor antagonists into the core and shell of the accumbens reduced consumption of a sweet high-fat liquid in rats with and without a history of intermittent binge access to the liquid. Although injection of a μ opioid agonist increased consumption, none of the antagonists (including μ opioid, δ opioid, κ opioid, D1 dopamine and D2 dopamine receptor antagonists, as well as the broad-spectrum opioid receptor antagonist naltrexone) reduced consumption, and this was the case whether or not the animals had a prior history of intermittent access. These results suggest that consumption of sweet, fatty food does not require opioid or dopamine receptor activation in the accumbens even under intermittent access conditions that resemble human binge episodes. PMID:26097003

  8. Intermittent-access binge consumption of sweet high-fat liquid does not require opioid or dopamine receptors in the nucleus accumbens.

    PubMed

    Lardeux, Sylvie; Kim, James J; Nicola, Saleem M

    2015-10-01

    Binge eating disorders are characterized by episodes of intense consumption of high-calorie food. In recently developed animal models of binge eating, rats given intermittent access to such food escalate their consumption over time. Consumption of calorie-dense food is associated with neurochemical changes in the nucleus accumbens, including dopamine release and alterations in dopamine and opioid receptor expression. Therefore, we hypothesized that binge-like consumption on intermittent access schedules is dependent on opioid and/or dopamine neurotransmission in the accumbens. To test this hypothesis, we asked whether injection of dopamine and opioid receptor antagonists into the core and shell of the accumbens reduced consumption of a sweet high-fat liquid in rats with and without a history of intermittent binge access to the liquid. Although injection of a μ opioid agonist increased consumption, none of the antagonists (including μ opioid, δ opioid, κ opioid, D1 dopamine and D2 dopamine receptor antagonists, as well as the broad-spectrum opioid receptor antagonist naltrexone) reduced consumption, and this was the case whether or not the animals had a prior history of intermittent access. These results suggest that consumption of sweet, fatty food does not require opioid or dopamine receptor activation in the accumbens even under intermittent access conditions that resemble human binge episodes.

  9. Taurine elevates dopamine levels in the rat nucleus accumbens; antagonism by strychnine.

    PubMed

    Ericson, Mia; Molander, Anna; Stomberg, Rosita; Söderpalm, Bo

    2006-06-01

    The mesolimbic dopamine (DA) system, projecting from the ventral tegmental area (VTA) to the nucleus accumbens (nAcc), is involved in reward-related behaviours and addictive processes, such as alcoholism and drug addiction. It was recently suggested that strychnine-sensitive glycine receptors (GlyR) in the nAcc regulate both basal and ethanol-induced mesolimbic DA activity via a neuronal loop involving endogenous activation of nicotinic acetylcholine receptors (nAChR) in the VTA. However, as the nAcc appears to contain few glycine-immunoreactive cell bodies or fibres, the question as to what may be the endogenous ligand for GlyRs in this brain region remains open. Here we have investigated whether the amino acid taurine could serve this purpose using in vivo microdialysis in awake, freely moving male Wistar rats. Local perfusion of taurine (1, 10 or 100 mm in the perfusate) increased DA levels in the nAcc. The taurine (10 mm)-induced DA increase was, similarly to that previously observed after ethanol, completely blocked by (i) perfusion of the competitive GlyR antagonist strychnine in the nAcc, (ii) perfusion of the nAChR antagonist mecamylamine (100 microm) in the VTA, and (iii) systemic administration of the acetylcholine-depleting drug vesamicol (0.4 mg/kg, i.p). The present results suggest that taurine may be an endogenous ligand for GlyRs in the nAcc and that the taurine-induced elevation of DA levels in this area, similarly to that observed after local ethanol, is mediated via a neuronal loop involving endogenous activation of nAChRs in the VTA.

  10. Beer self-administration provokes lateralized nucleus accumbens dopamine release in male heavy drinkers

    PubMed Central

    Oberlin, Brandon Gregg; Dzemidzic, Mario; Tran, Stella Maria; Soeurt, Christina Marie; O’Connor, Sean Joseph; Yoder, Karmen Kay; Kareken, David Alexander

    2014-01-01

    Rationale Although striatal dopamine (DA) is important in alcohol abuse, the nature of DA release during actual alcohol drinking is unclear, since drinking includes self-administration of both conditioned flavor stimuli (CS) of the alcoholic beverage and subsequent intoxication, the unconditioned stimulus (US). Objectives Here we used a novel self-administration analog to distinguish nucleus accumbens (NAcc) DA responses specific to the CS and US. Methods Right-handed male heavy drinkers (n=26) received 3 positron emission tomography (PET) scans with the D2/D3 radioligand [11C]raclopride (RAC), and performed a pseudo self-administration task that separately administered a flavor CS of either a habitually consumed beer or the appetitive control Gatorade®, concomitant with the US of ethanol intoxication (0.06 g/dL IV administration) or IV saline. Scan conditions were Gatorade flavor + saline (Gat&Sal); Gatorade flavor + ethanol (Gat&Eth); and beer flavor + ethanol (Beer&Eth). Results Ethanol (US) reduced RAC binding (inferring DA release) in the left (L) NAcc [Gat&Sal > Gat&Eth]. Beer flavor (CS) increased DA in the right (R) NAcc [Gat&Eth > Beer&Eth]. The combination of beer flavor and ethanol (CS + US), [Gat&Sal > Beer&Eth], induced DA release in bilateral NAcc. Self-reported intoxication during scanning correlated with L NAcc DA release. Relative to saline, infusion of ethanol increased alcoholic drink wanting. Conclusions Our findings suggest lateralized DA function in the NAcc, with L NAcc DA release most reflecting intoxication, R NAcc DA release most reflecting the flavor CS, and the conjoint CS+US producing a bilateral NAcc response. PMID:25163422

  11. The 5-HT1A/1B-receptor agonist eltoprazine increases both catecholamine release in the prefrontal cortex and dopamine release in the nucleus accumbens and decreases motivation for reward and "waiting" impulsivity, but increases "stopping" impulsivity.

    PubMed

    Korte, S Mechiel; Prins, Jolanda; Van den Bergh, Filip S; Oosting, Ronald S; Dupree, Rudy; Korte-Bouws, Gerdien A H; Westphal, Koen G C; Olivier, Berend; Denys, Damiaan A; Garland, Alexis; Güntürkün, Onur

    2017-01-05

    The 5-HT1A/1B-receptor agonist eltoprazine has a behavioral drug signature that resembles that of a variety of psychostimulant drugs, despite the differences in receptor binding profile. These psychostimulants are effective in treating impulsivity disorders, most likely because they increase norepinephrine (NE) and dopamine (DA) levels in the prefrontal cortex. Both amphetamine and methylphenidate, however, also increase dopamine levels in the nucleus accumbens (NAc), which has a significant role in motivation, pleasure, and reward. How eltoprazine affects monoamine release in the medial prefrontal cortex (mPFC), the orbitofrontal cortex (OFC), and the NAc is unknown. It is also unknown whether eltoprazine affects different forms of impulsivity and brain reward mechanisms. Therefore, in the present study, we investigate the effects of eltoprazine in rats in the following sequence: 1) the activity of the monoaminergic systems using in vivo microdialysis, 2) motivation for reward measured using the intracranial self-stimulation (ICSS) procedure, and finally, 3) "waiting" impulsivity in the delay-aversion task, and the "stopping" impulsivity in the stop-signal task. The microdialysis studies clearly showed that eltoprazine increased DA and NE release in both the mPFC and OFC, but only increased DA concentration in the NAc. In contrast, eltoprazine decreased 5-HT release in the mPFC and NAc (undetectable in the OFC). Remarkably, eltoprazine decreased impulsive choice, but increased impulsive action. Furthermore, brain stimulation was less rewarding following eltoprazine treatment. These results further support the long-standing hypothesis that "waiting" and "stopping" impulsivity are regulated by distinct neural circuits, because 5-HT1A/1B-receptor activation decreases impulsive choice, but increases impulsive action.

  12. Histamine H3 receptor activation inhibits dopamine synthesis but not release or uptake in rat nucleus accumbens.

    PubMed

    Aquino-Miranda, Guillermo; Escamilla-Sánchez, Juan; González-Pantoja, Raúl; Bueno-Nava, Antonio; Arias-Montaño, José-Antonio

    2016-07-01

    We studied the effect of activating histamine H3 receptors (H3Rs) on rat nucleus accumbens (rNAcc) dopaminergic transmission by analyzing [(3)H]-dopamine uptake by synaptosomes, and dopamine synthesis and depolarization-evoked [(3)H]-dopamine release in slices. The uptake of [(3)H]-dopamine by rNAcc synaptosomes was not affected by the H3R agonist RAMH (10(-10)-10(-6) M). In rNAcc slices perfusion with RAMH (1 μM) had no significant effect on [(3)H]-dopamine release evoked by depolarization with 30 mM K(+) (91.4 ± 4.5% of controls). The blockade of dopamine D2 autoreceptors with sulpiride (1 μM) enhanced K(+)-evoked [(3)H]-dopamine release (168.8 ± 15.5% of controls), but under this condition RAMH (1 μM) also failed to affect [(3)H]-dopamine release. Dopamine synthesis was evaluated in rNAcc slices incubated with the l-dihydroxyphenylalanine (DOPA) decarboxylase inhibitor NSD-1015 (1 mM). Forskolin-induced DOPA accumulation (220.1 ± 10.4% of controls) was significantly reduced by RAMH (41.1 ± 6.5% and 43.5 ± 9.1% inhibition at 100 nM and 1 μM, respectively), and this effect was prevented by the H3R antagonist ciproxifan (10 μM). DOPA accumulation induced by preventing cAMP degradation with IBMX (iso-butyl-methylxantine, 1 mM) or by activating receptors for the vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide (PACAP) with PACAP-27 (1 μM) was reduced (IBMX) or prevented (PACAP-27) by RAMH (100 nM). In contrast, DOPA accumulation induced by 8-Bromo-cAMP (1 mM) was not affected by RAMH (100 nM). These results indicate that in rNAcc H3Rs do not modulate dopamine uptake or release, but regulate dopamine synthesis by inhibiting cAMP formation and thus PKA activation. This article is part of the Special Issue entitled 'Histamine Receptors'.

  13. Long-term effects of maternal separation coupled with social isolation on reward seeking and changes in dopamine D1 receptor expression in the nucleus accumbens via DNA methylation in mice.

    PubMed

    Sasagawa, Takayo; Horii-Hayashi, Noriko; Okuda, Akinori; Hashimoto, Takashi; Azuma, Cho; Nishi, Mayumi

    2017-02-22

    Early-life stress has long-lasting effects on the stress response, emotions, and behavior throughout an individual's life. Clinical reports have demonstrated that child abuse victims exhibit impairments in reward-associated behavior; yet, the mechanism for this effect remains unclear. Maternal separation (MS) or MS coupled with social isolation (SI) (MS+SI) is widely used as a model for early-life stress in rodent studies. We employed mice subjected to MS+SI to clarify the long-term effect of early-life stress on reward-seeking involving palatable foods by a conditioned place-preference (CPP) paradigm. Prior MS+SI experience decreased exploration time in a chocolate-paired compartment in adult female mice, but not in male mice. We then focused on the mesolimbic dopamine pathway associated with reward-seeking behavior and measured both mRNA and protein levels of tyrosine hydroxylase (TH) in the ventral tegmental area (VTA) and dopamine D1 and D2 receptors in the nucleus accumbens (NAc). MS+SI female mice had significantly lower D1 receptor mRNA and protein levels than controls, whereas the expression of TH and the D2 receptor was similar in the 2 groups. All mRNA and protein levels were unchanged in MS+SI male mice. When attempting to elucidate the mechanism underlying downregulation of the D1 receptor in the NAc of MS+SI females, we found hypermethylation of the Drd1a promoter region. These results suggest that early-life stress affects reward-seeking behavior in female mice, which may be associated with the downregulation of D1 receptor in the NAc via epigenetic modification of its promoter region.

  14. Differential effects of blockade of dopamine D1-family receptors in nucleus accumbens core or shell on reinstatement of heroin seeking induced by contextual and discrete cues.

    PubMed

    Bossert, Jennifer M; Poles, Gabriela C; Wihbey, Kristina A; Koya, Eisuke; Shaham, Yavin

    2007-11-14

    In humans, exposure to environmental contexts previously associated with heroin intake can provoke drug relapse, but the neuronal mechanisms mediating this relapse are unknown. Using a drug relapse model, we found previously that reexposing rats to heroin-associated contexts, after extinction of drug-reinforced responding in different contexts, reinstates heroin seeking. This effect is attenuated by inhibition of glutamate transmission in the ventral tegmental area and medial accumbens shell, components of the mesolimbic dopamine system. Here, we explored the role of dopamine of the accumbens in context-induced reinstatement by using the D1-family receptor antagonist SCH 23390 [R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride]. Rats were trained to self-administer heroin for 12 d; drug infusions were paired with a discrete tone-light cue. Subsequently, the heroin-reinforced lever pressing was extinguished in the presence of the discrete cue in a context that differed from the drug self-administration context in terms of visual, auditory, tactile, and circadian cues. When tested in the original drug self-administration context, systemic and medial or lateral accumbens shell SCH 23390 injections attenuated context-induced reinstatement of heroin seeking, whereas accumbens core SCH 23390 injections were ineffective. In contrast, core but not lateral or medial shell SCH 23390 injections attenuated discrete-cue-induced reinstatement in a nondrug context after extinction of lever presses without this cue. Results indicate that activation of medial and lateral accumbens shell D1-family dopamine receptors mediate context-induced reinstatement of heroin seeking and provide the first demonstration for a role of lateral shell dopamine in conditioned drug effects. Results also demonstrate novel dissociable roles of accumbens core and shell in context- versus discrete-cue-induced reinstatement of heroin seeking.

  15. In Vivo Voltammetric Monitoring of Catecholamine Release in Subterritories of the Nucleus Accumbens Shell

    PubMed Central

    Park, Jinwoo; Aragona, Brandon J.; Kile, Brian M.; Carelli, Regina M.; Wightman, R. Mark

    2010-01-01

    Fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes has been used to demonstrate that sub-second changes in catecholamine concentration occur within the nucleus accumbens (NAc) shell during motivated behaviors, and these fluctuations have been attributed to rapid dopamine signaling. However, FSCV cannot distinguish between dopamine and norepinephrine, and caudal regions of the NAc shell receive noradrenergic projections. Therefore, in the present study, we examined the degree to which norepinephrine contributes to catecholamine release within rostral and caudal portion of NAc shell. Analysis of tissue content revealed that dopamine was the major catecholamine detectable in the rostral NAc shell, whereas both dopamine and norepinephrine were found in the caudal subregion. To examine releasable catecholamines, electrical stimulation was used to evoke release in anesthetized rats with either stimulation of the medial forebrain bundle, a pathway containing both dopaminergic and noradrenergic projections to the NAc, or the ventral tegmental area/substantia nigra, the origin of dopaminergic projections. The catecholamines were distinguished by their responses to different pharmacological agents. The dopamine autoreceptor blocker, raclopride, as well as the monoamine and dopamine transporter blockers, cocaine and GBR 12909, increased evoked catecholamine overflow in both the rostral and caudal NAc shell. The norepinephrine autoreceptor blocker, yohimbine, and the norepinephrine transporter blocker, desipramine, increased catecholamine overflow in the caudal NAc shell without significant alteration of evoked responses in the rostral NAc shell. Thus, the neurochemical and pharmacological results show that norepinephrine signaling is restricted to caudal portions of the NAc shell. Following raclopride and cocaine or raclopride and GBR 12909, robust catecholamine transients were observed within the rostral shell but these were far less apparent in the caudal

  16. Monitoring of extracellular dopamine levels in the dorsal striatum and the nucleus accumbens with 5-minute on-line microdialysis in freely moving rats.

    PubMed

    Saigusa, T; Fusa, K; Okutsu, H; Koshikawa, N

    2001-06-01

    We report a reliable 5-min on-line monitoring of dopamine released from the dorsal striatum and the nucleus accumbens of rats using in vivo brain microdialysis. The detection limit for dopamine was approximately 20 fg in a 10-microl injection sample using high-performance liquid chromatography with electrochemical detection set-up. Basal levels of dopamine in the dorsal striatum and the nucleus accumbens 4 h after probe insertion were 2.65 +/- 0.30 pg/5 min and 1.57 +/- 0.31 pg/5 min, respectively, whereas those of 20 h after probe insertion were lower: 0.97 +/- 0.21 pg/5 min and 0.51 +/- 0.09 pg/5 min, respectively. Infusion of the sodium channel blocker, tetrodotoxin (TTX; 2 microM), essentially suppressed levels of dopamine in both brain areas. At 4 h after probe insertion, TTX perfused for 4 h via dialysis probe reduced levels of dopamine to 0.47 +/- 0.08 pg/5 min (80% reduction) in the dorsal striatum and to 0.56 +/- 0.19 pg/5 min (65% reduction) in the nucleus accumbens. At 20 h after probe insertion, a similar TTX perfusion more rapidly reduced levels of dopamine to 0.05 +/- 0.01 pg/5 min (95% reduction) in the dorsal striatum and to 0.08 +/- 0.01 pg/5 min (85 % reduction) in the nucleus accumbens. These results suggest that relatively fast changes in extracellular dopamine levels in these two brain areas can reliably be followed by this in vivo microdialysis technique.

  17. Altered basal and stimulated accumbens dopamine release in obese OLETF rats as a function of age and diabetic status

    PubMed Central

    Anderzhanova, Elmira; Covasa, Mihai; Hajnal, Andras

    2011-01-01

    The Otsuka Long Evans Tokushima Fatty (OLETF) rat lacking the CCK-1 receptor is hyperphagic, prefers palatable and high caloric meals, and gradually develops obesity and type-2 diabetes. To determine dopamine levels in this strain, we used in-vivo quantitative (no-net flux) microdialyis at three different ages representing non-diabetic (8 weeks), pre-diabetic (18 weeks), and diabetic (56 weeks) stages in OLETF and age-matched lean LETO controls. Results showed significantly elevated basal dopamine levels in the caudomedial nucleus accumbens of OLETF rats compared to LETO at younger ages (8 weeks: 20.10 ± 5.61 nM vs. 15.85 ± 5.63 nM; 18 weeks: 7.37 ± 3.71 nM vs. 4.75 ± 1.25 nM, Mean ± SD). In contrast, at 56 weeks of age, a profound decline in extracellular dopamine concentrations was seen in both strains with a tendency for a greater effect in OLETF rats (1.78 ± 0.40 nM vs. 2.39 ± 0.42 nM). Further, extracellular fraction, an index for reuptake, was higher in 56-week old OLETF compared to LETO (0.648 ± 0.049 vs. 0.526 ± 0.057). Potassium-stimulated dopamine efflux revealed an increased capacity of vesicular pool in OLETF rats compared to LETO across all age groups with an accentuated strain difference at 56 weeks. These findings demonstrate altered striatal dopamine functions (i.e. increased stimulated release and uptake) in obese OLETF rat. This could be due to the lack of functional CCK-1 receptors, or metabolic and hormonal factors associated with the development of obesity and insulin resistance, or both. PMID:17553848

  18. Effect of ethanol on (/sup 3/H)dopamine release in rat nucleus accumbens and striatal slices

    SciTech Connect

    Russell, V.A.; Lamm, M.C.; Taljaard, J.J.

    1988-05-01

    Ethanol (10-200 mM) transiently increased tritium overflow from superfused rat nucleus accumbens slices previously incubated with (/sup 3/H)dopamine (DA) and (/sup 14/C)choline. The effect was greater in striatal tissue and did not appear to be a non-specific membrane effect since (/sup 14/C)acetylcholine (ACh) release was not affected. Lack of antagonism by picrotoxin suggested that gamma-aminobutyric acid (GABA) receptors were not involved. Calcium was not a requirement and the DA uptake blocker, nomifensine, was without effect. Ethanol appeared to be causing (/sup 3/H)DA release into the cytoplasm. K+ -stimulated release of (/sup 3/H)DA and (/sup 14/C)ACh from nucleus accumbens and striatal slices was not affected. Clonidine-mediated inhibition of the K+-evoked release of (/sup 3/H)DA remained unaltered. Ethanol attenuated the isoproterenol-induced enhancement of (/sup 3/H)DA release. Ethanol therefore appeared to interact with components of the DA terminal causing a transient increase in the release of neurotransmitter without impairing K+-evoked release but apparently interfering with the isoproterenol-induced effect.

  19. Electrical stimulation of reward sites in the ventral tegmental area increases dopamine transmission in the nucleus accumbens of the rat.

    PubMed

    Fiorino, D F; Coury, A; Fibiger, H C; Phillips, A G

    1993-06-30

    In vivo microdialysis with HPLC-ED was used to measure dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) in the nucleus accumbens of the rat, prior, during, and after 15-min periods of electrical brain stimulation at sites in the ventral tegmental area (VTA) that supported intracranial self-stimulation (ICSS). In the first experiment, both ICSS and yoked stimulation of the VTA evoked significant increases in extracellular concentrations of DA, its metabolites, and 5-HIAA. Comparable results from ICSS and yoked groups were interpreted as evidence that the rewarding properties of VTA stimulation were a causal factor in the elevated DA transmission in the nucleus accumbens, rather than intense operant behavior. Further evidence for this hypothesis came from a second set of data in which changes in extracellular DA levels during the measurement of rate/intensity functions for ICSS were positively correlated. 5-HIAA concentrations also increased during ICSS but these changes were not correlated with either ICSS rate or current intensity, suggesting that changes in serotonin metabolism were unlikely to subserve brain stimulation reward in the VTA. These results add to the growing body of evidence linking changes in extracellular DA in the mesolimbic DA system with both brain stimulation reward and the conditioned and unconditioned rewarding effects of biologically relevant stimuli.

  20. SKF 83959 is an antagonist of dopamine D1-like receptors in the prefrontal cortex and nucleus accumbens: a key to its antiparkinsonian effect in animals?

    PubMed

    Cools, A R; Lubbers, L; van Oosten, R V; Andringa, G

    2002-02-01

    SKF 83959 that has a unique antiparkinson profile in animal models of Parkinson's disease is an in vitro dopamine D1 antagonist of receptors coupled to adenylyl cyclase. We hypothesized that SKF 83959, among others, interacts with dopamine D1 receptors coupled to adenylyl cyclase in the nucleus accumbens and the prefrontal cortex. Effects of intra-accumbal injections of SKF 83959 on locomotor activity were compared to effects of the dopamine D1 agonist SKF 81297 and the dopamine D1 antagonist SCH 39166. Similarly to SCH 39166, SKF 83959 did not affect locomotor activity, but counteracted SKF 81297-induced locomotor activity. Effects of unilateral intra-prefrontal injections of SKF 83959 on rotational behaviour were compared to the effects of the dopamine D1 agonist SKF 81297 and the dopamine D1 antagonists SCH 23390 and SCH 39166 in rats selected on basis of their high locomotor response to novelty and pretreated with a subcutaneous injection of 0.75 mg/kg dexamphetamine. Like SCH 39166 and SCH 23390, SKF 83959 induced a bias for contralateral rotating and blocked the SKF 81297-induced bias for ipsilateral rotating. In conclusion, SKF 83959 is an in vivo antagonist of dopamine D1 receptors that are coupled to adenylyl cyclase in the nucleus accumbens and the prefrontal cortex. The role of these receptors in the antiparkinson profile of SKF 83959 is discussed.

  1. Increased impulsive behavior and risk proneness following lentivirus-mediated dopamine transporter over-expression in rats' nucleus accumbens.

    PubMed

    Adriani, W; Boyer, F; Gioiosa, L; Macrì, S; Dreyer, J-L; Laviola, G

    2009-03-03

    Multiple theories have been proposed for sensation seeking and vulnerability to impulse-control disorders [Zuckerman M, Kuhlman DM (2000) Personality and risk-taking: Common biosocial factors. J Pers 68:999-1029], and many of these rely on a dopamine system deficit. Available animal models reproduce only some behavioral symptoms and seem devoid of construct validity. We used lentivirus tools for over-expressing or silencing the dopamine transporter (DAT) and we evaluated the resulting behavioral profiles in terms of motivation and self-control. Wistar adult rats received stereotaxic inoculation of a lentivirus that allowed localized intra-accumbens delivery of a DAT gene enhancer/silencer, or the green fluorescent protein, GFP. These animals were studied for intolerance to delay, risk proneness and novelty seeking. As expected, controls shifted their demanding from a large reward toward a small one when the delivery of the former was increasingly delayed (or uncertain). Interestingly, in the absence of general locomotor effects, DAT over-expressing rats showed increased impulsivity (i.e. a more marked shift of demanding from the large/delayed toward the small/soon reward), and increased risk proneness (i.e. a less marked shift from the large/uncertain toward the small/sure reward), compared with controls. Rats with enhanced or silenced DAT expression did not show any significant preference for a novel environment. In summary, consistent with literature on comorbidity between attention-deficit/hyperactivity disorder and pathological gambling, we demonstrate that DAT over-expression in rats' nucleus accumbens leads to impulsive and risk prone phenotype. Thus, a reduced dopaminergic tone following altered accumbal DAT function may subserve a sensation-seeker phenotype and the vulnerability to impulse-control disorders.

  2. METHAMPHETAMINE-INDUCED DOPAMINE TERMINAL DEFICITS IN THE NUCLEUS ACCUMBENS ARE EXACERBATED BY REWARD-ASSOCIATED CUES AND ATTENUATED BY CB1 RECEPTOR ANTAGONISM

    PubMed Central

    Loewinger, Gabriel C.; Beckert, Michael V.; Tejeda, Hugo A.; Cheer, Joseph F.

    2012-01-01

    Methamphetamine (METH) exposure is primarily associated with deleterious effects to dopaminergic neurons. While several studies have implicated the endocannabinoid system in METH’s locomotor, rewarding and neurochemical effects, a role for this signaling system in METH’s effects on dopamine terminal dynamics has not been elucidated. Given that CB1 receptor blockade reduces the acute potentiation of phasic extracellular dopamine release from other psychomotor stimulant drugs and that the degree of acute METH-induced increases in extracellular dopamine levels is related to the severity of dopamine depletion, we predicted that pretreatment with the CB1 receptor antagonist rimonabant would reduce METH-induced alterations at dopamine terminals. Furthermore, we hypothesized that administration of METH in environments where reward associated-cues were present would potentiate METH’s acute effects on dopamine release in the nucleus accumbens and exacerbate changes in dopamine terminal activity. Fast-scan cyclic voltammetry was used to measure electrically-evoked dopamine release in the nucleus accumbens and revealed markers of compromised dopamine terminal integrity nine days after a single dose of METH. These were exacerbated in animals that received METH in the presence of reward-associated cues, and attenuated in rimonabant-pretreated animals. While these deficits in dopamine dynamics were associated with reduced operant responding on days following METH administration in animals treated with only METH, rimonabant-pretreated animals exhibited levels of operant responding comparable to control. Moreover, dopamine release correlated significantly with changes in lever pressing behavior that occurred on days following METH administration. Together these data suggest that the endocannabinoid system is involved in the subsecond dopaminergic response to METH. PMID:22306525

  3. Methamphetamine-induced dopamine terminal deficits in the nucleus accumbens are exacerbated by reward-associated cues and attenuated by CB1 receptor antagonism.

    PubMed

    Loewinger, Gabriel C; Beckert, Michael V; Tejeda, Hugo A; Cheer, Joseph F

    2012-06-01

    Methamphetamine (METH) exposure is primarily associated with deleterious effects to dopaminergic neurons. While several studies have implicated the endocannabinoid system in METH's locomotor, rewarding and neurochemical effects, a role for this signaling system in METH's effects on dopamine terminal dynamics has not been elucidated. Given that CB1 receptor blockade reduces the acute potentiation of phasic extracellular dopamine release from other psychomotor stimulant drugs and that the degree of acute METH-induced increases in extracellular dopamine levels is related to the severity of dopamine depletion, we predicted that pretreatment with the CB1 receptor antagonist rimonabant would reduce METH-induced alterations at dopamine terminals. Furthermore, we hypothesized that administration of METH in environments where reward associated-cues were present would potentiate METH's acute effects on dopamine release in the nucleus accumbens and exacerbate changes in dopamine terminal activity. Fast-scan cyclic voltammetry was used to measure electrically-evoked dopamine release in the nucleus accumbens and revealed markers of compromised dopamine terminal integrity nine days after a single dose of METH. These were exacerbated in animals that received METH in the presence of reward-associated cues, and attenuated in rimonabant-pretreated animals. While these deficits in dopamine dynamics were associated with reduced operant responding on days following METH administration in animals treated with only METH, rimonabant-pretreated animals exhibited levels of operant responding comparable to control. Moreover, dopamine release correlated significantly with changes in lever pressing behavior that occurred on days following METH administration. Together these data suggest that the endocannabinoid system is involved in the subsecond dopaminergic response to METH.

  4. SR141716A reduces the reinforcing properties of heroin but not heroin-induced increases in nucleus accumbens dopamine in rats.

    PubMed

    Caillé, Stéphanie; Parsons, Loren H

    2003-12-01

    The present experiments tested the hypothesis that the selective CB1 receptor antagonist SR141716A alters heroin self-administration by attenuating heroin-induced increases in nucleus accumbens dopamine levels. SR141716A pretreatment dose-dependently (0.3-3 mg/kg, i.p.) reduced operant heroin self-administration by male Wistar rats under a fixed ratio schedule of reinforcement, and significantly lowered the breaking point of responding for heroin under a progressive ratio schedule of reinforcement. These observations are consistent with recent reports that CB1 receptor inactivation reduces the rewarding properties of opiates. Operant responding for water reinforcement by water-restricted rats was unaltered by these SR141716A doses. Microdialysis tests revealed that heroin self-administration significantly increases interstitial dopamine levels in the nucleus accumbens shell of vehicle-pretreated control rats. However, whereas SR141716A pretreatment dose-dependently reduced heroin self-administration, it did not alter the heroin-associated increase in nucleus accumbens dopamine. These findings suggest that the CB1 antagonist-induced attenuation of heroin reward does not involve dopaminergic mechanisms in the nucleus accumbens shell.

  5. Lever pressing responses under a fixed-ratio schedule of mice with 6-hydroxydopamine-induced dopamine depletion in the nucleus accumbens.

    PubMed

    Tsutsui, Yuji; Nishizawa, Kayo; Kai, Nobuyuki; Kobayashi, Kazuto

    2011-02-02

    In order to investigate the relationship between dopamine transmission in the nucleus accumbens and operant behavior in mice, mice with 6-hydroxydopamine (6-OHDA)-induced dopamine depletion in the nucleus accumbens were tested for their performance in lever pressing tasks under FR schedules with 8 ratios from FR5 to FR120. The mice were given one 20-mg food pellet per completed FR schedule in FR5, FR10, and FR20; they were given 2 pellets in FR40, and one more cumulatively in the rest of the schedules. Before the 6-OHDA injection surgery, all mice were trained to press a lever under all FR schedules. Then, 6-OHDA or ascorbate was injected into the nucleus accumbens. Postoperatively, the mice were tested under each FR schedule, with 3 sessions per schedule. 6-OHDA-treated mice exhibited an increase in lever pressing latency, i.e., the time interval between the last presentation of the reward and the next lever press, and a decrease in inter-response intervals, i.e., the time interval between 2 lever presses excluding lever pressing latency, irrespective of the FR ratios. Furthermore, in these 6-OHDA-treated mice, the number of lever presses during the first 300s of the session decreased under FR schedules with low ratios (5, 10, and 20). Open field activity, food motivation, and the amount of food consumed were not affected by dopamine depletion in the nucleus accumbens. These results suggest that the dopamine system in the nucleus accumbens had an important role in the control of lever pressing latency and inter-response intervals under FR reinforcement schedules.

  6. Blockade of Dopamine Activity in the Nucleus Accumbens Impairs Learning Extinction of Conditioned Fear

    ERIC Educational Resources Information Center

    Holtzman-Assif, Orit; Laurent, Vincent; Westbrook, R. Frederick

    2010-01-01

    Three experiments used rats to investigate the role of dopamine activity in learning to inhibit conditioned fear responses (freezing) in extinction. In Experiment 1, rats systemically injected with the D2 dopamine antagonist, haloperidol, froze more across multiple extinction sessions and on a drug-free retention test than control rats. In…

  7. Tamping Ramping: Algorithmic, Implementational, and Computational Explanations of Phasic Dopamine Signals in the Accumbens

    PubMed Central

    Lloyd, Kevin; Dayan, Peter

    2015-01-01

    Substantial evidence suggests that the phasic activity of dopamine neurons represents reinforcement learning’s temporal difference prediction error. However, recent reports of ramp-like increases in dopamine concentration in the striatum when animals are about to act, or are about to reach rewards, appear to pose a challenge to established thinking. This is because the implied activity is persistently predictable by preceding stimuli, and so cannot arise as this sort of prediction error. Here, we explore three possible accounts of such ramping signals: (a) the resolution of uncertainty about the timing of action; (b) the direct influence of dopamine over mechanisms associated with making choices; and (c) a new model of discounted vigour. Collectively, these suggest that dopamine ramps may be explained, with only minor disturbance, by standard theoretical ideas, though urgent questions remain regarding their proximal cause. We suggest experimental approaches to disentangling which of the proposed mechanisms are responsible for dopamine ramps. PMID:26699940

  8. Role of Dopamine Receptors Subtypes, D1-Like and D2-Like, within the Nucleus Accumbens Subregions, Core and Shell, on Memory Consolidation in the One-Trial Inhibitory Avoidance Task

    ERIC Educational Resources Information Center

    Manago, Francesca; Castellano, Claudio; Oliverio, Alberto; Mele, Andrea; De Leonibus, Elvira

    2009-01-01

    Recent evidence demonstrated that dopamine within the nucleus accumbens mediates consolidation of both associative and nonassociative memories. However, the specific contribution of the nucleus accumbens subregions, core and shell, and of D1 and D2 receptors subtypes has not been yet clarified. The aim of this study was, therefore, to directly…

  9. Effects of bupropion on the forced swim test and release of dopamine in the nucleus accumbens in ACTH-treated rats.

    PubMed

    Kitamura, Yoshihisa; Yagi, Takahiko; Kitagawa, Kouhei; Shinomiya, Kazuaki; Kawasaki, Hiromu; Asanuma, Masato; Gomita, Yutaka

    2010-08-01

    The dopamine reuptake inhibitor bupropion has clinically been proven to improve depression and treatment-resistant depression. We examined its influence on the duration of immobility during the forced swim test in adrenocorticotropic hormone (ACTH)-treated rats and further analyzed the possible role of dopamine receptors in this effect. Additionally, the mechanism by which bupropion acts in this model was explored specifically in relation to the site of action through the use of microinjections into the medial prefrontal cortex and nucleus accumbens. Bupropion significantly decreased the duration of immobility in normal and ACTH-treated rats. This effect was blocked by D2 and D3 receptor antagonists in normal rats. Furthermore, infusions of bupropion into the nucleus accumbens, but not medial prefrontal cortex, decreased the immobility of normal and ACTH-treated rats during the forced swim test. Bupropion treatment plus repeated ACTH treatment significantly increased the extracellular dopamine concentration. These findings suggest the antidepressant-like effect of bupropion to be related to levels of dopamine in the rat nucleus accumbens.

  10. N-Methyl-d-aspartate Modulation of Nucleus Accumbens Dopamine Release by Metabotropic Glutamate Receptors: Fast Cyclic Voltammetry Studies in Rat Brain Slices in Vitro.

    PubMed

    Yavas, Ersin; Young, Andrew M J

    2017-02-15

    The N-methyl-d-aspartate (NMDA) receptor antagonist, phencyclidine, induces behavioral changes in rodents mimicking symptoms of schizophrenia, possibly mediated through dysregulation of glutamatergic control of mesolimbic dopamine release. We tested the hypothesis that NMDA receptor activation modulates accumbens dopamine release, and that phencyclidine pretreatment altered this modulation. NMDA caused a receptor-specific, dose-dependent decrease in electrically stimulated dopamine release in nucleus accumbens brain slices. This decrease was unaffected by picrotoxin, making it unlikely to be mediated through GABAergic neurones, but was decreased by the metabotropic glutamate receptor antagonist, (RS)-α-methyl-4-sulfonophenylglycine, indicating that NMDA activates mechanisms controlled by these receptors to decrease stimulated dopamine release. The effect of NMDA was unchanged by in vivo pretreatment with phencyclidine (twice daily for 5 days), with a washout period of at least 7 days before experimentation, which supports the hypothesis that there is no enduring direct effect of PCP at NMDA receptors after this pretreatment procedure. We propose that NMDA depression of accumbal dopamine release is mediated by metabotropic glutamate receptors located pre- or perisynaptically, and suggest that NMDA evoked increased extrasynaptic spillover of glutamate is sufficient to activate these receptors that, in turn, inhibit dopamine release. Furthermore, we suggest that enduring functional changes brought about by subchronic phencyclidine pretreatment, modeling deficits in schizophrenia, are downstream effects consequent on chronic blockade of NMDA receptors, rather than direct effects on NMDA receptors themselves.

  11. Sensitized nucleus accumbens dopamine terminal responses to methylphenidate and dopamine transporter releasers after intermittent-access self-administration.

    PubMed

    Calipari, Erin S; Jones, Sara R

    2014-07-01

    Long-access methylphenidate (MPH) self-administration has been shown to produce enhanced amphetamine potency at the dopamine transporter and concomitant changes in reinforcing efficacy, suggesting that MPH abuse may change the dopamine system in a way that promotes future drug abuse. While long-access self-administration paradigms have translational validity for cocaine, it may not be as relevant a model of MPH abuse, as it has been suggested that people often take MPH intermittently. Although previous work outlined the neurochemical and behavioral consequences of long-access MPH self-administration, it was not clear whether intermittent access (6 h session; 5 min access/30 min) would result in similar changes. For cocaine, long-access self-administration resulted in tolerance to cocaine's effects on dopamine and behavior while intermittent-access resulted in sensitization. Here we assessed the neurochemical consequences of intermittent-access MPH self-administration on dopamine terminal function. We found increased maximal rates of uptake, increased stimulated release, and subsensitive D2-like autoreceptors. Consistent with previous work using extended-access MPH paradigms, the potencies of amphetamine and MPH, but not cocaine, were increased, demonstrating that unlike cocaine, MPH effects were not altered by the pattern of intake. Although the potency results suggest that MPH may share properties with releasers, dopamine release was increased following acute application of MPH, similar to cocaine, and in contrast to the release decreasing effects of amphetamine. Taken together, these data demonstrate that MPH exhibits properties of both blockers and releasers, and that the compensatory changes produced by MPH self-administration may increase the abuse liability of amphetamines, independent of the pattern of administration.

  12. Dopamine fluctuations in the nucleus accumbens during maintenance, extinction, and reinstatement of intravenous D-amphetamine self-administration.

    PubMed

    Ranaldi, R; Pocock, D; Zereik, R; Wise, R A

    1999-05-15

    Moment-to-moment fluctuations of nucleus accumbens dopamine (DA) were determined in rats self-administering or passively receiving "yoked" intravenous infusions of D-amphetamine. The initial lever presses of each session caused elevations in DA concentration, usually to an initial peak that was not maintained throughout the rest of the session. As the initial ("loading") injections were metabolized, DA levels dropped toward baseline but were sustained at elevated plateaus by subsequent lever pressing that was spaced throughout the remainder of the 3 hr sessions. During this period, DA levels fluctuated phasically, time-locked to the cycle of periodic lever pressing. Consistent with the known pharmacological actions and dynamics of amphetamine, peak DA elevations were seen approximately 10-15 min after each injection, and the mean DA level was at a low point in the phasic cycle at the time of each new lever press. During extinction periods when saline was substituted for amphetamine, DA levels dropped steadily toward baseline levels despite a dramatic increase in (now-unrewarded) lever pressing. Noncontingent injections during extinction reinstated lever-pressing behavior and increased nucleus accumbens DA concentrations. These data are consistent with the hypothesis that under the conditions of this experiment-during periods of amphetamine intoxication in well-trained animals-the timing of amphetamine self-administration comes primarily under the control of extracellular DA concentrations. The probability of lever pressing during the maintenance phase is highest when DA concentrations fall near a characteristic trigger point, a trigger point that is significantly elevated above baseline, and falls as DA concentrations fall below or increase above that trigger point.

  13. The Aversive Agent Lithium Chloride Suppresses Phasic Dopamine Release Through Central GLP-1 Receptors

    PubMed Central

    Fortin, Samantha M; Chartoff, Elena H; Roitman, Mitchell F

    2016-01-01

    Unconditioned rewarding stimuli evoke phasic increases in dopamine concentration in the nucleus accumbens (NAc) while discrete aversive stimuli elicit pauses in dopamine neuron firing and reductions in NAc dopamine concentration. The unconditioned effects of more prolonged aversive states on dopamine release dynamics are not well understood and are investigated here using the malaise-inducing agent lithium chloride (LiCl). We used fast-scan cyclic voltammetry to measure phasic increases in NAc dopamine resulting from electrical stimulation of dopamine cell bodies in the ventral tegmental area (VTA). Systemic LiCl injection reduced electrically evoked dopamine release in the NAc of both anesthetized and awake rats. As some behavioral effects of LiCl appear to be mediated through glucagon-like peptide-1 receptor (GLP-1R) activation, we hypothesized that the suppression of phasic dopamine by LiCl is GLP-1R dependent. Indeed, peripheral pretreatment with the GLP-1R antagonist exendin-9 (Ex-9) potently attenuated the LiCl-induced suppression of dopamine. Pretreatment with Ex-9 did not, however, affect the suppression of phasic dopamine release by the kappa-opioid receptor agonist, salvinorin A, supporting a selective effect of GLP-1R stimulation in LiCl-induced dopamine suppression. By delivering Ex-9 to either the lateral or fourth ventricle, we highlight a population of central GLP-1 receptors rostral to the hindbrain that are involved in the LiCl-mediated suppression of NAc dopamine release. PMID:26211731

  14. Increased conditioned fear response and altered balance of dopamine in the shell and core of the nucleus accumbens during amphetamine withdrawal.

    PubMed

    Pezze, M A; Feldon, J; Murphy, C A

    2002-04-01

    It has been suggested that neuroadaptations within the nucleus accumbens (NAC) dopaminergic (DA) projection contribute to the negative affect associated with psychostimulant withdrawal. The present study assessed the effects of amphetamine (AMPH) withdrawal on behavioral and NAC DA responses to conditioned fear stress. Animals injected with escalating-dose AMPH (1-5mg/kg, three injections/day, 6 days) or saline (SAL) acquired a tone-shock association on withdrawal day 3 and were tested for extinction of conditioned freezing to the tone on withdrawal day 4. Extracellular levels of NAC shell and core DA were monitored using in vivo microdialysis on both days. AMPH-withdrawn animals exhibited more conditioned freezing than SAL animals during both acquisition and extinction. During acquisition, DA increased more in the shell than the core of the NAC in both AMPH and SAL groups. During extinction to the tone, shell DA increased in SAL- but not AMPH-treated animals, whereas core DA activity was greater in AMPH than SAL animals. These data demonstrate that AMPH withdrawal alters the balance between shell and core DA transmission while increasing the behavioral expression of conditioned fear. Such drug-induced neuroadaptations in the NAC stress response may be involved in the exacerbation of negative emotions associated with drug withdrawal and stimulant-induced psychosis.

  15. Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release

    PubMed Central

    Melchior, James R.; Ferris, Mark J.; Stuber, Garret D.; Riddle, David R.; Jones, Sara R.

    2015-01-01

    The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation. PMID:26011081

  16. Oxytocin reverses amphetamine-induced deficits in social bonding: evidence for an interaction with nucleus accumbens dopamine.

    PubMed

    Young, Kimberly A; Liu, Yan; Gobrogge, Kyle L; Wang, Hui; Wang, Zuoxin

    2014-06-18

    Drug addiction has devastating consequences on social behaviors and can lead to the impairment of social bonding. Accumulating evidence indicates that alterations in oxytocin (OT) and dopamine (DA) neurotransmission within brain reward circuitry may be involved. We investigated this possibility, as well as the therapeutic potential of OT for drug-induced social deficits, using the prairie vole (Microtus ochrogaster)-a socially monogamous rodent that forms enduring pair bonds between adult mates. We demonstrate that repeated exposure to the commonly abused psychostimulant amphetamine (AMPH) inhibits the formation of partner preferences (an index of pair bonding) in female prairie voles. AMPH exposure also altered OT and DA neurotransmission in regions that mediate partner preference formation: it decreased OT and DA D2 receptor immunoreactivity in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAcc), respectively, and increased NAcc DA levels. Administration of OT directly into the mPFC of AMPH-exposed voles restored partner preferences, and altered NAcc DA levels, and this effect was dependent on OT receptor activation. Together, these data suggest that repeated AMPH exposure impairs pair bonding through an OT-mediated mechanism, and that OT and DA systems within brain reward circuitry may interact to mediate the complex relationship between drug abuse and social bonding. Further, these results provide empirical support for the idea that the central OT system may represent an important target for the treatment of social deficits in addiction.

  17. Oxytocin Reverses Amphetamine-Induced Deficits in Social Bonding: Evidence for an Interaction with Nucleus Accumbens Dopamine

    PubMed Central

    Liu, Yan; Gobrogge, Kyle L.; Wang, Hui

    2014-01-01

    Drug addiction has devastating consequences on social behaviors and can lead to the impairment of social bonding. Accumulating evidence indicates that alterations in oxytocin (OT) and dopamine (DA) neurotransmission within brain reward circuitry may be involved. We investigated this possibility, as well as the therapeutic potential of OT for drug-induced social deficits, using the prairie vole (Microtus ochrogaster)—a socially monogamous rodent that forms enduring pair bonds between adult mates. We demonstrate that repeated exposure to the commonly abused psychostimulant amphetamine (AMPH) inhibits the formation of partner preferences (an index of pair bonding) in female prairie voles. AMPH exposure also altered OT and DA neurotransmission in regions that mediate partner preference formation: it decreased OT and DA D2 receptor immunoreactivity in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAcc), respectively, and increased NAcc DA levels. Administration of OT directly into the mPFC of AMPH-exposed voles restored partner preferences, and altered NAcc DA levels, and this effect was dependent on OT receptor activation. Together, these data suggest that repeated AMPH exposure impairs pair bonding through an OT-mediated mechanism, and that OT and DA systems within brain reward circuitry may interact to mediate the complex relationship between drug abuse and social bonding. Further, these results provide empirical support for the idea that the central OT system may represent an important target for the treatment of social deficits in addiction. PMID:24948805

  18. Chronic cocaine administration induces opposite changes in dopamine receptors in the striatum and nucleus accumbens

    SciTech Connect

    Goeders, N.E.; Kuhar, M.J.

    1987-01-01

    A variety of clinical and animal data suggest that the repeated administration of cocaine and related psychomotor stimulants may be associated with a behavioral sensitization whereby the same dose of the drug results in increasing behavioral pathology. This investigation was designed to determine the effects of chronic cocaine administration on the binding of (/sup 3/H)sulpiride, a relatively specific ligand for D2 dopaminergic receptors, in the rat brain using in vitro homogenate binding and light microscopic quantitative autoradiographic methodologies. Chronic daily injections of cocaine (10 mg/kg, i.p.) for 15 days resulted in a significant decrease in the maximum concentration of sulpiride binding sites in the striatum and a significant increase in the maximum number of these binding sites in the nucleus accumbens. No significant differences in binding affinity were observed in either brain region. These data suggest that chronic cocaine administration may result in differential effects on D2 receptors in the nigro-striatal and mesolimbic dopaminergic systems.

  19. Effects of ventro-medial mesencephalic tegmentum (VMT) stimulation on the spontaneous activity of nucleus accumbens neurones: influence of the dopamine system.

    PubMed

    Le Douarin, C; Penit, J; Glowinski, J; Thierry, A M

    1986-01-22

    The effects of VMT-stimulation (100-500 microA, 0.6 ms; 1 Hz) on the spontaneous activity of neurones in the nucleus accumbens were analyzed in ketamine-anaesthetized rats. On spontaneously active cells (firing greater than 0.5 spikes/s), 3 types of responses were observed: either inhibition (36%), excitation (5%) or a composite sequence of excitation followed by inhibition (12%). Moreover, 14% of silent nucleus accumbens neurones were excited by single pulse VMT-stimulation. Finally, 3% of nucleus accumbens neurones recorded were driven antidromically by VMT-stimulation. Destruction of dopamine (DA) projections by 6-hydroxydopamine prevented the inhibitory responses to VMT stimulation in the great majority of cells studied, without affecting the excitatory responses. After systemic administration of haloperidol or sulpiride, the inhibitory responses to VMT stimulation were attenuated markedly, whilst the excitatory responses were, however, maintained. These results suggest that the inhibitory, but not the excitatory, effects of VMT-stimulation on nucleus accumbens neurones may be mediated by an activation of the mesolimbic DA system.

  20. In vivo characterization of basal amino acid levels in subregions of the rat nucleus accumbens: effect of a dopamine D(3)/D(2) agonist.

    PubMed

    Hemmati, P; Shilliam, C S; Hughes, Z A; Shah, A J; Roberts, J C; Atkins, A R; Hunter, A J; Heidbreder, C A

    2001-09-01

    Recent evidence demonstrates that two subdivisions of the nucleus accumbens, the dorsolateral core and the ventromedial shell can be distinguished by morphological, immunohistochemical and chemoarchitectural differences. In the present study, we measured basal levels of amino acids in microdialysates from both the shell and core subterritories of the nucleus accumbens in freely moving rats using HPLC with fluorescence detection. The effect of the dopamine D(3)/D(2) receptor agonist quinelorane (30 microg/kg s.c.) was then investigated in both subregions. With the exception of glutamate, histidine, and serine, which showed similar levels in both subterritories, alanine, arginine, aspartate, gamma-aminobutyric acid, glutamine, and tyrosine were significantly higher in the shell compared with the core. In contrast, taurine levels were significantly lower in the shell than in the core. A particularly striking difference across subregions of the nucleus accumbens was observed for basal GABA levels with a shell/core ratio of 18.5. Among all the amino acids investigated in the present study, quinelorane selectively decreased dialysate GABA levels in the core subregion of the nucleus accumbens. The results of the present study point to specific profiles of both shell and core in terms of: (1) basal chemical neuroanatomical markers for amino acids; and (2) GABAergic response to the DA D(3)/D(2) agonist quinelorane.

  1. Dopamine and noradrenaline efflux in the prefrontal cortex in the light and dark period: effects of novelty and handling and comparison to the nucleus accumbens.

    PubMed

    Feenstra, M G; Botterblom, M H; Mastenbroek, S

    2000-01-01

    We used on-line microdialysis measurements of dopamine and noradrenaline extracellular concentrations in the medial prefrontal cortex of awake, freely moving rats during the dark and the light period of the day to study whether (i) basal efflux would be higher in the active, dark period than in the inactive, light period; (ii) the activation induced by environmental stimuli would be dependent on these conditions. When determined one day after cannula placement, noradrenaline and dopamine levels were higher during the dark. Maximal relative increases induced by novelty and handling were 150% and 175-200%, respectively, and were very similar in the light and the dark, but the net increases were higher in the dark. Separate groups were tested one week after cannula placement to ensure recovery of possibly disturbed circadian rhythms. While basal levels in the dark were now approximately twice those in the light, the maximal relative and net increases after both novelty and handling were very similar. Basal levels of dopamine in the nucleus accumbens (one day after cannula placement) were not different in the light or dark, but were increased by novelty and handling to about 130% only in the light period, not in the dark. Thus, in the prefrontal cortex, dopamine strongly resembles noradrenaline, in that basal efflux was state dependent, whereas activation by stimuli was not. In the nucleus accumbens, basal dopamine efflux was not state dependent, but activation by stimuli was. These results suggest that there are differential effects of circadian phase on basal activity and responsiveness of the mesolimbic vs the mesocortical dopamine system.

  2. Nicotine withdrawal produces a decrease in extracellular levels of dopamine in the nucleus accumbens that is lower in adolescent versus adult male rats.

    PubMed

    Natividad, Luis A; Tejeda, Hugo A; Torres, Oscar V; O'Dell, Laura E

    2010-02-01

    The behavioral effects of nicotine withdrawal are lower in adolescent versus adult rats. However, the neurochemical mechanisms that mediate these developmental differences are unknown. Previous studies have shown that extracellular levels of dopamine in the nucleus accumbens (NAcc) are reduced in adult rats experiencing withdrawal. This study compared dopamine levels in the NAcc of male adolescent and adult rats experiencing nicotine withdrawal. Animals were prepared with subcutaneous pumps that delivered an equivalent nicotine dose in these age groups. Following 13 days of nicotine exposure, rats were implanted unilaterally with microdialysis probes into the NAcc and ipsilateral ventral tegmental area (VTA). The next day, dialysate levels were collected following systemic administration of the nicotinic-receptor antagonist mecamylamine to precipitate withdrawal. Mecamylamine produced an average % decrease in NAcc dopamine that was lower in adolescents (20%) versus adults (44%). Similar developmental differences were observed with the dopaminergic (DOPAC and HVA) but not serotonergic (5-HIAA) metabolites. A follow-up study compared NAcc dopamine in adolescent and adult rats receiving intra-VTA administration of bicuculline, which reduces gamma-aminobutyric acid (GABA) inhibition of dopamine transmission. The results revealed that blockade of GABA(A) receptors in the VTA produced a two-fold increase in NAcc dopamine of adults but not adolescents. These results provide a potential mechanism involving dopamine that mediates developmental differences in nicotine withdrawal. Specifically, they suggest that GABA systems are underdeveloped during adolescence and this reduced inhibition of dopamine neurons in the VTA may lead to reduced decreases in NAcc dopamine of young animals experiencing withdrawal.

  3. Nicotine withdrawal produces a decrease in extracellular levels of dopamine in the nucleus accumbens that is lower in adolescent versus adult male rats

    PubMed Central

    Natividad, Luis A.; Tejeda, Hugo A.; Torres, Oscar V.; O’Dell, Laura E.

    2010-01-01

    The behavioral effects of nicotine withdrawal are lower in adolescent versus adult rats. However, the neurochemical mechanisms that mediate these developmental differences are unknown. Previous studies have shown that extracellular levels of dopamine in the nucleus accumbens (NAcc) are reduced in adult rats experiencing withdrawal. This study compared dopamine levels in the NAcc of male adolescent and adult rats experiencing nicotine withdrawal. Animals were prepared with subcutaneous pumps that delivered an equivalent nicotine dose in these age groups. Following 13 days of nicotine exposure, rats were implanted unilaterally with microdialysis probes into the NAcc and ipsilateral ventral tegmental area (VTA). The next day, dialysate levels were collected following systemic administration of the nicotinic-receptor antagonist mecamylamine to precipitate withdrawal. Mecamylamine produced an average % decrease in NAcc dopamine that was lower in adolescents (20%) versus adults (44%). Similar developmental differences were observed with the dopaminergic (DOPAC and HVA) but not serotonergic (5-HIAA) metabolites. A follow up study compared NAcc dopamine in adolescent and adult rats receiving intra-VTA administration of bicuculline, which reduces gamma-aminobutyric acid (GABA) inhibition of dopamine transmission. The results revealed that blockade of GABAA receptors in the VTA produced a 2-fold increase in NAcc dopamine of adults but not adolescents. These results provide a potential mechanism involving dopamine that mediates developmental differences in nicotine withdrawal. Specifically, they suggest that GABA systems are underdeveloped during adolescence and this reduced inhibition of dopamine neurons in the VTA may lead to reduced decreases in NAcc dopamine of young animals experiencing withdrawal. PMID:19771590

  4. Acetylcholine enhancement in the nucleus accumbens prevents addictive behaviors of cocaine and morphine.

    PubMed

    Hikida, Takatoshi; Kitabatake, Yasuji; Pastan, Ira; Nakanishi, Shigetada

    2003-05-13

    Drug addiction poses serious social, medical, and economic problems, but effective treatments for drug addiction are still limited. Cocaine and morphine elevate dopamine levels in the nucleus accumbens (NAc), and the overwhelming actions of dopamine are implicated in reinforcement and addiction of abusive drugs. In our previous studies, we reported the regulatory role of acetylcholine (ACh) in the NAc function by selectively ablating the NAc cholinergic neurons with use of immunotoxin-mediated cell targeting. These studies indicated that ACh and dopamine acted convergently but oppositely on the NAc circuit and that cholinergic cell ablation enhanced long-lasting behavioral changes of cocaine addiction. In this investigation, we showed that immunotoxin-mediated ablation of the NAc cholinergic neurons enhanced not only the sensitivity to morphine in conditioned place preference but also negative reinforcement of morphine withdrawal in conditioned place aversion. Remarkably, acetylcholinesterase (AChE) inhibitors that act on the brain AChE suppressed both cocaine- and morphine-induced conditioned place preference and blocked the induction and persistence of cocaine-evoked hyperlocomotion. Importantly, this inhibition was abolished by ablation of the NAc cholinergic neurons. These results demonstrate that centrally active AChE inhibitors prevent long-lasting behavioral abnormalities associated with cocaine and morphine addictions by potentiating the actions of ACh released from the NAc cholinergic neurons. Centrally active AChE inhibitors could thus be approached as novel and potential therapeutic agents for drug addiction.

  5. Role of dopamine and GABA in the control of motor activity elicited from the rat nucleus accumbens.

    PubMed

    Wong, L S; Eshel, G; Dreher, J; Ong, J; Jackson, D M

    1991-04-01

    The application of 1.2 and 12.0 micrograms/side of the GABAA receptor agonist 3-aminopropane sulphonic acid bilaterally into the nucleus accumbens (Acb) of rats nonsignificantly depressed locomotor activity as assessed in automated Animex activity cages, while the highest dose (60 micrograms/side) significantly stimulated activity. The GABAA receptor antagonists picrotoxinin (0.0625 and 0.125 micrograms/saide) and bicuculline (0.895 micrograms/side) produced forward locomotion around the cage accompanied by a number of other behaviours. The GABAB agonist baclofen (0.023 and 0.092 micrograms/side) induced a short-lasting (18 min) locomotor depression. None of the GABAB antagonists tested (2-hydroxysaclofen 2.6 micrograms/side, two novel beta-(benzo[b]furan) analogues of baclofen 9G or 9H each 6.8 micrograms/side, 4-aminobutylphosphonic acid 1.32 micrograms/side and phaclofen 0.535 and 2 micrograms/side) significantly affected locomotor activity. In rats pretreated with reserpine and alpha-methyl-p-tyrosine, picrotoxinin (0.0625 and 0.125 micrograms/side) did not significantly alter locomotor activity. Furthermore, when picrotoxinin (0.0625 micrograms/side) was combined with either the selective dopamine (DA) D1 agonist SKF38393 or the selective D2 agonist quinpirole, no significant alteration in locomotor function occurred. When SKF38393 and quinpirole were coadministered, significant stimulation occurred which was further enhanced by the addition of picrotoxinin. It is concluded that GABAA receptors, together with D1 and D2 receptors, play a major role in modulating the control of motor function by the Acb of rats.

  6. Adolescent nicotine-induced dendrite remodeling in the nucleus accumbens is rapid, persistent, and D1-dopamine receptor dependent.

    PubMed

    Ehlinger, D G; Bergstrom, H C; Burke, J C; Fernandez, G M; McDonald, C G; Smith, R F

    2016-01-01

    Chronic nicotine exposure during adolescence induces dendritic remodeling of medium spiny neurons (MSNs) in the nucleus accumbens (NAcc) shell. While nicotine-induced dendritic remodeling has frequently been described as persistent, the trajectory of dendrite remodeling is unknown. Specifically, no study to date has characterized the structural plasticity of dendrites in the NAcc immediately following chronic nicotine, leaving open the possibility that dendrite remodeling emerges gradually over time. Further, the neuropharmacological mechanisms through which nicotine induces dendrite remodeling are not well understood. To address these questions, rats were co-administered chronic nicotine (0.5 mg/kg) and the D1-dopamine receptor (D1DR) antagonist SCH-23390 (0.05 mg/kg) subcutaneously every other day during adolescence. Brains were then processed for Golgi-Cox staining either 1 day or 21 days following drug exposure and dendrites from MSNs in the NAcc shell digitally reconstructed in 3D. Spine density was also measured at both time points. Our morphometric results show (1) the formation of new dendritic branches and spines 1 day following nicotine exposure, (2) new dendritic branches, but not spine density, remains relatively stable for at least 21 days, (3) the co-administration of SCH-23390 completely blocked nicotine-induced dendritic remodeling of MSNs at both early and late time points, suggesting the formation of new dendritic branches in response to nicotine is D1DR-dependent, and (4) SCH-23390 failed to block nicotine-induced increases in spine density. Overall this study provides new insight into how nicotine influences the normal trajectory of adolescent brain development and demonstrates a persistent form of nicotine-induced neuroplasticity in the NAcc shell that develops rapidly and is D1DR dependent.

  7. Selective modulation of GABAergic tonic current by dopamine in the nucleus accumbens of alcohol-dependent rats.

    PubMed

    Liang, Jing; Marty, Vincent N; Mulpuri, Yatendra; Olsen, Richard W; Spigelman, Igor

    2014-07-01

    The nucleus accumbens (NAcc) is a key structure of the mesolimbic dopaminergic reward system and plays an important role in mediating alcohol-seeking behaviors. Alterations in glutamatergic and GABAergic signaling were recently demonstrated in the NAcc of rats after chronic intermittent ethanol (CIE) treatment, a model of alcohol dependence. Here we studied dopamine (DA) modulation of GABAergic signaling and how this modulation might be altered by CIE treatment. We show that the tonic current (I(tonic)) mediated by extrasynaptic γ-aminobutyric acid type A receptors (GABA(A)Rs) of medium spiny neurons (MSNs) in the NAcc core is differentially modulated by DA at concentrations in the range of those measured in vivo (0.01-1 μM), without affecting the postsynaptic kinetics of miniature inhibitory postsynaptic currents (mIPSCs). Use of selective D1 receptor (D1R) and D2 receptor (D2R) ligands revealed that I(tonic) potentiation by DA (10 nM) is mediated by D1Rs while I(tonic) depression by DA (0.03-1 μM) is mediated by D2Rs in the same MSNs. Addition of guanosine 5'-O-(2-thiodiphosphate) (GDPβS) to the recording pipettes eliminated I(tonic) decrease by the selective D2R agonist quinpirole (5 nM), leaving intact the quinpirole effect on mIPSC frequency. Recordings from CIE and vehicle control (CIV) MSNs during application of D1R agonist (SKF 38393, 100 nM) or D2R agonist (quinpirole, 2 nM) revealed that SKF 38393 potentiated I(tonic) to the same extent, while quinpirole reduced I(tonic) to a similar extent, in both groups of rats. Our data suggest that the selective modulatory effects of DA on I(tonic) are unaltered by CIE treatment and withdrawal.

  8. Individual Differences in Ethanol Locomotor Sensitization Are Associated with Dopamine D1 Receptor Intra-Cellular Signaling of DARPP-32 in the Nucleus Accumbens

    PubMed Central

    Abrahao, Karina Possa; Oliveira Goeldner, Francine; Souza-Formigoni, Maria Lucia Oliveira

    2014-01-01

    In mice there are clear individual differences in the development of behavioral sensitization to ethanol, a progressive potentiation of its psychomotor stimulant effect. Variability in the behavioral responses to ethanol has been associated with alcohol preference. Here we investigated if the functional hyperresponsiveness of D1 receptors observed in ethanol sensitized mice leads to an increased activation of DARPP-32, a central regulatory protein in medium spiny neurons, in the nucleus accumbens - a brain region known to play a role in drug reinforcement. Swiss Webster mice received ethanol (2.2 g/kg/day) or saline i.p. administrations for 21 days and were weekly evaluated regarding their locomotor activity. From those treated with ethanol, the 33% with the highest levels of locomotor activity were classified as “sensitized” and the 33% with the lowest levels as "non-sensitized”. The latter presented similar locomotor levels to those of saline-treated mice. Different subgroups of mice received intra-accumbens administrations of saline and, 48 h later, SKF-38393, D1 receptor agonist 0.1 or 1 µg/side. Indeed, sensitized mice presented functional hyperresponsiveness of D1 receptors in the accumbens. Two weeks following the ethanol treatment, other subgroups received systemic saline or SKF 10 mg/kg, 20 min before the euthanasia. The nucleus accumbens were dissected for the Western Blot analyses of total DARPP-32 and phospho-Thr34-DARPP-32 expression. D1 receptor activation induced higher phospho-Thr34-DARPP-32 expression in sensitized mice than in non-sensitized or saline. The functionally hyperresponsiveness of D1 receptors in the nucleus accumbens is associated with an increased phospho-Thr34-DARPP-32 expression after D1 receptor activation. These data suggest that an enduring increase in the sensitivity of the dopamine D1 receptor intracellular pathway sensitivity represents a neurobiological correlate associated with the development of locomotor

  9. Extended-access, but not limited-access, methamphetamine self-administration induces behavioral and nucleus accumbens dopamine response changes in rats.

    PubMed

    Le Cozannet, Romain; Markou, Athina; Kuczenski, Ronald

    2013-11-01

    To better understand the neurobiology of methamphetamine (METH) dependence and the cognitive impairments induced by METH use, we compared the effects of extended (12 h) and limited (1 h) access to METH self-administration on locomotor activity and object place recognition, and on extracellular dopamine levels in the nucleus accumbens and caudate-putamen. Rats were trained to self-administer intravenous METH (0.05 mg/kg). One group had progressively extended access up to 12-h sessions. The other group had limited-access 1-h sessions. Microdialysis experiments were conducted during a 12-h and 1-h session, in which the effects of a single METH injection (self-administered, 0.05 mg/kg, i.v.) on extracellular dopamine levels were assessed in the nucleus accumbens and caudate-putamen compared with a drug-naive group. The day after the last 12-h session and the following day experimental groups were assessed for their locomotor activities and in a place recognition procedure, respectively. The microdialysis results revealed tolerance to the METH-induced increases in extracellular dopamine only in the nucleus accumbens, but not in the caudate-putamen in the extended-access group compared with the control and limited-access groups. These effects may be associated with the increased lever-pressing and drug-seeking observed during the first hour of drug exposure in the extended-access group. This increase in drug-seeking leads to higher METH intake and may result in more severe consequences in other structures responsible for the behavioral deficits (memory and locomotor activity) observed in the extended-access group, but not in the limited-access group.

  10. The role of the nucleus accumbens shell in the mediation of the reinforcing properties of a safety signal in free-operant avoidance: dopamine-dependent inhibitory effects of d-amphetamine.

    PubMed

    Fernando, Anushka B P; Urcelay, Gonzalo P; Mar, Adam C; Dickinson, Tony A; Robbins, Trevor W

    2014-05-01

    Safety signals (SSs) have been shown to reinforce instrumental avoidance behavior due to their ability to signal the absence of an aversive event; however, little is known of their neural mediation. This study investigated whether infusions of d-amphetamine in the nucleus accumbens (Nac), previously shown to potentiate responding for appetitive conditioned reinforcers (CRfs), also regulate avoidance responding for a SS. Rats were trained on a free-operant task in which lever-press responses avoided shock and were reinforced with an auditory SS. Rats were then cannulated in the Nac core (NacC) or shell (NacS) and infused with d-amphetamine and, in separate NacS groups, other drugs, before extinction sessions with the SS present or absent following responding. Selective effects of d-amphetamine were found in the NacS, but not in the NacC, when the SS was present in the session. A significant increase in response rate during the presentation of the SS reflected a disruption of its fear-inhibiting properties. In parallel, a decrease in avoidance response rate reflected the reduced influence of the SS as a CRf. Inactivation of the NacS reduced avoidance responding only when the SS was present in the session, whereas the D1-D2 DA receptor antagonist α-flupenthixol reduced responding both before and during the SS regardless of the presence of the SS. Atomoxetine (ATO), a selective noradrenaline reuptake inhibitor, had no effect on responding. These results indicate a role for the NacS in the mediation of the conditioned reinforcing properties of a SS. These effects appear to be modulated by dopaminergic mechanisms but seem distinct from those previously reported with food-related CRfs.

  11. Prediction error as a linear function of reward probability is coded in human nucleus accumbens.

    PubMed

    Abler, Birgit; Walter, Henrik; Erk, Susanne; Kammerer, Hannes; Spitzer, Manfred

    2006-06-01

    Reward probability has been shown to be coded by dopamine neurons in monkeys. Phasic neuronal activation not only increased linearly with reward probability upon expectation of reward, but also varied monotonically across the range of probabilities upon omission or receipt of rewards, therefore modeling discrepancies between expected and received rewards. Such a discrete coding of prediction error has been suggested to be one of the basic principles of learning. We used functional magnetic resonance imaging (fMRI) to show that the human dopamine system codes reward probability and prediction error in a similar way. We used a simple delayed incentive task with a discrete range of reward probabilities from 0%-100%. Activity in the nucleus accumbens of human subjects strongly resembled the phasic responses found in monkey neurons. First, during the expectation period of the task, the fMRI signal in the human nucleus accumbens (NAc) increased linearly with the probability of the reward. Second, during the outcome phase, activity in the NAc coded the prediction error as a linear function of reward probabilities. Third, we found that the Nac signal was correlated with individual differences in sensation seeking and novelty seeking, indicating a link between individual fMRI activation of the dopamine system in a probabilistic paradigm and personality traits previously suggested to be linked with reward processing. We therefore identify two different covariates that model activity in the Nac: specific properties of a psychological task and individual character traits.

  12. Role of dopamine receptors subtypes, D1-like and D2-like, within the nucleus accumbens subregions, core and shell, on memory consolidation in the one-trial inhibitory avoidance task.

    PubMed

    Managò, Francesca; Castellano, Claudio; Oliverio, Alberto; Mele, Andrea; De Leonibus, Elvira

    2009-01-01

    Recent evidence demonstrated that dopamine within the nucleus accumbens mediates consolidation of both associative and nonassociative memories. However, the specific contribution of the nucleus accumbens subregions, core and shell, and of D1 and D2 receptors subtypes has not been yet clarified. The aim of this study was, therefore, to directly compare the effect of D1 and D2 dopamine receptor blockade within the core and the shell subregions of the nucleus accumbens on memory consolidation. Using the one-trial inhibitory avoidance task in CD1 mice, we demonstrated that SCH 23390 (vehicle, 12.5, 25, 50 ng/side) administration within the core, but not the shell, impaired step-through latency 24 h after the administration if injected immediately, but not 120 min post-training. Interestingly, sulpiride (vehicle, 25, 50 ng/side) injection in both the core and the shell of the accumbens affected step-through latency 24 h later; also, in this case the impairment was time dependent. These data provide the most complete and direct demonstration to date that early consolidation of aversive memory requires D2 receptor activation in both nucleus accumbens subregions, and D1 activation selectively in the nucleus accumbens core.

  13. GS 455534 selectively suppresses binge eating of palatable food and attenuates dopamine release in the accumbens of sugar-bingeing rats.

    PubMed

    Bocarsly, Miriam E; Hoebel, Bartley G; Paredes, Daniel; von Loga, Isabell; Murray, Susan M; Wang, Miaoyuan; Arolfo, Maria P; Yao, Lina; Diamond, Ivan; Avena, Nicole M

    2014-04-01

    Binge eating palatable foods has been shown to have behavioral and neurochemical similarities to drug addiction. GS 455534 is a highly selective reversible aldehyde dehydrogenase 2 inhibitor that has been shown to reduce alcohol and cocaine intake in rats. Given the overlaps between binge eating and drug abuse, we examined the effects of GS 455534 on binge eating and subsequent dopamine release. Sprague-Dawley rats were maintained on a sugar (experiment 1) or fat (experiment 2) binge eating diet. After 25 days, GS 455534 was administered at 7.5 and 15 mg/kg by an intraperitoneal injection, and food intake was monitored. In experiment 3, rats with cannulae aimed at the nucleus accumbens shell were maintained on the binge sugar diet for 25 days. Microdialysis was performed, during which GS 455534 15 mg/kg was administered, and sugar was available. Dialysate samples were analyzed to determine extracellular levels of dopamine. In experiment 1, GS 455534 selectively decreased sugar intake food was made available in the Binge Sugar group but not the Ad libitum Sugar group, with no effect on chow intake. In experiment 2, GS 455534 decreased fat intake in the Binge Fat group, but not the Ad libitum Fat group, however, it also reduced chow intake. In experiment 3, GS 455534 attenuated accumbens dopamine release by almost 50% in binge eating rats compared with the vehicle injection. The findings suggest that selective reversible aldehyde dehydrogenase 2 inhibitors may have the therapeutic potential to reduce binge eating of palatable foods in clinical populations.

  14. Inhibition of α-Synuclein Fibrillization by Dopamine Is Mediated by Interactions with Five C-Terminal Residues and with E83 in the NAC Region

    PubMed Central

    Paleologou, Katerina E.; Schmid, Adrian; Munoz, Adriana; Vendruscolo, Michele; Gustincich, Stefano; Lashuel, Hilal A.; Carloni, Paolo

    2008-01-01

    The interplay between dopamine and α-synuclein (AS) plays a central role in Parkinson's disease (PD). PD results primarily from a severe and selective devastation of dopaminergic neurons in substantia nigra pars compacta. The neuropathological hallmark of the disease is the presence of intraneuronal proteinaceous inclusions known as Lewy bodies within the surviving neurons, enriched in filamentous AS. In vitro, dopamine inhibits AS fibril formation, but the molecular determinants of this inhibition remain obscure. Here we use molecular dynamic (MD) simulations to investigate the binding of dopamine and several of its derivatives onto conformers representative of an NMR ensemble of AS structures in aqueous solution. Within the limitations inherent to MD simulations of unstructured proteins, our calculations suggest that the ligands bind to the 125YEMPS129 region, consistent with experimental findings. The ligands are further stabilized by long-range electrostatic interactions with glutamate 83 (E83) in the NAC region. These results suggest that by forming these interactions with AS, dopamine may affect AS aggregation and fibrillization properties. To test this hypothesis, we investigated in vitro the effects of dopamine on the aggregation of mutants designed to alter or abolish these interactions. We found that point mutations in the 125YEMPS129 region do not affect AS aggregation, which is consistent with the fact that dopamine interacts non-specifically with this region. In contrast, and consistent with our modeling studies, the replacement of glutamate by alanine at position 83 (E83A) abolishes the ability of dopamine to inhibit AS fibrillization. PMID:18852892

  15. Role of Nucleus Accumbens in Neuropathic Pain: Linked Multi-Scale Evidence in the Rat Transitioning to Neuropathic Pain

    PubMed Central

    Chang, Pei-Ching; Pollema-Mays, Sarah Lynn; Centeno, Maria Virginia; Procissi, Daniel; Contini, Massimos; Baria, Alex Tomas; Martina, Macro; Apkarian, Apkar Vania

    2015-01-01

    Despite recent evidence implicating the nucleus accumbens (NAc) as causally involved in the transition to chronic pain in humans, underlying mechanisms of this involvement remain entirely unknown. Here we elucidate mechanisms of NAc reorganizational properties (longitudinally and cross-sectionally), in an animal model of neuropathic pain (spared nerve injury, SNI). We observed inter-related changes: 1) In resting-state fMRI, functional connectivity of the NAc to dorsal striatum and cortex was reduced 28 days (but not 5 days) after SNI; 2) contralateral to SNI injury, gene expression of NAc dopamine 1A, 2, and κ-opioid receptors decreased 28 days after SNI; 3) In SNI (but not sham) covariance of gene expression was upregulated at 5 days and settled to a new state at 28 days; and 4) NAc functional connectivity correlated with dopamine receptor gene expression and with tactile allodynia. Moreover, interruption of NAc activity (via lidocaine infusion) reversibly alleviated neuropathic pain in SNI animals. Together, these results demonstrate macroscopic (fMRI) and molecular reorganization of NAc and indicate that NAc neuronal activity is necessary for full expression of neuropathic pain-like behavior. PMID:24607959

  16. Role of nucleus accumbens in neuropathic pain: linked multi-scale evidence in the rat transitioning to neuropathic pain.

    PubMed

    Chang, Pei-Ching; Pollema-Mays, Sarah Lynn; Centeno, Maria Virginia; Procissi, Daniel; Contini, Massimo; Baria, Alex Tomas; Martina, Marco; Apkarian, Apkar Vania

    2014-06-01

    Despite recent evidence implicating the nucleus accumbens (NAc) as causally involved in the transition to chronic pain in humans, underlying mechanisms of this involvement remain entirely unknown. Here we elucidate mechanisms of NAc reorganizational properties (longitudinally and cross-sectionally), in an animal model of neuropathic pain (spared nerve injury [SNI]). We observed interrelated changes: (1) In resting-state functional magnetic resonance imaging (fMRI), functional connectivity of the NAc to dorsal striatum and cortex was reduced 28days (but not 5days) after SNI; (2) Contralateral to SNI injury, gene expression of NAc dopamine 1A, 2, and κ-opioid receptors decreased 28days after SNI; (3) In SNI (but not sham), covariance of gene expression was upregulated at 5days and settled to a new state at 28days; and (4) NAc functional connectivity correlated with dopamine receptor gene expression and with tactile allodynia. Moreover, interruption of NAc activity (via lidocaine infusion) reversibly alleviated neuropathic pain in SNI animals. Together, these results demonstrate macroscopic (fMRI) and molecular reorganization of NAc and indicate that NAc neuronal activity is necessary for full expression of neuropathic pain-like behavior.

  17. Clozapine and cocaine effects on dopamine and serotonin release in nucleus accumbens during psychostimulant behavior and withdrawal.

    PubMed

    Broderick, Patricia A; Hope, Omotola; Okonji, Catherine; Rahni, David N; Zhou, Yueping

    2004-01-01

    There is an increasing awareness that a psychosis, similar to that of schizophrenic psychosis, can be derived from cocaine addiction. Thus, the prototypical atypical antipsychotic medication, clozapine, a 5-HT(2)/DA(2) antagonist, was studied for its effects on cocaine-induced dopamine (DA) and serotonin (5-HT) release in nucleus accumbens (NAcc) of behaving male Sprague-Dawley laboratory rats with In Vivo Microvoltammetry, while animals' locomotor (forward ambulations), an A(10) behavior, was monitored at the same time with infrared photobeams. Release mechanisms for monoamines were determined by using a depolarization blocker, gamma-butyrolactone (gammaBL). BRODERICK PROBE microelectrodes selectively detected release of DA and 5-HT within seconds and sequentially in A(10) nerve terminals, NAcc. Acute and subacute studies were performed for each treatment group. Acute studies are defined as single injection of drug(s) after a stable baseline of each monoamine and locomotor behavior has been achieved. Subacute studies are defined as 24-h follow-up studies on each monoamine and locomotor behavior, in the same animal at which time, no further drug was administered. Results showed that (1) acute administration of cocaine (10 mg/kg ip) (n=5) significantly increased both DA and 5-HT release above baseline (P<.001) while locomotion was also significantly increased above baseline (P<.001). In subacute studies, DA release decreased significantly below baseline (P<.001) and significant decreases in 5-HT release occurred at the 15-min mark and at each time point during the second part of the hour (P<.05); the maximum decrease in 5-HT was 40% below baseline. Locomotor behavior, on the other hand, increased significantly above baseline (P<.05). (2) Acute administration of clozapine/cocaine (20 and 10 mg/kg ip, respectively; n=6) produced a significant block of the cocaine-induced increase in DA (P<.001) and 5-HT release (P<.001). Cocaine-induced locomotion was blocked

  18. Nucleus accumbens invulnerability to methamphetamine neurotoxicity.

    PubMed

    Kuhn, Donald M; Angoa-Pérez, Mariana; Thomas, David M

    2011-01-01

    Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure.

  19. A Role for Accumbal Glycine Receptors in Modulation of Dopamine Release by the Glycine Transporter-1 Inhibitor Org25935

    PubMed Central

    Lidö, Helga Höifödt; Ericson, Mia; Marston, Hugh; Söderpalm, Bo

    2010-01-01

    Accumbal glycine modulates basal and ethanol-induced dopamine levels in the nucleus accumbens (nAc) as well as voluntary ethanol consumption. Also, systemic administration of the glycine transporter-1 inhibitor Org25935 elevates dopamine levels in nAc, prevents a further ethanol-induced dopamine elevation and robustly and dose-dependently decreases ethanol consumption in rats. Here we investigated whether Org25935 applied locally in nAc modulates dopamine release, and whether accumbal glycine receptors or NMDA receptors are involved in this tentative effect. We also addressed whether Org25935 and ethanol applied locally in nAc interact with dopamine levels, as seen after systemic administration. We used in vivo microdialysis coupled to HPLC-ED in freely moving male Wistar rats to monitor dopamine output in nAc after local perfusion of Org25935 alone, with ethanol, or Org25935-perfusion after pre-treatment with the glycine receptor antagonist strychnine or the NMDA receptor glycine site antagonist L-701.324. Local Org25935 increased extracellular dopamine levels in a subpopulation of rats. Local strychnine, but not systemic L-701.324, antagonized the dopamine-activating effect of Org25935. Ethanol failed to induce a dopamine overflow in the subpopulation responding to Org25935 with a dopamine elevation. The study supports a role for accumbal glycine receptors rather than NMDA receptor signaling in the dopamine-activating effect of Org25935. The results further indicate that the previously reported systemic Org25935–ethanol interaction with regard to accumbal dopamine is localized to the nAc. This adds to the growing evidence for the glycine receptor as an important player in the dopamine reward circuitry and in ethanol's effects within this system. PMID:21556278

  20. Differential behavioral reinforcement effects of dopamine receptor agonists in the rat with bilateral lesion of the posterior ventral tegmental area.

    PubMed

    Ouachikh, Omar; Dieb, Wisam; Durif, Franck; Hafidi, Aziz

    2013-09-01

    Dopamine dysregulation syndrome in Parkinson's disease has been attributed to dopamine replacement therapies and/or a lesion of the dopaminergic system. The dopaminergic neuronal loss targets the substantia nigra and the ventral tegmental area (VTA). We hypothesize that dopamine replacement therapy is responsible for the potential reinforcement effect in Parkinson's disease by acting on the neuronal reward circuitry. Therefore this study was designed to explore the potential motivational effect of dopamine replacement therapy in bilateral VTA-lesioned animals. The posterior (p)VTA, which project to the nucleus accumbens (NAc) constitutes the major dopamine neuronal circuitry implicated in addictive disorders. Using the conditioned place preference (CPP) behavioral paradigm, we investigated the motivational effects of dopamine receptor agonists, and cocaine in rat with a 6-OHDA bilateral lesion of the pVTA. Amongst the dopamine receptor agonists used in this study only the D2R and D3R agonists (bromocriptine, PD128907 and pramipexole), induced a significant CPP in pVTA-lesioned animals. Dopamine receptor agonists did not induce behavioral sensitization in sham animals. Moreover, confocal D2R immunostaining analysis showed a significant increase in the number of D2R per cell body in the NAc shell of pVTA lesioned rats compared to sham. This result correlated, for the first time, the dopamine receptor agonists effect with DR2 overexpression in the NAc shell of pVTA-lesioned rats. In addition, cocaine, which is known to increase dopamine release, induced behavioral sensitization in sham group but not in dopamine deprived group. Thus, the later result highlighted the importance of pVTA-NAc dopaminergic pathway in positive reinforcements. Altogether these data suggested that the implication of the dopamine replacement therapy in the appearance of dopamine dysregulation syndrome in Parkinson's disease is probably due to both neuronal degeneration in the posterior VTA and

  1. Valproate Inhibits Methamphetamine Induced Hyperactivity via Glycogen Synthase Kinase 3β Signaling in the Nucleus Accumbens Core.

    PubMed

    Xing, Bo; Liang, Xiao-Ping; Liu, Peng; Zhao, Yan; Chu, Zheng; Dang, Yong-Hui

    2015-01-01

    Valproate (VPA) has recently been shown to influence the behavioral effects of psycho-stimulants. Although glycogen synthase kinase 3β (GSK3β) signaling in the nucleus accumbens (NAc) plays a key role in mediating dopamine (DA)-dependent behaviors, there is less direct evidence that how VPA acts on the GSK3β signaling in the functionally distinct sub-regions of the NAc, the NAc core (NAcC) and the NAc shell (NAcSh), during psycho-stimulant-induced hyperactivity. In the present study, we applied locomotion test after acute methamphetamine (MA) (2 mg/kg) injection to identify the locomotor activity of rats received repeated VPA (300 mg/kg) pretreatment. We next measured phosphor-GSK3β at serine 9 and total GSK3β levels in NAcC and NAcSh respectively to determine the relationship between the effect of VPA on MA-induced hyperlocomotor and changes in GSK3β activity. We further investigated whether microinjection of VPA (300 μg/0.5 μl/side, once daily for 7 consecutive days) into NAcC or NAcSh could affect hyperactivity induced by MA. Our data indicated that repeated VPA treatment attenuated MA-induced hyperlocomotor, and the effect was associated with decreased levels of phosphorylated GSK3β at Ser 9 in the NAcC. Moreover, repeated bilateral intra-NAcC, but not intra-NAcSh VPA treatment, significantly attenuated MA-induced hyperactivity. Our results suggested that GSK3β activity in NAcC contributes to the inhibitory effects of VPA on MA-induced hyperactivity.

  2. Lack of effect of nucleus accumbens dopamine D1 receptor blockade on consumption during the first two days of operant self-administration of sweetened ethanol in adult Long-Evans rats

    PubMed Central

    Doherty, James M.; Gonzales, Rueben A.

    2014-01-01

    The mechanisms underlying ethanol self-administration are not fully understood; however, it is clear that ethanol self-administration stimulates nucleus accumbens dopamine release in well trained animals. During operant sweetened ethanol self-administration behavior, an adaptation in the nucleus accumbens dopamine system occurs between the first and second exposure paralleling a dramatic increase in sweetened ethanol intake, which suggests a single exposure to sweetened ethanol may be sufficient to learn the association between sweetened ethanol cues and its reinforcing properties. In the present experiment, we test the effects of blockade of nucleus accumbens dopamine D1 receptors on operant sweetened ethanol self-administration behavior during the first two days of exposure. Adult male Long-Evans rats were first trained to self-administer 10% sucrose (10S) across six days in an appetitive and consummatory operant model (appetitive interval: 10 min pre-drinking wait period and a lever response requirement of 4; consummatory interval: 20 min access to the drinking solution). After training on 10S, the drinking solution was switched to 10% sucrose plus 10% ethanol (10S10E); control rats remained drinking 10S throughout the experiment. Bilateral nucleus accumbens microinjections of the dopamine D1 antagonist, SCH-23390 (0, 1.0, or 3.0 μg/side), immediately preceded the first two sessions of drinking 10S10E. Results show that blocking nucleus accumbens dopamine D1 receptors has little or no influence on consumption during the first two days of exposure to the sweetened ethanol solution or maintenance of sucrose only drinking. Furthermore, the high dose of SCH-23390, 3.0 μg/side, reduced open field locomotor activity. In conclusion, we found no evidence to suggest that nucleus accumbens D1 receptor activation is involved in consumption of a sweetened ethanol solution during the first two days of exposure or maintenance of sucrose drinking, but rather D1 receptors

  3. Lack of effect of nucleus accumbens dopamine D1 receptor blockade on consumption during the first two days of operant self-administration of sweetened ethanol in adult Long-Evans rats.

    PubMed

    Doherty, James M; Gonzales, Rueben A

    2015-09-01

    The mechanisms underlying ethanol self-administration are not fully understood; however, it is clear that ethanol self-administration stimulates nucleus accumbens dopamine release in well-trained animals. During operant sweetened ethanol self-administration behavior, an adaptation in the nucleus accumbens dopamine system occurs between the first and second exposure, paralleling a dramatic increase in sweetened ethanol intake, which suggests a single exposure to sweetened ethanol may be sufficient to learn the association between sweetened ethanol cues and its reinforcing properties. In the present experiment, we test the effects of blockade of nucleus accumbens dopamine D1 receptors on operant sweetened ethanol self-administration behavior during the first 2 days of exposure. Adult male Long-Evans rats were first trained to self-administer 10% sucrose (10S) across 6 days in an appetitive and consummatory operant model (appetitive interval: 10-min pre-drinking wait period and a lever response requirement of 4; consummatory interval: 20-min access to the drinking solution). After training on 10S, the drinking solution was switched to 10% sucrose plus 10% ethanol (10S10E); control rats continued drinking 10S throughout the experiment. Bilateral nucleus accumbens microinjections of the dopamine D1 antagonist, SCH-23390 (0, 1.0, or 3.0 μg/side), immediately preceded the first two sessions of drinking 10S10E. Results show that blocking nucleus accumbens dopamine D1 receptors has little or no influence on consumption during the first 2 days of exposure to the sweetened ethanol solution or maintenance of sucrose-only drinking. Furthermore, the high dose of SCH-23390, 3.0 μg/side, reduced open-field locomotor activity. In conclusion, we found no evidence to suggest that nucleus accumbens D1 receptor activation is involved in consumption of a sweetened ethanol solution during the first 2 days of exposure or maintenance of sucrose drinking, but rather D1 receptors seem

  4. Glycogen synthase kinase 3β in the nucleus accumbens core is critical for methamphetamine-induced behavioral sensitization.

    PubMed

    Xu, Chun-Mei; Wang, Jun; Wu, Ping; Xue, Yan-Xue; Zhu, Wei-Li; Li, Qian-Qian; Zhai, Hai-Feng; Shi, Jie; Lu, Lin

    2011-07-01

    As a ubiquitous serine/threonine protein kinase, glycogen synthase kinase 3β (GSK-3β) has been considered to be important in the synaptic plasticity that underlies dopamine-related behaviors and diseases. We recently found that GSK-3β activity in the nucleus accumbens (NAc) core is critically involved in cocaine-induced behavioral sensitization. The present study further explored the association between the changes in GSK-3β activity in the NAc and the chronic administration of methamphetamine. We also examined whether blocking GSK-3β activity in the NAc could alter the initiation and expression of methamphetamine (1 mg/kg, i.p.)-induced locomotor sensitization in rats using systemic administration of lithium chloride (LiCl, 100 mg/kg, i.p) and brain region-specific administration of the GSK-3β inhibitor SB216763 (1 ng/side). We found that GSK-3β activity increased in the NAc core, but not NAc shell, after chronic methamphetamine administration. The initiation and expression of methamphetamine-induced locomotor sensitization was attenuated by systemic administration of LiCl and direct infusion of SB216763 into the NAc core, but not NAc shell. These results indicate that GSK-3β activity in the NAc core mediates the initiation and expression of methamphetamine-induced locomotor sensitization, suggesting that GSK-3β may be a potential target for the treatment of psychostimulant addiction.

  5. δ-Opioid and Dopaminergic Processes in Accumbens Shell Modulate the Cholinergic Control of Predictive Learning and Choice

    PubMed Central

    Laurent, Vincent; Bertran-Gonzalez, Jesus; Chieng, Billy C.

    2014-01-01

    Decision-making depends on the ability to extract predictive information from the environment to guide future actions. Outcome-specific Pavlovian-instrumental transfer (PIT) provides an animal model of this process in which a stimulus predicting a particular outcome biases choice toward actions earning that outcome. Recent evidence suggests that cellular adaptations of δ-opioid receptors (DORs) on cholinergic interneurons (CINs) in the nucleus accumbens shell (NAc-S) are necessary for PIT. Here we found that modulation of DORs in CINs critically influences D1-receptor (D1R)-expressing projection neurons in the NAc-S to promote PIT. First, we assessed PIT-induced changes in signaling processes in dopamine D1- and D2-receptor-expressing neurons using drd2-eGFP mice, and found that PIT-related signaling was restricted to non-D2R-eGFP-expressing neurons, suggesting major involvement of D1R-neurons. Next we confirmed the role of D1Rs pharmacologically: the D1R antagonist SCH-23390, but not the D2R antagonist raclopride, infused into the NAc-S abolished PIT in rats, an effect that depended on DOR activity. Moreover, asymmetrical infusion of SCH-23390 and the DOR antagonist naltrindole into the NAc-S also abolished PIT. DOR agonists were found to sensitize the firing responses of CINs in brain slices prepared immediately after the PIT test. We confirmed the opioid-acetylcholinergic influence over D1R-neurons by selectively blocking muscarinic M4 receptors in the NAc-S, which tightly regulate the activity of D1Rs, a treatment that rescued the deficit in PIT induced by naltrindole. We describe a model of NAc-S function in which DORs modulate CINs to influence both D1R-neurons and stimulus-guided choice between goal-directed actions. PMID:24453326

  6. δ-opioid and dopaminergic processes in accumbens shell modulate the cholinergic control of predictive learning and choice.

    PubMed

    Laurent, Vincent; Bertran-Gonzalez, Jesus; Chieng, Billy C; Balleine, Bernard W

    2014-01-22

    Decision-making depends on the ability to extract predictive information from the environment to guide future actions. Outcome-specific Pavlovian-instrumental transfer (PIT) provides an animal model of this process in which a stimulus predicting a particular outcome biases choice toward actions earning that outcome. Recent evidence suggests that cellular adaptations of δ-opioid receptors (DORs) on cholinergic interneurons (CINs) in the nucleus accumbens shell (NAc-S) are necessary for PIT. Here we found that modulation of DORs in CINs critically influences D1-receptor (D1R)-expressing projection neurons in the NAc-S to promote PIT. First, we assessed PIT-induced changes in signaling processes in dopamine D1- and D2-receptor-expressing neurons using drd2-eGFP mice, and found that PIT-related signaling was restricted to non-D2R-eGFP-expressing neurons, suggesting major involvement of D1R-neurons. Next we confirmed the role of D1Rs pharmacologically: the D1R antagonist SCH-23390, but not the D2R antagonist raclopride, infused into the NAc-S abolished PIT in rats, an effect that depended on DOR activity. Moreover, asymmetrical infusion of SCH-23390 and the DOR antagonist naltrindole into the NAc-S also abolished PIT. DOR agonists were found to sensitize the firing responses of CINs in brain slices prepared immediately after the PIT test. We confirmed the opioid-acetylcholinergic influence over D1R-neurons by selectively blocking muscarinic M4 receptors in the NAc-S, which tightly regulate the activity of D1Rs, a treatment that rescued the deficit in PIT induced by naltrindole. We describe a model of NAc-S function in which DORs modulate CINs to influence both D1R-neurons and stimulus-guided choice between goal-directed actions.

  7. Nucleus accumbens dopamine and mu-opioid receptors modulate the reinstatement of food-seeking behavior by food-associated cues.

    PubMed

    Guy, Elizabeth G; Choi, Eugene; Pratt, Wayne E

    2011-06-01

    The high attrition rates for dietary interventions aimed at promoting a healthier body mass may be caused, at least in part, by constant exposure to environmental stimuli that are associated with palatable foods. In both humans and animals, conditioned stimuli (CSs) that signal reward availability reliably reinstate food- and drug-seeking behaviors. The nucleus accumbens (NAcc) is critically involved in the cue-evoked reinstatement of food-seeking, but the role of individual neurotransmitter systems within the NAcc remains to be determined. These experiments tested the effects of intra-accumbal pharmacological manipulations of dopamine (DA) D(1) and D(2) receptors, mu-opioid receptors, or serotonin (5-HT) receptors on cue-evoked relapse to food-seeking. Rats were trained to lever press for sucrose pellets and the concurrent presentation of a light-tone CS. Once training was complete, lever-pressing was extinguished in the absence of either sucrose or CS presentation. Once each rat had reached extinction criterion, they received two reinstatement sessions in which lever pressing was renewed by response-contingent presentation of the CS. Prior to each reinstatement test, rats received NAcc microinfusions of saline or the selective D(1) receptor antagonist SCH 23390, the D(2) receptor antagonist raclopride, the mu-opioid receptor agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO), or 5-HT hydrogen maleate. Compared to saline test days, intra-accumbens infusions of SCH 23390 (1 μg/0.5 μL), raclopride (1 μg/0.5 μL), or DAMGO (0.25 μg/0.5 μL) effectively blocked the cue-evoked reinstatement of food-seeking. In contrast, stimulation of serotonin (5-HT) receptors by 5-HT hydrogen maleate (5 μg/0.5 μL) had no effect on cue-induced reinstatement. These novel data support roles for NAcc DA D(1), D(2), and mu-opioid receptors in the cue-evoked reinstatement of food seeking.

  8. Fornix deep brain stimulation circuit effect is dependent on major excitatory transmission via the nucleus accumbens

    PubMed Central

    Ross, Erika K.; Kim, Joo Pyung; Settell, Megan L.; Han, Seong Rok; Blaha, Charles D.; Min, Hoon-Ki; Lee, Kendall H.

    2016-01-01

    Introduction Deep brain stimulation (DBS) is a circuit-based treatment shown to relieve symptoms from multiple neurologic and neuropsychiatric disorders. In order to treat the memory deficit associated with Alzheimer's disease (AD), several clinical trials have tested the efficacy of DBS near the fornix. Early results from these studies indicated that patients who received fornix DBS experienced an improvement in memory and quality of life, yet the mechanisms behind this effect remain controversial. It is known that transmission between the medial limbic and corticolimbic circuits plays an integral role in declarative memory, and dysfunction at the circuit level results in various forms of dementia, including AD. Here, we aimed to determine the potential underlying mechanism of fornix DBS by examining the functional circuitry and brain structures engaged by fornix DBS. Methods A multimodal approach was employed to examine global and local temporal changes that occur in an anesthetized swine model of fornix DBS. Changes in global functional activity were measured by functional MRI (fMRI), and local neurochemical changes were monitored by fast scan cyclic voltammetry (FSCV) during electrical stimulation of the fornix. Additionally, intracranial microinfusions into the nucleus accumbens (NAc) were performed to investigate the global activity changes that occur with dopamine and glutamate receptor-specific antagonism. Results Hemodynamic responses in both medial limbic and corticolimbic circuits measured by fMRI were induced by fornix DBS. Additionally, fornix DBS resulted in increases in dopamine oxidation current (corresponding to dopamine efflux) monitored by FSCV in the NAc. Finally, fornix DBS-evoked hemodynamic responses in the amygdala and hippocampus decreased following dopamine and glutamate receptor antagonism in the NAc. Conclusions The present findings suggest that fornix DBS modulates dopamine release on presynaptic dopaminergic terminals in the NAc

  9. Dissociable control of impulsivity in rats by dopamine d2/3 receptors in the core and shell subregions of the nucleus accumbens.

    PubMed

    Besson, Morgane; Belin, David; McNamara, Ruth; Theobald, David Eh; Castel, Aude; Beckett, Victoria L; Crittenden, Ben M; Newman, Amy H; Everitt, Barry J; Robbins, Trevor W; Dalley, Jeffrey W

    2010-01-01

    Previous research has identified the nucleus accumbens (NAcb) as an important brain region underlying inter-individual variation in impulsive behavior. Such variation has been linked to decreased dopamine (DA) D2/3 receptor availability in the ventral striatum of rats exhibiting spontaneously high levels of impulsivity on a 5-choice serial reaction time (5-CSRT) test of sustained visual attention. This study investigated the involvement of DA D2/3 receptors in the NAcb core (NAcbC) and the NAcb shell (NAcbS) in impulsivity. We investigated the effects of a DA D2/3 receptor antagonist (nafadotride) and a DA D2/3 partial agonist (aripiprazole) infused directly into either the NAcbC or NAcbS of rats selected for high (HI) and low (LI) impulsivity on the 5-CSRT task. Nafadotride increased significantly the level of impulsivity when infused into the NAcbS, but decreased impulsivity when infused into the NAcbC of HI rats. By contrast, intra-NAcb microinfusions of aripiprazole did not affect impulsivity. Systemic administration of nafadotride had no effect on impulsive behavior but increased the number of omissions and correct response latencies, whereas systemic injections of aripiprazole decreased impulsive and perseverative behavior, and increased the number of omissions and correct response latencies. These findings indicate an opponent modulation of impulsive behavior by DA D2/3 receptors in the NAcbS and NAcbC. Such divergent roles may have relevance for the etiology and treatment of clinical disorders of behavioral control, including attention-deficit hyperactivity disorder and drug addiction.

  10. Nicotinic activation of mesolimbic neurons assessed by rubidium efflux in rat accumbens and ventral tegmentum.

    PubMed

    Rowell, Peter P; Volk, Kelly A

    2004-01-01

    Dopaminergic mesolimbic neurons, with cell bodies in the ventral tegmental area (VTA) projecting to the nucleus accumbens (NAc), have been shown to be involved in the development of drug dependence. The application of nicotine to either the VTA or NAc produces an increase in dopamine release; however, the positive reinforcement produced by the systemic injection of nicotine is primarily due to stimulation of nicotinic acetylcholine receptors (nAChRs) in the VTA. Because the brain levels of nicotine would likely be the same in both brain areas, the nAChRs in the NAc may be less sensitive than those in the VTA. This study was undertaken to make a direct comparison of the native nAChRs in intact slices of NAc and VTA by measuring nicotine-stimulated efflux of (86)Rb(+) in a superfusion assay. The potency of nicotine and several other agonists was similar in both brain areas, but nicotine was somewhat more efficacious in the NAc. The effects of treatment duration, calcium and nicotinic antagonists were also determined. The results suggest that the predominant effect of nicotine in the VTA following systemic administration is due to differences in neuronal circuitry or firing patterns rather than inherent differences in the two nAChR populations.

  11. Activity of D1/2 Receptor Expressing Neurons in the Nucleus Accumbens Regulates Running, Locomotion, and Food Intake

    PubMed Central

    Zhu, Xianglong; Ottenheimer, David; DiLeone, Ralph J.

    2016-01-01

    While weight gain is clearly promoted by excessive energy intake and reduced expenditure, the underlying neural mechanisms of energy balance remain unclear. The nucleus accumbens (NAc) is one brain region that has received attention for its role in the regulation of energy balance; its D1 and D2 receptor containing neurons have distinct functions in regulating reward behavior and require further examination. The goal of the present study is to investigate how activation and inhibition of D1 and D2 neurons in the NAc influences behaviors related to energy intake and expenditure. Specific manipulation of D1 vs. D2 neurons was done in both low expenditure and high expenditure (wheel running) conditions to assess behavioral effects in these different states. Direct control of neural activity was achieved using a designer receptors exclusively activated by designer drugs (DREADD) strategy. Activation of NAc D1 neurons increased food intake, wheel running and locomotor activity. In contrast, activation of D2 neurons in the NAc reduced running and locomotion while D2 neuron inhibition had opposite effects. These results highlight the importance of considering both intake and expenditure in the analysis of D1 and D2 neuronal manipulations. Moreover, the behavioral outcomes from NAc D1 neuronal manipulations depend upon the activity state of the animals (wheel running vs. non-running). The data support and complement the hypothesis of specific NAc dopamine pathways facilitating energy expenditure and suggest a potential strategy for human weight control. PMID:27147989

  12. Food restriction increases NMDA receptor-mediated calcium-calmodulin kinase II and NMDA receptor/extracellular signal-regulated kinase 1/2-mediated cyclic amp response element-binding protein phosphorylation in nucleus accumbens upon D-1 dopamine receptor stimulation in rats.

    PubMed

    Haberny, S L; Carr, K D

    2005-01-01

    Biological drive states exert homeostatic control in part by increasing the reinforcing effects of environmental incentive stimuli. An apparent by-product of this adaptive response is the enhanced acquisition of drug self-administration behavior in food-restricted (FR) animals. While previous research has demonstrated increased central sensitivity to rewarding effects of abused drugs and direct dopamine (DA) receptor agonists in FR subjects, the underlying neurobiology is not well understood. Recently, it was demonstrated that intracerebroventricular (i.c.v.) injection of the D-1 DA receptor agonist, SKF-82958 produces a stronger activation of striatal extracellular signal-regulated kinase (ERK) 1/2 and cyclic AMP response element-binding protein (CREB) in FR relative to ad libitum (AL) fed rats. The main purpose of the present study was to characterize the involvement and mechanisms of interaction between NMDA receptor function and the augmented cellular responses to D-1 DA receptor stimulation in nucleus accumbens (NAc) of FR rats. In experiment 1, Western immunoblotting was used to demonstrate that i.c.v. injection of SKF-82958 (20 microg) produces greater phosphorylation of the NMDA NR1 subunit and calcium-calmodulin kinase II (CaMK II) in NAc of FR as compared with AL rats. In experiment 2, pretreatment of subjects with the NMDA antagonist, MK-801 (1.0 mg/kg, i.p.) decreased SKF-82958-induced activation of CaMK II, ERK1/2 and CREB, and reversed the augmenting effect of FR on activation of all three proteins. In experiment 3, pretreatment with the mitogen-activated protein kinase/ERK kinase inhibitor SL-327 (60 mg/kg, i.p.) suppressed SKF-82958- induced activation of ERK1/2 and reversed the augmenting effect of FR on CREB activation. These results point to specific neuroadaptations in the NAc of FR rats whereby D-1 DA receptor stimulation leads to increased NMDA NR1 subunit phosphorylation and consequent increases in NMDA receptor-dependent CaMK II and ERK1

  13. Role of nucleus accumbens glutamatergic plasticity in drug addiction.

    PubMed

    Quintero, Gabriel C

    2013-01-01

    Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR). These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance's effects, disregard of basic aspects of life (for example, family), and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc) is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC) to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors at the level of the NAc. Also, cocaine self-administration and withdrawal induce the formation of subunit glutamate receptor 2 (GluA2), lacking the Ca(2+)-permeable AMPA receptors (CP-AMPARs) at the level of the NAc

  14. Role of nucleus accumbens glutamatergic plasticity in drug addiction

    PubMed Central

    Quintero, Gabriel C

    2013-01-01

    Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR). These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance’s effects, disregard of basic aspects of life (for example, family), and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc) is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC) to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors at the level of the NAc. Also, cocaine self-administration and withdrawal induce the formation of subunit glutamate receptor 2 (GluA2), lacking the Ca2+-permeable AMPA receptors (CP-AMPARs) at the level of the NAc

  15. Expression of 5-HT2A receptors in prefrontal cortex pyramidal neurons projecting to nucleus accumbens. Potential relevance for atypical antipsychotic action.

    PubMed

    Mocci, Giuseppe; Jiménez-Sánchez, Laura; Adell, Albert; Cortés, Roser; Artigas, Francesc

    2014-04-01

    The prefrontal cortex (PFC) is involved in higher brain functions altered in schizophrenia. Classical antipsychotic drugs modulate information processing in cortico-limbic circuits via dopamine D2 receptor blockade in nucleus accumbens (NAc) whereas atypical antipsychotic drugs preferentially target cortical serotonin (5-HT) receptors. The brain networks involved in the therapeutic action of atypical drugs are not fully understood. Previous work indicated that medial PFC (mPFC) pyramidal neurons projecting to ventral tegmental area express 5-HT2A receptors suggesting that atypical antipsychotic drugs modulate dopaminergic activity distally, via 5-HT2A receptor (5-HT2A-R) blockade in PFC. Since the mPFC also projects heavily to NAc, we examined whether NAc-projecting pyramidal neurons also express 5-HT2A-R. Using a combination of retrograde tracing experiments and in situ hybridization we report that a substantial proportion of mPFC-NAc pyramidal neurons in rat brain express 5-HT2A-R mRNA in a layer- and area-specific manner (up to 68% in layer V of contralateral cingulate). The functional relevance of 5-HT2A-R to modulate mPFC-NAc projections was examined in dual-probe microdialysis experiments. The application of the preferential 5-HT2A-R agonist DOI into mPFC enhanced glutamate release locally (+66 ± 18%) and in NAc (+74 ± 12%) indicating that cortical 5-HT2A-R activation augments glutamatergic transmission in NAc. Since NAc integrates glutamatergic and dopaminergic inputs, blockade of 5-HT2A-R by atypical drugs may reduce cortical excitatory inputs onto GABAergic neurons of NAc, adding to dopamine D2 receptor blockade. Together with previous observations, the present results suggest that atypical antipsychotic drugs may control the activity of the mesolimbic pathway at cell body and terminal level.

  16. Nicotine and ethanol activate protein kinase A synergistically via G(i) betagamma subunits in nucleus accumbens/ventral tegmental cocultures: the role of dopamine D(1)/D(2) and adenosine A(2A) receptors.

    PubMed

    Inoue, Yuichiro; Yao, Lina; Hopf, F Woodward; Fan, Peidong; Jiang, Zhan; Bonci, Antonello; Diamond, Ivan

    2007-07-01

    Tobacco and alcohol are the most commonly used drugs of abuse and show the most serious comorbidity. The mesolimbic dopamine system contributes significantly to nicotine and ethanol reinforcement, but the underlying cellular signaling mechanisms are poorly understood. Nicotinic acetylcholine (nACh) receptors are highly expressed on ventral tegmental area (VTA) dopamine neurons, with relatively low expression in nucleus accumbens (NAcb) neurons. Because dopamine receptors D(1) and D(2) are highly expressed on NAcb neurons, nicotine could influence NAcb neurons indirectly by activating VTA neurons to release dopamine in the NAcb. To investigate this possibility in vitro, we established primary cultures containing neurons from VTA or NAcb separately or in cocultures. Nicotine increased cAMP response element-mediated gene expression only in cocultures; this increase was blocked by nACh or dopamine D(1) or D(2) receptor antagonists. Furthermore, subthreshold concentrations of nicotine with ethanol increased gene expression in cocultures, and this increase was blocked by nACh, D(2) or adenosine A(2A) receptor antagonists, Gbetagamma or protein kinase A (PKA) inhibitors, and adenosine deaminase. These results suggest that nicotine activated VTA neurons, causing the release of dopamine, which in turn stimulated both D(1) and D(2) receptors on NAcb neurons. In addition, subthreshold concentrations of nicotine and ethanol in combination also activated NAcb neurons through synergy between D(2) and A(2A) receptors. These data provide a novel cellular mechanism, involving Gbetagamma subunits, A(2A) receptors, and PKA, whereby combined use of tobacco and alcohol could enhance the reinforcing effect in humans as well as facilitate long-term neuroadaptations, increasing the risk for developing coaddiction.

  17. Sex differences in effects of dopamine D1 receptors on social withdrawal

    PubMed Central

    Campi, Katharine L.; Greenberg, Gian D.; Kapoor, Amita; Ziegler, Toni E.; Trainor, Brian C.

    2013-01-01

    Dopamine signaling in the nucleus accumbens (NAc) plays a critical role in the regulation of motivational states. Recent studies in male rodents show that social defeat stress increases the activity of ventral tegmental dopamine neurons projecting to the NAc, and that this increased activity is necessary for stress-induced social withdrawal. Domestic female mice are not similarly aggressive, which has hindered complementary studies in females. Using the monogamous California mouse (Peromyscus californicus), we found that social defeat increased total dopamine, DOPAC, and HVA content in the NAc in both males and females. These results are generally consistent with previous studies in Mus, and suggest defeat stress also increases NAc dopamine signaling in females. However, these results do not explain our previous observations that defeat stress induces social withdrawal in female but not male California mice. Pharmacological manipulations provided more insights. When 500 ng of the D1 agonist SKF38393 was infused in the NAc shell of females that were naïve to defeat, social interaction behavior was reduced. This same dose of SKF38393 had no effect in males, suggesting that D1 receptor activation is sufficient to induce social withdrawal in females but not males. Intra-accumbens infusion of the D1 antagonist SCH23390 increased social approach behavior in females exposed to defeat but not in females naïve to defeat. This result suggests that D1 receptors are necessary for defeat-induced social withdrawal. Overall, our results suggest that sex differences in molecular pathways that are regulated by D1 receptors contribute to sex differences in social withdrawal behavior. PMID:24120838

  18. SIRT1 Mediates Depression-Like Behaviors in the Nucleus Accumbens

    PubMed Central

    Kim, Hee-Dae; Hesterman, Jennifer; Call, Tanessa; Magazu, Samantha; Keeley, Elizabeth; Armenta, Kristyna; Kronman, Hope; Neve, Rachael L.; Nestler, Eric J.

    2016-01-01

    Depression is a recurring and life-threatening illness that affects up to 120 million people worldwide. In the present study, we show that chronic social defeat stress, an ethologically validated model of depression in mice, increases SIRT1 levels in the nucleus accumbens (NAc), a key brain reward region. Increases in SIRT1, a well characterized class III histone deacetylase, after chronic social defeat suggest a role for this enzyme in mediating depression-like behaviors. When resveratrol, a pharmacological activator of SIRT1, was directly infused bilaterally into the NAc, we observed an increase in depression- and anxiety-like behaviors. Conversely, intra-NAc infusions of EX-527, a SIRT1 antagonist, reduced these behaviors; EX-527 also reduced acute stress responses in stress-naive mice. Next, we increased SIRT1 levels directly in NAc by use of viral-mediated gene transfer and observed an increase in depressive- and anxiety-like behaviors when mice were assessed in the open-field, elevated-plus-maze, and forced swim tests. Using a Cre-inducible viral vector system to overexpress SIRT1 selectively in dopamine D1 or D2 subpopulations of medium spiny neurons (MSNs) in the NAc, we found that SIRT1 promotes depressive-like behaviors only when overexpressed in D1 MSNs, with no effect seen in D2 MSNs. Conversely, selective ablation of SIRT1 in the NAc using viral-Cre in floxed Sirt1 mice resulted in decreased depression- and anxiety-like behaviors. Together, these results demonstrate that SIRT1 plays an essential role in the NAc in regulating mood-related behavioral abnormalities and identifies a novel signaling pathway for the development of innovative antidepressants to treat major depressive disorders. SIGNIFICANCE STATEMENT In this study, we demonstrate a pivotal role for SIRT1 in anxiety- and depression-like behaviors in the nucleus accumbens (NAc), a key brain reward region. We show that stress stably induces SIRT1 expression in this brain region and that altering

  19. Nucleus accumbens neuronal maturation differences in young rats bred for low versus high voluntary running behaviour

    PubMed Central

    Roberts, Michael D; Toedebusch, Ryan G; Wells, Kevin D; Company, Joseph M; Brown, Jacob D; Cruthirds, Clayton L; Heese, Alexander J; Zhu, Conan; Rottinghaus, George E; Childs, Thomas E; Booth, Frank W

    2014-01-01

    We compared the nucleus accumbens (NAc) transcriptomes of generation 8 (G8), 34-day-old rats selectively bred for low (LVR) versus high voluntary running (HVR) behaviours in rats that never ran (LVRnon-run and HVRnon-run), as well as in rats after 6 days of voluntary wheel running (LVRrun and HVRrun). In addition, the NAc transcriptome of wild-type Wistar rats was compared. The purpose of this transcriptomics approach was to generate testable hypotheses as to possible NAc features that may be contributing to running motivation differences between lines. Ingenuity Pathway Analysis and Gene Ontology analyses suggested that ‘cell cycle’-related transcripts and the running-induced plasticity of dopamine-related transcripts were lower in LVR versus HVR rats. From these data, a hypothesis was generated that LVR rats might have less NAc neuron maturation than HVR rats. Follow-up immunohistochemistry in G9–10 LVRnon-run rats suggested that the LVR line inherently possessed fewer mature medium spiny (Darpp-32-positive) neurons (P < 0.001) and fewer immature (Dcx-positive) neurons (P < 0.001) than their G9–10 HVR counterparts. However, voluntary running wheel access in our G9–10 LVRs uniquely increased their Darpp-32-positive and Dcx-positive neuron densities. In summary, NAc cellularity differences and/or the lack of running-induced plasticity in dopamine signalling-related transcripts may contribute to low voluntary running motivation in LVR rats. PMID:24665095

  20. Gustatory Reward and the Nucleus Accumbens

    PubMed Central

    Norgren, R.; Hajnal, A.; Mungarndee, S.S.

    2011-01-01

    The concept of reward is central to psychology, but remains a cipher for neuroscience. Considerable evidence implicates dopamine in the process of reward and much of the data derives from the nucleus accumbens. Gustatory stimuli are widely used for animal studies of reward, but the connections between the taste and reward systems are unknown. In a series of experiments, our laboratory has addressed this issue using functional neurochemistry and neuroanatomy. First, using microdialysis probes, we demonstrated that sapid sucrose releases dopamine in the nucleus accumbens. The effect is dependent on oral stimulation and concentration. We subsequently determined that this response was independent of the thalamocortical gustatory system, but substantially blunted by damage to the parabrachial limbic taste projection. Further experiments using c-fos histochemistry confirmed that the limbic pathway was the prime carrier for the gustatory afferent activity that drives accumbens dopamine release. PMID:16822531

  1. Hedonic and Nucleus Accumbens Neural Responses to a Natural Reward Are Regulated by Aversive Conditioning

    ERIC Educational Resources Information Center

    Roitman, Mitchell F.; Wheeler, Robert A.; Tiesinga, Paul H. E.; Roitman, Jamie D.; Carelli, Regina M.

    2010-01-01

    The nucleus accumbens (NAc) plays a role in hedonic reactivity to taste stimuli. Learning can alter the hedonic valence of a given stimulus, and it remains unclear how the NAc encodes this shift. The present study examined whether the population response of NAc neurons to a taste stimulus is plastic using a conditioned taste aversion (CTA)…

  2. Phenotype-dependent inhibition of glutamatergic transmission on nucleus accumbens medium spiny neurons by the abused inhalant toluene.

    PubMed

    Beckley, Jacob T; Randall, Patrick K; Smith, Rachel J; Hughes, Benjamin A; Kalivas, Peter W; Woodward, John J

    2016-05-01

    Abused inhalants are voluntarily inhaled at high concentrations to produce intoxicating effects. Results from animal studies show that the abused inhalant toluene triggers behaviors, such as self-administration and conditioned place preference, which are commonly associated with addictive drugs. However, little is known about how toluene affects neurons within the nucleus accumbens (NAc), a brain region within the basal ganglia that mediates goal-directed behaviors and is implicated in the development and maintenance of addictive behaviors. Here we report that toluene inhibits a component of the after-hyperpolarization potential, and dose-dependently inhibits N-methyl-D-aspartate (NMDA)-mediated currents in rat NAc medium spiny neurons (MSN). Moreover, using the multivariate statistical technique, partial least squares discriminative analysis to analyze electrophysiological measures from rat NAc MSNs, we show that toluene induces a persistent depression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-mediated currents in one subtype of NAc MSNs, and that the electrophysiological features of MSN neurons predicts their sensitivity to toluene. The CB1 receptor antagonist AM281 blocked the toluene-induced long-term depression of AMPA currents, indicating that this process is dependent on endocannabinoid signaling. The neuronal identity of recorded cells was examined using dual histochemistry and shows that toluene-sensitive NAc neurons are dopamine D2 MSNs that express preproenkephalin mRNA. Overall, the results from these studies indicate that physiological characteristics obtained from NAc MSNs during whole-cell patch-clamp recordings reliably predict neuronal phenotype, and that the abused inhalant toluene differentially depresses excitatory neurotransmission in NAc neuronal subtypes.

  3. Chronic loss of noradrenergic tone produces β-arrestin2-mediated cocaine hypersensitivity and alters cellular D2 responses in the nucleus accumbens.

    PubMed

    Gaval-Cruz, Meriem; Goertz, Richard B; Puttick, Daniel J; Bowles, Dawn E; Meyer, Rebecca C; Hall, Randy A; Ko, Daijin; Paladini, Carlos A; Weinshenker, David

    2016-01-01

    Cocaine blocks plasma membrane monoamine transporters and increases extracellular levels of dopamine (DA), norepinephrine (NE) and serotonin (5-HT). The addictive properties of cocaine are mediated primarily by DA, while NE and 5-HT play modulatory roles. Chronic inhibition of dopamine β-hydroxylase (DBH), which converts DA to NE, increases the aversive effects of cocaine and reduces cocaine use in humans, and produces behavioral hypersensitivity to cocaine and D2 agonism in rodents, but the underlying mechanism is unknown. We found a decrease in β-arrestin2 (βArr2) in the nucleus accumbens (NAc) following chronic genetic or pharmacological DBH inhibition, and overexpression of βArr2 in the NAc normalized cocaine-induced locomotion in DBH knockout (Dbh -/-) mice. The D2/3 agonist quinpirole decreased excitability in NAc medium spiny neurons (MSNs) from control, but not Dbh -/- animals, where instead there was a trend for an excitatory effect. The Gαi inhibitor NF023 abolished the quinpirole-induced decrease in excitability in control MSNs, but had no effect in Dbh -/- MSNs, whereas the Gαs inhibitor NF449 restored the ability of quinpirole to decrease excitability in Dbh -/- MSNs, but had no effect in control MSNs. These results suggest that chronic loss of noradrenergic tone alters behavioral responses to cocaine via decreases in βArr2 and cellular responses to D2/D3 activation, potentially via changes in D2-like receptor G-protein coupling in NAc MSNs.

  4. Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis.

    PubMed

    Carlezon, William A; Thomas, Mark J

    2009-01-01

    The nucleus accumbens (NAc) is a critical element of the mesocorticolimbic system, a brain circuit implicated in reward and motivation. This basal forebrain structure receives dopamine (DA) input from the ventral tegmental area (VTA) and glutamate (GLU) input from regions including the prefrontal cortex (PFC), amygdala (AMG), and hippocampus (HIP). As such, it integrates inputs from limbic and cortical regions, linking motivation with action. The NAc has a well-established role in mediating the rewarding effects of drugs of abuse and natural rewards such as food and sexual behavior. However, accumulating pharmacological, molecular, and electrophysiological evidence has raised the possibility that it also plays an important (and sometimes underappreciated) role in mediating aversive states. Here we review evidence that rewarding and aversive states are encoded in the activity of NAc medium spiny GABAergic neurons, which account for the vast majority of the neurons in this region. While admittedly simple, this working hypothesis is testable using combinations of available and emerging technologies, including electrophysiology, genetic engineering, and functional brain imaging. A deeper understanding of the basic neurobiology of mood states will facilitate the development of well-tolerated medications that treat and prevent addiction and other conditions (e.g., mood disorders) associated with dysregulation of brain motivation systems.

  5. The effects of GABAA and NMDA receptors in the shell-accumbens on spatial memory of METH-treated rats.

    PubMed

    Heysieattalab, Soomaayeh; Naghdi, Nasser; Zarrindast, Mohammad-Reza; Haghparast, Abbas; Mehr, Shahram Ejtemaei; Khoshbouei, Habibeh

    2016-03-01

    Methamphetamine (METH) is a highly addictive and neurotoxic psychostimulant. Its use in humans is often associated with neurocognitive impairment and deficits in hippocampal plasticity. Striatal dopamine system is one of the main targets of METH. The dopamine neurons in the striatum directly or indirectly regulate the GABA and glutamatergic signaling in this region and thus their outputs. This is consistent with previous reports showing modification of neuronal activity in the striatum modulates the expression of hippocampal LTP and hippocampal-dependent memory tasks such as Morris water maze (MWM). Therefore, reversing or preventing METH-induced synaptic modifications via pharmacological manipulations of the shell-nucleus accumbens (shell-NAc) may introduce a viable therapeutic target to attenuate the METH-induced memory deficits. This study is designed to investigate the role of intra-shell NAc manipulation of GABAA and NMDA receptors and their interaction with METH on memory performance in MWM task. Pharmacological manipulations were performed in rats received METH or saline. We found systemic saline plus intra-shell NAc infusions of muscimol dose-dependently impaired performance, while bicuculline had no effect. Surprisingly, the intra-NAc infusions of 0.005μg/rat muscimol that has no effect on memory performance (ineffective dose) prevented METH-induced memory impairment. In the contrary, the intra-NAc infusions of bicuculline (0.2μg/rat) increased METH-induced memory impairment. However, pre-training intra-NAc infusions of D-AP5 dose-dependently impaired performance, while NMDA had no effect in rats received systemic saline (control group). The intra-NAc infusions with an ineffective dose of NMDA (0.1μg/rat) increased METH-induced memory impairment. Furthermore, intra-NAc infusions of D-AP5 with an ineffective dose (0.1μg/rat) prevented METH-induced memory impairment. Our result is consistent with the interpretation that METH-mediated learning deficit

  6. In vivo comparison of norepinephrine and dopamine release in rat brain by simultaneous measurements with fast-scan cyclic voltammetry.

    PubMed

    Park, Jinwoo; Takmakov, Pavel; Wightman, R Mark

    2011-12-01

    Brain norepinephrine and dopamine regulate a variety of critical behaviors such as stress, learning, memory, and drug addiction. In this study, we demonstrate differences in the regulation of in vivo neurotransmission for dopamine in the anterior nucleus accumbens (NAc) and norepinephrine in the ventral bed nucleus of the stria terminalis (vBNST) of the anesthetized rat. Release of the two catecholamines was measured simultaneously using fast-scan cyclic voltammetry at two different carbon-fiber microelectrodes, each implanted in the brain region of interest. Simultaneous dopamine and norepinephrine release was evoked by electrical stimulation of a region where the ventral noradrenergic bundle, the pathway of noradrenergic neurons, courses through the ventral tegmental area/substantia nigra, the origin of dopaminergic cell bodies. The release and uptake of norepinephrine in the vBNST were both significantly slower than for dopamine in the NAc. Pharmacological manipulations in the same animal demonstrated that the two catecholamines are differently regulated. The combination of a dopamine autoreceptor antagonist and amphetamine significantly increased basal extracellular dopamine whereas a norepinephrine autoreceptor antagonist and amphetamine did not change basal norepinephrine concentration. α-Methyl-p-tyrosine, a tyrosine hydroxylase inhibitor, decreased electrically evoked dopamine release faster than norepinephrine. The dual-microelectrode fast-scan cyclic voltammetry technique along with anatomical and pharmacological evidence confirms that dopamine in the NAc and norepinephrine in the vBNST can be monitored selectively and simultaneously in the same animal. The high temporal and spatial resolution of the technique enabled us to examine differences in the dynamics of extracellular norepinephrine and dopamine concurrently in two different limbic structures.

  7. Overexpression of Shati/Nat8l, an N-acetyltransferase, in the nucleus accumbens attenuates the response to methamphetamine via activation of group II mGluRs in mice.

    PubMed

    Miyamoto, Yoshiaki; Ishikawa, Yudai; Iegaki, Noriyuki; Sumi, Kazuyuki; Fu, Kequan; Sato, Keiji; Furukawa-Hibi, Yoko; Muramatsu, Shin-Ichi; Nabeshima, Toshitaka; Uno, Kyosuke; Nitta, Atsumi

    2014-08-01

    A novel N-acetyltransferase, Shati/Nat8l, was identified in the nucleus accumbens (NAc) of mice with methamphetamine (METH) treatment. Previously we reported that suppression of Shati/Nat8l enhanced METH-induced behavioral alterations via dopaminergic neuronal regulation. However, the physiological mechanisms of Shati/Nat8l on the dopaminergic system in the brain are unclear. In this study, we injected adeno-associated virus (AAV) vector containing Shati/Nat8l into the NAc or dorsal striatum (dS) of mice, to increase Shati/Nat8l expression. Overexpression of Shati/Nat8l in the NAc, but not in the dS, attenuated METH-induced hyperlocomotion, locomotor sensitization, and conditioned place preference in mice. Moreover, the Shati/Nat8l overexpression in the NAc attenuated the elevation of extracellular dopamine levels induced by METH in in vivo microdialysis experiments. These behavioral and neurochemical alterations due to Shati/Nat8l overexpression in the NAc were inhibited by treatment with selective group II metabotropic glutamate receptor type 2 and 3 (mGluR2/3) antagonist LY341495. In the AAV vector-injected NAc, the tissue contents of both N-acetylaspartate and N-acetylaspartylglutamate (NAAG), endogenous mGluR3 agonist, were elevated. The injection of peptidase inhibitor of NAAG or the perfusion of NAAG itself reduced the basal levels of extracellular dopamine in the NAc of naive mice. These results indicate that Shati/Nat8l in the NAc, but not in the dS, plays an important suppressive role in the behavioral responses to METH by controlling the dopaminergic system via activation of group II mGluRs.

  8. Prolonged Consumption of Sucrose in a Binge-Like Manner, Alters the Morphology of Medium Spiny Neurons in the Nucleus Accumbens Shell

    PubMed Central

    Klenowski, Paul M.; Shariff, Masroor R.; Belmer, Arnauld; Fogarty, Matthew J.; Mu, Erica W. H.; Bellingham, Mark C.; Bartlett, Selena E.

    2016-01-01

    The modern diet has become highly sweetened, resulting in unprecedented levels of sugar consumption, particularly among adolescents. While chronic long-term sugar intake is known to contribute to the development of metabolic disorders including obesity and type II diabetes, little is known regarding the direct consequences of long-term, binge-like sugar consumption on the brain. Because sugar can cause the release of dopamine in the nucleus accumbens (NAc) similarly to drugs of abuse, we investigated changes in the morphology of neurons in this brain region following short- (4 weeks) and long-term (12 weeks) binge-like sucrose consumption using an intermittent two-bottle choice paradigm. We used Golgi-Cox staining to impregnate medium spiny neurons (MSNs) from the NAc core and shell of short- and long-term sucrose consuming rats and compared these to age-matched water controls. We show that prolonged binge-like sucrose consumption significantly decreased the total dendritic length of NAc shell MSNs compared to age-matched control rats. We also found that the restructuring of these neurons resulted primarily from reduced distal dendritic complexity. Conversely, we observed increased spine densities at the distal branch orders of NAc shell MSNs from long-term sucrose consuming rats. Combined, these results highlight the neuronal effects of prolonged binge-like intake of sucrose on NAc shell MSN morphology. PMID:27047355

  9. Addiction: Beyond dopamine reward circuitry

    SciTech Connect

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.; Telang, F.

    2011-09-13

    Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction is much less clear. This review focuses on studies that used PET to characterize the brain DA system in addicted subjects. These studies have corroborated in humans the relevance of drug-induced fast DA increases in striatum [including nucleus accumbens (NAc)] in their rewarding effects but have unexpectedly shown that in addicted subjects, drug-induced DA increases (as well as their subjective reinforcing effects) are markedly blunted compared with controls. In contrast, addicted subjects show significant DA increases in striatum in response to drug-conditioned cues that are associated with self-reports of drug craving and appear to be of a greater magnitude than the DA responses to the drug. We postulate that the discrepancy between the expectation for the drug effects (conditioned responses) and the blunted pharmacological effects maintains drug taking in an attempt to achieve the expected reward. Also, whether tested during early or protracted withdrawal, addicted subjects show lower levels of D2 receptors in striatum (including NAc), which are associated with decreases in baseline activity in frontal brain regions implicated in salience attribution (orbitofrontal cortex) and inhibitory control (anterior cingulate gyrus), whose disruption results in compulsivity and impulsivity. These results point to an imbalance between dopaminergic circuits that underlie reward and conditioning and those that underlie executive function (emotional control and decision making), which we postulate contributes to the compulsive drug use and loss of control in addiction.

  10. D(1)-like receptors in the nucleus accumbens shell regulate the expression of contextual fear conditioning and activity of the anterior cingulate cortex in rats.

    PubMed

    Albrechet-Souza, Lucas; Carvalho, Milene Cristina; Brandão, Marcus Lira

    2013-06-01

    Although dopamine-related circuits are best known for their roles in appetitive motivation, consistent data have implicated this catecholamine in some forms of response to stressful situations. In fact, projection areas of the ventral tegmental area, such as the amygdala and hippocampus, are well established to be involved in the acquisition and expression of fear conditioning, while less is known about the role of the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) in these processes. In the present study, we initially investigated the involvement of the mPFC and NAc in the expression of conditioned fear, assessing freezing behaviour and Fos protein expression in the brains of rats exposed to a context, light or tone previously paired with footshocks. Contextual and cued stimuli were able to increase the time of the freezing response while only the contextual fear promoted a significant increase in Fos protein expression in the mPFC and caudal NAc. We then examined the effects of specific dopaminergic agonists and antagonists injected bilaterally into the posterior medioventral shell subregion of the NAc (NAcSh) on the expression of contextual fear. SKF38393, quinpirole and sulpiride induced no behavioural changes, but the D1-like receptor antagonist SCH23390 increased the freezing response of the rats and selectively reduced Fos protein expression in the anterior cingulate cortex and rostral NAcSh. These findings confirm the involvement of the NAcSh in the expression of contextual fear memories and indicate the selective role of NAcSh D1-like receptors and anterior cingulate cortex in this process.

  11. Reversal of morphine-induced cell-type–specific synaptic plasticity in the nucleus accumbens shell blocks reinstatement

    PubMed Central

    Hearing, Matthew C.; Jedynak, Jakub; Ebner, Stephanie R.; Ingebretson, Anna; Asp, Anders J.; Fischer, Rachel A.; Schmidt, Clare; Larson, Erin B.; Thomas, Mark John

    2016-01-01

    Drug-evoked plasticity at excitatory synapses on medium spiny neurons (MSNs) of the nucleus accumbens (NAc) drives behavioral adaptations in addiction. MSNs expressing dopamine D1 (D1R-MSN) vs. D2 receptors (D2R-MSN) can exert antagonistic effects in drug-related behaviors, and display distinct alterations in glutamate signaling following repeated exposure to psychostimulants; however, little is known of cell-type–specific plasticity induced by opiates. Here, we find that repeated morphine potentiates excitatory transmission and increases GluA2-lacking AMPA receptor expression in D1R-MSNs, while reducing signaling in D2-MSNs following 10–14 d of forced abstinence. In vivo reversal of this pathophysiology with optogenetic stimulation of infralimbic cortex-accumbens shell (ILC-NAc shell) inputs or treatment with the antibiotic, ceftriaxone, blocked reinstatement of morphine-evoked conditioned place preference. These findings confirm the presence of overlapping and distinct plasticity produced by classes of abused drugs within subpopulations of MSNs that may provide targetable molecular mechanisms for future pharmacotherapies. PMID:26739562

  12. Cocaine Withdrawal Impairs mGluR5-Dependent Long-Term Depression in Nucleus Accumbens Shell Neurons of Both Direct and Indirect Pathways.

    PubMed

    Huang, Chiung-Chun; Liang, Ying-Ching; Lee, Cheng-Che; Hsu, Kuei-Sen

    2015-12-01

    We previously reported that animals withdrawn from repeated cocaine exposure exhibited a selective deficit in the ability to elicit metabotropic glutamate receptor 5 (mGluR5)-dependent long-term depression (LTD) in the nucleus accumbens (NAc) shell. To determine whether such impairment occurs in the NAc in a cell-type-specific manner, we used bacterial artificial chromosome (BAC) transgenic mice expressing enhanced green fluorescent protein (eGFP) under the control of gene regulatory elements for the dopamine D1 receptor (Drd1) or dopamine D2 receptor (Drd2) to identify distinct subpopulations of medium spiny neurons (MSNs). We found that bath application of group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) reliably induced LTD in both NAc shell and core MSNs of wild-type, hemizygous Drd1-eGFP, and Drd2-eGFP mice. Confirming our previous results, cocaine withdrawal selectively impaired DHPG-LTD in NAc shell Drd1-expressing direct and Drd2-expressing indirect pathway MSNs. We also found that the expression of DHPG-LTD in NAc MSNs was not affected by the Ca(2+)-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist 1-naphthyl acetyl spermine. Furthermore, systemic administration of mGluR5-negative allosteric modulator fenobam before the daily injection of cocaine preserved mGluR5 function and significantly reduced the expression of cocaine-induced behavioral sensitization. These results reveal that withdrawal from repeated cocaine exposure may result in the impairment of NAc mGluR5-LTD in a subregion- but not cell-type-specific manner and suggests that pharmacological antagonism of mGluR5 may represent a potential strategy for reducing cocaine-induced addictive behaviors.

  13. Social Isolation Rearing Increases Dopamine Uptake and Psychostimulant Potency in the Striatum

    PubMed Central

    Yorgason, Jordan T.; Calipari, Erin S.; Ferris, Mark J.; Karkhanis, Annushree N.; Fordahl, Steven C.; Weiner, Jeffrey L.; Jones, Sara R.

    2015-01-01

    Social isolation rearing (SI) is a model of early life stress that results in neurobiological alterations leading to increased anxiety-like behaviors. These animals also exhibit an increased propensity to administer psychostimulants, such as cocaine; however, the mechanisms governing this increased addiction vulnerability remains to be elucidated. Long-term stressors have been shown to produce important alterations in nucleus accumbens core (NAc) function. The NAc regulates motivated and goal-directed behaviors, and individual differences in NAc function have been shown to be predictive of addiction vulnerability. Rats were reared in group (GH; 4/cage) or SI (1/cage) conditions from weaning (PD 28) into early adulthood (PD 77) and dopamine release was assessed using voltammetry in brain slices containing the NAc and dorsomedial striatum. SI rats exhibited enhanced dopamine release and uptake in both regions compared to GH rats. In regard to psychostimulant effects directly at the dopamine transporter (DAT), methylphenidate and amphetamine, but not cocaine, inhibited uptake more in SI than GH rats. The increased potencies were positively correlated with uptake rates, suggesting that increased potencies of amphetamine-like compounds are due to changes in DAT function. Cocaine’s effects on uptake were similar between rearing conditions, however, cocaine enhanced evoked dopamine release greater in SI than GH rats, suggesting that the enhanced cocaine reinforcement in SI animals involves a DAT independent mechanism. Together, the results provide the first evidence that greater psychostimulant effects in SI compared to GH rats are due to effects on dopamine terminals related to uptake dependent and independent mechanisms. PMID:26525189

  14. Social isolation rearing increases dopamine uptake and psychostimulant potency in the striatum.

    PubMed

    Yorgason, Jordan T; Calipari, Erin S; Ferris, Mark J; Karkhanis, Anushree N; Fordahl, Steven C; Weiner, Jeffrey L; Jones, Sara R

    2016-02-01

    Social isolation rearing (SI) is a model of early life stress that results in neurobiological alterations leading to increased anxiety-like behaviors. These animals also exhibit an increased propensity to administer psychostimulants, such as cocaine; however, the mechanisms governing this increased addiction vulnerability remain to be elucidated. Long-term stressors have been shown to produce important alterations in nucleus accumbens core (NAc) function. The NAc regulates motivated and goal-directed behaviors, and individual differences in NAc function have been shown to be predictive of addiction vulnerability. Rats were reared in group (GH; 4/cage) or SI (1/cage) conditions from weaning (PD 28) into early adulthood (PD 77) and dopamine release was assessed using voltammetry in brain slices containing the NAc and dorsomedial striatum. SI rats exhibited enhanced dopamine release and uptake in both regions compared to GH rats. In regard to psychostimulant effects directly at the dopamine transporter (DAT), methylphenidate and amphetamine, but not cocaine, inhibited uptake more in SI than GH rats. The increased potencies were positively correlated with uptake rates, suggesting that increased potencies of amphetamine-like compounds are due to changes in DAT function. Cocaine's effects on uptake were similar between rearing conditions, however, cocaine enhanced evoked dopamine release greater in SI than GH rats, suggesting that the enhanced cocaine reinforcement in SI animals involves a DAT independent mechanism. Together, the results provide the first evidence that greater psychostimulant effects in SI compared to GH rats are due to effects on dopamine terminals related to uptake dependent and independent mechanisms.

  15. Possible involvement of type 1 inositol 1,4,5-trisphosphate receptors up-regulated by dopamine D1 and D2 receptors in mouse nucleus accumbens neurons in the development of methamphetamine-induced place preference.

    PubMed

    Kurokawa, K; Mizuno, K; Ohkuma, S

    2012-12-27

    Little is known about regulatory mechanisms of type 1 inositol-1,4,5-triphosphate receptor (IP(3)R-1) expression in conditioned place preference by methamphetamine (METH), though significant enhancement of IP(3)R-1 expression in the mouse frontal cortex and limbic forebrain by intermittent administration of cocaine is reported. The present study investigated the role and regulation of IP(3)R-1 in mice with METH-induced place preference. Injection of IP(3)R antagonists with different chemical structures, 2-aminophenoxyethane-borate and xestospongin C, into the mouse nucleus accumbens (NAcc) dose-dependently inhibited METH-induced place preference. The levels of IP(3)R-1 protein in the NAcc of METH-conditioned mice significantly increased, which was completely abolished by microinjection of SCH23390 and raclopride, selective dopamine D1-like and D2-like receptor (D1 and D2DR) antagonists respectively, into the mouse NAcc. Immunohistochemical assessment revealed co-localization of immunoreactivity for IP(3)R-1 and those for D1 and D2DRs in the NAcc. These findings suggest that IP(3)R-1 could be involved in the development of METH-induced place preference and that D1 and D2DRs in the NAcc of mice showing METH-induced place preference play possible regulatory roles in IP(3)R-1 expression.

  16. Norepinephrine and dopamine modulate impulsivity on the five-choice serial reaction time task through opponent actions in the shell and core sub-regions of the nucleus accumbens.

    PubMed

    Economidou, Daina; Theobald, David E H; Robbins, Trevor W; Everitt, Barry J; Dalley, Jeffrey W

    2012-08-01

    Impulsive behavior is a hallmark of several neuropsychiatric disorders (eg, attention-deficit/hyperactivity disorder, ADHD). Although dopamine (DA) and norepinephrine (NE) have a significant role in the modulation of impulsivity their neural loci of action is not well understood. Here, we investigated the effects of the selective NE re-uptake inhibitor atomoxetine (ATO) and the mixed DA/NE re-uptake inhibitor methylphenidate (MPH), both with proven clinical efficacy in ADHD, on the number of premature responses on a five-choice serial reaction time task, an operational measure of impulsivity. Microinfusions of ATO into the shell, but not the core, sub-region of the nucleus accumbens (NAcb) significantly decreased premature responding whereas infusions of MPH in the core, but not the shell, sub-region significantly increased premature responding. However, neither ATO nor MPH significantly altered impulsive behavior when infused into the prelimbic or infralimbic cortices. The opposing effects of ATO and MPH in the NAcb core and shell on impulsivity were unlikely mediated by ancillary effects on behavioral activation as locomotor activity was either unaffected, as in the case of ATO infusions in the core and shell, or increased when MPH was infused into either the core and shell sub-region. These findings indicate an apparently 'opponent' modulation of premature responses by NE and DA in the NAcb shell or core, respectively, and suggest that the symptom clusters of hyperactive-impulsive type ADHD may have distinct neural and neurochemical substrates.

  17. The mGluR5 antagonist MPEP elevates accumbal dopamine and glycine levels; interaction with strychnine-sensitive glycine receptors.

    PubMed

    Chau, PeiPei; Söderpalm, Bo; Ericson, Mia

    2011-10-01

    Studies have indicated that the metabotropic glutamate receptor 5 (mGluR5) antagonist 6-methyl-2-(phenylethynyl)-pyridine (MPEP) decreases ethanol self-administration, and the same receptor type was also suggested to be involved in the mechanism of action of the anti-craving substance acamprosate. Our previous research suggested that glycine receptors (GlyRs) in the nucleus accumbens (nAc) play a major part in mediating the dopamine-elevating properties of ethanol and are highly involved in the ethanol intake-reducing effect of acamprosate. The aim of this study was to examine if modulation of nAc dopamine via mGluR5 antagonism or GlyR agonism is a linked or separated phenomena. The extracellular levels of dopamine as well as of the GlyR ligands, glycine, taurine and β-alanine were measured in the nAc by means of microdialysis after local perfusion of MPEP (100 or 500 µM) with or without pre-treatment with strychnine. MPEP increased dopamine levels, an effect that was blocked by pre-treatment with strychnine. In addition, the higher MPEP concentration increased glycine output, whereas no alterations of taurine or β-alanine were observed. These results indicate a relationship between the glutamatergic and glycinergic transmitter systems in regulating dopamine output, possibly via alteration of extracellular glycine levels. Taken together with our previous data demonstrating the importance of accumbal GlyRs both in ethanol-induced elevation of nAc dopamine and in ethanol consumption, it is plausible that the effects of MPEP treatment, on dopamine output and on ethanol intake, may be mediated via interaction with the same neuronal circuitry that previously has been demonstrated for ethanol, taurine and acamprosate.

  18. D1 and D2 antagonists reverse the effects of appetite suppressants on weight loss, food intake, locomotion, and rebalance spiking inhibition in the rat NAc shell.

    PubMed

    Kalyanasundar, B; Perez, Claudia I; Luna, Alvaro; Solorio, Jessica; Moreno, Mario G; Elias, David; Simon, Sidney A; Gutierrez, Ranier

    2015-07-01

    Obesity is a worldwide health problem that has reached epidemic proportions. To ameliorate this problem, one approach is the use of appetite suppressants. These compounds are frequently amphetamine congeners such as diethylpropion (DEP), phentermine (PHEN), and bupropion (BUP), whose effects are mediated through serotonin, norepinephrine, and dopaminergic pathways. The nucleus accumbens (NAc) shell receives dopaminergic inputs and is involved in feeding and motor activity. However, little is known about how appetite suppressants modulate its activity. Therefore, we characterized behavioral and neuronal NAc shell responses to short-term treatments of DEP, PHEN, and BUP. These compounds caused a transient decrease in weight and food intake while increasing locomotion, stereotypy, and insomnia. They evoked a large inhibitory imbalance in NAc shell spiking activity that correlated with the onset of locomotion and stereotypy. Analysis of the local field potentials (LFPs) showed that all three drugs modulated beta, theta, and delta oscillations. These oscillations do not reflect an aversive-malaise brain state, as ascertained from taste aversion experiments, but tracked both the initial decrease in weight and food intake and the subsequent tolerance to these drugs. Importantly, the appetite suppressant-induced weight loss and locomotion were markedly reduced by intragastric (and intra-NAc shell) infusions of dopamine antagonists SCH-23390 (D1 receptor) or raclopride (D2 receptor). Furthermore, both antagonists attenuated appetite suppressant-induced LFP oscillations and partially restored the imbalance in NAc shell activity. These data reveal that appetite suppressant-induced behavioral and neuronal activity recorded in the NAc shell depend, to various extents, on dopaminergic activation and thus point to an important role for D1/D2-like receptors (in the NAc shell) in the mechanism of action for these anorexic compounds.

  19. D1 and D2 antagonists reverse the effects of appetite suppressants on weight loss, food intake, locomotion, and rebalance spiking inhibition in the rat NAc shell

    PubMed Central

    Kalyanasundar, B.; Perez, Claudia I.; Luna, Alvaro; Solorio, Jessica; Moreno, Mario G.; Elias, David; Simon, Sidney A.

    2015-01-01

    Obesity is a worldwide health problem that has reached epidemic proportions. To ameliorate this problem, one approach is the use of appetite suppressants. These compounds are frequently amphetamine congeners such as diethylpropion (DEP), phentermine (PHEN), and bupropion (BUP), whose effects are mediated through serotonin, norepinephrine, and dopaminergic pathways. The nucleus accumbens (NAc) shell receives dopaminergic inputs and is involved in feeding and motor activity. However, little is known about how appetite suppressants modulate its activity. Therefore, we characterized behavioral and neuronal NAc shell responses to short-term treatments of DEP, PHEN, and BUP. These compounds caused a transient decrease in weight and food intake while increasing locomotion, stereotypy, and insomnia. They evoked a large inhibitory imbalance in NAc shell spiking activity that correlated with the onset of locomotion and stereotypy. Analysis of the local field potentials (LFPs) showed that all three drugs modulated beta, theta, and delta oscillations. These oscillations do not reflect an aversive-malaise brain state, as ascertained from taste aversion experiments, but tracked both the initial decrease in weight and food intake and the subsequent tolerance to these drugs. Importantly, the appetite suppressant-induced weight loss and locomotion were markedly reduced by intragastric (and intra-NAc shell) infusions of dopamine antagonists SCH-23390 (D1 receptor) or raclopride (D2 receptor). Furthermore, both antagonists attenuated appetite suppressant-induced LFP oscillations and partially restored the imbalance in NAc shell activity. These data reveal that appetite suppressant-induced behavioral and neuronal activity recorded in the NAc shell depend, to various extents, on dopaminergic activation and thus point to an important role for D1/D2-like receptors (in the NAc shell) in the mechanism of action for these anorexic compounds. PMID:25972577

  20. High-Fat-Diet-Induced Deficits in Dopamine Terminal Function Are Reversed by Restoring Insulin Signaling.

    PubMed

    Fordahl, Steve C; Jones, Sara R

    2017-02-15

    Systemically released insulin crosses the blood-brain barrier and binds to insulin receptors on several neural cell types, including dopaminergic neurons. Insulin has been shown to decrease dopamine neuron firing in the ventral tegmental area (VTA), but potentiate release and reuptake at dopamine terminals in the nucleus accumbens (NAc). Here we show that prolonged consumption of a high fat diet blocks insulin's effects in the NAc, but insulin's effects are restored by inhibiting protein tyrosine phosphatase 1B, which supports insulin receptor signaling. Mice fed a high fat diet (60% kcals from fat) displayed significantly higher fasting blood glucose 160 mg/dL, compared to 101 mg/dL for control-diet-fed mice, and high-fat-diet-fed mice showed reduced blood glucose clearance after an intraperitoneal glucose tolerance test. Using fast scan cyclic voltammetry to measure electrically evoked dopamine in brain slices containing the NAc core, high-fat-diet-fed mice exhibited slower dopamine reuptake compared to control-diet-fed mice (2.2 ± 0.1 and 2.67 ± 0.15 μM/s, respectively). Moreover, glucose clearance rate was negatively correlated with Vmax. Insulin (10 nM to 1 μM) dose dependently increased reuptake rates in control-diet-fed mice compared with in the high-fat-diet group; however, the small molecule insulin receptor sensitizing agent, TCS 401 (300 nM), restored reuptake in high-fat-diet-fed mice to control-diet levels, and a small molecule inhibitor of the insulin receptor, BMS 536924 (300 nM), attenuated reuptake, similar to high-fat-diet-fed mice. These data show that a high-fat diet impairs dopamine reuptake by attenuating insulin signaling at dopamine terminals.

  1. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward

    PubMed Central

    Stouffer, Melissa A.; Woods, Catherine A.; Patel, Jyoti C.; Lee, Christian R.; Witkovsky, Paul; Bao, Li; Machold, Robert P.; Jones, Kymry T.; de Vaca, Soledad Cabeza; Reith, Maarten E. A.; Carr, Kenneth D.; Rice, Margaret E.

    2015-01-01

    Insulin activates insulin receptors (InsRs) in the hypothalamus to signal satiety after a meal. However, the rising incidence of obesity, which results in chronically elevated insulin levels, implies that insulin may also act in brain centres that regulate motivation and reward. We report here that insulin can amplify action potential-dependent dopamine (DA) release in the nucleus accumbens (NAc) and caudate–putamen through an indirect mechanism that involves striatal cholinergic interneurons that express InsRs. Furthermore, two different chronic diet manipulations in rats, food restriction (FR) and an obesogenic (OB) diet, oppositely alter the sensitivity of striatal DA release to insulin, with enhanced responsiveness in FR, but loss of responsiveness in OB. Behavioural studies show that intact insulin levels in the NAc shell are necessary for acquisition of preference for the flavour of a paired glucose solution. Together, these data imply that striatal insulin signalling enhances DA release to influence food choices. PMID:26503322

  2. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward.

    PubMed

    Stouffer, Melissa A; Woods, Catherine A; Patel, Jyoti C; Lee, Christian R; Witkovsky, Paul; Bao, Li; Machold, Robert P; Jones, Kymry T; de Vaca, Soledad Cabeza; Reith, Maarten E A; Carr, Kenneth D; Rice, Margaret E

    2015-10-27

    Insulin activates insulin receptors (InsRs) in the hypothalamus to signal satiety after a meal. However, the rising incidence of obesity, which results in chronically elevated insulin levels, implies that insulin may also act in brain centres that regulate motivation and reward. We report here that insulin can amplify action potential-dependent dopamine (DA) release in the nucleus accumbens (NAc) and caudate-putamen through an indirect mechanism that involves striatal cholinergic interneurons that express InsRs. Furthermore, two different chronic diet manipulations in rats, food restriction (FR) and an obesogenic (OB) diet, oppositely alter the sensitivity of striatal DA release to insulin, with enhanced responsiveness in FR, but loss of responsiveness in OB. Behavioural studies show that intact insulin levels in the NAc shell are necessary for acquisition of preference for the flavour of a paired glucose solution. Together, these data imply that striatal insulin signalling enhances DA release to influence food choices.

  3. Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions

    PubMed Central

    Mingote, Susana; Chuhma, Nao; Kusnoor, Sheila V.; Field, Bianca; Deutch, Ariel Y.

    2015-01-01

    In the ventral tegmental area (VTA), a subpopulation of dopamine neurons express vesicular glutamate transporter 2 and make glutamatergic connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons. However, their glutamatergic connections across the forebrain have not been explored systematically. To visualize dopamine neuron forebrain projections and to enable photostimulation of their axons independent of transmitter status, we virally transfected VTA neurons with channelrhodopsin-2 fused to enhanced yellow fluorescent protein (ChR2-EYFP) and used DATIREScre mice to restrict expression to dopamine neurons. ChR2-EYFP-expressing neurons almost invariably stained for tyrosine hydroxylase, identifying them as dopaminergic. Dopamine neuron axons visualized by ChR2-EYFP fluorescence projected most densely to the striatum, moderately to the amygdala and entorhinal cortex (ERC), sparsely to prefrontal and cingulate cortices, and rarely to the hippocampus. Guided by ChR2-EYFP fluorescence, we recorded systematically from putative principal neurons in target areas and determined the incidence and strength of glutamatergic connections by activating all dopamine neuron terminals impinging on recorded neurons with wide-field photostimulation. This revealed strong glutamatergic connections in the NAc, OT, and ERC; moderate strength connections in the central amygdala; and weak connections in the cingulate cortex. No glutamatergic connections were found in the dorsal striatum, hippocampus, basolateral amygdala, or prefrontal cortex. These results indicate that VTA dopamine neurons elicit widespread, but regionally distinct, glutamatergic signals in the forebrain and begin to define the dopamine neuron excitatory functional connectome. SIGNIFICANCE STATEMENT Dopamine neurons are important for the control of motivated behavior and are involved in the pathophysiology of several major neuropsychiatric disorders. Recent studies have shown that some ventral midbrain

  4. Prolonged nicotine exposure down-regulates presynaptic NMDA receptors in dopaminergic terminals of the rat nucleus accumbens.

    PubMed

    Salamone, Alessia; Zappettini, Stefania; Grilli, Massimo; Olivero, Guendalina; Agostinho, Paula; Tomé, Angelo R; Chen, Jiayang; Pittaluga, Anna; Cunha, Rodrigo A; Marchi, Mario

    2014-04-01

    The presynaptic control of dopamine release in the nucleus accumbens (NAc) by glutamate and acetylcholine has a profound impact on reward signaling. Here we provide immunocytochemical and neurochemical evidence supporting the co-localization and functional interaction between nicotinic acetylcholine receptors (nAChRs) and N-methyl-D-aspartic acid (NMDA) receptors in dopaminergic terminals of the NAc. Most NAc dopaminergic terminals possessed the nAChR α4 subunit and the pre-exposure of synaptosomes to nicotine (30 μM) or to the α4β2-containing nAChR agonist 5IA85380 (10 nM) selectively inhibited the NMDA (100 μM)-evoked, but not the 4-aminopyridine (10 μM)-evoked, [(3)H] dopamine outflow; this inhibition was blunted by mecamylamine (10 μM). Nicotine and 5IA85380 pretreatment also inhibited the NMDA (100 μM)-evoked increase of calcium levels in single nerve terminals, an effect prevented by dihydro-β-erythroidine (1 μM). This supports a functional interaction between α4β2-containing nAChR and NMDA receptors within the same terminal, as supported by the immunocytochemical co-localization of α4 and GluN1 subunits in individual NAc dopaminergic terminals. The NMDA-evoked [(3)H]dopamine outflow was blocked by MK801 (1 μM) and inhibited by the selective GluN2B-selective antagonists ifenprodil (1 μM) and RO 25-6981 (1 μM), but not by the GluN2A-preferring antagonists CPP-19755 (1 μM) and ZnCl2 (1 nM). Notably, nicotine pretreatment significantly decreased the density of biotin-tagged GluN2B proteins in NAc synaptosomes. These results show that nAChRs dynamically and negatively regulate NMDA receptors in NAc dopaminergic terminals through the internalization of GluN2B receptors.

  5. Nucleus accumbens serotonin transporters in alcoholics measured by whole-hemisphere autoradiography.

    PubMed

    Storvik, Markus; Tiihonen, Jari; Haukijärvi, Tuija; Tupala, Erkki

    2006-11-01

    Nucleus accumbens (NAC) is regulated by the dopaminergic and serotonergic pathways, and it is a brain area with a crucial role in the rewarding effects of ethanol. In this preliminary study, possible alterations of [3H]citalopram binding to serotonin transporter (SERT) were evaluated in the NAC of Cloninger type 1 and 2 alcoholics (nine and seven subjects, respectively), and nonalcoholic controls (10 subjects) by human postmortem whole-hemisphere autoradiography. The [3H]citalopram binding in the NAC was 35% higher in the alcoholics than in the controls; in the type 1 alcoholics, the binding was 54% and in the type 2 alcoholics it was 17% higher. Although the effect size showed medium effects (0.49-0.60), the results did not reach statistical significance due to large standard deviations. The [3H]citalopram binding declined significantly with age in the controls, but not in the alcoholics. In the controls, there was a significant positive correlation between the [3H]citalopram binding in the NAC and in the anterior cingulate gyrus, an area in which the [3H]citalopram binding has been shown to be lower among alcoholics. On the contrary, a significant negative correlation was observed in the type 2 alcoholics and no correlation in the type 1 alcoholics. In addition, there was a strong tendency toward a positive correlation between the SERT and dopamine transporter binding in the type 2 alcoholics, but not in the other groups. These preliminary results suggest a differential monoaminergic imbalance in type 1 and 2 alcoholism in brain areas important for the regulation of motivation, reward, and reinforcement.

  6. The CCK-B agonist, BC264, increases dopamine in the nucleus accumbens and facilitates motivation and attention after intraperitoneal injection in rats.

    PubMed

    Ladurelle, N; Keller, G; Blommaert, A; Roques, B P; Daugé, V

    1997-09-01

    Although it is known that panic attacks are triggered by the cholecystokinin fragment CCK4, the specific involvement of peripheral or central cholecystokinin CCK receptors in various adaptive processes such as emotion, memory and anxiety has yet to be demonstrated. With this aim, we have investigated the biochemical and pharmacological effects resulting from the administration of BC264, a highly potent and selective CCK-B agonist able to cross the blood-brain barrier. Very low doses of BC264 (microg/kg i.p.), increased the exploration of animals submitted to an unknown territory but were devoid of anxiogenic properties in the elevated plus maze. BC264 increased locomotion and rearings of rats newly placed in an open field and improved their spontaneous alternation in a Y-maze. The use of vagotomized animals showed that the increased alternation induced by BC264 did not require an intact vagus nerve, unlike the locomotor activation. These behavioural effects, prevented by the prior i.p. administration of the CCK-B antagonist L-365,260 but not by the CCK-A antagonist L-364,718, were shown to depend on dopaminergic systems, since they were blocked by D1 (SCH23390, 25 microg/kg i.p.) or D2 (sulpiride, 50 or 100 mg/kg i.p.) antagonists. In addition, bilateral perfusion in freely moving rats of BC264 at pharmacologically active doses, using a newly designed microdialysis system, was found to increase the extracellular levels of DA, DOPAC and HVA in the anterior part of the nucleus accumbens. These results show that activation of CCK-B receptors by BC264 does not produce anxiogenic-like effects but appears to improve motivation and attention, whereas other CCK-B agonists such as BocCCK4 induce anxiogenic responses. Several explanations, including the existence of different sub-sites of the CCK-B receptor, could account for these differential effects.

  7. Characterization of a folate-induced hypermotility response after bilateral injection into the rat nucleus accumbens

    SciTech Connect

    Stephens, R.L. Jr.

    1986-01-01

    The objective of these studies was to pharmacologically characterize the mechanism responsible for a folate-induced stimulation of locomotor activity in rats after bilateral injection into the nucleus accumbens region of the brain. Folic acid (FA) and 5-formyltetrahydrofolic acid (FTHF) produced this hypermotility response after intra-accumbens injection, while other reduced folic acid derivatives dihydrofolic acid, tetrahydrofolic acid, and 5-methyltetrahydrofolic acid were ineffective. Studies were designed to determine the role of catecholamines in the nucleus accumbens in the folate-induced hypermotility response. The findings suggest that the folate-induced response is dependent on intact neuronal dopamine stores, and is mediated by stimulation of dopamine receptors of the nucleus accumbens. However the folates do not appear to enhance dopaminergic neutransmission. Thus, FA and FTHF were inefficient at 1 mM concentrations in stimulating /sup 3/H-dopamine release from /sup 3/H-dopamine preloaded nucleus accumbens slices or dopamine from endogenous stores. Pteroic acid, the chemical precursor of folic acid which lacks the glutamate moiety, was ineffective in producing a stimulation of locomotor activity after intra-accumbens injection. Since glutamate is an excitatory amino acid (EAA), compounds characterized as EAA receptor antagonists were utilized to determine if the folate-induced hypermotility response is mediated by activation of EAA receptors in the nucleus accumbens. These results suggest that activation of quisqualate receptors of the nucleus accumbens may mediate the folate-induced hypermotility response.

  8. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms.

    PubMed

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-10-05

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs.

  9. Activation of mGluR7s inhibits cocaine-induced reinstatement of drug-seeking behavior by a nucleus accumbens glutamate-mGluR2/3 mechanism in rats.

    PubMed

    Li, Xia; Li, Jie; Gardner, Eliot L; Xi, Zheng-Xiong

    2010-09-01

    The metabotropic glutamate receptor 7 (mGluR7) has been reported to be involved in cocaine and alcohol self-administration. However, the role of mGluR7 in relapse to drug seeking is unknown. Using a rat relapse model, we found that systemic administration of AMN082, a selective mGluR7 allosteric agonist, dose-dependently inhibits cocaine-induced reinstatement of drug-seeking behavior. Intracranial microinjections of AMN082 into the nucleus accumbens (NAc) or ventral pallidum, but not the dorsal striatum, also inhibited cocaine-primed reinstatement, an effect that was blocked by local co-administration of MMPIP, a selective mGluR7 antagonist. In vivo microdialysis demonstrated that cocaine priming significantly increased extracellular dopamine in the NAc, ventral pallidum and dorsal striatum, while increasing extracellular glutamate in the NAc only. AMN082 alone failed to alter extracellular dopamine, but produced a slow-onset long-lasting increase in extracellular glutamate in the NAc only. Pre-treatment with AMN082 dose-dependently blocked both cocaine-enhanced NAc glutamate and cocaine-induced reinstatement, an effect that was blocked by MMPIP or LY341497 (a selective mGluR2/3 antagonist). These data suggest that mGluR7 activation inhibits cocaine-induced reinstatement of drug-seeking behavior by a glutamate-mGluR2/3 mechanism in the NAc. The present findings support the potential use of mGluR7 agonists for the treatment of cocaine addiction.

  10. The Nucleus Accumbens and Ketamine Treatment in Major Depressive Disorder.

    PubMed

    Abdallah, Chadi G; Jackowski, Andrea; Salas, Ramiro; Gupta, Swapnil; Sato, João R; Mao, Xiangling; Coplan, Jeremy D; Shungu, Dikoma C; Mathew, Sanjay J

    2017-03-29

    Animal models of depression repeatedly showed stress-induced nucleus accumbens (NAc) hypertrophy. Recently, ketamine was found to normalize this stress-induced NAc structural growth. Here, we investigated NAc structural abnormalities in major depressive disorder (MDD) in two cohorts. Cohort A included a cross-sectional sample of 34 MDD and 26 healthy control (HC) subjects, with high-resolution magnetic resonance imaging (MRI) to estimate NAc volumes. Proton MR spectroscopy ((1)H MRS) was used to divide MDD subjects into two subgroups: glutamate-based depression (GBD) and non-GBD. A separate longitudinal sample (cohort B) included 16 MDD patients who underwent MRI at baseline then 24 h following intravenous infusion of ketamine (0.5 mg/kg). In cohort A, we found larger left NAc volume in MDD compared to controls (Cohen's d=1.05), but no significant enlargement in the right NAc (d=0.44). Follow-up analyses revealed significant subgrouping effects on the left (d⩾1.48) and right NAc (d⩾0.95) with larger bilateral NAc in non-GBD compared to GBD and HC. NAc volumes were not different between GBD and HC. In cohort B, ketamine treatment reduced left NAc, but increased left hippocampal, volumes in patients achieving remission. The cross-sectional data provided the first evidence of enlarged NAc in patients with MDD. These NAc abnormalities were limited to patients with non-GBD. The pilot longitudinal data revealed a pattern of normalization of left NAc and hippocampal volumes particularly in patients who achieved remission following ketamine treatment, an intriguing preliminary finding that awaits replication.Neuropsychopharmacology advance online publication, 29 March 2017; doi:10.1038/npp.2017.49.

  11. Cocaine withdrawal impairs metabotropic glutamate receptor-dependent long-term depression in the nucleus accumbens.

    PubMed

    Huang, Chiung-Chun; Yeh, Che-Ming; Wu, Mei-Ying; Chang, Alice Y W; Chan, Julie Y H; Chan, Samuel H H; Hsu, Kuei-Sen

    2011-03-16

    Neuroadaptation in the nucleus accumbens (NAc), a central component of the mesolimbic dopamine (DA) system, has been implicated in the development of cocaine-induced psychomotor sensitization and relapse to cocaine seeking. However, little is known about the cellular and synaptic mechanisms underlying such adaptation. Using a mouse model of behavioral sensitization, we show that animals withdrawn from repeated cocaine exposure have a selective deficit in the ability to elicit metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD) in the shell of the NAc in response to bath application of the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG). Experiments conducted in the presence of the selective mGluR1 antagonists 7-(hydroxyimino)cyclopropachromen-carboxylate ethyl ester and (S)-(+)-α-amino-4-carboxy-2-methylbenzeneacetic acid, or the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine, demonstrated that the impaired DHPG-LTD is likely attributable to a loss of mGluR5 function. Quantitative real-time reverse transcriptase-PCR and Western blot analysis revealed significant downregulation of mGluR5, but not mGluR1, mRNA and protein levels in the NAc shell. The inhibitory effect of repeated cocaine exposure on DHPG-LTD was selectively prevented when cocaine was coadministered with the selective D(1)-like DA receptor antagonist (R)-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine. Furthermore, the levels of brain-derived neurotrophic factor (BDNF) protein in the NAc shell increased progressively after cocaine withdrawal, and the impairment of DHPG-LTD in the NAc shell was not found in slices from BDNF-knock-out mice after cocaine withdrawal. These results suggest that withdrawal from repeated cocaine exposure may result in increased BDNF levels in the NAc shell, which leads to a selective downregulation of mGluR5 and thereby impairs the induction of mGluR-dependent LTD.

  12. The neural substrates for the rewarding and dopamine-releasing effects of medial forebrain bundle stimulation have partially discrepant frequency responses.

    PubMed

    Cossette, M-P; Conover, K; Shizgal, P

    2016-01-15

    Midbrain dopamine neurons have long been implicated in the rewarding effect produced by electrical brain stimulation of the medial forebrain bundle (MFB). These neurons are excited trans-synaptically, but their precise role in intracranial self-stimulation (ICSS) has yet to be determined. This study assessed the hypothesis that midbrain dopamine neurons are in series with the directly stimulated substrate for self-stimulation of the MFB and either perform spatio-temporal integration of synaptic input from directly activated MFB fibers or relay the results of such integration to efferent stages of the reward circuitry. Psychometric current-frequency trade-off functions were derived from ICSS performance, and chemometric trade-off functions were derived from stimulation-induced dopamine transients in the nucleus accumbens (NAc) shell, measured by means of fast-scan cyclic voltammetry. Whereas the psychometric functions decline monotonically over a broad range of pulse frequencies and level off only at high frequencies, the chemometric functions obtained with the same rats and electrodes are either U-shaped or level off at lower pulse frequencies. This discrepancy was observed when the dopamine transients were recorded in either anesthetized or awake subjects. The lack of correspondence between the psychometric and chemometric functions is inconsistent with the hypothesis that dopamine neurons projecting to the NAc shell constitute an entire series stage of the neural circuit subserving self-stimulation of the MFB.

  13. Opposing Role for Egr3 in Nucleus Accumbens Cell Subtypes in Cocaine Action

    PubMed Central

    Chandra, Ramesh; Francis, T. Chase; Konkalmatt, Prasad; Amgalan, Ariunzaya; Gancarz, Amy M.; Dietz, David M.

    2015-01-01

    An imbalance in molecular signaling cascades and transcriptional regulation in nucleus accumbens (NAc) medium spiny neuron (MSN) subtypes, those enriched in dopamine D1 versus D2 receptors, is implicated in the behavioral responses to psychostimulants. To provide further insight into the molecular mechanisms occurring in MSN subtypes by cocaine, we examined the transcription factor early growth response 3 (Egr3). We evaluated Egr3 because it is a target of critical cocaine-mediated signaling pathways and because Egr3-binding sites are found on promoters of key cocaine-associated molecules. We first used a RiboTag approach to obtain ribosome-associated transcriptomes from each MSN subtype and found that repeated cocaine administration induced Egr3 ribosome-associated mRNA in NAc D1-MSNs while reducing Egr3 in D2-MSNs. Using Cre-inducible adeno-associated viruses combined with D1-Cre and D2-Cre mouse lines, we observed that Egr3 overexpression in D1-MSNs enhances rewarding and locomotor responses to cocaine, whereas overexpression in D2-MSNs blunts these behaviors. miRNA knock-down of Egr3 in MSN subtypes produced opposite behavioral responses from those observed with overexpression. Finally, we found that repeated cocaine administration altered Egr3 binding to promoters of genes that are important for cocaine-mediated cellular and behavioral plasticity. Genes with increased Egr3 binding to promoters, Camk2α, CREB, FosB, Nr4a2, and Sirt1, displayed increased mRNA in D1-MSNs and, in some cases, a reduction in D2-MSNs. Histone and the DNA methylation enzymes G9a and Dnmt3a displayed reduced Egr3 binding to their promoters and reduced mRNA in D1-MSNs. Our study provides novel insight into an opposing role of Egr3 in select NAc MSN subtypes in cocaine action. PMID:25995477

  14. Effects of repeated daily treatments with a 5-HT3 receptor antagonist on dopamine neurotransmission and functional activity of 5-HT3 receptors within the nucleus accumbens of Wistar rats.

    PubMed

    Liu, Wen; Thielen, Richard J; McBride, William J

    2006-06-01

    A previous study indicated that pretreatment with repeated daily injections of serotonin-3 (5-HT3) receptor antagonists subsequently reduced the effectiveness of the 5-HT3 antagonists to attenuate ethanol intake under 24-h free-choice conditions; one possibility to account for this is that the functional activity of the 5-HT3 receptor may have been altered by prior treatment with the antagonists. The present experiments were conducted to examine the effects of local perfusion of the 5-HT3 agonist 1-(m-chlorophenyl)-biguanide (CPBG) on the extracellular levels of dopamine (DA) in the nucleus accumbens (ACB) and ventral tegmental area (VTA) of adult male Wistar rats that had received repeated daily injections of the 5-HT3 antagonist, MDL 72222 (MDL). In vivo microdialysis was used to test the hypothesis that alterations in 5-HT3 receptor function have occurred with repeated antagonist injections. One group was given daily injections of MDL (1 mg/kg, s.c.) for 10 consecutive days (MDL group), and the other group was administered saline for 10 days (saline group). On the day after the last treatment, rats were implanted with a unilateral guide cannula aimed at either the ACB or VTA. Two days later, the microdialysis probe was inserted into the guide cannula; on the next day, microdialysis experiments were conducted to determine the extracellular levels of DA in the ACB or VTA. Local perfusion of CPBG (17.5, 35, 70 microM) in the ACB significantly stimulated DA release in the saline- and MDL-treated animals. In terms of percent baseline, the CPBG-stimulated DA release was higher in the MDL-treated group than in the saline-treated group in both the ACB and VTA; however, on the basis of the extracellular concentration, there were no significant differences in the ACB between the two groups. Using the no-net-flux microdialysis, it was determine that the basal extracellular concentration of DA in the ACB was approximately 60% lower in the MDL group than saline group; there

  15. The effect of Gly-Gln [ß-endorphin30-31] on morphine-evoked serotonin and GABA efflux in the nucleus accumbens of conscious rats.

    PubMed

    Basaran, Nesrin F; Buyukuysal, R Levent; Sertac Yilmaz, M; Aydin, Sami; Cavun, Sinan; Millington, William R

    2016-08-01

    Glycyl-L-glutamine (Gly-Gln; β-endorphin30-31) is an endogenous dipeptide synthesized through the post-translational processing of β-endorphin1-31. Central Gly-Gln administration inhibits the rewarding properties of morphine and attenuates morphine tolerance, dependence and withdrawal although it does not interfere with morphine analgesia. In an earlier study, we found that Gly-Gln inhibits morphine-induced dopamine efflux in the nucleus accumbens (NAc), consistent with its ability to inhibit morphine reward. To further investigate the mechanism responsible for its central effects we tested whether i.c.v. Gly-Gln administration influences the rise in extracellular serotonin and GABA concentrations evoked by morphine in the NAc. Conscious rats were treated with Gly-Gln (100nmol/5μl) or saline i.c.v. followed, 2min later, by morphine (2.5mg/kg) or saline i.p. and extracellular serotonin and GABA concentrations were analyzed by microdialysis and HPLC. Morphine administration increased extracellular serotonin and GABA concentrations significantly within 20min, as shown previously. Unexpectedly, Gly-Gln also increased extracellular serotonin concentrations significantly in control animals. Combined treatment with Gly-Gln+morphine also elevated extracellular serotonin concentrations although the magnitude of the response did not differ significantly from the effect of Gly-Gln or morphine, given alone suggesting that Gly-Gln suppressed morphine induced serotonin efflux. Gly-Gln abolished the morphine-induced rise in extracellular GABA concentrations but had no effect on extracellular GABA when given alone to otherwise untreated animals. These data show that Gly-Gln stimulates NAc serotonin efflux and, together with earlier studies, support the hypothesis that Gly-Gln inhibits the rewarding effects of morphine by modulating morphine induced dopamine, GABA and serotonin efflux in the NAc.

  16. Neurotransplantation of stem cells genetically modified to express human dopamine transporter reduces alcohol consumption

    PubMed Central

    2010-01-01

    Introduction Regulated neurotransmitter actions in the mammalian central nervous system determine brain function and control peripheral organs and behavior. Although drug-seeking behaviors, including alcohol consumption, depend on central neurotransmission, modification of neurotransmitter actions in specific brain nuclei remains challenging. Herein, we report a novel approach for neurotransmission modification in vivo by transplantation of stem cells engineered to take up the neurotransmitter dopamine (DA) efficiently through the action of the human dopamine transporter (hDAT). As a functional test in mice, we used voluntary alcohol consumption, which is known to release DA in nucleus accumbens (NAC), an event hypothesized to help maintain drug-seeking behavior. We reasoned that reducing extracellular DA levels, by engrafting into NAC DA-sequestering stem cells expressing hDAT, would alter alcohol intake. Methods We have generated a neural stem cell line stably expressing the hDAT. Uptake kinetics of DA were determined to select a clone for transplantation. These genetically modified stem cells (or cells transfected with a construct lacking the hDAT sequence) were transplanted bilaterally into the NAC of wild-type mice trained to consume 10% alcohol in a two-bottle free-choice test for alcohol consumption. Alcohol intake was then ascertained for 1 week after transplantation, and brain sections through the NAC were examined for surviving grafted cells. Results Modified stem cells expressed hDAT and uptaken DA selectively via hDAT. Mice accustomed to drinking 10% ethanol by free choice reduced their alcohol consumption after being transplanted with hDAT-expressing stem cells. By contrast, control stem cells lacked that effect. Histologic examination revealed surviving stem cells in the NAC of all engrafted brains. Conclusions Our findings represent proof of principle suggesting that genetically engineered stem cells can be useful for exploring the role of

  17. Chronic alcohol consumption leads to neurochemical changes in the nucleus accumbens that are not fully reversed by withdrawal.

    PubMed

    Pereira, Pedro A; Neves, João; Vilela, Manuel; Sousa, Sérgio; Cruz, Catarina; Madeira, M Dulce

    2014-01-01

    Neuropeptide Y (NPY)- and acetylcholine-containing interneurons of the nucleus accumbens (NAc) seem to play a major role in the rewarding effects of alcohol. This study investigated the relationship between chronic alcohol consumption and subsequent withdrawal and the expression of NPY and acetylcholine in the NAc, and the possible involvement of nerve growth factor (NGF) in mediating the effects of ethanol. Rats ingesting an aqueous ethanol solution over 6months and rats subsequently deprived from ethanol during 2months were used to estimate the total number and the somatic volume of NPY and cholinergic interneurons, and the numerical density of cholinergic varicosities in the NAc. The tissue content of choline acetyltransferase (ChAT) and catecholamines were also determined. The number of NPY interneurons increased during alcohol ingestion and returned to control values after withdrawal. Conversely, the number and the size of cholinergic interneurons, and the amount of ChAT were unchanged in ethanol-treated and withdrawn rats, but the density of cholinergic varicosities was reduced by 50% during alcohol consumption and by 64% after withdrawal. The concentrations of dopamine and norepinephrine were unchanged both during alcohol consumption and after withdrawal. The administration of NGF to withdrawn rats significantly increased the number of NPY-immunoreactive neurons, the size of cholinergic neurons and the density of cholinergic varicosities. Present data show that chronic alcohol consumption leads to long-lasting neuroadaptive changes of the cholinergic innervation of the NAc and suggest that the cholinergic system is a potential target for the development of therapeutic strategies in alcoholism and abstinence.

  18. Relative Timing Between Kappa Opioid Receptor Activation and Cocaine Determines the Impact on Reward and Dopamine Release

    PubMed Central

    Chartoff, Elena H; Ebner, Shayla R; Sparrow, Angela; Potter, David; Baker, Phillip M; Ragozzino, Michael E; Roitman, Mitchell F

    2016-01-01

    Negative affective states can increase the rewarding value of drugs of abuse and promote drug taking. Chronic cocaine exposure increases levels of the neuropeptide dynorphin, an endogenous ligand at kappa opioid receptors (KOR) that suppresses dopamine release in the nucleus accumbens (NAc) and elicits negative affective states upon drug withdrawal. However, there is evidence that the effects of KOR activation on affective state are biphasic: immediate aversive effects are followed by delayed increases in reward. The impact of KOR-induced affective states on reward-related effects of cocaine over time is not known. We hypothesize that the initial aversive effects of KOR activation increase, whereas the delayed rewarding effects decrease, the net effects of cocaine on reward and dopamine release. We treated rats with cocaine at various times (15 min to 48 h) after administration of the selective KOR agonist salvinorin A (salvA). Using intracranial self-stimulation and fast scan cyclic voltammetry, we found that cocaine-induced increases in brain stimulation reward and evoked dopamine release in the NAc core were potentiated when cocaine was administered within 1 h of salvA, but attenuated when administered 24 h after salvA. Quantitative real-time PCR was used to show that KOR and prodynorphin mRNA levels were decreased in the NAc, whereas tyrosine hydroxylase and dopamine transporter mRNA levels and tissue dopamine content were increased in the ventral tegmental area 24 h post-salvA. These findings raise the possibility that KOR activation—as occurs upon withdrawal from chronic cocaine—modulates vulnerability to cocaine in a time-dependent manner. PMID:26239494

  19. Relative Timing Between Kappa Opioid Receptor Activation and Cocaine Determines the Impact on Reward and Dopamine Release.

    PubMed

    Chartoff, Elena H; Ebner, Shayla R; Sparrow, Angela; Potter, David; Baker, Phillip M; Ragozzino, Michael E; Roitman, Mitchell F

    2016-03-01

    Negative affective states can increase the rewarding value of drugs of abuse and promote drug taking. Chronic cocaine exposure increases levels of the neuropeptide dynorphin, an endogenous ligand at kappa opioid receptors (KOR) that suppresses dopamine release in the nucleus accumbens (NAc) and elicits negative affective states upon drug withdrawal. However, there is evidence that the effects of KOR activation on affective state are biphasic: immediate aversive effects are followed by delayed increases in reward. The impact of KOR-induced affective states on reward-related effects of cocaine over time is not known. We hypothesize that the initial aversive effects of KOR activation increase, whereas the delayed rewarding effects decrease, the net effects of cocaine on reward and dopamine release. We treated rats with cocaine at various times (15 min to 48 h) after administration of the selective KOR agonist salvinorin A (salvA). Using intracranial self-stimulation and fast scan cyclic voltammetry, we found that cocaine-induced increases in brain stimulation reward and evoked dopamine release in the NAc core were potentiated when cocaine was administered within 1 h of salvA, but attenuated when administered 24 h after salvA. Quantitative real-time PCR was used to show that KOR and prodynorphin mRNA levels were decreased in the NAc, whereas tyrosine hydroxylase and dopamine transporter mRNA levels and tissue dopamine content were increased in the ventral tegmental area 24 h post-salvA. These findings raise the possibility that KOR activation-as occurs upon withdrawal from chronic cocaine-modulates vulnerability to cocaine in a time-dependent manner.

  20. Alpha-conotoxin MII-sensitive nicotinic acetylcholine receptors in the nucleus accumbens shell regulate progressive ratio responding maintained by nicotine.

    PubMed

    Brunzell, Darlene H; Boschen, Karen E; Hendrick, Elizabeth S; Beardsley, Patrick M; McIntosh, J Michael

    2010-02-01

    Beta2 subunit containing nicotinic acetylcholine receptors (beta2(*)nAChRs; asterisk ((*)) denotes assembly with other subunits) are critical for nicotine self-administration and nicotine-associated dopamine (DA) release that supports nicotine reinforcement. The alpha6 subunit assembles with beta2 on DA neurons where alpha6beta2(*)nAChRs regulate nicotine-stimulated DA release at neuron terminals. Using local infusion of alpha-conotoxin MII (alpha-CTX MII), an antagonist with selectivity for alpha6beta2(*)nAChRs, the purpose of these experiments was to determine if alpha6beta2(*)nAChRs in the nucleus accumbens (NAc) shell are required for motivation to self-administer nicotine. Long-Evans rats lever-pressed for 0.03 mg/kg, i.v., nicotine accompanied by light+tone cues (NIC) or for light+tone cues unaccompanied by nicotine (CUEonly). Following extensive training, animals were tested under a progressive ratio (PR) schedule that required an increasing number of lever presses for each nicotine infusion and/or cue delivery. Immediately before each PR session, rats received microinfusions of alpha-CTX MII (0, 1, 5, or 10 pmol per side) into the NAc shell or the overlying anterior cingulate cortex. alpha-CTX MII dose dependently decreased break points and number of infusions earned by NIC rats following infusion into the NAc shell but not the anterior cingulate cortex. Concentrations of alpha-CTX MII that were capable of attenuating nicotine self-administration did not disrupt locomotor activity. There was no effect of infusion on lever pressing in CUEonly animals and NAc infusion alpha-CTX MII did not affect locomotor activity in an open field. These data suggest that alpha6beta2(*)nAChRs in the NAc shell regulate motivational aspects of nicotine reinforcement but not nicotine-associated locomotor activation.

  1. Chronic co-administration of nicotine and methamphetamine causes differential expression of immediate early genes in the dorsal striatum and nucleus accumbens of rats.

    PubMed

    Saint-Preux, F; Bores, L R; Tulloch, I; Ladenheim, B; Kim, R; Thanos, P K; Volkow, N D; Cadet, J L

    2013-07-23

    Nicotine and methamphetamine (METH) cause addiction by triggering neuroplastic changes in brain reward pathways though they each engage distinct molecular targets (nicotine receptors and dopamine transporters respectively). Addiction to both drugs is very prevalent, with the vast majority of METH users also being smokers of cigarettes. This co-morbid occurrence thus raised questions about potential synergistic rewarding effects of the drugs. However, few studies have investigated the chronic neurobiological changes associated with co-morbid nicotine and METH addiction. Here we investigated the effects of these two drugs alone and in combination on the expression of several immediate early genes (IEGs) that are sensitive to drug exposures. Chronic exposure to either nicotine or METH caused significant decreases in the expression of fosb, fra1, and fra2 in the nucleus accumbens (NAc) but not in the dorsal striatum whereas the drug combination increased fra2 expression in both structures. Except for junB mRNA levels that were decreased by the three drug treatments in the NAc, there were no significant changes in the Jun family members. Of the Egr family members, NAc egr2 expression was decreased after nicotine and the drug combination whereas NAc egr3 was decreased after METH and the drug combination. The drug combination also increased striatal egr3 expression. The Nr4a family member, nr4a2/nurr1, showed increased striatal expression after all three drug treatments, while striatal nr4a3/nor-1 expression was increased by the drug combination whereas NAc nr4a1/nurr77 was decreased by nicotine and the drug combination. These observations suggest that, when given in combination, the two drugs exert distinct effects on the expression of IEGs in dopaminergic projection areas from those elicited by each drug alone. The significance of these changes in IEG expression and in other molecular markers in fostering co-morbid METH and nicotine abuse needs to be further evaluated.

  2. Nucleus accumbens GLP-1 receptors influence meal size and palatability.

    PubMed

    Dossat, Amanda M; Diaz, Ryan; Gallo, Lindsay; Panagos, Alyssa; Kay, Kristen; Williams, Diana L

    2013-06-15

    Recent evidence suggests that the glucagon-like peptide-1 (GLP-1) neuronal projection to the nucleus accumbens core (NAcC) contributes to food intake control. To investigate the role of endogenous stimulation of GLP-1 receptors (GLP-1R) in NAcC, we examined the effects of the GLP-1R antagonist exendin-(9-39) (Ex9) on meal pattern and microstructure of ingestive behavior in rats. Intra-NAcC Ex9 treatment selectively increased meal size relative to vehicle in rats consuming 0.25 M sucrose solution or sweetened condensed milk. Microstructural analysis revealed effects of NAcC Ex9 on initial lick rate and the size and duration of licking bursts in rats consuming 0.1 or 0.25 M sucrose, suggesting that blockade of NAcC GLP-1R increases palatability. Because NAcC Ex9 did not affect licking for nonnutritive saccharin (0.1%), we suggest that the presence of nutrients in the gut may be required for endogenous stimulation of NAcC GLP-1R. Consistent with this, we also found that the meal size-suppressive effects of intragastric nutrient infusion were attenuated by NAcC delivery of Ex9 at a dose that had no effect when delivered alone. Analysis of licking patterns revealed that NAcC Ex9 did not reverse intragastric nutrient-induced suppression of burst number but rather blunted the effect of nutrient infusion on meal size primarily by increasing the size and duration of licking bursts. Together, our results suggest that NAcC Ex9 influences taste evaluation. We conclude that GLP-1 released in NAcC in response to gastrointestinal nutrients reduces the hedonic value of food.

  3. Increased expression of proenkephalin and prodynorphin mRNAs in the nucleus accumbens of compulsive methamphetamine taking rats

    PubMed Central

    Cadet, Jean Lud; Krasnova, Irina N.; Walther, Donna; Brannock, Christie; Ladenheim, Bruce; McCoy, Michael T.; Collector, Daniel; Torres, Oscar V.; Terry, Ndeah; Jayanthi, Subramaniam

    2016-01-01

    Addiction is associated with neuroadaptive changes in the brain. In the present paper, we used a model of methamphetamine self-administration during which we used footshocks to divide rats into animals that continue to press a lever to get methamphetamine (shock-resistant) and those that significantly reduce pressing the lever (shock-sensitive) despite the shocks. We trained male Sprague-Dawley rats to self-administer methamphetamine (0.1 mg/kg/infusion) for 9 hours daily for 20 days. Control group self-administered saline. Subsequently, methamphetamine self-administration rats were punished by mild electric footshocks for 10 days with gradual increases in shock intensity. Two hours after stopping behavioral experiments, we euthanized rats and isolated nucleus accumbens (NAc) samples. Affymetrix Array experiments revealed 24 differentially expressed genes between the shock-resistant and shock-sensitive rats, with 15 up- and 9 downregulated transcripts. Ingenuity pathway analysis showed that these transcripts belong to classes of genes involved in nervous system function, behavior, and disorders of the basal ganglia. These genes included prodynorphin (PDYN) and proenkephalin (PENK), among others. Because PDYN and PENK are expressed in dopamine D1- and D2-containing NAc neurons, respectively, these findings suggest that mechanisms, which impact both cell types may play a role in the regulation of compulsive methamphetamine taking by rats. PMID:27841313

  4. Increased expression of proenkephalin and prodynorphin mRNAs in the nucleus accumbens of compulsive methamphetamine taking rats.

    PubMed

    Cadet, Jean Lud; Krasnova, Irina N; Walther, Donna; Brannock, Christie; Ladenheim, Bruce; McCoy, Michael T; Collector, Daniel; Torres, Oscar V; Terry, Ndeah; Jayanthi, Subramaniam

    2016-11-14

    Addiction is associated with neuroadaptive changes in the brain. In the present paper, we used a model of methamphetamine self-administration during which we used footshocks to divide rats into animals that continue to press a lever to get methamphetamine (shock-resistant) and those that significantly reduce pressing the lever (shock-sensitive) despite the shocks. We trained male Sprague-Dawley rats to self-administer methamphetamine (0.1 mg/kg/infusion) for 9 hours daily for 20 days. Control group self-administered saline. Subsequently, methamphetamine self-administration rats were punished by mild electric footshocks for 10 days with gradual increases in shock intensity. Two hours after stopping behavioral experiments, we euthanized rats and isolated nucleus accumbens (NAc) samples. Affymetrix Array experiments revealed 24 differentially expressed genes between the shock-resistant and shock-sensitive rats, with 15 up- and 9 downregulated transcripts. Ingenuity pathway analysis showed that these transcripts belong to classes of genes involved in nervous system function, behavior, and disorders of the basal ganglia. These genes included prodynorphin (PDYN) and proenkephalin (PENK), among others. Because PDYN and PENK are expressed in dopamine D1- and D2-containing NAc neurons, respectively, these findings suggest that mechanisms, which impact both cell types may play a role in the regulation of compulsive methamphetamine taking by rats.

  5. Exposure to nicotine increases dopamine receptor content in the mesocorticolimbic pathway of rat dams and offspring during lactation.

    PubMed

    Pinheiro, C R; Oliveira, E; Manhães, A C; Fraga, M C; Claudio-Neto, S; Younes-Rapozo, V; Lotufo, B M; Moura, E G; Lisboa, P C

    2015-09-01

    Nicotine exposure causes the release of dopamine from the ventral tegmental area (VTA) to the nucleus accumbens (NAc). We have previously shown that maternal exposure to nicotine during lactation causes hyperleptinemia in dams and pups, and leptin is known to decrease dopamine release from the VTA. Here we evaluated whether maternal exposure to nicotine during lactation causes changes in dopamine and leptin signaling pathways at the end of exposure and after 5days of withdrawal in the: VTA, NAc, arcuate nucleus (ARC) and dorsal striatum (DS). On postnatal day (PN) 2, lactating Wistar rats were implanted with minipumps releasing nicotine (NIC; 6mg/kg/day, s.c.) or saline (C) for 14days. Offspring were tested in the elevated plus maze (EPM) and open field on PN14 or PN20, and euthanized on PN15 or PN21. Entries into the open arms and head dips in the EPM were reduced in NIC pups at P20. At weaning (PN21), NIC dams had: lower tyrosine hydroxylase (TH), higher OBRb and SOCS3 contents in VTA; lower TH, higher D1R, D2R and DAT contents in NAc; higher TH content in DS; and higher D2R and SOCS3 contents in ARC. On PN15, NIC offspring had higher D1R, D2R and lower DAT contents in NAc, while on PN21, they had lower DAT in DS, and lower pSTAT3 content in ARC. We evidenced that postnatal nicotine exposure induces relevant changes in the brain reward system of dams and pups, possibly associated with changes in leptinemia and increased offspring anxiety-like behavior.

  6. Regulation of dopamine D3 receptor in the striatal regions and substantia nigra in diffuse Lewy body disease (DLBD)

    PubMed Central

    Sun, Jianjun; Cairns, Nigel J.; Perlmutter, Joel S.; Mach, Robert H.; Xu, Jinbin

    2013-01-01

    The regulation of D3 receptor has not been well documented in diffuse Lewy body disease (DLBD). In this study, a novel D3 preferring radioligand [3H]WC-10 and a D2-preferring radioligand [3H]raclopride were used and the absolute densities of the dopamine D3 and D2 receptors were determined in the striatal regions and substantia nigra (SN) from postmortem brains from 5 cases DLBD, which included dementia with Lewy bodies (DLB, n=4) and Parkinson disease dementia (PDD, n=1). The densities of the dopamine D1 receptor, vesicular monoamine transporter 2(VMAT2), and dopamine transporter (DAT) were also measured by quantitative autoradiography using [3H]SCH23390, [3H]dihydrotetrabenazine, and [3H]WIN35428, respectively. The densities of these dopaminergic markers were also measured in the same brain regions in 10 age-matched control cases. Dopamine D3 receptor density was significantly increased in the striatal regions including caudate, putamen and nucleus accumbens (NAc). There were no significant changes in the dopamine D1 and D2 receptor densities in any brain regions measured. VMAT2 and DAT densities were reduced in all the brain regions measured in DLB/PDD, however the significant reduction was found in putamen for DAT and in the NAc and SN for VMAT2. The decrease of dopamine pre-synaptic markers implies neuronal loss in the substantia nigra pars compacta (SNpc) in these DLB/PDD cases, while the increase of D3 receptors in striatal regions could be attributed to dopaminergic medication history and psychiatric state such as hallucinations. Whether it also reflects compensatory regulation upon dopaminergic denervation warrants further confirmations on larger populations. PMID:23732230

  7. Distinct Subpopulations of Nucleus Accumbens Dynorphin Neurons Drive Aversion and Reward.

    PubMed

    Al-Hasani, Ream; McCall, Jordan G; Shin, Gunchul; Gomez, Adrian M; Schmitz, Gavin P; Bernardi, Julio M; Pyo, Chang-O; Park, Sung Il; Marcinkiewcz, Catherine M; Crowley, Nicole A; Krashes, Michael J; Lowell, Bradford B; Kash, Thomas L; Rogers, John A; Bruchas, Michael R

    2015-09-02

    The nucleus accumbens (NAc) and the dynorphinergic system are widely implicated in motivated behaviors. Prior studies have shown that activation of the dynorphin-kappa opioid receptor (KOR) system leads to aversive, dysphoria-like behavior. However, the endogenous sources of dynorphin in these circuits remain unknown. We investigated whether dynorphinergic neuronal firing in the NAc is sufficient to induce aversive behaviors. We found that photostimulation of dynorphinergic cells in the ventral NAc shell elicits robust conditioned and real-time aversive behavior via KOR activation, and in contrast, photostimulation of dorsal NAc shell dynorphin cells induced a KOR-mediated place preference and was positively reinforcing. These results show previously unknown discrete subregions of dynorphin-containing cells in the NAc shell that selectively drive opposing behaviors. Understanding the discrete regional specificity by which NAc dynorphinerigic cells regulate preference and aversion provides insight into motivated behaviors that are dysregulated in stress, reward, and psychiatric disease.

  8. The Anorexigenic Peptide Neuromedin U (NMU) Attenuates Amphetamine-Induced Locomotor Stimulation, Accumbal Dopamine Release and Expression of Conditioned Place Preference in Mice

    PubMed Central

    Vallöf, Daniel; Vestlund, Jesper; Engel, Jörgen A.; Jerlhag, Elisabet

    2016-01-01

    Amphetamine dependence, besides its substantial economical consequence, is a serious cause of mortality and morbidity. By investigations of the neurochemical correlates through which addictive drugs, such as amphetamine, activate the mesoaccumbal dopamine system unique targets for treatment of drug addiction can be identified. This reward link consists of a dopamine projection from the ventral tegmental area to the nucleus accumbens (NAc) suggesting that these brain areas are important for reward. The physiological function of gut-brain peptides has expanded beyond food intake modulation and involves regulation of drug reinforcement. A novel candidate for reward regulation is the anorexigenic peptide neuromedin U (NMU). We therefore investigated the effects of intracerebroventricular (icv) administration of NMU on amphetamine’s well-documented effects on the mesoaccumbal dopamine system, i.e. locomotor stimulation and accumbal dopamine release in mice. In addition, the effect of accumbal NMU administration on locomotor activity was examined. The effect of NMU, icv or intra-NAc, on the expression of conditioned place preference (CPP) was elucidated. Firstly, we showed that icv administration of NMU attenuate the amphetamine-induced locomotor stimulation, accumbal dopamine release and expression of CPP in mice. Secondly, we found that a lower dose of NMU (icv) reduce the amphetamine-induced locomotor stimulation in mice. Thirdly, we demonstrated that NMU administration into the NAc block the ability of amphetamine to cause a locomotor stimulation in mice. However, accumbal NMU administration did not attenuate the amphetamine-induced expression of CPP in mice. Our novel data suggest that central NMU signalling is involved in development of amphetamine dependence. PMID:27139195

  9. Sufficiency of Mesolimbic Dopamine Neuron Stimulation for the Progression to Addiction.

    PubMed

    Pascoli, Vincent; Terrier, Jean; Hiver, Agnès; Lüscher, Christian

    2015-12-02

    The factors causing the transition from recreational drug consumption to addiction remain largely unknown. It has not been tested whether dopamine (DA) is sufficient to trigger this process. Here we use optogenetic self-stimulation of DA neurons of the ventral tegmental area (VTA) to selectively mimic the defining commonality of addictive drugs. All mice readily acquired self-stimulation. After weeks of abstinence, cue-induced relapse was observed in parallel with a potentiation of excitatory afferents onto D1 receptor-expressing neurons of the nucleus accumbens (NAc). When the mice had to endure a mild electric foot shock to obtain a stimulation, some stopped while others persevered. The resistance to punishment was associated with enhanced neural activity in the orbitofrontal cortex (OFC) while chemogenetic inhibition of the OFC reduced compulsivity. Together, these results show that stimulating VTA DA neurons induces behavioral and cellular hallmarks of addiction, indicating sufficiency for the induction and progression of the disease.

  10. Early Antipsychotic Treatment in Juvenile Rats Elicits Long-Term Alterations to the Dopamine Neurotransmitter System.

    PubMed

    De Santis, Michael; Lian, Jiamei; Huang, Xu-Feng; Deng, Chao

    2016-11-22

    Prescription of antipsychotic drugs (APDs) to children has substantially increased in recent years. Whilst current investigations into potential long-term effects have uncovered some alterations to adult behaviours, further investigations into potential changes to neurotransmitter systems are required. The current study investigated potential long-term changes to the adult dopamine (DA) system following aripiprazole, olanzapine and risperidone treatment in female and male juvenile rats. Levels of tyrosine hydroxylase (TH), phosphorylated-TH (p-TH), dopamine active transporter (DAT), and D₁ and D₂ receptors were measured via Western blot and/or receptor autoradiography. Aripiprazole decreased TH and D₁ receptor levels in the ventral tegmental area (VTA) and p-TH levels in the prefrontal cortex (PFC) of females, whilst TH levels decreased in the PFC of males. Olanzapine decreased PFC p-TH levels and increased D₂ receptor expression in the PFC and nucleus accumbens (NAc) in females only. Additionally, risperidone treatment increased D₁ receptor levels in the hippocampus of females, whilst, in males, p-TH levels increased in the PFC and hippocampus, D₁ receptor expression decreased in the NAc, and DAT levels decreased in the caudate putamen (CPu), and elevated in the VTA. These results suggest that early treatment with various APDs can cause different long-term alterations in the adult brain, across both treatment groups and genders.

  11. Early Antipsychotic Treatment in Juvenile Rats Elicits Long-Term Alterations to the Dopamine Neurotransmitter System

    PubMed Central

    De Santis, Michael; Lian, Jiamei; Huang, Xu-Feng; Deng, Chao

    2016-01-01

    Prescription of antipsychotic drugs (APDs) to children has substantially increased in recent years. Whilst current investigations into potential long-term effects have uncovered some alterations to adult behaviours, further investigations into potential changes to neurotransmitter systems are required. The current study investigated potential long-term changes to the adult dopamine (DA) system following aripiprazole, olanzapine and risperidone treatment in female and male juvenile rats. Levels of tyrosine hydroxylase (TH), phosphorylated-TH (p-TH), dopamine active transporter (DAT), and D1 and D2 receptors were measured via Western blot and/or receptor autoradiography. Aripiprazole decreased TH and D1 receptor levels in the ventral tegmental area (VTA) and p-TH levels in the prefrontal cortex (PFC) of females, whilst TH levels decreased in the PFC of males. Olanzapine decreased PFC p-TH levels and increased D2 receptor expression in the PFC and nucleus accumbens (NAc) in females only. Additionally, risperidone treatment increased D1 receptor levels in the hippocampus of females, whilst, in males, p-TH levels increased in the PFC and hippocampus, D1 receptor expression decreased in the NAc, and DAT levels decreased in the caudate putamen (CPu), and elevated in the VTA. These results suggest that early treatment with various APDs can cause different long-term alterations in the adult brain, across both treatment groups and genders. PMID:27879654

  12. Modulating dopamine release by optogenetics in transgenic mice reveals terminal dopaminergic dynamics

    PubMed Central

    Lu, Yao; Driscoll, Nicolette; Ozden, Ilker; Yu, Zeyang; Nurmikko, Arto V.

    2015-01-01

    Abstract. Dopamine (DA) release and uptake dynamics in the nucleus accumbens (NAc) have important implications for neurological diseases and mammalian animal behaviors. We demonstrate here the use of cell-type-specific optogenetic targeting in conjunction with fast-scan cyclic voltammetry applied to brain slices prepared from specifically tailored transgenic mice, which conditionally express channelrhodopsin-2 (ChR2) through dopamine transporter (DAT)-Cre. Terminal dopaminergic dynamics and the direct manipulation of induced DA release level by controlling light intensity, pulse width, and the shape of stimulation waveforms were studied. Effective cell terminal-targeting optogenetic induction of DA release at physiological levels in NAc is demonstrated and discussed. It was found that delivering more light energy by increasing stimulation intensity and length is not the only way to control DA release; the temporal shape of the stimulus waveform at light onset is also critically related to induced DA concentrations. In addition, DA uptake dynamics as well as the recovery of the presynaptic releasable DA pool are studied and modeled. More broadly, our experimental findings provide important further evidence for effectively applying optogenetics to induce neurotransmitter release in the behaviorally relevant region of the brain in a highly cell-type selective context. PMID:26171413

  13. Dissociation of prefrontal cortex and nucleus accumbens dopaminergic systems in conditional learning in rats.

    PubMed

    George, David N; Jenkins, Trisha A; Killcross, Simon

    2011-11-20

    There is converging evidence that the prefrontal and mesolimbic dopaminergic (DAergic) systems are involved in the performance of a variety of tasks that require the use of contextual, or task-setting, information to select an appropriate response from a number of candidate responses. Performance on tasks of this nature are impaired in schizophrenia and in rats exposed to psychotomimetics; impairments that are often attenuated by administration of dopamine (DA) antagonists. Rats were trained on either a complex instrumental discrimination task, that required the use of task-setting cues, or a simple discrimination task that did not. Following training, microdialysis probes were implanted unilaterally in either the medial prefrontal cortex (mPFC) or nucleus accumbens (NAc) and samples were collected in freely moving animals during a behavioural test session. In Experiment 1, we found no difference in levels of DA in the mPFC of rats while they were performing the two discrimination tasks. Rats that performed the complex task did, however, show significantly higher mPFC DA levels relative to rats in the simple discrimination condition following the end of the behavioural test session. In Experiment 2, rats performing the conditional discrimination showed lower levels of DA in the NAc compared to the simple discrimination group both during the test session and after it. These results provide direct evidence that conditional discrimination tasks engage frontal and mesolimbic DAergic systems and are consistent with the proposal that regulation of fronto-striatal DA is involved in aspects of cognitive control that are known to be impaired in individuals with schizophrenia.

  14. Opioids in the nucleus accumbens stimulate ethanol intake.

    PubMed

    Barson, Jessica R; Carr, Ambrose J; Soun, Jennifer E; Sobhani, Nasim C; Leibowitz, Sarah F; Hoebel, Bartley G

    2009-10-19

    The nucleus accumbens (NAc) participates in the control of both motivation and addiction. To test the possibility that opioids in the NAc can cause rats to select ethanol in preference to food, Sprague-Dawley rats with ethanol, food, and water available, were injected with two doses each of morphine, the mu-receptor agonist [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-Enkephalin (DAMGO), the delta-receptor agonist D-Ala-Gly-Phe-Met-NH2 (DALA), the k-receptor agonist (+/-)-trans-U-50488 methanesulfonate (U-50,488H), or the opioid antagonist naloxone methiodide (m-naloxone). As an anatomical control for drug reflux, injections were also made 2mm above the NAc. The main result was that morphine in the NAc significantly increased ethanol and food intake, whereas m-naloxone reduced ethanol intake without affecting food or water intake. Of the selective receptor agonists, DALA in the NAc increased ethanol intake in preference to food. This is in contrast to DAMGO, which stimulated food but not ethanol intake, and the k-agonist U-50,488H, which had no effect on intake. When injected in the anatomical control site 2mm dorsal to the NAc, the opioids had no effects on ethanol intake. These results demonstrate that ethanol intake produced by morphine in the NAc is driven in large part by the delta-receptor. In light of other studies showing ethanol intake to increase enkephalin expression in the NAc, the present finding of enkephalin-induced ethanol intake suggests the existence of a positive feedback loop that fosters alcohol abuse. Naltrexone therapy for alcohol abuse may then act, in part, in the NAc by blocking this opioid-triggered cycle of alcohol intake.

  15. The nucleus accumbens: an interface between cognition, emotion, and action.

    PubMed

    Floresco, Stan B

    2015-01-03

    Nearly 40 years of research on the function of the nucleus accumbens (NAc) has provided a wealth of information on its contributions to behavior but has also yielded controversies and misconceptions regarding these functions. A primary tenet of this review is that, rather than serving as a "reward" center, the NAc plays a key role in action selection, integrating cognitive and affective information processed by frontal and temporal lobe regions to augment the efficiency and vigor of appetitively or aversively motivated behaviors. Its involvement in these functions is most prominent when the appropriate course of action is ambiguous, uncertain, laden with distractors, or in a state of flux. To this end, different subregions of the NAc play dissociable roles in refining action selection, promoting approach toward motivationally relevant stimuli, suppressing inappropriate actions so that goals may be obtained more efficiently, and encoding action outcomes that guide the direction of subsequent ones.

  16. Oxytocin excites nucleus accumbens shell neurons in vivo.

    PubMed

    Moaddab, Mahsa; Hyland, Brian I; Brown, Colin H

    2015-09-01

    Oxytocin modulates reward-related behaviors. The nucleus accumbens shell (NAcSh) is a major relay in the brain reward pathway and expresses oxytocin receptors, but the effects of oxytocin on the activity of NAcSh neurons in vivo are unknown. Hence, we used in vivo extracellular recording to show that intracerebroventricular (ICV) oxytocin administration (0.2μg) robustly increased medial NAcSh neuron mean firing rate; this increase was almost exclusively evident in slow-firing neurons and was not associated with any change in firing pattern. To determine whether oxytocin excitation of medial NAcSh neurons is modulated by drugs that impact the brain reward pathway, we next tested the effects of ICV oxytocin following repeated morphine treatment. In morphine-treated rats, ICV oxytocin did not affect the mean firing rate of medial NAcSh neurons. Taken together, these results show that oxytocin excites medial NAcSh neurons but does not do so after repeated morphine. This could be an important factor in oxytocin modulation of reward-related behaviors, such as drug addiction.

  17. A thalamic input to the nucleus accumbens mediates opiate dependence

    PubMed Central

    Zhu, Yingjie; Wienecke, Carl F.R.; Nachtrab, Gregory; Chen, Xiaoke

    2016-01-01

    Chronic opiate use induces opiate dependence, which is characterized by extremely unpleasant physical and emotional feelings after drug use is terminated. Both rewarding effects of drug and the desire to avoid withdrawal symptoms motivate continued drug use1-3, and the nucleus accumbens (NAc) is important for orchestrating both processes4,5. While multiple inputs to the NAc regulate reward6-9, little is known about the NAc circuitry underlying withdrawal. Here we identify the paraventricular nucleus of the thalamus (PVT) as a prominent input to the NAc mediating the expression of opiate withdrawal induced physical signs and aversive memory. Activity in the PVT to NAc pathway is necessary and sufficient to mediate behavioral aversion. Selectively silencing this pathway abolishes aversive symptoms in two different mouse models of opiate withdrawal. Chronic morphine exposure selectively potentiates excitatory transmission between the PVT and D2-receptor-expressing medium spiny neurons (D2-MSNs) via synaptic insertion of GluA2-lacking AMPA receptors. Notably, in vivo optogenetic depotentiation restores normal transmission at PVT→D2-MSNs synapses and robustly suppresses morphine withdrawal symptoms. These results link morphine-evoked pathway- and cell type-specific plasticity in the PVT→NAc circuit to opiate dependence, and suggest that reprogramming this circuit holds promise for treating opiate addiction. PMID:26840481

  18. Enhanced synthesis and release of dopamine in transgenic mice with gain-of-function α6* nAChRs.

    PubMed

    Wang, Yuexiang; Lee, Jang-Won; Oh, Gyeon; Grady, Sharon R; McIntosh, J Michael; Brunzell, Darlene H; Cannon, Jason R; Drenan, Ryan M

    2014-04-01

    α6β2* nicotinic acetylcholine receptors (nAChRs)s in the ventral tegmental area to nucleus accumbens (NAc) pathway are implicated in the response to nicotine, and recent work suggests these receptors play a role in the rewarding action of ethanol. Here, we studied mice expressing gain-of-function α6β2* nAChRs (α6L9'S mice) that are hypersensitive to nicotine and endogenous acetylcholine. Evoked extracellular dopamine (DA) levels were enhanced in α6L9'S NAc slices compared to control, non-transgenic (non-Tg) slices. Extracellular DA levels in both non-Tg and α6L9'S slices were further enhanced in the presence of GBR12909, suggesting intact DA transporter function in both mouse strains. Ongoing α6β2* nAChR activation by acetylcholine plays a role in enhancing DA levels, as α-conotoxin MII completely abolished evoked DA release in α6L9'S slices and decreased spontaneous DA release from striatal synaptosomes. In HPLC experiments, α6L9'S NAc tissue contained significantly more DA, 3,4-dihydroxyphenylacetic acid, and homovanillic acid compared to non-Tg NAc tissue. Serotonin (5-HT), 5-hydroxyindoleacetic acid, and norepinephrine (NE) were unchanged in α6L9'S compared to non-Tg tissue. Western blot analysis revealed increased tyrosine hydroxylase expression in α6L9'S NAc. Overall, these results show that enhanced α6β2* nAChR activity in NAc can stimulate DA production and lead to increased extracellular DA levels.

  19. Dopamine D1, D2, D3 Receptors, Vesicular Monoamine Transporter Type-2 (VMAT2) and Dopamine Transporter (DAT) Densities in Aged Human Brain

    PubMed Central

    Sun, Jianjun; Xu, Jinbin; Cairns, Nigel J.; Perlmutter, Joel S.; Mach, Robert H.

    2012-01-01

    The dopamine D1, D2, D3 receptors, vesicular monoamine transporter type-2 (VMAT2), and dopamine transporter (DAT) densities were measured in 11 aged human brains (aged 77–107.8, mean: 91 years) by quantitative autoradiography. The density of D1 receptors, VMAT2, and DAT was measured using [3H]SCH23390, [3H]dihydrotetrabenazine, and [3H]WIN35428, respectively. The density of D2 and D3 receptors was calculated using the D3-preferring radioligand, [3H]WC-10 and the D2-preferring radioligand [3H]raclopride using a mathematical model developed previously by our group. Dopamine D1, D2, and D3 receptors are extensively distributed throughout striatum; the highest density of D3 receptors occurred in the nucleus accumbens (NAc). The density of the DAT is 10–20-fold lower than that of VMAT2 in striatal regions. Dopamine D3 receptor density exceeded D2 receptor densities in extrastriatal regions, and thalamus contained a high level of D3 receptors with negligible D2 receptors. The density of dopamine D1 linearly correlated with D3 receptor density in the thalamus. The density of the DAT was negligible in the extrastriatal regions whereas the VMAT2 was expressed in moderate density. D3 receptor and VMAT2 densities were in similar level between the aged human and aged rhesus brain samples, whereas aged human brain samples had lower range of densities of D1 and D2 receptors and DAT compared with the aged rhesus monkey brain. The differential density of D3 and D2 receptors in human brain will be useful in the interpretation of PET imaging studies in human subjects with existing radiotracers, and assist in the validation of newer PET radiotracers having a higher selectivity for dopamine D2 or D3 receptors. PMID:23185343

  20. Music and the nucleus accumbens.

    PubMed

    Mavridis, Ioannis N

    2015-03-01

    Music is a universal feature of human societies over time, mainly because it allows expression and regulation of strong emotions, thus influencing moods and evoking pleasure. The nucleus accumbens (NA), the most important pleasure center of the human brain (dominates the reward system), is the 'king of neurosciences' and dopamine (DA) can be rightfully considered as its 'crown' due to the fundamental role that this neurotransmitter plays in the brain's reward system. Purpose of this article was to review the existing literature regarding the relation between music and the NA. Studies have shown that reward value for music can be coded by activity levels in the NA, whose functional connectivity with auditory and frontal areas increases as a function of increasing musical reward. Listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the NA. The functional connectivity between brain regions mediating reward, autonomic and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. Musical stimuli can significantly increase extracellular DA levels in the NA. NA DA and serotonin were found significantly higher in animals exposed to music. Finally, passive listening to unfamiliar although liked music showed activations in the NA.

  1. Functional Magnetic Resonance Imaging of Electrical and Optogenetic Deep Brain Stimulation at the Rat Nucleus Accumbens

    PubMed Central

    Albaugh, Daniel L.; Salzwedel, Andrew; Van Den Berge, Nathalie; Gao, Wei; Stuber, Garret D.; Shih, Yen-Yu Ian

    2016-01-01

    Deep brain stimulation of the nucleus accumbens (NAc-DBS) is an emerging therapy for diverse, refractory neuropsychiatric diseases. Although DBS therapy is broadly hypothesized to work through large-scale neural modulation, little is known regarding the neural circuits and networks affected by NAc-DBS. Using a healthy, sedated rat model of NAc-DBS, we employed both evoked- and functional connectivity (fc) MRI to examine the functional circuit and network changes achieved by electrical NAc stimulation. Optogenetic-fMRI experiments were also undertaken to evaluate the circuit modulation profile achieved by selective stimulation of NAc neurons. NAc-DBS directly modulated neural activity within prefrontal cortex and a large number of subcortical limbic areas (e.g., amygdala, lateral hypothalamus), and influenced functional connectivity among sensorimotor, executive, and limbic networks. The pattern and extent of circuit modulation measured by evoked-fMRI was relatively insensitive to DBS frequency. Optogenetic stimulation of NAc cell bodies induced a positive fMRI signal in the NAc, but no other detectable downstream responses, indicating that therapeutic NAc-DBS might exert its effect through antidromic stimulation. Our study provides a comprehensive mapping of circuit and network-level neuromodulation by NAc-DBS, which should facilitate our developing understanding of its therapeutic mechanisms of action. PMID:27601003

  2. Effects of fatty acid amide hydrolase inhibition on neuronal responses to nicotine, cocaine and morphine in the nucleus accumbens shell and ventral tegmental area: involvement of PPAR-alpha nuclear receptors.

    PubMed

    Luchicchi, Antonio; Lecca, Salvatore; Carta, Stefano; Pillolla, Giuliano; Muntoni, Anna L; Yasar, Sevil; Goldberg, Steven R; Pistis, Marco

    2010-07-01

    The endocannabinoid system regulates neurotransmission in brain regions relevant to neurobiological and behavioral actions of addicting drugs. We recently demonstrated that inhibition by URB597 of fatty acid amide hydrolase (FAAH), the main enzyme that degrades the endogenous cannabinoid N-acylethanolamine (NAE) anandamide and the endogenous non-cannabinoid NAEs oleoylethanolamide and palmitoylethanolamide, blocks nicotine-induced excitation of ventral tegmental area (VTA) dopamine (DA) neurons and DA release in the shell of the nucleus accumbens (ShNAc), as well as nicotine-induced drug self-administration, conditioned place preference and relapse in rats. Here, we studied whether effects of FAAH inhibition on nicotine-induced changes in activity of VTA DA neurons were specific for nicotine or extended to two drugs of abuse acting through different mechanisms, cocaine and morphine. We also evaluated whether FAAH inhibition affects nicotine-, cocaine- or morphine-induced actions in the ShNAc. Experiments involved single-unit electrophysiological recordings from DA neurons in the VTA and medium spiny neurons in the ShNAc in anesthetized rats. We found that URB597 blocked effects of nicotine and cocaine in the ShNAc through activation of both surface cannabinoid CB1-receptors and alpha-type peroxisome proliferator-activated nuclear receptor. URB597 did not alter the effects of either cocaine or morphine on VTA DA neurons. These results show that the blockade of nicotine-induced excitation of VTA DA neurons, which we previously described, is selective for nicotine and indicate novel mechanisms recruited to regulate the effects of addicting drugs within the ShNAc of the brain reward system.

  3. Prefrontal Cortex to Accumbens Projections in Sleep Regulation of Reward

    PubMed Central

    Liu, Zheng; Wang, Yao; Cai, Li; Li, Yizhi; Chen, Bo; Dong, Yan

    2016-01-01

    Sleep profoundly affects the emotional and motivational state. In humans and animals, loss of sleep often results in enhanced motivation for reward, which has direct implications for health risks as well as potential benefits. Current study aims at understanding the mechanisms underlying sleep deprivation (SDe)-induced enhancement of reward seeking. We found that after acute SDe, mice had an increase in sucrose seeking and consumption but not food intake, suggesting a selective enhancement of motivation for reward. In the nucleus accumbens (NAc), a key brain region regulating emotional and motivational responses, we observed a decrease in the ratio of the overall excitatory over inhibitory synaptic inputs onto NAc principle neurons after SDe. The shift was partly mediated by reduced glutamatergic transmission of presynaptic origin. Further analysis revealed that there was selective reduction of the glutamate release probability at the medial prefrontal cortex (mPFC)-to-NAc synapses, but not those from the hippocampus, thalamus, or the basal lateral amygdala. To reverse this SDe-induced synaptic alteration, we expressed the stabilized step function opsin (SSFO) in the mPFC; optogenetic stimulation of SSFO at mPFC-to-NAc projection terminals persistently enhanced the action potential-dependent glutamate release. Intra-NAc optogenetic stimulation of SSFO selectively at mPFC-to-NAc terminals restored normal sucrose seeking in mice after SDe without affecting food intake. These results highlight the mPFC-to-NAc projection as a key circuit-based target for sleep to regulate reward-motivated behaviors. SIGNIFICANCE STATEMENT Sleep loss, a costly challenge of modern society, has profound physiological and psychological consequences, including altered reward processing of the brain. The current study aims at understanding the mechanisms underlying sleep deprivation-induced enhancement of reward seeking. We identify that the medial prefrontal cortex (m

  4. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens.

    PubMed

    LaPlant, Quincey; Vialou, Vincent; Covington, Herbert E; Dumitriu, Dani; Feng, Jian; Warren, Brandon L; Maze, Ian; Dietz, David M; Watts, Emily L; Iñiguez, Sergio D; Koo, Ja Wook; Mouzon, Ezekiell; Renthal, William; Hollis, Fiona; Wang, Hui; Noonan, Michele A; Ren, Yanhua; Eisch, Amelia J; Bolaños, Carlos A; Kabbaj, Mohamed; Xiao, Guanghua; Neve, Rachael L; Hurd, Yasmin L; Oosting, Ronald S; Fan, Gouping; Morrison, John H; Nestler, Eric J

    2010-09-01

    Despite abundant expression of DNA methyltransferases (Dnmts) in brain, the regulation and behavioral role of DNA methylation remain poorly understood. We found that Dnmt3a expression was regulated in mouse nucleus accumbens (NAc) by chronic cocaine use and chronic social defeat stress. Moreover, NAc-specific manipulations that block DNA methylation potentiated cocaine reward and exerted antidepressant-like effects, whereas NAc-specific Dnmt3a overexpression attenuated cocaine reward and was pro-depressant. On a cellular level, we found that chronic cocaine use selectively increased thin dendritic spines on NAc neurons and that DNA methylation was both necessary and sufficient to mediate these effects. These data establish the importance of Dnmt3a in the NAc in regulating cellular and behavioral plasticity to emotional stimuli.

  5. Synaptic and Behavioral Profile of Multiple Glutamatergic Inputs to the Nucleus Accumbens

    PubMed Central

    Britt, Jonathan P.; Benaliouad, Faiza; McDevitt, Ross A.; Stuber, Garret D.; Wise, Roy A.; Bonci, Antonello

    2013-01-01

    SUMMARY Excitatory afferents to the nucleus accumbens (NAc) are thought to facilitate reward seeking by encoding reward-associated cues. Selective activation of different glutamatergic inputs to the NAc can produce divergent physiological and behavioral responses, but mechanistic explanations for these pathway-specific effects are lacking. Here, we compared the innervation patterns and synaptic properties of ventral hippocampus, basolateral amygdala, and prefrontal cortex input to the NAc. Ventral hippocampal input was found to be uniquely localized to the medial NAc shell, where it was predominant and selectively potentiated following cocaine exposure. In vivo, bidirectional optogenetic manipulations of this pathway attenuated and enhanced cocaine-induced locomotion. Challenging the idea that any of these inputs encode motivationally-neutral information, activation of each discrete pathway reinforced instrumental behaviors. Finally, direct optical activation of medium spiny neurons proved to be capable of supporting self-stimulation, demonstrating that behavioral reinforcement is an explicit consequence of strong excitatory drive to the NAc. PMID:23177963

  6. Cocaine Exposure Reorganizes Cell-Type and Input-Specific Connectivity in the Nucleus Accumbens

    PubMed Central

    MacAskill, Andrew F.; Cassel, John M.; Carter, Adam G.

    2014-01-01

    Exposure to cocaine alters the structural and functional properties of medium spiny neurons (MSNs) in the Nucleus Accumbens (NAc). These changes suggest a rewiring of the NAc circuit, with an enhancement of excitatory synaptic connections onto MSNs. However, it is unknown how drug exposure alters the balance of long-range afferents onto different cell types in the NAc. Here we use whole-cell recordings, two-photon microscopy, optogenetics and pharmacogenetics to show how repeated cocaine alters connectivity in the mouse NAc medial shell. We first determine that cocaine selectively enhances amygdala innervation of D1-MSNs relative to D2-MSNs. We then show that amygdala activity is required for cocaine-induced changes to behavior and connectivity. Finally, we establish how heightened amygdala innervation can explain the structural and functional changes induced by cocaine. Our findings reveal how exposure to drugs of abuse fundamentally reorganizes cell-type and input-specific connectivity in the NAc. PMID:25108911

  7. Ceftriaxone attenuates acute cocaine‐evoked dopaminergic neurotransmission in the nucleus accumbens of the rat

    PubMed Central

    Rasmussen, B A; Tallarida, C S; Scholl, J L; Forster, G L; Unterwald, E M; Rawls, S M

    2015-01-01

    Background and Purpose Ceftriaxone is a β‐lactam antibiotic and glutamate transporter activator that reduces the reinforcing effects of psychostimulants. Ceftriaxone also reduces locomotor activation following acute psychostimulant exposure, suggesting that alterations in dopamine transmission in the nucleus accumbens contribute to its mechanism of action. In the present studies we tested the hypothesis that pretreatment with ceftriaxone disrupts acute cocaine‐evoked dopaminergic neurotransmission in the nucleus accumbens. Experimental Approach Adult male Sprague–Dawley rats were pretreated with saline or ceftriaxone (200 mg kg−1, i.p. × 10 days) and then challenged with cocaine (15 mg kg−1, i.p.). Motor activity, dopamine efflux (via in vivo microdialysis) and protein levels of tyrosine hydroxylase (TH), the dopamine transporter and organic cation transporter as well as α‐synuclein, Akt and GSK3β were analysed in the nucleus accumbens. Key Results Ceftriaxone‐pretreated rats challenged with cocaine displayed reduced locomotor activity and accumbal dopamine efflux compared with saline‐pretreated controls challenged with cocaine. The reduction in cocaine‐evoked dopamine levels was not counteracted by excitatory amino acid transporter 2 blockade in the nucleus accumbens. Pretreatment with ceftriaxone increased Akt/GSK3β signalling in the nucleus accumbens and reduced levels of dopamine transporter, TH and phosphorylated α‐synuclein, indicating that ceftriaxone affects numerous proteins involved in dopaminergic transmission. Conclusions and Implications These results are the first evidence that ceftriaxone affects cocaine‐evoked dopaminergic transmission, in addition to its well‐described effects on glutamate, and suggest that its ability to attenuate cocaine‐induced behaviours, such as psychomotor activity, is due in part to reduced dopaminergic neurotransmission in the nucleus accumbens. PMID:26375494

  8. NAC-1, a potential stem cell pluripotency factor, contributes to paclitaxel resistance in ovarian cancer through inactivating Gadd45 pathway.

    PubMed

    Jinawath, N; Vasoontara, C; Yap, K-L; Thiaville, M M; Nakayama, K; Wang, T-L; Shih, I-M

    2009-05-07

    Nucleus accumbens-1 (Nac1 or NAC-1) belongs to the BTB/POZ (Pox virus and Zinc finger/Bric-a-brac Tramtrack Broad complex) transcription factor family and is a novel protein that potentially participates in self-renewal and pluripotency in embryonic stem cells. In human cancer, NAC-1 is upregulated in several types of neoplasms, but particularly in recurrent chemoresistant ovarian carcinomas, suggesting a biological role for NAC-1 in the development of drug resistance in ovarian cancer. We have assessed this possibility and shown a correlation between NAC-1 expression and ex vivo paclitaxel resistance in ovarian serous carcinoma tissues and cell lines. We found that expression of Gadd45-gamma-interacting protein 1 (Gadd45gip1), a downstream target negatively regulated by NAC-1, was reduced in paclitaxel-resistant cells. Ectopic expression of NAC-1 or knockdown of Gadd45gip1 conferred paclitaxel resistance, whereas NAC-1 knockdown or ectopic expression of Gadd45gip1 increased paclitaxel sensitivity. Furthermore, silencing NAC-1 expression or disrupting NAC-1 homodimerization by a dominant negative NAC-1 protein that contained only the BTB/POZ domain induced the expression of Gadd45gamma, which interacted with Gadd45gip1. Reducing Gadd45gamma expression by small hairpin RNAs partially enhanced paclitaxel resistance. Thus, this study provides new evidence that NAC-1 upregulation and homodimerization contribute to tumor recurrence by equipping ovarian cancer cells with the paclitaxel-resistant phenotype through negative regulation of the Gadd45 pathway.

  9. Lesions of the nucleus accumbens disrupt reinforcement omission effects in rats.

    PubMed

    Judice-Daher, Danielle M; Bueno, José Lino O

    2013-09-01

    The reinforcement omission effects (ROEs) have been attributed to both motivational and attentional consequences of the surprising reinforcement omission. Some studies have been showed amygdala is part of a circuit involved in the ROEs modulation. The view that amygdala lesions interfere with the ROEs is supported by evidence involving amygdala in responses correlated with motivational processes. These processes depend on the operation of separate amygdala areas and their connections with other brain systems. It has been suggested the interaction between the amygdala and the nucleus accumbens (NAC) is important to the modulation of motivational processes. Recent neuroimaging studies in human revealed reward delivery enhances activity of subcortical structures (NAC and amygdala), whereas reward omission reduces the activity in these same structures. The present study aimed to clarify whether the mechanisms related to ROEs depend on NAC. Prior to acquisition training, rats received bilateral excitotoxic lesions of NAC (NAC group) or sham lesions (Sham group). Following postoperative recovery, the rats were trained on a fixed-interval with limited hold signaled schedule of reinforcement. After acquisition of stable performance, the training was changed from 100% to 50% schedule of reinforcement. Both NAC and Sham groups presented the ROEs. However, after nonreinforcement, the response rates of the NAC group were lower than those registered in the Sham group. The performance of the NAC group decreased in the period following nonreinforcement when compared to the period preceding reinforcement omission. These findings suggest the NAC is part of the neural substrate involved in the ROEs modulation.

  10. Cytoarchitectural impairments in the medium spiny neurons of the Nucleus Accumbens core of hyperactive juvenile rats.

    PubMed

    González-Burgos, I; García-Martínez, S; Velázquez-Zamora, D A; Ponce-Rolón, R

    2010-10-01

    Dopaminergic activity in the Nucleus Accumbens has been strongly implicated in the motor hyperactivity associated with Attention deficit hyperactivity disorder. Dopaminergic and glutamatergic terminals converge on the dendritic spines of medium spiny neurons of the nucleus accumbens core, which modulate the excitatory glutamatergic activity. In this work, a Golgi study was carried out to investigate the effects of dopamine depletion on the cytoarchitecture of dendritic spines of nucleus accumbens core medium spiny neurons. The dopaminergic system of newborn male rats was lesioned intracisternally by using 6-hydroxydopamine, and subsequently, the motor activity, spine density, and the proportion of thin, stubby, mushroom, wide, branched, and double spines was compared to those in control and intact animals. Motor activity was significantly increased in the dopamine-depleted animals and while the spine density was reduced, there was no change in the proportion of the specific types of spines. Larger thin spines were observed in the dopamine-depleted animals. Indeed, dopamine depletion may lead to spine retraction due to the disregulation of spine development, and/or an increase in glutamatergic activity. The enlargement of thin spines may suggest a compensatory mechanism to increase the efficiency of synaptic inputs in response to a decrease in spines number. Together, the present findings suggest an alteration to the excitatory/inhibitory balance on dendritic spines of medium spiny neurons of the nucleus accumbens core in hyperactive juvenile rats following early dopamine depletion.

  11. Dopamine, behavioral economics, and effort.

    PubMed

    Salamone, John D; Correa, Merce; Farrar, Andrew M; Nunes, Eric J; Pardo, Marta

    2009-01-01

    There are numerous problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry. The present review is focused upon the involvement of nucleus accumbens DA in behavioral activation and effort-related processes. Viewed from the framework of behavioral economics, the effects of accumbens DA depletions and antagonism on food-reinforced behavior are highly dependent upon the work requirements of the instrumental task, and DA depleted rats are more sensitive to increases in response costs (i.e., ratio requirements). Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related choice behavior. Rats with accumbens DA depletions or antagonism reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead these rats select a less-effortful type of food-seeking behavior. Nucleus accumbens DA and adenosine interact in the regulation of effort-related functions, and other brain structures (anterior cingulate cortex, amygdala, ventral pallidum) also are involved. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue or anergia in depression and other neurological disorders.

  12. Dopamine, Behavioral Economics, and Effort

    PubMed Central

    Salamone, John D.; Correa, Merce; Farrar, Andrew M.; Nunes, Eric J.; Pardo, Marta

    2009-01-01

    There are numerous problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry. The present review is focused upon the involvement of nucleus accumbens DA in behavioral activation and effort-related processes. Viewed from the framework of behavioral economics, the effects of accumbens DA depletions and antagonism on food-reinforced behavior are highly dependent upon the work requirements of the instrumental task, and DA depleted rats are more sensitive to increases in response costs (i.e., ratio requirements). Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related choice behavior. Rats with accumbens DA depletions or antagonism reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead these rats select a less-effortful type of food-seeking behavior. Nucleus accumbens DA and adenosine interact in the regulation of effort-related functions, and other brain structures (anterior cingulate cortex, amygdala, ventral pallidum) also are involved. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue or anergia in depression and other neurological disorders. PMID:19826615

  13. Paradoxical augmented relapse in alcohol-dependent rats during deep-brain stimulation in the nucleus accumbens

    PubMed Central

    Hadar, R; Vengeliene, V; Barroeta Hlusicke, E; Canals, S; Noori, H R; Wieske, F; Rummel, J; Harnack, D; Heinz, A; Spanagel, R; Winter, C

    2016-01-01

    Case reports indicate that deep-brain stimulation in the nucleus accumbens may be beneficial to alcohol-dependent patients. The lack of clinical trials and our limited knowledge of deep-brain stimulation call for translational experiments to validate these reports. To mimic the human situation, we used a chronic-continuous brain-stimulation paradigm targeting the nucleus accumbens and other brain sites in alcohol-dependent rats. To determine the network effects of deep-brain stimulation in alcohol-dependent rats, we combined electrical stimulation of the nucleus accumbens with functional magnetic resonance imaging (fMRI), and studied neurotransmitter levels in nucleus accumbens-stimulated versus sham-stimulated rats. Surprisingly, we report here that electrical stimulation of the nucleus accumbens led to augmented relapse behavior in alcohol-dependent rats. Our associated fMRI data revealed some activated areas, including the medial prefrontal cortex and caudate putamen. However, when we applied stimulation to these areas, relapse behavior was not affected, confirming that the nucleus accumbens is critical for generating this paradoxical effect. Neurochemical analysis of the major activated brain sites of the network revealed that the effect of stimulation may depend on accumbal dopamine levels. This was supported by the finding that brain-stimulation-treated rats exhibited augmented alcohol-induced dopamine release compared with sham-stimulated animals. Our data suggest that deep-brain stimulation in the nucleus accumbens enhances alcohol-liking probably via augmented dopamine release and can thereby promote relapse. PMID:27327255

  14. Paradoxical augmented relapse in alcohol-dependent rats during deep-brain stimulation in the nucleus accumbens.

    PubMed

    Hadar, R; Vengeliene, V; Barroeta Hlusicke, E; Canals, S; Noori, H R; Wieske, F; Rummel, J; Harnack, D; Heinz, A; Spanagel, R; Winter, C

    2016-06-21

    Case reports indicate that deep-brain stimulation in the nucleus accumbens may be beneficial to alcohol-dependent patients. The lack of clinical trials and our limited knowledge of deep-brain stimulation call for translational experiments to validate these reports. To mimic the human situation, we used a chronic-continuous brain-stimulation paradigm targeting the nucleus accumbens and other brain sites in alcohol-dependent rats. To determine the network effects of deep-brain stimulation in alcohol-dependent rats, we combined electrical stimulation of the nucleus accumbens with functional magnetic resonance imaging (fMRI), and studied neurotransmitter levels in nucleus accumbens-stimulated versus sham-stimulated rats. Surprisingly, we report here that electrical stimulation of the nucleus accumbens led to augmented relapse behavior in alcohol-dependent rats. Our associated fMRI data revealed some activated areas, including the medial prefrontal cortex and caudate putamen. However, when we applied stimulation to these areas, relapse behavior was not affected, confirming that the nucleus accumbens is critical for generating this paradoxical effect. Neurochemical analysis of the major activated brain sites of the network revealed that the effect of stimulation may depend on accumbal dopamine levels. This was supported by the finding that brain-stimulation-treated rats exhibited augmented alcohol-induced dopamine release compared with sham-stimulated animals. Our data suggest that deep-brain stimulation in the nucleus accumbens enhances alcohol-liking probably via augmented dopamine release and can thereby promote relapse.

  15. Cell-Type Specific Increases in Female Hamster Nucleus Accumbens Spine Density following Female Sexual Experience

    PubMed Central

    Staffend, Nancy A.; Hedges, Valerie L.; Chemel, Benjamin R.; Watts, Val J.; Meisel, Robert L.

    2013-01-01

    Female sexual behavior is an established model of a naturally motivated behavior which is regulated by activity within the mesolimbic dopamine system. Repeated activation of the mesolimbic circuit by female sexual behavior elevates dopamine release and produces persistent postsynaptic alterations to dopamine D1 receptor signaling within the nucleus accumbens. Here we demonstrate that sexual experience in female Syrian hamsters significantly increases spine density and alters morphology selectively in D1 receptor expressing medium spiny neurons within the nucleus accumbens core, with no corresponding change in dopamine receptor binding or protein expression. Our findings demonstrate that previous life experience with a naturally motivated behavior has the capacity to induce persistent structural alterations to the mesolimbic circuit that can increase reproductive success and are analogous to the persistent structural changes following repeated exposure to many drugs of abuse. PMID:23934655

  16. Nucleus accumbens μ-opioid receptors mediate social reward.

    PubMed

    Trezza, Viviana; Damsteegt, Ruth; Achterberg, E J Marijke; Vanderschuren, Louk J M J

    2011-04-27

    Positive social interactions are essential for emotional well-being and proper behavioral development of young individuals. Here, we studied the neural underpinnings of social reward by investigating the involvement of opioid neurotransmission in the nucleus accumbens (NAc) in social play behavior, a highly rewarding social interaction in adolescent rats. Intra-NAc infusion of morphine (0.05-0.1 μg) increased pinning and pouncing, characteristic elements of social play behavior in rats, and blockade of NAc opioid receptors with naloxone (0.5 μg) prevented the play-enhancing effects of systemic morphine (1 mg/kg, s.c.) administration. Thus, stimulation of opioid receptors in the NAc was necessary and sufficient for morphine to increase social play. Intra-NAc treatment with the selective μ-opioid receptor agonist [D-Ala(2),N-MePhe(4),Gly(5)-ol]enkephalin (DAMGO) (0.1-10 ng) and the μ-opioid receptor antagonist Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP) (0.3-3 μg) increased and decreased social play, respectively. The δ-opioid receptor agonist DPDPE ([D-Pen(2),D-Pen(5)]-enkephalin) (0.3-3 μg) had no effects, whereas the κ-opioid receptor agonist U69593 (N-methyl-2-phenyl-N-[(5R,7S,8S)-7-(pyrrolidin-1-yl)-1-oxaspiro[4.5]dec-8-yl]acetamide) (0.01-1 μg) decreased social play. Intra-NAc treatment with β-endorphin (0.01-1 μg) increased social play, but met-enkephalin (0.1-5 μg) and the enkephalinase inhibitor thiorphan (0.1-1 μg) were ineffective. DAMGO (0.1-10 ng) increased social play after infusion into both the shell and core subregions of the NAc. Last, intra-NAc infusion of CTAP (3 μg) prevented the development of social play-induced conditioned place preference. These findings identify NAc μ-opioid receptor stimulation as an important neural mechanism for the attribution of positive value to social interactions in adolescent rats. Altered NAc μ-opioid receptor function may underlie social impairments in psychiatric disorders such as autism

  17. Invariance of the density of dopamine uptake sites and dopamine metabolism in the rat brain after a chronic treatment with the dopamine uptake inhibitor GBR 12783.

    PubMed

    Boulay, D; Leroux-Nicollet, I; Duterte-Boucher, D; Naudon, L; Costentin, J

    1994-01-01

    A chronic treatment (10 mg/kg, twice daily during 9 days) with the dopamine uptake inhibitor GBR 12783 was performed in rats at a dose increasing their locomotor activity. Forty-eight hours after the last administration, animals were sacrificed and 3H mazindol binding was performed on brain slices. Autoradiographic analysis revealed no change in this binding relatively to control animals in regions with high dopamine contents: striatum, nucleus accumbens, olfactory tubercle, substantia nigra and ventral tegmentum area. The treatment did not either modify the levels of dopamine (DA) and metabolites (HVA, DOPAC) both in the striatum and the nucleus accumbens. Thus, early after the end of the treatment, the chronic blockade of the dopamine uptake complex regulates neither the dopamine uptake complex nor the dopamine metabolism.

  18. Levo-tetrahydropalmatine attenuates the development and expression of methamphetamine-induced locomotor sensitization and the accompanying activation of ERK in the nucleus accumbens and caudate putamen in mice.

    PubMed

    Zhao, N; Chen, Y; Zhu, J; Wang, L; Cao, G; Dang, Y; Yan, C; Wang, J; Chen, T

    2014-01-31

    Levo-tetrahydropalmatine (l-THP) is an alkaloid purified from corydalis and has been used in many traditional Chinese herbal preparations for its analgesic, sedative, and hypnotic properties. Previous studies indicated that l-THP has modest antagonist activity against dopamine receptors and thus it might have potential therapeutic effects on drug addiction. However, whether and how l-THP contributes to methamphetamine (METH)-induced locomotor sensitization remains unclear. Therefore, the current study aims to examine the roles of l-THP in the development and expression of METH-induced locomotor sensitization as well as the accompanying extracellular-regulated kinase (ERK) activation in the nucleus accumbens (NAc), caudate putamen (CPu) and prefrontal cortex (PFc) in mice. We found that moderate doses of METH (0.5 and 2 mg/kg) induced hyper-locomotor activity in mice on all METH injection days whereas high dose of METH (5 mg/kg)-treated mice displayed only acute locomotor response to METH and severe stereotyped behaviors on the first day after drug injection. Interestingly, only 2 mg/kg dose of METH-induced locomotor sensitization which was accompanied by the activation of ERK1/2 in the NAc and CPu in mice. Although l-THP (5 and 10 mg/kg) per se did not induce obvious changes in locomotor activities in mice, its co-administration with METH could significantly attenuate acute METH-induced hyper-locomotor activity, the development and expression of METH-induced locomotor sensitization, and the accompanying ERK1/2 activation in the NAc and CPu. These results suggest that l-THP has potential therapeutic effect on METH-induced locomotor sensitization, and the underlying molecular mechanism might be related to its inhibitory effect on ERK1/2 phosphorylation in the NAc and CPu.

  19. Inhibitory avoidance memory deficit induced by scopolamine: interaction with glutamatergic system in the nucleus accumbens.

    PubMed

    Pakpour, Bahareh; Ahmadi, Shamseddin; Nayer-Nouri, Touraj; Oryan, Shahrbanoo; Zarrindast, Mohammad Reza

    2010-12-01

    The possible involvement of N-methyl-D-aspartate (NMDA) receptors of the nucleus accumbens (NAc) in amnesia induced by scopolamine was investigated. An inhibitory (passive) avoidance task was used for memory assessment in male Wistar rats. The results revealed that intra-NAc administration of a nonselective muscarinic acetylcholine antagonist, scopolamine (1 and 2 g/rat) impaired memory consolidation in the animals when tested 24 h later. Post-training intra-NAc administration of NMDA (0.005 and 0.01 g/rat) also impaired memory consolidation, whereas post-training intra-NAc administration of the NMDA receptor antagonist, MK-801 (0.5, 1 and 1.5 g/rat) did not. Intra-NAc co-administration of an ineffective dose of NMDA with ineffective doses of scopolamine (0.25 and 0.5 g/rat) after training had no significant effect on memory consolidation, but intra-NAc injections of effective doses of NMDA (0.005 and 0.01 g/rat) prevented the amnesic effect of an effective dose of scopolamine (2 g/rat). In contrast, intra-NAc co-administration of MK-801 (0.5, 1 and 1.5 g/rat) along with an effective dose of scopolamine (2 g/rat) did not prevent the effect of the latter drug. It can be concluded that NMDA receptors in the NAc are involved in the modulation of memory consolidation that was affected by scopolamine.

  20. Pain-Related Depression of the Mesolimbic Dopamine System in Rats: Expression, Blockade by Analgesics, and Role of Endogenous κ-opioids

    PubMed Central

    Leitl, Michael D; Onvani, Sara; Bowers, M Scott; Cheng, Kejun; Rice, Kenner C; Carlezon, William A; Banks, Matthew L; Negus, S Stevens

    2014-01-01

    Pain is often associated with depression of behavior and mood, and relief of pain-related depression is a common goal of treatment. This study tested the hypothesis that pain-related behavioral depression is mediated by activation of endogenous κ-opioid systems and subsequent depression of mesolimbic dopamine release. Adult male Sprague–Dawley rats were implanted with electrodes targeting the medial forebrain bundle (for behavior studies of intracranial self-stimulation (ICSS)) or with cannulae for microdialysis measures of nucleus accumbens dopamine (NAc DA). Changes in ICSS and NAc DA were examined after treatment with a visceral noxious stimulus (intraperitoneal injection of dilute lactic acid) or an exogenous κ-agonist (U69593). Additional studies examined the sensitivity of acid and U69593 effects to blockade by two analgesics (the nonsteroidal antiinflammatory drug ketoprofen and the μ-opioid agonist morphine) or by the κ-antagonist norbinaltorphimine (norBNI). The effects of acid were also examined on mRNA expression for prodynorphin (PDYN) and κ-opioid receptors (KORs) in mesocorticolimbic brain regions. Both acid and U69593 depressed ICSS and extracellular levels of NAc DA. Pain-related acid effects were blocked by ketoprofen and morphine but not by norBNI. The U69593 effects were blocked by norBNI but not by ketoprofen, and were only attenuated by morphine. Acid did not significantly alter PDYN or KOR in NAc, but it produced a delayed increase in PDYN in prefrontal cortex. These results support a key role for the mesolimbic DA system, but a more nuanced role for endogenous κ-opioid systems, in mediating acute pain-related behavioral depression in rats. PMID:24008352

  1. Hippocampal cannabinoid transmission modulates dopamine neuron activity: impact on rewarding memory formation and social interaction.

    PubMed

    Loureiro, Michael; Renard, Justine; Zunder, Jordan; Laviolette, Steven R

    2015-05-01

    Disturbances in cannabinoid type 1 receptor (CB1R) signaling have been linked to emotional and cognitive deficits characterizing neuropsychiatric disorders, including schizophrenia. Thus, there is growing interest in characterizing the relationship between cannabinoid transmission, emotional processing, and dopamine (DA)-dependent behavioral deficits. The CB1R is highly expressed in the mammalian nervous system, particularly in the hippocampus. Activation of the ventral hippocampal subregion (vHipp) is known to increase both the activity of DAergic neurons located in the ventral tegmental area (VTA) and DA levels in reward-related brain regions, particularly the nucleus accumbens (NAc). However, the possible functional relationship between hippocampal CB1R transmission and VTA DA neuronal activity is not currently understood. In this study, using in vivo neuronal recordings in rats, we demonstrate that activation of CB1R in the vHipp strongly increases VTA DA neuronal firing and bursting activity, while simultaneously decreasing the activity of VTA non-DA neurons. Furthermore, using a conditioned place preference procedure and a social interaction test, we report that intra-vHipp CB1R activation potentiates the reward salience of normally sub-threshold conditioning doses of opiates and induces deficits in natural sociability and social recognition behaviors. Finally, these behavioral effects were prevented by directly blocking NAc DAergic transmission. Collectively, these findings identify hippocampal CB1R transmission as a critical modulator of the mesolimbic DA pathway and in the processing of reward and social-related behavioral phenomena.

  2. Gating of dopamine transmission by calcium and axonal N-, Q-, T- and L-type voltage-gated calcium channels differs between striatal domains

    PubMed Central

    Brimblecombe, Katherine R; Gracie, Caitlin J; Platt, Nicola J; Cragg, Stephanie J

    2015-01-01

    The axonal voltage-gated Ca2+ channels (VGCCs) that catalyse dopamine (DA) transmission are incompletely defined. Yet, they are critical to DA function and might prime subpopulations of DA neurons for parkinsonian degeneration. Previous studies of VGCCs will have encompassed those on striatal cholinergic interneurons, which strongly influence DA transmission. We identify which VGCCs on DA axons govern DA transmission, we determine their dynamic properties and reveal an underlying basis for differences between the caudate putamen (CPu) and nucleus accumbens (NAc). We detected DA release evoked electrically during nicotinic receptor blockade or optogenetically by light activation of channel rhodopsin-expressing DA axons in mouse striatal slices. Subtype-specific VGCC blockers indicated that N-, Q-, T- and L-VGCCs govern DA release in CPu, but in NAc, T and L-channels are relatively silent. The roles of the most dominant channels were inversely frequency-dependent, due to low-pass filtering of DA release by Ca2+-dependent relationships between initial release probability and short-term plasticity. Ca2+ concentration–response curves revealed that differences between CPu and NAc were due to greater underlying Ca2+ sensitivity of DA transmission from CPu axons. Functions for ‘silent’ L- and T-channels in NAc could be unmasked by elevating extracellular [Ca2+]. Furthermore, we identified a greater coupling between BAPTA-sensitive, fast Ca2+ transients and DA transmission in CPu axons, and evidence for endogenous fast buffering of Ca2+ in NAc. These data reveal that a range of VGCCs operate dynamically on DA axons, depending on local driving forces. Furthermore, they reveal dramatic differences in Ca2+ handling between axonal subpopulations that show different vulnerability to parkinsonian degeneration. PMID:25533038

  3. Effects of VMAT2 inhibitors lobeline and GZ-793A on methamphetamine-induced changes in dopamine release, metabolism and synthesis in vivo.

    PubMed

    Meyer, Andrew C; Neugebauer, Nichole M; Zheng, Guangrong; Crooks, Peter A; Dwoskin, Linda P; Bardo, Michael T

    2013-10-01

    Vesicular monoamine transporter-2 (VMAT2) inhibitors reduce methamphetamine (METH) reward in rats. The current study determined the effects of VMAT2 inhibitors lobeline (LOB; 1 or 3 mg/kg) and N-(1,2R-dihydroxylpropyl)-2,6-cis-di(4-methoxyphenethyl)piperidine hydrochloride (GZ-793A; 15 or 30 mg/kg) on METH-induced (0.5 mg/kg, SC) changes in extracellular dopamine (DA) and its metabolite dihydroxyphenylacetic acid (DOPAC) in the reward-relevant nucleus accumbens (NAc) shell using in vivo microdialysis. The effect of GZ-793A (15 mg/kg) on DA synthesis in tissue also was investigated in NAc, striatum, medial prefrontal cortex and orbitofrontal cortex. In NAc shell, METH produced a time-dependent increase in extracellular DA and decrease in DOPAC. Neither LOB nor GZ-793A alone altered extracellular DA; however, both drugs increased extracellular DOPAC. In combination with METH, LOB did not alter the effects of METH on DA; however, GZ-793A, which has greater selectivity than LOB for inhibiting VMAT2, reduced the duration of the METH-induced increase in extracellular DA. Both LOB and GZ-793A enhanced the duration of the METH-induced decrease in extracellular DOPAC. METH also increased tissue DA synthesis in NAc and striatum, whereas GZ-793A decreased synthesis; no effect of METH or GZ-793A on DA synthesis was found in medial prefrontal cortex or orbitofrontal cortex. These results suggest that selective inhibition of VMAT2 produces a time-dependent decrease in DA release in NAc shell as a result of alterations in tyrosine hydroxylase activity, which may play a role in the ability of GZ-793A to decrease METH reward.

  4. The National Astronomy Consortium (NAC)

    NASA Astrophysics Data System (ADS)

    Von Schill, Lyndele; Ivory, Joyce

    2017-01-01

    The National Astronomy Consortium (NAC) program is designed to increase the number of underrepresented minority students into STEM and STEM careers by providing unique summer research experiences followed by long-term mentoring and cohort support. Hallmarks of the NAC program include: research or internship opportunities at one of the NAC partner sites, a framework to continue research over the academic year, peer and faculty mentoring, monthly virtual hangouts, and much more. NAC students also participate in two professional travel opportunities each year: the annual NAC conference at Howard University and poster presentation at the annual AAS winter meeting following their summer internship.The National Astronomy Consortium (NAC) is a program led by the National Radio Astronomy Consortium (NRAO) and Associated Universities, Inc. (AUI), in partnership with the National Society of Black Physicist (NSBP), along with a number of minority and majority universities.

  5. Social stress-escalated intermittent alcohol drinking: modulation by CRF-R1 in the ventral tegmental area and accumbal dopamine in mice

    PubMed Central

    Hwa, Lara S.; Holly, Elizabeth N.; DeBold, Joseph F.; Miczek, Klaus A.

    2015-01-01

    Rationale Excessive alcohol (EtOH) drinking is difficult to model in animals despite the extensive human literature demonstrating that stress increases EtOH consumption. Objective The current experiments show escalations in voluntary EtOH drinking caused by a history of social defeat stress and intermittent access to EtOH in C57BL/6J mice compared to non-stressed mice given intermittent EtOH or continuous EtOH. To explore a mechanistic link between stress and drinking, we studied the role of corticotropin-releasing factor type-1 receptors (CRF-R1) in the dopamine-rich ventral tegmental area (VTA). Results Intra-VTA infusions of a CRF-R1 antagonist, CP376395, infused into the VTA dose-dependently and selectively reduced intermittent EtOH intake in stressed and non-stressed mice, but not in mice given continuous EtOH. In contrast, intra-VTA infusions of the CRF-R2 antagonist astressin2B non-specifically suppressed both EtOH and H2O drinking in the stressed group without effects in the non-stressed mice. Using in vivo microdialysis in the nucleus accumbens shell (NAc), we observed that stressed mice drinking EtOH intermittently had elevated levels of tonic dopamine concentrations compared to non-stressed drinking mice. Also, VTA CP376395 potentiated dopamine output to the NAc only in the stressed group causing further elevations of dopamine post-infusion. Conclusions These findings illustrate a role for extrahypothalamic CRF-R1 as especially important for stress-escalated EtOH drinking beyond schedule-escalated EtOH drinking. CRF-R1 may be a mechanism for balancing the dysregulation of stress and reward in alcohol use disorders. PMID:26576941

  6. Central serotonin(2B) receptor blockade inhibits cocaine-induced hyperlocomotion independently of changes of subcortical dopamine outflow.

    PubMed

    Devroye, Céline; Cathala, Adeline; Di Marco, Barbara; Caraci, Filippo; Drago, Filippo; Piazza, Pier Vincenzo; Spampinato, Umberto

    2015-10-01

    The central serotonin2B receptor (5-HT2BR) is currently considered as an interesting pharmacological target for improved treatment of drug addiction. In the present study, we assessed the effect of two selective 5-HT2BR antagonists, RS 127445 and LY 266097, on cocaine-induced hyperlocomotion and dopamine (DA) outflow in the nucleus accumbens (NAc) and the dorsal striatum of freely moving rats. The peripheral administration of RS 127445 (0.16 mg/kg, i.p.) or LY 266097 (0.63 mg/kg, i.p.) significantly reduced basal DA outflow in the NAc shell, but had no effect on cocaine (10 mg/kg, i.p.)-induced DA outflow in this brain region. Also, RS 127445 failed to modify both basal and cocaine-induced DA outflow in the NAc core and the dorsal striatum. Conversely, both 5-HT2BR antagonists reduced cocaine-induced hyperlocomotion. Furthermore, RS 127445 as well as the DA-R antagonist haloperidol (0.1 mg/kg, i.p.) reduced significantly the late-onset hyperlocomotion induced by the DA-R agonist quinpirole (0.5 mg/kg, s.c.). Altogether, these results demonstrate that 5-HT2BR blockade inhibits cocaine-induced hyperlocomotion independently of changes of subcortical DA outflow. This interaction takes place downstream to DA neurons and could involve an action at the level of dorsostriatal and/or NAc DA transmission, in keeping with the importance of these brain regions in the behavioural responses of cocaine. Overall, this study affords additional knowledge into the regulatory control exerted by the 5-HT2BR on ascending DA pathways, and provides additional support to the proposed role of 5-HT2BRs as a new pharmacological target in drug addiction.

  7. Exposure to Cocaine Regulates Inhibitory Synaptic Transmission in the Nucleus Accumbens

    PubMed Central

    Otaka, Mami; Ishikawa, Masago; Lee, Brian R.; Liu, Lei; Neumann, Peter A.; Cui, Ranji; Huang, Yanhua; Schlüter, Oliver M.; Dong, Yan

    2013-01-01

    Medium spiny neurons (MSNs) within the nucleus accumbens shell (NAc) function to gate and prioritize emotional/motivational arousals for behavioral output. The neuronal output NAc MSNs is mainly determined by the integration of membrane excitability and excitatory/inhibitory synaptic inputs. Whereas cocaine-induced alterations at excitatory synapses and membrane excitability have been extensively examined, the overall functional output of NAc MSNs following cocaine exposure still poorly defined because little is known about whether inhibitory synaptic input to these neurons is affected by cocaine. Here, our results demonstrate multidimensional alterations at inhibitory synapses in NAc neurons following cocaine self-administration in rats. Specifically, the amplitude of miniature (m) inhibitory postsynaptic currents (IPSCs) was decreased after 21-d withdrawal from 5-d cocaine self-administration. Upon re-exposure to cocaine after 21-day withdrawal, whereas the amplitude of mIPSCs remained down-regulated, the frequency became significantly higher. Furthermore, the reversal potential of IPSCs, which was not significantly altered during withdrawal, became more hyperpolarized upon cocaine re-exposure. Moreover, the relative weight of excitatory and inhibitory inputs to NAc MSNs was significantly decreased after 1-d cocaine withdrawal, increased after 21-d withdrawal, and returned to the basal level upon cocaine re-exposure after 21-d withdrawal. These results, taken together with previous results showing cocaine-induced adaptations at excitatory synapses and intrinsic membrane excitability of NAc MSNs, may provide a relatively thorough picture of the functional state of NAc MSNs following cocaine exposure. PMID:23595733

  8. Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression

    PubMed Central

    Bagot, Rosemary C.; Parise, Eric M.; Peña, Catherine J.; Zhang, Hong-Xing; Maze, Ian; Chaudhury, Dipesh; Persaud, Brianna; Cachope, Roger; Bolaños-Guzmán, Carlos A.; Cheer, Joseph; Deisseroth, Karl; Han, Ming-Hu; Nestler, Eric J.

    2015-01-01

    Enhanced glutamatergic transmission in the nucleus accumbens (NAc), a region critical for reward and motivation, has been implicated in the pathophysiology of depression; however, the afferent source of this increased glutamate tone is not known. The NAc receives glutamatergic inputs from the medial prefrontal cortex (mPFC), ventral hippocampus (vHIP) and basolateral amygdala (AMY). Here, we demonstrate that glutamatergic vHIP afferents to NAc regulate susceptibility to chronic social defeat stress (CSDS). We observe reduced activity in vHIP in mice resilient to CSDS. Furthermore, attenuation of vHIP-NAc transmission by optogenetic induction of long-term depression is pro-resilient, whereas acute enhancement of this input is pro-susceptible. This effect is specific to vHIP afferents to the NAc, as optogenetic stimulation of either mPFC or AMY afferents to the NAc is pro-resilient. These data indicate that vHIP afferents to NAc uniquely regulate susceptibility to CSDS, highlighting an important, novel circuit-specific mechanism in depression. PMID:25952660

  9. Behavioral sensitization to delta 9-tetrahydrocannabinol and cross-sensitization with morphine: differential changes in accumbal shell and core dopamine transmission.

    PubMed

    Cadoni, Cristina; Valentini, Valentina; Di Chiara, Gaetano

    2008-08-01

    Although cannabinoid-induced behavioral sensitization and cross-sensitization with opiates has been recently demonstrated, no information is available on the associated state and responsiveness of dopamine (DA) transmission in the nucleus accumbens (NAc) shell and core. In this study we investigate by means of dual probe microdialysis, the effect of exposure to a sensitizing regimen of Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and morphine on the extracellular concentrations of DA under basal conditions and after challenge with Delta(9)-THC and morphine in the NAc shell and core. Different groups of male Sprague-Dawley rats were administered twice daily for 3 days with increasing doses of Delta(9)-THC (2, 4, and 8 mg/kg i.p.), morphine (10, 20, and 40 mg/kg s.c.), and vehicle. After 14-20 days from the last injection, the animals were implanted with two microdialysis probes, one aimed at the NAc shell and the other at the core. The following day animals pre-treated with Delta(9)-THC and vehicle controls were challenged with 150 microg/kg i.v. of Delta(9)-THC or 0.5 mg/kg i.v. of morphine. Animals pre-treated with morphine and their vehicle controls were administered with 150 microg/kg i.v. of Delta(9)-THC. Rats pre-exposed to Delta(9)-THC showed behavioral sensitization associated with a reduced stimulation of DA transmission in the NAc shell and an increased stimulation in the NAc core in response to Delta(9)-THC challenge. Pre-exposure to Delta(9)-THC induced behavioral sensitization to morphine also, but only a reduced stimulation of DA transmission in the NAc shell was observed. Animals pre-treated with morphine showed behavioral sensitization and differential changes of DA in the NAc shell and core in response to Delta(9)-THC challenge with a decreased response in the shell and an increased response in the core. The results show that Delta(9)-THC-induced behavioral sensitization is associated with changes in the responsiveness of DA transmission in the NAc

  10. Dissociable roles of dopamine and serotonin transporter function in a rat model of negative urgency.

    PubMed

    Yates, Justin R; Darna, Mahesh; Gipson, Cassandra D; Dwoskin, Linda P; Bardo, Michael T

    2015-09-15

    Negative urgency is a facet of impulsivity that reflects mood-based rash action and is associated with various maladaptive behaviors in humans. However, the underlying neural mechanisms of negative urgency are not fully understood. Several brain regions within the mesocorticolimbic pathway, as well as the neurotransmitters dopamine (DA) and serotonin (5-HT), have been implicated in impulsivity. Extracellular DA and 5-HT concentrations are regulated by DA transporters (DAT) and 5-HT transporters (SERT); thus, these transporters may be important molecular mechanisms underlying individual differences in negative urgency. The current study employed a reward omission task to model negative urgency in rats. During reward trials, a cue light signaled the non-contingent delivery of one sucrose pellet; immediately following the non-contingent reward, rats responded on a lever to earn sucrose pellets (operant phase). Omission trials were similar to reward trials, except that non-contingent sucrose was omitted following the cue light prior to the operant phase. As expected, contingent responding was higher following omission of expected reward than following delivery of expected reward, thus reflecting negative urgency. Upon completion of behavioral training, Vmax and Km were obtained from kinetic analysis of [(3)H]DA and [(3)H]5-HT uptake using synaptosomes prepared from nucleus accumbens (NAc), dorsal striatum (Str), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC) isolated from individual rats. Vmax for DAT in NAc and for SERT in OFC were positively correlated with negative urgency scores. The current findings suggest that mood-based impulsivity (negative urgency) is associated with enhanced DAT function in NAc and SERT function in OFC.

  11. Dissociable Roles of Dopamine and Serotonin Transporter Function in a Rat Model of Negative Urgency

    PubMed Central

    Yates, Justin R.; Darna, Mahesh; Gipson, Cassandra D.; Dwoskin, Linda P.; Bardo, Michael T.

    2015-01-01

    Negative urgency is a facet of impulsivity that reflects mood-based rash action and is associated with various maladaptive behaviors in humans. However, the underlying neural mechanisms of negative urgency are not fully understood. Several brain regions within the mesocorticolimbic pathway, as well as the neurotransmitters dopamine (DA) and serotonin (5-HT), have been implicated in impulsivity. Extracellular DA and 5-HT concentrations are regulated by DA transporters (DAT) and 5-HT transporters (SERT); thus, these transporters may be important molecular mechanisms underlying individual differences in negative urgency. The current study employed a reward omission task to model negative urgency in rats. During reward trials, a cue light signaled the non-contingent delivery of one sucrose pellet; immediately following the non-contingent reward, rats responded on a lever to earn sucrose pellets (operant phase). Omission trials were similar to reward trials, except that non-contingent sucrose was omitted following the cue light prior to the operant phase. As expected, contingent responding was higher following omission of expected reward than following delivery of expected reward, thus reflecting negative urgency. Upon completion of behavioral training, Vmax and Km were obtained from kinetic analysis of [3H]DA and [3H]5-HT uptake using synaptosomes prepared from nucleus accumbens (NAc), dorsal striatum (Str), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC) isolated from individual rats. Vmax for DAT in NAc and for SERT in OFC were positively correlated with negative urgency scores. The current findings suggest that mood-based impulsivity (negative urgency) is associated with enhanced DAT function in NAc and SERT function in OFC. PMID:26005123

  12. Modulation of extracellular neurotransmitter levels in the nucleus accumbens by a taurine uptake inhibitor.

    PubMed

    Olive, M F; Mehmert, K K; Hodge, C W

    2000-12-15

    Using in vivo microdialysis, we examined the effect of local perfusion of the taurine uptake inhibitor guanidinoethyl sulfonate on extracellular levels of various neurotransmitters in the rat nucleus accumbens. Guanidinoethyl sulfonate (500 microM-50 mM) produced a concentration-dependent increase in extracellular taurine levels. While 500 microM and 5 mM concentrations of guanidinoethyl sulfonate were largely without effect, 50 mM guanidinoethyl sulfonate produced a significant decrease in extracellular levels of aspartate, glutamate and glycine, with no effect on extracellular dopamine levels. These results indicate that guanidinoethyl sulfonate can modulate extracellular amino acid levels in the nucleus accumbens.

  13. Adjunctive treatment with mianserin enhances effects of raclopride on cortical dopamine output and, in parallel, its antipsychotic-like effect

    PubMed Central

    Wiker, Charlotte; Linnér, Love; Wadenberg, Marie-Louise; Svensson, Torgny H

    2005-01-01

    Clinical studies indicate that adjunctive treatment with the antidepressant drug mianserin, a 5-hydroxytryptamine (5-HT)2A/C receptor antagonist and an α2- and α1-adrenoceptor antagonist, may enhance the effect of conventional antipsychotic drugs in schizophrenia, in particular on negative symptoms such as withdrawal retardation, akathisia, and some aspects of cognitive impairment. Here, we have examined the effect of mianserin in combination with the selective dopamine (DA) D2/3 receptor antagonist raclopride on conditioned avoidance response (CAR), a preclinical test of antipsychotic efficacy with high predictive validity; catalepsy, a preclinical test of extrapyramidal side effect liability; and DA output in the medial prefrontal cortex (mPFC) and the nucleus accumbens (NAC), respectively. Mianserin (5 mg/kg intraperitoneal) significantly enhanced the suppressant effect of a low dose of raclopride (0.1 mg/kg subcutaneous) on CAR without any increase in catalepsy. Administration of raclopride to rats pretreated with mianserin resulted in a large enhancement of DA output in the mPFC and, at the same time, a small but significant reduction in the raclopride-induced DA output in the NAC. These experimental results indicate that adjunctive treatment with mianserin to a typical D2 antagonist generates an atypical antipsychotic profile. PMID:18568103

  14. Adjunctive treatment with mianserin enhances effects of raclopride on cortical dopamine output and, in parallel, its antipsychotic-like effect

    PubMed Central

    Wiker, Charlotte; Linnér, Love; Wadenberg, Marie-Louise; Svensson, Torgny H

    2005-01-01

    Clinical studies indicate that adjunctive treatment with the antidepressant drug mianserin, a 5-hydroxytryptamine (5-HT)2A/C receptor antagonist and an α2- and α1-adrenoceptor antagonist, may enhance the effect of conventional antipsychotic drugs in schizophrenia, in particular on negative symptoms such as withdrawal retardation, akathisia, and some aspects of cognitive impairment. Here, we have examined the effect of mianserin in combination with the selective dopamine (DA) D2/3 receptor antagonist raclopride on conditioned avoidance response (CAR), a preclinical test of antipsychotic efficacy with high predictive validity; catalepsy, a preclinical test of extrapyramidal side effect liability; and DA output in the medial prefrontal cortex (mPFC) and the nucleus accumbens (NAC), respectively. Mianserin (5 mg/kg intraperitoneal) significantly enhanced the suppressant effect of a low dose of raclopride (0.1 mg/kg subcutaneous) on CAR without any increase in catalepsy. Administration of raclopride to rats pretreated with mianserin resulted in a large enhancement of DA output in the mPFC and, at the same time, a small but significant reduction in the raclopride-induced DA output in the NAC. These experimental results indicate that adjunctive treatment with mianserin to a typical D2 antagonist generates an atypical antipsychotic profile. PMID:18568117

  15. Dopamine/adenosine interactions involved in effort-related aspects of food motivation.

    PubMed

    Salamone, John D; Correa, Merce

    2009-12-01

    Nucleus accumbens dopamine (DA) is involved in effort-related aspects of food motivation. Accumbens DA depletions reduce the tendency of rats to work for food, and alter effort-related choice, but leave other aspects of food motivation and appetite intact. DA and adenosine receptors interact to regulate effort-related processes. Adenosine A(2A) antagonists can reverse the effects of DA D(2) antagonists on effort-related choice, and intra-accumbens injections of a adenosine A(2A) agonist produce effects that are similar to those produced by accumbens DA depletion or antagonism. These studies have implications for understanding the neurochemical interactions that underlie activational aspects of motivation.

  16. Persistent cue-evoked activity of accumbens neurons after prolonged abstinence from self-administered cocaine.

    PubMed

    Ghitza, Udi E; Fabbricatore, Anthony T; Prokopenko, Volodymyr; Pawlak, Anthony P; West, Mark O

    2003-08-13

    Persistent neural processing of information regarding drug-predictive environmental stimuli may be involved in motivating drug abusers to engage in drug seeking after abstinence. The addictive effects of various drugs depend on the mesocorticolimbic dopamine system innervating the nucleus accumbens. We used single-unit recording in rats to test whether accumbens neurons exhibit responses to a discriminative stimulus (SD) tone previously paired with cocaine availability during cocaine self-administration. Presentation of the tone after 3-4 weeks of abstinence resulted in a cue-induced relapse of drug seeking under extinction conditions. Accumbens neurons did not exhibit tone-evoked activity before cocaine self-administration training but exhibited significant SD tone-evoked activity during extinction. Under extinction conditions, shell neurons exhibited significantly greater activity evoked by the SD tone than that evoked by a neutral tone (i.e., never paired with reinforcement). In contrast, core neurons responded indiscriminately to presentations of the SD tone or the neutral tone. Accumbens shell neurons exhibited significantly greater SD tone-evoked activity than did accumbens core neurons. Although the onset of SD tone-evoked activity occurred well before the earliest movements commenced (150 msec), this activity often persisted beyond the onset of tone-evoked movements. These results indicate that accumbens shell neurons exhibit persistent processing of information regarding reward-related stimuli after prolonged drug abstinence. Moreover, the accumbens shell appears to be involved in discriminating the motivational value of reward-related associative stimuli, whereas the accumbens core does not.

  17. δ-Opioid receptors in the accumbens shell mediate the influence of both excitatory and inhibitory predictions on choice

    PubMed Central

    Laurent, Vincent; Wong, Felix L; Balleine, Bernard W

    2015-01-01

    BACKGROUND AND PURPOSE Stimuli that predict rewarding events can control choice between future actions, and this control could be mediated by δ-opioid receptors in the nucleus accumbens shell (NAc-S). Stimuli predicting the absence of important events can also guide choice, although it remains unknown whether they do so via changes in an accumbal δ-opioid receptor-related process. EXPERIMENTAL APPROACH δ-opioid receptor-eGFP mice were trained to perform two instrumental actions that delivered different food outcomes. Choice between the two actions was then tested in the presence of stimuli paired with either the delivery or the non-delivery of each of the two outcomes. Bilateral infusions of the δ-opioid receptor antagonist naltrindole into the NAc-S were used to determine the role of these receptors at the time of choice and δ-opioid receptor expression in the NAc-S used to assess functional activity. KEY RESULTS A stimulus predicting a specific outcome biased choice performance towards the action previously earning that same outcome. In contrast, a stimulus signalling the absence of that outcome biased performance away from the action that delivered that outcome towards actions associated with the absence of that outcome. Both effects were associated with increased δ-opioid receptor expression on the membrane of cholinergic interneurons within the NAc-S. Furthermore, both effects were blocked by naltrindole infused into the NAc-S. CONCLUSIONS AND IMPLICATIONS These findings suggest that δ-opioid receptors in the NAc-S were involved in the effects of predictive learning on choice between actions, whether those predictions involve the presence or absence of specific rewarding events. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24758591

  18. Application of fast-scan cyclic voltammetry for the in vivo characterization of optically evoked dopamine in the olfactory tubercle of the rat brain.

    PubMed

    Wakabayashi, Ken T; Bruno, Michael J; Bass, Caroline E; Park, Jinwoo

    2016-06-21

    The olfactory tubercle (OT), as a component of the ventral striatum, serves as an important multisensory integration center for reward-related processes in the brain. Recent studies show that dense dopaminergic innervation from the ventral tegmental area (VTA) into the OT may play an outsized role in disorders such as psychostimulant addiction and disorders of motivation, increasing recent scientific interest in this brain region. However, due to its anatomical inaccessibility, relative small size, and proximity to other dopamine-rich structures, neurochemical assessments using conventional methods cannot be readily employed. Here, we investigated dopamine (DA) regulation in the OT of urethane-anesthetized rats using in vivo fast-scan voltammetry (FSCV) coupled with carbon-fiber microelectrodes, following optogenetic stimulation of the VTA. The results were compared with DA regulation in the nucleus accumbens (NAc), a structure located adjacent to the OT and which also receives dense DA innervation from the VTA. FSCV coupled with optically evoked release allowed us to investigate the spatial distribution of DA in the OT and characterize OT DA dynamics (release and clearance) with subsecond temporal and micrometer spatial resolution for the first time. In this study, we demonstrated that DA transporters play an important role in regulating DA in the OT. However, the control of extracellular DA by uptake in the OT was less than in the NAc. The difference in DA transmission in the terminal fields of the OT and NAc may be involved in region-specific responses to drugs of abuse and contrasting roles in mediating reward-related behavior.

  19. The nucleus accumbens 5-HTR₄-CART pathway ties anorexia to hyperactivity.

    PubMed

    Jean, A; Laurent, L; Bockaert, J; Charnay, Y; Dusticier, N; Nieoullon, A; Barrot, M; Neve, R; Compan, V

    2012-12-11

    In mental diseases, the brain does not systematically adjust motor activity to feeding. Probably, the most outlined example is the association between hyperactivity and anorexia in Anorexia nervosa. The neural underpinnings of this 'paradox', however, are poorly elucidated. Although anorexia and hyperactivity prevail over self-preservation, both symptoms rarely exist independently, suggesting commonalities in neural pathways, most likely in the reward system. We previously discovered an addictive molecular facet of anorexia, involving production, in the nucleus accumbens (NAc), of the same transcripts stimulated in response to cocaine and amphetamine (CART) upon stimulation of the 5-HT(4) receptors (5-HTR(4)) or MDMA (ecstasy). Here, we tested whether this pathway predisposes not only to anorexia but also to hyperactivity. Following food restriction, mice are expected to overeat. However, selecting hyperactive and addiction-related animal models, we observed that mice lacking 5-HTR(1B) self-imposed food restriction after deprivation and still displayed anorexia and hyperactivity after ecstasy. Decryption of the mechanisms showed a gain-of-function of 5-HTR(4) in the absence of 5-HTR(1B), associated with CART surplus in the NAc and not in other brain areas. NAc-5-HTR(4) overexpression upregulated NAc-CART, provoked anorexia and hyperactivity. NAc-5-HTR(4) knockdown or blockade reduced ecstasy-induced hyperactivity. Finally, NAc-CART knockdown suppressed hyperactivity upon stimulation of the NAc-5-HTR(4). Additionally, inactivating NAc-5-HTR(4) suppressed ecstasy's preference, strengthening the rewarding facet of anorexia. In conclusion, the NAc-5-HTR(4)/CART pathway establishes a 'tight-junction' between anorexia and hyperactivity, suggesting the existence of a primary functional unit susceptible to limit overeating associated with resting following homeostasis rules.

  20. Mefloquine in the nucleus accumbens promotes social avoidance and anxiety-like behavior in mice.

    PubMed

    Heshmati, Mitra; Golden, Sam A; Pfau, Madeline L; Christoffel, Daniel J; Seeley, Elena L; Cahill, Michael E; Khibnik, Lena A; Russo, Scott J

    2016-02-01

    Mefloquine continues to be a key drug used for malaria chemoprophylaxis and treatment, despite reports of adverse events like depression and anxiety. It is unknown how mefloquine acts within the central nervous system to cause depression and anxiety or why some individuals are more vulnerable. We show that intraperitoneal injection of mefloquine in mice, when coupled to subthreshold social defeat stress, is sufficient to produce depression-like social avoidance behavior. Direct infusion of mefloquine into the nucleus accumbens (NAc), a key brain reward region, increased stress-induced social avoidance and anxiety behavior. In contrast, infusion into the ventral hippocampus had no effect. Whole cell recordings from NAc medium spiny neurons indicated that mefloquine application increases the frequency of spontaneous excitatory postsynaptic currents, a synaptic adaptation that we have previously shown to be associated with increased susceptibility to social defeat stress. Together, these data demonstrate a role for the NAc in mefloquine-induced depression and anxiety-like behaviors.

  1. A Primary Role for Nucleus Accumbens and Related Limbic Network in Vocal Tics.

    PubMed

    McCairn, Kevin W; Nagai, Yuji; Hori, Yukiko; Ninomiya, Taihei; Kikuchi, Erika; Lee, Ju-Young; Suhara, Tetsuya; Iriki, Atsushi; Minamimoto, Takafumi; Takada, Masahiko; Isoda, Masaki; Matsumoto, Masayuki

    2016-01-20

    Inappropriate vocal expressions, e.g., vocal tics in Tourette syndrome, severely impact quality of life. Neural mechanisms underlying vocal tics remain unexplored because no established animal model representing the condition exists. We report that unilateral disinhibition of the nucleus accumbens (NAc) generates vocal tics in monkeys. Whole-brain PET imaging identified prominent, bilateral limbic cortico-subcortical activation. Local field potentials (LFPs) developed abnormal spikes in the NAc and the anterior cingulate cortex (ACC). Vocalization could occur without obvious LFP spikes, however, when phase-phase coupling of alpha oscillations were accentuated between the NAc, ACC, and the primary motor cortex. These findings contrasted with myoclonic motor tics induced by disinhibition of the dorsolateral putamen, where PET activity was confined to the ipsilateral sensorimotor system and LFP spikes always preceded motor tics. We propose that vocal tics emerge as a consequence of dysrhythmic alpha coupling between critical nodes in the limbic and motor networks. VIDEO ABSTRACT.

  2. Mefloquine in the nucleus accumbens promotes social avoidance and anxiety-like behavior in mice

    PubMed Central

    Heshmati, Mitra; Golden, Sam A.; Pfau, Madeline L.; Christoffel, Daniel J.; Seeley, Elena L.; Cahill, Michael E.; Khibnik, Lena A.; Russo, Scott J.

    2015-01-01

    Mefloquine continues to be a key drug used for malaria chemoprophylaxis and treatment, despite reports of adverse events like depression and anxiety. It is unknown how mefloquine acts within the central nervous system to cause depression and anxiety or why some individuals are more vulnerable. We show that intraperitoneal injection of mefloquine in mice, when coupled to subthreshold social defeat stress, is sufficient to produce depression-like social avoidance behavior. Direct infusion of mefloquine into the nucleus accumbens (NAc), a key brain reward region, increased stress-induced social avoidance and anxiety behavior. In contrast, infusion into the ventral hippocampus had no effect. Whole cell recordings from NAc medium spiny neurons indicated that mefloquine application increases the frequency of spontaneous excitatory postsynaptic currents, a synaptic adaptation that we have previously shown to be associated with increased susceptibility to social defeat stress. Together, these data demonstrate a role for the NAc in mefloquine-induced depression and anxiety-like behaviors. PMID:26471420

  3. Nitric oxide in the nucleus accumbens is involved in retrieval of inhibitory avoidance memory by nicotine.

    PubMed

    Zarrindast, Mohammad Reza; Piri, Morteza; Nasehi, Mohammad; Ebrahimi-Ghiri, Mohaddeseh

    2012-03-01

    In the present study, the possible effect of nitric oxide agents injected into the nucleus accumbens (NAc) in the presence or absence of nicotine on morphine state-dependent memory in adult male Wistar rats was investigated. As a model of memory, a step-through type inhibitory avoidance task was used. Post-training injection of morphine (4 and 6mg/kg) dose dependently induced the impairment of memory retention. Administration of morphine (4 and 6mg/kg) before retention induced state-dependent retrieval of the memory acquired under post-training morphine (6mg/kg) influence. Injection of nicotine before retention (0.25 and 0.5mg/kg) alone and nicotine (0.1, 0.25 and 0.5mg/kg) plus an ineffective dose of morphine (2mg/kg) reversed the post-training morphine-induced memory impairment. The amnesia elicited by morphine (6mg/kg) was also prevented by pre-retention intra-NAc administration of a nitric oxide synthase (NOS) inhibitor, l-NAME (0.24μg/rat, intra-NAc). Interestingly, an ineffective dose of nicotine (0.1mg/kg) in combination with low doses of l-NAME (0.06 and 0.12μg/rat, intra-NAc) synergistically improved memory performance impaired by morphine given after training. It is important to note that intra-NAc administration of l-NAME before retention impaired memory retrieval by itself. In contrast, pre-retention administration of l-arginine, a nitric oxide (NO) precursor (0.25 and 0.5μg/rat, intra-NAc), which had no effect alone, prevented the nicotine reversal of morphine effect on memory. The results suggest a possible role for nitric oxide of nucleus accumbens in the improving effect of nicotine on the morphine-induced amnesia and morphine state-dependent memory.

  4. Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic pain

    PubMed Central

    Baliki, M.N.; Geha, P.Y.; Fields, H.L.; Apkarian, A.V.

    2010-01-01

    We compared brain activations in response to acute noxious thermal stimuli in controls and chronic back pain (CBP) patients. Pain perception and related cortical activation patterns were similar in the two groups. However, nucleus accumbens (NAc) activity differentiated the groups at a very high accuracy, exhibiting phasic and tonic responses with distinct properties. Positive phasic NAc activations at stimulus onset and offset tracked stimulus salience and, in normal subjects predicted reward (pain relief) magnitude at stimulus offset. In CBP, NAc activity correlated with different cortical circuitry than normals and phasic activity at stimulus offset was negative in polarity, suggesting that the acute pain relieves the ongoing back pain. The relieving effect was confirmed in a separate psychophysical study in CBP. Therefore, in contrast to somatosensory pathways, which reflect sensory properties of acute noxious stimuli, NAc activity in humans encodes its predicted value and predicts its analgesic potential on chronic pain. PMID:20399736

  5. Dopamine signaling in the medial prefrontal cortex and amygdala is required for the acquisition of fructose-conditioned flavor preferences in rats

    PubMed Central

    Malkusz, Danielle C.; Banakos, Theodore; Mohamed, Andrew; Vongwattanakit, Tracy; Malkusz, Gina; Saeed, Shermeen; Martinez, Stewart; Bohn, Tara; Mahmud, Fizza; Liss, Cami; Rozvi, Abraham; Touzani, Khalid; Sclafani, Anthony; Bodnar, Richard J.

    2013-01-01

    Systemic administration of dopamine (DA) D1 (SCH23390: SCH) and D2 (raclopride: RAC) antagonists blocked both acquisition and expression of fructose-conditioned flavor preferences (CFP). It is unclear what brain circuits are involved in mediating these effects. The present study investigated DA signaling within the nucleus accumbens shell (NAcS), amygdala (AMY) and medial prefrontal cortex (mPFC) in the acquisition and expression of fructose-CFP. In Experiment 1, separate groups of rats were injected daily in the NAcS or AMY with saline, SCH (24 nmol) or RAC (24 nmol) prior to training sessions with a flavor (CS+) mixed with 8% fructose and 0.2% saccharin (CS+/F) and a different flavor (CS−) mixed with only 0.2% saccharin. In the two-bottle choice tests with 0.2% saccharin, only rats injected with RAC in the AMY failed to acquire a CS+ preference (45–54%). In Experiment 2, new rats were identically trained, but saline, SCH and RAC were injected in the mPFC. In subsequent two-bottle choice tests, SCH- and RAC-treated rats failed to exhibit a CS+ preference (50–56%). In Experiment 3, new rats were trained with CS+/F and CS− without injections. Subsequent two-bottle choice tests were then conducted following bilateral injections of SCH or RAC in the mPFC at total doses of 0, 12, 24 and 48 nmol. Expression of the CS+ preference failed to be affected by either antagonist, indicating that the mPFC is not involved in the maintenance of this preference. These data indicate that the acquisition of fructose-CFP is dependent on DA signaling in the mPFC and AMY. PMID:22579970

  6. Cannabinoids and Glucocorticoids in the Basolateral Amygdala Modulate Hippocampal–Accumbens Plasticity After Stress

    PubMed Central

    Segev, Amir; Akirav, Irit

    2016-01-01

    Acute stress results in release of glucocorticoids, which are potent modulators of learning and plasticity. This process is presumably mediated by the basolateral amygdala (BLA) where cannabinoids CB1 receptors have a key role in regulating the hypothalamic–pituitary–adrenal (HPA) axis. Growing attention has been focused on nucleus accumbens (NAc) plasticity, which regulates mood and motivation. The NAc integrates affective and context-dependent input from the BLA and ventral subiculum (vSub), respectively. As our previous data suggest that the CB1/2 receptor agonist WIN55,212-2 (WIN) and glucocorticoid receptor (GR) antagonist RU-38486 (RU) can prevent the effects of stress on emotional memory, we examined whether intra-BLA WIN and RU can reverse the effects of acute stress on NAc plasticity. Bilateral, ipsilateral, and contralateral BLA administration of RU or WIN reversed the stress-induced impairment in vSub–NAc long-term potentiation (LTP) and the decrease in cAMP response element-binding protein (CREB) activity in the NAc. BLA CB1 receptors were found to mediate the preventing effects of WIN on plasticity, but not the preventing effects of RU, after stress. Inactivating the ipsilateral BLA, but not the contralateral BLA, impaired LTP. The possible mechanisms underlying the effects of BLA on NAc plasticity are discussed; the data suggest that BLA-induced changes in the NAc may be mediated through neural pathways in the brain's stress circuit rather than peripheral pathways. The results suggest that glucocorticoid and cannabinoid systems in the BLA can restore normal function of the NAc and hence may have a central role in the treatment of a variety of stress-related disorders. PMID:26289146

  7. Ceftriaxone attenuates cocaine relapse after abstinence through modulation of nucleus accumbens AMPA subunit expression.

    PubMed

    LaCrosse, Amber L; Hill, Kristine; Knackstedt, Lori A

    2016-02-01

    Using the extinction-reinstatement model of cocaine relapse, we and others have demonstrated that the antibiotic ceftriaxone attenuates cue- and cocaine-primed reinstatement of cocaine-seeking. Reinstatement is contingent on the release of glutamate in the nucleus accumbens core (NAc) and manipulations that reduce glutamate efflux or block post-synaptic glutamate receptors attenuate reinstatement. We have demonstrated that the mechanism of action by which ceftriaxone attenuates reinstatement involves increased NAc GLT-1 expression and a reduction in NAc glutamate efflux during reinstatement. Here we investigated the effects of ceftriaxone (100 and 200 mg/kg) on context-primed relapse following abstinence without extinction training and examined the effects of ceftriaxone on GluA1, GluA2 and GLT-1 expression. We conducted microdialysis during relapse to determine if an increase in NAc glutamate accompanies relapse after abstinence and whether ceftriaxone blunts glutamate efflux. We found that both doses of ceftriaxone attenuated relapse. While relapse was accompanied by an increase in NAc glutamate, ceftriaxone (200 mg/kg) was unable to significantly reduce NAc glutamate efflux during relapse despite its ability to upregulate GLT-1. GluA1 was reduced in the NAc by both doses of ceftriaxone while GluA2 expression was unchanged, indicating that ceftriaxone altered AMPA subunit composition following cocaine. Finally, GLT-1 was not altered in the PFC by ceftriaxone. These results indicate that it is possible to attenuate context-primed relapse to cocaine-seeking through modification of post-synaptic receptor properties without attenuating glutamate efflux during relapse. Furthermore, increasing NAc GLT-1 protein expression is not sufficient to attenuate glutamate efflux.

  8. Addiction and reward-related genes show altered expression in the postpartum nucleus accumbens

    PubMed Central

    Zhao, Changjiu; Eisinger, Brian Earl; Driessen, Terri M.; Gammie, Stephen C.

    2014-01-01

    Motherhood involves a switch in natural rewards, whereby offspring become highly rewarding. Nucleus accumbens (NAC) is a key CNS region for natural rewards and addictions, but to date no study has evaluated on a large scale the events in NAC that underlie the maternal change in natural rewards. In this study we utilized microarray and bioinformatics approaches to evaluate postpartum NAC gene expression changes in mice. Modular Single-set Enrichment Test (MSET) indicated that postpartum (relative to virgin) NAC gene expression profile was significantly enriched for genes related to addiction and reward in five of five independently curated databases (e.g., Malacards, Phenopedia). Over 100 addiction/reward related genes were identified and these included: Per1, Per2, Arc, Homer2, Creb1, Grm3, Fosb, Gabrb3, Adra2a, Ntrk2, Cry1, Penk, Cartpt, Adcy1, Npy1r, Htr1a, Drd1a, Gria1, and Pdyn. ToppCluster analysis found maternal NAC expression profile to be significantly enriched for genes related to the drug action of nicotine, ketamine, and dronabinol. Pathway analysis indicated postpartum NAC as enriched for RNA processing, CNS development/differentiation, and transcriptional regulation. Weighted Gene Coexpression Network Analysis (WGCNA) identified possible networks for transcription factors, including Nr1d1, Per2, Fosb, Egr1, and Nr4a1. The postpartum state involves increased risk for mental health disorders and MSET analysis indicated postpartum NAC to be enriched for genes related to depression, bipolar disorder (BPD), and schizophrenia. Mental health related genes included: Fabp7, Grm3, Penk, and Nr1d1. We confirmed via quantitative PCR Nr1d1, Per2, Grm3, Penk, Drd1a, and Pdyn. This study indicates for the first time that postpartum NAC involves large scale gene expression alterations linked to addiction and reward. Because the postpartum state also involves decreased response to drugs, the findings could provide insights into how to mitigate addictions. PMID:25414651

  9. The Roles of Dopamine and α1-Adrenergic Receptors in Cocaine Preferences in Female and Male Rats

    PubMed Central

    Perry, Adam N; Westenbroek, Christel; Jagannathan, Lakshmikripa; Becker, Jill B

    2015-01-01

    Cocaine dependence is characterized by compulsive drug taking and reduced involvement in social, occupational, or recreational activities. Unraveling the diverse mechanisms contributing to the loss-of-interest in these ‘non-drug' pursuits is essential for understanding the neurobiology of addiction and could provide additional targets for treating addiction. The study objectives were to examine changes in cocaine-induced dopamine (DA) overflow in the nucleus accumbens (NAc) over the course of self-administration and determine the roles of α1- and β-adrenergic receptors (AR) in the loss-of-interest in food rewards following the development of an addicted phenotype in male and female rats. Subjects were given access to cocaine and palatable food pellets in a choice self-administration paradigm to identify ‘addicted' cocaine-preferring (CP) individuals and resistant pellet-preferring (PP) individuals based on their patterns of self-administration over 7 weeks. Cocaine-induced DA overflow in the NAc was examined with microdialysis early and late during self-administration (weeks 2 and 7). Subjects were treated in counter-balanced order with propranolol (β-AR antagonist), terazosin (α1-AR antagonist), or vehicle for an additional 3 weeks of self-administration. CP rats displayed increased motivation for cocaine and attenuated motivation for pellets following the development of cocaine preferences. In females, the estrous cycle affected pellet, but not cocaine, self-administration. CP rats displayed attenuated cocaine-induced DA overflow in the NAc. Propranolol enhanced cocaine reinforcement and reduced pellet intake, whereas terazosin enhanced motivation for pellets and reversed preferences in a subset of CP rats. The implications of these results for the treatment of addiction are discussed. PMID:25900120

  10. Mesolimbic Dopamine Signals the Value of Work

    PubMed Central

    Hamid, Arif A.; Pettibone, Jeffrey R.; Mabrouk, Omar S.; Hetrick, Vaughn L.; Schmidt, Robert; Vander Weele, Caitlin M.; Kennedy, Robert T.; Aragona, Brandon J.; Berke, Joshua D.

    2015-01-01

    Dopamine cell firing can encode errors in reward prediction, providing a learning signal to guide future behavior. Yet dopamine is also a key modulator of motivation, invigorating current behavior. Existing theories propose that fast (“phasic”) dopamine fluctuations support learning, while much slower (“tonic”) dopamine changes are involved in motivation. We examined dopamine release in the nucleus accumbens across multiple time scales, using complementary microdialysis and voltammetric methods during adaptive decision-making. We first show that minute-by-minute dopamine levels covary with reward rate and motivational vigor. We then show that second-by-second dopamine release encodes an estimate of temporally-discounted future reward (a value function). We demonstrate that changing dopamine immediately alters willingness to work, and reinforces preceding action choices by encoding temporal-difference reward prediction errors. Our results indicate that dopamine conveys a single, rapidly-evolving decision variable, the available reward for investment of effort, that is employed for both learning and motivational functions. PMID:26595651

  11. The effect of the anabolic steroid, nandrolone, in conditioned place preference and D1 dopamine receptor expression in adolescent and adult mice.

    PubMed

    Martínez-Rivera, Freddyson J; Natal-Albelo, Eduardo J; Martínez, Namyr A; Orozco-Vega, Roberto A; Muñiz-Seda, Oscar A; Barreto-Estrada, Jennifer L

    2015-04-01

    Adolescents and adults engage in anabolic-androgenic steroid (AAS) misuse seeking their anabolic effects, even though later on, many could develop neuropsychological dependence. Previously, we have shown that nandrolone induces conditioned place preference (CPP) in adult male mice. However, whether nandrolone induces CPP during adolescence remains unknown. In this study, the CPP test was used to determine the rewarding properties of nandrolone (7.5 mg/kg) in adolescent mice. In addition, since D1 dopamine receptors (D1DR) are critical for reward-related processes, the effect of nandrolone on the expression of D1DR in the nucleus accumbens (NAc) was investigated by Western blot analysis. Similar to our previous results, nandrolone induced CPP in adults. However, in adolescents, nandrolone failed to produce place preference. At the molecular level, nandrolone decreased D1DR expression in the NAc only in adult mice. Our data suggest that nandrolone may not be rewarding in adolescents at least during short-term use. The lack of nandrolone rewarding effects in adolescents may be due, in part to differences in D1DR expression during development.

  12. Activin A is increased in the nucleus accumbens following a cocaine binge

    PubMed Central

    Wang, Zi-Jun; Martin, Jennifer A.; Gancarz, Amy M.; Adank, Danielle N.; Sim, Fraser J.; Dietz, David M.

    2017-01-01

    Drug addiction is a long-lasting disease characterized by compulsive drug intake mediated in part by neuronal and biological adaptations in key brain areas, such as the nucleus accumbens (NAc). While we previously demonstrated involvement of the activin 2a receptor in drug taking, the role of its ligand, activin A, in cocaine relapse is unknown. Activin A levels in the NAc were assessed via ELISA and immunohistochemistry (in neurons, astrocytes, and microglia) following a cocaine binge paradigm. Cocaine exposure significantly increased the levels of activin A in the NAc of animals that had self-administered cocaine prior to the 14-day withdrawal compared with levels in saline controls. This was accompanied by an increase in the proportion of IBA1+ microglia in the NAc that were immunopositive for activin A. In contrast, the proportions of NeuN+ neurons and GFAP+ astrocytes that were immunopositive for activin A remained unaltered. In conclusion, these data suggest that increased secretion of activin A, particularly from microglia, in the NAc represents a novel potential target for the treatment of cocaine relapse. PMID:28272550

  13. Hypothesizing that, A Pro-Dopamine Regulator (KB220Z) Should Optimize, but Not Hyper-Activate the Activity of Trace Amine-Associated Receptor 1 (TAAR-1) and Induce Anti-Craving of Psychostimulants in the Long-Term.

    PubMed

    Blum, Kenneth; Badgaiyan, Rajendra D; Braverman, Eric R; Dushaj, Kristina; Li, Mona; Thanos, Peter K; Demetrovics, Zsolt; Febo, Marcelo

    2016-01-01

    Unlike other drugs of abuse such as alcohol, nicotine, opiates/opioids, the FDA has not approved any agent to treat psychostimulant dependence. Certainly, it is widely acceptable that dopaminergic signaling is a key factor in both the initiation and continued motivation to abuse this class of stimulant substances. It is also well accepted that psychostimulants such as cocaine affect not only the release of neuronal dopamine at the nucleus accumbens (NAc), but also has powerful inhibitory actions on the dopamine transporter system. Understandably, certain individuals are at high risk and very vulnerable to abuse this class of substances. Trace-amine-associated receptor 1 (TAAR1) is a G -protein coupled receptor activated by trace amines. The encoded protein responds little or not at all to dopamine, serotonin, epinephrine, or histamine, but responds well to beta-phenylethylamine, p-tyramine, octopamine, and tryptamine. This gene is thought to be intronless. TAAR1 agonists reduce the neurochemical effects of cocaine and amphetamines as well as attenuate addiction and abuse associated with these two psychostimulants. The mechanism involves blocking the firing rate of dopamine in the limbic system thereby decreasing a hyperdopaminergic trait/state, whereby the opposite is true for TAAR1 antagonists. Based on many studies, it is accepted that in Reward Deficiency Syndrome (RDS), there is weakened tonic and improved phasic dopamine discharge leading to a hypodopaminergic/glutamatergic trait. The dopamine pro-complex mixture KB220, following many clinical trials including neuroimaging studies, has been shown to enhance resting state functional connectivity in humans (abstinent heroin addicts), naïve rodent models, and regulates extensive theta action in the cingulate gyrus of abstinent psychostimulant abusers. In this article, we are hypothesizing that KB220 may induce its action on resting state functional connectivity, for example, by actually balancing (optimizing

  14. Hypothesizing that, A Pro-Dopamine Regulator (KB220Z) Should Optimize, but Not Hyper-Activate the Activity of Trace Amine-Associated Receptor 1 (TAAR-1) and Induce Anti-Craving of Psychostimulants in the Long-Term

    PubMed Central

    Blum, Kenneth; Badgaiyan, Rajendra D.; Braverman, Eric R.; Dushaj, Kristina; Li, Mona; Thanos, Peter K.; Demetrovics, Zsolt; Febo, Marcelo

    2017-01-01

    Unlike other drugs of abuse such as alcohol, nicotine, opiates/opioids, the FDA has not approved any agent to treat psychostimulant dependence. Certainly, it is widely acceptable that dopaminergic signaling is a key factor in both the initiation and continued motivation to abuse this class of stimulant substances. It is also well accepted that psychostimulants such as cocaine affect not only the release of neuronal dopamine at the nucleus accumbens (NAc), but also has powerful inhibitory actions on the dopamine transporter system. Understandably, certain individuals are at high risk and very vulnerable to abuse this class of substances. Trace-amine-associated receptor 1 (TAAR1) is a G -protein coupled receptor activated by trace amines. The encoded protein responds little or not at all to dopamine, serotonin, epinephrine, or histamine, but responds well to beta-phenylethylamine, p-tyramine, octopamine, and tryptamine. This gene is thought to be intronless. TAAR1 agonists reduce the neurochemical effects of cocaine and amphetamines as well as attenuate addiction and abuse associated with these two psychostimulants. The mechanism involves blocking the firing rate of dopamine in the limbic system thereby decreasing a hyperdopaminergic trait/state, whereby the opposite is true for TAAR1 antagonists. Based on many studies, it is accepted that in Reward Deficiency Syndrome (RDS), there is weakened tonic and improved phasic dopamine discharge leading to a hypodopaminergic/glutamatergic trait. The dopamine pro-complex mixture KB220, following many clinical trials including neuroimaging studies, has been shown to enhance resting state functional connectivity in humans (abstinent heroin addicts), naïve rodent models, and regulates extensive theta action in the cingulate gyrus of abstinent psychostimulant abusers. In this article, we are hypothesizing that KB220 may induce its action on resting state functional connectivity, for example, by actually balancing (optimizing

  15. Episodic sucrose intake during food restriction increases synaptic abundance of AMPA receptors in nucleus accumbens and augments intake of sucrose following restoration of ad libitum feeding.

    PubMed

    Peng, X-X; Lister, A; Rabinowitsch, A; Kolaric, R; Cabeza de Vaca, S; Ziff, E B; Carr, K D

    2015-06-04

    Weight-loss dieting often leads to loss of control, rebound weight gain, and is a risk factor for binge pathology. Based on findings that food restriction (FR) upregulates sucrose-induced trafficking of glutamatergic AMPA receptors to the nucleus accumbens (NAc) postsynaptic density (PSD), this study was an initial test of the hypothesis that episodic "breakthrough" intake of forbidden food during dieting interacts with upregulated mechanisms of synaptic plasticity to increase reward-driven feeding. Ad libitum (AL) fed and FR subjects consumed a limited amount of 10% sucrose, or had access to water, every other day for 10 occasions. Beginning three weeks after return of FR rats to AL feeding, when 24-h chow intake and rate of body weight gain had normalized, subjects with a history of sucrose intake during FR consumed more sucrose during a four week intermittent access protocol than the two AL groups and the group that had access to water during FR. In an experiment that substituted noncontingent administration of d-amphetamine for sucrose, FR subjects displayed an enhanced locomotor response during active FR but a blunted response, relative to AL subjects, during recovery from FR. This result suggests that the enduring increase in sucrose consumption is unlikely to be explained by residual enhancing effects of FR on dopamine signaling. In a biochemical experiment which paralleled the sucrose behavioral experiment, rats with a history of sucrose intake during FR displayed increased abundance of pSer845-GluA1, GluA2, and GluA3 in the NAc PSD relative to rats with a history of FR without sucrose access and rats that had been AL throughout, whether they had a history of episodic sucrose intake or not. A history of FR, with or without a history of sucrose intake, was associated with increased abundance of GluA1. A terminal 15-min bout of sucrose intake produced a further increase in pSer845-GluA1 and GluA2 in subjects with a history of sucrose intake during FR

  16. Moderate intensity treadmill exercise alters food preference via dopaminergic plasticity of ventral tegmental area-nucleus accumbens in obese mice.

    PubMed

    Chen, Wei; Wang, Hai Jun; Shang, Ning Ning; Liu, Jun; Li, Juan; Tang, Dong Hui; Li, Qiong

    2017-02-22

    Obesity has been associated with the excessive intake of palatable food as well as physical inactivity. To investigate the neurobiological mechanism underlying the exercised-induced prevention and treatment of obesity, the present study examined the effect of treadmill exercise on the preference for palatable food in mice. Levels of tyrosine hydroxylase (TH) in the ventral tegmental area-nucleus accumbens system were also analysed, as well as levels of dopamine, dopamine transporter, and D2 receptors in the nucleus accumbens. Forty C57BL/6J mice were randomly divided into a control group (CG, n=10) and a high-fat diet group (HG, N=30). Mice of the HG group were fed a high-fat diet for 12 weeks in order to induce a model of obesity, following which the obese mice were randomly divided into an obese control group (OG, n=11) and an obese+exercise group (OEG, n=12). OEG mice received 8 weeks of treadmill exercise intervention. Our results indicate that, relative to animals in the OG group, OEG mice exhibited significant decreases in the preference for high-fat diets and insulin resistance, along with increases in the preference for sucrose and milk, TH and D2 receptor expression, and levels of dopamine in the ventral tegmental area-nucleus accumbens system. These results suggest that moderate-intensity treadmill exercise can alter food preference in obese mice, which may be mediated by dopaminergic plasticity of the ventral tegmental area-nucleus accumbens and enhanced insulin sensitivity.

  17. Prefrontal cortex gates acute morphine action on dopamine neurons in the ventral tegmental area.

    PubMed

    Liu, Changliang; Fang, Xing; Wu, Qianqian; Jin, Guozhang; Zhen, Xuechu

    2015-08-01

    Morphine excites dopamine (DA) neurons in the ventral tegmental area (VTA), an effect mediated by both local and systemic mechanisms. While the importance of the prefrontal cortex (PFC) - VTA circuit in opiate addiction is well established, little is known about how the PFC regulates the activity of VTA DA neurons upon morphine stimulation. One major challenge is that VTA DA neurons are highly heterogeneous in terms of projection and regulation, making their responses to PFC manipulations variable. Our previous work has identified a subgroup of VTA DA neurons exhibiting significant slow oscillation in their firing sequence, and demonstrated that most of these neurons are functionally connected with the PFC. In the present study, we focus our efforts only on VTA DA neurons expressing strong slow oscillation, and report that blocking the neuronal activity in the PFC remarkably attenuates the morphine-induced excitation of these neurons. Using in vivo microdialysis, we find that inactivation of the PFC also reduces the morphine-induced elevation of DA levels in the nucleus accumbens (NAc). Furthermore, 24 h after only single morphine exposure, PFC-inactivation failed to prevent subsequent morphine challenge from exciting VTA DA neurons, which is paralleled by altered response of PFC pyramidal neurons to morphine stimulation. Our results indicate that the PFC gates acute morphine action on a subset of VTA DA neurons, which is highly plastic and can be functionally remodeled by morphine exposure.

  18. SIRT1-FOXO3a regulate cocaine actions in the nucleus accumbens.

    PubMed

    Ferguson, Deveroux; Shao, Ningyi; Heller, Elizabeth; Feng, Jian; Neve, Rachael; Kim, Hee-Dae; Call, Tanessa; Magazu, Samantha; Shen, Li; Nestler, Eric J

    2015-02-18

    Previous studies have shown that chronic cocaine administration induces SIRT1, a Class III histone deacetylase, in the nucleus accumbens (NAc), a key brain reward region, and that such induction influences the gene regulation and place conditioning effects of cocaine. To determine the mechanisms by which SIRT1 mediates cocaine-induced plasticity in NAc, we used chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-seq), 1 d after 7 daily cocaine (20 mg/kg) or saline injections, to map SIRT1 binding genome-wide in mouse NAc. Our unbiased results revealed two modes of SIRT1 action. First, despite its induction in NAc, chronic cocaine causes depletion of SIRT1 from most affected gene promoters in concert with enrichment of H4K16ac (itself a deacetylation target of SIRT1), which is associated with increased expression of these genes. Second, we deduced the forkhead transcription factor (FOXO) family to be a downstream mechanism through which SIRT1 regulates cocaine action. We proceeded to demonstrate that SIRT1 induction causes the deacetylation and activation of FOXO3a in NAc, which leads to the induction of several known FOXO3a gene targets in other systems. Finally, we directly establish a role for FOXO3a in promoting cocaine-elicited behavioral responses by use of viral-mediated gene transfer: we show that overexpressing FOXO3a in NAc enhances cocaine place conditioning. The discovery of these two actions of SIRT1 in NAc in the context of behavioral adaptations to cocaine represents an important step forward in advancing our understanding of the molecular adaptations underlying cocaine action.

  19. Dysregulation of AMPA receptor transmission in the nucleus accumbens in animal models of cocaine addiction

    PubMed Central

    Wolf, Marina E.

    2014-01-01

    Plasticity of glutamate transmission in neuronal circuits involving the nucleus accumbens (NAc) is now recognized to play a critical role in cocaine addiction. NAc neurons are excited primarily by AMPA-type glutamate receptors (AMPAR) and this is required for cocaine seeking. This review will briefly describe AMPAR properties and trafficking, with a focus on studies in NAc neurons, and then consider mechanisms by which cocaine may alter AMPAR transmission. Two examples will be discussed that may be important in two different stages of addiction: learning about drugs and drug-related cues during the period of drug exposure, and persistent vulnerability to craving and relapse after abstinence is achieved. The first example is drawn from studies of cultured NAc neurons. Elevation of DA levels (as would occur following cocaine exposure) facilitates activity-dependent strengthening of excitatory synapses onto medium spiny neurons, the main cell type and projection neuron of the NAc. This occurs because activation of D1-class receptors primes AMPAR for synaptic insertion, creating a temporal window in which stimuli related to cocaine-taking are more efficacious at eliciting synaptic plasticity and thus being encoded into memory. The second example involves rat models of cocaine addiction. Cell surface and synaptic expression of AMPAR on NAc neurons is persistently increased after withdrawal from repeated cocaine exposure. We hypothesize that this increases the reactivity of NAc neurons to glutamate inputs from cortex and limbic structures, facilitating the ability of these inputs to trigger cocaine seeking and thus contributing to the persistent vulnerability to relapse that characterizes addiction. PMID:20361291

  20. Nucleus Accumbens AMPA Receptors Are Necessary for Morphine-Withdrawal-Induced Negative-Affective States in Rats

    PubMed Central

    Russell, Shayla E.; Puttick, Daniel J.; Sawyer, Allison M.; Potter, David N.; Mague, Stephen; Carlezon, William A.

    2016-01-01

    Dependence is a hallmark feature of opiate addiction and is defined by the emergence of somatic and affective withdrawal signs. The nucleus accumbens (NAc) integrates dopaminergic and glutamatergic inputs to mediate rewarding and aversive properties of opiates. Evidence suggests that AMPA glutamate-receptor-dependent synaptic plasticity within the NAc underlies aspects of addiction. However, the degree to which NAc AMPA receptors (AMPARs) contribute to somatic and affective signs of opiate withdrawal is not fully understood. Here, we show that microinjection of the AMPAR antagonist NBQX into the NAc shell of morphine-dependent rats prevented naloxone-induced conditioned place aversions and decreases in sensitivity to brain stimulation reward, but had no effect on somatic withdrawal signs. Using a protein cross-linking approach, we found that the surface/intracellular ratio of NAc GluA1, but not GluA2, increased with morphine treatment, suggesting postsynaptic insertion of GluA2-lacking AMPARs. Consistent with this, 1-naphthylacetyl spermine trihydrochloride (NASPM), an antagonist of GluA2-lacking AMPARs, attenuated naloxone-induced decreases in sensitivity to brain stimulation reward. Naloxone decreased the surface/intracellular ratio and synaptosomal membrane levels of NAc GluA1 in morphine-dependent rats, suggesting a compensatory removal of AMPARs from synaptic zones. Together, these findings indicate that chronic morphine increases synaptic availability of GluA1-containing AMPARs in the NAc, which is necessary for triggering negative-affective states in response to naloxone. This is broadly consistent with the hypothesis that activation of NAc neurons produces acute aversive states and raises the possibility that inhibiting AMPA transmission selectively in the NAc may have therapeutic value in the treatment of addiction. SIGNIFICANCE STATEMENT Morphine dependence and withdrawal result in profound negative-affective states that play a major role in the

  1. NAC Off-Vehicle Brake Testing Project

    DTIC Science & Technology

    2007-05-01

    Supporting the Objective Force – NAC Off-vehicle Brake Testing Project -Version: 01 May 2007 FinalR1 UNCLAS: Dist A. Approved for public release NAC ...Project Officer (TIPO) US Army National Automotive Center ( NAC ) Warren, MI Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden... NAC Off-vehicle Brake Testing Project 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Miller, Leo 5d. PROJECT NUMBER

  2. Deep brain stimulation of the nucleus accumbens for the treatment of addiction.

    PubMed

    Müller, Ulf J; Voges, Jürgen; Steiner, Johann; Galazky, Imke; Heinze, Hans-Jochen; Möller, Michaela; Pisapia, Jared; Halpern, Casey; Caplan, Arthur; Bogerts, Bernhard; Kuhn, Jens

    2013-04-01

    Despite novel medications and other therapeutic strategies, addiction to psychotropic substances remains one of the most serious public health problems worldwide. In this review, beginning with an introduction of deep brain stimulation (DBS), we highlight the importance of the nucleus accumbens (NAc) in the context of the reward circuitry and addictive behavior. We will provide a short historic overview of other neurosurgical approaches to treat addiction and describe the experimental and preclinical data on DBS in addiction. Finally, we call attention to key ethical issues related to using DBS to treat addiction that are important for future research and the design of clinical trials.

  3. Role of melanin-concentrating hormone in the nucleus accumbens shell in rats behaviourally sensitized to methamphetamine.

    PubMed

    Sun, Li-Li; Zhang, Yan; Liu, Jian-feng; Wang, Jun; Zhu, Wei-li; Zhao, Li-yan; Xue, Yan-xue; Lu, Lin; Shi, Jie

    2013-09-01

    Melanin-concentrating hormone (MCH) is a neuropeptide and its receptor is extensively expressed throughout the brain. MCH has been suggested to regulate the rewarding and reinforcing effects of psychostimulants by potentiating the dopaminergic system within the midbrain. Moreover, MCH and its receptor can regulate ERK activity. The present study investigated the role of MCH in the nucleus accumbens (NAc) in rats behaviourally sensitized to methamphetamine (Meth). We found that the development of Meth-induced locomotor sensitization was attenuated by MCH infused into the NAc shell but not core. Moreover, the elevation of ERK phosphorylation in the NAc shell induced by Meth was inhibited by locally infused MCH. Infusion of the MCH receptor 1 (MCHR1) antagonist SNAP 94847 into the NAc shell but not core augmented the initiation of locomotor sensitization and amplitude of elevated phosphorylated ERK levels induced by Meth. The expression of Meth-induced locomotor sensitization and ERK alterations after 1 wk withdrawal were not affected by either MCH or SNAP 94847 infused into the NAc shell or core. These results indicate that MCH in the NAc shell plays a critical role in the development but not expression of Meth-induced locomotor sensitization in rats, which might be mediated by the ERK signalling pathway. Our study suggests that MCH might be a potential target for the treatment of Meth addiction.

  4. Cocaine and Amphetamine Induce Overlapping but Distinct Patterns of AMPAR Plasticity in Nucleus Accumbens Medium Spiny Neurons

    PubMed Central

    Jedynak, Jakub; Hearing, Matthew; Ingebretson, Anna; Ebner, Stephanie R; Kelly, Matthew; Fischer, Rachel A; Kourrich, Saïd; Thomas, Mark J

    2016-01-01

    Repeated exposure to psychostimulant drugs such as cocaine or amphetamine can promote drug-seeking and -taking behavior. In rodent addiction models, persistent changes in excitatory glutamatergic neurotransmission in the nucleus accumbens (NAc) appear to drive this drug-induced behavioral plasticity. To study whether changes in glutamatergic signaling are shared between or exclusive to specific psychostimulant drugs, we examined synaptic transmission from mice following repeated amphetamine or cocaine administration. Synaptic transmission mediated by AMPA-type glutamate receptors was potentiated in the NAc shell 10–14 days following repeated amphetamine or cocaine treatment. This synaptic enhancement was depotentiated by re-exposure to amphetamine or cocaine. By contrast, in the NAc core only repeated cocaine exposure enhanced synaptic transmission, which was subsequently depotentiated by an additional cocaine but not amphetamine injection during drug abstinence. To better understand the drug-induced depotentiation, we replicated these in vivo findings using an ex vivo model termed ‘challenge in the bath,' and showed that drug-induced decreases in synaptic strength occur rapidly (within 30 min) and require activation of metabotropic glutamate receptor 5 (mGluR5) and protein synthesis in the NAc shell, but not NAc core. Overall, these data demonstrate the specificity of neuronal circuit changes induced by amphetamine, introduce a novel method for studying drug challenge-induced plasticity, and define NAc shell medium spiny neurons as a primary site of persistent AMPA-type glutamate receptor plasticity by two widely used psychostimulant drugs. PMID:26068728

  5. Cocaine and Amphetamine Induce Overlapping but Distinct Patterns of AMPAR Plasticity in Nucleus Accumbens Medium Spiny Neurons.

    PubMed

    Jedynak, Jakub; Hearing, Matthew; Ingebretson, Anna; Ebner, Stephanie R; Kelly, Matthew; Fischer, Rachel A; Kourrich, Saïd; Thomas, Mark J

    2016-01-01

    Repeated exposure to psychostimulant drugs such as cocaine or amphetamine can promote drug-seeking and -taking behavior. In rodent addiction models, persistent changes in excitatory glutamatergic neurotransmission in the nucleus accumbens (NAc) appear to drive this drug-induced behavioral plasticity. To study whether changes in glutamatergic signaling are shared between or exclusive to specific psychostimulant drugs, we examined synaptic transmission from mice following repeated amphetamine or cocaine administration. Synaptic transmission mediated by AMPA-type glutamate receptors was potentiated in the NAc shell 10-14 days following repeated amphetamine or cocaine treatment. This synaptic enhancement was depotentiated by re-exposure to amphetamine or cocaine. By contrast, in the NAc core only repeated cocaine exposure enhanced synaptic transmission, which was subsequently depotentiated by an additional cocaine but not amphetamine injection during drug abstinence. To better understand the drug-induced depotentiation, we replicated these in vivo findings using an ex vivo model termed 'challenge in the bath,' and showed that drug-induced decreases in synaptic strength occur rapidly (within 30 min) and require activation of metabotropic glutamate receptor 5 (mGluR5) and protein synthesis in the NAc shell, but not NAc core. Overall, these data demonstrate the specificity of neuronal circuit changes induced by amphetamine, introduce a novel method for studying drug challenge-induced plasticity, and define NAc shell medium spiny neurons as a primary site of persistent AMPA-type glutamate receptor plasticity by two widely used psychostimulant drugs.

  6. Abnormal resting-state functional connectivity of the nucleus accumbens in multi-year abstinent heroin addicts.

    PubMed

    Zou, Feng; Wu, Xinhuai; Zhai, Tianye; Lei, Yu; Shao, Yongcong; Jin, Xiao; Tan, Shuwen; Wu, Bing; Wang, Lubin; Yang, Zheng

    2015-11-01

    Functional neuroimaging studies suggest that abnormal brain functional connectivity may be the neural underpinning of addiction to illicit drugs and of relapse after successful cessation therapy. Aberrant brain networks have been demonstrated in addicted patients and in newly abstinent addicts. However, it is not known whether abnormal brain connectivity patterns persist after prolonged abstinence. In this cross-sectional study, whole-brain resting-state functional magnetic resonance images (8 min) were collected from 30 heroin-addicted individuals after a long period of abstinence (more than 3 years) and from 30 healthy controls. We first examined the group differences in the resting-state functional connectivity of the nucleus accumbens (NAc), a brain region implicated in relapse-related processes, including craving and reactivity to stress following acute and protracted withdrawal from heroin. We then examined the relation between the duration of abstinence and the altered NAc functional connectivity in the heroin group. We found that, compared with controls, heroin-dependent participants exhibited significantly greater functional connectivity between the right ventromedial prefrontal cortex and the NAc and weaker functional connectivity between the NAc and the left putamen, left precuneus, and supplementary motor area. However, with longer abstinence time, the strength of NAc functional connectivity with the left putamen increased. These results indicate that dysfunction of the NAc functional network is still present in long-term-abstinent heroin-dependent individuals.

  7. Estradiol in the Preoptic Area Regulates the Dopaminergic Response to Cocaine in the Nucleus Accumbens

    PubMed Central

    Tobiansky, Daniel J; Will, Ryan G; Lominac, Kevin D; Turner, Jonathan M; Hattori, Tomoko; Krishnan, Krittika; Martz, Julia R; Nutsch, Victoria L; Dominguez, Juan M

    2016-01-01

    The sex-steroid hormone estradiol (E2) enhances the psychoactive effects of cocaine, as evidenced by clinical and preclinical studies. The medial preoptic area (mPOA), a region in the hypothalamus, is a primary neural locus for neuroendocrine integration, containing one of the richest concentrations of estrogen receptors in the CNS and also has a key role in the regulation of naturally rewarding behaviors. However, whether estradiol enhances the neurochemical response to cocaine by acting in the mPOA is still unclear. Using neurotoxic lesions and microdialysis, we examined whether the mPOA modulates cocaine-induced neurochemical activity in the nucleus accumbens. Tract tracing and immunohistochemical staining were used to determine whether projections from the mPOA to the ventral tegmental area (VTA) are sensitive to estrogen signaling. Finally, estradiol microinjections followed by microdialysis were used to determine whether estrogenic signaling in the mPOA modulates cocaine-induced changes of dopamine in the nucleus accumbens. Results showed that lesions of the mPOA or microinjections of estradiol directly into the mPOA increased cocaine-induced release of dopamine in the nucleus accumbens. Immunohistochemical analyses revealed that the mPOA modulates cocaine responsiveness via projections to both dopaminergic and GABAergic neurons in the VTA, and that these projections are sensitive to estrogenic stimulation. Taken together, these findings point to a novel estradiol-dependent pathway that modulates cocaine-induced neurochemical activity in the mesolimbic system. PMID:26647972

  8. Extrasynaptic δ-containing GABAA receptors in the nucleus accumbens dorsomedial shell contribute to alcohol intake

    PubMed Central

    Nie, Hong; Rewal, Mridula; Gill, T. Michael; Ron, Dorit; Janak, Patricia H.

    2011-01-01

    Recent findings suggest that extrasynaptic δ-subunit–containing GABAA receptors are sensitive to low-to-moderate concentrations of alcohol, raising the possibility that these receptors mediate the reinforcing effects of alcohol after consumption of one or a few drinks. We used the technique of viral-mediated RNAi to reduce expression of the GABAA receptor δ-subunit in adult rats in localized regions of the nucleus accumbens (NAc) to test the hypothesis that δ-subunit–containing GABAA receptors in the NAc are necessary for oral alcohol consumption. We found that knockdown of the δ-subunit in the medial shell region of the NAc, but not in the ventral or lateral shell or in the core, reduced alcohol intake. In contrast, δ-subunit knockdown in the medial shell did not affect intake of a 2% sucrose solution, suggesting that the effects of GABAA receptor δ-subunit reduction are specific to alcohol. These results provide strong evidence that extrasynaptic δ-subunit–containing GABAA receptors in the medial shell of the NAc are critical for the reinforcing effects of oral ethanol. PMID:21368141

  9. α4-Containing GABAA Receptors in the Nucleus Accumbens Mediate Moderate Intake of Alcohol

    PubMed Central

    Rewal, Mridula; Jurd, Rachel; Gill, T. Michael; He, Dao-Yao; Ron, Dorit; Janak, Patricia H.

    2009-01-01

    Alcohol has subjective and behavioral effects at the pharmacological levels typically reached during the consumption of one or two alcoholic drinks. Here we provide evidence that an α4-subunit-containing gamma-amino-butyric acid A (GABAA) receptor contributes to the consumption of low-to-moderate levels of alcohol. Using viral-mediated RNA-interference (RNAi), we found that reduced expression of the α4 subunit in the nucleus accumbens (NAc) shell of rats decreased their free consumption of and preference for alcohol. The time course for the reduced alcohol intake paralleled the time course of α4 mRNA reductions achieved after viral-mediated RNAi for α4. Further, the reduction in drinking was region- and alcohol-specific: there was no effect of reductions in α4 expression in the NAc core on alcohol intake, and reductions in α4 expression in the NAc shell did not alter sucrose or water intake. These results indicate that the GABAAR α4 subunit in the NAc shell mediates alcohol intake. PMID:19144854

  10. Increased sensitivity to cocaine by cholinergic cell ablation in nucleus accumbens

    PubMed Central

    Hikida, Takatoshi; Kaneko, Satoshi; Isobe, Tomohiro; Kitabatake, Yasuji; Watanabe, Dai; Pastan, Ira; Nakanishi, Shigetada

    2001-01-01

    Chronic exposure to cocaine causes long-lasting behavioral changes associated with cocaine reinforcement and addiction. An important neural substrate for cocaine addiction is the nucleus accumbens (NAc), which receives dopaminergic input from the ventral tegmental area. Although the neural circuit of the NAc is controlled by several other neurotransmitters, their involvement in cocaine addiction remains elusive. In this investigation, we ablated cholinergic interneurons from the adult NAc with immunotoxin-mediated cell targeting and examined the role of acetylcholine transmitter in adaptive behavioral changes associated with cocaine reinforcement and addiction. Acute exposure to cocaine induced abnormal rotation in unilaterally cholinergic cell-eliminated mice. This abnormal turning was enhanced by repeated exposure of cocaine. In bilaterally cholinergic cell-eliminated mice, chronic cocaine administration induced a prominent and progressive increase in locomotor activity. Moreover, these mice showed robust conditioned place preference with a lower dose of cocaine, compared with wild-type littermates. This investigation demonstrates that acetylcholine in the NAc plays a key role in both acute and chronic actions of cocaine. PMID:11606786

  11. Ethanol inhibits excitatory neurotransmission in the nucleus accumbens of adolescent mice through GABAA and GABAB receptors.

    PubMed

    Mishra, Devesh; Chergui, Karima

    2013-07-01

    Age-related differences in various acute physiological and behavioral effects of alcohol have been demonstrated in humans and in other species. Adolescents are more sensitive to positive reinforcing properties of alcohol than adults, but the cellular mechanisms that underlie such a difference are not clearly established. We, therefore, assessed age differences in the ability of ethanol to modulate glutamatergic synaptic transmission in the mouse nucleus accumbens (NAc), a brain region importantly involved in reward mechanisms. We measured field excitatory postsynaptic potentials/population spikes (fEPSP/PS) in NAc slices from adolescent (22-30 days old) and adult (5-8 months old) male mice. We found that 50mM ethanol applied in the perfusion solution inhibits glutamatergic neurotransmission in the NAc of adolescent, but not adult, mice. This effect is blocked by the gamma-aminobutyric acid (GABA)A receptor antagonist bicuculline and by the GABAB receptor antagonist CGP 55845. Furthermore, bicuculline applied alone produces a stronger increase in the fEPSP/PS amplitude in adult mice than in adolescent mice. Activation of GABAA receptors with muscimol produces a stronger and longer lasting depression of neurotransmission in adolescent mice as compared with adult mice. Activation of GABAB receptors with SKF 97541 also depresses neurotransmission more strongly in adolescent than in adult mice. These results demonstrate that an increased GABA receptor function associated with a reduced inhibitory tone underlies the depressant action of ethanol on glutamatergic neurotransmission in the NAc of adolescent mice.

  12. Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving.

    PubMed

    Lee, Brian R; Ma, Yao-Ying; Huang, Yanhua H; Wang, Xiusong; Otaka, Mami; Ishikawa, Masago; Neumann, Peter A; Graziane, Nicholas M; Brown, Travis E; Suska, Anna; Guo, Changyong; Lobo, Mary Kay; Sesack, Susan R; Wolf, Marina E; Nestler, Eric J; Shaham, Yavin; Schlüter, Oliver M; Dong, Yan

    2013-11-01

    In rat models of drug relapse and craving, cue-induced cocaine seeking progressively increases after withdrawal from the drug. This 'incubation of cocaine craving' is partially mediated by time-dependent adaptations at glutamatergic synapses in nucleus accumbens (NAc). However, the circuit-level adaptations mediating this plasticity remain elusive. We studied silent synapses, often regarded as immature synapses that express stable NMDA receptors with AMPA receptors being either absent or labile, in the projection from the basolateral amygdala to the NAc in incubation of cocaine craving. Silent synapses were detected in this projection during early withdrawal from cocaine. As the withdrawal period progressed, these silent synapses became unsilenced, a process that involved synaptic insertion of calcium-permeable AMPA receptors (CP-AMPARs). In vivo optogenetic stimulation-induced downregulation of CP-AMPARs at amygdala-to-NAc synapses, which re-silenced some of the previously silent synapses after prolonged withdrawal, decreased incubation of cocaine craving. Our findings indicate that silent synapse-based reorganization of the amygdala-to-NAc projection is critical for persistent cocaine craving and relapse after withdrawal.

  13. Morphine conditioned place preference depends on glucocorticoid receptors in both hippocampus and nucleus accumbens.

    PubMed

    Dong, Zhifang; Han, Huili; Wang, Meina; Xu, Lin; Hao, Wei; Cao, Jun

    2006-01-01

    Learned association between drugs of abuse and context is essential for the formation of drug conditioned place preference (CPP), which is believed to engage many brain regions including hippocampus and nucleus accumbens (NAc). The underlying mechanisms are not fully understood. Here, we examined whether glucocorticoid receptors (GRs) of hippocampus and NAc influenced the formation of morphine CPP in Sprague Dawley rats. We found that systemic or intrahippocampal infused DMSO vehicle (DMSO 20% in saline) 30 min before daily morphine (10 mg/kg, s.c.) conditioning did not affect the formation of morphine CPP. In contrast, systemic administration (5 mg/kg, s.c.) or intrahippocampal infusion (0, 0.1, 1.0, 10, 20 microg per side) of the GR antagonist RU38486 blocked or impaired the formation of CPP in a dose-dependent manner, respectively. Furthermore, intra-NAc infused RU38486 (10 microg per side) but not DMSO vehicle also prevented the formation of CPP. These results demonstrate that both the GRs of hippocampus and NAc are necessary for the formation of morphine CPP, suggesting a neural network function of the GRs in forming the opiate-associated memory.

  14. Oxytocin in the nucleus accumbens core reduces reinstatement of methamphetamine-seeking behaviour in rats.

    PubMed

    Baracz, Sarah J; Everett, Nicholas A; McGregor, Iain S; Cornish, Jennifer L

    2016-03-01

    The psychostimulant methamphetamine (METH) is an addictive illicit drug. Systemic administration of the neuropeptide oxytocin modulates METH-related reward and METH-seeking behaviour. Recent findings demonstrated a reduction in METH-induced reward by oxytocin administration into the nucleus accumbens (NAc) core. It is not known, however, if oxytocin acts in this region to reduce relapse to METH-seeking behaviour. Using the drug reinstatement paradigm in rats experienced at METH self-administration, we aimed to determine whether oxytocin pre-treatment within the NAc core would reduce relapse to METH use and if this could be reversed by the co-administration of the oxytocin receptor (OTR) antagonist desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT. Male Sprague-Dawley rats underwent surgery to implant an intravenous jugular vein catheter and bilateral microinjection cannulae in the NAc core. Rats were then trained to self-administer intravenous METH (0.1 mg/kg/infusion) by lever press during 2-hour fixed ratio 1 scheduled sessions for 20 days. Following extinction of lever press activity, the effect of microinjecting saline, oxytocin (0.5 pmol, 1.5 pmol, 4.5 pmol) or co-administration of oxytocin (1.5 pmol) and desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT (1 nmol, 3 nmol) in the NAc core (500 nl/side) was examined on METH-primed (1 mg/kg, i.p.) reinstatement of drug-seeking behaviour. Our results showed oxytocin directly administered into the NAc core decreased METH-primed reinstatement in a dose-dependent manner. Co-administration of the selective OTR antagonist did not specifically reverse the inhibitory effects of oxytocin on METH priming, suggesting mediation by receptors other than the OTR. These findings highlight an important modulatory effect of oxytocin in the NAc core on relapse to METH seeking.

  15. Overexpression of CREB in the nucleus accumbens shell increases cocaine reinforcement in self-administering rats.

    PubMed

    Larson, Erin B; Graham, Danielle L; Arzaga, Rose R; Buzin, Nicole; Webb, Joseph; Green, Thomas A; Bass, Caroline E; Neve, Rachael L; Terwilliger, Ernest F; Nestler, Eric J; Self, David W

    2011-11-09

    Chronic exposure to addictive drugs enhances cAMP response element binding protein (CREB)-regulated gene expression in nucleus accumbens (NAc), and these effects are thought to reduce the positive hedonic effects of passive cocaine administration. Here, we used viral-mediated gene transfer to produce short- and long-term regulation of CREB activity in NAc shell of rats engaging in volitional cocaine self-administration. Increasing CREB expression in NAc shell markedly enhanced cocaine reinforcement of self-administration behavior, as indicated by leftward (long-term) and upward (short-term) shifts in fixed ratio dose-response curves. CREB also increased the effort exerted by rats to obtain cocaine on more demanding progressive ratio schedules, an effect highly correlated with viral-induced modulation of BDNF protein in the NAc shell. CREB enhanced cocaine reinforcement when expressed either throughout acquisition of self-administration or when expression was limited to postacquisition tests, indicating a direct effect of CREB independent of reinforcement-related learning. Downregulating endogenous CREB in NAc shell by expressing a short hairpin RNA reduced cocaine reinforcement in similar tests, while overexpression of a dominant-negative CREB(S133A) mutant had no significant effect on cocaine self-administration. Finally, increasing CREB expression after withdrawal from self-administration enhanced cocaine-primed relapse, while reducing CREB levels facilitated extinction of cocaine seeking, but neither altered relapse induced by cocaine cues or footshock stress. Together, these findings indicate that CREB activity in NAc shell increases the motivation for cocaine during active self-administration or after withdrawal from cocaine. Our results also highlight that volitional and passive drug administration can lead to substantially different behavioral outcomes.

  16. Exogenous and endogenous cannabinoids control synaptic transmission in mice nucleus accumbens.

    PubMed

    Robbe, David; Alonso, Gerard; Manzoni, Oliver J

    2003-11-01

    Addictive drugs are thought to alter normal brain function and cause the remodeling of synaptic functions in areas important to memory and reward. Excitatory transmission to the nucleus accumbens (NAc) is involved in the actions of most drugs of abuse, including cannabis. We have explored the functions of the endocannabinoid system at the prefrontal cortex-NAc synapses. Immunocytochemistry showed cannabinoid receptor (CB1) expression on axonal terminals making contacts with NAc neurons. In NAc slices, synthetic cannabinoids inhibit spontaneous and evoked glutamate-mediated transmission through presynaptic activation of presynaptic K+ channels and GABA-mediated transmission most likely via a direct presynaptic action on the vesicular release machinery. How does synaptic activity lead to the production of endogenous cannabinoids (eCBs) in the NAc? More generally, do eCBs participate in long-term synaptic plasticity in the brain? We found that tetanic stimulation (mimicking naturally occurring frequencies) of prelimbic glutamatergic afferents induced a presynaptic LTD dependent on eCB and CB1 receptors (eCB-LTD). Induction of eCB-LTD required postsynaptic activation of mGlu5 receptors and a rise in postsynaptic Ca2+ from ryanodine-sensitive intracellular Ca2+ stores. This retrograde signaling cascade involved postsynaptic eCB release and activation of presynaptic CB1 receptors. In the NAc, eCB-LTD might be part of a negative feedback loop, reducing glutamatergic synaptic strength during sustained cortical activity. The fact that this new form of LTD was occluded by an exogenous cannabinoid suggested that cannabis derivatives, such as marijuana, may alter normal eCB-mediated synaptic plasticity. These data suggest a major role of the eCB system in long-term synaptic plasticity and give insights into how cannabis derivatives, such as marijuana, alter normal eCB functions in the brain reward system.

  17. Dynamics of intracellular dopamine contents in the rat brain during the formation of conditioned contextual fear and extinction of an acoustic startle reaction.

    PubMed

    Storozheva, Z I; Afanas'ev, I I; Proshin, A T; Kudrin, V S

    2003-05-01

    Extracellular dopamine contents in the caudate nucleus, nucleus accumbens, and prefrontal cortex of the rat brain were measured during two sessions of extinction of an acoustic startle reaction--each consisting of ten sound stimuli, the two sessions separated by 24 h--with simultaneous recording of freezing behavior. The results demonstrated a decrease in extracellular dopamine levels in the caudate nucleus and an increase in the nucleus accumbens during both sessions of extinction, with return to initial immediately after sessions ended. During the second session, the amplitude of startle responses and the magnitude of changes in dopamine levels in both structures were significantly smaller than during the first session. Between the sessions, dopamine levels in the caudate nucleus remained constant, while those in the nucleus accumbens decreased. The prefrontal cortex showed increases in dopamine levels during both sessions of extinction, as well as between the two sessions. The amplitude of the startle reaction was found to correlate with dopamine levels in the prefrontal cortex after the end of the corresponding extinction session and with the dopamine level before the start of the second session. The freezing time before the start of sound stimulation in the second session, this being a measure of conditioned fear, correlated with the dopamine level in the caudate nucleus on the training day and with the dopamine level in the nucleus accumbens before the start of the second session. The role of the dopaminergic system in the mechanisms forming and realizing the various components of defensive behavior are discussed.

  18. A NAC for regulating metabolism: the nitrogen assimilation control protein (NAC) from Klebsiella pneumoniae.

    PubMed

    Bender, Robert A

    2010-10-01

    The nitrogen assimilation control protein (NAC) is a LysR-type transcriptional regulator (LTTR) that is made under conditions of nitrogen-limited growth. NAC's synthesis is entirely dependent on phosphorylated NtrC from the two-component Ntr system and requires the unusual sigma factor σ54 for transcription of the nac gene. NAC activates the transcription of σ70-dependent genes whose products provide the cell with ammonia or glutamate. NAC represses genes whose products use ammonia and also represses its own transcription. In addition, NAC also subtly adjusts other cellular functions to keep pace with the supply of biosynthetically available nitrogen.

  19. The tonic/phasic model of dopamine system regulation and its implications for understanding alcohol and psychostimulant craving.

    PubMed

    Grace, A A

    2000-08-01

    All drugs of abuse have been shown to act either directly or indirectly by increasing dopamine neurotransmission within the limbic system. Thus, alcohol has been shown to increase dopamine transmission primarily by activating dopamine cell spike activity, whereas psychostimulants increase dopamine transmission by inhibiting the removal of dopamine from the synaptic space after its release. The spike-dependent release of dopamine that is modulated by drugs of abuse to lead to their rewarding actions has been termed the phasic dopamine response. In contrast, with repeated drug administration, dopamine will also accumulate in the extracellular space of the nucleus accumbens in concentrations too low to stimulate postsynaptic receptors, but of sufficient magnitude to activate dopamine release-inhibiting autoreceptors. In addition, the level of extracellular dopamine is proposed to be under the regulatory influence of cortico-accumbens afferents. This steady-state level of extrasynaptic dopamine has been termed the tonic dopamine response. In this paper it is proposed that several of the aspects of drug addiction, withdrawal and craving associated with the continued use of these drugs can be explained on the basis of their effects on tonic versus phasic dopamine system function. Thus, the increase in tonic dopamine levels that occurs with repeated drug administration would serve to oppose phasic dopamine release via stimulation of dopamine terminal autoreceptors, causing the subject to increase drug administration to restore the phasic response. Moreover, after withdrawal from the drugs, exposure to priming doses of drug or to drug-related stimuli are proposed to increase tonic dopamine levels, again triggering drug-seeking behavior in order to restore balance between the tonic and phasic dopamine systems. Therefore, one consequence of continued drug use is that these parameters of dopamine system function that normally serve to keep the system stable will enter into a

  20. Role of brain dopamine in food reward and reinforcement

    PubMed Central

    Wise, Roy A

    2006-01-01

    The ability of food to establish and maintain response habits and conditioned preferences depends largely on the function of brain dopamine systems. While dopaminergic transmission in the nucleus accumbens appears sufficient for some forms of reward, the role of dopamine in food reward does not appear to be restricted to this region. Dopamine plays an important role in both the ability to energize feeding and to reinforce food-seeking behaviour; the role in energizing feeding is secondary to the prerequisite role in reinforcement. Dopaminergic activation is triggered by the auditory and visual as well as the tactile, olfactory, and gustatory stimuli of foods. While dopamine plays a central role in the feeding and food-seeking of normal animals, some food rewarded learning can be seen in genetically engineered dopamine-deficient mice. PMID:16874930

  1. Dynamic risk control by human nucleus accumbens.

    PubMed

    Nachev, Parashkev; Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio; Strange, Bryan

    2015-12-01

    Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established.

  2. Dynamic risk control by human nucleus accumbens

    PubMed Central

    Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio

    2015-01-01

    Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established. PMID:26428667

  3. NAC Aftermarket Brake Components Project (Secondary Items)

    DTIC Science & Technology

    2006-09-25

    NAC Aftermarket Brake Components Project (Secondary Items) SAE Paper #2006-01-3192 25 September 2006, Grapevine Version R4 (Final) Report...REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE NAC Aftermarket Brake Components Project (Secondary Items) 5a. CONTRACT NUMBER 5b...PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 NAC Aftermarket Brake Components Project By: Leo Miller, USA

  4. NAC Aftermarket Brake Components Project (Secondary Items)

    DTIC Science & Technology

    2007-02-06

    Supporting the Objective Force – NAC Aftermarket Brake Components Project Version: 06 February 2007 Final UNCLAS: Dist A. Approved for public...release NAC Aftermarket Brake Components Project (Secondary Items) Version: 06 February 2007 Final UNCLAS: Dist A. Approved for public release Leo Miller...Technology Insertion Project Officer (TIPO) US Army National Automotive Center ( NAC ) Warren, MI Report Documentation Page Form ApprovedOMB No. 0704

  5. A high-fat diet or galanin in the PVN decreases phosphorylation of CREB in the nucleus accumbens

    PubMed Central

    Bocarsly, Miriam E.; Avena, Nicole M.

    2013-01-01

    A high-fat diet (HFD) can increase hypothalamic galanin (GAL). GAL has recently been shown to inhibit opiate reward, which in turn, decreases cAMP response element-binding protein (CREB) in the nucleus accumbens (NAc). We hypothesized that injection of GAL into the PVN, or consumption of a HFD, would be associated with a decrease in NAc CREB. In Exp. 1, GAL in the paraventricular nucleus (PVN) of naïve rats decreased phosphorylated-CREB (pCREB) in the NAc compared to saline injected controls. In Exp. 2, rats fed ad libitum HFD for 4 wks had reduced NAc pCREB levels compared to rats with sporadic tastes of the HFD. Body weight, serum triglyceride and leptin levels were also raised in the chronic HFD-fed rats. These data suggest that PVN GAL or chronic intake of a HFD can decrease NAc pCREB. The implications of these findings may help to explain the lack of opiate-like withdrawal that has been reported in response to overeating a high fat diet, thereby providing a potential mechanism underlying behavioral differences seen with addiction-like overconsumption of different types of palatable foods. PMID:23747305

  6. Nicotine addiction reduces the large-conductance Ca(2+)-activated potassium channels expression in the nucleus accumbens.

    PubMed

    Ma, Lan; Wu, Yu-Mei; Guo, Yan-Yan; Yang, Qi; Feng, Bin; Song, Qian; Liu, Shui-Bing; Zhao, Da-Qing; Zhao, Ming-Gao

    2013-06-01

    Large-conductance Ca(2+)-activated K(+) channels (BKCa) are widely expressed in the central nervous system and play important roles in neural activities. Nicotine exposure leads to long-lasting changes in behavioral and neuronal plasticity. However, little is known the roles of BKCa in the development of nicotine addiction. In the present study, a significant reduction in BKCa channel expression was found in nucleus accumbens (NAc) from nicotine addiction mice. Whole-cell patch-clamp recordings from NAc neurons of the addicted animals revealed a pronounced reduction in the fast after-hyperpolarization of action potentials mediated by BKCa channels that led to hyperexcitability of the NAc neurons. Activation of BKCa channels in the NAc reversed drug-seeking behaviors which were detected by conditioned place preference test. Furthermore, knockdown of BKCa channels using short hairpin RNAs significantly increased the drug-seeking behavior. These findings provide direct evidence that alterations of BKCa channels in the NAc play critical roles in the development of nicotine addiction and that modulation of the BKCa channels may be potential therapeutics for drug addiction.

  7. Methylenedioxypyrovalerone (MDPV) mimics cocaine in its physiological and behavioral effects but induces distinct changes in NAc glucose

    PubMed Central

    Wakabayashi, Ken T.; Ren, Suelynn E.; Kiyatkin, Eugene A.

    2015-01-01

    Methylenedioxypyrovalerone (MDPV) is generally considered to be a more potent cocaine-like psychostimulant, as it shares a similar pharmacological profile with cocaine and induces similar physiological and locomotor responses. Recently, we showed that intravenous cocaine induces rapid rise in nucleus accumbens (NAc) glucose and established its relation to neural activation triggered by the peripheral drug actions. This study was conducted to find out whether MDPV, at a behaviorally equivalent dose, shares a similar pattern of NAc glucose dynamics. Using enzyme-based glucose sensors coupled with amperometery in freely moving rats, we found that MDPV tonically decreases NAc glucose levels, a response that is opposite to what we previously observed with cocaine. By analyzing Skin-Muscle temperature differentials, a valid measure of skin vascular tone, we found that MDPV induces vasoconstriction; a similar effect at the level of cerebral vessels could be responsible for the MDPV-induced decrease in NAc glucose. While cocaine also induced comparable, if not slightly stronger peripheral vasoconstriction, this effect was overpowered by local neural activity-induced vasodilation, resulting in rapid surge in NAc glucose. These results imply that cocaine-users may be more susceptible to addiction than MDPV-users due to the presence of an interoceptive signal (i.e., sensory cue), which may result in earlier and more direct reward detection. Additionally, while health complications arising from acute cocaine use are typically cardiovascular related, MDPV may be more dangerous to the brain due to uncompensated cerebral vasoconstriction. PMID:26441499

  8. Nucleus accumbens responses differentiate execution and restraint in reward-directed behavior

    PubMed Central

    Loriaux, Amy L.

    2013-01-01

    Our behavior is powerfully driven by environmental cues that signal the availability of rewarding stimuli. We frequently encounter stimuli—a bowl of candy or an alert from our smartphone—that trigger actions to obtain those rewards, even though there may be positive outcomes associated with not acting. The inability to restrain one's action in the presence of reward-associated cues is one type of impulsive behavior and a component of such maladaptive behaviors as overeating, gambling, and substance abuse. The nucleus accumbens (NAc) is ideally situated to integrate multiple cognitive and affective inputs to bias action via outputs through the basal ganglia. NAc neurons have been shown to respond to cues that predict reward availability, goal-directed behaviors aimed at obtaining them, and delivery of the reward itself. As these processes are typically associated, it is difficult to discern whether signals in the NAc are more closely related to processing reward-predictive aspects of goal-directed behavior or selection of behavioral response. To dissociate these possibilities, we recorded the activity of NAc neurons while rats performed a task in which two different cues both informed rats of reward availability but required them to either press a lever (Go) or withhold pressing (NoGo) to obtain the reward. Individual cue-responsive neurons showed either increases or decreases in activity at cue onset. Increases in activity were larger, and decreases smaller, when rats withheld lever pressing, whether correctly for NoGo trials or in error on Go trials. Thus NAc cue responses correlated with action, regardless of cue type or accuracy. PMID:24174652

  9. Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism.

    PubMed

    Tanda, G; Pontieri, F E; Di Chiara, G

    1997-06-27

    The effects of the active ingredient of Cannabis, Delta9-tetrahydrocannabinol (Delta9-THC), and of the highly addictive drug heroin on in vivo dopamine transmission in the nucleus accumbens were compared in Sprague-Dawley rats by brain microdialysis. Delta9-THC and heroin increased extracellular dopamine concentrations selectively in the shell of the nucleus accumbens; these effects were mimicked by the synthetic cannabinoid agonist WIN55212-2. SR141716A, an antagonist of central cannabinoid receptors, prevented the effects of Delta9-THC but not those of heroin. Naloxone, a generic opioid antagonist, administered systemically, or naloxonazine, an antagonist of micro1 opioid receptors, infused into the ventral tegmentum, prevented the action of cannabinoids and heroin on dopamine transmission. Thus, Delta9-THC and heroin exert similar effects on mesolimbic dopamine transmission through a common mu1 opioid receptor mechanism located in the ventral mesencephalic tegmentum.

  10. The Inhibitory Effects of Nesfatin-1 in Ventromedial Hypothalamus on Gastric Function and Its Regulation by Nucleus Accumbens

    PubMed Central

    Gao, Shengli; Guo, Feifei; Sun, Xiangrong; Zhang, Nana; Gong, Yanling; Xu, Luo

    2017-01-01

    Aim: The aim of this study was to investigate the effect of nesfatin-1 signaling in the ventromedial hypothalamus (VMH) on gastric functions, as well as the regulation of these effects by nucleus accumbens (NAc) projections to VMH. Methods: The expression of c-fos in nesfatinergic VMH neurons induced by gastric distension (GD) was measured using the double fluoro-immunohistochemical staining. The firing rates of neurons were monitored with single-unit extracellular electric discharge recording. The projection of nesfatinergic neurons from NAc to VMH was observed by fluorogold retrograde tracer combined with fluoro-immunohistochemical staining. The effect of nesfatin-1 in VMH or electric stimulation in NAc on gastric function was studied by measuring food intake, gastric acid output, gastric motility, and gastric emptying, and the ability of the melanocortin-3/4 receptor antagonist SHU9119 or the anti-nesfatin-1 antibody to block nesfatin-1 in the VMH was assessed. Results: Expression of c-fos was observed in VMH nesfatinergic neurons following GD in rats. Further, nesfatin-1 delivery to single GD-responsive neurons changed the firing rates of these neurons in the VMH. In awake, behaving rats, intra-VMH administration of nesfatin-1 inhibited food intake, gastric acid output, gastric motility, and gastric emptying. These effects were abolished by SHU9119. Fluorogold retrograde tracing showed nesfatinergic neural projection from the NAc to the VMH. Electrical stimulation of NAc modified the firing rates of the VMH neurons and inhibited food intake and gastric functions. The pretreatment with an anti-nesfatin-1 antibody in the VMH reversed the effects of NAc electrical stimulation on the VMH neuronal firing rates and gastric function. Conclusions: Nesfatin-1 in the VMH inhibited food intake, gastric acid output, gastric motility, and gastric emptying. A nesfatinergic pathway between NAc and VMH transmitted metabolism-regulating signals. PMID:28105016

  11. BDNF contributes to both rapid and homeostatic alterations in AMPA receptor surface expression in nucleus accumbens medium spiny neurons

    PubMed Central

    Reimers, Jeremy M.; Loweth, Jessica A.; Wolf, Marina E.

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) plays a critical role in plasticity at glutamate synapses and the effects of repeated cocaine exposure. We recently showed that intracranial injection of BDNF into the rat nucleus accumbens (NAc), a key region for cocaine addiction, rapidly increases AMPA receptor (AMPAR) surface expression. To further characterize BDNF’s role in both rapid AMPAR trafficking and slower, homeostatic changes in AMPAR surface expression, we investigated the effects of acute (30 min) and long-term (24 h) treatment with BDNF on AMPAR distribution in NAc medium spiny neurons from postnatal rats co-cultured with mouse prefrontal cortex (PFC) neurons to restore excitatory inputs. Immunocytochemical studies showed that acute BDNF treatment increased cell surface GluA1 and GluA2 levels, as well as their co-localization, on NAc neurons. This effect of BDNF, confirmed using a protein crosslinking assay, was dependent on ERK but not AKT signaling. In contrast, long-term BDNF treatment decreased AMPAR surface expression on NAc neurons. Based on this latter result, we tested the hypothesis that BDNF plays a role in AMPAR “scaling down” in response to a prolonged increase in neuronal activity produced by bicuculline (24 h). Supporting this hypothesis, decreasing BDNF signaling with the extracellular BDNF scavenger TrkB-Fc prevented the scaling down of GluA1 and GluA2 surface levels in NAc neurons normally produced by bicuculline. In conclusion, BDNF exerts bidirectional effects on NAc AMPAR surface expression, depending on duration of exposure. Furthermore, BDNF’s involvement in synaptic scaling in the NAc differs from its previously described role in the visual cortex. PMID:24712995

  12. Kindled seizure in the prefrontal cortex activated behavioral hyperactivity and increase in accumbens gamma oscillations through the hippocampus.

    PubMed

    Ma, Jingyi; Leung, L Stan

    2010-01-05

    In previous studies, we reported that a single afterdischarge (AD) or repeated ADs (kindling) in the hippocampus resulted in schizophrenia-like behaviors such as hyperactivity and loss of sensorimotor gating. Given that medial prefrontal cortex (PFC) dysfunction is also found in models of schizophrenia, we hypothesized that a single AD in the PFC induces postictal hyperactivity, and PFC kindling results in loss in prepulse inhibition (PPI). An AD was induced by stimulating the PFC with a 5s stimulus train of 60 Hz frequency and 600-800 microA intensity. An initial AD evoked in the PFC was not accompanied by clear postictal behavioral change. After partial kindling (11+/-2 ADs) of the PFC, the PFC-AD propagated into the hippocampus and nucleus accumbens (NAC) and postictal hyperactivity lasted > 5 min. The postictal hyperactivity was accompanied by increased gamma EEG oscillations in both PFC and NAC. A single AD in hippocampal CA1 also induced > 5 min of postictal hyperactivity and increased gamma oscillations in the NAC and the PFC, with a transient increase in hippocampus-NAC gamma coherence occurring 2-3 min after a hippocampal AD. Electrolytic lesion or inactivation of the dorsal hippocampus abolished the behavioral hyperactivity and the NAC/PFC gamma wave increase induced by a PFC-AD. Kindling of the PFC (21 ADs) but not of the lateral frontal cortex resulted in a deficit of PPI to the acoustic startle response tested 3 days after the last AD. In summary, gamma waves in the NAC were found to accompany postictal hyperactivity induced by an AD in the PFC. Postictal gamma and hyperactivity required an intact hippocampus, perhaps through the hippocampal-NAC pathway. PFC kindling, similar to hippocampal CA1 kindling, resulted in a prolonged deficit in PPI.

  13. Integrative Analysis of Sex-Specific microRNA Networks Following Stress in Mouse Nucleus Accumbens

    PubMed Central

    Pfau, Madeline L.; Purushothaman, Immanuel; Feng, Jian; Golden, Sam A.; Aleyasin, Hossein; Lorsch, Zachary S.; Cates, Hannah M.; Flanigan, Meghan E.; Menard, Caroline; Heshmati, Mitra; Wang, Zichen; Ma'ayan, Avi; Shen, Li; Hodes, Georgia E.; Russo, Scott J.

    2016-01-01

    Adult women are twice as likely as men to suffer from affective and anxiety disorders, although the mechanisms underlying heightened female stress susceptibility are incompletely understood. Recent findings in mouse Nucleus Accumbens (NAc) suggest a role for DNA methylation-driven sex differences in genome-wide transcriptional profiles. However, the role of another epigenetic process—microRNA (miR) regulation—has yet to be explored. We exposed male and female mice to Subchronic Variable Stress (SCVS), a stress paradigm that produces depression-like behavior in female, but not male, mice, and performed next generation mRNA and miR sequencing on NAc tissue. We applied a combination of differential expression, miR-mRNA network and functional enrichment analyses to characterize the transcriptional and post-transcriptional landscape of sex differences in NAc stress response. We find that male and female mice exhibit largely non-overlapping miR and mRNA profiles following SCVS. The two sexes also show enrichment of different molecular pathways and functions. Collectively, our results suggest that males and females mount fundamentally different transcriptional and post-transcriptional responses to SCVS and engage sex-specific molecular processes following stress. These findings have implications for the pathophysiology and treatment of stress-related disorders in women. PMID:28066174

  14. Up-regulation of cocaine- and amphetamine-regulated transcript (CART) in the rat nucleus accumbens after repeated electroconvulsive shock.

    PubMed

    Roh, Myoung-Sun; Cui, Feng Ji; Ahn, Yong Min; Kang, Ung Gu

    2009-10-01

    Cocaine- and amphetamine-regulated transcript (CART) peptide regulates appetite, reward, and mood. CART expression is regulated via the protein kinase A (PKA) pathway, and electroconvulsive shock (ECS), an efficient antipsychotic and antidepressant measure, activates PKA-related signaling. Thus, we hypothesized that ECS may regulate the expression of CART. ECS given daily for five consecutive days increased CART mRNA and protein in the rat nucleus accumbens (NAc), accompanied by an increase in CREB phosphorylation. Our results suggest that ECS-induced CART up-regulation might be associated with PKA-CREB signaling, but the causal direction remains to be elucidated in future studies.

  15. Activation of muscarinic and nicotinic acetylcholine receptors in the nucleus accumbens core is necessary for the acquisition of drug reinforcement.

    PubMed

    Crespo, Jose A; Sturm, Katja; Saria, Alois; Zernig, Gerald

    2006-05-31

    Neurotransmitter release in the nucleus accumbens core (NACore) during the acquisition of remifentanil or cocaine reinforcement was determined in an operant runway procedure by simultaneous tandem mass spectrometric analysis of dopamine, acetylcholine, and remifentanil or cocaine itself. Run times for remifentanil or cocaine continually decreased over the five consecutive runs of the experiment. Intra-NACore dopamine, acetylcholine, and drug peaked with each intravenous remifentanil or cocaine self-administration and decreased to pre-run baseline with half-lives of approximately 10 min. As expected, remifentanil or cocaine peaks did not vary between the five runs. Surprisingly, however, drug-contingent dopamine peaks also did not change over the five runs, whereas acetylcholine peaks did. Thus, the acquisition of drug reinforcement was paralleled by a continuous increase in acetylcholine overflow in the NACore, whereas the overflow of dopamine, the expected prime neurotransmitter candidate for conditioning in drug reinforcement, did not increase. Local intra-accumbens administration by reverse microdialysis of either atropine or mecamylamine completely and reversibly blocked the acquisition of remifentanil reinforcement. Our findings suggest that activation of muscarinic and nicotinic acetylcholine receptors in the NACore by acetylcholine volume transmission is necessary during the acquisition phase of drug reinforcement conditioning.

  16. Increased Extracellular Glutamate In the Nucleus Accumbens Promotes Excessive Ethanol Drinking in Ethanol Dependent Mice

    PubMed Central

    Griffin III, William C; Haun, Harold L; Hazelbaker, Callan L; Ramachandra, Vorani S; Becker, Howard C

    2014-01-01

    Using a well-established model of ethanol dependence and relapse, this study examined adaptations in glutamatergic transmission in the nucleus accumbens (NAc) and their role in regulating voluntary ethanol drinking. Mice were first trained to drink ethanol in a free-choice, limited access (2 h/day) paradigm. One group (EtOH mice) received repeated weekly cycles of chronic intermittent ethanol (CIE) exposure with intervening weeks of test drinking sessions, whereas the remaining mice (CTL mice) were similarly treated but did not receive CIE treatment. Over repeated cycles of CIE exposure, EtOH mice exhibited significant escalation in drinking (up to ∼3.5 g/kg), whereas drinking remained relatively stable at baseline levels (2–2.5 g/kg) in CTL mice. Using in vivo microdialysis procedures, extracellular glutamate (GLUEX) levels in the NAc were increased approximately twofold in EtOH mice compared with CTL mice, and this difference was observed 7 days after final CIE exposure, indicating that this hyperglutamatergic state persisted beyond acute withdrawal. This finding prompted additional studies examining the effects of pharmacologically manipulating GLUEX in the NAc on ethanol drinking in the CIE model. The non-selective glutamate reuptake antagonist, threo-β-benzyloxyaspartate (TBOA), was bilaterally microinjected into the NAc and found to dose-dependently increase drinking in nondependent (CTL) mice to levels attained by dependent (EtOH) mice. TBOA also further increased drinking in EtOH mice. In contrast, reducing glutamatergic transmission in the NAc via bilateral injections of the metabotropic glutamate receptor-2/3 agonist LY379268 reduced drinking in dependent (EtOH) mice to nondependent (CTL) levels, whereas having a more modest effect in decreasing ethanol consumption in CTL mice. Taken together, these data support an important role of glutamatergic transmission in the NAc in regulating ethanol drinking. Additionally, these results indicate that

  17. Infralimbic prefrontal cortex interacts with nucleus accumbens shell to unmask expression of outcome-selective Pavlovian-to-instrumental transfer

    PubMed Central

    Keistler, Colby; Barker, Jacqueline M.

    2015-01-01

    Although several studies have examined the subcortical circuitry underlying Pavlovian-to-instrumental transfer (PIT), the role of medial prefrontal cortex in this behavior is largely unknown. Elucidating the cortical contributions to PIT will be key for understanding how reward-paired cues control behavior in both adaptive and maladaptive context (i.e., addiction). Here we use bilateral lesions in a rat model to show that infralimbic prefrontal cortex (ilPFC) is necessary for appropriate expression of PIT. Further, we show that ilPFC mediates this effect via functional connectivity with nucleus accumbens shell (NAcS). Together, these data provide the first demonstration that a specific cortico-striatal circuit is necessary for cue-invigorated reward seeking during specific PIT. PMID:26373829

  18. Antagonism of κ opioid receptor in the nucleus accumbens prevents the depressive-like behaviors following prolonged morphine abstinence.

    PubMed

    Zan, Gui-Ying; Wang, Qian; Wang, Yu-Jun; Liu, Yao; Hang, Ai; Shu, Xiao-Hong; Liu, Jing-Gen

    2015-09-15

    The association between morphine withdrawal and depressive-like symptoms is well documented, however, the role of dynorphin/κ opioid receptor system and the underlying neural substrates have not been fully understood. In the present study, we found that four weeks morphine abstinence after a chronic escalating morphine regimen significantly induced depressive-like behaviors in mice. Prodynorphin mRNA and protein levels were increased in the nucleus accumbens (NAc) after four weeks of morphine withdrawal. Local injection of κ opioid receptor antagonist nor-Binaltorphimine (norBNI) in the NAc significantly blocked the expression of depressive-like behaviors without influencing general locomotor activity. Thus, the present study extends previous findings by showing that prolonged morphine withdrawal-induced depressive-like behaviors are regulated by dynorphin/κ opioid receptor system, and shed light on the κ opioid receptor antagonists as potential therapeutic agents for the treatment of depressive-like behaviors induced by opiate withdrawal.

  19. UDP-GlcNAc: Gal beta 3GalNAc-mucin: (GlcNAc----GalNAc) beta 6-N-acetylglucosaminyltransferase and UDP-GlcNAc: Gal beta 3(GlcNAc beta 6) GalNAc-mucin (GlcNAc----Gal)beta 3-N-acetylglucosaminyltransferase from swine trachea epithelium.

    PubMed

    Sangadala, S; Sivakami, S; Mendicino, J

    1991-03-13

    Two specific beta-N-acetylglucosaminyltransferases involved in the branching and elongation of mucin oligosaccharide chains, namely, a beta 1,6 N-acetylglucosaminylsaminyltransferase that transfers N-acetylglucosamine from UDP-N-acetylglucosamine to Gal beta 3GalNAc-mucin to yield Gal beta 3(GlcNAc beta 6)GalNAc-Mucin and a beta 3-N-acetylglucosaminyl transferase that transfers N-acetylglucosamine from UDP-N-acetylglucosamine to Gal beta 3(GlcNAc beta 6)GalNAc-mucin to yield GlcNAc beta 3Gal beta 3 (GlcNAc beta 6)GalNAc-Mucin were purified from the microsomal fraction of swine trachea epithelium. The beta 1,6-N-acetylglucosaminyltransferase was purified about 21,800-fold by procedures which included affinity chromatography on DEAE columns containing bound asialo Cowper's gland mucin glycoprotein with Gal beta 1,3GalNAc side chains. The apparent molecular weight estimated by gel filtration was found to be about 60 Kd. The purified enzyme showed a high specificity for Gal beta 1,3GalNAc chains and the most active substrates were mucin glycoproteins containing these chains. The apparent Km of the beta 6-glucosaminyltrans-ferase for Cowper's gland mucin glycoprotein containing Gal beta 1,3GalNAc chains was 0.53 microM; for UDP-N-acetylglucosamine, 12 microM; and for Gal beta 1,3GalNAc alpha NO2 phi, 4 mM. The activity of the beta 6-glucosaminyltransferase was dependent on the extent of glycosylation of the Gal beta 3GalNAc chains in Cowper's gland mucin glycoprotein. The best substrate for the partially purified beta 3-Glucosaminyltransferase was Cowper's gland mucin glycoprotein containing Gal beta 1,3(GlcNAc beta 6)GalNAc side chains. This enzyme showed little or no activity with intact sialylated Cowper's gland mucin glycoprotein or derivatives of this glycoprotein containing GalNAc or Gal beta 1,3GalNAc side chains. The radioactive oligosaccharides formed by these enzymes in large scale reaction mixtures were released from the mucin glycoproteins by treatment with

  20. The roles of the nucleus accumbens core, dorsomedial striatum, and dorsolateral striatum in learning: performance and extinction of Pavlovian fear-conditioned responses and instrumental avoidance responses.

    PubMed

    Wendler, Etieli; Gaspar, Jessica C C; Ferreira, Tatiana L; Barbiero, Janaína K; Andreatini, Roberto; Vital, Maria A B F; Blaha, Charles D; Winn, Philip; Da Cunha, Claudio

    2014-03-01

    This study examined the effects of bilateral excitotoxic lesions of the nucleus accumbens core (NAc-co), dorsomedial striatum (DMS) or dorsolateral striatum (DLS) of rats on the learning and extinction of Pavlovian and instrumental components of conditioned avoidance responses (CARs). None of the lesions caused sensorimotor deficits that could affect locomotion. Lesions of the NAc-co, but not DMS or DLS, decreased unconditioned and conditioned freezing. The NAc-co and DLS lesioned rats learned the 2-way active avoidance task more slowly. These results suggest: (i) CARs depend on both Pavlovian and instrumental learning; (ii) learning the Pavlovian component of CARs depends on the NAc-co; learning the instrumental component of CARs depends on the DLS, NAc and DMS; (iii) although the NAc-co is also needed for learning the instrumental component, it is not clear whether it plays a role in learning the instrumental component per se or if it simply allows learning of the Pavlovian component which is a pre-condition for learning the instrumental component; (iv) we did not find evidence that the DMS and DLS play the same roles in habit and goal-directed aspects of the instrumental component of CARs as observed in appetitive motivated instrumental responding.

  1. Infusion of fluoxetine, a serotonin reuptake inhibitor, in the shell region of the nucleus accumbens increases blood glucose concentrations in rats.

    PubMed

    Diepenbroek, C; Rijnsburger, M; Eggels, L; van Megen, K M; Ackermans, M T; Fliers, E; Kalsbeek, A; Serlie, M J; la Fleur, S E

    2017-01-10

    The brain is well known to regulate blood glucose, and the hypothalamus and hindbrain, in particular, have been studied extensively to understand the underlying mechanisms. Nuclei in these regions respond to alterations in blood glucose concentrations and can alter glucose liver output or glucose tissue uptake to maintain blood glucose concentrations within strict boundaries. Interestingly, several cortico-limbic regions also respond to alterations in glucose concentrations and have been shown to project to hypothalamic nuclei and glucoregulatory organs. For instance, electrical stimulation of the shell of the nucleus accumbens (sNAc) results in increased circulating concentrations of glucose and glucagon and activation of the lateral hypothalamus (LH). Whether this is caused by the simultaneous increase in serotonin release in the sNAc remains to be determined. To study the effect of sNAc serotonin on systemic glucose metabolism, we implanted bilateral microdialysis probes in the sNAc of male Wistar rats and infused fluoxetine, a serotonin reuptake inhibitor, or vehicle after which blood glucose, endogenous glucose production (EGP) and glucoregulatory hormones were measured. Fluoxetine in the sNAc for 1h significantly increased blood glucose concentrations without an effect on glucoregulatory hormones. This increase was accompanied by a higher EGP in the fluoxetine infused rats compared to the controls. These data provide further evidence for a role of sNAc-serotonin in the regulation of glucose metabolism.

  2. PKCβ Inhibitors Attenuate Amphetamine-Stimulated Dopamine Efflux.

    PubMed

    Zestos, Alexander G; Mikelman, Sarah R; Kennedy, Robert T; Gnegy, Margaret E

    2016-06-15

    Amphetamine abuse afflicts over 13 million people, and there is currently no universally accepted treatment for amphetamine addiction. Amphetamine serves as a substrate for the dopamine transporter and reverses the transporter to cause an increase in extracellular dopamine. Activation of the beta subunit of protein kinase C (PKCβ) enhances extracellular dopamine in the presence of amphetamine by facilitating the reverse transport of dopamine and internalizing the D2 autoreceptor. We previously demonstrated that PKCβ inhibitors block amphetamine-stimulated dopamine efflux in synaptosomes from rat striatum in vitro. In this study, we utilized in vivo microdialysis in live, behaving rats to assess the effect of the PKCβ inhibitors, enzastaurin and ruboxistaurin, on amphetamine-stimulated locomotion and increases in monoamines and their metabolites. A 30 min perfusion of the nucleus accumbens core with 1 μM enzastaurin or 1 μM ruboxistaurin reduced efflux of dopamine and its metabolite 3-methoxytyramine induced by amphetamine by approximately 50%. The inhibitors also significantly reduced amphetamine-stimulated extracellular levels of norepinephrine. The stimulation of locomotor behavior by amphetamine, measured simultaneously with the analytes, was comparably reduced by the PKCβ inhibitors. Using a stable isotope label retrodialysis procedure, we determined that ruboxistaurin had no effect on basal levels of dopamine, norepinephrine, glutamate, or GABA. In addition, normal uptake function through the dopamine transporter was unaltered by the PKCβ inhibitors, as measured in rat synaptosomes. Our results support the utility of using PKCβ inhibitors to reduce the effects of amphetamine.

  3. Timing of amphetamine exposure in relation to puberty onset determines its effects on anhedonia, exploratory behavior, and dopamine D1 receptor expression in young adulthood.

    PubMed

    Kang, Shuo; Wu, Mariah M; Galvez, Roberto; Gulley, Joshua M

    2016-12-17

    Non-medical use of amphetamine (AMPH) among adolescents is prevalent, which is problematic given the potential consequences of developmental drug exposure on brain function and behavior. Previously we found in adult male rats that AMPH exposure starting before puberty induces a persistent decrease in dopamine D1 receptor (D1R) function in the medial prefrontal cortex (mPFC). Here we investigated if this dysfunction was associated with changes in D1R expression in the mPFC and nucleus accumbens (NAc). We also determined if starting drug exposure well before or near the onset of puberty would influence AMPH-induced changes in D1R expression and behavior. Male and female Sprague-Dawley rats were treated once every other day (10 injections total) with saline or 3mg/kg AMPH (i.p.) from either postnatal day (P) 27 to 45 (pre-puberty groups; Pre-P) or P37 to 55 (peri-puberty groups; Peri-P). After 1, 7 and 21days of withdrawal, sucrose preference tests were performed to assess anhedonia. Exploratory behavior was studied in an open-field arena and on an elevated plus maze (EPM). Rats were then sacrificed for Western blot analysis of D1R expression. We found that AMPH withdrawal induced decreases in sucrose preference that persisted in rats with Peri-P onset treatment. Pre-P onset AMPH exposure led to increased open-arm exploration in the EPM test, as well as a decreased D1R level in the mPFC but not NAc. Our results demonstrated that AMPH exposure starting at different developmental stages resulted in distinct neurobehavioral abnormalities, suggesting an important role of exposure timing in drug-induced plasticity.

  4. Unique Effects of Acute Aripiprazole Treatment on the Dopamine D2 Receptor Downstream cAMP-PKA and Akt-GSK3β Signalling Pathways in Rats.

    PubMed

    Pan, Bo; Chen, Jiezhong; Lian, Jiamei; Huang, Xu-Feng; Deng, Chao

    2015-01-01

    Aripiprazole is a wide-used antipsychotic drug with therapeutic effects on both positive and negative symptoms of schizophrenia, and reduced side-effects. Although aripiprazole was developed as a dopamine D2 receptor (D2R) partial agonist, all other D2R partial agonists that aimed to mimic aripiprazole failed to exert therapeutic effects in clinic. The present in vivo study aimed to investigate the effects of aripiprazole on the D2R downstream cAMP-PKA and Akt-GSK3β signalling pathways in comparison with a D2R antagonist--haloperidol and a D2R partial agonist--bifeprunox. Rats were injected once with aripiprazole (0.75 mg/kg, i.p.), bifeprunox (0.8 mg/kg, i.p.), haloperidol (0.1 mg/kg, i.p.) or vehicle. Five brain regions--the prefrontal cortex (PFC), nucleus accumbens (NAc), caudate putamen (CPu), ventral tegmental area (VTA) and substantia nigra (SN) were collected. The protein levels of PKA, Akt and GSK3β were measured by Western Blotting; the cAMP levels were examined by ELISA tests. The results showed that aripiprazole presented similar acute effects on PKA expression to haloperidol, but not bifeprunox, in the CPU and VTA. Additionally, aripiprazole was able to increase the phosphorylation of GSK3β in the PFC, NAc, CPu and SN, respectively, which cannot be achieved by bifeprunox and haloperidol. These results suggested that acute treatment of aripiprazole had differential effects on the cAMP-PKA and Akt-GSK3β signalling pathways from haloperidol and bifeprunox in these brain areas. This study further indicated that, by comparison with bifeprunox, the unique pharmacological profile of aripiprazole may be attributed to the relatively lower intrinsic activity at D2R.

  5. Apathy in Parkinson's disease is associated with nucleus accumbens atrophy: a magnetic resonance imaging shape analysis.

    PubMed

    Carriere, Nicolas; Besson, Pierre; Dujardin, Kathy; Duhamel, Alain; Defebvre, Luc; Delmaire, Christine; Devos, David

    2014-06-01

    Apathy is characterized by lack of interest, loss of initiative, and flattening of affect. It is a frequent, very disabling nonmotor complication of Parkinson's disease (PD). The condition may notably occur when dopaminergic medications are tapered after the initiation of subthalamic stimulation and thus can be referred to as "dopaminergic apathy." Even in the absence of tapering, some patients may develop a form of apathy as PD progresses. This form is often related to cognitive decline and does not respond to dopaminergic medications (dopa-resistant apathy). We aimed at determining whether dopa-resistant apathy in PD is related to striatofrontal morphological changes. We compared the shape of the striatum (using spherical harmonic parameterization and sampling in a three-dimensional point distribution model [SPHARM-PDM]), cortical thickness, and fractional anisotropy (using tract-based spatial statistics) in 10 consecutive patients with dopamine-refractory apathy, 10 matched nonapathetic PD patients and 10 healthy controls. Apathy in PD was associated with atrophy of the left nucleus accumbens. The SPHARM-PDM analysis highlighted (1) a positive correlation between the severity of apathy and atrophy of the left nucleus accumbens, (2) greater atrophy of the dorsolateral head of the left caudate in apathetic patients than in nonapathetic patients, and (3) greater atrophy in the bilateral nucleus accumbens in apathetic patients than in controls. There were no significant intergroup differences in cortical thickness or fractional anisotropy. Dopa-resistant apathy in PD was associated with atrophy of the left nucleus accumbens and the dorsolateral head of the left caudate.

  6. OGA inhibition by GlcNAc-selenazoline.

    PubMed

    Kim, Eun Ju; Love, Dona C; Darout, Etzer; Abdo, Mohannad; Rempel, Brian; Withers, Stephen G; Rablen, Paul R; Hanover, John A; Knapp, Spencer

    2010-10-01

    The title compound, which differs from the powerful O-GlcNAcase (OGA) inhibitor GlcNAc-thiazoline only at the chalcogen atom (Se for S), is a much weaker inhibitor in a direct OGA assay. In human cells, however, the selenazoline shows comparable ability to induce hyper-O-GlcNAc-ylation, and the two show similar reduction of insulin-stimulated translocation of glucose transporter 4 in differentiated 3T3 adipocytes.

  7. Ventral tegmental area dopamine revisited: effects of acute and repeated stress

    PubMed Central

    Holly, Elizabeth N.; Miczek, Klaus A.

    2015-01-01

    Aversive events rapidly and potently excite certain dopamine neurons in the ventral tegmental area (VTA), promoting phasic increases in the medial prefrontal cortex and nucleus accumbens. This is in apparent contradiction to a wealth of literature demonstrating that most VTA dopamine neurons are strongly activated by reward and reward-predictive cues while inhibited by aversive stimuli. How can these divergent processes both be mediated by VTA dopamine neurons? The answer may lie within the functional and anatomical heterogeneity of the VTA. We focus on VTA heterogeneity in anatomy, neurochemistry, electrophysiology, and afferent/efferent connectivity. Second, recent evidence for a critical role of VTA dopamine neurons in response to both acute and repeated stress will be discussed. Understanding which dopamine neurons are activated by stress, the neural mechanisms driving the activation, and where these neurons project will provide valuable insight into how stress can promote psychiatric disorders associated with the dopamine system, such as addiction and depression. PMID:26676983

  8. Ventral tegmental area dopamine revisited: effects of acute and repeated stress.

    PubMed

    Holly, Elizabeth N; Miczek, Klaus A

    2016-01-01

    Aversive events rapidly and potently excite certain dopamine neurons in the ventral tegmental area (VTA), promoting phasic increases in the medial prefrontal cortex and nucleus accumbens. This is in apparent contradiction to a wealth of literature demonstrating that most VTA dopamine neurons are strongly activated by reward and reward-predictive cues while inhibited by aversive stimuli. How can these divergent processes both be mediated by VTA dopamine neurons? The answer may lie within the functional and anatomical heterogeneity of the VTA. We focus on VTA heterogeneity in anatomy, neurochemistry, electrophysiology, and afferent/efferent connectivity. Second, recent evidence for a critical role of VTA dopamine neurons in response to both acute and repeated stress will be discussed. Understanding which dopamine neurons are activated by stress, the neural mechanisms driving the activation, and where these neurons project will provide valuable insight into how stress can promote psychiatric disorders associated with the dopamine system, such as addiction and depression.

  9. Effect of psilocin on extracellular dopamine and serotonin levels in the mesoaccumbens and mesocortical pathway in awake rats.

    PubMed

    Sakashita, Yuichi; Abe, Kenji; Katagiri, Nobuyuki; Kambe, Toshie; Saitoh, Toshiaki; Utsunomiya, Iku; Horiguchi, Yoshie; Taguchi, Kyoji

    2015-01-01

    Psilocin (3-[2-(dimethylamino)ethyl]-1H-indol-4-ol) is a hallucinogenic component of the Mexican mushroom Psilocybe mexicana and a skeletal serotonin (5-HT) analogue. Psilocin is the active metabolite of psilocybin (3-[2-(dimethylamino)ethyl]-1H-indol-4-yl dihydrogen phosphate). In the present study, we examined the effects of systemically administered psilocin on extracellular dopamine and 5-HT concentrations in the ventral tegmental area (VTA), nucleus accumbens, and medial prefrontal cortex of the dopaminergic pathway in awake rats using in vivo microdialysis. Intraperitoneal administration of psilocin (5, 10 mg/kg) significantly increased extracellular dopamine levels in the nucleus accumbens. Psilocin did not affect the extracellular 5-HT level in the nucleus accumbens. Conversely, systemic administration of psilocin (10 mg/kg) significantly increased extracellular 5-HT levels in the medial prefrontal cortex of rats, but dopamine was decreased in this region. However, neither extracellular dopamine nor 5-HT levels in the VTA were altered by administration of psilocin. Behaviorally, psilocin significantly increased the number of head twitches. Thus, psilocin affects the dopaminergic system in the nucleus accumbens. In the serotonergic system, psilocin contribute to a crucial effect in the medial prefrontal cortex. The present data suggest that psilocin increased both the extracellular dopamine and 5-HT concentrations in the mesoaccumbens and/or mesocortical pathway.

  10. Nucleus accumbens mu opioid receptors mediate immediate postictal decrease in locomotion after an amygdaloid kindled seizure in rats.

    PubMed

    Ma, Jingyi; Boyce, Richard; Leung, L Stan

    2010-02-01

    Postictal movement dysfunction is a common symptom in patients with epilepsy. We investigated the involvement of opioid receptors in the nucleus accumbens (NAC) in amygdaloid kindling-induced postictal decrease in locomotion (PDL) in rats. Seizures were induced by daily electrical stimulation of the basolateral amygdala until four consecutive stage 5 seizures were elicited. Locomotion was quantified before and after infusion of an opioid receptor antagonist or saline into the NAC. Whereas PDL was induced after a stage 5 seizure in saline-infused rats, pre-infusion of the mu opioid receptor antagonist H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP, 5 microg/1 microL/side) into the NAC prevented PDL. Pre-infusion of delta (naltrindole, 30 microg/1 microL/side), kappa (nor-binaltorphimine, 1.8 microg/1 microL/side), or nonselective (naloxone, 10 microg/1 microL/side) opioid receptor antagonists did not block PDL, but late postictal hyperactivity was blocked by naltrindole. None of the antagonists affected amygdaloid evoked afterdischarge duration. It is suggested that mu opioid receptors in the NAC participate in amygdaloid seizure-induced PDL without affecting seizure duration.

  11. Observational learning in mice can be prevented by medial prefrontal cortex stimulation and enhanced by nucleus accumbens stimulation.

    PubMed

    Jurado-Parras, M Teresa; Gruart, Agnès; Delgado-García, José M

    2012-02-21

    The neural structures involved in ongoing appetitive and/or observational learning behaviors remain largely unknown. Operant conditioning and observational learning were evoked and recorded in a modified Skinner box provided with an on-line video recording system. Mice improved their acquisition of a simple operant conditioning task by observational learning. Electrical stimulation of the observer's medial prefrontal cortex (mPFC) at a key moment of the demonstration (when the demonstrator presses a lever in order to obtain a reward) cancels out the benefits of observation. In contrast, electrical stimulation of the observer's nucleus accumbens (NAc) enhances observational learning. Ongoing cognitive processes in the demonstrator could also be driven by electrical stimulation of these two structures, preventing the proper execution of the ongoing instrumental task (mPFC) or stopping pellet intake (NAc). Long-term potentiation (LTP) evoked in these two cortical structures did not prevent the acquisition or retrieval process--namely, mPFC and/or NAc stimulation only prevented, or modified, the ongoing behavioral process. The dorsal hippocampus was not involved in either of these two behavioral processes. Thus, both ongoing observational learning and performance of an instrumental task require the active contribution of the mPFC and/or the NAc.

  12. Time-limited modulation of appetitive Pavlovian memory by D1 and NMDA receptors in the nucleus accumbens

    PubMed Central

    Dalley, Jeffrey W.; Lääne, Kristjan; Theobald, David E. H.; Armstrong, Hannah C.; Corlett, Philip R.; Chudasama, Yogita; Robbins, Trevor W.

    2005-01-01

    Recent research has implicated the nucleus accumbens (NAc) in consolidating recently acquired goal-directed appetitive memories, including spatial learning and other instrumental processes. However, an important but unresolved issue is whether this forebrain structure also contributes to the consolidation of fundamental forms of appetitive learning acquired by Pavlovian associative processes. In addition, although dopaminergic and glutamatergic influences in the NAc have been implicated in instrumental learning, it is unclear whether similar mechanisms operate during Pavlovian conditioning. To evaluate these issues, the effects of posttraining intra-NAc infusions of D1, D2, and NMDA receptor antagonists, as well as d-amphetamine, were determined on Pavlovian autoshaping in rats, which assesses learning by discriminated approach behavior to a visual conditioned stimulus predictive of food reward. Intracerebral infusions were given either immediately after each conditioning session to disrupt early memory consolidation or after a delay of 24 h. Findings indicate that immediate, but not delayed, infusions of both D1 (SCH 23390) and NMDA (AP-5) receptor antagonists significantly impair learning on this task. By contrast, amphetamine and the D2 receptor antagonist sulpiride were without significant effect. These findings provide the most direct demonstration to date that D1 and NMDA receptors in the NAc contribute to, and are necessary for, the early consolidation of appetitive Pavlovian learning. PMID:15833811

  13. Administration of the Glial Condition Medium in the Nucleus Accumbens Prolong Maintenance and Intensify Reinstatement of Morphine-Seeking Behavior.

    PubMed

    Arezoomandan, Reza; Khodagholi, Fariba; Haghparast, Abbas

    2016-04-01

    Accumulating evidence suggested that glial cells are involved in synaptic plasticity and behavioral changes induced by drugs abuse. The role of these cells in maintenance and reinstatement of morphine (MRP) conditioned place preference (CPP) remains poorly characterized. The aim of present study was to investigate the direct role of glial cells in nucleus accumbens (NAc) in the maintenance and reinstatement of MRP-seeking behavior. CPP induced with injection of MRP (5 mg/kg, s.c. for 3 days), lasted for 7 days after cessation of MRP treatment and priming dose of MRP (1 mg/kg, s.c.) reinstated the extinguished MRP-induced CPP. The astrocyte-conditioned medium (ACM) and neuroglia conditioned medium (NCM) exposed to MRP (10 and 100 µM) have been microinjected into the NAc. Intra-NAc administration of ACM during extinction period failed to change the maintenance of MRP-CPP, but MRP 100-treated ACM could slightly increase the magnitude of reinstatement. In contrast to ACM, intra-NAc administration of MRP 100-treated NCM caused slower extinction by 3 days and significantly increased the magnitude of reinstatement. Our findings suggest the involvement of glial cells activation in the maintenance and reinstatement of MRP-seeking behaviors, and provides new evidence that these cells might be a potential target for the treatment of MRP addiction.

  14. Chronic intermittent ethanol exposure and withdrawal leads to adaptations in nucleus accumbens core postsynaptic density proteome and dendritic spines.

    PubMed

    Uys, Joachim D; McGuier, Natalie S; Gass, Justin T; Griffin, William C; Ball, Lauren E; Mulholland, Patrick J

    2016-05-01

    Alcohol use disorder is a chronic relapsing brain disease characterized by the loss of ability to control alcohol (ethanol) intake despite knowledge of detrimental health or personal consequences. Clinical and pre-clinical models provide strong evidence for chronic ethanol-associated alterations in glutamatergic signaling and impaired synaptic plasticity in the nucleus accumbens (NAc). However, the neural mechanisms that contribute to aberrant glutamatergic signaling in ethanol-dependent individuals in this critical brain structure remain unknown. Using an unbiased proteomic approach, we investigated the effects of chronic intermittent ethanol (CIE) exposure on neuroadaptations in postsynaptic density (PSD)-enriched proteins in the NAc of ethanol-dependent mice. Compared with controls, CIE exposure significantly changed expression levels of 50 proteins in the PSD-enriched fraction. Systems biology and functional annotation analyses demonstrated that the dysregulated proteins are expressed at tetrapartite synapses and critically regulate cellular morphology. To confirm this latter finding, the density and morphology of dendritic spines were examined in the NAc core of ethanol-dependent mice. We found that CIE exposure and withdrawal differentially altered dendrite diameter and dendritic spine density and morphology. Through the use of quantitative proteomics and functional annotation, these series of experiments demonstrate that ethanol dependence produces neuroadaptations in proteins that modify dendritic spine morphology. In addition, these studies identified novel PSD-related proteins that contribute to the neurobiological mechanisms of ethanol dependence that drive maladaptive structural plasticity of NAc neurons.

  15. Molecular changes in the medial prefrontal cortex and nucleus accumbens are associated with blocking the behavioral sensitization to cocaine.

    PubMed

    Zhang, Yi; Zhu, Xiongzhao; Huang, Can; Zhang, Xiuwu

    2015-11-05

    Previous studies have demonstrated that cocaine-induced behavioral sensitization is associated with persistent functional and structural alterations in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc); however, the molecular mechanisms underlying these changes have not been elucidated. In this study, the behavioral sensitization to cocaine was established in Sprague Dawley rats and was measured by locomotion and behavioral rating. The brain tissue homogenization was used for measuring the level of brain-derived neurotrophic factor (BDNF), the expression and activity of integrin-linked kinase (ILK), level of protein kinase B (Akt) phosphorylation at serine 473 and threonine 308, and the expression of p75(NTR), TrkA, and TrkB protein. The Results showed that cocaine sensitization was associated with increased BDNF, ILK activity, phospho-Akt Ser(473), p75(NTR), and TrkB protein levels in the mPFC and NAc core. The combination of pergolide and ondansetron normalized not only behavioral sensitization, but also the increases in these molecular markers. Dual immunofluoresence staining showed that ILK expression is co-distributed with p75(NTR) and TrkA expression in both the mPFC and NAc core. Results suggested that the BDNF-TrkA/p75(NTR)-ILK-Akt signaling pathway may be active in cocaine sensitization and associated neural plasticity in the mPFC and NAc core.

  16. Calcium-Permeable AMPA Receptors in the Nucleus Accumbens Regulate Depression-Like Behaviors in the Chronic Neuropathic Pain State

    PubMed Central

    Goffer, Yossef; Xu, Duo; Eberle, Sarah E.; D'amour, James; Lee, Michelle; Tukey, David; Froemke, Robert C.; Ziff, Edward B.

    2013-01-01

    Depression is a salient emotional feature of chronic pain. Depression alters the pain threshold and impairs functional recovery. To date, however, there has been limited understanding of synaptic or circuit mechanisms that regulate depression in the pain state. Here, we demonstrate that depression-like behaviors are induced in a rat model of chronic neuropathic pain. Using this model, we show that chronic pain selectively increases the level of GluA1 subunits of AMPA-type glutamate receptors at the synapses of the nucleus accumbens (NAc), a key component of the brain reward system. We find, in addition, that this increase in GluA1 levels leads to the formation of calcium-permeable AMPA receptors (CPARs). Surprisingly, pharmacologic blockade of these CPARs in the NAc increases depression-like behaviors associated with pain. Consistent with these findings, an AMPA receptor potentiator delivered into the NAc decreases pain-induced depression. These results show that transmission through CPARs in the NAc represents a novel molecular mechanism modulating the depressive symptoms of pain, and thus CPARs may be a promising therapeutic target for the treatment of pain-induced depression. More generally, these findings highlight the role of central glutamate signaling in pain states and define the brain reward system as an important region for the regulation of depressive symptoms of pain. PMID:24285907

  17. Nucleus accumbens neuronal activity correlates to the animal's behavioral response to acute and chronic methylphenidate.

    PubMed

    Claussen, Catherine M; Chong, Samuel L; Dafny, Nachum

    2014-04-22

    Acute and chronic methylphenidate (MPD) exposure was recorded simultaneously for the rat's locomotor activity and the nucleus accumbens (NAc) neuronal activity. The evaluation of the neuronal events was based on the animal's behavior response to chronic MPD administration: 1) Animals exhibiting behavioral sensitization, 2) Animals exhibiting behavioral tolerance. The experiment lasted for 10days with four groups of animals; saline, 0.6, 2.5, and 10.0mg/kg MPD. For the main behavioral findings, about half of the animals exhibited behavioral sensitization or behavioral tolerance to 0.6, 2.5, and/or 10mg/kg MPD respectively. Three hundred and forty one NAc neuronal units were evaluated. Approximately 80% of NAc units responded to 0.6, 2.5, and 10.0mg/kg MPD. When the neuronal activity was analyzed based on the animals' behavioral response to chronic MPD exposure, significant differences were seen between the neuronal population responses recorded from animals that expressed behavioral sensitization when compared to the NAc neuronal responses recorded from animals exhibiting behavioral tolerance. Three types of neurophysiological sensitization and neurophysiological tolerance can be recognized following chronic MPD administration to the neuronal populations. Collectively, these findings show that the same dose of chronic MPD can elicit either behavioral tolerance or behavioral sensitization. Differential statistical analyses were used to verify our hypothesis that the neuronal activity recorded from animals exhibiting behavioral sensitization will respond differently to MPD compared to those animals exhibiting behavioral tolerance, thus, suggesting that it is essential to record the animal's behavior concomitantly with neuronal recordings.

  18. Assessment of individual differences in the rat nucleus accumbens transcriptome following taste-heroin extended access.

    PubMed

    Imperio, Caesar G; McFalls, Ashley J; Colechio, Elizabeth M; Masser, Dustin R; Vrana, Kent E; Grigson, Patricia S; Freeman, Willard M

    2016-05-01

    Heroin addiction is a disease of chronic relapse that harms the individual through devaluation of personal responsibilities in favor of finding and using drugs. Only some recreational heroin users devolve into addiction but the basis of these individual differences is not known. We have shown in rats that avoidance of a heroin-paired taste cue reliably identifies individual animals with greater addiction-like behavior for heroin. Here rats received 5min access to a 0.15% saccharin solution followed by the opportunity to self-administer either saline or heroin for 6h. Large Suppressors of the heroin-paired taste cue displayed increased drug escalation, motivation for drug, and drug loading behavior compared with Small Suppressors. Little is known about the molecular mechanisms of these individual differences in addiction-like behavior. We examined the individual differences in mRNA expression in the nucleus accumbens (NAc) of rats that were behaviorally stratified by addiction-like behavior using next-generation sequencing. We hypothesized that based on the avoidance of the drug-paired cue there will be a unique mRNA profile in the NAc. Analysis of strand-specific whole genome RNA-Seq data revealed a number of genes differentially regulated in NAc based on the suppression of the natural saccharine reward. Large Suppressors exhibited a unique mRNA prolife compared to Saline controls and Small Suppressors. Genes related to immunity, neuronal activity, and behavior were differentially expressed among the 3 groups. In total, individual differences in avoidance of a heroin-paired taste cue are associated with addiction-like behavior along with differential NAc gene expression.

  19. Adaptations in AMPA receptor transmission in the nucleus accumbens contributing to incubation of cocaine craving

    PubMed Central

    Loweth, Jessica A.; Tseng, Kuei Y.; Wolf, Marina E.

    2013-01-01

    Cue-induced cocaine craving in rodents intensifies or “incubates” during the first months of withdrawal from long access cocaine self-administration. This incubation phenomenon is relevant to human users who achieve abstinence but exhibit persistent vulnerability to cue-induced relapse. It is well established that incubation of cocaine craving involves complex neuronal circuits. Here we will focus on neuroadaptations in the nucleus accumbens (NAc), a region of convergence for pathways that control cocaine seeking. A key adaptation is a delayed (~3–4 weeks) accumulation of Ca2+-permeable AMPAR receptors (CP-AMPARs) in synapses on medium spiny neurons (MSN) of the NAc. These CP-AMPARs mediate the expression of incubation after prolonged withdrawal, although different mechanisms must be responsible during the first weeks of withdrawal, prior to CP-AMPAR accumulation. The cascade of events leading to CP-AMPAR accumulation is still unclear. However, several candidate mechanisms have been identified. First, mGluR1 has been shown to negatively regulate CP-AMPAR levels in NAc synapses, and it is possible that a withdrawal-dependent decrease in this effect may help explain CP-AMPAR accumulation during incubation. Second, an increase in phosphorylation of GluA1 subunits (at the protein kinase A site) within extrasynaptic homomeric GluA1 receptors (CP-AMPARs) may promote their synaptic insertion and oppose their removal. Finally, elevation of brain-derived neurotrophic factor (BDNF) levels in the NAc may contribute to maintenance of incubation after months of withdrawal, although incubation-related increases in BDNF accumulation do not account for CP-AMPAR accumulation. Receptors and pathways that negatively regulate incubation, such as mGluR1, are promising targets for the development of therapeutic strategies to help recovering addicts maintain abstinence. PMID:23727437

  20. Mu opioid receptor modulation in the nucleus accumbens lowers voluntary wheel running in rats bred for high running motivation.

    PubMed

    Ruegsegger, Gregory N; Toedebusch, Ryan G; Will, Matthew J; Booth, Frank W

    2015-10-01

    The exact role of opioid receptor signaling in mediating voluntary wheel running is unclear. To provide additional understanding, female rats selectively bred for motivation of low (LVR) versus high voluntary running (HVR) behaviors were used. Aims of this study were 1) to identify intrinsic differences in nucleus accumbens (NAc) mRNA expression of opioid-related transcripts and 2) to determine if nightly wheel running is differently influenced by bilateral NAc injections of either the mu-opioid receptor agonist D-Ala2, NMe-Phe4, Glyo5-enkephalin (DAMGO) (0.25, 2.5 μg/side), or its antagonist, naltrexone (5, 10, 20 μg/side). In Experiment 1, intrinsic expression of Oprm1 and Pdyn mRNAs were higher in HVR compared to LVR. Thus, the data imply that line differences in opioidergic mRNA in the NAc could partially contribute to differences in wheel running behavior. In Experiment 2, a significant decrease in running distance was present in HVR rats treated with 2.5 μg DAMGO, or with 10 μg and 20 μg naltrexone between hours 0-1 of the dark cycle. Neither DAMGO nor naltrexone had a significant effect on running distance in LVR rats. Taken together, the data suggest that the high nightly voluntary running distance expressed by HVR rats is mediated by increased endogenous mu-opioid receptor signaling in the NAc, that is disturbed by either agonism or antagonism. In summary, our findings on NAc opioidergic mRNA expression and mu-opioid receptor modulations suggest HVR rats, compared to LVR rats, express higher running levels mediated by an increase in motivation driven, in part, by elevated NAc opioidergic signaling.

  1. Caudal Nucleus Accumbens Core Is Critical in the Regulation of Cue-Elicited Approach-Avoidance Decisions

    PubMed Central

    Hamel, Laurie; Thangarasa, Tharshika; Samadi, Osai

    2017-01-01

    The nucleus accumbens (NAc) is thought to be a site of integration of positively and negatively valenced information and action selection. Functional differentiation in valence processing has previously been found along the rostrocaudal axis of the shell region of the NAc in assessments of unconditioned motivation. Given that the core region of the NAc has been implicated in the elicitation of motivated behavior in response to conditioned cues, we sought to assess the role of caudal, intermediate, and rostral sites within this subregion in cue-elicited approach-avoidance decisions. Rats were trained to associate visuo-tactile cues with appetitive, aversive, and neutral outcomes. Following the successful acquisition of the cue-outcome associations, rats received microinfusions of GABAA and GABAB receptor agonists (muscimol/baclofen) or saline into the caudal, intermediate, or rostral NAc core and were then exposed to a superimposition of appetitively and aversively valenced cues versus neutral cues in a “conflict test,” as well as to the appetitive versus neutral cues, and aversive cues versus neutral cues, in separate conditioned preference/avoidance tests. Disruption of activity in the intermediate to caudal parts of the NAc core resulted in a robust avoidance bias in response to motivationally conflicting cues, as well as a potentiated avoidance of aversive cues as compared with control animals, coupled with an attenuated conditioned preference for the appetitive cue. These results suggest that the caudal NAc core may have the capacity to exert bidirectional control over appetitively and aversively motivated responses to valence signals. PMID:28275709

  2. Effects of morphine withdrawal on the membrane properties of medium spiny neurons in the nucleus accumbens shell.

    PubMed

    Wu, Xiaobo; Shi, Meimei; Ling, Hengli; Wei, Chunling; Liu, Yihui; Liu, Zhiqiang; Ren, Wei

    2013-01-01

    Medium spiny neurons (MSNs) in the nucleus accumbens (NAc) undergo persistent alterations in their biological and physiological characteristics upon exposure to drugs of abuse. Previous studies demonstrated that the biochemical, morphological, and intrinsic physiological properties of MSNs are heterogeneous and provided new insights into the physiological and molecular roles of individual MSNs in addictive behaviors. However, it remains unclear whether MSNs in the NAc shell (NAcSh), an important region for mediating behavioral sensitization, are electrophysiologically heterogeneous and how such heterogeneity is relevant to neuroadaptation associated with drug addiction. Here, the membrane properties, i.e., the intrinsic excitability and spike adaptation, of MSNs in the NAcSh from saline- or morphine-treated rats were investigated in vitro by whole-cell recording. In saline-treated rats, three distinct cell types were identified by their membrane properties: type I neurons showed high levels of intrinsic excitability and rapid spike adaptation; type II neurons showed moderate levels of intrinsic excitability and relatively slow spike frequency adaptation; type III neurons showed low levels of intrinsic excitability and putative strong spike adaptation. MSNs in rats undergoing withdrawal from chronic morphine treatment (10-14 days after the last injection) also exhibited the typical firing behaviors of these three types of neurons. However, the membrane properties of the MSNs were differentially altered after withdrawal. There was an enhancement in intrinsic excitability in type II MSNs and a promotion of spike adaptation in type I MSNs. The apamin-sensitive afterhyperpolarization current (I(AHP)) and the apamin-insensitive I(AHP) of the NAcSh MSNs were attenuated after chronic morphine withdrawal. These findings suggest that individual MSNs in the NAcSh manifest unique electrophysiological properties, which might contribute to psychostimulant-induced neuroadaptation.

  3. Repeated cocaine administration suppresses HVA-Ca2+ potentials and enhances activity of K+ channels in rat nucleus accumbens neurons.

    PubMed

    Hu, Xiu-Ti; Basu, Somnath; White, Francis J

    2004-09-01

    The nucleus accumbens (NAc) is an important forebrain area involved in sensitization, withdrawal effects, and self-administration of cocaine. However, little is known about cocaine-induced alterations in the neuronal excitability and whole cell neuroplasticity in this region that may affect behaviors. Our recent investigations have demonstrated that repeated cocaine administration decreases voltage-sensitive sodium and calcium currents (VSSCs and VSCCs, respectively) in freshly dissociated NAc neurons of rats. In this study, current-clamp recordings were performed in slice preparations to determine the effects of chronic cocaine on evoked Ca(2+) potentials and voltage-sensitive K(+) currents in NAc neurons. Repeated cocaine administration with 3-4 days of withdrawal caused significant alterations in Ca(2+) potentials, including suppression of Ca(2+)-mediated spikes, increase in the intracellular injected current intensity required for generation of Ca(2+) potentials (rheobase), reduced duration of Ca(2+) plateau potentials, and abolishment of secondary Ca(2+) potentials associated with the primary Ca(2+) plateau potential. Application of nickel (Ni(2+)), which blocks low-voltage activated T-type Ca(2+) channels, had no impact on evoked Ca(2+) plateau potentials in NAc neurons, indicating that these Ca(2+) potentials are high-voltage activated (HVA). In addition, repeated cocaine pretreatment also hyperpolarized the resting membrane potential, increased the amplitude of afterhyperpolarization in Ca(2+) spikes, and enhanced the outward rectification observed during membrane depolarization. These findings indicate that repeated cocaine administration not only suppressed HVA-Ca(2+) potentials but also significantly enhanced the activity of various K(+) channels in NAc neurons. They also demonstrate an integrative role of whole cell neuroplasticity during cocaine withdrawal, by which the subthreshold membrane excitability of NAc neurons is significantly decreased.

  4. Aripiprazole Increases the PKA Signalling and Expression of the GABAA Receptor and CREB1 in the Nucleus Accumbens of Rats.

    PubMed

    Pan, Bo; Lian, Jiamei; Huang, Xu-Feng; Deng, Chao

    2016-05-01

    The GABAA receptor is implicated in the pathophysiology of schizophrenia and regulated by PKA signalling. Current antipsychotics bind with D2-like receptors, but not the GABAA receptor. The cAMP-responsive element-binding protein 1 (CREB1) is also associated with PKA signalling and may be related to the positive symptoms of schizophrenia. This study investigated the effects of antipsychotics in modulating D2-mediated PKA signalling and its downstream GABAA receptors and CREB1. Rats were treated orally with aripiprazole (0.75 mg/kg, ter in die (t.i.d.)), bifeprunox (0.8 mg/kg, t.i.d.), haloperidol (0.1 mg/kg, t.i.d.) or vehicle for 1 week. The levels of PKA-Cα and p-PKA in the prefrontal cortex (PFC), nucleus accumbens (NAc) and caudate putamen (CPu) were detected by Western blots. The mRNA levels of Gabrb1, Gabrb2, Gabrb3 and Creb1, and their protein expression were measured by qRT-PCR and Western blots, respectively. Aripiprazole elevated the levels of p-PKA and the ratio of p-PKA/PKA in the NAc, but not the PFC and CPu. Correlated with this elevated PKA signalling, aripiprazole elevated the mRNA and protein expression of the GABAA (β-1) receptor and CREB1 in the NAc. While haloperidol elevated the levels of p-PKA and the ratio of p-PKA/PKA in both NAc and CPu, it only tended to increase the expression of the GABAA (β-1) receptor and CREB1 in the NAc, but not the CPu. Bifeprunox had no effects on PKA signalling in these brain regions. These results suggest that aripiprazole has selective effects on upregulating the GABAA (β-1) receptor and CREB1 in the NAc, probably via activating PKA signalling.

  5. Changes in Appetitive Associative Strength Modulates Nucleus Accumbens, But Not Orbitofrontal Cortex Neuronal Ensemble Excitability.

    PubMed

    Ziminski, Joseph J; Hessler, Sabine; Margetts-Smith, Gabriella; Sieburg, Meike C; Crombag, Hans S; Koya, Eisuke

    2017-03-22

    Cues that predict the availability of food rewards influence motivational states and elicit food-seeking behaviors. If a cue no longer predicts food availability, then animals may adapt accordingly by inhibiting food-seeking responses. Sparsely activated sets of neurons, coined "neuronal ensembles," have been shown to encode the strength of reward-cue associations. Although alterations in intrinsic excitability have been shown to underlie many learning and memory processes, little is known about these properties specifically on cue-activated neuronal ensembles. We examined the activation patterns of cue-activated orbitofrontal cortex (OFC) and nucleus accumbens (NAc) shell ensembles using wild-type and Fos-GFP mice, which express green fluorescent protein (GFP) in activated neurons, after appetitive conditioning with sucrose and extinction learning. We also investigated the neuronal excitability of recently activated, GFP+ neurons in these brain areas using whole-cell electrophysiology in brain slices. Exposure to a sucrose cue elicited activation of neurons in both the NAc shell and OFC. In the NAc shell, but not the OFC, these activated GFP+ neurons were more excitable than surrounding GFP- neurons. After extinction, the number of neurons activated in both areas was reduced and activated ensembles in neither area exhibited altered excitability. These data suggest that learning-induced alterations in the intrinsic excitability of neuronal ensembles is regulated dynamically across different brain areas. Furthermore, we show that changes in associative strength modulate the excitability profile of activated ensembles in the NAc shell.SIGNIFICANCE STATEMENT Sparsely distributed sets of neurons called "neuronal ensembles" encode learned associations about food and cues predictive of its availability. Widespread changes in neuronal excitability have been observed in limbic brain areas after associative learning, but little is known about the excitability changes that

  6. Overexpression of GalNAc-transferase GalNAc-T3 Promotes Pancreatic Cancer Cell Growth

    PubMed Central

    Taniuchi, Keisuke; Cerny, Ronald L.; Tanouchi, Aki; Kohno, Kimitoshi; Kotani, Norihiro; Honke, Koichi; Saibara, Toshiji; Hollingsworth, Michael A.

    2011-01-01

    O-linked glycans of secreted and membrane bound proteins play an important role in the pathogenesis of pancreatic cancer by modulating immune responses, inflammation, and tumorigenesis. A critical aspect of O-glycosylation, the position at which proteins are glycosylated with N-acetyl-galactosamine on serine and threonine residues, is regulated by the substrate specificity of UDP-GalNAc: polypeptide N-acetylgalactosaminyl-transferases (GalNAc-Ts). Thus, GalNAc-Ts regulate the first committed step in O-glycosylated protein biosynthesis, determine sites of O-glycosylation on proteins, and are important for understanding normal and carcinoma-associated O-glycosylation. We have found that one of these enzymes, GalNAc-T3, is overexpressed in human pancreatic cancer tissues, and suppression of GalNAc-T3 significantly attenuates growth of pancreatic cancer cells in vitro and in vivo. In addition, suppression of GalNAc-T3 induces apoptosis of pancreatic cancer cells. Our results indicate that GalNAc-T3 is likely to be involved in pancreatic carcinogenesis. Modification of cellular glycosylation occurs in nearly all types of cancer as a result of alterations in the expression levels of glycosyltransferases. We report guanine nucleotide binding protein, alpha transducing activity polypeptide 1 (GNAT1) as a possible substrate protein of GalNAc-T3. GalNAc-T3 is associated with O-glycosylation of GNAT1, and affects the subcellular distribution of GNAT1. Knocking down endogenous GNAT1 significantly suppresses the growth/survival of PDAC cells. Our results imply that GalNAc-T3 contributes to the function of O-glycosylated proteins and thereby affects the growth and survival of pancreatic cancer cells. Thus, substrate proteins of GalNAc-T3 should serve as important therapeutic targets for pancreatic cancers. PMID:21625220

  7. Overexpression of GalNAc-transferase GalNAc-T3 promotes pancreatic cancer cell growth.

    PubMed

    Taniuchi, K; Cerny, R L; Tanouchi, A; Kohno, K; Kotani, N; Honke, K; Saibara, T; Hollingsworth, M A

    2011-12-08

    O-linked glycans of secreted and membrane-bound proteins have an important role in the pathogenesis of pancreatic cancer by modulating immune responses, inflammation and tumorigenesis. A critical aspect of O-glycosylation, the position at which proteins are glycosylated with N-acetyl-galactosamine on serine and threonine residues, is regulated by the substrate specificity of UDP-GalNAc:polypeptide N-acetylgalactosaminyl-transferases (GalNAc-Ts). Thus, GalNAc-Ts regulate the first committed step in O-glycosylated protein biosynthesis, determine sites of O-glycosylation on proteins and are important for understanding normal and carcinoma-associated O-glycosylation. We have found that one of these enzymes, GalNAc-T3, is overexpressed in human pancreatic cancer tissues and suppression of GalNAc-T3 significantly attenuates the growth of pancreatic cancer cells in vitro and in vivo. In addition, suppression of GalNAc-T3 induces apoptosis of pancreatic cancer cells. Our results indicate that GalNAc-T3 is likely involved in pancreatic carcinogenesis. Modification of cellular glycosylation occurs in nearly all types of cancer as a result of alterations in the expression levels of glycosyltransferases. We report guanine the nucleotide-binding protein, α-transducing activity polypeptide-1 (GNAT1) as a possible substrate protein of GalNAc-T3. GalNAc-T3 is associated with O-glycosylation of GNAT1 and affects the subcellular distribution of GNAT1. Knocking down endogenous GNAT1 significantly suppresses the growth/survival of PDAC cells. Our results imply that GalNAc-T3 contributes to the function of O-glycosylated proteins and thereby affects the growth and survival of pancreatic cancer cells. Thus, substrate proteins of GalNAc-T3 should serve as important therapeutic targets for pancreatic cancers.

  8. Sex Differences in Nucleus Accumbens Transcriptome Profiles Associated with Susceptibility versus Resilience to Subchronic Variable Stress

    PubMed Central

    Hodes, Georgia E.; Pfau, Madeline L.; Purushothaman, Immanuel; Ahn, H. Francisca; Golden, Sam A.; Christoffel, Daniel J.; Magida, Jane; Brancato, Anna; Takahashi, Aki; Flanigan, Meghan E.; Ménard, Caroline; Aleyasin, Hossein; Koo, Ja Wook; Lorsch, Zachary S.; Feng, Jian; Heshmati, Mitra; Wang, Minghui; Turecki, Gustavo; Neve, Rachel; Zhang, Bin; Shen, Li; Nestler, Eric J.

    2015-01-01

    Depression and anxiety disorders are more prevalent in females, but the majority of research in animal models, the first step in finding new treatments, has focused predominantly on males. Here we report that exposure to subchronic variable stress (SCVS) induces depression-associated behaviors in female mice, whereas males are resilient as they do not develop these behavioral abnormalities. In concert with these different behavioral responses, transcriptional analysis of nucleus accumbens (NAc), a major brain reward region, by use of RNA sequencing (RNA-seq) revealed markedly different patterns of stress regulation of gene expression between the sexes. Among the genes displaying sex differences was DNA methyltransferase 3a (Dnmt3a), which shows a greater induction in females after SCVS. Interestingly, Dnmt3a expression levels were increased in the NAc of depressed humans, an effect seen in both males and females. Local overexpression of Dnmt3a in NAc rendered male mice more susceptible to SCVS, whereas Dnmt3a knock-out in this region rendered females more resilient, directly implicating this gene in stress responses. Associated with this enhanced resilience of female mice upon NAc knock-out of Dnmt3a was a partial shift of the NAc female transcriptome toward the male pattern after SCVS. These data indicate that males and females undergo different patterns of transcriptional regulation in response to stress and that a DNA methyltransferase in NAc contributes to sex differences in stress vulnerability. SIGNIFICANCE STATEMENT Women have a higher incidence of depression than men. However, preclinical models, the first step in developing new diagnostics and therapeutics, have been performed mainly on male subjects. Using a stress-based animal model of depression that causes behavioral effects in females but not males, we demonstrate a sex-specific transcriptional profile in brain reward circuitry. This transcriptional profile can be altered by removal of an epigenetic

  9. Descending projections from the nucleus accumbens shell excite activity of taste-responsive neurons in the nucleus of the solitary tract in the hamster.

    PubMed

    Li, Cheng-Shu; Lu, Da-Peng; Cho, Young K

    2015-06-01

    The nucleus of the solitary tract (NST) and the parabrachial nuclei (PbN) are the first and second relays in the rodent central taste pathway. A series of electrophysiological experiments revealed that spontaneous and taste-evoked activities of brain stem gustatory neurons are altered by descending input from multiple forebrain nuclei in the central taste pathway. The nucleus accumbens shell (NAcSh) is a key neural substrate of reward circuitry, but it has not been verified as a classical gustatory nucleus. A recent in vivo electrophysiological study demonstrated that the NAcSh modulates the spontaneous and gustatory activities of hamster pontine taste neurons. In the present study, we investigated whether activation of the NAcSh modulates gustatory responses of the NST neurons. Extracellular single-unit activity was recorded from medullary neurons in urethane-anesthetized hamsters. After taste response was confirmed by delivery of sucrose, NaCl, citric acid, and quinine hydrochloride to the anterior tongue, the NAcSh was stimulated bilaterally with concentric bipolar stimulating electrodes. Stimulation of the ipsilateral and contralateral NAcSh induced firings from 54 and 37 of 90 medullary taste neurons, respectively. Thirty cells were affected bilaterally. No inhibitory responses or antidromic invasion was observed after NAcSh activation. In the subset of taste cells tested, high-frequency electrical stimulation of the NAcSh during taste delivery enhanced taste-evoked neuronal firing. These results demonstrate that two-thirds of the medullary gustatory neurons are under excitatory descending influence from the NAcSh, which is a strong indication of communication between the gustatory pathway and the mesolimbic reward pathway.

  10. Changes in dendritic spine density in the nucleus accumbens do not underlie ethanol sensitization.

    PubMed

    Nona, Christina N; Bermejo, Marie Kristel; Ramsey, Amy J; Nobrega, José N

    2015-12-01

    Behavioral sensitization to various drugs of abuse has been shown to change dendritic spine density and/or morphology of nucleus accumbens (NAc) medium spiny neurons, an effect seen across drug classes. However, is it not known whether behavioral sensitization to ethanol (EtOH) is also associated with structural changes in this region. Here we compared dendritic spine density and morphology between mice showing High vs. Low levels of EtOH sensitization and found that high levels of EtOH sensitization were not associated with changes in dendritic spine density or spine type. Unexpectedly, however, a significant increase in the density of stubby-type spines was seen in mice that were resistant to sensitization. Since the presence of this spine type has been associated with long-term depression and cognitive/learning deficits this may explain why these mice fail to sensitize and why they show poor performance in conditioning tasks, as previously shown. A possible causal role for structural plasticity in behavioral sensitization to various drugs has been debated. In the case of EtOH sensitization, our results suggest that drug-induced changes in structural plasticity in the accumbens neurons may not be the cause of sensitized behavior.

  11. Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward "wanting" without enhanced "liking" or response reinforcement.

    PubMed

    Wyvell, C L; Berridge, K C

    2000-11-01

    Amphetamine microinjection into the nucleus accumbens shell enhanced the ability of a Pavlovian reward cue to trigger increased instrumental performance for sucrose reward in a pure conditioned incentive paradigm. Rats were first trained to press one of two levers to obtain sucrose pellets. They were separately conditioned to associate a Pavlovian cue (30 sec light) with free sucrose pellets. On test days, the rats received bilateral microinjection of intra-accumbens vehicle or amphetamine (0.0, 2.0, 10.0, or 20.0 microgram/0.5 microliter), and lever pressing was tested in the absence of any reinforcement contingency, while the Pavlovian cue alone was freely presented at intervals throughout the session. Amphetamine microinjection selectively potentiated the cue-elicited increase in sucrose-associated lever pressing, although instrumental responding was not reinforced by either sucrose or the cue during the test. Intra-accumbens amphetamine can therefore potentiate cue-triggered incentive motivation for reward in the absence of primary or secondary reinforcement. Using the taste reactivity measure of hedonic impact, it was shown that intra-accumbens amphetamine failed to increase positive hedonic reaction patterns elicited by sucrose (i.e., sucrose "liking") at doses that effectively increase sucrose "wanting." We conclude that nucleus accumbens dopamine specifically mediates the ability of reward cues to trigger "wanting" (incentive salience) for their associated rewards, independent of both hedonic impact and response reinforcement.

  12. The Miscanthus NAC transcription factor MlNAC9 enhances abiotic stress tolerance in transgenic Arabidopsis.

    PubMed

    Zhao, Xun; Yang, Xuanwen; Pei, Shengqiang; He, Guo; Wang, Xiaoyu; Tang, Qi; Jia, Chunlin; Lu, Ying; Hu, Ruibo; Zhou, Gongke

    2016-07-15

    NAC (NAM, ATAF1/2, and CUC2) transcription factors are known to play important roles in responses to abiotic stresses in plants. Currently, little information regarding the functional roles of NAC genes in stress tolerance is available in Miscanthus lutarioriparius, a promising bioenergy plant for cellulosic ethanol production. In this study, we carried out the functional characterization of MlNAC9 in abiotic stresses. MlNAC9 was shown to act as a nuclear localized transcription activator with the activation domain in its C-terminus. The overexpression of MlNAC9 in Arabidopsis conferred hypersensitivity to abscisic acid (ABA) at seed germination and root elongation stages. In addition, the overexpression of MlNAC9 led to increased seed germination rate and root growth under salt (NaCl) treatment. Meanwhile, the transgenic Arabidopsis overexpressing MlNAC9 showed enhanced tolerance to drought and cold stresses. The expression of stress-responsive marker genes was significantly increased in MlNAC9 overexpression lines compared to that of WT under ABA, drought, salt, and cold stresses. Correspondingly, the activities of antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were significantly increased and the malondialdehyde (MDA) content was lower accumulated in MlNAC9 overexpression lines under drought and salt treatments. These results indicated that the overexpression of MlNAC9 improved the tolerance to abiotic stresses via an ABA-dependent pathway, and the enhanced tolerance of transgenic plants was mainly attributed to the increased expression of stress-responsive genes and the enhanced scavenging capability of reactive oxygen species (ROS).

  13. Dynamic mesolimbic dopamine signaling during action sequence learning and expectation violation

    PubMed Central

    Collins, Anne L.; Greenfield, Venuz Y.; Bye, Jeffrey K.; Linker, Kay E.; Wang, Alice S.; Wassum, Kate M.

    2016-01-01

    Prolonged mesolimbic dopamine concentration changes have been detected during spatial navigation, but little is known about the conditions that engender this signaling profile or how it develops with learning. To address this, we monitored dopamine concentration changes in the nucleus accumbens core of rats throughout acquisition and performance of an instrumental action sequence task. Prolonged dopamine concentration changes were detected that ramped up as rats executed each action sequence and declined after earned reward collection. With learning, dopamine concentration began to rise increasingly earlier in the execution of the sequence and ultimately backpropagated away from stereotyped sequence actions, becoming only transiently elevated by the most distal and unexpected reward predictor. Action sequence-related dopamine signaling was reactivated in well-trained rats if they became disengaged in the task and in response to an unexpected change in the value, but not identity of the earned reward. Throughout training and test, dopamine signaling correlated with sequence performance. These results suggest that action sequences can engender a prolonged mode of dopamine signaling in the nucleus accumbens core and that such signaling relates to elements of the motivation underlying sequence execution and is dynamic with learning, overtraining and violations in reward expectation. PMID:26869075

  14. The National Astronomy Consortium (NAC) - Overview

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik; Mills, Elisabeth A. C.; Hooper, Eric; National Astronomy Consortium

    2015-01-01

    The National Astronomy Consortium (NAC; see https://sites.google.com/site/nraonac/) is a growing national partnership between majority and minority universities and institutions with the goal of increasing the numbers of under-represented minorities and students who might otherwise be overlooked by the traditional academic pipeline into STEM, or related, careers. The NAC model is based on the successful 'Posse Foundation' model for undergraduate success and incorporates all its major components: pre-training of cohorts to prepare them for the research experience, joint weekly cohort activities throughout the research summer, peer- and multiple mentoring, weekly discussion of various aspects of professional and career development, continued engagement of students in science after return to home institution and lifelong mentoring. The mentors also form a cohort, exchanging information and learning from each other. With its partner institutions, the NAC aims to build a complete pipeline from undergraduate through career for the next generation of scientists and engineers. Our annual goal is to create two to three cohorts of four to five students at each site (currently NRAO-Charlottesville, NRAO-Socorro and U. Wisconsin - Madison). Recruitment occurs in the fall semester with seminars and colloquia in partnership with faculty at the minority serving institutions and the GRAD-MAP program at the University of Maryland. In this talk we describe in detail all the components of the NAC and report on our progress. We are keen to interact and partner with new universities and institutions and encourage them to contact the NAC at nac4stem@googlegroups.com.

  15. Depression-like phenotype by deletion of α7 nicotinic acetylcholine receptor: Role of BDNF-TrkB in nucleus accumbens

    PubMed Central

    Zhang, Ji-chun; Yao, Wei; Ren, Qian; Yang, Chun; Dong, Chao; Ma, Min; Wu, Jin; Hashimoto, Kenji

    2016-01-01

    The α7 subtype of nicotinic acetylcholine receptor (nAChR) plays a role in the inflammation which is implicated in depression. This study was undertaken to examine the role of α7 nAChR in depression using α7 nAChR knock-out (KO) mice. Serum levels of tumor necrosis factor-α and interlukin-1β in KO mice were higher than wild-type mice, suggesting an inflammatory process in KO mice. α7 nAChR KO mice showed depression-like phenotype. Furthermore, KO mice showed increased brain-derived neurotrophic factor (BDNF) and its receptor TrkB signaling, as well as increased synaptogenesis and spine density in the nucleus accumbens (NAc), although BDNF-TrkB signaling and synaptogenesis were not altered in the prefrontal cortex and hippocampus. Systemic administration of the TrkB antagonist ANA-12, but not the TrkB agonist 7,8-dihydroxyflavone and the selective serotonin reuptake inhibitor fluoxetine, showed a rapid antidepressant effect in KO mice by normalizing increased synaptogenesis in the NAc. In addition, bilateral infusion of ANA-12 into NAc promoted a rapid antidepressant effect in KO mice by normalizing increased synaptogenesis in the NAc. These findings suggest that increased BDNF-TrkB signaling and synaptogenesis in the NAc by deletion of α7 nAChR plays a key role in depression. PMID:27821848

  16. Opposite Effects of mGluR1a and mGluR5 Activation on Nucleus Accumbens Medium Spiny Neuron Dendritic Spine Density

    PubMed Central

    Gross, Kellie S.; Brandner, Dieter D.; Martinez, Luis A.; Olive, M. Foster; Meisel, Robert L.

    2016-01-01

    The group I metabotropic glutamate receptors (mGluR1a and mGluR5) are important modulators of neuronal structure and function. Although these receptors share common signaling pathways, they are capable of having distinct effects on cellular plasticity. We investigated the individual effects of mGluR1a or mGluR5 activation on dendritic spine density in medium spiny neurons in the nucleus accumbens (NAc), which has become relevant with the potential use of group I mGluR based therapeutics in the treatment of drug addiction. We found that systemic administration of mGluR subtype-specific positive allosteric modulators had opposite effects on dendritic spine densities. Specifically, mGluR5 positive modulation decreased dendritic spine densities in the NAc shell and core, but was without effect in the dorsal striatum, whereas increased spine densities in the NAc were observed with mGluR1a positive modulation. Additionally, direct activation of mGluR5 via CHPG administration into the NAc also decreased the density of dendritic spines. These data provide insight on the ability of group I mGluRs to induce structural plasticity in the NAc and demonstrate that the group I mGluRs are capable of producing not just distinct, but opposing, effects on dendritic spine density. PMID:27618534

  17. The involvement of norepinephrine in pain modulation in the nucleus accumbens of morphine-dependent rats.

    PubMed

    Zhang, Ying; Qu, Hui; Zhou, You; Wang, Yi; Zhang, Duo; Yang, Xu; Yang, ChunXiao; Xu, ManYing

    2015-01-12

    Opioids are effective analgesics used clinically for both acute and chronic pain management. However, repeated opioid treatment can induce serious side effects such as nausea, vomiting, drowsiness, respiratory depression, euphoria, dependence, hyperalgesia, and tolerance. The mechanism of noxious information transmission in the central nervous system following dependence is still not clear. Norepinephrine (NE), an important neurotransmitter, participates both in the process of opioid dependence and also pain modulation in the central nervous system. In this study, we examined the role of NE on the evoked discharges of pain-excitation neurons (PENs) and pain-inhibition neurons (PINs) in the nucleus accumbens (NAc) of rats, following the development of morphine dependence. Our results revealed that NE inhibited the evoked discharges of PENs and attenuated the inhibition of PINs, while phentolamine enhanced the evoked discharges of PENs and facilitated the inhibition of PINs. These results indicate that the inhibitory action of NE on pain modulation acts via alpha adrenoceptors in the NAc of morphine-dependent rats.

  18. MC4-R signaling within the nucleus accumbens shell, but not the lateral hypothalamus, modulates ethanol palatability in rats

    PubMed Central

    Lerma-Cabrera, Jose M.; Carvajal, Francisca; Chotro, Gabriela; Gaztañaga, Mirari; Navarro, Montserrat; Thiele, Todd E.; Cubero, Inmaculada

    2012-01-01

    The Melanocortin (MC) system is one of the crucial neuropeptidergic systems that modulate energy balance. The roles of endogenous MC and MC-4 receptor (MC4-R) signaling within the hypothalamus in the control of homeostatic aspects of feeding are well established. Additional evidence points to a key role for the central MC system in ethanol consumption. Recently, we have shown that nucleus accumbens (NAc), but not lateral hypothalamic (LH), infusion of a selective MC4-R agonist decreases ethanol consumption. Given that MC signaling might contribute to non-homeostatic aspects of feeding within limbic circuits, we assessed here whether MC4-R signaling within the NAc and the lateral hypothalamus (LH) alters normal ingestive hedonic and/or aversive responses to ethanol in rats as measured by a taste reactivity test. Adult male Sprague-Dawley rats were given NAc- or LH- bilateral infusion of the selective MC4-R agonist cyclo (NH-CH2-CH2-CO-His-D-Phe-Arg-Trp-Glu)-NH2 (0, 0.75 or 1.5 µg/0.5µl/site) and following 30 min, the animals received 1 ml of ethanol solution (6% w/v) intraoral for 1 minute and aversive and hedonic behaviors were recorded. We found that NAc-, but not LH-administration, of a selective MC4-R agonist decreased total duration of hedonic reactions and significantly increased aversive reactions relative to saline-infused animals which support the hypothesis that MC signaling within the NAc may contribute to ethanol consumption by modulating non-homeostatic aspects (palatability) of intake. PMID:23146409

  19. Mesolimbic Dopamine and the Regulation of Motivated Behavior.

    PubMed

    Salamone, John D; Pardo, Marta; Yohn, Samantha E; López-Cruz, Laura; SanMiguel, Noemí; Correa, Mercè

    2016-01-01

    It has been known for some time that nucleus accumbens dopamine (DA) is involved in aspects of motivation , but theoretical approaches to understanding the functions of DA have continued to evolve based upon emerging data and novel concepts. Although it has become traditional to label DA neurons as "reward" neurons, the actual findings are more complicated than that, because they indicate that DA neurons can respond to a variety of motivationally significant stimuli. Moreover, it is important to distinguish between aspects of motivation that are differentially affected by dopaminergic manipulations. Studies that involve nucleus accumbens DA antagonism or depletion indicate that accumbens DA does not mediate primary food motivation or appetite. Nevertheless, DA is involved in appetitive and aversive motivational processes including behavioral activation , exertion of effort, sustained task engagement, and Pavlovian-to-instrumental transfer. Interference with accumbens DA transmission affects instrumental behavior in a manner that interacts with the response requirements of the task and also shifts effort-related choice behavior, biasing animals toward low-effort alternatives. Dysfunctions of mesolimbic DA may contribute to motivational symptoms seen in various psychopathologies, including depression , schizophrenia, parkinsonism, and other disorders.

  20. Effects of cysteamine on dopamine-mediated behaviors: evidence for dopamine-somatostatin interactions in the striatum

    SciTech Connect

    Martin-Iverson, M.T.; Radke, J.M.; Vincent, S.R.

    1986-06-01

    The effects of prior treatment with cysteamine, a drug which appears to deplete selectively the neuropeptide somatostatin, on apomorphine-induced stereotypy and amphetamine-induced locomotor activity and conditioned place preferences were investigated. Twelve hours following systemic cysteamine injections apomorphine-induced stereotypy was attenuated and striatal somatostatin levels were reduced by half. Systemic cysteamine also decreased the motor stimulant effects of amphetamine, without influencing the rewarding properties as determined by the conditioned place preference procedure. Direct injections of cysteamine into the nucleus accumbens also decreased the locomotor response to amphetamine, and produced a local reduction in somatostatin levels in the accumbens. Cysteamine did not appear to alter monoamine turnover in the striatum after either systemic or intra-accumbens injections. These results suggest that somatostatin in the nucleus accumbens and caudate-putamen modulates the motor, but not the reinforcing properties of dopaminergic drugs, possibly via an action postsynaptic to dopamine-releasing terminals. Furthermore, it is evident from these results that cysteamine is an important tool with which to study the central actions of somatostatin.

  1. Nucleus accumbens cocaine-amphetamine regulated transcript mediates food intake during novelty conflict.

    PubMed

    Burghardt, P R; Krolewski, D M; Dykhuis, K E; Ching, J; Pinawin, A M; Britton, S L; Koch, L G; Watson, S J; Akil, H

    2016-05-01

    Obesity is a persistent and pervasive problem, particularly in industrialized nations. It has come to be appreciated that the metabolic health of an individual can influence brain function and subsequent behavioral patterns. To examine the relationship between metabolic phenotype and central systems that regulate behavior, we tested rats with divergent metabolic phenotypes (Low Capacity Runner: LCR vs. High Capacity Runner: HCR) for behavioral responses to the conflict between hunger and environmental novelty using the novelty suppressed feeding (NSF) paradigm. Additionally, we measured expression of mRNA, for peptides involved in energy management, in response to fasting. Following a 24-h fast, LCR rats showed lower latencies to begin eating in a novel environment compared to HCR rats. A 48-h fast equilibrated the latency to begin eating in the novel environment. A 24-h fast differentially affected expression of cocaine-amphetamine regulated transcript (CART) mRNA in the nucleus accumbens (NAc), where 24-h of fasting reduced CART mRNA in LCR rats. Bilateral microinjections of CART 55-102 peptide into the NAc increased the latency to begin eating in the NSF paradigm following a 24-h fast in LCR rats. These results indicate that metabolic phenotype influences how animals cope with the conflict between hunger and novelty, and that these differences are at least partially mediated by CART signaling in the NAc. For individuals with poor metabolic health who have to navigate food-rich and stressful environments, changes in central systems that mediate conflicting drives may feed into the rates of obesity and exacerbate the difficulty individuals have in maintaining weight loss.

  2. Interacting Cannabinoid and Opioid Receptors in the Nucleus Accumbens Core Control Adolescent Social Play

    PubMed Central

    Manduca, Antonia; Lassalle, Olivier; Sepers, Marja; Campolongo, Patrizia; Cuomo, Vincenzo; Marsicano, Giovanni; Kieffer, Brigitte; Vanderschuren, Louk J. M. J; Trezza, Viviana; Manzoni, Olivier J. J.

    2016-01-01

    Social play behavior is a highly rewarding, developmentally important form of social interaction in young mammals. However, its neurobiological underpinnings remain incompletely understood. Previous work has suggested that opioid and endocannabinoid neurotransmission interact in the modulation of social play. Therefore, we combined behavioral, pharmacological, electrophysiological, and genetic approaches to elucidate the role of the endocannabinoid 2-arachidonoylglycerol (2-AG) in social play, and how cannabinoid and opioid neurotransmission interact to control social behavior in adolescent rodents. Systemic administration of the 2-AG hydrolysis inhibitor JZL184 or the opioid receptor agonist morphine increased social play behavior in adolescent rats. These effects were blocked by systemic pretreatment with either CB1 cannabinoid receptor (CB1R) or mu-opioid receptor (MOR) antagonists. The social play-enhancing effects of systemic morphine or JZL184 treatment were also prevented by direct infusion of the CB1R antagonist SR141716 and the MOR antagonist naloxone into the nucleus accumbens core (NAcC). Searching for synaptic correlates of these effects in adolescent NAcC excitatory synapses, we observed that CB1R antagonism blocked the effect of the MOR agonist DAMGO and, conversely, that naloxone reduced the effect of a cannabinoid agonist. These results were recapitulated in mice, and completely abolished in CB1R and MOR knockout mice, suggesting that the functional interaction between CB1R and MOR in the NAcC in the modulation of social behavior is widespread in rodents. The data shed new light on the mechanism by which endocannabinoid lipids and opioid peptides interact to orchestrate rodent socioemotional behaviors. PMID:27899885

  3. Interacting Cannabinoid and Opioid Receptors in the Nucleus Accumbens Core Control Adolescent Social Play.

    PubMed

    Manduca, Antonia; Lassalle, Olivier; Sepers, Marja; Campolongo, Patrizia; Cuomo, Vincenzo; Marsicano, Giovanni; Kieffer, Brigitte; Vanderschuren, Louk J M J; Trezza, Viviana; Manzoni, Olivier J J

    2016-01-01

    Social play behavior is a highly rewarding, developmentally important form of social interaction in young mammals. However, its neurobiological underpinnings remain incompletely understood. Previous work has suggested that opioid and endocannabinoid neurotransmission interact in the modulation of social play. Therefore, we combined behavioral, pharmacological, electrophysiological, and genetic approaches to elucidate the role of the endocannabinoid 2-arachidonoylglycerol (2-AG) in social play, and how cannabinoid and opioid neurotransmission interact to control social behavior in adolescent rodents. Systemic administration of the 2-AG hydrolysis inhibitor JZL184 or the opioid receptor agonist morphine increased social play behavior in adolescent rats. These effects were blocked by systemic pretreatment with either CB1 cannabinoid receptor (CB1R) or mu-opioid receptor (MOR) antagonists. The social play-enhancing effects of systemic morphine or JZL184 treatment were also prevented by direct infusion of the CB1R antagonist SR141716 and the MOR antagonist naloxone into the nucleus accumbens core (NAcC). Searching for synaptic correlates of these effects in adolescent NAcC excitatory synapses, we observed that CB1R antagonism blocked the effect of the MOR agonist DAMGO and, conversely, that naloxone reduced the effect of a cannabinoid agonist. These results were recapitulated in mice, and completely abolished in CB1R and MOR knockout mice, suggesting that the functional interaction between CB1R and MOR in the NAcC in the modulation of social behavior is widespread in rodents. The data shed new light on the mechanism by which endocannabinoid lipids and opioid peptides interact to orchestrate rodent socioemotional behaviors.

  4. Regulation of nucleus accumbens transcript levels in mice by early-life social stress and cocaine.

    PubMed

    Lo Iacono, Luisa; Valzania, Alessandro; Visco-Comandini, Federica; Viscomi, Maria Teresa; Felsani, Armando; Puglisi-Allegra, Stefano; Carola, Valeria

    2016-04-01

    Much interest has been piqued regarding the quality of one's environment at early ages in modulating the susceptibility to drug addiction in adulthood. However, the molecular mechanisms that are engaged during early trauma and mediate the risk for drug addiction are poorly understood. In rodents, exposure to early-life stress alters the rewarding effects of cocaine, amphetamine, and morphine in adulthood. Recently, we demonstrated that the exposure of juvenile mice to social threat (Social Stress, S-S) promoted cocaine-seeking behavior and relapse of cocaine-seeking after periods of withdrawal, compared with unhandled controls (UN) and with juvenile mice that experienced only daily isolation in a novel environment (no social stress, NS-S). Interestingly, while the exposure to NS-S slightly increased cocaine-seeking behavior compared with UN, the same was not sufficient to promote cocaine reinstatement. In this study, we examined the long-term transcriptional changes that are induced by S-S compared to NS-S and linked the increased susceptibility of S-S mice to cocaine reinstatement. To this end, we performed genome-wide RNA sequencing analysis in the nucleus accumbens (NAC), which revealed that 89 transcripts were differentially expressed between S-S and NS-S mice. By Gene Ontology classification, these hits were enriched in genes that mediate cell proliferation, neuronal differentiation, and neuron/forebrain development. Eleven of these genes have been reported to be involved in substance use disorders, and the remaining genes are novel candidates in this area. We characterized 4 candidates with regard to their significant neurobiological relevance (ZIC1, ZIC2, FABP7, and PRDM12) and measured their expression in the NAC by immunohistochemistry. These findings provide insights into novel molecular mechanisms in NAC that might be associated with the risk of relapse in cocaine-dependent individuals.

  5. DeltaFosB in the nucleus accumbens is critical for reinforcing effects of sexual reward

    PubMed Central

    Pitchers, Kyle K.; Frohmader, Karla S.; Vialou, Vincent; Mouzon, Ezekiell; Nestler, Eric J.; Lehman, Michael N.; Coolen, Lique M.

    2010-01-01

    Sexual behavior in male rats is rewarding and reinforcing. However, little is known about the specific cellular and molecular mechanisms mediating sexual reward or the reinforcing effects of reward on subsequent expression of sexual behavior. The current study tests the hypothesis that ΔFosB, the stably expressed truncated form of FosB, plays a critical role in the reinforcement of sexual behavior and experience-induced facilitation of sexual motivation and performance. Sexual experience was shown to cause ΔFosB accumulation in several limbic brain regions including the nucleus accumbens (NAc), medial prefrontal cortex, ventral tegmental area and caudate putamen, but not the medial preoptic nucleus. Next, the induction of c-Fos, a downstream (repressed) target of ΔFosB, was measured in sexually experienced and naïve animals. The number of mating-induced c-Fos-IR cells was significantly decreased in sexually experienced animals compared to sexually naïve controls. Finally, ΔFosB levels and its activity in the NAc were manipulated using viral-mediated gene transfer to study its potential role in mediating sexual experience and experience-induced facilitation of sexual performance. Animals with ΔFosB over-expression displayed enhanced facilitation of sexual performance with sexual experience relative to controls. In contrast, the expression of ΔJunD, a dominant-negative binding partner of ΔFosB, attenuated sexual experience-induced facilitation of sexual performance, and stunted long-term maintenance of facilitation compared to GFP and ΔFosB over-expressing groups. Together, these findings support a critical role for ΔFosB expression in the NAc for the reinforcing effects of sexual behavior and sexual experience-induced facilitation of sexual performance. PMID:20618447

  6. Dynamics of neural coding in the accumbens during extinction and reinstatement of rewarded behavior.

    PubMed

    Janak, Patricia H; Chen, Ming-Teh; Caulder, Tara

    2004-09-23

    Neural correlates of reward-seeking behavior are observed in the nucleus accumbens (NAC). The dependence of these correlates upon the presence of a reward was studied by comparing the behavioral correlates observed when the presence of the reward was manipulated within a single behavioral session. Rats were well-trained on a continuous reinforcement instrumental task reinforced by 0.1 ml drops of 5% sucrose. Extracellular single-unit neural activity was recorded from electrode arrays implanted into the NAC when instrumental behavior was and then was not reinforced with sucrose (within-session extinction). A variable delay between the instrumental response and the sucrose delivery allowed for separation of neural activity related to these task events. A spike activity increase around the time of the instrumental response was the most common behavioral correlate, while a decrease in spike activity upon sucrose delivery was the second most common behavioral correlate. Following removal of the reinforcer, subjects continued to perform the instrumental response, allowing for the examination of response-related spike activity under extinction conditions in which the response was no longer reinforced by sucrose. A majority of the response-related neural activity patterns were lost when sucrose was no longer available. New neural responses also were detected during this period. For some subjects, the reinforcer was again made available during the same session. Encoding of the primary behavioral events during this period of reinstated reinforcer was similar, but not identical, to that observed during the first period of reinforced responding. These findings reveal that instrumental task-associated spike activity within the NAC is partially dependent upon the presence of the reinforcer, and that encoding across the population is distinct under reinforced and extinction conditions.

  7. Imipramine Treatment and Resiliency Exhibit Similar Chromatin Regulation in the Mouse Nucleus Accumbens in Depression Models

    PubMed Central

    Wilkinson, Matthew B.; Xiao, Guanghua; Kumar, Arvind; LaPlant, Quincey; Renthal, William; Sikder, Devanjan; Kodadek, Thomas J.; Nestler, Eric J.

    2009-01-01

    Though it is a widely studied psychiatric syndrome, major depressive disorder remains a poorly understood illness, especially with regard to the disconnect between treatment initiation and the delayed onset of clinical improvement. We have recently validated chronic social defeat stress in mice as a model in which a depression-like phenotype is reversed by chronic, but not acute, antidepressant administration. Here, we use ChIP-chip assays—chromatin immunoprecipitation (ChIP) followed by genome wide promoter array analyses—to study the effects of chronic defeat stress on chromatin regulation in the mouse nucleus accumbens (NAc), a key brain reward region implicated in depression. Our results demonstrate that chronic defeat stress causes widespread and long-lasting changes in gene regulation, including alterations in repressive histone methylation and in phospho-CREB binding, in the NAc. We then show similarities and differences in this regulation to that observed in another mouse model of depression, prolonged adult social isolation. In the social defeat model, we observed further that most of the stress-induced changes in gene expression are reversed by chronic imipramine treatment, and that resilient mice—those resistant to the deleterious effects of defeat stress—show patterns of chromatin regulation in the NAc that overlap dramatically with those seen with imipramine treatment. These findings provide new insight into the molecular basis of depression-like symptoms and the mechanisms by which antidepressants exert their delayed clinical efficacy. They also raise the novel idea that certain individuals resistant to stress may naturally mount antidepressant-like adaptations in response to chronic stress. PMID:19535594

  8. Alterations in blood glucose and plasma glucagon concentrations during deep brain stimulation in the shell region of the nucleus accumbens in rats.

    PubMed

    Diepenbroek, Charlene; van der Plasse, Geoffrey; Eggels, Leslie; Rijnsburger, Merel; Feenstra, Matthijs G P; Kalsbeek, Andries; Denys, Damiaan; Fliers, Eric; Serlie, Mireille J; la Fleur, Susanne E

    2013-01-01

    Deep brain stimulation (DBS) of the nucleus accumbens (NAc) is an effective therapy for obsessive compulsive disorder (OCD) and is currently under investigation as a treatment for eating disorders. DBS of this area is associated with altered food intake and pharmacological treatment of OCD is associated with the risk of developing type 2 diabetes. Therefore we examined if DBS of the NAc-shell (sNAc) influences glucose metabolism. Male Wistar rats were subjected to DBS, or sham stimulation, for a period of 1 h. To assess the effects of stimulation on blood glucose and glucoregulatory hormones, blood samples were drawn before, during and after stimulation. Subsequently, all animals were used for quantitative assessment of Fos immunoreactivity in the lateral hypothalamic area (LHA) using computerized image analysis. DBS of the sNAc rapidly increased plasma concentrations of glucagon and glucose while sham stimulation and DBS outside the sNAc were ineffective. In addition, the increase in glucose was dependent on DBS intensity. In contrast, the DBS-induced increase in plasma corticosterone concentrations was independent of intensity and region, indicating that the observed DBS-induced metabolic changes were not due to corticosterone release. Stimulation of the sNAc with 200 μA increased Fos immunoreactivity in the LHA compared to sham or 100 μA stimulated animals. These data show that DBS of the sNAc alters glucose metabolism in a region- and intensity- dependent manner in association with neuronal activation in the LHA. Moreover, these data illustrate the need to monitor changes in glucose metabolism during DBS-treatment of OCD patients.

  9. Ceftriaxone attenuates ethanol drinking and restores extracellular glutamate concentration through normalization of GLT-1 in nucleus accumbens of male alcohol-preferring rats.

    PubMed

    Das, Sujan C; Yamamoto, Bryan K; Hristov, Alexandar M; Sari, Youssef

    2015-10-01

    Alteration of glutamatergic-neurotransmission is a hallmark of alcohol dependence. We have previously reported that chronic ethanol-drinking downregulated glutamate transporter 1 (GLT-1) in nucleus accumbens (NAc) in male P rats in a manner that was reversed by ceftriaxone treatment. However, the effect of ceftriaxone on extracellular glutamate concentrations in NAc after chronic ethanol-drinking has not yet been studied. In the present study, male P rats were treated with ceftriaxone (100 mg/kg/day, i.p.) for five consecutive days following five-weeks of free choice ethanol (15% and 30%) drinking. In vivo microdialysis was performed to measure the extracellular glutamate concentrations in NAc and the effect of blockade of GLT-1 with dihydrokainic acid (DHK) on extracellular glutamate in NAc of ceftriaxone-treated rats was determined. Ceftriaxone treatment attenuated ethanol intake as well as ethanol preference. Extracellular glutamate was significantly higher in NAc after five-weeks of ethanol drinking in saline-treated compared to water control rats. Ceftriaxone treatment blocked the increase extracellular glutamate produced by ethanol intake. Blockade of GLT-1 by DHK reversed the effects of ceftriaxone on glutamate and implicated the role of GLT-1 in the normalization of extracellular glutamate by ceftriaxone. In addition, GLT-1 protein was decreased in ethanol exposed animals and ceftriaxone treatment reversed this deficit. Ceftriaxone treatment also increased glutamine synthetase activity in NAc but not in PFC as compared to ethanol drinking saline-treated rats. Our present study demonstrates that ceftriaxone treatment prevents ethanol drinking in part through normalization of extracellular glutamate concentrations in NAc of male P rats via GLT-1.

  10. Different Roles of BDNF in Nucleus Accumbens Core versus Shell during the Incubation of Cue-Induced Cocaine Craving and Its Long-Term Maintenance

    PubMed Central

    Li, Xuan; DeJoseph, M.R.; Urban, Janice H.; Bahi, Amine; Dreyer, Jean-Luc; Meredith, Gloria E.; Ford, Kerstin A.; Ferrario, Carrie R.; Loweth, Jessica A.; Wolf, Marina E.

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) contributes to diverse types of plasticity, including cocaine addiction. We investigated the role of BDNF in the rat nucleus accumbens (NAc) in the incubation of cocaine craving over 3 months of withdrawal from extended access cocaine self-administration. First, we confirmed by immunoblotting that BDNF levels are elevated after this cocaine regimen on withdrawal day 45 (WD45) and showed that BDNF mRNA levels are not altered. Next, we explored the time course of elevated BDNF expression using immunohistochemistry. Elevation of BDNF in the NAc core was detected on WD45 and further increased on WD90, whereas elevation in shell was not detected until WD90. Surface expression of activated tropomyosin receptor kinase B (TrkB) was also enhanced on WD90. Next, we used viral vectors to attenuate BDNF-TrkB signaling. Virus injection into the NAc core enhanced cue-induced cocaine seeking on WD1 compared with controls, whereas no effect was observed on WD30 or WD90. Attenuating BDNF-TrkB signaling in shell did not affect cocaine seeking on WD1 or WD45 but significantly decreased cocaine seeking on WD90. These results suggest that basal levels of BDNF transmission in the NAc core exert a suppressive effect on cocaine seeking in early withdrawal (WD1), whereas the late elevation of BDNF protein in NAc shell contributes to incubation in late withdrawal (WD90). Finally, BDNF protein levels in the NAc were significantly increased after ampakine treatment, supporting the novel hypothesis that the gradual increase of BDNF levels in NAc accompanying incubation could be caused by increased AMPAR transmission during withdrawal. PMID:23325250

  11. Eating 'Junk-Food' Produces Rapid and Long-Lasting Increases in NAc CP-AMPA Receptors: Implications for Enhanced Cue-Induced Motivation and Food Addiction.

    PubMed

    Oginsky, Max F; Goforth, Paulette B; Nobile, Cameron W; Lopez-Santiago, Luis F; Ferrario, Carrie R

    2016-12-01

    Urges to eat are influenced by stimuli in the environment that are associated with food (food cues). Obese people are more sensitive to food cues, reporting stronger craving and consuming larger portions after food cue exposure. The nucleus accumbens (NAc) mediates cue-triggered motivational responses, and activations in the NAc triggered by food cues are stronger in people who are susceptible to obesity. This has led to the idea that alterations in NAc function similar to those underlying drug addiction may contribute to obesity, particularly in obesity-susceptible individuals. Motivational responses are mediated in part by NAc AMPA receptor (AMPAR) transmission, and recent work shows that cue-triggered motivation is enhanced in obesity-susceptible rats after 'junk-food' diet consumption. Therefore, here we determined whether NAc AMPAR expression and function is increased by 'junk-food' diet consumption in obesity-susceptible vs -resistant populations using both outbred and selectively bred models of susceptibility. In addition, cocaine-induced locomotor activity was used as a general 'read out' of mesolimbic function after 'junk-food' consumption. We found a sensitized locomotor response to cocaine in rats that gained weight on a 'junk-food' diet, consistent with greater responsivity of mesolimbic circuits in obesity-susceptible groups. In addition, eating 'junk-food' increased NAc calcium-permeable-AMPAR (CP-AMPAR) function only in obesity-susceptible rats. This increase occurred rapidly, persisted for weeks after 'junk-food' consumption ceased, and preceded the development of obesity. These data are considered in light of enhanced cue-triggered motivation and striatal function in obesity-susceptible rats and the role of NAc CP-AMPARs in enhanced motivation and addiction.

  12. Eating ‘Junk-Food' Produces Rapid and Long-Lasting Increases in NAc CP-AMPA Receptors: Implications for Enhanced Cue-Induced Motivation and Food Addiction

    PubMed Central

    Oginsky, Max F; Goforth, Paulette B; Nobile, Cameron W; Lopez-Santiago, Luis F; Ferrario, Carrie R

    2016-01-01

    Urges to eat are influenced by stimuli in the environment that are associated with food (food cues). Obese people are more sensitive to food cues, reporting stronger craving and consuming larger portions after food cue exposure. The nucleus accumbens (NAc) mediates cue-triggered motivational responses, and activations in the NAc triggered by food cues are stronger in people who are susceptible to obesity. This has led to the idea that alterations in NAc function similar to those underlying drug addiction may contribute to obesity, particularly in obesity-susceptible individuals. Motivational responses are mediated in part by NAc AMPA receptor (AMPAR) transmission, and recent work shows that cue-triggered motivation is enhanced in obesity-susceptible rats after ‘junk-food' diet consumption. Therefore, here we determined whether NAc AMPAR expression and function is increased by ‘junk-food' diet consumption in obesity-susceptible vs -resistant populations using both outbred and selectively bred models of susceptibility. In addition, cocaine-induced locomotor activity was used as a general ‘read out' of mesolimbic function after ‘junk-food' consumption. We found a sensitized locomotor response to cocaine in rats that gained weight on a ‘junk-food' diet, consistent with greater responsivity of mesolimbic circuits in obesity-susceptible groups. In addition, eating ‘junk-food' increased NAc calcium-permeable-AMPAR (CP-AMPAR) function only in obesity-susceptible rats. This increase occurred rapidly, persisted for weeks after ‘junk-food' consumption ceased, and preceded the development of obesity. These data are considered in light of enhanced cue-triggered motivation and striatal function in obesity-susceptible rats and the role of NAc CP-AMPARs in enhanced motivation and addiction. PMID:27383008

  13. Ca2+ channel blockade prevents lysergic acid diethylamide-induced changes in dopamine and serotonin metabolism.

    PubMed

    Antkiewicz-Michaluk, L; Románska, I; Vetulani, J

    1997-07-30

    To investigate the effect of a single and multiple administration of lysergic acid diethylamide (LSD) on cerebral metabolism of dopamine and serotonin, male Wistar rats were treated with low and high doses (0.1 and 2.0 mg/kg i.p.) of LSD and the levels of dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, 3-methoxytyramine, serotonin and 5-hydroxyindoleacetic acid were assayed by HPLC in the nucleus accumbens, striatum and frontal cortex. Some rats received nifedipine, 5 mg/kg i.p., before each injection of LSD to assess the effect of a Ca2+ channel blockade. High-dose LSD treatment (8 x 2 mg/kg per day) caused a strong stimulation of dopamine metabolism in the nucleus accumbens and striatum, and serotonin metabolism in the nucleus accumbens: the changes were observed 24 (but not 1 h) after the last dose. The changes induced by the low-dose treatment (8 x 0.1 mg/kg per day) had a different pattern, suggesting the release of dopamine from vesicles to cytoplasm. Co-administration of nifedipine completely prevented the LSD-induced biochemical changes. The results suggest that Ca2+ channel blocking agents may prevent development of some behavioral consequences of chronically used LSD.

  14. Novel roles for GlcNAc in cell signaling.

    PubMed

    Naseem, Shamoon; Parrino, Salvatore M; Buenten, Dane M; Konopka, James B

    2012-03-01

    N-acetylglucosamine (GlcNAc) has long been known to play important roles in cell surface structure. Recent studies are now revealing new functions for GlcNAc in cell signaling. Exposure to GlcNAc regulates virulence functions in the human fungal pathogen Candida albicans and in pathogenic bacteria. These signaling pathways sense exogenous GlcNAc and are distinct from the O-GlcNAc signaling pathways in mammalian cells in which increased levels of intracellular GlcNAc synthesis leads to post-translational modification of proteins by attachment of O-GlcNAc. The novel roles of GlcNAc in cell signaling will be the subject of this mini-review.

  15. Novel roles for GlcNAc in cell signaling

    PubMed Central

    Naseem, Shamoon; Parrino, Salvatore M.; Buenten, Dane M.; Konopka, James B.

    2012-01-01

    N-acetylglucosamine (GlcNAc) has long been known to play important roles in cell surface structure. Recent studies are now revealing new functions for GlcNAc in cell signaling. Exposure to GlcNAc regulates virulence functions in the human fungal pathogen Candida albicans and in pathogenic bacteria. These signaling pathways sense exogenous GlcNAc and are distinct from the O-GlcNAc signaling pathways in mammalian cells in which increased levels of intracellular GlcNAc synthesis leads to post-translational modification of proteins by attachment of O-GlcNAc. The novel roles of GlcNAc in cell signaling will be the subject of this mini-review. PMID:22808320

  16. Dopamine in the medial amygdala network mediates human bonding

    PubMed Central

    Touroutoglou, Alexandra; Rudy, Tali; Salcedo, Stephanie; Feldman, Ruth; Hooker, Jacob M.; Dickerson, Bradford C.; Catana, Ciprian; Barrett, Lisa Feldman

    2017-01-01

    Research in humans and nonhuman animals indicates that social affiliation, and particularly maternal bonding, depends on reward circuitry. Although numerous mechanistic studies in rodents demonstrated that maternal bonding depends on striatal dopamine transmission, the neurochemistry supporting maternal behavior in humans has not been described so far. In this study, we tested the role of central dopamine in human bonding. We applied a combined functional MRI-PET scanner to simultaneously probe mothers’ dopamine responses to their infants and the connectivity between the nucleus accumbens (NAcc), the amygdala, and the medial prefrontal cortex (mPFC), which form an intrinsic network (referred to as the “medial amygdala network”) that supports social functioning. We also measured the mothers’ behavioral synchrony with their infants and plasma oxytocin. The results of this study suggest that synchronous maternal behavior is associated with increased dopamine responses to the mother’s infant and stronger intrinsic connectivity within the medial amygdala network. Moreover, stronger network connectivity is associated with increased dopamine responses within the network and decreased plasma oxytocin. Together, these data indicate that dopamine is involved in human bonding. Compared with other mammals, humans have an unusually complex social life. The complexity of human bonding cannot be fully captured in nonhuman animal models, particularly in pathological bonding, such as that in autistic spectrum disorder or postpartum depression. Thus, investigations of the neurochemistry of social bonding in humans, for which this study provides initial evidence, are warranted. PMID:28193868

  17. Enhanced ability of TRPV1 channels in regulating glutamatergic transmission after repeated morphine exposure in the nucleus accumbens of rat.

    PubMed

    Zhang, Haitao; Jia, Dong; Wang, Yuan; Qu, Liang; Wang, Xuelian; Song, Jian; Heng, Lijun; Gao, Guodong

    2017-04-01

    Glutamatergic projections to nucleus accumbens (NAc) drive drug-seeking behaviors during opioids withdrawal. Modulating glutamatergic neurotransmission provides a novel pharmacotherapeutic avenue for treatment of opioids dependence. Great deals of researches have verified that transient receptor potential vanilloid 1 (TRPV1) channels alters synaptic transmitter release and regulate neural plasticity. In the present study, whole-cell patch clamp recordings were adopted to examine the activity of TRPV1 Channels in regulating glutamate-mediated excitatory postsynaptic currents (EPSCs) in NAc of rat during morphine withdrawal for 3days and 3weeks. The data showed that the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and the amplitudes of evoked excitatory postsynaptic currents (eEPSCs) were increased during morphine withdrawal after applied with capsaicin (TRPV1 agonist). Capsaicin decreased the paired pulse ratio (PPR) and increased sEPSCs frequency but not their amplitudes suggesting a presynaptic locus of action during morphine withdrawal. All these effects were fully blocked by the TRPV1 antagonist Capsazepine. Additionally, In the presence of AM251 (CB1 receptor antagonist), depolarization-induced release of endogenous cannabinoids activated TRPV1 channels to enhance glutamatergic neurotransmission during morphine withdrawal. The functional enhancement of TRPV1 Channels in facilitating glutamatergic transmission was not recorded in dorsal striatum. Our findings demonstrate the ability of TRPV1 in regulating excitatory glutamatergic transmission is enhanced during morphine withdrawal in NAc, which would deepen our understanding of glutamatergic modulation during opioids withdrawal.

  18. Antagonism of nucleus accumbens M(2) muscarinic receptors disrupts operant responding for sucrose under a progressive ratio reinforcement schedule.

    PubMed

    Cousens, Graham A; Beckley, Jacob T

    2007-07-19

    Diverse cholinergic signaling mechanisms regulate the excitability of striatal principal neurons and modulate striatal-dependent behavior. These effects are mediated, in part, by action at muscarinic receptors (mAChR), subtypes of which exhibit distinct patterns of expression across striatal neuronal populations. Non-selective mAChR blockade within the nucleus accumbens (NAc) has been shown to disrupt operant responding for food and to inhibit food consumption. However, the specific receptor subtypes mediating these effects are not known. Thus, we evaluated effects of intra-NAc infusions of pirenzepine and methoctramine, mAChR antagonisits with distinct binding affinity profiles, on operant responding for sucrose reward under a progressive ratio (PR) reinforcement schedule. Moderate to high doses of methoctramine disrupted operant responding and reduced behavioral breakpoint. In contrast, pirenzepine failed to impact operant performance at any dose tested. Methoctramine failed to affect latencies to complete appetitive-consummatory response sequences or to impact measures of acoustic startle, suggesting that its' disruptive effects on operant behavior were not consequent to gross motor impairment. Since methoctramine has a greater affinity for M(2) receptors compared to pirenzepine, which has a greater relative affinity for M(1) and M(3) receptors, these findings suggest that M(2) mAChRs within the NAc regulate behavioral processes underling the acquisition of reward.

  19. Olanzapine treatment of adolescent rats alters adult reward behaviour and nucleus accumbens function.

    PubMed

    Vinish, Monika; Elnabawi, Ahmed; Milstein, Jean A; Burke, Jesse S; Kallevang, Jonathan K; Turek, Kevin C; Lansink, Carien S; Merchenthaler, Istvan; Bailey, Aileen M; Kolb, Bryan; Cheer, Joseph F; Frost, Douglas O

    2013-08-01

    Antipsychotic drugs are increasingly used in children and adolescents to treat a variety of psychiatric disorders. However, little is known about the long-term effects of early life antipsychotic drug (APD) treatment. Most APDs are potent antagonists or partial agonists of dopamine (DA) D₂ receptors; atypical APDs also have multiple serotonergic activities. DA and serotonin regulate many neurodevelopmental processes. Thus, early life APD treatment can, potentially, perturb these processes, causing long-term behavioural and neurobiological sequelae. We treated adolescent, male rats with olanzapine (Ola) on post-natal days 28-49, under dosing conditions that approximate those employed therapeutically in humans. As adults, they exhibited enhanced conditioned place preference for amphetamine, as compared to vehicle-treated rats. In the nucleus accumbens core, DA D₁ receptor binding was reduced, D₂ binding was increased and DA release evoked by electrical stimulation of the ventral tegmental area was reduced. Thus, adolescent Ola treatment enduringly alters a key behavioural response to rewarding stimuli and modifies DAergic neurotransmission in the nucleus accumbens. The persistence of these changes suggests that even limited periods of early life Ola treatment may induce enduring changes in other reward-related behaviours and in behavioural and neurobiological responses to therapeutic and illicit psychotropic drugs. These results underscore the importance of improved understanding of the enduring sequelae of paediatric APD treatment as a basis for weighing the benefits and risks of adolescent APD therapy, especially prophylactic treatment in high-risk, asymptomatic patients.

  20. Signaling Mechanisms in the Nitric Oxide Donor- and Amphetamine-Induced Dopamine Release in Mesencephalic Primary Cultured Neurons.

    PubMed

    Salum, Cristiane; Schmidt, Fanny; Michel, Patrick P; Del-Bel, Elaine; Raisman-Vozari, Rita

    2016-01-01

    Previous research has shown that nitric oxide (NO) synthase inhibitors prevent rodents' sensorimotor gating impairments induced by dopamine releasing drugs, such as amphetamine (Amph) and methylphenidate. The mechanisms of this effect have not been entirely understood. In the present work, we investigated some possible mechanisms by which the NO donor, NOC-12 (3-ethyl-3-(ethylaminoethyl)-1-hydroxy-2-oxo-1-triazene), influence spontaneous and Amph-induced dopamine release, using rat mesencephalic primary cultured neurons preparations. Our results showed that NOC-12 increased dopamine release in a concentration-dependent manner and potentiated the Amph-induced one. Dopamine release induced by NOC-12 was disrupted by N-acetyl-L-cystein (NAC-a free radical scavenger) and MK-801, a NMDA (N-methyl-D-aspartate) non-competitive antagonist, and was concentration dependently affected by oxadiazolo[4,3]quinoxalin-1-one, an inhibitor of the soluble guanylate cyclase (sGC). In contrast, dopamine released by Amph was facilitated by NAC and by MK-801 and not affected by nifedipine (a L-type-Ca(+2) channel blocker), which enhanced NOC-12-induced dopamine release. The present work demonstrates that DA release induced by NOC-12 is partially dependent on sGC and on NMDA activation, and is modulated by L-type Ca(+2) channel and the antioxidant NAC. This mechanism differs from the Amph-induced one, which appears not to depend on L-type Ca(+2) channel and seems to be facilitated by NMDA channel blocking and by NAC. These results suggest that Amph and NOC-12 induce dopamine release through complementary pathways, which may explain the potentiation of Amph-induced dopamine release by NOC-12. These findings contribute to understand the involvement of NO in dopamine-related neuropsychiatric and neurodegenerative diseases.

  1. Lesions of the dopaminergic innervation of the nucleus accumbens medial shell delay the generation of preference for sucrose, but not of sexual pheromones.

    PubMed

    Martínez-Hernández, José; Lanuza, Enrique; Martínez-García, Fernando

    2012-01-15

    Male sexual pheromones are rewarding stimuli for female mice, able to induce conditioned place preference. To test whether processing these natural reinforcing stimuli depends on the dopaminergic innervation of the nucleus accumbens, as for other natural rewards, we compare the effects of specific lesions of the dopaminergic innervation of the medial shell of the nucleus accumbens on two different appetitive behaviours, 'pheromone seeking' and sucrose preferential intake. Female mice, with no previous experience with either adult male chemical stimuli or with sucrose, received injections of 6-hydroxydopamine (or vehicle) in the medial shell of the accumbens. Then, we analyzed their preference for male soiled-bedding and their preferential intake of a sucrose solution, with particular emphasis on the dynamics of acquisition of both natural rewards. The results indicate that both lesioned and sham animals showed similar preference for male sexual pheromones, which was constant along the test (linear dynamics). In contrast, lesioned animals differed from sham operated mice in the dynamics of sucrose consumption in their first test of sucrose preference. Sham animals showed an initial sucrose preference followed by preference for water, which can be interpreted as sucrose neophobia. Lesioned animals showed no preference at the beginning of the test, and a delayed sucrose preference appeared followed by a delayed neophobia. The next day, during a second sucrose-preference test, both groups displayed comparable and sustained preferential sucrose intake. Therefore, dopamine in the medial shell of the nucleus accumbens has a different role on the reward of sexual pheromones and sucrose.

  2. Intra-nucleus accumbens administration of the calcium/calmodulin-dependent protein kinase II inhibitor AIP induced antinociception in rats with mononeuropathy.

    PubMed

    Bian, Hui; Yu, Long-Chuan

    2015-07-10

    Calcium/calmodulin-dependent protein kinase II (CaMKII) is a serine/threonine- dependent protein kinase, which has been implicated in pain modulation at different levels of the central nervous system. The present study was performed in rats with mononeuropathy induced by left common sciatic nerve ligation. Unilateral sciatic nerve loose ligation produced decreases in the hindpaw withdrawal latency (HWL) to noxious thermal and mechanical stimulation. Intra-nucleus accumbens (NAc) injection of 3 μg, 6 μg and 12 μg of myristoylated autocamtide-2-inhibitory peptide (AIP), the CaMKII inhibitor, dose-dependently increased the HWL to noxious thermal and mechanical stimulation in rats with mononeuropathy. Furthermore, intra-NAc administration of morphine, the HWL to noxious thermal and mechanical stimulation increased markedly, and there were no significant differences between morphine group and AIP group. Taken together, the results showed that intra-NAc injection of AIP induced significant antinociceptive effects in rats with mononeuropathy, indicating that CaMKII may play an important role in the transmission and/or modulation of nociceptive information in the NAc in rats with mononeuropathy.

  3. Opioid Receptor Antagonism in the Nucleus Accumbens Fails to Block the Expression of Sugar-Conditioned Flavor Preferences in Rats

    PubMed Central

    Bernal, Sonia Y.; Touzani, Khalid; Gerges, Meri; Abayev, Yana; Sclafani, Anthony; Bodnar, Richard J.

    2009-01-01

    In our prior studies, systemic administration of the opioid receptor antagonist naltrexone (NTX) did not block flavor preference conditioning by the sweet taste or post-oral actions of sugar despite reducing intake. Because opioid signaling in the nucleus accumbens (NAc) is implicated in food reward, this study determined if NTX administered into the NAc would block the expression of sugar-conditioned preferences. In Experiment 1, food-restricted rats with bilateral NAc shell or core cannulae were trained to drink a fructose (8%) + saccharin (0.2%) solution mixed with one flavor (CS+) and a less-preferred 0.2% saccharin solution mixed with another flavor (CS−) during one-bottle sessions. Two-bottle tests with the two flavors mixed in saccharin solutions occurred 10 min following total bilateral NAc shell or core doses of 0, 1, 25 and 50 μg of NTX. The rats preferred the CS+ over CS− following vehicle (80%) and all NTX doses in the shell and core. The CS+ preference was reduced to 64% and 72% by 50 μg NTX in the shell and core, although only the core effect was significant. In Experiment 2, food-restricted rats were trained to drink one flavored saccharin solution (CS+) paired with an intragastic (IG) glucose (8%) infusion and a second flavored saccharin solution (CS−) paired with an IG water infusion. In subsequent two-bottle tests, the rats displayed significant preferences for the CS+ (81-91%) that were unaltered by any NTX dose in the shell or core. CS+ intake, however, was reduced by NTX in the shell, but not the core. These data indicate that accumbal opioid antagonism slightly attenuated, but did not block the expression of sugar-conditioned flavor preferences. Therefore, while opioid drugs can have potent effects on sugar intake they appear less effective in altering sugar-conditioned flavor preferences. PMID:20006967

  4. Effects of ethanol exposure and withdrawal on dendritic morphology and spine density in the nucleus accumbens core and shell.

    PubMed

    Peterson, Veronica L; McCool, Brian A; Hamilton, Derek A

    2015-01-12

    Exposure to drugs of abuse can result in profound structural modifications on neurons in circuits involved in addiction that may contribute to drug dependence, withdrawal and related processes. Structural alterations on medium spiny neurons (MSNs) of the nucleus accumbens (NAc) have been observed following exposure to and withdrawal from a variety of drugs; however, relatively little is known about the effects of alcohol exposure and withdrawal on structural alterations of NAc MSNs. In the present study male rats were chronically exposed to vaporized ethanol for 10 days and underwent 1 or 7 days of withdrawal after which the brains were processed for Golgi-Cox staining and analysis of dendritic length, branching and spine density. MSNs of the NAc shell and core underwent different patterns of changes following ethanol exposure and withdrawal. At 1 day of withdrawal there were modest reductions in the dendritic length and branching of MSNs in both the core and the shell compared to control animals exposed only to air. At 7 days of withdrawal the length and branching of shell MSNs was reduced, whereas the length and branching of core MSNs were increased relative to the shell. The density of mature spines was increased in the core at 1 day of withdrawal, whereas the density of less mature spines was increased in both regions at 7 days of withdrawal. Collectively, these observations indicate that MSNs of the NAc core and shell undergo distinct patterns of structural modifications following ethanol exposure and withdrawal suggesting that modifications in dendritic structure in these regions may contribute differentially to ethanol withdrawal.

  5. Cocaine-induced locomotor sensitization in rats correlates with nucleus accumbens activity on manganese-enhanced MRI.

    PubMed

    Perrine, Shane A; Ghoddoussi, Farhad; Desai, Kirtan; Kohler, Robert J; Eapen, Ajay T; Lisieski, Michael J; Angoa-Perez, Mariana; Kuhn, Donald M; Bosse, Kelly E; Conti, Alana C; Bissig, David; Berkowitz, Bruce A

    2015-11-01

    A long-standing goal of substance abuse research has been to link drug-induced behavioral outcomes with the activity of specific brain regions to understand the neurobiology of addiction behaviors and to search for drug-able targets. Here, we tested the hypothesis that cocaine produces locomotor (behavioral) sensitization that correlates with increased calcium channel-mediated neuroactivity in brain regions linked with drug addiction, such as the nucleus accumbens (NAC), anterior striatum (AST) and hippocampus, as measured using manganese-enhanced MRI (MEMRI). Rats were treated with cocaine for 5 days, followed by a 2-day drug-free period. The following day, locomotor sensitization was quantified as a metric of cocaine-induced neuroplasticity in the presence of manganese. Immediately following behavioral testing, rats were examined for changes in calcium channel-mediated neuronal activity in the NAC, AST, hippocampus and temporalis muscle, which was associated with behavioral sensitization using MEMRI. Cocaine significantly increased locomotor activity and produced behavioral sensitization compared with saline treatment of control rats. A significant increase in MEMRI signal intensity was determined in the NAC, but not AST or hippocampus, of cocaine-treated rats compared with saline-treated control rats. Cocaine did not increase signal intensity in the temporalis muscle. Notably, in support of our hypothesis, behavior was significantly and positively correlated with MEMRI signal intensity in the NAC. As neuronal uptake of manganese is regulated by calcium channels, these results indicate that MEMRI is a powerful research tool to study neuronal activity in freely behaving animals and to guide new calcium channel-based therapies for the treatment of cocaine abuse and dependence.

  6. Motivation Deficit in ADHD is Associated with Dysfunction of the Dopamine Reward Pathway

    PubMed Central

    Volkow, Nora D.; Wang, Gene-Jack; Newcorn, Jeffrey H.; Kollins, Scott H.; Wigal, Tim L.; Telang, Frank; Fowler, Joanna S.; Goldstein, Rita Z.; Klein, Nelly; Logan, Jean; Wong, Christopher; Swanson, James M.

    2010-01-01

    ADHD is typically characterized as a disorder of inattention and hyperactivity/impulsivity but there is increasing evidence of deficits in motivation. Using PET we showed decreased fun