Science.gov

Sample records for accumbens olfactory tubercle

  1. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex

    PubMed Central

    Ikemoto, Satoshi

    2007-01-01

    Anatomical and functional refinements of the meso-limbic dopamine system of the rat are discussed. Present experiments suggest that dopaminergic neurons localized in the posteromedial ventral tegmental area (VTA) and central linear nucleus raphe selectively project to the ventromedial striatum (medial olfactory tubercle and medial nucleus accumbens shell), whereas the anteromedial VTA has few if any projections to the ventral striatum, and the lateral VTA largely projects to the ventrolateral striatum (accumbens core, lateral shell and lateral tubercle). These findings complement the recent behavioral findings that cocaine and amphetamine are more rewarding when administered into the ventromedial striatum than into the ventrolateral striatum. Drugs such as nicotine and opiates are more rewarding when administered into the posterior VTA or the central linear nucleus than into the anterior VTA. A review of the literature suggests that: (1) the midbrain has corresponding zones for the accumbens core and medial shell; (2) the striatal portion of the olfactory tubercle is a ventral extension of the nucleus accumbens shell; (3) a model of two dopamine projection systems from the ventral midbrain to the ventral striatum is useful for understanding reward function. The medial projection system is important in the regulation of arousal characterized by affect and drive, and plays a different role in goal-directed learning than the lateral projection system, as described in the variation-selection hypothesis of striatal functional organization. PMID:17574681

  2. Illustrated Review of the Ventral Striatum's Olfactory Tubercle.

    PubMed

    Xiong, Angeline; Wesson, Daniel W

    2016-09-01

    Modern neuroscience often relies upon artistic renderings to illustrate key aspects of anatomy. These renderings can be in 2 or even 3 dimensions. Three-dimensional renderings are especially helpful in conceptualizing highly complex aspects of neuroanatomy which otherwise are not visually apparent in 2 dimensions or even intact biological samples themselves. Here, we provide 3 dimensional renderings of the gross- and cellular-anatomy of the rodent olfactory tubercle. Based upon standing literature and detailed investigations into rat brain specimens, we created biologically inspired illustrations of the olfactory tubercle in 3 dimensions as well as its connectivity with olfactory bulb projection neurons, the piriform cortex association fiber system, and ventral pallidum medium spiny neurons. Together, we intend for these illustrations to serve as a resource to the neuroscience community in conceptualizing and discussing this highly complex and interconnected brain system with established roles in sensory processing and motivated behaviors. PMID:27340137

  3. The Neural Representation of Goal-Directed Actions and Outcomes in the Ventral Striatum's Olfactory Tubercle

    PubMed Central

    Gadziola, Marie A.

    2016-01-01

    The ventral striatum is critical for evaluating reward information and the initiation of goal-directed behaviors. The many cellular, afferent, and efferent similarities between the ventral striatum's nucleus accumbens and olfactory tubercle (OT) suggests the distributed involvement of neurons within the ventral striatopallidal complex in motivated behaviors. Although the nucleus accumbens has an established role in representing goal-directed actions and their outcomes, it is not known whether this function is localized within the nucleus accumbens or distributed also within the OT. Answering such a fundamental question will expand our understanding of the neural mechanisms underlying motivated behaviors. Here we address whether the OT encodes natural reinforcers and serves as a substrate for motivational information processing. In recordings from mice engaged in a novel water-motivated instrumental task, we report that OT neurons modulate their firing rate during initiation and progression of the instrumental licking behavior, with some activity being internally generated and preceding the first lick. We further found that as motivational drive decreases throughout a session, the activity of OT neurons is enhanced earlier relative to the behavioral action. Additionally, OT neurons discriminate the types and magnitudes of fluid reinforcers. Together, these data suggest that the processing of reward information and the orchestration of goal-directed behaviors is a global principle of the ventral striatum and have important implications for understanding the neural systems subserving addiction and mood disorders. SIGNIFICANCE STATEMENT Goal-directed behaviors are widespread among animals and underlie complex behaviors ranging from food intake, social behavior, and even pathological conditions, such as gambling and drug addiction. The ventral striatum is a neural system critical for evaluating reward information and the initiation of goal-directed behaviors. Here we

  4. Sharp wave-associated synchronized inputs from the piriform cortex activate olfactory tubercle neurons during slow-wave sleep

    PubMed Central

    Narikiyo, Kimiya; Manabe, Hiroyuki

    2013-01-01

    During slow-wave sleep, anterior piriform cortex neurons show highly synchronized discharges that accompany olfactory cortex sharp waves (OC-SPWs). The OC-SPW-related synchronized activity of anterior piriform cortex neurons travel down to the olfactory bulb and is thought to be involved in the reorganization of bulbar neuronal circuitry. However, influences of the OC-SPW-related activity on other regions of the central olfactory system are still unknown. Olfactory tubercle is an area of OC and part of ventral striatum that plays a key role in reward-directed motivational behaviors. In this study, we show that in freely behaving rats, olfactory tubercle receives OC-SPW-associated synchronized inputs during slow-wave sleep. Local field potentials in the olfactory tubercle showed SPW-like activities that were in synchrony with OC-SPWs. Single-unit recordings showed that a subpopulation of olfactory tubercle neurons discharged in synchrony with OC-SPWs. Furthermore, correlation analysis of spike activity of anterior piriform cortex and olfactory tubercle neurons revealed that the discharges of anterior piriform cortex neurons tended to precede those of olfactory tubercle neurons. Current source density analysis in urethane-anesthetized rats indicated that the current sink of the OC-SPW-associated input was located in layer III of the olfactory tubercle. These results indicate that OC-SPW-associated synchronized discharges of piriform cortex neurons travel to the deep layer of the olfactory tubercle and drive discharges of olfactory tubercle neurons. The entrainment of olfactory tubercle neurons in the OC-SPWs suggests that OC-SPWs coordinate reorganization of neuronal circuitry across wide areas of the central olfactory system including olfactory tubercle during slow-wave sleep. PMID:24108798

  5. Sniffing out the contributions of the olfactory tubercle to the sense of smell: hedonics, sensory integration, and more?

    PubMed Central

    Wesson, Daniel W.; Wilson, Donald A.

    2010-01-01

    Since its designation in 1896 as a putative olfactory structure, the olfactory tubercle has received little attention in terms of elucidating its role in the processing and perception of odors. Instead, research on the olfactory tubercle has mostly focused on its relationship with the reward system. Here we provide a comprehensive review of research on the olfactory tubercle – with an emphasis on the likely role of this region in olfactory processing and its contributions to perception. Further, we propose several testable hypotheses regarding the likely involvement of the olfactory tubercle in both basic (odor detection, discrimination, parallel processing of olfactory information) and higher-order (social odor processing, hedonics, multi-modal integration) functions. Together, the information within this review highlights an understudied yet potentially critical component in central odor processing. PMID:20800615

  6. Diversity of neural signals mediated by multiple, burst-firing mechanisms in rat olfactory tubercle neurons.

    PubMed

    Chiang, Elizabeth; Strowbridge, Ben W

    2007-11-01

    Olfactory information is processed by a diverse group of interconnected forebrain regions. Most efforts to define the cellular mechanisms involved in processing olfactory information have been focused on understanding the function of the olfactory bulb, the primary second-order olfactory region, and its principal target, the piriform cortex. However, the olfactory bulb also projects to other targets, including the rarely studied olfactory tubercle, a ventral brain region recently implicated in regulating cocaine-related reward behavior. We used whole cell patch-clamp recordings from rat tubercle slices to define the intrinsic properties of neurons in the dense and multiform cell layers. We find three common firing modes of tubercle neurons: regular-spiking, intermittent-discharging, and bursting. Regular-spiking neurons are typically spiny-dense-cell-layer cells with pyramidal-shaped, dendritic arborizations. Intermittently discharging and bursting neurons comprise the majority of the deeper multiform layer and share a common morphology: multipolar, sparsely spiny cells. Rather than generating all-or-none stereotyped discharges, as observed in many brain areas, bursting cells in the tubercle generate depolarizing plateau potentials that trigger graded but time-limited discharges. We find two distinct subclasses of bursting cells that respond similarly to step stimuli but differ in the role transmembrane Ca currents play in their intrinsic behavior. Calcium currents amplify depolarizing inputs and enhance excitability in regenerative bursting cells, whereas the primary action of Ca in nonregenerative bursting tubercle neurons appears to be to decrease excitability by triggering Ca-activated K currents. Nonregenerative bursting cells exhibit a prolonged refractory period after even short discharges suggesting that they may function to detect transient events. PMID:17855583

  7. Mapping of Learned Odor-Induced Motivated Behaviors in the Mouse Olfactory Tubercle.

    PubMed

    Murata, Koshi; Kanno, Michiko; Ieki, Nao; Mori, Kensaku; Yamaguchi, Masahiro

    2015-07-22

    An odor induces food-seeking behaviors when humans and animals learned to associate the odor with food, whereas the same odor elicits aversive behaviors following odor-danger association learning. It is poorly understood how central olfactory circuits transform the learned odor cue information into appropriate motivated behaviors. The olfactory tubercle (OT) is an intriguing area of the olfactory cortex in that it contains medium spiny neurons as principal neurons and constitutes a part of the ventral striatum. The OT is therefore a candidate area for participation in odor-induced motivated behaviors. Here we mapped c-Fos activation of medium spiny neurons in different domains of the mouse OT following exposure to learned odor cues. Mice were trained to associate odor cues to a sugar reward or foot shock punishment to induce odor-guided approach behaviors or aversive behaviors. Regardless of odorant types, the anteromedial domain of the OT was activated by learned odor cues that induced approach behaviors, whereas the lateral domain was activated by learned odor cues that induced aversive behaviors. In each domain, a larger number of dopamine receptor D1 type neurons were activated than D2 type neurons. These results indicate that specific domains of the OT represent odor-induced distinct motivated behaviors rather than odor stimuli, and raise the possibility that neuronal type-specific activation in individual domains of the OT plays crucial roles in mediating the appropriate learned odor-induced motivated behaviors. Significance statement: Although animals learn to associate odor cues with various motivated behaviors, the underlying circuit mechanisms are poorly understood. The olfactory tubercle (OT), a subarea of the olfactory cortex, also constitutes the ventral striatum. Here, we trained mice to associate odors with either reward or punishment and mapped odor-induced c-Fos activation in the OT. Regardless of odorant types, the anteromedial domain was

  8. FoxP2 and olfaction: divergence of FoxP2 expression in olfactory tubercle between different feeding habit bats.

    PubMed

    Chen, Qi; Wang, Lina; Jones, G; Metzner, W; Xuan, F J; Yin, Jiangxia; Sun, Y

    2013-12-01

    FoxP2 is a member of the winged helix/forkhead class of transcription factors. Despite FoxP2 is found to have particular relevance to speech and language, the role of this gene is broader and not yet fully elucidated. In this study, we investigated the expression of FoxP2 in the brains of bats with different feeding habits (two frugivorous species and three insectivorous species). We found FoxP2 expression in the olfactory tubercle of frugivorous species is significantly higher than that in insectivorous species. Difference of FoxP2 expression was not observed within each of the frugivorous or insectivorous group. The diverse expression patterns in olfactory tubercle between two kinds of bats indicate FoxP2 has a close relation with olfactory tubercle associated functions, suggesting its important role in sensory integration within the olfactory tubercle and such a discrepancy of FoxP2 expression in olfactory tubercle may take responsibility for the different feeding behaviors of frugivorous and insectivorous bats. PMID:24275589

  9. Application of fast-scan cyclic voltammetry for the in vivo characterization of optically evoked dopamine in the olfactory tubercle of the rat brain.

    PubMed

    Wakabayashi, Ken T; Bruno, Michael J; Bass, Caroline E; Park, Jinwoo

    2016-06-21

    The olfactory tubercle (OT), as a component of the ventral striatum, serves as an important multisensory integration center for reward-related processes in the brain. Recent studies show that dense dopaminergic innervation from the ventral tegmental area (VTA) into the OT may play an outsized role in disorders such as psychostimulant addiction and disorders of motivation, increasing recent scientific interest in this brain region. However, due to its anatomical inaccessibility, relative small size, and proximity to other dopamine-rich structures, neurochemical assessments using conventional methods cannot be readily employed. Here, we investigated dopamine (DA) regulation in the OT of urethane-anesthetized rats using in vivo fast-scan voltammetry (FSCV) coupled with carbon-fiber microelectrodes, following optogenetic stimulation of the VTA. The results were compared with DA regulation in the nucleus accumbens (NAc), a structure located adjacent to the OT and which also receives dense DA innervation from the VTA. FSCV coupled with optically evoked release allowed us to investigate the spatial distribution of DA in the OT and characterize OT DA dynamics (release and clearance) with subsecond temporal and micrometer spatial resolution for the first time. In this study, we demonstrated that DA transporters play an important role in regulating DA in the OT. However, the control of extracellular DA by uptake in the OT was less than in the NAc. The difference in DA transmission in the terminal fields of the OT and NAc may be involved in region-specific responses to drugs of abuse and contrasting roles in mediating reward-related behavior. PMID:27063845

  10. Role of 5-HT3 receptors in basal and K(+)-evoked dopamine release from rat olfactory tubercle and striatal slices.

    PubMed Central

    Zazpe, A; Artaiz, I; Del Río, J

    1994-01-01

    1. The present study was aimed at examining the role of 5-HT3 receptors in basal and depolarization-evoked dopamine release from rat olfactory tubercle and striatal slices. [3H]-dopamine ([3H]-DA) release was measured in both brain regions and endogenous dopamine release from striatal slices was also studied. 2. The selective 5-HT3 receptor agonist 2-methyl-5-HT (0.5-10 microM) produced a concentration-dependent increase in [3H]-DA efflux evoked by K+ (20 mM) from slices of rat olfactory tubercle. 1-Phenylbiguanide (PBG) and 5-HT also increased K(+)-evoked [3H]-DA efflux. 3. 5-HT (1-100 microM) increased in a concentration-dependent manner basal [3H]-DA release from olfactory tubercle and striatal slices as well as endogenous DA release from striatal slices. The selective 5-HT3 receptor agonists 2-methyl-5-HT and 1-phenylbiguanide were weaker releasing agents. In all cases, the release was Ca2+ independent and tetrodotoxin insensitive. 4. 5-HT3 receptor antagonists such as ondansetron, granisetron and tropisetron (0.2 microM) significantly blocked the enhanced K(+)-evoked [3H]-DA efflux from rat olfactory tubercle slices induced by 2-methyl-5HT. A ten fold higher concentration of the 5-HT2 receptor antagonist ketanserin was ineffective. 5. Much higher concentrations, up to 50 microM, of the same 5-HT3 receptor antagonists did not block the increase in basal [3H]-DA release from striatal or olfactory tubercle slices induced by 5-HT or the release of endogenous DA induced by 5-HT from striatal slices.2+ off PMID:7858893

  11. DREADD-Induced Silencing of the Medial Olfactory Tubercle Disrupts the Preference of Female Mice for Opposite-Sex Chemosignals

    PubMed Central

    DiBenedictis, Brett T.; Olugbemi, Adaeze O.; Baum, Michael J.

    2015-01-01

    Abstract Attraction to opposite-sex pheromones during rodent courtship involves a pathway that includes inputs to the medial amygdala (Me) from the main and accessory olfactory bulbs, and projections from the Me to nuclei in the medial hypothalamus that control reproduction. However, the consideration of circuitry that attributes hedonic properties to opposite-sex odors has been lacking. The medial olfactory tubercle (mOT) has been implicated in the reinforcing effects of natural stimuli and drugs of abuse. We performed a tract-tracing study wherein estrous female mice that had received injections of the retrograde tracer, cholera toxin B, into the mOT were exposed to volatile odors from soiled bedding. Both the anterior Me and ventral tegmental area sent direct projections to the mOT, of which a significant subset was selectively activated (expressed Fos protein) by testes-intact male (but not female) volatile odors from soiled bedding. Next, the inhibitory DREADD (designer receptors exclusively activated by designer drugs) receptor hM4Di was bilaterally expressed in the mOT of female mice. Urinary preferences were then assessed after intraperitoneal injection of either saline or clozapine-N-oxide (CNO), which binds to the hM4Di receptor to hyperpolarize infected neurons. After receiving CNO, estrous females lost their preference for male over female urinary odors, whereas the ability to discriminate these odors remained intact. Male odor preference returned after vehicle treatment in counterbalanced tests. There were no deficits in locomotor activity or preference for food odors when subject mice received CNO injections prior to testing. The mOT appears to be a critical segment in the pheromone–reward pathway of female mice. PMID:26478911

  12. Circadian feeding entrains anticipatory metabolic activity in piriform cortex and olfactory tubercle, but not in suprachiasmatic nucleus.

    PubMed

    Olivo, Diana; Caba, Mario; Gonzalez-Lima, F; Vázquez, Araceli; Corona-Morales, Aleph

    2014-12-10

    Animals maintained under conditions of food-availability restricted to a specific period of the day show molecular and physiological circadian rhythms and increase their locomotor activity 2-3h prior to the next scheduled feeding, called food anticipatory activity (FAA). Although the anatomical substrates and underlying mechanisms of the food-entrainable oscillator are not well understood, experimental evidence indicates that it involves multiple structures and systems. Using rabbit pups entrained to circadian nursing as a natural model of food restriction, we hypothesized that the anterior piriform cortex (APCx) and the olfactory tubercle (OTu) are activated during nursing-associated FAA. Two groups of litters were entrained to one of two different nursing times. At postnatal day 7, when litters showed clear FAA, pups from each litter were euthanized at nursing time, or 1, 2, 4, 8, 12, 16 or 20h later. Neural metabolic activities of the APCx, OTu, olfactory bulb (OB) and suprachiasmatic nucleus (SCN) were assessed by cytochrome oxidase histochemistry. Additionally, two fasted groups were nurse-deprived for two cycles before being euthanized at postnatal day 9. In nursed pups, metabolic activity of APCx, OTu and OB increased during FAA and after feeding, independently of the geographical time. Metabolic activity in SCN was not affected by nursing schedule. Given that APCx and OTu are in a key network position to integrate temporal odor signals with body energetic state, brain arousal and reward mechanisms, we suggest that these structures could be an important part of the conditioned oscillatory mechanism that leads to food entrainment. PMID:25281805

  13. Influence of olfactory bulbectomy on maternal behavior and dopaminergic function in nucleus accumbens in mice.

    PubMed

    Sato, Atsushi; Nakagawasai, Osamu; Tan-No, Koichi; Onogi, Hiroshi; Niijima, Fukie; Tadano, Takeshi

    2010-12-20

    Olfactory bulbectomy (OBX) induces behavioral, physiological, and neurochemical alterations resembling clinical depression and is widely used as an animal model of depression. It has been reported that depression is a critical cause of child abuse and neglect and that maternal behavior involves dopaminergic neurons of the mesolimbic pathway. In a previous study we found that OBX mice show maternal behavior deficits which are improved by administration of apomorphine, a non-selective dopamine agonist. Therefore, in this study, we investigated the effect of l-3,4-dihydroxyphenylalanine (l-DOPA) on maternal behavior deficits to examine the influence of pre-synaptic dopaminergic function in OBX mice. Furthermore, we measured tyrosine hydroxylase (TH) levels using microphotometry and quantified dopamine D1- and D2-like receptors using autoradiography in the nucleus accumbens (NAc). As a result, 25mg/kg l-DOPA with 12.5mg/kg benserazide improved disrupted maternal behavior in OBX mice and there are no changes in TH levels or number of D1- and D2-like receptors between sham and OBX mothers. The behavioral data support the hypothesis that changed dopaminergic function may contribute to maternal behavior deficits in OBX mice. However, our findings concerning dopaminergic function suggest that the deficits in OBX mice are not simply due to changes in TH levels or dopamine receptor number in the NAc. PMID:20638419

  14. Olfactory maps, circuits and computations.

    PubMed

    Giessel, Andrew J; Datta, Sandeep Robert

    2014-02-01

    Sensory information in the visual, auditory and somatosensory systems is organized topographically, with key sensory features ordered in space across neural sheets. Despite the existence of a spatially stereotyped map of odor identity within the olfactory bulb, it is unclear whether the higher olfactory cortex uses topography to organize information about smells. Here, we review recent work on the anatomy, microcircuitry and neuromodulation of two higher-order olfactory areas: the piriform cortex and the olfactory tubercle. The piriform is an archicortical region with an extensive local associational network that constructs representations of odor identity. The olfactory tubercle is an extension of the ventral striatum that may use reward-based learning rules to encode odor valence. We argue that in contrast to brain circuits for other sensory modalities, both the piriform and the olfactory tubercle largely discard any topography present in the bulb and instead use distributive afferent connectivity, local learning rules and input from neuromodulatory centers to build behaviorally relevant representations of olfactory stimuli. PMID:24492088

  15. Control of within-binge cocaine-seeking by dopamine and glutamate in the core of nucleus accumbens

    PubMed Central

    Suto, Nobuyoshi; Ecke, Laurel E.; Wise, Roy A.

    2011-01-01

    Rationale Dopamine and glutamate are thought to interact in the ventral striatum and to play important roles there in the cocaine-seeking of cocaine-experienced animals. Objectives We sought to determine the relative roles of the two transmitters in the two major zones of the nucleus accumbens (NAS), the core and shell subregions. Methods We assessed the effects of dopamine and glutamate receptor blockade in the core and shell on intravenous cocaine self-administration in rats. Trained animals were allowed to self-administer cocaine for an initial hour, and then D1-type or D2-type dopamine receptor blockers or NMDA-type or AMPA-type glutamate receptor blockers were infused by reverse microdialysis into one of the two regions for an additional 3 h of testing. Results The D1-type antagonist SCH23390 and the D2-type antagonist raclopride each increased cocaine intake whereas the AMPA-type antagonist CNQX decreased responding when infused into the core. SCH23390 increased cocaine intake less strongly when infused into the shell, while raclopride and CNQX were each ineffective when infused into the shell. The NMDA-antagonist CPP failed to affect cocaine self-administration when infused into either site. Conclusions These findings implicate the core of NAS in the maintenance of established cocaine self-administration in trained animals, despite the fact that the reinforcement of responding in untrained animals appears to results from cocaine actions in the olfactory tubercle and medial shell and not the core of accumbens. PMID:19436996

  16. Systemic injection of kainic acid: Gliosis in olfactory and limbic brain regions quantified with ( sup 3 H)PK 11195 binding autoradiography

    SciTech Connect

    Altar, C.A.; Baudry, M. )

    1990-09-01

    Neurodegenerative diseases may result from excessive stimulation of excitatory amino acid receptors by endogenous ligands. Because neuronal degeneration is associated with glial proliferation and hypertrophy, the degenerative changes throughout rat brain following the systemic administration of kainic acid (12 mg/kg) were mapped with quantitative autoradiography of (3H)PK 11195. This radioligand binds to a mitochondrial benzodiazepine binding site (MBBS) on microglia and astrocytes. Analysis of eight horizontal and four coronal brain levels revealed up to 16-fold increases in (3H)PK 11195 binding from 1 to 5 weeks but not 1 day after kainate injection. Increases in (3H)PK 11195 binding were predominantly in ventral limbic brain regions and olfactory projections to neocortical areas, with the olfactory cortex greater than subiculum/CA1 greater than anterior olfactory nucleus, medial thalamic nucleus, and piriform cortex greater than cingulate cortex and rostral hippocampus greater than dentate gyrus, septum, and amygdala greater than entorhinal cortex and temporal cortex. Little or no enhancement of (3H)PK 11195 binding was observed in numerous regions including the caudate-putamen, substantia nigra, nucleus accumbens, olfactory tubercle, cerebellum, thalamic nuclei, choroid plexus, medulla, parietal or occipital cortex, or pons. A 2-fold greater extent of neurodegeneration was obtained in ventral portions of the olfactory bulb, entorhinal cortex, temporal cortex, and dentate gyrus compared with the dorsal portions of these structures. The pattern of increase in (3H)PK 11195 binding closely matched the patterns of neuronal degeneration reported following parenteral kainate injection. These findings strengthen the notion that quantitative autoradiography of (3H)PK 11195 is a valuable tool to quantify the extent of neuronal degeneration.

  17. Anthropological study of ear tubercles in a Spanish sample.

    PubMed

    Rubio, O; Galera, V; Alonso, M C

    2015-08-01

    The ear has been used since the 19th century as a valuable instrument in personal identification. Its special interest is due to the morphological complexity of the structures involved. The aim of the present investigation is to establish the morphological variability of the helix tubercles in a sample of the Spanish European population (303 individuals between 18 and 72 years old). The frequencies of appearance of each type of tubercle and its degree of expression, as well as the possible relationship with sex, age, and laterality, are determined. Three of the tubercles are relatively frequent in the sample: tubercle of the root of the superior helix (31.7%), tubercle of the anterior helix (27.6%), and the Darwin's tubercle (18.2%). The least frequent helix tubercles are those located on the superior helix (2.7%) and the inferior tubercles at the root of the helix (6%). For all sites, tubercles with the greatest degree of expression are the least frequent. No sexual dimorphism or age differences have been found except for the tubercle of the anterior helix. Overall, tubercles show good symmetry. A relation of dependency among some of the tubercles of the helix has been found. PMID:25916201

  18. The Mouse Olfactory Peduncle

    PubMed Central

    Brunjes, Peter C; Kay, Rachel B; Arrivillaga, J. P

    2012-01-01

    The olfactory peduncle, the region connecting the olfactory bulb with the basal forebrain, contains several neural areas that have received relatively little attention. The present work includes studies that provide an overview of the region in the mouse. An analysis of cell soma size in pars principalis (pP) of the anterior olfactory nucleus (AON) revealed considerable differences in tissue organization between mice and rats. An unbiased stereological study of neuron number in the cell-dense regions of pars externa (pE) and pP of the AON of 3, 12 and 24 month-old mice indicated that pE has about 16,500 cells in 0.043 mm3and pP about 58,300 cells in 0.307 mm3. Quantitative Golgi studies of pyramidal neurons in pP suggested that mouse neurons are similar though smaller to those of the rat. An immunohistochemical analysis demonstrated that all peduncular regions (pE, pP, the dorsal peduncular cortex, ventral tenia tecta, and anterior olfactory tubercle and piriform cortex) have cells that express either calbindin, calretinin, parvalbumin, somatostatin, vasoactive intestinal polypeptide, neuropeptide Y or cholecystokinin (antigens commonly co-expressed by subspecies of GABAergic neurons), though the relative numbers of each cell type differs between zones. Finally, an electron microscopic comparison of the organization of myelinated fibers in lateral olfactory tract in the anterior and posterior peduncle indicated that the region is less orderly in mice than in the rat. The results provide a caveat for investigators who generalize data between species as both similarities and differences between the laboratory mouse and rat were observed. PMID:21618219

  19. Stall Delay by Leading Edge Tubercles on Humpback Whale Flipper

    NASA Astrophysics Data System (ADS)

    Murray, Mark; Miklosovic, David; Fish, Frank; Howle, Laurens

    2003-11-01

    The effect of leading edge tubercles on the performance of idealized humpback whale flipper models is analyzed. We present the experimental results based on precision wind tunnel testing, comparing the data obtained on idealized model sets with and without leading edge tubercles. We have found a significant increase in the angle of attack required for stall on the flipper with tubercles and a smaller drag coefficient at these higher angles of attack.

  20. STUDIES ON THE VIRULENCE OF TUBERCLE BACILLI

    PubMed Central

    Bloch, Hubert; Noll, Hans

    1953-01-01

    Tubercle bacilli were grown in the presence of different concentrations of tween 80, ranging from 0.05 to 2.1 per cent. Equal numbers of viable bacteria from these cultures were compared in infection experiments in the mouse. The average survival time of the mice was used as a criterion for the virulence of the bacilli. High tween concentrations in the culture medium caused a reduction of the bacterial virulence. The reduction was slight in bacterial suspensions from cultures with tween 80 ranging from 0.05 to 1.0 per cent, but considerable in cultures with 2.1 per cent tween. Bacteria grown in the presence of 2.1 per cent tween gave rise to the same number of colonies, in vitro, as bacteria grown in ordinary media. Their oxygen uptake was increased as compared with that of bacilli grown in media containing less tween. Virulent bacteria grown in the presence of high amounts of tween 80 decolorized methylene blue in a test in which organisms from the same virulent strain but cultured without tween, or with only small proportions of the detergent in the medium, did not reduce the dye. A positive methylene blue test is typical of non-virulent tubercle bacilli and of saprophytic mycobacteria. Essentially the same changes occurred when virulent tubercle bacilli were grown in the presence of 0.5 µg./ml. of para-formacetanilide thiosemicarbazone (TBI). This small amount of the substance was not sufficient to prevent the growth of bacteria, or to reduce the number of viable cells in a culture, but it reduced the virulence of the bacteria considerably and rendered them capable of decolorizing methylene blue. Cord factor, a lipid constituent of virulent bacteria which is toxic for mice, was shown to be present in filtrates from cultures of virulent bacteria when the media contained 2 per cent tween 80, but no such material could be recovered from culture filtrates containing the usual 0.05 per cent tween. On the other hand, no toxic material could be extracted from bacteria

  1. Tibial Tubercle Osteotomy for Anterior Knee Pain

    PubMed Central

    Bonasia, Davide; Rosso, Federica; Cottino, Umberto; Governale, Giorgio; Cherubini, Valeria; Dettoni, Federico; Bruzzone, Matteo; Rossi, Roberto

    2016-01-01

    Objectives: The aim of this study was to evaluate the mid-term radiological and clinical outcomes of tibial tubercle osteotomy in patients affected by anterior knee pain. In addition, prognostic factors correlated with the outcomes were evaluated. Methods: The patients treated with tibial tubercle osteotomy (anteromedialization) for anterior knee pain between 2002 and 2014 were included. Exclusion criteria: 1) previous knee surgeries; 2) different procedures to treat anterior knee pain; 3) history of patellar dislocation, 4) Rheumatic conditions. Different variables were collected, as shown in. The patients were prospectively evaluated using the WOMAC short form and Kujala scores. An objective evaluation was performed looking for different potential risk factors and using part of the International Knee Documentation Committee (IKDC) score. Radiological evaluation was performed, including the congruence angle, the grade of osteoarthritis (Kellegren-Lawrence) and the patellar tilt angle. Three main outcomes were identified. The multiple logistic regression was used to analyze the correlation between the variables and a worse outcome. Results: 72 cases were included in the study (9 bilateral). 72.2% of the cases were female, and the average age was 42,2 years (SD15,9). The average BMI was 24.4 kg/m2 (SD5,2). In 70.8% of patients a lateral release was associated to the tibial tubercle osteotomy. 77.8% of patients were evaluated clinically, the remaining, who were unable to come for the visits, were interviewed and the subjective scores were administered by phone. The average follow-up was 68.4 months (SD35.5).In 62.5% of cases a valgus lower limb alignment was detected, with 25% and 39.3% of patients having respectively an increased femoral antiversion and foot pronation. Post-operatively there was a statistical significant improvement in all the scores. No differences in the pre-operative and post-operative congruence angle or patellar tilt were detected (p>0.05). All

  2. The effect of leading edge tubercles on dynamic stall

    NASA Astrophysics Data System (ADS)

    Hrynuk, John

    The effect of the leading edge tubercles of humpback whales has been heavily studied for their static benefits. These studies have shown that tubercles inhibit flow separation, limit spanwise flow, and extend the operating angle of a wing beyond the static stall point while maintaining lift, all while having a comparatively low negative impact on drag. The current study extends the prior work to investigating the effect of tubercles on dynamic stall, a fundamental flow phenomenon that occurs when wings undergo dynamic pitching motions. Flow fields around the wing models tested were studied using Laser Induced Fluorescence (LIF) and Molecular Tagging Velocimetry (MTV).Resulting velocity fields show that the dynamics of the formation and separation of the leading edge vortex were fundamentally different between the straight wing and the tubercled wing. Tracking of the Dynamic Stall Vortex (DSV) and Shear Layer Vortices (SLVs), which may have a significant impact on the overall flow behavior, was done along with calculations of vortex circulation. Proximity to the wing surface and total circulation were used to evaluate potential dynamic lift increases provided by the tubercles. The effects of pitch rate on the formation process and benefits of the tubercles were also studied and were generally consistent with prior dynamic stall studies. However, tubercles were shown to affect the SLV formation and the circulation differently at higher pitch rates.

  3. Effect of Leading Edge Tubercles on Swept Humpback Whale Flipper

    NASA Astrophysics Data System (ADS)

    Murray, Mark; Miklosovic, David; Fish, Frank; Howle, Laurens

    2004-11-01

    The effect of leading edge tubercles on the performance of idealized humpback whale flipper models at sweep angles of 15 and 30 degrees is analyzed. We present the experimental results based on precision wind tunnel testing, comparing the data obtained on idealized model sets with and without leading edge tubercles. We have found a significant difference in the lift and drag coefficients over a large range of angle of attack.

  4. Anatomical specializations for enhanced olfactory sensitivity in kiwi, Apteryx mantelli.

    PubMed

    Corfield, Jeremy R; Eisthen, Heather L; Iwaniuk, Andrew N; Parsons, Stuart

    2014-01-01

    The ability to function in a nocturnal and ground-dwelling niche requires a unique set of sensory specializations. The New Zealand kiwi has shifted away from vision, instead relying on auditory and tactile stimuli to function in its environment and locate prey. Behavioral evidence suggests that kiwi also rely on their sense of smell, using olfactory cues in foraging and possibly also in communication and social interactions. Anatomical studies appear to support these observations: the olfactory bulbs and tubercles have been suggested to be large in the kiwi relative to other birds, although the extent of this enlargement is poorly understood. In this study, we examine the size of the olfactory bulbs in kiwi and compare them with 55 other bird species, including emus, ostriches, rheas, tinamous, and 2 extinct species of moa (Dinornithiformes). We also examine the cytoarchitecture of the olfactory bulbs and olfactory epithelium to determine if any neural specializations beyond size are present that would increase olfactory acuity. Kiwi were a clear outlier in our analysis, with olfactory bulbs that are proportionately larger than those of any other bird in this study. Emus, close relatives of the kiwi, also had a relative enlargement of the olfactory bulbs, possibly supporting a phylogenetic link to well-developed olfaction. The olfactory bulbs in kiwi are almost in direct contact with the olfactory epithelium, which is indeed well developed and complex, with olfactory receptor cells occupying a large percentage of the epithelium. The anatomy of the kiwi olfactory system supports an enhancement for olfactory sensitivities, which is undoubtedly associated with their unique nocturnal niche. PMID:25376305

  5. Smooth Tubercle Bacilli: Neglected Opportunistic Tropical Pathogens

    PubMed Central

    Aboubaker Osman, Djaltou; Bouzid, Feriel; Canaan, Stéphane; Drancourt, Michel

    2016-01-01

    Smooth tubercle bacilli (STB) including “Mycobacterium canettii” are members of the Mycobacterium tuberculosis complex (MTBC), which cause non-contagious tuberculosis in human. This group comprises <100 isolates characterized by smooth colonies and cordless organisms. Most STB isolates have been obtained from patients exposed to the Republic of Djibouti but seven isolates, including the three seminal ones obtained by Georges Canetti between 1968 and 1970, were recovered from patients in France, Madagascar, Sub-Sahara East Africa, and French Polynesia. STB form a genetically heterogeneous group of MTBC organisms with large 4.48 ± 0.05 Mb genomes, which may link Mycobacterium kansasii to MTBC organisms. Lack of inter-human transmission suggested a yet unknown environmental reservoir. Clinical data indicate a respiratory tract route of contamination and the digestive tract as an alternative route of contamination. Further epidemiological and clinical studies are warranted to elucidate areas of uncertainty regarding these unusual mycobacteria and the tuberculosis they cause. PMID:26793699

  6. Effects of leading-edge tubercles on wing flutter speeds.

    PubMed

    Ng, B F; New, T H; Palacios, R

    2016-06-01

    The dynamic aeroelastic effects on wings modified with bio-inspired leading-edge (LE) tubercles are examined in this study. We adopt a state-space aeroelastic model via the coupling of unsteady vortex-lattice method and a composite beam to evaluate stability margins as a result of LE tubercles on a generic wing. The unsteady aerodynamics and spanwise mass variations due to LE tubercles have counteracting effects on stability margins with the former having dominant influence. When coupled, flutter speed is observed to be 5% higher, and this is accompanied by close to 6% decrease in reduced frequencies as an indication of lower structural stiffness requirements for wings with LE tubercles. Both tubercle amplitude and wavelength have similar influences over the change in flutter speeds, and such modifications to the LE would have minimal effect on stability margins when concentrated inboard of the wing. Lastly, when used in sweptback wings, LE tubercles are observed to have smaller impacts on stability margins as the sweep angle is increased. PMID:27070824

  7. Spontaneous fracture of the mandibular genial tubercles. A case report.

    PubMed

    Gallego, Lorena; Junquera, Luis; Villarreal, Pedro; de Vicente, Juan Carlos

    2007-12-01

    Fracture of the mandibular genial tubercles is an uncommon pathology affecting edentulous patients with severe maxillary atrophy. Usually occurs spontaneously which complicates the diagnosis. Their importance lies in the functional alterations, which occur as a consequence of the disinsertion of the genihyoid and genioglossus muscles. The treatment of fracture of the genial tubercles is controversial, including no surgical intervention, excision of the avulsed bone fragments, and muscular repositioning. There have been only 11 cases reported in the literature of this fracture, most of them spontaneous. We present a difficult diagnosis situation of spontaneous fracture of the genial tubercles in an 86-year-old edentulous female with a painful sublingual and submental hematoma and anterior cervical echimosis. Computerized Tomography should be made to confirm the diagnosis. Surgical treatment was not necessary, and follow-up at 6 months revealed complete symptomatic recovery, and full return of function. PMID:18059247

  8. Development of the olfactory system in a wallaby (Macropus eugenii).

    PubMed

    Ashwell, K W S; Marotte, L R; Cheng, Gang

    2008-01-01

    We used carbocyanine dye tracing techniques in conjunction with hematoxylin and eosin staining, immunohistochemistry for GAP-43, and tritiated thymidine autoradiography to examine the development of the olfactory pathways in early pouch young tammar wallabies (Macropus eugenii). The overarching aim was to test the hypothesis that the olfactory system of newborn tammars is sufficiently mature at birth to contribute to the guidance of the pouch young to the nipple. Although GAP-43 immunoreactive fibers emerge from the olfactory epithelium and enter the olfactory bulb at birth, all other components of the olfactory pathway in newborn tammars are very immature at birth, postnatal day (P0). In particular, maturation of the vomeronasal organ and its projections to the accessory olfactory bulb appears to be delayed until P5 and the olfactory bulb is poorly differentiated until P12, with glomerular formation delayed until P25. The lateral olfactory tract is also very immature at birth with pioneer axons having penetrated only the most rostral portion of the piriform lobe. Interestingly, there were some early (P0) projections from the olfactory epithelium to the medial septal region and lamina terminalis (by the terminal nerve) and to olfactory tubercle and basal forebrain. The former of these is presumably serving the transfer of LHRH(+) neurons to the forebrain, as seen in eutherians, but neither of these very early pathways is sufficiently robust or connected to the more caudal neuraxis to play a role in nipple finding. Tritiated thymidine autoradiography confirmed that most piriform cortex pyramidal neurons are generated in the first week of life and are unlikely to be able to contribute to circuitry guiding the climb to the pouch. Our findings lead us to reject the hypothesis that olfactory projections contribute to guidance of the newborn tammar to the pouch and nipple. It appears far more likely that the trigeminal pathways play a significant role in this behavior

  9. Computational Modeling and Simulation of Genital Tubercle Development

    EPA Science Inventory

    Hypospadias is a developmental defect of urethral tube closure that has a complex etiology. Here, we describe a multicellular agent-based model of genital tubercle development that simulates urethrogenesis from the urethral plate stage to urethral tube closure in differentiating ...

  10. Ascites produced in rats without tubercle bacilli or tumor cells.

    PubMed

    Levine, S; Saltzman, A

    1999-01-01

    Intraperitoneal injection of rats with two doses of pertussis vaccine produces a small amount of ascitic fluid. Much larger amounts of fluid are produced when two spaced injections of the vaccine are preceded by a small amount of liquid petrolatum. A similar result is obtained by a single injection of pertussis vaccine emulsified in liquid petrolatum and Arlacel A. Ascites produced without tubercle bacilli or tumor cells may increase the use of rats for antibody production. PMID:10574628

  11. Adenovirus-mediated WGA gene delivery for transsynaptic labeling of mouse olfactory pathways.

    PubMed

    Kinoshita, Nanako; Mizuno, Takeo; Yoshihara, Yoshihiro

    2002-03-01

    Detailed knowledge of neuronal connectivity patterns is indispensable for studies of various aspects of brain functions. We previously established a genetic strategy for visualization of multisynaptic neural pathways by expressing wheat germ agglutinin (WGA) transgene under the control of neuron type-specific promoter elements in transgenic mice and Drosophila. In this paper, we have developed a WGA-expressing recombinant adenoviral vector system and applied it for analysis of the olfactory system. When the WGA-expressing adenovirus was infused into a mouse nostril, various types of cells throughout the olfactory epithelium were infected and expressed WGA protein robustly. WGA transgene products in the olfactory sensory neurons were anterogradely transported along their axons to the olfactory bulb and transsynaptically transferred in glomeruli to dendrites of the second-order neurons, mitral and tufted cells. WGA protein was further conveyed via the lateral olfactory tract to the olfactory cortical areas including the anterior olfactory nucleus, olfactory tubercle, piriform cortex and lateral entorhinal cortex. In addition, transsynaptic retrograde labeling was observed in cholinergic neurons in the horizontal limb of diagonal band, serotonergic neurons in the median raphe nucleus, and noradrenergic neurons in the locus coeruleus, all of which project centrifugal fibers to the olfactory bulb. Thus, the WGA-expressing adenovirus is a useful and powerful tool for tracing neural pathways and could be used in animals that are not amenable to the transgenic technology. PMID:11923184

  12. Olfactory neuroblastoma

    SciTech Connect

    O'Connor, T.A.; McLean, P.; Juillard, G.J.; Parker, R.G.

    1989-06-15

    Fifteen patients with olfactory neuroblastoma were treated during the 17-year period of 1969 to 1986. Data was analyzed with respect to age at presentation, sex, presenting signs and symptoms, stage, and results of treatment. Age ranged from 4 to 67 years with the median age being 27 years. Median follow-up was 8 years. Local control was achieved in nine of nine patients or 100% with successful surgical resection, i.e., minimal residual disease, followed by postoperative radiation therapy (45 to 65 Gy) was employed. There were no distant failures when the primary site was controlled. Regional lymph node metastases were infrequent: only 13% (two of 15 patients) presented with positive nodes. Three of four patients treated initially with surgery alone had a local recurrence, two of which were successfully salvaged by combined therapy. There were four patients treated with radiation therapy alone: three had persistent disease after radiation therapy, and one patient was controlled with 65 Gy. Olfactory neuroblastoma has a propensity to recur locally when treated with surgery alone. The authors' experience suggests excellent local control can be achieved with surgery immediately followed by radiation therapy. Thus the authors recommend planned combined treatment for all resectable lesions.

  13. Combined Tibial Tubercle Avulsion Fracture and Patellar Avulsion Fracture: An Unusual Variant in an Adolescent Patient.

    PubMed

    Stepanovich, Matthew T; Slakey, Joseph B

    2016-01-01

    Traumatic extensor dysfunction of the knee in children is a rare injury, with the majority resulting from tibial tubercle avulsion fracture or patellar sleeve fracture. We report a rare case of combined patellar avulsion fracture and tibial tubercle fracture. With open anatomic reduction, both injuries were successfully treated. While many variations of tibial tubercle fracture have been reported, the authors believe this to be the first report in the English-language literature of this particular combined injury to the knee extensor mechanism in an adolescent. Advanced imaging with computed tomography provided vital information to aid with operative planning, especially since the majority of the unossified tubercle was not seen on plain radiographs, and all fracture fragments were originally believed to be from the tibial tubercle. Computed tomography distinguished the patellar fracture from the tibial tubercle fragments, verifying preoperatively the complexity of the injury. PMID:26761925

  14. The Culture of Tubercle Bacilli from Laryngeal Swabs

    PubMed Central

    Nassau, E.

    1941-01-01

    In a considerable proportion of cases of pulmonary tuberculosis there is no spontaneous expectoration, especially in female patients and patients under collapse treatment. A simple and efficient method is described to obtain suitable material for bacteriological examination in these cases. A laryngeal swab, made up from a piece of wire with cotton-wool wrapped round its end, is passed down the larynx and the patient asked to cough. Two swabs are taken from each patient. The swabs are passed through sterile test tubes containing 10% sulphuric acid and 2% sodium hydroxide solutions for five minutes in each and 2 Petragnani media inoculated with each swab. The cultures are examined after five days for contamination, and after twenty-eight days for macroscopical colonies of tubercle bacilli. The results obtained in two groups of cases of 166 and 107 patients were: 37.95% and 54.20% positive cultures respectively. The highest positive figures were obtained in female patients. Thus tubercle bacilli were demonstrated in a considerable proportion of cases previously regarded as sputum-negative or having no sputum. Apart from diagnosis the method gives valuable help in judging the efficiency of treatment. The finding of bacilli in early infiltrative lesions is of considerable practical as well as theoretical importance. ImagesFig. 1 PMID:19992349

  15. Computational modeling and simulation of genital tubercle development.

    PubMed

    Leung, Maxwell C K; Hutson, M Shane; Seifert, Ashley W; Spencer, Richard M; Knudsen, Thomas B

    2016-09-01

    Hypospadias is a developmental defect of urethral tube closure that has a complex etiology involving genetic and environmental factors, including anti-androgenic and estrogenic disrupting chemicals; however, little is known about the morphoregulatory consequences of androgen/estrogen balance during genital tubercle (GT) development. Computer models that predictively model sexual dimorphism of the GT may provide a useful resource to translate chemical-target bipartite networks and their developmental consequences across the human-relevant chemical universe. Here, we describe a multicellular agent-based model of genital tubercle (GT) development that simulates urethrogenesis from the sexually-indifferent urethral plate stage to urethral tube closure. The prototype model, constructed in CompuCell3D, recapitulates key aspects of GT morphogenesis controlled by SHH, FGF10, and androgen pathways through modulation of stochastic cell behaviors, including differential adhesion, motility, proliferation, and apoptosis. Proper urethral tube closure in the model was shown to depend quantitatively on SHH- and FGF10-induced effects on mesenchymal proliferation and epithelial apoptosis-both ultimately linked to androgen signaling. In the absence of androgen, GT development was feminized and with partial androgen deficiency, the model resolved with incomplete urethral tube closure, thereby providing an in silico platform for probabilistic prediction of hypospadias risk across combinations of minor perturbations to the GT system at various stages of embryonic development. PMID:27180093

  16. Diagnosis and Surgical Management of Nonsyndromic Nine Supernumerary Teeth and Leong's Tubercle

    PubMed Central

    Cruz, Christiane V.; Soares, Andrea L.; Braga, David N.; Costa, Marcelo C.

    2016-01-01

    Nonsyndromic multiple supernumerary teeth (ST) and Leong's tubercle are a condition with a very low prevalence and a multidisciplinary approach is required to restore function and aesthetics. So, this case report aimed at presenting a rare case of nonsyndromic nine supernumerary teeth and Leong's tubercle in a pediatric patient, without any evident familial history, showing its diagnosis and surgical management. PMID:27066278

  17. Osgood Schlatter lesion: histologic features of slipped anterior tibial tubercle.

    PubMed

    Falciglia, F; Giordano, M; Aulisa, A G; Poggiaroni, A; Guzzanti, V

    2011-01-01

    No study reports the histological features of the various zone of the anterior tubercle of the tibia in the different stages of the Osgood-Schlatter (O-S) lesion. For this reason we carried on an histological study. Specimens were taken from 13 patients with O-S lesion prior to surgery. In 4 cases in the apophyseal stage lesions were present in an altered fibrocartilage anterior to the ossification centre. In 9 cases in the epiphyseal stage varying degrees of reparative tissues were observed in the bed of the fragment of the secondary ossification centre. In 3 of them a zone of lesion was observed within the fibrocartilage anterior to the ossification centre. These results suggest that the slippage of the patellar tendon insertion may be progressive and caused by pathological fibrocartilage. PMID:21669134

  18. Biomimetics and Tubercles on Flippers for Hydrodynamic Flow Control

    NASA Astrophysics Data System (ADS)

    Fish, Frank E.

    2011-11-01

    The biomimetic approach seeks to incorporate designs based on biological organisms into engineered technologies. Biomimetics can be used to engineer machines that emulate the performance of organisms, particularly in instances where the organism's performance exceeds current mechanical technology or provides new directions to solve existing problems. The ability to control the flow of water around the body dictates the performance of marine mammals in the aquatic environment. Morphological specializations of marine mammals afford mechanisms for passive flow control. Aside from the design of the body, which minimizes drag, the morphology of the appendages provide hydrodynamic advantages with respect to drag, lift, thrust, and stall. Of particular interest are the pectoral flippers of the humpback whale (Megaptera novaeangliae). These flippers act as wing-like structures to provide hydrodynamic lift for maneuvering. The use of any such wing-like structure in making small radius turns to enhance both agility and maneuverability is constrained by performance associated with stall. Delay of stall can be accomplished passively by modification of the flipper leading edge. The design of the flippers includes prominent leading edge bumps or tubercles. Such a design is exhibited by the leading edge tubercles on the flippers of humpback whales. These novel morphological structures induce a spanwise flow field of separated vortices alternating with regions of accelerated flow. The coupled flow regions maintain areas of attached flow and delay stall to high angles of attack. The morphological features of humpback whales for flow control can be utilized in the biomimetic design of engineered structures and commercial products for increased hydrodynamic performance. Nature retains a store of untouched knowledge, which would be beneficial in advancing technology.

  19. Tibial tubercle osteotomy in primary total knee arthroplasty: a safe procedure or not?

    PubMed

    Piedade, Sérgio Rocha; Pinaroli, Alban; Servien, Elvire; Neyret, Philippe

    2008-12-01

    The objective of this study was to investigate the influence of tibial tubercle osteotomy on postoperative outcome, intra- and postoperative complications, as well as postoperative clinical results and failures in primary total knee arthroplasty (TKA). In a continuous, consecutive series of 1474 primary TKA, we analysed 126 cases where a tibial tubercle osteotomy approach was performed and 1348 cases without tibial tubercle osteotomy. Before surgery, all patients underwent a systematic assessment that included a clinical examination, radiographs (stress hip-knee-ankle film [pangonogram], weight bearing, anteroposterior knee view, schuss view, profile and patellar axial view at 30 degrees, stress valgus and varus view) and International Knee Society scores. When analysing intraoperative complications, tibial plateau fissures or fractures and tibial tubercle fracture were considered as complications relating to the tibial tubercle osteotomy group (p<0.001, p=0.007). With a 2-year minimum follow-up, there was no statistical difference in the number of revisions carried out in the two study groups (p=0.084). However, postoperative tibial tubercle fracture and skin necrosis were significantly related to the osteotomy (p=0.001 and ptubercle osteotomy cannot be considered an entirely safe procedure in primary TKA as it is associated with local complications, particularly skin necrosis and fracture of the tibial tubercle. Therefore, tibial tubercle osteotomy should be performed only when necessary, i.e. in cases where there are difficulties gaining adequate surgical exposure, ligament balance and correct implant positioning. The procedure also demands considerable surgical experience to achieve a good outcome. PMID:18771928

  20. Nucleus accumbens stimulation in pathological obesity.

    PubMed

    Harat, Marek; Rudaś, Marcin; Zieliński, Piotr; Birska, Julita; Sokal, Paweł

    2016-01-01

    One of the potential treatment methods of obesity is deep brain stimulation (DBS) of nucleus accumbens. We describe the case of 19 years old woman with hypothalamic obesity. She weighted 151.4 kg before DBS and the non-surgical methods proved to be inefficient. She was treated with implantation of DBS electrode to nucleus accumbens bilaterally. Results were measured with body mass index and neuropsychological tests. Follow-up was 14 months. Fourteen months after surgery weight was 138 kg, BMI was 48.3. Neuropsychological test results were intact. The presented case supports the thesis of treatment of obesity with nucleus accumbens stimulation. PMID:27154450

  1. Peroneus longus tear and its relation to the peroneal tubercle: A review of the literature

    PubMed Central

    Palmanovich, Ezequiel; Laver, Lior; Brin, Yaron S.; Kotz, Evgeny; Hetsroni, Iftach; Mann, Gideon; Nyska, Meir

    2011-01-01

    Summary Tear of the peroneal tendon may occur in different anatomical sites. The most prevalent site is around the lateral malleolus. Tear of the peroneus longus at the level of the peroneal tubercle is unusual. Anatomically, the lateral surface of the calcaneous can be divided into thirds. The middle third includes the peroneal tubercle, which separates the peroneus longus tendon from the peroneus brevis. An anatomic variation of the peroneal tubercle may lead to chronic irritation of the peroneus longus tendon that could ultimately cause a longitudinal tear. We conducted this review aiming to clarify the anatomy, biomechanics of the tendon, and the clinical features of tear of the peroneus longus tendon on the lateral surface of the calcaneous due to an enlarged peroneal tubercle. In addition, we reviewed the diagnostic and treatment options of peroneal tendon tears at this site. PMID:23738264

  2. Dynamic risk control by human nucleus accumbens.

    PubMed

    Nachev, Parashkev; Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio; Strange, Bryan

    2015-12-01

    Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established. PMID:26428667

  3. SVZ-derived newly generated neurons populate several olfactory and limbic forebrain regions

    PubMed Central

    Shapiro, Lee A.; Ng, Kwan; Zhou, Qun-Yong; Ribak, Charles E.

    2009-01-01

    Neurogenesis persists in several regions of the adult mammalian brain. Although the hippocampus and olfactory bulb are most commonly studied in the context of adult neurogenesis, there is an increasing body of evidence in support of neurogenesis occurring outside of these two regions. The current study expands upon previous data by showing newborn neurons with a mature phenotype are located in several olfactory and limbic structures outside of the hippocampus and olfactory bulb, where we previously described DCX/BrdU immature neurons. Notably, newborn neurons with a mature neuronal phenotype are found in the olfactory tubercles, anterior olfactory nuclei, tenia tecta, islands of Calleja, amygdala and lateral entorhinal cortex. The appearance of newborn neurons with a mature phenotype in these regions suggests that these structures are destinations, and that newborn neurons are not simply passing through these structures. In light of the increasing body of evidence for neurogenesis in these, and other olfactory, limbic and striatal structures, we hypothesize that brain regions displaying adult neurogenesis are functionally linked. PMID:18849007

  4. Effects of leading edge tubercles on the flow over a humpback whale flipper

    NASA Astrophysics Data System (ADS)

    Kim, Heesu; Kim, Jooha; Choi, Haecheon

    2013-11-01

    In the present study, we conduct a laboratory experiment for the effect of tubercles on the hydrodynamic performance of a humpback whale flipper. The shape of the flipper used is the same as that of Miklosovic et al. (2004, 2007), and the Reynolds number considered is 100,000 based on the free-stream velocity and mean chord length. The lift and drag forces on the flipper with and without tubercles are measured by varying the angle of attack, and PIV measurements are conducted in several cross-flow planes at a few different angles of attack. As observed in previous studies, the stall angle is delayed and the maximum lift coefficient is increased. Without tubercles, the cross flow above the flipper does not show large-scale vortical motions except tip vortex. With tubercles, however, strong streamwise vortices having negative streamwise vorticity are observed along the tubercles, but the vortices with positive streamwise vorticity are either relatively weak or unobserved. This result is very different from those found in a two-dimensional wing with tubercles with which strong counter-rotating streamwise vortex pair were observed. Those vortical motions reattach the flow on the flipper and delay the separation. Supported by the NRF Programs (NRF-2011-0028032, NRF-2012K001368).

  5. Infection of tubercles of the parasitic weed Orobanche aegyptiaca by mycoherbicidal Fusarium species.

    PubMed

    Cohen, Barry A; Amsellem, Ziva; Lev-Yadun, Simcha; Gressel, Jonathan

    2002-11-01

    Progression of the infection by host-specific strains of Fusarium oxysporum and Fusarium arthrosporioides of Orobanche aegyptiaca (Egyptian broomrape) tubercles attached to tomato roots was tracked using light, confocal and electron microscopy. Mycelia transformed with the gene for green fluorescent protein were viewed using a confocal microscope. Fungal penetration was preceded by a rapid loss of starch, with approx. 10 % remaining at 9 h and no measurable starch at 24 h. Penetration into the Orobanche tubercles began by 12 h after inoculation. Hyphae penetrated the outer six cell layers by 24 h, reaching the centre of the tubercles by 48 h and infecting nearly all cells by 72 h. Most of the infected tubercles were dead by 96 h. Breakdown of cell walls and the disintegration of cytoplasm in and around the infected cells occurred between 48 and 96 h. Lignin-like material increased in tubercle cells of infected tissues over time, but did not appear to be effective in limiting fungal penetration or spread. Callose, suberin, constitutive toxins and phytoalexins were not detected in infected tubercles, suggesting that there are no obvious defence mechanisms to overcome. Both Fusarium spp. pathogenic on Orobanche produced fumonisin-like ceramide synthase inhibitors, while fusaric acid was produced only by F. oxysporum in liquid culture. The organisms do not have sufficient virulence for field use (based on glasshouse testing), suggesting that virulence should be transgenically enhanced or additional isolates sought. PMID:12466097

  6. Anatomical Localization of Lister's Tubercle and its Clinical and Surgical Importance.

    PubMed

    Ağır, Ismail; Aytekin, Mahmut Nedim; Küçükdurmaz, Fatih; Gökhan, Servan; Cavuş, Umut Yücel

    2014-01-01

    The dorsal tubercle of the radius, once called Lister's tubercle, is used as a landmark in wrist arthroscopy, wrist joint injections, and similar surgical and clinical procedures. However, there is no useful information in the reference anatomy books and literature. The aim of this study was to identify the anatomical localization of Lister's tubercle on the dorsum of radius in relation to the radial styloid process and the ulnar notch of radius and to demonstrate the clinical and surgical importance of these relationships. We studied 20 dried cadaver radius specimens. The distances from Lister's tubercle to the radial styloid process and to the ulnar notch were measured by using a digital micrometer caliber and the ratio of the two measures was calculated. The dorsal tubercle of the radius is variable in position and can be either closer to the radial styloid process or to the ulnar notch. The present study showed that in 11 of the radii the dorsal tubercle of the radius was nearer to the radial styloid process than the ulnar notch, while in 9 subjects it was nearer to the ulnar notch. This anatomical variation may be relevant for wrist injections, wrist artroscopy or wrist surgery. PMID:24843388

  7. Anatomical Localization of Lister’s Tubercle and its Clinical and Surgical Importance

    PubMed Central

    Ağır, İsmail; Aytekin, Mahmut Nedim; Küçükdurmaz, Fatih; Gökhan, Servan; Çavuş, Umut Yücel

    2014-01-01

    The dorsal tubercle of the radius, once called Lister’s tubercle, is used as a landmark in wrist arthroscopy, wrist joint injections, and similar surgical and clinical procedures. However, there is no useful information in the reference anatomy books and literature. The aim of this study was to identify the anatomical localization of Lister’s tubercle on the dorsum of radius in relation to the radial styloid process and the ulnar notch of radius and to demonstrate the clinical and surgical importance of these relationships. We studied 20 dried cadaver radius specimens. The distances from Lister’s tubercle to the radial styloid process and to the ulnar notch were measured by using a digital micrometer caliber and the ratio of the two measures was calculated. The dorsal tubercle of the radius is variable in position and can be either closer to the radial styloid process or to the ulnar notch. The present study showed that in 11 of the radii the dorsal tubercle of the radius was nearer to the radial styloid process than the ulnar notch, while in 9 subjects it was nearer to the ulnar notch. This anatomical variation may be relevant for wrist injections, wrist artroscopy or wrist surgery. PMID:24843388

  8. Modification of the wake behind a bat ear with and without tubercles

    NASA Astrophysics Data System (ADS)

    Petrin, Christopher; Elbing, Brian

    2015-11-01

    The Mexican Free-Tailed Bat (Tadarida brasiliensis) is a highly aerobatic bat, known to dive from altitudes of several thousand feet into their home caves, reaching estimated speeds of 27 m/s (Davis et al., Ecological Monographs, 32, 1962). A series of small tubercles have been observed on the leading edge of the bat's ear, which mimic the pattern of tubercles found on the fins of the humpback whale (Megaptera novaeangliae). The tubercles on the whale fins have been proven to delay stall on the fin and allow the whale to retain better control during dives. The goal of the current study is to assess whether the bat ear tubercles fulfill a similar purpose of improving flow control, particularly at high angles of attack. This was accomplished by acquiring PIV measurements of the bat ear wake with and without the tubercles. The velocity profiles were used to assess the drag and lift as a function of angle of attack. These results will be presented and the impact of the tubercles assessed.

  9. Music and the nucleus accumbens.

    PubMed

    Mavridis, Ioannis N

    2015-03-01

    Music is a universal feature of human societies over time, mainly because it allows expression and regulation of strong emotions, thus influencing moods and evoking pleasure. The nucleus accumbens (NA), the most important pleasure center of the human brain (dominates the reward system), is the 'king of neurosciences' and dopamine (DA) can be rightfully considered as its 'crown' due to the fundamental role that this neurotransmitter plays in the brain's reward system. Purpose of this article was to review the existing literature regarding the relation between music and the NA. Studies have shown that reward value for music can be coded by activity levels in the NA, whose functional connectivity with auditory and frontal areas increases as a function of increasing musical reward. Listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the NA. The functional connectivity between brain regions mediating reward, autonomic and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. Musical stimuli can significantly increase extracellular DA levels in the NA. NA DA and serotonin were found significantly higher in animals exposed to music. Finally, passive listening to unfamiliar although liked music showed activations in the NA. PMID:25102783

  10. Olfactory Perceptual Learning Requires Action of Noradrenaline in the Olfactory Bulb: Comparison with Olfactory Associative Learning

    ERIC Educational Resources Information Center

    Vinera, Jennifer; Kermen, Florence; Sacquet, Joëlle; Didier, Anne; Mandairon, Nathalie; Richard, Marion

    2015-01-01

    Noradrenaline contributes to olfactory-guided behaviors but its role in olfactory learning during adulthood is poorly documented. We investigated its implication in olfactory associative and perceptual learning using local infusion of mixed a1-ß adrenergic receptor antagonist (labetalol) in the adult mouse olfactory bulb. We reported that…

  11. Posttraumatic olfactory dysfunction.

    PubMed

    Coelho, Daniel H; Costanzo, Richard M

    2016-04-01

    Impairment of smell may occur following injury to any portion of the olfactory tract, from nasal cavity to brain. A thorough understanding of the anatomy and pathophysiology combined with comprehensively obtained history, physical exam, olfactory testing, and neuroimaging may help to identify the mechanism of dysfunction and suggest possible treatments. Although most olfactory deficits are neuronal mediated and therefore currently unable to be corrected, promising technology may provide novel treatment options for those most affected. Until that day, patient counseling with compensatory strategies and reassurance is essential for the maintenance of safety and QoL in this unique and challenging patient population. PMID:26441369

  12. Formation and Development of the Dynamic Stall Vortex on a Wing with Leading Edge Tubercles

    NASA Astrophysics Data System (ADS)

    Hrynuk, John; Bohl, Douglas

    2015-11-01

    Humpback whales are unique in that their flippers have leading edge ``bumps'' or tubercles. Past work on airfoils inspired by whale flippers has centered on the static aerodynamic characteristics of these airfoils. The current study uses Molecular Tagging Velocimetry (MTV) to investigate the effects of tubercles on dynamically pitching NACA 0012 airfoils. A baseline (i.e. straight leading edge) wing and one modified with leading edge tubercles are investigated. Tracking of the Dynamic Stall Vortex (DSV) is performed to quantitatively compare the DSV formation location, path, and convective velocity for tubercled and baseline wings. The results show that there is a spanwise variation in the initial formation location and motion of the DSV on the modified wing. Once formed, the DSV aligns into a more uniform spanwise structure. As the pitching motion progresses, the DSV on the modified wing convects away from the airfoil surface later and slower than is observed for the baseline airfoil. The results indicate that the tubercles may delay stall when compared to the baseline airfoil. This work was supported by NSF Grant # 0845882.

  13. Sequential avulsions of the tibial tubercle in an adolescent basketball player.

    PubMed

    Huang, Ying Chieh; Chao, Ying-Hao; Lien, Fang-Chieh

    2010-05-01

    Tibial tubercle avulsion is an uncommon fracture in physically active adolescents. Sequential avulsion of tibial tubercles is extremely rare. We reported a healthy, active 15-year-old boy who suffered from left tibial tubercle avulsion fracture during a basketball game. He received open reduction and internal fixation with two smooth Kirschner wires and a cannulated screw, with every effort to reduce the plate injury. Long-leg splint was used for protection followed by programmed rehabilitation. He recovered uneventfully and returned to his previous level of activity soon. Another avulsion fracture happened at the right tibial tubercle 3.5 months later when he was playing the basketball. From the encouragement of previous successful treatment, we provided him open reduction and fixation with two small-caliber screws. He recovered uneventfully and returned to his previous level of activity soon. No genu recurvatum or other deformity was happening in our case at the end of 2-year follow-up. No evidence of Osgood-Schlatter disease or osteogenesis imperfecta was found. Sequential avulsion fractures of tibial tubercles are rare. Good functional recovery can often be obtained like our case if we treat it well. To a physically active adolescent, we should never overstate the risk of sequential avulsion of the other leg to postpone the return to an active, functional life. PMID:20093955

  14. Robert Koch: Centenary of the Discovery of the Tubercle Bacillus, 1882

    PubMed Central

    Sakula, Alex

    1983-01-01

    This is an account of the life and work of Robert Koch (1843-1910), Nobel Laureate in Medicine and a founder of the science of bacteriology. In particular, Koch's researches into tuberculosis are described — the discovery of the tubercle bacillus, the controversy regarding the human and bovine types, the Koch phenomenon, and the introduction of tuberculin, which proved to be ineffective as a cure but became important as a diagnostic tool in the management of tuberculosis. By his achievements in this field, Koch may be considered to be the father of the scientific study of tuberculosis. On the occasion of the centenary of Koch's discovery of the tubercle bacillus in 1882, we pay tribute to this great German master of medicine. Robert Koch's discovery of the tubercle bacillus in 1882 was a major event in the history of medicine, a turning point in our understanding and conquest of that deadly disease which had plagued mankind for millenia. After centuries of speculation as to the possible infectious nature of tuberculosis, Koch proved conclusively that the cause of the disease was infection by a specific micro-organism which he isolated. In tuberculosis, both seed and soil play their part, but without the seed — the tubercle bacillus — there is no disease. On the occasion of the centenary of Koch's discovery of the tubercle bacillus, we pay tribute to the father of the modern scientific approach to the management of tuberculosis. Imagesp128-a PMID:17422248

  15. The tubercles on humpback whales' flippers: application of bio-inspired technology.

    PubMed

    Fish, Frank E; Weber, Paul W; Murray, Mark M; Howle, Laurens E

    2011-07-01

    The humpback whale (Megaptera novaeangliae) is exceptional among the large baleen whales in its ability to undertake aquabatic maneuvers to catch prey. Humpback whales utilize extremely mobile, wing-like flippers for banking and turning. Large rounded tubercles along the leading edge of the flipper are morphological structures that are unique in nature. The tubercles on the leading edge act as passive-flow control devices that improve performance and maneuverability of the flipper. Experimental analysis of finite wing models has demonstrated that the presence of tubercles produces a delay in the angle of attack until stall, thereby increasing maximum lift and decreasing drag. Possible fluid-dynamic mechanisms for improved performance include delay of stall through generation of a vortex and modification of the boundary layer, and increase in effective span by reduction of both spanwise flow and strength of the tip vortex. The tubercles provide a bio-inspired design that has commercial viability for wing-like structures. Control of passive flow has the advantages of eliminating complex, costly, high-maintenance, and heavy control mechanisms, while improving performance for lifting bodies in air and water. The tubercles on the leading edge can be applied to the design of watercraft, aircraft, ventilation fans, and windmills. PMID:21576119

  16. Incidence of Deep Venous Thrombosis After Tibial Tubercle Osteotomy

    PubMed Central

    Tanaka, Miho J.; Munch, Jacqueline L.; Slater, Alissa J.; Nguyen, Joseph T.; Shubin Stein, Beth E.

    2014-01-01

    Background: Tibial tubercle osteotomy (TTO) is performed in a predominantly young and often female population due to the prevalence of patellofemoral disorders in this group. While considered a procedure that falls within the realm of sports surgeries, the procedure can carry significant morbidity, including infection, fracture, and deep vein thrombosis (DVT). The incidence of postoperative DVT in this population has not been described in the literature, although it has been mentioned anecdotally, and current guidelines do not address the issue of DVT prophylaxis in postoperative TTO patients. Purpose: To describe the incidence of DVT after TTO and identify any predisposing factors. Study Design: Case series; Level of evidence, 4. Methods: Subjects who had undergone TTO by the senior author from 2002 to 2013 were identified, and a retrospective chart review was performed. Those who presented with symptomatic DVT confirmed with ultrasonography were reported. Demographic data, as well as potential risk factors such as body mass index, family history of bleeding/clotting disorders, duration of the nonweightbearing period, total tourniquet time, use of contraceptive medication, smoking status, and use of anticoagulants, were collected from the chart and analyzed for correlation with development of DVT. Results: A total of 156 patients were included in this study. Six patients were found to have developed symptomatic DVT during the first 6 weeks after surgery. The mean age at the time of surgery in the DVT group was 34.94 ± 6.57 years, compared with 26.26 ± 10.20 years in the non-DVT group (P = .04). Due to the small number of patients with positive findings, there was no statistically significant correlation between the development of DVT and factors such as nonweightbearing duration, tourniquet time, or the use of contraceptives. Conclusion: The incidence of postoperative DVT in arthroscopic and sports procedures has been thought to be low. This case series reported

  17. Regional differences in the severity of Lewy body pathology across the olfactory cortex.

    PubMed

    Silveira-Moriyama, Laura; Holton, Janice L; Kingsbury, Ann; Ayling, Hilary; Petrie, Aviva; Sterlacci, William; Poewe, Werner; Maier, Hans; Lees, Andrew J; Revesz, Tamas

    2009-04-01

    We studied alpha-synuclein pathology in the rhinencephalon of ten cases of Parkinson's disease (PD) and twelve neurologically normal controls, of which seven had incidental Lewy bodies in the substantia nigra at autopsy and five had no pathological evidence of neurological disease. In all PD and incidental Lewy bodies cases, alpha-synuclein pathology was found in all five subregions of the primary olfactory cortex that were sampled, and amongst them the pathology was significantly more severe in the temporal division of the piriform cortex than in the frontal division of the piriform cortex, olfactory tubercle or anterior portions of the entorhinal cortex. The orbitofrontal cortex, which is an area of projection from the primary olfactory cortex, was affected in some cases but overall the alpha-synuclein pathology was less severe in this area than in the primary olfactory cortex. Because different areas of the rhinencephalon are likely to play different roles in olfaction and our data indicate a differential involvement by alpha-synuclein deposition of structures implicated in smell, future prospective studies investigating the pathophysiological basis of hyposmia in PD should consider to examine the areas of primary olfactory cortex separately. PMID:19356597

  18. The role of the olfactory recess in olfactory airflow.

    PubMed

    Eiting, Thomas P; Smith, Timothy D; Perot, J Blair; Dumont, Elizabeth R

    2014-05-15

    The olfactory recess - a blind pocket at the back of the nasal airway - is thought to play an important role in mammalian olfaction by sequestering air outside of the main airstream, thus giving odorants time to re-circulate. Several studies have shown that species with large olfactory recesses tend to have a well-developed sense of smell. However, no study has investigated how the size of the olfactory recess relates to air circulation near the olfactory epithelium. Here we used a computer model of the nasal cavity from a bat (Carollia perspicillata) to test the hypothesis that a larger olfactory recess improves olfactory airflow. We predicted that during inhalation, models with an enlarged olfactory recess would have slower rates of flow through the olfactory region (i.e. the olfactory recess plus airspace around the olfactory epithelium), while during exhalation these models would have little to no flow through the olfactory recess. To test these predictions, we experimentally modified the size of the olfactory recess while holding the rest of the morphology constant. During inhalation, we found that an enlarged olfactory recess resulted in lower rates of flow in the olfactory region. Upon exhalation, air flowed through the olfactory recess at a lower rate in the model with an enlarged olfactory recess. Taken together, these results indicate that an enlarged olfactory recess improves olfactory airflow during both inhalation and exhalation. These findings add to our growing understanding of how the morphology of the nasal cavity may relate to function in this understudied region of the skull. PMID:24577441

  19. Ionotropic Crustacean Olfactory Receptors

    PubMed Central

    Corey, Elizabeth A.; Bobkov, Yuriy; Ukhanov, Kirill; Ache, Barry W.

    2013-01-01

    The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs), the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs), as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling. PMID:23573266

  20. Ionotropic crustacean olfactory receptors.

    PubMed

    Corey, Elizabeth A; Bobkov, Yuriy; Ukhanov, Kirill; Ache, Barry W

    2013-01-01

    The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs), the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs), as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling. PMID:23573266

  1. Effect of bacterial communities on the formation of cast iron corrosion tubercles in reclaimed water.

    PubMed

    Jin, Juntao; Wu, Guangxue; Guan, Yuntao

    2015-03-15

    To understand the role bacterial communities play in corrosion scale development, the morphological and physicochemical characteristics of corrosion scales in raw and disinfected reclaimed water were systematically investigated. Corrosion tubercles were found in raw reclaimed water while thin corrosion layers formed in disinfected reclaimed water. The corrosion tubercles, composed mainly of α-FeOOH, γ-FeOOH, and CaCO3, consisted of an top surface; a shell containing more magnetite than other layers; a core in association with stalks produced by bacteria; and a corroded layer. The thin corrosion layers also had layered structures. These had a smooth top, a dense middle, and a corroded layer. They mostly consisted of the same main components as the tubercles in raw reclaimed water, but with different proportions. The profiles of the dissolved oxygen (DO) concentration, redox potential, and pH in the tubercles were different to those in the corrosion layers, which demonstrated that these parameters changed with a shift in the microbial processes in the tubercles. The bacterial communities in the tubercles were found to be dominated by Proteobacteria (56.7%), Bacteroidetes (10.0%), and Nitrospira (6.9%). The abundance of sequences affiliated to iron-reducing bacteria (IRB, mainly Geothrix) and iron-oxidizing bacteria (mainly Aquabacterium) was relatively high. The layered characteristics of the corrosion layers was due to the blocking of DO transfer by the development of the scales themselves. Bacterial communities could at least promote the layering process and formation of corrosion tubercles. Possible mechanisms might include: (1) bacterial communities mediated the pH and redox potential in the tubercles (which helped to form shell-like and core layers), (2) the metabolism of IRB and magnetic bacteria (Magnetospirillum) might contribute to the presence of Fe3O4 in the shell-like layer, while IRB contributed to green rust in the core layer, and (3) the diversity of

  2. Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers

    NASA Astrophysics Data System (ADS)

    Miklosovic, D. S.; Murray, M. M.; Howle, L. E.; Fish, F. E.

    2004-05-01

    The humpback whale (Megaptera novaeangliae) is exceptional among the baleen whales in its ability to undertake acrobatic underwater maneuvers to catch prey. In order to execute these banking and turning maneuvers, humpback whales utilize extremely mobile flippers. The humpback whale flipper is unique because of the presence of large protuberances or tubercles located on the leading edge which gives this surface a scalloped appearance. We show, through wind tunnel measurements, that the addition of leading-edge tubercles to a scale model of an idealized humpback whale flipper delays the stall angle by approximately 40%, while increasing lift and decreasing drag.

  3. PSEUDARTHROSIS OF THE TUBERCLE OF THE SCAPHOID BONE IN IMMATURE SKELETON: CASE REPORT

    PubMed Central

    Gomes, Eduardo Amarai; Armanelli, Felipe; Saliba, Gustavo Augusto Matos

    2015-01-01

    The aim of this study was to present a case report on pseudarthrosis of the scaphoid tubercle, a pathological condition that affects the young and active population. This entity often develops as a result of failure to make an early diagnosis and a late start to treatment. This report describes the case of a 15-year-old patient with a history of a neglected fracture of the scaphoid tubercle that occurred one year earlier and evolved to pseudarthrosis of the tubercle, which is an unusual location for this type of complication. The diagnosis was made from the clinical history and radiographic examination. The treatment was undertaken in accordance with the Matti-Russe technique, by means of a volar route, thus avoiding injury to the scaphoid vascularization, with good clinical and radiographic evolution. Pseudarthrosis of the scaphoid tubercle is a rare condition resulting from a fracture in an unusual location in the scaphoid bone, and it is important because it affects the young and active population. The correct diagnosis is only rarely made by radiologists or surgeons at the time of the fracture, because of failure to recognize this entity. This mistake delays and causes difficulty in treatments for the complications resulting from this kind of fracture. Therefore, it is essential to include this condition in differential diagnoses in order to avoid mistaken conduct. The treatment chosen was shown to be an effective option in this specific case. PMID:27047860

  4. Experimental Investigation of Dynamic Stall on an Airfoil with Leading Edge Tubercles

    NASA Astrophysics Data System (ADS)

    Hrynuk, John; Bohl, Douglas

    2013-11-01

    Humpback whales are unique in that their flippers have leading edge ``bumps'' or tubercles. Past work on airfoils modeled after whale flippers has centered on the static aerodynamic characteristics of these airfoils. In the current work, NACA 0012 airfoils modified with leading edge tubercles are investigated to determine the effect of the tubercles on the dynamic characteristics, specifically on dynamic stall vortex formation, of the airfoils. Molecular Tagging Velocimetry (MTV) is used to measure the flow field around the modified airfoils at nondimensional pitch rates of Ω = 0.1, 0.2, and 0.4. The results show that the characteristics of the dynamics stall vortex are dependent on the location relative to the peak or valley of the leading edge bumps. These characteristics are also found to be different than those observed in dynamic stall on a smooth leading edge airfoil. In specific, the location of the dynamic stall vortex appears to form further aft on the airfoil for the tubercle case versus the smooth case. This work supported by NSF Grant # 0845882.

  5. Acetylcholine and Olfactory Perceptual Learning

    ERIC Educational Resources Information Center

    Wilson, Donald A.; Fletcher, Max L.; Sullivan, Regina M.

    2004-01-01

    Olfactory perceptual learning is a relatively long-term, learned increase in perceptual acuity, and has been described in both humans and animals. Data from recent electrophysiological studies have indicated that olfactory perceptual learning may be correlated with changes in odorant receptive fields of neurons in the olfactory bulb and piriform…

  6. Adult Olfactory Bulb Neurogenesis.

    PubMed

    Lledo, Pierre-Marie; Valley, Matt

    2016-01-01

    Most organisms use their olfactory system to detect and analyze chemical cues from the external world to guide essential behaviors. From worms to vertebrates, chemicals are detected by odorant receptors expressed by olfactory sensory neurons, which in vertebrates send an axon to the primary processing center called the olfactory bulb (OB). Within the OB, sensory neurons form excitatory synapses with projection neurons and with inhibitory interneurons. Thus, because of complex synaptic interactions, the output of a given projection neuron is determined not only by the sensory input, but also by the activity of local inhibitory interneurons that are regenerated throughout life in the process of adult neurogenesis. Herein, we discuss how it is optimized and why. PMID:27235474

  7. Olfactory dysfunction in Alzheimer's disease.

    PubMed

    Zou, Yong-Ming; Lu, Da; Liu, Li-Ping; Zhang, Hui-Hong; Zhou, Yu-Ying

    2016-01-01

    Alzheimer's disease (AD) is a common neurodegenerative disorder with the earliest clinical symptom of olfactory dysfunction, which is a potential clinical marker for AD severity and progression. However, many questions remain unanswered. This article reviews relevant research on olfactory dysfunction in AD and evaluates the predictive value of olfactory dysfunction for the epidemiological, pathophysiological, and clinical features of AD, as well as for the conversion of cognitive impairment to AD. We summarize problems of existing studies and provide a useful reference for further studies in AD olfactory dysfunction and for clinical applications of olfactory testing. PMID:27143888

  8. Connections of the corticomedial amygdala in the golden hamster. II. Efferents of the ''olfactory amygdala''

    SciTech Connect

    Kevetter, G.A.; Winans, S.S.

    1981-03-20

    The anterior cortical (C1) and posterolateral cortical (C2) nuclei of the amygdala are designated the ''olfactory amygdala'' because they each receive direct projections from the main olfactory bulb. The efferents of these nuclei were traced after stereotaxic placement of 1-5 muCi tritiated proline in the corticomedial amygdala of the male golden hamsters. Following survival times of 12, 24, or 48 hours, 20 micron frozen sections of the brains were processed for light microscopic autoradiography. Efferents from C2 terminate in layers II and III of the olfactory tubercle and in layer Ib of pars ventralis and pars medialis of the anterior olfactory nucleus. Fibers from this nucleus also project to layers I and II of the infralimbic cortex and to the molecular layer of the agranular insular cortex. More posteriorly, fibers from C2 terminate in layer I of the dorsolateral entorhinal cortex, and in the endopiriform nucleus. From C1, efferent fibers travel in the stria terminalis and terminate in the precommissural bed nucleus of the stria terminalis and in the mediobasal hypothalamus. Efferents from C1 also innervate the molecular layer of C2, the amygdalo-hippocampal area, and the adjacent piriform cortex. Neurons in both C1 and C2 project to the molecular layer of the medial amygdaloid nucleus and the posteromedial cortical nucleus of the amygdala, the plexiform layer of the ventral subiculum, and the molecular layer of the lateral entorhinal cortex.

  9. Olfactory sensitivity in mammalian species.

    PubMed

    Wackermannová, M; Pinc, L; Jebavý, L

    2016-07-18

    Olfaction enables most mammalian species to detect and discriminate vast numbers of chemical structures called odorants and pheromones. The perception of such chemical compounds is mediated via two major olfactory systems, the main olfactory system and the vomeronasal system, as well as minor systems, such as the septal organ and the Grueneberg ganglion. Distinct differences exist not only among species but also among individuals in terms of their olfactory sensitivity; however, little is known about the mechanisms that determine these differences. In research on the olfactory sensitivity of mammals, scientists thus depend in most cases on behavioral testing. In this article, we reviewed scientific studies performed on various mammalian species using different methodologies and target chemical substances. Human and non-human primates as well as rodents and dogs are the most frequently studied species. Olfactory threshold studies on other species do not exist with the exception of domestic pigs. Olfactory testing performed on seals, elephants, and bats focused more on discriminative abilities than on sensitivity. An overview of olfactory sensitivity studies as well as olfactory detection ability in most studied mammalian species is presented here, focusing on comparable olfactory detection thresholds. The basics of olfactory perception and olfactory sensitivity factors are also described. PMID:27070753

  10. Developmental Markers Expressed in Neocortical Layers Are Differentially Exhibited in Olfactory Cortex

    PubMed Central

    Brunjes, Peter C.; Osterberg, Stephen K.

    2015-01-01

    Neurons in the cerebral cortex stratify on the basis of their time of origin, axonal terminations and the molecular identities assigned during early development. Olfactory cortices share many feature with the neocortex, including clear lamination and similar cell types. The present study demonstrates that the markers differentially expressed in the projection neurons of the cerebral cortex are also found in olfactory areas. Three of the four regions examined (pars principalis of the anterior olfactory nucleus: AONpP, anterior and posterior piriform cortices: APC, PPC, and the olfactory tubercle) expressed transcription factors found in deep or superficial neurons in the developing neocortex, though large differences were found between areas. For example, while the AONpP, APC and PPC all broadly expressed the deep cortical marker CTIP2, NOR1 (NR4a3) levels were higher in AONpP and DAARP-32 was more prevalent in the APC and PPC. Similar findings were encountered for superficial cortical markers: all three regions broadly expressed CUX1, but CART was only observed in the APC and PPC. Furthermore, regional variations were observed even within single structures (e.g., NOR1 was found primarily in in the dorsal region of AONpP and CART expression was observed in a discrete band in the middle of layer 2 of both the APC and PPC). Experiments using the mitotic marker EDU verified that the olfactory cortices and neocortex share similar patterns of neuronal production: olfactory cells that express markers found in the deep neocortex are produced earlier than those that express superficial makers. Projection neurons were filled by retrograde tracers injected into the olfactory bulb to see if olfactory neurons with deep and superficial markers had different axonal targets. Unlike the cerebral cortex, no specificity was observed: neurons with each of the transcription factors examined were found to be labelled. Together the results indicate that olfactory cortices are complex

  11. Robert Koch: centenary of the discovery of the tubercle bacillus, 1882.

    PubMed Central

    Sakula, A

    1982-01-01

    This is an account of the life and work of Robert Koch (1843-1910), Nobel Laureate in Medicine and a founder of the science of bacteriology. In particular, Koch's researches into tuberculosis are described--the discovery of the tubercle bacillus, the controversy regarding the human and bovine types, the Koch phenomenon, and the introduction of tuberculin, which proved to be ineffective as a cure but became important as a diagnostic tool in the management of tuberculosis. By his achievements in this field, Koch may be considered to be the father of the scientific study of tuberculosis. On the occasion of the centenary of Koch's discovery of the tubercle bacillus in 1882, we pay tribute to this great German master of medicine. Images PMID:6180494

  12. Tibial tubercle osteotomy for exposure of the difficult total knee arthroplasty.

    PubMed

    Whiteside, L A; Ohl, M D

    1990-11-01

    Tibial tubercle osteotomy provides a safe and reliable means of extensile exposure of the knee. A technique was developed using a long osteoperiosteal segment including the tibial tubercle and upper tibial crest leaving lateral muscular attachments intact to this bone fragment. The bone fragment was reattached to its bed with two cobalt-chromium wires passed through the fragment and through the medial tibial cortex. The procedure was used in 71 knees to expose the joint for total knee arthroplasty, and the follow-up period was one to five years. All healed uneventfully, and no significant complications occurred. Mean postoperative flexion was 97 degrees. No extension lag occurred, and mean flexion contracture was 2.5 degrees. Excellent exposure can be achieved by means of a viable bone flap below the knee. Early rehabilitation and weight bearing can be done with low potential for complications. PMID:2225644

  13. Bilateral atraumatic tibial tubercle avulsion fractures: case report and review of the literature.

    PubMed

    Khoriati, Al-Achraf; Guo, Shigong; Thakrar, Raj; Deol, Rupinderbir S; Shah, Khalil Y

    2015-04-01

    An avulsion fracture of the tibial tubercle is an uncommon injury, comprising less than 1% of all physeal injuries. The occurrence of such injuries bilaterally is even rarer. We report a case of bilateral atraumatic tibial tubercle avulsion fractures and its presentation, mechanism of injury, surgical management, post-operative rehabilitation and implications for clinical practice. A 17-year-old healthy male presented to the emergency department with severe pain on the anterior aspect of both knees and was unable to walk, having been brought in by ambulance after hearing a crack whilst jogging. On examination, there was significant swelling of both knees which were held in extension. On both sides there was a prominent deformity on the region of the tibial tubercle with a palpable gap, although no open skin wound. He was unable to actively move either knee joint. No neurovascular deficit was present. Plain radiographs revealed bilateral tibial tubercle avulsion fractures. Gentle manipulation was performed in the emergency department to the fragments in order to remove the tension from the skin. The fragments were reduced and fixed surgically with 4mm cannulated screws in an anterior to posterior direction. Both limbs were placed in temporary casts in 20 degrees of flexion. Postoperatively, the patient was kept non-weight bearing for four weeks then placed into a range of motion brace and movement commenced. Full weight bearing was permitted at the one month stage and he was advised to avoid any sporting activity until the 8 week stage and contact sports until the 10 week stage. Full movement of both joints was regained and the patient returned to full sporting activity in the absence of symptoms. This case emphasises the need for a high degree of vigilance when faced with such a presentation and a low threshold for further investigation and surgical intervention. PMID:25638599

  14. p53 and TAp63 Promote Keratinocyte Proliferation and Differentiation in Breeding Tubercles of the Zebrafish

    PubMed Central

    Fischer, Boris; Metzger, Manuel; Richardson, Rebecca; Knyphausen, Philipp; Ramezani, Thomas; Franzen, Rainer; Schmelzer, Elmon; Bloch, Wilhelm; Carney, Thomas J.; Hammerschmidt, Matthias

    2014-01-01

    p63 is a multi-isoform member of the p53 family of transcription factors. There is compelling genetic evidence that ΔNp63 isoforms are needed for keratinocyte proliferation and stemness in the developing vertebrate epidermis. However, the role of TAp63 isoforms is not fully understood, and TAp63 knockout mice display normal epidermal development. Here, we show that zebrafish mutants specifically lacking TAp63 isoforms, or p53, display compromised development of breeding tubercles, epidermal appendages which according to our analyses display more advanced stratification and keratinization than regular epidermis, including continuous desquamation and renewal of superficial cells by derivatives of basal keratinocytes. Defects are further enhanced in TAp63/p53 double mutants, pointing to partially redundant roles of the two related factors. Molecular analyses, treatments with chemical inhibitors and epistasis studies further reveal the existence of a linear TAp63/p53->Notch->caspase 3 pathway required both for enhanced proliferation of keratinocytes at the base of the tubercles and their subsequent differentiation in upper layers. Together, these studies identify the zebrafish breeding tubercles as specific epidermal structures sharing crucial features with the cornified mammalian epidermis. In addition, they unravel essential roles of TAp63 and p53 to promote both keratinocyte proliferation and their terminal differentiation by promoting Notch signalling and caspase 3 activity, ensuring formation and proper homeostasis of this self-renewing stratified epithelium. PMID:24415949

  15. Acetylcholine and Olfactory Perceptual Learning

    PubMed Central

    Wilson, Donald A.; Fletcher, Max L.; Sullivan, Regina M.

    2007-01-01

    Olfactory perceptual learning is a relatively long-term, learned increase in perceptual acuity, and has been described in both humans and animals. Data from recent electrophysiological studies have indicated that olfactory perceptual learning may be correlated with changes in odorant receptive fields of neurons in the olfactory bulb and piriform cortex. These changes include enhanced representation of the molecular features of familiar odors by mitral cells in the olfactory bulb, and synthetic coding of multiple coincident odorant features into odor objects by cortical neurons. In this paper, data are reviewed that show the critical role of acetylcholine (Ach) in olfactory system function and plasticity, and cholinergic modulation of olfactory perceptual learning at both the behavioral and cortical level. PMID:14747514

  16. A numerical investigation into the effects of Reynolds number on the flow mechanism induced by a tubercled leading edge

    NASA Astrophysics Data System (ADS)

    Rostamzadeh, Nikan; Kelso, Richard M.; Dally, Bassam

    2016-05-01

    Leading-edge modifications based on designs inspired by the protrusions on the pectoral flippers of the humpback whale (tubercles) have been the subject of research for the past decade primarily due to their flow control potential in ameliorating stall characteristics. Previous studies have demonstrated that, in the transitional flow regime, full-span wings with tubercled leading edges outperform unmodified wings at high attack angles. The flow mechanism associated with such enhanced loading traits is, however, still being investigated. Also, the performance of full-span tubercled wings in the turbulent regime is largely unexplored. The present study aims to investigate Reynolds number effects on the flow mechanism induced by a full-span tubercled wing with the NACA-0021 cross-sectional profile in the transitional and near-turbulent regimes using computational fluid dynamics. The analysis of the flow field suggests that, with the exception of a few different flow features, the same underlying flow mechanism, involving the presence of transverse and streamwise vorticity, is at play in both cases. With regard to lift-generation characteristics, the numerical simulation results indicate that in contrast to the transitional flow regime, where the unmodified NACA-0021 undergoes a sudden loss of lift, in the turbulent regime, the baseline foil experiences gradual stall and produces more lift than the tubercled foil. This observation highlights the importance of considerations regarding the Reynolds number effects and the stall characteristics of the baseline foil, in the industrial applications of tubercled lifting bodies.

  17. Olfactory perceptual stability and discrimination.

    PubMed

    Barnes, Dylan C; Hofacer, Rylon D; Zaman, Ashiq R; Rennaker, Robert L; Wilson, Donald A

    2008-12-01

    No two roses smell exactly alike, but our brain accurately bundles these variations into a single percept 'rose'. We found that ensembles of rat olfactory bulb neurons decorrelate complex mixtures that vary by as little as a single missing component, whereas olfactory (piriform) cortical neural ensembles perform pattern completion in response to an absent component, essentially filling in the missing information and allowing perceptual stability. This piriform cortical ensemble activity predicts olfactory perception. PMID:18978781

  18. Attention and olfactory consciousness.

    PubMed

    Keller, Andreas

    2011-01-01

    Understanding the relation between attention and consciousness is an important part of our understanding of consciousness. Attention, unlike consciousness, can be systematically manipulated in psychophysical experiments and a law-like relation between attention and consciousness is waiting to be discovered. Most attempts to discover the nature of this relation are focused on a special type of attention: spatial visual attention. In this review I want to introduce another type of attention to the discussion: attention to the olfactory modality. I will first clarify the position of attention to smells in a general taxonomy of attention. I will then review the mechanisms and neuroanatomy of attention and consciousness in the olfactory system before using the newly introduced system to provide evidence that attention is necessary for consciousness. PMID:22203813

  19. Recent Trend in Development of Olfactory Displays

    NASA Astrophysics Data System (ADS)

    Yanagida, Yasuyuki

    An olfactory display is a device that generates scented air with desired concentration of aroma, and delivers it to the user's olfactory organ. In this article, the nature of olfaction is briefly described from the view point of how to configure olfactory displays. Next, component technologies to compose olfactory displays, i.e., making scents and delivering scents, are categorized. Several existing olfactory display systems are introduced to show the current status of research and development of olfactory displays.

  20. Gap junctions in olfactory neurons modulate olfactory sensitivity

    PubMed Central

    2010-01-01

    Background One of the fundamental questions in olfaction is whether olfactory receptor neurons (ORNs) behave as independent entities within the olfactory epithelium. On the basis that mature ORNs express multiple connexins, I postulated that gap junctional communication modulates olfactory responses in the periphery and that disruption of gap junctions in ORNs reduces olfactory sensitivity. The data collected from characterizing connexin 43 (Cx43) dominant negative transgenic mice OlfDNCX, and from calcium imaging of wild type mice (WT) support my hypothesis. Results I generated OlfDNCX mice that express a dominant negative Cx43 protein, Cx43/β-gal, in mature ORNs to inactivate gap junctions and hemichannels composed of Cx43 or other structurally related connexins. Characterization of OlfDNCX revealed that Cx43/β-gal was exclusively expressed in areas where mature ORNs resided. Real time quantitative PCR indicated that cellular machineries of OlfDNCX were normal in comparison to WT. Electroolfactogram recordings showed decreased olfactory responses to octaldehyde, heptaldehyde and acetyl acetate in OlfDNCX compared to WT. Octaldehyde-elicited glomerular activity in the olfactory bulb, measured according to odor-elicited c-fos mRNA upregulation in juxtaglomerular cells, was confined to smaller areas of the glomerular layer in OlfDNCX compared to WT. In WT mice, octaldehyde sensitive neurons exhibited reduced response magnitudes after application of gap junction uncoupling reagents and the effects were specific to subsets of neurons. Conclusions My study has demonstrated that altered assembly of Cx43 or structurally related connexins in ORNs modulates olfactory responses and changes olfactory activation maps in the olfactory bulb. Furthermore, pharmacologically uncoupling of gap junctions reduces olfactory activity in subsets of ORNs. These data suggest that gap junctional communication or hemichannel activity plays a critical role in maintaining olfactory

  1. Basal telencephalic regions connected with the olfactory bulb in a Madagascan hedgehog tenrec.

    PubMed

    Künzle, H; Radtke-Schuller, S

    2000-08-01

    In an attempt to gain insight into the organization and evolution of the basal forebrain, the region was analysed cytoarchitecturally, chemoarchitecturally, and hodologically in a lower placental mammal, the lesser hedgehog tenrec. Particular emphasis was laid on the subdivision of the olfactory tubercle, the nuclear complex of the diagonal band, and the cortical amygdala. The proper tubercule and the rostrolateral tubercular seam differed from each other with regard to their immunoreactivity to calbindin and calretinin, as well as their afferents from the piriform cortex. Interestingly, the tubercular seam showed similar properties to the dwarf cell compartment, located immediately adjacent to the islands of Calleja. The most prominent input to the olfactory bulb (OfB) originated from the diagonal nuclear complex. This projection was ipsilateral, whereas the bulbar afferents from the hypothalamus and the mesopontine tegmentum were bilateral. The amygdala projected only sparsely to the OfB, but received a prominent bulbar projection. An exception was the nucleus of the lateral olfactory tract, which was poorly connected with the OfB. Unlike other species with an accessory OfB, the projections from the tenrec's main OfB did not show a topographic organization upon the lateral and medial olfactory amygdala. However, there was an accessory amygdala, which could be differentiated from the lateral nuclei by its intense reaction to NADPh-diaphorase. This reaction was poor in the diagonal nuclear complex as in monkey but unlike in rat. The variability of cell populations and olfactory bulb connections shown here may help to clarify both phylogenetic relationships and the significance of individual basal telencephalic subdivisions. PMID:10880998

  2. Statistical mapping of functional olfactory connections of the rat brain in vivo.

    PubMed

    Cross, Donna J; Minoshima, Satoshi; Anzai, Yoshimi; Flexman, Jennifer A; Keogh, Bartholomew P; Kim, Yongmin; Maravilla, Kenneth R

    2004-12-01

    The olfactory pathway is a unique route into the brain. To better characterize this system in vivo, rat olfactory functional connections were mapped using magnetic resonance (MR) imaging and manganese ion (Mn2+) as a transport-mediated tracer combined with newly developed statistical brain image analysis. Six rats underwent imaging on a 1.5-T MR scanner at pre-administration, and 6, 12, 24, 36, 48, and 72 h and 5.5, 7.5, 10.5, and 13.5 days post-administration of manganese chloride (MnCl2) into the right nasal cavity. Images were coregistered, pixel-intensity normalized, and stereotactically transformed to the Paxinos and Watson rat brain atlas, then averaged across subjects using automated image analysis software (NEUROSTAT). Images at each time point were compared to pre-administration using a one-sample t statistic on a pixel-by-pixel basis in 3-D and converted to Z statistic maps. Statistical mapping and group averaging improved signal to noise ratios and signal detection sensitivity. Significant transport of Mn2+ was observed in olfactory structures ipsilateral to site of Mn2+ administration including the bulb, lateral olfactory tract (lo) by 12 h and in the tubercle, piriform cortex, ventral pallidum, amygdala, and in smaller structures such as the anterior commissure after 24 h post-administration. MR imaging with group-wise statistical analysis clearly demonstrated bilateral transsynaptic Mn2+ transport to secondary and tertiary neurons of the olfactory system. The method permits in vivo investigations of functional neuronal connections within the brain. PMID:15589097

  3. Relationships between circulating androgens, aggressive behaviour and breeding tubercles in males of the common bream Abramis brama L. in an aquarium environment.

    PubMed

    Poncin, P; Matondo, B Nzau; Termol, C; Kestemont, P; Philippart, J C

    2011-09-01

    In this study, relationships between circulating androgens, aggressive behaviour and breeding tubercles in males of common bream Abramis brama were examined in an aquarium environment. The breeding tubercles of fish were counted, the number of attacks was quantified by male status and circulating rates of testosterone and 11-ketotestosterone from blood plasma were analysed using radioimmunoassay procedures. The results revealed that no significant differences were found between circulating testosterone and 11-ketotestosterone in territorial and nonterritorial males. Furthermore, no significant correlations were found between circulating androgens, androgens and aggression, androgens and tubercles and breeding tubercles and aggression in common bream by male status. However, territorial fish displayed a significantly higher level of aggressive behaviour and breeding tubercles than nonterritorial fish. In natural environments, the occurrence of breeding tubercles during the spawning season could contribute to identifying the behavioural status of common bream males. PMID:21132526

  4. Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route.

    PubMed

    Munster, Vincent J; Prescott, Joseph B; Bushmaker, Trenton; Long, Dan; Rosenke, Rebecca; Thomas, Tina; Scott, Dana; Fischer, Elizabeth R; Feldmann, Heinz; de Wit, Emmie

    2012-01-01

    Encephalitis is a hallmark of Nipah virus (NiV) infection in humans. The exact route of entry of NiV into the central nervous system (CNS) is unknown. Here, we performed a spatio-temporal analysis of NiV entry into the CNS of hamsters. NiV initially predominantly targeted the olfactory epithelium in the nasal turbinates. From there, NiV infected neurons were visible extending through the cribriform plate into the olfactory bulb, providing direct evidence of rapid CNS entry. Subsequently, NiV disseminated to the olfactory tubercle and throughout the ventral cortex. Transmission electron microscopy on brain tissue showed extravasation of plasma cells, neuronal degeneration and nucleocapsid inclusions in affected tissue and axons, providing further evidence for axonal transport of NiV. NiV entry into the CNS coincided with the occurrence of respiratory disease, suggesting that the initial entry of NiV into the CNS occurs simultaneously with, rather than as a result of, systemic virus replication. PMID:23071900

  5. Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route

    PubMed Central

    Munster, Vincent J.; Prescott, Joseph B.; Bushmaker, Trenton; Long, Dan; Rosenke, Rebecca; Thomas, Tina; Scott, Dana; Fischer, Elizabeth R.; Feldmann, Heinz; de Wit, Emmie

    2012-01-01

    Encephalitis is a hallmark of Nipah virus (NiV) infection in humans. The exact route of entry of NiV into the central nervous system (CNS) is unknown. Here, we performed a spatio-temporal analysis of NiV entry into the CNS of hamsters. NiV initially predominantly targeted the olfactory epithelium in the nasal turbinates. From there, NiV infected neurons were visible extending through the cribriform plate into the olfactory bulb, providing direct evidence of rapid CNS entry. Subsequently, NiV disseminated to the olfactory tubercle and throughout the ventral cortex. Transmission electron microscopy on brain tissue showed extravasation of plasma cells, neuronal degeneration and nucleocapsid inclusions in affected tissue and axons, providing further evidence for axonal transport of NiV. NiV entry into the CNS coincided with the occurrence of respiratory disease, suggesting that the initial entry of NiV into the CNS occurs simultaneously with, rather than as a result of, systemic virus replication. PMID:23071900

  6. Calcium and olfactory transduction.

    PubMed

    Winegar, B D; Rosick, E R; Schafer, R

    1988-01-01

    1. Inorganic cations, organic calcium antagonists, and calmodulin antagonists were applied to olfactory epithelia of frogs (Rana pipiens) while recording electroolfactogram (EOG) responses. 2. Inorganic cations inhibited EOGs in a rank order, reflecting their calcium channel blocking potency: La3+ greater than Zn2+ greater than Cd2+ greater than Al3+ greater than Ca2+ greater than Sr2+ greater than Co2+ greater than Ba2+ greater than Mg2+. Barium ion significantly enhanced EOGs immediately following application. 3. Diltiazem and verapamil produced dose-dependent EOG inhibition. 4. Calmodulin antagonists inhibited EOGs without correlation to their anti-calmodulin potency. PMID:2904344

  7. Simultaneous Bilateral Tibial Tubercle Avulsion Fracture in a case of Pre-Existing Osgood-Schlatter Disease (OSD)

    PubMed Central

    Narayana Gowda, BS; Mohan Kumar, J

    2012-01-01

    Introduction: Osgood-Schlatter disease (OSD) is a well known condition, characterized by pain over the tibial tubercle with subsequent tubercle prominence. Avulsion fracture following OSD is a rare complication. We report an unusual case of simultaneous bilateral tibial tubercle avulsion fracture in a 16 year old boy who was a known case of OSD. Case presentation: A 16 year old boy a known case of OSD presented to the outpatient department with history of jumping from the school compound wall (two feet height) while playing, followed by severe pain around anterior aspect of both knees and difficulty in walking. Radiographs showed bilateral tibial tubercle avulsion fracture. He was treated successfully with open reduction and internal fixation with tension band wiring. At the end of 22 months the patient was symptomatically relieved and both the tuberosities were united with the main bone. Conclusion: Even though bilateral Osgood-Schlatter disease (OSD) is a well known condition, one should always keep in mind the risk of tibial tubercle avulsion fractures while treating a case of OSD. Patient should be advised not to involve in strenuous activities till the disease subsides radiologically or till skeletal maturity.

  8. The Bivalent Side of the Nucleus Accumbens

    PubMed Central

    Levita, Liat; Hare, Todd A.; Voss, Henning U.; Glover, Gary; Ballon, Douglas J.; Casey, B.J.

    2009-01-01

    An increasing body of evidence suggests that the nucleus accumbens (NAcc) is engaged in both incentive reward processes and in adaptive responses to conditioned and unconditioned aversive stimuli. Yet, it has been argued that NAcc activation to aversive stimuli may be a consequence of the rewarding effects of their termination, i.e., relief. To address this question we used fMRI to delineate brain response to the onset and offset of unpleasant and pleasant auditory stimuli in the absence of learning or motor response. Increased NAcc activity was seen for the onset of both pleasant and unpleasant stimuli. Our results support the expanded bivalent view of NAcc function and call for expansion of current models of NAcc function that are solely focused on reward. PMID:18976715

  9. The Olfactory Transcriptomes of Mice

    PubMed Central

    Ibarra-Soria, Ximena; Levitin, Maria O.; Saraiva, Luis R.; Logan, Darren W.

    2014-01-01

    The olfactory (OR) and vomeronasal receptor (VR) repertoires are collectively encoded by 1700 genes and pseudogenes in the mouse genome. Most OR and VR genes were identified by comparative genomic techniques and therefore, in many of those cases, only their protein coding sequences are defined. Some also lack experimental support, due in part to the similarity between them and their monogenic, cell-specific expression in olfactory tissues. Here we use deep RNA sequencing, expression microarray and quantitative RT-PCR in both the vomeronasal organ and whole olfactory mucosa to quantify their full transcriptomes in multiple male and female mice. We find evidence of expression for all VR, and almost all OR genes that are annotated as functional in the reference genome, and use the data to generate over 1100 new, multi-exonic, significantly extended receptor gene annotations. We find that OR and VR genes are neither equally nor randomly expressed, but have reproducible distributions of abundance in both tissues. The olfactory transcriptomes are only minimally different between males and females, suggesting altered gene expression at the periphery is unlikely to underpin the striking sexual dimorphism in olfactory-mediated behavior. Finally, we present evidence that hundreds of novel, putatively protein-coding genes are expressed in these highly specialized olfactory tissues, and carry out a proof-of-principle validation. Taken together, these data provide a comprehensive, quantitative catalog of the genes that mediate olfactory perception and pheromone-evoked behavior at the periphery. PMID:25187969

  10. The olfactory transcriptomes of mice.

    PubMed

    Ibarra-Soria, Ximena; Levitin, Maria O; Saraiva, Luis R; Logan, Darren W

    2014-09-01

    The olfactory (OR) and vomeronasal receptor (VR) repertoires are collectively encoded by 1700 genes and pseudogenes in the mouse genome. Most OR and VR genes were identified by comparative genomic techniques and therefore, in many of those cases, only their protein coding sequences are defined. Some also lack experimental support, due in part to the similarity between them and their monogenic, cell-specific expression in olfactory tissues. Here we use deep RNA sequencing, expression microarray and quantitative RT-PCR in both the vomeronasal organ and whole olfactory mucosa to quantify their full transcriptomes in multiple male and female mice. We find evidence of expression for all VR, and almost all OR genes that are annotated as functional in the reference genome, and use the data to generate over 1100 new, multi-exonic, significantly extended receptor gene annotations. We find that OR and VR genes are neither equally nor randomly expressed, but have reproducible distributions of abundance in both tissues. The olfactory transcriptomes are only minimally different between males and females, suggesting altered gene expression at the periphery is unlikely to underpin the striking sexual dimorphism in olfactory-mediated behavior. Finally, we present evidence that hundreds of novel, putatively protein-coding genes are expressed in these highly specialized olfactory tissues, and carry out a proof-of-principle validation. Taken together, these data provide a comprehensive, quantitative catalog of the genes that mediate olfactory perception and pheromone-evoked behavior at the periphery. PMID:25187969

  11. Fixation of supraglenoid tubercle fractures using distal femoral locking plates in three Warmblood horses.

    PubMed

    Frei, Sina; Fürst, Anton E; Sacks, Murielle; Bischofberger, Andrea S

    2016-05-18

    Three horses that were presented with supraglenoid tubercle fractures were treated with open reduction and internal fixation using distal femoral locking plates (DFLP). Placing the DFLP caudal to the scapular spine in order to preserve the suprascapular nerve led to a stable fixation, however, it resulted in infraspinatus muscle atrophy and mild scapulohumeral joint instability (case 1). Placing the DFLP cranial to the scapular spine and under the suprascapular nerve resulted in a stable fixation, however, it resulted in severe atrophy of the supraspinatus and infraspinatus muscles and scapulohumeral joint instability (case 2). Placing the DFLP cranial to the scapular spine and slightly overbending it at the suprascapular nerve passage site resulted in the best outcome (case 3). Only a mild degree of supraspinatus and infraspinatus muscle atrophy was apparent, which resolved quickly and with no effect on scapulohumeral joint stability. In all cases, fixation of supraglenoid tubercle fractures using DFLP in slightly different techniques led to stable fixations with good long-term outcome. One case suffered from a mild incisional infection and plates were removed in two horses. Placement of the DFLP cranial to the scapular spine and slightly overbending it at the suprascapular nerve passage prevented major nerve damage. Further cases investigating the degree of muscle atrophy following the use of the DFLP placed in the above-described technique are justified to improve patient outcome. PMID:27070124

  12. A thalamic input to the nucleus accumbens mediates opiate dependence.

    PubMed

    Zhu, Yingjie; Wienecke, Carl F R; Nachtrab, Gregory; Chen, Xiaoke

    2016-02-11

    Chronic opiate use induces opiate dependence, which is characterized by extremely unpleasant physical and emotional feelings after drug use is terminated. Both the rewarding effects of a drug and the desire to avoid withdrawal symptoms motivate continued drug use, and the nucleus accumbens is important for orchestrating both processes. While multiple inputs to the nucleus accumbens regulate reward, little is known about the nucleus accumbens circuitry underlying withdrawal. Here we identify the paraventricular nucleus of the thalamus as a prominent input to the nucleus accumbens mediating the expression of opiate-withdrawal-induced physical signs and aversive memory. Activity in the paraventricular nucleus of the thalamus to nucleus accumbens pathway is necessary and sufficient to mediate behavioural aversion. Selectively silencing this pathway abolishes aversive symptoms in two different mouse models of opiate withdrawal. Chronic morphine exposure selectively potentiates excitatory transmission between the paraventricular nucleus of the thalamus and D2-receptor-expressing medium spiny neurons via synaptic insertion of GluA2-lacking AMPA receptors. Notably, in vivo optogenetic depotentiation restores normal transmission at these synapses and robustly suppresses morphine withdrawal symptoms. This links morphine-evoked pathway- and cell-type-specific plasticity in the paraventricular nucleus of the thalamus to nucleus accumbens circuit to opiate dependence, and suggests that reprogramming this circuit holds promise for treating opiate addiction. PMID:26840481

  13. Assessment of olfactory function.

    PubMed

    Hummel, Thomas; Welge-Lüessen, Antje

    2006-01-01

    Numerous techniques are available for the investigation of chemosensory functions in humans. They include psychophysical measures of chemosensory function, e.g. odor identification, odor discrimination, odor thresholds, odor memory, and retronasal perception of odors. In order to assess changes related to the patients' quality of life or effects of qualitative olfactory dysfunction, questionnaires are being used. Measures relying to a lesser degree on the subjects' cooperation are e.g. chemosensory event-related potentials, odor-induced changes of the EEG, the electroolfactogram, imaging techniques, or measures of respiration. In a clinical context, however, psychophysical techniques are most frequently used, e.g. tests for odor identification, and odor thresholds. Interpretation of results from these measures is frequently supported by the assessment of chemosensory event-related potentials. Other techniques await further standardization before they will become useful in a clinical context. PMID:16733334

  14. Olfactory receptor signaling.

    PubMed

    Antunes, Gabriela; Simoes de Souza, Fabio Marques

    2016-01-01

    The guanine nucleotide protein (G protein)-coupled receptors (GPCRs) superfamily represents the largest class of membrane protein in the human genome. More than a half of all GPCRs are dedicated to interact with odorants and are termed odorant-receptors (ORs). Linda Buck and Richard Axel, the Nobel Prize laureates in physiology or medicine in 2004, first cloned and characterized the gene family that encode ORs, establishing the foundations to the understanding of the molecular basis for odor recognition. In the last decades, a lot of progress has been done to unravel the functioning of the sense of smell. This chapter gives a general overview of the topic of olfactory receptor signaling and reviews recent advances in this field. PMID:26928542

  15. Physiochemical Characterization of Five Iron Tubercles from a Single Drinking Water Distribution System: Possible New Insights on Their Formation and Growth

    EPA Science Inventory

    Physiochemical data on five iron tubercles from a single Distribution System (DS) are divided into two groups based on internal morphology and the predominate core iron mineral phases, α-FeOOH, γ-FeOOH, or Fe3O4, yet all three coexist in each tubercle. Cond...

  16. [Marcello Malpighi (1628 - 1694) and the terms miliary and tubercle. A completion of hitherto existing historical terminology].

    PubMed

    Klippe, H J; Kirsten, D

    2011-07-01

    Today Miliary Tuberculosis in Central Europe is a rare disease, quite often with resulting diagnostic uncertainty. The terms "miliary" and "tubercle" are outlined with their up to now accepted historical roots. An analysis of Marcello Malpighi's quite unknown post-mortem reports by the Italian author L. Munster reveals an earlier use of both terms than described till now. PMID:21656463

  17. Bizarre tubercles on the vertebrae of Eocene fossil birds indicate an avian disease without modern counterpart

    NASA Astrophysics Data System (ADS)

    Mayr, Gerald

    2007-08-01

    Remains of fossil birds with numerous bony tubercles on the cervical vertebrae are reported from the Middle Eocene of Messel in Germany and the Late Eocene of the Quercy fissure fillings in France. These structures, which are unknown from extant birds and other vertebrates, were previously described for an avian skeleton from Messel but considered a singular feature of this specimen. The new fossils are from a different species of uncertain phylogenetic affinities and show that tuberculated vertebrae have a wider taxonomic, temporal, and geographic distribution. In contrast to previous assumptions, they are no ontogenetic feature and arise from the vertebral surface. It is concluded that they are most likely of pathologic origin and the first record of a Paleogene avian disease. Their regular and symmetrical arrangement over most of the external vertebral surface indicates a systemic disorder caused by factors that do not affect extant birds, such as especially high-dosed phytohormones or extinct pathogens.

  18. The medial pterygoid tubercle in the Atapuerca Early and Middle Pleistocene mandibles: evolutionary implications.

    PubMed

    Bermúdez de Castro, José-María; Quam, Rolf; Martinón-Torres, María; Martínez, Ignacio; Gracia-Téllez, Ana; Arsuaga, Juan Luís; Carbonell, Eudald

    2015-01-01

    Numerous studies have attempted to identify the presence of uniquely derived (autoapomorphic) Neandertal features. Here, we deal with the medial pterygoid tubercle (MTP), which is usually present on the internal face of the ascending ramus of Neandertal specimens. Our study stems from the identification of a hypertrophied tubercle in ATD6-96, an Early Pleistocene mandible recovered from the TD6 level of the Atapuerca-Gran Dolina site and attributed to Homo antecessor. Our review of the literature and study of numerous original fossil specimens and high quality replicas confirm that the MTP occurs at a high frequency in Neandertals (ca. 89%) and is also present in over half (ca. 55%) of the Middle Pleistocene Sima de los Huesos (SH) hominins. In contrast, it is generally absent or minimally developed in other extinct hominins, but can be found in variable frequencies (

  19. [Olfactory sensory perception].

    PubMed

    Fuentes, Aler; Fresno, María Javiera; Santander, Hugo; Valenzuela, Saúl; Gutiérrez, Mario Felipe; Miralles, Rodolfo

    2011-03-01

    The five senses have had a fundamental importance for survival and socialization of human beings. From an evolutionary point of view the sense of smell is the oldest. This sense has a strong representation within the genome, allowing the existence of many types of receptors that allow us to capture multiple volatile odor producing molecules, sending electrical signals to higher centers to report the outside world. Several cortical areas are activated in the brain, which are interconnected to form an extensive and complex neural network, linking for example, areas involved with memory and emotions, thus giving this sense of perceptual richness. While the concept of flavor is largely related to the sense of taste, smell provides the necessary integration with the rest of the senses and higher functions. Fully understanding the sense of smell is relevant to health professionals. Knowing the characteristics of the receptors, the transduction processes and convergence of information in the higher centers involved, we can properly detect olfactory disorders in our patients. PMID:21879170

  20. Evolution of insect olfactory receptors

    PubMed Central

    Missbach, Christine; Dweck, Hany KM; Vogel, Heiko; Vilcinskas, Andreas; Stensmyr, Marcus C; Hansson, Bill S; Grosse-Wilde, Ewald

    2014-01-01

    The olfactory sense detects a plethora of behaviorally relevant odor molecules; gene families involved in olfaction exhibit high diversity in different animal phyla. Insects detect volatile molecules using olfactory (OR) or ionotropic receptors (IR) and in some cases gustatory receptors (GRs). While IRs are expressed in olfactory organs across Protostomia, ORs have been hypothesized to be an adaptation to a terrestrial insect lifestyle. We investigated the olfactory system of the primary wingless bristletail Lepismachilis y-signata (Archaeognatha), the firebrat Thermobia domestica (Zygentoma) and the neopteran leaf insect Phyllium siccifolium (Phasmatodea). ORs and the olfactory coreceptor (Orco) are with very high probability lacking in Lepismachilis; in Thermobia we have identified three Orco candidates, and in Phyllium a fully developed OR/Orco-based system. We suggest that ORs did not arise as an adaptation to a terrestrial lifestyle, but evolved later in insect evolution, with Orco being present before the appearance of ORs. DOI: http://dx.doi.org/10.7554/eLife.02115.001 PMID:24670956

  1. Olfactory morphology and physiology of elasmobranchs.

    PubMed

    Meredith, Tricia L; Kajiura, Stephen M

    2010-10-15

    Elasmobranch fishes are thought to possess greater olfactory sensitivities than teleost fishes due in part to the large amount of epithelial surface area that comprises their olfactory organs; however, direct evidence correlating the size of the olfactory organ to olfactory sensitivity is lacking. This study examined the olfactory morphology and physiology of five distantly related elasmobranch species. Specifically, we quantified the number of lamellae and lamellar surface area (as if it were a flat sheet, not considering secondary lamellae) that comprise their olfactory organs. We also calculated the olfactory thresholds and relative effectiveness of amino acid odorants for each species. The olfactory organs varied in both the number of lamellae and lamellar surface area, which may be related to their general habitat, but neither correlated with olfactory threshold. Thresholds to amino acid odorants, major olfactory stimuli of all fishes, ranged from 10⁻⁹·⁰ to 10⁻⁶·⁹ mol l⁻¹, which indicates that these elasmobranch species demonstrate comparable thresholds with teleosts. In addition, the relative effectiveness of amino acid stimuli to the olfactory organ of elasmobranchs is similar to that previously described in teleosts with neutral amino acids eliciting significantly greater responses than others. Collectively, these results indicate parallels in olfactory physiology between these two groups of fishes. PMID:20889825

  2. Olfactory dysfunction in patients with multiple sclerosis.

    PubMed

    Li, Li-Min; Yang, Li-Na; Zhang, Lin-Jie; Fu, Ying; Li, Ting; Qi, Yuan; Wang, Jing; Zhang, Da-Qi; Zhang, Ningnannan; Liu, Jingchun; Yang, Li

    2016-06-15

    Association of changes in olfactory-related structures with olfactory function in patients with multiple sclerosis (MS) is not well understood. We used a T&T olfactometer test kit to evaluate olfactory function in 26 patients with MS and 26 age- and sex-matched healthy controls (HC). Then, Brain MRI were performed and olfactory-related structures were analyzed in these subjects. Olfactory detection and recognition threshold were significantly higher in the MS group, interestingly olfactory recognition threshold positively correlated with expanded disability status scale scores in these patients. Olfactory bulb (OB) volume reduced in patients with olfactory dysfunction (ODF). At the same time, reductions in gray matter (GM) volume were observed in the parahippocampal gyrus (PCG), amygdala, piriform cortex, and inferior frontal gyrus in patients with MS compared to HC. Atrophy of the PCG was more obvious in patients with ODF than patients without ODF and the PCG volume correlated with the olfactory recognition threshold, while no difference was found in fractional anisotropy values of tract-based spatial statistics analysis in the two groups. Olfactory function in patients with MS tends to become gradually more impaired with disability aggravation. Decreases in the volume of the OB and olfactory-related GM might provide valuable information about disease status in patients with MS with olfactory impairment. PMID:27206870

  3. Sniffing and Oxytocin: Effects on Olfactory Memories.

    PubMed

    Stoop, Ron

    2016-05-01

    In this issue of Neuron, Oettl et al. (2016) show how oxytocin can boost processing of olfactory information in female rats by a top-downregulation from the anterior olfactory nucleus onto the main olfactory bulb. As a result, interactions with juvenile conspecifics receive more attention and are longer memorized. PMID:27151635

  4. Nucleus Accumbens Invulnerability to Methamphetamine Neurotoxicity

    PubMed Central

    Kuhn, Donald M.; Angoa-Pérez, Mariana; Thomas, David M.

    2016-01-01

    Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure. PMID:23382149

  5. Paraneoplastic syndromes in olfactory neuroblastoma

    PubMed Central

    Gabrych, Anna; Czapiewski, Piotr; Sworczak, Krzysztof

    2015-01-01

    Olfactory neuroblastoma (ONB) is a rare malignant neoplasm of sinonasal tract, derived from olfactory epithelium. Unilateral nasal obstruction, epistaxis, sinusitis, and headaches are common symptoms. Olfactory neuroblastoma shows neuroendocrine differentiation and similarly to other neuroendocrine tumors can produce several types of peptic substances and hormones. Excess production of these substances can be responsible for different types of endocrinological paraneoplastic syndromes (PNS). Moreover, besides endocrinological, in ONB may also occur neurological PNS, caused by immune cross-reactivity between tumor and normal host tissues in the nervous system. Paraneoplastic syndromes in ONB include: syndrome of inappropriate ADH secretion (SIADH), ectopic ACTH syndrome (EAS), humoral hypercalcemia of malignancy (HHM), hypertension due to catecholamine secretion by tumor, opsoclonus-myoclonus-ataxia (OMA) and paraneoplastic cerebellar degeneration. Paraneoplastic syndromes in ONB tend to have atypical features, therefore diagnosis may be difficult. In this review, we described initial symptoms, patterns of presentation, treatment and outcome of paraneoplastic syndromes in ONB, reported in the literature. PMID:26199564

  6. Monoallelic Expression of Olfactory Receptors

    PubMed Central

    Monahan, Kevin; Lomvardas, Stavros

    2016-01-01

    The sense of smell collects vital information about the environment by detecting a multitude of chemical odorants. Breadth and sensitivity are provided by a huge number of chemosensory receptor proteins, including more than 1,400 olfactory receptors (ORs). Organizing the sensory information generated by these receptors so that it can be processed and evaluated by the central nervous system is a major challenge. This challenge is overcome by monogenic and monoallelic expression of OR genes. The single OR expressed by each olfactory sensory neuron determines the neuron’s odor sensitivity and the axonal connections it will make to downstream neurons in the olfactory bulb. The expression of a single OR per neuron is accomplished by coupling a slow chromatin-mediated activation process to a fast negative-feedback signal that prevents activation of additional ORs. Singular OR activation is likely orchestrated by a network of interchromosomal enhancer interactions and large-scale changes in nuclear architecture. PMID:26359778

  7. [The role of the nucleus accumbens in psychiatric disorders].

    PubMed

    Mavridis, I

    2015-01-01

    The nucleus accumbens is the most inferior part of the striatum and is mainly connected to the limbic system. It is neurochemically and immunohistochemically divided into a shell laterally and a core medially. As a functionally central structure between amygdala, basal ganglia, mesolimbic dopaminergic regions, mediodorsal thalamus and prefrontal cortex, the nucleus accumbens appears to play a modulative role in the flow of the information from the amygdaloid complex to these regions. Dopamine is a major neurotransmitter of the nucleus accumbens and this nucleus has a modulative function to the amygdala-basal ganglia-prefrontal cortex circuit. Together with the prefrontal cortex and amygdala, nucleus accumbens consists a part of the cerebral circuit which regulates functions associated with effort. It is anatomically located in a unique way to serve emotional and behavioral components of feelings. It is considered as a neural interface between motivation and action, having a key-role in food intake, sexual behavior, reward-motivated behavior, stress-related behavior and substance-dependence. It is involved in several cognitive, emotional and psychomotor functions, altered in some psychopathology. Moreover it is involved in some of the commonest and most severe psychiatric disorders, such as depression, schizophrenia, obsessive-compulsive disorder and other anxiety disorders, as well as in addiction, including drugs abuse, alcoholism and smoking. Nucleus accumbens has also a role in other psychiatric disorders such as bipolar disorder, attention deficit/ hyperactivity disorder and post-traumatic stress disorder. Because of its rich dopaminergic projections, this nucleus has been subject of many studies in animals as well as in humans, connecting its malfunction with the disturbed reward process observed in depression. Neuromodulation interventions targeting the nucleus accumbens are nowadays applied in strictly selected patients suffering from treatment

  8. Olfactory dysfunction in Alzheimer’s disease

    PubMed Central

    Zou, Yong-ming; Lu, Da; Liu, Li-ping; Zhang, Hui-hong; Zhou, Yu-ying

    2016-01-01

    Alzheimer’s disease (AD) is a common neurodegenerative disorder with the earliest clinical symptom of olfactory dysfunction, which is a potential clinical marker for AD severity and progression. However, many questions remain unanswered. This article reviews relevant research on olfactory dysfunction in AD and evaluates the predictive value of olfactory dysfunction for the epidemiological, pathophysiological, and clinical features of AD, as well as for the conversion of cognitive impairment to AD. We summarize problems of existing studies and provide a useful reference for further studies in AD olfactory dysfunction and for clinical applications of olfactory testing. PMID:27143888

  9. Water temperature and pH influence olfactory sensitivity to pre-ovulatory and post-ovulatory ovarian pheromones in male Barilius bendelisis.

    PubMed

    Bhatt, J P; Kandwal, J S; Nautiyal, R

    2002-06-01

    The attractive response and sexual activity elicited by pre-ovulatory steroid sulphate and post-ovulatory 15K-PGF pheromones are greater in wild caught tubercular males and immature males which express breeding tubercles on the snout (at 12-13 days post androgen implant) than in non-tubercular and non-androgen implanted males of freshwater fish Barilius bendelisis. This shows that circulatory androgens exert an activational effect on olfactory receptors of male fish. Wild caught tubercular males and androgen implanted juvenile males exhibit a high responsiveness to steroid sulphate at the water temperature and pH which fish experience during the pre-spawning phase. The male's sensitivity to 15K-PGF is almost equally high at the water temperature and pH which they experience in wild during the both pre-spawning and spawning periods. This suggests that the differential olfactory sensitivity to the two classes of pheromones in androgen implanted males is due to the varied temperature and pH of water, and that during the breeding season the male's olfactory sensitivity to PGF pheromone is more widespread than to the steroidal pheromone. An increased and decreased olfactory sensitivity in mature males to sex pheromones and L-alanine respectively during the breeding phase is in agreement with the hypothesis that pheromonal stimuli dominate over feeding stimuli to promote spawning success. PMID:12089476

  10. Olfactory exploration: State of the art.

    PubMed

    Nguyen, D T; Rumeau, C; Gallet, P; Jankowski, R

    2016-04-01

    Olfactory disorders are fairly common in the general population. Exploration, on the other hand, is seldom performed by ENT specialists, even in reference centers. There may be three reasons for this: this particular sensory modality may seem unimportant to patients and/or physicians; available treatments may be underestimated, although admittedly much yet remains to be done; and olfactory exploration is not covered by the national health insurance scheme in France. Advances in research in recent decades have shed light on olfactory system functioning. At the same time, several techniques have been developed to allow maximally objective olfactory assessment, as olfactory disorder is sometimes the first sign of neurodegenerative pathology. Moreover, objective olfactory assessment may be needed in a medico-legal context. The present paper updates the techniques currently available for olfactory exploration. PMID:26384780

  11. The olfactory receptor family album

    PubMed Central

    Crasto, Chiquito; Singer, Michael S; Shepherd, Gordon M

    2001-01-01

    Analysis of the human genome draft sequences has revealed a more complete portrait of the olfactory receptor gene repertoire in humans than was available previously. The new information provides a basis for deeper analysis of the functions of the receptors, and promises new insights into the evolutionary history of the family. PMID:11597337

  12. Olfactory adventures of elephantine pheromones.

    PubMed

    Rasmussen, L E; Lazar, J; Greenwood, D R

    2003-02-01

    Understanding the linkage between behaviour of mammals in their natural environment and the molecular basis of their sensory modalities presents challenges to biologists. Our olfactory investigations that involve the largest extant land mammal, the elephant, offer some clues of how these events mesh in sequence. Proboscideans have developed a sophisticatedly organized society and they rank with primates and cetaceans with respect to cognitive abilities. Our studies of discrete, quantifiable pheromone-elicited behaviours demonstrate that Asian elephants utilize their olfactory senses during fundamental, life-strategy decisions, including mate choice, female bonding and male hierarchical sorting. How biologically relevant odorants traverse mucous interfaces to interact with cognate odorant receptors remains a basic question in vertebrate olfaction. We have partially tracked the molecular odour reception trail of behaviourally distinct pheromones, ( Z )-7-dodecenyl acetate and frontalin (1,5-dimethyl-6,8-dioxabicyclo[3.2.1]octane), using approaches developed for insect studies and taking advantage of the extensive, highly mucoidal olfactory and vomeronasal systems that permit detailed investigations of pheromone-binding proteins. We have combined studies of quantifiable responses and behaviours with biochemical and biophysical investigations of the properties of protein-ligand complexes, their sequential pathways and associated protein-ligand fluxes. In the delineation of these sequential integrations of behavioural, biochemical and molecular events, we have discovered novel spatial and temporal adaptations in both the main olfactory and vomeronasal systems. PMID:12546671

  13. Olfactory Classical Conditioning in Neonates

    PubMed Central

    Sullivan, Regina M.; Taborsky-Barba, Suzanne; Mendoza, Raffael; Itano, Alison; Leon, Michael; Cotman, Carl W.; Payne, Terrence F.; Lott, Ira

    2007-01-01

    One-day-old, awake infants underwent an olfactory classical conditioning procedure to assess associative learning within the olfactory system of newborns. Experimental infants received ten 30-second pairings of a novel olfactory conditioned stimulus (a citrus odor of neutral value) and tactile stimulation provided by stroking as the reinforcing unconditioned stimulus (a stimulus with positive properties). Control babies received only the odor, only the stroking, or the stroking followed by the odor presentation. The next day, all infants, in either the awake or sleep state, were given five 30-second presentations of the odor. Results were analyzed from video tapes scored by an observer unaware of the infants’ training condition. The results indicate that only those infants who received the forward pairings of the odor and stroking exhibited conditioned responding (head turning toward the odor) to the citrus odor. The performance of the conditioned response was not affected by the state of the baby during testing, because both awake and sleeping infants exhibited conditioned responses. Furthermore, the expression of the conditioned response was odor specific; a novel floral odor presented during testing did not elicit conditioned responses in the experimental babies. These results suggest that complex associative olfactory learning is seen in newborns within the first 48 hours of life. These baseline findings may serve as normative data against which observation from neonates at risk for neurological sequelae may be compared. PMID:2011429

  14. Angiotensinergic involvement in olfactory function

    SciTech Connect

    Speth, R.C.; Parker, J.L.; Wright, J.W.; Harding, J.W.

    1986-03-05

    The olfactory bulbs (OB) from Sprague-Dawley and Wistar-Kyoto rats were frozen and sectioned in a sagittal plane, 20 ..mu.. thick. Sections incubated with /sup 125/-Sar/sup 1/, Ile/sup 8/-AII indicated a high density of AII receptor binding sites in the external layers of the OB. Since the primary olfactory neurons synapse with the mitral cells in these layers, this suggests that AII may affect olfactory input to the OB. To test this hypothesis, male Sprague-Dawley rats, 9-12 weeks of age, n = 8, were administered 0.2 ml of 0.17 M ZnSO/sub 4/ into each nostril to lesion the primary olfactory neurons and their axon terminals in the OB. Rats treated with ZnSO/sub 4/ showed an impairment in their ability to find a buried food pellet, P = 0.041, Mann-Whitney test. Nine days post-treatment, the rats were sacrificed and AII receptors binding in homogenates of the OB was determined. There was a 23% increase (P < 0.05) in AII receptor density in the ZnSO/sub 4/ treated rat OB; it was correlated with the extent of the olfactory deficit, r/sub s/ = .91, Spearman Rank Order Test, P < .01. However, there was a 24% decrease in OB weight in the ZnSO/sub 4/ group, so the number of AII receptors per OB was unchanged. These data suggest that AII plays a role in olfaction. Localizing AII receptor changes within the OB by quantitative autoradiography will characterize the changes in AII receptor density caused by ZnSO/sub 4/.

  15. Neural organization and visual processing in the anterior optic tubercle of the honeybee brain.

    PubMed

    Mota, Theo; Yamagata, Nobuhiro; Giurfa, Martin; Gronenberg, Wulfila; Sandoz, Jean-Christophe

    2011-08-10

    The honeybee Apis mellifera represents a valuable model for studying the neural segregation and integration of visual information. Vision in honeybees has been extensively studied at the behavioral level and, to a lesser degree, at the physiological level using intracellular electrophysiological recordings of single neurons. However, our knowledge of visual processing in honeybees is still limited by the lack of functional studies of visual processing at the circuit level. Here we contribute to filling this gap by providing a neuroanatomical and neurophysiological characterization at the circuit level of a practically unstudied visual area of the bee brain, the anterior optic tubercle (AOTu). First, we analyzed the internal organization and neuronal connections of the AOTu. Second, we established a novel protocol for performing optophysiological recordings of visual circuit activity in the honeybee brain and studied the responses of AOTu interneurons during stimulation of distinct eye regions. Our neuroanatomical data show an intricate compartmentalization and connectivity of the AOTu, revealing a dorsoventral segregation of the visual input to the AOTu. Light stimuli presented in different parts of the visual field (dorsal, lateral, or ventral) induce distinct patterns of activation in AOTu output interneurons, retaining to some extent the dorsoventral input segregation revealed by our neuroanatomical data. In particular, activity patterns evoked by dorsal and ventral eye stimulation are clearly segregated into distinct AOTu subunits. Our results therefore suggest an involvement of the AOTu in the processing of dorsoventrally segregated visual information in the honeybee brain. PMID:21832175

  16. Retinoic acid signaling regulates sonic hedgehog and bone morphogenetic protein signalings during genital tubercle development.

    PubMed

    Liu, Liqing; Suzuki, Kentaro; Nakagata, Naomi; Mihara, Kenichiro; Matsumaru, Daisuke; Ogino, Yukiko; Yashiro, Kenta; Hamada, Hiroshi; Liu, Zhonghua; Evans, Sylvia M; Mendelsohn, Cathy; Yamada, Gen

    2012-02-01

    Retinoic acid (RA) plays pivotal roles in organogenesis, and both excessive and reduced amounts of RA cause developmental abnormalities. Reproductive organs are susceptible to teratogen toxigenicity, and the genital tubercle (GT) is one such representative organ. The physiological function of endogenous RA signaling and the mechanisms of RA-induced teratogenicity are poorly understood during the GT development. The objective of this study is to understand the developmental and teratogenic roles of RA during GT development by analyzing genetically modified mouse models. We found dynamic patterns of gene expression for the RA-synthesizing enzyme, Raldh2, and for the RA-catabolizing enzyme, Cyp26b1, during GT development. Rarb, an indicator gene for RA signaling, starts its expression in the prospective corpus cavernosum penis and in the urethral plate epithelium (UE), which plays central roles during GT development. Excessive RA signaling in Cyp26b1(-/-) mutants leads to abnormal extents of cell proliferation and differentiation during GT development, and also upregulates expression of growth factor signalings. They include Sonic hedgehog (Shh) signaling and Bone morphogenetic protein (Bmp) signaling, which are expressed in the UE and its bilateral mesenchyme. RA signaling positively regulatesShh and Bmp4 expression during GT development as testified also by the experiment of RA administration and analyses of loss-of-function of RA signaling mutants. Thus, RA signaling is involved in the developmental cascade necessary for UE formation and GT development. PMID:22127979

  17. Chromatic processing in the anterior optic tubercle of the honey bee brain.

    PubMed

    Mota, Theo; Gronenberg, Wulfila; Giurfa, Martin; Sandoz, Jean-Christophe

    2013-01-01

    Color vision in honey bees (Apis mellifera) has been extensively studied at the behavioral level and, to a lesser degree, at the physiological level by means of electrophysiological intracellular recordings of single neurons. Few visual neurons have been so far characterized in the lateral protocerebrum of bees. Therefore, the possible implication of this region in chromatic processing remains unknown. We performed in vivo calcium imaging of interneurons in the anterior optic tubercle (AOTu) of honey bees upon visual stimulation of the compound eye to analyze chromatic response properties. Stimulation with distinct monochromatic lights (ultraviolet [UV], blue, and green) matching the sensitivity of the three photoreceptor types of the bee retina induced different signal amplitudes, temporal dynamics, and spatial activity patterns in the AOTu intertubercle network, thus revealing intricate chromatic processing properties. Green light strongly activated both the dorsal and ventral lobes of the AOTu's major unit; blue light activated the dorsal lobe more while UV light activated the ventral lobe more. Eye stimulation with mixtures of blue and green light induced suppression phenomena in which responses to the mixture were lower than those to the color components, thus concurring with color-opponent processing. These data provide evidence for a spatial segregation of color processing in the AOTu, which may serve for navigation purposes. PMID:23283317

  18. Computational investigation of flow control by means of tubercles on Darrieus wind turbine blades

    NASA Astrophysics Data System (ADS)

    Sevinç, K.; Özdamar, G.; Şentürk, U.; Özdamar, A.

    2015-09-01

    This work presents the current status of the computational study of the boundary layer control of a vertical axis wind turbine blade by modifying the blade geometry for use in wind energy conversion. The control method is a passive method which comprises the implementation of the tubercle geometry of a humpback whale flipper onto the leading edge of the blades. The baseline design is an H-type, three-bladed Darrieus turbine with a NACA 0015 cross-section. Finite-volume based software ANSYS Fluent was used in the simulations. Using the optimum control parameters for a NACA 634-021 profile given by Johari et al. (2006), turbine blades were modified. Three dimensional, unsteady, turbulent simulations for the blade were conducted to look for a possible improvement on the performance. The flow structure on the blades was investigated and flow phenomena such as separation and stall were examined to understand their impact on the overall performance. For a tip speed ratio of 2.12, good agreement was obtained in the validation of the baseline model with a relative error in time- averaged power coefficient of 1.05%. Modified turbine simulations with a less expensive but less accurate turbulence model yielded a decrease in power coefficient. Results are shown comparatively.

  19. Mycolic acids: deciphering and targeting the Achilles' heel of the tubercle bacillus

    PubMed Central

    Nataraj, Vijayashankar; Varela, Cristian; Javid, Asma; Singh, Albel; Besra, Gurdyal S.

    2015-01-01

    Summary Mycolic acids are unique long chain fatty acids found in the lipid‐rich cell walls of mycobacteria including the tubercle bacillus M ycobacterium tuberculosis. Essential for viability and virulence, enzymes involved in the biosynthesis of mycolic acids represent novel targets for drug development. This is particularly relevant to the impact on global health given the rise of multidrug resistant and extensively drug resistant strains of M . tuberculosis. In this review, we discuss recent advances in our understanding of how mycolic acid are synthesised, especially the potential role of specialised fatty acid synthase complexes. Also, we examine the role of a recently reported mycolic acid transporter MmpL3 with reference to several reports of the targeting of this transporter by diverse compounds with anti‐M . tuberculosis activity. Additionally, we consider recent findings that place mycolic acid biosynthesis in the context of the cell biology of the bacterium, viz its localisation and co‐ordination with the bacterial cytoskeleton, and its role beyond maintaining cell envelope integrity. PMID:26135034

  20. Olfactory abnormalities in temporal lobe epilepsy.

    PubMed

    Desai, M; Agadi, J B; Karthik, N; Praveenkumar, S; Netto, A B

    2015-10-01

    We studied olfactory function in a cohort of 25 temporal lobe epilepsy (TLE) patients and 25 healthy controls. Our objectives were to measure olfactory acuity in patients with right, left or bilateral TLE and compare them with age and sex matched controls, and to correlate olfactory acuity with duration of seizure, baseline seizure control and the number of drugs used. Olfactory impairment is common in neurological disorders and dysfunction of the temporo-limbic neural substrates involved in olfactory perception is noted in TLE. We measured olfactory acuity in 25 patients with TLE, nine with right, 10 with left and six with bilateral temporal lobe seizure activity, and compared them to the controls. Odor identification was assessed using the University of Pennsylvania Smell Identification Test (UPSIT) which is a 40 item olfactory test used to diagnose olfactory deficits. Our results showed that patients with TLE exhibited significant impairment in UPSIT performance compared to the controls. There was no significant difference in scores between the right and left TLE patients. The severity of olfactory impairment did not correlate with the duration of seizures, baseline seizure control and number of drugs used. We concluded that significant olfactory impairment is seen in both right and left TLE patients, unrelated to the duration and baseline frequency of seizures or drugs used. PMID:26149406

  1. Olfactory dysfunction, olfactory bulb pathology and urban air pollution

    PubMed Central

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Osnaya, Norma; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Herritt, Lou; Brooks, Diane; Keefe, Sheyla; Palacios-Moreno, Juan; Villarreal-Calderon, Rodolfo; Torres-Jardón, Ricardo; Medina-Cortina, Humberto; Delgado-Chávez, Ricardo; Aiello-Mora, Mario; Maronpot, Robert R.; Doty, Richard L

    2010-01-01

    Mexico City (MC) residents are exposed to severe air pollution and exhibit olfactory bulb inflammation. We compared the olfactory function of individuals living under conditions of extreme air pollution to that of controls from a relatively clean environment and explore associations between olfaction scores, apolipoprotein E (APOE) status, and pollution exposure. The olfactory bulbs (OBs) of 35 MC and 9 controls 20.8 ± 8.5 y were assessed by light and electron microscopy. The University of Pennsylvania Smell Identification Test (UPSIT) was administered to 62 MC / 25 controls 21.2 ±2.7 y. MC subjects had significantly lower UPSIT scores: 34.24 ± 0.42 versus controls 35.76 ± 0.40, p=0.03. Olfaction deficits were present in 35.5% MC and 12% of controls. MC APOE ε 4 carriers failed 2.4 ± 0.54 items in the 10-item smell identification scale from the UPSIT related to Alzheimer's disease, while APOE 2/3 and 3/3 subjects failed 1.36 ± 0.16 items, p = 0.01. MC residents exhibited OB endothelial hyperplasia, neuronal accumulation of particles (2/35), and immunoreactivity to beta amyloid βA42 (29/35) and/or α-synuclein (4/35) in neurons, glial cells and/or blood vessels. Ultrafine particles were present in OBs endothelial cytoplasm and basement membranes. Control OBs were unremarkable. Air pollution exposure is associated with olfactory dysfunction and OB pathology, APOE 4 may confer greater susceptibility to such abnormalities, and ultrafine particles could play a key role in the OB pathology. This study contributes to our understanding of the influences of air pollution on olfaction and its potential contribution to neurodegeneration. PMID:19297138

  2. Profiling of olfactory receptor gene expression in whole human olfactory mucosa.

    PubMed

    Verbeurgt, Christophe; Wilkin, Françoise; Tarabichi, Maxime; Gregoire, Françoise; Dumont, Jacques E; Chatelain, Pierre

    2014-01-01

    Olfactory perception is mediated by a large array of olfactory receptor genes. The human genome contains 851 olfactory receptor gene loci. More than 50% of the loci are annotated as nonfunctional due to frame-disrupting mutations. Furthermore haplotypic missense alleles can be nonfunctional resulting from substitution of key amino acids governing protein folding or interactions with signal transduction components. Beyond their role in odor recognition, functional olfactory receptors are also required for a proper targeting of olfactory neuron axons to their corresponding glomeruli in the olfactory bulb. Therefore, we anticipate that profiling of olfactory receptor gene expression in whole human olfactory mucosa and analysis in the human population of their expression should provide an opportunity to select the frequently expressed and potentially functional olfactory receptors in view of a systematic deorphanization. To address this issue, we designed a TaqMan Low Density Array (Applied Biosystems), containing probes for 356 predicted human olfactory receptor loci to investigate their expression in whole human olfactory mucosa tissues from 26 individuals (13 women, 13 men; aged from 39 to 81 years, with an average of 67±11 years for women and 63±12 years for men). Total RNA isolation, DNase treatment, RNA integrity evaluation and reverse transcription were performed for these 26 samples. Then 384 targeted genes (including endogenous control genes and reference genes specifically expressed in olfactory epithelium for normalization purpose) were analyzed using the same real-time reverse transcription PCR platform. On average, the expression of 273 human olfactory receptor genes was observed in the 26 selected whole human olfactory mucosa analyzed, of which 90 were expressed in all 26 individuals. Most of the olfactory receptors deorphanized to date on the basis of sensitivity to known odorant molecules, which are described in the literature, were found in the

  3. Profiling of Olfactory Receptor Gene Expression in Whole Human Olfactory Mucosa

    PubMed Central

    Tarabichi, Maxime; Gregoire, Françoise; Dumont, Jacques E.; Chatelain, Pierre

    2014-01-01

    Olfactory perception is mediated by a large array of olfactory receptor genes. The human genome contains 851 olfactory receptor gene loci. More than 50% of the loci are annotated as nonfunctional due to frame-disrupting mutations. Furthermore haplotypic missense alleles can be nonfunctional resulting from substitution of key amino acids governing protein folding or interactions with signal transduction components. Beyond their role in odor recognition, functional olfactory receptors are also required for a proper targeting of olfactory neuron axons to their corresponding glomeruli in the olfactory bulb. Therefore, we anticipate that profiling of olfactory receptor gene expression in whole human olfactory mucosa and analysis in the human population of their expression should provide an opportunity to select the frequently expressed and potentially functional olfactory receptors in view of a systematic deorphanization. To address this issue, we designed a TaqMan Low Density Array (Applied Biosystems), containing probes for 356 predicted human olfactory receptor loci to investigate their expression in whole human olfactory mucosa tissues from 26 individuals (13 women, 13 men; aged from 39 to 81 years, with an average of 67±11 years for women and 63±12 years for men). Total RNA isolation, DNase treatment, RNA integrity evaluation and reverse transcription were performed for these 26 samples. Then 384 targeted genes (including endogenous control genes and reference genes specifically expressed in olfactory epithelium for normalization purpose) were analyzed using the same real-time reverse transcription PCR platform. On average, the expression of 273 human olfactory receptor genes was observed in the 26 selected whole human olfactory mucosa analyzed, of which 90 were expressed in all 26 individuals. Most of the olfactory receptors deorphanized to date on the basis of sensitivity to known odorant molecules, which are described in the literature, were found in the

  4. Does iron deficiency anemia affect olfactory function?

    PubMed

    Dinc, Mehmet Emre; Dalgic, Abdullah; Ulusoy, Seckin; Dizdar, Denizhan; Develioglu, Omer; Topak, Murat

    2016-07-01

    Conclusion This study found a negative effect of IDA on olfactory function. IDA leads to a reduction in olfactory function, and decreases in hemoglobin levels result in further reduction in olfactory function. Objective This study examined the effects of iron-deficiency anemia (IDA) on olfactory function. Method The study enrolled 50 IDA patients and 50 healthy subjects. Olfactory function was evaluated using the Sniffin' Sticks olfactory test. The diagnosis of IDA was made according to World Health Organization (WHO) criteria. Results Patients with IDA had a significantly lower threshold, discrimination, and identification (TDI) value, and a lower threshold compared with the control group. However, there were no significant differences between the groups in terms of smell selectivity values. PMID:26963317

  5. [Olfactory dysfunction : Update on diagnosis and treatment].

    PubMed

    Kühn, M; Abolmaali, N; Smitka, M; Podlesek, D; Hummel, T

    2016-07-01

    Olfactory dysfunction is a common disorder, particularly in elderly people. From the etiologic point of view, we distinguish between sinunasal and non-sinunasal causes of dysosmia. As an important early symptom of neurodegenerative disease, dysosmia is particularly relevant in the diagnosis of Parkinson's or Alzheimer's disease. In addition to complete ENT examination and olfactory testing, e.g., with "Sniffin' Sticks", modern imaging procedures, e. g. MRI, are becoming more and more important for diagnostics, prognosis, and treatment decisions. Olfactory testing in children needs to be adapted to their shorter concentration span and limited range of known olfactory stimuli. Depending on the etiology, olfactory training, antiphlogistic measures, and surgical procedures are most promising. In cases of intracranial causes of dysosmia, neurosurgeons should know and respect anatomic structures of the olfactory signal pathway, not least for long-term prognosis. PMID:27364339

  6. Olfactory neuroblastoma: A case report

    PubMed Central

    USLU, GONCA HANEDAN; CANYILMAZ, EMINE; ZENGIN, AHMET YASAR; MUNGAN, SEVDEGUL; YONEY, ADNAN; BAHADIR, OSMAN; GOCMEZ, HUSEYIN

    2015-01-01

    Olfactory neuroblastoma (ON) is a rare type of malignant neoplasm originating from the olfactory neuroepithelial cells of the nasal cavity. ON is also known as esthesioneuroblastoma or neuroendocrine carcinoma. The malignancy accounts for <3% of tumors originating in the nasal cavity. Through the nasal cavity, ON may infiltrate the sinuses, the orbit and the cranium. The tumor is characterized by a pattern of slow growth and local recurrences. Treatment options are surgical excision or surgery combined with a radiotherapy (RT) and/or chemotherapy combination treatment. The present study reports the case of a 69-year-old patient with a mass in the nasal cavity who was treated by combined surgical excision and RT. The literature for ON and the treatment of the tumor are also discussed. PMID:26788185

  7. Role of Centrifugal Projections to the Olfactory Bulb in Olfactory Processing

    ERIC Educational Resources Information Center

    Kiselycznyk, Carly L.; Zhang, Steven; Linster, Christine

    2006-01-01

    While there is evidence that feedback projections from cortical and neuromodulatory structures to the olfactory bulb are crucial for maintaining the oscillatory dynamics of olfactory bulb processing, it is not clear how changes in dynamics are related to odor perception. Using electrical lesions of the olfactory peduncle, sparing output from the…

  8. [Subjective assessment of olfactory function].

    PubMed

    Evren, Cenk; Yiğit, Volkan Bilge; Çınar, Fikret

    2015-01-01

    Of the five senses, the sense of smell is the most complex and unique in structure and organization. As diagnostic and therapeutic modalities are often underdeveloped, the sense of smell has been inadequately studied. Olfactory disorders may result from benign pathologies such as sinusitis as well as several diseases including Parkinson's disease, temporal lobe epilepsy, schizophrenia and Alzheimer disease. In this article, we aim to instruct the otorhinolaryngology specialists and residents regarding the tests which measure odor subjectively. PMID:25934410

  9. Cytokines and olfactory bulb microglia in response to bacterial challenge in the compromised primary olfactory pathway

    PubMed Central

    2012-01-01

    Background The primary olfactory pathway is a potential route through which microorganisms from the periphery could potentially access the central nervous system. Our previous studies demonstrated that if the olfactory epithelium was damaged, bacteria administered into the nasal cavity induced nitric oxide production in olfactory ensheathing cells. This study investigates the cytokine profile of olfactory tissues as a consequence of bacterial challenge and establishes whether or not the bacteria are able to reach the olfactory bulb in the central nervous system. Methods The olfactory epithelium of C57BL/6 mice was damaged by unilateral Triton X-100 nasal washing, and Staphylococcus aureus was administered ipsilaterally 4 days later. Olfactory mucosa and bulb were harvested 6 h, 24 h and 5 days after inoculation and their cytokine profile compared to control tissues. The fate of S. aureus and the response of bulbar microglia were examined using fluorescence microscopy and transmission electron microscopy. Results In the olfactory mucosa, administered S. aureus was present in supporting cells of the olfactory epithelium, and macrophages and olfactory nerve bundles in the lamina propria. Fluorescein isothiocyanate-conjugated S. aureus was observed within the olfactory mucosa and bulb 6 h after inoculation, but remained restricted to the peripheral layers up to 5 days later. At the 24-h time point, the level of interleukin-6 (IL-6) and tumour necrosis factor-α in the compromised olfactory tissues challenged with bacteria (12,466 ± 956 pg/ml and 552 ± 193 pg/ml, respectively) was significantly higher than that in compromised olfactory tissues alone (6,092 ± 1,403 pg/ml and 80 ± 2 pg/ml, respectively). Immunohistochemistry confirmed that IL-6 was present in several cell types including olfactory ensheathing cells and mitral cells of the olfactory bulb. Concurrently, there was a 4.4-, 4.5- and 2.8-fold increase in the density of i

  10. [Olfactory disorders – history, classification and implications].

    PubMed

    Welge-Lüssen, Antje

    2016-01-01

    Smell disorders are common and can be found in 3 – 5 % of the population under 65 years. With growing age these numbers increase up to 50 % and more. Qualitative disorders which cannot be measured are differentiated from quantitative disorders. Self-assessment of olfactory function is rather poor therefore olfactory testing is mandatory in cases of patients complaining about an olfactory disorder. Olfactory screening smell tests are available for orientation, however, for detailed testing or in cases of a pathological screening test an extensive psychophysical olfactory test battery such as the Sniffin' Sticks Test battery should be used. According to the result of the test battery olfactory function can be qualified as norm, hyp- or anosmic. Additionally, in cases of medicolegal questions, olfactory evoked potentials can be recorded. Smell disorders are classified according to the history, clinical and endoscopic examination of the nose. Imaging techniques such as magnetic resonance imaging (MRI) or computertomography may contribute to classify the disorder. Sinunasal olfactory disorders are considered to be the most common ones. If the etiology remains unclear a neurological examination has to be performed in order to rule out a concomitant neurodegenerative disease. Olfactory disorders in the elderly might have to be considered as a sign of a reduced regeneration capacity in general being depicted in an increase in overall mortality in affected subjects. PMID:27132644

  11. Human olfactory receptor responses to odorants

    PubMed Central

    Mainland, Joel D; Li, Yun R; Zhou, Ting; Liu, Wen Ling L; Matsunami, Hiroaki

    2015-01-01

    Although the human olfactory system is capable of discriminating a vast number of odors, we do not currently understand what chemical features are encoded by olfactory receptors. In large part this is due to a paucity of data in a search space covering the interactions of hundreds of receptors with billions of odorous molecules. Of the approximately 400 intact human odorant receptors, only 10% have a published ligand. Here we used a heterologous luciferase assay to screen 73 odorants against a clone library of 511 human olfactory receptors. This dataset will allow other researchers to interrogate the combinatorial nature of olfactory coding. PMID:25977809

  12. Sleep and olfactory cortical plasticity

    PubMed Central

    Barnes, Dylan C.; Wilson, Donald A.

    2014-01-01

    In many systems, sleep plays a vital role in memory consolidation and synaptic homeostasis. These processes together help store information of biological significance and reset synaptic circuits to facilitate acquisition of information in the future. In this review, we describe recent evidence of sleep-dependent changes in olfactory system structure and function which contribute to odor memory and perception. During slow-wave sleep, the piriform cortex becomes hypo-responsive to odor stimulation and instead displays sharp-wave activity similar to that observed within the hippocampal formation. Furthermore, the functional connectivity between the piriform cortex and other cortical and limbic regions is enhanced during slow-wave sleep compared to waking. This combination of conditions may allow odor memory consolidation to occur during a state of reduced external interference and facilitate association of odor memories with stored hedonic and contextual cues. Evidence consistent with sleep-dependent odor replay within olfactory cortical circuits is presented. These data suggest that both the strength and precision of odor memories is sleep-dependent. The work further emphasizes the critical role of synaptic plasticity and memory in not only odor memory but also basic odor perception. The work also suggests a possible link between sleep disturbances that are frequently co-morbid with a wide range of pathologies including Alzheimer’s disease, schizophrenia and depression and the known olfactory impairments associated with those disorders. PMID:24795585

  13. Zuckerkandl tubercle in thyroid surgery: Is it a reality or a myth?

    PubMed Central

    Irkorucu, Oktay

    2016-01-01

    Background Zuckerkandl tubercle (ZT) is a lateral projection from the lateral thyroid lobe which is a constant landmark for finding the recurrent laryngeal nerve during thyroid surgery. It is the condensed thyroid parenchyma located in the cricothyroid junction. Even today, ZT and its relationship with recurrent laryngeal nerve (RLN) is not well known by all surgeons. The objectives of the present study were to find out the incidence of ZT in our thyroidectomies and to investigate whether the ZT has a relationship with RLN. We also discussed how to prevent RLN injury during thyroidectomy. Materials and methods One hundred operations were performed by the same surgeon included in this study. All operations performed with intraoperative neuromonitorization (IONM) for proving the visualization of RLN. In each patient, particularly the ZT and its relationship with RLN searched and recorded. We also analyzed the patients in terms of sex, age, clinical diagnosis, and types of performed operations. Results In 100 operations, 173 thyroid lobectomies were considered. 87 of these lobectomies were in right side and 86 in left side. The ZT was determined in 127 of 173 (73.41%) lobectomies. ZT was detected in 68 (78.16%) of right thyroid lobes whereas in 59 (68.60%) of left thyroid lobes. We observed that the ZT was detected more frequently in the right side. In 115 (90.55%) of these occasions, the recurrent nerve was directed upwards covered by the ZT. Conclusions If it is present, ZT is a real constant landmark pointing to the RLN. In order to find and protect RLN during thyroid surgery, a careful, bloodless, and meticulous dissection should be carried out around the ZT. Although our results are encouraging, further researches are still needed on this topic. PMID:27144005

  14. Relevance of Whitnall's tubercle and auditory meatus in diagnosing exclusions during skull-photo superimposition.

    PubMed

    Jayaprakash, Paul T; Hashim, Natassha; Yusop, Ridzuan Abd Aziz Mohd

    2015-08-01

    Video vision mixer based skull-photo superimposition is a popular method for identifying skulls retrieved from unidentified human remains. A report on the reliability of the superimposition method suggested increased failure rates of 17.3 to 32% to exclude and 15 to 20% to include skulls while using related and unrelated face photographs. Such raise in failures prompted an analysis of the methods employed for the research. The protocols adopted for assessing the reliability are seen to vary from those suggested by the practitioners in the field. The former include overlaying the skull- and face-images on the basis of morphology by relying on anthropometric landmarks on the front plane of the face-images and evaluating the goodness of match depending on mix-mode images; the latter consist of orienting the skull considering landmarks on both the eye and ear planes of the face- and skull-images and evaluating the match utilizing images seen in wipe-mode in addition to those in mix-mode. Superimposition of a skull with face-images of five living individuals in two sets of experiments, one following the procedure described for the research on reliability and the other applying the methods suggested by the practitioners has shown that overlaying the images on the basis of morphology depending on the landmarks on the front plane alone and assessing the match in mix-mode fails to exclude the skull. However, orienting the skull relying on the relationship between the anatomical landmarks on the skull- and face-images such as Whitnall's tubercle and exocanthus in the front (eye) plane and the porion and tragus in the rear (ear) plane as well as assessing the match using wipe-mode images enables excluding that skull while superimposing with the same set of face-images. PMID:26103927

  15. Effects of systemic L-tyrosine on dopamine release from rat corpus striatum and nucleus accumbens

    NASA Technical Reports Server (NTRS)

    During, Matthew J.; Acworth, Ian N.; Wurtman, Richard J.

    1988-01-01

    Intracerebral dialysis was used to monitor extracellular fluid from rat striatum and nucleus accumbens following the intraperitoneal administration of tyrosine. Dopamine concentrations in dialysates from both the striatum and the nucleus accumbens increased significantly in response to the tyrosine. The magnitude of the tyrosine effect was greater in the nucleus accumbens than in the striatum. Hence, mesolimbic dopaminergic neurons may be especially responsive to precursor availability.

  16. Relief memory consolidation requires protein synthesis within the nucleus accumbens.

    PubMed

    Bruning, Johann E A; Breitfeld, Tino; Kahl, Evelyn; Bergado-Acosta, Jorge R; Fendt, Markus

    2016-06-01

    Relief learning refers to the association of a stimulus with the relief from an aversive event. The thus-learned relief stimulus then can induce, e.g., an attenuation of the startle response or approach behavior, indicating positive valence. Previous studies revealed that the nucleus accumbens is essential for the acquisition and retrieval of relief memory. Here, we ask whether the nucleus accumbens is also the brain site for consolidation of relief memory into a long-term form. In rats, we blocked local protein synthesis within the nucleus accumbens by local infusions of anisomycin at different time points during a relief conditioning experiment. Accumbal anisomycin injections immediately after the relief conditioning session, but not 4 h later, prevented the consolidation into long-term relief memory. The retention of already consolidated relief memory was not affected by anisomycin injections. This identifies a time window and site for relief memory consolidation. These findings should complement our understanding of the full range of effects of adverse experiences, including cases of their distortion in humans such as post-traumatic stress disorder and/or phobias. PMID:26792192

  17. Left nucleus accumbens atrophy in deficit schizophrenia: A preliminary study.

    PubMed

    De Rossi, Pietro; Dacquino, Claudia; Piras, Fabrizio; Caltagirone, Carlo; Spalletta, Gianfranco

    2016-08-30

    A question that remains to be answered is whether schizophrenia can be characterized by a single etiopathophysiology or whether separate sub-syndromes should be differentiated to define specific mechanisms for each sub-type. Individuals affected by the deficit subtype of schizophrenia (DSZ) display avolitional/amotivational features that respond poorly to conventional treatments. Characterizing DSZ from a neuroanatomical point of view may help clarify this issue and develop new treatment strategies. To determine if DSZ is associated with structural alterations in specific deep grey matter structures linked to its key clinical features, 22 DSZ patients, 22 non-deficit schizophrenia (NDSZ) patients and 22 healthy controls (HC) were recruited for a case-control cross-sectional study. High-resolution magnetic resonance imaging was performed in all subjects and volumes of deep grey matter structures were measured using FreeSurfer. DSZ patients displayed smaller left accumbens volumes compared to both NDSZ patients and HC. Moreover, age and duration of illness were significantly associated with lower volume of the left accumbens in DSZ but not in NDSZ. Findings indicate that DSZ is associated with lower volume of the nucleus accumbens in the dominant hemisphere. This is consistent with the psychopathological features and functional impairments present in DSZ and thus indicates a potential mechanism. PMID:27322868

  18. Recognition of Chewing Behavior from Electroencephalogram Recorded in the Rat's Nucleus Accumbens.

    PubMed

    Shao, Xiaozhuo; Zhang, Hengyi; Zheng, Xiaoxiang

    2005-01-01

    Nucleus accumbens is used to be considered as the interface to motor nerve system. In this paper, our object is to study the relationship between the electro-activity of neurons in nucleus accumbens and the rat-behavior. We recorded neurons action potentials with multichannel microelectrodes, which were chronically implanted in a rat's nucleus accumbens, during rats-chewing behavior. Through digital signal processing, we found significant features associated with the chewing activity and we could recognize the chewing behavior easily from the electroencephalogram with these features. This study suggests that neurons action potentials in a nucleus accumbens are activated by specific animal actions. PMID:17282644

  19. Topographic organization and possible function of the posterior optic tubercles in the brain of the desert locust Schistocerca gregaria.

    PubMed

    Beetz, M Jerome; El Jundi, Basil; Heinze, Stanley; Homberg, Uwe

    2015-08-01

    Migrating desert locusts, Schistocerca gregaria, are able to use the skylight polarization pattern for navigation. They detect polarized light with a specialized dorsal rim area in their compound eye. After multistage processing, polarization signals are transferred to the central complex, a midline-spanning brain area involved in locomotor control. Polarization-sensitive tangential neurons (TB-neurons) of the protocerebral bridge, a part of the central complex, give rise to a topographic arrangement of preferred polarization angles in the bridge, suggesting that the central complex acts as an internal sky compass. TB-neurons connect the protocerebral bridge with two adjacent brain areas, the posterior optic tubercles. To analyze the polarotopic organization of the central complex further, we investigated the number and morphologies of TB-neurons and the presence and colocalization of three neuroactive substances in these neurons. Triple immunostaining with antisera against Diploptera punctata allatostatin (Dip-AST), Manduca sexta allatotropin (Mas-AT), and serotonin (5HT) raised in the same host species revealed three spatially distinct TB-neuron clusters, each consisting of 10 neurons per hemisphere: cluster 1 and 3 showed Dip-AST/5HT immunostaining, whereas cluster 2 showed Dip-AST/Mas-AT immunostaining. Five subtypes of TB-neuron could be distinguished based on ramification patterns. Corresponding to ramification domains in the protocerebral bridge, the neurons invaded distinct but overlapping layers within the posterior optic tubercle. Similarly, neurons interconnecting the tubercles of the two hemispheres also targeted distinct layers of these neuropils. From these data we propose a neuronal circuit that may be suited to stabilize the internal sky compass in the central complex of the locust. PMID:25557150

  20. Olfactory Receptor Neuron Dysfunction in Schizophrenia

    PubMed Central

    Turetsky, Bruce I; Hahn, Chang-Gyu; Arnold, Steven E; Moberg, Paul J

    2012-01-01

    Olfactory impairments are a common feature of schizophrenia. Impairments in odor detection and odor identification are present early in the course of illness and among those at risk for the disorder. These behavioral impairments have been linked to both physiological and anatomical abnormalities in the neural substrates subserving olfaction, including relatively peripheral elements of the olfactory system. The location of olfactory receptor neurons in the nasal epithelium allows noninvasive access to these neurons in living subjects. This offers a unique opportunity to directly assess neuronal integrity in vivo in patients. The peripheral olfactory receptor neuron response to odor stimulation was assessed in 21 schizophrenia patients and 18 healthy comparison subjects. The electroolfactogram, representing the electrical depolarization of the olfactory receptor neurons, was recording following stimulation with different doses and durations of hydrogen sulfide, a pure olfactory nerve stimulant. Schizophrenia patients had abnormally large depolarization responses following odor stimulation, independent of clinical symptomatology, antipsychotic medication dosage or smoking history. Although the precise pathophysiological mechanism is unknown, this olfactory receptor neuron abnormality is consistent with several lines of evidence suggesting altered proliferation or maturation of olfactory receptor neuron cell lineages in schizophrenia. It is also consistent with emerging evidence of disruptions of cyclic AMP-mediated intracellular signaling mechanisms, and may be a marker of these disruptions. It unambiguously demonstrates that neurophysiological disturbances in schizophrenia are not limited to cortical and subcortical structures, but rather include even the most peripheral sensory neurons. PMID:18754006

  1. Olfactory receptor neuron dysfunction in schizophrenia.

    PubMed

    Turetsky, Bruce I; Hahn, Chang-Gyu; Arnold, Steven E; Moberg, Paul J

    2009-02-01

    Olfactory impairments are a common feature of schizophrenia. Impairments in odor detection and odor identification are present early in the course of illness and among those at risk for the disorder. These behavioral impairments have been linked to both physiological and anatomical abnormalities in the neural substrates subserving olfaction, including relatively peripheral elements of the olfactory system. The location of olfactory receptor neurons in the nasal epithelium allows noninvasive access to these neurons in living subjects. This offers a unique opportunity to directly assess neuronal integrity in vivo in patients. The peripheral olfactory receptor neuron response to odor stimulation was assessed in 21 schizophrenia patients and 18 healthy comparison subjects. The electroolfactogram, representing the electrical depolarization of the olfactory receptor neurons, was recording following stimulation with different doses and durations of hydrogen sulfide, a pure olfactory nerve stimulant. Schizophrenia patients had abnormally large depolarization responses following odor stimulation, independent of clinical symptomatology, antipsychotic medication dosage or smoking history. Although the precise pathophysiological mechanism is unknown, this olfactory receptor neuron abnormality is consistent with several lines of evidence suggesting altered proliferation or maturation of olfactory receptor neuron cell lineages in schizophrenia. It is also consistent with emerging evidence of disruptions of cyclic AMP-mediated intracellular signaling mechanisms, and may be a marker of these disruptions. It unambiguously demonstrates that neurophysiological disturbances in schizophrenia are not limited to cortical and subcortical structures, but rather include even the most peripheral sensory neurons. PMID:18754006

  2. Olfactory epithelium changes in germfree mice

    PubMed Central

    François, Adrien; Grebert, Denise; Rhimi, Moez; Mariadassou, Mahendra; Naudon, Laurent; Rabot, Sylvie; Meunier, Nicolas

    2016-01-01

    Intestinal epithelium development is dramatically impaired in germfree rodents, but the consequences of the absence of microbiota have been overlooked in other epithelia. In the present study, we present the first description of the bacterial communities associated with the olfactory epithelium and explored differences in olfactory epithelium characteristics between germfree and conventional, specific pathogen-free, mice. While the anatomy of the olfactory epithelium was not significantly different, we observed a thinner olfactory cilia layer along with a decreased cellular turn-over in germfree mice. Using electro-olfactogram, we recorded the responses of olfactory sensitive neuronal populations to various odorant stimulations. We observed a global increase in the amplitude of responses to odorants in germfree mice as well as altered responses kinetics. These changes were associated with a decreased transcription of most olfactory transduction actors and of olfactory xenobiotic metabolising enzymes. Overall, we present here the first evidence that the microbiota modulates the physiology of olfactory epithelium. As olfaction is a major sensory modality for most animal species, the microbiota may have an important impact on animal physiology and behaviour through olfaction alteration. PMID:27089944

  3. Detection of explosives by olfactory sensory neurons.

    PubMed

    Corcelli, Angela; Lobasso, Simona; Lopalco, Patrizia; Dibattista, Michele; Araneda, Ricardo; Peterlin, Zita; Firestein, Stuart

    2010-03-15

    The response of olfactory sensory neurons to TNT and RDX as well as to some volatile organic compounds present in the vapors of antipersonnel landmines has been studied both in the pig and in the rat. GC/MS analyses of different plastic components of six different kinds of landmines were performed in order to identify the components of the "perfume" of mines. Studies on rat olfactory mucosa were carried out with electro-olfactogram and calcium imaging techniques, while changes in the cyclic adenosine monophosphate (cAMP) levels following exposure to odorants and explosives were used as a criterion to evaluate the interaction of TNT and RDX with olfactory receptors in a preparation of isolated pig olfactory cilia. These studies indicate that chemical compounds associated with explosives and explosive devices can activate mammalian olfactory receptors. PMID:19913995

  4. Olfactory Neuroblastoma: A Case Report.

    PubMed

    Olmo, Heather R; Stokes, Steven Marc; Foss, Robert D

    2016-06-01

    A 43-year-old female presented with persistent nasal congestion with intermittent epistaxis without resolution for the preceding 5 years. Clinical examination revealed a large pink rubbery mass, medial to the middle turbinate in the right nasal cavity extending to the choana. Radiographic images demonstrated a heterogeneously enhancing lobular soft tissue mass filling the right nasal cavity, causing lateral bowing of the right medial orbital wall and extending posteriorly to the right anterior ethmoid sinus. The clinical, radiographic, histologic, and immunohistochemical features of olfactory neuroblastoma are discussed. PMID:26316323

  5. 21 CFR 874.1600 - Olfactory test device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1600 Olfactory test device. (a) Identification. An olfactory test device is used to determine whether an olfactory loss is present. The device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Olfactory test device. 874.1600 Section...

  6. 21 CFR 874.1600 - Olfactory test device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1600 Olfactory test device. (a) Identification. An olfactory test device is used to determine whether an olfactory loss is present. The device... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Olfactory test device. 874.1600 Section...

  7. A Closer Look at Acid-Base Olfactory Titrations

    ERIC Educational Resources Information Center

    Neppel, Kerry; Oliver-Hoyo, Maria T.; Queen, Connie; Reed, Nicole

    2005-01-01

    Olfactory titrations using raw onions and eugenol as acid-base indicators are reported. An in-depth investigation on olfactory titrations is presented to include requirements for potential olfactory indicators and protocols for using garlic, onions, and vanillin as acid-base olfactory indicators are tested.

  8. Neuromodulation of Olfactory Sensitivity in the Peripheral Olfactory Organs of the American Cockroach, Periplaneta americana

    PubMed Central

    Jung, Je Won; Kim, Jin-Hee; Pfeiffer, Rita; Ahn, Young-Joon; Page, Terry L.; Kwon, Hyung Wook

    2013-01-01

    Olfactory sensitivity exhibits daily fluctuations. Several studies have suggested that the olfactory system in insects is modulated by both biogenic amines and neuropeptides. However, molecular and neural mechanisms underlying olfactory modulation in the periphery remain unclear since neuronal circuits regulating olfactory sensitivity have not been identified. Here, we investigated the structure and function of these signaling pathways in the peripheral olfactory system of the American cockroach, Periplaneta americana, utilizing in situ hybridization, qRT-PCR, and electrophysiological approaches. We showed that tachykinin was co-localized with the octopamine receptor in antennal neurons located near the antennal nerves. In addition, the tachykinin receptor was found to be expressed in most of the olfactory receptor neurons in antennae. Functionally, the effects of direct injection of tachykinin peptides, dsRNAs of tachykinin, tachykinin receptors, and octopamine receptors provided further support for the view that both octopamine and tachykinin modulate olfactory sensitivity. Taken together, these findings demonstrated that octopamine and tachykinin in antennal neurons are olfactory regulators in the periphery. We propose here the hypothesis that octopamine released from neurons in the brain regulates the release of tachykinin from the octopamine receptor neurons in antennae, which in turn modulates the olfactory sensitivity of olfactory receptor neurons, which house tachykinin receptors. PMID:24244739

  9. Preliminary Modeling and Simulation Study on Olfactory Cell Sensation

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Yang, Wei; Chen, Peihua; Liu, Qingjun; Wang, Ping

    2009-05-01

    This paper introduced olfactory sensory neuron's whole-cell model with a concrete voltage-gated ionic channels and simulation. Though there are many models in olfactory sensory neuron and olfactory bulb, it remains uncertain how they express the logic of olfactory information processing. In this article, the olfactory neural network model is also introduced. This model specifies the connections among neural ensembles of the olfactory system. The simulation results of the neural network model are consistent with the observed olfactory biological characteristics such as 1/f-type power spectrum and oscillations.

  10. Preliminary Modeling and Simulation Study on Olfactory Cell Sensation

    SciTech Connect

    Zhou Jun; Chen Peihua; Liu Qingjun; Wang Ping; Yang Wei

    2009-05-23

    This paper introduced olfactory sensory neuron's whole-cell model with a concrete voltage-gated ionic channels and simulation. Though there are many models in olfactory sensory neuron and olfactory bulb, it remains uncertain how they express the logic of olfactory information processing. In this article, the olfactory neural network model is also introduced. This model specifies the connections among neural ensembles of the olfactory system. The simulation results of the neural network model are consistent with the observed olfactory biological characteristics such as 1/f-type power spectrum and oscillations.

  11. Bacterial community of iron tubercles from a drinking water distribution system and its occurrence in stagnant tap water.

    PubMed

    Chen, Lu; Jia, Rui-Bao; Li, Li

    2013-07-01

    Bacteria in drinking water distribution systems can cause deterioration of the water quality, and the microbial quality of tap water is closely related to consumer health. In the present study, the potential effects of bacteria attached to cast iron pipes on tap water in a distribution system were investigated. Comparison of the bacterial community composition of pipe tubercles with that of stagnant tap water samples based on a denaturing gradient gel electrophoresis analysis of the 16S rRNA gene revealed that the communities were related. Specifically, the main bacterial members were identical to each other. The bacterial community was found to be dominated by Firmicutes, Actinobacteria, and Proteobacteria, which included Rhizobium, Pseudomonas, Lactococcus, Brevundimonas, Rheinheimera, Arthrobacter, Bacillus, and Herbaspirillum. Heterotrophic bacteria proliferation was observed during the period of stagnation, followed by a decrease of assimilable organic carbon and a slight increase of microbially available phosphorus. These findings indicated that the regrowth of bacteria might be boosted by the release of nutrients such as phosphorus from the pipe walls, as well as the decline of residual chlorine during stagnation. Inorganic contaminants at low levels, including Al, Mn, Zn, Pb, Cr, Cu, and Ni, were detected in tubercles and were concentrated in particulates from tap water following the release of iron during stagnation. PMID:23702591

  12. Intracerebral transplantation of the genital tubercle in the rat: the fate of the penile bone and cartilages.

    PubMed Central

    Beresford, W A; Clayton, S P

    1977-01-01

    Genital tubercles of 70 newborn male and female rats were transplated into the brains of unrelated infant rats. Seven other tubercles were placed subcutaneously. All female, and some male, hosts were injected with testosterone propionate. After surviving from 2-24 days,, histological study of 49 successful grafts showed survival of the urethral and balano-preputial epithelia and growth of the preputial glands, which formed secretion-filled cysts and became the major component of the graft. The fate of the mesodermal tissues witin the glands varied between remaining in an undeveloped state, with only pale fibrouw tissue and an area of granular degeneration and giant cells, and achieving an incompletely differentiatel state in which erectile tissue and the anterior process of fibrocartilage had formed and the glans had grown but the penile bone and its secondary growth cartilage failed to appear. Grafts could reach this degree of differentiation of the glands irrespective of transplantation site, attachment to the host dura, the sex of donor or host, and whether or not male hosts were given exogenous hormone. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 PMID:870471

  13. The human olfactory receptor repertoire

    PubMed Central

    Zozulya, Sergey; Echeverri, Fernando; Nguyen, Trieu

    2001-01-01

    Background The mammalian olfactory apparatus is able to recognize and distinguish thousands of structurally diverse volatile chemicals. This chemosensory function is mediated by a very large family of seven-transmembrane olfactory (odorant) receptors encoded by approximately 1,000 genes, the majority of which are believed to be pseudogenes in humans. Results The strategy of our sequence database mining for full-length, functional candidate odorant receptor genes was based on the high overall sequence similarity and presence of a number of conserved sequence motifs in all known mammalian odorant receptors as well as the absence of introns in their coding sequences. We report here the identification and physical cloning of 347 putative human full-length odorant receptor genes. Comparative sequence analysis of the predicted gene products allowed us to identify and define a number of consensus sequence motifs and structural features of this vast family of receptors. A new nomenclature for human odorant receptors based on their chromosomal localization and phylogenetic analysis is proposed. We believe that these sequences represent the essentially complete repertoire of functional human odorant receptors. Conclusions The identification and cloning of all functional human odorant receptor genes is an important initial step in understanding receptor-ligand specificity and combinatorial encoding of odorant stimuli in human olfaction. PMID:11423007

  14. Human olfactory lateralization requires trigeminal activation.

    PubMed

    Croy, Ilona; Schulz, Max; Blumrich, Anna; Hummel, Cornelia; Gerber, Johannes; Hummel, Thomas

    2014-09-01

    Rats are able to lateralize odors. This ability involves specialized neurons in the orbitofrontal cortex which are able to process the left, right and bilateral presentation of stimuli. However, it is not clear whether this function is preserved in humans. Humans are in general not able to differentiate whether a selective olfactory stimulant has been applied to the left or right nostril; however exceptions have been reported. Following a screening of 152 individuals with an olfactory lateralization test, we identified 19 who could lateralize odors above chance level. 15 of these "lateralizers" underwent olfactory fMRI scanning in a block design and were compared to 15 controls matched for age and sex distribution. As a result, both groups showed comparable activation of olfactory eloquent brain areas. However, subjects with lateralization ability had a significantly enhanced activation of cerebral trigeminal processing areas (somatosensory cortex, intraparietal sulcus). In contrast to controls, lateralizers furthermore exhibited no suppression in the area of the trigeminal principal sensory nucleus. An exploratory study with an olfactory change detection paradigm furthermore showed that lateralizers oriented faster towards changes in the olfactory environment. Taken together, our study suggests that the trigeminal system is activated to a higher degree by the odorous stimuli in the group of "lateralizers". We conclude that humans are not able to lateralize odors based on the olfactory input alone, but vary in the degree to which the trigeminal system is recruited. PMID:24825502

  15. Neuropeptide Y in the olfactory microvillar cells.

    PubMed

    Montani, Giorgia; Tonelli, Simone; Elsaesser, Rebecca; Paysan, Jacques; Tirindelli, Roberto

    2006-07-01

    This paper examines a possible role of microvillar cells in coordinating cell death and regeneration of olfactory epithelial neurons. The olfactory neuroepithelium of mammals is a highly dynamic organ. Olfactory neurons periodically degenerate by apoptosis and as a consequence of chemical or physical damage. To compensate for this loss of cells, the olfactory epithelium maintains a lifelong ability to regenerate from a pool of resident multipotent stem cells. To assure functional continuity and histological integrity of the olfactory epithelium over a period of many decades, apoptosis and regeneration require to be precisely coordinated. Among the factors that have been implicated in mediating this regulation is the neuropeptide Y (NPY). Knockout mice that lack functional expression of this neurogenic peptide show defects in embryonic development of the olfactory epithelium and in its ability to regenerate in the adult. Here we show that, in postnatal olfactory epithelia, NPY is exclusively expressed by a specific population of microvillar cells. We previously characterized these cells as a novel type of putative chemosensory cells, which are provided with a phosphatidyl-inositol-mediated signal transduction cascade. Our findings allow for the first time to suggest that microvillar cells are involved in connecting apoptosis to neuronal regeneration by stimulus-induced release of NPY. PMID:16800866

  16. [Odor sensing system and olfactory display].

    PubMed

    Nakamoto, Takamichi

    2014-01-01

    In this review, an odor sensing system and an olfactory display are introduced into people in pharmacy. An odor sensing system consists of an array of sensors with partially overlapping specificities and pattern recognition technique. One of examples of odor sensing systems is a halitosis sensor which quantifies the mixture composition of three volatile sulfide compounds. A halitosis sensor was realized using a preconcentrator to raise sensitivity and an electrochemical sensor array to suppress the influence of humidity. Partial least squares (PLS) method was used to quantify the mixture composition. The experiment reveals that the sufficient accuracy was obtained. Moreover, the olfactory display, which present scents to human noses, is explained. A multi-component olfactory display enables the presentation of a variety of smells. The two types of multi-component olfactory display are described. The first one uses many solenoid valves with high speed switching. The valve ON frequency determines the concentration of the corresponding odor component. The latter one consists of miniaturized liquid pumps and a surface acoustic wave (SAW) atomizer. It enables the wearable olfactory display without smell persistence. Finally, the application of the olfactory display is demonstrated. Virtual ice cream shop with scents was made as a content of interactive art. People can enjoy harmony among vision, audition and olfaction. In conclusion, both odor sensing system and olfactory display can contribute to the field of human health care. PMID:24584010

  17. Characterization of a folate-induced hypermotility response after bilateral injection into the rat nucleus accumbens

    SciTech Connect

    Stephens, R.L. Jr.

    1986-01-01

    The objective of these studies was to pharmacologically characterize the mechanism responsible for a folate-induced stimulation of locomotor activity in rats after bilateral injection into the nucleus accumbens region of the brain. Folic acid (FA) and 5-formyltetrahydrofolic acid (FTHF) produced this hypermotility response after intra-accumbens injection, while other reduced folic acid derivatives dihydrofolic acid, tetrahydrofolic acid, and 5-methyltetrahydrofolic acid were ineffective. Studies were designed to determine the role of catecholamines in the nucleus accumbens in the folate-induced hypermotility response. The findings suggest that the folate-induced response is dependent on intact neuronal dopamine stores, and is mediated by stimulation of dopamine receptors of the nucleus accumbens. However the folates do not appear to enhance dopaminergic neutransmission. Thus, FA and FTHF were inefficient at 1 mM concentrations in stimulating /sup 3/H-dopamine release from /sup 3/H-dopamine preloaded nucleus accumbens slices or dopamine from endogenous stores. Pteroic acid, the chemical precursor of folic acid which lacks the glutamate moiety, was ineffective in producing a stimulation of locomotor activity after intra-accumbens injection. Since glutamate is an excitatory amino acid (EAA), compounds characterized as EAA receptor antagonists were utilized to determine if the folate-induced hypermotility response is mediated by activation of EAA receptors in the nucleus accumbens. These results suggest that activation of quisqualate receptors of the nucleus accumbens may mediate the folate-induced hypermotility response.

  18. Olfactory deposition of inhaled nanoparticles in humans

    PubMed Central

    Garcia, Guilherme J. M.; Schroeter, Jeffry D.; Kimbell, Julia S.

    2016-01-01

    Context Inhaled nanoparticles can migrate to the brain via the olfactory bulb, as demonstrated in experiments in several animal species. This route of exposure may be the mechanism behind the correlation between air pollution and human neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. Objectives This manuscript aims to (1) estimate the dose of inhaled nanoparticles that deposit in the human olfactory epithelium during nasal breathing at rest and (2) compare the olfactory dose in humans with our earlier dose estimates for rats. Materials and methods An anatomically-accurate model of the human nasal cavity was developed based on computed tomography scans. The deposition of 1–100 nm particles in the whole nasal cavity and its olfactory region were estimated via computational fluid dynamics (CFD) simulations. Our CFD methods were validated by comparing our numerical predictions for whole-nose deposition with experimental data and previous CFD studies in the literature. Results In humans, olfactory dose of inhaled nanoparticles is highest for 1–2 nm particles with approximately 1% of inhaled particles depositing in the olfactory region. As particle size grows to 100 nm, olfactory deposition decreases to 0.01% of inhaled particles. Discussion and conclusion Our results suggest that the percentage of inhaled particles that deposit in the olfactory region is lower in humans than in rats. However, olfactory dose per unit surface area is estimated to be higher in humans due to their larger minute volume. These dose estimates are important for risk assessment and dose-response studies investigating the neurotoxicity of inhaled nanoparticles. PMID:26194036

  19. Neuronal organization of olfactory bulb circuits

    PubMed Central

    Nagayama, Shin; Homma, Ryota; Imamura, Fumiaki

    2014-01-01

    Olfactory sensory neurons extend their axons solely to the olfactory bulb, which is dedicated to odor information processing. The olfactory bulb is divided into multiple layers, with different types of neurons found in each of the layers. Therefore, neurons in the olfactory bulb have conventionally been categorized based on the layers in which their cell bodies are found; namely, juxtaglomerular cells in the glomerular layer, tufted cells in the external plexiform layer, mitral cells in the mitral cell layer, and granule cells in the granule cell layer. More recently, numerous studies have revealed the heterogeneous nature of each of these cell types, allowing them to be further divided into subclasses based on differences in morphological, molecular, and electrophysiological properties. In addition, technical developments and advances have resulted in an increasing number of studies regarding cell types other than the conventionally categorized ones described above, including short-axon cells and adult-generated interneurons. Thus, the expanding diversity of cells in the olfactory bulb is now being acknowledged. However, our current understanding of olfactory bulb neuronal circuits is mostly based on the conventional and simplest classification of cell types. Few studies have taken neuronal diversity into account for understanding the function of the neuronal circuits in this region of the brain. This oversight may contribute to the roadblocks in developing more precise and accurate models of olfactory neuronal networks. The purpose of this review is therefore to discuss the expanse of existing work on neuronal diversity in the olfactory bulb up to this point, so as to provide an overall picture of the olfactory bulb circuit. PMID:25232305

  20. Unraveling Cajal's view of the olfactory system

    PubMed Central

    Figueres-Oñate, María; Gutiérrez, Yolanda; López-Mascaraque, Laura

    2014-01-01

    The olfactory system has a highly regular organization of interconnected synaptic circuits from the periphery. It is therefore an excellent model for understanding general principles about how the brain processes information. Cajal revealed the basic cell types and their interconnections at the end of the XIX century. Since his original descriptions, the observation and analysis of the olfactory system and its components represents a major topic in neuroscience studies, providing important insights into the neural mechanisms. In this review, we will highlight the importance of Cajal contributions and his legacy to the actual knowledge of the olfactory system. PMID:25071462

  1. Contextual olfactory learning in cockroaches.

    PubMed

    Sato, Chihiro; Matsumoto, Yukihisa; Sakura, Midori; Mizunami, Makoto

    2006-04-01

    We investigated the capability of context-dependent olfactory learning in cockroaches. One group of cockroaches received training to associate peppermint odor (conditioning stimulus) with sucrose solution (appetitive unconditioned stimulus) and vanilla odor with saline solution under illumination and to associate peppermint with aversive unconditioned stimulus and vanilla with appetitive unconditioned stimulus in the dark. Another group received training with the opposite stimulus arrangement. Before training, both groups exhibited preference for vanilla over peppermint. After training, the former group preferred peppermint over vanilla under illumination but preferred vanilla over peppermint in the dark, and the latter group exhibited the opposite odor preference. We conclude that cockroaches are capable of disambiguating the meaning of conditioning stimuli according to visual context. PMID:16543825

  2. Modeling Olfactory Bulb Evolution through Primate Phylogeny

    PubMed Central

    Heritage, Steven

    2014-01-01

    Adaptive characterizations of primates have usually included a reduction in olfactory sensitivity. However, this inference of derivation and directionality assumes an ancestral state of olfaction, usually by comparison to a group of extant non-primate mammals. Thus, the accuracy of the inference depends on the assumed ancestral state. Here I present a phylogenetic model of continuous trait evolution that reconstructs olfactory bulb volumes for ancestral nodes of primates and mammal outgroups. Parent-daughter comparisons suggest that, relative to the ancestral euarchontan, the crown-primate node is plesiomorphic and that derived reduction in olfactory sensitivity is an attribute of the haplorhine lineage. The model also suggests a derived increase in olfactory sensitivity at the strepsirrhine node. This oppositional diversification of the strepsirrhine and haplorhine lineages from an intermediate and non-derived ancestor is inconsistent with a characterization of graded reduction through primate evolution. PMID:25426851

  3. Methods to measure olfactory behavior in mice

    PubMed Central

    Zou, Junhui; Wang, Wenbin; Pan, Yung-Wei; Lu, Song; Xia, Zhengui

    2015-01-01

    Mice rely on the sense of olfaction to detect food sources, recognize social and mating partners, and avoid predators. Many behaviors of mice including learning and memory, social interaction, fear, and anxiety are closely associated with their function of olfaction, and behavior tasks designed to evaluate those brain functions may use odors as cues. Accurate assessment of olfaction is not only essential for the study of olfactory system but also critical for proper interpretation of various mouse behaviors especially learning and memory, emotionality and affect, and sociality. Here we describe a series of behavior experiments that offer multidimensional and quantitative assessments for mouse’s olfactory function, including olfactory habituation, discrimination, odor preference, odor detection sensitivity, and olfactory memory, to both social and nonsocial odors. PMID:25645244

  4. The Pig Olfactory Brain: A Primer.

    PubMed

    Brunjes, Peter C; Feldman, Sanford; Osterberg, Stephen K

    2016-06-01

    Despite the fact that pigs are reputed to have excellent olfactory abilities, few studies have examined regions of the pig brain involved in the sense of smell. The present study provides an overview of the olfactory bulb, anterior olfactory nucleus, and piriform cortex of adult pigs using several approaches. Nissl, myelin, and Golgi stains were used to produce a general overview of the organization of the regions and confocal microscopy was employed to examine 1) projection neurons, 2) GABAergic local circuit neurons that express somatostatin, parvalbumin, vasoactive intestinal polypeptide, or calretinin, 3) neuromodulatory fibers (cholinergic and serotonergic), and 4) glia (astrocytes and microglia). The findings revealed that pig olfactory structures are quite large, highly organized and follow the general patterns observed in mammals. PMID:26936231

  5. Comparison of clinical tests of olfactory function.

    PubMed

    Reden, J; Draf, C; Frank, R A; Hummel, T

    2016-04-01

    To assess olfactory function, various measures are used in clinical routine. In this study, the Sniff Magnitude Test (SMT), a test considering the sniff response to an odor, was applied to patients with olfactory dysfunction (n = 49) and to a control group without subjective olfaction disorder (n = 21). For comparison, the validated "Sniffin' Sticks" test battery, a psychophysical olfactory test consisting of tests for phenyl ethyl alcohol odor threshold, odor discrimination, and odor identification was performed. Analyses indicated that the SMT showed significant differences between patients and controls (p = 0.003). Furthermore, results from the SMT and the "Sniffin' Sticks" correlated significantly (p < 0.001). In conclusion, the SMT appears to be a useful addition to the battery of available clinical tests to assess olfactory function. PMID:26050222

  6. Serotonin modulation of moth central olfactory neurons.

    PubMed

    Kloppenburg, Peter; Mercer, Alison R

    2008-01-01

    In the tobacco hornworm, Manduca sexta, 5-hydroxytryptamine (5HT) acting at the level of the antennal lobes contributes significantly to changing the moth's responsiveness to olfactory stimuli. 5HT targets K(+) conductances in the cells, increasing the excitability of central olfactory neurons and their responsiveness to olfactory cues. Effects of 5HT modulation are apparent not only at the single cell level, but also in the activity patterns of populations of neurons that convey olfactory information from antennal lobes to higher centers of the brain. Evidence suggests that 5HT-induced changes in activity within neural circuits of the antennal lobes might also drive structural plasticity, providing the basis for longer-term changes in antennal lobe function. PMID:18067443

  7. The Pig Olfactory Brain: A Primer

    PubMed Central

    Feldman, Sanford; Osterberg, Stephen K.

    2016-01-01

    Despite the fact that pigs are reputed to have excellent olfactory abilities, few studies have examined regions of the pig brain involved in the sense of smell. The present study provides an overview of the olfactory bulb, anterior olfactory nucleus, and piriform cortex of adult pigs using several approaches. Nissl, myelin, and Golgi stains were used to produce a general overview of the organization of the regions and confocal microscopy was employed to examine 1) projection neurons, 2) GABAergic local circuit neurons that express somatostatin, parvalbumin, vasoactive intestinal polypeptide, or calretinin, 3) neuromodulatory fibers (cholinergic and serotonergic), and 4) glia (astrocytes and microglia). The findings revealed that pig olfactory structures are quite large, highly organized and follow the general patterns observed in mammals. PMID:26936231

  8. Protein kinase C sensitizes olfactory adenylate cyclase.

    PubMed

    Frings, S

    1993-02-01

    Effects of neurotransmitters on cAMP-mediated signal transduction in frog olfactory receptor cells (ORCs) were studied using in situ spike recordings and radioimmunoassays. Carbachol, applied to the mucosal side of olfactory epithelium, amplified the electrical response of ORCs to cAMP-generating odorants, but did not affect unstimulated cells. A similar augmentation of odorant response was observed in the presence of phorbol dibutyrate (PDBu), an activator of protein kinase C (PKC). The electrical response to forskolin, an activator of adenylate cyclase (AC), was also enhanced by PDBu, and it was attenuated by the PKC inhibitor Goe 6983. Forskolin-induced accumulation of cAMP in olfactory tissue was potentiated by carbachol, serotonin, and PDBu to a similar extent. Potentiation was completely suppressed by the PKC inhibitors Goe 6983, staurosporine, and polymyxin B, suggesting that the sensitivity of olfactory AC to stimulation by odorants and forskolin was increased by PKC. Experiments with deciliated olfactory tissue indicated that sensitization of AC was restricted to sensory cilia of ORCs. To study the effects of cell Ca2+ on these mechanisms, the intracellular Ca2+ concentration of olfactory tissue was either increased by ionomycin or decreased by BAPTA/AM. Increasing cell Ca2+ had two effects on cAMP production: (a) the basal cAMP production was enhanced by a mechanism sensitive to inhibitors of calmodulin; and (b) similar to phorbol ester, cell Ca2+ caused sensitization of AC to stimulation by forskolin, an effect sensitive to Goe 6983. Decreasing cell Ca2+ below basal levels rendered AC unresponsive to stimulation by forskolin. These data suggest that a crosstalk mechanism is functional in frog ORCs, linking the sensitivity of AC to the activity of PKC. At increased activity of PKC, olfactory AC becomes more responsive to stimulation by odorants, forskolin, and cell Ca2+. Neurotransmitters appear to use this crosstalk mechanism to regulate olfactory

  9. Olfactory bulb encoding during learning under anesthesia

    PubMed Central

    Nicol, Alister U.; Sanchez-Andrade, Gabriela; Collado, Paloma; Segonds-Pichon, Anne; Kendrick, Keith M.

    2014-01-01

    Neural plasticity changes within the olfactory bulb are important for olfactory learning, although how neural encoding changes support new associations with specific odors and whether they can be investigated under anesthesia, remain unclear. Using the social transmission of food preference olfactory learning paradigm in mice in conjunction with in vivo microdialysis sampling we have shown firstly that a learned preference for a scented food odor smelled on the breath of a demonstrator animal occurs under isofluorane anesthesia. Furthermore, subsequent exposure to this cued odor under anesthesia promotes the same pattern of increased release of glutamate and gamma-aminobutyric acid (GABA) in the olfactory bulb as previously found in conscious animals following olfactory learning, and evoked GABA release was positively correlated with the amount of scented food eaten. In a second experiment, multiarray (24 electrodes) electrophysiological recordings were made from olfactory bulb mitral cells under isofluorane anesthesia before, during and after a novel scented food odor was paired with carbon disulfide. Results showed significant increases in overall firing frequency to the cued-odor during and after learning and decreases in response to an uncued odor. Analysis of patterns of changes in individual neurons revealed that a substantial proportion (>50%) of them significantly changed their response profiles during and after learning with most of those previously inhibited becoming excited. A large number of cells exhibiting no response to the odors prior to learning were either excited or inhibited afterwards. With the uncued odor many previously responsive cells became unresponsive or inhibited. Learning associated changes only occurred in the posterior part of the olfactory bulb. Thus olfactory learning under anesthesia promotes extensive, but spatially distinct, changes in mitral cell networks to both cued and uncued odors as well as in evoked glutamate and GABA

  10. Cortical feedback control of olfactory bulb circuits.

    PubMed

    Boyd, Alison M; Sturgill, James F; Poo, Cindy; Isaacson, Jeffry S

    2012-12-20

    Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb interneurons. Activation of cortical fibers directly excites GABAergic granule cells, which in turn inhibit M/T cells. However, we show that cortical inputs preferentially target short axon cells that drive feedforward inhibition of granule cells. In vivo, activation of olfactory cortex that only weakly affects spontaneous M/T cell firing strongly gates odor-evoked M/T cell responses: cortical activity suppresses odor-evoked excitation and enhances odor-evoked inhibition. Together, these results indicate that although cortical projections have diverse actions on olfactory bulb microcircuits, the net effect of cortical feedback on M/T cells is an amplification of odor-evoked inhibition. PMID:23259951

  11. Long-term recording of olfactory and vomeronasal stimulant-induced waves from the turtle main olfactory bulb and accessory olfactory bulb.

    PubMed

    Kashiwayanagi, M; Taniguchi, M; Shoji, T; Kurihara, K

    1997-08-01

    Recording of stimulant-induced waves (bulbar responses) from the main olfactory bulb is a useful tool for measuring quantitative stable olfactory responses. There is a good relationship between the olfactory bulbar response, olfactory nerve response and electroolfactogram (EOG), suggesting that the bulbar response reflects events in receptor cells. The modern whole-cell recording technique offers direct information on olfactory transduction in single cells, but it requires long experimental periods and many animals. On the other hand, analysis of bulbar responses provides useful information and requires the use of few animals. For example, we found that cAMP-increasing and IP3-increasing odorants were not distinctly received by the turtle olfactory organ by measuring olfactory bulbar responses and analyzed with a multidimensional scaling from about 60 animals. However, to record similar odor responses from isolated turtle olfactory neurons, at least 200 animals would be necessary. Bulbar responses are recorded with electrodes implanted into or located on the main olfactory bulb. When electrodes are located on the olfactory bulb surface, it is possible to record stable responses over a period of 3 days. These methods were applied successfully to the accessory olfactory bulb. In this paper, we describe the protocols used for recording of the stimulant-induced waves from the main and accessory olfactory bulb. PMID:9385067

  12. Tibial Tubercle Fracture in a 14-Year-Old Athlete with Bilateral Lower Pole Bipartite Patella and Osgood-Schlatter Disease

    PubMed Central

    Pascarella, Fabio; Ziranu, Antonio; Maccauro, Giulio

    2015-01-01

    We present a case of tibial tubercle fracture in a young male athlete with both bilateral bipartite patella at the lower pole (Saupe type I) and Osgood-Schlatter disease. Open reduction and internal fixation were performed to restore the extensor mechanism of the knee. PMID:25785215

  13. Fracture of the lateral tubercle of the posterior talar process caused by a rock-climbing fall: a case report.

    PubMed

    Blanchette, Marc-André; Grenier, Julie-Marthe

    2014-09-01

    The purpose of this case report is to describe the clinical presentation of a patient who suffered from a fracture of the lateral tubercle of the posterior talar process caused by a fall while rock-climbing. The initial evaluation revealed diffuse ankle swelling, tenderness, and pain at the distal aspect of both malleoli. Plain film radiography revealed a fracture of the posterior process of the talus. Computed tomography (CT) outlined the extension of the fracture line in the postero-lateral aspect of the body of the talus with minimal displacement. The patient was treated conservatively with an Aircast© walking boot for 6 weeks (non-weight-bearing) followed by a 2-week period of partial weight bearing. At the 8 week follow-up, he reported minimal tenderness and normal ankle function. Clinicians should be aware that talar fracture identification on plain films is difficult and computed tomography or magnetic resonance imaging may be required. PMID:25202157

  14. Fracture of the lateral tubercle of the posterior talar process caused by a rock-climbing fall: a case report

    PubMed Central

    Blanchette, Marc-André; Grenier, Julie-Marthe

    2014-01-01

    The purpose of this case report is to describe the clinical presentation of a patient who suffered from a fracture of the lateral tubercle of the posterior talar process caused by a fall while rock-climbing. The initial evaluation revealed diffuse ankle swelling, tenderness, and pain at the distal aspect of both malleoli. Plain film radiography revealed a fracture of the posterior process of the talus. Computed tomography (CT) outlined the extension of the fracture line in the postero-lateral aspect of the body of the talus with minimal displacement. The patient was treated conservatively with an Aircast© walking boot for 6 weeks (non–weight-bearing) followed by a 2-week period of partial weight bearing. At the 8 week follow-up, he reported minimal tenderness and normal ankle function. Clinicians should be aware that talar fracture identification on plain films is difficult and computed tomography or magnetic resonance imaging may be required. PMID:25202157

  15. An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis H37Rv, and comparison with Mycobacterium leprae.

    PubMed Central

    Philipp, W J; Poulet, S; Eiglmeier, K; Pascopella, L; Balasubramanian, V; Heym, B; Bergh, S; Bloom, B R; Jacobs, W R; Cole, S T

    1996-01-01

    An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis, was constructed by using a twin-pronged approach. Pulsed-field gel electrophoretic analysis enabled cleavage sites for Asn I and Dra I to be positioned on the 4.4-Mb circular chromosome, while, in parallel, clones from two cosmid libraries were ordered into contigs by means of fingerprinting and hybridization mapping. The resultant contig map was readily correlated with the physical map of the genome via the landmarked restriction sites. Over 165 genes and markers were localized on the integrated map, thus enabling comparisons with the leprosy bacillus, Mycobacterium leprae, to be undertaken. Mycobacterial genomes appear to have evolved as mosaic structures since extended segments with conserved gene order and organization are interspersed with different flanking regions. Repetitive sequences and insertion elements are highly abundant in M. tuberculosis, but the distribution of IS6110 is apparently nonrandom. Images Fig. 1 Fig. 2 PMID:8610181

  16. Top-down-directed synchrony from medial frontal cortex to nucleus accumbens during reward anticipation.

    PubMed

    Cohen, Michael X; Bour, Lo; Mantione, Mariska; Figee, Martijn; Vink, Matthijs; Tijssen, Marina A J; van Rootselaar, Anne-Fleur; van den Munckhof, Pepijn; Schuurman, P Richard; Denys, Damiaan

    2012-01-01

    The nucleus accumbens and medial frontal cortex (MFC) are part of a loop involved in modulating behavior according to anticipated rewards. However, the precise temporal landscape of their electrophysiological interactions in humans remains unknown because it is not possible to record neural activity from the nucleus accumbens using noninvasive techniques. We recorded electrophysiological activity simultaneously from the nucleus accumbens and cortex (via surface EEG) in humans who had electrodes implanted as part of deep-brain-stimulation treatment for obsessive-compulsive disorder. Patients performed a simple reward motivation task previously shown to activate the ventral striatum. Spectral Granger causality analyses were applied to dissociate "top-down" (cortex → nucleus accumbens)- from "bottom-up" (nucleus accumbens → cortex)-directed synchronization (functional connectivity). "Top-down"-directed synchrony from cortex to nucleus accumbens was maximal over medial frontal sites and was significantly stronger when rewards were anticipated. These findings provide direct electrophysiological evidence for a role of the MFC in modulating nucleus accumbens reward-related processing and may be relevant to understanding the mechanisms of deep-brain stimulation and its beneficial effects on psychiatric conditions. PMID:21547982

  17. Cortical drive of low-frequency oscillations in the human nucleus accumbens during action selection

    PubMed Central

    Litvak, Vladimir; Rutledge, Robb B.; Zaehle, Tino; Schmitt, Friedhelm C.; Voges, Jürgen; Heinze, Hans-Jochen; Dolan, Raymond J.

    2015-01-01

    The nucleus accumbens is thought to contribute to action selection by integrating behaviorally relevant information from multiple regions, including prefrontal cortex. Studies in rodents suggest that information flow to the nucleus accumbens may be regulated via task-dependent oscillatory coupling between regions. During instrumental behavior, local field potentials (LFP) in the rat nucleus accumbens and prefrontal cortex are coupled at delta frequencies (Gruber AJ, Hussain RJ, O'Donnell P. PLoS One 4: e5062, 2009), possibly mediating suppression of afferent input from other areas and thereby supporting cortical control (Calhoon GG, O'Donnell P. Neuron 78: 181–190, 2013). In this report, we demonstrate low-frequency cortico-accumbens coupling in humans, both at rest and during a decision-making task. We recorded LFP from the nucleus accumbens in six epilepsy patients who underwent implantation of deep brain stimulation electrodes. All patients showed significant coherence and phase-synchronization between LFP and surface EEG at delta and low theta frequencies. Although the direction of this coupling as indexed by Granger causality varied between subjects in the resting-state data, all patients showed a cortical drive of the nucleus accumbens during action selection in a decision-making task. In three patients this was accompanied by a significant coherence increase over baseline. Our results suggest that low-frequency cortico-accumbens coupling represents a highly conserved regulatory mechanism for action selection. PMID:25878159

  18. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis.

    PubMed

    Scofield, M D; Heinsbroek, J A; Gipson, C D; Kupchik, Y M; Spencer, S; Smith, A C W; Roberts-Wolfe, D; Kalivas, P W

    2016-07-01

    The nucleus accumbens is a major input structure of the basal ganglia and integrates information from cortical and limbic structures to mediate goal-directed behaviors. Chronic exposure to several classes of drugs of abuse disrupts plasticity in this region, allowing drug-associated cues to engender a pathologic motivation for drug seeking. A number of alterations in glutamatergic transmission occur within the nucleus accumbens after withdrawal from chronic drug exposure. These drug-induced neuroadaptations serve as the molecular basis for relapse vulnerability. In this review, we focus on the role that glutamate signal transduction in the nucleus accumbens plays in addiction-related behaviors. First, we explore the nucleus accumbens, including the cell types and neuronal populations present as well as afferent and efferent connections. Next we discuss rodent models of addiction and assess the viability of these models for testing candidate pharmacotherapies for the prevention of relapse. Then we provide a review of the literature describing how synaptic plasticity in the accumbens is altered after exposure to drugs of abuse and withdrawal and also how pharmacological manipulation of glutamate systems in the accumbens can inhibit drug seeking in the laboratory setting. Finally, we examine results from clinical trials in which pharmacotherapies designed to manipulate glutamate systems have been effective in treating relapse in human patients. Further elucidation of how drugs of abuse alter glutamatergic plasticity within the accumbens will be necessary for the development of new therapeutics for the treatment of addiction across all classes of addictive substances. PMID:27363441

  19. Olfactory Fear Conditioning Induces Field Potential Potentiation in Rat Olfactory Cortex and Amygdala

    ERIC Educational Resources Information Center

    Messaoudi, Belkacem; Granjon, Lionel; Mouly, Anne-Marie; Sevelinges, Yannick; Gervais, Remi

    2004-01-01

    The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of…

  20. STUDIES IN ATYPICAL FORMS OF TUBERCLE BACILLI ISOLATED DIRECTLY FROM THE HUMAN TISSUES IN CASES OF PRIMARY CERVICAL ADENITIS

    PubMed Central

    Duval, Charles W.

    1909-01-01

    The four cultures which form the basis of this communication were recovered from peculiar cases of primary cervical adenitis in man, three of which terminated fatally of disseminated acute miliary tuberculosis in four to six weeks. A careful comparative study shows that Culture II corresponds closely with the "human" and Culture IV with the "bovine" type of tubercle bacilli; while Cultures I and III present variations from the standard types and are to be retarded as "intermediate" or "atypical" forms. Culture I is of unusual interest because of its remarkable variations. The clinical picture of the case, the rapid course of the infection, the enormous number of the bacilli in the tissue, their tendency to occur in "heaps" like the leprosy bacillus, the high degree of virulence alike for rabbits and guinea-pigs, the production of lesions in chickens, the case of cultivation and the prolonged viability under unfavorable conditions, all mark the organism as a decided atypical form of tubercle bacillus in man. The prolonged viability, the production of lesions in the chicken and the great profusion of bacillary growth in the tissues would indicate an avian type. Though for years the reaction curve was atypical it has since changed completely to the "avian" curve. In this connection it is of interest to note that L. Rabinowitsch (3) states that she has isolated avian tubercle bacilli from two cases of tuberculosis in man. Cultures II and III undoubtedly belong to the human type of the tubercle family though they were under cultivation and were repeatedly tested upon glycerine broth over a period of months before their identity was definitely established. Culture IV completely corresponds in growth and reaction in glycerine bouillon to the bovine strain; however, it manifests a low degree of virulence for rabbits which is exceptional for bovine cultures. The old belief that bovine bacilli are more slender and beaded in the tissues and are thicker and shorter in culture

  1. Effects of handedness on olfactory event-related potentials in a simple olfactory task.

    PubMed

    Gottschlich, Marie; Hummel, Thomas

    2015-06-01

    The purpose of the present study was to re-investigate the influence of handedness on simple olfactory tasks to further clarify the role of handedness in chemical senses. Similar to language and other sensory systems, effects of handedness should be expected. Young, healthy subjects participated in this study, including 24 left-handers and 24 right-handers, with no indication of any major nasal or health problems. The two groups did not differ in terms of sex and age (14 women and 10 men in each group). They had a mean age of 24.0 years. Olfactory event-related potentials were recorded after left or right olfactory stimulation with the rose-like odor phenyl ethyl alcohol (PEA) or the smell of rotten eggs (hydrogen sulfide, H2S). Results suggested that handedness has no major influence on amplitude or latency of olfactory event-related potentials when it comes to simple olfactory tasks. PMID:26030037

  2. Inhibition of Inflammation-Associated Olfactory Loss by Etanercept in an Inducible Olfactory Inflammation Mouse Model

    PubMed Central

    Jung, Yong Gi; Lane, Andrew P.

    2016-01-01

    Objective To determine the effect of a soluble human tumor necrosis factor alpha (TNF-α) receptor blocker (Etanercept) on an inducible olfactory inflammation (IOI) mouse model Study Design An in vivo study using a transgenic mouse model Setting Research laboratory Subjects and Methods To study the impact of chronic inflammation on the olfactory system, a transgenic mouse model of chronic rhinosinusitis (CRS)-associated olfactory loss was utilized (IOI mouse), expressing TNF-α in a temporally-controlled fashion specifically within the olfactory epithelium. In one group of mice (n=4), Etanercept was injected intraperitoneally (100 µg/dose, 3 times/week) concurrent with a 2-week period of TNF-α expression. A second group of mice (n=2) underwent induction of TNF-α expression for 8 weeks, with Etanercept treatment administered during the final 2 weeks of inflammation. Olfactory function was assayed by elecro-olfactogram (EOG), and olfactory tissue was processed for histology and immunohistochemical staining. Each group was compared with equal number of control group. Results Compared to non-treated IOI mice, Etanercept -treated IOI mice showed significantly improved EOG responses after 2 weeks (p<0.001). After 8 weeks of induced inflammation, there was massive loss of olfactory epithelium and no EOG response in non-treated IOI mice. However, in Etanercept - treated mice, regeneration of olfactory epithelium was observed. Conclusion Concomitant administration of Etanercept in IOI mice results in interruption of TNF-α-induced olfactory loss and induction of neuroepithelial regeneration. This demonstrates that Etanercept has potential utility as a tool for elucidating the role of TNF-α in other olfactory inflammation models. PMID:26932943

  3. An Olfactory Indicator for Acid-Base Titrations.

    ERIC Educational Resources Information Center

    Flair, Mark N.; Setzer, William N.

    1990-01-01

    The use of an olfactory acid-base indicator in titrations for visually impaired students is discussed. Potential olfactory indicators include eugenol, thymol, vanillin, and thiophenol. Titrations performed with each indicator with eugenol proved to be successful. (KR)

  4. Peripheral olfactory signaling in insects

    PubMed Central

    Suh, Eunho; Bohbot, Jonathan; Zwiebel, Laurence J.

    2014-01-01

    Olfactory signaling is a crucial component in the life history of insects. The development of precise and parallel mechanisms to analyze the tremendous amount of chemical information from the environment and other sources has been essential to their evolutionary success. Considerable progress has been made in the study of insect olfaction fueled by bioinformatics- based utilization of genomics along with rapid advances in functional analyses. Here we review recent progress in our rapidly emerging understanding of insect peripheral sensory reception and signal transduction. These studies reveal that the nearly unlimited chemical space insects encounter is covered by distinct chemosensory receptor repertoires that are generally derived by species-specific, rapid gene gain and loss, reflecting the evolutionary consequences of adaptation to meet their specific biological needs. While diverse molecular mechanisms have been put forth, often in the context of controversial models, the characterization of the ubiquitous, highly conserved and insect-specific Orco odorant receptor co-receptor has opened the door to the design and development of novel insect control methods to target agricultural pests, disease vectors and even nuisance insects. PMID:25584200

  5. Nucleus accumbens core lesions enhance two-way active avoidance.

    PubMed

    Lichtenberg, N T; Kashtelyan, V; Burton, A C; Bissonette, G B; Roesch, M R

    2014-01-31

    The majority of work examining the nucleus accumbens core (NAc) has focused on functions pertaining to behaviors guided by appetitive outcomes. These studies have pointed to the NAc as being critical for motivating behavior toward desirable outcomes. For example, we have recently shown that lesions of the NAc impaired performance on a reward-guided decision-making task that required rats to choose between differently valued rewards. Unfortunately, much less is known about the role that the NAc plays in motivating behavior when aversive outcomes are predicted. To address this issue we asked if NAc lesions impact performance on a two-way active avoidance task in which rats must learn to shuttle back and forth in a behavioral training box in order to avoid a footshock predicted by an auditory tone. Although bilateral NAc lesions initially impaired reward-guided decision-making, we found that the same lesions improved acquisition and retention of two-way active avoidance. PMID:24275320

  6. Sensory Deviancy Detection Measured Directly Within the Human Nucleus Accumbens.

    PubMed

    Dürschmid, Stefan; Zaehle, Tino; Hinrichs, Hermann; Heinze, Hans-Jochen; Voges, Jürgen; Garrido, Marta I; Dolan, Raymond J; Knight, Robert T

    2016-03-01

    Rapid changes in the environment evoke a comparison between expectancy and actual outcome to inform optimal subsequent behavior. The nucleus accumbens (NAcc), a key interface between the hippocampus and neocortical regions, is a candidate region for mediating this comparison. Here, we report event-related potentials obtained from the NAcc using direct intracranial recordings in 5 human participants while they listened to trains of auditory stimuli differing in their degree of deviation from repetitive background stimuli. NAcc recordings revealed an early mismatch signal (50-220 ms) in response to all deviants. NAcc activity in this time window was also sensitive to the statistics of stimulus deviancy, with larger amplitudes as a function of the level of deviancy. Importantly, this NAcc mismatch signal also predicted generation of longer latency scalp potentials (300-400 ms). The results provide direct human evidence that the NAcc is a key component of a network engaged in encoding statistics of the sensory environmental. PMID:25576536

  7. Reward and reinforcement activity in the nucleus accumbens during learning

    PubMed Central

    Gale, John T.; Shields, Donald C.; Ishizawa, Yumiko; Eskandar, Emad N.

    2014-01-01

    The nucleus accumbens core (NAcc) has been implicated in learning associations between sensory cues and profitable motor responses. However, the precise mechanisms that underlie these functions remain unclear. We recorded single-neuron activity from the NAcc of primates trained to perform a visual-motor associative learning task. During learning, we found two distinct classes of NAcc neurons. The first class demonstrated progressive increases in firing rates at the go-cue, feedback/tone and reward epochs of the task, as novel associations were learned. This suggests that these neurons may play a role in the exploitation of rewarding behaviors. In contrast, the second class exhibited attenuated firing rates, but only at the reward epoch of the task. These findings suggest that some NAcc neurons play a role in reward-based reinforcement during learning. PMID:24765069

  8. Accumbens dopamine-acetylcholine balance in approach and avoidance.

    PubMed

    Hoebel, Bartley G; Avena, Nicole M; Rada, Pedro

    2007-12-01

    Understanding systems for approach and avoidance is basic for behavioral neuroscience. Research on the neural organization and functions of the dorsal striatum in movement disorders, such as Huntington's and Parkinson's Disease, can inform the study of the nucleus accumbens (NAc) in motivational disorders, such as addiction and depression. We propose opposing roles for dopamine (DA) and acetylcholine (ACh) in the NAc in the control of GABA output systems for approach and avoidance. Contrary to DA, which fosters approach, ACh release is a correlate or cause of meal satiation, conditioned taste aversion and aversive brain stimulation. ACh may also counteract excessive DA-mediated approach behavior as revealed during withdrawal from drugs of abuse or sugar when the animal enters an ACh-mediated state of anxiety and behavioral depression. This review summarizes evidence that ACh is important in the inhibition of behavior when extracellular DA is high and the generation of an anxious or depressed state when DA is relatively low. PMID:18023617

  9. Taste pathways that mediate accumbens dopamine release by sapid sucrose.

    PubMed

    Hajnal, Andras; Norgren, Ralph

    2005-03-16

    Although it has been associated with the release of dopamine in the forebrain, reward remains a conundrum in neuroscience. Sucrose is inherently rewarding and its sensory message reaches the brain via the gustatory system. In rodents, the central gustatory system bifurcates in the pontine parabrachial nuclei, one arm forming a standard thalamocortical axis, the other distributing widely in the limbic forebrain. We report here that lesions of the gustatory thalamus fail to affect dopamine overflow during sucrose licking (149+/-5% vs. 149+/-4% for controls). Similar damage to the parabrachial nuclei, which severs the limbic taste projection, substantially reduces dopamine release from the nucleus accumbens (121+/-4% vs. 168+/-9% for sham operated controls; p<0.02). This represents the first demonstration that the affective character of a sensory stimulus might separate from the thalamocortical system as early as the second central synapse. PMID:15763573

  10. Unique Neural Circuitry for Neonatal Olfactory Learning

    PubMed Central

    Moriceau, Stephanie; Sullivan, Regina M.

    2007-01-01

    Imprinting ensures that the infant forms the caregiver attachment necessary for altricial species survival. In our mammalian model of imprinting, neonatal rats rapidly learn the odor-based maternal attachment. This rapid learning requires reward-evoked locus ceruleus (LC) release of copious amounts of norepinephrine (NE) into the olfactory bulb. This imprinting ends at postnatal day 10 (P10) and is associated with a dramatic reduction in reward-evoked LC NE release. Here we assess whether the functional emergence of LC α2 inhibitory autoreceptors and the downregulation of LC α1 excitatory autoreceptors underlie the dramatic reduction in NE release associated with termination of the sensitive period. Postsensitive period pups (P12) were implanted with either LC or olfactory bulb cannulas, classically conditioned with intracranial drug infusions (P14), and tested for an odor preference (P15). During conditioning, a novel odor was paired with either olfactory bulb infusion of a β-receptor agonist (isoproterenol) to assess the target effects of NE or direct LC cholinergic stimulation combined with α2 antagonists and α1 agonists in a mixture to reinstate neonatal levels of LC autoreceptor activity to assess the source of NE. Pups learned an odor preference when the odor was paired with either olfactory bulb isoproterenol infusion or reinstatement of neonatal LC receptor activity. These results suggest that LC autoreceptor functional changes rather than olfactory bulb changes underlie sensitive period termination. PMID:14762136

  11. Olfactory phenotypic expression unveils human aging

    PubMed Central

    Mazzatenta, Andrea; Cellerino, Alessandro; Origlia, Nicola; Barloscio, Davide; Sartucci, Ferdinando; Giulio, Camillo Di; Domenici, Luciano

    2016-01-01

    The mechanism of the natural aging of olfaction and its declinein the absence of any overt disease conditions remains unclear. Here, we investigated this mechanism through measurement of one of the parameters of olfactory function, the absolute threshold, in a healthy population from childhood to old age. The absolute olfactory threshold data were collected from an Italian observational study with 622 participants aged 5-105 years. A subjective testing procedure of constant stimuli was used, which was also compared to the ‘staircase’ method, with the calculation of the reliability. The n-butanol stimulus was used as an ascending series of nine molar concentrations that were monitored using an electronic nose. The data were analyzed using nonparametric statistics because of the multimodal distribution. We show that the age-related variations in the absolute olfactory threshold are not continuous; instead, there are multiple olfactory phenotypes. Three distinct age-related phenotypes were defined, termed as ‘juvenile’, ‘mature’ and ‘elder’. The frequency of these three phenotypes depends on age. Our data suggest that the sense of smell does not decrease linearly with aging. Our findings provide the basis for further understanding of olfactory loss as an anticipatory sign of aging and neurodegenerative processes. PMID:27027240

  12. Olfactory marker protein (OMP) gene deletion causes altered physiological activity of olfactory sensory neurons.

    PubMed Central

    Buiakova, O I; Baker, H; Scott, J W; Farbman, A; Kream, R; Grillo, M; Franzen, L; Richman, M; Davis, L M; Abbondanzo, S; Stewart, C L; Margolis, F L

    1996-01-01

    Olfactory marker protein (OMP) is an abundant, phylogentically conserved, cytoplasmic protein of unknown function expressed almost exclusively in mature olfactory sensory neurons. To address its function, we generated OMP-deficient mice by gene targeting in embryonic stem cells. We report that these OMP-null mice are compromised in their ability to respond to odor stimull, providing insight to OMP function. The maximal electroolfactogram response of the olfactory neuroepithelium to several odorants was 20-40% smaller in the mutants compared with controls. In addition, the onset and recovery kinetics following isoamyl acetate stimulation are prolonged in the null mice. Furthermore, the ability of the mutants to respond to the second odor pulse of a pair is impaired, over a range of concentrations, compared with controls. These results imply that neural activity directed toward the olfactory bulb is also reduced. The bulbar phenotype observed in the OMP-null mouse is consistent with this hypothesis. Bulbar activity of tyrosine hydroxylase, the rate limiting enzyme of catecholamine biosynthesis, and content of the neuropeptide cholecystokinin are reduced by 65% and 50%, respectively. This similarity to postsynaptic changes in gene expression induced by peripheral olfactory deafferentation or naris blockade confirms that functional neural activity is reduced in both the olfactory neuroepithelium and the olfactory nerve projection to the bulb in the OMP-null mouse. These observations provide strong support for the conclusion that OMP is a novel modulatory component of the odor detection/signal transduction cascade. Images Fig. 1 Fig. 2 PMID:8790421

  13. Olfactory marker protein (OMP) gene deletion causes altered physiological activity of olfactory sensory neurons.

    PubMed

    Buiakova, O I; Baker, H; Scott, J W; Farbman, A; Kream, R; Grillo, M; Franzen, L; Richman, M; Davis, L M; Abbondanzo, S; Stewart, C L; Margolis, F L

    1996-09-01

    Olfactory marker protein (OMP) is an abundant, phylogentically conserved, cytoplasmic protein of unknown function expressed almost exclusively in mature olfactory sensory neurons. To address its function, we generated OMP-deficient mice by gene targeting in embryonic stem cells. We report that these OMP-null mice are compromised in their ability to respond to odor stimull, providing insight to OMP function. The maximal electroolfactogram response of the olfactory neuroepithelium to several odorants was 20-40% smaller in the mutants compared with controls. In addition, the onset and recovery kinetics following isoamyl acetate stimulation are prolonged in the null mice. Furthermore, the ability of the mutants to respond to the second odor pulse of a pair is impaired, over a range of concentrations, compared with controls. These results imply that neural activity directed toward the olfactory bulb is also reduced. The bulbar phenotype observed in the OMP-null mouse is consistent with this hypothesis. Bulbar activity of tyrosine hydroxylase, the rate limiting enzyme of catecholamine biosynthesis, and content of the neuropeptide cholecystokinin are reduced by 65% and 50%, respectively. This similarity to postsynaptic changes in gene expression induced by peripheral olfactory deafferentation or naris blockade confirms that functional neural activity is reduced in both the olfactory neuroepithelium and the olfactory nerve projection to the bulb in the OMP-null mouse. These observations provide strong support for the conclusion that OMP is a novel modulatory component of the odor detection/signal transduction cascade. PMID:8790421

  14. Neural Correlates of Olfactory Learning: Critical Role of Centrifugal Neuromodulation

    ERIC Educational Resources Information Center

    Fletcher, Max L.; Chen, Wei R.

    2010-01-01

    The mammalian olfactory system is well established for its remarkable capability of undergoing experience-dependent plasticity. Although this process involves changes at multiple stages throughout the central olfactory pathway, even the early stages of processing, such as the olfactory bulb and piriform cortex, can display a high degree of…

  15. Investigation of breathing parameters during odor perception and olfactory imagery.

    PubMed

    Kleemann, A M; Kopietz, R; Albrecht, J; Schöpf, V; Pollatos, O; Schreder, T; May, J; Linn, J; Brückmann, H; Wiesmann, M

    2009-01-01

    Compared with visual and auditory imagery, little is known about olfactory imagery. There is evidence that respiration may be altered by both olfactory perception and olfactory imagery. In order to investigate this relationship, breathing parameters (respiratory minute volume, respiratory amplitude, and breathing rate) in human subjects during olfactory perception and olfactory imagery were investigated. Fifty-six subjects having normal olfactory function were tested. Nasal respiration was measured using a respiratory pressure sensor. Using an experimental block design, we alternately presented odors or asked the subjects to imagine a given smell. Four different pleasant odors were used: banana, rose, coffee, and lemon odor. We detected a significant increase in respiratory minute volume between olfactory perception and the baseline condition as well as between olfactory imagery and baseline condition. Additionally we found significant differences in the respiratory amplitude between imagery and baseline condition and between odor and imagery condition. Differences in the breathing rate between olfactory perception, olfactory imagery, and baseline were not statistically significant. We conclude from our results that olfactory perception and olfactory imagery both have effects on the human respiratory profile and that these effects are based on a common underlying mechanism. PMID:18701432

  16. Individual olfactory perception reveals meaningful nonolfactory genetic information

    PubMed Central

    Secundo, Lavi; Snitz, Kobi; Weissler, Kineret; Pinchover, Liron; Shoenfeld, Yehuda; Loewenthal, Ron; Agmon-Levin, Nancy; Frumin, Idan; Bar-Zvi, Dana; Shushan, Sagit; Sobel, Noam

    2015-01-01

    Each person expresses a potentially unique subset of ∼400 different olfactory receptor subtypes. Given that the receptors we express partially determine the odors we smell, it follows that each person may have a unique nose; to capture this, we devised a sensitive test of olfactory perception we termed the “olfactory fingerprint.” Olfactory fingerprints relied on matrices of perceived odorant similarity derived from descriptors applied to the odorants. We initially fingerprinted 89 individuals using 28 odors and 54 descriptors. We found that each person had a unique olfactory fingerprint (P < 10−10), which was odor specific but descriptor independent. We could identify individuals from this pool using randomly selected sets of 7 odors and 11 descriptors alone. Extrapolating from this data, we determined that using 34 odors and 35 descriptors we could individually identify each of the 7 billion people on earth. Olfactory perception, however, fluctuates over time, calling into question our proposed perceptual readout of presumably stable genetic makeup. To test whether fingerprints remain informative despite this temporal fluctuation, building on the linkage between olfactory receptors and HLA, we hypothesized that olfactory perception may relate to HLA. We obtained olfactory fingerprints and HLA typing for 130 individuals, and found that olfactory fingerprint matching using only four odorants was significantly related to HLA matching (P < 10−4), such that olfactory fingerprints can save 32% of HLA tests in a population screen (P < 10−6). In conclusion, a precise measure of olfactory perception reveals meaningful nonolfactory genetic information. PMID:26100865

  17. Neuroelectric signatures of reward learning and decision-making in the human nucleus accumbens.

    PubMed

    Cohen, Michael X; Axmacher, Nikolai; Lenartz, Doris; Elger, Christian E; Sturm, Volker; Schlaepfer, Thomas E

    2009-06-01

    Learning that certain actions lead to risky rewards is critical for biological, social, and economic survival, but the precise neural mechanisms of such reward-guided learning remain unclear. Here, we show that the human nucleus accumbens plays a key role in learning about risks by representing reward value. We recorded electrophysiological activity directly from the nucleus accumbens of five patients undergoing deep brain stimulation for treatment of refractory major depression. Patients engaged in a simple reward-learning task in which they first learned stimulus-outcome associations (learning task), and then were able to choose from among the learned stimuli (choosing task). During the learning task, nucleus accumbens activity reflected potential and received reward values both during the cue stimulus and during the feedback. During the choosing task, there was no nucleus accumbens activity during the cue stimulus, but feedback-related activity was pronounced and similar to that during the learning task. This pattern of results is inconsistent with a prediction error response. Finally, analyses of cross-correlations between the accumbens and simultaneous recordings of medial frontal cortex suggest a dynamic interaction between these structures. The high spatial and temporal resolution of these recordings provides novel insights into the timing of activity in the human nucleus accumbens, its functions during reward-guided learning and decision-making, and its interactions with medial frontal cortex. PMID:19092783

  18. Cannabis use is quantitatively associated with nucleus accumbens and amygdala abnormalities in young adult recreational users.

    PubMed

    Gilman, Jodi M; Kuster, John K; Lee, Sang; Lee, Myung Joo; Kim, Byoung Woo; Makris, Nikos; van der Kouwe, Andre; Blood, Anne J; Breiter, Hans C

    2014-04-16

    Marijuana is the most commonly used illicit drug in the United States, but little is known about its effects on the human brain, particularly on reward/aversion regions implicated in addiction, such as the nucleus accumbens and amygdala. Animal studies show structural changes in brain regions such as the nucleus accumbens after exposure to Δ9-tetrahydrocannabinol, but less is known about cannabis use and brain morphometry in these regions in humans. We collected high-resolution MRI scans on young adult recreational marijuana users and nonusing controls and conducted three independent analyses of morphometry in these structures: (1) gray matter density using voxel-based morphometry, (2) volume (total brain and regional volumes), and (3) shape (surface morphometry). Gray matter density analyses revealed greater gray matter density in marijuana users than in control participants in the left nucleus accumbens extending to subcallosal cortex, hypothalamus, sublenticular extended amygdala, and left amygdala, even after controlling for age, sex, alcohol use, and cigarette smoking. Trend-level effects were observed for a volume increase in the left nucleus accumbens only. Significant shape differences were detected in the left nucleus accumbens and right amygdala. The left nucleus accumbens showed salient exposure-dependent alterations across all three measures and an altered multimodal relationship across measures in the marijuana group. These data suggest that marijuana exposure, even in young recreational users, is associated with exposure-dependent alterations of the neural matrix of core reward structures and is consistent with animal studies of changes in dendritic arborization. PMID:24741043

  19. Cannabis Use Is Quantitatively Associated with Nucleus Accumbens and Amygdala Abnormalities in Young Adult Recreational Users

    PubMed Central

    Gilman, Jodi M.; Kuster, John K.; Lee, Sang; Lee, Myung Joo; Kim, Byoung Woo; Makris, Nikos; van der Kouwe, Andre; Blood, Anne J.

    2014-01-01

    Marijuana is the most commonly used illicit drug in the United States, but little is known about its effects on the human brain, particularly on reward/aversion regions implicated in addiction, such as the nucleus accumbens and amygdala. Animal studies show structural changes in brain regions such as the nucleus accumbens after exposure to Δ9-tetrahydrocannabinol, but less is known about cannabis use and brain morphometry in these regions in humans. We collected high-resolution MRI scans on young adult recreational marijuana users and nonusing controls and conducted three independent analyses of morphometry in these structures: (1) gray matter density using voxel-based morphometry, (2) volume (total brain and regional volumes), and (3) shape (surface morphometry). Gray matter density analyses revealed greater gray matter density in marijuana users than in control participants in the left nucleus accumbens extending to subcallosal cortex, hypothalamus, sublenticular extended amygdala, and left amygdala, even after controlling for age, sex, alcohol use, and cigarette smoking. Trend-level effects were observed for a volume increase in the left nucleus accumbens only. Significant shape differences were detected in the left nucleus accumbens and right amygdala. The left nucleus accumbens showed salient exposure-dependent alterations across all three measures and an altered multimodal relationship across measures in the marijuana group. These data suggest that marijuana exposure, even in young recreational users, is associated with exposure-dependent alterations of the neural matrix of core reward structures and is consistent with animal studies of changes in dendritic arborization. PMID:24741043

  20. Olfactory regulation of mosquito–host interactions

    PubMed Central

    Zwiebel, L.J.; Takken, W.

    2011-01-01

    Mosquitoes that act as disease vectors rely upon olfactory cues to direct several important behaviors that are fundamentally involved in establishing their overall vectorial capacity. Of these, the propensity to select humans for blood feeding is arguably the most important of these olfactory driven behaviors in so far as it significantly contributes to the ability of these mosquitoes to transmit pathogens that cause diseases such as dengue, yellow fever and most significantly human malaria. Here, we review significant advances in behavioral, physiological and molecular investigations into mosquito host preference, with a particular emphasis on studies that have emerged in the post-genomic era that seek to combine these approaches. PMID:15242705

  1. Interneurons in the human olfactory system in Alzheimer's disease.

    PubMed

    Saiz-Sanchez, Daniel; Flores-Cuadrado, Alicia; Ubeda-Bañon, Isabel; de la Rosa-Prieto, Carlos; Martinez-Marcos, Alino

    2016-02-01

    The principal olfactory structures display Alzheimer's disease (AD) related pathology at early stages of the disease. Consequently, olfactory deficits are among the earliest symptoms. Reliable olfactory tests for accurate clinical diagnosis are rarely made. In addition, neuropathological analysis postmortem of olfactory structures is often not made. Therefore, the relationship between the clinical features and the underlying pathology is poorly defined. Traditionally, research into Alzheimer's disease has focused on the degeneration of cortical temporal projection neurons and cholinergic neurons. Recent evidence has demonstrated the neurodegeneration of interneuron populations in AD. This review provides an updated overview of the pathological involvement of interneuron populations in the human olfactory system in Alzheimer's disease. PMID:26616239

  2. Olfactory sensations produced by high-energy photon irradiation of the olfactory receptor mucosa in humans

    SciTech Connect

    Sagar, S.M.; Thomas, R.J.; Loverock, L.T.; Spittle, M.F. )

    1991-04-01

    During irradiation of volumes that incorporate the olfactory system, a proportion of patients have complained of a pungent smell. A retrospective study was carried out to determine the prevalence of this side-effect. A questionnaire was sent to 40 patients whose treatment volumes included the olfactory region and also to a control group treated away from this region. The irradiated tumor volumes included the frontal lobe, whole brain, nasopharynx, pituitary fossa, and maxillary antrum. Of the 25 patients who replied, 60% experienced odorous symptoms during irradiation. They described the odor as unpleasant and consistent with ozone. Stimulation of olfactory receptors is considered to be caused by the radiochemical formation of ozone and free radicals in the mucus overlying the olfactory mucosa.

  3. Olfactory Epithelium Grafts in the Cerebral Cortex: An Immunohistochemical Analysis

    PubMed Central

    Holbrook, Eric H.; DiNardo, Laurence J.; Costanzo, Richard M.

    2009-01-01

    Objective To develop an alternative model for studying the regenerative capacity of olfactory neurons. Study Design An immunohistochemical analysis of mouse olfactory epithelium transplanted to the cerebral cortex. Methods Strips of olfactory epithelium removed from donor mice at postnatal day 5 to day 20 were inserted into the parietal cortex of adult mice. Recipient animals were allowed to survive for 25 to 120 days and then perfused with 4% paraformaldehyde 1 hour after bromodeoxyuridine injection. The brains were processed, and frozen sections were obtained. Sections through transplant tissue were analyzed using immunohistochemistry and compared with normal olfactory epithelium. Results Graft survival approached 85% with mature olfactory neurons detected in 35% of the transplants stained for olfactory marker protein. Transplant epithelium resembled normal olfactory epithelium containing mature olfactory neurons and axon bundles. Conclusions Studies of olfactory neuron regeneration have been limited by the inability to produce cultures with long-term viability. Olfactory epithelial grafts to the cerebral cortex provide an alternative approach to the study of olfactory neuron regeneration. PMID:11801979

  4. Olfactory imprinting is triggered by MHC peptide ligands.

    PubMed

    Hinz, Cornelia; Namekawa, Iori; Namekawa, Ri; Behrmann-Godel, Jasminca; Oppelt, Claus; Jaeschke, Aaron; Müller, Anke; Friedrich, Rainer W; Gerlach, Gabriele

    2013-01-01

    Olfactory imprinting on environmental, population- and kin-specific cues is a specific form of life-long memory promoting homing of salmon to their natal rivers and the return of coral reef fish to natal sites. Despite its ecological significance, natural chemicals for olfactory imprinting have not been identified yet. Here, we show that MHC peptides function as chemical signals for olfactory imprinting in zebrafish. We found that MHC peptides consisting of nine amino acids elicit olfactory imprinting and subsequent kin recognition depending on the MHC genotype of the fish. In vivo calcium imaging shows that some olfactory bulb neurons are highly sensitive to MHC peptides with a detection threshold at 1 pM or lower, indicating that MHC peptides are potent olfactory stimuli. Responses to MHC peptides overlapped spatially with responses to kin odour but not food odour, consistent with the hypothesis that MHC peptides are natural signals for olfactory imprinting. PMID:24077566

  5. Odorant Metabolism Catalyzed by Olfactory Mucosal Enzymes Influences Peripheral Olfactory Responses in Rats

    PubMed Central

    Thiebaud, Nicolas; Veloso Da Silva, Stéphanie; Jakob, Ingrid; Sicard, Gilles; Chevalier, Joëlle; Ménétrier, Franck; Berdeaux, Olivier; Artur, Yves; Heydel, Jean-Marie; Le Bon, Anne-Marie

    2013-01-01

    A large set of xenobiotic-metabolizing enzymes (XMEs), such as the cytochrome P450 monooxygenases (CYPs), esterases and transferases, are highly expressed in mammalian olfactory mucosa (OM). These enzymes are known to catalyze the biotransformation of exogenous compounds to facilitate elimination. However, the functions of these enzymes in the olfactory epithelium are not clearly understood. In addition to protecting against inhaled toxic compounds, these enzymes could also metabolize odorant molecules, and thus modify their stimulating properties or inactivate them. In the present study, we investigated the in vitro biotransformation of odorant molecules in the rat OM and assessed the impact of this metabolism on peripheral olfactory responses. Rat OM was found to efficiently metabolize quinoline, coumarin and isoamyl acetate. Quinoline and coumarin are metabolized by CYPs whereas isoamyl acetate is hydrolyzed by carboxylesterases. Electro-olfactogram (EOG) recordings revealed that the hydroxylated metabolites derived from these odorants elicited lower olfactory response amplitudes than the parent molecules. We also observed that glucurono-conjugated derivatives induced no olfactory signal. Furthermore, we demonstrated that the local application of a CYP inhibitor on rat olfactory epithelium increased EOG responses elicited by quinoline and coumarin. Similarly, the application of a carboxylesterase inhibitor increased the EOG response elicited by isoamyl acetate. This increase in EOG amplitude provoked by XME inhibitors is likely due to enhanced olfactory sensory neuron activation in response to odorant accumulation. Taken together, these findings strongly suggest that biotransformation of odorant molecules by enzymes localized to the olfactory mucosa may change the odorant’s stimulating properties and may facilitate the clearance of odorants to avoid receptor saturation. PMID:23555703

  6. Reversible Deafferentation of the Adult Zebrafish Olfactory Bulb Affects Glomerular Distribution and Olfactory-Mediated Behavior

    PubMed Central

    Paskin, Taylor R.; Byrd-Jacobs, Christine A.

    2012-01-01

    The olfactory system is a useful model for studying central nervous system recovery from damage due to its neuroplasticity. We recently developed a novel method of deafferentation by repeated exposure of Triton X-100 to the olfactory organ of adult zebrafish. This long-term, reversible method of deafferentation allows both degeneration and regeneration to be observed in the olfactory bulb. The aim of the present study is to examine olfactory bulb innervation, glomerular patterns, and olfactory-mediated behavior with repeated Triton X-100 treatment and the potential for recovery following cessation of treatment. Olfactory bulbs of control, chronic-treated, and recovery animals were examined for the presence or absence of glomeruli that have been identified in the zebrafish glomerular map. Following chronic treatment, the number of glomeruli was dramatically reduced; however, partial innervation remained in the lateral region of the bulb. When animals were given time to recover, complete glomerular distribution returned. A behavioral assay was developed to determine if innervation remaining correlated with behavior of the fish. Chronic-treated fish did not respond to odorants involved with social behavior but continued to react to odorants that mediate feeding behavior. Following recovery, responses to odorants involved with social behavior returned. The morphological and behavioral effects of chronic Triton X-100 treatment in the olfactory system suggest there may be differential susceptibility or resistance to external damage in a subset of sensory neurons. The results of this study demonstrate the remarkable regenerative ability of the olfactory system following extensive and long-term injury. PMID:22963994

  7. Reversible deafferentation of the adult zebrafish olfactory bulb affects glomerular distribution and olfactory-mediated behavior.

    PubMed

    Paskin, Taylor R; Byrd-Jacobs, Christine A

    2012-12-01

    The olfactory system is a useful model for studying central nervous system recovery from damage due to its neuroplasticity. We recently developed a novel method of deafferentation by repeated exposure of Triton X-100 to the olfactory organ of adult zebrafish. This long-term, reversible method of deafferentation allows both degeneration and regeneration to be observed in the olfactory bulb. The aim of the present study is to examine olfactory bulb innervation, glomerular patterns, and olfactory-mediated behavior with repeated Triton X-100 treatment and the potential for recovery following cessation of treatment. Olfactory bulbs of control, chronic-treated, and recovery animals were examined for the presence or absence of glomeruli that have been identified in the zebrafish glomerular map. Following chronic treatment, the number of glomeruli was dramatically reduced; however, partial innervation remained in the lateral region of the bulb. When animals were given time to recover, complete glomerular distribution returned. A behavioral assay was developed to determine if innervation remaining correlated with behavior of the fish. Chronic-treated fish did not respond to odorants involved with social behavior but continued to react to odorants that mediate feeding behavior. Following recovery, responses to odorants involved with social behavior returned. The morphological and behavioral effects of chronic Triton X-100 treatment in the olfactory system suggest there may be differential susceptibility or resistance to external damage in a subset of sensory neurons. The results of this study demonstrate the remarkable regenerative ability of the olfactory system following extensive and long-term injury. PMID:22963994

  8. Netrin/DCC signaling guides olfactory sensory axons to their correct location in the olfactory bulb

    PubMed Central

    Lakhina, Vanisha; Marcaccio, Christina L.; Shao, Xin; Lush, Mark E.; Jain, Roshan A.; Fujimoto, Esther; Bonkowsky, Joshua L.; Granato, Michael; Raper, Jonathan A.

    2012-01-01

    Olfactory sensory neurons expressing particular olfactory receptors project to specific reproducible locations within the bulb. The axonal guidance cues that organize this precise projection pattern are only beginning to be identified. To aid in their identification and characterization, we generated a transgenic zebrafish line, OR111-7:IRES:Gal4, in which a small subset of olfactory sensory neurons is labeled. Most sensory neurons expressing the OR111-7 transgene project to a specific location within the bulb, the central zone protoglomerulus, while a smaller number project to the LG1 protoglomerulus. Inhibiting netrin/DCC signaling perturbs the ability of OR111-7 expressing axons to enter the olfactory bulb and alters their patterns of termination within the bulb. The netrin receptor DCC is expressed in olfactory sensory neurons around the time that they elaborate their axons, netrin1a is expressed near the medial-most margin of the olfactory bulb, and netrin1b is expressed within the ventral region of the bulb. Loss of netrin/DCC signaling components causes some OR111-7 expressing sensory axons to wander posteriorly after exiting the olfactory pit, away from netrin expressing areas in the bulb. OR111-7 expressing axons that enter the bulb target the central zone less precisely than normal, spreading away from netrin expressing regions. These pathfinding errors can be corrected by the re-expression of DCC within OR111-7 transgene expressing neurons in DCC morphant embryos. These findings implicate netrins as the only known attractants for olfactory sensory neurons, first drawing OR111-7 expressing axons into the bulb and then into the ventromedially positioned central zone protoglomerulus. PMID:22457493

  9. [Osteotomy for approaches to the knee joint. Tibial tubercle, lateral epicondyle of the femur and head of the fibula].

    PubMed

    Lorbach, O; Anagnostakos, K; Kohn, D

    2013-05-01

    The present article summarizes the different osteotomy techniques for an extension of standard surgical approaches to the knee joint in selected patients. The aim is to achieve satisfactory exposure and reduce potential postoperative complications compared to alternative techniques, such as the V-Y plasty or the quadriceps snip procedures. Osteotomy of the tibial tubercle is a reasonable extension of the anteromedial or the anterolateral surgical approach in selected patients undergoing revision total knee replacement. This osteotomy will provide excellent surgical exposure of the knee without the risk of avulsion of the patellar tendon and will preserve the blood supply of the patella and the surrounding soft tissue. Moreover, functional clinical outcome will be improved by minimizing damage to the extensor mechanism. Osteotomy of the lateral femoral condyle gives excellent exposure of the posterolateral aspect of the knee joint which might be necessary in some patients with fractures of the posterolateral tibial plateau as well as patients undergoing open allograft transplantation of the lateral meniscus. An alternative option for an extended exposure to the posterolateral knee joint is accomplished by osteotomy or partial resection of the fibular head which is also described as having good clinical results and a low complication rate. PMID:23632649

  10. A new technique for investigating the induced and profile drag coefficients of a smooth wing and a tubercled wing

    NASA Astrophysics Data System (ADS)

    Bolzon, Michael; Kelso, Richard; Arjomandi, Maziar

    2016-03-01

    The induced and profile drag coefficients of a wing are typically determined through a complex experimental technique, such as wake surveying. Such a technique requires measurement of all three orthogonal components of the downstream velocity to find the components of drag, which results in the necessary usage of a sophisticated and costly measurement device, such as multi-hole pressure probe. However, in this paper data is presented which demonstrate that the relative changes in the induced and profile drag coefficients can largely be determined through the sole measurement of the downstream, streamwise velocity. To demonstrate this, the induced and profile drags of two NACA 0021 wings, one with a smooth leading edge and the other wing a tubercled leading edge for comparison, are determined through the measurement of the three orthogonal velocities. The downstream, streamwise velocity distribution of each wing is then constructed and relationships can be determined. The wings were surveyed at 3°, 9°, and 12°. It has been found that the relative magnitude of the profile drag coefficient can be found for all considered angles of attack, while the relative magnitude of the induced drag coefficient can be found at 9° and 12°. These findings produce an innovative, simpler, and more cost effective experimental technique in determining the components of drag of a wing, and reduces the burdensome requirement of a sophisticated measurement device for such an experiment. Further investigation is required to determine the induced drag at 3°.

  11. Comparative gene expression analysis of genital tubercle development reveals a putative appendicular Wnt7 network for the epidermal differentiation

    PubMed Central

    Chiu, Han Sheng; Szucsik, John C.; Georgas, Kylie M.; Jones, Julia L.; Rumballe, Bree A.; Tang, Dave; Grimmond, Sean M.; Lewis, Alfor G.; Aronow, Bruce J.; Lessard, James L.; Little, Melissa H.

    2010-01-01

    Here we describe the first detailed catalogue of gene expression in the developing lower urinary tract (LUT), including epithelial and mesenchymal portions of the developing bladder, urogenital sinus, urethra and genital tubercle (GT) at E13 and E14. Top compartment-specific genes implicated by the microarray data were validated using wholemount in situ hybridization (ISH) over the entire LUT. To demonstrate the potential of this resource to implicate developmentally critical features, we focused on gene expression patterns and pathways in the sexually indeterminate, androgen-independent GT. GT expression patterns reinforced the proposed similarities between development of GT, limb and craniofacial prominences. Comparison of spatial expression patterns predicted a network of Wnt7a-associated GT-enriched epithelial genes, including Gjb2, Dsc3, Krt5 and Sostdc1. Known from other contexts, these genes are associated with normal epidermal differentiation, with disruptions in Dsc3 and Gjb2 showing palmo-plantar keratoderma in the limb. We propose that this gene network contributes to normal foreskin, scrotum and labial development. As several of these are known regulated by, or contain cis elements responsive to retinoic acid, estrogen, or androgen, this implicates this pathway in the later androgen-dependent development of the GT. PMID:20510229

  12. Stimulation of olfactory receptors alters regulation of [Cai] in olfactory neurons of the catfish (Ictalurus punctatus).

    PubMed

    Restrepo, D; Boyle, A G

    1991-03-01

    Intracellular calcium was measured in single olfactory neurons from the channel catfish (Ictalurus punctatus) using the fluorescent Ca2+ indicator fura 2. In 5% of the cells, olfactory stimuli (amino acids) elicited an influx of calcium through the plasma membrane which led to a rapid transient increase in intracellular calcium concentration. Amino acids did not induce release of calcium from internal stores in these cells. Some cells responded specifically to one stimulus (L-alanine, L-arginine, L-norleucine and L-glutamate) while one cell responded to all stimuli. An increase in intracellular calcium could also be elicited in 50% of the cells by direct G-protein stimulation using aluminum fluoride. Because the fraction of cells which respond to direct G-protein stimulation is substantially larger than the fraction of cells responding to amino acids, we tested for possible damage of receptor proteins due to exposure of the olfactory neurons to papain during cell isolation. We find that pretreatment with papain does not alter specific binding of L-alanine and L-arginine to olfactory receptor sites in isolated olfactory cilia. The results are discussed in terms of their relevance to olfactory transduction. PMID:2051471

  13. Olfactory lateralization in homing pigeons: initial orientation of birds receiving a unilateral olfactory input.

    PubMed

    Gagliardo, Anna; Pecchia, Tommaso; Savini, Maria; Odetti, Francesca; Ioalè, Paolo; Vallortigara, Giorgio

    2007-03-01

    It has been shown that homing pigeons (Columba livia) rely on olfactory cues to navigate from unfamiliar locations. In fact, the integrity of the olfactory system, from the olfactory mucosa to the piriform cortex, is required for pigeons to navigate over unfamiliar areas. Recently it has been shown that there is a functional asymmetry in the piriform cortex, with the left piriform cortex more involved in the use of the olfactory navigational map than the right piriform cortex. To investigate further the lateralization of the olfactory system in relation to navigational processes in carrier pigeons, we compared their homing performance after either their left or the right nostril was plugged. Contrary to our expectations, we observed an impairment in the initial orientation of the pigeons with their right nostril plugged. However, both groups released with one nostril plugged tended to be poorer than control pigeons in their homing performance. The observed asymmetry in favour of the right nostril might be due to projections from the olfactory bulbs to the contralateral globus pallidum, a structure involved in motor responses. PMID:17425577

  14. Olfactory Environment Design for Human Spaceflight

    NASA Astrophysics Data System (ADS)

    Welch, C. S.; Holland, F. J.

    2002-01-01

    Smell is usually deemed the least important of the five senses. To contradict this assertion, however, there is no shortage of scientific literature which concludes that olfaction is of very great significance to humans. Odours have been shown to have a variety of effects on humans, and are capable of changing both behaviour and cognitive processing in ways that we are frequently completely unconscious of. Examples of this include alertness, alteration of mood, capacity for ideation and intellectual performance. To date, the design of human spacecraft has concentrated on making their olfactory environments, where possible, `odour neutral' - that is ensuring that all unpleasant and/or offensive odours are removed. Here it suggested that spacecraft (and other extraterrestrial facilities for human inhabitation) might benefit from having their olfactory environments designed to be `odour positive', that is to use odours and olfaction for the positive benefit of their residents. This paper presents a summary of current olfactory research and considers both its positive and negative implications for humans in space. It then discusses `odour positive' design of spacecraft olfactory environments and the possible benefits accruing from this approach before examining its implications for the architecture of spacecraft environmental control systems.

  15. Functional Neuroanatomy of "Drosophila" Olfactory Memory Formation

    ERIC Educational Resources Information Center

    Guven-Ozkan, Tugba; Davis, Ronald L.

    2014-01-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying "Drosophila" learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive…

  16. Olfactory processing: detection of rapid changes.

    PubMed

    Croy, Ilona; Krone, Franziska; Walker, Susannah; Hummel, Thomas

    2015-06-01

    Changes in the olfactory environment have a rather poor chance of being detected. Aim of the present study was to determine, whether the same (cued) or different (uncued) odors can generally be detected at short inter stimulus intervals (ISI) below 2.5 s. Furthermore we investigated, whether inhibition of return, an attentional phenomenon facilitating the detection of new stimuli at longer ISI, is present in the domain of olfaction. Thirteen normosmic people (3 men, 10 women; age range 19-27 years; mean age 23 years) participated. Stimulation was performed using air-dilution olfactometry with 2 odors: phenylethylalcohol and hydrogen disulfide. Reaction time to target stimuli was assessed in cued and uncued conditions at ISIs of 1, 1.5, 2, and 2.5 s. There was a significant main effect of ISI, indicating that odors presented only 1 s apart are missed frequently. Uncued presentation facilitated detection at short ISIs, implying that changes of the olfactory environment are detected better than presentation of the same odor again. Effects in relation to "olfactory inhibition of return," on the other hand, are not supported by our results. This suggests that attention works different for the olfactory system compared with the visual and auditory systems. PMID:25911421

  17. Resistance to Interference of Olfactory Perceptual Learning

    ERIC Educational Resources Information Center

    Stevenson, Richard J.; Case, Trevor I.; Tomiczek, Caroline

    2007-01-01

    Olfactory memory is especially persistent. The current study explored whether this applies to a form of perceptual learning, in which experience of an odor mixture results in greater judged similarity between its elements. Experiment 1A contrasted 2 forms of interference procedure, "compound" (mixture AW, followed by presentation of new mixtures…

  18. The Olfactory Factor in Nonverbal Communication.

    ERIC Educational Resources Information Center

    Riley, Jobie E.

    This paper on the subject of smell in communication provides a brief survey of the subject, pulling together a wide variety of disparate ideas across many disciplines. The paper is comprised of a general introductory section and separate sections on the olfactory nonverbal communication of animals and human beings. The uses to which animals put…

  19. Adult Neurogenesis and the Olfactory System

    PubMed Central

    Whitman, Mary C.; Greer, Charles A.

    2009-01-01

    Though initially described in the early 1960s, it is only within the past decade that the concept of continuing adult neurogenesis has gained widespread acceptance. Neuroblasts from the subventricular zone (SVZ) migrate along the rostral migratory stream (RMS) into the olfactory bulb, where they differentiate into interneurons. Neuroblasts from the subgranular zone (SGZ) of the hippocampal formation show relatively little migratory behavior, and differentiate into dentate gyrus granule cells. In sharp contrast to embryonic and perinatal development, these newly differentiated neurons must integrate into a fully functional circuit, without disrupting ongoing performance. Here, after a brief historical overview and introduction to olfactory circuitry, we review recent advances in the biology of neural stem cells, mechanisms of migration in the RMS and olfactory bulb, differentiation and survival of new neurons, and finally mechanisms of synaptic integration. Our primary focus is on the olfactory system, but we also contrast the events occurring there with those in the hippocampal formation. Although both SVZ and SGZ neurogenesis are involved in some types of learning, their full functional significance remains unclear. Since both systems offer models of integration of new neuroblasts, there is immense interest in using neural stem cells to replace neurons lost in injury or disease. Though many questions remain unanswered, new insights appear daily about adult neurogenesis, regulatory mechanisms, and the fates of the progeny. We discuss here some of the central features of these advances, as well as speculate on future research directions. PMID:19615423

  20. Nucleus accumbens dopaminergic neurotransmission switches its modulatory action in chronification of inflammatory hyperalgesia.

    PubMed

    Dias, Elayne Vieira; Sartori, César Renato; Marião, Paula Ramos; Vieira, André Schwambach; Camargo, Lilian Calili; Athie, Maria Carolina Pedro; Pagliusi, Marco Oreste; Tambeli, Claudia Herrera; Parada, Carlos Amilcar

    2015-10-01

    Dopaminergic neurotransmission in the nucleus accumbens, a central component of the mesolimbic system, has been associated with acute pain modulation. As there is a transition from acute to chronic pain ('chronification'), modulatory structures may be involved in chronic pain development. Thus, this study aimed to elucidate the role of nucleus accumbens dopaminergic neurotransmission in chronification of pain. We used a rat model in which daily subcutaneous injection of prostaglandin E2 in the hindpaw for 14 days induces a long-lasting state of nociceptor sensitization that lasts for at least 30 days following the end of the treatment. Our findings demonstrated that the increase of dopamine in the nucleus accumbens by local administration of GBR12909 (0.5 nmol/0.25 μL), a dopamine reuptake inhibitor, blocked prostaglandin E2 -induced acute hyperalgesia. This blockade was prevented by a dopamine D2 receptor antagonist (raclopride, 10 nmol/0.25 μL) but not changed by a D1 receptor antagonist (SCH23390, 0.5, 3 or 10 nmol/0.25 μL), both co-administered with GBR12909 in the nucleus accumbens. In contrast, the induction of persistent hyperalgesia was facilitated by continuous infusion of GBR12909 in the nucleus accumbens (0.021 nmol/0.5 μL/h) over 7 days of prostaglandin E2 treatment. The development of persistent hyperalgesia was impaired by SCH23390 (0.125 nmol/0.5 μL/h) and raclopride (0.416 nmol/0.5 μL/h), both administered continuously in the nucleus accumbens over 7 days. Taken together, our data suggest that the chronification of pain involves the plasticity of dopaminergic neurotransmission in the nucleus accumbens, which switches its modulatory role from antinociceptive to pronociceptive. PMID:26173870

  1. Role of nucleus accumbens shell neuronal ensembles in context-induced reinstatement of cocaine-seeking.

    PubMed

    Cruz, Fabio C; Babin, Klil R; Leao, Rodrigo M; Goldart, Evan M; Bossert, Jennifer M; Shaham, Yavin; Hope, Bruce T

    2014-05-28

    Environmental contexts previously associated with drug use provoke relapse to drug use in humans and reinstatement of drug seeking in animal models of drug relapse. We examined whether context-induced reinstatement of cocaine seeking is mediated by activation of context-selected nucleus accumbens neurons. We trained rats to self-administer cocaine in Context A and extinguished their lever-pressing in a distinct Context B. On test day, reexposure to the cocaine-associated Context A reinstated cocaine seeking and increased expression of the neural activity marker Fos in 3.3% of accumbens shell and 1.6% of accumbens core neurons. To assess a causal role for these activated neurons, we used the Daun02 inactivation procedure to selectively inactivate these neurons. We trained c-fos-lacZ transgenic rats to self-administer cocaine in Context A and extinguished their lever-pressing in Context B. On induction day, we exposed rats to either Context A or a novel Context C for 30 min and injected Daun02 or vehicle into accumbens shell or core 60 min later. On test day, 3 d after induction day, the ability of Context A to reinstate cocaine seeking and increase neuronal activity in accumbens shell was attenuated when Daun02 was previously injected after exposure to Context A. Daun02 injections after exposure to the novel Context C had no effect on context-induced reinstatement of cocaine seeking despite much greater numbers of Fos-expressing neurons induced by Context C. Daun02 injections in accumbens core had no effect. Our data suggest that context-induced reinstatement of cocaine seeking is mediated by activation of context-selected accumbens shell but not core neuronal ensembles. PMID:24872549

  2. The Nucleus Accumbens: A Switchboard for Goal-Directed Behaviors

    PubMed Central

    O'Donnell, Patricio

    2009-01-01

    Reward intake optimization requires a balance between exploiting known sources of rewards and exploring for new sources. The prefrontal cortex (PFC) and associated basal ganglia circuits are likely candidates as neural structures responsible for such balance, while the hippocampus may be responsible for spatial/contextual information. Although studies have assessed interactions between hippocampus and PFC, and between hippocampus and the nucleus accumbens (NA), it is not known whether 3-way interactions among these structures vary under different behavioral conditions. Here, we investigated these interactions with multichannel recordings while rats explored an operant chamber and while they performed a learned lever-pressing task for reward in the same chamber shortly afterward. Neural firing and local field potentials in the NA core synchronized with hippocampal activity during spatial exploration, but during lever pressing they instead synchronized more strongly with the PFC. The latter is likely due to transient drive of NA neurons by bursting prefrontal activation, as in vivo intracellular recordings in anesthetized rats revealed that NA up states can transiently synchronize with spontaneous PFC activity and PFC stimulation with a bursting pattern reliably evoked up states in NA neurons. Thus, the ability to switch synchronization in a task-dependent manner indicates that the NA core can dynamically select its inputs to suit environmental demands, thereby contributing to decision-making, a function that was thought to primarily depend on the PFC. PMID:19352511

  3. Accumbens dopamine-acetylcholine balance in approach and avoidance

    PubMed Central

    Hoebel, Bartley G.; Avena, Nicole M.; Rada, Pedro

    2008-01-01

    Summary Understanding systems for approach and avoidance is basic for behavioral neuroscience. Research on the neural organization and functions of the dorsal striatum in movement disorders, such as Huntington's and Parkinson's Disease, can inform the study of the nucleus accumbens (NAc) in motivational disorders, such as addiction and depression. We propose opposing roles for dopamine (DA) and acetylcholine (ACh) in the NAc in the control of GABA output systems for approach and avoidance. Contrary to DA, which fosters approach, ACh release is a correlate or cause of meal satiation, conditioned taste aversion and aversive brain stimulation. ACh may also counteract excessive DA-mediated approach behavior as revealed during withdrawal from drugs of abuse or sugar, when the animal enters an ACh-mediated state of anxiety and behavioral depression. This review summarizes evidence that ACh is important in the inhibition of behavior when extracellular DA is high and the generation of an anxious or depressed state when DA is relatively low. PMID:18023617

  4. Olfactory acuity in theropods: palaeobiological and evolutionary implications

    PubMed Central

    Zelenitsky, Darla K.; Therrien, François; Kobayashi, Yoshitsugu

    2008-01-01

    This research presents the first quantitative evaluation of the olfactory acuity in extinct theropod dinosaurs. Olfactory ratios (i.e. the ratio of the greatest diameter of the olfactory bulb to the greatest diameter of the cerebral hemisphere) are analysed in order to infer the olfactory acuity and behavioural traits in theropods, as well as to identify phylogenetic trends in olfaction within Theropoda. A phylogenetically corrected regression of olfactory ratio to body mass reveals that, relative to predicted values, the olfactory bulbs of (i) tyrannosaurids and dromaeosaurids are significantly larger, (ii) ornithomimosaurs and oviraptorids are significantly smaller, and (iii) ceratosaurians, allosauroids, basal tyrannosauroids, troodontids and basal birds are within the 95% CI. Relative to other theropods, olfactory acuity was high in tyrannosaurids and dromaeosaurids and therefore olfaction would have played an important role in their ecology, possibly for activities in low-light conditions, locating food, or for navigation within large home ranges. Olfactory acuity was the lowest in ornithomimosaurs and oviraptorids, suggesting a reduced reliance on olfaction and perhaps an omnivorous diet in these theropods. Phylogenetic trends in olfaction among theropods reveal that olfactory acuity did not decrease in the ancestry of birds, as troodontids, dromaeosaurids and primitive birds possessed typical or high olfactory acuity. Thus, the sense of smell must have remained important in primitive birds and its presumed decrease associated with the increased importance of sight did not occur until later among more derived birds. PMID:18957367

  5. Sex hormone binding globulin in the rat olfactory system.

    PubMed

    Ploss, V; Gebhart, V M; Dölz, W; Jirikowski, G F

    2014-05-01

    Ovarian steroids are known to act on the olfactory system. Their mode of action, however, is mostly unclear to date since nuclear receptors are lacking in sensory neurons. Here we used immunocytochemistry and RT-PCR to study expression and distribution of sex hormone binding globulin (SHBG) in the rat olfactory system. Single sensory cells in the olfactory mucosa and their projections in the olfactory bulb showed specific SHBG immunostaining as determined by double immunofluorescence with olfactory marker protein OMP. Larger groups of SHBG stained sensory cells occurred in the vomeronasal organ (VNO). A portion of the olfactory glomeruli in the accessory olfactory bulb showed large networks of SHBG positive nerve fibres. Some of the mitral cells showed SHBG immune fluorescence. RT-PCR revealed SHBG encoding mRNA in the olfactory mucosa, in the VNO and in the olfactory bulbs indicating intrinsic expression of the binding globulin. The VNO and its related projections within the limbic system are known to be sensitive to gonadal steroid hormones. We conclude that SHBG may be of functional importance for rapid effects of olfactory steroids on limbic functions including the control of reproductive behaviours through pheromones. PMID:24681170

  6. Relationship of Dopamine of the Nucleus Accumbens with Intra-infralimbic Apomorphine Microinjection

    PubMed Central

    Alimoradian, Abbas; Sajedianfard, Javad; Baha-aldini Beigy, Faegheh; Panjehshahin, Mohammad Reza; Owji, Ali Akbar

    2013-01-01

    Objective(s): The dopamine level of the nucleus accumbens changes during some stereotyped behaviors. To study dopamine level of the nucleus accumbens in intra infralimbic apomorphine-induced climbing, microdialysis probes were implanted into the nucleus accumbens shell of male Sprague Dawley rats weighting 275–400 g. Materials and Methods: The rats were divided into two groups (apomorphine and control) of least eleven rats in each group. Apomorphine at dose of 5 μg/0.5 μl or its vehicle was microinjected into the infralimbic in apomorphine and control groups respectively. Then, changes in dopamine levels in the nucleus accumbens shell were monitored. The concentration of dopamine was measured by High-Performance Liquid Chromatography-Electochemical (HPLC-ECD). Finally, the stereotyped behaviors were recorded. Results: The mean of dopamine levels for all of after microinjection period in control and drug groups were 450% and 150% respectively compared to those of before microinjection period. However, there was no significant difference between groups of apomorphine and control. In addition, the return of dopamine level to the baseline was faster in apomorphine group than the control group. Conclusion: The intra infralimbic apomorphine -induced climbing at dose of 5 μg/0.5 μl was not modulated via the increase of dopamine level in the nucleus accumbens area. PMID:23997899

  7. Optogenetically-induced tonic dopamine release from VTA-nucleus accumbens projections inhibits reward consummatory behaviors.

    PubMed

    Mikhailova, Maria A; Bass, Caroline E; Grinevich, Valentina P; Chappell, Ann M; Deal, Alex L; Bonin, Keith D; Weiner, Jeff L; Gainetdinov, Raul R; Budygin, Evgeny A

    2016-10-01

    Recent optogenetic studies demonstrated that phasic dopamine release in the nucleus accumbens may play a causal role in multiple aspects of natural and drug reward-related behaviors. The role of tonic dopamine release in reward consummatory behavior remains unclear. The current study used a combinatorial viral-mediated gene delivery approach to express ChR2 on mesolimbic dopamine neurons in rats. We used optical activation of this dopamine circuit to mimic tonic dopamine release in the nucleus accumbens and to explore the causal relationship between this form of dopamine signaling within the ventral tegmental area (VTA)-nucleus accumbens projection and consumption of a natural reward. Using a two bottle choice paradigm (sucrose vs. water), the experiments revealed that tonic optogenetic stimulation of mesolimbic dopamine transmission significantly decreased reward consummatory behaviors. Specifically, there was a significant decrease in the number of bouts, licks and amount of sucrose obtained during the drinking session. Notably, activation of VTA dopamine cell bodies or dopamine terminals in the nucleus accumbens resulted in identical behavioral consequences. No changes in water intake were evident under the same experimental conditions. Collectively, these data demonstrate that tonic optogenetic stimulation of VTA-nucleus accumbens dopamine release is sufficient to inhibit reward consummatory behavior, possibly by preventing this circuit from engaging in phasic activity that is thought to be essential for reward-based behaviors. PMID:27421228

  8. The involvement of nucleus accumbens dopamine in appetitive and aversive motivation.

    PubMed

    Salamone, J D

    1994-04-18

    In recent years, considerable emphasis has been placed upon the putative role of nucleus accumbens dopamine systems in appetitive motivation and positive reinforcement. However, considerable evidence indicates that brain dopamine in general, and nucleus accumbens dopamine in particular, is involved in aspects of aversive motivation. Administration of dopamine antagonists or localized interference with nucleus accumbens dopamine systems has been shown to disrupt active avoidance behavior. In addition, accumbens dopamine release and metabolism is activated by a wide variety of stressful conditions. A review of the literature indicates that there are substantial similarities between the characteristics of dopaminergic involvement in appetitive and aversive motivation. There is conflicting evidence about the role of dopamine in emotion, and little evidence to suggest that the profound and consistent changes in instrumental behavior produced by interference with DA systems are due to direct dopaminergic mediation of positive affective responses such as hedonia. It is suggested that nucleus accumbens dopamine is involved in aspects of sensorimotor functions that are involved in both appetitive and aversive motivation. PMID:8037860

  9. Improved polyacrylamide-based artificial sputum with formalin-fixed tubercle bacilli for training of tuberculosis microscopists.

    PubMed

    Yamada, Hiroyuki; Mitarai, Satoshi; Wahyunitisari, Manik Rento; Mertaniasih, Ni Made; Sugamoto, Tetsuhiro; Chikamatsu, Kinuyo; Aono, Akio; Matsumoto, Hiroko; Fujiki, Akiko

    2011-10-01

    Sputum smear microscopy is an easy, inexpensive, and rapid method for detecting tubercle bacilli when there are more than 10,000 bacilli/ml in the original sputum. Furthermore, because the microscopic method provides not only quantitative, but also qualitative information, such as the shape of bacilli, it has remained significant. We have previously developed and reported panel test slides made from polyacrylamide-based artificial sputum (PBAS) mixed with both cultured THP-1 cells and nonpathogenic mycobacteria. In this paper, we report an improved preparation method for PBAS for panel test slides that provides a simplified method and enhanced availability with high consistency in each grade and in which only negative PBAS is prepared from polyacrylamide and cultured THP-1 cells and mixed with graded formalin-fixed Mycobacterium tuberculosis solution (FFTBS) containing oral flora and Pseudomonas aeruginosa on the slides. In the smears prepared using this improved method, the numbers (average ± standard deviation [SD]) of acid-fast bacilli (AFB) in 300 fields (2- by 3-cm smear) in eight smears of each grade ranged from 5 to 9 (6.4 ± 1.4), from 59 to 88 (74.6 ± 10.0), from 503 to 912 (705.0 ± 145.7), and from 1,819 to 3,256 (2133.3 ± 478.0) in ±, +, ++, and +++ smears, respectively. In addition, this preparation method provided high similarity to the microscopic appearance of bacilli and background seen in the actual patient sputum, with high feasibility. These results revealed that our new PBAS had high authenticity in the appearance and consistency in each grade, which could make it valuable as a reliable artificial sputum for the training of microscopists. PMID:21813720

  10. Improved Polyacrylamide-Based Artificial Sputum with Formalin-Fixed Tubercle Bacilli for Training of Tuberculosis Microscopists▿†

    PubMed Central

    Yamada, Hiroyuki; Mitarai, Satoshi; Wahyunitisari, Manik Rento; Mertaniasih, Ni Made; Sugamoto, Tetsuhiro; Chikamatsu, Kinuyo; Aono, Akio; Matsumoto, Hiroko; Fujiki, Akiko

    2011-01-01

    Sputum smear microscopy is an easy, inexpensive, and rapid method for detecting tubercle bacilli when there are more than 10,000 bacilli/ml in the original sputum. Furthermore, because the microscopic method provides not only quantitative, but also qualitative information, such as the shape of bacilli, it has remained significant. We have previously developed and reported panel test slides made from polyacrylamide-based artificial sputum (PBAS) mixed with both cultured THP-1 cells and nonpathogenic mycobacteria. In this paper, we report an improved preparation method for PBAS for panel test slides that provides a simplified method and enhanced availability with high consistency in each grade and in which only negative PBAS is prepared from polyacrylamide and cultured THP-1 cells and mixed with graded formalin-fixed Mycobacterium tuberculosis solution (FFTBS) containing oral flora and Pseudomonas aeruginosa on the slides. In the smears prepared using this improved method, the numbers (average ± standard deviation [SD]) of acid-fast bacilli (AFB) in 300 fields (2- by 3-cm smear) in eight smears of each grade ranged from 5 to 9 (6.4 ± 1.4), from 59 to 88 (74.6 ± 10.0), from 503 to 912 (705.0 ± 145.7), and from 1,819 to 3,256 (2133.3 ± 478.0) in ±, +, ++, and +++ smears, respectively. In addition, this preparation method provided high similarity to the microscopic appearance of bacilli and background seen in the actual patient sputum, with high feasibility. These results revealed that our new PBAS had high authenticity in the appearance and consistency in each grade, which could make it valuable as a reliable artificial sputum for the training of microscopists. PMID:21813720

  11. Differential Muscarinic Modulation in the Olfactory Bulb

    PubMed Central

    Smith, Richard S.; Hu, Ruilong; DeSouza, Andre; Eberly, Christian L.; Krahe, Krista; Chan, Wilson

    2015-01-01

    Neuromodulation of olfactory circuits by acetylcholine (ACh) plays an important role in odor discrimination and learning. Early processing of chemosensory signals occurs in two functionally and anatomically distinct regions, the main and accessory olfactory bulbs (MOB and AOB), which receive extensive cholinergic input from the basal forebrain. Here, we explore the regulation of AOB and MOB circuits by ACh, and how cholinergic modulation influences olfactory-mediated behaviors in mice. Surprisingly, despite the presence of a conserved circuit, activation of muscarinic ACh receptors revealed marked differences in cholinergic modulation of output neurons: excitation in the AOB and inhibition in the MOB. Granule cells (GCs), the most abundant intrinsic neuron in the OB, also exhibited a complex muscarinic response. While GCs in the AOB were excited, MOB GCs exhibited a dual muscarinic action in the form of a hyperpolarization and an increase in excitability uncovered by cell depolarization. Furthermore, ACh influenced the input–output relationship of mitral cells in the AOB and MOB differently showing a net effect on gain in mitral cells of the MOB, but not in the AOB. Interestingly, despite the striking differences in neuromodulatory actions on output neurons, chemogenetic inhibition of cholinergic neurons produced similar perturbations in olfactory behaviors mediated by these two regions. Decreasing ACh in the OB disrupted the natural discrimination of molecularly related odors and the natural investigation of odors associated with social behaviors. Thus, the distinct neuromodulation by ACh in these circuits could underlie different solutions to the processing of general odors and semiochemicals, and the diverse olfactory behaviors they trigger. SIGNIFICANCE STATEMENT State-dependent cholinergic modulation of brain circuits is critical for several high-level cognitive functions, including attention and memory. Here, we provide new evidence that cholinergic

  12. Site-specific population dynamics and variable olfactory marker protein expression in the postnatal canine olfactory epithelium

    PubMed Central

    Bock, Patricia; Rohn, Karl; Beineke, Andreas; Baumgärtner, Wolfgang; Wewetzer, Konstantin

    2009-01-01

    The main olfactory epithelium is a pseudostratified columnar epithelium that displays neurogenesis over the course of a lifetime. New olfactory neurons arise basally and are transferred to the middle third of the epithelium during maturation. It is generally believed that this pattern is present throughout the olfactory area. In the present study, we show that the postnatal canine olfactory epithelium is composed of two distinct types of epithelium, designated A and B, which not only differ in olfactory neuron morphology, marker expression and basal cell proliferation but also display a patchy distribution and preferential localization within the nasal cavity. Type A epithelium, abundant in the caudal part of the olfactory area, contains well-differentiated olfactory neurons positive for olfactory marker protein but low numbers of immature neurons and proliferating basal cells, as visualized by TrkB/Human Natural Killer-1 (HNK-1) glyco-epitope and Ki-67 immunostaining, respectively. In contrast, type B epithelium is mainly found in the rostral part and contains smaller and elongated neurons that display increased levels of TrkB/Human Natural Killer-1 (HNK-1) glyco-epitope immunoreactivity and a higher number of Ki-67-positive basal cells but lower and variable levels of olfactory marker protein. The vomeronasal organ displays a uniform distribution of molecular markers and proliferating basal cells. The observation that olfactory marker protein in type A and B epithelium is preferentially localized to the nucleus and cytoplasm, respectively, implies correlation between subcellular localization and olfactory neuron maturation and may indicate distinct functional roles of olfactory marker protein. Whether the site-specific population dynamics in the postnatal canine olfactory epithelium revealed in the present study are modulated by physiological parameters, such as airflow, has to be clarified in future studies. PMID:19788548

  13. Behavioral Flexibility Is Increased by Optogenetic Inhibition of Neurons in the Nucleus Accumbens Shell during Specific Time Segments

    ERIC Educational Resources Information Center

    Aquili, Luca; Liu, Andrew W.; Shindou, Mayumi; Shindou, Tomomi; Wickens, Jeffery R.

    2014-01-01

    Behavioral flexibility is vital for survival in an environment of changing contingencies. The nucleus accumbens may play an important role in behavioral flexibility, representing learned stimulus-reward associations in neural activity during response selection and learning from results. To investigate the role of nucleus accumbens neural activity…

  14. Nested expression domains for odorant receptors in zebrafish olfactory epithelium.

    PubMed

    Weth, F; Nadler, W; Korsching, S

    1996-11-12

    The mapping of high-dimensional olfactory stimuli onto the two-dimensional surface of the nasal sensory epithelium constitutes the first step in the neuronal encoding of olfactory input. We have used zebrafish as a model system to analyze the spatial distribution of odorant receptor molecules in the olfactory epithelium by quantitative in situ hybridization. To this end, we have cloned 10 very divergent zebrafish odorant receptor molecules by PCR. Individual genes are expressed in sparse olfactory receptor neurons. Analysis of the position of labeled cells in a simplified coordinate system revealed three concentric, albeit overlapping, expression domains for the four odorant receptors analyzed in detail. Such regionalized expression should result in a corresponding segregation of functional response properties. This might represent the first step of spatial encoding of olfactory input or be essential for the development of the olfactory system. PMID:8917589

  15. Olfactory drug effects approached from human-derived data.

    PubMed

    Lötsch, Jörn; Knothe, Claudia; Lippmann, Catharina; Ultsch, Alfred; Hummel, Thomas; Walter, Carmen

    2015-11-01

    The complexity of the sense of smell makes adverse olfactory effects of drugs highly likely, which can impact a patient's quality of life. Here, we present a bioinformatics approach that identifies drugs with potential olfactory effects by connecting drug target expression patterns in human olfactory tissue with drug-related information and the underlying molecular drug targets taken from publically available databases. We identified 71 drugs with listed olfactory effects and 147 different targets. Taking the target-based approach further, we found additional drugs with potential olfactory effects, including 152 different substances interacting with genes expressed in the human olfactory bulb. Our proposed bioinformatics approach provides plausible hypotheses about mechanistic drug effects for drug discovery and repurposing and, thus, would be appropriate for use during drug development. PMID:26160059

  16. A case of musical preference for Johnny Cash following deep brain stimulation of the nucleus accumbens.

    PubMed

    Mantione, Mariska; Figee, Martijn; Denys, Damiaan

    2014-01-01

    Music is among all cultures an important part of the live of most people. Music has psychological benefits and may generate strong emotional and physiological responses. Recently, neuroscientists have discovered that music influences the reward circuit of the nucleus accumbens (NAcc), even when no explicit reward is present. In this clinical case study, we describe a 60-year old patient who developed a sudden and distinct musical preference for Johnny Cash following deep brain stimulation (DBS) targeted at the NAcc. This case report substantiates the assumption that the NAcc is involved in musical preference, based on the observation of direct stimulation of the accumbens with DBS. It also shows that accumbens DBS can change musical preference without habituation of its rewarding properties. PMID:24834035

  17. A case of musical preference for Johnny Cash following deep brain stimulation of the nucleus accumbens

    PubMed Central

    Mantione, Mariska; Figee, Martijn; Denys, Damiaan

    2014-01-01

    Music is among all cultures an important part of the live of most people. Music has psychological benefits and may generate strong emotional and physiological responses. Recently, neuroscientists have discovered that music influences the reward circuit of the nucleus accumbens (NAcc), even when no explicit reward is present. In this clinical case study, we describe a 60-year old patient who developed a sudden and distinct musical preference for Johnny Cash following deep brain stimulation (DBS) targeted at the NAcc. This case report substantiates the assumption that the NAcc is involved in musical preference, based on the observation of direct stimulation of the accumbens with DBS. It also shows that accumbens DBS can change musical preference without habituation of its rewarding properties. PMID:24834035

  18. Neurons in the Nucleus Accumbens Promote Selection Bias for Nearer Objects

    PubMed Central

    Morrison, Sara E.

    2014-01-01

    Both animals and humans often prefer rewarding options that are nearby over those that are distant, but the neural mechanisms underlying this bias are unclear. Here we present evidence that a proximity signal encoded by neurons in the nucleus accumbens drives proximate reward bias by promoting impulsive approach to nearby reward-associated objects. On a novel decision-making task, rats chose the nearer option even when it resulted in greater effort expenditure and delay to reward; therefore, proximate reward bias was unlikely to be caused by effort or delay discounting. The activity of individual neurons in the nucleus accumbens did not consistently encode the reward or effort associated with specific alternatives, suggesting that it does not participate in weighing the values of options. In contrast, proximity encoding was consistent and did not depend on the subsequent choice, implying that accumbens activity drives approach to the nearest rewarding option regardless of its specific associated reward size or effort level. PMID:25319709

  19. Neurons in the nucleus accumbens promote selection bias for nearer objects.

    PubMed

    Morrison, Sara E; Nicola, Saleem M

    2014-10-15

    Both animals and humans often prefer rewarding options that are nearby over those that are distant, but the neural mechanisms underlying this bias are unclear. Here we present evidence that a proximity signal encoded by neurons in the nucleus accumbens drives proximate reward bias by promoting impulsive approach to nearby reward-associated objects. On a novel decision-making task, rats chose the nearer option even when it resulted in greater effort expenditure and delay to reward; therefore, proximate reward bias was unlikely to be caused by effort or delay discounting. The activity of individual neurons in the nucleus accumbens did not consistently encode the reward or effort associated with specific alternatives, suggesting that it does not participate in weighing the values of options. In contrast, proximity encoding was consistent and did not depend on the subsequent choice, implying that accumbens activity drives approach to the nearest rewarding option regardless of its specific associated reward size or effort level. PMID:25319709

  20. Histone arginine methylation in cocaine action in the nucleus accumbens.

    PubMed

    Damez-Werno, Diane M; Sun, HaoSheng; Scobie, Kimberly N; Shao, Ningyi; Rabkin, Jaclyn; Dias, Caroline; Calipari, Erin S; Maze, Ian; Pena, Catherine J; Walker, Deena M; Cahill, Michael E; Chandra, Ramesh; Gancarz, Amy; Mouzon, Ezekiell; Landry, Joseph A; Cates, Hannah; Lobo, Mary-Kay; Dietz, David; Allis, C David; Guccione, Ernesto; Turecki, Gustavo; Defilippi, Paola; Neve, Rachael L; Hurd, Yasmin L; Shen, Li; Nestler, Eric J

    2016-08-23

    Repeated cocaine exposure regulates transcriptional regulation within the nucleus accumbens (NAc), and epigenetic mechanisms-such as histone acetylation and methylation on Lys residues-have been linked to these lasting actions of cocaine. In contrast to Lys methylation, the role of histone Arg (R) methylation remains underexplored in addiction models. Here we show that protein-R-methyltransferase-6 (PRMT6) and its associated histone mark, asymmetric dimethylation of R2 on histone H3 (H3R2me2a), are decreased in the NAc of mice and rats after repeated cocaine exposure, including self-administration, and in the NAc of cocaine-addicted humans. Such PRMT6 down-regulation occurs selectively in NAc medium spiny neurons (MSNs) expressing dopamine D2 receptors (D2-MSNs), with opposite regulation occurring in D1-MSNs, and serves to protect against cocaine-induced addictive-like behavioral abnormalities. Using ChIP-seq, we identified Src kinase signaling inhibitor 1 (Srcin1; also referred to as p140Cap) as a key gene target for reduced H3R2me2a binding, and found that consequent Srcin1 induction in the NAc decreases Src signaling, cocaine reward, and the motivation to self-administer cocaine. Taken together, these findings suggest that suppression of Src signaling in NAc D2-MSNs, via PRMT6 and H3R2me2a down-regulation, functions as a homeostatic brake to restrain cocaine action, and provide novel candidates for the development of treatments for cocaine addiction. PMID:27506785

  1. Nucleus accumbens GLP-1 receptors influence meal size and palatability.

    PubMed

    Dossat, Amanda M; Diaz, Ryan; Gallo, Lindsay; Panagos, Alyssa; Kay, Kristen; Williams, Diana L

    2013-06-15

    Recent evidence suggests that the glucagon-like peptide-1 (GLP-1) neuronal projection to the nucleus accumbens core (NAcC) contributes to food intake control. To investigate the role of endogenous stimulation of GLP-1 receptors (GLP-1R) in NAcC, we examined the effects of the GLP-1R antagonist exendin-(9-39) (Ex9) on meal pattern and microstructure of ingestive behavior in rats. Intra-NAcC Ex9 treatment selectively increased meal size relative to vehicle in rats consuming 0.25 M sucrose solution or sweetened condensed milk. Microstructural analysis revealed effects of NAcC Ex9 on initial lick rate and the size and duration of licking bursts in rats consuming 0.1 or 0.25 M sucrose, suggesting that blockade of NAcC GLP-1R increases palatability. Because NAcC Ex9 did not affect licking for nonnutritive saccharin (0.1%), we suggest that the presence of nutrients in the gut may be required for endogenous stimulation of NAcC GLP-1R. Consistent with this, we also found that the meal size-suppressive effects of intragastric nutrient infusion were attenuated by NAcC delivery of Ex9 at a dose that had no effect when delivered alone. Analysis of licking patterns revealed that NAcC Ex9 did not reverse intragastric nutrient-induced suppression of burst number but rather blunted the effect of nutrient infusion on meal size primarily by increasing the size and duration of licking bursts. Together, our results suggest that NAcC Ex9 influences taste evaluation. We conclude that GLP-1 released in NAcC in response to gastrointestinal nutrients reduces the hedonic value of food. PMID:23612998

  2. Nucleus accumbens GLP-1 receptors influence meal size and palatability

    PubMed Central

    Dossat, Amanda M.; Diaz, Ryan; Gallo, Lindsay; Panagos, Alyssa; Kay, Kristen

    2013-01-01

    Recent evidence suggests that the glucagon-like peptide-1 (GLP-1) neuronal projection to the nucleus accumbens core (NAcC) contributes to food intake control. To investigate the role of endogenous stimulation of GLP-1 receptors (GLP-1R) in NAcC, we examined the effects of the GLP-1R antagonist exendin-(9–39) (Ex9) on meal pattern and microstructure of ingestive behavior in rats. Intra-NAcC Ex9 treatment selectively increased meal size relative to vehicle in rats consuming 0.25 M sucrose solution or sweetened condensed milk. Microstructural analysis revealed effects of NAcC Ex9 on initial lick rate and the size and duration of licking bursts in rats consuming 0.1 or 0.25 M sucrose, suggesting that blockade of NAcC GLP-1R increases palatability. Because NAcC Ex9 did not affect licking for nonnutritive saccharin (0.1%), we suggest that the presence of nutrients in the gut may be required for endogenous stimulation of NAcC GLP-1R. Consistent with this, we also found that the meal size-suppressive effects of intragastric nutrient infusion were attenuated by NAcC delivery of Ex9 at a dose that had no effect when delivered alone. Analysis of licking patterns revealed that NAcC Ex9 did not reverse intragastric nutrient-induced suppression of burst number but rather blunted the effect of nutrient infusion on meal size primarily by increasing the size and duration of licking bursts. Together, our results suggest that NAcC Ex9 influences taste evaluation. We conclude that GLP-1 released in NAcC in response to gastrointestinal nutrients reduces the hedonic value of food. PMID:23612998

  3. Rapid feedback processing in human nucleus accumbens and motor thalamus.

    PubMed

    Schüller, Thomas; Gruendler, Theo O J; Jocham, Gerhard; Klein, Tilmann A; Timmermann, Lars; Visser-Vandewalle, Veerle; Kuhn, Jens; Ullsperger, Markus

    2015-04-01

    The nucleus accumbens (NAcc) and thalamus are integral parts in models of feedback processing. Deep brain stimulation (DBS) has been successfully employed to alleviate symptoms of psychiatric conditions including obsessive-compulsive disorder (OCD) and Tourette's syndrome (TS). Common target structures are the NAcc and the ventral anterior and ventro-lateral nuclei (VA/VL) of the thalamus, for OCD and TS, respectively. The feedback related negativity (FRN) is an event-related potential associated with feedback processing reflecting posterior medial frontal cortex (pMFC) activity. Here we report on three cases where we recorded scalp EEG and local field potentials (LFP) from externalized electrodes located in the NAcc or thalamus (VA/VL) while patients engaged in a modified time estimation task, known to engage feedback processing and elicit the FRN. Additionally, scalp EEG were recorded from 29 healthy participants (HP) engaged in the same task. The signal in all structures (pMFC, NAcc, and thalamus) was differently modulated by positive and negative feedback. LFP activity in the NAcc showed a biphasic time course after positive feedback during the FRN time interval. Negative feedback elicited a much weaker and later response. In the thalamus a monophasic modulation was recorded during the FRN time interval. Again, this modulation was more pronounced after positive performance feedback compared to negative feedback. In channels outside the target area no modulation was observed. The surface-FRN was reliably elicited on a group level in HP and showed no significant difference following negative feedback between patients and HP. German Clinical Trial Register: Neurocognitive specification of dysfunctions within basal ganglia-cortex loops and their therapeutic modulation by deep brain stimulation in patients with obsessive compulsive disorder and Tourette syndrome, http://www.drks.de/DRKS00005316. PMID:25726897

  4. Cannabinoid receptor 1-expressing neurons in the nucleus accumbens.

    PubMed

    Winters, Bradley D; Krüger, Juliane M; Huang, Xiaojie; Gallaher, Zachary R; Ishikawa, Masago; Czaja, Krzysztof; Krueger, James M; Huang, Yanhua H; Schlüter, Oliver M; Dong, Yan

    2012-10-01

    Endocannabinoid signaling critically regulates emotional and motivational states via activation of cannabinoid receptor 1 (CB1) in the brain. The nucleus accumbens (NAc) functions to gate emotional and motivational responses. Although expression of CB1 in the NAc is low, manipulation of CB1 signaling within the NAc triggers robust emotional/motivational alterations related to drug addiction and other psychiatric disorders, and these effects cannot be exclusively attributed to CB1 located at afferents to the NAc. Rather, CB1-expressing neurons in the NAc, although sparse, appear to be critical for emotional and motivational responses. However, the cellular properties of these neurons remain largely unknown. Here, we generated a knock-in mouse line in which CB1-expressing neurons expressed the fluorescent protein td-Tomato (tdT). Using these mice, we demonstrated that tdT-positive neurons within the NAc were exclusively fast-spiking interneurons (FSIs). These FSIs were electrically coupled with each other, and thus may help synchronize populations/ensembles of NAc neurons. CB1-expressing FSIs also form GABAergic synapses on adjacent medium spiny neurons (MSNs), providing feed-forward inhibition of NAc output. Furthermore, the membrane excitability of tdT-positive FSIs in the NAc was up-regulated after withdrawal from cocaine exposure, an effect that might increase FSI-to-MSN inhibition. Taken together with our previous findings that the membrane excitability of NAc MSNs is decreased during cocaine withdrawal, the present findings suggest that the basal functional output of the NAc is inhibited during cocaine withdrawal by multiple mechanisms. As such, CB1-expressing FSIs are targeted by cocaine exposure to influence the overall functional output of the NAc. PMID:23012412

  5. Topographical representation of odor hedonics in the olfactory bulb.

    PubMed

    Kermen, Florence; Midroit, Maëllie; Kuczewski, Nicola; Forest, Jérémy; Thévenet, Marc; Sacquet, Joëlle; Benetollo, Claire; Richard, Marion; Didier, Anne; Mandairon, Nathalie

    2016-07-01

    Hedonic value is a dominant aspect of olfactory perception. Using optogenetic manipulation in freely behaving mice paired with immediate early gene mapping, we demonstrate that hedonic information is represented along the antero-posterior axis of the ventral olfactory bulb. Using this representation, we show that the degree of attractiveness of odors can be bidirectionally modulated by local manipulation of the olfactory bulb's neural networks in freely behaving mice. PMID:27273767

  6. Odors Discrimination by Olfactory Epithelium Biosensor

    NASA Astrophysics Data System (ADS)

    Liu, Qingjun; Hu, Ning; Ye, Weiwei; Zhang, Fenni; Wang, Hua; Wang, Ping

    2011-09-01

    Humans are exploring the bionic biological olfaction to sense the various trace components of gas or liquid in many fields. For achieving the goal, we endeavor to establish a bioelectronic nose system for odor detection by combining intact bioactive function units with sensors. The bioelectronic nose is based on the olfactory epithelium of rat and microelectrode array (MEA). The olfactory epithelium biosensor generates extracellular potentials in presence of odor, and presents obvious specificity under different odors condition. The odor response signals can be distinguished with each other effectively by signal sorting. On basis of bioactive MEA hybrid system and the improved signal processing analysis, the bioelectronic nose will realize odor discrimination by the specific feature of signals response to various odors.

  7. Mirror sniffing: humans mimic olfactory sampling behavior.

    PubMed

    Arzi, Anat; Shedlesky, Limor; Secundo, Lavi; Sobel, Noam

    2014-05-01

    Ample evidence suggests that social chemosignaling plays a significant role in human behavior. Processing of odors and chemosignals depends on sniffing. Given this, we hypothesized that humans may have evolved an automatic mechanism driving sniffs in response to conspecific sniffing. To test this, we measured sniffing behavior of human subjects watching the movie Perfume, which contains many olfactory sniffing events. Despite the total absence of odor, observers sniffed when characters in the movie sniffed. Moreover, this effect was most pronounced in scenes where subjects heard the sniff but did not see the sniffed-at object. We liken this response to the orienting towards conspecific gaze in vision and argue that its robustness further highlights the significance of olfactory information processing in human behavior. PMID:24457159

  8. Olfactory Orientation and Navigation in Humans

    PubMed Central

    Jacobs, Lucia F.; Arter, Jennifer; Cook, Amy; Sulloway, Frank J.

    2015-01-01

    Although predicted by theory, there is no direct evidence that an animal can define an arbitrary location in space as a coordinate location on an odor grid. Here we show that humans can do so. Using a spatial match-to-sample procedure, humans were led to a random location within a room diffused with two odors. After brief sampling and spatial disorientation, they had to return to this location. Over three conditions, participants had access to different sensory stimuli: olfactory only, visual only, and a final control condition with no olfactory, visual, or auditory stimuli. Humans located the target with higher accuracy in the olfaction-only condition than in the control condition and showed higher accuracy than chance. Thus a mechanism long proposed for the homing pigeon, the ability to define a location on a map constructed from chemical stimuli, may also be a navigational mechanism used by humans. PMID:26083337

  9. Olfactory Orientation and Navigation in Humans.

    PubMed

    Jacobs, Lucia F; Arter, Jennifer; Cook, Amy; Sulloway, Frank J

    2015-01-01

    Although predicted by theory, there is no direct evidence that an animal can define an arbitrary location in space as a coordinate location on an odor grid. Here we show that humans can do so. Using a spatial match-to-sample procedure, humans were led to a random location within a room diffused with two odors. After brief sampling and spatial disorientation, they had to return to this location. Over three conditions, participants had access to different sensory stimuli: olfactory only, visual only, and a final control condition with no olfactory, visual, or auditory stimuli. Humans located the target with higher accuracy in the olfaction-only condition than in the control condition and showed higher accuracy than chance. Thus a mechanism long proposed for the homing pigeon, the ability to define a location on a map constructed from chemical stimuli, may also be a navigational mechanism used by humans. PMID:26083337

  10. Dopamine in the nucleus accumbens modulates the memory of social defeat in Syrian hamsters (Mesocricetus auratus).

    PubMed

    Gray, C L; Norvelle, A; Larkin, T; Huhman, K L

    2015-06-01

    Conditioned defeat (CD) is a behavioral response that occurs in Syrian hamsters after they experience social defeat. Subsequently, defeated hamsters no longer produce territorial aggression but instead exhibit heightened levels of avoidance and submission, even when confronted with a smaller, non-aggressive intruder. Dopamine in the nucleus accumbens is hypothesized to act as a signal of salience for both rewarding and aversive stimuli to promote memory formation and appropriate behavioral responses to significant events. The purpose of the present study was to test the hypothesis that dopamine in the nucleus accumbens modulates the acquisition and expression of behavioral responses to social defeat. In Experiment 1, bilateral infusion of the non-specific D1/D2 receptor antagonist cis(z)flupenthixol (3.75 μg/150 nl saline) into the nucleus accumbens 5 min prior to defeat training significantly reduced submissive and defensive behavior expressed 24h later in response to a non-aggressive intruder. In Experiment 2, infusion of 3.75 μg cis-(Z)-flupenthixol 5 min before conditioned defeat testing with a non-aggressive intruder significantly increased aggressive behavior in drug-infused subjects. In Experiment 3, we found that the effect of cis-(Z)-flupenthixol on aggression was specific to defeated animals as infusion of drug into the nucleus accumbens of non-defeated animals did not significantly alter their behavior in response to a non-aggressive intruder. These data demonstrate that dopamine in the nucleus accumbens modulates both acquisition and expression of social stress-induced behavioral changes and suggest that the nucleus accumbens plays an important role in the suppression of aggression that is observed after social defeat. PMID:25721736

  11. Dopamine in the nucleus accumbens modulates the memory of social defeat in Syrian hamsters (Mesocricetus auratus)

    PubMed Central

    Gray, C.L.; Norvelle, A.; Larkin, T.; Huhman, K.L..

    2015-01-01

    Conditioned defeat (CD) is a behavioral response that occurs in Syrian hamsters after they experience social defeat. Subsequently, defeated hamsters no longer produce territorial aggression but instead exhibit heightened levels of avoidance and submission, even when confronted with a smaller, non-aggressive intruder. Dopamine in the nucleus accumbens is hypothesized to act as a signal of salience for both rewarding and aversive stimuli to promote memory formation and appropriate behavioral responses to significant events. The purpose of the present study was to test the hypothesis that dopamine in the nucleus accumbens modulates the acquisition and expression of behavioral responses to social defeat. In Exp. 1, bilateral infusion of the non-specific D1/D2 receptor antagonist cis(z)flupenthixol (3.75 μg/150 nl saline) into the nucleus accumbens 5 min prior to defeat training significantly reduced submissive and defensive behavior expressed 24 hr later in response to a non-aggressive intruder. In Exp. 2, infusion of 3.75 μg cis(z)flupenthixol 5 min before conditioned defeat testing with a non-aggressive intruder significantly increased aggressive behavior in drug-infused subjects. In Exp. 3, we found that the effect of cis(z)flupenthixol on aggression was specific to defeated animals as infusion of drug into the nucleus accumbens of non-defeated animals did not significantly alter their behavior in response to a non-aggressive intruder. These data demonstrate that dopamine in the nucleus accumbens modulates both acquisition and expression of social stress-induced behavioral changes and suggest that the nucleus accumbens plays an important role in the suppression of aggression that is observed after social defeat. PMID:25721736

  12. Social interaction reward decreases p38 activation in the nucleus accumbens shell of rats.

    PubMed

    Salti, Ahmad; Kummer, Kai K; Sadangi, Chinmaya; Dechant, Georg; Saria, Alois; El Rawas, Rana

    2015-12-01

    We have previously shown that animals acquired robust conditioned place preference (CPP) to either social interaction alone or cocaine alone. Recently it has been reported that drugs of abuse abnormally activated p38, a member of mitogen-activated protein kinase family, in the nucleus accumbens. In this study, we aimed to investigate the expression of the activated form of p38 (pp38) in the nucleus accumbens shell and core of rats expressing either cocaine CPP or social interaction CPP 1 h, 2 h and 24 h after the CPP test. We hypothesized that cocaine CPP will increase pp38 in the nucleus accumbens shell/core as compared to social interaction CPP. Surprisingly, we found that 24 h after social interaction CPP, pp38 neuronal levels were decreased in the nucleus accumbens shell to the level of naïve rats. Control saline rats that received saline in both compartments of the CPP apparatus and cocaine CPP rats showed similar enhanced p38 activation as compared to naïve and social interaction CPP rats. We also found that the percentage of neurons expressing dopaminergic receptor D2R and pp38 was also decreased in the shell of the nucleus accumbens of social interaction CPP rats as compared to controls. Given the emerging role of p38 in stress/anxiety behaviors, these results suggest that (1) social interaction reward has anti-stress effects; (2) cocaine conditioning per se does not affect p38 activation and that (3) marginal stress is sufficient to induce p38 activation in the shell of the nucleus accumbens. PMID:26300300

  13. Profound Olfactory Dysfunction in Myasthenia Gravis

    PubMed Central

    Leon-Sarmiento, Fidias E.; Bayona, Edgardo A.; Bayona-Prieto, Jaime; Osman, Allen; Doty, Richard L.

    2012-01-01

    In this study we demonstrate that myasthenia gravis, an autoimmune disease strongly identified with deficient acetylcholine receptor transmission at the post-synaptic neuromuscular junction, is accompanied by a profound loss of olfactory function. Twenty-seven MG patients, 27 matched healthy controls, and 11 patients with polymiositis, a disease with peripheral neuromuscular symptoms analogous to myasthenia gravis with no known central nervous system involvement, were tested. All were administered the University of Pennsylvania Smell Identification Test (UPSIT) and the Picture Identification Test (PIT), a test analogous in content and form to the UPSIT designed to control for non-olfactory cognitive confounds. The UPSIT scores of the myasthenia gravis patients were markedly lower than those of the age- and sex-matched normal controls [respective means (SDs) = 20.15 (6.40) & 35.67 (4.95); p<0.0001], as well as those of the polymiositis patients who scored slightly below the normal range [33.30 (1.42); p<0.0001]. The latter finding, along with direct monitoring of the inhalation of the patients during testing, implies that the MG-related olfactory deficit is unlikely due to difficulties sniffing, per se. All PIT scores were within or near the normal range, although subtle deficits were apparent in both the MG and PM patients, conceivably reflecting influences of mild cognitive impairment. No relationships between performance on the UPSIT and thymectomy, time since diagnosis, type of treatment regimen, or the presence or absence of serum anti-nicotinic or muscarinic antibodies were apparent. Our findings suggest that MG influences olfactory function to the same degree as observed in a number of neurodegenerative diseases in which central nervous system cholinergic dysfunction has been documented. PMID:23082113

  14. Electrophysiological Measurements from a Moth Olfactory System

    PubMed Central

    Syed, Zainulabeuddin; Leal, Walter S.

    2011-01-01

    Insect olfactory systems provide unique opportunities for recording odorant-induced responses in the forms of electroantennograms (EAG) and single sensillum recordings (SSR), which are summed responses from all odorant receptor neurons (ORNs) located on the antenna and from those housed in individual sensilla, respectively. These approaches have been exploited for getting a better understanding of insect chemical communication. The identified stimuli can then be used as either attractants or repellents in management strategies for insect pests. PMID:21490575

  15. Olfactory Stimuli Increase Presence in Virtual Environments

    PubMed Central

    Munyan, Benson G.; Neer, Sandra M.; Beidel, Deborah C.; Jentsch, Florian

    2016-01-01

    Background Exposure therapy (EXP) is the most empirically supported treatment for anxiety and trauma-related disorders. EXP consists of repeated exposure to a feared object or situation in the absence of the feared outcome in order to extinguish associated anxiety. Key to the success of EXP is the need to present the feared object/event/situation in as much detail and utilizing as many sensory modalities as possible, in order to augment the sense of presence during exposure sessions. Various technologies used to augment the exposure therapy process by presenting multi-sensory cues (e.g., sights, smells, sounds). Studies have shown that scents can elicit emotionally charged memories, but no prior research has examined the effect of olfactory stimuli upon the patient’s sense of presence during simulated exposure tasks. Methods 60 adult participants navigated a mildly anxiety-producing virtual environment (VE) similar to those used in the treatment of anxiety disorders. Participants had no autobiographical memory associated with the VE. State anxiety, Presence ratings, and electrodermal (EDA) activity were collected throughout the experiment. Results Utilizing a Bonferroni corrected Linear Mixed Model, our results showed statistically significant relationships between olfactory stimuli and presence as assessed by both the Igroup Presence Questionnaire (IPQ: R2 = 0.85, (F(3,52) = 6.625, p = 0.0007) and a single item visual-analogue scale (R2 = 0.85, (F(3,52) = 5.382, p = 0.0027). State anxiety was unaffected by the presence or absence of olfactory cues. EDA was unaffected by experimental condition. Conclusion Olfactory stimuli increase presence in virtual environments that approximate those typical in exposure therapy, but did not increase EDA. Additionally, once administered, the removal of scents resulted in a disproportionate decrease in presence. Implications for incorporating the use of scents to increase the efficacy of exposure therapy is discussed. PMID

  16. Anatomy, histochemistry, and immunohistochemistry of the olfactory subsystems in mice.

    PubMed

    Barrios, Arthur W; Núñez, Gonzalo; Sánchez Quinteiro, Pablo; Salazar, Ignacio

    2014-01-01

    The four regions of the murine nasal cavity featuring olfactory neurons were studied anatomically and by labeling with lectins and relevant antibodies with a view to establishing criteria for the identification of olfactory subsystems that are readily applicable to other mammals. In the main olfactory epithelium and the septal organ the olfactory sensory neurons (OSNs) are embedded in quasi-stratified columnar epithelium; vomeronasal OSNs are embedded in epithelium lining the medial interior wall of the vomeronasal duct and do not make contact with the mucosa of the main nasal cavity; and in Grüneberg's ganglion a small isolated population of OSNs lies adjacent to, but not within, the epithelium. With the exception of Grüneberg's ganglion, all the tissues expressing olfactory marker protein (OMP) (the above four nasal territories, the vomeronasal and main olfactory nerves, and the main and accessory olfactory bulbs) are also labeled by Lycopersicum esculentum agglutinin, while Ulex europaeus agglutinin I labels all and only tissues expressing Gαi2 (the apical sensory neurons of the vomeronasal organ, their axons, and their glomerular destinations in the anterior accessory olfactory bulb). These staining patterns of UEA-I and LEA may facilitate the characterization of olfactory anatomy in other species. A 710-section atlas of the anatomy of the murine nasal cavity has been made available on line. PMID:25071468

  17. Neurally Encoding Time for Olfactory Navigation

    PubMed Central

    Park, In Jun; Hein, Andrew M.; Bobkov, Yuriy V.; Reidenbach, Matthew A.; Ache, Barry W.; Principe, Jose C.

    2016-01-01

    Accurately encoding time is one of the fundamental challenges faced by the nervous system in mediating behavior. We recently reported that some animals have a specialized population of rhythmically active neurons in their olfactory organs with the potential to peripherally encode temporal information about odor encounters. If these neurons do indeed encode the timing of odor arrivals, it should be possible to demonstrate that this capacity has some functional significance. Here we show how this sensory input can profoundly influence an animal’s ability to locate the source of odor cues in realistic turbulent environments—a common task faced by species that rely on olfactory cues for navigation. Using detailed data from a turbulent plume created in the laboratory, we reconstruct the spatiotemporal behavior of a real odor field. We use recurrence theory to show that information about position relative to the source of the odor plume is embedded in the timing between odor pulses. Then, using a parameterized computational model, we show how an animal can use populations of rhythmically active neurons to capture and encode this temporal information in real time, and use it to efficiently navigate to an odor source. Our results demonstrate that the capacity to accurately encode temporal information about sensory cues may be crucial for efficient olfactory navigation. More generally, our results suggest a mechanism for extracting and encoding temporal information from the sensory environment that could have broad utility for neural information processing. PMID:26730727

  18. Functional neuroanatomy of Drosophila olfactory memory formation

    PubMed Central

    Guven-Ozkan, Tugba

    2014-01-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying Drosophila learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive and aversive reinforcers: (1) Which neurons within the olfactory nervous system mediate the acquisition of memory? (2) What is the complete neural circuitry extending from the site(s) of acquisition to the site(s) controlling memory expression? (3) How is information processed across this circuit to consolidate early-forming, disruptable memories to stable, late memories? Much progress has been made and a few strong conclusions have emerged: (1) Acquisition occurs at multiple sites within the olfactory nervous system but is mediated predominantly by the γ mushroom body neurons. (2) The expression of long-term memory is completely dependent on the synaptic output of α/β mushroom body neurons. (3) Consolidation occurs, in part, through circuit interactions between mushroom body and dorsal paired medial neurons. Despite this progress, a complete and unified model that details the pathway from acquisition to memory expression remains elusive. PMID:25225297

  19. Functional neuroanatomy of Drosophila olfactory memory formation.

    PubMed

    Guven-Ozkan, Tugba; Davis, Ronald L

    2014-10-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying Drosophila learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive and aversive reinforcers: (1) Which neurons within the olfactory nervous system mediate the acquisition of memory? (2) What is the complete neural circuitry extending from the site(s) of acquisition to the site(s) controlling memory expression? (3) How is information processed across this circuit to consolidate early-forming, disruptable memories to stable, late memories? Much progress has been made and a few strong conclusions have emerged: (1) Acquisition occurs at multiple sites within the olfactory nervous system but is mediated predominantly by the γ mushroom body neurons. (2) The expression of long-term memory is completely dependent on the synaptic output of α/β mushroom body neurons. (3) Consolidation occurs, in part, through circuit interactions between mushroom body and dorsal paired medial neurons. Despite this progress, a complete and unified model that details the pathway from acquisition to memory expression remains elusive. PMID:25225297

  20. Olfactory conditioning in the zebrafish (Danio rerio).

    PubMed

    Braubach, Oliver R; Wood, Heather-Dawn; Gadbois, Simon; Fine, Alan; Croll, Roger P

    2009-03-01

    The zebrafish olfactory system is an attractive model for studying neural processing of chemosensory information. Here we characterize zebrafish olfactory behaviors and their modification through learning, using an apparatus consisting of a circular flow-through tank that allows controlled administration of odorants. When exposed to the amino acids l-alanine and l-valine, naive zebrafish responded with appetitive swimming behavior, which we measured as the number of >90 degrees turns made during 30s observation periods. Such appetitive responses were not observed when naive zebrafish were exposed to an unnatural odorant, phenylethyl alcohol (PEA). Repeated pairing of amino acids or PEA (conditioned stimuli, CS) with food flakes (unconditioned stimuli; UCS) increased odorant-evoked appetitive swimming behavior in all fish tested. The zebrafish also learned to restrict this behavior to the vicinity of a feeding ring, through which UCS were administered. When both nares were temporarily occluded, conditioned fish failed to respond to odorants, confirming that these behaviors were mediated by olfaction. These results represent the first demonstration of a classically conditioned appetitive response to a behaviorally neutral odorant in fish. Furthermore, they complement recent demonstrations of conditional place preferences in fish. By virtue of its robustness and simplicity, this method will be a useful tool for future research into the biological basis of olfactory learning in zebrafish. PMID:19056431

  1. Olfactory receptor patterning in a higher primate.

    PubMed

    Horowitz, Lisa F; Saraiva, Luis R; Kuang, Donghui; Yoon, Kyoung-hye; Buck, Linda B

    2014-09-10

    The mammalian olfactory system detects a plethora of environmental chemicals that are perceived as odors or stimulate instinctive behaviors. Studies using odorant receptor (OR) genes have provided insight into the molecular and organizational strategies underlying olfaction in mice. One important unanswered question, however, is whether these strategies are conserved in primates. To explore this question, we examined the macaque, a higher primate phylogenetically close to humans. Here we report that the organization of sensory inputs in the macaque nose resembles that in mouse in some respects, but not others. As in mouse, neurons with different ORs are interspersed in the macaque nose, and there are spatial zones that differ in their complement of ORs and extend axons to different domains in the olfactory bulb of the brain. However, whereas the mouse has multiple discrete band-like zones, the macaque appears to have only two broad zones. It is unclear whether the organization of OR inputs in a rodent/primate common ancestor degenerated in primates or, alternatively became more sophisticated in rodents. The mouse nose has an additional small family of chemosensory receptors, called trace amine-associated receptors (TAARs), which may detect social cues. Here we find that TAARs are also expressed in the macaque nose, suggesting that TAARs may also play a role in human olfactory perception. We further find that one human TAAR responds to rotten fish, suggesting a possible role as a sentinel to discourage ingestion of food harboring pathogenic microorganisms. PMID:25209267

  2. Neurally Encoding Time for Olfactory Navigation.

    PubMed

    Park, In Jun; Hein, Andrew M; Bobkov, Yuriy V; Reidenbach, Matthew A; Ache, Barry W; Principe, Jose C

    2016-01-01

    Accurately encoding time is one of the fundamental challenges faced by the nervous system in mediating behavior. We recently reported that some animals have a specialized population of rhythmically active neurons in their olfactory organs with the potential to peripherally encode temporal information about odor encounters. If these neurons do indeed encode the timing of odor arrivals, it should be possible to demonstrate that this capacity has some functional significance. Here we show how this sensory input can profoundly influence an animal's ability to locate the source of odor cues in realistic turbulent environments-a common task faced by species that rely on olfactory cues for navigation. Using detailed data from a turbulent plume created in the laboratory, we reconstruct the spatiotemporal behavior of a real odor field. We use recurrence theory to show that information about position relative to the source of the odor plume is embedded in the timing between odor pulses. Then, using a parameterized computational model, we show how an animal can use populations of rhythmically active neurons to capture and encode this temporal information in real time, and use it to efficiently navigate to an odor source. Our results demonstrate that the capacity to accurately encode temporal information about sensory cues may be crucial for efficient olfactory navigation. More generally, our results suggest a mechanism for extracting and encoding temporal information from the sensory environment that could have broad utility for neural information processing. PMID:26730727

  3. Circadian regulation of insect olfactory learning.

    PubMed

    Decker, Susan; McConnaughey, Shannon; Page, Terry L

    2007-10-01

    Olfactory learning in insects has been used extensively for studies on the neurobiology, genetics, and molecular biology of learning and memory. We show here that the ability of the cockroach Leucophaea maderae to acquire olfactory memories is regulated by the circadian system. We investigated the effect of training and testing at different circadian phases on performance in an odor-discrimination test administered 30 min after training (short-term memory) or 48 h after training (long-term memory). When odor preference was tested by allowing animals to choose between two odors (peppermint and vanilla), untrained cockroaches showed a clear preference for vanilla at all circadian phases, indicating that there was no circadian modulation of initial odor preference or ability to discriminate between odors. After differential conditioning, in which peppermint odor was associated with a positive unconditioned stimulus of sucrose solution and vanilla odor was associated with a negative unconditioned stimulus of saline solution, cockroaches conditioned in the early subjective night showed a strong preference for peppermint and retained the memory for at least 2 days. Animals trained and tested at other circadian phases showed significant deficits in performance for both short- and long-term memory. Performance depended on the circadian time (CT) of training, not the CT of testing, and results indicate that memory acquisition rather than retention or recall is modulated by the circadian system. The data suggest that the circadian system can have profound effects on olfactory learning in insects. PMID:17893338

  4. Olfactory Receptor Patterning in a Higher Primate

    PubMed Central

    Horowitz, Lisa F.; Saraiva, Luis R.; Kuang, Donghui; Yoon, Kyoung-hye

    2014-01-01

    The mammalian olfactory system detects a plethora of environmental chemicals that are perceived as odors or stimulate instinctive behaviors. Studies using odorant receptor (OR) genes have provided insight into the molecular and organizational strategies underlying olfaction in mice. One important unanswered question, however, is whether these strategies are conserved in primates. To explore this question, we examined the macaque, a higher primate phylogenetically close to humans. Here we report that the organization of sensory inputs in the macaque nose resembles that in mouse in some respects, but not others. As in mouse, neurons with different ORs are interspersed in the macaque nose, and there are spatial zones that differ in their complement of ORs and extend axons to different domains in the olfactory bulb of the brain. However, whereas the mouse has multiple discrete band-like zones, the macaque appears to have only two broad zones. It is unclear whether the organization of OR inputs in a rodent/primate common ancestor degenerated in primates or, alternatively became more sophisticated in rodents. The mouse nose has an additional small family of chemosensory receptors, called trace amine-associated receptors (TAARs), which may detect social cues. Here we find that TAARs are also expressed in the macaque nose, suggesting that TAARs may also play a role in human olfactory perception. We further find that one human TAAR responds to rotten fish, suggesting a possible role as a sentinel to discourage ingestion of food harboring pathogenic microorganisms. PMID:25209267

  5. Olfactory deprivation increases dopamine D2 receptor density in the rat olfactory bulb

    SciTech Connect

    Guthrie, K.M.; Pullara, J.M.; Marshall, J.F.; Leon, M. )

    1991-05-01

    Unilateral olfactory deprivation during postnatal development results in significant anatomical and neurochemical changes in the deprived olfactory bulb. Perhaps the most dramatic neurochemical change is the loss of dopaminergic expression by neurons of the glomerular region. The authors describe here the effects of early olfactory deprivation on other elements of the bulb dopaminergic system, namely the dopamine receptors of the olfactory bulb. Rat pups had a single naris occluded on postnatal day 2 (PN2). On PN20 or PN60, animals were sacrificed and the bulbs were examined for catecholamine levels or D2 and D1 dopamine receptor binding. Receptor densities were quantified by in vitro autoradiography using the tritiated antagonists spiperone (D2) and SCH23390 (D1). Dopamine uptake sites were similarly examined using tritiated mazindol. No significant specific labeling of D1 or mazindol sites was observed in the olfactory bulbs of control or experimental animals at either age. Normal animals displayed prominent labeling of D2 sites in the glomerular and nerve layers. After 60 days of deprivation, deprived bulbs exhibited an average increase in D2 receptor density of 32%. As determined by Scatchard analysis, the mean values for Kd and Bmax were 0.134 nM and 293 fmol/mg protein in normal bulbs, and 0.136 nM and 403 fmol/mg protein in deprived bulbs. The results suggest that, as in the neostriatum, dopamine depletion in the olfactory bulb leads to an upregulation of D2 receptor sites. This change may represent an attempt by the system to adapt neurochemically to reduced dopaminergic activity and thereby maintain bulb function.

  6. Mechanisms of regulation of olfactory transduction and adaptation in the olfactory cilium.

    PubMed

    Antunes, Gabriela; Sebastião, Ana Maria; Simoes de Souza, Fabio Marques

    2014-01-01

    Olfactory adaptation is a fundamental process for the functioning of the olfactory system, but the underlying mechanisms regulating its occurrence in intact olfactory sensory neurons (OSNs) are not fully understood. In this work, we have combined stochastic computational modeling and a systematic pharmacological study of different signaling pathways to investigate their impact during short-term adaptation (STA). We used odorant stimulation and electroolfactogram (EOG) recordings of the olfactory epithelium treated with pharmacological blockers to study the molecular mechanisms regulating the occurrence of adaptation in OSNs. EOG responses to paired-pulses of odorants showed that inhibition of phosphodiesterases (PDEs) and phosphatases enhanced the levels of STA in the olfactory epithelium, and this effect was mimicked by blocking vesicle exocytosis and reduced by blocking cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) and vesicle endocytosis. These results suggest that G-coupled receptors (GPCRs) cycling is involved with the occurrence of STA. To gain insights on the dynamical aspects of this process, we developed a stochastic computational model. The model consists of the olfactory transduction currents mediated by the cyclic nucleotide gated (CNG) channels and calcium ion (Ca(2+))-activated chloride (CAC) channels, and the dynamics of their respective ligands, cAMP and Ca(2+), and it simulates the EOG results obtained under different experimental conditions through changes in the amplitude and duration of cAMP and Ca(2+) response, two second messengers implicated with STA occurrence. The model reproduced the experimental data for each pharmacological treatment and provided a mechanistic explanation for the action of GPCR cycling in the levels of second messengers modulating the levels of STA. All together, these experimental and theoretical results indicate the existence of a mechanism of regulation of STA by signaling pathways that control

  7. Mechanisms of Regulation of Olfactory Transduction and Adaptation in the Olfactory Cilium

    PubMed Central

    Antunes, Gabriela; Sebastião, Ana Maria; Simoes de Souza, Fabio Marques

    2014-01-01

    Olfactory adaptation is a fundamental process for the functioning of the olfactory system, but the underlying mechanisms regulating its occurrence in intact olfactory sensory neurons (OSNs) are not fully understood. In this work, we have combined stochastic computational modeling and a systematic pharmacological study of different signaling pathways to investigate their impact during short-term adaptation (STA). We used odorant stimulation and electroolfactogram (EOG) recordings of the olfactory epithelium treated with pharmacological blockers to study the molecular mechanisms regulating the occurrence of adaptation in OSNs. EOG responses to paired-pulses of odorants showed that inhibition of phosphodiesterases (PDEs) and phosphatases enhanced the levels of STA in the olfactory epithelium, and this effect was mimicked by blocking vesicle exocytosis and reduced by blocking cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) and vesicle endocytosis. These results suggest that G-coupled receptors (GPCRs) cycling is involved with the occurrence of STA. To gain insights on the dynamical aspects of this process, we developed a stochastic computational model. The model consists of the olfactory transduction currents mediated by the cyclic nucleotide gated (CNG) channels and calcium ion (Ca2+)-activated chloride (CAC) channels, and the dynamics of their respective ligands, cAMP and Ca2+, and it simulates the EOG results obtained under different experimental conditions through changes in the amplitude and duration of cAMP and Ca2+ response, two second messengers implicated with STA occurrence. The model reproduced the experimental data for each pharmacological treatment and provided a mechanistic explanation for the action of GPCR cycling in the levels of second messengers modulating the levels of STA. All together, these experimental and theoretical results indicate the existence of a mechanism of regulation of STA by signaling pathways that control GPCR

  8. Application of the European Test of Olfactory Capabilities in patients with olfactory impairment.

    PubMed

    Joussain, P; Bessy, M; Faure, F; Bellil, D; Landis, B N; Hugentobler, M; Tuorila, H; Mustonen, S; Vento, S I; Delphin-Combe, F; Krolak-Salmon, P; Rouby, C; Bensafi, M

    2016-02-01

    A central issue in olfaction concerns the characterization of loss of olfactory function: partial (hyposmia) or total (anosmia). This paper reports the application in a clinical setting of the European Test of Olfactory Capabilities (ETOC), combining odor detection and identification. The study included three phases. In phase 1, anosmics, hyposmics and controls were tested with the 16-items version of the ETOC. In phase 2, a short version of the ETOC was developed: patients with and controls without olfactory impairment were tested on a 6-items ETOC. In phase 3, to predict olfactory impairments in new individuals, the 16-items ETOC was administered on samples of young and older adults, and the 6-items version was applied in samples of young, elderly participants and Alzheimer patients. In phase 1, linear discriminant analysis (LDA) of ETOC scores classified patients and controls with 87.5 % accuracy. In phase 2, LDA provided 84 % correct classification. Results of phase 3 revealed: (1) 16-items ETOC: whereas in young adults, 10 % were classified as hyposmic and 90 % as normosmic, in elderly, 1 % were classified as anosmic, 39 % hyposmic and 60 % normosmic; (2) 6-items ETOC: 15 % of the young adults were classified as having olfactory impairment, compared to 28 % in the older group and 83 % in Alzheimer patients. In conclusion, the ETOC enables characterizing the prevalence of olfactory impairment in young subjects and in normal and pathological aging. Whereas the 16-items ETOC is more discriminant, the short ETOC may provide a fast (5-10 min) tool to assess olfaction in clinical settings. PMID:25711735

  9. Photoperiod Mediated Changes in Olfactory Bulb Neurogenesis and Olfactory Behavior in Male White-Footed Mice (Peromyscus leucopus)

    PubMed Central

    Weil, Zachary M.; Nelson, Randy J.

    2012-01-01

    Brain plasticity, in relation to new adult mammalian neurons generated in the subgranular zone of the hippocampus, has been well described. However, the functional outcome of new adult olfactory neurons born in the subventricular zone of the lateral ventricles is not clearly defined, as manipulating neurogenesis through various methods has given inconsistent and conflicting results in lab mice. Several small rodent species, including Peromyscus leucopus, display seasonal (photoperiodic) brain plasticity in brain volume, hippocampal function, and hippocampus-dependent behaviors; plasticity in the olfactory system of photoperiodic rodents remains largely uninvestigated. We exposed adult male P. leucopus to long day lengths (LD) and short day lengths (SD) for 10 to 15 weeks and then examined olfactory bulb cell proliferation and survival using the thymidine analog BrdU, olfactory bulb granule cell morphology using Golgi-Cox staining, and behavioral investigation of same-sex conspecific urine. SD mice did not differ from LD counterparts in granular cell morphology of the dendrites or in dendritic spine density. Although there were no differences due to photoperiod in habituation to water odor, SD mice rapidly habituated to male urine, whereas LD mice did not. In addition, short day induced changes in olfactory behavior were associated with increased neurogenesis in the caudal plexiform and granule cell layers of the olfactory bulb, an area known to preferentially respond to water-soluble odorants. Taken together, these data demonstrate that photoperiod, without altering olfactory bulb neuronal morphology, alters olfactory bulb neurogenesis and olfactory behavior in Peromyscus leucopus. PMID:22912730

  10. Morphometry of olfactory lamellae and olfactory receptor neurons during the life history of chum salmon (Oncorhynchus keta).

    PubMed

    Kudo, Hideaki; Shinto, Masakazu; Sakurai, Yasunori; Kaeriyama, Masahide

    2009-09-01

    It is generally accepted that anadromous Pacific salmon (genus Oncorhynchus) imprint to odorants in their natal streams during their seaward migration and use olfaction to identify these during their homeward migration. Despite the importance of the olfactory organ during olfactory imprinting, the development of this structure is not well understood in Pacific salmon. Olfactory cues from the environment are relayed to the brain by the olfactory receptor neurons (ORNs) in the olfactory organ. Thus, we analyzed morphometric changes in olfactory lamellae of the peripheral olfactory organ and in the quantity of ORNs during life history from alevin to mature in chum salmon (Oncorhynchus keta). The number of lamellae increased markedly during early development, reached 18 lamellae per unilateral peripheral olfactory organ in young salmon with a 200 mm in body size, and maintained this lamellar complement after young period. The number of ORNs per olfactory organ was about 180,000 and 14.2 million cells in fry and mature salmon, respectively. The relationship between the body size (fork length) and number of ORNs therefore revealed an allometric association. Our results represent the first quantitative analysis of the number of ORNs in Pacific salmon and suggest that the number of ORNs is synchronized with the fork length throughout its life history. PMID:19587025

  11. Nucleus accumbens μ-opioid receptors mediate social reward.

    PubMed

    Trezza, Viviana; Damsteegt, Ruth; Achterberg, E J Marijke; Vanderschuren, Louk J M J

    2011-04-27

    Positive social interactions are essential for emotional well-being and proper behavioral development of young individuals. Here, we studied the neural underpinnings of social reward by investigating the involvement of opioid neurotransmission in the nucleus accumbens (NAc) in social play behavior, a highly rewarding social interaction in adolescent rats. Intra-NAc infusion of morphine (0.05-0.1 μg) increased pinning and pouncing, characteristic elements of social play behavior in rats, and blockade of NAc opioid receptors with naloxone (0.5 μg) prevented the play-enhancing effects of systemic morphine (1 mg/kg, s.c.) administration. Thus, stimulation of opioid receptors in the NAc was necessary and sufficient for morphine to increase social play. Intra-NAc treatment with the selective μ-opioid receptor agonist [D-Ala(2),N-MePhe(4),Gly(5)-ol]enkephalin (DAMGO) (0.1-10 ng) and the μ-opioid receptor antagonist Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP) (0.3-3 μg) increased and decreased social play, respectively. The δ-opioid receptor agonist DPDPE ([D-Pen(2),D-Pen(5)]-enkephalin) (0.3-3 μg) had no effects, whereas the κ-opioid receptor agonist U69593 (N-methyl-2-phenyl-N-[(5R,7S,8S)-7-(pyrrolidin-1-yl)-1-oxaspiro[4.5]dec-8-yl]acetamide) (0.01-1 μg) decreased social play. Intra-NAc treatment with β-endorphin (0.01-1 μg) increased social play, but met-enkephalin (0.1-5 μg) and the enkephalinase inhibitor thiorphan (0.1-1 μg) were ineffective. DAMGO (0.1-10 ng) increased social play after infusion into both the shell and core subregions of the NAc. Last, intra-NAc infusion of CTAP (3 μg) prevented the development of social play-induced conditioned place preference. These findings identify NAc μ-opioid receptor stimulation as an important neural mechanism for the attribution of positive value to social interactions in adolescent rats. Altered NAc μ-opioid receptor function may underlie social impairments in psychiatric disorders such as autism

  12. Immunohistochemical demonstration of salmon olfactory glutathione S-transferase class pi (N24) in the olfactory system of lacustrine sockeye salmon during ontogenesis and cell proliferation.

    PubMed

    Yanagi, S; Kudo, H; Doi, Y; Yamauchi, K; Ueda, H

    2004-06-01

    In mammals, glutathione S-transferase (GST) in the olfactory epithelium is involved in assistance of the olfactory reception by the xenobiotic metabolism. We previously reported the protein and gene expressions of salmon olfactory GST class pi (soGST) in the olfactory receptor cells (ORCs) of the salmonid fish. However, the chronological appearances of soGST in ORCs during ontogeny and cell proliferation are still unknown in this species. In this study, we performed immunohistochemistry of soGST using an antibody specific to soGST in the olfactory system (olfactory placode, olfactory pit, olfactory epithelium, olfactory nerve and olfactory bulb) of lacustrine sockeye salmon ( Oncorhynchus nerka) embryos and 5-bromo-2'-deoxyuridine (BrdU) experimental fish. The projection of olfactory nerve bundles from the olfactory pit to the presumptive olfactory bulb was identified at embryonic day 28 after fertilization. The olfactory cilia were first detected on the apical surface of ORCs at day 43. soGST-immunoreactivity was first detected within the olfactory pit cells at day 55. At 58 day, the number of soGST-immunoreactive cells increased markedly in the olfactory epithelia, and soGST-immunoreactive fibers were observed in the olfactory nerves and olfactory bulbs. By in vivo uptake of BrdU in 1-year-old fish, we observed for the first time at day 7 after labeling that the olfactory epithelia showed ORCs in which both soGST-immunoreactivity and BrdU coexisted. These results indicate that soGST is synthesized in the mature ORCs of lacustrine sockeye salmon after cell formation and differentiation. PMID:15156400

  13. Neuropeptide S facilitates mice olfactory function through activation of cognate receptor-expressing neurons in the olfactory cortex.

    PubMed

    Shao, Yu-Feng; Zhao, Peng; Dong, Chao-Yu; Li, Jing; Kong, Xiang-Pan; Wang, Hai-Liang; Dai, Li-Rong; Hou, Yi-Ping

    2013-01-01

    Neuropeptide S (NPS) is a newly identified neuromodulator located in the brainstem and regulates various biological functions by selectively activating the NPS receptors (NPSR). High level expression of NPSR mRNA in the olfactory cortex suggests that NPS-NPSR system might be involved in the regulation of olfactory function. The present study was undertaken to investigate the effects of intracerebroventricular (i.c.v.) injection of NPS or co-injection of NPSR antagonist on the olfactory behaviors, food intake, and c-Fos expression in olfactory cortex in mice. In addition, dual-immunofluorescence was employed to identify NPS-induced Fos immunereactive (-ir) neurons that also bear NPSR. NPS (0.1-1 nmol) i.c.v. injection significantly reduced the latency to find the buried food, and increased olfactory differentiation of different odors and the total sniffing time spent in olfactory habituation/dishabituation tasks. NPS facilitated olfactory ability most at the dose of 0.5 nmol, which could be blocked by co-injection of 40 nmol NPSR antagonist [D-Val(5)]NPS. NPS administration dose-dependently inhibited food intake in fasted mice. Ex-vivo c-Fos and NPSR immunohistochemistry in the olfactory cortex revealed that, as compared with vehicle-treated mice, NPS markedly enhanced c-Fos expression in the anterior olfactory nucleus (AON), piriform cortex (Pir), ventral tenia tecta (VTT), the anterior cortical amygdaloid nucleus (ACo) and lateral entorhinal cortex (LEnt). The percentage of Fos-ir neurons that also express NPSR were 88.5% and 98.1% in the AON and Pir, respectively. The present findings demonstrated that NPS, via selective activation of the neurons bearing NPSR in the olfactory cortex, facilitates olfactory function in mice. PMID:23614017

  14. A Screen for Genes Expressed in the Olfactory Organs of Drosophila melanogaster Identifies Genes Involved in Olfactory Behaviour

    PubMed Central

    Tunstall, Narelle E.; Herr, Anabel; de Bruyne, Marien; Warr, Coral G.

    2012-01-01

    Background For insects the sense of smell and associated olfactory-driven behaviours are essential for survival. Insects detect odorants with families of olfactory receptor proteins that are very different to those of mammals, and there are likely to be other unique genes and genetic pathways involved in the function and development of the insect olfactory system. Methodology/Principal Findings We have performed a genetic screen of a set of 505 Drosophila melanogaster gene trap insertion lines to identify novel genes expressed in the adult olfactory organs. We identified 16 lines with expression in the olfactory organs, many of which exhibited expression of the trapped genes in olfactory receptor neurons. Phenotypic analysis showed that six of the lines have decreased olfactory responses in a behavioural assay, and for one of these we showed that precise excision of the P element reverts the phenotype to wild type, confirming a role for the trapped gene in olfaction. To confirm the identity of the genes trapped in the lines we performed molecular analysis of some of the insertion sites. While for many lines the reported insertion sites were correct, we also demonstrated that for a number of lines the reported location of the element was incorrect, and in three lines there were in fact two pGT element insertions. Conclusions/Significance We identified 16 new genes expressed in the Drosophila olfactory organs, the majority in neurons, and for several of the gene trap lines demonstrated a defect in olfactory-driven behaviour. Further characterisation of these genes and their roles in olfactory system function and development will increase our understanding of how the insect olfactory system has evolved to perform the same essential function to that of mammals, but using very different molecular genetic mechanisms. PMID:22530061

  15. Paradoxical augmented relapse in alcohol-dependent rats during deep-brain stimulation in the nucleus accumbens

    PubMed Central

    Hadar, R; Vengeliene, V; Barroeta Hlusicke, E; Canals, S; Noori, H R; Wieske, F; Rummel, J; Harnack, D; Heinz, A; Spanagel, R; Winter, C

    2016-01-01

    Case reports indicate that deep-brain stimulation in the nucleus accumbens may be beneficial to alcohol-dependent patients. The lack of clinical trials and our limited knowledge of deep-brain stimulation call for translational experiments to validate these reports. To mimic the human situation, we used a chronic-continuous brain-stimulation paradigm targeting the nucleus accumbens and other brain sites in alcohol-dependent rats. To determine the network effects of deep-brain stimulation in alcohol-dependent rats, we combined electrical stimulation of the nucleus accumbens with functional magnetic resonance imaging (fMRI), and studied neurotransmitter levels in nucleus accumbens-stimulated versus sham-stimulated rats. Surprisingly, we report here that electrical stimulation of the nucleus accumbens led to augmented relapse behavior in alcohol-dependent rats. Our associated fMRI data revealed some activated areas, including the medial prefrontal cortex and caudate putamen. However, when we applied stimulation to these areas, relapse behavior was not affected, confirming that the nucleus accumbens is critical for generating this paradoxical effect. Neurochemical analysis of the major activated brain sites of the network revealed that the effect of stimulation may depend on accumbal dopamine levels. This was supported by the finding that brain-stimulation-treated rats exhibited augmented alcohol-induced dopamine release compared with sham-stimulated animals. Our data suggest that deep-brain stimulation in the nucleus accumbens enhances alcohol-liking probably via augmented dopamine release and can thereby promote relapse. PMID:27327255

  16. Paradoxical augmented relapse in alcohol-dependent rats during deep-brain stimulation in the nucleus accumbens.

    PubMed

    Hadar, R; Vengeliene, V; Barroeta Hlusicke, E; Canals, S; Noori, H R; Wieske, F; Rummel, J; Harnack, D; Heinz, A; Spanagel, R; Winter, C

    2016-01-01

    Case reports indicate that deep-brain stimulation in the nucleus accumbens may be beneficial to alcohol-dependent patients. The lack of clinical trials and our limited knowledge of deep-brain stimulation call for translational experiments to validate these reports. To mimic the human situation, we used a chronic-continuous brain-stimulation paradigm targeting the nucleus accumbens and other brain sites in alcohol-dependent rats. To determine the network effects of deep-brain stimulation in alcohol-dependent rats, we combined electrical stimulation of the nucleus accumbens with functional magnetic resonance imaging (fMRI), and studied neurotransmitter levels in nucleus accumbens-stimulated versus sham-stimulated rats. Surprisingly, we report here that electrical stimulation of the nucleus accumbens led to augmented relapse behavior in alcohol-dependent rats. Our associated fMRI data revealed some activated areas, including the medial prefrontal cortex and caudate putamen. However, when we applied stimulation to these areas, relapse behavior was not affected, confirming that the nucleus accumbens is critical for generating this paradoxical effect. Neurochemical analysis of the major activated brain sites of the network revealed that the effect of stimulation may depend on accumbal dopamine levels. This was supported by the finding that brain-stimulation-treated rats exhibited augmented alcohol-induced dopamine release compared with sham-stimulated animals. Our data suggest that deep-brain stimulation in the nucleus accumbens enhances alcohol-liking probably via augmented dopamine release and can thereby promote relapse. PMID:27327255

  17. Invigoration of reward-seeking by cue and proximity encoding in the nucleus accumbens

    PubMed Central

    McGinty, Vincent B.; Lardeux, Sylvie; Taha, Sharif A.; Kim, James J.; Nicola, Saleem M.

    2014-01-01

    Summary A key function of the nucleus accumbens is to promote vigorous reward-seeking, but the corresponding neural mechanism has not been identified despite many years of research. Here we study cued flexible approach behavior, a form of reward-seeking that strongly depends on the accumbens, and we describe a robust, single-cell neural correlate of behavioral vigor in the excitatory response of accumbens neurons to reward-predictive cues. Well before locomotion begins, this cue-evoked excitation predicts both the movement initiation latency and speed of subsequent flexible approach responses, but not of stereotyped, inflexible responses. Moreover, the excitation simultaneously signals the subject’s proximity to the approach target, a signal that appears to mediate greater response vigor on trials that begin with the subject closer to the target. These results demonstrate a neural mechanism for response invigoration whereby accumbens neuronal encoding of reward availability and target proximity together drive the onset and speed of reward-seeking locomotion. PMID:23764290

  18. Good Vibrations: Cross-Frequency Coupling in the Human Nucleus Accumbens during Reward Processing

    ERIC Educational Resources Information Center

    Cohen, Michael X.; Axmacher, Nikolai; Lenartz, Doris; Elger, Christian E.; Sturm, Volker; Schlaepfer, Thomas E.

    2009-01-01

    The nucleus accumbens is critical for reward-guided learning and decision-making. It is thought to "gate" the flow of a diverse range of information (e.g., rewarding, aversive, and novel events) from limbic afferents to basal ganglia outputs. Gating and information encoding may be achieved via cross-frequency coupling, in which bursts of…

  19. The Role of the Nucleus Accumbens in Knowing when to Respond

    ERIC Educational Resources Information Center

    Singh, Teghpal; McDannald, Michael A.; Takahashi, Yuji K.; Haney, Richard Z.; Cooch, Nisha K.; Lucantonio, Federica; Schoenbaum, Geoffrey

    2011-01-01

    While knowing what to expect is important, it is equally important to know when to expect it and to respond accordingly. This is apparent even in simple Pavlovian training situations in which animals learn to respond more strongly closer to reward delivery. Here we report that the nucleus accumbens core, an area well-positioned to represent…

  20. Atypical nucleus accumbens morphology in psychopathy: another limbic piece in the puzzle.

    PubMed

    Boccardi, Marina; Bocchetta, Martina; Aronen, Hannu J; Repo-Tiihonen, Eila; Vaurio, Olli; Thompson, Paul M; Tiihonen, Jari; Frisoni, Giovanni B

    2013-01-01

    Psychopathy has been associated with increased putamen and striatum volumes. The nucleus accumbens - a key structure in reversal learning, less effective in psychopathy - has not yet received specific attention. Moreover, basal ganglia morphology has never been explored. We examined the morphology of the caudate, putamen and accumbens, manually segmented from magnetic resonance images of 26 offenders (age: 32.5 ± 8.4) with medium-high psychopathy (mean PCL-R=30 ± 5) and 25 healthy controls (age: 34.6 ± 10.8). Local differences were statistically modeled using a surface-based radial distance mapping method (p<0.05; multiple comparisons correction through permutation tests). In psychopathy, the caudate and putamen had normal global volume, but different morphology, significant after correction for multiple comparisons, for the right dorsal putamen (permutation test: p=0.02). The volume of the nucleus accumbens was 13% smaller in psychopathy (p corrected for multiple comparisons <0.006). The atypical morphology consisted of predominant anterior hypotrophy bilaterally (10-30%). Caudate and putamen local morphology displayed negative correlation with the lifestyle factor of the PCL-R (permutation test: p=0.05 and 0.03). From these data, psychopathy appears to be associated with an atypical striatal morphology, with highly significant global and local differences of the accumbens. This is consistent with the clinical syndrome and with theories of limbic involvement. PMID:23399314

  1. Accumbens Shell AMPA Receptors Mediate Expression of Extinguished Reward Seeking through Interactions with Basolateral Amygdala

    ERIC Educational Resources Information Center

    Millan, E. Zayra; McNally, Gavan P.

    2011-01-01

    Extinction is the reduction in drug seeking when the contingency between drug seeking behavior and the delivery of drug reward is broken. Here, we investigated a role for the nucleus accumbens shell (AcbSh). Rats were trained to respond for 4% (v/v) alcoholic beer in one context (Context A) followed by extinction in a second context (Context B).…

  2. Activity in the nucleus accumbens and amygdala underlies individual differences in prosocial and individualistic economic choices.

    PubMed

    Haruno, Masahiko; Kimura, Minoru; Frith, Christopher D

    2014-08-01

    Much decision-making requires balancing benefits to the self with benefits to the group. There are marked individual differences in this balance such that individualists tend to favor themselves whereas prosocials tend to favor the group. Understanding the mechanisms underlying this difference has important implications for society and its institutions. Using behavioral and fMRI data collected during the performance of the ultimatum game, we show that individual differences in social preferences for resource allocation, so-called "social value orientation," is linked with activity in the nucleus accumbens and amygdala elicited by inequity, rather than activity in insula, ACC, and dorsolateral pFC. Importantly, the presence of cognitive load made prosocials behave more prosocially and individualists more individualistically, suggesting that social value orientation is driven more by intuition than reflection. In parallel, activity in the nucleus accumbens and amygdala, in response to inequity, tracked this behavioral pattern of prosocials and individualists. In addition, we conducted an impunity game experiment with different participants where they could not punish unfair behavior and found that the inequity-correlated activity seen in prosocials during the ultimatum game disappeared. This result suggests that the accumbens and amygdala activity of prosocials encodes "outcome-oriented emotion" designed to change situations (i.e., achieve equity or punish). Together, our results suggest a pivotal contribution of the nucleus accumbens and amygdala to individual differences in sociality. PMID:24564471

  3. Harmine augments electrically evoked dopamine efflux in the nucleus accumbens shell.

    PubMed

    Brierley, Daniel I; Davidson, Colin

    2013-01-01

    Harmine is a β-carboline alkaloid and major component of ayahuasca, a traditional South American psychoactive tea with anecdotal efficacy for treatment of cocaine dependence. Harmine is an inhibitor of monoamine oxidase A (MAO-A) and interacts in vitro with several pharmacological targets which modulate dopamine (DA) neurotransmission. In vivo studies have demonstrated dopaminergic effects of harmine, attributed to monoamine oxidase inhibitor (MAOI) activity, however none have directly demonstrated a pharmacological mechanism. This study investigated the acute effects, and pharmacological mechanism(s), of harmine on electrically evoked DA efflux parameters in the nucleus accumbens both in the absence and presence of cocaine. Fast cyclic voltammetry in rat brain slices was used to measure electrically evoked DA efflux in accumbens core and shell. Harmine (300 nM) significantly augmented DA efflux (148±8% of baseline) in the accumbens shell. Cocaine augmented efflux in shell additive to harmine (260±35%). Harmine had no effect on efflux in the accumbens core or on reuptake in either sub-region. The effect of harmine in the shell was attenuated by the 5-HT(2A/2C) antagonist ketanserin. The MAOI moclobemide (10 µM) had no effect on DA efflux. These data suggest that harmine augments DA efflux via a novel, shell-specific, presynaptic 5-HT(2A) receptor-dependent mechanism, independent of MAOI activity. A DA-releasing 'agonist therapy' mechanism may thus contribute to the putative therapeutic efficacy of ayahuasca for cocaine dependence. PMID:23076833

  4. Excitant amino acid projections from rat amygdala and thalamus to nucleus accumbens

    SciTech Connect

    Robinson, T.G.; Beart, P.M.

    1988-04-01

    High affinity uptake of D-(/sup 3/H)aspartate, (/sup 3/H)choline and (/sup 3/H)GABA was examined in synaptosomal-containing preparations of rat nucleus accumbens septi 7 to 10 days after unilateral or bilateral N-methyl-D-aspartate lesions confined to the parataenial nucleus of the thalamus or the basolateral nucleus of the amygdala. Uptake of both D-(/sup 3/H)aspartate and (/sup 3/H)choline was significantly reduced (11% and 14% less than control, respectively) by unilateral lesion of the thalamus, whereas (/sup 3/H)GABA uptake was unaffected. Bilateral thalamic lesions significantly reduced D-(/sup 3/H)aspartate uptake (11% less than control) into homogenates of the nucleus accumbens, whilst (/sup 3/H)GABA uptake was unaltered. D-(/sup 3/H)aspartate uptake was significantly reduced (26% less than control) following unilateral lesion of the amygdala, whereas both (/sup 3/H)GABA and (/sup 3/H)choline uptake were unaffected. Bilateral amygdaloid lesions significantly increased D-(/sup 3/H)aspartate uptake (39% greater than control), whilst uptake of (/sup 3/H)GABA was not affected. The results implicate glutamate and/or aspartate as putative neurotransmitters in afferent projections from the basolateral amygdala and the parataenial thalamus to the nucleus accumbens. Thalamic afferents to the nucleus accumbens may also utilize acetylcholine as their transmitter.

  5. Hedonic and Nucleus Accumbens Neural Responses to a Natural Reward Are Regulated by Aversive Conditioning

    ERIC Educational Resources Information Center

    Roitman, Mitchell F.; Wheeler, Robert A.; Tiesinga, Paul H. E.; Roitman, Jamie D.; Carelli, Regina M.

    2010-01-01

    The nucleus accumbens (NAc) plays a role in hedonic reactivity to taste stimuli. Learning can alter the hedonic valence of a given stimulus, and it remains unclear how the NAc encodes this shift. The present study examined whether the population response of NAc neurons to a taste stimulus is plastic using a conditioned taste aversion (CTA)…

  6. Individual Differences in Dopamine Efflux in Nucleus Accumbens Shell and Core during Instrumental Learning

    ERIC Educational Resources Information Center

    Cheng, Jingjun; Feenstra, Matthijs G. P.

    2006-01-01

    Combined activation of dopamine D1- and NMDA-glutamate receptors in the nucleus accumbens has been strongly implicated in instrumental learning, the process in which an individual learns that a specific action has a wanted outcome. To assess dopaminergic activity, we presented rats with two sessions (30 trials each) of a one-lever appetitive…

  7. Recovery of Olfactory Function in Postviral Olfactory Dysfunction Patients after Acupuncture Treatment

    PubMed Central

    Dai, Qi; Pang, Zhihui; Yu, Hongmeng

    2016-01-01

    Introduction. The aims of this study were to assess the impact of traditional Chinese acupuncture (TCA) in postviral olfactory dysfunction (PVOD) patients who were refractory to standardized treatment and to compare the results with the impact observed in an observation group. Methods. Fifty patients who presented to the outpatient clinic with PVOD and were refractory to standardized treatment were included: 25 were treated with TCA and 25 patients were simply observed. A subjective olfactory test was performed using the University of Pennsylvania Smell Identification Test (UPSIT). The effects of TCA were compared with the results obtained in the observation group. Results. Improved olfactory function was observed in eleven patients treated with TCA compared with four patients in the observation group. This study revealed significantly improved olfactory function outcomes in patients who underwent acupuncture compared with the observation group. No significant differences in olfaction recovery were found according to age, gender, or duration of disease between the two groups; however, hyposmic patients recovered at a higher rate than anosmic patients. Conclusion. TCA may aid the treatment of PVOD patients who are refractory to drugs or other therapies. PMID:27034689

  8. Olfactory lateralization in homing pigeons: a GPS study on birds released with unilateral olfactory inputs.

    PubMed

    Gagliardo, Anna; Filannino, Caterina; Ioalè, Paolo; Pecchia, Tommaso; Wikelski, Martin; Vallortigara, Giorgio

    2011-02-15

    A large body of evidence has shown that pigeons rely on an olfactory-based navigational map when homing from unfamiliar locations. Previous studies on pigeons released with one nostril occluded highlighted an asymmetry in favour of the right nostril, particularly concerning the initial orientation performance of naïve birds. Nevertheless, all pigeons experiencing only unilateral olfactory input showed impaired homing, regardless of the side of the occluded nostril. So far this phenomenon has been documented only by observing the birds' vanishing bearings. In the present work we recorded the flight tracks of pigeons with previous homing experience equipped with a GPS data logger and released from an unfamiliar location with the right or the left nostril occluded. The analysis of the tracks revealed that the flight path of the birds with the right nostril occluded was more tortuous than that of unmanipulated controls. Moreover, the pigeons smelling with the left nostril interrupted their journey significantly more frequently and displayed more exploratory activity than the control birds, e.g. during flights around a stopover site. These data suggest a more important involvement of the right olfactory system in processing the olfactory information needed for the operation of the navigational map. PMID:21270307

  9. Kappe neurons, a novel population of olfactory sensory neurons

    PubMed Central

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-01-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system. PMID:24509431

  10. Identity Matching-to-Sample with Olfactory Stimuli in Rats

    ERIC Educational Resources Information Center

    Pena, Tracy; Pitts, Raymond C.; Galizio, Mark

    2006-01-01

    Identity matching-to-sample has been difficult to demonstrate in rats, but most studies have used visual stimuli. There is evidence that rats can acquire complex forms of olfactory stimulus control, and the present study explored the possibility that identity matching might be facilitated in rats if olfactory stimuli were used. Four rats were…

  11. Kappe neurons, a novel population of olfactory sensory neurons

    NASA Astrophysics Data System (ADS)

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-02-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system.

  12. 21 CFR 874.1600 - Olfactory test device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Olfactory test device. 874.1600 Section 874.1600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1600 Olfactory test device....

  13. 21 CFR 874.1600 - Olfactory test device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Olfactory test device. 874.1600 Section 874.1600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1600 Olfactory test device....

  14. 21 CFR 874.1600 - Olfactory test device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Olfactory test device. 874.1600 Section 874.1600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1600 Olfactory test device....

  15. Olfactory Signal Transduction in the Mouse Septal Organ

    PubMed Central

    Ma, Minghong; Grosmaitre, Xavier; Iwema, Carrie L.; Baker, Harriet; Greer, Charles A.; Shepherd, Gordon M.

    2008-01-01

    The septal organ, a distinct chemosensory organ observed in the mammalian nose, is essentially a small island of olfactory neuroepithelium located bilaterally at the ventral base of the nasal septum. Virtually nothing is known about its physiological properties and function. To understand the nature of the sensory neurons in this area, we studied the mechanisms underlying olfactory signal transduction in these neurons. The majority of the sensory neurons in the septal organ express olfactory-specific G-protein and adenylyl cyclase type III, suggesting that the cAMP signaling pathway plays a critical role in the septal organ as in the main olfactory epithelium (MOE). This is further supported by patch-clamp recordings from individual dendritic knobs of the sensory neurons in the septal organ. Odorant responses can be mimicked by an adenylyl cyclase activator and a phosphodiesterase inhibitor, and these responses can be blocked by an adenylyl cyclase inhibitor. There is a small subset of cells in the septal organ expressing a cGMP-stimulated phosphodiesterase (phosphodiesterase 2), a marker for the guanylyl cyclase-D subtype sensory neurons identified in the MOE. The results indicate that the septal organ resembles the MOE in major olfactory signal transduction pathways, odorant response properties, and projection to the main olfactory bulb. Molecular and functional analysis of the septal organ, which constitutes ~1% of the olfactory epithelium, will provide new insights into the organization of the mammalian olfactory system and the unique function this enigmatic organ may serve. PMID:12514230

  16. Ultrastructural study of the primary olfactory pathway in Macaca fascicularis.

    PubMed

    Herrera, Loren P; Casas, Carlos E; Bates, Margaret L; Guest, James D

    2005-08-01

    Olfactory ensheathing glial cells (OEGs) interact with a wide repertoire of cell types and support extension of olfactory axons (OAs) within the olfactory pathway. OEGs are thought to exclude OAs from contact with all other cells between the olfactory epithelium and the glomerulus of the olfactory bulb. These properties have lead to testing to determine whether OEGs support axonal growth following transplantation. The cellular interactions of transplanted OEGs will probably resemble those that occur within the normal pathway where interactions between OEGs and fibroblasts are prominent. No previous primate studies have focused on these interactions, knowledge of which is important if clinical application is envisioned. We describe the detailed intercellular interactions of OAs with supporting cells throughout the olfactory epithelium, the lamina propria, the fila olfactoria, and the olfactory nerve layer by using transmission electron microscopy in adult Macaca fascicularis. Patterns of OEG ensheathment and variations of the endo- and perineurium formed by olfactory nerve fibroblasts are described. OAs mainly interacted with horizontal basal cells, OEGs, and astrocytes. At both transitional ends of the pathway seamless intercellular interactions were observed, and fibroblast processes were absent. Perineurial cells produced surface basal lamina; however, endoneurial, epineurial, and meningeal fibroblasts did not. Perineurial cells contained intermediate filaments and were distinct from other fibroblasts and meningeal cells. OAs had direct contacts with astrocytes near the glia limitans. The properties of OEGs differed depending on whether astrocytic or fibroblastic processes were present. This indicates the importance of the cellular milieu in the structure and function of OEGs in primates. PMID:15973683

  17. Integrating temperature with odor processing in the olfactory bulb.

    PubMed

    Kludt, Eugen; Okom, Camille; Brinkmann, Alexander; Schild, Detlev

    2015-05-20

    Temperature perception has long been classified as a somesthetic function solely. However, in recent years several studies brought evidence that temperature perception also takes place in the olfactory system of rodents. Temperature has been described as an effective stimulus for sensory neurons of the Grueneberg ganglion located at the entrance of the nose. Here, we investigate whether a neuronal trace of temperature stimulation can be observed in the glomeruli and mitral cells of the olfactory bulb, using calcium imaging and fast line-scanning microscopy. We show in the Xenopus tadpole system that the γ-glomerulus, which receives input from olfactory neurons, is highly sensitive to temperature drops at the olfactory epithelium. We observed that thermo-induced activity in the γ-glomerulus is conveyed to the mitral cells innervating this specific neuropil. Surprisingly, a substantial number of thermosensitive mitral cells were also chemosensitive. Moreover, we report another unique feature of the γ-glomerulus: it receives ipsilateral and contralateral afferents. The latter fibers pass through the contralateral bulb, cross the anterior commissure, and then run to the ipsilateral olfactory bulb, where they target the γ-glomerulus. Temperature drops at the contralateral olfactory epithelium also induced responses in the γ-glomerulus and in mitral cells. Temperature thus appears to be a relevant physiological input to the Xenopus olfactory system. Each olfactory bulb integrates and codes temperature signals originating from receptor neurons of the ipsilateral and contralateral nasal cavities. Finally, temperature and chemical information is processed in shared cellular networks. PMID:25995474

  18. Odor memories regulate olfactory receptor expression in the sensory periphery.

    PubMed

    Claudianos, Charles; Lim, Julianne; Young, Melanie; Yan, Shanzhi; Cristino, Alexandre S; Newcomb, Richard D; Gunasekaran, Nivetha; Reinhard, Judith

    2014-05-01

    Odor learning induces structural and functional modifications throughout the olfactory system, but it is currently unknown whether this plasticity extends to the olfactory receptors (Or) in the sensory periphery. Here, we demonstrate that odor learning induces plasticity in olfactory receptor expression in the honeybee, Apis mellifera. Using quantitative RT-PCR analysis, we show that six putative floral scent receptors were differentially expressed in the bee antennae depending on the scent environment that the bees experienced. Or151, which we characterized using an in vitro cell expression system as a broadly tuned receptor binding floral odorants such as linalool, and Or11, the specific receptor for the queen pheromone 9-oxo-decenoic acid, were significantly down-regulated after honeybees were conditioned with the respective odorants in an olfactory learning paradigm. Electroantennogram recordings showed that the neural response of the antenna was similarly reduced after odor learning. Long-term odor memory was essential for inducing these changes, suggesting that the molecular mechanisms involved in olfactory memory also regulate olfactory receptor expression. Our study demonstrates for the first time that olfactory receptor expression is experience-dependent and modulated by scent conditioning, providing novel insight into how molecular regulation at the periphery contributes to plasticity in the olfactory system. PMID:24628891

  19. Voltage-Dependent Intrinsic Bursting in Olfactory Bulb Golgi Cells

    ERIC Educational Resources Information Center

    Pressler, R. Todd; Rozman, Peter A.; Strowbridge, Ben W.

    2013-01-01

    In the mammalian olfactory bulb (OB), local synaptic circuits modulate the evolving pattern of activity in mitral and tufted cells following olfactory sensory stimulation. GABAergic granule cells, the most numerous interneuron subtype in this brain region, have been extensively studied. However, classic studies using Golgi staining methods…

  20. Functional and structural deficits at accumbens synapses in a mouse model of Fragile X

    PubMed Central

    Neuhofer, Daniela; Henstridge, Christopher M.; Dudok, Barna; Sepers, Marja; Lassalle, Olivier; Katona, István; Manzoni, Olivier J.

    2015-01-01

    Fragile X is the most common cause of inherited intellectual disability and a leading cause of autism. The disease is caused by mutation of a single X-linked gene called fmr1 that codes for the Fragile X mental retardation protein (FMRP), a 71 kDa protein, which acts mainly as a translation inhibitor. Fragile X patients suffer from cognitive and emotional deficits that coincide with abnormalities in dendritic spines. Changes in spine morphology are often associated with altered excitatory transmission and long-term plasticity, the most prominent deficit in fmr1-/y mice. The nucleus accumbens, a central part of the mesocortico-limbic reward pathway, is now considered as a core structure in the control of social behaviors. Although the socio-affective impairments observed in Fragile X suggest dysfunctions in the accumbens, the impact of the lack of FMRP on accumbal synapses has scarcely been studied. Here we report for the first time a new spike timing-dependent plasticity paradigm that reliably triggers NMDAR-dependent long-term potentiation (LTP) of excitatory afferent inputs of medium spiny neurons (MSN) in the nucleus accumbens core region. Notably, we discovered that this LTP was completely absent in fmr1-/y mice. In the fmr1-/y accumbens intrinsic membrane properties of MSNs and basal excitatory neurotransmission remained intact in the fmr1-/y accumbens but the deficit in LTP was accompanied by an increase in evoked AMPA/NMDA ratio and a concomitant reduction of spontaneous NMDAR-mediated currents. In agreement with these physiological findings, we found significantly more filopodial spines in fmr1-/y mice by using an ultrastructural electron microscopic analysis of accumbens core medium spiny neuron spines. Surprisingly, spine elongation was specifically due to the longer longitudinal axis and larger area of spine necks, whereas spine head morphology and postsynaptic density size on spine heads remained unaffected in the fmr1-/y accumbens. These findings

  1. Functional and structural deficits at accumbens synapses in a mouse model of Fragile X.

    PubMed

    Neuhofer, Daniela; Henstridge, Christopher M; Dudok, Barna; Sepers, Marja; Lassalle, Olivier; Katona, István; Manzoni, Olivier J

    2015-01-01

    Fragile X is the most common cause of inherited intellectual disability and a leading cause of autism. The disease is caused by mutation of a single X-linked gene called fmr1 that codes for the Fragile X mental retardation protein (FMRP), a 71 kDa protein, which acts mainly as a translation inhibitor. Fragile X patients suffer from cognitive and emotional deficits that coincide with abnormalities in dendritic spines. Changes in spine morphology are often associated with altered excitatory transmission and long-term plasticity, the most prominent deficit in fmr1-/y mice. The nucleus accumbens, a central part of the mesocortico-limbic reward pathway, is now considered as a core structure in the control of social behaviors. Although the socio-affective impairments observed in Fragile X suggest dysfunctions in the accumbens, the impact of the lack of FMRP on accumbal synapses has scarcely been studied. Here we report for the first time a new spike timing-dependent plasticity paradigm that reliably triggers NMDAR-dependent long-term potentiation (LTP) of excitatory afferent inputs of medium spiny neurons (MSN) in the nucleus accumbens core region. Notably, we discovered that this LTP was completely absent in fmr1-/y mice. In the fmr1-/y accumbens intrinsic membrane properties of MSNs and basal excitatory neurotransmission remained intact in the fmr1-/y accumbens but the deficit in LTP was accompanied by an increase in evoked AMPA/NMDA ratio and a concomitant reduction of spontaneous NMDAR-mediated currents. In agreement with these physiological findings, we found significantly more filopodial spines in fmr1-/y mice by using an ultrastructural electron microscopic analysis of accumbens core medium spiny neuron spines. Surprisingly, spine elongation was specifically due to the longer longitudinal axis and larger area of spine necks, whereas spine head morphology and postsynaptic density size on spine heads remained unaffected in the fmr1-/y accumbens. These findings

  2. Olfactory Mucosa Tissue Based Biosensor for Bioelectronic Nose

    NASA Astrophysics Data System (ADS)

    Liu, Qingjun; Ye, Weiwei; Yu, Hui; Hu, Ning; Cai, Hua; Wang, Ping

    2009-05-01

    Biological olfactory system can distinguish thousands of odors. In order to realize the biomimetic design of electronic nose on the principle of mammalian olfactory system, we have reported bioelectronic nose based on cultured olfactory cells. In this study, the electrical property of the tissue-semiconductor interface was analyzed by the volume conductor theory and the sheet conductor model. Olfactory mucosa tissue of rat was isolated and fixed on the surface of the light-addressable potentiometric sensor (LAPS), with the natural stations of the neuronal populations and functional receptor unit of the cilia well reserved. By the extracellular potentials of the olfactory receptor cells of the mucosa tissue monitored, both the simulation and the experimental results suggested that this tissue-semiconductor hybrid system was sensitive to odorants stimulation.

  3. Vapor Sensors Using Olfactory Proteins Coupled to Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Lerner, Mitchell; Goldsmith, Brett; Mitala, Joe; Discher, Bohdana; Johnson, A. T. Charlie

    2010-03-01

    We have constructed bio-nano devices which combine mammalian olfactory proteins with carbon nanotubes to create a new class of vapor sensors. Olfactory proteins are a specific class of G-protein coupled receptors, and require a cell membrane or similar environment for proper function. Functionalization procedures have been developed to meet the challenges of routinely coupling such membrane proteins to nanotubes, while preserving the function of the protein. We have successfully isolated olfactory proteins and attached them to carbon nanotube transistors, which provide fast, all-electronic readout of analyte binding by the olfactory receptor. Several different olfactory proteins have been tested, each showing a different sensing response. This work opens the way for future coupling of biology to nanoelectronics and improved biomimetic chemical sensing. This work is supported by the DARPA RealNose Project and the Nano/Bio Interface Center

  4. Human Neural Cells Transiently Express Reelin during Olfactory Placode Development

    PubMed Central

    Antal, M. Cristina; Samama, Brigitte; Ghandour, M. Said; Boehm, Nelly

    2015-01-01

    Reelin, an extracellular glycoprotein is essential for migration and correct positioning of neurons during development. Since the olfactory system is known as a source of various migrating neuronal cells, we studied Reelin expression in the two chemosensory olfactory systems, main and accessory, during early developmental stages of human foetuses/embryos from Carnegie Stage (CS) 15 to gestational week (GW) 14. From CS 15 to CS 18, but not at later stages, a transient expression of Reelin was detected first in the presumptive olfactory and then in the presumptive vomeronasal epithelium. During the same period, Reelin-positive cells detach from the olfactory/vomeronasal epithelium and migrate through the mesenchyme beneath the telencephalon. Dab 1, an adaptor protein of the Reelin pathway, was simultaneously expressed in the migratory mass from CS16 to CS17 and, at later stages, in the presumptive olfactory ensheathing cells. Possible involvements of Reelin and Dab 1 in the peripheral migrating stream are discussed. PMID:26270645

  5. Olfactory Cilia: Linking Sensory Cilia Function and Human Disease

    PubMed Central

    Jenkins, Paul M.; McEwen, Dyke P.

    2009-01-01

    The olfactory system gives us an awareness of our immediate environment by allowing us to detect airborne stimuli. The components necessary for detection of these odorants are compartmentalized in the cilia of olfactory sensory neurons. Cilia are microtubule-based organelles, which can be found projecting from the surface of almost any mammalian cell, and are critical for proper olfactory function. Mislocalization of ciliary proteins and/or the loss of cilia cause impaired olfactory function, which is now recognized as a clinical manifestation of a broad class of human diseases, termed ciliopathies. Future work investigating the mechanisms of olfactory cilia function will provide us important new information regarding the pathogenesis of human sensory perception diseases. PMID:19406873

  6. Histochemical study of the olfactory mucosae of the horse.

    PubMed

    Lee, Kwang-Hyup; Park, Changnam; Bang, Hyojin; Ahn, Meejung; Moon, Changjong; Kim, Seungjoon; Shin, Taekyun

    2016-05-01

    The olfactory mucosae of the horse were examined by using histology and lectin histochemistry to characterize the carbohydrate sugar residues therein. Histological findings revealed that olfactory epithelium (OE) consisted of both olfactory marker protein (OMP)- and protein gene product (PGP) 9.5-positive receptor cells, supporting cells and basal cells with intervening secretory ducts from Bowman's glands. Mucus histochemistry showed that Bowman's gland acini contain periodic acid-Schiff (PAS) reagent-positive neutral mucins and alcian blue pH 2.5-positive mucosubstances. Lectin histochemistry revealed that a variety of carbohydrate sugar residues, including N-acetylglucosamine, mannose, galactose, N-acetylgalactosamine, fucose and complex type N-glycan groups, are present in the various cell types in the olfactory mucosa at varying levels. Collectively, this is the first descriptive study of horse olfactory mucosa to characterize carbohydrate sugar residues in the OE and Bowman's glands. PMID:27040092

  7. Humans can discriminate more than 1 trillion olfactory stimuli.

    PubMed

    Bushdid, C; Magnasco, M O; Vosshall, L B; Keller, A

    2014-03-21

    Humans can discriminate several million different colors and almost half a million different tones, but the number of discriminable olfactory stimuli remains unknown. The lay and scientific literature typically claims that humans can discriminate 10,000 odors, but this number has never been empirically validated. We determined the resolution of the human sense of smell by testing the capacity of humans to discriminate odor mixtures with varying numbers of shared components. On the basis of the results of psychophysical testing, we calculated that humans can discriminate at least 1 trillion olfactory stimuli. This is far more than previous estimates of distinguishable olfactory stimuli. It demonstrates that the human olfactory system, with its hundreds of different olfactory receptors, far outperforms the other senses in the number of physically different stimuli it can discriminate. PMID:24653035

  8. Hidden consequences of olfactory dysfunction: a patient report series

    PubMed Central

    2013-01-01

    Background The negative consequences of olfactory dysfunction for the quality of life are not widely appreciated and the condition is therefore often ignored or trivialized. Methods 1,000 patients with olfactory dysfunction participated in an online study by submitting accounts of their subjective experiences of how they have been affected by their condition. In addition, they were given the chance to answer 43 specific questions about the consequences of their olfactory dysfunction. Results Although there are less practical problems associated with impaired or distorted odor perception than with impairments in visual or auditory perception, many affected individuals report experiencing olfactory dysfunction as a debilitating condition. Smell loss-induced social isolation and smell loss-induced anhedonia can severely affect quality of life. Conclusions Olfactory dysfunction is a serious condition for those affected by it and it deserves more attention from doctors who treat affected patients as well as from scientist who research treatment options. PMID:23875929

  9. Human Neural Cells Transiently Express Reelin during Olfactory Placode Development.

    PubMed

    Antal, M Cristina; Samama, Brigitte; Ghandour, M Said; Boehm, Nelly

    2015-01-01

    Reelin, an extracellular glycoprotein is essential for migration and correct positioning of neurons during development. Since the olfactory system is known as a source of various migrating neuronal cells, we studied Reelin expression in the two chemosensory olfactory systems, main and accessory, during early developmental stages of human foetuses/embryos from Carnegie Stage (CS) 15 to gestational week (GW) 14. From CS 15 to CS 18, but not at later stages, a transient expression of Reelin was detected first in the presumptive olfactory and then in the presumptive vomeronasal epithelium. During the same period, Reelin-positive cells detach from the olfactory/vomeronasal epithelium and migrate through the mesenchyme beneath the telencephalon. Dab 1, an adaptor protein of the Reelin pathway, was simultaneously expressed in the migratory mass from CS16 to CS17 and, at later stages, in the presumptive olfactory ensheathing cells. Possible involvements of Reelin and Dab 1 in the peripheral migrating stream are discussed. PMID:26270645

  10. Cytological organization of the alpha component of the anterior olfactory nucleus and olfactory limbus

    PubMed Central

    Larriva-Sahd, Jorge

    2012-01-01

    This study describes the microscopic organization of a wedge-shaped area at the intersection of the main (MOB) and accessory olfactory bulbs (AOBs), or olfactory limbus (OL), and an additional component of the anterior olfactory nucleus or alpha AON that lies underneath of the AOB. The OL consists of a modified bulbar cortex bounded anteriorly by the MOB and posteriorly by the AOB. In Nissl-stained specimens the OL differs from the MOB by a progressive, antero-posterior decrease in thickness or absence of the external plexiform, mitral/tufted cell, and granule cell layers. On cytoarchitectual grounds the OL is divided from rostral to caudal into three distinct components: a stripe of glomerular-free cortex or preolfactory area (PA), a second or necklace glomerular area, and a wedge-shaped or interstitial area (INA) crowned by the so-called modified glomeruli that appear to belong to the anterior AOB. The strategic location and interactions with the main and AOBs, together with the previously noted functional and connectional evidence, suggest that the OL may be related to both sensory modalities. The alpha component of the anterior olfactory nucleus, a slender cellular cluster (i.e., 650 × 150 μm) paralleling the base of the AOB, contains two neuron types: a pyramidal-like neuron and an interneuron. Dendrites of pyramidal-like cells (P-L) organize into a single bundle that ascends avoiding the AOB to resolve in a trigone bounded by the edge of the OL, the AOB and the dorsal part of the anterior olfactory nucleus. Utrastructurally, the neuropil of the alpha component contains three types of synaptic terminals; one of them immunoreactive to the enzyme glutamate decarboxylase, isoform 67. PMID:22754506

  11. Axon fasciculation in the developing olfactory nerve

    PubMed Central

    2010-01-01

    Olfactory sensory neuron (OSN) axons exit the olfactory epithelium (OE) and extend toward the olfactory bulb (OB) where they coalesce into glomeruli. Each OSN expresses only 1 of approximately 1,200 odor receptors (ORs). OSNs expressing the same OR are distributed in restricted zones of the OE. However, within a zone, the OSNs expressing a specific OR are not contiguous - distribution appears stochastic. Upon reaching the OB the OSN axons expressing the same OR reproducibly coalesce into two to three glomeruli. While ORs appear necessary for appropriate convergence of axons, a variety of adhesion associated molecules and activity-dependent mechanisms are also implicated. Recent data suggest pre-target OSN axon sorting may influence glomerular convergence. Here, using regional and OR-specific markers, we addressed the spatio-temporal properties associated with the onset of homotypic fasciculation in embryonic mice and assessed the degree to which subpopulations of axons remain segregated as they extend toward the nascent OB. We show that immediately upon crossing the basal lamina, axons uniformly turn sharply, usually at an approximately 90° angle toward the OB. Molecularly defined subpopulations of axons show evidence of spatial segregation within the nascent nerve by embryonic day 12, within 48 hours of the first OSN axons crossing the basal lamina, but at least 72 hours before synapse formation in the developing OB. Homotypic fasciculation of OSN axons expressing the same OR appears to be a hierarchical process. While regional segregation occurs in the mesenchyme, the final convergence of OR-specific subpopulations does not occur until the axons reach the inner nerve layer of the OB. PMID:20723208

  12. Nasal toxicity, carcinogenicity, and olfactory uptake of metals.

    PubMed

    Sunderman, F W

    2001-01-01

    Occupational exposures to inhalation of certain metal dusts or aerosols can cause loss of olfactory acuity, atrophy of the nasal mucosa, mucosal ulcers, perforated nasal septum, or sinonasal cancer. Anosmia and hyposmia have been observed in workers exposed to Ni- or Cd-containing dusts in alkaline battery factories, nickel refineries, and cadmium industries. Ulcers of the nasal mucosa and perforated nasal septum have been reported in workers exposed to Cr(VI) in chromate production and chrome plating, or to As(III) in arsenic smelters. Atrophy of the olfactory epithelium has been observed in rodents following inhalation of NiSO4 or alphaNi3S2. Cancers of the nose and nasal sinuses have been reported in workers exposed to Ni compounds in nickel refining, cutlery factories, and alkaline battery manufacture, or to Cr(VI) in chromate production and chrome plating. In animals, several metals (eg, Al, Cd, Co, Hg, Mn, Ni, Zn) have been shown to pass via olfactory receptor neurons from the nasal lumen through the cribriform plate to the olfactory bulb. Some metals (eg, Mn, Ni, Zn) can cross synapses in the olfactory bulb and migrate via secondary olfactory neurons to distant nuclei of the brain. After nasal instillation of a metal-containing solution, transport of the metal via olfactory axons can occur rapidly, within hours or a few days (eg, Mn), or slowly over days or weeks (eg, Ni). The olfactory bulb tends to accumulate certain metals (eg, Al, Bi, Cu, Mn, Zn) with greater avidity than other regions of the brain. The molecular mechanisms responsible for metal translocation in olfactory neurons and deposition in the olfactory bulb are unclear, but complexation by metal-binding molecules such as carnosine (beta-alanyl-L-histidine) may be involved. PMID:11314863

  13. Olfactory impairment and subjective olfactory complaints independently predict conversion to dementia: a longitudinal, population-based study.

    PubMed

    Stanciu, Ingrid; Larsson, Maria; Nordin, Steven; Adolfsson, Rolf; Nilsson, Lars-Göran; Olofsson, Jonas K

    2014-02-01

    We examined whether conversion to dementia can be predicted by self-reported olfactory impairment and/or by an inability to identify odors. Common forms of dementia involve an impaired sense of smell, and poor olfactory performance predicts cognitive decline among the elderly. We followed a sample of 1529 participants, who were within a normal range of overall cognitive function at baseline, over a 10-year period during which 159 were classified as having a dementia disorder. Dementia conversion was predicted from demographic variables, Mini-Mental State Examination score, and olfactory assessments. Self-reported olfactory impairment emerged as an independent predictor of dementia. After adjusting for effects of other predictors, individuals who rated their olfactory sensitivity as "worse than normal" were more likely to convert to dementia than those who reported normal olfactory sensitivity (odds ratio [OR] = 2.17; 95% confidence interval [CI] [1.40, 3.37]). Additionally, low scores on an odor identification test also predicted conversion to dementia (OR per 1 point increase = 0.89; 95% CI [0.81, 0.98]), but these two effects were additive. We suggest that assessing subjective olfactory complaints might supplement other assessments when evaluating the risk of conversion to dementia. Future studies should investigate which combination of olfactory assessments is most useful in predicting dementia conversion. PMID:24451436

  14. Measurement and Analysis of Olfactory Responses with the Aim of Establishing an Objective Diagnostic Method for Central Olfactory Disorders

    NASA Astrophysics Data System (ADS)

    Uno, Tominori; Wang, Li-Qun; Miwakeichi, Fumikazu; Tonoike, Mitsuo; Kaneda, Teruo

    In order to establish a new diagnostic method for central olfactory disorders and to identify objective indicators, we measured and analyzed brain activities in the parahippocampal gyrus and uncus, region of responsibility for central olfactory disorders. The relationship between olfactory stimulation and brain response at region of responsibility can be examined in terms of fitted responses (FR). FR in these regions may be individual indicators of changes in brain olfactory responses. In the present study, in order to non-invasively and objectively measure olfactory responses, an odor oddball task was conducted on four healthy volunteers using functional magnetic resonance imaging (fMRI) and a odorant stimulator with blast-method. The results showed favorable FR and activation in the parahippocampal gyrus or uncus in all subjects. In some subjects, both the parahippocampal gyrus and uncus were activated. Furthermore, activation was also confirmed in the cingulate gyrus, middle frontal gyrus, precentral gyrus, postcentral gyrus, superior temporal gyrus and insula. The hippocampus and uncus are known to be involved in the olfactory disorders associated with early-stage Alzheimer's disease and other olfactory disorders. In the future, it will be necessary to further develop the present measurement and analysis method to clarify the relationship between central olfactory disorders and brain activities and establish objective indicators that are useful for diagnosis.

  15. FUNCTIONAL DEFICITS PRODUCED BY 3-METHYLINDOLE-INDUCED OLFACTORY MUCOSAL DAMAGE REVEALED BY A SIMPLE OLFACTORY LEARNING TASK

    EPA Science Inventory

    Methods for assessing functional consequences of olfactory mucosal damage were examined in rats exposed to 3-methylindole (3-MI). Treatment with 3-MI (400 mg/kg) induced severe degeneration of olfactory sensory epithelium followed by regeneration, fibrous adhesions and osseous re...

  16. Apropos of an Olfactory Reference Syndrome case.

    PubMed

    Cruzado, Lizardo; Cáceres-Taco, Elisa; Calizaya, Jesús R

    2012-01-01

    Olfactory Reference Syndrome (ORS) is one of the varieties of the somatic type of the Delusional Disorder, and it is characterized by the mistaken statement of a patient who declares the issuance of a foul odor coming from his own body and that others may notice. In the upcoming edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) it has been proposed to break off ORS as an independent pathology. From an illustrative case report, we review the relevant literature and discuss this proposal. PMID:22851484

  17. Role of nucleus accumbens glutamatergic plasticity in drug addiction

    PubMed Central

    Quintero, Gabriel C

    2013-01-01

    Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR). These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance’s effects, disregard of basic aspects of life (for example, family), and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc) is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC) to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors at the level of the NAc. Also, cocaine self-administration and withdrawal induce the formation of subunit glutamate receptor 2 (GluA2), lacking the Ca2+-permeable AMPA receptors (CP-AMPARs) at the level of the NAc

  18. Role of nucleus accumbens glutamatergic plasticity in drug addiction.

    PubMed

    Quintero, Gabriel C

    2013-01-01

    Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR). These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance's effects, disregard of basic aspects of life (for example, family), and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc) is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC) to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors at the level of the NAc. Also, cocaine self-administration and withdrawal induce the formation of subunit glutamate receptor 2 (GluA2), lacking the Ca(2+)-permeable AMPA receptors (CP-AMPARs) at the level of the NAc

  19. Brain activation by an olfactory stimulus paired with juvenile play in female rats.

    PubMed

    Paredes-Ramos, P; McCarthy, M M; Bowers, J M; Miquel, M; Manzo, J; Coria-Avila, G A

    2014-06-22

    We have previously shown that reward experienced during social play at juvenile age can be paired with artificial odors, and later in adulthood facilitate olfactory conditioned partner preferences (PP) in female rats. Herein, we examined the expression of FOS immunoreactivity (FOS-IR) following exposure to the odor paired with juvenile play (CS+). Starting at day P31 females received daily 30-min periods of social play with lemon-scented (paired group) or unscented females (unpaired group). At day P42, they were tested for play-PP with two juvenile males, one bearing the CS+ (lemon) and one bearing a novel odor (almond). Females were ovariectomized, hormone-primed and at day P55 tested for sexual-PP between two adult stud males scented with lemon or almond. In both tests, females from the paired group displayed conditioned PP (play or sexual) toward males bearing the CS+. In the present experiments females were exposed at day P59 to the CS+ during 60 min and their brains processed for FOS-IR. One group of female rats (Play+Sex) underwent play-PP and sexual-PP, whereas a second group of females (Play-only) underwent exclusively play-PP but not sexual-PP. Results showed that in the Play-only experiment exposure to the CS+ induced more FOS-IR in the medial prefrontal cortex, orbitofrontal cortex, dorsal striatum, and ventral tegmental area as compared to females from the unpaired group. In the Play+Sex experiment, more FOS-IR was observed in the piriform cortex, dorsal striatum, lateral septum, nucleus accumbens shell, bed nucleus of the stria terminalis and medial amygdala as compared to females from the unpaired group. Taken together, these results indicate mesocorticolimbic brain areas direct the expectation and/or choice of conditioned partners in female rats. In addition, transferring the meaning of play to sex preference requires different brain areas. PMID:24835545

  20. Disgust and fear lower olfactory threshold.

    PubMed

    Chan, Kai Qin; Holland, Rob W; van Loon, Ruud; Arts, Roy; van Knippenberg, Ad

    2016-08-01

    Odors provide information regarding the chemical properties of potential environment hazards. Some of this information may be disgust-related (e.g., organic decay), whereas other information may be fear-related (e.g., smoke). Many studies have focused on how disgust and fear, as prototypical avoidant emotions, facilitate the detection of possible threats, but these studies have typically confined to the visual modality. Here, we examine how disgust and fear influence olfactory detection at a particular level-the level at which a subliminal olfactory stimulus crosses into conscious perception, also known as a detection threshold. Here, using psychophysical methods that allow us to test perceptual capabilities directly, we show that one way that disgust (Experiments 1-3) and fear (Experiment 3) facilitate detection is by lowering the amount of physical input that is needed to trigger a conscious experience of that input. This effect is particularly strong among individuals with high disgust sensitivity (Experiments 2-3). Our research suggests that a fundamental way in which avoidant emotions foster threat detection is through lowering perceptual thresholds. (PsycINFO Database Record PMID:27064291

  1. Widespread ectopic expression of olfactory receptor genes

    PubMed Central

    Feldmesser, Ester; Olender, Tsviya; Khen, Miriam; Yanai, Itai; Ophir, Ron; Lancet, Doron

    2006-01-01

    Background Olfactory receptors (ORs) are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information. PMID:16716209

  2. Recordings from cultured newt olfactory receptor cells.

    PubMed

    Matsumura, Kyohei; Matsumoto, Masahiro; Kurahashi, Takashi; Takeuchi, Hiroko

    2012-05-01

    Freshly dissociated olfactory receptor cells (ORCs) are commonly used in electrophysiological research investigations of the physicochemical mechanisms of olfactory signal transduction. Because the morphology of cultured cells clearly becomes worse over time, the ORCs are examined traditionally within several days after dissociation. However, there has been a major concern that cells are affected soon after dissociation. To gain a better understanding of the reliability of data obtained from solitary cells, we obtained electrical data during the lifetime of single ORCs dissociated from the newt. The time course for the deterioration could be revealed by monitoring the membrane properties during culture. Although the number of living cells that were identified by trypan blue extrusion declined day by day, the remaining cells retained morphology and their fundamental electrical features until day 19. In some cells, the cilia and dendrite were observed until day 21, and the bipolar morphology until day 31. The fundamental features of cell excitation were maintained during culture without showing remarkable changes when they retained morphological features. The results suggest that electrical properties of cells are almost unchanged within several days. Furthermore, the dissociated newt ORCs can be used for several weeks that are almost comparable to the intrinsic lifetime of the ORCs in vivo. PMID:22559969

  3. Unitary response of mouse olfactory receptor neurons

    PubMed Central

    Ben-Chaim, Yair; Cheng, Melody M.; Yau, King-Wai

    2011-01-01

    The sense of smell begins with odorant molecules binding to membrane receptors on the cilia of olfactory receptor neurons (ORNs), thereby activating a G protein, Golf, and the downstream effector enzyme, an adenylyl cyclase (ACIII). Recently, we have found in amphibian ORNs that an odorant-binding event has a low probability of activating sensory transduction at all; even when successful, the resulting unitary response apparently involves a single active Gαolf–ACIII molecular complex. This low amplification is in contrast to rod phototransduction in vision, the best-quantified G-protein signaling pathway, where each photoisomerized rhodopsin molecule is well known to produce substantial amplification by activating many G-protein, and hence effector-enzyme, molecules. We have now carried out similar experiments on mouse ORNs, which offer, additionally, the advantage of genetics. Indeed, we found the same low probability of transduction, based on the unitary olfactory response having a fairly constant amplitude and similar kinetics across different odorants and randomly encountered ORNs. Also, consistent with our picture, the unitary response of Gαolf+/− ORNs was similar to WT in amplitude, although their Gαolf-protein expression was only half of normal. Finally, from the action potential firing, we estimated that ≤19 odorant-binding events successfully triggering transduction in a WT mouse ORN will lead to signaling to the brain. PMID:21187398

  4. Ecological adaptation determines functional mammalian olfactory subgenomes

    PubMed Central

    Hayden, Sara; Bekaert, Michaël; Crider, Tess A.; Mariani, Stefano; Murphy, William J.; Teeling, Emma C.

    2010-01-01

    The ability to smell is governed by the largest gene family in mammalian genomes, the olfactory receptor (OR) genes. Although these genes are well annotated in the finished human and mouse genomes, we still do not understand which receptors bind specific odorants or how they fully function. Previous comparative studies have been taxonomically limited and mostly focused on the percentage of OR pseudogenes within species. No study has investigated the adaptive changes of functional OR gene families across phylogenetically and ecologically diverse mammals. To determine the extent to which OR gene repertoires have been influenced by habitat, sensory specialization, and other ecological traits, to better understand the functional importance of specific OR gene families and thus the odorants they bind, we compared the functional OR gene repertoires from 50 mammalian genomes. We amplified more than 2000 OR genes in aquatic, semi-aquatic, and flying mammals and coupled these data with 48,000 OR genes from mostly terrestrial mammals, extracted from genomic projects. Phylogenomic, Bayesian assignment, and principle component analyses partitioned species by ecotype (aquatic, semi-aquatic, terrestrial, flying) rather than phylogenetic relatedness, and identified OR families important for each habitat. Functional OR gene repertoires were reduced independently in the multiple origins of aquatic mammals and were significantly divergent in bats. We reject recent neutralist views of olfactory subgenome evolution and correlate specific OR gene families with physiological requirements, a preliminary step toward unraveling the relationship between specific odors and respective OR gene families. PMID:19952139

  5. Olfactory function in psychotic disorders: Insights from neuroimaging studies

    PubMed Central

    Good, Kimberley P; Sullivan, Randii Lynn

    2015-01-01

    Olfactory deficits on measures of identification, familiarity, and memory are consistently noted in patients with psychotic disorders relative to age-matched controls. Olfactory intensity ratings, however, appear to remain intact while the data on hedonics and detection threshold are inconsistent. Despite the behavioral abnormalities noted, no specific regional brain hypoactivity has been identified in psychosis patients, for any of the olfactory domains. However, an intriguing finding emerged from this review in that the amygdala and pirifom cortices were not noted to be abnormal in hedonic processing (nor was the amygdala identified abnormal in any study) in psychotic disorders. This finding is in contrast to the literature in healthy individuals, in that this brain region is strongly implicated in olfactory processing (particularly for unpleasant odorants). Secondary olfactory cortex (orbitofrontal cortices, thalamus, and insula) was abnormally activated in the studies examined, particularly for hedonic processing. Further research, using consistent methodology, is required for better understanding the neurobiology of olfactory deficits. The authors suggest taking age and sex differences into consideration and further contrasting olfactory subgroups (impaired vs intact) to better our understanding of the heterogeneity of psychotic disorders. PMID:26110122

  6. Olfaction and olfactory-mediated behaviour in psychiatric disease models.

    PubMed

    Huckins, Laura M; Logan, Darren W; Sánchez-Andrade, Gabriela

    2013-10-01

    Rats and mice are the most widely used species for modelling psychiatric disease. Assessment of these rodent models typically involves the analysis of aberrant behaviour with behavioural interactions often being manipulated to generate the model. Rodents rely heavily on their excellent sense of smell and almost all their social interactions have a strong olfactory component. Therefore, experimental paradigms that exploit these olfactory-mediated behaviours are among the most robust available and are highly prevalent in psychiatric disease research. These include tests of aggression and maternal instinct, foraging, olfactory memory and habituation and the establishment of social hierarchies. An appreciation of the way that rodents regulate these behaviours in an ethological context can assist experimenters to generate better data from their models and to avoid common pitfalls. We describe some of the more commonly used behavioural paradigms from a rodent olfactory perspective and discuss their application in existing models of psychiatric disease. We introduce the four olfactory subsystems that integrate to mediate the behavioural responses and the types of sensory cue that promote them and discuss their control and practical implementation to improve experimental outcomes. In addition, because smell is critical for normal behaviour in rodents and yet olfactory dysfunction is often associated with neuropsychiatric disease, we introduce some tests for olfactory function that can be applied to rodent models of psychiatric disorders as part of behavioural analysis. PMID:23604803

  7. A lifetime of neurogenesis in the olfactory system.

    PubMed

    Brann, Jessica H; Firestein, Stuart J

    2014-01-01

    Neurogenesis continues well beyond embryonic and early postnatal ages in three areas of the nervous system. The subgranular zone supplies new neurons to the dentate gyrus of the hippocampus. The subventricular zone supplies new interneurons to the olfactory bulb, and the olfactory neuroepithelia generate new excitatory sensory neurons that send their axons to the olfactory bulb. The latter two areas are of particular interest as they contribute new neurons to both ends of a first-level circuit governing olfactory perception. The vomeronasal organ and the main olfactory epithelium comprise the primary peripheral olfactory epithelia. These anatomically distinct areas share common features, as each exhibits extensive neurogenesis well beyond the juvenile phase of development. Here we will discuss the effect of age on the structural and functional significance of neurogenesis in the vomeronasal and olfactory epithelia, from juvenile to advanced adult ages, in several common model systems. We will next discuss how age affects the regenerative capacity of these neural stem cells in response to injury. Finally, we will consider the integration of newborn neurons into an existing circuit as it is modified by the age of the animal. PMID:25018692

  8. Expression of corticosteroid binding globulin in the rat olfactory system.

    PubMed

    Dölz, Wilfried; Eitner, Annett; Caldwell, Jack D; Jirikowski, Gustav F

    2013-05-01

    Glucocorticoids are known to act on the olfactory system although their mode of action is still unclear since nuclear glucocorticoid receptors are mostly absent in the olfactory mucosa. In this study we used immunocytochemistry, in situ hybridization, and RT-PCR to study the expression and distribution of corticosteroid binding globulin (CBG) in the rat olfactory system. Mucosal goblet cells could be immunostained for CBG. Nasal secretion contained measurable amounts of CBG suggesting that CBG is liberated. CBG immunoreactivity was localized in many of the basal cells of the olfactory mucosa, while mature sensory cells contained CBG only in processes as determined by double immunostaining with the olfactory marker protein OMP. This staining was most pronounced in the vomeronasal organ (VNO). The appearance of CBG in the non-sensory and sensory parts of the VNO and in nerve terminals in the accessory bulb indicated axonal transport. Portions of the periglomerular cells, the mitral cells and the tufted cells were also CBG positive. CBG encoding transcripts were confirmed by RT-PCR in homogenates of the olfactory mucosa and VNO. Olfactory CBG may be significant for uptake, accumulation and transport of glucocorticoids, including aerosolic cortisol. PMID:23141917

  9. Respiratory and olfactory turbinal size in canid and arctoid carnivorans.

    PubMed

    Green, Patrick A; Van Valkenburgh, Blaire; Pang, Benison; Bird, Deborah; Rowe, Timothy; Curtis, Abigail

    2012-12-01

    Within the nasal cavity of mammals is a complex scaffold of paper-thin bones that function in respiration and olfaction. Known as turbinals, the bones greatly enlarge the surface area available for conditioning inspired air, reducing water loss, and improving olfaction. Given their functional significance, the relative development of turbinal bones might be expected to differ among species with distinct olfactory, thermoregulatory and/or water conservation requirements. Here we explore the surface area of olfactory and respiratory turbinals relative to latitude and diet in terrestrial Caniformia, a group that includes the canid and arctoid carnivorans (mustelids, ursids, procyonids, mephitids, ailurids). Using high-resolution computed tomography x-ray scans, we estimated respiratory and olfactory turbinal surface area and nasal chamber volume from three-dimensional virtual models of skulls. Across the Caniformia, respiratory surface area scaled isometrically with estimates of body size and there was no significant association with climate, as estimated by latitude. Nevertheless, one-on-one comparisons of sister taxa suggest that arctic species may have expanded respiratory turbinals. Olfactory surface area scaled isometrically among arctoids, but showed positive allometry in canids, reflecting the fact that larger canids, all of which are carnivorous, had relatively greater olfactory surface areas. In addition, among the arctoids, large carnivorous species such as the polar bear (Ursus maritimus) and wolverine (Gulo gulo) also displayed enlarged olfactory turbinals. More omnivorous caniform species that feed on substantial quantities of non-vertebrate foods had less expansive olfactory turbinals. Because large carnivorous species hunt widely dispersed prey, an expanded olfactory turbinal surface area may improve a carnivore's ability to detect prey over great distances using olfactory cues. PMID:23035637

  10. Respiratory and olfactory turbinal size in canid and arctoid carnivorans

    PubMed Central

    Green, Patrick A; Valkenburgh, Blaire; Pang, Benison; Bird, Deborah; Rowe, Timothy; Curtis, Abigail

    2012-01-01

    Within the nasal cavity of mammals is a complex scaffold of paper-thin bones that function in respiration and olfaction. Known as turbinals, the bones greatly enlarge the surface area available for conditioning inspired air, reducing water loss, and improving olfaction. Given their functional significance, the relative development of turbinal bones might be expected to differ among species with distinct olfactory, thermoregulatory and/or water conservation requirements. Here we explore the surface area of olfactory and respiratory turbinals relative to latitude and diet in terrestrial Caniformia, a group that includes the canid and arctoid carnivorans (mustelids, ursids, procyonids, mephitids, ailurids). Using high-resolution computed tomography x-ray scans, we estimated respiratory and olfactory turbinal surface area and nasal chamber volume from three-dimensional virtual models of skulls. Across the Caniformia, respiratory surface area scaled isometrically with estimates of body size and there was no significant association with climate, as estimated by latitude. Nevertheless, one-on-one comparisons of sister taxa suggest that arctic species may have expanded respiratory turbinals. Olfactory surface area scaled isometrically among arctoids, but showed positive allometry in canids, reflecting the fact that larger canids, all of which are carnivorous, had relatively greater olfactory surface areas. In addition, among the arctoids, large carnivorous species such as the polar bear (Ursus maritimus) and wolverine (Gulo gulo) also displayed enlarged olfactory turbinals. More omnivorous caniform species that feed on substantial quantities of non-vertebrate foods had less expansive olfactory turbinals. Because large carnivorous species hunt widely dispersed prey, an expanded olfactory turbinal surface area may improve a carnivore's ability to detect prey over great distances using olfactory cues. PMID:23035637

  11. Adiponectin enhances the responsiveness of the olfactory system.

    PubMed

    Loch, Diana; Heidel, Christian; Breer, Heinz; Strotmann, Jörg

    2013-01-01

    The peptide hormone adiponectin is secreted by adipose tissue and the circulating concentration is reversely correlated with body fat mass; it is considered as starvation signal. The observation that mature sensory neurons of the main olfactory epithelium express the adiponectin receptor 1 has led to the concept that adiponectin may affect the responsiveness of the olfactory system. In fact, electroolfactogram recordings from olfactory epithelium incubated with exogenous adiponectin resulted in large amplitudes upon odor stimulation. To determine whether the responsiveness of the olfactory sensory neurons was enhanced, we have monitored the odorant-induced expression of the immediate early gene Egr1. It was found that in an olfactory epithelium incubated with nasally applied adiponectin the number of Egr1 positive cells was significantly higher compared to controls, suggesting that adiponectin rendered the olfactory neurons more responsive to an odorant stimulus. To analyze whether the augmented responsiveness of sensory neurons was strong enough to elicit a higher neuronal activity in the olfactory bulb, the number of activated periglomerular cells of a distinct glomerulus was determined by monitoring the stimulus-induced expression of c-fos. The studies were performed using the transgenic mOR256-17-IRES-tauGFP mice which allowed to visualize the corresponding glomerulus and to stimulate with a known ligand. The data indicate that upon exposure to 2,3-hexanedione in adiponectin-treated mice the number of activated periglomerular neurons was significantly increased compared to controls. The results of this study indicate that adiponectin increases the responsiveness of the olfactory system, probably due to a higher responsiveness of olfactory sensory neurons. PMID:24130737

  12. Adiponectin Enhances the Responsiveness of the Olfactory System

    PubMed Central

    Loch, Diana; Heidel, Christian; Breer, Heinz; Strotmann, Jörg

    2013-01-01

    The peptide hormone adiponectin is secreted by adipose tissue and the circulating concentration is reversely correlated with body fat mass; it is considered as starvation signal. The observation that mature sensory neurons of the main olfactory epithelium express the adiponectin receptor 1 has led to the concept that adiponectin may affect the responsiveness of the olfactory system. In fact, electroolfactogram recordings from olfactory epithelium incubated with exogenous adiponectin resulted in large amplitudes upon odor stimulation. To determine whether the responsiveness of the olfactory sensory neurons was enhanced, we have monitored the odorant-induced expression of the immediate early gene Egr1. It was found that in an olfactory epithelium incubated with nasally applied adiponectin the number of Egr1 positive cells was significantly higher compared to controls, suggesting that adiponectin rendered the olfactory neurons more responsive to an odorant stimulus. To analyze whether the augmented responsiveness of sensory neurons was strong enough to elicit a higher neuronal activity in the olfactory bulb, the number of activated periglomerular cells of a distinct glomerulus was determined by monitoring the stimulus-induced expression of c-fos. The studies were performed using the transgenic mOR256-17-IRES-tauGFP mice which allowed to visualize the corresponding glomerulus and to stimulate with a known ligand. The data indicate that upon exposure to 2,3-hexanedione in adiponectin-treated mice the number of activated periglomerular neurons was significantly increased compared to controls. The results of this study indicate that adiponectin increases the responsiveness of the olfactory system, probably due to a higher responsiveness of olfactory sensory neurons. PMID:24130737

  13. Cellular Basis for the Olfactory Response to Nicotine

    PubMed Central

    2010-01-01

    Smokers regulate their smoking behavior on the basis of sensory stimuli independently of the pharmacological effects of nicotine (RoseJ. E., et al. (1993) Pharmacol., Biochem. Behav.1 (3), 891−9008469698). A better understanding of sensory mechanisms underlying smoking behavior may help to develop more effective smoking alternatives. Olfactory stimulation by nicotine makes up a considerable part of the flavor of tobacco smoke, yet our understanding of the cellular mechanisms responsible for olfactory detection of nicotine remains incomplete. We used biophysical methods to characterize the nicotine sensitivity and response mechanisms of neurons from olfactory epithelium. In view of substantial differences in the olfactory receptor repertoire between rodent and human (MombaertsP. (1999) Annu. Rev. Neurosci.1, 487−50910202546), we studied biopsied human olfactory sensory neurons (OSNs), cultured human olfactory cells (GomezG., et al. (2000) J. Neurosci. Res.1 (3), 737−74911104513), and rat olfactory neurons. Rat and human OSNs responded to S(−)-nicotine with a concentration dependent influx of calcium and activation of adenylate cyclase. Some rat OSNs displayed some stereoselectivity, with neurons responding to either enantiomer alone or to both. Freshly biopsied and primary cultured human olfactory neurons were less stereoselective. Nicotinic cholinergic antagonists had no effect on the responses of rat or human OSNs to nicotine. Patch clamp recording of rat OSNs revealed a nicotine-activated, calcium-sensitive nonspecific cation channel. These results indicate that nicotine activates a canonical olfactory receptor pathway rather than nicotinic cholinergic receptors on OSNs. Further, because the nicotine-sensitive mechanisms of rodents appear generally similar to those of humans, this animal model is an appropriate one for studies of nicotine sensation. PMID:22777075

  14. Cellular basis for the olfactory response to nicotine.

    PubMed

    Bryant, Bruce; Xu, Jiang; Audige, Valery; Lischka, Fritz W; Rawson, Nancy E

    2010-03-17

    Smokers regulate their smoking behavior on the basis of sensory stimuli independently of the pharmacological effects of nicotine (Rose J. E., et al. (1993) Pharmacol., Biochem. Behav.44 (4), 891-900). A better understanding of sensory mechanisms underlying smoking behavior may help to develop more effective smoking alternatives. Olfactory stimulation by nicotine makes up a considerable part of the flavor of tobacco smoke, yet our understanding of the cellular mechanisms responsible for olfactory detection of nicotine remains incomplete. We used biophysical methods to characterize the nicotine sensitivity and response mechanisms of neurons from olfactory epithelium. In view of substantial differences in the olfactory receptor repertoire between rodent and human (Mombaerts P. (1999) Annu. Rev. Neurosci.22, 487-509), we studied biopsied human olfactory sensory neurons (OSNs), cultured human olfactory cells (Gomez G., et al. (2000) J. Neurosci. Res.62 (5), 737-749), and rat olfactory neurons. Rat and human OSNs responded to S(-)-nicotine with a concentration dependent influx of calcium and activation of adenylate cyclase. Some rat OSNs displayed some stereoselectivity, with neurons responding to either enantiomer alone or to both. Freshly biopsied and primary cultured human olfactory neurons were less stereoselective. Nicotinic cholinergic antagonists had no effect on the responses of rat or human OSNs to nicotine. Patch clamp recording of rat OSNs revealed a nicotine-activated, calcium-sensitive nonspecific cation channel. These results indicate that nicotine activates a canonical olfactory receptor pathway rather than nicotinic cholinergic receptors on OSNs. Further, because the nicotine-sensitive mechanisms of rodents appear generally similar to those of humans, this animal model is an appropriate one for studies of nicotine sensation. PMID:22777075

  15. Dendritic Organization of Olfactory Inputs to Medial Amygdala Neurons.

    PubMed

    Keshavarzi, Sepideh; Power, John M; Albers, Eva H H; Sullivan, Robert K S; Sah, Pankaj

    2015-09-23

    The medial amygdala (MeA) is a central hub in the olfactory neural network. It receives vomeronasal information directly from the accessory olfactory bulb (AOB) and main olfactory information largely via odor-processing regions such as the olfactory cortical amygdala (CoA). How these inputs are processed by MeA neurons is poorly understood. Using the GAD67-GFP mouse, we show that MeA principal neurons receive convergent AOB and CoA inputs. Somatically recorded AOB synaptic inputs had slower kinetics than CoA inputs, suggesting that they are electrotonically more distant. Field potential recording, pharmacological manipulation, and Ca(2+) imaging revealed that AOB synapses are confined to distal dendrites and segregated from the proximally located CoA synapses. Moreover, unsynchronized AOB inputs had significantly broader temporal summation that was dependent on the activation of NMDA receptors. These findings show that MeA principal neurons process main and accessory olfactory inputs differentially in distinct dendritic compartments. Significance statement: In most vertebrates, olfactory cues are processed by two largely segregated neural pathways, the main and accessory olfactory systems, which are specialized to detect odors and nonvolatile chemosignals, respectively. Information from these two pathways ultimately converges at higher brain regions, one of the major hubs being the medial amygdala. Little is known about how olfactory inputs are processed by medial amygdala neurons. This study shows that individual principal neurons in this region receive input from both pathways and that these synapses are spatially segregated on their dendritic tree. We provide evidence suggesting that this dendritic segregation leads to distinct input integration and impact on neuronal output; hence, dendritic mechanisms control olfactory processing in the amygdala. PMID:26400933

  16. Subcellular and subsynaptic localization of group I metabotropic glutamate receptors in the nucleus accumbens of cocaine-treated rats

    PubMed Central

    Mitrano, D.A.; Arnold, C.; Smith, Y.

    2008-01-01

    There is significant pharmacological and behavioral evidence that group I metabotropic glutamate receptors (mGluR1a and mGluR5) in the nucleus accumbens play an important role in the neurochemical and pathophysiological mechanisms that underlie addiction to psychostimulants. To further address this issue, we undertook a detailed ultrastructural analysis to characterize changes in the subcellular and subsynaptic localization of mGluR1a and mGluR5 in the core and shell of nucleus accumbens following acute or chronic cocaine administration in rats. After a single cocaine injection (30mg/kg) and 45 minutes withdrawal, there was a significant decrease in the proportion of plasma membrane-bound mGluR1a in accumbens shell dendrites. Similarly, the proportion of plasma membrane-bound mGluR1a was decreased in large dendrites of accumbens core neurons following chronic cocaine exposure (i.e. 1 week treatment followed by three weeks withdrawal). However, neither acute nor chronic cocaine treatments induced significant change in the localization of mGluR5 in accumbens core and shell, which is in contrast with the significant reduction of plasma membrane-bound mGluR1a and mGluR5 induced by local intra-accumbens administration of the group I mGluR agonist, DHPG. In conclusion, these findings demonstrate that cocaine-induced glutamate imbalance (Smith et al., 1995; Pierce et al., 1996; Reid et al., 1997) has modest effects on the trafficking of group I mGluRs in the nucleus accumbens. These results provide valuable information on the neuroadaptive mechanisms of accumbens group I mGluRs in response to cocaine administration. PMID:18479833

  17. Face detection for interactive tabletop viewscreen system using olfactory display

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kunio; Kanazawa, Fumihiro

    2009-10-01

    An olfactory display is a device that delivers smells to the nose. It provides us with special effects, for example to emit smell as if you were there or to give a trigger for reminding us of memories. The authors have developed a tabletop display system connected with the olfactory display. For delivering a flavor to user's nose, the system needs to recognition and measure positions of user's face and nose. In this paper, the authors describe an olfactory display which enables to detect the nose position for an effective delivery.

  18. Directed Communication between Nucleus Accumbens and Neocortex in Humans Is Differentially Supported by Synchronization in the Theta and Alpha Band

    PubMed Central

    Horschig, Jörn M.; Smolders, Ruud; Bonnefond, Mathilde; Schoffelen, Jan-Mathijs; van den Munckhof, Pepijn; Schuurman, P. Richard; Cools, Roshan; Denys, Damiaan; Jensen, Ole

    2015-01-01

    Here, we report evidence for oscillatory bi-directional interactions between the nucleus accumbens and the neocortex in humans. Six patients performed a demanding covert visual attention task while we simultaneously recorded brain activity from deep-brain electrodes implanted in the nucleus accumbens and the surface electroencephalogram (EEG). Both theta and alpha oscillations were strongly coherent with the frontal and parietal EEG during the task. Theta-band coherence increased during processing of the visual stimuli. Granger causality analysis revealed that the nucleus accumbens was communicating with the neocortex primarily in the theta-band, while the cortex was communicating the nucleus accumbens in the alpha-band. These data are consistent with a model, in which theta- and alpha-band oscillations serve dissociable roles: Prior to stimulus processing, the cortex might suppress ongoing processing in the nucleus accumbens by modulating alpha-band activity. Subsequently, upon stimulus presentation, theta oscillations might facilitate the active exchange of stimulus information from the nucleus accumbens to the cortex. PMID:26394404

  19. Behavioral flexibility is increased by optogenetic inhibition of neurons in the nucleus accumbens shell during specific time segments

    PubMed Central

    Aquili, Luca; Liu, Andrew W.; Shindou, Mayumi; Shindou, Tomomi; Wickens, Jeffery R.

    2014-01-01

    Behavioral flexibility is vital for survival in an environment of changing contingencies. The nucleus accumbens may play an important role in behavioral flexibility, representing learned stimulus–reward associations in neural activity during response selection and learning from results. To investigate the role of nucleus accumbens neural activity in behavioral flexibility, we used light-activated halorhodopsin to inhibit nucleus accumbens shell neurons during specific time segments of a bar-pressing task requiring a win–stay/lose–shift strategy. We found that optogenetic inhibition during action selection in the time segment preceding a lever press had no effect on performance. However, inhibition occurring in the time segment during feedback of results—whether rewards or nonrewards—reduced the errors that occurred after a change in contingency. Our results demonstrate critical time segments during which nucleus accumbens shell neurons integrate feedback into subsequent responses. Inhibiting nucleus accumbens shell neurons in these time segments, during reinforced performance or after a change in contingencies, increases lose–shift behavior. We propose that the activity of nucleus shell accumbens shell neurons in these time segments plays a key role in integrating knowledge of results into subsequent behavior, as well as in modulating lose–shift behavior when contingencies change. PMID:24639489

  20. Intramodal Olfactory Priming of Positive and Negative Odors in Humans Using Respiration-Triggered Olfactory Stimulation (RETROS).

    PubMed

    Hoffmann-Hensel, Sonja Maria; Freiherr, Jessica

    2016-09-01

    Priming describes the principle of modified stimulus perception that occurs due to a previously presented stimulus. Although we have begun to understand the mechanisms of crossmodal priming, the concept of intramodal olfactory priming remains relatively unexplored. Therefore, we applied positive and negative odors using respiration-triggered olfactory stimulation (RETROS), enabling us to record the skin conductance response (SCR) and breathing data without a crossmodal cueing error and measure reaction times (RTs) for olfactory tasks. RT, SCR, and breathing data revealed that negative odors were perceived significantly more arousing than positive ones. In a second experiment, 2 odors were applied during consecutive respirations. Here, we observed intramodal olfactory priming effects: A negative odor preceded by a positive odor was rated as more pleasant than when the same odor was preceded by a negative odor. Additionally, a longer identification RT was found for the second compared with the first odor. We interpret this as increased "perceptual load" due to incomplete first odor processing while the second odor was presented. Furthermore, intramodal priming can be considered a possible reason for the increase of identification RT. The use of RETROS led to these novel insights into olfactory processing beyond crossmodal interaction by providing a noncued unimodal olfactory test, and therefore, RETROS can be used in the experimental design of future olfactory studies. PMID:27170666

  1. Value of MRI olfactory bulb evaluation in the assessment of olfactory dysfunction in Bardet-Biedl syndrome.

    PubMed

    Braun, J J; Noblet, V; Kremer, S; Molière, S; Dollfus, H; Marion, V; Goetz, N; Muller, J; Riehm, S

    2016-07-01

    Olfactory bulb (OB) volume evaluation by magnetic resonance imaging (MRI) has been demonstrated to be related to olfactory dysfunction in many different diseases. Olfactory dysfunction is often overlooked in Bardet-Biedl syndrome (BBS) patients and is rarely objectively evaluated by MRI. We present a series of 20 BBS patients with olfactory dysfunction. The OB was evaluated separately and blindly by two radiologists (SR and SM) with 3 Tesla MRI imaging comparatively to 12 normal control subjects by global visual evaluation and by quantitative measurement of OB volume. In the 12 control cases OB visual evaluation was considered as normal in all cases for radiologist (SR) and in 10 cases for radiologist (SM). In the 20 BBS patients, OB visual evaluation was considered as abnormal in 18 cases for SR and in all cases for SM. OB volumetric evaluation for SR and SM in BBS patients was able to provide significant correlation between BBS and olfactory dysfunction. This study indicates that OB volume evaluation by MRI imaging like structural MRI scan for gray matter modifications demonstrates that olfactory dysfunction in BBS patients is a constant and cardinal symptom integrated in a genetical syndrome with peripheral and central olfactory structure alterations. PMID:26586152

  2. Expression of polysialyltransferases (STX and PST) in adult rat olfactory bulb after an olfactory associative discrimination task.

    PubMed

    Mione, J; Manrique, C; Duhoo, Y; Roman, F S; Guiraudie-Capraz, G

    2016-04-01

    Neuronal plasticity and neurogenesis occur in the adult hippocampus and in other brain structures such as the olfactory bulb and often involve the neural cell adhesion molecule NCAM. During an olfactory associative discrimination learning task, NCAM polysialylation triggers neuronal plasticity in the adult hippocampus. The PST enzyme likely modulates this polysialylation, but not STX, a second sialyltransferase. How the two polysialyltransferases are involved in the adult olfactory bulb remains unknown. We addressed this question by investigating the effect of olfactory associative learning on plasticity and neurogenesis. After a hippocampo-dependent olfactory associative task learning, we measured the expression of both PST and STX polysialyltransferases in the olfactory bulbs of adult rats using quantitative PCR. In parallel, immunohistochemistry was used to evaluate both NCAM polysialylation level and newly-born cells, with or without learning. After learning, no changes were observed neither in the expression level of PST and NCAM polysialylation, nor in STX gene expression level and newly-born cells number in the olfactory bulb. PMID:26844880

  3. The Odorant Receptor-Dependent Role of Olfactory Marker Protein in Olfactory Receptor Neurons.

    PubMed

    Dibattista, Michele; Reisert, Johannes

    2016-03-01

    Olfactory receptor neurons (ORNs) in the nasal cavity detect and transduce odorants into action potentials to be conveyed to the olfactory bulb. Odorants are delivered to ORNs via the inhaled air at breathing frequencies that can vary from 2 to 10 Hz in the mouse. Thus olfactory transduction should occur at sufficient speed such that it can accommodate repetitive and frequent stimulation. Activation of odorant receptors (ORs) leads to adenylyl cyclase III activation, cAMP increase, and opening of cyclic nucleotide-gated channels. This makes the kinetic regulation of cAMP one of the important determinants for the response time course. We addressed the dynamic regulation of cAMP during the odorant response and examined how basal levels of cAMP are controlled. The latter is particularly relevant as basal cAMP depends on the basal activity of the expressed OR and thus varies across ORNs. We found that olfactory marker protein (OMP), a protein expressed in mature ORNs, controls both basal and odorant-induced cAMP levels in an OR-dependent manner. Lack of OMP increases basal cAMP, thus abolishing differences in basal cAMP levels between ORNs expressing different ORs. Moreover, OMP speeds up signal transduction for ORNs to better synchronize their output with high-frequency stimulation and to perceive brief stimuli. Last, OMP also steepens the dose-response relation to improve concentration coding although at the cost of losing responses to weak stimuli. We conclude that OMP plays a key regulatory role in ORN physiology by controlling multiple facets of the odorant response. PMID:26961953

  4. Olfactory Sensory Activity Modulates Microglial-Neuronal Interactions during Dopaminergic Cell Loss in the Olfactory Bulb.

    PubMed

    Grier, Bryce D; Belluscio, Leonardo; Cheetham, Claire E J

    2016-01-01

    The mammalian olfactory bulb (OB) displays robust activity-dependent plasticity throughout life. Dopaminergic (DA) neurons in the glomerular layer (GL) of the OB are particularly plastic, with loss of sensory input rapidly reducing tyrosine hydroxylase (TH) expression and dopamine production, followed by a substantial reduction in DA neuron number. Here, we asked whether microglia participate in activity-dependent elimination of DA neurons in the mouse OB. Interestingly, we found a significant reduction in the number of both DA neurons and their synapses in the OB ipsilateral to the occluded naris (occluded OB) within just 7 days of sensory deprivation. Concomitantly, the volume of the occluded OB decreased, resulting in an increase in microglial density. Microglia in the occluded OB also adopted morphologies consistent with activation. Using in vivo 2-photon imaging and histological analysis we then showed that loss of olfactory input markedly altered microglial-neuronal interactions during the time that DA neurons are being eliminated: both microglial process motility and the frequency of wrapping of DA neuron somata by activated microglia increased significantly in the occluded OB. Furthermore, we found microglia in the occluded OB that had completely engulfed components of DA neurons. Together, our data provide evidence that loss of olfactory input modulates microglial-DA neuron interactions in the OB, thereby suggesting an important role for microglia in the activity-dependent elimination of DA neurons and their synapses. PMID:27471450

  5. Olfactory Sensory Activity Modulates Microglial-Neuronal Interactions during Dopaminergic Cell Loss in the Olfactory Bulb

    PubMed Central

    Grier, Bryce D.; Belluscio, Leonardo; Cheetham, Claire E. J.

    2016-01-01

    The mammalian olfactory bulb (OB) displays robust activity-dependent plasticity throughout life. Dopaminergic (DA) neurons in the glomerular layer (GL) of the OB are particularly plastic, with loss of sensory input rapidly reducing tyrosine hydroxylase (TH) expression and dopamine production, followed by a substantial reduction in DA neuron number. Here, we asked whether microglia participate in activity-dependent elimination of DA neurons in the mouse OB. Interestingly, we found a significant reduction in the number of both DA neurons and their synapses in the OB ipsilateral to the occluded naris (occluded OB) within just 7 days of sensory deprivation. Concomitantly, the volume of the occluded OB decreased, resulting in an increase in microglial density. Microglia in the occluded OB also adopted morphologies consistent with activation. Using in vivo 2-photon imaging and histological analysis we then showed that loss of olfactory input markedly altered microglial-neuronal interactions during the time that DA neurons are being eliminated: both microglial process motility and the frequency of wrapping of DA neuron somata by activated microglia increased significantly in the occluded OB. Furthermore, we found microglia in the occluded OB that had completely engulfed components of DA neurons. Together, our data provide evidence that loss of olfactory input modulates microglial-DA neuron interactions in the OB, thereby suggesting an important role for microglia in the activity-dependent elimination of DA neurons and their synapses. PMID:27471450

  6. Olfactory marker protein gene: its structure and olfactory neuron-specific expression in transgenic mice.

    PubMed Central

    Danciger, E; Mettling, C; Vidal, M; Morris, R; Margolis, F

    1989-01-01

    Olfactory marker protein (OMP) genomic clones were isolated from a Charon 4A phage lambda rat genomic library. A 16.5-kilobase (kb) fragment of the rat genome containing the gene was isolated and characterized. Sequence analysis of the gene showed the absence of introns and the lack of CAAT and TATA boxes in the 5' flanking region. The transcription initiation site was mapped, and two sites 55 and 58 base pairs upstream of the ATG were observed. The 5' flanking region is rich in G+C residues and contains a G+C-rich motif as well as direct and inverted repeats. Functional OMP regulatory sequences were demonstrated in transgenic mice. An 11-kb chimeric gene was constructed in which the coding region for OMP was replaced with that for Thy-1.1. In Thy-1.2 mice carrying this transgene, Thy-1.1 was expressed solely by olfactory receptor neurons and their axons and terminals in the olfactory bulb. Images PMID:2701951

  7. Interactions with the young down-regulate adult olfactory neurogenesis and enhance the maturation of olfactory neuroblasts in sheep mothers

    PubMed Central

    Brus, Maïna; Meurisse, Maryse; Keller, Matthieu; Lévy, Frédéric

    2014-01-01

    New neurons are continuously added in the dentate gyrus (DG) and the olfactory bulb of mammalian brain. While numerous environmental factors controlling survival of newborn neurons have been extensively studied, regulation by social interactions is less documented. We addressed this question by investigating the influence of parturition and interactions with the young on neurogenesis in sheep mothers. Using Bromodeoxyuridine, a marker of cell division, in combination with markers of neuronal maturation, the percentage of neuroblasts and new mature neurons in the olfactory bulb and the DG was compared between groups of parturient ewes which could interact or not with their lamb, and virgins. In addition, a morphological analysis was performed by measuring the dendritic arbor of neuroblasts in both structures. We showed that the postpartum period was associated with a decrease in olfactory and hippocampal adult neurogenesis. In the olfactory bulb, the suppressive effect on neuroblasts was dependent on interactions with the young whereas in the DG the decrease in new mature neurons was associated with parturition. In addition, dendritic length and number of nodes of neuroblasts were significantly enhanced by interactions with the lamb in the olfactory bulb but not in the DG. Because interactions with the young involved learning of the olfactory signature of the lamb, we hypothesize that this learning is associated with a down-regulation in olfactory neurogenesis and an enhancement of olfactory neuroblast maturation. Our assumption is that fewer new neurons decrease cell competition in the olfactory bulb and enhance maturation of those new neurons selected to participate in the learning of the young odor. PMID:24600367

  8. Cell-Type Specific Increases in Female Hamster Nucleus Accumbens Spine Density following Female Sexual Experience

    PubMed Central

    Staffend, Nancy A.; Hedges, Valerie L.; Chemel, Benjamin R.; Watts, Val J.; Meisel, Robert L.

    2013-01-01

    Female sexual behavior is an established model of a naturally motivated behavior which is regulated by activity within the mesolimbic dopamine system. Repeated activation of the mesolimbic circuit by female sexual behavior elevates dopamine release and produces persistent postsynaptic alterations to dopamine D1 receptor signaling within the nucleus accumbens. Here we demonstrate that sexual experience in female Syrian hamsters significantly increases spine density and alters morphology selectively in D1 receptor expressing medium spiny neurons within the nucleus accumbens core, with no corresponding change in dopamine receptor binding or protein expression. Our findings demonstrate that previous life experience with a naturally motivated behavior has the capacity to induce persistent structural alterations to the mesolimbic circuit that can increase reproductive success and are analogous to the persistent structural changes following repeated exposure to many drugs of abuse. PMID:23934655

  9. Sensitivity of the Nucleus Accumbens to Violations in Expectation of Reward

    PubMed Central

    Spicer, Julie; Galvan, Adriana; Hare, Todd A; Voss, Henning; Glover, Gary; Casey, BJ

    2007-01-01

    This study examined whether ventral frontostriatal regions differentially code expected and unexpected reward outcomes. We parametrically manipulated the probability of reward and examined the neural response to reward and nonreward for each probability condition in the ventral striatum and the orbitofrontal cortex (OFC). By late trials of the experiment, subjects showed slower behavioral responses for the condition with the lowest probability of reward, relative to the condition with the highest probability of reward. At the neural level, both the nucleus accumbens (NAcc) and OFC showed greater activation to rewarded relative to nonrewarded trials, but the accumbens appeared to be most sensitive to violations in expected reward outcomes. These data suggest distinct roles for frontostriatal circuitry in reward prediction and in responding to violations in expectations. PMID:17049884

  10. Endocannabinoid-Mediated Plasticity in Nucleus Accumbens Controls Vulnerability to Anxiety after Social Defeat Stress.

    PubMed

    Bosch-Bouju, Clémentine; Larrieu, Thomas; Linders, Louisa; Manzoni, Olivier J; Layé, Sophie

    2016-08-01

    Chronic social defeat stress (CSDS) is a clinically relevant model of mood disorders. The relationship between the CSDS model and a physiologically pertinent paradigm of synaptic plasticity is not known. Here, we found that cluster analysis of the emotional behavior states of mice exposed to CSDS allowed their segregation into anxious and non-anxious groups. Endocannabinoid-mediated spike-timing dependent plasticity (STDP) in the nucleus accumbens was attenuated in non-anxious mice and abolished in anxious mice. Anxiety-like behavior in stressed animals was specifically correlated with their ability to produce STDP. Pharmacological enhancement of 2-arachidonoyl glycerol (2-AG) signaling in the nucleus accumbens normalized the anxious phenotype and STDP in anxious mice. These data reveal that endocannabinoid modulation of synaptic efficacy in response to a naturalistic activity pattern is both a molecular correlate of behavioral adaptability and a crucial factor in the adaptive response to chronic stress. PMID:27452462

  11. Targeted disruption of cocaine-activated accumbens neurons prevents context-specific sensitization

    PubMed Central

    Koya, Eisuke; Golden, Sam A.; Harvey, Brandon K.; Guez, Danielle H.; Berkow, Alexander; Simmons, Danielle E.; Bossert, Jennifer M.; Nair, Sunila G.; Uejima, Jamie L.; Marin, Marcelo T.; Mitchell, Timothy; Farquhar, David; Ghosh, Sukhen; Mattson, Brandi J.; Hope, Bruce T.

    2009-01-01

    Learned associations between effects of abused drugs and the drug administration environment play important roles in drug addiction. Histochemical and electrophysiological studies suggest that these associations are encoded in sparsely distributed nucleus accumbens neurons that are selectively activated by drugs and drug-associated cues. Although correlations between accumbens neuronal activity and responsivity to drugs and drug cues have been observed, no technique exists for selectively manipulating these activated neurons and establishing their causal role in behavioral effects of drugs and drug cues. Here we describe a novel method, termed ‘Daun02-inactivation method’, that selectively inactivates a minority of neurons activated by cocaine in an environment repeatedly paired with cocaine to demonstrate a causal role for these activated neurons in context-specific cocaine-induced psychomotor sensitization in rats. This method provides a new tool to study causal roles of selectively activated neurons in behavioral effects of drugs and drug cues and in other learned behaviors. PMID:19620976

  12. Anisometry of Medial Patellofemoral Ligament Reconstruction in the Setting of Patella Alta and Increased Tibial Tubercle-Trochlear Groove (TT-TG) Distance

    PubMed Central

    Redler, Lauren H.; Meyers, Kathleen N.; Munch, Jacqueline; Dennis, Elizabeth R.; Nguyen, Joseph; Stein, Beth E. Shubin

    2016-01-01

    Objectives: Medial patellofemoral ligament (MPFL) reconstruction is a common procedure to treat recurrent patellofemoral instability. However, the effects of an elevated tibial tubercle-trochlear groove (TT-TG) distance and patella alta, as measured by the Caton-Deschamps (C/D) ratio, on MPFL isometry remain unclear. We hypothesized that increased lateralization and proximalization of the tibial tubercle (TT) will have increasingly adverse effects on the isometry of the MPFL. Methods: Ten fresh-frozen cadaveric knees were placed on a custom testing fixture, with a fixed femur and tibia mobile through 120 degrees of flexion. The quadriceps tendon was loaded with 10.8 N in an anatomic direction using a weighted pulley system. A 0.2 N patellar lateral displacement load was used to simulate an intact lateral retinaculum to avoid over-medializing the patella. A tunnel was drilled under fluoroscopic guidance from Schottle’s point on the medial distal femur through the lateral cortex. A suture anchor was placed at the upper 66% of the medial border of the patella and the sutures were shuttled through to the lateral side and attached to a pulley with a 1 N weight. Retroreflective markers were attached to the femur, tibia, patella, and suture. MPFL length change, as measured by suture marker motion, was assessed using a 3D motion capture system through a range of motion between 0 deg and 110 deg with the native TT anatomy. Recordings were repeated after a flat TT osteotomy and transfer to a TT-TG of 20 mm and 25 mm and a C/D ratio of 1.2 and 1.4, including all combinations. Generalized estimating equation (GEE) modeling technique was used to analyze and control for the clustered nature of the data. SAS version 9.3 (SAS Inc., Cary, NC) was used for all data analyses. Results: Analysis was performed on 9 specimens secondary to significant deviations in the baseline normative data. Intact knees showed MPFL isometry through 20-70 degrees range of motion. Tibial tubercle

  13. Subcortical nuclei volumes in suicidal behavior: nucleus accumbens may modulate the lethality of acts.

    PubMed

    Gifuni, Anthony J; Ding, Yang; Olié, Emilie; Lawrence, Natalia; Cyprien, Fabienne; Le Bars, Emmanuelle; Bonafé, Alain; Phillips, Mary L; Courtet, Philippe; Jollant, Fabrice

    2016-03-01

    Previously, studies have demonstrated cortical impairments in those who complete or attempt suicide. Subcortical nuclei have less often been implicated in the suicidal vulnerability. In the present study, we investigated, with a specific design in a large population, variations in the volume of subcortical structures in patients with mood disorders who have attempted suicide. We recruited 253 participants: 73 suicide attempters with a past history of both mood disorders and suicidal act, 89 patient controls with a past history of mood disorders but no history of suicidal act, and 91 healthy controls. We collected 1.5 T magnetic resonance imaging data from the caudate, pallidum, putamen, nucleus accumbens, hippocampus, amygdala, ventral diencephalon, and thalamus. Surface-based morphometry (Freesurfer) analysis was used to comprehensively evaluate gray matter volumes. In comparison to controls, suicide attempters showed no difference in subcortical volumes when controlled for intracranial volume. However, within attempters negative correlations between the left (r = -0.35, p = 0.002), and right (r = -0.41, p < 0.0005) nucleus accumbens volumes and the lethality of the last suicidal act were found. Our study found no differences in the volume of eight subcortical nuclei between suicide attempters and controls, suggesting a lack of association between these regions and suicidal behavior in general. However, individual variations in nucleus accumbens structure and functioning may modulate the lethality of suicidal acts during a suicidal crisis. The known role of nucleus accumbens in action selection toward goals determined by the prefrontal cortex, decision-making or mental pain processing are hypothesized to be potential explanations. PMID:25759286

  14. α2δ-1 Signaling in Nucleus Accumbens Is Necessary for Cocaine-Induced Relapse

    PubMed Central

    Brown, Robyn M.; Quintero, Gabriel C.; Kupchik, Yonatan M.; Thomas, Charles A.; Reissner, Kathryn J.; Kalivas, Peter W.

    2014-01-01

    Relapse to cocaine seeking is associated with potentiated excitatory synapses in nucleus accumbens. α2δ-1 is an auxiliary subunit of voltage-gated calcium channels that affects calcium-channel trafficking and kinetics, initiates extracellular signaling cascades, and promotes excitatory synaptogenesis. Previous data demonstrate that repeated exposure to alcohol, nicotine, methamphetamine, and morphine upregulates α2δ-1 in reward-related brain regions, but it was unclear whether this alteration generalized to cocaine. Here, we show that α2δ-1 protein was increased in nucleus accumbens after cocaine self-administration and extinction compared with saline controls. Furthermore, the endogenous ligand thrombospondin-1, responsible for the synaptogenic properties of the α2δ-1 receptor, was likewise elevated. Using whole-cell patch-clamp recordings of EPSCs in nucleus accumbens, we demonstrated that gabapentin, a specific α2δ-1 antagonist, preferentially reduced the amplitude and increased the paired-pulse ratio of EPSCs evoked by electrical stimulation in slices from cocaine-experienced rats compared with controls. In vivo, gabapentin microinjected in the nucleus accumbens core attenuated cocaine-primed but not cue-induced reinstatement. Importantly, gabapentin's effects on drug seeking were not due to a general depression of spontaneous or cocaine-induced locomotor activity. Moreover, gabapentin had no effect on reinstatement of sucrose seeking. These data indicate that α2δ-1 contributes specifically to cocaine-reinstated drug seeking, and identifies this protein as a target for the development of cocaine relapse medications. These results also inform ongoing discussion in the literature regarding efficacy of gabapentin as a candidate addiction therapy. PMID:24948814

  15. α2δ-1 signaling in nucleus accumbens is necessary for cocaine-induced relapse.

    PubMed

    Spencer, Sade; Brown, Robyn M; Quintero, Gabriel C; Kupchik, Yonatan M; Thomas, Charles A; Reissner, Kathryn J; Kalivas, Peter W

    2014-06-18

    Relapse to cocaine seeking is associated with potentiated excitatory synapses in nucleus accumbens. α2δ-1 is an auxiliary subunit of voltage-gated calcium channels that affects calcium-channel trafficking and kinetics, initiates extracellular signaling cascades, and promotes excitatory synaptogenesis. Previous data demonstrate that repeated exposure to alcohol, nicotine, methamphetamine, and morphine upregulates α2δ-1 in reward-related brain regions, but it was unclear whether this alteration generalized to cocaine. Here, we show that α2δ-1 protein was increased in nucleus accumbens after cocaine self-administration and extinction compared with saline controls. Furthermore, the endogenous ligand thrombospondin-1, responsible for the synaptogenic properties of the α2δ-1 receptor, was likewise elevated. Using whole-cell patch-clamp recordings of EPSCs in nucleus accumbens, we demonstrated that gabapentin, a specific α2δ-1 antagonist, preferentially reduced the amplitude and increased the paired-pulse ratio of EPSCs evoked by electrical stimulation in slices from cocaine-experienced rats compared with controls. In vivo, gabapentin microinjected in the nucleus accumbens core attenuated cocaine-primed but not cue-induced reinstatement. Importantly, gabapentin's effects on drug seeking were not due to a general depression of spontaneous or cocaine-induced locomotor activity. Moreover, gabapentin had no effect on reinstatement of sucrose seeking. These data indicate that α2δ-1 contributes specifically to cocaine-reinstated drug seeking, and identifies this protein as a target for the development of cocaine relapse medications. These results also inform ongoing discussion in the literature regarding efficacy of gabapentin as a candidate addiction therapy. PMID:24948814

  16. The indirect pathway of the nucleus accumbens shell amplifies neuropathic pain

    PubMed Central

    Ren, Wenjie; Centeno, Maria Virginia; Berger, Sara; Wu, Ying; Na, Xiaodong; Liu, Xianguo; Kondapalli, Jyothisri; Apkarian, A Vania; Martina, Marco; Surmeier, D James

    2016-01-01

    We examined adaptations in nucleus accumbens (NAc) neurons in mouse and rat peripheral nerve injury models of neuropathic pain. Injury selectively increased excitability of NAc shell indirect pathway spiny projection neurons (iSPNs) and altered their synaptic connectivity. Moreover, injury-induced tactile allodynia was reversed by inhibiting and exacerbated by exciting iSPNs, indicating that they not only participated in the central representation of pain, but gated activity in ascending nociceptive pathways. PMID:26691834

  17. Fault tolerant architecture for artificial olfactory system

    NASA Astrophysics Data System (ADS)

    Lotfivand, Nasser; Nizar Hamidon, Mohd; Abdolzadeh, Vida

    2015-05-01

    In this paper, to cover and mask the faults that occur in the sensing unit of an artificial olfactory system, a novel architecture is offered. The proposed architecture is able to tolerate failures in the sensors of the array and the faults that occur are masked. The proposed architecture for extracting the correct results from the output of the sensors can provide the quality of service for generated data from the sensor array. The results of various evaluations and analysis proved that the proposed architecture has acceptable performance in comparison with the classic form of the sensor array in gas identification. According to the results, achieving a high odor discrimination based on the suggested architecture is possible.

  18. Biophysical mechanisms underlying olfactory receptor neuron dynamics

    PubMed Central

    Nagel, Katherine I.; Wilson, Rachel I.

    2010-01-01

    Odor responses of olfactory receptor neurons (ORNs) exhibit complex dynamics. Using genetics and pharmacology, we show that these dynamics in Drosophila ORNs can be separated into sequential steps, corresponding to transduction and spike generation. Each of these steps contributes distinct dynamics. Transduction dynamics can be largely explained by a simple kinetic model of ligand-receptor interactions, together with an adaptive feedback mechanism that slows transduction onset. Spiking dynamics are well-described by a differentiating linear filter that is stereotyped across odors and cells. Genetic knock-down of sodium channels reshapes this filter, implying that it arises from the regulated balance of intrinsic conductances in ORNs. Complex responses can be understood as a consequence of how the stereotyped spike filter interacts with odor- and receptor-specific transduction dynamics. However, in the presence of rapidly fluctuating natural stimuli, spiking simply increases the speed and sensitivity of encoding. PMID:21217763

  19. Olfactory groove meningiomas: approaches and complications.

    PubMed

    Aguiar, Paulo Henrique Pires de; Tahara, Adriana; Almeida, Antonio Nogueira; Simm, Renata; Silva, Arnaldo Neves da; Maldaun, Marcos Vinicius Calfatt; Panagopoulos, Alexandros Theodoros; Zicarelli, Carlos Alexandre; Silva, Pedro Gabriel

    2009-09-01

    Olfactory groove meningiomas (OGM) account for 4.5% of all intracranial meningiomas. We report 21 patients with OGMs. Tumors were operated on using three surgical approaches: bifrontal (7 patients), fronto-pterional (11 patients) and fronto-orbital (3 patients). Total tumor removal (Simpson Grade 1) was achieved in 13 patients and Simpson II in 8 patients. Perioperative mortality was 4.76%. The average size of the OGM was 4.3+/-1.1cm. The overall recurrence rate was 19%. We preferred to use the pterional approach, which provides quick access to the tumor with less brain exposure. It also allows complete drainage of cisternal cerebrospinal fluid, providing a good level of brain relaxation during surgery. However, for long, thin tumors, hemostasis can be difficult using this approach. PMID:19577476

  20. Coding and transformations in the olfactory system.

    PubMed

    Uchida, Naoshige; Poo, Cindy; Haddad, Rafi

    2014-01-01

    How is sensory information represented in the brain? A long-standing debate in neural coding is whether and how timing of spikes conveys information to downstream neurons. Although we know that neurons in the olfactory bulb (OB) exhibit rich temporal dynamics, the functional relevance of temporal coding remains hotly debated. Recent recording experiments in awake behaving animals have elucidated highly organized temporal structures of activity in the OB. In addition, the analysis of neural circuits in the piriform cortex (PC) demonstrated the importance of not only OB afferent inputs but also intrinsic PC neural circuits in shaping odor responses. Furthermore, new experiments involving stimulation of the OB with specific temporal patterns allowed for testing the relevance of temporal codes. Together, these studies suggest that the relative timing of neuronal activity in the OB conveys odor information and that neural circuits in the PC possess various mechanisms to decode temporal patterns of OB input. PMID:24905594

  1. Calcium Signaling in Mitral Cell Dendrites of Olfactory Bulbs of Neonatal Rats and Mice during Olfactory Nerve Stimulation and Beta-Adrenoceptor Activation

    ERIC Educational Resources Information Center

    Yuan, Qi; Mutoh, Hiroki; Debarbieux, Franck; Knopfel, Thomas

    2004-01-01

    Synapses formed by the olfactory nerve (ON) provide the source of excitatory synaptic input onto mitral cells (MC) in the olfactory bulb. These synapses, which relay odor-specific inputs, are confined to the distally tufted single primary dendrites of MCs, the first stage of central olfactory processing. Beta-adrenergic modulation of electrical…

  2. Proton-Beam Therapy for Olfactory Neuroblastoma

    SciTech Connect

    Nishimura, Hideki . E-mail: westvill@med.kobe-u.ac.jp; Ogino, Takashi; Kawashima, Mitsuhiko; Nihei, Keiji; Arahira, Satoko; Onozawa, Masakatsu; Katsuta, Shoichi; Nishio, Teiji

    2007-07-01

    Purpose: To analyze the feasibility and efficacy of proton-beam therapy (PBT) for olfactory neuroblastoma (ONB) as a definitive treatment, by reviewing our preliminary experience. Olfactory neuroblastoma is a rare disease, and a standard treatment strategy has not been established. Radiation therapy for ONB is challenging because of the proximity of ONBs to critical organs. Proton-beam therapy can provide better dose distribution compared with X-ray irradiation because of its physical characteristics, and is deemed to be a feasible treatment modality. Methods and Materials: A retrospective review was performed on 14 patients who underwent PBT for ONB as definitive treatment at the National Cancer Center Hospital East (Kashiwa, Chiba, Japan) from November 1999 to February 2005. A total dose of PBT was 65 cobalt Gray equivalents (Gy{sub E}), with 2.5-Gy{sub E} once-daily fractionations. Results: The median follow-up period for surviving patients was 40 months. One patient died from disseminated disease. There were two persistent diseases, one of which was successfully salvaged with surgery. The 5-year overall survival rate was 93%, the 5-year local progression-free survival rate was 84%, and the 5-year relapse-free survival rate was 71%. Liquorrhea was observed in one patient with Kadish's stage C disease (widely destroying the skull base). Most patients experienced Grade 1 to 2 dermatitis in the acute phase. No other adverse events of Grade 3 or greater were observed according to the RTOG/EORTC acute and late morbidity scoring system. Conclusions: Our preliminary results of PBT for ONB achieved excellent local control and survival outcomes without serious adverse effects. Proton-beam therapy is considered a safe and effective modality that warrants further study.

  3. Inhibition by Somatostatin Interneurons in Olfactory Cortex

    PubMed Central

    Large, Adam M.; Kunz, Nicholas A.; Mielo, Samantha L.; Oswald, Anne-Marie M.

    2016-01-01

    Inhibitory circuitry plays an integral role in cortical network activity. The development of transgenic mouse lines targeting unique interneuron classes has significantly advanced our understanding of the functional roles of specific inhibitory circuits in neocortical sensory processing. In contrast, considerably less is known about the circuitry and function of interneuron classes in piriform cortex, a paleocortex responsible for olfactory processing. In this study, we sought to utilize transgenic technology to investigate inhibition mediated by somatostatin (SST) interneurons onto pyramidal cells (PCs), parvalbumin (PV) interneurons, and other interneuron classes. As a first step, we characterized the anatomical distributions and intrinsic properties of SST and PV interneurons in four transgenic lines (SST-cre, GIN, PV-cre, and G42) that are commonly interbred to investigate inhibitory connectivity. Surprisingly, the distributions SST and PV cell subtypes targeted in the GIN and G42 lines were sparse in piriform cortex compared to neocortex. Moreover, two-thirds of interneurons recorded in the SST-cre line had electrophysiological properties similar to fast spiking (FS) interneurons rather than regular (RS) or low threshold spiking (LTS) phenotypes. Nonetheless, like neocortex, we find that SST-cells broadly inhibit a number of unidentified interneuron classes including putatively identified PV cells and surprisingly, other SST cells. We also confirm that SST-cells inhibit pyramidal cell dendrites and thus, influence dendritic integration of afferent and recurrent inputs to the piriform cortex. Altogether, our findings suggest that SST interneurons play an important role in regulating both excitation and the global inhibitory network during olfactory processing. PMID:27582691

  4. Inhibition by Somatostatin Interneurons in Olfactory Cortex.

    PubMed

    Large, Adam M; Kunz, Nicholas A; Mielo, Samantha L; Oswald, Anne-Marie M

    2016-01-01

    Inhibitory circuitry plays an integral role in cortical network activity. The development of transgenic mouse lines targeting unique interneuron classes has significantly advanced our understanding of the functional roles of specific inhibitory circuits in neocortical sensory processing. In contrast, considerably less is known about the circuitry and function of interneuron classes in piriform cortex, a paleocortex responsible for olfactory processing. In this study, we sought to utilize transgenic technology to investigate inhibition mediated by somatostatin (SST) interneurons onto pyramidal cells (PCs), parvalbumin (PV) interneurons, and other interneuron classes. As a first step, we characterized the anatomical distributions and intrinsic properties of SST and PV interneurons in four transgenic lines (SST-cre, GIN, PV-cre, and G42) that are commonly interbred to investigate inhibitory connectivity. Surprisingly, the distributions SST and PV cell subtypes targeted in the GIN and G42 lines were sparse in piriform cortex compared to neocortex. Moreover, two-thirds of interneurons recorded in the SST-cre line had electrophysiological properties similar to fast spiking (FS) interneurons rather than regular (RS) or low threshold spiking (LTS) phenotypes. Nonetheless, like neocortex, we find that SST-cells broadly inhibit a number of unidentified interneuron classes including putatively identified PV cells and surprisingly, other SST cells. We also confirm that SST-cells inhibit pyramidal cell dendrites and thus, influence dendritic integration of afferent and recurrent inputs to the piriform cortex. Altogether, our findings suggest that SST interneurons play an important role in regulating both excitation and the global inhibitory network during olfactory processing. PMID:27582691

  5. From the Cover: Odor maps in the olfactory cortex

    NASA Astrophysics Data System (ADS)

    Zou, Zhihua; Li, Fusheng; Buck, Linda B.

    2005-05-01

    In the olfactory system, environmental chemicals are deconstructed into neural signals and then reconstructed to form odor perceptions. Much has been learned about odor coding in the olfactory epithelium and bulb, but little is known about how odors are subsequently encoded in the cortex to yield diverse perceptions. Here, we report that the representation of odors by fixed glomeruli in the olfactory bulb is transformed in the cortex into highly distributed and multiplexed odor maps. In the mouse olfactory cortex, individual odorants are represented by subsets of sparsely distributed neurons. Different odorants elicit distinct, but partially overlapping, patterns that are strikingly similar among individuals. With increases in odorant concentration, the representations expand spatially and include additional cortical neurons. Structurally related odorants have highly related representations, suggesting an underlying logic to the mapping of odor identities in the cortex. odorant receptor | smell

  6. The muted sense: neurocognitive limitations of olfactory language

    PubMed Central

    Olofsson, Jonas K.; Gottfried, Jay A.

    2015-01-01

    Most people find it profoundly difficult to name familiar smells. This difficulty persists even though perceptual odor processing and visual object naming are unimpaired, implying deficient sensory-specific interactions with the language system. In this article, we synthesize recent behavioral and neuroimaging data to develop a biologically informed framework for olfactory lexical processing in the human brain. Our central premise is that the difficulty in naming common objects through olfactory (compared to visual) stimulation is the end result of cumulative effects occurring at three successive stages of the olfactory language pathway: object perception, lexical-semantic integration, and verbalization. Understanding the neurocognitive mechanisms by which the language network interacts with olfaction can yield unique insights into the elusive nature of olfactory naming. PMID:25979848

  7. Unravelling the Olfactory Sense: From the Gene to Odor Perception.

    PubMed

    Silva Teixeira, Carla S; Cerqueira, Nuno M F S A; Silva Ferreira, António C

    2016-02-01

    Although neglected by science for a long time, the olfactory sense is now the focus of a panoply of studies that bring new insights and raises interesting questions regarding its functioning. The importance in the clarification of this process is of interest for science, but also motivated by the food and perfume industries boosted by a consumer society with increasingly demands for higher quality standards. In this review, a general overview of the state of art of science regarding the olfactory sense is presented with the main focus on the peripheral olfactory system. Special emphasis will be given to the deorphanization of the olfactory receptors (ORs), a critical issue because the specificity and functional properties of about 90% of human ORs remain unknown mainly due to the difficulties associated with the functional expression of ORs in high yields. PMID:26688501

  8. Properties of odour-binding glycoproteins from rat olfactory epithelium.

    PubMed

    Fesenko, E E; Novoselov, V I; Bystrova, M F

    1988-01-22

    The specific membrane glycoproteins with high affinity for camphor and decanal were isolated from rat olfactory epithelium. Antibodies to these glycoproteins inhibited both the electroolfactogram and the binding of odorants. The enzyme immunoassay has shown these glycoproteins to be present in the olfactory epithelium of rat, mouse, guinea-pig and hamster but not in that of frog and carp. The molecular mass of the odour-binding glycoproteins from rat olfactory epithelium solubilized by Triton X-100 was approx. 140 kDa. They consisted of two subunits (88 and 55 kDa). The 88 kDa subunit was capable of binding odorants. The data obtained suggest that the glycoproteins isolated have some properties that make them plausible candidates for olfactory receptor molecules. PMID:3337807

  9. Responses of the rat olfactory epithelium to retronasal air flow.

    PubMed

    Scott, John W; Acevedo, Humberto P; Sherrill, Lisa; Phan, Maggie

    2007-03-01

    Responses of the rat olfactory epithelium were assessed with the electroolfactogram while odorants were presented to the external nares with an artificial sniff or to the internal nares by positive pressure. A series of seven odorants that varied from very polar, hydrophilic odorants to very nonpolar, hydrophobic odorants were used. Although the polar odorants activated the dorsal olfactory epithelium when presented by the external nares (orthonasal presentation), they were not effective when forced through the nasal cavity from the internal nares (retronasal presentation). However, the nonpolar odorants were effective in both stimulus modes. These results were independent of stimulus concentration or of humidity of the carrier air. Similar results were obtained with multiunit recordings from olfactory bulb. These results help to explain why human investigations often report differences in the sensation or ability to discriminate odorants presented orthonasally versus retronasally. The results also strongly support the importance of odorant sorption in normal olfactory processes. PMID:17215498

  10. Responses of the Rat Olfactory Epithelium to Retronasal Air Flow

    PubMed Central

    Scott, John W.; Acevedo, Humberto P.; Sherrill, Lisa; Phan, Maggie

    2008-01-01

    Responses of the rat olfactory epithelium were assessed with the electroolfactogram while odorants were presented to the external nares with an artificial sniff or to the internal nares by positive pressure. A series of seven odorants that varied from very polar, hydrophilic odorants to very non-polar, hydrophobic odorants were used. While the polar odorants activated the dorsal olfactory epithelium when presented by the external nares (orthonasal presentation), they were not effective when forced through the nasal cavity from the internal nares (retronasal presentation). However, the non-polar odorants were effective in both stimulus modes. These results were independent of stimulus concentration or of humidity of the carrier air. Similar results were obtained with multiunit recording from olfactory bulb. These results help to explain why human investigations often report differences in the sensation or ability to discriminate odorants presented orthonasally vs. retronasally. The results also strongly support the importance of odorant sorption in normal olfactory processes. PMID:17215498

  11. An enigmatic clinical entity: A new case of olfactory schwannoma.

    PubMed

    Manto, Andrea; Manzo, Gaetana; De Gennaro, Angela; Martino, Vincenzo; Buono, Vincenzo; Serino, Antonietta

    2016-06-01

    Olfactory schwannomas, also described as subfrontal or olfactory groove schwannomas, are very rare tumors, whose pathogenesis is still largely debated. We report a case of olfactory schwannoma in a 39-year-old woman who presented with anosmia and headache. The clinical examination did not show lesions in the nose-frontal region and there was no history of neurofibromatosis. Head MRI and CT scan revealed a lobulated extra-axial mass localized in the right anterior cranial fossa that elevated the ipsilateral frontal pole. Bilateral frontal craniotomy demonstrated a tumor strictly attached to the right portion of the cribriform plate that surrounded the right olfactory tract, not clearly identifiable. The immunohistochemical analysis suggested the diagnosis of typical schwannoma. The patient was discharged without any neurological deficit and a four-month postoperative MRI scan of the brain showed no residual or recurrent tumor. PMID:26944065

  12. Olfactory communication among Costa Rican squirrel monkeys: a field study.

    PubMed

    Boinski, S

    1992-01-01

    Behaviors with a possible role in olfactory communication among troop members were investigated as part of a field study on the reproductive and foraging ecology of squirrel monkeys (Saimiri oerstedi) in Costa Rica. All age classes engaged in the olfaction-related behaviors. Apart from olfactory investigation of female genitals by males during the mating season, no other potential olfaction-related behavior (urine wash, branch investigation, rump, chest, back rub and sneeze) exceeded 1% of mean behavioral samples. Assessment of reproduction condition appears to be the primary function of such olfactory investigation of the female genital region. The primary function of urine washing is suggested to be the general communication of reproductive status, possibly facilitating reproductive synchrony. Sneezing, rump, back and chest rubbing do not appear to deposit substances active in olfactory communication. PMID:1306175

  13. The muted sense: neurocognitive limitations of olfactory language.

    PubMed

    Olofsson, Jonas K; Gottfried, Jay A

    2015-06-01

    Most people find it profoundly difficult to name familiar smells. This difficulty persists even when perceptual odor processing and visual object naming are unimpaired, implying deficient sensory-specific interactions with the language system. Here we synthesize recent behavioral and neuroimaging data to develop a biologically informed framework for olfactory lexical processing in the human brain. Our central premise is that the difficulty in naming common objects through olfactory (compared with visual) stimulation is the end result of cumulative effects occurring at three successive stages of the olfactory language pathway: object perception, lexical-semantic integration, and verbalization. Understanding the neurocognitive mechanisms by which the language network interacts with olfaction can yield unique insights into the elusive nature of olfactory naming. PMID:25979848

  14. Olfactory dysfunction as first presenting symptom of cranial fibrous dysplasia

    PubMed Central

    Tsakiropoulou, Evangelia; Konstantinidis, Iordanis; Chatziavramidis, Angelos; Constantinidis, Jannis

    2013-01-01

    Fibrous dysplasia (FD) is a benign bone disorder presenting with a variety of clinical manifestations. This is the first reported case of anosmia as presenting symptom of FD. We present the case of a 72-year-old female patient with a progressive olfactory dysfunction. Clinical examination revealed evidence of chronic rhinosinusitis; therefore the patient was treated with a course of oral corticosteroids. The patient had no improvement in her olfactory ability and imaging studies were ordered. Bony lesions characteristic of craniofacial FD were found, causing obstruction of the central olfactory pathway. This case emphasises the need to conduct further investigations in patients with rhinosinusitis and olfactory dysfunction especially when they present no response to oral steroid treatment. PMID:23893286

  15. Bilateral Synchronous Ectopic Ethmoid Sinus Olfactory Neuroblastoma: A Case Report.

    PubMed

    Leon-Soriano, Elena; Alfonso, Carolina; Yebenes, Laura; Garcia-Polo, Julio; Lassaletta, Luis; Gavilan, Javier

    2016-01-01

    BACKGROUND Olfactory neuroblastoma (ONB), also known as esthesioneuroblastoma, is a rare malignant head and neck cancer thought to originate from the olfactory epithelium. It typically invades contiguous structures at presentation. We report a very rare case of multifocal and ectopic ONB. CASE REPORT A 41-year-old man presented with left nasal obstruction and occasional left epistaxis associated with headache. Endoscopic examination of the nasal cavities and computed tomography suggested bilateral polypoid masses. Histopathological diagnosis after endoscopic resection established bilateral olfactory neuroblastoma of the ethmoid sinuses. The patient received postoperative radiotherapy. He remains free of disease 4 years after treatment. CONCLUSIONS To the best of our knowledge this is the second documented case of multifocal ectopic olfactory neuroblastoma. Clinicians should consider ONB in the differential diagnosis of bilateral synchronous nasal and paranasal masses to avoid delayed diagnosis. Endoscopic resection of ONB could be an option in selected cases. PMID:27097989

  16. Re-establishment of olfactory and taste functions

    PubMed Central

    Welge-Lüssen, Antje

    2005-01-01

    The incidence of olfactory disorders is appoximately 1-2% and they can seriously impact on the quality of life. Quantitative disorders (hyposmia, anosmia) are distinguished from qualitative disorders (parosmia, phantosmia). Olfactory disorders are classified according to the etiology and therapy is planned according to the underlying pathophysiology. In ENT patients olfactory disorders caused by sinonasal diseases are the most common ones, followed by postviral disorders. Therapy consists of topical and systemic steroids, whereas systemic application seems to be of greater value. It is very difficult to predict the improvement of olfactory function using surgery, moreover, the long term - success in surgery is questionable. Isolated taste disorders are rare and in most often caused by underlying diseases or side effects of medications. A meticulous history is necessary and helps to choose effective treatment. In selected cases zinc might be useful. PMID:22073054

  17. Framework for developing a hierarchical model of reward focusing on the nucleus accumbens.

    PubMed

    Smith, Wesley; Nair, Satish S; Xu, Dong; Nair, Jyotsna; Beitman, Bernard

    2004-01-01

    Computational modeling using GENESIS platform has led to advances in fabricating a model to test the influence of molecular/proteomic adaptations on behavior due to reward. The nucleus accumbens is an area of the brain that processes information from other parts of the brain and is an integral element of the 'reward pathway' in the brain. A simplified model of the accumbens using one neuron is developed as part of a larger effort to study reward and chemical dependency with a focus on cocaine addiction. A preliminary model of a biologically realistic neuron was developed with inhibitory and excitatory afferents as well as intrasynapse dynamics. The neuron displayed characteristic behavior of a neuron found in the nucleus accumbens including bistability. The neuron has afferents from other neurons via dendrites which carry the inputs relating to behavioral aspects and to learning. To add behavioral aspects to the model, a methodology is developed to model contexts and their reinforcing effects on behavior, similar to cocaine addiction. Results using both the biological and behavioral modeling are encouraging for this preliminary model. PMID:17271623

  18. TRH injected into the nucleus accumbens shell releases dopamine and reduces feeding motivation in rats.

    PubMed

    Puga, L; Alcántara-Alonso, V; Coffeen, U; Jaimes, O; de Gortari, P

    2016-06-01

    The thyrotropin-releasing hormone (TRH), an anorexigenic factor that reduces food intake in food-restricted animals, may be involved in motivation for food. Injected centrally, TRH impairs acquisition of food-rewarded behavior. Through the TRH-R1 receptors, TRH injected in the nucleus accumbens increases dopamine content-perhaps the mechanism by which the peptide modulates food motivation. This, however, is still to be demonstrated. We sought to evaluate dopamine release by microdialysis after a TRH injection into the nucleus accumbens shell in free-moving fasted rats. In addition, we assessed dopamine content and turnover by HPLC and the relationship with the motivation for food by analyzing the performance of rats during a progressive-ratio (PR) operant-conditioning test. Finally, we determined serum leptin and triiodothyronine (T3) levels in order to evaluate the animals' metabolic response to food restriction and the impact of intra-accumbal TRH administration on circulating hormones. Intra-accumbal injections of TRH reduced food intake in food-restricted rats-compared to counterparts treated with saline-, without further decreasing T3 or leptin levels, which dropped due to their dietary regime. TRH-injected rats had lower breaking points on the PR schedule, which indicated lower motivation to eat. Accordingly, compared to saline-treated animals, dopamine release and turnover increased in the nucleus accumbens of TRH-injected rats, a finding that suggests a relationship between motivation for food and TRH-induced release of dopamine. PMID:27006143

  19. Stimulation of the nucleus accumbens as behavioral reward in awake behaving monkeys.

    PubMed

    Bichot, Narcisse P; Heard, Matthew T; Desimone, Robert

    2011-08-15

    It has been known that monkeys will repeatedly press a bar for electrical stimulation in several different brain structures. We explored the possibility of using electrical stimulation in one such structure, the nucleus accumbens, as a substitute for liquid reward in animals performing a complex task, namely visual search. The animals had full access to water in the cage at all times on days when stimulation was used to motivate them. Electrical stimulation was delivered bilaterally at mirror locations in and around the accumbens, and the animals' motivation to work for electrical stimulation was quantified by the number of trials they performed correctly per unit of time. Acute mapping revealed that stimulation over a large area successfully supported behavioral performance during the task. Performance improved with increasing currents until it reached an asymptotic, theoretically maximal level. Moreover, stimulation with chronically implanted electrodes showed that an animal's motivation to work for electrical stimulation was at least equivalent to, and often better than, when it worked for liquid reward while on water control. These results suggest that electrical stimulation in the accumbens is a viable method of reward in complex tasks. Because this method of reward does not necessitate control over water or food intake, it may offer an alternative to the traditional liquid or food rewards in monkeys, depending on the goals and requirements of the particular research project. PMID:21704383

  20. Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving

    PubMed Central

    Lee, Brian R.; Ma, Yao-ying; Huang, Yanhua H.; Wang, Xiusong; Otaka, Mami; Ishikawa, Masago; Neumann, Peter A.; Graziane, Nicolas M.; Brown, Travis E.; Suska, Anna; Guo, Changyong; Lobo, Mary Kay; Sesack, Susan R.; Wolf, Marina E.; Nestler, Eric J.; Shaham, Yavin; Schlüter, Oliver M.; Dong, Yan

    2013-01-01

    In rat models of drug relapse and craving, cue-induced cocaine seeking progressively increases after drug withdrawal. This ‘incubation of cocaine craving’ is partially mediated by time-dependent adaptations at glutamatergic synapses in nucleus accumbens. However, the circuit-level adaptations mediating this plasticity remain elusive. Here we studied silent synapses—often regarded as immature synapses that express stable NMDA receptors with AMPA receptors either absent or labile—in basolateral amygdala-to-accumbens projection in incubation of cocaine craving. Silent synapses were detected within this projection during early withdrawal from cocaine. As the withdrawal period progressed, these silent synapses became ‘unsilenced’, a process involving synaptic insertion of calcium-permeable AMPA receptors (CP-AMPARs). In vivo optogenetic stimulation-induced downregulation of CP-AMPARs at amygdala-to-NAc synapses, which re-silenced some of the previously silent synapses after prolonged withdrawal, decreased cocaine incubation. Our finding indicates that silent synapse-based reorganization of the amygdala-to-accumbens projection is critical for persistent cocaine craving and relapse after withdrawal. PMID:24077564

  1. Chronic ethanol treatment potientials ethanol-induced increases in interstitial nucleus accumbens endocannabinoid levels in rats

    PubMed Central

    Alvarez-Jaimes, Lily; Stouffer, David G.; Parsons, Loren H.

    2013-01-01

    We employed in vivo microdialysis to characterize the effect of an ethanol challenge injection on endocannabinoid levels in the nucleus accumbens of ethanol-naïve and chronic ethanol-treated rats. Ethanol (0.75 and 2 g/kg, i.p.) dose-dependently increased dialysate 2-arachidonoylglycerol (to a maximum 157 ± 20% of baseline) and decreased anandamide (to a minimum 52 ± 9% of baseline) in ethanol-naïve rats. The endocannabinoid clearance inhibitor N-(4-hydrophenyl) arachidonoylamide (AM404; 3 mg/kg) potentiated ethanol effects on 2-arachidonoylglycerol levels but did not alter ethanol-induced decreases in anandamide. AM404 alone did not alter dialysate levels of either endocannabinoid. Then, we characterized the effect of ethanol challenge on nucleus accumbens endocannabinoid levels in rats previously maintained on an ethanol-containing liquid diet. Ethanol challenge produced a greater and more prolonged increase in 2-arach-idonoylglycerol (to a maximum 394 ± 135% of baseline) in ethanol-experienced than in ethanol-naïve rats. The profile in ethanol-experienced rats was similar to that produced by AM404 pre-treatment in ethanol-naïve rats. AM404 in ethanol-experienced rats led to a further enhancement in the 2-arachidonoylglycerol response to ethanol challenge (to a maximum 704 ± 174% of baseline). Our findings demonstrate that ethanol-induced increases in nucleus accumbens 2-arachidonoylglycerol are potentiated in animals with a history of ethanol consumption. PMID:19650871

  2. Estradiol in the Preoptic Area Regulates the Dopaminergic Response to Cocaine in the Nucleus Accumbens.

    PubMed

    Tobiansky, Daniel J; Will, Ryan G; Lominac, Kevin D; Turner, Jonathan M; Hattori, Tomoko; Krishnan, Krittika; Martz, Julia R; Nutsch, Victoria L; Dominguez, Juan M

    2016-06-01

    The sex-steroid hormone estradiol (E2) enhances the psychoactive effects of cocaine, as evidenced by clinical and preclinical studies. The medial preoptic area (mPOA), a region in the hypothalamus, is a primary neural locus for neuroendocrine integration, containing one of the richest concentrations of estrogen receptors in the CNS and also has a key role in the regulation of naturally rewarding behaviors. However, whether estradiol enhances the neurochemical response to cocaine by acting in the mPOA is still unclear. Using neurotoxic lesions and microdialysis, we examined whether the mPOA modulates cocaine-induced neurochemical activity in the nucleus accumbens. Tract tracing and immunohistochemical staining were used to determine whether projections from the mPOA to the ventral tegmental area (VTA) are sensitive to estrogen signaling. Finally, estradiol microinjections followed by microdialysis were used to determine whether estrogenic signaling in the mPOA modulates cocaine-induced changes of dopamine in the nucleus accumbens. Results showed that lesions of the mPOA or microinjections of estradiol directly into the mPOA increased cocaine-induced release of dopamine in the nucleus accumbens. Immunohistochemical analyses revealed that the mPOA modulates cocaine responsiveness via projections to both dopaminergic and GABAergic neurons in the VTA, and that these projections are sensitive to estrogenic stimulation. Taken together, these findings point to a novel estradiol-dependent pathway that modulates cocaine-induced neurochemical activity in the mesolimbic system. PMID:26647972

  3. Metacognitive knowledge of olfactory dysfunction in Parkinson's disease.

    PubMed

    White, Theresa L; Sadikot, Abbas F; Djordjevic, Jelena

    2016-04-01

    It is well known that patients with Parkinson's Disease (PD) suffer from olfactory impairments, but it is not clear whether patients are aware of their level of deficit in olfactory functioning. Since PD is a neurodegenerative disorder and its progression may be correlated with olfactory loss (Ansari & Johnson, 1975; but see also Doty, Deems, & Stellar, 1988), it is possible that these patients would be subject to metacognitive errors of over-estimation of olfactory ability (White & Kurtz, 2003). Nineteen non-demented PD patients and 19 age-matched controls were each given an objective measure of olfactory identification (the UPSIT, Doty, Shaman, Kimmelman, & Dann, 1984) and a subjective measure involving a questionnaire that asked them to self-rate both their olfactory function generally and their ability to smell each of 20 odors, 12 of which were assessed on the UPSIT. All of the PD patients showed impaired olfactory ability, as did 7 of the controls, according to the UPSIT norms. Self-rated and performance-based olfactory ability scores were significantly correlated in controls (r=.49, p=.03) but not in patients with PD (r=.20, p=.39). When the 12 odors common to both the self-rated questionnaire and UPSIT were compared, PD patients were less accurate than controls (t(36)=-4.96, p<.01) at estimating their own ability and the number of over-estimation errors was significantly higher (tone-tailed(29)=1.80, p=.04) in PD patients than in the control group, showing less metacognitive awareness of their ability than controls. These results support the idea that olfactory metacognition is often impaired in PD, as well as in controls recruited for normosmic ability (Wehling, Nordin, Espeseth, Reinvang, & Lundervold, 2011), and indicate that people with PD generally exhibit over-estimation of their olfactory ability at a rate that is higher than controls. These findings imply that PD patients, unaware of their olfactory deficit, are at greater risk of harm normally

  4. Deep sequencing of the murine olfactory receptor neuron transcriptome.

    PubMed

    Kanageswaran, Ninthujah; Demond, Marilen; Nagel, Maximilian; Schreiner, Benjamin S P; Baumgart, Sabrina; Scholz, Paul; Altmüller, Janine; Becker, Christian; Doerner, Julia F; Conrad, Heike; Oberland, Sonja; Wetzel, Christian H; Neuhaus, Eva M; Hatt, Hanns; Gisselmann, Günter

    2015-01-01

    The ability of animals to sense and differentiate among thousands of odorants relies on a large set of olfactory receptors (OR) and a multitude of accessory proteins within the olfactory epithelium (OE). ORs and related signaling mechanisms have been the subject of intensive studies over the past years, but our knowledge regarding olfactory processing remains limited. The recent development of next generation sequencing (NGS) techniques encouraged us to assess the transcriptome of the murine OE. We analyzed RNA from OEs of female and male adult mice and from fluorescence-activated cell sorting (FACS)-sorted olfactory receptor neurons (ORNs) obtained from transgenic OMP-GFP mice. The Illumina RNA-Seq protocol was utilized to generate up to 86 million reads per transcriptome. In OE samples, nearly all OR and trace amine-associated receptor (TAAR) genes involved in the perception of volatile amines were detectably expressed. Other genes known to participate in olfactory signaling pathways were among the 200 genes with the highest expression levels in the OE. To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues. By analyzing different transcript classes, we detected the expression of non-olfactory GPCRs in ORNs and established an expression ranking for GPCRs detected in the OE. We also identified other previously undescribed membrane proteins as potential new players in olfaction. The quantitative and comprehensive transcriptome data provide a virtually complete catalogue of genes expressed in the OE and present a useful tool to uncover candidate genes involved in, for example, olfactory signaling, OR trafficking and recycling, and proliferation. PMID:25590618

  5. Determinants of human olfactory performance: a cross-cultural study.

    PubMed

    Sorokowska, Agnieszka; Sorokowski, Piotr; Frackowiak, Tomasz

    2015-02-15

    Olfaction allows us to detect subtle changes in our environment, but sensitivity of the sense of smell varies among individuals. Although a significant number of research papers discuss the relationship between olfactory abilities and environmental factors, most studies have been conducted on Western populations or in developed Asian societies. The potential environmental and cultural determinants of olfactory acuity warrant further exploration. In the current study, we compared previously published data on olfaction in an industrialized, modern society (i.e., Europeans) and an indigenous society living in unpolluted, natural environmental conditions (i.e., Tsimane'), with novel data on the olfactory acuity of inhabitants of the Cook Islands. Like the European population (and contrary to the Tsimane'), the Cook Islands people form a modern society, and like the Tsimane' population (and contrary to the Europeans), they live in an unpolluted region. Thus, these comparisons enabled us to independently assess the importance of both air pollution and changes in lifestyle for olfactory abilities in modern societies. Our results indicate that people from the Cook Islands had significantly higher olfactory acuity (i.e., lower thresholds of odor detection) than did Europeans and Tsimane' people. Interestingly, the olfactory sensitivity of Europeans was significantly lower than the olfactory sensitivity of the remaining two groups. Our data suggest that air pollution is an important factor in the deterioration of the sense of smell. However, it is also possible that factors such as agricultural and/or cooking practices, alcohol consumption, and access to medical service may also influence olfactory acuity. PMID:25460952

  6. Neural crest and placode contributions to olfactory development.

    PubMed

    Suzuki, Jun; Osumi, Noriko

    2015-01-01

    Olfaction is the sense of smell that influences many primitive behaviors for survival, e.g., feeding, reproduction, social interaction, and fear response. The olfactory system is an evolutionarily ancient sensory system and composed of the olfactory epithelium (OE), the olfactory bulb (OB), and the olfactory cortex. The OE gives rise to olfactory receptor neurons (ORNs), i.e., primary sensory receptor cells whose axons project directly to the OB. The ORNs are unique in the way that they are continuously replaced during physiological turnover or following injury throughout life. In the OE, horizontal basal cells, i.e., flat and quiescent cells attached to the basal lamina, are now thought to be tissue stem cells. Although OE cells, especially ORNs, were hypothesized to be derived from the olfactory placode (OP), recent genetic fate-mapping studies using Cre reporter mice indicate a dual origin, i.e., the OP and neural crest (NC), of the olfactory system. The NC is a transient embryonic tissue that is formed between the dorsal neuroepithelium and epidermis. Neural crest cells (NCCs) are multipotent cells that migrate into various target tissues and differentiate into various cell types, including neurons and glia of the peripheral nervous system, cranial cartilage and bone, and melanocytes. Recent studies have revealed that neural crest-derived cells (NCDCs) are widely distributed in adult tissues, and that a subset of NCDCs still possesses NCC-like multipotency. Here, we review classical and recent studies of the olfactory system, especially focusing on the contribution of the NC and OP to the OE development. PMID:25662265

  7. Deep Sequencing of the Murine Olfactory Receptor Neuron Transcriptome

    PubMed Central

    Kanageswaran, Ninthujah; Demond, Marilen; Nagel, Maximilian; Schreiner, Benjamin S. P.; Baumgart, Sabrina; Scholz, Paul; Altmüller, Janine; Becker, Christian; Doerner, Julia F.; Conrad, Heike; Oberland, Sonja; Wetzel, Christian H.; Neuhaus, Eva M.; Hatt, Hanns; Gisselmann, Günter

    2015-01-01

    The ability of animals to sense and differentiate among thousands of odorants relies on a large set of olfactory receptors (OR) and a multitude of accessory proteins within the olfactory epithelium (OE). ORs and related signaling mechanisms have been the subject of intensive studies over the past years, but our knowledge regarding olfactory processing remains limited. The recent development of next generation sequencing (NGS) techniques encouraged us to assess the transcriptome of the murine OE. We analyzed RNA from OEs of female and male adult mice and from fluorescence-activated cell sorting (FACS)-sorted olfactory receptor neurons (ORNs) obtained from transgenic OMP-GFP mice. The Illumina RNA-Seq protocol was utilized to generate up to 86 million reads per transcriptome. In OE samples, nearly all OR and trace amine-associated receptor (TAAR) genes involved in the perception of volatile amines were detectably expressed. Other genes known to participate in olfactory signaling pathways were among the 200 genes with the highest expression levels in the OE. To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues. By analyzing different transcript classes, we detected the expression of non-olfactory GPCRs in ORNs and established an expression ranking for GPCRs detected in the OE. We also identified other previously undescribed membrane proteins as potential new players in olfaction. The quantitative and comprehensive transcriptome data provide a virtually complete catalogue of genes expressed in the OE and present a useful tool to uncover candidate genes involved in, for example, olfactory signaling, OR trafficking and recycling, and proliferation. PMID:25590618

  8. Development of the olfactory pathways in platypus and echidna.

    PubMed

    Ashwell, Ken W S

    2012-01-01

    The two groups of living monotremes (platypus and echidnas) have remarkably different olfactory structures in the adult. The layers of the main olfactory bulb of the short-beaked echidna are extensively folded, whereas those of the platypus are not. Similarly, the surface area of the piriform cortex of the echidna is large and its lamination complex, whereas in the platypus it is small and simple. It has been argued that the modern echidnas are derived from a platypus-like ancestor, in which case the extensive olfactory specializations of the modern echidnas would have developed relatively recently in monotreme evolution. In this study, the development of the constituent structures of the olfactory pathway was studied in sectioned platypus and echidna embryos and post-hatchlings at the Museum für Naturkunde, Berlin, Germany. The aim was to determine whether the olfactory structures follow a similar maturational path in the two monotremes during embryonic and early post-hatching ages or whether they show very different developmental paths from the outset. The findings indicate that anatomical differences in the central olfactory system between the short-beaked echidna and the platypus begin to develop immediately before hatching, although details of differences in nasal cavity architecture emerge progressively during late post-hatching life. These findings are most consistent with the proposition that the two modern monotreme lineages have followed independent evolutionary paths from a less olfaction-specialized ancestor. The monotreme olfactory pathway does not appear to be sufficiently structurally mature at birth to allow olfaction-mediated behaviour, because central components of both the main and accessory olfactory system have not differentiated at the time of hatching. PMID:22156550

  9. Olfactory System Involvement in Natural Scrapie Disease ▿

    PubMed Central

    Corona, Cristiano; Porcario, Chiara; Martucci, Francesca; Iulini, Barbara; Manea, Barbara; Gallo, Marina; Palmitessa, Claudia; Maurella, Cristiana; Mazza, Maria; Pezzolato, Marzia; Acutis, Pierluigi; Casalone, Cristina

    2009-01-01

    The olfactory system (OS) is involved in many infectious and neurodegenerative diseases, both human and animal, and it has recently been investigated in regard to transmissible spongiform encephalopathies. Previous assessments of nasal mucosa infection by prions following intracerebral challenge suggested a potential centrifugal spread along the olfactory nerve fibers of the pathological prion protein (PrPSc). Whether the nasal cavity may be a route for centripetal prion infection to the brain has also been experimentally studied. With the present study, we wanted to determine whether prion deposition in the OS occurs also under field conditions and what type of anatomical localization PrPSc might display there. We report here on detection by different techniques of PrPSc in the nasal mucosa and in the OS-related brain areas of sheep affected by natural scrapie. PrPSc was detected in the perineurium of the olfactory nerve bundles in the medial nasal concha and in nasal-associated lymphoid tissue. Olfactory receptor neurons did not show PrPSc immunostaining. PrPSc deposition was found in the brain areas of olfactory fiber projection, chiefly in the olfactory bulb and the olfactory cortex. The prevalent PrPSc deposition patterns were subependymal, perivascular, and submeningeal. This finding, together with the discovery of an intense PrPSc immunostaining in the meningeal layer of the olfactory nerve perineurium, at the border with the subdural space extension surrounding the nerve rootlets, strongly suggests a probable role of cerebrospinal fluid in conveying prion infectivity to the nasal submucosa. PMID:19158242

  10. Diverse Representations of Olfactory Information in Centrifugal Feedback Projections

    PubMed Central

    Osakada, Fumitaka; Tarabrina, Anna; Kizer, Erin; Callaway, Edward M.; Gage, Fred H.; Sejnowski, Terrence J.

    2016-01-01

    Although feedback or centrifugal projections from higher processing centers of the brain to peripheral regions have long been known to play essential functional roles, the anatomical organization of these connections remains largely unknown. Using a virus-based retrograde labeling strategy and 3D whole-brain reconstruction methods, we mapped the spatial organization of centrifugal projections from two olfactory cortical areas, the anterior olfactory nucleus (AON) and the piriform cortex, to the granule cell layer of the main olfactory bulb in the mouse. Both regions are major recipients of information from the bulb and are the largest sources of feedback to the bulb, collectively constituting circuits essential for olfactory coding and olfactory behavior. We found that, although ipsilateral inputs from the AON were uniformly distributed, feedback from the contralateral AON had a strong ventral bias. In addition, we observed that centrifugally projecting neurons were spatially clustered in the piriform cortex, in contrast to the distributed feedforward axonal inputs that these cells receive from the principal neurons of the bulb. Therefore, information carried from the bulb to higher processing structures by anatomically stereotypic projections is likely relayed back to the bulb by organizationally distinct feedback projections that may reflect different coding strategies and therefore different functional roles. SIGNIFICANCE STATEMENT Principles of anatomical organization, sometimes instantiated as “maps” in the mammalian brain, have provided key insights into the structure and function of circuits in sensory systems. Generally, these characterizations focus on projections from early sensory processing areas to higher processing structures despite considerable evidence that feedback or centrifugal projections often constitute major conduits of information flow. Our results identify structure in the organization of centrifugal feedback projections to the

  11. Multidimensional representation of odors in the human olfactory cortex.

    PubMed

    Fournel, A; Ferdenzi, C; Sezille, C; Rouby, C; Bensafi, M

    2016-06-01

    What is known as an odor object is an integrated representation constructed from physical features, and perceptual attributes mainly mediated by the olfactory and trigeminal systems. The aim of the present study was to comprehend how this multidimensional representation is organized, by deciphering how similarities in the physical, olfactory and trigeminal perceptual spaces of odors are represented in the human brain. To achieve this aim, we combined psychophysics, functional MRI and multivariate representational similarity analysis. Participants were asked to smell odors diffused by an fMRI-compatible olfactometer and to rate each smell along olfactory dimensions (pleasantness, intensity, familiarity and edibility) and trigeminal dimensions (irritation, coolness, warmth and pain). An event-related design was implemented, presenting different odorants. Results revealed that (i) pairwise odorant similarities in anterior piriform cortex (PC) activity correlated with pairwise odorant similarities in chemical properties (P < 0.005), (ii) similarities in posterior PC activity correlated with similarities in olfactory perceptual properties (P <0.01), and (iii) similarities in amygdala activity correlated with similarities in trigeminal perceptual properties (P < 0.01). These findings provide new evidence that extraction of physical, olfactory and trigeminal features is based on specific fine processing of similarities between odorous stimuli in a distributed manner in the olfactory system. Hum Brain Mapp 37:2161-2172, 2016. © 2016 Wiley Periodicals, Inc. PMID:26991044

  12. Olfactory modulation of affective touch processing - A neurophysiological investigation.

    PubMed

    Croy, Ilona; Drechsler, Edda; Hamilton, Paul; Hummel, Thomas; Olausson, Håkan

    2016-07-15

    Touch can be highly emotional, and depending on the environment, it can be perceived as pleasant and comforting or disgusting and dangerous. Here, we studied the impact of context on the processing of tactile stimuli using a functional magnetic resonance imaging (fMRI) paradigm. This was achieved by embedding tactile stimulation in a variable olfactory environment. Twenty people were scanned with BOLD fMRI while receiving the following stimulus blocks: Slow stroking Touch, Civette odor (feces like), Rose odor, Touch+Civette, and Touch+Rose. Ratings of pleasantness and intensity of tactile stimuli and ratings of disgust and intensity of olfactory stimuli were collected. The impact of the olfactory context on the processing of touch was studied using covariance analyses. Coupling between olfactory processing and somatosensory processing areas was assessed with psychophysiological interaction analysis (PPI). A subjectively disgusting olfactory environment significantly reduced the perceived pleasantness of touch. The touch fMRI activation in the secondary somatosensory cortex, operculum 1 (OP1), was positively correlated with the disgust towards the odors. Decreased pleasantness of touch was related to decreased posterior insula activity. PPI analysis revealed a significant interaction between the OP1, posterior insula, and regions processing the disgust of odors (orbitofrontal cortex and amygdala). We conclude that the disgust evaluation of the olfactory environment moderates neural reactivity in somatosensory regions by upregulation of the OP1 and downregulation of the posterior insula. This adaptive regulation of affective touch processing may facilitate adaptive reaction to a potentially harmful stimulus. PMID:27138206

  13. Illuminating odors: when optogenetics brings to light unexpected olfactory abilities

    PubMed Central

    Grimaud, Julien

    2016-01-01

    For hundreds of years, the sense of smell has generated great interest in the world literature, oenologists, and perfume makers but less of scientists. Only recently this sensory modality has gained new attraction in neuroscience when original tools issued from physiology, anatomy, or molecular biology were available to decipher how the brain makes sense of olfactory cues. However, this move was promptly dampened by the difficulties of developing quantitative approaches to study the relationship between the physical characteristics of stimuli and the sensations they create. An upswing of olfactory investigations occurred when genetic tools could be used in combination with devices borrowed from the physics of light (a hybrid technique called optogenetics) to scrutinize the olfactory system and to provide greater physiological precision for studying olfactory-driven behaviors. This review aims to present the most recent studies that have used light to activate components of the olfactory pathway, such as olfactory receptor neurons, or neurons located further downstream, while leaving intact others brain circuits. With the use of optogenetics to unravel the mystery of olfaction, scientists have begun to disentangle how the brain makes sense of smells. In this review, we shall discuss how the brain recognizes odors, how it memorizes them, and how animals make decisions based on odorants they are capable of sensing. Although this review deals with olfaction, the role of light will be central throughout. PMID:27194792

  14. Illuminating odors: when optogenetics brings to light unexpected olfactory abilities.

    PubMed

    Grimaud, Julien; Lledo, Pierre-Marie

    2016-06-01

    For hundreds of years, the sense of smell has generated great interest in the world literature, oenologists, and perfume makers but less of scientists. Only recently this sensory modality has gained new attraction in neuroscience when original tools issued from physiology, anatomy, or molecular biology were available to decipher how the brain makes sense of olfactory cues. However, this move was promptly dampened by the difficulties of developing quantitative approaches to study the relationship between the physical characteristics of stimuli and the sensations they create. An upswing of olfactory investigations occurred when genetic tools could be used in combination with devices borrowed from the physics of light (a hybrid technique called optogenetics) to scrutinize the olfactory system and to provide greater physiological precision for studying olfactory-driven behaviors. This review aims to present the most recent studies that have used light to activate components of the olfactory pathway, such as olfactory receptor neurons, or neurons located further downstream, while leaving intact others brain circuits. With the use of optogenetics to unravel the mystery of olfaction, scientists have begun to disentangle how the brain makes sense of smells. In this review, we shall discuss how the brain recognizes odors, how it memorizes them, and how animals make decisions based on odorants they are capable of sensing. Although this review deals with olfaction, the role of light will be central throughout. PMID:27194792

  15. Intracellular trafficking of a tagged and functional mammalian olfactory receptor.

    PubMed

    Ivic, Lidija; Zhang, Cen; Zhang, Xinmin; Yoon, Sung Ok; Firestein, Stuart

    2002-01-01

    Tagged G-protein-coupled receptors (GPCRs) have been used to facilitate intracellular visualization of these receptors. We have used a combination of adenoviral vector gene transfer and tagged olfactory receptors to help visualize mammalian olfactory receptor proteins in the normal olfactory epithelium of rats, and in cell culture. Three recombinant adenoviral vectors were generated carrying variously tagged versions of rat olfactory receptor I7. The constructs include an N-terminal Flag epitope tag (Flag:I7), enhanced green fluorescent protein (EGFP) fusion protein (EGFP:I7), and a C-terminal EGFP fusion (I7:EGFP). These receptor constructs were assayed in rat olfactory sensory neurons (OSNs) and in a heterologous system (HEK 293 cell line) for protein localization and functional expression. Functional expression of the tagged receptor proteins was tested by electroolfactogram (EOG) recordings in the infected rat olfactory epithelium, and by calcium imaging in single cells. Our results demonstrate that the I7:EGFP fusion protein and Flag:I7 are functionally expressed in OSNs while the EGFP:I7 fusion is not, probably due to inappropriate processing of the protein in the cells. These data suggest that a small epitope tag (Flag) at the N-terminus, or EGFP located at the C-terminus of the receptor, does not affect ligand binding or downstream signaling. In addition, both functional fusion proteins (Flag:I7 and I7:EGFP) are properly targeted to the plasma membrane of HEK 293 cells. PMID:11748633

  16. Glomerular interactions in olfactory processing channels of the antennal lobes

    PubMed Central

    Heinbockel, Thomas; Shields, Vonnie D. C.; Reisenman, Carolina E.

    2014-01-01

    An open question in olfactory coding is the extent of interglomerular connectivity: do olfactory glomeruli and their neurons regulate the odorant responses of neurons innervating other glomeruli? In the olfactory system of the moth Manduca sexta, the response properties of different types of antennal olfactory receptor cells are known. Likewise, a subset of antennal lobe glomeruli has been functionally characterized and the olfactory tuning of their innervating neurons identified. This provides a unique opportunity to determine functional interactions between glomeruli of known input, specifically, (1) glomeruli processing plant odors and (2) glomeruli activated by antennal stimulation with pheromone components of conspecific females. Several studies describe reciprocal inhibitory effects between different types of pheromone-responsive projection neurons suggesting lateral inhibitory interactions between pheromone component-selective glomerular neural circuits. Furthermore, antennal lobe projection neurons that respond to host plant volatiles and innervate single, ordinary glomeruli are inhibited during antennal stimulation with the female’s sex pheromone. The studies demonstrate the existence of lateral inhibitory effects in response to behaviorally significant odorant stimuli and irrespective of glomerular location in the antennal lobe. Inhibitory interactions are present within and between olfactory subsystems (pheromonal and non-pheromonal subsystems), potentially to enhance contrast and strengthen odorant discrimination. PMID:23893248

  17. Direct transport of inhaled xylene and its metabolites from the olfactory mucosa to the glomeruli of the olfactory bulbs

    SciTech Connect

    Lewis, J.L.; Dahl, A.R.; Kracko, D.A.

    1994-11-01

    The olfactory epithelium is a unique tissue in that single receptor neurons have dendrites in contact with the external environment at the nasal airway, and axon terminals that penetrate the cribriform plate and synapse in the olfactory bulb. The Central Nervous System (CNS) is protected from systematically circulating toxicants by a blood-brain barrier primarily composed of tight junctions between endothelial cells in cerebral vessels and a high metabolic capacity within these cells. No such barrier has yet been defined to protect the CNS from inhaled toxicants. Because all inhalants do not seem to access the CNS directly, a nose-brain barrier seems plausible. The purpose of the work described here is to determine whether or not a nose-brain barrier exists and to define its components. Although such a barrier is likely to be multi-faceted, the present work focuses only on the importance of gross histologic and metabolic characteristics of the olfactory epithelium in olfactory transport.

  18. Muscarinic acetylcholine receptors in the nucleus accumbens core and shell contribute to cocaine priming-induced reinstatement of drug seeking

    PubMed Central

    Yee, Judy; Famous, Katie R.; Hopkins, Thomas J.; McMullen, Michael C.; Pierce, R. Christopher; Schmidt, Heath D.

    2011-01-01

    Muscarinic acetylcholine receptors in the nucleus accumbens play an important role in mediating the reinforcing effects of cocaine. However, there is a paucity of data regarding the role of accumbal muscarinic acetylcholine receptors in the reinstatement of cocaine-seeking behavior. The goal of these experiments was to assess the role of muscarinic acetylcholine receptors in the nucleus accumbens core and shell in cocaine and sucrose priming-induced reinstatement. Rats were initially trained to self-administer cocaine or sucrose on a fixed-ratio schedule of reinforcement. Lever-pressing behavior was then extinguished and followed by a subsequent reinstatement phase during which operant responding was induced by either a systemic injection of cocaine in cocaine-experienced rats or non-contingent delivery of sucrose pellets in subjects with a history of sucrose self-administration. Results indicated that systemic administration of the muscarinic acetylcholine receptor antagonist scopolamine (5.0 mg/kg, i.p.) dose-dependently attenuated cocaine, but not sucrose, reinstatement. Furthermore, administration of scopolamine (36.0 μg) directly into the nucleus accumbens shell or core attenuated cocaine-priming induced reinstatement. In contrast, infusion of scopolamine (36.0 μg) directly into the accumbens core, but not shell, attenuated sucrose reinstatement, which suggests that muscarinic acetylcholine receptors in these two subregions of the nucleus accumbens have differential roles in sucrose seeking. Taken together, these results indicate that cocaine-priming induced reinstatement is mediated, in part, by increased signaling through muscarinic acetylcholine receptors in the shell subregion of the nucleus accumbens. Muscarinic acetylcholine receptors in the core of the accumbens, in contrast, appear to play a more general (i.e. not cocaine specific) role in motivated behaviors. PMID:21034738

  19. Plasticity of Glomeruli and Olfactory-Mediated Behavior in Zebrafish Following Detergent Lesioning of the Olfactory Epithelium

    PubMed Central

    White, Evan J.; Kounelis, Savannah K.; Byrd-Jacobs, Christine A.

    2014-01-01

    The zebrafish olfactory system is a valuable model for examining neural regeneration after damage due to the remarkable plasticity of this sensory system and of fish species. We applied detergent to the olfactory organ and examined the effects on both morphology and function of the olfactory system in adult zebrafish. Olfactory organs were treated once with Triton X-100 unilaterally to study glomerular innervation patterns or bilaterally to study odor detection. Fish were allowed to recover for 4–10 days and were compared to untreated control fish. Axonal projections were analyzed using whole mount immunocytochemistry with anti-keyhole limpet hemocyanin, a marker of olfactory axons in teleosts. Chemical lesioning of the olfactory organ with a single dose of Triton X-100 had profound effects on glomerular distribution in the olfactory bulb at 4 days after treatment, with the most significant effects in the medial region of the bulb. Glomeruli had returned by 7 days post-treatment. Analysis of the ability of the fish to detect cocktails of amino acids or bile salts consisted of counting the number of turns the fish made before and after odorant delivery. Control fish turned more after exposure to both odorants. Fish tested 4 and 7 days after chemical lesioning made more turns in response to amino acids but did not respond to bile salts. At 10 days post-lesion, these fish had regained the ability to detect bile salts. Thus, the changes seen in bulbar innervation patterns correlated to odorant-mediated behavior. We show that the adult zebrafish brain has the capacity to recover rapidly from detergent damage of the olfactory epithelium, with both glomerular distribution and odorant-mediated behavior returning in 10 days. PMID:25450960

  20. Plasticity of glomeruli and olfactory-mediated behavior in zebrafish following detergent lesioning of the olfactory epithelium.

    PubMed

    White, E J; Kounelis, S K; Byrd-Jacobs, C A

    2015-01-22

    The zebrafish olfactory system is a valuable model for examining neural regeneration after damage due to the remarkable plasticity of this sensory system and of fish species. We applied detergent to the olfactory organ and examined the effects on both morphology and function of the olfactory system in adult zebrafish. Olfactory organs were treated once with Triton X-100 unilaterally to study glomerular innervation patterns or bilaterally to study odor detection. Fish were allowed to recover for 4-10 days and were compared to untreated control fish. Axonal projections were analyzed using whole mount immunocytochemistry with anti-keyhole limpet hemocyanin, a marker of olfactory axons in teleosts. Chemical lesioning of the olfactory organ with a single dose of Triton X-100 had profound effects on glomerular distribution in the olfactory bulb at 4 days after treatment, with the most significant effects in the medial region of the bulb. Glomeruli had returned by 7 days post-treatment. Analysis of the ability of the fish to detect cocktails of amino acids or bile salts consisted of counting the number of turns the fish made before and after odorant delivery. Control fish turned more after exposure to both odorants. Fish tested 4 and 7 days after chemical lesioning made more turns in response to amino acids but did not respond to bile salts. At 10 days post-lesion, these fish had regained the ability to detect bile salts. Thus, the changes seen in bulbar innervation patterns correlated to odorant-mediated behavior. We show that the adult zebrafish brain has the capacity to recover rapidly from detergent damage of the olfactory epithelium, with both glomerular distribution and odorant-mediated behavior returning in 10 days. PMID:25450960

  1. Ultrastructural analysis of olfactory ensheathing cells derived from olfactory bulb and nerve of neonatal and juvenile rats.

    PubMed

    Gómez, Rosa M; Ghotme, Kemel; Botero, Lucía; Bernal, Jaime E; Pérez, Rosalía; Barreto, George E; Bustos, Rosa Helena

    2016-02-01

    Olfactory nerve derived and olfactory bulb derived olfactory ensheathing cells (OECs) have the ability to promote axonal regeneration and remyelination, both of which are essential in a successful cell transplant. Thus, morphological identification of OECs is a key aspect to develop an applicable cell therapy for injuries to the nervous system. However, there is no clear definition regarding which developmental stage or anatomical origin of OECs is more adequate for neural repair. In the present study, an ultrastructural comparison was made between OECs recovered from primary cultures of olfactory nerve and bulb in two developmental stages. The most notorious difference between cells obtained from olfactory nerve and bulb was the presence of indented nuclei in bulb derived OECs, suggesting a greater ability for possible chemotaxis. In neonatal OECs abundant mitochondria, lipid vacuoles, and smooth endoplasmic reticulum were detected, suggesting an active lipid metabolism, probably involved in synthesis of myelin. Our results suggest that neonatal OECs obtained from olfactory bulb have microscopic properties that could make them more suitable for neural repair. PMID:26254553

  2. Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) Based on Transcriptome Analysis

    PubMed Central

    Wang, Yinliang; Chen, Qi; Zhao, Hanbo; Ren, Bingzhong

    2016-01-01

    The leaf beetle Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) is a predominant forest pest that causes substantial damage to the lumber industry and city management. However, no effective and environmentally friendly chemical method has been discovered to control this pest. Until recently, the molecular basis of the olfactory system in A. quadriimpressum was completely unknown. In this study, antennae and leg transcriptomes were analyzed and compared using deep sequencing data to identify the olfactory genes in A. quadriimpressum. Moreover, the expression profiles of both male and female candidate olfactory genes were analyzed and validated by bioinformatics, motif analysis, homology analysis, semi-quantitative RT-PCR and RT-qPCR experiments in antennal and non-olfactory organs to explore the candidate olfactory genes that might play key roles in the life cycle of A. quadriimpressum. As a result, approximately 102.9 million and 97.3 million clean reads were obtained from the libraries created from the antennas and legs, respectively. Annotation led to 34344 Unigenes, which were matched to known proteins. Annotation data revealed that the number of genes in antenna with binding functions and receptor activity was greater than that of legs. Furthermore, many pathway genes were differentially expressed in the two organs. Sixteen candidate odorant binding proteins (OBPs), 10 chemosensory proteins (CSPs), 34 odorant receptors (ORs), 20 inotropic receptors [1] and 2 sensory neuron membrane proteins (SNMPs) and their isoforms were identified. Additionally, 15 OBPs, 9 CSPs, 18 ORs, 6 IRs and 2 SNMPs were predicted to be complete ORFs. Using RT-PCR, RT-qPCR and homology analysis, AquaOBP1/2/4/7/C1/C6, AquaCSP3/9, AquaOR8/9/10/14/15/18/20/26/29/33, AquaIR8a/13/25a showed olfactory-specific expression, indicating that these genes might play a key role in olfaction-related behaviors in A. quadriimpressum such as foraging and seeking. AquaOBP4/C5, AquaOBP4/C5, AquaCSP7

  3. Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) Based on Transcriptome Analysis.

    PubMed

    Wang, Yinliang; Chen, Qi; Zhao, Hanbo; Ren, Bingzhong

    2016-01-01

    The leaf beetle Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) is a predominant forest pest that causes substantial damage to the lumber industry and city management. However, no effective and environmentally friendly chemical method has been discovered to control this pest. Until recently, the molecular basis of the olfactory system in A. quadriimpressum was completely unknown. In this study, antennae and leg transcriptomes were analyzed and compared using deep sequencing data to identify the olfactory genes in A. quadriimpressum. Moreover, the expression profiles of both male and female candidate olfactory genes were analyzed and validated by bioinformatics, motif analysis, homology analysis, semi-quantitative RT-PCR and RT-qPCR experiments in antennal and non-olfactory organs to explore the candidate olfactory genes that might play key roles in the life cycle of A. quadriimpressum. As a result, approximately 102.9 million and 97.3 million clean reads were obtained from the libraries created from the antennas and legs, respectively. Annotation led to 34344 Unigenes, which were matched to known proteins. Annotation data revealed that the number of genes in antenna with binding functions and receptor activity was greater than that of legs. Furthermore, many pathway genes were differentially expressed in the two organs. Sixteen candidate odorant binding proteins (OBPs), 10 chemosensory proteins (CSPs), 34 odorant receptors (ORs), 20 inotropic receptors [1] and 2 sensory neuron membrane proteins (SNMPs) and their isoforms were identified. Additionally, 15 OBPs, 9 CSPs, 18 ORs, 6 IRs and 2 SNMPs were predicted to be complete ORFs. Using RT-PCR, RT-qPCR and homology analysis, AquaOBP1/2/4/7/C1/C6, AquaCSP3/9, AquaOR8/9/10/14/15/18/20/26/29/33, AquaIR8a/13/25a showed olfactory-specific expression, indicating that these genes might play a key role in olfaction-related behaviors in A. quadriimpressum such as foraging and seeking. AquaOBP4/C5, AquaOBP4/C5, AquaCSP7

  4. SNP genotypes of olfactory receptor genes associated with olfactory ability in German Shepherd dogs.

    PubMed

    Yang, M; Geng, G-J; Zhang, W; Cui, L; Zhang, H-X; Zheng, J-L

    2016-04-01

    To find out the relationship between SNP genotypes of canine olfactory receptor genes and olfactory ability, 28 males and 20 females from German Shepherd dogs in police service were scored by odor detection tests and analyzed using the Beckman GenomeLab SNPstream. The representative 22 SNP loci from the exonic regions of 12 olfactory receptor genes were investigated, and three kinds of odor (human, ice drug and trinitrotoluene) were detected. The results showed that the SNP genotypes at the OR10H1-like:c.632C>T, OR10H1-like:c.770A>T, OR2K2-like:c.518G>A, OR4C11-like:c.511T>G and OR4C11-like:c.692G>A loci had a statistically significant effect on the scenting abilities (P < 0.001). The kind of odor influenced the performances of the dogs (P < 0.001). In addition, there were interactions between genotype and the kind of odor at the following loci: OR10H1-like:c.632C>T, OR10H1-like:c.770A>T, OR4C11-like:c.511T>G and OR4C11-like:c.692G>A (P < 0.001). The dogs with genotype CC at the OR10H1-like:c.632C>T, genotype AA at the OR10H1-like:c.770A>T, genotype TT at the OR4C11-like:c.511T>G and genotype GG at the OR4C11-like:c.692G>A loci did better at detecting the ice drug. We concluded that there was linkage between certain SNP genotypes and the olfactory ability of dogs and that SNP genotypes might be useful in determining dogs' scenting potential. PMID:26582499

  5. A TAP1 null mutation leads to an enlarged olfactory bulb and supernumerary, ectopic olfactory glomeruli

    PubMed Central

    Salcedo, Ernesto; Cruz, Nicole M.; Ly, Xuan; Welander, Beth A.; Hanson, Kyle; Kronberg, Eugene; Restrepo, Diego

    2013-01-01

    Major histocompatibility class I (MHCI) molecules are well known for their immunological role in mediating tissue graft rejection. Recently, these molecules were discovered to be expressed in distinct neuronal subclasses, dispelling the long-held tenet that the uninjured brain is immune-privileged. Here, we show that MHCI molecules are expressed in the main olfactory bulb (MOB) of adult animals. Furthermore, we find that mice with diminished levels of MHCI expression have enlarged MOBs containing an increased number of small, morphologically abnormal and ectopically located P2 glomeruli. These findings suggest that MHCI molecules may play an important role in the proper formation of glomeruli in the bulb. PMID:23697805

  6. Developmental, tract-tracing and immunohistochemical study of the peripheral olfactory system in a basal vertebrate: insights on Pax6 neurons migrating along the olfactory nerve.

    PubMed

    Quintana-Urzainqui, Idoia; Rodríguez-Moldes, Isabel; Candal, Eva

    2014-01-01

    The olfactory system represents an excellent model for studying different aspects of the development of the nervous system ranging from neurogenesis to mechanisms of axon growth and guidance. Important findings in this field come from comparative studies. We have analyzed key events in the development of the olfactory system of the shark Scyliorhinus canicula by combining immunohistochemical and tract-tracing methods. We describe for the first time in a cartilaginous fish an early population of pioneer HuC/D-immunoreactive (ir) neurons that seemed to delaminate from the olfactory pit epithelium and migrate toward the telencephalon before the olfactory nerve was identifiable. A distinct, transient cell population, namely the migratory mass, courses later on in apposition to the developing olfactory nerve. It contains olfactory ensheathing glial (GFAP-ir) cells and HuC/D-ir neurons, some of which course toward an extrabulbar region. We also demonstrate that Pax6-ir cells coursing along the developing olfactory pathways in S. canicula are young migrating (HuC/D and DCX-ir) neurons of the migratory mass that do not form part of the terminal nerve pathway. Evidences that these Pax6 neurons originate in the olfactory epithelium are also reported. As Pax6 neurons in the olfactory epithelium show characteristics of olfactory receptor neurons, and migrating Pax6-ir neurons formed transient corridors along the course of olfactory axons at the entrance of the olfactory bulb, we propose that these neurons could play a role as guideposts for axons of olfactory receptor neurons growing toward the olfactory bulb. PMID:23224251

  7. Expression of Olfactory Signaling Genes in the Eye

    PubMed Central

    Velmeshev, Dmitry; Faghihi, Mohammad; Shestopalov, Valery I.; Slepak, Vladlen Z.

    2014-01-01

    Purpose To advance our understanding how the outer eye interacts with its environment, we asked which cellular receptors are expressed in the cornea, focusing on G protein-coupled receptors. Methods Total RNA from the mouse cornea was subjected to next-generation sequencing using the Illumina platform. The data was analyzed with TopHat and CuffLinks software packages. Expression of a representative group of genes detected by RNA-seq was further analyzed by RT-PCR and in situ hybridization using RNAscope technology and fluorescent microscopy. Results We generated more than 46 million pair-end reads from mouse corneal RNA. Bioinformatics analysis revealed that the mouse corneal transcriptome reconstructed from these reads represents over 10,000 gene transcripts. We identified 194 GPCR transcripts, of which 96 were putative olfactory receptors. RT-PCR analysis confirmed the presence of several olfactory receptors and related genes, including olfactory marker protein and the G protein associated with olfaction, Gαolf. In situ hybridization showed that mRNA for olfactory marker protein, Gαolf and possibly some olfactory receptors were found in the corneal epithelial cells. In addition to the corneal epithelium, Gαolf was present in the ganglionic and inner nuclear layers of the retina. One of the olfactory receptors, Olfr558, was present primarily in vessels of the eye co-stained with antibodies against alpha-smooth muscle actin, indicating expression in arterioles. Conclusions Several species of mRNA encoding putative olfactory receptors and related genes are expressed in the mouse cornea and other parts of the eye indicating they may play a role in sensing chemicals in the ocular environment. PMID:24789354

  8. Using insect electroantennogram sensors on autonomous robots for olfactory searches.

    PubMed

    Martinez, Dominique; Arhidi, Lotfi; Demondion, Elodie; Masson, Jean-Baptiste; Lucas, Philippe

    2014-01-01

    Robots designed to track chemical leaks in hazardous industrial facilities or explosive traces in landmine fields face the same problem as insects foraging for food or searching for mates: the olfactory search is constrained by the physics of turbulent transport. The concentration landscape of wind borne odors is discontinuous and consists of sporadically located patches. A pre-requisite to olfactory search is that intermittent odor patches are detected. Because of its high speed and sensitivity, the olfactory organ of insects provides a unique opportunity for detection. Insect antennae have been used in the past to detect not only sex pheromones but also chemicals that are relevant to humans, e.g., volatile compounds emanating from cancer cells or toxic and illicit substances. We describe here a protocol for using insect antennae on autonomous robots and present a proof of concept for tracking odor plumes to their source. The global response of olfactory neurons is recorded in situ in the form of electroantennograms (EAGs). Our experimental design, based on a whole insect preparation, allows stable recordings within a working day. In comparison, EAGs on excised antennae have a lifetime of 2 hr. A custom hardware/software interface was developed between the EAG electrodes and a robot. The measurement system resolves individual odor patches up to 10 Hz, which exceeds the time scale of artificial chemical sensors. The efficiency of EAG sensors for olfactory searches is further demonstrated in driving the robot toward a source of pheromone. By using identical olfactory stimuli and sensors as in real animals, our robotic platform provides a direct means for testing biological hypotheses about olfactory coding and search strategies. It may also prove beneficial for detecting other odorants of interests by combining EAGs from different insect species in a bioelectronic nose configuration or using nanostructured gas sensors that mimic insect antennae. PMID:25145980

  9. Odor Enrichment Sculpts the Abundance of Olfactory Bulb Mitral Cells

    PubMed Central

    Johnson, Melissa Cavallin; Biju, K.C.; Hoffman, Joshua; Fadool, Debra Ann

    2013-01-01

    Mitral cells are the primary output cell from the olfactory bulb conveying olfactory sensory information to higher cortical areas. Gene-targeted deletion of the Shaker potassium channel Kv1.3 alters voltage-dependence and inactivation kinetics of mitral cell current properties, which contribute to the “Super-smeller” phenotype observed in Kv1.3-null mice. The goal of the current study was to determine if morphology and density are influenced by mitral cell excitability, olfactory environment, and stage of development. Wildtype (WT) and Kv1.3-null (KO) mice were exposed to a single odorant (peppermint or citralva) for 30 days. Under unstimulated conditions, postnatal day 20 KO mice had more mitral cells than their WT counterparts, but no difference in cell size. Odor-enrichment with peppermint, an olfactory and trigeminal stimulus, decreased the number of mitral cells in three month and one year old mice of both genotypes. Mitral cell density was most sensitive to odor-stimulation in three month WT mice. Enrichment at the same age with citralva, a purely olfactory stimulus, decreased cell density regardless of genotype. There were no significant changes in cell body shape in response to citralva exposure, but the cell area was greater in WT mice and selectively greater in the ventral region of the OB in KO mice. This suggests that trigeminal or olfactory stimulation may modify mitral cell area and density while not impacting cell body shape. Mitral cell density can therefore be modulated by the voltage and sensory environment to alter information processing or olfactory perception. PMID:23485739

  10. Using Insect Electroantennogram Sensors on Autonomous Robots for Olfactory Searches

    PubMed Central

    Martinez, Dominique; Arhidi, Lotfi; Demondion, Elodie; Masson, Jean-Baptiste; Lucas, Philippe

    2014-01-01

    Robots designed to track chemical leaks in hazardous industrial facilities1 or explosive traces in landmine fields2 face the same problem as insects foraging for food or searching for mates3: the olfactory search is constrained by the physics of turbulent transport4. The concentration landscape of wind borne odors is discontinuous and consists of sporadically located patches. A pre-requisite to olfactory search is that intermittent odor patches are detected. Because of its high speed and sensitivity5-6, the olfactory organ of insects provides a unique opportunity for detection. Insect antennae have been used in the past to detect not only sex pheromones7 but also chemicals that are relevant to humans, e.g., volatile compounds emanating from cancer cells8 or toxic and illicit substances9-11. We describe here a protocol for using insect antennae on autonomous robots and present a proof of concept for tracking odor plumes to their source. The global response of olfactory neurons is recorded in situ in the form of electroantennograms (EAGs). Our experimental design, based on a whole insect preparation, allows stable recordings within a working day. In comparison, EAGs on excised antennae have a lifetime of 2 hr. A custom hardware/software interface was developed between the EAG electrodes and a robot. The measurement system resolves individual odor patches up to 10 Hz, which exceeds the time scale of artificial chemical sensors12. The efficiency of EAG sensors for olfactory searches is further demonstrated in driving the robot toward a source of pheromone. By using identical olfactory stimuli and sensors as in real animals, our robotic platform provides a direct means for testing biological hypotheses about olfactory coding and search strategies13. It may also prove beneficial for detecting other odorants of interests by combining EAGs from different insect species in a bioelectronic nose configuration14 or using nanostructured gas sensors that mimic insect antennae15

  11. Early Olfactory Environment Influences Social Behaviour in Adult Octodon degus

    PubMed Central

    Márquez, Natalia; Martínez-Harms, Jaime; Vásquez, Rodrigo A.; Mpodozis, Jorge

    2015-01-01

    We evaluated the extent to which manipulation of early olfactory environment can influence social behaviours in the South American Hystricognath rodent Octodon degus. The early olfactory environment of newborn degus was manipulated by scenting all litter members with eucalyptol during the first month of life. The social behaviour of sexually mature animals (5–7 months old) towards conspecifics was then assessed using a y-maze to compare the response of control (naïve) and treated animals to two different olfactory configurations (experiment 1): (i) a non-familiarized conspecific impregnated with eucalyptol (eucalyptol arm) presented against (ii) a non-familiarized unscented conspecific (control arm). In addition, in dyadic encounters, we assessed the behaviour of control and eucalyptol treated animals towards a non-familiarized conspecific scented with eucalyptol (experiment 2). We found that control subjects explored and spent significantly less time in the eucalyptol arm, indicating neophobic behaviours towards the artificially scented conspecific. Treated subjects explored and spent similar time in both arms of the maze, showing the same interest for both olfactory stimuli presented. During dyadic encounters in experiment 2, an interaction effect between early experience and sex was observed. Control males escaped and avoided their scented partner more frequently than eucalyptol treated male subjects and than females. Both groups did not differ in the exploration of their scented partners, suggesting that avoidance within agonistic context does not relate to neophobic behaviours. Our results suggest that the exposure to eucalyptol during early ontogeny decreases evasive behaviours within an agonistic context as a result of olfactory learning. Altogether, these results indicate that olfactory cues learned in early ontogeny can influence olfactory-guided behaviours in adult degus. PMID:25671542

  12. Functional representation of olfactory impairment in early Alzheimer's disease.

    PubMed

    Förster, Stefan; Vaitl, Andreas; Teipel, Stefan J; Yakushev, Igor; Mustafa, Mona; la Fougère, Christian; Rominger, Axel; Cumming, Paul; Bartenstein, Peter; Hampel, Harald; Hummel, Thomas; Buerger, Katharina; Hundt, Walter; Steinbach, Silke

    2010-01-01

    We used [18F]fluorodeoxyglucose (FDG) PET analysis to determine performance in different olfactory domains of patients with early AD compared to cognitively healthy subjects, and to map the functional metabolic representation of olfactory impairment in the patient sample. A cohort of patients with early AD (n=24), consisting of 6 subjects with incipient AD and 18 subjects with mild AD, and a control group of 28 age-matched non-demented individuals were assembled. Patients and controls were tested for olfactory performance using the "Sniffin' Sticks" test battery [odor identification (ID), discrimination (DIS) and threshold (THR)], while patients additionally underwent resting state FDG-PET. Voxel-wise PET results in the patients were correlated with olfaction scores using the general linear model in SPM5. Patients with early AD showed significantly reduced function in all three olfactory subdomains compared to controls. After controlling for effects due to patients' age, gender, cognitive status, and treating scores in the two other olfactory subdomains as nuisance variables, ID scores correlated with normalized FDG uptake in clusters with peaks in the right superior parietal lobule, fusiform gyrus, inferior frontal gyrus, and precuneus, while DIS scores correlated with a single cluster in the left postcentral cortex, and THR scores correlated with clusters in the right thalamus and cerebellum. The subtests employed in the "Sniffin' Sticks" test battery are complementary indicators of different aspects of olfactory dysfunction in early AD, and support the theory of a parallel organized olfactory system, revealed by FDG-PET correlation analysis. PMID:20847402

  13. Neural representations of novel objects associated with olfactory experience.

    PubMed

    Ghio, Marta; Schulze, Patrick; Suchan, Boris; Bellebaum, Christian

    2016-07-15

    Object conceptual knowledge comprises information related to several motor and sensory modalities (e.g. for tools, how they look like, how to manipulate them). Whether and to which extent conceptual object knowledge is represented in the same sensory and motor systems recruited during object-specific learning experience is still a controversial question. A direct approach to assess the experience-dependence of conceptual object representations is based on training with novel objects. The present study extended previous research, which focused mainly on the role of manipulation experience for tool-like stimuli, by considering sensory experience only. Specifically, we examined the impact of experience in the non-dominant olfactory modality on the neural representation of novel objects. Sixteen healthy participants visually explored a set of novel objects during the training phase while for each object an odor (e.g., peppermint) was presented (olfactory-visual training). As control conditions, a second set of objects was only visually explored (visual-only training), and a third set was not part of the training. In a post-training fMRI session, participants performed an old/new task with pictures of objects associated with olfactory-visual and visual-only training (old) and no training objects (new). Although we did not find any evidence of activations in primary olfactory areas, the processing of olfactory-visual versus visual-only training objects elicited greater activation in the right anterior hippocampus, a region included in the extended olfactory network. This finding is discussed in terms of different functional roles of the hippocampus in olfactory processes. PMID:27083305

  14. No evidence for visual context-dependency of olfactory learning in Drosophila

    NASA Astrophysics Data System (ADS)

    Yarali, Ayse; Mayerle, Moritz; Nawroth, Christian; Gerber, Bertram

    2008-08-01

    How is behaviour organised across sensory modalities? Specifically, we ask concerning the fruit fly Drosophila melanogaster how visual context affects olfactory learning and recall and whether information about visual context is getting integrated into olfactory memory. We find that changing visual context between training and test does not deteriorate olfactory memory scores, suggesting that these olfactory memories can drive behaviour despite a mismatch of visual context between training and test. Rather, both the establishment and the recall of olfactory memory are generally facilitated by light. In a follow-up experiment, we find no evidence for learning about combinations of odours and visual context as predictors for reinforcement even after explicit training in a so-called biconditional discrimination task. Thus, a ‘true’ interaction between visual and olfactory modalities is not evident; instead, light seems to influence olfactory learning and recall unspecifically, for example by altering motor activity, alertness or olfactory acuity.

  15. Effects of olfactory sense on chocolate craving.

    PubMed

    Firmin, Michael W; Gillette, Aubrey L; Hobbs, Taylor E; Wu, Di

    2016-10-01

    In the present study, we assessed the effect of the olfactory sense on chocolate craving in college females. Building on previous research by Kemps and Tiggemann (2013), we hypothesized that a fresh scent would decrease one's craving level for chocolate food. While the precursor study only addressed the decrease of chocolate craving, we also hypothesized that a sweet scent would increase one's craving level for chocolate foods. In the present experiment, participants rated their craving levels after viewing images of chocolate foods and inhaling essential oils: one fresh (Slique™ essence), and one sweet (vanilla). Results supported both of the hypotheses: inhaling a fresh scent reduced females' craving levels; similarly, when a sweet scent was inhaled, the participants' craving levels for chocolate food increased. These findings are particularly beneficial for women seeking weight loss and the findings can be applied in contexts such as weight loss programs, therapy, and maintenance programs, even beyond college settings. The results are particularly useful for helping women regarding stimuli that might serve as triggers for chocolate cravings. PMID:27395410

  16. Farnesol-Detecting Olfactory Neurons in Drosophila

    PubMed Central

    Ronderos, David S.; Lin, Chun-Chieh; Potter, Christopher J.

    2014-01-01

    We set out to deorphanize a subset of putative Drosophila odorant receptors expressed in trichoid sensilla using a transgenic in vivo misexpression approach. We identified farnesol as a potent and specific activator for the orphan odorant receptor Or83c. Farnesol is an intermediate in juvenile hormone biosynthesis, but is also produced by ripe citrus fruit peels. Here, we show that farnesol stimulates robust activation of Or83c-expressing olfactory neurons, even at high dilutions. The CD36 homolog Snmp1 is required for normal farnesol response kinetics. The neurons expressing Or83c are found in a subset of poorly characterized intermediate sensilla. We show that these neurons mediate attraction behavior to low concentrations of farnesol and that Or83c receptor mutants are defective for this behavior. Or83c neurons innervate the DC3 glomerulus in the antennal lobe and projection neurons relaying information from this glomerulus to higher brain centers target a region of the lateral horn previously implicated in pheromone perception. Our findings identify a sensitive, narrowly tuned receptor that mediates attraction behavior to farnesol and demonstrates an effective approach to deorphanizing odorant receptors expressed in neurons located in intermediate and trichoid sensilla that may not function in the classical “empty basiconic neuron” system. PMID:24623773

  17. Spike encoding of olfactory receptor cells.

    PubMed

    Narusuye, Kenji; Kawai, Fusao; Miyachi, Ei-ichi

    2003-08-01

    Olfaction begins with the transduction of the information carried by odorants into electrical signals in olfactory receptor cells (ORCs). The binding of odor molecules to specific receptor proteins on the ciliary surface of ORCs induces the receptor potentials. This initial excitation causes a slow and graded depolarizing voltage change, which is encoded into a train of action potentials. Action potentials of ORCs are generated by voltage-gated Na+ currents and T-type Ca2+ currents in the somatic membrane. Isolated ORCs, which have lost their cilia during the dissociation procedure, are known to exhibit spike frequency accommodation by injecting the steady current. This raises the possibility that somatic ionic channels in ORCs may serve for odor adaptation at the level of spike encoding, although odor adaptation is mainly accomplished by the ciliary transduction machinery. This review discusses current knowledge concerning the mechanisms of spike generation in ORCs. It also reviews how neurotransmitters and hormones modulate ionic currents and action potentials in ORCs. PMID:12871762

  18. Olfactory instruction for fear: neural system analysis

    PubMed Central

    Canteras, Newton S.; Pavesi, Eloisa; Carobrez, Antonio P.

    2015-01-01

    Different types of predator odors engage elements of the hypothalamic predator-responsive circuit, which has been largely investigated in studies using cat odor exposure. Studies using cat odor have led to detailed mapping of the neural sites involved in innate and contextual fear responses. Here, we reviewed three lines of work examining the dynamics of the neural systems that organize innate and learned fear responses to cat odor. In the first section, we explored the neural systems involved in innate fear responses and in the acquisition and expression of fear conditioning to cat odor, with a particular emphasis on the role of the dorsal premammillary nucleus (PMd) and the dorsolateral periaqueductal gray (PAGdl), which are key sites that influence innate fear and contextual conditioning. In the second section, we reviewed how chemical stimulation of the PMd and PAGdl may serve as a useful unconditioned stimulus in an olfactory fear conditioning paradigm; these experiments provide an interesting perspective for the understanding of learned fear to predator odor. Finally, in the third section, we explored the fact that neutral odors that acquire an aversive valence in a shock-paired conditioning paradigm may mimic predator odor and mobilize elements of the hypothalamic predator-responsive circuit. PMID:26300721

  19. A world without the olfactory dimension.

    PubMed

    Tafalla, Marta

    2013-09-01

    This article aims to describe what is it like to perceive reality when suffering from congenital anosmia. Nevertheless, this objective entails a fundamental difficulty. Since I have never had the experience of olfaction, it seems natural to me to live in a world lacking the olfactory dimension; this subjective perception is the only one I know and in consequence it is difficult to describe. For this reason, in recent years I have begun to develop long conversations with other people suffering from congenital anosmia, people who have lost their sense of olfaction in adulthood and also people with a good sense of smell. My goal is to draw a map showing the principal differences that might allow us to develop a systematic comparison. Obviously, this is not an experimental or quantitative scientific procedure, but only a modest attempt to compare personal stories about subjective experiences. It is a philosophical-literary exercise, and does not aim to be anything other than that. But I hope it will help to formulate meaningful questions, which would then need a properly scientific approach. In the first part of this article I want to try to describe how I became aware that other people could smell; and in a second part, I will try to examine the consequences of anosmia in different areas of everyday life: nourishment, relationships with people, own body perception, natural or urban environments perception, time perception, and finally aesthetic appreciation and the implications of living in a world without stench. PMID:23907763

  20. Dynamic properties of Drosophila olfactory electroantennograms.

    PubMed

    Schuckel, Julia; Meisner, Shannon; Torkkeli, Päivi H; French, Andrew S

    2008-05-01

    Time-dependent properties of chemical signals are probably crucially important to many animals, but little is known about the dynamics of chemoreceptors. Behavioral evidence of dynamic sensitivity includes the control of moth flight by pheromone plume structure, and the ability of some blood-sucking insects to detect varying concentrations of carbon dioxide, possibly matched to host breathing rates. Measurement of chemoreceptor dynamics has been limited by the technical challenge of producing controlled, accurate modulation of olfactory and gustatory chemical concentrations over suitably wide ranges of amplitude and frequency. We used a new servo-controlled laminar flow system, combined with photoionization detection of surrogate tracer gas, to characterize electroantennograms (EAG) of Drosophila antennae during stimulation with fruit odorants or aggregation pheromone in air. Frequency response functions and coherence functions measured over a bandwidth of 0-100 Hz were well characterized by first-order low-pass linear filter functions. Filter time constant varied over almost a tenfold range, and was characteristic for each odorant, indicating that several dynamically different chemotransduction mechanisms are present. Pheromone response was delayed relative to fruit odors. Amplitude of response, and consequently signal-to-noise ratio, also varied consistently with different compounds. Accurate dynamic characterization promises to provide important new information about chemotransduction and odorant-stimulated behavior. PMID:18320197

  1. Olfactory assessment using the NIH Toolbox.

    PubMed

    Dalton, Pamela; Doty, Richard L; Murphy, Claire; Frank, Robert; Hoffman, Howard J; Maute, Christopher; Kallen, Michael A; Slotkin, Jerry

    2013-03-12

    The human olfactory system provides us with information about our environment that is critical to our physical and psychological well-being. Individuals can vary widely in their ability to detect, recognize, and identify odors, but still be within the range of normal function. Although several standardized tests of odor identification are available, few specifically address the issues in testing very young children, most of whom are likely to be unfamiliar with many of the odor stimuli used in adult tests and have limited ability to read and identify labels to select among choices. Based on the format of the San Diego Odor Identification Test and the delivery system of the University of Pennsylvania Smell Identification Test, we developed 2 versions of an odor identification test using standardized odor stimuli in a scratch-and-sniff format in which participants match 5 (children) or 9 (adults) odors to pictures representing the odor source. Results from normative testing and validation showed that for most participants, the test could be completed in 5 minutes or less and that the poorer performance among the youngest children and the elderly was consistent with data from tests with larger numbers of items. Expanding on the pediatric version of the test with adult-specific and public health-relevant odors increased the ecological validity of the test and facilitated comparisons of intraindividual performance across developmental stages. PMID:23479541

  2. Olfactory assessment using the NIH Toolbox

    PubMed Central

    Doty, Richard L.; Murphy, Claire; Frank, Robert; Hoffman, Howard J.; Maute, Christopher; Kallen, Michael A.; Slotkin, Jerry

    2013-01-01

    The human olfactory system provides us with information about our environment that is critical to our physical and psychological well-being. Individuals can vary widely in their ability to detect, recognize, and identify odors, but still be within the range of normal function. Although several standardized tests of odor identification are available, few specifically address the issues in testing very young children, most of whom are likely to be unfamiliar with many of the odor stimuli used in adult tests and have limited ability to read and identify labels to select among choices. Based on the format of the San Diego Odor Identification Test and the delivery system of the University of Pennsylvania Smell Identification Test, we developed 2 versions of an odor identification test using standardized odor stimuli in a scratch-and-sniff format in which participants match 5 (children) or 9 (adults) odors to pictures representing the odor source. Results from normative testing and validation showed that for most participants, the test could be completed in 5 minutes or less and that the poorer performance among the youngest children and the elderly was consistent with data from tests with larger numbers of items. Expanding on the pediatric version of the test with adult-specific and public health–relevant odors increased the ecological validity of the test and facilitated comparisons of intraindividual performance across developmental stages. PMID:23479541

  3. PACAP protects against TNFα-induced cell death in olfactory epithelium and olfactory placodal cell lines

    PubMed Central

    Kanekar, Shami; Gandham, Mahendra; Lucero, Mary T

    2010-01-01

    In mouse olfactory epithelium (OE), pituitary adenylate cyclase activating peptide (PACAP) protects against axotomy-induced apoptosis. We used mouse OE to determine whether PACAP protects neurons during exposure to the inflammatory cytokine TNFα. Live slices of neonatal mouse OE were treated with 40 ng/ml TNFα ± 40 nM PACAP for 6 hours and dying cells were live-labeled with 0.5% propidium iodide. TNFα significantly increased the percentage of dying cells while co-incubation with PACAP prevented cell death. PACAP also prevented TNFα-mediated cell death in the olfactory placodal (OP) cell lines, OP6 and OP27. Although OP cell lines express all three PACAP receptors (PAC1, VPAC1,VPAC2), PACAP’s protection of these cells from TNFα was mimicked by the specific PAC1 receptor agonist maxadilan and abolished by the PAC1 antagonist PACAP6–38. Treatment of OP cell lines with blockers or activators of the PLC and AC/MAPKK pathways revealed that PACAP-mediated protection from TNFα involved both pathways. PACAP may therefore function through PAC1 receptors to protect neurons from cell death during inflammatory cytokine release in vivo as would occur upon viral infection or allergic rhinitis-associated injury. PMID:20654718

  4. Olfactory aversive conditioning alters olfactory bulb mitral/tufted cell glomerular odor responses

    PubMed Central

    Fletcher, Max L.

    2012-01-01

    The anatomical organization of receptor neuron input into the olfactory bulb (OB) allows odor information to be transformed into an odorant-specific spatial map of mitral/tufted (M/T) cell glomerular activity at the upper level of the OB. In other sensory systems, neuronal representations of stimuli can be reorganized or enhanced following learning. While the mammalian OB has been shown to undergo experience-dependent plasticity at the glomerular level, it is still unclear if similar representational change occurs within (M/T) cell glomerular odor representations following learning. To address this, odorant-evoked glomerular activity patterns were imaged in mice expressing a GFP-based calcium indicator (GCaMP2) in OB (M/T) cells. Glomerular odor responses were imaged before and after olfactory associative conditioning to aversive foot shock. Following conditioning, we found no overall reorganization of the glomerular representation. Training, however, did significantly alter the amplitudes of individual glomeruli within the representation in mice in which the odor was presented together with foot shock. Further, the specific pairing of foot shock with odor presentations lead to increased responses primarily in initially weakly activated glomeruli. Overall, these results suggest that associative conditioning can enhance the initial representation of odors within the OB by enhancing responses to the learned odor in some glomeruli. PMID:22461771

  5. Differential Contributions of Olfactory Receptor Neurons in a Drosophila Olfactory Circuit

    PubMed Central

    Newquist, Gunnar; Novenschi, Alexandra; Kohler, Donovan

    2016-01-01

    Abstract The ability of an animal to detect, discriminate, and respond to odors depends on the functions of its olfactory receptor neurons (ORNs). The extent to which each ORN, upon activation, contributes to chemotaxis is not well understood. We hypothesized that strong activation of each ORN elicits a different behavioral response in the Drosophila melanogaster larva by differentially affecting the composition of its navigational behavior. To test this hypothesis, we exposed Drosophila larvae to specific odorants to analyze the effect of individual ORN activity on chemotaxis. We used two different behavioral paradigms to analyze the chemotaxis response of larvae to odorants. When tested with five different odorants that elicit strong physiological responses from single ORNs, larval behavioral responses toward each odorant differed in the strength of attraction as well as in the composition of discrete navigational elements, such as runs and turns. Further, behavioral responses to odorants did not correlate with either the strength of odor gradients tested or the sensitivity of each ORN to its cognate odorant. Finally, we provide evidence that wild-type larvae with all ORNs intact exhibit higher behavioral variance than mutant larvae that have only a single pair of functional ORNs. We conclude that individual ORNs contribute differently to the olfactory circuit that instructs chemotactic responses. Our results, along with recent studies from other groups, suggest that ORNs are functionally nonequivalent units. These results have implications for understanding peripheral odor coding. PMID:27570823

  6. Differential Contributions of Olfactory Receptor Neurons in a Drosophila Olfactory Circuit.

    PubMed

    Newquist, Gunnar; Novenschi, Alexandra; Kohler, Donovan; Mathew, Dennis

    2016-01-01

    The ability of an animal to detect, discriminate, and respond to odors depends on the functions of its olfactory receptor neurons (ORNs). The extent to which each ORN, upon activation, contributes to chemotaxis is not well understood. We hypothesized that strong activation of each ORN elicits a different behavioral response in the Drosophila melanogaster larva by differentially affecting the composition of its navigational behavior. To test this hypothesis, we exposed Drosophila larvae to specific odorants to analyze the effect of individual ORN activity on chemotaxis. We used two different behavioral paradigms to analyze the chemotaxis response of larvae to odorants. When tested with five different odorants that elicit strong physiological responses from single ORNs, larval behavioral responses toward each odorant differed in the strength of attraction as well as in the composition of discrete navigational elements, such as runs and turns. Further, behavioral responses to odorants did not correlate with either the strength of odor gradients tested or the sensitivity of each ORN to its cognate odorant. Finally, we provide evidence that wild-type larvae with all ORNs intact exhibit higher behavioral variance than mutant larvae that have only a single pair of functional ORNs. We conclude that individual ORNs contribute differently to the olfactory circuit that instructs chemotactic responses. Our results, along with recent studies from other groups, suggest that ORNs are functionally nonequivalent units. These results have implications for understanding peripheral odor coding. PMID:27570823

  7. The development of the olfactory organs in newly hatched monotremes and neonate marsupials

    PubMed Central

    Schneider, Nanette Yvette

    2011-01-01

    Olfactory cues are thought to play a crucial role in the detection of the milk source at birth in mammals. It has been shown that a marsupial, the tammar wallaby, can detect olfactory cues from its mother's pouch at birth. This study investigates whether the main olfactory and accessory olfactory system are similarly well developed in other marsupials and monotremes at birth/hatching as in the tammar. Sections of the head of various marsupial and two monotreme species were investigated by light microscopy. Both olfactory systems were less well developed in the kowari and Eastern quoll. No olfactory or vomeronasal or terminal nerves could be observed; the main olfactory bulb (MOB) had only two layers while no accessory olfactory bulb or ganglion terminale were visible. All other investigated marsupials and monotremes showed further developed olfactory systems with olfactory, vomeronasal and terminal nerves, a three-layered MOB, and in the marsupials a prominent ganglion terminale. The main olfactory system was further developed than the accessory olfactory system in all species investigated. The olfactory systems were the least developed in species in which the mother's birth position removed most of the difficulty in reaching the teat, placing the neonate directly in the pouch. In monotremes they were the furthest developed as Bowman glands were found underlying the main olfactory epithelium. This may reflect the need to locate the milk field each time they drink as they cannot permanently attach to it, unlike therian mammals. While it still needs to be determined how an odour signal could be further processed in the brain, this study suggests that marsupials and monotremes possess well enough developed olfactory systems to be able to detect an odour cue from the mammary area at birth/hatching. It is therefore likely that neonate marsupials and newly hatched monotremes find their way to the milk source using olfactory cues, as has been previously suggested for the

  8. The development of the olfactory organs in newly hatched monotremes and neonate marsupials.

    PubMed

    Schneider, Nanette Yvette

    2011-08-01

    Olfactory cues are thought to play a crucial role in the detection of the milk source at birth in mammals. It has been shown that a marsupial, the tammar wallaby, can detect olfactory cues from its mother's pouch at birth. This study investigates whether the main olfactory and accessory olfactory system are similarly well developed in other marsupials and monotremes at birth/hatching as in the tammar. Sections of the head of various marsupial and two monotreme species were investigated by light microscopy. Both olfactory systems were less well developed in the kowari and Eastern quoll. No olfactory or vomeronasal or terminal nerves could be observed; the main olfactory bulb (MOB) had only two layers while no accessory olfactory bulb or ganglion terminale were visible. All other investigated marsupials and monotremes showed further developed olfactory systems with olfactory, vomeronasal and terminal nerves, a three-layered MOB, and in the marsupials a prominent ganglion terminale. The main olfactory system was further developed than the accessory olfactory system in all species investigated. The olfactory systems were the least developed in species in which the mother's birth position removed most of the difficulty in reaching the teat, placing the neonate directly in the pouch. In monotremes they were the furthest developed as Bowman glands were found underlying the main olfactory epithelium. This may reflect the need to locate the milk field each time they drink as they cannot permanently attach to it, unlike therian mammals. While it still needs to be determined how an odour signal could be further processed in the brain, this study suggests that marsupials and monotremes possess well enough developed olfactory systems to be able to detect an odour cue from the mammary area at birth/hatching. It is therefore likely that neonate marsupials and newly hatched monotremes find their way to the milk source using olfactory cues, as has been previously suggested for the

  9. Evaluation of Olfactory and Gustatory Function of HIV Infected Women

    PubMed Central

    Kuti, Kehinde Mobolanle; Nwaorgu, Onyekwere George; Akinyinka, Olusina Olusegun

    2016-01-01

    Background. Compliance with medication requires good sense of smell and taste. Objective. To evaluate the olfactory and gustatory function of HIV infected women in Ibadan, Nigeria. Methods. A case control study of women comprising 83 HIV infected women and 79 HIV uninfected women. Subjective self-rating of taste and smell function was by visual analogue scale. Olfactory function was measured via olfactory threshold (OT), olfactory discrimination (OD), olfactory identification (OI), and TDI using “Sniffin' sticks” kits and taste function (Total Taste Strips (TTS) score) measurement was by taste strips. Results. The mean age of the HIV infected women was 43.67 years ± 10.72 and control was 41.48 years ± 10.99. There was no significant difference in the self-reported assessment of smell (p = 0.67) and taste (p = 0.84) of HIV infected and uninfected women. Although the mean OT, OD, OI, TDI, and TTS scores of HIV infected and uninfected women were within the normosmic and normogeusic values, the values were significantly higher in the controls (p < 0.05). Hyposmia was in 39.7% of subjects and 12.6% of controls while hypogeusia was in 15.7% of subjects and 1.3% of controls. Conclusions. Hyposmia and hypogeusia are commoner among the HIV infected women than the HIV uninfected women and the risk increases with an increased duration of highly active antiretroviral therapy. PMID:27047688

  10. From chemical neuroanatomy to an understanding of the olfactory system

    PubMed Central

    Oboti, L.; Peretto, P.; De Marchis, S.; Fasolo, A.

    2011-01-01

    The olfactory system of mammals is the appropriate model for studying several aspects of neuronal physiology spanning from the developmental stage to neural network remodelling in the adult brain. Both the morphological and physiological understanding of this system were strongly supported by classical histochemistry. It is emblematic the case of the Olfactory Marker Protein (OMP) staining, the first, powerful marker for fully differentiated olfactory receptor neurons and a key tool to investigate the dynamic relations between peripheral sensory epithelia and central relay regions given its presence within olfactory fibers reaching the olfactory bulb (OB). Similarly, the use of thymidine analogues was able to show neurogenesis in an adult mammalian brain far before modern virus labelling and lipophilic tracers based methods. Nowadays, a wealth of new histochemical techniques combining cell and molecular biology approaches is available, giving stance to move from the analysis of the chemically identified circuitries to functional research. The study of adult neurogenesis is indeed one of the best explanatory examples of this statement. After defining the cell types involved and the basic physiology of this phenomenon in the OB plasticity, we can now analyze the role of neurogenesis in well testable behaviours related to socio-chemical communication in rodents. PMID:22297441

  11. Assessing olfactory performance in an Old World primate, Macaca nemestrina.

    PubMed

    Hübener, F; Laska, M

    1998-06-15

    The present study demonstrates that an operant conditioning paradigm, originally designed for assessing olfactory performance in a small New World primate, the squirrel monkey, can successfully be adapted for use with a large Old World primate, the pigtail macaque. Using a task designed to simulate olfactory-guided foraging behavior, based on multiple discrimination of simultaneously presented odor stimuli, we could show that Macaca nemestrina is able to learn to discriminate between objects on the basis of odor cues. Moreover, they could readily transfer to new S+ and S- stimuli and could remember the significance of previously learned odor stimuli even after a 3-week break. Furthermore, we could show that this method is suitable for obtaining reliable measures of olfactory sensitivity. The few modifications of the original method employed here did not affect essential features such as the mode of stimulus presentation (odorized paper strips attached to manipulation objects) and the choice criterion (opening or rejecting the odorized manipulation objects), thus for the first time enabling valid interspecific comparisons of olfactory capabilities between a catarrhine and a platyrrhine primate species. Our results indicate that M. nemestrina and Saimiri sciureus are similar with regard to several measures of olfactory performance, such as speed of initial task acquisition and ability to master transfer tasks as well as their sensitivity to a food-related odorant. PMID:9761227

  12. Olfactory sensitivity to bile acids in salmonid fishes.

    PubMed

    Døving, K B; Selset, R; Thommesen, G

    1980-02-01

    Monopolar DC-recordings were made simultaneously from two positions on the olfactory bulb of chars (Salmo alpinus L.) and graylings (Thymallus thymallu L.) using bile acids and amino acids as olfactory stimulants. The bile acids induced responses with characteristic spatial differences from those of the amino acids. The distribution of responses to bile acids indicated a neuronal activity in the medial part of the bulb. In contrast, amino acids elicit responses in the lateral part of the bulb. Taurine conjugated bile acids were up to 1 000 times more potent as olfactory stimuli than methionine. The results suggest that olfactory receptors are of two types, one responding to bile acids, the other to amino acids. 3 -alpha-hydroxysteroids are released from the fish into the water in quantities that suffice for detection by their olfactory system. The odorant potency of the bile acids, their evolutionary history and variability, together with their renowned adherent properties made them interesting candidates for specific signals in the acquatic environment. PMID:7376910

  13. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila

    PubMed Central

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I.; Angel, Cristian; Campusano, Jorge M.

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila. PMID:26380118

  14. Olfactory insights into sleep-dependent learning and memory.

    PubMed

    Shanahan, Laura K; Gottfried, Jay A

    2014-01-01

    Sleep is pervasive throughout most of the animal kingdom-even jellyfish and honeybees do it. Although the precise function of sleep remains elusive, research increasingly suggests that sleep plays a key role in memory consolidation. Newly formed memories are highly labile and susceptible to interference, and the sleep period offers an optimal window in which memories can be strengthened or modified. Interestingly, a small but growing research area has begun to explore the ability of odors to modulate memories during sleep. The unique anatomical organization of the olfactory system, including its intimate overlap with limbic systems mediating emotion and memory, and the lack of a requisite thalamic intermediary between the nasal periphery and olfactory cortex, suggests that odors may have privileged access to the brain during sleep. Indeed, it has become clear that the long-held assumption that odors have no impact on the sleeping brain is no longer tenable. Here, we summarize recent studies in both animal and human models showing that odor stimuli experienced in the waking state modulate olfactory cortical responses in sleep-like states, that delivery of odor contextual cues during sleep can enhance declarative memory and extinguish fear memory, and that olfactory associative learning can even be achieved entirely within sleep. Data reviewed here spotlight the emergence of a new research area that should hold far-reaching implications for future neuroscientific investigations of sleep, learning and memory, and olfactory system function. PMID:24767488

  15. From chemical neuroanatomy to an understanding of the olfactory system.

    PubMed

    Oboti, L; Peretto, P; Marchis, S De; Fasolo, A

    2011-01-01

    The olfactory system is the appropriate model for studying several aspects of neuronal physiology spanning from the developmental stage to neural network remodelling in the adult brain. Both the morphological and physiological understanding of this system were strongly supported by classical histochemistry. It is emblematic the case of the Olfactory Marker Protein (OMP) staining, the first, powerful marker for fully differentiated olfactory receptor neurons and a key tool to investigate the dynamic relations between peripheral sensory epithelia and central relay regions given its presence within olfactory fibers reaching the olfactory bulb (OB). Similarly, the use of thymidine analogues was able to show neurogenesis in an adult mammalian brain far before modern virus labelling and lipophilic tracers based methods. Nowadays, a wealth of new histochemical techniques combining cell and molecular biology approaches is available, giving stance to move from the analysis of the chemically identified circuitries to functional research. The study of adult neurogenesis is indeed one of the best explanatory examples of this statement. After defining the cell types involved and the basic physiology of this phenomenon in the OB plasticity, we can now analyze the role of neurogenesis in well testable behaviours related to socio-chemical communication in rodents. PMID:22297441

  16. Disruption of Olfactory Receptor Neuron Patterning in Scutoid mutant Drosophila

    PubMed Central

    Tom, W.; de Bruyne, M.; Haehnel, M.; Carlson, J. R.; Ray, A.

    2010-01-01

    Olfactory neurons show an extreme diversity of cell types with each cell usually expressing one member from a large family of 60 Odorant receptor (Or)genes in Drosophila. Little is known about the developmental processes and transcription factors that generate this stereotyped pattern of cellular diversity. Here we investigate the molecular and cellular basis of defects in olfactory system function in an unusual dominant mutant, Scutoid. We show that the defects map to olfactory neurons innervating a specific morphological class of sensilla on the antenna, large basiconics. Molecular analysis indicates defects in neurons expressing specific classes of receptor genes that map to large basiconic sensilla. Previous studies have shown that in Scutoid mutants the coding region of the transcriptional repressor snail is translocated near the no-ocelli promoter, leading to misexpression of snail in the developing eye-antenna disc. We show that ectopic expression of snail in developing olfactory neurons leads to severe defects in neurons of the antennal large basiconics supporting the model that the dominant olfactory phenotype in Scutoid is caused by misexpression of snail. PMID:20875862

  17. Properties and mechanisms of olfactory learning and memory

    PubMed Central

    Tong, Michelle T.; Peace, Shane T.; Cleland, Thomas A.

    2014-01-01

    Memories are dynamic physical phenomena with psychometric forms as well as characteristic timescales. Most of our understanding of the cellular mechanisms underlying the neurophysiology of memory, however, derives from one-trial learning paradigms that, while powerful, do not fully embody the gradual, representational, and statistical aspects of cumulative learning. The early olfactory system—particularly olfactory bulb—comprises a reasonably well-understood and experimentally accessible neuronal network with intrinsic plasticity that underlies both one-trial (adult aversive, neonatal) and cumulative (adult appetitive) odor learning. These olfactory circuits employ many of the same molecular and structural mechanisms of memory as, for example, hippocampal circuits following inhibitory avoidance conditioning, but the temporal sequences of post-conditioning molecular events are likely to differ owing to the need to incorporate new information from ongoing learning events into the evolving memory trace. Moreover, the shapes of acquired odor representations, and their gradual transformation over the course of cumulative learning, also can be directly measured, adding an additional representational dimension to the traditional metrics of memory strength and persistence. In this review, we describe some established molecular and structural mechanisms of memory with a focus on the timecourses of post-conditioning molecular processes. We describe the properties of odor learning intrinsic to the olfactory bulb and review the utility of the olfactory system of adult rodents as a memory system in which to study the cellular mechanisms of cumulative learning. PMID:25071492

  18. Quantum Dot Distribution in the Olfactory Epithelium After Nasal Delivery

    NASA Astrophysics Data System (ADS)

    Garzotto, D.; De Marchis, S.

    2010-10-01

    Nanoparticles are used in a wide range of human applications from industrial to bio-medical fields. However, the unique characteristics of nanoparticles, such as the small size, large surface area per mass and high reactivity raises great concern on the adverse effects of these particles on ecological systems and human health. There are several pioneer studies reporting translocation of inhaled particulates to the brain through a potential neuronal uptake mediated by the olfactory nerve (1, 2, 3). However, no direct evidences have been presented up to now on the pathway followed by the nanoparticles from the nose to the brain. In addition to a neuronal pathway, nanoparticles could gain access to the central nervous system through extracellular pathways (perineuronal, perivascular and cerebrospinal fluid paths). In the present study we investigate the localization of intranasally delivered fluorescent nanoparticles in the olfactory epithelium. To this purpose we used quantum dots (QDs), a model of innovative fluorescent semiconductor nanocrystals commonly used in cell and animal biology (4). Intranasal treatments with QDs were performed acutely on adult CD1 mice. The olfactory epithelium was collected and analysed by confocal microscopy at different survival time after treatment. Data obtained indicate that the neuronal components of the olfactory epithelium are not preferentially involved in QDs uptake, thus suggesting nanoparticles can cross the olfactory epithelium through extracellular pathways.

  19. Predicting olfactory receptor neuron responses from odorant structure

    PubMed Central

    Schmuker, Michael; de Bruyne, Marien; Hähnel, Melanie; Schneider, Gisbert

    2007-01-01

    Background Olfactory receptors work at the interface between the chemical world of volatile molecules and the perception of scent in the brain. Their main purpose is to translate chemical space into information that can be processed by neural circuits. Assuming that these receptors have evolved to cope with this task, the analysis of their coding strategy promises to yield valuable insight in how to encode chemical information in an efficient way. Results We mimicked olfactory coding by modeling responses of primary olfactory neurons to small molecules using a large set of physicochemical molecular descriptors and artificial neural networks. We then tested these models by recording in vivo receptor neuron responses to a new set of odorants and successfully predicted the responses of five out of seven receptor neurons. Correlation coefficients ranged from 0.66 to 0.85, demonstrating the applicability of our approach for the analysis of olfactory receptor activation data. The molecular descriptors that are best-suited for response prediction vary for different receptor neurons, implying that each receptor neuron detects a different aspect of chemical space. Finally, we demonstrate that receptor responses themselves can be used as descriptors in a predictive model of neuron activation. Conclusion The chemical meaning of molecular descriptors helps understand structure-response relationships for olfactory receptors and their "receptive fields". Moreover, it is possible to predict receptor neuron activation from chemical structure using machine-learning techniques, although this is still complicated by a lack of training data. PMID:17880742

  20. Classical Olfactory Conditioning in the Oriental Fruit Fly, Bactrocera dorsalis

    PubMed Central

    Zeng, Xin Nian

    2015-01-01

    The oriental fruit fly, Bactrocera dorsalis, is a serious pest of fruits and vegetables. Methyl eugenol (ME), a male attractant, is used to against this fly by mass trapping. Control effect may be influenced by learning, which could modify the olfactory response of the fly to this attractant. To collect the behavioral evidence, studies on the capability of this fly for olfactory learning are necessary. We investigated olfactory learning in male flies with a classical olfactory conditioning procedure using restrained individuals under laboratory conditions. The acquisition of the proboscis extension reflex was used as the criterion for conditioning. A high conditioned response level was found in oriental fruit flies when an odor was presented in paired association with a sucrose reward but not when the odor and sucrose were presented unpaired. We also found that the conditioning performance was influenced by the odor concentration, intertrial interval, and starvation time. A slight sensitization elicited by imbibing sucrose was observed. These results indicate that oriental fruit flies have a high capacity to form an olfactory memory as a result of classical conditioning. PMID:25837420

  1. Bilateral Synchronous Ectopic Ethmoid Sinus Olfactory Neuroblastoma: A Case Report

    PubMed Central

    Leon-Soriano, Elena; Alfonso, Carolina; Yebenes, Laura; Garcia-Polo, Julio; Lassaletta, Luis; Gavilan, Javier

    2016-01-01

    Patient: Male, 41 Final Diagnosis: Olfactory neuroblastoma Symptoms: Left nasal obstruction • occasional left epistaxis • headache Medication: None Clinical Procedure: Nasal endoscopic examination • neck palpation • CT • bilateral endoscopic resection • MRI • PET-CT • postoperative radiotherapy Specialty: Otolaryngology Objective: Unusual clinical course Background: Olfactory neuroblastoma (ONB), also known as esthesioneuroblastoma, is a rare malignant head and neck cancer thought to originate from the olfactory epithelium. It typically invades contiguous structures at presentation. We report a very rare case of multifocal and ectopic ONB. Case Report: A 41-year-old man presented with left nasal obstruction and occasional left epistaxis associated with headache. Endoscopic examination of the nasal cavities and computed tomography suggested bilateral polypoid masses. Histopathological diagnosis after endoscopic resection established bilateral olfactory neuroblastoma of the ethmoid sinuses. The patient received postoperative radiotherapy. He remains free of disease 4 years after treatment. Conclusions: To the best of our knowledge this is the second documented case of multifocal ectopic olfactory neuroblastoma. Clinicians should consider ONB in the differential diagnosis of bilateral synchronous nasal and paranasal masses to avoid delayed diagnosis. Endoscopic resection of ONB could be an option in selected cases. PMID:27097989

  2. Olfactory functioning in early multiple sclerosis: Sniffin’ Sticks Test study

    PubMed Central

    Batur Caglayan, Hale Z; Irkec, Ceyla; Nazliel, Bijen; Akyol Gurses, Aslı; Capraz, Irem

    2016-01-01

    Introduction Previous studies have shown that olfactory functioning is affected by multiple sclerosis (MS). This study assessed the level of the olfactory impairment in early MS by using the Sniffin’ Sticks Test. Methods This study included 30 patients with MS and 30 healthy controls. We collected demographic and clinical data from participants and administered the Sniffin’ Sticks Test. Results We found no differences between the MS and control groups in odor discrimination, odor identification, and threshold discrimination identification scores, but odor threshold (OT) scores were higher in the control group than in the MS group (P=0.49). In addition, we did not find any correlation between MS patients’ olfactory test scores and their scores on the Mini–Mental State Examination (MMSE), Expanded Disability Status Scale (EDSS), disease duration, history of optic neuritis, or being on immunomodulatory therapy. Conclusion In recent studies, odor threshold impairment seemed to be the most striking finding in patients with MS. Although the present study found a mild alteration in odor threshold, olfactory dysfunction appears to be a consequence of neurodegeneration in the higher order olfactory brain regions, which is thought to be a time-dependent process. PMID:27621629

  3. The effect of microinjections of amphetamine into the neostriatum and the nucleus accumbens on self-stimulation behaviour.

    PubMed

    Broekkamp, C L; Pijnenburg, A J; Cools, A R; Van Rossum, J M

    1975-05-28

    The effect of micro-injections of dexamphetamine chloride into the neostriatum, the nucleus accumbens, the anterior hypothalamus, and the ventricular system on self-stimulation with electrodes in the ventral tegmentum was studied. Unilateral injections of 10 mug into the anterior hypothalamus produced no effect. Injections into the neostriatum tended to depress the self-stimulation rate, whereas injections into the nucleus accumbens increased the rate markedly. Bilateral injections (2 times 2.5 mug and 2 times 5 mug amph.) into the nucleus accumbens were more effective than unilateral injections and were as effective as systemic injections of 1 mg/kg amphetamine (i.p.). Bilateral injections into the neostriatum also increased the self-stimulation rate. Injections of 10 mug into the ventricular system resulted in a smaller increase which was not statistically significant. These results are discussed in relation to the involvement of the dopaminergic system in the maintenance of self-stimulation behaviour. PMID:1161977

  4. Infection of male rats with Toxoplasma gondii results in enhanced delay aversion and neural changes in the nucleus accumbens core

    PubMed Central

    Tan, Donna; Soh, Linda Jing Ting; Lim, Lee Wei; Daniel, Tan Chia Wei; Zhang, Xiaodong; Vyas, Ajai

    2015-01-01

    Rats infected with the protozoan parasite Toxoplasma gondii exhibit reduced avoidance of predator odours. This behavioural change is likely to increase transmission of the parasite from rats to cats. Here, we show that infection with T. gondii increases the propensity of the infected rats to make more impulsive choices, manifested as delay aversion in an intertemporal choice task. Concomitantly, T. gondii infection causes reduction in dopamine content and neuronal spine density of the nucleus accumbens core, but not of the nucleus accumbens shell. These results are consistent with a role of the nucleus accumbens dopaminergic system in mediation of choice impulsivity and goal-directed behaviours. Our observations suggest that T. gondii infection in rats causes a syndromic shift in related behavioural constructs of innate aversion and making foraging decisions. PMID:25994671

  5. Ultrastructural localization of tyrosine hydroxylase in tree shrew nucleus accumbens core and shell

    PubMed Central

    McCollum, Lesley A.; Roberts, Rosalinda C.

    2014-01-01

    Many behavioral, physiological, and anatomical studies utilize animal models to investigate human striatal pathologies. Although commonly used, rodent striatum may not present the optimal animal model for certain studies due to a lesser morphological complexity than that of non-human primates, which are increasingly restricted in research. As an alternative, the tree shrew could provide a beneficial animal model for studies of the striatum. The gross morphology of the tree shrew striatum resembles that of primates, with separation of the caudate and putamen by the internal capsule. The neurochemical anatomy of the ventral striatum, specifically the nucleus accumbens, has never been examined. This major region of the limbic system plays a role in normal physiological functioning and is also an area of interest for human striatal disorders. The current study uses immunohistochemistry of calbindin and tyrosine hydroxylase (TH) to determine the ultrastructural organization of the nucleus accumbens core and shell of the tree shrew (Tupaia glis belangeri). Stereology was used to quantify the ultrastructural localization of TH, which displays weaker immunoreactivity in the core and denser immunoreactivity in the shell. In both regions, synapses with TH-immunoreactive axon terminals were primarily symmetric and showed no preference for targeting dendrites versus dendritic spines. The results were compared to previous ultrastructural studies of TH and dopamine in rat and monkey nucleus accumbens. Tree shrew and monkey show no preference for the postsynaptic target in the shell, in contrast to rats which show a preference for synapsing with dendrites. Tree shrews have a ratio of asymmetric to symmetric synapses formed by TH-immunoreactive terminals that is intermediate between rats and monkey. The findings from this study support the tree shrew as an alternative model for studies of human striatal pathologies. PMID:24769226

  6. Blood supply of the olfactory nerve. Meningeal relationships and surgical relevance.

    PubMed

    Favre, J J; Chaffanjon, P; Passagia, J G; Chirossel, J P

    1995-01-01

    The authors report the results of a series of dissections and anatomic sections of the fronto-basal region of the brain and of the anterior cranial fossa in human cadavers. The constant presence of an arachnoidal cistern above the olfactory nerve was verified. The arachnoid separates from the pial membrane and forms a bridge with the ventral part of the olfactory bulb and tract, from the lateral edge of the olfactory sulcus to the medial edge of the gyrus rectus. The cistern is wide in its anterior portion, between the gyrus rectus and the olfactory bulb, and is reduced to a virtual slit in its posterior portion where the tract is lodged in the olfactory sulcus. The olfactory nerve can be separated without damaging fronto-basal arachnoidial adhesions over several centimeters. Dissection of this region after intravascular injection of colored media shows the constant presence of an artery destined to the olfactory bulb and tract. It originates either from the lateral surface of the anterior cerebral a. (segment A2), or from the medial fronto-basal a., and consistently provides terminal branches in front of the olfactory trigone in the medial olfactory sulcus. At their ventral extremity, the olfactory structures are therefore vascularised independently for several centimeters, from the lower face of the frontal lobe. The independent vascularisation of the olfactory nerve, the tenuous and easily detachable adhesions, and the actual presence of a true arachnoidal cistern all contribute to enabling surgical techniques which conserve olfactory function during anterior approaches. PMID:7482150

  7. Intrahypothalamic injection of cannabidiol increases the extracellular levels of adenosine in nucleus accumbens in rats.

    PubMed

    Mijangos-Moreno, Stephanie; Poot-Aké, Alwin; Arankowsky-Sandoval, Gloria; Murillo-Rodríguez, Eric

    2014-07-01

    Cannabidiol (CBD) is a constituent of Cannabis sativa that promotes wakefulness as well as enhances endogenous levels of wake-related neurotransmitters, including dopamine. However, at this date, the effects of CBD on the sleep-inducing molecules, such as adenosine (AD), are unknown. Here, we report that intrahypothalamic injection of CBD (10μg/1μL) increases the extracellular levels of AD collected from nucleus accumbens. Furthermore, the pharmacodynamic of this drug shows that effects on the contents of AD last 2h post-injection. These preliminary findings suggest that CBD promotes the endogenous accumulation of AD. PMID:24800644

  8. Cholecystokinin release mediated by 5-HT3 receptors in rat cerebral cortex and nucleus accumbens.

    PubMed Central

    Paudice, P.; Raiteri, M.

    1991-01-01

    1. The effects of 5-hydroxytryptamine (5-HT) on the release of cholexystokinin-like immunoreactivity (CCK-LI) were examined in synaptosomes prepared from rat cerebral cortex and nucleus accumbens and depolarized by superfusion with 15 mM KCl. 2. In both areas 5-HT, tested between 0.1 and 100 nM, increased the calcium-dependent, depolarization-evoked CCK-LI release in a concentration-related manner. The concentration-response curves did not differ significantly between the two brain areas (EC50: 0.4 +/- 0.045 nM and 0.48 +/- 0.053 nM, respectively, in cortical and n. accumbens synaptosomes; maximal effect: about 60% at 10 nM 5-HT). 3. The 5-HT1/5-HT2 receptor antagonist methiothepin (300 nM) did not affect the CCK-LI release elicited by 10 nM 5-HT. However, the effects of 10 nM 5-HT were antagonized in a concentration-dependent manner by the 5-HT3 receptor antagonists (3 alpha-tropanyl)-1H-indole-3-carboxylic acid ester (ICS 205-930; 0.1-100 nM; IC50: 3.56 +/- 0.42 nM in the cortex and 3.90 +/- 0.50 nM in the n. accumbens) and ondasetron (IC50: 8.15 +/- 0.73 nM in the cerebral cortex). 5-HT (10 nM) was also strongly antagonized by 100 nM 1 alpha H, 3 alpha 5 alpha H-tropan-3-yl-3,5-dichlorobenzoate (MDL 72222) another blocker of the 5-HT3 receptor. Moreover, the 5-HT3 receptor agonist 1-phenylbiguanide (tested in the cerebral cortex between 0.1 and 100 nM) enhanced CCK-LI release in a manner almost identical to that of 5-HT (EC50 = 0.64 +/- 0.071 nM). 4. It is concluded that 5-HT can act as a potent releaser of CCK-LI in rat cerebrocortex and nucleus accumbens through the activation of receptors of the 5-HT3 type situated on the CCK-releasing terminals. This interaction may provide a rationale for the clinical development of both 5-HT3 and CCK receptor antagonists as novel anxiolytic drugs. PMID:1933141

  9. The dorsomedial shell of the nucleus accumbens facilitates cocaine-induced locomotor activity during the induction of behavioral sensitization.

    PubMed

    Todtenkopf, M S; Carreiras, T; Melloni, R H; Stellar, J R

    2002-04-01

    The mesolimbic dopamine system has been intensely studied as the neural circuit mediating the locomotor response to psychostimulants and behavioral sensitization. In particular, the dopaminergic innervation of the nucleus accumbens has been implicated as a site responsible for the manifestations of behavioral sensitization. Previous studies have demonstrated an augmented release of dopamine in the nucleus accumbens upon a systemic injection of a psychostimulant. In addition, alterations in the dopaminergic innervation patterns in this brain region have been demonstrated in animals that received repeated injections of cocaine. Furthermore, lesions of projection sites that have terminations in the nucleus accumbens have demonstrated alterations in psychostimulant induced locomotion, both acutely, as well as in sensitization paradigms. Since dopamine in the nucleus accumbens is believed to regulate several excitatory amino acid inputs, the present study examined the effects of a localized electrolytic lesion in the dorsomedial shell of the nucleus accumbens in order to better understand the functional role this brain region has in behavioral sensitization. All animals received bi-daily injections of 15 mg/kg i.p. cocaine. Only those demonstrating behavioral sensitization after a subsequent challenge dose were included in the analysis. Following acute exposure to cocaine, lesioned animals did not show any difference in their locomotor response when compared with sham controls. However, after repeated exposure to cocaine, sensitized animals demonstrated a significant attenuation in locomotor behavior when compared with sensitized sham controls. This decrease in horizontal locomotion persisted 2 days into withdrawal, yet dissipated in the sensitized animals that were challenged 2 weeks following their last injection. The data presented here demonstrate that the dorsomedial shell of the nucleus accumbens plays an important role in the initial stages of behavioral

  10. Enhanced self-administration of the CB1 receptor agonist WIN55,212-2 in olfactory bulbectomized rats: evaluation of possible serotonergic and dopaminergic underlying mechanisms

    PubMed Central

    Amchova, Petra; Kucerova, Jana; Giugliano, Valentina; Babinska, Zuzana; Zanda, Mary T.; Scherma, Maria; Dusek, Ladislav; Fadda, Paola; Micale, Vincenzo; Sulcova, Alexandra; Fratta, Walter; Fattore, Liana

    2013-01-01

    Depression has been associated with drug consumption, including heavy or problematic cannabis use. According to an animal model of depression and substance use disorder comorbidity, we combined the olfactory bulbectomy (OBX) model of depression with intravenous drug self-administration procedure to verify whether depressive-like rats displayed altered voluntary intake of the CB1 receptor agonist WIN55,212-2 (WIN, 12.5 μg/kg/infusion). To this aim, olfactory-bulbectomized (OBX) and sham-operated (SHAM) Lister Hooded rats were allowed to self-administer WIN by lever-pressing under a continuous [fixed ratio 1 (FR-1)] schedule of reinforcement in 2 h daily sessions. Data showed that both OBX and SHAM rats developed stable WIN intake; yet, responses in OBX were constantly higher than in SHAM rats soon after the first week of training. In addition, OBX rats took significantly longer to extinguish the drug-seeking behavior after vehicle substitution. Acute pre-treatment with serotonin 5HT1B receptor agonist, CGS-12066B (2.5–10 mg/kg), did not significantly modify WIN intake in OBX and SHAM Lister Hooded rats. Furthermore, acute pre-treatment with CGS-12066B (10 and 15 mg/kg) did not alter responses in parallel groups of OBX and SHAM Sprague Dawley rats self-administering methamphetamine under higher (FR-2) reinforcement schedule with nose-poking as operandum. Finally, dopamine levels in the nucleus accumbens (NAc) of OBX rats did not increase in response to a WIN challenge, as in SHAM rats, indicating a dopaminergic dysfunction in bulbectomized rats. Altogether, our findings suggest that a depressive-like state may alter cannabinoid CB1 receptor agonist-induced brain reward function and that a dopaminergic rather than a 5-HT1B mechanism is likely to underlie enhanced WIN self-administration in OBX rats. PMID:24688470

  11. Anosmin-1a is required for fasciculation and terminal targeting of olfactory sensory neuron axons in the zebrafish olfactory system.

    PubMed

    Yanicostas, Constantin; Herbomel, Eric; Dipietromaria, Aurélie; Soussi-Yanicostas, Nadia

    2009-11-27

    The KAL-1 gene underlies the X-linked form of Kallmann syndrome (KS), a neurological disorder that impairs the development of the olfactory and GnRH systems. KAL-1 encodes anosmin-1, a cell matrix protein that shows cell adhesion, neurite outgrowth, and axon-guidance and -branching activities. We used zebrafish embryos as model to better understand the role of this protein during olfactory system (OS) development. First, we detected the protein in olfactory sensory neurons from 22 h post-fertilization (hpf) onward, i.e. prior their pioneer axons reached presumptive olfactory bulbs (OBs). We found that anosmin-1a depletion impaired the fasciculation of olfactory axons and their terminal targeting within OBs. Last, we showed that kal1a inactivation induced a severe decrease in the number of GABAergic and dopaminergic OB neurons. Though the phenotypes induced following anosmin-1a depletion in zebrafish embryos did not match precisely the defects observed in KS patients, our results provide the first demonstration of a direct requirement for anosmin-1 in OS development in vertebrates and stress the role of OB innervation on OB neuron differentiation. PMID:19464344

  12. Inhibition of Olfactory Receptor Neuron Input to Olfactory Bulb Glomeruli Mediated by Suppression of Presynaptic Calcium Influx

    PubMed Central

    Wachowiak, Matt; McGann, John P.; Heyward, Philip M.; Shao, Zuoyi; Puche, Adam C.; Shipley, Michael T.

    2005-01-01

    We investigated the cellular mechanism underlying presynaptic regulation of olfactory receptor neuron (ORN) input to the mouse olfactory bulb using optical-imaging techniques that selectively report activity in the ORN pre-synaptic terminal. First, we loaded ORNs with calcium-sensitive dye and imaged stimulus-evoked calcium influx in a slice preparation. Single olfactory nerve shocks evoked rapid fluorescence increases that were largely blocked by the N-type calcium channel blocker ω-conotoxin GVIA. Paired shocks revealed a long-lasting suppression of calcium influx with ~40% suppression at 400-ms interstimulus intervals and a recovery time constant of ~450 ms. Blocking activation of postsynaptic olfactory bulb neurons with APV/CNQX reduced this suppression. The GABAB receptor agonist baclofen inhibited calcium influx, whereas GABAB antagonists reduced paired-pulse suppression without affecting the response to the conditioning pulse. We also imaged transmitter release directly using a mouse line that expresses synaptopHluorin selectively in ORNs. We found that the relationship between calcium influx and transmitter release was superlinear and that paired-pulse suppression of transmitter release was reduced, but not eliminated, by APV/CNQX and GABAB antagonists. These results demonstrate that primary olfactory input to the CNS can be presynaptically regulated by GABAergic interneurons and show that one major intracellular pathway for this regulation is via the suppression of calcium influx through N-type calcium channels in the pre-synaptic terminal. This mechanism is unique among primary sensory afferents. PMID:15917320

  13. Decoding of Context-Dependent Olfactory Behavior in Drosophila.

    PubMed

    Badel, Laurent; Ohta, Kazumi; Tsuchimoto, Yoshiko; Kazama, Hokto

    2016-07-01

    Odor information is encoded in the activity of a population of glomeruli in the primary olfactory center. However, how this information is decoded in the brain remains elusive. Here, we address this question in Drosophila by combining neuronal imaging and tracking of innate behavioral responses. We find that the behavior is accurately predicted by a model summing normalized glomerular responses, in which each glomerulus contributes a specific, small amount to odor preference. This model is further supported by targeted manipulations of glomerular input, which biased the behavior. Additionally, we observe that relative odor preference changes and can even switch depending on the context, an effect correctly predicted by our normalization model. Our results indicate that olfactory information is decoded from the pooled activity of a glomerular repertoire and demonstrate the ability of the olfactory system to adapt to the statistics of its environment. PMID:27321924

  14. Parvalbumin-expressing interneurons linearly control olfactory bulb output.

    PubMed

    Kato, Hiroyuki K; Gillet, Shea N; Peters, Andrew J; Isaacson, Jeffry S; Komiyama, Takaki

    2013-12-01

    In the olfactory bulb, odor representations by principal mitral cells are modulated by local inhibitory circuits. While dendrodendritic synapses between mitral and granule cells are typically thought to be a major source of this modulation, the contributions of other inhibitory neurons remain unclear. Here we demonstrate the functional properties of olfactory bulb parvalbumin-expressing interneurons (PV cells) and identify their important role in odor coding. Using paired recordings, we find that PV cells form reciprocal connections with the majority of nearby mitral cells, in contrast to the sparse connectivity between mitral and granule cells. In vivo calcium imaging in awake mice reveals that PV cells are broadly tuned to odors. Furthermore, selective PV cell inactivation enhances mitral cell responses in a linear fashion while maintaining mitral cell odor preferences. Thus, dense connections between mitral and PV cells underlie an inhibitory circuit poised to modulate the gain of olfactory bulb output. PMID:24239124

  15. Early Olfactory Processing in Drosophila: Mechanisms and Principles

    PubMed Central

    Wilson, Rachel I.

    2014-01-01

    In the olfactory system of Drosophila melanogaster, it is relatively straightforward to make in vivo measurements of activity in neurons corresponding to targeted processing. This, together with the numerical simplicity of the Drosophila olfactory system, has produced rapid gains in our understanding of Drosophila olfaction. This review summarizes the neurophysiology of the first two layers of this system: the peripheral olfactory receptor neurons and their postsynaptic targets in the antennal lobe. We now understand in some detail the cellular and synaptic mechanisms that shape odor representations in these neurons. Together, these mechanisms imply that interesting neural adaptations to environmental statistics have occurred and place some fundamental constraints on early sensory processing that pose challenges for higher brain regions. These findings suggest some general principles with broad relevance to early sensory processing in other modalities. PMID:23841839

  16. Beyond the olfactory bulb: An odotopic map in the forebrain

    PubMed Central

    Nikonov, Alexander A.; Finger, Thomas E.; Caprio, John

    2005-01-01

    We report electrophysiological evidence that a simple odotopy, the spatial mapping of different odorants, is maintained above the level of the olfactory bulb (OB). Three classes of biologically relevant odorants for fish are processed in distinct regions of the forebrain (FB) in the channel catfish. Feeding cues, mainly amino acids and nucleotides, are represented in lateral, pallial portions of the FB, equivalent to the olfactory cortex of amniote vertebrates, whereas social signals mediated by bile salts are represented in medial FB centers, possibly homologous to portions of the amygdala. As in the OB, the different odorant classes map onto different territories; however, the response properties of units of the olfactory areas of the FB do not simply mirror those of the OB. For some units, distinctive response properties emerged, because the FB is the first center where odors subserving a common behavioral function (i.e., food function) converge. PMID:16339016

  17. Presynaptic gamma-aminobutyric acid responses in the olfactory cortex.

    PubMed Central

    Pickles, H G

    1979-01-01

    1. Potential changes were recorded from the lateral olfactory tract in slices of rat olfactory cortex in vitro at room temperature. 2. Superfused gamma-aminobutyric acid (GABA) usually produced dose-related depolarization of the lateral olfactory tract. Muscimol and 3-aminopropanesulphonic acid appeared more potent depolarizing agents than GABA, and glycine and taurine appeared less potent. Carbachol and glutamate were virtually ineffective. 3. The GABA responses were at least partially Cl- dependent. 4. (+)-Bicuculline and higher concentrations of strychnine antagonized the GABA but not the glycine-induced depolarizations. Paradoxically, responses to high doses of GABA were sometimes potentiated by both bicuculline and strychnine. 5. It is suggested that GABA receptors could occur as widely on nerve terminals as they do postsynaptically in the CNS, where GABA could be involved in the modulation of transmitter output. PMID:760898

  18. Origin of basal activity in mammalian olfactory receptor neurons

    PubMed Central

    2010-01-01

    Mammalian odorant receptors form a large, diverse group of G protein–coupled receptors that determine the sensitivity and response profile of olfactory receptor neurons. But little is known if odorant receptors control basal and also stimulus-induced cellular properties of olfactory receptor neurons other than ligand specificity. This study demonstrates that different odorant receptors have varying degrees of basal activity, which drives concomitant receptor current fluctuations and basal action potential firing. This basal activity can be suppressed by odorants functioning as inverse agonists. Furthermore, odorant-stimulated olfactory receptor neurons expressing different odorant receptors can have strikingly different response patterns in the later phases of prolonged stimulation. Thus, the influence of odorant receptor choice on response characteristics is much more complex than previously thought, which has important consequences on odor coding and odor information transfer to the brain. PMID:20974772

  19. Olfactory disorders and quality of life--an updated review.

    PubMed

    Croy, Ilona; Nordin, Steven; Hummel, Thomas

    2014-03-01

    Olfactory disorders are common and affect about one-fifth of the general population. The main causes of olfactory loss are post viral upper respiratory infection, nasal/sinus disease, and head trauma and are therefore very frequent among patients in ear, nose, and throat clinics. We have systematically reviewed the impact of quantitative, qualitative, and congenital olfactory disorders on daily life domains as well as on general quality of life and depression. From the extensive body of literature, it can be concluded that loss of the sense of smell leads to disturbances in important areas, mainly in food enjoyment, detecting harmful food and smoke, and to some extent in social situations and working life. Most patients seem to deal well and manage those restrictions. However, a smaller proportion has considerable problems and expresses a noticeable reduction in general quality of life and enhanced depression. The impact of coping strategies is discussed. PMID:24429163

  20. Evidence for a Peripheral Olfactory Memory in Imprinted Salmon

    NASA Astrophysics Data System (ADS)

    Nevitt, Gabrielle A.; Dittman, Andrew H.; Quinn, Thomas P.; Moody, William J., Jr.

    1994-05-01

    The remarkable homing ability of salmon relies on olfactory cues, but its cellular basis is unknown. To test the role of peripheral olfactory receptors in odorant memory retention, we imprinted coho salmon (Oncorhynchus kisutch) to micromolar concentrations of phenyl ethyl alcohol during parr-smolt transformation. The following year, we measured phenyl ethyl alcohol responses in the peripheral receptor cells using patch clamp. Cells from imprinted fish showed increased sensitivity to phenyl ethyl alcohol compared either to cells from naive fish or to sensitivity to another behaviorally important odorant (L-serine). Field experiments verified an increased behavioral preference for phenyl ethyl alcohol by imprinted salmon as adults. Thus, some component of the imprinted olfactory homestream memory appears to be retained peripherally.

  1. Behavioural responses to olfactory cues in carrion crows.

    PubMed

    Wascher, Claudia A F; Heiss, Rebecca S; Baglione, Vittorio; Canestrari, Daniela

    2015-02-01

    Until recently, the use of olfactory signals in birds has been largely ignored, despite the fact that birds do possess a fully functioning olfactory system and have been shown to use odours in social and foraging tasks, predator detection and orientation. The present study investigates whether carrion crows (Corvus corone corone), a bird species living in complex social societies, respond behaviourally to olfactory cues of conspecifics. During our experiment, carrion crows were observed less often close to the conspecific scent compared to a control side. Because conspecific scent was extracted during handling, a stressful procedure for birds, we interpreted the general avoidance of the 'scent' side as disfavour against a stressed conspecific. However, males, unlike females, showed less avoidance towards the scent of a familiar individual compared to an unfamiliar one, which might reflect a stronger interest in the information conveyed and/or willingness to provide social support. PMID:25447513

  2. Synaptic clusters function as odor operators in the olfactory bulb

    PubMed Central

    Migliore, Michele; Cavarretta, Francesco; Marasco, Addolorata; Tulumello, Eleonora; Hines, Michael L.; Shepherd, Gordon M.

    2015-01-01

    How the olfactory bulb organizes and processes odor inputs through fundamental operations of its microcircuits is largely unknown. To gain new insight we focus on odor-activated synaptic clusters related to individual glomeruli, which we call glomerular units. Using a 3D model of mitral and granule cell interactions supported by experimental findings, combined with a matrix-based representation of glomerular operations, we identify the mechanisms for forming one or more glomerular units in response to a given odor, how and to what extent the glomerular units interfere or interact with each other during learning, their computational role within the olfactory bulb microcircuit, and how their actions can be formalized into a theoretical framework in which the olfactory bulb can be considered to contain “odor operators” unique to each individual. The results provide new and specific theoretical and experimentally testable predictions. PMID:26100895

  3. Electroolfactogram (EOG) Recording in the Mouse Main Olfactory Epithelium

    PubMed Central

    Chen, Xuanmao; Xia, Zhengui; Storm, Daniel R.

    2016-01-01

    Olfactory sensory neurons in the main olfactory epithelium (MOE) are responsible for detecting odorants and EOG recording is a reliable approach to analyze the peripheral olfactory function. However, recently we revealed that rodent MOE can also detect the air pressure caused by airflow. The sensation of airflow pressure and odorants may function in synergy to facilitate odorant perception during sniffing. We have reported that the pressure-sensitive response in the MOE can also be assayed by EOG recording. Here we describe procedures for pressure-sensitive as well as odorant-stimulated EOG measurement in the mouse MOE. The major difference between the pressure-sensitive EOG response and the odorant-stimulated response was whether to use pure air puff or use an odorized air puff.

  4. Of mice and men: olfactory neuroblastoma among animals and humans.

    PubMed

    Lubojemska, A; Borejko, M; Czapiewski, P; Dziadziuszko, R; Biernat, W

    2016-09-01

    Olfactory neuroblastoma (ONB) is a rare tumour of nasal cavity and paranasal sinuses that arises from the olfactory neuroepithelium and has unpredictable clinical course. As the sense of smell is phylogenetically one of the first senses and olfactory neuroepithelium is evolutionary conserved with striking similarities among different species, we performed an extensive analysis of the literature in order to evaluate the similarities and differences between animals and humans on the clinical, morphological, immunohistochemical, ultrastructural and molecular level. Our analysis revealed that ONB was reported mainly in mammals and showed striking similarities to human ONB. These observations provide rationale for introduction of therapy modalities used in humans into the veterinary medicine. Animal models of neuroblastoma should be considered for the preclinical studies evaluating novel therapies for ONB. PMID:25041470

  5. Effect of Flumethrin on Survival and Olfactory Learning in Honeybees

    PubMed Central

    Tan, Ken; Yang, Shuang; Wang, Zhengwei; Menzel, Randolf

    2013-01-01

    Flumethrin has been widely used as an acaricide for the control of Varroa mites in commercial honeybee keeping throughout the world for many years. Here we test the mortality of the Asian honeybee Apis cerana cerana after treatment with flumethrin. We also ask (1) how bees react to the odor of flumethrin, (2) whether its odor induces an innate avoidance response, (3) whether its taste transmits an aversive reinforcing component in olfactory learning, and (4) whether its odor or taste can be associated with reward in classical conditioning. Our results show that flumethrin has a negative effect on Apis ceranàs lifespan, induces an innate avoidance response, acts as a punishing reinforcer in olfactory learning, and interferes with the association of an appetitive conditioned stimulus. Furthermore flumethrin uptake within the colony reduces olfactory learning over an extended period of time. PMID:23785490

  6. Mechanisms of neuronal chloride accumulation in intact mouse olfactory epithelium

    PubMed Central

    Nickell, William T; Kleene, Nancy K; Kleene, Steven J

    2007-01-01

    When olfactory receptor neurons respond to odours, a depolarizing Cl− efflux is a substantial part of the response. This requires that the resting neuron accumulate Cl− against an electrochemical gradient. In isolated olfactory receptor neurons, the Na+–K+–2Cl− cotransporter NKCC1 is essential for Cl− accumulation. However, in intact epithelium, a robust electrical olfactory response persists in mice lacking NKCC1. This response is largely due to a neuronal Cl− efflux. It thus appears that NKCC1 is an important part of a more complex system of Cl− accumulation. To identify the remaining transport proteins, we first screened by RT-PCR for 21 Cl− transporters in mouse nasal tissue containing olfactory mucosa. For most of the Cl− transporters, the presence of mRNA was demonstrated. We also investigated the effects of pharmacological block or genetic ablation of Cl− transporters on the olfactory field potential, the electroolfactogram (EOG). Mice lacking the common Cl−/HCO3− exchanger AE2 had normal EOGs. Block of NKCC cotransport with bumetanide reduced the EOG in epithelia from wild-type mice but had no effect in mice lacking NKCC1. Hydrochlorothiazide, a blocker of the Na+–Cl− cotransporter, had only a small effect. DIDS, a blocker of some KCC cotransporters and Cl−/HCO3− exchangers, reduced the EOG in epithelia from both wild-type and NKCC1 knockout mice. A combination of bumetanide and DIDS decreased the response more than either drug alone. However, no combination of drugs completely abolished the Cl− component of the response. These results support the involvement of both NKCC1 and one or more DIDS-sensitive transporters in Cl− accumulation in olfactory receptor neurons. PMID:17656441

  7. Mechanisms of neuronal chloride accumulation in intact mouse olfactory epithelium.

    PubMed

    Nickell, William T; Kleene, Nancy K; Kleene, Steven J

    2007-09-15

    When olfactory receptor neurons respond to odours, a depolarizing Cl(-) efflux is a substantial part of the response. This requires that the resting neuron accumulate Cl(-) against an electrochemical gradient. In isolated olfactory receptor neurons, the Na(+)-K(+)-2Cl(-) cotransporter NKCC1 is essential for Cl(-) accumulation. However, in intact epithelium, a robust electrical olfactory response persists in mice lacking NKCC1. This response is largely due to a neuronal Cl(-) efflux. It thus appears that NKCC1 is an important part of a more complex system of Cl(-) accumulation. To identify the remaining transport proteins, we first screened by RT-PCR for 21 Cl(-) transporters in mouse nasal tissue containing olfactory mucosa. For most of the Cl(-) transporters, the presence of mRNA was demonstrated. We also investigated the effects of pharmacological block or genetic ablation of Cl(-) transporters on the olfactory field potential, the electroolfactogram (EOG). Mice lacking the common Cl(-)/HCO(3)(-) exchanger AE2 had normal EOGs. Block of NKCC cotransport with bumetanide reduced the EOG in epithelia from wild-type mice but had no effect in mice lacking NKCC1. Hydrochlorothiazide, a blocker of the Na(+)-Cl(-) cotransporter, had only a small effect. DIDS, a blocker of some KCC cotransporters and Cl(-)/HCO(3)(-) exchangers, reduced the EOG in epithelia from both wild-type and NKCC1 knockout mice. A combination of bumetanide and DIDS decreased the response more than either drug alone. However, no combination of drugs completely abolished the Cl(-) component of the response. These results support the involvement of both NKCC1 and one or more DIDS-sensitive transporters in Cl(-) accumulation in olfactory receptor neurons. PMID:17656441

  8. Functional MRI of the Olfactory System in Conscious Dogs

    PubMed Central

    Jia, Hao; Pustovyy, Oleg M.; Waggoner, Paul; Beyers, Ronald J.; Schumacher, John; Wildey, Chester; Barrett, Jay; Morrison, Edward; Salibi, Nouha; Denney, Thomas S.; Vodyanoy, Vitaly J.; Deshpande, Gopikrishna

    2014-01-01

    We depend upon the olfactory abilities of dogs for critical tasks such as detecting bombs, landmines, other hazardous chemicals and illicit substances. Hence, a mechanistic understanding of the olfactory system in dogs is of great scientific interest. Previous studies explored this aspect at the cellular and behavior levels; however, the cognitive-level neural substrates linking them have never been explored. This is critical given the fact that behavior is driven by filtered sensory representations in higher order cognitive areas rather than the raw odor maps of the olfactory bulb. Since sedated dogs cannot sniff, we investigated this using functional magnetic resonance imaging of conscious dogs. We addressed the technical challenges of head motion using a two pronged strategy of behavioral training to keep dogs' head as still as possible and a single camera optical head motion tracking system to account for residual jerky movements. We built a custom computer-controlled odorant delivery system which was synchronized with image acquisition, allowing the investigation of brain regions activated by odors. The olfactory bulb and piriform lobes were commonly activated in both awake and anesthetized dogs, while the frontal cortex was activated mainly in conscious dogs. Comparison of responses to low and high odor intensity showed differences in either the strength or spatial extent of activation in the olfactory bulb, piriform lobes, cerebellum, and frontal cortex. Our results demonstrate the viability of the proposed method for functional imaging of the olfactory system in conscious dogs. This could potentially open up a new field of research in detector dog technology. PMID:24466054

  9. The Role of Dopamine in Drosophila Larval Classical Olfactory Conditioning

    PubMed Central

    Han, Kyung-An; Stocker, Reinhard F.; Thum, Andreas S.

    2009-01-01

    Learning and memory is not an attribute of higher animals. Even Drosophila larvae are able to form and recall an association of a given odor with an aversive or appetitive gustatory reinforcer. As the Drosophila larva has turned into a particularly simple model for studying odor processing, a detailed neuronal and functional map of the olfactory pathway is available up to the third order neurons in the mushroom bodies. At this point, a convergence of olfactory processing and gustatory reinforcement is suggested to underlie associative memory formation. The dopaminergic system was shown to be involved in mammalian and insect olfactory conditioning. To analyze the anatomy and function of the larval dopaminergic system, we first characterize dopaminergic neurons immunohistochemically up to the single cell level and subsequent test for the effects of distortions in the dopamine system upon aversive (odor-salt) as well as appetitive (odor-sugar) associative learning. Single cell analysis suggests that dopaminergic neurons do not directly connect gustatory input in the larval suboesophageal ganglion to olfactory information in the mushroom bodies. However, a number of dopaminergic neurons innervate different regions of the brain, including protocerebra, mushroom bodies and suboesophageal ganglion. We found that dopamine receptors are highly enriched in the mushroom bodies and that aversive and appetitive olfactory learning is strongly impaired in dopamine receptor mutants. Genetically interfering with dopaminergic signaling supports this finding, although our data do not exclude on naïve odor and sugar preferences of the larvae. Our data suggest that dopaminergic neurons provide input to different brain regions including protocerebra, suboesophageal ganglion and mushroom bodies by more than one route. We therefore propose that different types of dopaminergic neurons might be involved in different types of signaling necessary for aversive and appetitive olfactory memory

  10. Phylogenic studies on the olfactory system in vertebrates.

    PubMed

    Taniguchi, Kazuyuki; Taniguchi, Kazumi

    2014-06-01

    The olfactory receptor organs and their primary centers are classified into several types. The receptor organs are divided into fish-type olfactory epithelium (OE), mammal-type OE, middle chamber epithelium (MCE), lower chamber epithelium (LCE), recess epithelium, septal olfactory organ of Masera (SO), mammal-type vomeronasal organ (VNO) and snake-type VNO. The fish-type OE is observed in flatfish and lungfish, while the mammal-type OE is observed in amphibians, reptiles, birds and mammals. The MCE and LCE are unique to Xenopus and turtles, respectively. The recess epithelium is unique to lungfish. The SO is observed only in mammals. The mammal-type VNO is widely observed in amphibians, lizards and mammals, while the snake-type VNO is unique to snakes. The VNO itself is absent in turtles and birds. The mammal-type OE, MCE, LCE and recess epithelium seem to be descendants of the fish-type OE that is derived from the putative primitive OE. The VNO may be derived from the recess epithelium or fish-type OE and differentiate into the mammal-type VNO and snake-type VNO. The primary olfactory centers are divided into mammal-type main olfactory bulbs (MOB), fish-type MOB and mammal-type accessory olfactory bulbs (AOB). The mammal-type MOB first appears in amphibians and succeeds to reptiles, birds and mammals. The fish-type MOB, which is unique to fish, may be the ancestor of the mammal-type MOB. The mammal-type AOB is observed in amphibians, lizards, snakes and mammals and may be the remnant of the fish-type MOB. PMID:24531771

  11. Phylogenic Studies on the Olfactory System in Vertebrates

    PubMed Central

    TANIGUCHI, Kazuyuki; TANIGUCHI, Kazumi

    2014-01-01

    ABSTRACT The olfactory receptor organs and their primary centers are classified into several types. The receptor organs are divided into fish-type olfactory epithelium (OE), mammal-type OE, middle chamber epithelium (MCE), lower chamber epithelium (LCE), recess epithelium, septal olfactory organ of Masera (SO), mammal-type vomeronasal organ (VNO) and snake-type VNO. The fish-type OE is observed in flatfish and lungfish, while the mammal-type OE is observed in amphibians, reptiles, birds and mammals. The MCE and LCE are unique to Xenopus and turtles, respectively. The recess epithelium is unique to lungfish. The SO is observed only in mammals. The mammal-type VNO is widely observed in amphibians, lizards and mammals, while the snake-type VNO is unique to snakes. The VNO itself is absent in turtles and birds. The mammal-type OE, MCE, LCE and recess epithelium seem to be descendants of the fish-type OE that is derived from the putative primitive OE. The VNO may be derived from the recess epithelium or fish-type OE and differentiate into the mammal-type VNO and snake-type VNO. The primary olfactory centers are divided into mammal-type main olfactory bulbs (MOB), fish-type MOB and mammal-type accessory olfactory bulbs (AOB). The mammal-type MOB first appears in amphibians and succeeds to reptiles, birds and mammals. The fish-type MOB, which is unique to fish, may be the ancestor of the mammal-type MOB. The mammal-type AOB is observed in amphibians, lizards, snakes and mammals and may be the remnant of the fish-type MOB. PMID:24531771

  12. A neural network model for olfactory glomerular activity prediction

    NASA Astrophysics Data System (ADS)

    Soh, Zu; Tsuji, Toshio; Takiguchi, Noboru; Ohtake, Hisao

    2012-12-01

    Recently, the importance of odors and methods for their evaluation have seen increased emphasis, especially in the fragrance and food industries. Although odors can be characterized by their odorant components, their chemical information cannot be directly related to the flavors we perceive. Biological research has revealed that neuronal activity related to glomeruli (which form part of the olfactory system) is closely connected to odor qualities. Here we report on a neural network model of the olfactory system that can predict glomerular activity from odorant molecule structures. We also report on the learning and prediction ability of the proposed model.

  13. Cortical Plasticity and Olfactory Function in Early Blindness.

    PubMed

    Araneda, Rodrigo; Renier, Laurent A; Rombaux, Philippe; Cuevas, Isabel; De Volder, Anne G

    2016-01-01

    Over the last decade, functional brain imaging has provided insight to the maturation processes and has helped elucidate the pathophysiological mechanisms involved in brain plasticity in the absence of vision. In case of congenital blindness, drastic changes occur within the deafferented "visual" cortex that starts receiving and processing non visual inputs, including olfactory stimuli. This functional reorganization of the occipital cortex gives rise to compensatory perceptual and cognitive mechanisms that help blind persons achieve perceptual tasks, leading to superior olfactory abilities in these subjects. This view receives support from psychophysical testing, volumetric measurements and functional brain imaging studies in humans, which are presented here. PMID:27625596

  14. Cortical Plasticity and Olfactory Function in Early Blindness

    PubMed Central

    Araneda, Rodrigo; Renier, Laurent A.; Rombaux, Philippe; Cuevas, Isabel; De Volder, Anne G.

    2016-01-01

    Over the last decade, functional brain imaging has provided insight to the maturation processes and has helped elucidate the pathophysiological mechanisms involved in brain plasticity in the absence of vision. In case of congenital blindness, drastic changes occur within the deafferented “visual” cortex that starts receiving and processing non visual inputs, including olfactory stimuli. This functional reorganization of the occipital cortex gives rise to compensatory perceptual and cognitive mechanisms that help blind persons achieve perceptual tasks, leading to superior olfactory abilities in these subjects. This view receives support from psychophysical testing, volumetric measurements and functional brain imaging studies in humans, which are presented here. PMID:27625596

  15. Suppression of Odorant Responses by Odorants in Olfactory Receptor Cells

    NASA Astrophysics Data System (ADS)

    Kurahashi, Takashi; Lowe, Graeme; Gold, Geoffrey H.

    1994-07-01

    Odorants activate an inward current in vertebrate olfactory receptor cells. Here it is shown, in receptor cells from the newt, that odorants can also suppress this current, by a mechanism that is distinct from inhibition and adaptation. Suppression provides a simple explanation for two seemingly unrelated phenomena: the anomalously long latency of olfactory transduction and the existence of an "off response" at the end of a prolonged stimulus. Suppression may influence the perception of odorants by masking odorant responses and by sharpening the odorant specificities of single cells.

  16. [Regeneration of olfactory flagella and restoration of the electroolfactogram following application of triton X-100 to the olfactory mucosa of frogs].

    PubMed

    Bronshteín, A A; Minor, A V

    1977-01-01

    A short-tern (1-1.5 min.) irrigation of the olfactory mucose of the frog Rana temporaria with 0.1-0.15% Triton X-100 in Ringer's solution led to the destroying of olfactory flagella but did not damage the olfactory knob and its flagellar basal bodies. Simultaneously, the generator potential of the olfactory cells-elecroolfactogram (EOG)-disappears. The olfactory cells deprived of fragella were able to produce these organelles. This process begins 2 or 3 hours following theflagellum removal, proceeds in some stages and completes within 2 or 3 days. During the flagellum regeneration the ability of olfactory cells to generate EOG is seen to resotre. The data obtained confirm the presence of receptive sites on flagellar surface. PMID:302048

  17. Effect of the antiepileptic therapy on olfactory disorders associated with mesial temporal sclerosis.

    PubMed

    Caminiti, Fabrizia; De Salvo, Simona; Nunnari, Domenica; Bramanti, Placido; Ciurleo, Rosella; Granata, Francesca; Marino, Silvia

    2016-08-01

    Parosmia has been described in neurological disorders, including temporal epilepsy. We reported a case of parosmia associated with unilateral hyposmia and mesial temporal sclerosis. We assessed the olfactory function by using Sniffin' sticks test and olfactory event-related potentials (OERPs). The findings of unilateral deficit of identification associated with parosmia only in the side ipsilateral to mesial temporal sclerosis area, that involves temporal olfactory regions responsible for higher level of smell processing, suggest a central genesis of olfactory disorders. The administration of levetiracetam restored olfactory function, OERP N1-P2 amplitude, and mesial temporal sclerosis-related electroencephalographic findings. PMID:27347726

  18. Cross-adaptation to odor stimulation of olfactory receptor cells in the box turtle, Terrapene carolina.

    PubMed

    Tonosaki, K

    1993-01-01

    Electrical recording from small twigs of olfactory nerve and electro-olfactogram (EOG) from olfactory epithelium in a turtle shows that olfactory receptors in the nose are responsive to various odors. I have used the effects of cross-adaptation to odor stimulation on the olfactory receptors to investigate the stimulus-specific components of these responses and to provide information about the responsiveness of cells. The results of the cross-adaptation experiments strongly support the hypothesis that different categories of receptor cells exist in the olfactory epithelium. PMID:8386588

  19. Reduced dopamine function within the medial shell of the nucleus accumbens enhances latent inhibition

    PubMed Central

    Nelson, A.J.D.; Thur, K.E.; Horsley, R.R.; Spicer, C.; Marsden, C.A.; Cassaday, H.J.

    2011-01-01

    Latent inhibition (LI) manifests as poorer conditioning to a CS that has previously been presented without consequence. There is some evidence that LI can be potentiated by reduced mesoaccumbal dopamine (DA) function but the locus within the nucleus accumbens of this effect is as yet not firmly established. Experiment 1 tested whether 6-hydroxydopamine (6-OHDA)-induced lesions of DA terminals within the core and medial shell subregions of the nucleus accumbens (NAc) would enhance LI under conditions that normally disrupt LI in controls (weak pre-exposure). LI was measured in a thirst motivated conditioned emotional response procedure with 10 pre-exposures (to a noise CS) and 2 conditioning trials. The vehicle-injected and core-lesioned animals did not show LI and conditioned to the pre-exposed CS at comparable levels to the non-pre-exposed controls. 6-OHDA lesions to the medial shell, however, produced potentiation of LI, demonstrated across two extinction tests. In a subsequent experiment, haloperidol microinjected into the medial shell prior to conditioning similarly enhanced LI. These results underscore the dissociable roles of core and shell subregions of the NAc in mediating the expression of LI and indicate that reduced DA function within the medial shell leads to enhanced LI. PMID:21146557

  20. Does incentive-elicited nucleus accumbens activation differ by substance of abuse? An examination with adolescents.

    PubMed

    Karoly, Hollis C; Bryan, Angela D; Weiland, Barbara J; Mayer, Andrew; Dodd, Andrew; Feldstein Ewing, Sarah W

    2015-12-01

    Numerous questions surround the nature of reward processing in the developing adolescent brain, particularly in regard to polysubstance use. We therefore sought to examine incentive-elicited brain activation in the context of three common substances of abuse (cannabis, tobacco, and alcohol). Due to the role of the nucleus accumbens (NAcc) in incentive processing, we compared activation in this region during anticipation of reward and loss using a monetary incentive delay (MID) task. Adolescents (ages 14-18; 66% male) were matched on age, gender, and frequency of use of any common substances within six distinct groups: cannabis-only (n=14), tobacco-only (n=34), alcohol-only (n=12), cannabis+tobacco (n=17), cannabis+tobacco+alcohol (n=17), and non-using controls (n=38). All groups showed comparable behavioral performance on the MID task. The tobacco-only group showed decreased bilateral nucleus accumbens (NAcc) activation during reward anticipation as compared to the alcohol-only group, the control group, and both polysubstance groups. Interestingly, no differences emerged between the cannabis-only group and any of the other groups. Results from this study suggest that youth who tend toward single-substance tobacco use may possess behavioral and/or neurobiological characteristics that differentiate them from both their substance-using and non-substance-using peers. PMID:26070843

  1. RAPID DOPAMINE TRANSMISSION WITHIN THE NUCLEUS ACCUMBENS DRAMATICALLY DIFFERS FOLLOWING MORPHINE AND OXYCODONE DELIVERY

    PubMed Central

    Mabrouk, Omar S.; Lovic, Vedran; Singer, Bryan F.; Kennedy, Robert T.; Aragona, Brandon J.

    2014-01-01

    While most drugs of abuse increase dopamine neurotransmission, rapid neurochemical measurements show that different drugs evoke distinct dopamine release patterns within the nucleus accumbens. Rapid changes in dopamine concentration following psychostimulant administration have been well studied; however, such changes have never been examined following opioid delivery. Here, we provide novel measures of rapid dopamine release following intravenous infusion of two opioids, morphine and oxycodone, in drug naïve rats using fast-scan cyclic voltammetry and rapid (1 min) microdialysis coupled with mass spectrometry. In addition to measuring rapid dopamine transmission, microdialysis HPLC-MS measures changes in GABA, glutamate, monoamines, monoamine metabolites, and several other neurotransmitters. Although both opioids increased dopamine release in the nucleus accumbens, their patterns of drug-evoked dopamine transmission differed dramatically. Oxycodone evoked a robust and stable increase in dopamine concentration and a robust increase in the frequency and amplitude of phasic dopamine release events. Conversely, morphine evoked a brief (~ 1 min) increase in dopamine that was coincident with a surge in GABA concentration and then both transmitters returned to baseline levels. Thus, by providing rapid measures of neurotransmission, this study reveals previously unknown differences in opioid-induced neurotransmitter signaling. Investigating these differences may be essential for understanding how these two drugs of abuse could differentially usurp motivational circuitry and powerfully influence behavior. PMID:25208732

  2. Protein Expression in the Nucleus Accumbens of Rats Exposed to Developmental Vitamin D Deficiency

    PubMed Central

    McGrath, John; Iwazaki, Takeshi; Eyles, Darryl; Burne, Thomas; Cui, Xiaoying; Ko, Pauline; Matsumoto, Izuru

    2008-01-01

    Introduction Developmental vitamin D (DVD) deficiency is a candidate risk factor for schizophrenia. Animal models have confirmed that DVD deficiency is associated with a range of altered genomic, proteomic, structural and behavioural outcomes in the rat. Because the nucleus accumbens has been implicated in neuropsychiatric disorders, in the current study we examined protein expression in this region in adult rats exposed to DVD deficiency Methods Female Sprague Dawley rats were maintained on a vitamin D deficient diet for 6 weeks, mated and allowed to give birth, after which a diet containing vitamin D was reintroduced. Male adult offspring (n = 8) were compared to control male (n = 8). 2-D gel electrophoresis-based proteomics and mass spectroscopy were used to investigate differential protein expression. Results There were 35 spots, mapped to 33 unique proteins, which were significantly different between the two groups. Of these, 22 were down-regulated and 13 up-regulated. The fold changes were uniformly small, with the largest FC being −1.67. Within the significantly different spots, three calcium binding proteins (calbindin1, calbindin2 and hippocalcin) were altered. Other proteins associated with DVD deficiency related to mitochondrial function, and the dynamin-like proteins. Conclusions Developmental vitamin D deficiency was associated with subtle changes in protein expression in the nucleus accumbens. Disruptions in pathways related to calcium-binding proteins and mitochondrial function may underlie some of the behavioural features associated with animal models of developmental vitamin D deficiency PMID:18545652

  3. Identification and functional analysis of olfactory receptor family reveal unusual characteristics of the olfactory system in the migratory locust.

    PubMed

    Wang, Zhifeng; Yang, Pengcheng; Chen, Dafeng; Jiang, Feng; Li, Yan; Wang, Xianhui; Kang, Le

    2015-11-01

    Locusts represent the excellent model of insect olfaction because the animals are equipped with an unusual olfactory system and display remarkable density-dependent olfactory plasticity. However, information regarding receptor molecules involved in the olfactory perception of locusts is very limited. On the basis of genome sequence and antennal transcriptome of the migratory locust, we conduct the identification and functional analysis of two olfactory receptor families: odorant receptors (ORs) and ionotropic receptors (IRs). In the migratory locust, there is an expansion of OR family (142 ORs) while distinctly lower number of IR genes (32 IRs) compared to the repertoires of other insects. The number of the locust OR genes is much less than that of glomeruli in antennal lobe, challenging the general principle of the "one glomerulus-one receptor" observed in other insects. Most OR genes are found in tandem arrays, forming two large lineage-specific subfamilies in the phylogenetic tree. The "divergent IR" subfamily displays a significant contraction, and most of the IRs belong to the "antennal IR" subfamily in the locust. Most ORs/IRs have olfactory-specific expression while some broadly- or internal-expressed members are also found. Differing from holometabolous insects, the migratory locust contains very similar expression profiles of ORs/IRs between nymph and adult stages. RNA interference and behavioral assays indicate that an OR-based signaling pathway, not IR-based, mediates the attraction of locusts to aggregation pheromones. These discoveries provide insights into the unusual olfactory system of locusts and enhance our understanding of the evolution of insect olfaction. PMID:26265180

  4. Gamma Knife radiosurgery of olfactory groove meningiomas provides a method to preserve subjective olfactory function.

    PubMed

    Gande, Abhiram; Kano, Hideyuki; Bowden, Gregory; Mousavi, Seyed H; Niranjan, Ajay; Flickinger, John C; Lunsford, L Dade

    2014-02-01

    Anosmia is a common outcome after resection of olfactory groove meningioma(s) (OGM) and for some patients represents a significant disability. To evaluate long term tumor control rates and preservation of subjective olfaction after Gamma Knife (GK) stereotactic radiosurgery (SRS) of OGM. We performed a retrospective chart review and telephone assessments of 41 patients who underwent GK SRS between 1987 and 2008. Clinical outcomes were stratified by full, partial or no subjective olfaction, whereas tumor control was assessed by changes in volume greater or lesser than 25%. The median clinical and imaging follow-up were 76 and 65 months, respectively. Prior to SRS, 19 (46%) patients had surgical resections and two (5%) had received fractionated radiation therapy. Twenty four patients (59%) reported a normal sense of smell, 12 (29%) reported a reduced sense of smell and five (12%) had complete anosmia. The median tumor volume was 8.5 cm(3) (range 0.6-56.1), the mean radiation dose at the tumor margin was 13 Gy (range 10-20) and the median estimated dose to the olfactory nerve was 5.1 Gy (range 1.1-18.1). At follow-up, 27 patients (66%) reported intact olfaction (three (7%) described return to a normal sense of smell), nine (22%) described partial anosmia, and five (12%) had complete anosmia. No patient reported deterioration in olfaction after SRS. Thirteen patients (32%) showed significant tumor regression, 26 (63%) had no further growth and two (5%) had progressed. The progression free tumor control rates were 97% at 1 year and 95% at 2, 10 and 20 years. Symptomatic adverse radiation effects occurred in three (7%) patients. Stereotactic radiosurgery provided both long term tumor control and preservation of olfaction. PMID:24398616

  5. Voltage-dependent K+ currents contribute to heterogeneity of olfactory ensheathing cells

    PubMed Central

    Rela, Lorena; Piantanida, Ana Paula; Bordey, Angelique; Greer, Charles A.

    2015-01-01

    The olfactory nerve is permissive for axon growth throughout life. This has been attributed in part to the olfactory ensheathing glial cells that encompass the olfactory sensory neuron fascicles. Olfactory ensheathing cells also promote axon growth in vitro and when transplanted in vivo to sites of injury. The mechanisms involved remain largely unidentified owing in part to the limited knowledge of the physiological properties of ensheathing cells. Glial cells rely for many functions on the properties of the potassium channels expressed; however, those expressed in ensheathing cells are unknown. Here we show that olfactory ensheathing cells express voltage-dependent potassium currents compatible with inward rectifier (Kir) and delayed rectifier (KDR) channels. Together with gap junction coupling, these contribute to the heterogeneity of membrane properties observed in olfactory ensheathing cells. The relevance of K+ currents expressed by ensheathing cells is discussed in relation to plasticity of the olfactory nerve. PMID:25856239