Science.gov

Sample records for accumbens stimulate ethanol

  1. Opioids in the nucleus accumbens stimulate ethanol intake.

    PubMed

    Barson, Jessica R; Carr, Ambrose J; Soun, Jennifer E; Sobhani, Nasim C; Leibowitz, Sarah F; Hoebel, Bartley G

    2009-10-19

    The nucleus accumbens (NAc) participates in the control of both motivation and addiction. To test the possibility that opioids in the NAc can cause rats to select ethanol in preference to food, Sprague-Dawley rats with ethanol, food, and water available, were injected with two doses each of morphine, the mu-receptor agonist [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-Enkephalin (DAMGO), the delta-receptor agonist D-Ala-Gly-Phe-Met-NH2 (DALA), the k-receptor agonist (+/-)-trans-U-50488 methanesulfonate (U-50,488H), or the opioid antagonist naloxone methiodide (m-naloxone). As an anatomical control for drug reflux, injections were also made 2mm above the NAc. The main result was that morphine in the NAc significantly increased ethanol and food intake, whereas m-naloxone reduced ethanol intake without affecting food or water intake. Of the selective receptor agonists, DALA in the NAc increased ethanol intake in preference to food. This is in contrast to DAMGO, which stimulated food but not ethanol intake, and the k-agonist U-50,488H, which had no effect on intake. When injected in the anatomical control site 2mm dorsal to the NAc, the opioids had no effects on ethanol intake. These results demonstrate that ethanol intake produced by morphine in the NAc is driven in large part by the delta-receptor. In light of other studies showing ethanol intake to increase enkephalin expression in the NAc, the present finding of enkephalin-induced ethanol intake suggests the existence of a positive feedback loop that fosters alcohol abuse. Naltrexone therapy for alcohol abuse may then act, in part, in the NAc by blocking this opioid-triggered cycle of alcohol intake.

  2. Reduced ethanol consumption by alcohol-preferring (P) rats following pharmacological silencing and deep brain stimulation of the nucleus accumbens shell.

    PubMed

    Wilden, Jessica A; Qing, Kurt Y; Hauser, Sheketha R; McBride, William J; Irazoqui, Pedro P; Rodd, Zachary A

    2014-04-01

    There is increasing interest in deep brain stimulation (DBS) for the treatment of addiction. Initial testing must be conducted in animals, and the alcohol-preferring (P) rat meets the criteria for an animal model of alcoholism. This study is composed of 2 experiments designed to examine the effects of 1) pharmacological inactivation and 2) DBS of the nucleus accumbens shell (AcbSh) on the consumption of alcohol by P rats. In the first experiment, the effects of reversible inactivation of the AcbSh were investigated by administering intracranial injections of γ-aminobutyric acid (GABA) agonists. Bilateral microinjections of drug were administered to the AcbSh in P rats (8-10 rats/group), after which the animals were placed in operant chambers containing 2 levers--one used to administer water and the other to administer 15% EtOH--to examine the acquisition and maintenance of oral EtOH self-administration. In the second experiment, a DBS electrode was placed in each P rat's left AcbSh. The animals then received 100 or 200 μA (3-4 rats/group) of DBS to examine the effect on daily consumption of oral EtOH in a free-access paradigm. In the first experiment, pharmacological silencing of the AcbSh with GABA agonists did not decrease the acquisition of EtOH drinking behavior but did reduce EtOH consumption by 55% in chronically drinking rats. Similarly, in the second experiment, 200 μA of DBS consistently reduced EtOH intake by 47% in chronically drinking rats. The amount of EtOH consumption returned to baseline levels following termination of therapy in both experiments. Pharmacological silencing and DBS of the AcbSh reduced EtOH intake after chronic EtOH use had been established in rodents. The AcbSh is a neuroanatomical substrate for the reinforcing effects of alcohol and may be a target for surgical intervention in cases of alcoholism.

  3. Rat nucleus accumbens core astrocytes modulate reward and the motivation to self-administer ethanol after abstinence.

    PubMed

    Bull, Cecilia; Freitas, Kelen C C; Zou, Shiping; Poland, Ryan S; Syed, Wahab A; Urban, Daniel J; Minter, Sabrina C; Shelton, Keith L; Hauser, Kurt F; Negus, S Stevens; Knapp, Pamela E; Bowers, M Scott

    2014-11-01

    Our understanding of the active role that astrocytes play in modulating neuronal function and behavior is rapidly expanding, but little is known about the role that astrocytes may play in drug-seeking behavior for commonly abused substances. Given that the nucleus accumbens is critically involved in substance abuse and motivation, we sought to determine whether nucleus accumbens astrocytes influence the motivation to self-administer ethanol following abstinence. We found that the packing density of astrocytes that were expressing glial fibrillary acidic protein increased in the nucleus accumbens core (NAcore) during abstinence from EtOH self-administration. No change was observed in the nucleus accumbens shell. This increased NAcore astrocyte density positively correlated with the motivation for ethanol. Astrocytes can communicate with one another and influence neuronal activity through gap-junction hemichannels. Because of this, the effect of blocking gap-junction hemichannels on the motivation for ethanol was examined. The motivation to self-administer ethanol after 3 weeks abstinence was increased following microinjection of gap-junction hemichannel blockers into the NAcore at doses that block both neuronal and astrocytic channels. In contrast, no effect was observed following microinjection of doses that are not thought to block astrocytic channels or following microinjection of either dose into the nucleus accumbens shell. Additionally, the motivation for sucrose after 3 weeks abstinence was unaffected by NAcore gap-junction hemichannel blockers. Next, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) were selectively expressed in NAcore astrocytes to test the effect of astrocyte stimulation. DREADD activation increased cytosolic calcium in primary astrocytes, facilitated responding for rewarding brain stimulation, and reduced the motivation for ethanol after 3 weeks abstinence. This is the first work to modulate drug-seeking behavior with

  4. Effects of acute acamprosate and homotaurine on ethanol intake and ethanol-stimulated mesolimbic dopamine release.

    PubMed

    Olive, M Foster; Nannini, Michelle A; Ou, Christine J; Koenig, Heather N; Hodge, Clyde W

    2002-02-15

    The purpose of the present study was to determine the acute effects of the anticraving compound acamprosate (calcium acetylhomotaurinate) and the closely related compound homotaurine on ethanol intake and ethanol-stimulated dopamine release in the nucleus accumbens. Male rats were treated with acamprosate (200 or 400 mg/kg intraperitoneally, i.p.) or homotaurine (10, 50, or 100 mg/kg i.p.) 15 min prior to access to 10% ethanol and water for 1 h in a two-bottle choice restricted access paradigm. A separate group of rats was implanted with microdialysis probes in the nucleus accumbens and given an acute injection of ethanol (1.5 g/kg i.p.) that was preceded by saline, acamprosate, or homotaurine. Acamprosate and homotaurine dose-dependently reduced ethanol intake and preference. These compounds also delayed or suppressed ethanol-stimulated increases in nucleus accumbens dopamine release, suggesting that acamprosate and homotaurine may reduce ethanol intake by interfering with the ability of ethanol to activate the mesolimbic dopamine reward system.

  5. Rising taurine and ethanol concentrations in nucleus accumbens interact to produce dopamine release after ethanol administration.

    PubMed

    Ericson, Mia; Chau, PeiPei; Clarke, Rhona B; Adermark, Louise; Söderpalm, Bo

    2011-07-01

    We have previously demonstrated that glycine receptors in the nucleus accumbens (nAc) are involved in modulating both basal and ethanol-induced dopamine output in the same brain region. Ethanol is known to induce a release of both taurine and dopamine in the nAc, but the relationship between these two neuromodulators has not been investigated thoroughly. In vivo microdialysis was used to measure the effects of systemic ethanol diluted in isotonic (0.9% NaCl) or hypertonic (3.6% NaCl) saline on accumbal taurine and dopamine levels. We found that ethanol given in a hypertonic solution, contrary to an isotonic solution, failed to increase concentrations both of taurine and dopamine in the nAc. However, a modest, non-dopamine elevating concentration of taurine in the nAc disclosed a dopamine-elevating effect of systemic ethanol also when given in a hypertonic solution. In a second experiment, we investigated the effects of ethanol on taurine and dopamine in normal rats and rats with decreased levels of endogenous taurine. Lowering the level of taurine, approximately 40% by adding 5% β-alanine in the drinking water, did not influence taurine or dopamine output over time. We conclude that the elevations of taurine and dopamine in the nAc are closely related, and that in order for ethanol to induce dopamine release, a simultaneous increase of extracellular taurine levels in the nAc is required. These data also provide support for the notion that the nAc is the primary target for ethanol in its dopamine-activating effect after systemic administration.

  6. Increased Extracellular Glutamate In the Nucleus Accumbens Promotes Excessive Ethanol Drinking in Ethanol Dependent Mice

    PubMed Central

    Griffin III, William C; Haun, Harold L; Hazelbaker, Callan L; Ramachandra, Vorani S; Becker, Howard C

    2014-01-01

    Using a well-established model of ethanol dependence and relapse, this study examined adaptations in glutamatergic transmission in the nucleus accumbens (NAc) and their role in regulating voluntary ethanol drinking. Mice were first trained to drink ethanol in a free-choice, limited access (2 h/day) paradigm. One group (EtOH mice) received repeated weekly cycles of chronic intermittent ethanol (CIE) exposure with intervening weeks of test drinking sessions, whereas the remaining mice (CTL mice) were similarly treated but did not receive CIE treatment. Over repeated cycles of CIE exposure, EtOH mice exhibited significant escalation in drinking (up to ∼3.5 g/kg), whereas drinking remained relatively stable at baseline levels (2–2.5 g/kg) in CTL mice. Using in vivo microdialysis procedures, extracellular glutamate (GLUEX) levels in the NAc were increased approximately twofold in EtOH mice compared with CTL mice, and this difference was observed 7 days after final CIE exposure, indicating that this hyperglutamatergic state persisted beyond acute withdrawal. This finding prompted additional studies examining the effects of pharmacologically manipulating GLUEX in the NAc on ethanol drinking in the CIE model. The non-selective glutamate reuptake antagonist, threo-β-benzyloxyaspartate (TBOA), was bilaterally microinjected into the NAc and found to dose-dependently increase drinking in nondependent (CTL) mice to levels attained by dependent (EtOH) mice. TBOA also further increased drinking in EtOH mice. In contrast, reducing glutamatergic transmission in the NAc via bilateral injections of the metabotropic glutamate receptor-2/3 agonist LY379268 reduced drinking in dependent (EtOH) mice to nondependent (CTL) levels, whereas having a more modest effect in decreasing ethanol consumption in CTL mice. Taken together, these data support an important role of glutamatergic transmission in the NAc in regulating ethanol drinking. Additionally, these results indicate that

  7. Effect of ethanol on (/sup 3/H)dopamine release in rat nucleus accumbens and striatal slices

    SciTech Connect

    Russell, V.A.; Lamm, M.C.; Taljaard, J.J.

    1988-05-01

    Ethanol (10-200 mM) transiently increased tritium overflow from superfused rat nucleus accumbens slices previously incubated with (/sup 3/H)dopamine (DA) and (/sup 14/C)choline. The effect was greater in striatal tissue and did not appear to be a non-specific membrane effect since (/sup 14/C)acetylcholine (ACh) release was not affected. Lack of antagonism by picrotoxin suggested that gamma-aminobutyric acid (GABA) receptors were not involved. Calcium was not a requirement and the DA uptake blocker, nomifensine, was without effect. Ethanol appeared to be causing (/sup 3/H)DA release into the cytoplasm. K+ -stimulated release of (/sup 3/H)DA and (/sup 14/C)ACh from nucleus accumbens and striatal slices was not affected. Clonidine-mediated inhibition of the K+-evoked release of (/sup 3/H)DA remained unaltered. Ethanol attenuated the isoproterenol-induced enhancement of (/sup 3/H)DA release. Ethanol therefore appeared to interact with components of the DA terminal causing a transient increase in the release of neurotransmitter without impairing K+-evoked release but apparently interfering with the isoproterenol-induced effect.

  8. Individual Differences in Ethanol Locomotor Sensitization Are Associated with Dopamine D1 Receptor Intra-Cellular Signaling of DARPP-32 in the Nucleus Accumbens

    PubMed Central

    Abrahao, Karina Possa; Oliveira Goeldner, Francine; Souza-Formigoni, Maria Lucia Oliveira

    2014-01-01

    In mice there are clear individual differences in the development of behavioral sensitization to ethanol, a progressive potentiation of its psychomotor stimulant effect. Variability in the behavioral responses to ethanol has been associated with alcohol preference. Here we investigated if the functional hyperresponsiveness of D1 receptors observed in ethanol sensitized mice leads to an increased activation of DARPP-32, a central regulatory protein in medium spiny neurons, in the nucleus accumbens - a brain region known to play a role in drug reinforcement. Swiss Webster mice received ethanol (2.2 g/kg/day) or saline i.p. administrations for 21 days and were weekly evaluated regarding their locomotor activity. From those treated with ethanol, the 33% with the highest levels of locomotor activity were classified as “sensitized” and the 33% with the lowest levels as "non-sensitized”. The latter presented similar locomotor levels to those of saline-treated mice. Different subgroups of mice received intra-accumbens administrations of saline and, 48 h later, SKF-38393, D1 receptor agonist 0.1 or 1 µg/side. Indeed, sensitized mice presented functional hyperresponsiveness of D1 receptors in the accumbens. Two weeks following the ethanol treatment, other subgroups received systemic saline or SKF 10 mg/kg, 20 min before the euthanasia. The nucleus accumbens were dissected for the Western Blot analyses of total DARPP-32 and phospho-Thr34-DARPP-32 expression. D1 receptor activation induced higher phospho-Thr34-DARPP-32 expression in sensitized mice than in non-sensitized or saline. The functionally hyperresponsiveness of D1 receptors in the nucleus accumbens is associated with an increased phospho-Thr34-DARPP-32 expression after D1 receptor activation. These data suggest that an enduring increase in the sensitivity of the dopamine D1 receptor intracellular pathway sensitivity represents a neurobiological correlate associated with the development of locomotor

  9. Effect of nucleus accumbens shell infusions of ganaxolone or gaboxadol on ethanol consumption in mice

    PubMed Central

    Ramaker, Marcia J.; Strong-Kaufman, Moriah N.; Ford, Matthew M.; Phillips, Tamara J.; Finn, Deborah A.

    2014-01-01

    Rationale Allopregnanolone (ALLO) is an endogenous neuroactive steroid thought to alter the reinforcement value of alcohol (ethanol) due to its actions as a positive modulator of the GABAA receptor (GABAAR). Extrasynaptic GABAARs may be a particularly sensitive target of ethanol and neuroactive steroids. Previous work showed that systemic injections of an ALLO analog, ganaxolone (GAN), or an extrasynaptic GABAAR agonist (gaboxadol; THIP), decreased ethanol intake in male mice with limited access to ethanol. Objectives The present studies tested whether activation of GABAARs in the nucleus accumbens (NAc) shell by GAN or THIP was sufficient to reduce ethanol intake. C57BL/6J male mice had 2-h access to 10% ethanol (10E) and water, and 10E intake was measured following site-specific infusions of GAN or THIP. Results Decreases in limited-access 10E consumption were observed following site-specific bilateral infusions of either drug into the NAc shell. Significant changes in intake were absent when the drugs were infused in a region dorsal to the target site (GAN) or into the lateral ventricle (THIP). Locomotor data confirmed that the decreases in intake were not due to a sedative effect of the drugs. Conclusions These data demonstrate the sufficiency of GABAAR activation by a positive allosteric modulator or an agonist with selectivity for extrasynaptic GABAARs to decrease ethanol consumption in mice. Importantly, more refined GABAAR-active targets that decrease ethanol intake may enhance our understanding and ability to treat alcohol use disorders. PMID:25342197

  10. Supersensitive Kappa Opioid Receptors Promotes Ethanol Withdrawal-Related Behaviors and Reduce Dopamine Signaling in the Nucleus Accumbens

    PubMed Central

    Rose, Jamie H.; Karkhanis, Anushree N.; Chen, Rong; Gioia, Dominic; Lopez, Marcelo F.; Becker, Howard C.; McCool, Brian A.

    2016-01-01

    Background: Chronic ethanol exposure reduces dopamine transmission in the nucleus accumbens, which may contribute to the negative affective symptoms associated with ethanol withdrawal. Kappa opioid receptors have been implicated in withdrawal-induced excessive drinking and anxiety-like behaviors and are known to inhibit dopamine release in the nucleus accumbens. The effects of chronic ethanol exposure on kappa opioid receptor-mediated changes in dopamine transmission at the level of the dopamine terminal and withdrawal-related behaviors were examined. Methods: Five weeks of chronic intermittent ethanol exposure in male C57BL/6 mice were used to examine the role of kappa opioid receptors in chronic ethanol-induced increases in ethanol intake and marble burying, a measure of anxiety/compulsive-like behavior. Drinking and marble burying were evaluated before and after chronic intermittent ethanol exposure, with and without kappa opioid receptor blockade by nor-binaltorphimine (10mg/kg i.p.). Functional alterations in kappa opioid receptors were assessed using fast scan cyclic voltammetry in brain slices containing the nucleus accumbens. Results: Chronic intermittent ethanol-exposed mice showed increased ethanol drinking and marble burying compared with controls, which was attenuated with kappa opioid receptor blockade. Chronic intermittent ethanol-induced increases in behavior were replicated with kappa opioid receptor activation in naïve mice. Fast scan cyclic voltammetry revealed that chronic intermittent ethanol reduced accumbal dopamine release and increased uptake rates, promoting a hypodopaminergic state of this region. Kappa opioid receptor activation with U50,488H concentration-dependently decreased dopamine release in both groups; however, this effect was greater in chronic intermittent ethanol-treated mice, indicating kappa opioid receptor supersensitivity in this group. Conclusions: These data suggest that the chronic intermittent ethanol-induced increase

  11. ADOLESCENT INTERMITTENT ETHANOL EXPOSURE ENHANCES ETHANOL ACTIVATION OF THE NUCLEUS ACCUMBENS WHILE BLUNTING THE PREFRONTAL CORTEX RESPONSES IN ADULT RAT

    PubMed Central

    LIU, W.; CREWS, F. T.

    2016-01-01

    The brain continues to develop through adolescence when excessive alcohol consumption is prevalent in humans. We hypothesized that binge drinking doses of ethanol during adolescence will cause changes in brain ethanol responses that persist into adulthood. To test this hypothesis Wistar rats were treated with an adolescent intermittent ethanol (AIE; 5 g/kg, i.g. 2 days on–2 days off; P25–P54) model of underage drinking followed by 25 days of abstinence during maturation to young adulthood (P80). Using markers of neuronal activation c-Fos, EGR1, and phophorylated extracellar signal regulated kinase (pERK1/2), adult responses to a moderate and binge drinking ethanol challenge, e.g., 2 or 4 g/kg, were determined. Adult rats showed dose dependent increases in neuronal activation markers in multiple brain regions during ethanol challenge. Brain regional responses correlated are consistent with anatomical connections. AIE led to marked decreases in adult ethanol PFC (prefrontal cortex) and blunted responses in the amygdala. Binge drinking doses led to the nucleus accumbens (NAc) activation that correlated with the ventral tegmental area (VTA) activation. In contrast to other brain regions, AIE enhanced the adult NAc response to binge drinking doses. These studies suggest that adolescent alcohol exposure causes long-lasting changes in brain responses to alcohol that persist into adulthood. PMID:25727639

  12. Adolescent intermittent ethanol exposure enhances ethanol activation of the nucleus accumbens while blunting the prefrontal cortex responses in adult rat.

    PubMed

    Liu, W; Crews, F T

    2015-05-07

    The brain continues to develop through adolescence when excessive alcohol consumption is prevalent in humans. We hypothesized that binge drinking doses of ethanol during adolescence will cause changes in brain ethanol responses that persist into adulthood. To test this hypothesis Wistar rats were treated with an adolescent intermittent ethanol (AIE; 5 g/kg, i.g. 2 days on-2 days off; P25-P54) model of underage drinking followed by 25 days of abstinence during maturation to young adulthood (P80). Using markers of neuronal activation c-Fos, EGR1, and phophorylated extracellar signal regulated kinase (pERK1/2), adult responses to a moderate and binge drinking ethanol challenge, e.g., 2 or 4 g/kg, were determined. Adult rats showed dose dependent increases in neuronal activation markers in multiple brain regions during ethanol challenge. Brain regional responses correlated are consistent with anatomical connections. AIE led to marked decreases in adult ethanol PFC (prefrontal cortex) and blunted responses in the amygdala. Binge drinking doses led to the nucleus accumbens (NAc) activation that correlated with the ventral tegmental area (VTA) activation. In contrast to other brain regions, AIE enhanced the adult NAc response to binge drinking doses. These studies suggest that adolescent alcohol exposure causes long-lasting changes in brain responses to alcohol that persist into adulthood.

  13. Ethanol disrupts the mechanisms of induction of long-term potentiation in the mouse nucleus accumbens.

    PubMed

    Mishra, Devesh; Zhang, Xiaoqun; Chergui, Karima

    2012-12-01

    Long-term changes in the efficacy of glutamatergic synaptic transmission in reward-related brain regions such as the nucleus accumbens (NAc) are proposed to contribute to neuroadaptations that lead to drug addiction. Although alcohol is a widely used addictive substance, the cellular mechanisms by which it influences synaptic plasticity in the NAc are not elucidated. We therefore examined whether acute ethanol (EtOH) alters long-term potentiation (LTP) in the core region of the NAc and investigated the possible underlying mechanisms. We measured field excitatory postsynaptic potential/population spike (fEPSP/PS) amplitude in mouse brain slices containing the NAc. We also used amperometry to detect, with carbon fiber electrode, evoked dopamine release in brain slices. In control slices, high-frequency stimulation (HFS) induced a stable LTP. LTP was reduced in slices perfused with EtOH (50 mM). Given that induction of LTP is dependent on glutamate acting on N-methyl-d-aspartate (NMDA) receptors and group I metabotropic glutamate receptors (mGluRs), we studied the ability of EtOH to modulate these 2 classes of receptors. NMDA (20 μM) depressed the amplitude of the fEPSP/PS, but this effect was not altered by EtOH in our experimental conditions. However, EtOH reversed the ability of the group I mGluR agonist (S)-3,5-Dihydroxyphenylglycine (DHPG) (50 μM) to potentiate the depressant action of NMDA on the fEPSP/PS. We also examined whether EtOH could modulate dopamine release given that dopamine plays important roles in mediating the reinforcing actions of abused drugs and in the induction of LTP in the NAc. We found that EtOH reversibly decreased action potential-dependent dopamine release evoked by single stimulation pulses and by HFS trains in NAc slices. These results show that EtOH impairs the induction of LTP possibly through several mechanisms that include inhibition of group I mGluR-mediated potentiation of NMDA receptor function and of evoked dopamine

  14. Paradoxical augmented relapse in alcohol-dependent rats during deep-brain stimulation in the nucleus accumbens

    PubMed Central

    Hadar, R; Vengeliene, V; Barroeta Hlusicke, E; Canals, S; Noori, H R; Wieske, F; Rummel, J; Harnack, D; Heinz, A; Spanagel, R; Winter, C

    2016-01-01

    Case reports indicate that deep-brain stimulation in the nucleus accumbens may be beneficial to alcohol-dependent patients. The lack of clinical trials and our limited knowledge of deep-brain stimulation call for translational experiments to validate these reports. To mimic the human situation, we used a chronic-continuous brain-stimulation paradigm targeting the nucleus accumbens and other brain sites in alcohol-dependent rats. To determine the network effects of deep-brain stimulation in alcohol-dependent rats, we combined electrical stimulation of the nucleus accumbens with functional magnetic resonance imaging (fMRI), and studied neurotransmitter levels in nucleus accumbens-stimulated versus sham-stimulated rats. Surprisingly, we report here that electrical stimulation of the nucleus accumbens led to augmented relapse behavior in alcohol-dependent rats. Our associated fMRI data revealed some activated areas, including the medial prefrontal cortex and caudate putamen. However, when we applied stimulation to these areas, relapse behavior was not affected, confirming that the nucleus accumbens is critical for generating this paradoxical effect. Neurochemical analysis of the major activated brain sites of the network revealed that the effect of stimulation may depend on accumbal dopamine levels. This was supported by the finding that brain-stimulation-treated rats exhibited augmented alcohol-induced dopamine release compared with sham-stimulated animals. Our data suggest that deep-brain stimulation in the nucleus accumbens enhances alcohol-liking probably via augmented dopamine release and can thereby promote relapse. PMID:27327255

  15. CHRONIC INTERMITTENT ETHANOL EXPOSURE REDUCES PRESYNAPTIC DOPAMINE NEUROTRANSMISSION IN THE MOUSE NUCLEUS ACCUMBENS

    PubMed Central

    Karkhanis, Anushree N.; Rose, Jamie H.; Huggins, Kimberly N.; Konstantopoulos, Joanne K.; Jones, Sara R.

    2015-01-01

    BACKGROUND Increasing evidence suggests that chronic ethanol exposure decreases dopamine (DA) neurotransmission in the nucleus accumbens (NAc), contributing to a hypodopaminergic state during withdrawal. However, few studies have investigated adaptations in presynaptic DA terminals after chronic intermittent ethanol (CIE) exposure. In monkeys and rats, chronic ethanol exposure paradigms have been shown to increase DA uptake and D2 autoreceptor sensitivity. METHODS The current study examined the effects of ethanol on DA terminals in CIE exposed mice during two time-points after the cessation of CIE exposure. DA release and uptake were measured using fast scan cyclic voltammetry in NAc core slices from C57BL/6J mice, 0 and 72 hours following three weekly cycles (4 days of 16 hrs ethanol vapor/8 hrs room air/day + 3 days withdrawal) of CIE vapor exposure. RESULTS Current results showed that DA release was reduced, uptake rates were increased, and inhibitory D2-type autoreceptor activity was augmented following CIE exposure in mice. CONCLUSIONS Overall, these CIE-induced adaptations in the accumbal DA system reduce DA signaling and therefore reveal several potential mechanisms contributing to a functional hypodopaminergic state during alcohol withdrawal. PMID:25765483

  16. Chronic intermittent ethanol exposure reduces presynaptic dopamine neurotransmission in the mouse nucleus accumbens.

    PubMed

    Karkhanis, Anushree N; Rose, Jamie H; Huggins, Kimberly N; Konstantopoulos, Joanne K; Jones, Sara R

    2015-05-01

    Increasing evidence suggests that chronic ethanol exposure decreases dopamine (DA) neurotransmission in the nucleus accumbens (NAc), contributing to a hypodopaminergic state during withdrawal. However, few studies have investigated adaptations in presynaptic DA terminals after chronic intermittent ethanol (CIE) exposure. In monkeys and rats, chronic ethanol exposure paradigms have been shown to increase DA uptake and D2 autoreceptor sensitivity. The current study examined the effects of ethanol on DA terminals in CIE exposed mice during two time-points after the cessation of CIE exposure. DA release and uptake were measured using fast scan cyclic voltammetry in NAc core slices from C57BL/6J mice, 0h and 72h following three weekly cycles (4 days of 16h ethanol vapor/8h room air/day+3 days withdrawal) of CIE vapor exposure. Current results showed that DA release was reduced, uptake rates were increased, and inhibitory D2-type autoreceptor activity was augmented following CIE exposure in mice. Overall, these CIE-induced adaptations in the accumbal DA system reduce DA signaling and therefore reveal several potential mechanisms contributing to a functional hypodopaminergic state during alcohol withdrawal. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. A case of musical preference for Johnny Cash following deep brain stimulation of the nucleus accumbens

    PubMed Central

    Mantione, Mariska; Figee, Martijn; Denys, Damiaan

    2014-01-01

    Music is among all cultures an important part of the live of most people. Music has psychological benefits and may generate strong emotional and physiological responses. Recently, neuroscientists have discovered that music influences the reward circuit of the nucleus accumbens (NAcc), even when no explicit reward is present. In this clinical case study, we describe a 60-year old patient who developed a sudden and distinct musical preference for Johnny Cash following deep brain stimulation (DBS) targeted at the NAcc. This case report substantiates the assumption that the NAcc is involved in musical preference, based on the observation of direct stimulation of the accumbens with DBS. It also shows that accumbens DBS can change musical preference without habituation of its rewarding properties. PMID:24834035

  18. Stimulation of the nucleus accumbens as behavioral reward in awake behaving monkeys.

    PubMed

    Bichot, Narcisse P; Heard, Matthew T; Desimone, Robert

    2011-08-15

    It has been known that monkeys will repeatedly press a bar for electrical stimulation in several different brain structures. We explored the possibility of using electrical stimulation in one such structure, the nucleus accumbens, as a substitute for liquid reward in animals performing a complex task, namely visual search. The animals had full access to water in the cage at all times on days when stimulation was used to motivate them. Electrical stimulation was delivered bilaterally at mirror locations in and around the accumbens, and the animals' motivation to work for electrical stimulation was quantified by the number of trials they performed correctly per unit of time. Acute mapping revealed that stimulation over a large area successfully supported behavioral performance during the task. Performance improved with increasing currents until it reached an asymptotic, theoretically maximal level. Moreover, stimulation with chronically implanted electrodes showed that an animal's motivation to work for electrical stimulation was at least equivalent to, and often better than, when it worked for liquid reward while on water control. These results suggest that electrical stimulation in the accumbens is a viable method of reward in complex tasks. Because this method of reward does not necessitate control over water or food intake, it may offer an alternative to the traditional liquid or food rewards in monkeys, depending on the goals and requirements of the particular research project.

  19. Gene expression changes in the nucleus accumbens of alcohol-preferring rats following chronic ethanol consumption.

    PubMed

    Bell, Richard L; Kimpel, Mark W; McClintick, Jeanette N; Strother, Wendy N; Carr, Lucinda G; Liang, Tiebing; Rodd, Zachary A; Mayfield, R Dayne; Edenberg, Howard J; McBride, William J

    2009-11-01

    The objective of this study was to determine the effects of binge-like alcohol drinking on gene expression changes in the nucleus accumbens (ACB) of alcohol-preferring (P) rats. Adult male P rats were given ethanol under multiple scheduled access (MSA; three 1-h dark cycle sessions/day) conditions for 8 weeks. For comparison purposes, a second ethanol drinking group was given continuous/daily alcohol access (CA; 24h/day). A third group was ethanol-naïve (W group). Average ethanol intakes for the CA and MSA groups were approximately 9.5 and 6.5 g/kg/day, respectively. Fifteen hours after the last drinking episode, rats were euthanized, the brains extracted, and the ACB dissected. RNA was extracted and purified for microarray analysis. The only significant differences were between the CA and W groups (p<0.01; Storey false discovery rate=0.15); there were 374 differences in named genes between these 2 groups. There were 20 significant Gene Ontology (GO) categories, which included negative regulation of protein kinase activity, anti-apoptosis, and regulation of G-protein coupled receptor signaling. Ingenuity analysis indicated a network of transcription factors, involving oncogenes (Fos, Jun, Junb had higher expression in the ACB of the CA group), suggesting increased neuronal activity. There were 43 genes located within rat QTLs for alcohol consumption and preference; 4 of these genes (Tgfa, Hspa5, Mtus1 and Creb3l2) are involved in anti-apoptosis and increased transcription, suggesting that they may be contributing to cellular protection and maintaining high alcohol intakes. Overall, these findings suggest that chronic CA drinking results in genomic changes that can be observed during the early acute phase of ethanol withdrawal. Conversely, chronic MSA drinking, with its associated protracted withdrawal periods, results in genomic changes that may be masked by tight regulation of these genes following repeated experiences of ethanol withdrawal.

  20. Gene expression changes in the nucleus accumbens of alcohol-preferring rats following chronic ethanol consumption

    PubMed Central

    Bell, Richard L.; Kimpel, Mark W.; McClintick, Jeanette N.; Strother, Wendy N.; Carr, Lucinda G.; Liang, Tiebing; Rodd, Zachary A.; Mayfield, R. Dayne; Edenberg, Howard J.; McBride, William J.

    2009-01-01

    The objective of this study was to determine the effects of binge-like alcohol drinking on gene expression changes in the nucleus accumbens (ACB) of alcohol-preferring (P) rats. Adult male P rats were given ethanol under multiple scheduled access (MSA; three 1-hr dark-cycle sessions/day) conditions for 8 weeks. For comparison purposes, a second ethanol drinking group was given continuous/daily alcohol access (CA; 24 hr/day). A third group was ethanol-naïve (W group). Average ethanol intakes for the CA and MSA groups were approximately 9.5 and 6.5 g/kg/day, respectively. Fifteen hr after the last drinking episode, rats were euthanized, the brains extracted, and the ACB dissected. RNA was extracted and purified for microarray analysis. The only significant differences were between the CA and W groups (p < 0.01; Storey false discovery rate = 0.15); there were 374 differences in named genes between these 2 groups. There were 20 significant Gene Ontology (GO) categories, which included negative regulation of protein kinase activity, anti-apoptosis, and regulation of G-protein-coupled receptor signaling. Ingenuity® analysis indicated a network of transcription factors, involving oncogenes (Fos, Jun, Junb had higher expression in the ACB of the CA group), suggesting increased neuronal activity. There were 43 genes located within rat QTLs for alcohol consumption and preference; 4 of these genes (Tgfa, Hspa5, Mtus1 and Creb3l2) are involved in anti-apoptosis and increased transcription, suggesting that they may be contributing to cellular protection and maintaining high alcohol intakes. Overall, these findings suggest that chronic CA drinking results in genomic changes that can be observed during the early acute phase of ethanol withdrawal. Conversely, chronic MSA drinking, with its associated protracted withdrawal periods, results in genomic changes that may be masked by tight regulation of these genes following repeated experiences of ethanol withdrawal. PMID:19666046

  1. Changes in dendritic spine density in the nucleus accumbens do not underlie ethanol sensitization.

    PubMed

    Nona, Christina N; Bermejo, Marie Kristel; Ramsey, Amy J; Nobrega, José N

    2015-12-01

    Behavioral sensitization to various drugs of abuse has been shown to change dendritic spine density and/or morphology of nucleus accumbens (NAc) medium spiny neurons, an effect seen across drug classes. However, is it not known whether behavioral sensitization to ethanol (EtOH) is also associated with structural changes in this region. Here we compared dendritic spine density and morphology between mice showing High vs. Low levels of EtOH sensitization and found that high levels of EtOH sensitization were not associated with changes in dendritic spine density or spine type. Unexpectedly, however, a significant increase in the density of stubby-type spines was seen in mice that were resistant to sensitization. Since the presence of this spine type has been associated with long-term depression and cognitive/learning deficits this may explain why these mice fail to sensitize and why they show poor performance in conditioning tasks, as previously shown. A possible causal role for structural plasticity in behavioral sensitization to various drugs has been debated. In the case of EtOH sensitization, our results suggest that drug-induced changes in structural plasticity in the accumbens neurons may not be the cause of sensitized behavior. © 2015 Wiley Periodicals, Inc.

  2. GABAB receptor activation attenuates the stimulant but not mesolimbic dopamine response to ethanol in FAST mice

    PubMed Central

    Holstein, Sarah E.; Li, Na; Eshleman, Amy J.; Phillips, Tamara J.

    2012-01-01

    Neural processes influenced by γ-aminobutyric acid B (GABAB) receptors appear to contribute to acute ethanol sensitivity, including the difference between lines of mice bred for extreme sensitivity (FAST) or insensitivity (SLOW) to the locomotor stimulant effect of ethanol. One goal of the current study was to determine whether selection of the FAST and SLOW lines resulted in changes in GABAB receptor function, since the lines differ in sensitivity to the GABAB receptor agonist baclofen and baclofen attenuates the stimulant response to ethanol in FAST mice. A second goal was to determine whether the baclofen-induced reduction in ethanol stimulation in FAST mice is associated with an attenuation of the mesolimbic dopamine response to ethanol. In Experiment 1, the FAST and SLOW lines were found to not differ in GABAB receptor function (measured by baclofen-stimulated [35S]GTP!S binding) in whole brain or in several regional preparations, except in the striatum in one of the two replicate sets of selected lines. In Experiment 2, baclofen-induced attenuation of the locomotor stimulant response to ethanol in FAST mice was not accompanied by a reduction in dopamine levels in the nucleus accumbens, as measured by microdialysis. These data suggest that, overall, GABAB receptor function does not play an integral role in the genetic difference in ethanol sensitivity between the FAST and SLOW lines. Further, although GABAB receptors do modulate the locomotor stimulant response to ethanol in FAST mice, this effect does not appear to be due to a reduction in tonic dopamine signaling in the nucleus accumbens. PMID:22982185

  3. Ethanol inhibits excitatory neurotransmission in the nucleus accumbens of adolescent mice through GABAA and GABAB receptors.

    PubMed

    Mishra, Devesh; Chergui, Karima

    2013-07-01

    Age-related differences in various acute physiological and behavioral effects of alcohol have been demonstrated in humans and in other species. Adolescents are more sensitive to positive reinforcing properties of alcohol than adults, but the cellular mechanisms that underlie such a difference are not clearly established. We, therefore, assessed age differences in the ability of ethanol to modulate glutamatergic synaptic transmission in the mouse nucleus accumbens (NAc), a brain region importantly involved in reward mechanisms. We measured field excitatory postsynaptic potentials/population spikes (fEPSP/PS) in NAc slices from adolescent (22-30 days old) and adult (5-8 months old) male mice. We found that 50mM ethanol applied in the perfusion solution inhibits glutamatergic neurotransmission in the NAc of adolescent, but not adult, mice. This effect is blocked by the gamma-aminobutyric acid (GABA)A receptor antagonist bicuculline and by the GABAB receptor antagonist CGP 55845. Furthermore, bicuculline applied alone produces a stronger increase in the fEPSP/PS amplitude in adult mice than in adolescent mice. Activation of GABAA receptors with muscimol produces a stronger and longer lasting depression of neurotransmission in adolescent mice as compared with adult mice. Activation of GABAB receptors with SKF 97541 also depresses neurotransmission more strongly in adolescent than in adult mice. These results demonstrate that an increased GABA receptor function associated with a reduced inhibitory tone underlies the depressant action of ethanol on glutamatergic neurotransmission in the NAc of adolescent mice.

  4. Lack of effect of nucleus accumbens dopamine D1 receptor blockade on consumption during the first two days of operant self-administration of sweetened ethanol in adult Long-Evans rats

    PubMed Central

    Doherty, James M.; Gonzales, Rueben A.

    2014-01-01

    The mechanisms underlying ethanol self-administration are not fully understood; however, it is clear that ethanol self-administration stimulates nucleus accumbens dopamine release in well trained animals. During operant sweetened ethanol self-administration behavior, an adaptation in the nucleus accumbens dopamine system occurs between the first and second exposure paralleling a dramatic increase in sweetened ethanol intake, which suggests a single exposure to sweetened ethanol may be sufficient to learn the association between sweetened ethanol cues and its reinforcing properties. In the present experiment, we test the effects of blockade of nucleus accumbens dopamine D1 receptors on operant sweetened ethanol self-administration behavior during the first two days of exposure. Adult male Long-Evans rats were first trained to self-administer 10% sucrose (10S) across six days in an appetitive and consummatory operant model (appetitive interval: 10 min pre-drinking wait period and a lever response requirement of 4; consummatory interval: 20 min access to the drinking solution). After training on 10S, the drinking solution was switched to 10% sucrose plus 10% ethanol (10S10E); control rats remained drinking 10S throughout the experiment. Bilateral nucleus accumbens microinjections of the dopamine D1 antagonist, SCH-23390 (0, 1.0, or 3.0 μg/side), immediately preceded the first two sessions of drinking 10S10E. Results show that blocking nucleus accumbens dopamine D1 receptors has little or no influence on consumption during the first two days of exposure to the sweetened ethanol solution or maintenance of sucrose only drinking. Furthermore, the high dose of SCH-23390, 3.0 μg/side, reduced open field locomotor activity. In conclusion, we found no evidence to suggest that nucleus accumbens D1 receptor activation is involved in consumption of a sweetened ethanol solution during the first two days of exposure or maintenance of sucrose drinking, but rather D1 receptors

  5. Lack of effect of nucleus accumbens dopamine D1 receptor blockade on consumption during the first two days of operant self-administration of sweetened ethanol in adult Long-Evans rats.

    PubMed

    Doherty, James M; Gonzales, Rueben A

    2015-09-01

    The mechanisms underlying ethanol self-administration are not fully understood; however, it is clear that ethanol self-administration stimulates nucleus accumbens dopamine release in well-trained animals. During operant sweetened ethanol self-administration behavior, an adaptation in the nucleus accumbens dopamine system occurs between the first and second exposure, paralleling a dramatic increase in sweetened ethanol intake, which suggests a single exposure to sweetened ethanol may be sufficient to learn the association between sweetened ethanol cues and its reinforcing properties. In the present experiment, we test the effects of blockade of nucleus accumbens dopamine D1 receptors on operant sweetened ethanol self-administration behavior during the first 2 days of exposure. Adult male Long-Evans rats were first trained to self-administer 10% sucrose (10S) across 6 days in an appetitive and consummatory operant model (appetitive interval: 10-min pre-drinking wait period and a lever response requirement of 4; consummatory interval: 20-min access to the drinking solution). After training on 10S, the drinking solution was switched to 10% sucrose plus 10% ethanol (10S10E); control rats continued drinking 10S throughout the experiment. Bilateral nucleus accumbens microinjections of the dopamine D1 antagonist, SCH-23390 (0, 1.0, or 3.0 μg/side), immediately preceded the first two sessions of drinking 10S10E. Results show that blocking nucleus accumbens dopamine D1 receptors has little or no influence on consumption during the first 2 days of exposure to the sweetened ethanol solution or maintenance of sucrose-only drinking. Furthermore, the high dose of SCH-23390, 3.0 μg/side, reduced open-field locomotor activity. In conclusion, we found no evidence to suggest that nucleus accumbens D1 receptor activation is involved in consumption of a sweetened ethanol solution during the first 2 days of exposure or maintenance of sucrose drinking, but rather D1 receptors seem

  6. Gamma-vinyl GABA inhibits methamphetamine, heroin, or ethanol-induced increases in nucleus accumbens dopamine.

    PubMed

    Gerasimov, M R; Ashby, C R; Gardner, E L; Mills, M J; Brodie, J D; Dewey, S L

    1999-10-01

    We examined the acute effect of the irreversible GABA-transaminase inhibitor, gamma-vinyl GABA (GVG, Sabril((R)), Vigabatrin((R))) on increases in nucleus accumbens (NAc) dopamine (DA) following acute administration of methamphetamine, heroin, or ethanol. Methamphetamine (2.5 mg/kg) produced a dose-dependent increase (2, 700%) in NAc DA. GVG preadministration (300 or 600 mg/kg), however, inhibited this response by approximately 39 and 61%, respectively. The lower dose of methamphetamine (1.25 mg/kg), increased DA by 1, 700%. This response was inhibited to a similar extent (44%) regardless of the GVG dose preadministered (300 or 600 mg/kg). In addition, heroin-induced increases in NAc DA (0.5 mg/kg, 170%) were inhibited or completely abolished by GVG (150 or 300 mg/kg, 65 and 100%, respectively). Finally, at half the dose necessary for heroin, GVG (150 mg/kg) also completely abolished ethanol-induced increases in NAc DA following a 0.25 g/kg challenge dose (140%). Taken with our previous findings using nicotine or cocaine as the challenge drug, these results indicate that GVG attenuates increases in NAc DA by a mechanism common to many drugs of abuse. However, it appears unlikely that an acute dose of GVG can completely inhibit increases in NAc DA following challenges with a drug whose mechanism of action is mediated primarily through the DA reuptake site.

  7. Chronic ethanol self-administration in macaques shifts dopamine feedback inhibition to predominantly D2 receptors in nucleus accumbens core

    PubMed Central

    Siciliano, Cody A.; Calipari, Erin S.; Yorgason, Jordan T.; Mateo, Yolanda; Helms, Christa M.; Lovinger, David M.; Grant, Kathleen A.; Jones, Sara R.

    2015-01-01

    Background Given the high level of homology between nonhuman primates and humans in regard to anatomy, physiology and ethanol drinking patterns, nonhuman primates represent an unparalleled preclinical model for examining the neurobiological basis of ethanol abuse. Methods Here we examined the neurochemical consequences of chronic daily ethanol use using fast-scan cyclic voltammetry in brain slices containing the nucleus accumbens core or dorsolateral caudate taken from male cynomolgus macaques following ethanol drinking. Results We found that in both regions the ability of ethanol to decrease dopamine release was unchanged, indicating that ethanol self-administration does not produce tolerance or sensitization to ethanol effects on dopamine release at the dopamine terminal at this time point. We also found that in the nucleus accumbens core, autoregulation of dopamine release was shifted from equal D2 and D3 receptor involvement in control animals to primarily D2 receptor-mediated in drinkers. Specifically, the effect quinpirole, a D2/D3 receptor agonist, on dopamine release was equal across groups; however, dopamine signals were reversed to a greater extent by the selective D3 receptor antagonist SB-277,011A in control animals, indicating a greater contribution of D2 receptors in quinpirole-induced inhibition following ethanol self-administration. In the dorsolateral caudate, the effects of quinpirole and reversal with SB-277,011A was not different between ethanol and control slices. Conclusions This work provides novel insight into the dopaminergic adaptations resulting from chronic ethanol use in nonhuman primates and indicates that alterations in D2/D3 dopamine autoreceptor signaling may be an important neurochemical adaptation to ethanol consumption during early use. PMID:26627912

  8. Deep brain stimulation of the nucleus accumbens shell attenuates cocaine reinstatement through local and antidromic activation.

    PubMed

    Vassoler, Fair M; White, Samantha L; Hopkins, Thomas J; Guercio, Leonardo A; Espallergues, Julie; Berton, Olivier; Schmidt, Heath D; Pierce, R Christopher

    2013-09-04

    Accumbal deep brain stimulation (DBS) is a promising therapeutic modality for the treatment of addiction. Here, we demonstrate that DBS in the nucleus accumbens shell, but not the core, attenuates cocaine priming-induced reinstatement of drug seeking, an animal model of relapse, in male Sprague Dawley rats. Next, we compared DBS of the shell with pharmacological inactivation. Results indicated that inactivation using reagents that influenced (lidocaine) or spared (GABA receptor agonists) fibers of passage blocked cocaine reinstatement when administered into the core but not the shell. It seems unlikely, therefore, that intrashell DBS influences cocaine reinstatement by inactivating this nucleus or the fibers coursing through it. To examine potential circuit-wide changes, c-Fos immunohistochemistry was used to examine neuronal activation following DBS of the nucleus accumbens shell. Intrashell DBS increased c-Fos induction at the site of stimulation as well as in the infralimbic cortex, but had no effect on the dorsal striatum, prelimbic cortex, or ventral pallidum. Recent evidence indicates that accumbens DBS antidromically stimulates axon terminals, which ultimately activates GABAergic interneurons in cortical areas that send afferents to the shell. To test this hypothesis, GABA receptor agonists (baclofen/muscimol) were microinjected into the anterior cingulate, and prelimbic or infralimbic cortices before cocaine reinstatement. Pharmacological inactivation of all three medial prefrontal cortical subregions attenuated the reinstatement of cocaine seeking. These results are consistent with DBS of the accumbens shell attenuating cocaine reinstatement via local activation and/or activation of GABAergic interneurons in the medial prefrontal cortex via antidromic stimulation of cortico-accumbal afferents.

  9. Viral-mediated knockdown of mGluR7 in the nucleus accumbens mediates excessive alcohol drinking and increased ethanol-elicited conditioned place preference in rats.

    PubMed

    Bahi, Amine

    2013-10-01

    Whether metabotropic glutamate 7 (mGluR7) -activation enhances or diminishes the reinforcing properties of psychostimulants remains unclear. We have previously shown that systemic mGluR7 activation reduced alcohol consumption and preference as well as locomotor-stimulating and rewarding properties of ethanol. In this study, we further examined the contribution of mGluR7 on the effect of ethanol within the nucleus accumbens (NAcc), a neural target for many drugs of abuse. Using short hairpin RNA (shRNA)-expressing lentiviral vectors (LV) to alter locally the activity of mGluR7 in male rats, we have shown that blocking mGluR7 expression increased ethanol consumption and preference in a two-bottle choice drinking paradigm with no effect either on saccharin or on quinine used for taste discrimination. In addition, mGluR7 knockdown increases preference for environments previously paired with low doses of ethanol in the conditioned place preference (CPP) test, as it shifted the dose-response curve for ethanol CPP to the left, indicating alterations in the rewarding effects of alcohol. More importantly, mGluR7 blockade in the dorsal striatum (DS) neither affected ethanol consumption nor ethanol-elicited CPP. These results show that levels of mGluR7 in the NAcc regulate responsiveness to alcohol. Taken together, these findings clearly demonstrate that mGluR7 signaling within the NAcc is a key modulator of functional responses to ethanol and offer an important target for regulating the addictive effects of alcohol.

  10. Changes in Dopamine Transmission in the Nucleus Accumbens Shell and Core during Ethanol and Sucrose Self-Administration.

    PubMed

    Bassareo, Valentina; Cucca, Flavia; Frau, Roberto; Di Chiara, Gaetano

    2017-01-01

    Ethanol, like other substances of abuse, preferentially increases dopamine (DA) transmission in the rat nucleus accumbens (NAc) following passive administration. It remains unclear, however, whether ethanol also increases NAc DA transmission following operant oral self-administration (SA). The NAc is made-up of a ventro-medial compartment, the shell and a dorso-lateral one, the core, where DA transmission responds differentially following exposure to drugs of abuse. Previous studies from our laboratory investigated changes in dialysate DA in the NAc shell and core of rats responding for sucrose pellets and for drugs of abuse. As a follow up to these studies, we recently investigated the changes in NAc shell and core DA transmission associated to oral SA of a 10% ethanol solution. For the purpose of comparison with literature studies utilizing sucrose + ethanol solutions, we also investigated the changes in dialysate DA associated to SA of 20% sucrose and 10% ethanol + 20% sucrose solutions. Rats were trained to acquire oral SA of the solutions under a Fixed Ratio 1 (FR1) schedule of nose-poking. After training, rats were monitored by microdialysis on three consecutive days under response contingent (active), reward omission (extinction trial) and response non-contingent (passive) presentation of ethanol, sucrose or ethanol + sucrose solutions. Active and passive ethanol administration produced a similar increase in dialysate DA in the two NAc subdivisions, while under extinction trial DA increased preferentially in the shell compared to the core. Conversely, under sucrose SA and extinction DA increased exclusively in the shell. These observations provide unequivocal evidence that oral SA of 10% ethanol increases dialysate DA in the NAc, and also suggest that stimuli conditioned to ethanol exposure contribute to the increase of dialysate DA observed in the NAc following ethanol SA. Comparison between the pattern of DA changes detected in the NAc subdivisions under

  11. Changes in Dopamine Transmission in the Nucleus Accumbens Shell and Core during Ethanol and Sucrose Self-Administration

    PubMed Central

    Bassareo, Valentina; Cucca, Flavia; Frau, Roberto; Di Chiara, Gaetano

    2017-01-01

    Ethanol, like other substances of abuse, preferentially increases dopamine (DA) transmission in the rat nucleus accumbens (NAc) following passive administration. It remains unclear, however, whether ethanol also increases NAc DA transmission following operant oral self-administration (SA). The NAc is made-up of a ventro-medial compartment, the shell and a dorso-lateral one, the core, where DA transmission responds differentially following exposure to drugs of abuse. Previous studies from our laboratory investigated changes in dialysate DA in the NAc shell and core of rats responding for sucrose pellets and for drugs of abuse. As a follow up to these studies, we recently investigated the changes in NAc shell and core DA transmission associated to oral SA of a 10% ethanol solution. For the purpose of comparison with literature studies utilizing sucrose + ethanol solutions, we also investigated the changes in dialysate DA associated to SA of 20% sucrose and 10% ethanol + 20% sucrose solutions. Rats were trained to acquire oral SA of the solutions under a Fixed Ratio 1 (FR1) schedule of nose-poking. After training, rats were monitored by microdialysis on three consecutive days under response contingent (active), reward omission (extinction trial) and response non-contingent (passive) presentation of ethanol, sucrose or ethanol + sucrose solutions. Active and passive ethanol administration produced a similar increase in dialysate DA in the two NAc subdivisions, while under extinction trial DA increased preferentially in the shell compared to the core. Conversely, under sucrose SA and extinction DA increased exclusively in the shell. These observations provide unequivocal evidence that oral SA of 10% ethanol increases dialysate DA in the NAc, and also suggest that stimuli conditioned to ethanol exposure contribute to the increase of dialysate DA observed in the NAc following ethanol SA. Comparison between the pattern of DA changes detected in the NAc subdivisions under

  12. Control of food intake by MC4-R signaling in the lateral hypothalamus, nucleus accumbens shell and ventral tegmental area: Interactions with ethanol

    PubMed Central

    Lerma-Cabrera, Jose M.; Carvajal, Francisca; de la Torre, Lourdes; de la Fuente, Leticia; Navarro, Montserrat; Thiele, Todd E.; Cubero, Inmaculada

    2012-01-01

    The Melanocortin system is involved in animal models of obesity and anorexia-cachexia and MC4 receptors (MC4-R) are currently a target system for the development of drugs aimed to treat obesity and eating disorders in humans. Previous evidence suggest that feeding peptides might lack their orexigenic activity while stimulate ethanol intake. The present study comparatively evaluated food intake (4-h interval) in Sprague-Dawley (SD) rats drinking ethanol (6% w/v, 2 bottle choice paradigm) (EE group) and ethanol-naïve (EN) rats in response to bilateral infusion of the selective MC4-R antagonist HS014 (0, 0.02 or 0.05 μg/0.5μl/site) or the selective MC4-R agonist cyclo(NH-CH2-CH2-CO-His-D-Phe-Arg-Trp-Glu)-NH2 (0, 0.75 or 1.5 μg/0.5μl/site), into the lateral hypothalamus (LH), the nucleus accumbens (NAc), or the ventral tegmental area (VTA). The main findings in the study are: 1) LH-infusions of the MC4-R antagonist increased and the agonist reduced feeding and total calories consumed, while ethanol intake remained unaltered. 2) NAc- and VTA-infusions of the selective agonist reduced food, ethanol and total calories intake. 3) NAc- and VTA-infusions of the MC4-R antagonist increased feeding in EN rats, but not in EE animals which showed a mild increase in ethanol intake, while total calories consumed remained unaltered. Present data show that having ethanol available reduces feeding elicited by NAc and VTA-MC4-R blockade. Additionally, while MC4-R signalling in the LH appears to modulate homeostatic aspects of feeding, it may contribute to non-homeostatic aspects of ingestive behaviours in the VTA and the NAc. PMID:22713514

  13. Chronic intermittent ethanol exposure and withdrawal leads to adaptations in nucleus accumbens core postsynaptic density proteome and dendritic spines.

    PubMed

    Uys, Joachim D; McGuier, Natalie S; Gass, Justin T; Griffin, William C; Ball, Lauren E; Mulholland, Patrick J

    2016-05-01

    Alcohol use disorder is a chronic relapsing brain disease characterized by the loss of ability to control alcohol (ethanol) intake despite knowledge of detrimental health or personal consequences. Clinical and pre-clinical models provide strong evidence for chronic ethanol-associated alterations in glutamatergic signaling and impaired synaptic plasticity in the nucleus accumbens (NAc). However, the neural mechanisms that contribute to aberrant glutamatergic signaling in ethanol-dependent individuals in this critical brain structure remain unknown. Using an unbiased proteomic approach, we investigated the effects of chronic intermittent ethanol (CIE) exposure on neuroadaptations in postsynaptic density (PSD)-enriched proteins in the NAc of ethanol-dependent mice. Compared with controls, CIE exposure significantly changed expression levels of 50 proteins in the PSD-enriched fraction. Systems biology and functional annotation analyses demonstrated that the dysregulated proteins are expressed at tetrapartite synapses and critically regulate cellular morphology. To confirm this latter finding, the density and morphology of dendritic spines were examined in the NAc core of ethanol-dependent mice. We found that CIE exposure and withdrawal differentially altered dendrite diameter and dendritic spine density and morphology. Through the use of quantitative proteomics and functional annotation, these series of experiments demonstrate that ethanol dependence produces neuroadaptations in proteins that modify dendritic spine morphology. In addition, these studies identified novel PSD-related proteins that contribute to the neurobiological mechanisms of ethanol dependence that drive maladaptive structural plasticity of NAc neurons. © 2015 Society for the Study of Addiction.

  14. Ethanol attenuation of long-term depression in the nucleus accumbens can be overcome by activation of TRPV1 receptors.

    PubMed

    Renteria, Rafael; Jeanes, Zachary M; Morrisett, Richard A

    2014-11-01

    Altered expression of synaptic plasticity within the nucleus accumbens (NAc) constitutes a critical neuroadaptive response to ethanol (EtOH) and other drugs of abuse. We have previously reported that N-methyl-D-aspartate receptor (NMDAR)-dependent long-term depression (LTD) is markedly affected by chronic intermittent ethanol exposure in vivo; however, endocannabinoid (eCB)-dependent synaptic depression, despite being very well-documented in the dorsal striatum, is much less well understood in the NAc. Whole cell patch clamp electrophysiology was used to investigate interactions between these different plasticity-induction systems. Excitatory postsynaptic currents (EPSCs) were measured in the NAc shell and NMDAR-LTD was induced by a pairing protocol (500 stimuli at 1 Hz stimulation [low-frequency stimulation (LFS)] paired with postsynaptic depolarization to -50 mV). AM251, a CB1 receptor antagonist, was used to determine whether this form of LTD is modulated by eCBs. To determine the effect of EtOH on a purely eCB-dependent response in the NAc, depolarization-induced suppression of excitation (DSE) was used in the presence of 40 mM EtOH. Finally, we determined whether the enhancement of eCB signaling with URB597, a fatty acid amide hydrolase inhibitor, and AM404, an anandamide re-uptake inhibitor would also modulate LFS LTD in the presence of NMDAR blockade or EtOH. In the presence of AM251, the LFS pairing protocol resulted in NMDAR-dependent long-term potentiation that was blocked with either EtOH or DL-APV. We also found that DSE in the NAc shell was blocked by AM251 and suppressed by EtOH. Enhanced eCB signaling rescued NAc-LTD expression in the presence of EtOH through a distinct mechanism requiring activation of TRPV1 receptors. EtOH modulation of synaptic plasticity in the NAc is dependent upon a complex interplay between NMDARs, eCBs, and TRPV1 receptors. These findings demonstrate a novel form of TRPV1-dependent LTD in the NAc shell that may be critical

  15. Nucleus accumbens AGS3 expression drives ethanol seeking through G betagamma.

    PubMed

    Bowers, M Scott; Hopf, F Woodward; Chou, Jonathan K; Guillory, Anitra M; Chang, Shao-Ju; Janak, Patricia H; Bonci, Antonello; Diamond, Ivan

    2008-08-26

    Approximately 90% of alcoholics relapse within 4 years, in part because of an enhanced motivation to seek alcohol (EtOH). A novel G protein modulator (Gpsm1/AGS3) was up-regulated in the rat nucleus accumbens core (NAcore) but not in other limbic nuclei during abstinence from operant EtOH self-administration. Furthermore, NAcore AGS3 knockdown reduced EtOH seeking to pre-abstinence levels in a novel rat model of compulsive, human EtOH seeking. AGS3 can both inhibit G protein G i alpha-mediated signaling and stimulate G betagamma-mediated signaling. Accordingly, sequestration of G betagamma, but not G i alpha knockdown, significantly reduced EtOH seeking to pre-abstinence levels. Thus, AGS3 and G betagamma are hypothesized to gate the uncontrolled motivation to seek EtOH during abstinence. AGS3 up-regulation during abstinence may be a key determinant of the transition from social consumption to compulsion-like seeking during relapse.

  16. Deep brain stimulation of the nucleus accumbens for the treatment of addiction.

    PubMed

    Müller, Ulf J; Voges, Jürgen; Steiner, Johann; Galazky, Imke; Heinze, Hans-Jochen; Möller, Michaela; Pisapia, Jared; Halpern, Casey; Caplan, Arthur; Bogerts, Bernhard; Kuhn, Jens

    2013-04-01

    Despite novel medications and other therapeutic strategies, addiction to psychotropic substances remains one of the most serious public health problems worldwide. In this review, beginning with an introduction of deep brain stimulation (DBS), we highlight the importance of the nucleus accumbens (NAc) in the context of the reward circuitry and addictive behavior. We will provide a short historic overview of other neurosurgical approaches to treat addiction and describe the experimental and preclinical data on DBS in addiction. Finally, we call attention to key ethical issues related to using DBS to treat addiction that are important for future research and the design of clinical trials.

  17. Differential sensitivity of ethanol-elicited ERK phosphorylation in nucleus accumbens of Sardinian alcohol-preferring and -non preferring rats.

    PubMed

    Rosas, Michela; Zaru, Alessandro; Sabariego, Marta; Giugliano, Valentina; Carboni, Ezio; Colombo, Giancarlo; Acquas, Elio

    2014-08-01

    Sardinian alcohol-preferring (sP) and -non preferring (sNP) rats have been selectively bred for opposite ethanol preference and consumption; sP rats represent a validated experimental tool to model several aspects of excessive ethanol drinking in humans. Phosphorylated Extracellular signal-Regulated Kinase (pERK) in dopamine-rich terminal areas plays a critical role in several psychopharmacological effects of addictive drugs, including ethanol. This study was aimed at investigating whether ethanol-elicited ERK activation may differ in key brain areas of ethanol-naïve sP and sNP rats. To this end, the effects of ethanol (0, 0.5, 1, and 2 g/kg, administered intra-gastrically [i.g.]) on ERK phosphorylation were assessed by pERK immunohistochemistry in the shell (AcbSh) and core (AcbC) of the nucleus accumbens (Acb) as well as in the prelimbic (PrL) and infralimbic (IL) prefrontal cortex (PFCx), in the bed nucleus of stria terminalis (BSTL) and in the central nucleus of the amygdala (CeA). Ethanol (1 g/kg) significantly increased pERK immunoreactivity in AcbSh and AcbC of sP but not sNP rats. Conversely, ethanol failed to affect pERK expression in PrL and IL PFCx as well as in BSTL and CeA of both sP and sNP rats. These results suggest that selective breeding of these rat lines results in differential effects of acute ethanol on ERK phosphorylation in brain regions critical for the psychopharmacological effects of ethanol.

  18. Selective alterations of NMDAR function and plasticity in D1 and D2 medium spiny neurons in the nucleus accumbens shell following chronic intermittent ethanol exposure.

    PubMed

    Renteria, Rafael; Maier, Esther Y; Buske, Tavanna R; Morrisett, Richard A

    2017-01-01

    A major mouse model widely adopted in recent years to induce pronounced ethanol intake is the ethanol vapor model known as "CIE" or "Chronic Intermittent Ethanol." One critical question concerning this model is whether the rapid induction of high blood ethanol levels for such short time periods is sufficient to induce alterations in N-methyl-d-aspartate receptor (NMDAR) function which may contribute to excessive ethanol intake. In this study, we determined whether such short term intermittent ethanol exposure modulates NMDAR function as well as other prominent electrophysiological properties and the expression of plasticity in both D1 (D1+) and D2 (D1-) dopamine receptor expressing medium spiny neurons (MSNs) in the nucleus accumbens (NAc) shell. To distinguish between the two subtypes of MSNs in the NAc we treated Drd1a-TdTomato transgenic mice with CIE vapor and electrophysiological recordings were conducted 24 h after the last vapor exposure. To investigate CIE induced alterations in plasticity, long-term depression (LTD) was induced by pairing low frequency stimulation (LFS) with post synaptic depolarization. In ethanol naïve mice, LFS induced synaptic depression (LTD) was apparent exclusively in D1+ MSNs. Whereas in slices prepared from CIE treated mice, LFS induced synaptic potentiation (LTP) in D1+ MSNs. Furthermore, following CIE exposure, LFS now produced LTD in D1- MSNs. We found that CIE exposure induced an increase in excitability in D1+ MSNs with no change in D1- MSNs. After CIE, we found a significant increase in spontaneous EPSCs (sEPSCs) frequency in D1+ but not D1- MSNs suggesting alterations in baseline α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) mediated signaling. CIE induced changes in NMDAR function were measured using the NMDA/AMPA ratio and input-output curves of isolated NMDAR currents. We observed a significant increase in NMDAR function in D1+ MSNs and a decrease in D1- MSNs after ethanol vapor exposure. The

  19. Repeated cycles of chronic intermittent ethanol exposure increases basal glutamate in the nucleus accumbens of mice without affecting glutamate transport.

    PubMed

    Griffin, William C; Ramachandra, Vorani S; Knackstedt, Lori A; Becker, Howard C

    2015-01-01

    Repeated cycles of chronic intermittent ethanol (CIE) exposure increase voluntary consumption of ethanol in mice. Previous work has shown that extracellular glutamate in the nucleus accumbens (NAc) is significantly elevated in ethanol-dependent mice and that pharmacologically manipulating glutamate concentrations in the NAc will alter ethanol drinking, indicating that glutamate homeostasis plays a crucial role in ethanol drinking in this model. The present studies were designed to measure extracellular glutamate at a time point in which mice would ordinarily be allowed voluntary access to ethanol in the CIE model and, additionally, to measure glutamate transport capacity in the NAc at the same time point. Extracellular glutamate was measured using quantitative microdialysis procedures. Glutamate transport capacity was measured under Na(+)-dependent and Na(+)-independent conditions to determine whether the function of excitatory amino acid transporters (also known as system XAG) or of system Xc (-) (glial cysteine-glutamate exchanger) was influenced by CIE exposure. The results of the quantitative microdialysis experiment confirm increased extracellular glutamate (approximately twofold) in the NAc of CIE exposed mice (i.e., ethanol-dependent) compared to non-dependent mice in the NAc, consistent with earlier work. However, the increase in extracellular glutamate was not due to altered transporter function in the NAc of ethanol-dependent mice, because neither Na(+)-dependent nor Na(+)-independent glutamate transport was significantly altered by CIE exposure. These findings point to the possibility that hyperexcitability of cortical-striatal pathways underlies the increases in extracellular glutamate found in the ethanol-dependent mice.

  20. Rising taurine and ethanol concentrations in nucleus accumbens interact to produce the dopamine-activating effects of alcohol.

    PubMed

    Ericson, Mia; Chau, Peipei; Adermark, Louise; Söderpalm, Bo

    2013-01-01

    Alcohol misuse and addiction is a worldwide problem causing enormous individual suffering as well as financial costs for the society. To develop pharmacological means to reduce suffering, we need to understand the mechanisms underlying the effects of ethanol in the brain. Ethanol is known to increase extracellular levels of both dopamine and taurine in the nucleus accumbens (nAc), a part of the brain reward system, but the two events have not been connected. In previous studies we have demonstrated that glycine receptors in the nAc are involved in modulating both basal- and ethanol-induced dopamine output in the same brain region. By means of in vivo microdialysis in freely moving rats we here demonstrate that the endogenous glycine receptor ligand taurine mimics ethanol in activating the brain reward system. Furthermore, administration of systemic ethanol diluted in an isotonic (0.9% NaCl) or hypertonic (3.6% NaCl) saline solution was investigated with respect to extracellular levels of taurine and dopamine in the nAc. We found that ethanol given in a hypertonic solution, contrary to an isotonic solution, failed to increase concentrations of both taurine and dopamine in the nAc. However, a modest, non-dopamine elevating concentration of taurine in the nAc disclosed a dopamine elevating effect of systemic ethanol also when given in a hypertonic solution. We conclude that the elevations of taurine and dopamine in the nAc are closely related and that in order for ethanol to induce dopamine release, a simultaneous increase of extracellular taurine levels in the nAc is required. These data also -provide support for the notion that the nAc is the primary target for ethanol in its dopamine-activating effect after systemic administration and that taurine is a prominent participant in activating the brain reward system.

  1. Nucleus accumbens deep brain stimulation in a rat model of binge eating.

    PubMed

    Doucette, W T; Khokhar, J Y; Green, A I

    2015-12-15

    Binge eating (BE) is a difficult-to-treat behavior with high relapse rates, thus complicating several disorders including obesity. In this study, we tested the effects of high-frequency deep brain stimulation (DBS) in a rodent model of BE. We hypothesized that BE rats receiving high-frequency DBS in the nucleus accumbens (NAc) core would have reduced binge sizes compared with sham stimulation in both a 'chronic BE' model as well as in a 'relapse to chronic BE' model. Male Sprague-Dawley rats (N=18) were implanted with stimulating electrodes in bilateral NAc core, and they received either active stimulation (N=12) or sham stimulation (N=6) for the initial chronic BE experiments. After testing in the chronic BE state, rats did not engage in binge sessions for 1 month, and then resumed binge sessions (relapse to chronic BE) with active or sham stimulation (N=5-7 per group). A significant effect of intervention group was observed on binge size in the chronic BE state, but no significant difference between intervention groups was observed in the relapse to chronic BE experiments. This research, making use of both a chronic BE model as well as a relapse to chronic BE model, provides data supporting the hypothesis that DBS of the NAc core can decrease BE. Further research will be needed to learn how to increase the effect size and decrease deep brain stimulation-treatment outcome variability across the continuum of BE behavior.

  2. Bilateral deep brain stimulation of the nucleus accumbens for comorbid obsessive compulsive disorder and Tourette's syndrome.

    PubMed

    Sachdev, Perminder Singh; Cannon, Elisabeth; Coyne, Terry J; Silburn, Peter

    2012-09-12

    We present the case of a 32-year-old Caucasian woman with severe treatment-refractory obsessive compulsive disorder (OCD) and Tourette's syndrome. Both conditions were present prior to age 5 and impacted significantly on the patient's functioning. Multiple trials of evidence-based pharmacological and behavioural therapies had not achieved remission of symptoms. Bilateral deep brain stimulation of the nucleus accumbens was undertaken to treat both illnesses but with a particular focus on OCD, as the patient identified this as the more debilitating of the two disorders. Following surgery there was an immediate improvement in OCD and tic severity. At follow-up 8 months later, there was a 90% improvement in OCD symptoms and a 57% improvement in tic severity. No intraoperative or postoperative complications or adverse events occurred and there were no undesired effects of stimulation.

  3. The effect of repetitive transcranial magnetic stimulation on monoamine outflow in the nucleus accumbens shell in freely moving rats.

    PubMed

    Löffler, Susanne; Gasca, Fernando; Richter, Lars; Leipscher, Ulrike; Trillenberg, Peter; Moser, Andreas

    2012-10-01

    Evidence exists that modulation of neuronal activity in nucleus accumbens shell region may re-establish normal function in various neuropsychiatric conditions such as drug-withdrawal, obsessive-compulsive disorder, depression and chronic pain. Here, we study the effects of acute repetitive transcranial magnetic stimulation on monoamine outflow in the nucleus accumbens shell in awake and freely moving rats using in vivo microdialysis. To scale the biochemical results to the induced electric field in the rat brain, we obtained a realistic simulation of the stimulation scenario using a finite element model. Applying 20 Hz repetitive transcranial magnetic stimulation in 6 trains of 50 stimuli with 280 μs pulse width at a magnetic field strength of 130% of the individual motor threshold, dopamine as well as serotonin outflow in the nucleus accumbens shell significantly increased compared to sham stimulation. Since the electric field decays rapidly with depth in the rat brain, we can conclude that the modulation in neurotransmitter outflow from the nucleus accumbens shell is presumably a remote effect of cortical stimulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Intranucleus accumbens amphetamine infusions enhance responding maintained by a stimulus complex paired with oral ethanol self-administration.

    PubMed

    Slawecki, C J; Samson, H H; Chappell, A

    1997-12-01

    Six male Long-Evans rats were trained to self-administer 10% ethanol (v/v) during 30 min operant sessions. A licking response on an empty drinking tube resulted in the presentation of reinforcement from an automatic dipper. During the initiation of ethanol self-administration, a tone-light stimulus complex was paired with all ethanol presentations. When 10% ethanol maintained responding, guide cannulae aimed at the nucleus accumbens (NAcc) were implanted into the brain. The ability of the paired stimulus complex to reinforce a new operant response (i.e., a lever press) was then examined. To test for the development of the new response, responding on one lever resulted in presentation of only the paired tone-light stimulus complex (contingency-associated lever) while responding on an alternate lever had no programmed consequences (no contingency-associated lever). Prior to some new response sessions, amphetamine (5-20 microg/microl) was infused into the NAcc to examine the influence of dopamine on responding maintained by the stimulus complex. Ethanol intake during the sessions prior to new response testing averaged 0.49 +/- 0.07 g/g. During new response sessions no significant differences in lever pressure during no-drug conditions (control, sham, injection or vehicle injection) were observed between the contingency-associated and no contingency-associated levers. Intra-NAcc infusion of amphetamine (5-20 microg/microl) resulted in significant increases in lever pressing only on the contingency-associated lever. These data suggest that increasing NAcc dopamine levels with amphetamine enhanced the ability of the stimulus complex to function as a reinforcer. Further studies examining the ability of potentially more salient stimuli (i.e., taste of ethanol) to function as conditioned reinforcers associated with ethanol self-administration are warranted due to the apparent inability of the paired tone-light stimulus complex to function as a reinforcer without amphetamine

  5. Increased presynaptic regulation of dopamine neurotransmission in the nucleus accumbens core following chronic ethanol self-administration in female macaques

    PubMed Central

    Siciliano, Cody A.; Calipari, Erin S.; Yorgason, Jordan T.; Lovinger, David M.; Mateo, Yolanda; Jimenez, Vanessa A.; Helms, Christa M.; Grant, Kathleen A.; Jones, Sara R.

    2016-01-01

    Rationale Hypofunction of striatal dopamine neurotransmission, or hypodopaminergia, is a consequence of excessive ethanol use, and is hypothesized to be a critical component of alcoholism, driving alcohol intake in an attempt to restore dopamine levels; however, the neurochemical mechanisms involved in these dopaminergic deficiencies are unknown. Objective Here we examined the specific dopaminergic adaptations that produce hypodopaminergia and contribute to alcohol use disorders using direct, sub-second measurements of dopamine signaling in nonhuman primates following chronic ethanol self-administration. Methods Female rhesus macaques completed one year of daily (22 hr/day) ethanol self-administration. Subsequently, fast-scan cyclic voltammetry was used in nucleus accumbens core brain slices to determine alterations in dopamine terminal function, including release and uptake kinetics, and sensitivity to quinpirole (D2/D3 dopamine receptor agonist) and U50,488 (kappa-opioid receptor agonist) induced inhibition of dopamine release. Results Ethanol drinking greatly increased uptake rates, which were positively correlated with lifetime ethanol intake. Furthermore, the sensitivity of dopamine D2/D3 autoreceptors and kappa-opioid receptors, which both act as negative regulators of presynaptic dopamine release, were moderately and robustly enhanced in ethanol drinkers. Conclusions Greater uptake rates and sensitivity to D2-type autoreceptor and kappa-opioid receptor agonists could converge to drive a hypodopaminergic state, characterized by reduced basal dopamine and an inability to mount appropriate dopaminergic responses to salient stimuli. Together, we outline the specific alterations to dopamine signaling that may drive ethanol-induced hypofunction of the dopamine system, and suggest that the dopamine and dynorphin/kappa-opioid receptor systems may be efficacious pharmcotherapeutic targets in the treatment of alcohol use disorders. PMID:26892380

  6. Functional Magnetic Resonance Imaging of Electrical and Optogenetic Deep Brain Stimulation at the Rat Nucleus Accumbens

    PubMed Central

    Albaugh, Daniel L.; Salzwedel, Andrew; Van Den Berge, Nathalie; Gao, Wei; Stuber, Garret D.; Shih, Yen-Yu Ian

    2016-01-01

    Deep brain stimulation of the nucleus accumbens (NAc-DBS) is an emerging therapy for diverse, refractory neuropsychiatric diseases. Although DBS therapy is broadly hypothesized to work through large-scale neural modulation, little is known regarding the neural circuits and networks affected by NAc-DBS. Using a healthy, sedated rat model of NAc-DBS, we employed both evoked- and functional connectivity (fc) MRI to examine the functional circuit and network changes achieved by electrical NAc stimulation. Optogenetic-fMRI experiments were also undertaken to evaluate the circuit modulation profile achieved by selective stimulation of NAc neurons. NAc-DBS directly modulated neural activity within prefrontal cortex and a large number of subcortical limbic areas (e.g., amygdala, lateral hypothalamus), and influenced functional connectivity among sensorimotor, executive, and limbic networks. The pattern and extent of circuit modulation measured by evoked-fMRI was relatively insensitive to DBS frequency. Optogenetic stimulation of NAc cell bodies induced a positive fMRI signal in the NAc, but no other detectable downstream responses, indicating that therapeutic NAc-DBS might exert its effect through antidromic stimulation. Our study provides a comprehensive mapping of circuit and network-level neuromodulation by NAc-DBS, which should facilitate our developing understanding of its therapeutic mechanisms of action. PMID:27601003

  7. Hampered long-term depression and thin spine loss in the nucleus accumbens of ethanol-dependent rats.

    PubMed

    Spiga, Saturnino; Talani, Giuseppe; Mulas, Giovanna; Licheri, Valentina; Fois, Giulia R; Muggironi, Giulia; Masala, Nicola; Cannizzaro, Carla; Biggio, Giovanni; Sanna, Enrico; Diana, Marco

    2014-09-02

    Alcoholism involves long-term cognitive deficits, including memory impairment, resulting in substantial cost to society. Neuronal refinement and stabilization are hypothesized to confer resilience to poor decision making and addictive-like behaviors, such as excessive ethanol drinking and dependence. Accordingly, structural abnormalities are likely to contribute to synaptic dysfunctions that occur from suddenly ceasing the use of alcohol after chronic ingestion. Here we show that ethanol-dependent rats display a loss of dendritic spines in medium spiny neurons of the nucleus accumbens (Nacc) shell, accompanied by a reduction of tyrosine hydroxylase immunostaining and postsynaptic density 95-positive elements. Further analysis indicates that "long thin" but not "mushroom" spines are selectively affected. In addition, patch-clamp experiments from Nacc slices reveal that long-term depression (LTD) formation is hampered, with parallel changes in field potential recordings and reductions in NMDA-mediated synaptic currents. These changes are restricted to the withdrawal phase of ethanol dependence, suggesting their relevance in the genesis of signs and/or symptoms affecting ethanol withdrawal and thus the whole addictive cycle. Overall, these results highlight the key role of dynamic alterations in dendritic spines and their presynaptic afferents in the evolution of alcohol dependence. Furthermore, they suggest that the selective loss of long thin spines together with a reduced NMDA receptor function may affect learning. Disruption of this LTD could contribute to the rigid emotional and motivational state observed in alcohol dependence.

  8. Hampered long-term depression and thin spine loss in the nucleus accumbens of ethanol-dependent rats

    PubMed Central

    Spiga, Saturnino; Talani, Giuseppe; Mulas, Giovanna; Licheri, Valentina; Fois, Giulia R.; Muggironi, Giulia; Masala, Nicola; Cannizzaro, Carla; Biggio, Giovanni; Sanna, Enrico; Diana, Marco

    2014-01-01

    Alcoholism involves long-term cognitive deficits, including memory impairment, resulting in substantial cost to society. Neuronal refinement and stabilization are hypothesized to confer resilience to poor decision making and addictive-like behaviors, such as excessive ethanol drinking and dependence. Accordingly, structural abnormalities are likely to contribute to synaptic dysfunctions that occur from suddenly ceasing the use of alcohol after chronic ingestion. Here we show that ethanol-dependent rats display a loss of dendritic spines in medium spiny neurons of the nucleus accumbens (Nacc) shell, accompanied by a reduction of tyrosine hydroxylase immunostaining and postsynaptic density 95-positive elements. Further analysis indicates that “long thin” but not “mushroom” spines are selectively affected. In addition, patch-clamp experiments from Nacc slices reveal that long-term depression (LTD) formation is hampered, with parallel changes in field potential recordings and reductions in NMDA-mediated synaptic currents. These changes are restricted to the withdrawal phase of ethanol dependence, suggesting their relevance in the genesis of signs and/or symptoms affecting ethanol withdrawal and thus the whole addictive cycle. Overall, these results highlight the key role of dynamic alterations in dendritic spines and their presynaptic afferents in the evolution of alcohol dependence. Furthermore, they suggest that the selective loss of long thin spines together with a reduced NMDA receptor function may affect learning. Disruption of this LTD could contribute to the rigid emotional and motivational state observed in alcohol dependence. PMID:25122682

  9. μ-Opioid receptors in the stimulation of mesolimbic dopamine activity by ethanol and morphine in Long-Evans rats: a delayed effect of ethanol

    PubMed Central

    Valenta, John P.; Job, Martin O.; Mangieri, Regina A.; Schier, Christina J.; Howard, Elaina C.; Gonzales, Rueben A.

    2013-01-01

    Rationale Naltrexone, a non-selective opioid antagonist, decreases the euphoria and positive subjective responses to alcohol in heavy drinkers. It has been proposed that the μ-opioid receptor plays a role in ethanol reinforcement through modulation of ethanol-stimulated mesolimbic dopamine release. Objective To investigate the ability of naltrexone and β-funaltrexamine, an irreversible μ-opioid specific antagonist, to inhibit ethanol-stimulated and morphine-stimulated mesolimbic dopamine release and to determine whether opioid receptors on mesolimbic neurons contribute to these mechanisms. Methods Ethanol-naïve male Long Evans rats were given opioid receptor antagonists either intravenously, subcutaneously, or intracranially into the ventral tegmental area (VTA), followed by intravenous administration of ethanol or morphine. We measured extracellular dopamine in vivo using microdialysis probes inserted into the nucleus accumbens shell (n=114). Results Administration of naltrexone (intravenously) and β-funaltrexamine (subcutaneously), as well as intracranial injection of naltrexone into the VTA did not prevent the initiation of dopamine release by intravenous ethanol administration, but prevented it from being as prolonged. In contrast, morphine-stimulated mesolimbic dopamine release was effectively suppressed. Conclusions Our results provide novel evidence that there are two distinct mechanisms that mediate ethanol-stimulated mesolimbic dopamine release (an initial phase and a delayed phase), and that opioid receptor activation is required to maintain the delayed-phase dopamine release. Moreover, μ-opioid receptors account for this delayed-phase dopamine response, and the VTA is potentially the site of action of this mechanism. We conclude that μ-opioid receptors play different roles in the mechanisms of stimulation of mesolimbic dopamine activity by ethanol and morphine. PMID:23503684

  10. Deep brain stimulation of the medial septum or nucleus accumbens alleviates psychosis-relevant behavior in ketamine-treated rats.

    PubMed

    Ma, Jingyi; Leung, L Stan

    2014-06-01

    Deep brain stimulation (DBS) has been shown to be effective for relief of Parkinson's disease, depression and obsessive-compulsive disorder in humans, but the effect of DBS on psychosis is largely unknown. In previous studies, we showed that inactivation of the medial septum or nucleus accumbens normalized the hyperactive and psychosis-related behaviors induced by psychoactive drugs. We hypothesized that DBS of the medial septum or nucleus accumbens normalizes the ketamine-induced abnormal behaviors and brain activity in freely moving rats. Male Long-Evans rats were subcutaneously injected with ketamine (3 mg/kg) alone, or given ketamine and DBS, or injected with saline alone. Subcutaneous injection of ketamine resulted in loss of gating of hippocampal auditory evoked potentials (AEPs), deficit in prepulse inhibition (PPI) and hyperlocomotion, accompanied by increased hippocampal gamma oscillations of 70-100 Hz. Continuous 130-Hz stimulation of the nucleus accumbens, or 100-Hz burst stimulation of the medial septum (1s on and 5s off) significantly attenuated ketamine-induced PPI deficit and hyperlocomotion. Medial septal stimulation also prevented the loss of gating of hippocampal AEPs and the increase in hippocampal gamma waves induced by ketamine. Neither septal or accumbens DBS alone without ketamine injection affected spontaneous locomotion or PPI. The results suggest that DBS of the medial septum or nucleus accumbens may be an effective method to alleviate psychiatric symptoms of schizophrenia. The effect of medial septal DBS in suppressing both hippocampal gamma oscillations and abnormal behaviors induced by ketamine suggests that hippocampal gamma oscillations are a correlate of disrupted behaviors.

  11. Observational learning in mice can be prevented by medial prefrontal cortex stimulation and enhanced by nucleus accumbens stimulation.

    PubMed

    Jurado-Parras, M Teresa; Gruart, Agnès; Delgado-García, José M

    2012-02-21

    The neural structures involved in ongoing appetitive and/or observational learning behaviors remain largely unknown. Operant conditioning and observational learning were evoked and recorded in a modified Skinner box provided with an on-line video recording system. Mice improved their acquisition of a simple operant conditioning task by observational learning. Electrical stimulation of the observer's medial prefrontal cortex (mPFC) at a key moment of the demonstration (when the demonstrator presses a lever in order to obtain a reward) cancels out the benefits of observation. In contrast, electrical stimulation of the observer's nucleus accumbens (NAc) enhances observational learning. Ongoing cognitive processes in the demonstrator could also be driven by electrical stimulation of these two structures, preventing the proper execution of the ongoing instrumental task (mPFC) or stopping pellet intake (NAc). Long-term potentiation (LTP) evoked in these two cortical structures did not prevent the acquisition or retrieval process--namely, mPFC and/or NAc stimulation only prevented, or modified, the ongoing behavioral process. The dorsal hippocampus was not involved in either of these two behavioral processes. Thus, both ongoing observational learning and performance of an instrumental task require the active contribution of the mPFC and/or the NAc.

  12. MC4-R signaling within the nucleus accumbens shell, but not the lateral hypothalamus, modulates ethanol palatability in rats

    PubMed Central

    Lerma-Cabrera, Jose M.; Carvajal, Francisca; Chotro, Gabriela; Gaztañaga, Mirari; Navarro, Montserrat; Thiele, Todd E.; Cubero, Inmaculada

    2012-01-01

    The Melanocortin (MC) system is one of the crucial neuropeptidergic systems that modulate energy balance. The roles of endogenous MC and MC-4 receptor (MC4-R) signaling within the hypothalamus in the control of homeostatic aspects of feeding are well established. Additional evidence points to a key role for the central MC system in ethanol consumption. Recently, we have shown that nucleus accumbens (NAc), but not lateral hypothalamic (LH), infusion of a selective MC4-R agonist decreases ethanol consumption. Given that MC signaling might contribute to non-homeostatic aspects of feeding within limbic circuits, we assessed here whether MC4-R signaling within the NAc and the lateral hypothalamus (LH) alters normal ingestive hedonic and/or aversive responses to ethanol in rats as measured by a taste reactivity test. Adult male Sprague-Dawley rats were given NAc- or LH- bilateral infusion of the selective MC4-R agonist cyclo (NH-CH2-CH2-CO-His-D-Phe-Arg-Trp-Glu)-NH2 (0, 0.75 or 1.5 µg/0.5µl/site) and following 30 min, the animals received 1 ml of ethanol solution (6% w/v) intraoral for 1 minute and aversive and hedonic behaviors were recorded. We found that NAc-, but not LH-administration, of a selective MC4-R agonist decreased total duration of hedonic reactions and significantly increased aversive reactions relative to saline-infused animals which support the hypothesis that MC signaling within the NAc may contribute to ethanol consumption by modulating non-homeostatic aspects (palatability) of intake. PMID:23146409

  13. Effects of ethanol exposure and withdrawal on dendritic morphology and spine density in the nucleus accumbens core and shell.

    PubMed

    Peterson, Veronica L; McCool, Brian A; Hamilton, Derek A

    2015-01-12

    Exposure to drugs of abuse can result in profound structural modifications on neurons in circuits involved in addiction that may contribute to drug dependence, withdrawal and related processes. Structural alterations on medium spiny neurons (MSNs) of the nucleus accumbens (NAc) have been observed following exposure to and withdrawal from a variety of drugs; however, relatively little is known about the effects of alcohol exposure and withdrawal on structural alterations of NAc MSNs. In the present study male rats were chronically exposed to vaporized ethanol for 10 days and underwent 1 or 7 days of withdrawal after which the brains were processed for Golgi-Cox staining and analysis of dendritic length, branching and spine density. MSNs of the NAc shell and core underwent different patterns of changes following ethanol exposure and withdrawal. At 1 day of withdrawal there were modest reductions in the dendritic length and branching of MSNs in both the core and the shell compared to control animals exposed only to air. At 7 days of withdrawal the length and branching of shell MSNs was reduced, whereas the length and branching of core MSNs were increased relative to the shell. The density of mature spines was increased in the core at 1 day of withdrawal, whereas the density of less mature spines was increased in both regions at 7 days of withdrawal. Collectively, these observations indicate that MSNs of the NAc core and shell undergo distinct patterns of structural modifications following ethanol exposure and withdrawal suggesting that modifications in dendritic structure in these regions may contribute differentially to ethanol withdrawal.

  14. Antidepressant-like Effects of Medial Forebrain Bundle Deep Brain Stimulation in Rats are not Associated With Accumbens Dopamine Release.

    PubMed

    Bregman, Tatiana; Reznikov, Roman; Diwan, Mustansir; Raymond, Roger; Butson, Christopher R; Nobrega, José N; Hamani, Clement

    2015-01-01

    Medial forebrain bundle (MFB) deep brain stimulation (DBS) is currently being investigated in patients with treatment-resistant depression. Striking features of this therapy are the large number of patients who respond to treatment and the rapid nature of the antidepressant response. To study antidepressant-like behavioral responses, changes in regional brain activity, and monoamine release in rats receiving MFB DBS. Antidepressant-like effects of MFB stimulation at 100 μA, 90 μs and either 130 Hz or 20 Hz were characterized in the forced swim test (FST). Changes in the expression of the immediate early gene (IEG) zif268 were measured with in situ hybridization and used as an index of regional brain activity. Microdialysis was used to measure DBS-induced dopamine and serotonin release in the nucleus accumbens. Stimulation at parameters that approximated those used in clinical practice, but not at lower frequencies, induced a significant antidepressant-like response in the FST. In animals receiving MFB DBS at high frequency, increases in zif268 expression were observed in the piriform cortex, prelimbic cortex, nucleus accumbens shell, anterior regions of the caudate/putamen and the ventral tegmental area. These structures are involved in the neurocircuitry of reward and are also connected to other brain areas via the MFB. At settings used during behavioral tests, stimulation did not induce either dopamine or serotonin release in the nucleus accumbens. These results suggest that MFB DBS induces an antidepressant-like effect in rats and recruits structures involved in the neurocircuitry of reward without affecting dopamine release in the nucleus accumbens. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release

    PubMed Central

    Melchior, James R.; Ferris, Mark J.; Stuber, Garret D.; Riddle, David R.; Jones, Sara R.

    2015-01-01

    The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation. PMID:26011081

  16. Fornix deep brain stimulation circuit effect is dependent on major excitatory transmission via the nucleus accumbens

    PubMed Central

    Ross, Erika K.; Kim, Joo Pyung; Settell, Megan L.; Han, Seong Rok; Blaha, Charles D.; Min, Hoon-Ki; Lee, Kendall H.

    2016-01-01

    Introduction Deep brain stimulation (DBS) is a circuit-based treatment shown to relieve symptoms from multiple neurologic and neuropsychiatric disorders. In order to treat the memory deficit associated with Alzheimer's disease (AD), several clinical trials have tested the efficacy of DBS near the fornix. Early results from these studies indicated that patients who received fornix DBS experienced an improvement in memory and quality of life, yet the mechanisms behind this effect remain controversial. It is known that transmission between the medial limbic and corticolimbic circuits plays an integral role in declarative memory, and dysfunction at the circuit level results in various forms of dementia, including AD. Here, we aimed to determine the potential underlying mechanism of fornix DBS by examining the functional circuitry and brain structures engaged by fornix DBS. Methods A multimodal approach was employed to examine global and local temporal changes that occur in an anesthetized swine model of fornix DBS. Changes in global functional activity were measured by functional MRI (fMRI), and local neurochemical changes were monitored by fast scan cyclic voltammetry (FSCV) during electrical stimulation of the fornix. Additionally, intracranial microinfusions into the nucleus accumbens (NAc) were performed to investigate the global activity changes that occur with dopamine and glutamate receptor-specific antagonism. Results Hemodynamic responses in both medial limbic and corticolimbic circuits measured by fMRI were induced by fornix DBS. Additionally, fornix DBS resulted in increases in dopamine oxidation current (corresponding to dopamine efflux) monitored by FSCV in the NAc. Finally, fornix DBS-evoked hemodynamic responses in the amygdala and hippocampus decreased following dopamine and glutamate receptor antagonism in the NAc. Conclusions The present findings suggest that fornix DBS modulates dopamine release on presynaptic dopaminergic terminals in the NAc

  17. Electrical stimulation of reward sites in the ventral tegmental area increases dopamine transmission in the nucleus accumbens of the rat.

    PubMed

    Fiorino, D F; Coury, A; Fibiger, H C; Phillips, A G

    1993-06-30

    In vivo microdialysis with HPLC-ED was used to measure dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) in the nucleus accumbens of the rat, prior, during, and after 15-min periods of electrical brain stimulation at sites in the ventral tegmental area (VTA) that supported intracranial self-stimulation (ICSS). In the first experiment, both ICSS and yoked stimulation of the VTA evoked significant increases in extracellular concentrations of DA, its metabolites, and 5-HIAA. Comparable results from ICSS and yoked groups were interpreted as evidence that the rewarding properties of VTA stimulation were a causal factor in the elevated DA transmission in the nucleus accumbens, rather than intense operant behavior. Further evidence for this hypothesis came from a second set of data in which changes in extracellular DA levels during the measurement of rate/intensity functions for ICSS were positively correlated. 5-HIAA concentrations also increased during ICSS but these changes were not correlated with either ICSS rate or current intensity, suggesting that changes in serotonin metabolism were unlikely to subserve brain stimulation reward in the VTA. These results add to the growing body of evidence linking changes in extracellular DA in the mesolimbic DA system with both brain stimulation reward and the conditioned and unconditioned rewarding effects of biologically relevant stimuli.

  18. Metabotropic glutamate receptor 5 activity in the nucleus accumbens is required for the maintenance of ethanol self-administration in a rat genetic model of high alcohol intake.

    PubMed

    Besheer, Joyce; Grondin, Julie J M; Cannady, Reginald; Sharko, Amanda C; Faccidomo, Sara; Hodge, Clyde W

    2010-05-01

    Systemic modulation of Group I and II metabotropic glutamate receptors (mGluRs) regulate ethanol self-administration in a variety of animal models. Although these receptors are expressed in reward-related brain regions, the anatomical specificity of their functional involvement in ethanol self-administration remains to be characterized. This study sought to evaluate the functional role of Group I (mGluR5) and Group II (mGluR2/3) in mesocorticolimbic brain regions in ethanol self-administration. Alcohol-preferring (P) rats, a genetic model of high alcohol drinking, were trained to self-administer ethanol (15% v/v) versus water in operant conditioning chambers. Effects of brain site-specific infusion of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP) and the mGluR2/3 agonist were then assessed on the maintenance of self-administration. Microinjection of the mGluR5 antagonist MPEP in the nucleus accumbens reduced ethanol self-administration at a dose that did not alter locomotor activity. By contrast, infusion of the mGluR2/3 agonist LY379268 in the nucleus accumbens reduced self-administration and produced nonspecific reductions in locomotor activity. The mGluR5 involvement showed anatomical specificity as evidenced by lack of effect of MPEP infusion in the dorsomedial caudate or medial prefrontal cortex on ethanol self-administration. To determine reinforcer specificity, P-rats were trained to self-administer sucrose (.4% w/v) versus water, and effects of intra-accumbens MPEP were tested. The MPEP did not alter sucrose self-administration or motor behavior. These results suggest that mGluR5 activity specifically in the nucleus accumbens is required for the maintenance of ethanol self-administration in individuals with genetic risk for high alcohol consumption. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Selective serotonin receptor stimulation of the medial nucleus accumbens causes differential effects on food intake and locomotion.

    PubMed

    Pratt, Wayne E; Blackstone, Kaitlin; Connolly, Megan E; Skelly, Mary Jane

    2009-10-01

    Substantial evidence suggests that pharmacological manipulations of neural serotonin pathways influence ingestive behaviors. Despite the known role of the nucleus accumbens in directing appetitive and consummatory behavior, there has been little examination of the influences that serotonin receptors may play in modulating feeding within nucleus accumbens circuitry. In these experiments, the authors examined the effects of bilateral nucleus accumbens infusions of the 5-HT1/7 receptor agonist 5-CT (at 0.0, 0.5, 1.0, or 4.0 microg/0.5 microl/side), the 5-HT receptor agonist EMD 386088 (at 0.0, 1.0, and 4.0 microg/0.5 microl/side), or the 5-HT2C preferential agonist RO 60-0175 (at 0.0, 2.0, or 5.0 microg/0.5 microl/side) on food intake and locomotor activity in the rat. Intra-accumbens infusions of 5-CT caused a dose-dependent reduction of food intake and rearing behavior, both in food-restricted animals given 2-hr free access to Purina Protab RMH 3000 Chow, as well as in nondeprived rats offered 2-hr access to a highly palatable fat/sucrose diet. In contrast, stimulation of 5-HT receptors with EMD 386088 caused a dose-dependent increase of intake under both feeding conditions, without affecting measures of locomotion. Infusions of the moderately selective 5-HT2C receptor agonist RO 60-0175 had no effects on feeding or locomotor measures in food-restricted animals, but did reduce intake of the fat/sucrose in nonrestricted animals at the 2.0 microg, but not the 5.0 microg dose. Intra-accumbens infusions of selective antagonists for the 5-HT (SB 269970), 5-HT (SB 252585), and 5-HT2C (RS 102221) receptors did not affect locomotion, and demonstrated no lasting changes in feeding for any of the groups tested. These data are the first to suggest that the activation of different serotonin receptor subtypes within the feeding circuitry of the medial nucleus accumbens differentially influence consummatory behavior.

  20. Ethanol stimulates epithelial sodium channels by elevating reactive oxygen species.

    PubMed

    Bao, Hui-Fang; Song, John Z; Duke, Billie J; Ma, He-Ping; Denson, Donald D; Eaton, Douglas C

    2012-12-01

    Alcohol affects total body sodium balance, but the molecular mechanism of its effect remains unclear. We used single-channel methods to examine how ethanol affects epithelial sodium channels (ENaC) in A6 distal nephron cells. The data showed that ethanol significantly increased both ENaC open probability (P(o)) and the number of active ENaC in patches (N). 1-Propanol and 1-butanol also increased ENaC activity, but iso-alcohols did not. The effects of ethanol were mimicked by acetaldehyde, the first metabolic product of ethanol, but not by acetone, the metabolic product of 2-propanol. Besides increasing open probability and apparent density of active channels, confocal microscopy and surface biotinylation showed that ethanol significantly increased α-ENaC protein in the apical membrane. The effects of ethanol on ENaC P(o) and N were abolished by a superoxide scavenger, 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxy (TEMPOL) and blocked by the phosphatidylinositol 3-kinase inhibitor LY294002. Consistent with an effect of ethanol-induced reactive oxygen species (ROS) on ENaC, primary alcohols and acetaldehyde elevated intracellular ROS, but secondary alcohols did not. Taken together with our previous finding that ROS stimulate ENaC, the current results suggest that ethanol stimulates ENaC by elevating intracellular ROS probably via its metabolic product acetaldehyde.

  1. Ethanol stimulates epithelial sodium channels by elevating reactive oxygen species

    PubMed Central

    Bao, Hui-Fang; Song, John Z.; Duke, Billie J.; Ma, He-Ping; Denson, Donald D.

    2012-01-01

    Alcohol affects total body sodium balance, but the molecular mechanism of its effect remains unclear. We used single-channel methods to examine how ethanol affects epithelial sodium channels (ENaC) in A6 distal nephron cells. The data showed that ethanol significantly increased both ENaC open probability (Po) and the number of active ENaC in patches (N). 1-Propanol and 1-butanol also increased ENaC activity, but iso-alcohols did not. The effects of ethanol were mimicked by acetaldehyde, the first metabolic product of ethanol, but not by acetone, the metabolic product of 2-propanol. Besides increasing open probability and apparent density of active channels, confocal microscopy and surface biotinylation showed that ethanol significantly increased α-ENaC protein in the apical membrane. The effects of ethanol on ENaC Po and N were abolished by a superoxide scavenger, 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxy (TEMPOL) and blocked by the phosphatidylinositol 3-kinase inhibitor LY294002. Consistent with an effect of ethanol-induced reactive oxygen species (ROS) on ENaC, primary alcohols and acetaldehyde elevated intracellular ROS, but secondary alcohols did not. Taken together with our previous finding that ROS stimulate ENaC, the current results suggest that ethanol stimulates ENaC by elevating intracellular ROS probably via its metabolic product acetaldehyde. PMID:22895258

  2. Nucleus Accumbens Deep Brain Stimulation for Alcohol Addiction - Safety and Clinical Long-term Results of a Pilot Trial.

    PubMed

    Müller, U J; Sturm, V; Voges, J; Heinze, H-J; Galazky, I; Büntjen, L; Heldmann, M; Frodl, T; Steiner, J; Bogerts, B

    2016-07-01

    We report on the long-term clinical outcome (up to 8 years) of 5 patients who received deep brain stimulation (DBS) of the nucleus accumbens to treat their long-lasting and treatment-resistant alcohol addiction. All patients reported a complete absence of craving for alcohol; 2 patients remained abstinent for many years and 3 patients showed a marked reduction of alcohol consumption. No severe or long-standing side effects occurred. Therefore, DBS could be a promising, novel treatment option for severe alcohol addiction, but larger clinical trials are needed to further investigate the efficacy of DBS in addiction. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Deep brain stimulation in the internal capsule and nucleus accumbens region: responses observed during active and sham programming

    PubMed Central

    Okun, Michael S; Mann, Giselle; Foote, Kelly D; Shapira, Nathan A; Bowers, Dawn; Springer, Utaka; Knight, William; Martin, Pamela; Goodman, Wayne K

    2007-01-01

    Background Recently, anterior limb of the internal capsule and nucleus accumbens deep brain stimulation (DBS) has been used in the treatment of medication‐refractory obsessive–compulsive disorder (OCD). This region has been previously explored with lesion therapy, but with the advent of DBS there exists the possibility of monitoring the acute and chronic effects of electrical stimulation. The stimulation‐induced benefits and side effects can be reversibly and blindly applied to a variety of locations in this region. Objective To explore the acute effects of DBS in the anterior limb of the internal capsule and nucleus accumbens region. Methods Ten total DBS leads in five patients with chronic and severe treatment‐refractory OCD were tested. Patients were examined 30 days after DBS placement and received either “sham” testing or actual testing of the acute effects of DBS (the alternative condition tested 30 days later). Results Pooled responses were reviewed for comparability of distribution using standard descriptive methods, and relationships between the variables of interest were sought using χ2 analysis. A total of 845 stimulation trials across the five patients were recorded and pooled. Of these 16% were elicited from sham stimulation and 17% from placebo (0 V stimulation). A comparison of active to sham trials showed that sham stimulation was not associated with significant side effects or responses from patients. Non‐mood‐related responses were found to be significantly associated with the ventral lead contacts (0 and 1) (p = 0.001). Responses such as taste, smell and smile were strongly associated with the most ventral lead positions. Similarly, physiological responses—for example, autonomic changes, increased breathing rate, sweating, nausea, cold sensation, heat sensation, fear, panic and panic episodes—were significantly associated with ventral stimulation (p = 0.001). Fear and panic responses appeared clustered around the

  4. Deep brain stimulation of the nucleus accumbens shell increases impulsive behavior and tissue levels of dopamine and serotonin.

    PubMed

    Sesia, Thibaut; Bulthuis, Vincent; Tan, Sonny; Lim, Lee Wei; Vlamings, Rinske; Blokland, Arjan; Steinbusch, Harry W M; Sharp, Trevor; Visser-Vandewalle, Veerle; Temel, Yasin

    2010-10-01

    The nucleus accumbens (NAc) is gaining interest as a target for deep brain stimulation (DBS) in refractory neuropsychiatric disorders with impulsivity as core symptom. The nucleus accumbens is composed of two subterritories, core and shell, which have different anatomical connections. In animal models, it has been shown that DBS of the NAc changes impulsive action. Here, we tested the hypothesis that a change in impulsive action by DBS of the NAc is associated with changes in dopamine levels. Rats received stimulating electrodes either in the NAc core or shell, and underwent behavioral testing in a reaction time task. In addition, in a second experiment, the effect of DBS of the NAc core and shell on extracellular dopamine and serotonin levels was assessed in the NAc and medial prefrontal cortex. Control subjects received sham surgery. We have found that DBS of the NAc shell stimulation induced more impulsive action but less perseverative checking. These effects were associated with increased levels of dopamine and serotonin in the NAc, but not in the medial prefrontal cortex. DBS of the NAc core had no effect on impulsive action, but decreased perseverative responses indicative of a better impulse control. In these subjects, no effects were found on neurotransmitter levels. Our data point out that DBS of the NAc shell has negative effects on impulsive action which is accompanied by increases of dopamine and serotonin levels in the NAc, whereas DBS of the NAc core has beneficial behavioral effects.

  5. Nucleus accumbens lentiviral-mediated gain of function of the oxytocin receptor regulates anxiety- and ethanol-related behaviors in adult mice.

    PubMed

    Bahi, Amine; Al Mansouri, Shamma; Al Maamari, Elyazia

    2016-10-01

    Anxiety is believed to influence ethanol use human in alcoholics. Studies using laboratory animals suggested an interaction between oxytocin and the behavioral effects of ethanol. Our previous study implicated a potential role for the oxytocin receptor (OxtR) in regulating ethanol-conditioned place preference. Here, we examined anxiety and the behavioral responses to ethanol in C57BL/6 mice stereotaxically injected in the nucleus accumbens (NAcc) with lentiviral vectors expressing an empty vector (Mock) or the OxtR cDNA. For anxiety we used the elevated-plus maze, the open-field and the marble-burying tests and for ethanol we used the two-bottle choice paradigm, the wire-hanging and ethanol-induced loss-of-righting-reflex tests. We found that, compared to Mock, OxtR overexpression led to anxiolytic-like behavior without altering spontaneous locomotor activity. Most importantly, we found that, relative to Mock controls, increased expression of the OxtR in the NAcc led to decreased ethanol consumption and preference in the two-bottle choice protocol and increased resistance to ethanol-induced sedation. We also compared the consequence of OxtR modulation on the consumption and preference of saccharin and quinine and found that the two experimental groups did not differ for any tastant. These results provide further evidence that the oxytocin system contributes to the regulation of ethanol drinking and sensitivity and position OxtR as a central molecular mediator of ethanol's effects within the mesolimbic system. Taken together, the current findings suggest that OxtR manipulation may be a relevant strategy to address ethanol use disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Reinstated ethanol-seeking in rats is modulated by environmental context and requires the nucleus accumbens core.

    PubMed

    Chaudhri, Nadia; Sahuque, Lacey L; Cone, Jackson J; Janak, Patricia H

    2008-12-01

    The reinstatement of ethanol (EtOH)-seeking induced by an EtOH-predictive light-tone stimulus is enhanced in an environment associated with prior EtOH self-administration (SA) compared with a context associated with EtOH unavailability (Tsiang & Janak, 2006). Here we hypothesized that EtOH-seeking would be elicited by the conditioned sensory stimulus properties of EtOH and that this reinstatement would be similarly modulated by context. We also determined whether pharmacologically inactivating the nucleus accumbens (NAc), a key structure in relapse circuitry, would attenuate reinstated EtOH-seeking. Rats lever-pressed for oral EtOH (10% v/v) in operant conditioning chambers distinguished by specific visual, olfactory and tactile stimuli. Responding was then extinguished by withholding EtOH in a different context. EtOH-seeking, expressed as elevated responding without EtOH delivery, was subsequently tested by presenting an oral EtOH prime (two aliquots of 0.1 mL EtOH) in either the extinction or the prior EtOH-SA context. Rats received a microinfusion (0.3 microL/hemisphere) of saline or GABA agonists (muscimol/baclofen) into the NAc core or shell immediately before the reinstatement test. Robust EtOH-seeking was observed in the prior EtOH-SA but not the extinction context in saline-pretreated rats. This effect was significantly attenuated by inactivating the NAc core but not shell. Conversely, NAc shell inactivation significantly elevated lever-pressing in the extinction context. These data suggest that the sensory stimulus properties of oral EtOH can reinstate EtOH-seeking when experienced in the appropriate context and that functional activity in the NAc core is required for this effect. In contrast, the shell may normally inhibit incorrect behavioral responses.

  7. Differential gene expression in the nucleus accumbens with ethanol self-administration in inbred alcohol-preferring rats

    PubMed Central

    Rodd, Zachary A.; Kimpel, Mark W.; Edenberg, Howard J.; Bell, Richard L.; Strother, Wendy N.; McClintick, Jeanette N.; Carr, Lucinda G.; Liang, Tiebing; McBride, William J.

    2015-01-01

    The current study examined the effects of operant ethanol (EtOH) self-administration on gene expression in the nucleus accumbens (ACB) and amygdala (AMYG) of inbred alcohol-preferring (iP) rats. Rats self-trained on a standard two-lever operant paradigm to administer either water-water, EtOH (15% v/v)-water, or saccharin (SAC; 0.0125% g/v)-water. Animals were killed 24 hr after the last operant session, and the ACB and AMYG dissected; RNA was extracted and purified for microarray analysis. For the ACB, there were 513 significant differences at the p < 0.01 level in named genes: 55 between SAC and water; 215 between EtOH and water, and 243 between EtOH and SAC. In the case of the AMYG (p < 0.01), there were 48 between SAC and water, 23 between EtOH and water, and 63 between EtOH and SAC group. Gene Ontology (GO) analysis indicated that differences in the ACB between the EtOH and SAC groups could be grouped into 15 significant (p < 0.05) categories, which included major categories such as synaptic transmission, cell and ion homeostasis, and neurogenesis, whereas differences between the EtOH and water groups had only 4 categories, which also included homeostasis and synaptic transmission. Several genes were in common between the EtOH and both the SAC and water groups in the synaptic transmission (e.g., Cav2, Nrxn, Gabrb2, Gad1, Homer1) and homeostasis (S100b, Prkca, Ftl1) categories. Overall, the results suggest that changes in gene expression in the ACB of iP rats are associated with the reinforcing effects of EtOH. PMID:18405950

  8. Implications for glycine receptors and astrocytes in ethanol-induced elevation of dopamine levels in the nucleus accumbens.

    PubMed

    Adermark, Louise; Clarke, Rhona B C; Olsson, Torsten; Hansson, Elisabeth; Söderpalm, Bo; Ericson, Mia

    2011-01-01

    Elevated dopamine levels are believed to contribute to the rewarding sensation of ethanol (EtOH), and previous research has shown that strychnine-sensitive glycine receptors in the nucleus accumbens (nAc) are involved in regulating dopamine release and in mediating the reinforcing effects of EtOH. Furthermore, the osmoregulator taurine, which is released from astrocytes treated with EtOH, can act as an endogenous ligand for the glycine receptor, and increase extracellular dopamine levels. The aim of this study was to address if EtOH-induced swelling of astrocytes could contribute to elevated dopamine levels by increasing the extracellular concentration of taurine. Cell swelling was estimated by optical sectioning of fluorescently labeled astrocytes in primary cultures from rat, and showed that EtOH (25-150 mM) increased astrocyte cell volumes in a concentration- and ion-dependent manner. The EtOH-induced cell swelling was inhibited in cultures treated with the Na(+) /K(+) /2Cl⁻ cotransporter blocker furosemide (1 mM), Na(+) /K(+) -ATPase inhibitor ouabain (0.1 mM), potassium channel inhibitor BaCl₂ (50 µM) and in cultures containing low extracellular sodium concentration (3 mM). In vivo microdialysis performed in the nAc of awake and freely moving rats showed that local treatment with EtOH enhanced the concentrations of dopamine and taurine in the microdialysate, while glycine and β-alanine levels were not significantly modulated. EtOH-induced dopamine release was antagonized by local treatment with the glycine receptor antagonist strychnine (20 µM) or furosemide (100 µM or 1 mM). Furosemide also prevented EtOH-induced taurine release in the nAc. In conclusion, our data suggest that extracellular concentrations of dopamine and taurine are interconnected and that swelling of astrocytes contributes to the acute rewarding sensation of EtOH.

  9. Ethanol Is Self-Administered Into the Nucleus Accumbens Shell, But Not the Core: Evidence of Genetic Sensitivity

    PubMed Central

    Engleman, Eric A.; Ding, Zheng-Ming; Oster, Scott M.; Toalston, Jamie E.; Bell, Richard L.; Murphy, James M.; McBride, William J.; Rodd, Zachary A.

    2010-01-01

    Background A previous study indicated that selectively bred alcohol-preferring (P) rats self-administered ethanol (EtOH) directly into the posterior ventral tegmental area at lower concentrations than Wistar rats. The present study was undertaken to determine involvement of the nucleus accumbens (Acb) with EtOH reinforcement, and a relationship between genetic selection for high alcohol preference and sensitivity of the Acb to the reinforcing effects of EtOH. Methods Adult P and Wistar rats were assigned to groups that self-infused 0 to 300 mg% EtOH into the Acb shell (AcbSh) or Acb Core (AcbC). Rats were placed into 2-lever (active and inactive) operant chambers and given EtOH for the first 4 sessions (acquisition), artificial cerebro-spinal fluid (aCSF) for sessions 5 and 6 (extinction), and EtOH again in session 7 (reinstatement). Responding on the active lever produced a 100-nl injection of the infusate. Results Alcohol-preferring rats self-infused 75 to 300 mg% EtOH, whereas Wistar rats reliably self-infused 100 and 300 mg% EtOH into the AcbSh. Both P and Wistar rats reduced responding on the active lever when aCSF was substituted for EtOH, and reinstated responding in session 7 when EtOH was restored. EtOH was not self-infused into the AcbC by P or Wistar rats. Conclusions The present results indicate that the AcbSh, but not AcbC, is a neuroanatomical structure that mediates the reinforcing actions of EtOH. The data also suggest that, compared to Wistar rats, the AcbSh of P rats is more sensitive to the reinforcing effects of EtOH. PMID:19764930

  10. Overexpression of 5-HT(1B) mRNA in nucleus accumbens shell projection neurons differentially affects microarchitecture of initiation and maintenance of ethanol consumption.

    PubMed

    Furay, Amy R; Neumaier, John F; Mullenix, Andrew T; Kaiyala, Karl K; Sandygren, Nolan K; Hoplight, Blair J

    2011-02-01

    Serotonin 1B (5-HT(1B)) heteroreceptors on nucleus accumbens shell (NAcSh) projection neurons have been shown to enhance the voluntary consumption of alcohol by rats, presumably by modulating the activity of the mesolimbic reward pathway. The present study examined whether increasing 5-HT(1B) receptors expressed on NAcSh projection neurons by means of virus-mediated gene transfer enhances ethanol consumption during the initiation or maintenance phase of drinking and alters the temporal pattern of drinking behavior. Animals received stereotaxic injections of viral vectors expressing either 5-HT(1B) receptor and green fluorescent protein (GFP) or GFP alone. Home cages equipped with a three-bottle (water and 6 and 12% ethanol) lickometer system recorded animals' drinking behaviors continuously, capturing either initiation or maintenance of drinking behavior patterns. Overexpression of 5-HT(1B) receptors during initiation increased consumption of 12% ethanol during both forced-access and free-choice consumption. There was a shift in drinking pattern for 6% ethanol with an increase in number of drinking bouts per day, although the total number of drinking bouts for 12% ethanol was not different. Finally, increased 5-HT(1B) expression induced more bouts with very high-frequency licking from the ethanol bottle sippers. During the maintenance phase of drinking, there were no differences between groups in total volume of ethanol consumed; however, there was a shift toward drinking bouts of longer duration, especially for 12% ethanol. This suggests that during maintenance drinking, increased 5-HT(1B) receptors facilitate longer drinking bouts of more modest volumes. Taken together, these results indicate that 5-HT(1B) receptors expressed on NAcSh projection neurons facilitate ethanol drinking, with different effects during initiation and maintenance of ethanol-drinking behavior. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Ceftriaxone attenuates ethanol drinking and restores extracellular glutamate concentration through normalization of GLT-1 in nucleus accumbens of male alcohol-preferring rats.

    PubMed

    Das, Sujan C; Yamamoto, Bryan K; Hristov, Alexandar M; Sari, Youssef

    2015-10-01

    Alteration of glutamatergic-neurotransmission is a hallmark of alcohol dependence. We have previously reported that chronic ethanol-drinking downregulated glutamate transporter 1 (GLT-1) in nucleus accumbens (NAc) in male P rats in a manner that was reversed by ceftriaxone treatment. However, the effect of ceftriaxone on extracellular glutamate concentrations in NAc after chronic ethanol-drinking has not yet been studied. In the present study, male P rats were treated with ceftriaxone (100 mg/kg/day, i.p.) for five consecutive days following five-weeks of free choice ethanol (15% and 30%) drinking. In vivo microdialysis was performed to measure the extracellular glutamate concentrations in NAc and the effect of blockade of GLT-1 with dihydrokainic acid (DHK) on extracellular glutamate in NAc of ceftriaxone-treated rats was determined. Ceftriaxone treatment attenuated ethanol intake as well as ethanol preference. Extracellular glutamate was significantly higher in NAc after five-weeks of ethanol drinking in saline-treated compared to water control rats. Ceftriaxone treatment blocked the increase extracellular glutamate produced by ethanol intake. Blockade of GLT-1 by DHK reversed the effects of ceftriaxone on glutamate and implicated the role of GLT-1 in the normalization of extracellular glutamate by ceftriaxone. In addition, GLT-1 protein was decreased in ethanol exposed animals and ceftriaxone treatment reversed this deficit. Ceftriaxone treatment also increased glutamine synthetase activity in NAc but not in PFC as compared to ethanol drinking saline-treated rats. Our present study demonstrates that ceftriaxone treatment prevents ethanol drinking in part through normalization of extracellular glutamate concentrations in NAc of male P rats via GLT-1.

  12. Effects of ventro-medial mesencephalic tegmentum (VMT) stimulation on the spontaneous activity of nucleus accumbens neurones: influence of the dopamine system.

    PubMed

    Le Douarin, C; Penit, J; Glowinski, J; Thierry, A M

    1986-01-22

    The effects of VMT-stimulation (100-500 microA, 0.6 ms; 1 Hz) on the spontaneous activity of neurones in the nucleus accumbens were analyzed in ketamine-anaesthetized rats. On spontaneously active cells (firing greater than 0.5 spikes/s), 3 types of responses were observed: either inhibition (36%), excitation (5%) or a composite sequence of excitation followed by inhibition (12%). Moreover, 14% of silent nucleus accumbens neurones were excited by single pulse VMT-stimulation. Finally, 3% of nucleus accumbens neurones recorded were driven antidromically by VMT-stimulation. Destruction of dopamine (DA) projections by 6-hydroxydopamine prevented the inhibitory responses to VMT stimulation in the great majority of cells studied, without affecting the excitatory responses. After systemic administration of haloperidol or sulpiride, the inhibitory responses to VMT stimulation were attenuated markedly, whilst the excitatory responses were, however, maintained. These results suggest that the inhibitory, but not the excitatory, effects of VMT-stimulation on nucleus accumbens neurones may be mediated by an activation of the mesolimbic DA system.

  13. A role for nucleus accumbens glutamate in the expression but not the induction of behavioural sensitization to ethanol.

    PubMed

    Nona, Christina N; Nobrega, José N

    2018-01-15

    Mechanisms underlying differential sensitivity to behavioural sensitization to ethanol (EtOH) remain poorly understood, although accumulating evidence suggests a role for glutamatergic processes in the ventral striatum. Efforts to address this issue can benefit from the well-documented fact that in any given cohort, some of the mice (High sensitized; HS) show robust sensitization, while others (Low sensitized; LS) show little, if any, sensitization. Here, we examined whether this variability might be differentially associated with nucleus accumbens (NAc) glutamate processes. Male DBA mice received 5 EtOH (2.2g/kg) or saline injections twice a week and were challenged with EtOH (1.8g/kg) 2 weeks after injection 5. When an EtOH challenge was administered 2 weeks following the induction of sensitization, HS, but not LS, mice showed a robust increase in glutamate levels (67%, P<0.01) as measured by in vivo microdialysis. In a separate cohort, the mGlu2/3 agonist LY354740 (10mg/kg), given prior to the EtOH challenge, abolished the expression of sensitization. To ascertain whether enhanced release could also be observed during the induction of sensitization, glutamate levels were measured after the 1st and 5th EtOH injection and were found to be unchanged in HS mice, although briefly elevated in LS mice at injection 5. To further assess possible glutamate involvement during the induction of sensitization, sensitizing EtOH injections were co-administered with NMDAR antagonists. At the doses used, MK-801 (0.25mg/kg) and CGS 19755 (10mg/kg) blocked the expression of sensitization, but did not significantly interfere with the development of EtOH sensitization. Within the limitations of the present design, the results suggest an important role for EtOH-induced glutamate release in the NAc when sensitization is well established, but not necessarily during the development of sensitization. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Modest long-term ethanol consumption affects expression of neurotransmitter receptor genes in the rat nucleus accumbens.

    PubMed

    Jonsson, Susanne; Ericson, Mia; Söderpalm, Bo

    2014-03-01

    Over 100 million people worldwide are affected by alcohol use disorders. These conditions usually take years to develop where an initial, voluntary consumption is gradually replaced by a compulsive intake of alcohol. The exact mechanisms behind this transition remain unknown. However, ethanol (EtOH) is known to interact with several neurotransmitters and receptors in the central nervous system, and chronic EtOH consumption causes alterations in these neurotransmitter systems, proposed to contribute to the development of dependence. This study aimed to repeat previous findings that animals after long-term voluntary EtOH consumption spontaneously increase their intake. That the initial encounter with EtOH causes an elevation of dopamine in the nucleus accumbens (nAc), inducing feelings of well-being and creating an incentive to continue the behavior, has been repeatedly reported in both animals and humans. The effects of chronic EtOH consumption on this region are not as well investigated. We examined both long-term EtOH consumption behavior and its consequences on expression of neurotransmitter-related genes in the nAc of the Wistar rat using quantitative polymerase chain reaction. In general, the EtOH consumption of the animals in this study was modest with an average intake of 0.9 g/kg/d, and only 1 of the 24 rats consuming EtOH for 10 months drastically increased its intake in line with the results of Wolffgramm and Heyne (1995). Expression of the genes for dopamine receptor 2, μ-opioid receptor, and somatostatin receptor 4 were down-regulated in animals after 2 and/or 4, but not 10, months of EtOH consumption. Chronic consumption even of modest amounts of alcohol seems to affect regulation of expression of these genes, possibly leading to changes in neurotransmitter signaling. Studies are ongoing to investigate whether these alterations are specific for the nAc. Copyright © 2013 by the Research Society on Alcoholism.

  15. mu-Opioid receptor stimulation in the nucleus accumbens elevates fatty tastant intake by increasing palatability and suppressing satiety signals.

    PubMed

    Katsuura, Yoshihiro; Heckmann, Jennifer A; Taha, Sharif A

    2011-07-01

    Infusion of a μ-opioid receptor (MOR) agonist into the nucleus accumbens (NAcc) drives voracious food intake, an effect hypothesized to occur through increased tastant palatability. While intake of many palatable foods is elevated by MOR stimulation, this manipulation has a preferential effect on fatty food ingestion. Consumption of high-fat foods is increased by NAcc MOR stimulation even in rats that prefer a carbohydrate-rich alternative under baseline conditions. This suggests that NAcc MOR stimulation may not simply potentiate palatability signals and raises the possibility that mechanisms mediating fat intake may be distinct from those underlying intake of other tastants. The present study was conducted to investigate the physiological mechanisms underlying the effects of NAcc MOR stimulation on fatty food intake. In experiment 1, we analyzed lick microstructure in rats ingesting Intralipid to identify the changes underlying feeding induced by infusion of a MOR-specific agonist into the NAcc. MOR stimulation in the NAcc core, but not shell, increased burst duration and first-minute licks, while simultaneously increasing the rate and duration of Intralipid ingestion. These results suggest that MOR activation in the core increases Intralipid palatability and attenuates inhibitory postingestive feedback. In experiment 2, we measured the effects of MOR stimulation in the NAcc core on consumption of nonnutritive olestra. A MOR-specific agonist dose dependently increased olestra intake, demonstrating that caloric signaling is not required for hyperphagia induced by NAcc MOR stimulation. Feeding induced by drug infusion in both experiments 1 and 2 was blocked by a MOR antagonist. In experiment 3, we determined whether MOR activation in the NAcc core could attenuate satiety-related signaling caused by infusion of the melanocortin agonist MTII into the third ventricle. Suppression of intake caused by MTII was reversed by MOR stimulation. Together, our results suggest

  16. Acamprosate blocks the increase in dopamine extracellular levels in nucleus accumbens evoked by chemical stimulation of the ventral hippocampus.

    PubMed

    Cano-Cebrián, M J; Zornoza-Sabina, T; Guerri, C; Polache, A; Granero, L

    2003-10-01

    Recently, we have shown that acamprosate is able to modulate extracellular dopamine (DA) levels in the nucleus accumbens (NAc) and may act as an antagonist of N-methyl-D-aspartate (NMDA) receptors. Neurochemical studies show that chemical stimulation (using NMDA) of the ventral subiculum (vSub) of the hippocampus produces robust and sustained increases in extracellular DA levels in the NAc, an effect mediated through ionotropic glutamate (iGlu) receptors. The present study examines whether acamprosate locally infused in the NAc of rats could block or attenuate the increase in NAc extracellular DA elicited by chemical stimulation (with 5 mM NMDA) of the ventral subiculum of the hippocampus. The stimulation of the vSub during perfusion of artificial cerebrospinal fluid in NAc induced a significant and persistent increase in NAc DA levels. Reverse dialysis of 0.05 mM acamprosate in NAc blocked the increase in DA evoked by the chemical stimulation of the vSub. These data support the possibility that the antagonism at the NMDA receptors in NAc can explain, at least in part, the mechanism of action of this drug.

  17. Electrical resistance increases at the tissue-electrode interface as an early response to nucleus accumbens deep brain stimulation.

    PubMed

    Kale, Rajas P; Kouzani, Abbas Z; Berk, Julian; Walder, Ken; Berk, Michael; Tye, Susannah J

    2016-08-01

    The therapeutic actions of deep brain stimulation are not fully understood. The early inflammatory response of electrode implantation is associated with symptom relief without electrical stimulation, but is negated by anti-inflammatory drugs. Early excitotoxic necrosis and subsequent glial scarring modulate the conductivity of the tissue-electrode interface, which can provide some detail into the inflammatory response of individual patients. The feasibility of this was demonstrated by measuring resistance values across a bipolar electrode which was unilaterally implanted into the nucleus accumbens of a rat while receiving continuous deep brain stimulation with a portable back-mounted device using clinical parameters (130Hz, 200μA, 90μs) for 3 days. Daily resistance values rose significantly (p<;0.0001), while hourly resistance analysis demonstrated a plateau after an initial spike in resistance, which was then followed by a steady increase (p<;0.05; p<;0.0001). We discuss that the biphasic nature of the inflammatory response may contribute to these observations and conclude that this method may translate to a safe predictive screening for more effective clinical deep brain stimulation.

  18. Deep brain stimulation of the nucleus accumbens shell attenuates cue-induced reinstatement of both cocaine and sucrose seeking in rats.

    PubMed

    Guercio, Leonardo A; Schmidt, Heath D; Pierce, R Christopher

    2015-03-15

    Stimuli previously associated with drug taking can become triggers that can elicit craving and lead to relapse of drug-seeking behavior. Here, we examined the influence of deep brain stimulation (DBS) in the nucleus accumbens shell on cue-induced reinstatement of cocaine seeking, an animal model of relapse. Rats were allowed to self-administer cocaine (0.254 mg, i.v.) for 2 h daily for 21 days, with each infusion of cocaine being paired with a cue light. After 21 days of self-administration, cocaine-taking behavior was extinguished by replacing cocaine with saline in the absence of the cue light. Next, during the reinstatement phase, DBS was administered bilaterally into the nucleus accumbens shell through bipolar stainless steel electrodes immediately prior to re-exposure to cues previously associated with cocaine reinforcement. DBS continued throughout the 2 h reinstatement session. Parallel studies examined the influence of accumbens shell DBS on reinstatement induced by cues previously associated with sucrose reinforcement. Results indicated that DBS of the nucleus accumbens shell significantly attenuated cue-induced reinstatement of cocaine and sucrose seeking. Together, these results indicate that DBS of the accumbens shell disrupts cue-induced reinstatement associated with both a drug and a natural reinforcer.

  19. Opioids in the Hypothalamic Paraventricular Nucleus Stimulate Ethanol Intake

    PubMed Central

    Barson, Jessica R.; Carr, Ambrose J.; Soun, Jennifer E.; Sobhani, Nasim C.; Rada, Pedro; Leibowitz, Sarah F.; Hoebel, Bartley G.

    2017-01-01

    cannula tip. Conclusions The δ-opioid receptor agonist in the PVN increased ethanol intake in strong preference over food and water, while the k-opioid agonist suppressed ethanol intake. Prior studies show that learning to drink ethanol stimulates PVN expression and production of the peptides enkephalin and dynorphin, which are endogenous agonists for the δ- and k-receptors, respectively. These results suggest that enkephalin via the δ-opioid system can function locally within a positive feedback circuit to cause ethanol intake to escalate and ultimately contribute to the abuse of ethanol. This is in contrast to dynorphin via the k-opioid system, which may act to counter this escalation. Naltrexone therapy for alcoholism may act, in part, by blocking the enkephalin-triggered positive feedback cycle. PMID:19951300

  20. Effects of exposure to moderate levels of ethanol during prenatal brain development on dendritic length, branching, and spine density in the nucleus accumbens and dorsal striatum of adult rats.

    PubMed

    Rice, James P; Suggs, Lisa E; Lusk, Alexandra V; Parker, Matthew O; Candelaria-Cook, Felicha T; Akers, Katherine G; Savage, Daniel D; Hamilton, Derek A

    2012-09-01

    Reductions in measures of dendritic morphology in the agranular insular cortex have been identified as consequences of prenatal exposure to moderate levels of ethanol in the rat. Motivated by the strong connectivity between this region of frontal cortex and the striatum and a growing body of data linking specific components of the mesocortical/limbic system to effects of ethanol and ethanol self-administration, the current study investigated the effects of moderate fetal ethanol exposure on the dendritic morphology of medium spiny neurons (MSNs) in several regions of the striatum. Throughout gestation, pregnant rat dams either consumed a saccharin solution (control) or achieved average daily blood ethanol concentrations of 84 mg% via voluntary consumption of a 5% ethanol solution. The brains of adult male offspring were extracted and processed for Golgi-Cox staining. MSNs from the dorsomedial striatum, dorsolateral striatum and the nucleus accumbens core and shell were sampled for analysis. Relative to saccharin controls, robust reductions in dendritic length and branching, but not spine density, were observed in the shell of the nucleus accumbens in fetal-ethanol-exposed rats. No significant prenatal ethanol effects were found in the other regions of the striatum. These findings suggest that exposure to moderate levels of ethanol in utero can have profound effects on brain regions related to reward processing and provide possible clues relevant to understanding increased self-administration of drugs of abuse in animals exposed to ethanol during brain development.

  1. Repeated exposure of the posterior ventral tegmental area to nicotine increases the sensitivity of local dopamine neurons to the stimulating effects of ethanol.

    PubMed

    Ding, Zheng-Ming; Katner, Simon N; Rodd, Zachary A; Truitt, William; Hauser, Sheketha R; Deehan, Gerald A; Engleman, Eric A; McBride, William J

    2012-05-01

    Clinical evidence indicates a frequent co-morbidity of nicotine and alcohol abuse and dependence. The posterior ventral tegmental area (pVTA) appears to support the reinforcing and dopamine-stimulating effects of both drugs. The current study tested the hypothesis that repeated exposure of the pVTA to one drug would increase the sensitivity of local dopamine neurons to the stimulating effects of the other drug. Female Wistar rats received repeated daily microinjections of either 100 μM nicotine or vehicle directly into the pVTA for 7 days. On the 8th day, rats received microinjections of either vehicle or ethanol (100 or 200 mg%) into the pVTA while extracellular dopamine samples were collected from the ipsilateral nucleus accumbens shell (NACsh) with microdialysis. Another experiment tested the effects of challenge microinjections of 200 μM nicotine in the pVTA on extracellular dopamine levels in the NACsh following 7 daily pretreatments with 200 mg% ethanol in the pVTA. Nicotine pretreatments increased the dopamine-stimulating effects of ethanol in the pVTA (100 mg% ethanol: 115% vs 160% of baseline in the vehicle and nicotine groups, respectively, p < 0.05; 200 mg% ethanol: 145% vs 190% of baseline in the vehicle and nicotine groups, respectively, p < 0.05). In contrast, ethanol pretreatments did not alter the stimulating effects of nicotine in the pVTA. The results suggest that repeated exposure of the pVTA to nicotine increased the response of local dopamine neurons to the stimulating effects of ethanol, whereas repeated exposure of the pVTA to ethanol did not alter the responses of pVTA dopamine neurons to nicotine.

  2. Optogenetic stimulation of accumbens shell or shell projections to lateral hypothalamus produce differential effects on the motivation for cocaine.

    PubMed

    Larson, Erin B; Wissman, Anne M; Loriaux, Amy L; Kourrich, Saïd; Self, David W

    2015-02-25

    Previous studies suggest that pharmacological or molecular activation of the nucleus accumbens shell (AcbSh) facilitates extinction of cocaine-seeking behavior. However, overexpression of CREB, which increases excitability of AcbSh neurons, enhances cocaine-seeking behavior while producing depression-like behavior in tests of mood. These discrepancies may reflect activity in differential AcbSh outputs, including those to the lateral hypothalamus (LH), a target region known to influence addictive behavior and mood. Presently, it is unknown whether there is a causal link between altered activity in the AcbSh-LH pathway and changes in the motivation for cocaine. In this study, we used an optogenetics approach to either globally stimulate AcbSh neurons or to selectively stimulate AcbSh terminal projections in the LH, in rats self-administering cocaine. We found that stimulation of the AcbSh-LH pathway enhanced the motivation to self-administer cocaine in progressive ratio testing, and led to long-lasting facilitation of cocaine-seeking behavior during extinction tests conducted after withdrawal from cocaine self-administration. In contrast, global AcbSh stimulation reduced extinction responding. We compared these opposing motivational effects with effects on mood using the forced swim test, where both global AcbSh neuron and selective AcbSh-LH terminal stimulation facilitated depression-like behavioral despair. Together, these findings suggest that the AcbSh neurons convey complex, pathway-specific modulation of addiction and depression-like behavior, and that these motivation and mood phenomenon are dissociable.

  3. Repeated cocaine enhances ventral hippocampal-stimulated dopamine efflux in the nucleus accumbens and alters ventral hippocampal NMDA receptor subunit expression.

    PubMed

    Barr, Jeffrey L; Forster, Gina L; Unterwald, Ellen M

    2014-08-01

    Dopaminergic neurotransmission in the nucleus accumbens is important for various reward-related cognitive processes including reinforcement learning. Repeated cocaine enhances hippocampal synaptic plasticity, and phasic elevations of accumbal dopamine evoked by unconditioned stimuli are dependent on impulse flow from the ventral hippocampus. Therefore, sensitized hippocampal activity may be one mechanism by which drugs of abuse enhance limbic dopaminergic activity. In this study, in vivo microdialysis in freely moving adult male Sprague-Dawley rats was used to investigate the effect of repeated cocaine on ventral hippocampus-mediated dopaminergic transmission within the medial shell of the nucleus accumbens. Following seven daily injections of saline or cocaine (20 mg/kg, ip), unilateral infusion of N-methyl-d-aspartate (NMDA, 0.5 μg) into the ventral hippocampus transiently increased both motoric activity and ipsilateral dopamine efflux in the medial shell of the nucleus accumbens, and this effect was greater in rats that received repeated cocaine compared to controls that received repeated saline. In addition, repeated cocaine altered NMDA receptor subunit expression in the ventral hippocampus, reducing the NR2A : NR2B subunit ratio. Together, these results suggest that repeated exposure to cocaine produces maladaptive ventral hippocampal-nucleus accumbens communication, in part through changes in glutamate receptor composition. A behaviorally sensitizing regimen of cocaine (20 mg/kg, ip 7 days) also sensitized ventral hippocampus (hipp)-mediated dopaminergic transmission within the nucleus accumbens (Nac) to NMDA stimulation (bolts). This was associated with reduced ventral hippocampal NR2A:NR2B subunit ratio, suggesting that repeated exposure to cocaine produces changes in hippocampal NMDA receptor composition that lead to enhanced ventral hippocampus-nucleus accumbens communication.

  4. Distinct Effects of Nalmefene on Dopamine Uptake Rates and Kappa Opioid Receptor Activity in the Nucleus Accumbens Following Chronic Intermittent Ethanol Exposure

    PubMed Central

    Rose, Jamie H.; Karkhanis, Anushree N.; Steiniger-Brach, Björn; Jones, Sara R.

    2016-01-01

    The development of pharmacotherapeutics that reduce relapse to alcohol drinking in patients with alcohol dependence is of considerable research interest. Preclinical data support a role for nucleus accumbens (NAc) κ opioid receptors (KOR) in chronic intermittent ethanol (CIE) exposure-induced increases in ethanol intake. Nalmefene, a high-affinity KOR partial agonist, reduces drinking in at-risk patients and relapse drinking in rodents, potentially due to its effects on NAc KORs. However, the effects of nalmefene on accumbal dopamine transmission and KOR function are poorly understood. We investigated the effects of nalmefene on dopamine transmission and KORs using fast scan cyclic voltammetry in NAc brain slices from male C57BL/6J mice following five weeks of CIE or air exposure. Nalmefene concentration-dependently reduced dopamine release similarly in air and CIE groups, suggesting that dynorphin tone may not be present in brain slices. Further, nalmefene attenuated dopamine uptake rates to a greater extent in brain slices from CIE-exposed mice, suggesting that dopamine transporter-KOR interactions may be fundamentally altered following CIE. Additionally, nalmefene reversed the dopamine-decreasing effects of a maximal concentration of a KOR agonist selectively in brain slices of CIE-exposed mice. It is possible that nalmefene may attenuate withdrawal-induced increases in ethanol consumption by modulation of dopamine transmission through KORs. PMID:27472317

  5. Distinct Effects of Nalmefene on Dopamine Uptake Rates and Kappa Opioid Receptor Activity in the Nucleus Accumbens Following Chronic Intermittent Ethanol Exposure.

    PubMed

    Rose, Jamie H; Karkhanis, Anushree N; Steiniger-Brach, Björn; Jones, Sara R

    2016-07-27

    The development of pharmacotherapeutics that reduce relapse to alcohol drinking in patients with alcohol dependence is of considerable research interest. Preclinical data support a role for nucleus accumbens (NAc) κ opioid receptors (KOR) in chronic intermittent ethanol (CIE) exposure-induced increases in ethanol intake. Nalmefene, a high-affinity KOR partial agonist, reduces drinking in at-risk patients and relapse drinking in rodents, potentially due to its effects on NAc KORs. However, the effects of nalmefene on accumbal dopamine transmission and KOR function are poorly understood. We investigated the effects of nalmefene on dopamine transmission and KORs using fast scan cyclic voltammetry in NAc brain slices from male C57BL/6J mice following five weeks of CIE or air exposure. Nalmefene concentration-dependently reduced dopamine release similarly in air and CIE groups, suggesting that dynorphin tone may not be present in brain slices. Further, nalmefene attenuated dopamine uptake rates to a greater extent in brain slices from CIE-exposed mice, suggesting that dopamine transporter-KOR interactions may be fundamentally altered following CIE. Additionally, nalmefene reversed the dopamine-decreasing effects of a maximal concentration of a KOR agonist selectively in brain slices of CIE-exposed mice. It is possible that nalmefene may attenuate withdrawal-induced increases in ethanol consumption by modulation of dopamine transmission through KORs.

  6. Nicotine and ethanol activate protein kinase A synergistically via G(i) betagamma subunits in nucleus accumbens/ventral tegmental cocultures: the role of dopamine D(1)/D(2) and adenosine A(2A) receptors.

    PubMed

    Inoue, Yuichiro; Yao, Lina; Hopf, F Woodward; Fan, Peidong; Jiang, Zhan; Bonci, Antonello; Diamond, Ivan

    2007-07-01

    Tobacco and alcohol are the most commonly used drugs of abuse and show the most serious comorbidity. The mesolimbic dopamine system contributes significantly to nicotine and ethanol reinforcement, but the underlying cellular signaling mechanisms are poorly understood. Nicotinic acetylcholine (nACh) receptors are highly expressed on ventral tegmental area (VTA) dopamine neurons, with relatively low expression in nucleus accumbens (NAcb) neurons. Because dopamine receptors D(1) and D(2) are highly expressed on NAcb neurons, nicotine could influence NAcb neurons indirectly by activating VTA neurons to release dopamine in the NAcb. To investigate this possibility in vitro, we established primary cultures containing neurons from VTA or NAcb separately or in cocultures. Nicotine increased cAMP response element-mediated gene expression only in cocultures; this increase was blocked by nACh or dopamine D(1) or D(2) receptor antagonists. Furthermore, subthreshold concentrations of nicotine with ethanol increased gene expression in cocultures, and this increase was blocked by nACh, D(2) or adenosine A(2A) receptor antagonists, Gbetagamma or protein kinase A (PKA) inhibitors, and adenosine deaminase. These results suggest that nicotine activated VTA neurons, causing the release of dopamine, which in turn stimulated both D(1) and D(2) receptors on NAcb neurons. In addition, subthreshold concentrations of nicotine and ethanol in combination also activated NAcb neurons through synergy between D(2) and A(2A) receptors. These data provide a novel cellular mechanism, involving Gbetagamma subunits, A(2A) receptors, and PKA, whereby combined use of tobacco and alcohol could enhance the reinforcing effect in humans as well as facilitate long-term neuroadaptations, increasing the risk for developing coaddiction.

  7. Deep Brain Stimulation of the Nucleus Accumbens Core Affects Trait Impulsivity in a Baseline-Dependent Manner

    PubMed Central

    Schippers, Maria C.; Bruinsma, Bastiaan; Gaastra, Mathijs; Mesman, Tanja I.; Denys, Damiaan; De Vries, Taco J.; Pattij, Tommy

    2017-01-01

    Deep brain stimulation (DBS) of the nucleus accumbens (NA) is explored as a treatment for refractory psychiatric disorders, such as obsessive-compulsive disorder (OCD), depressive disorder (MDD), and substance use disorder (SUD). A common feature of some of these disorders is pathological impulsivity. Here, the effects of NAcore DBS on impulsive choice and impulsive action, two distinct forms of impulsive behavior, were investigated in translational animal tasks, the delayed reward task (DRT) and five-choice serial reaction time task (5-CSRTT), respectively. In both tasks, the effects of NAcore DBS were negatively correlated with baseline impulsive behavior, with more pronounced effects in the 5-CSRTT. To further examine the effects of DBS on trait impulsive action, rats were screened for high (HI) and low (LI) impulsive responding in the 5-CSRTT. NAcore DBS decreased impulsive, premature responding in HI rats under conventional conditions. However, upon challenged conditions to increase impulsive responding, NAcore DBS did not alter impulsivity. These results strongly suggest a baseline-dependent effect of DBS on impulsivity, which is in line with clinical observations. PMID:28386221

  8. Systemically administered oxytocin decreases methamphetamine activation of the subthalamic nucleus and accumbens core and stimulates oxytocinergic neurons in the hypothalamus.

    PubMed

    Carson, Dean S; Hunt, Glenn E; Guastella, Adam J; Barber, Lachlan; Cornish, Jennifer L; Arnold, Jonathon C; Boucher, Aurelie A; McGregor, Iain S

    2010-10-01

    Recent preclinical evidence indicates that the neuropeptide oxytocin may have potential in the treatment of drug dependence and drug withdrawal. Oxytocin reduces methamphetamine self-administration, conditioned place preference and hyperactivity in rodents. However, it is unclear how oxytocin acts in the brain to produce such effects. The present study examined how patterns of neural activation produced by methamphetamine were modified by co-administered oxytocin. Male Sprague-Dawley rats were pretreated with either 2 mg/kg oxytocin (IP) or saline and then injected with either 2 mg/kg methamphetamine (IP) or saline. After injection, locomotor activity was measured for 80 minutes prior to perfusion. As in previous studies, co-administered oxytocin significantly reduced methamphetamine-induced behaviors. Strikingly, oxytocin significantly reduced methamphetamine-induced Fos expression in two regions of the basal ganglia: the subthalamic nucleus and the nucleus accumbens core. The subthalamic nucleus is of particular interest given emerging evidence for this structure in compulsive, addiction-relevant behaviors. When administered alone, oxytocin increased Fos expression in several regions, most notably in the oxytocin-synthesizing neurons of the supraoptic nucleus and paraventricular nucleus of the hypothalamus. This provides new evidence for central actions of peripheral oxytocin and suggests a self-stimulation effect of exogenous oxytocin on its own hypothalamic circuitry. Overall, these results give further insight into the way in which oxytocin might moderate compulsive behaviors and demonstrate the capacity of peripherally administered oxytocin to induce widespread central effects.

  9. Altered basal and stimulated accumbens dopamine release in obese OLETF rats as a function of age and diabetic status

    PubMed Central

    Anderzhanova, Elmira; Covasa, Mihai; Hajnal, Andras

    2011-01-01

    The Otsuka Long Evans Tokushima Fatty (OLETF) rat lacking the CCK-1 receptor is hyperphagic, prefers palatable and high caloric meals, and gradually develops obesity and type-2 diabetes. To determine dopamine levels in this strain, we used in-vivo quantitative (no-net flux) microdialyis at three different ages representing non-diabetic (8 weeks), pre-diabetic (18 weeks), and diabetic (56 weeks) stages in OLETF and age-matched lean LETO controls. Results showed significantly elevated basal dopamine levels in the caudomedial nucleus accumbens of OLETF rats compared to LETO at younger ages (8 weeks: 20.10 ± 5.61 nM vs. 15.85 ± 5.63 nM; 18 weeks: 7.37 ± 3.71 nM vs. 4.75 ± 1.25 nM, Mean ± SD). In contrast, at 56 weeks of age, a profound decline in extracellular dopamine concentrations was seen in both strains with a tendency for a greater effect in OLETF rats (1.78 ± 0.40 nM vs. 2.39 ± 0.42 nM). Further, extracellular fraction, an index for reuptake, was higher in 56-week old OLETF compared to LETO (0.648 ± 0.049 vs. 0.526 ± 0.057). Potassium-stimulated dopamine efflux revealed an increased capacity of vesicular pool in OLETF rats compared to LETO across all age groups with an accentuated strain difference at 56 weeks. These findings demonstrate altered striatal dopamine functions (i.e. increased stimulated release and uptake) in obese OLETF rat. This could be due to the lack of functional CCK-1 receptors, or metabolic and hormonal factors associated with the development of obesity and insulin resistance, or both. PMID:17553848

  10. Ethanol up-regulates nucleus accumbens neuronal activity dependent pentraxin (Narp): implications for alcohol-induced behavioral plasticity

    PubMed Central

    Ary, Alexis W.; Cozzoli, Debra K.; Finn, Deborah A.; Crabbe, John C.; Dehoff, Marlin H.; Worley, Paul F.; Szumlinski, Karen K.

    2012-01-01

    Neuronal activity-dependent pentraxin (Narp) interacts with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) glutamate receptors to facilitate excitatory synapse formation by aggregating them at established synapses. Alcohol is well-characterized to influence central glutamatergic transmission, including AMPA receptor function. Herein, we examined the influence of injected and ingested alcohol upon Narp protein expression, as well as basal Narp expression in mouse lines selectively bred for high blood alcohol concentrations under limited access conditions. Alcohol up-regulated accumbens Narp levels, concomitant with increases in levels of the GluR1 AMPA receptor subunit. However, accumbens Narp or GluR1 levels did not vary as a function of selectively bred genotype. We next employed a Narp knock-out (KO) strategy to begin to understand the behavioral relevance of alcohol-induced changes in protein expression in several assays of alcohol reward. Compared to wild-type mice, Narp KO animals: fail to escalate daily intake of high alcohol concentrations under free-access conditions; shift their preference away from high alcohol concentrations with repeated alcohol experience; exhibit a conditioned place-aversion in response to the repeated pairing of 3 g/kg alcohol with a distinct environment and fail to exhibit alcohol-induced locomotor hyperactivity following repeated alcohol treatment. Narp deletion did not influence the daily intake of either food or water, nor did it alter any aspect of spontaneous or alcohol-induced motor activity, including the development of tolerance to its motor-impairing effects with repeated treatment. Taken together, these data indicate that Narp induction, and presumably subsequent aggregation of AMPA receptors, may be important for neuroplasticity within limbic subcircuits mediating or maintaining the rewarding properties of alcohol. PMID:22444953

  11. Ethanol up-regulates nucleus accumbens neuronal activity dependent pentraxin (Narp): implications for alcohol-induced behavioral plasticity.

    PubMed

    Ary, Alexis W; Cozzoli, Debra K; Finn, Deborah A; Crabbe, John C; Dehoff, Marlin H; Worley, Paul F; Szumlinski, Karen K

    2012-06-01

    Neuronal activity dependent pentraxin (Narp) interacts with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) glutamate receptors to facilitate excitatory synapse formation by aggregating them at established synapses. Alcohol is well-characterized to influence central glutamatergic transmission, including AMPA receptor function. Herein, we examined the influence of injected and ingested alcohol upon Narp protein expression, as well as basal Narp expression in mouse lines selectively bred for high blood alcohol concentrations under limited access conditions. Alcohol up-regulated accumbens Narp levels, concomitant with increases in levels of the GluR1 AMPA receptor subunit. However, accumbens Narp or GluR1 levels did not vary as a function of selectively bred genotype. We next employed a Narp knock-out (KO) strategy to begin to understand the behavioral relevance of alcohol-induced changes in protein expression in several assays of alcohol reward. Compared to wild-type mice, Narp KO animals: fail to escalate daily intake of high alcohol concentrations under free-access conditions; shift their preference away from high alcohol concentrations with repeated alcohol experience; exhibit a conditioned place-aversion in response to the repeated pairing of 3 g/kg alcohol with a distinct environment and fail to exhibit alcohol-induced locomotor hyperactivity following repeated alcohol treatment. Narp deletion did not influence the daily intake of either food or water, nor did it alter any aspect of spontaneous or alcohol-induced motor activity, including the development of tolerance to its motor-impairing effects with repeated treatment. Taken together, these data indicate that Narp induction, and presumably subsequent aggregation of AMPA receptors, may be important for neuroplasticity within limbic subcircuits mediating or maintaining the rewarding properties of alcohol.

  12. Protein expression changes in the nucleus accumbens and amygdala of inbred alcohol-preferring rats given either continuous or scheduled access to ethanol.

    PubMed

    Bell, R L; Kimpel, M W; Rodd, Z A; Strother, W N; Bai, F; Peper, C L; Mayfield, R D; Lumeng, L; Crabb, D W; McBride, W J; Witzmann, F A

    2006-08-01

    Chronic ethanol (EtOH) drinking produces neuronal alterations within the limbic system. To investigate changes in protein expression levels associated with EtOH drinking, inbred alcohol-preferring (iP) rats were given one of three EtOH access conditions in their home-cages: continuous ethanol (CE: 24h/day, 7days/week access to EtOH), multiple scheduled access (MSA: four 1-h sessions during the dark cycle/day, 5 days/week) to EtOH, or remained EtOH-naïve. Both MSA and CE groups consumed between 6 and 6.5g of EtOH/kg/day after the 3rd week of access. On the first day of EtOH access for the seventh week, access was terminated at the end of the fourth MSA session for MSA rats and the corresponding time point (2300h) for CE rats. Ten h later, the rats were decapitated, brains extracted, the nucleus accumbens (NAcc) and amygdala (AMYG) microdissected, and protein isolated for 2-dimensional gel electrophoretic analyses. In the NAcc, MSA altered expression levels for 12 of the 14 identified proteins, compared with controls, with six of these proteins altered by CE access, as well. In the AMYG, CE access changed expression levels for 22 of the 27 identified proteins, compared with controls, with 8 of these proteins altered by MSA, as well. The proteins could be grouped into functional categories of chaperones, cytoskeleton, intracellular communication, membrane transport, metabolism, energy production, or neurotransmission. Overall, it appears that EtOH drinking and the conditions under which EtOH is consumed, differentially affect protein expression levels between the NAcc and AMYG. This may reflect differences in neuroanatomical and/or functional characteristics associated with EtOH self-administration and possibly withdrawal, between these two brain structures.

  13. Selective serotonin receptor stimulation of the medial nucleus accumbens differentially affects appetitive motivation for food on a progressive ratio schedule of reinforcement.

    PubMed

    Pratt, Wayne E; Schall, Megan A; Choi, Eugene

    2012-03-09

    Previously, we reported that stimulation of selective serotonin (5-HT) receptor subtypes in the nucleus accumbens shell differentially affected consumption of freely available food. Specifically, activation of 5-HT(6) receptors caused a dose-dependent increase in food intake, while the stimulation of 5-HT(1/7) receptor subtypes decreased feeding [34]. The current experiments tested whether similar pharmacological activation of nucleus accumbens serotonin receptors would also affect appetitive motivation, as measured by the amount of effort non-deprived rats exerted to earn sugar reinforcement. Rats were trained to lever press for sugar pellets on a progressive ratio 2 schedule of reinforcement. Across multiple treatment days, three separate groups (N=8-10) received bilateral infusions of the 5-HT(6) agonist EMD 386088 (at 0.0, 1.0 and 4.0 μg/0.5 μl/side), the 5-HT(1/7) agonist 5-CT (at 0, 0.5, 1.0, or 4.0 μg/0.5 μl/side), or the 5-HT(2C) agonist RO 60-0175 fumarate (at 0, 2.0, or 5.0 μg/0.5 μl/side) into the anterior medial nucleus accumbens prior to a 1-h progressive ratio session. Stimulation of 5-HT(6) receptors caused a dose-dependent increase in motivation as assessed by break point, reinforcers earned, and total active lever presses. Stimulation of 5-HT(1/7) receptors increased lever pressing at the 0.5 μg dose of 5-CT, but inhibited lever presses and break point at 4.0 μg/side. Injection of the 5-HT(2C) agonist had no effect on motivation within the task. Collectively, these experiments suggest that, in addition to their role in modulating food consumption, nucleus accumbens 5-HT(6) and 5-HT(1/7) receptors also differentially regulate the appetitive components of food-directed motivation.

  14. Selective serotonin receptor stimulation of the medial nucleus accumbens differentially affects appetitive motivation for food on a progressive ratio schedule of reinforcement

    PubMed Central

    Pratt, Wayne E.; Schall, Megan A.; Choi, Eugene

    2012-01-01

    Previously, we reported that stimulation of selective serotonin (5-HT) receptor subtypes in the nucleus accumbens shell differentially affected consumption of freely available food. Specifically, activation of 5-HT6 receptors caused a dose-dependent increase in food intake, while the stimulation of 5-HT1/7 receptor subtypes decreased feeding [34]. The current experiments tested whether similar pharmacological activation of nucleus accumbens serotonin receptors would also affect appetitive motivation, as measured by the amount of effort non-deprived rats exerted to earn sugar reinforcement. Rats were trained to lever press for sugar pellets on a progressive ratio 2 schedule of reinforcement. Across multiple treatment days, three separate groups (N = 8–10) received bilateral infusions of the 5-HT6 agonist EMD 386088 (at 0.0, 1.0 and 4.0 μg/0.5 μl/side), the 5-HT1/7 agonist 5-CT (at 0, 0.5, 1.0, or 4.0 μg/0.5 μl/side), or the 5-HT2C agonist RO 60-0175 fumarate (at 0, 2.0, or 5.0 μg/0.5 μl/side) into the anterior medial nucleus accumbens prior to a 1-hr progressive ratio session. Stimulation of 5-HT6 receptors caused a dose-dependent increase in motivation as assessed by break point, reinforcers earned, and total active lever presses. Stimulation of 5-HT1/7 receptors increased lever pressing at the 0.5 μg dose of 5-CT, but inhibited lever presses and break point at 4.0 μg/side. Injection of the 5- HT2C agonist had no effect on motivation within the task. Collectively, these experiments suggest that, in addition to their role in modulating food consumption, nucleus accumbens 5-HT6 and 5-HT1/7 receptors also differentially regulate the appetitive components of food-directed motivation. PMID:22306095

  15. Transient Manic-like Episode Following Bilateral Deep Brain Stimulation of the Nucleus Accumbens and the Internal Capsule in a Patient With Tourette Syndrome.

    PubMed

    Kuhn, Jens; Lenartz, Doris; Huff, Wolfgang; Mai, Jürgen K; Koulousakis, Athanasios; Maarouf, Mohammad; Lee, Sun Hee; Klosterkoetter, Joachim; Sturm, Volker

    2008-04-01

    Objective.  Deep brain stimulation (DBS) increasingly attracts attention as a potential treatment of mental disorders. Beside depression and obsessive-compulsive disorders, DBS has already been shown to be beneficial for Tourette syndrome (TS). Clinical Presentation/Method.  The authors report on the outcome of a patient with treatment-resistant TS who underwent bilateral DBS of the nucleus accumbens and the internal capsule. Results.  Within the 10-month follow-up, a substantial reduction of tics has been observed. Yet, as a side-effect of DBS, the patient developed a transient manic-like episode when primarily stimulated by the most proximally contact in the internal capsule. Conclusions.  This case supports the hypothesis that DBS of the nucleus accumbens and the internal capsule represents an effective therapeutic alternative for otherwise treatment-resistant TS. Yet, future controlled studies are needed to determine optimal stimulation parameters and to reduce negative side-effects such as transient hypomanic episodes. © 2008 International Neuromodulation Society.

  16. Ethanol stimulates superoxide production and inhibits phorbol ester induced superoxide production in alveolar macrophages

    SciTech Connect

    Dorio, R.J.; Hoek, J.B.; Forman, H.J.; Rubin, E.

    1986-05-01

    Ethanol stimulates superoxide (O/sub 2//sup -/) production in rat alveolar macrophages. Increasing the ethanol concentration from 75 to 500 mM produces a linear dose response curve, generating between 10 and 30 pmol O/sub 2//sup -//min/10/sup 6/ cells. Thus, ethanol is a weak agonist of O/sub 2//sup -/ in these cells. Pretreatment with ethanol in the same concentration range results in a dose and time dependent inhibition of O/sub 2//sup -/ production by phorbol-12-myristate-13-acetate (PMA). 100 mM ethanol inhibits PMA (100 ng/ml)-induced O/sub 2//sup -/ production by 60% after 5 minutes and by 80% after 30 minutes of preincubation. At lower concentrations (10-25 mM), however, ethanol causes a synergistic stimulation of PMA-induced O/sub 2//sup -/ production. Preincubation for 15 minutes with 10 mM ethanol results in a 20% increase in PMA-induced O/sub 2//sup -/ production. Synergism between PMA and ethanol is seen at ethanol concentrations which do not result in O/sub 2//sup -/ production by ethanol alone. This synergism is abolished by a 15 minute preincubation of the cells in EGTA. Thus, ethanol acts as a weak agonist for O/sub 2//sup -/ production and interacts significantly with PMA-induced stimulation of O/sub 2//sup -/ production.

  17. Ethanol modulates facial stimulation-evoked outward currents in cerebellar Purkinje cells in vivo in mice

    PubMed Central

    Wu, Mao-Cheng; Bing, Yan-Hua; Chu, Chun-Ping; Qiu, De-Lai

    2016-01-01

    Acute ethanol overdose can induce dysfunction of cerebellar motor regulation and cerebellar ataxia. In this study, we investigated the effect of ethanol on facial stimulation-evoked inhibitory synaptic responses in cerebellar Purkinje cells (PCs) in urethane-anesthetized mice, using in vivo patch-clamp recordings. Under voltage-clamp conditions, ethanol (300 mM) decreased the amplitude, half-width, rise time and decay time of facial stimulation-evoked outward currents in PCs. The ethanol-induced inhibition of facial stimulation-evoked outward currents was dose-dependent, with an IC50 of 148.5 mM. Notably, the ethanol-induced inhibition of facial stimulation-evoked outward currents were significantly abrogated by cannabinoid receptor 1 (CB1) antagonists, AM251 and O-2050, as well as by the CB1 agonist WIN55212-2. Moreover, the ethanol-induced inhibition of facial stimulation-evoked outward currents was prevented by cerebellar surface perfusion of the PKA inhibitors H-89 and Rp-cAMP, but not by intracellular administration of the PKA inhibitor PKI. Our present results indicate that ethanol inhibits the facial stimulation-evoked outward currents by activating presynaptic CB1 receptors via the PKA signaling pathway. These findings suggest that ethanol overdose impairs sensory information processing, at least in part, by inhibiting GABA release from molecular layer interneurons onto PCs. PMID:27489024

  18. Ethanol modulates facial stimulation-evoked outward currents in cerebellar Purkinje cells in vivo in mice.

    PubMed

    Wu, Mao-Cheng; Bing, Yan-Hua; Chu, Chun-Ping; Qiu, De-Lai

    2016-08-04

    Acute ethanol overdose can induce dysfunction of cerebellar motor regulation and cerebellar ataxia. In this study, we investigated the effect of ethanol on facial stimulation-evoked inhibitory synaptic responses in cerebellar Purkinje cells (PCs) in urethane-anesthetized mice, using in vivo patch-clamp recordings. Under voltage-clamp conditions, ethanol (300 mM) decreased the amplitude, half-width, rise time and decay time of facial stimulation-evoked outward currents in PCs. The ethanol-induced inhibition of facial stimulation-evoked outward currents was dose-dependent, with an IC50 of 148.5 mM. Notably, the ethanol-induced inhibition of facial stimulation-evoked outward currents were significantly abrogated by cannabinoid receptor 1 (CB1) antagonists, AM251 and O-2050, as well as by the CB1 agonist WIN55212-2. Moreover, the ethanol-induced inhibition of facial stimulation-evoked outward currents was prevented by cerebellar surface perfusion of the PKA inhibitors H-89 and Rp-cAMP, but not by intracellular administration of the PKA inhibitor PKI. Our present results indicate that ethanol inhibits the facial stimulation-evoked outward currents by activating presynaptic CB1 receptors via the PKA signaling pathway. These findings suggest that ethanol overdose impairs sensory information processing, at least in part, by inhibiting GABA release from molecular layer interneurons onto PCs.

  19. Effects of Varenicline on Ethanol-Induced Conditioned Place Preference, Locomotor Stimulation, and Sensitization

    PubMed Central

    Gubner, Noah R.; McKinnon, Carrie S.; Phillips, Tamara J.

    2014-01-01

    Background Varenicline, a partial nicotinic acetylcholine receptor (nAChR) agonist, is a promising new drug for the treatment of alcohol (ethanol) dependence. Varenicline has been approved by the Food and Drug Administration as a smoking cessation therapeutic and has also been found to reduce ethanol consumption in humans and animal models of alcohol use. The current studies examined the hypotheses that varenicline attenuates the stimulant and sensitizing effects of ethanol, and reduces the motivational effects of ethanol-associated cues. The goal was to determine if these effects of varenicline contribute to its pharmacotherapeutic effects for alcohol dependence. In addition, effects of varenicline on acute stimulation and/or on the acquisition of sensitization would suggest a role for nAChR involvement in these effects of ethanol. Methods Dose-dependent effects of varenicline on the expression of ethanol-induced conditioned place preference (CPP), locomotor activation, and behavioral sensitization were examined. These measures model motivational effects of ethanol-associated cues, euphoric or stimulatory effects of ethanol, and ethanol-induced neuroadaptation. All studies used DBA/2J mice, an inbred strain with high sensitivity to these ethanol-related effects. Results Varenicline did not significantly attenuate the expression of ethanol-induced CPP. Varenicline reduced locomotor activity and had the most pronounced effect in the presence of ethanol, with the largest effect on acute ethanol-induced locomotor stimulation and a trend for varenicline to attenuate the expression of ethanol-induced sensitization. Conclusions Because varenicline did not attenuate the expression of ethanol-induced CPP, it may not be effective at reducing the motivational effects of ethanol-associated cues. This outcome suggests that reductions in the motivational effects of ethanol-associated cues may not be involved in how varenicline reduces ethanol consumption. However, varenicline

  20. Ethanol stimulates phospholipid turnover and inositol 1,4,5-trisphosphate production in Chlamydomonas eugametos gametes.

    PubMed

    Musgrave, A; Kuin, H; Jongen, M; de Wildt, P; Schuring, F; Klerk, H; van den Ende, H

    1992-02-01

    Alcohols induce mating-structure activation in Chlamydomonas eugametos gametes. From the effect of ethanol on the (32)P-labelling of polyphosphoinositides, we conclude that the synthesis of these lipids is stimulated. Biologically inactive concentrations of ethanol (<6%) had no effect on synthesis, but 6-8% ethanol stimulated synthesis for upto 60 min. The (32)P incorporated into polyphosphoinositides and phosphatidic acid during ethanol treatment was readily chased out when 1 mM unlabelled Na3PO4 was added. Using a binding assay for inositol 1,4,5-trisphosphate, we show that the production of this phospholipid constituent is dramatically increased after ethanol treatment. This effect, coupled to a rise in intracellular calcium concentration, could explain gamete activation. The significance of these results in explaining other ethanol-induced phenomena in algae is discussed.

  1. Ethanol and diolein stimulate PKC (protein kinase C) translocation in astroglial cells

    SciTech Connect

    Skwish, S. ); Shain, W. New York State Department of Health, Albany )

    1990-01-01

    Ethanol exposure stimulates taurine release from astroglial cells. To determine if ethanol mediates this release using protein kinase C (PKC), PKC activity was measured using LRM55 astroglial cells. When ethanol or diolein was applied to cells for 30 seconds, PKC activity was observed to decrease in the cytosol and increase in the membrane fraction of the cell while the whole cell activity remained unchanged. The membrane-associated activity increased by almost 100%. When ethanol and diolein were applied simultaneously, membrane-associated activity increased to become 3-5 times greater than when either PKC activator was applied alone. These changes in PKC activity parallel changes in taurine release observed when cells are exposed to ethanol and the PKC activator diolein. Ethanol-stimulated release may be associated with the translocation of PKC activity from the cytosol to the membrane.

  2. D1 receptors in the nucleus accumbens-shell, but not the core, are involved in mediating ethanol-seeking behavior of alcohol-preferring (P) rats.

    PubMed

    Hauser, S R; Deehan, G A; Dhaher, R; Knight, C P; Wilden, J A; McBride, W J; Rodd, Z A

    2015-06-04

    Clinical and preclinical research suggest that activation of the mesolimbic dopamine (DA) system is involved in mediating the rewarding actions of drugs of abuse, as well as promoting drug-seeking behavior. Inhibition of DA D1 receptors in the nucleus accumbens (Acb) can reduce ethanol (EtOH)-seeking behavior of non-selective rats triggered by environmental context. However, to date, there has been no research on the effects of D1 receptor agents on EtOH- seeking behavior of high alcohol-preferring (P) rats following prolonged abstinence. The objective of the present study was to examine the effects of microinjecting the D1 antagonist SCH 23390 or the D1 agonist A-77636 into the Acb shell or Acb core on spontaneous recovery of EtOH-seeking behavior. After 10 weeks of concurrent access to EtOH and water, P rats underwent seven extinction sessions (EtOH and water withheld), followed by 2 weeks in their home cages without access to EtOH or operant sessions. In the 2nd week of the home cage phase, rats were bilaterally implanted with guide cannula aimed at the Acb shell or Acb core; rats were allowed 7d ays to recover before EtOH-seeking was assessed by the Pavlovian Spontaneous Recovery (PSR) model. Administration of SCH23390 (1μg/side) into the Acb shell inhibited responding on the EtOH lever, whereas administration of A-77636 (0.125μg/side) increased responding on the EtOH lever. Microinfusion of D1 receptor agents into the Acb core did not alter responding on the EtOH lever. Responses on the water lever were not altered by any of the treatments. The results suggest that activation of D1 receptors within the Acb shell, but not Acb core, are involved in mediating PSR of EtOH-seeking behavior of P rats.

  3. The H2O2 scavenger ebselen decreases ethanol-induced locomotor stimulation in mice.

    PubMed

    Ledesma, Juan Carlos; Font, Laura; Aragon, Carlos M G

    2012-07-01

    In the brain, the enzyme catalase by reacting with H(2)O(2) forms Compound I (catalase-H(2)O(2) system), which is the main system of central ethanol metabolism to acetaldehyde. Previous research has demonstrated that acetaldehyde derived from central-ethanol metabolism mediates some of the psychopharmacological effects produced by ethanol. Manipulations that modulate central catalase activity or sequester acetaldehyde after ethanol administration modify the stimulant effects induced by ethanol in mice. However, the role of H(2)O(2) in the behavioral effects caused by ethanol has not been clearly addressed. The present study investigated the effects of ebselen, an H(2)O(2) scavenger, on ethanol-induced locomotion. Swiss RjOrl mice were pre-treated with ebselen (0-50mg/kg) intraperitoneally (IP) prior to administration of ethanol (0-3.75g/kg; IP). In another experiment, animals were pre-treated with ebselen (0 or 25mg/kg; IP) before caffeine (15mg/kg; IP), amphetamine (2mg/kg; IP) or cocaine (10mg/kg; IP) administration. Following these treatments, animals were placed in an open field to measure their locomotor activity. Additionally, we evaluated the effect of ebselen on the H(2)O(2)-mediated inactivation of brain catalase activity by 3-amino-1,2,4-triazole (AT). Ebselen selectively prevented ethanol-induced locomotor stimulation without altering the baseline activity or the locomotor stimulating effects caused by caffeine, amphetamine and cocaine. Ebselen reduced the ability of AT to inhibit brain catalase activity. Taken together, these data suggest that a decline in H(2)O(2) levels might result in a reduction of the ethanol locomotor-stimulating effects, indicating a possible role for H(2)O(2) in some of the psychopharmacological effects produced by ethanol. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Role of dopamine D2-like receptors within the ventral tegmental area and nucleus accumbens in antinociception induced by lateral hypothalamus stimulation.

    PubMed

    Moradi, Marzieh; Yazdanian, Mohamadreza; Haghparast, Abbas

    2015-10-01

    Several lines of evidence have shown that stimulation of the lateral hypothalamus (LH) can induce antinociception. It has been indicated that hypothalamic orexinergic neurons send projections throughout the dopamine mesolimbic pathway. Functional interaction between the LH and the main area of the mesolimbic pathway such as the ventral tegmental area (VTA) and the nucleus accumbens (NAc) implicates in pain modulation. Thus, in this study, we investigated the role of D2-like dopamine receptors within the VTA and NAc in the LH stimulation-induced antinociception. Male Wistar rats weighing 230-280 g were unilaterally implanted with two separate cannulae into the LH and VTA or NAc. Animals received intra-VTA (0.25, 1 and 4 μg/0.3 μl DMSO) and intra-accumbal (0.125, 0.25, 1 and 4 μg/0.5 μl DMSO) infusions of sulpiride as a selective D2-like receptor antagonist, prior to intra-LH carbachol (125 nM/rat) administration. In the tail-flick test, the antinociceptive effects were measured using a tail-flick algesiometer and represented as maximal possible effect (%MPE) within 5, 15, 30, 45 and 60 min after injections. Our results showed that intra-VTA and intra-accumbal sulpiride dose-dependently attenuated the LH stimulation-induced antinociception. However, the blockade of D2-like receptors within the NAc was more significant than that of the VTA. These findings show that D2-like dopamine receptors in these regions play an important role in the LH-mediated modulation of nociceptive information in the acute model of pain in the rats. It seems that this pain modulating system is more relevant to D2-like receptors in the nucleus accumbens. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Blockade of D1-like dopamine receptors within the ventral tegmental area and nucleus accumbens attenuates antinociceptive responses induced by chemical stimulation of the lateral hypothalamus.

    PubMed

    Moradi, Marzieh; Fatahi, Zahra; Haghparast, Abbas

    2015-07-10

    It was established that stimulation of the lateral hypothalamus (LH) can induce antinociception. Previous studies showed a role for the ventral tegmental area (VTA) and nucleus accumbens (NAc) in antinociception induced by LH stimulation through the orexinergic system. In this study, we tried to assess the involvement of dopamine D1-like receptors within the VTA and NAc in the LH stimulation-induced antinociception. Male Wistar rats were unilaterally implanted with two separate cannulae into the LH and VTA or NAc. Animals received intra-VTA or intra-accumbal infusion of SCH-23390, as a D1-like dopamine receptor antagonist (0.125, 0.25, 1 and 4 μg/rat), 2 min before intra-LH administration of carbachol (125 nM/rat). The antinociceptive effects of SCH-23390 were measured by using a tail-flick analgesiometer and represented as maximal possible effect (%MPE). Results showed that intra-VTA and/or accumbal administration of SCH-23390 could prevent carbachol-induced antinociception. These findings revealed that D1-like dopamine receptors within the VTA and NAc play an important role in antinociceptive effect induced by chemical stimulation of the LH.

  6. Alterations in blood glucose and plasma glucagon concentrations during deep brain stimulation in the shell region of the nucleus accumbens in rats.

    PubMed

    Diepenbroek, Charlene; van der Plasse, Geoffrey; Eggels, Leslie; Rijnsburger, Merel; Feenstra, Matthijs G P; Kalsbeek, Andries; Denys, Damiaan; Fliers, Eric; Serlie, Mireille J; la Fleur, Susanne E

    2013-01-01

    Deep brain stimulation (DBS) of the nucleus accumbens (NAc) is an effective therapy for obsessive compulsive disorder (OCD) and is currently under investigation as a treatment for eating disorders. DBS of this area is associated with altered food intake and pharmacological treatment of OCD is associated with the risk of developing type 2 diabetes. Therefore we examined if DBS of the NAc-shell (sNAc) influences glucose metabolism. Male Wistar rats were subjected to DBS, or sham stimulation, for a period of 1 h. To assess the effects of stimulation on blood glucose and glucoregulatory hormones, blood samples were drawn before, during and after stimulation. Subsequently, all animals were used for quantitative assessment of Fos immunoreactivity in the lateral hypothalamic area (LHA) using computerized image analysis. DBS of the sNAc rapidly increased plasma concentrations of glucagon and glucose while sham stimulation and DBS outside the sNAc were ineffective. In addition, the increase in glucose was dependent on DBS intensity. In contrast, the DBS-induced increase in plasma corticosterone concentrations was independent of intensity and region, indicating that the observed DBS-induced metabolic changes were not due to corticosterone release. Stimulation of the sNAc with 200 μA increased Fos immunoreactivity in the LHA compared to sham or 100 μA stimulated animals. These data show that DBS of the sNAc alters glucose metabolism in a region- and intensity- dependent manner in association with neuronal activation in the LHA. Moreover, these data illustrate the need to monitor changes in glucose metabolism during DBS-treatment of OCD patients.

  7. Ethanol exerts dual effects on calcium homeostasis in CCK-8-stimulated mouse pancreatic acinar cells

    PubMed Central

    Fernández-Sánchez, Marcela; del Castillo-Vaquero, Angel; Salido, Ginés M; González, Antonio

    2009-01-01

    Background A significant percentage of patients with pancreatitis often presents a history of excessive alcohol consumption. Nevertheless, the patho-physiological effect of ethanol on pancreatitis remains poorly understood. In the present study, we have investigated the early effects of acute ethanol exposure on CCK-8-evoked Ca2+ signals in mouse pancreatic acinar cells. Changes in [Ca2+]i and ROS production were analyzed employing fluorescence techniques after loading cells with fura-2 or CM-H2DCFDA, respectively. Results Ethanol, in the concentration range from 1 to 50 mM, evoked an oscillatory pattern in [Ca2+]i. In addition, ethanol evoked reactive oxygen species generation (ROS) production. Stimulation of cells with 1 nM or 20 pM CCK-8, respectively led to a transient change and oscillations in [Ca2+]i. In the presence of ethanol a transformation of 20 pM CCK-8-evoked physiological oscillations into a single transient increase in [Ca2+]i in the majority of cells was observed. Whereas, in response to 1 nM CCK-8, the total Ca2+ mobilization was significantly increased by ethanol pre-treatment. Preincubation of cells with 1 mM 4-MP, an inhibitor of alcohol dehydrogenase, or 10 μM of the antioxidant cinnamtannin B-1, reverted the effect of ethanol on total Ca2+ mobilization evoked by 1 nM CCK-8. Cinnamtannin B-1 blocked ethanol-evoked ROS production. Conclusion ethanol may lead, either directly or through ROS generation, to an over stimulation of pancreatic acinar cells in response to CCK-8, resulting in a higher Ca2+ mobilization compared to normal conditions. The actions of ethanol on CCK-8-stimulation of cells create a situation potentially leading to Ca2+ overload, which is a common pathological precursor that mediates pancreatitis. PMID:19878551

  8. Food deprivation increases the low-dose locomotor stimulant response to ethanol in Drosophila melanogaster.

    PubMed

    Kliethermes, Christopher L

    2013-10-01

    Acute and chronic states of food deprivation result in increased sensitivity to a variety of natural reinforcers as well as to drugs of abuse. Food deprived animals show increased locomotor activity during periods of food deprivation, as well as increased locomotor stimulant responses to drugs of abuse, including cocaine, amphetamine, morphine, and ethanol, implying that drugs of abuse act in part on neural systems that underlie responses towards food. To determine whether this effect extends to an invertebrate, highly genetically tractable animal, the locomotor stimulant effects of low dose ethanol were assessed under a variety of feeding conditions in the fruit fly, Drosophila melanogaster. Food deprivation resulted in strain specific increases in ethanol-stimulated locomotor activity in most strains tested, although elevated baseline activity confounded interpretation in some strains. Experiments conducted with Canton S flies found that the effects of food deprivation on the locomotor stimulant response to ethanol increased with the duration of deprivation, and could be blocked by refeeding the flies with standard food or sucrose, but not yeast, immediately prior to the ethanol exposure. Life-span extending dietary depletion procedures or previous periods of food deprivation did not affect the response to ethanol, indicating that only animals in an acutely food deprived state are more sensitive to the stimulant effects of ethanol. These results suggest that increased sensitivity to the stimulant effects of some drugs of abuse might reflect an evolutionarily conserved neural mechanism that underlies behavioral responses to natural reinforcers and drugs of abuse. The identification of this mechanism, and the genes that underlie its development and function, will constitute a novel approach towards the study of alcohol abuse and dependence.

  9. Intra-nucleus accumbens shell injections of R(+)- and S(-)-baclofen bidirectionally alter binge-like ethanol, but not saccharin, intake in C57Bl/6J mice

    PubMed Central

    Kasten, Chelsea R.; Boehm, Stephen L.

    2014-01-01

    The GABAB agonist baclofen has been widely researched clinically and preclinically as a treatment of alcohol use disorders (AUDs). However, the efficacy of baclofen remains uncertain. The clinically used racemic compound can be separated into separate enantiomers. These enantiomers have produced different profiles in behavioral assays, with the S- compound often being ineffective compared to the R- compound, or the S- compound antagonizing the effects of the R- compound. We have previously demonstrated that the R(+)-baclofen enantiomer decreases binge-like ethanol intake in the Drinking-in-the-Dark (DID) paradigm, whereas the S(-)-baclofen enantiomer increases ethanol intake. One area implicated in drug abuse is the nucleus accumbens shell (NACsh).The current study sought to define the role of the NACsh in the enantioselective effects of baclofen on binge-like ethanol consumption by directly microinjecting each enantiomer into the structure. Following bilateral cannulation of the NACsh, C57Bl/6J mice were given 5 days of access to ethanol or saccharin for 2 hours, 3 hours into the dark cycle. On Day 5 mice were given an injection of aCSF, 0.02 R(+)-, 0.04R(+)-, 0.08 S(-)-, or 0.16 S(-)-baclofen (μg/side dissolved in 200nl of aCSF). It was found that the R(+)-baclofen dose-dependently decreased ethanol consumption, whereas the high S(-)-baclofen dose increased ethanol consumption, compared to the aCSF group. Saccharin consumption was not affected. These results further confirm that GABAB receptors and the NACsh shell are integral in mediating ethanol intake. They also demonstrate that baclofen displays bidirectional, enantioselective effects which are important when considering therapeutic uses of the drug. PMID:25026094

  10. Intra-nucleus accumbens shell injections of R(+)- and S(-)-baclofen bidirectionally alter binge-like ethanol, but not saccharin, intake in C57Bl/6J mice.

    PubMed

    Kasten, Chelsea R; Boehm, Stephen L

    2014-10-01

    The GABAB agonist baclofen has been widely researched clinically and preclinically as a treatment of alcohol use disorders (AUDs). However, the efficacy of baclofen remains uncertain. The clinically used racemic compound can be separated into separate enantiomers. These enantiomers have produced different profiles in behavioral assays, with the S- compound often being ineffective compared to the R- compound, or the S- compound antagonizing the effects of the R- compound. We have previously demonstrated that the R(+)-baclofen enantiomer decreases binge-like ethanol intake in the Drinking-in-the-Dark (DID) paradigm, whereas the S(-)-baclofen enantiomer increases ethanol intake. One area implicated in drug abuse is the nucleus accumbens shell (NACsh).The current study sought to define the role of the NACsh in the enantioselective effects of baclofen on binge-like ethanol consumption by directly microinjecting each enantiomer into the structure. Following bilateral cannulation of the NACsh, C57Bl/6J mice were given 5 days of access to ethanol or saccharin for 2h, 3h into the dark cycle. On Day 5 mice were given an injection of aCSF, 0.02 R(+)-, 0.04R(+)-, 0.08 S(-)-, or 0.16 S(-)-baclofen (μg/side dissolved in 200nl of aCSF). It was found that the R(+)-baclofen dose-dependently decreased ethanol consumption, whereas the high S(-)-baclofen dose increased ethanol consumption, compared to the aCSF group. Saccharin consumption was not affected. These results further confirm that GABAB receptors and the NACsh shell are integral in mediating ethanol intake. They also demonstrate that baclofen displays bidirectional, enantioselective effects which are important when considering therapeutic uses of the drug.

  11. Wine and five percent ethanol are potent stimulants of gastric acid secretion in humans.

    PubMed

    Lenz, H J; Ferrari-Taylor, J; Isenberg, J I

    1983-11-01

    Previous studies reported that intragastric ethanol was not a stimulus of gastric acid secretion in humans. The effect of 240 ml of 5%, 10%, and 20% ethanol (vol/vol), equicaloric-equiosmolar control solutions, white wine (12% ethanol), bourbon whiskey (1:4 dilution with water, 10% ethanol), and water on gastric acid secretion and serum gastrin concentrations were evaluated in 8 healthy subjects. Also, to stimulate the before-meal cocktail, white wine, whiskey, or water was administered 30 min before a 50-g liquid protein meal. Five percent ethanol and white wine significantly (p less than 0.01) increased basal secretion to 58% and 82%, respectively, of the peak pentagastrin response (24.2 +/- 1.6 mmol/h). After each of the 5%, 10%, and 20% ethanol solutions, 3-h acid outputs were significantly greater than their respective equicaloric-equiosmolar controls, but only the responses to 5% and 10% ethanol were significantly greater than water alone. Total 3-h responses to white wine, 5% ethanol, and 10% whiskey, respectively, were 5, 4.5, and 2 times greater than water (p less than 0.05). Although serum gastrin was not altered by any of the ethanol solutions or bourbon whiskey, white wine significantly increases serum gastrin concentration, similar to the 50-g protein meal. These results indicate that 5% ethanol and 10% bourbon whiskey increase gastric acid secretion by a mechanism other than gastrin release. White wine markedly stimulates both an increase in acid secretion and serum gastrin concentration. The constituent(s) in wine responsible for the marked acid secretory and gastrin response is unknown.

  12. Ethanol stimulates calcium mobilization, phosphoinositide turnover and shape change in human platelets

    SciTech Connect

    Rubin, R.; Hoek, J.B.

    1987-05-01

    The effect of ethanol of cytosolic free calcium levels was investigated in human platelets which were loaded with the intracellular calcium indicator FURA-2. Administration of ethanol in the concentration range of 50-300 mM resulted in a transient, dose-dependent increase in cytosolic calcium, maximal within 5 seconds and returning to near basal levels over the next 5 minutes. Parallel incubations of platelets with the same concentrations of ethanol stimulated shape change as detected in an aggregometer. Chelation of external calcium with EGTA prior to the addition of ethanol reduced the calcium burst partially, but not completely, whereas shape change was largely unaffected. Addition of ethanol to /sup 32/P-labeled platelets resulted in a 16% decrease in the level of /sup 32/P-phosphatidylinositol 4,5-bisphosphate and a 14% increase in /sup 32/P-phosphatidylinositol 4-phosphate within 2 minutes. /sup 32/P-phosphatidic acid levels increased rapidly within 30 seconds and rose linearly thereafter. Phosphatidylinositol and phosphatidylcholine were unaffected by ethanol. The results indicate that ethanol mobilizes intracellular calcium by activation of phosphoinositide-specific phospholipase C, thereby stimulating platelet shape change.

  13. High Frequency Electrical Stimulation of Lateral Habenula Reduces Voluntary Ethanol Consumption in Rats

    PubMed Central

    Li, Jing; Zuo, Wanhong; Fu, Rao; Xie, Guiqin; Kaur, Amandeep; Bekker, Alex

    2016-01-01

    Background: Development of new strategies that can effectively prevent and/or treat alcohol use disorders is of paramount importance, because the currently available treatments are inadequate. Increasing evidence indicates that the lateral habenula (LHb) plays an important role in aversion, drug abuse, and depression. In light of the success of high-frequency stimulation (HFS) of the LHb in improving helplessness behavior in rodents, we assessed the effects of LHb HFS on ethanol-drinking behavior in rats. Methods: We trained rats to drink ethanol under an intermittent access two-bottle choice procedure. We used c-Fos immunohistochemistry and electrophysiological approaches to examine LHb activity. We applied a HFS protocol that has proven effective for reducing helplessness behavior in rats via a bipolar electrode implanted into the LHb. Results: c-Fos protein expression and the frequency of both spontaneous action potential firings and spontaneous excitatory postsynaptic currents were higher in LHb neurons of ethanol-withdrawn rats compared to their ethanol-naïve counterparts. HFS to the LHb produced long-term reduction of intake and preference for ethanol, without altering locomotor activity. Conversely, low-frequency electrical stimulation to the LHb or HFS applied to the nearby nucleus did not affect drinking behavior. Conclusions: Our results suggest that withdrawal from chronic ethanol exposure increases glutamate release and the activity of LHb neurons, and that functional inhibition of the LHb via HFS reduces ethanol consumption. Thus, LHb HFS could be a potential new therapeutic option for alcoholics. PMID:27234303

  14. Functional interaction between the orexin-1 and CB1 receptors within the nucleus accumbens in the conditioned place preference induced by the lateral hypothalamus stimulation.

    PubMed

    Fatahi, Zahra; Assar, Nasim; Mahmoudi, Dorna; Pahlevani, Pouyan; Moradi, Marzieh; Haghparast, Abbas

    2015-02-28

    Several studies have shown that chemical stimulation of the lateral hypothalamus (LH) by carbachol induces the conditioned place preference (CPP) in rats. LH is the main source of the orexinergic neurons and sends projections to some areas of the brain such as the nucleus accumbens (NAc). We tried to determine the role of intra-accumbal orexin-1 (OX1) receptors in development (acquisition) and expression of reward-related behaviors induced by LH stimulation and involvement of CB1 cannabinoid receptors in this area. Adult male Wistar rats were unilaterally implanted by two separate cannulae into the LH and NAc. The CPP paradigm was done; conditioning scores and locomotor activities were recorded. The results showed that intra-accumbal administration of SB334867 as a selective OX1 receptor antagonist (1, 3, 10 and 30nM/0.5μl DMSO) 5min before intra-LH carbachol (250nM/0.5μl saline) during 3-day conditioning phase, could dose-dependently inhibit the development of LH-induced CPP. In expression experiments, intra-NAc administration of SB334867 on the test day could decrease the expression of LH stimulation-induced CPP. Furthermore, concurrent intra-accumbal administration of effective/ineffective doses of SB334867 and AM251 (45 and 15μM) as a CB1 receptor antagonist, before carbachol during the conditioning phase, could attenuate the development of LH stimulation-induced CPP. It seems that the orexinergic projection from the LH to the NAc is involved in the LH stimulation-induced CPP and OX1 receptor in the NAc has a substantial role in this phenomenon. Our findings also suggest the existence a functional interaction between OX1 and CB1 receptors within the NAc in place preference.

  15. Caffeine Induces a Stimulant Effect and Increases Dopamine Release in the Nucleus Accumbens Shell Through the Pulmonary Inhalation Route of Administration in Rats.

    PubMed

    Galvalisi, Martín; Prieto, José Pedro; Martínez, Marcela; Abin-Carriquiry, Juan Andrés; Scorza, Cecilia

    2017-01-01

    Oral, intraperitoneal, or intravenous have been the common routes of administration used to study the behavioral and neurochemical pharmacology of caffeine, one of the most widely used psychoactive substances worldwide. We have reported that caffeine is an active adulterant frequently found in coca-paste (CP)-seized samples, a highly addictive form of smokable cocaine. The role of caffeine in the psychostimulant and neurochemical effects induced by CP remains under study. No preclinical animal studies have been performed so far to characterize the effects of caffeine when it is administered through the pulmonary inhalation route. Caffeine (10, 25, and 50 mg) was volatilized and rats were exposed to one inhalation session of its vapor. The stimulant effect was automatically recorded and plasmatic levels of caffeine were measured. Caffeine capability (50 mg) to increase extracellular dopamine (DA) levels in nucleus accumbens shell was also studied by in vivo microdialysis in non-anesthetized animals. A dose-dependent stimulant effect induced by volatilized caffeine was observed and this effect was directly related with caffeine plasmatic levels. A significant increase in the extracellular DA was achieved after 50 mg of volatilized caffeine exposure. This is the first report showing pharmacological acute effects of caffeine through the pulmonary inhalation route of administration and suggests that this could be a condition under which caffeine can elevate its weak reinforcing effect and even enhance the psychostimulant effect and abuse liability of smokable adulterated psychostimulant drugs.

  16. Effect of electrical stimulation of nucleus accumbens with low, median and high currents intensities on conditioned place preference induced by morphine in rats

    PubMed Central

    Radahmadi, Maryam; Ramshini, Effat; Hosseini, Nasrin; Karimi, Sara; Alaei, Hojjatallah

    2014-01-01

    Background: Some investigators indicated the effect of electrical or chemical stimulation on different parts of the brain and its effect on animal's behaviors. Furthermore, drug addiction is known to be associated with dysfunction of memory and motivational systems. In this study, we aimed to evaluate the effect of electrical stimulation of nucleus accumbens (NAc) with different currents intensities on conditioned place preference (CPP) induced by morphine. Materials and Methods: Male Wistar rats were randomly divided for experimental groups (n = 8). We investigated the influence of electrical stimulation with different current intensities (low: 15 μA, median: 50 μA and high: 100 μA) on NAc with ineffective and effective dose of morphine (0.5 and 5 mg/kg, respectively) on acquisition and expression of morphine-induced place conditioning in male rats. Results: The doses of subcutaneous administration morphine (2.5 and 5 mg/kg, P < 0.05 and P < 0.001; respectively) induced CPP compared with saline group. Furthermore, our findings are showed that electrical stimulation (100 μA) of NAc suppressed morphine-induced CPP. It revealed impairment of learning and memory formation in conditioning process due to morphine administration. Conclusion: It is possible that high current intensity (100 μA) had an accompanied effect by a reversal of the increased tissue contents of dopamine and its metabolites in the NAc of morphine-induced CPP rats. Furthermore, high current intensity in combination with ineffective dose of morphine (0.5 mg/kg) increased morphine-induced CPP probability via the prove reward system. PMID:24600598

  17. Mu-Opioid Stimulation in Rat Prefrontal Cortex Engages Hypothalamic Orexin/Hypocretin-Containing Neurons, and Reveals Dissociable Roles of Nucleus Accumbens and Hypothalamus in Cortically Driven Feeding

    PubMed Central

    Mena, Jesus D.; Selleck, Ryan A.

    2013-01-01

    Mu-opioid receptor (μOR) stimulation within ventral medial prefrontal cortex (vmPFC) induces feeding and hyperactivity, resulting possibly from recruitment of glutamate signaling in multiple vmPFC projection targets. We tested this hypothesis by analyzing Fos expression in vmPFC terminal fields after intra-vmPFC μOR stimulation, and by examining of the impact of glutamate receptor blockade in two feeding-related targets of vmPFC, the lateral-perifornical hypothalamic area (LH-PeF) and nucleus accumbens shell (Acb shell), upon behavioral effects elicited by intra-vmPFC μOR stimulation in rats. Intra-vmPFC infusion of the μOR agonist, DAMGO, provoked Fos expression in the dorsomedial sector of tuberal hypothalamus (including the perifornical area) and increased the percentage of Fos-expressing hypocretin/orexin-immunoreactive neurons in these zones. NMDA receptor blockade in the LH-PeF nearly eliminated intra-vmPFC DAMGO-induced food intake without altering DAMGO-induced hyperactivity. In contrast, blocking AMPA-type glutamate receptors within the Acb shell (the feeding-relevant subtype in this structure) antagonized intra-vmPFC DAMGO-induced hyperlocomotion but enhanced food intake. Intra-vmPFC DAMGO also elevated the breakpoint for sucrose-reinforced progressive-ratio responding; this effect was significantly enhanced by concomitant AMPA blockade in the Acb shell. Conversely, intra-Acb shell AMPA stimulation reduced breakpoint and increased nonspecific responding on the inactive lever. These data indicate intra-vmPFC μOR signaling jointly modulates appetitive motivation and generalized motoric activation through functionally dissociable vmPFC projection targets. These findings may shed light on the circuitry underlying disorganized appetitive responses in psychopathology; e.g., binge eating and opiate or alcohol abuse, disorders in which μORs and aberrant cortical activation have been implicated. PMID:24259576

  18. Dynamic risk control by human nucleus accumbens

    PubMed Central

    Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio

    2015-01-01

    Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established. PMID:26428667

  19. Dynamic risk control by human nucleus accumbens.

    PubMed

    Nachev, Parashkev; Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio; Strange, Bryan

    2015-12-01

    Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established.

  20. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat.

    PubMed

    van der Plasse, Geoffrey; Schrama, Regina; van Seters, Sebastiaan P; Vanderschuren, Louk J M J; Westenberg, Herman G M

    2012-01-01

    Following the successful application of deep brain stimulation (DBS) in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders have yet to be established. Thus, there is a great need to examine site-specific effects of DBS on a behavioural level and to understand how DBS may modulate pathological behaviour. In view of the possible application of DBS in the treatment of disorders characterized by impaired processing of reward and motivation, like addiction and eating disorders, we examined the effect of DBS of the nucleus accumbens (NAcc) on food-directed behavior. Rats were implanted with bilateral stimulation electrodes in one of three anatomically and functionally distinct sub-areas of the NAcc: the core, lateral shell (lShell) and medial shell (mShell). Subsequently, we studied the effects of DBS on food consumption, and the motivational and appetitive properties of food. The data revealed a functional dissociation between the lShell and mShell. DBS of the lShell reduced motivation to respond for sucrose under a progressive ratio schedule of reinforcement, mShell DBS, however, profoundly and selectively increased the intake of chow. DBS of the NAcc core did not alter any form of food-directed behavior studied. DBS of neither structure affected sucrose preference. These data indicate that the intake of chow and the motivation to work for palatable food can independently be modulated by DBS of subregions of the NAcc shell. As such, these findings provide important leads for the possible future application of DBS as a treatment for eating disorders such as anorexia nervosa.

  1. Contrasting effects of 5-HT3 receptor stimulation of the nucleus accumbens or ventral tegmentum on food intake in the rat.

    PubMed

    Pratt, Wayne E; Lin, Peagan; Pierce-Messick, Zachary; Ilesanmi, Adeolu O; Clissold, Kara A

    2017-04-14

    Although serotonin (5-HT) signaling is known to regulate food intake and energy homeostasis, the roles of the 5-HT3 receptor in feeding processes have been elusive. 5-HT3 receptors are found throughout mesolimbic circuitry that promote feeding not only in response to hunger, but also to the palatable and rewarding properties of food. These experiments examined if stimulation or blockade of the 5-HT3 receptor of the nucleus accumbens (NAcc) or ventral tegmentum affected food intake in the rat in response to hunger or the presence of a palatable diet. Rats (N=6-9/group) received bilateral injections of the 5-HT3 agonist m-chlorophenylbiguanide hydrochloride (mCPBG; at 0.0, 10.0, or 20.0μg/0.5μl/side) or the 5-HT3 antagonist ondansetron hydrochloride (at 0.0, 1.0, 2.0, or 5.0μg/0.5μl/side) into either the NAcc or the ventral tegmentum. NAcc 5-HT3 receptor stimulation significantly increased 2-h food intake in food-deprived animals offered rat chow and in a separate group of unrestricted rats offered a sweetened fat diet. In contrast to the feeding increase seen with NAcc treatments, stimulation of 5-HT3 receptors of the ventral tegmentum significantly reduced food and water intake in food-restricted animals; reductions of intake in non-restricted rats offered the palatable diet did not approach significance. Blockade of the 5-HT3 receptor had no effect on feeding in either brain region. These data support a functional role for serotonergic signaling in the mesolimbic pathway on motivated behavior, and demonstrate that 5-HT3 receptors differentially modulate food consumption in a region-dependent manner.

  2. Loss of Ethanol Conditioned Taste Aversion and Motor Stimulation in Knockin Mice with Ethanol-Insensitive α2-Containing GABAA Receptors

    PubMed Central

    Borghese, C. M.; McCracken, M. L.; Benavidez, J. M.; Geil, C. R.; Osterndorff-Kahanek, E.; Werner, D. F.; Iyer, S.; Swihart, A.; Harrison, N. L.; Homanics, G. E.; Harris, R. A.

    2011-01-01

    GABA type A receptors (GABAA-Rs) are potential targets of ethanol. However, there are multiple subtypes of this receptor, and, thus far, individual subunits have not been definitively linked with specific ethanol behavioral actions. Interestingly, though, a chromosomal cluster of four GABAA-R subunit genes, including α2 (Gabra2), was associated with human alcoholism (Am J Hum Genet 74:705–714, 2004; Pharmacol Biochem Behav 90:95–104, 2008; J Psychiatr Res 42:184–191, 2008). The goal of our study was to determine the role of receptors containing this subunit in alcohol action. We designed an α2 subunit with serine 270 to histidine and leucine 277 to alanine mutations that was insensitive to potentiation by ethanol yet retained normal GABA sensitivity in a recombinant expression system. Knockin mice containing this mutant subunit were tested in a range of ethanol behavioral tests. These mutant mice did not develop the typical conditioned taste aversion in response to ethanol and showed complete loss of the motor stimulant effects of ethanol. Conversely, they also demonstrated changes in ethanol intake and preference in multiple tests. The knockin mice showed increased ethanol-induced hypnosis but no difference in anxiolytic effects or recovery from acute ethanol-induced motor incoordination. Overall, these studies demonstrate that the effects of ethanol at GABAergic synapses containing the α2 subunit are important for specific behavioral effects of ethanol that may be relevant to the genetic linkage of this subunit with human alcoholism. PMID:20876231

  3. Nicotine Enhances the Locomotor Stimulating but Not the Conditioned Rewarding Effect of Ethanol in DBA/2J mice

    PubMed Central

    Gubner, Noah R.; Cunningham, Christopher L.; Phillips, Tamara J.

    2015-01-01

    Background One hypothesis to explain the high rate of nicotine and alcohol co-abuse is that these drugs have enhanced rewarding effects when taken together. The goal of the present work was to use the conditioned place preference (CPP) procedure to determine if nicotine would enhance the development of ethanol-induced CPP. Methods The conditioned rewarding effects of nicotine (1 or 2 mg/kg of nicotine tartrate), ethanol (1 g/kg), and nicotine plus ethanol in combination were assessed using a well-established CPP procedure chosen specifically for examining alterations in the development of ethanol-induced CPP by nicotine. In addition, the reference dose procedure was used to directly compare the conditioned rewarding effect of ethanol versus nicotine plus ethanol. DBA/2J mice were used because they are an inbred strain that has repeatedly been shown to develop CPP to ethanol. Results Neither dose of nicotine alone produced CPP, whereas ethanol did, using the standard ethanol CPP procedure. The magnitude of ethanol-induced CPP was not affected by co-administration of 1 mg/kg nicotine, but 2 mg/kg nicotine interfered with the development of ethanol-induced CPP. Using the reference dose procedure, there was no significant preference or aversion for either nicotine + ethanol dose combination versus ethanol alone. However, combined nicotine and ethanol had a larger effect on locomotor activity, during the conditioning trials, compared to their additive effect when given alone, consistent with previous data. Conclusions These data do not support the hypothesis that nicotine enhances the conditioned rewarding effect of ethanol. This finding differs from the combined locomotor stimulant effects of nicotine and ethanol that were observed in this study and in our previously published work, and suggests that combined stimulant effects of nicotine and ethanol do not predict enhanced reward. PMID:25623407

  4. Effects of systemic and intra-nucleus accumbens 5-HT2C receptor compounds on ventral tegmental area self-stimulation thresholds in rats.

    PubMed

    Hayes, Dave J; Clements, Robert; Greenshaw, Andrew J

    2009-04-01

    Serotonin 2C (5-HT(2C)) receptors may play a role in regulating motivation and reward-related behaviours. To date, no studies have investigated the possible role of 5-HT(2C) receptors in ventral tegmental area (VTA) intracranial self-stimulation (ICSS). The current study investigated the hypotheses that 5-HT(2C) receptors play an inhibitory role in VTA ICSS, and that 5-HT(2C) receptors within the nucleus accumbens (NAc) shell may be involved. Male Sprague-Dawley rats were implanted with a VTA electrode and bilateral NAc shell cannulae for the experiment involving microinjections, and trained to respond for electrical self-stimulation. The systemic effects of the selective 5-HT(2C) receptor agonist WAY 161503 (0-1.0 mg/kg), the 5-HT(1A/1B/2C) receptor agonist TFMPP (0.3 mg/kg) and the selective 5-HT(2C) receptor antagonist SB 242084 (1.0 mg/kg) were compared using rate-frequency threshold analysis. Intra-NAc shell microinjections of WAY 161503 (0-1.5 microg/side) were investigated and compared to amphetamine (1.0 microg/side). WAY 161503 (1.0 mg/kg) and TFMPP (0.3 mg/kg) significantly increased rate-frequency thresholds (M50 values) without altering maximal response rates (RMAX values). SB 242084 attenuated the effects of TFMPP; SB 242084 had no affect on M50 or RMAX values. Intra-NAc shell WAY 161503 had no effect on M50 or RMAX values; intra-NAc amphetamine decreased M50 values. These results suggest that 5-HT(2C) receptors play an inhibitory role in regulating reward-related behaviour while 5-HT(2C) receptor activation in the NAc shell did not appear to influence VTA ICSS behaviour under the present experimental conditions.

  5. Lack of benefit of accumbens/capsular deep brain stimulation in a patient with both tics and obsessive-compulsive disorder.

    PubMed

    Burdick, Adam; Foote, Kelly D; Goodman, Wayne; Ward, Herbert E; Ricciuti, Nicola; Murphy, Tanya; Haq, Ihtsham; Okun, Michael S

    2010-08-01

    LAY SUMMARY: This case report illustrates lack of clinical efficacy of deep brain stimulation (DBS) for control of tics in a case of mild Tourette syndrome (TS) with severe comorbid obsessive-compulsive disorder (OCD). The brain target for stimulation was the anterior limb internal capsule (ALIC). To investigate the effect of anterior limb of internal capsule/nucleus accumbens (ALIC-NA) DBS on mild motor and vocal tics in a Tourette syndrome (TS) patient with severe OCD. The optimum target to address symptoms of TS with DBS remains unknown. Earlier lesional therapy utilized thalamic targets and also the ALIC for select cases which had been diagnosed with other psychiatric disorders. Evidence regarding the efficacy of DBS for the symptoms of TS may aid in better defining a brain target's suitability for use. We report efficacy data on ALIC-NA DBS in a patient with severe OCD and mild TS. A 33-year-old man underwent bilateral ALIC-NA DBS. One month following implantation, a post-operative CT scan was obtained to verify lead locations. Yale Global Tic Severity Scales (YGTSS) and modified Rush Videotape Rating scales (MRVRS) were obtained throughout the first 6 months, as well as careful clinical examinations by a specialized neurology and psychiatry team. The patient has been followed for 30 months. YGTSS scores worsened by 17% during the first 6 months. MRVRS scores also worsened over 30 total months of follow-up. There was a lack of clinically significant tic reduction although subjectively the patient felt tics improved mildly. DBS in the ALIC-NA failed to effectively address mild vocal and motor tics in a patient with TS and severe comorbid OCD.

  6. Actions of ethanol on voltage-sensitive sodium channels: effects on neurotoxin-stimulated sodium uptake in synaptosomes.

    PubMed

    Mullin, M J; Hunt, W A

    1985-02-01

    Exposure of rat brain synaptosomes to ethanol in vitro reduced the neurotoxin-stimulated uptake of 22Na+. This effect of ethanol was concentration-dependent, occurred with concentrations of ethanol achieved in vivo and was fully reversible. The inhibitory effect of ethanol on neurotoxin-stimulated sodium uptake was due to a decrease in the maximal effect of the neurotoxins. Ethanol reduced the rate of batrachotoxin-stimulated sodium uptake when measured at 3, 5 and 7 but not 10 or 20 sec after the addition of 22Na+. In a series of aliphatic alcohols, there was a good correlation between potency for inhibition of batrachotoxin-stimulated 22Na+ uptake and the membrane/buffer partition coefficient, suggesting that a hydrophobic site in the membrane was involved in the action of the alcohols. Ethanol did not affect the scorpion venom-induced enhancement of batrachotoxin-stimulated sodium uptake. The inhibitory potency of tetrodotoxin was also unaffected by ethanol. These results demonstrate that ethanol has an inhibitory effect on neurotoxin-stimulated sodium influx occurring in voltage-sensitive sodium channels of brain tissue.

  7. Prenatal exposure to ethanol stimulates hypothalamic CCR2 chemokine receptor system: Possible relation to increased density of orexigenic peptide neurons and ethanol drinking in adolescent offspring.

    PubMed

    Chang, G-Q; Karatayev, O; Leibowitz, S F

    2015-12-03

    Clinical and animal studies indicate that maternal consumption of ethanol during pregnancy increases alcohol drinking in the offspring. Possible underlying mechanisms may involve orexigenic peptides, which are stimulated by prenatal ethanol exposure and themselves promote drinking. Building on evidence that ethanol stimulates neuroimmune factors such as the chemokine CCL2 that in adult rats is shown to colocalize with the orexigenic peptide, melanin-concentrating hormone (MCH) in the lateral hypothalamus (LH), the present study sought to investigate the possibility that CCL2 or its receptor CCR2 in LH is stimulated by prenatal ethanol exposure, perhaps specifically within MCH neurons. Our paradigm of intraoral administration of ethanol to pregnant rats, at low-to-moderate doses (1 or 3g/kg/day) during peak hypothalamic neurogenesis, caused in adolescent male offspring twofold increase in drinking of and preference for ethanol and reinstatement of ethanol drinking in a two-bottle choice paradigm under an intermittent access schedule. This effect of prenatal ethanol exposure was associated with an increased expression of MCH and density of MCH(+) neurons in LH of preadolescent offspring. Whereas CCL2(+) cells at this age were low in density and unaffected by ethanol, CCR2(+) cells were dense in LH and increased by prenatal ethanol, with a large percentage (83-87%) identified as neurons and found to colocalize MCH. Prenatal ethanol also stimulated the genesis of CCR2(+) and MCH(+) neurons in the embryo, which co-labeled the proliferation marker, BrdU. Ethanol also increased the genesis and density of neurons that co-expressed CCR2 and MCH in LH, with triple-labeled CCR2(+)/MCH(+)/BrdU(+) neurons that were absent in control rats accounting for 35% of newly generated neurons in ethanol-exposed rats. With both the chemokine and MCH systems believed to promote ethanol consumption, this greater density of CCR2(+)/MCH(+) neurons in the LH of preadolescent rats suggests that

  8. Prenatal exposure to ethanol stimulates hypothalamic CCR2 chemokine receptor system: Possible relation to increased density of orexigenic peptide neurons and ethanol drinking in adolescent offspring

    PubMed Central

    Chang, G.-Q.; Karatayev, O.; Leibowitz, S. F.

    2015-01-01

    Clinical and animal studies indicate that maternal consumption of ethanol during pregnancy increases alcohol drinking in the offspring. Possible underlying mechanisms may involve orexigenic peptides, which are stimulated by prenatal ethanol exposure and themselves promote drinking. Building on evidence that ethanol stimulates neuroimmune factors such as the chemokine CCL2 that in adult rats is shown to colocalize with the orexigenic peptide, melanin-concentrating hormone (MCH) in the lateral hypothalamus (LH), the present study sought to investigate the possibility that CCL2 or its receptor CCR2 in LH are stimulated by prenatal ethanol exposure, perhaps specifically within MCH neurons. Our paradigm of intraoral administration of ethanol to pregnant rats, at low-to-moderate doses (1 or 3 g/kg/day) during peak hypothalamic neurogenesis, caused in adolescent male offspring two-fold increase in drinking of and preference for ethanol and reinstatement of ethanol drinking in a two-bottle choice paradigm under an intermittent access schedule. This effect of prenatal ethanol exposure was associated with an increased expression of MCH and density of MCH+ neurons in LH of preadolescent offspring. Whereas CCL2+ cells at this age were low in density and unaffected by ethanol, CCR2+ cells were dense in LH and increased by prenatal ethanol, with a large percentage (83–87%) identified as neurons and found to colocalize MCH. Prenatal ethanol also stimulated the genesis of CCR2+ and MCH+ neurons in the embryo, which co-labeled the proliferation marker, BrdU. Ethanol also increased the genesis and density of neurons that co-expressed CCR2 and MCH in LH, with triple-labeled CCR2+/MCH+/BrdU+ neurons that were absent in control rats accounting for 35% of newly generated neurons in ethanol-exposed rats. With both the chemokine and MCH systems believed to promote ethanol consumption, this greater density of CCR2+/MCH+ neurons in the LH of preadolescent rats suggests that these systems

  9. Nucleus accumbens deep-brain stimulation efficacy in ACTH-pretreated rats: alterations in mitochondrial function relate to antidepressant-like effects

    PubMed Central

    Kim, Y; McGee, S; Czeczor, J K; Walker, A J; Kale, R P; Kouzani, A Z; Walder, K; Berk, M; Tye, S J

    2016-01-01

    Mitochondrial dysfunction has a critical role in the pathophysiology of mood disorders and treatment response. To investigate this, we established an animal model exhibiting a state of antidepressant treatment resistance in male Wistar rats using 21 days of adrenocorticotropic hormone (ACTH) administration (100 μg per day). First, the effect of ACTH treatment on the efficacy of imipramine (10 mg kg−1) was investigated alongside its effect on the prefrontal cortex (PFC) mitochondrial function. Second, we examined the mood-regulatory actions of chronic (7 day) high-frequency nucleus accumbens (NAc) deep-brain stimulation (DBS; 130 Hz, 100 μA, 90 μS) and concomitant PFC mitochondrial function. Antidepressant-like responses were assessed in the open field test (OFT) and forced swim test (FST) for both conditions. ACTH pretreatment prevented imipramine-mediated improvement in mobility during the FST (P<0.05). NAc DBS effectively improved FST mobility in ACTH-treated animals (P<0.05). No improvement in mobility was observed for sham control animals (P>0.05). Analyses of PFC mitochondrial function revealed that ACTH-treated animals had decreased capacity for adenosine triphosphate production compared with controls. In contrast, ACTH animals following NAc DBS demonstrated greater mitochondrial function relative to controls. Interestingly, a proportion (30%) of the ACTH-treated animals exhibited heightened locomotor activity in the OFT and exaggerated escape behaviors during the FST, together with general hyperactivity in their home-cage settings. More importantly, the induction of this mania-like phenotype was accompanied by overcompensative increased mitochondrial respiration. Manifestation of a DBS-induced mania-like phenotype in imipramine-resistant animals highlights the potential use of this model in elucidating mechanisms of mood dysregulation. PMID:27327257

  10. Deep brain stimulation of the nucleus accumbens shell induces anti-obesity effects in obese rats with alteration of dopamine neurotransmission.

    PubMed

    Zhang, Chao; Wei, Nai-Li; Wang, Yao; Wang, Xiu; Zhang, Jian-Guo; Zhang, Kai

    2015-03-04

    The aim of this study was to assess the anti-obesity effects of nucleus accumbens shell (NAc-sh) deep brain stimulation (DBS) in diet-induced obese (DIO) and chow-fed (chow) rats. The influence of DBS on dopamine (DA) signaling in the NAc-sh was also evaluated. DIO and chow rats were subjected to DBS for 14 consecutive days. Food intake and weight gain were measured daily. The gene expression of the dopamine D1 and D2 receptors was evaluated by qPCR. In addition, the extracellular levels of DA and its metabolite, dihydroxyphenylacetic acid (DOPAC), were determined by microdialysis. We observed that chronic DBS induced significant reductions in total energy intake (596.0±65.0kcal vs. 1161.6±22.2kcal, p<0.001) and weight gain (1.45±0.57% vs. 9.64±0.38%, p<0.001) in DIO rats compared to sham-DIO rats. Up-regulated D2 receptor gene expression (2.43±0.12 vs. 0.64±0.04, p<0.001) and increased DA levels (2.73±0.15pmol/mL vs. 0.62±0.05pmol/mL, p<0.001) were observed in DIO rats compared to sham-DIO rats. DBS had no influence on food intake, weight gain, or DA neurotransmission in chow rats. Our results support an association of the anorexigenic effects of NAc-sh DBS with mesolimbic DA signaling and indicate that the positive alteration of DA function in DIO rats may be responsible for the different effects of DBS in DIO and chow rats.

  11. Adenylyl cylases 1 and 8 mediate select striatal-dependent behaviors and sensitivity to ethanol stimulation in the adolescent period following acute neonatal ethanol exposure.

    PubMed

    Susick, Laura L; Lowing, Jennifer L; Bosse, Kelly E; Hildebrandt, Clara C; Chrumka, Alexandria C; Conti, Alana C

    2014-08-01

    Neonatal alcohol exposure in rodents causes dramatic neurodegenerative effects throughout the developing nervous system, particularly in the striatum, acutely after exposure. These acute neurodegenerative effects are augmented in mice lacking adenylyl cyclases 1 and 8 (AC1/8) as neonatal mice with a genetic deletion of both AC isoforms (DKO) have increased vulnerability to ethanol-induced striatal neurotoxicity compared to wild type (WT) controls. While neonatal ethanol exposure is known to negatively impact cognitive behaviors, such as executive functioning and working memory in adolescent and adult animals, the threshold of ethanol exposure required to impinge upon developmental behaviors in mice has not been extensively examined. Therefore, the purpose of this study was to determine the behavioral effects of neonatal ethanol exposure using various striatal-dependent developmental benchmarks and to assess the impact of AC1/8 deletion on this developmental progression. WT and DKO mice were treated with 2.5 g/kg ethanol or saline on postnatal day (P)6 and later subjected to the wire suspension, negative geotaxis, postural reflex, grid hang, tail suspension and accelerating rotarod tests at various time points. At P30, mice were evaluated for their hypnotic responses to 4.0 g/kg ethanol by using the loss of righting reflex assay and ethanol-induced stimulation of locomotor activity after 2.0 g/kg ethanol. Ethanol exposure significantly impaired DKO performance in the negative geotaxis test while genetic deletion of AC1/8 alone increased grid hang time and decreased immobility time in the tail suspension test with a concomitant increase in hindlimb clasping behavior. Locomotor stimulation was significantly increased in animals that received ethanol as neonates, peaking significantly in ethanol-treated DKO mice compared to ethanol-treated WT controls, while sedation duration following high-dose ethanol challenge was unaffected. These data indicate that the

  12. Adenylyl cylases 1 and 8 mediate select striatal-dependent behaviors and sensitivity to ethanol stimulation in the adolescent period following acute neonatal ethanol exposure

    PubMed Central

    Susick, Laura L.; Lowing, Jennifer L.; Bosse, Kelly E.; Hildebrandt, Clara C.; Chrumka, Alexandria C.; Conti, Alana C.

    2014-01-01

    Neonatal alcohol exposure in rodents causes dramatic neurodegenerative effects throughout the developing nervous system, particularly in the striatum, acutely after exposure. These acute neurodegenerative effects are augmented in mice lacking adenylyl cyclases 1 and 8 (AC1/8) as neonatal mice with a genetic deletion of both AC isoforms (DKO) have increased vulnerability to ethanol-induced striatal neurotoxicity compared to wild type (WT) controls. While neonatal ethanol exposure is known to negatively impact cognitive behaviors, such as executive functioning and working memory in adolescent and adult animals, the threshold of ethanol exposure required to impinge upon developmental behaviors in mice has not been extensively examined. Therefore, the purpose of this study was to determine the behavioral effects of neonatal ethanol exposure using various striatal-dependent developmental benchmarks and to assess the impact of AC1/8 deletion on this developmental progression. WT and DKO mice were treated with 2.5 g/kg ethanol or saline on postnatal day (P)6 and later subjected to the wire suspension, negative geotaxis, postural reflex, grid hang, tail suspension and accelerating rotarod tests at various time points. At P30, mice were evaluated for their hypnotic responses to 4.0 g/kg ethanol by using the loss of righting reflex assay and ethanol-induced stimulation of locomotor activity after 2.0 g/kg ethanol. Ethanol exposure significantly impaired DKO performance in the negative geotaxis test while genetic deletion of AC1/8 alone increased grid hang time and decreased immobility time in the tail suspension test with a concomitant increase in hindlimb clasping behavior. Locomotor stimulation was significantly increased in animals that received ethanol as neonates, peaking significantly in ethanol-treated DKO mice compared to ethanol-treated WT controls, while sedation duration following high-dose ethanol challenge was unaffected. These data indicate that the

  13. Ethanol injected into the hypothalamic arcuate nucleus induces behavioral stimulation in rats: an effect prevented by catalase inhibition and naltrexone.

    PubMed

    Pastor, Raúl; Aragon, Carlos M G

    2008-10-01

    It is suggested that some of the behavioral effects of ethanol, including its psychomotor properties, are mediated by beta-endorphin and opioid receptors. Ethanol-induced increases in the release of hypothalamic beta-endorphin depend on the catalasemic conversion of ethanol to acetaldehyde. Here, we evaluated the locomotor activity in rats microinjected with ethanol directly into the hypothalamic arcuate nucleus (ArcN), the main site of beta-endorphin synthesis in the brain and a region with high levels of catalase expression. Intra-ArcN ethanol-induced changes in motor activity were also investigated in rats pretreated with the opioid receptor antagonist, naltrexone (0-2 mg/kg) or the catalase inhibitor 3-amino-1,2,4-triazole (AT; 0-1 g/kg). We found that ethanol microinjections of 64 or 128, but not 256 microg, produced locomotor stimulation. Intra-ArcN ethanol (128 microg)-induced activation was prevented by naltrexone and AT, whereas these compounds did not affect spontaneous activity. The present results support earlier evidence indicating that the ArcN and the beta-endorphinic neurons of this nucleus are necessary for ethanol to induce stimulation. In addition, our data suggest that brain structures that, as the ArcN, are rich in catalase may support the formation of ethanol-derived pharmacologically relevant concentrations of acetaldehyde and, thus be of particular importance for the behavioral effects of ethanol.

  14. Candida albicans Ethanol Stimulates Pseudomonas aeruginosa WspR-Controlled Biofilm Formation as Part of a Cyclic Relationship Involving Phenazines

    PubMed Central

    Okegbe, Chinweike; Harty, Colleen E.; Golub, Yuriy; Thao, Sandy; Ha, Dae Gon; Willger, Sven D.; O'Toole, George A.; Harwood, Caroline S.; Dietrich, Lars E. P.; Hogan, Deborah A.

    2014-01-01

    In chronic infections, pathogens are often in the presence of other microbial species. For example, Pseudomonas aeruginosa is a common and detrimental lung pathogen in individuals with cystic fibrosis (CF) and co-infections with Candida albicans are common. Here, we show that P. aeruginosa biofilm formation and phenazine production were strongly influenced by ethanol produced by the fungus C. albicans. Ethanol stimulated phenotypes that are indicative of increased levels of cyclic-di-GMP (c-di-GMP), and levels of c-di-GMP were 2-fold higher in the presence of ethanol. Through a genetic screen, we found that the diguanylate cyclase WspR was required for ethanol stimulation of c-di-GMP. Multiple lines of evidence indicate that ethanol stimulates WspR signaling through its cognate sensor WspA, and promotes WspR-dependent activation of Pel exopolysaccharide production, which contributes to biofilm maturation. We also found that ethanol stimulation of WspR promoted P. aeruginosa colonization of CF airway epithelial cells. P. aeruginosa production of phenazines occurs both in the CF lung and in culture, and phenazines enhance ethanol production by C. albicans. Using a C. albicans adh1/adh1 mutant with decreased ethanol production, we found that fungal ethanol strongly altered the spectrum of P. aeruginosa phenazines in favor of those that are most effective against fungi. Thus, a feedback cycle comprised of ethanol and phenazines drives this polymicrobial interaction, and these relationships may provide insight into why co-infection with both P. aeruginosa and C. albicans has been associated with worse outcomes in cystic fibrosis. PMID:25340349

  15. Candida albicans ethanol stimulates Pseudomonas aeruginosa WspR-controlled biofilm formation as part of a cyclic relationship involving phenazines.

    PubMed

    Chen, Annie I; Dolben, Emily F; Okegbe, Chinweike; Harty, Colleen E; Golub, Yuriy; Thao, Sandy; Ha, Dae Gon; Willger, Sven D; O'Toole, George A; Harwood, Caroline S; Dietrich, Lars E P; Hogan, Deborah A

    2014-10-01

    In chronic infections, pathogens are often in the presence of other microbial species. For example, Pseudomonas aeruginosa is a common and detrimental lung pathogen in individuals with cystic fibrosis (CF) and co-infections with Candida albicans are common. Here, we show that P. aeruginosa biofilm formation and phenazine production were strongly influenced by ethanol produced by the fungus C. albicans. Ethanol stimulated phenotypes that are indicative of increased levels of cyclic-di-GMP (c-di-GMP), and levels of c-di-GMP were 2-fold higher in the presence of ethanol. Through a genetic screen, we found that the diguanylate cyclase WspR was required for ethanol stimulation of c-di-GMP. Multiple lines of evidence indicate that ethanol stimulates WspR signaling through its cognate sensor WspA, and promotes WspR-dependent activation of Pel exopolysaccharide production, which contributes to biofilm maturation. We also found that ethanol stimulation of WspR promoted P. aeruginosa colonization of CF airway epithelial cells. P. aeruginosa production of phenazines occurs both in the CF lung and in culture, and phenazines enhance ethanol production by C. albicans. Using a C. albicans adh1/adh1 mutant with decreased ethanol production, we found that fungal ethanol strongly altered the spectrum of P. aeruginosa phenazines in favor of those that are most effective against fungi. Thus, a feedback cycle comprised of ethanol and phenazines drives this polymicrobial interaction, and these relationships may provide insight into why co-infection with both P. aeruginosa and C. albicans has been associated with worse outcomes in cystic fibrosis.

  16. α-Lipoic acid, a scavenging agent for H₂O₂, reduces ethanol-stimulated locomotion in mice.

    PubMed

    Ledesma, Juan Carlos; Aragon, Carlos M G

    2012-01-01

    The main system of central ethanol oxidation is mediated by the enzyme catalase. By reacting with H(2)O(2), brain catalase forms compound I (the catalase-H(2)O(2) system), which is able to oxidize ethanol to acetaldehyde in the brain. Previous studies have demonstrated that pharmacological manipulations of brain catalase activity modulate the stimulant effects of ethanol in mice. However, the role of H(2)O(2) in the behavioral effects of ethanol has not yet been clearly addressed. In the present study, we investigated the effects of alpha-lipoic acid (LA), a scavenging agent for H(2)O(2), on ethanol-induced locomotor stimulation. CD-1 mice were pretreated with LA [0-100 mg/kg, intraperitoneally (IP)] 0-60 min prior to administration of ethanol (0-3.75 g/kg, IP). In another experiment, animals were pretreated with LA (0, 25, or 50 mg/kg, IP) 30 min before cocaine (10 mg/kg, IP), amphetamine (2 mg/kg, IP), or caffeine (25 mg/kg, IP). After these treatments the animals were placed in an open-field chamber and their locomotor activity was measured for 20 min. LA 25, 50, and 100 mg/kg IP prevented ethanol-induced locomotor stimulation. LA did not affect the locomotor-stimulating effects of cocaine, amphetamine, and caffeine. Additionally, we demonstrated that LA prevents the inactivation of brain catalase by 3-amino-1,2,4-triazole, thus indicating that H(2)O(2) levels are reduced by LA. These data support the idea that a decrease in cerebral H(2)O(2) production by LA administration inhibits ethanol-stimulated locomotion. This study suggests that the brain catalase-H(2)O(2) system, and by implication centrally formed acetaldehyde, plays a key role in the psychopharmacological effects of ethanol.

  17. High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions.

    PubMed

    Woo, Ji-Min; Yang, Kyung-Mi; Kim, Sae-Um; Blank, Lars M; Park, Jin-Byung

    2014-07-01

    Cellular responses of Saccharomyces cerevisiae to high temperatures of up to 42 °C during ethanol fermentation at a high glucose concentration (i.e., 100 g/L) were investigated. Increased temperature correlated with stimulated glucose uptake to produce not only the thermal protectant glycerol but also ethanol and acetic acid. Carbon flux into the tricarboxylic acid (TCA) cycle correlated positively with cultivation temperature. These results indicate that the increased demand for energy (in the form of ATP), most likely caused by multiple stressors, including heat, acetic acid, and ethanol, was matched by both the fermentation and respiration pathways. Notably, acetic acid production was substantially stimulated compared to that of other metabolites during growth at increased temperature. The acetic acid produced in addition to ethanol seemed to subsequently result in adverse effects, leading to increased production of reactive oxygen species. This, in turn, appeared to cause the specific growth rate, and glucose uptake rate reduced leading to a decrease of the specific ethanol production rate far before glucose depletion. These results suggest that adverse effects from heat, acetic acid, ethanol, and oxidative stressors are synergistic, resulting in a decrease of the specific growth rate and ethanol production rate and, hence, are major determinants of cell stability and ethanol fermentation performance of S. cerevisiae at high temperatures. The results are discussed in the context of possible applications.

  18. betagamma Dimers mediate synergy of dopamine D2 and adenosine A2 receptor-stimulated PKA signaling and regulate ethanol consumption.

    PubMed

    Yao, Lina; Arolfo, Maria Pia; Dohrman, Douglas P; Jiang, Zhan; Fan, Peidong; Fuchs, Sara; Janak, Patricia H; Gordon, Adrienne S; Diamond, Ivan

    2002-06-14

    Dopamine release is activated by ethanol and addicting drugs, but molecular mechanisms linking dopaminergic signaling to neuronal responses and drinking behavior are poorly understood. We report that dopamine-D2 receptors induce PKA Calpha translocation and increase CRE-regulated gene expression. Ethanol also activates PKA signaling. Subthreshold concentrations of the D2 agonist NPA and ethanol, without effect alone, together cause synergistic PKA translocation and CRE-mediated gene transcription. D2 or adenosine A2 receptor blockade, pertussis toxin, Rp-cAMPS, or overexpression of dominant-negative peptides that sequester betagamma dimers prevent synergy. Importantly, overexpression of a betagamma inhibitor peptide in the nucleus accumbens strikingly reduces sustained alcohol consumption. We propose that synergy of D2 and A2 confers ethanol hypersensitivity and that betagamma dimers are required for voluntary drinking.

  19. Stimulation of metabotropic but not ionotropic glutamatergic receptors in the nucleus accumbens is required for the D-amphetamine-induced release of functional dopamine.

    PubMed

    Darracq, L; Drouin, C; Blanc, G; Glowinski, J; Tassin, J P

    2001-01-01

    We have previously shown that a large part of the D-amphetamine-induced release of dopamine in the nucleus accumbens is not associated with an increase in locomotor activity, and that "functional" dopamine release (i.e. release of dopamine associated with locomotor activity) requires the distal facilitation of noradrenergic transmission through alpha1-adrenergic receptors in the prefrontal cortex. To determine the role of monosynaptic or polysynaptic projections from the prefrontal cortex to the nucleus accumbens in these amphetamine responses, either AMPA/kainate (6-cyano-7-nitroquinoxaline-2,3-dione, CNQX, 300microM), N-methyl-D-aspartate (D(-)-2-amino-5-phosphono-pentanoic acid, APV, 500microM) or metabotropic [(+)-alpha-methyl-4-carboxy-phenylglycine, MCPG, 10mM] glutamate receptor antagonists were infused through a dialysis probe in the rat nucleus accumbens. CNQX and MCPG but not APV reduced the "non-functional" release of dopamine evoked by local (3microM) and systemic D-amphetamine (2mg/kg i.p.) treatments. However, the locomotor hyperactivity and functional dopamine release induced by systemic D-amphetamine were abolished by MCPG, but neither by CNQX nor by APV. MCPG treatment also abolished the hyperlocomotor activity and functional dopamine release evoked by bilateral morphine injection into the ventral tegmental area. The dopamine release evoked by this morphine treatment was 16-fold lower than that induced by the systemic D-amphetamine injection, although similar behavioral activations were observed. Altogether, our results further aid the discrimination of functional and non-functional release of dopamine. We suggest that the activation of metabotropic glutamate receptors in the nucleus accumbens is required for functional dopamine release following systemic D-amphetamine injection.

  20. Effect of neuromuscular electrical stimulation in glycogen muscle reserves because of ingestion of ethanol: a study in rats

    PubMed Central

    Limoni, Ederson Luís; de Arruda, Eder João

    2013-01-01

    ABSTRACT Objective: To evaluate the effects of alcoholic ingestion and neurostimulation on the muscle glycogen reserve, body weight, blood sugar, and weight of the soleus muscle. Methods: Twenty male rats were distributed into four experimental groups (n=5), namely, Control, Ethanol, Electrostimulated, and Ethanol+Electrostimulated. The study lasted for 22 days. The groups submitted to the use of ethanol received the substance diluted in water, which was consumed during the entire experimental period. The groups that received electrostimulation, undersedationfor the procedure, had their left hind leg shaved, and the current was applied daily for 7 days, in 20-minute sessions. Next, after induced alcoholism and electrical stimulation in the corresponding groups, the animals were euthanized so that their muscles could be sent for glycogen analysis. Results: The Ethanol group displayed a lower body weight when compared to the Control and Electrostimulated groups; the Ethanol+Electrostimulated groups had a lower body weight compared to the Control and Electrostimulated groups, but were in a better situation when compared to the Ethanol group. As to glycogen capture, it was noted that the Ethanol group demonstrated resistance to blood glucose capture, whereas the Ethanol Electrostimulated group showed better capture than the other groups. As to muscle weight, it was observed that the Ethanol group had a lower weight than did the Controls, and that the Electrostimulated group weight greater when compared to the Control and Ethanol groups, respectively. On the other hand, the Ethanol+Electrostimulated groups showed no significant difference relative to the Controls, but had better results when compared to the Ethanol group. Conclusion: Chronic exposure to alcohol showed a direct relationship with reduced muscle and body weight, and in glycogen capture and muscle reserves, besides favoring innumerous organic disorders, thus interfering in rehabilitation processes. PMID

  1. Effects of the imidazobenzodiazepine R015-4513 on the stimulant and depressant actions of ethanol on spontaneous locomotor activity

    SciTech Connect

    Becker, H.C.

    1988-01-01

    The purpose of this study was to investigate the effects of the imidazobenzodiazepine R015-4513, a partial inverse agonist at benzodiazepine (BDZ) receptors, on the stimulant and depressant actions of ethanol in mice. For comparative purposes, another BDZ inverse agonist, FG-7142, was examined as well. Neither R015-4513 nor FG-7142 influenced the low-dose excitatory effects of ethanol on spontaneous locomotor activity. However, both R015-4513 and FG-7142 significantly antagonized the depressant effects of ethanol, and this antagonism was completely reversed by pretreatment with the BDZ receptor antagonist, R015-1788. These data suggest that R015-4513 is capable of antagonizing only some of the behavioral effects of ethanol, and in particular, those responses to ethanol that are mediated by modulation of the GABA/BDZ-chloride channel receptor complex.

  2. Gustatory Reward and the Nucleus Accumbens

    PubMed Central

    Norgren, R.; Hajnal, A.; Mungarndee, S.S.

    2011-01-01

    The concept of reward is central to psychology, but remains a cipher for neuroscience. Considerable evidence implicates dopamine in the process of reward and much of the data derives from the nucleus accumbens. Gustatory stimuli are widely used for animal studies of reward, but the connections between the taste and reward systems are unknown. In a series of experiments, our laboratory has addressed this issue using functional neurochemistry and neuroanatomy. First, using microdialysis probes, we demonstrated that sapid sucrose releases dopamine in the nucleus accumbens. The effect is dependent on oral stimulation and concentration. We subsequently determined that this response was independent of the thalamocortical gustatory system, but substantially blunted by damage to the parabrachial limbic taste projection. Further experiments using c-fos histochemistry confirmed that the limbic pathway was the prime carrier for the gustatory afferent activity that drives accumbens dopamine release. PMID:16822531

  3. Beer but not wine, hard liquors, or pure ethanol stimulates amylase secretion of rat pancreatic acinar cells in vitro.

    PubMed

    Gerloff, Andreas; Singer, Manfred V; Feick, Peter

    2009-09-01

    In contrast to pure ethanol, the effect of alcoholic beverages on the exocrine pancreas is greatly unknown. Besides ethanol, alcoholic beverages contain numerous nonalcoholic constituents which might have pathophysiological effects on the pancreas. The aim of the present study was to investigate whether some commonly used alcoholic beverages and pure ethanol influence the main function of rat pancreatic acinar cells, i.e., enzyme output in vitro. Rat pancreatic AR4-2J cells were differentiated by dexamethasone treatment for 72 hours and freshly isolated pancreatic acini were prepared from Sprague-Dawley rats using collagenase digestion. After incubation of cells in the absence or presence of 1 to 10% (v/v) beer (containing 4.7% v/v ethanol), 10% (v/v) wine (containing 10.5 to 12.5% v/v ethanol), 10% (v/v) hard liquor (such as whisky, rum, and gin), or of the corresponding ethanol concentrations (4.03 to 80.6 mM) for 60 minutes, protein secretion was measured using amylase activity assay. Incubation of AR4-2J cells with beer caused a dose-dependent stimulation of basal amylase secretion that was significant at doses of beer above 0.5% (v/v). Stimulation with 10% (v/v) beer induced 92.7 +/- 25.2% of maximal amylase release in response to the most effective cholecystokinin (CCK) concentration (100 nM). In contrast, ethanol (up to 80.6 mM) did neither stimulate nor inhibit basal amylase release. Lactate dehydrogenase measurement after treatment of AR4-2J cells with beer for 24 hours indicated that the increase of amylase release was not due to cell membrane damage. Wine and hard liquor had no effect on basal amylase secretion neither diluted to the ethanol concentration of beer nor undiluted. In freshly isolated rat pancreatic acinar cells beer dose-dependently stimulated amylase secretion in a similar manner as in AR4-2J cells. Our data demonstrate that beer dose-dependently increases amylase output. Since neither ethanol nor the other alcoholic beverages tested

  4. NR2B-deficient mice are more sensitive to the locomotor stimulant and depressant effects of ethanol.

    PubMed

    Badanich, K A; Doremus-Fitzwater, T L; Mulholland, P J; Randall, P K; Delpire, E; Becker, H C

    2011-10-01

    The NR2B subunit of N-methyl d-aspartate glutamate receptors influences pharmacological properties and confers greater sensitivity to the modulatory effects of ethanol. This study examined behavioral responses to acute ethanol in a conditional knockout mouse model that allowed for a delayed genetic deletion of the NR2B subunit to avoid mouse lethality. Mice lacking the NR2B gene (knockout) were produced by mating NR2B[f/f] mice with CAMKIIa-driven tTA transgenic mice and the tetO-CRE transgenic mice. Adult male and female offspring representing each of the resultant genotypes (knockout, CAM, CRE and wildtype mice) were tested for open-field locomotor activity following acute low- and high-dose ethanol challenge as well as loss of righting reflex. Findings indicate that male and female mice lacking the NR2B subunit exhibited greater overall activity in comparison to other genotypes during the baseline locomotor activity test. NR2B knockout mice exhibited an exaggerated stimulant response to 1.5 g/kg (i.p.) and an exaggerated depressant response to 3.0 g/kg (i.p.) ethanol challenge. In addition, NR2B knockout mice slept longer following a high dose of ethanol (4.0 g/kg, i.p.). To evaluate pharmacokinetics, clearance rates of ethanol (1.5, 4.0 g/kg, i.p.) were measured and showed that female NR2B knockouts had a faster rate of metabolism only at the higher ethanol dose. Western blot analyses confirmed significant reduction in NR2B expression in the forebrain of knockout mice. Collectively, these data indicate that the NR2B subunit of the N-methyl d-aspartate glutamate receptor is involved in regulating low-dose stimulant effects of ethanol and the depressant/hypnotic effects of ethanol.

  5. NR2B-Deficient Mice are More Sensitive to the Locomotor Stimulant and Depressant Effects of Ethanol

    PubMed Central

    Mulholland, Patrick J.; Randall, Patrick K.; Delpire, Eric; Becker, Howard C.

    2014-01-01

    The NR2B subunit of N-methyl D-aspartate glutamate receptors influences pharmacological properties and confers greater sensitivity to the modulatory effects of ethanol. This study examined behavioral responses to acute ethanol in a conditional knockout mouse model that allowed for a delayed genetic deletion of the NR2B subunit to avoid mouse lethality. Mice lacking the NR2B gene (knockout) were produced by mating NR2B[f/f] mice with CAMKIIa-drive tTA transgenic mice and the tetO-CRE transgenic mice. Adult male and female offspring representing each of the resultant genotypes (knockout, CAM, CRE, and wild-type mice) were tested for open field locomotor activity following acute low and high dose ethanol challenge as well as loss of righting reflex. Findings indicate that male and female mice lacking the NR2B subunit exhibited greater overall activity in comparison to other genotypes during the baseline locomotor activity test. NR2B knockout mice exhibited an exaggerated stimulant response to 1.5 g/kg (ip) and an exaggerated depressant response to 3.0 g/kg (ip) ethanol challenge. Additionally, NR2B knockout mice slept longer following a high dose of ethanol (4.0 g/kg, ip). To evaluate pharmacokinetics, clearance rates of ethanol (1.5, 4.0 g/kg, ip) were measured and showed female NR2B knockouts had a faster rate of metabolism only at the higher ethanol dose. Western blot analyses confirmed significant reduction in NR2B expression in the forebrain of knockout mice. Collectively, these data indicate the NR2B subunit of the N-methyl D-aspartate glutamate receptor is involved in regulating low-dose stimulant effects of ethanol and the depressant/hypnotic effects of ethanol. PMID:21762461

  6. Nucleus accumbens deep brain stimulation for a patient with self-injurious behavior and autism spectrum disorder: functional and structural changes of the brain: report of a case and review of literature.

    PubMed

    Park, Hye Ran; Kim, In Hyang; Kang, Hyejin; Lee, Dong Soo; Kim, Bung-Nyun; Kim, Dong Gyu; Paek, Sun Ha

    2017-01-01

    The aim of this report was to investigate the clinical outcome of deep brain stimulation (DBS) for autism spectrum disorder (ASD) and the functional and structural changes in the brain after DBS. We present a 14-year-old boy with ASD and self-injurious behavior (SIB) refractory with medical and behavioral therapy. He was treated by bilateral nucleus accumbens (NAc) DBS. Remarkable clinical improvement was observed following NAc DBS. Brain fluorodeoxyglucose-positron emission tomography (FDG-PET) and magnetic resonance imaging (MRI) volumetric studies revealed that the metabolism in the prefrontal and the frontal cortex as well as the occipital cortex was markedly decreased in association with the decreased cortical volumes in those areas 2 years after NAc DBS. The therapeutic potential of NAc DBS is suggested for the clinical improvement of patients with ASD and SIB with structural and functional changes after DBS.

  7. [In vitro study of the effect of ethanol on pyroglutamyl aminopeptidase activity in mouse synaptosomes under basal and stimulated conditions].

    PubMed

    Mayas, M D; Martínez-Martos, J M; Ramírez-Expósito, M J; García, M J; Tsuboyama, G K; Prieto, I; Arechaga, G; Ramírez, M

    Pyroglutamyl aminopeptidase (pGluAP) is an omega peptidase which removes pyroglutamyl N-terminals residues from peptides and arylamidase derivatives. This activity is thought to be involved in the regulation of several physiological mechanisms on the central nervous system. pGluAP can modulate various susceptible endogenous substrates such as thyrotrophin-releasing hormone (TRH). It is well known that TRH plays an important role in the modulation of the behavioral changes induced by ethanol and others drugs. The aim of this work was to study the in vitro effects of ethanol (25, 50 and 100 mM) on the pGluAP activity and its ability for modulating the TRH. pGluAP activity was measured in synaptosomes from cerebral cortex of mouse, using pyroglutamyl-beta-naphthylamide as substrate in basal and stimulated (K+ 25 mM) conditions, and in presence or absence of calcium on the buffer. In basal conditions, ethanol produced an inhibition of the pGluAP activity in presence or absence of calcium, being this inhibition non dose-related. However, the stimulation with K+ 25 mM did not produce a modification of pGluAP activity in presence of calcium, but produced a light increase in absence of it. Depolarization in presence or absence of calcium and ethanol produced an inhibition of pGluAP activity, which changed in function of the ethanol concentration used. Ethanol modifies pGluAP activity in basal conditions by a mechanism independent of calcium, but the changes observed after the stimulation with high K+ may be due to a calcium-dependent mechanism. These variations of pGluAP activity induced by ethanol, and their effects on their endogenous substrates, specially TRH, may be responsible for the behavioral changes associated to the alcoholism and mediated by TRH.

  8. The Ethanol-Induced Stimulation of Rat Duodenal Mucosal Bicarbonate Secretion In Vivo Is Critically Dependent on Luminal Cl–

    PubMed Central

    Sommansson, Anna; Wan Saudi, Wan Salman; Nylander, Olof; Sjöblom, Markus

    2014-01-01

    Alcohol may induce metabolic and functional changes in gastrointestinal epithelial cells, contributing to impaired mucosal barrier function. Duodenal mucosal bicarbonate secretion (DBS) is a primary epithelial defense against gastric acid and also has an important function in maintaining the homeostasis of the juxtamucosal microenvironment. The aim in this study was to investigate the effects of the luminal perfusion of moderate concentrations of ethanol in vivo on epithelial DBS, fluid secretion and paracellular permeability. Under thiobarbiturate anesthesia, a ∼30-mm segment of the proximal duodenum with an intact blood supply was perfused in situ in rats. The effects on DBS, duodenal transepithelial net fluid flux and the blood-to-lumen clearance of 51Cr-EDTA were investigated. Perfusing the duodenum with isotonic solutions of 10% or 15% ethanol-by-volume for 30 min increased DBS in a concentration-dependent manner, while the net fluid flux did not change. Pre-treatment with the CFTR inhibitor CFTRinh172 (i.p. or i.v.) did not change the secretory response to ethanol, while removing Cl− from the luminal perfusate abolished the ethanol-induced increase in DBS. The administration of hexamethonium (i.v.) but not capsazepine significantly reduced the basal net fluid flux and the ethanol-induced increase in DBS. Perfusing the duodenum with a combination of 1.0 mM HCl and 15% ethanol induced significantly greater increases in DBS than 15% ethanol or 1.0 mM HCl alone but did not influence fluid flux. Our data demonstrate that ethanol induces increases in DBS through a mechanism that is critically dependent on luminal Cl− and partly dependent on enteric neural pathways involving nicotinic receptors. Ethanol and HCl appears to stimulate DBS via the activation of different bicarbonate transporting mechanisms. PMID:25033198

  9. The ethanol-induced stimulation of rat duodenal mucosal bicarbonate secretion in vivo is critically dependent on luminal Cl-.

    PubMed

    Sommansson, Anna; Wan Saudi, Wan Salman; Nylander, Olof; Sjöblom, Markus

    2014-01-01

    Alcohol may induce metabolic and functional changes in gastrointestinal epithelial cells, contributing to impaired mucosal barrier function. Duodenal mucosal bicarbonate secretion (DBS) is a primary epithelial defense against gastric acid and also has an important function in maintaining the homeostasis of the juxtamucosal microenvironment. The aim in this study was to investigate the effects of the luminal perfusion of moderate concentrations of ethanol in vivo on epithelial DBS, fluid secretion and paracellular permeability. Under thiobarbiturate anesthesia, a ∼30-mm segment of the proximal duodenum with an intact blood supply was perfused in situ in rats. The effects on DBS, duodenal transepithelial net fluid flux and the blood-to-lumen clearance of 51Cr-EDTA were investigated. Perfusing the duodenum with isotonic solutions of 10% or 15% ethanol-by-volume for 30 min increased DBS in a concentration-dependent manner, while the net fluid flux did not change. Pre-treatment with the CFTR inhibitor CFTRinh172 (i.p. or i.v.) did not change the secretory response to ethanol, while removing Cl- from the luminal perfusate abolished the ethanol-induced increase in DBS. The administration of hexamethonium (i.v.) but not capsazepine significantly reduced the basal net fluid flux and the ethanol-induced increase in DBS. Perfusing the duodenum with a combination of 1.0 mM HCl and 15% ethanol induced significantly greater increases in DBS than 15% ethanol or 1.0 mM HCl alone but did not influence fluid flux. Our data demonstrate that ethanol induces increases in DBS through a mechanism that is critically dependent on luminal Cl- and partly dependent on enteric neural pathways involving nicotinic receptors. Ethanol and HCl appears to stimulate DBS via the activation of different bicarbonate transporting mechanisms.

  10. Wavelength dependent resonance Raman band intensity of broadband stimulated Raman spectroscopy of malachite green in ethanol

    NASA Astrophysics Data System (ADS)

    Cen, Qiongyan; He, Yuhan; Xu, Mei; Wang, Jingjing; Wang, Zhaohui

    2015-03-01

    Resonance broadband stimulated Raman spectroscopy of malachite green in ethanol has been performed. With a tuning picosecond visible laser source and a broadband Raman probe, the Raman gain and loss spectra have been measured simultaneously. By scanning the Raman pump across the first absorption band of the molecule, we found that the resonant Raman bands could be only seen when the pump laser tuned in the range of the red edge of the S1←S0 transition. Dispersive lineshapes of resonant Raman bands have been observed in the Raman loss spectra, while the line shape is normal (same as spontaneous Raman) in the Raman gain spectra. Although, the resonant bands in the loss spectrum are usually stronger than that in the gain spectrum, the band intensities of both loss and gain linearly increase with the pump energy. The relative magnitude of each corresponding resonant band in the Raman loss and gain varies with the pump wavelength. Mode specified Raman excitation profiles have been obtained through broadband stimulated Raman measurement.

  11. Solvent stimulated actuation of polyurethane-based shape memory polymer foams using dimethyl sulfoxide and ethanol

    NASA Astrophysics Data System (ADS)

    Boyle, A. J.; Weems, A. C.; Hasan, S. M.; Nash, L. D.; Monroe, M. B. B.; Maitland, D. J.

    2016-07-01

    Solvent exposure has been investigated to trigger actuation of shape memory polymers (SMPs) as an alternative to direct heating. This study aimed to investigate the feasibility of using dimethyl sulfoxide (DMSO) and ethanol (EtOH) to stimulate polyurethane-based SMP foam actuation and the required solvent concentrations in water for rapid actuation of hydrophobic SMP foams. SMP foams exhibited decreased T g when submerged in DMSO and EtOH when compared to water submersion. Kinetic DMA experiments showed minimal or no relaxation for all SMP foams in water within 30 min, while SMP foams submerged in EtOH exhibited rapid relaxation within 1 min of submersion. SMP foams expanded rapidly in high concentrations of DMSO and EtOH solutions, where complete recovery over 30 min was observed in DMSO concentrations greater than 90% and in EtOH concentrations greater than 20%. This study demonstrates that both DMSO and EtOH are effective at triggering volume recovery of polyurethane-based SMP foams, including in aqueous environments, and provides promise for use of this actuation technique in various applications.

  12. Ethanol and Other Short-Chain Alcohols Inhibit NLRP3 Inflammasome Activation through Protein Tyrosine Phosphatase Stimulation.

    PubMed

    Hoyt, Laura R; Ather, Jennifer L; Randall, Matthew J; DePuccio, Daniel P; Landry, Christopher C; Wewers, Mark D; Gavrilin, Mikhail A; Poynter, Matthew E

    2016-08-15

    Immunosuppression is a major complication of alcoholism that contributes to increased rates of opportunistic infections and sepsis in alcoholics. The NLRP3 inflammasome, a multiprotein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the proinflammatory cytokines IL-1β and IL-18, can be inhibited by ethanol, and we sought to better understand the mechanism through which this occurs and whether chemically similar molecules exert comparable effects. We show that ethanol can specifically inhibit activation of the NLRP3 inflammasome, resulting in attenuated IL-1β and caspase-1 cleavage and secretion, as well as diminished apoptosis-associated speck-like protein containing a CARD (ASC) speck formation, without affecting potassium efflux, in a mouse macrophage cell line (J774), mouse bone marrow-derived dendritic cells, mouse neutrophils, and human PBMCs. The inhibitory effects on the Nlrp3 inflammasome were independent of γ-aminobutyric acid A receptor activation or N-methyl-d-asparate receptor inhibition but were associated with decreased oxidant production. Ethanol treatment markedly decreased cellular tyrosine phosphorylation, whereas administration of the tyrosine phosphatase inhibitor sodium orthovanadate prior to ethanol restored tyrosine phosphorylation and IL-1β secretion subsequent to ATP stimulation. Furthermore, sodium orthovanadate-induced phosphorylation of ASC Y144, necessary and sufficient for Nlrp3 inflammasome activation, and secretion of phosphorylated ASC were inhibited by ethanol. Finally, multiple alcohol-containing organic compounds exerted inhibitory effects on the Nlrp3 inflammasome, whereas 2-methylbutane (isopentane), the analogous alkane of the potent inhibitor isoamyl alcohol (isopentanol), did not. Our results demonstrate that ethanol antagonizes the NLRP3 inflammasome at an apical event in its activation through the stimulation of protein tyrosine phosphatases, an effect shared by other

  13. Calcium-dependent modulation by ethanol of mouse synaptosomal pyroglutamyl aminopeptidase activity under basal and K(+)-stimulated conditions.

    PubMed

    Mayas, M D; Ramírez-Expósito, M J; García, M J; Tsuboyama, G; Ramírez, M; Martínez-Martos, J M

    2000-11-03

    We studied the in vitro effects of ethanol (25, 50 and 100 mM) on pyroglutamyl aminopeptidase activity (pGluAP), which has been reported as thyrotrophin-releasing-hormone-degrading activity. pGluAP was measured in presence or absence of calcium, under basal and K(+)-stimulated conditions, in synaptosomes and their incubation supernatant, using pyroglutamyl-beta-naphthylamide as substrate. In basal conditions, in synaptosomes, pGluAP was inhibited by ethanol in a calcium-independent way. In the supernatant, the response differed depending on the concentration of ethanol. Depolarization with K(+) modified pGluAP in synaptosomes and supernatant depending on the presence or not of calcium. In synaptosomes, in absence of calcium, the activity was inhibited at the highest concentrations of ethanol. In contrast, in the supernatant, under depolarizing conditions, ethanol increases pGluAP in absence of calcium. These changes may be in part responsible of the behavioural changes associated to alcohol intake.

  14. Low concentrations of ethanol stimulate biofilm and pellicle formation in Pseudomonas aeruginosa.

    PubMed

    Tashiro, Yosuke; Inagaki, Aya; Ono, Kaori; Inaba, Tomohiro; Yawata, Yutaka; Uchiyama, Hiroo; Nomura, Nobuhiko

    2014-01-01

    Biofilms are communities of surface-attached microbial cells that resist environmental stresses. In this study, we found that low concentrations of ethanol increase biofilm formation in Pseudomonas aeruginosa PAO1 but not in a mutant of it lacking both Psl and Pel exopolysaccharides. Low concentrations of ethanol also increased pellicle formation at the air-liquid interface.

  15. Motor stimulant effects of ethanol injected into the substantia nigra pars reticulata: importance of catalase-mediated metabolism and the role of acetaldehyde.

    PubMed

    Arizzi-LaFrance, Maria N; Correa, Mercè; Aragon, Carlos M G; Salamone, John D

    2006-05-01

    A series of experiments was conducted to investigate the locomotor effects of local injections of ethanol and the ethanol metabolite, acetaldehyde, into substantia nigra pars reticulata (SNr). Infusions of ethanol into SNr resulted in a dose-related increase in locomotor activity, with maximal effects at a dose of 1.4 micromol. Ethanol injected into a control site dorsal to substantia nigra failed to stimulate locomotion, and another inactive site was identified in brainstem areas posterior to substantia nigra. The locomotor effects of intranigral ethanol (1.4 micromol) were reduced by coadministration of 10 mg/kg sodium azide, a catalase inhibitor that acts to reduce the metabolism of ethanol into acetaldehyde in the brain. SNr infusions of acetaldehyde, which is the first metabolite of ethanol, also increased locomotion. Taken together, these results indicate that SNr is one of the sites at which ethanol and acetaldehyde may be acting to induce locomotor activity. These results are consistent with the hypothesis that acetaldehyde is a centrally active metabolite of ethanol, and provide further support for the idea that catalase activity is a critical step in the regulation of ethanol-induced motor activity. These studies have implications for understanding the brain mechanisms involved in mediating the ascending limb of the biphasic dose-response curve for the effect of ethanol on locomotor activity.

  16. Characterization of a folate-induced hypermotility response after bilateral injection into the rat nucleus accumbens

    SciTech Connect

    Stephens, R.L. Jr.

    1986-01-01

    The objective of these studies was to pharmacologically characterize the mechanism responsible for a folate-induced stimulation of locomotor activity in rats after bilateral injection into the nucleus accumbens region of the brain. Folic acid (FA) and 5-formyltetrahydrofolic acid (FTHF) produced this hypermotility response after intra-accumbens injection, while other reduced folic acid derivatives dihydrofolic acid, tetrahydrofolic acid, and 5-methyltetrahydrofolic acid were ineffective. Studies were designed to determine the role of catecholamines in the nucleus accumbens in the folate-induced hypermotility response. The findings suggest that the folate-induced response is dependent on intact neuronal dopamine stores, and is mediated by stimulation of dopamine receptors of the nucleus accumbens. However the folates do not appear to enhance dopaminergic neutransmission. Thus, FA and FTHF were inefficient at 1 mM concentrations in stimulating /sup 3/H-dopamine release from /sup 3/H-dopamine preloaded nucleus accumbens slices or dopamine from endogenous stores. Pteroic acid, the chemical precursor of folic acid which lacks the glutamate moiety, was ineffective in producing a stimulation of locomotor activity after intra-accumbens injection. Since glutamate is an excitatory amino acid (EAA), compounds characterized as EAA receptor antagonists were utilized to determine if the folate-induced hypermotility response is mediated by activation of EAA receptors in the nucleus accumbens. These results suggest that activation of quisqualate receptors of the nucleus accumbens may mediate the folate-induced hypermotility response.

  17. Roles for the endocannabinoid system in ethanol-motivated behavior

    PubMed Central

    Henderson-Redmond, Angela N; Guindon, Josée; Morgan, Daniel J

    2015-01-01

    Alcohol use disorder represents a significant human health problem that leads to substantial loss of human life and financial cost to society. Currently available treatment options do not adequately address this human health problem, and thus, additional therapies are desperately needed. The endocannabinoid system has been shown, using animal models, to modulate ethanol-motivated behavior, and it has also been demonstrated that chronic ethanol exposure can have potentially long-lasting effects on the endocannabinoid system. For example, chronic exposure to ethanol, in either cell culture or preclinical rodent models, causes an increase in endocannabinoid levels that results in down-regulation of the cannabinoid receptor 1 (CB1) and uncoupling of this receptor from downstream G protein signaling pathways. Using positron emission tomography (PET), similar down-regulation of CB1 has been noted in multiple regions of the brain in human alcoholic patients. In rodents, treatment with the CB1 inverse agonist SR141716A (Rimonabant), or genetic deletion of CB1 leads to a reduction in voluntary ethanol drinking, ethanol-stimulated dopamine release in the nucleus accumbens, operant self-administration of ethanol, sensitization to the locomotor effects of ethanol, and reinstatement/relapse of ethanol-motivated behavior. Although the clinical utility of Rimonabant or other antagonists/inverse agonists for CB1 is limited due to negative neuropsychiatric side effects, negative allosteric modulators of CB1 and inhibitors of endocannabinoid catabolism represent therapeutic targets worthy of additional examination. PMID:26123153

  18. Roles for the endocannabinoid system in ethanol-motivated behavior.

    PubMed

    Henderson-Redmond, Angela N; Guindon, Josée; Morgan, Daniel J

    2016-02-04

    Alcohol use disorder represents a significant human health problem that leads to substantial loss of human life and financial cost to society. Currently available treatment options do not adequately address this human health problem, and thus, additional therapies are desperately needed. The endocannabinoid system has been shown, using animal models, to modulate ethanol-motivated behavior, and it has also been demonstrated that chronic ethanol exposure can have potentially long-lasting effects on the endocannabinoid system. For example, chronic exposure to ethanol, in either cell culture or preclinical rodent models, causes an increase in endocannabinoid levels that results in down-regulation of the cannabinoid receptor 1 (CB1) and uncoupling of this receptor from downstream G protein signaling pathways. Using positron emission tomography (PET), similar down-regulation of CB1 has been noted in multiple regions of the brain in human alcoholic patients. In rodents, treatment with the CB1 inverse agonist SR141716A (Rimonabant), or genetic deletion of CB1 leads to a reduction in voluntary ethanol drinking, ethanol-stimulated dopamine release in the nucleus accumbens, operant self-administration of ethanol, sensitization to the locomotor effects of ethanol, and reinstatement/relapse of ethanol-motivated behavior. Although the clinical utility of Rimonabant or other antagonists/inverse agonists for CB1 is limited due to negative neuropsychiatric side effects, negative allosteric modulators of CB1 and inhibitors of endocannabinoid catabolism represent therapeutic targets worthy of additional examination.

  19. Ethanol extract of Justicia gendarussa inhibits lipopolysaccharide stimulated nitric oxide and matrix metalloproteinase-9 expression in murine macrophage.

    PubMed

    Varma, R Sandeep; Ashok, G; Vidyashankar, S; Patki, P; Nandakumar, Krishna S

    2011-06-01

    Justicia gendarussa Burm (Acanthaceae) is a plant used to treat inflammatory diseases such as rheumatoid arthritis. However, the mechanism involved in the anti-inflammatory properties of this plant has not been studied well. The in vitro anti-inflammatory activities of ethanol extract of Justicia gendarussa leaves (J-01) are studied here for the first time. The ethanol extract, J-01 was prepared from the leaves of Justicia gendarussa. The inhibitory effect of J-01 in nitric oxide (NO) production, inducible nitric oxide synthase (iNOS) and matrix metalloproteinase-9 (MMP-9) gene expressions were studied in lipopolysaccharide (LPS) stimulated macrophage cell line RAW 264.7. J-01 in a concentration dependent manner (200-50 μg/mL) attenuated NO production from macrophage stimulated with LPS (1 μg/mL). Further, J-01 significantly suppressed iNOS mRNA expression in these cells. J-01 has also downregulated the MMP-9 gene expression in LPS stimulated macrophage. The modulatory function of J-01 in inhibiting NO, iNOS, and MMP-9 as obtained from the present in vitro studies provide first scientific evidence to support the anti-inflammatory properties of Justicia gendarussa. This plant may have potential use in the management of inflammatory conditions such as arthritis.

  20. Ethanolic extract of Allium cepa stimulates glucose transporter typ 4-mediated glucose uptake by the activation of insulin signaling.

    PubMed

    Gautam, Sudeep; Pal, Savita; Maurya, Rakesh; Srivastava, Arvind K

    2015-02-01

    The present work was undertaken to investigate the effects and the molecular mechanism of the standardized ethanolic extract of Allium cepa (onion) on the glucose transport for controlling diabetes mellitus. A. cepa stimulates glucose uptake by the rat skeletal muscle cells (L6 myotubes) in both time- and dose-dependent manners. This effect was shown to be mediated by the increased translocation of glucose transporter typ 4 protein from the cytoplasm to the plasma membrane as well as the synthesis of glucose transporter typ 4 protein. The effect of A. cepa extract on glucose transport was stymied by wortmannin, genistein, and AI½. In vitro phosphorylation analysis revealed that, like insulin, A. cepa extract also enhances the tyrosine phosphorylation of the insulin receptor-β, insulin receptor substrate-1, and the serine phosphorylation of Akt under both basal and insulin-stimulated conditions without affecting the total amount of these proteins. Furthermore, it is also shown that the activation of Akt is indispensable for the A. cepa-induced glucose uptake in L6 myotubes. Taken together, these findings provide ample evidence that the ethanolic extract of A. cepa stimulates glucose transporter typ 4 translocation-mediated glucose uptake by the activation of the phosphatidylinositol-4,5-bisphosphate 3-kinase/Akt dependent pathway.

  1. Adolescent binge-like alcohol alters sensitivity to acute alcohol effects on dopamine release in the nucleus accumbens of adult rats

    PubMed Central

    Shnitko, Tatiana A.; Spear, Linda P.; Robinson, Donita L.

    2015-01-01

    Rationale Early onset of alcohol drinking has been associated with alcohol abuse in adulthood. The neurobiology of this phenomenon is unclear, but mesolimbic dopamine pathways, which are dynamic during adolescence, may play a role. Objectives We investigated the impact of adolescent binge-like alcohol on phasic dopaminergic neurotransmission during adulthood. Methods Rats received intermittent intragastric ethanol, water or nothing during adolescence. In adulthood, electrically-evoked dopamine release and subsequent uptake were measured in the nucleus accumbens core at baseline and after acute challenge of ethanol or saline. Results Adolescent ethanol exposure did not alter basal measures of evoked dopamine release or uptake. Ethanol challenge dose-dependently decreased the amplitude of evoked dopamine release in rats by 30–50% in control groups, as previously reported, but did not alter evoked release in ethanol-exposed animals. To address the mechanism by which ethanol altered dopamine signaling, the evoked signals were modeled to estimate dopamine efflux per impulse and the velocity of the dopamine transporter. Dopamine uptake was slower in all exposure groups after ethanol challenge compared to saline, while dopamine efflux per pulse of electrical stimulation was reduced by ethanol only in ethanol-naive rats. Conclusions The results demonstrate that exposure to binge levels of ethanol during adolescence blunts the effect of ethanol challenge to reduce the amplitude of phasic dopamine release in adulthood. Large dopamine transients may result in more extracellular dopamine after alcohol challenge in adolescent-exposed rats, and may be one mechanism by which alcohol is more reinforcing in people who initiated drinking at an early age. PMID:26487039

  2. Combined Scopolamine and Ethanol Treatment Results in a Locomotor Stimulant Response Suggestive of Synergism That is Not Blocked by Dopamine Receptor Antagonists

    PubMed Central

    Scibelli, Angela C.; Phillips, Tamara J.

    2010-01-01

    Background Muscarinic acetylcholine receptors (mAChRs) are well positioned to mediate ethanol’s stimulant effects. To investigate this possibility, we examined the effects of scopolamine, a receptor subtype nonselective mAChR antagonist, on ethanol-induced stimulation in genotypes highly sensitive to this effect of ethanol. We also investigated whether the dopamine D1-like receptor antagonist, SCH-23390 or the dopamine D2-like receptor antagonist, haloperidol, could block the extreme stimulant response found following co-administration of scopolamine and ethanol. Methods Scopolamine (0, 0.0625, 0.125, 0.25, or 0.5 mg/kg) was given 10 minutes prior to saline or ethanol (0.75 to 2 g/kg) to female FAST (Experiment I) or DBA/2J (Experiment II) mice that were then tested for locomotion for 30 minutes. In Experiments III and IV, respectively, SCH-23390 (0, 0.015, or 0.03 mg/kg) was given 10 minutes prior, and haloperidol (0, 0.08, or 0.16 mg/kg) was given 2 minutes prior, to scopolamine (0 or 0.5 mg/kg), followed 10 minutes later by saline or ethanol (1.5 g/kg) and female DBA/2J mice were tested for locomotion for 30 minutes. Results FAST and DBA/2J mice displayed a robust enhancement of the locomotor effects of ethanol following pretreatment with scopolamine that was suggestive of synergism. SCH-23390 had no effect on the response to the scopolamine + ethanol drug combination, nor did it attenuate ethanol- or scopolamine-induced locomotor activity. Haloperidol, while attenuating the effects of ethanol, was not able to block the effects of scopolamine or the robust response to the scopolamine-ethanol drug combination. Conclusions These results suggest that while muscarinic receptor antagonism robustly enhances acute locomotor stimulation to ethanol, dopamine receptors are not involved in the super-additive interaction of scopolamine and ethanol treatment. They also suggest that in addition to cautions regarding the use of alcohol when scopolamine is clinically

  3. The effects of acute exposure to ethanol on neurotensin and guanine nucleotide-stimulation of phospholipase C activity in intact NIE-115 neuroblastoma cells

    SciTech Connect

    Smith, T.L. )

    1990-01-01

    Both ethanol and neurotensin produce sedation and hypothermia. When administered in combination the behavioral effects of these two substances are potentiated. In order to better understand the biochemical nature of this interaction, the direct effects of ethanol on neurotensin receptors and an associated signal transduction process were determined in NIE-115 neuroblastoma cells. Ethanol in physiologically relevant concentrations significantly reduced neurotensin stimulated ({sup 3}H)inositol phosphate production while having no effect on the specific binding of ({sup 3}H)neurotensin. In addition, ethanol up to 200 mM had no effect on GTPYS mediated ({sup 3}H)inositol phosphate production. The results indicate that acute exposure ethanol partially disrupts the normal coupling of activated neurotensin receptors to the guanine nucleotide binding protein associated with phospholipase C.

  4. Ethanol- and cocaine-induced locomotion are genetically related to increases in accumbal dopamine.

    PubMed

    Meyer, Paul J; Meshul, Charles K; Phillips, Tamara J

    2009-04-01

    Neuroanatomical research suggests that interactions between dopamine and glutamate within the mesolimbic dopamine system are involved in both drug-induced locomotor stimulation and addiction. Therefore, genetically determined differences in the locomotor responses to ethanol and cocaine may be related to differences in the effects of these drugs on this system. To test this, we measured drug-induced changes in dopamine and glutamate within the nucleus accumbens (NAcc), a major target of mesolimbic dopamine neurons, using in vivo microdialysis in selectively bred FAST and SLOW mouse lines, which were bred for extreme sensitivity (FAST) and insensitivity (SLOW) to the locomotor stimulant effects of ethanol. These mice also show a genetically correlated difference in stimulant response to cocaine (FAST > SLOW). Single injections of ethanol (2 g/kg) or cocaine (40 mg/kg) resulted in larger increases in dopamine within the NAcc in FAST compared with SLOW mice. There was no effect of either drug on NAcc glutamate levels. These experiments indicate that response of the mesolimbic dopamine system is genetically correlated with sensitivity to ethanol- and cocaine-induced locomotion. Because increased sensitivity to the stimulating effects of ethanol appears to be associated with greater risk for alcohol abuse, genetically determined differences in the mesolimbic dopamine response to ethanol may represent a critical underlying mechanism for increased genetic risk for alcoholism.

  5. Anti-Inflammatory Effect of Ethanolic Extract of Sargassum serratifolium in Lipopolysaccharide-Stimulated BV2 Microglial Cells.

    PubMed

    Oh, Sun-Ji; Joung, Eun-Ji; Kwon, Mi-Sung; Lee, Bonggi; Utsuki, Tadanobu; Oh, Chul-Woong; Kim, Hyeung-Rak

    2016-11-01

    Sargassum serratifolium was found to contain high concentrations of meroterpenoids, having strong antioxidant, anti-inflammatory, and neuroprotective activities. This study aims to investigate the anti-inflammatory mechanisms of an ethanolic extract of S. serratifolium (ESS) using lipopolysaccharide (LPS)-stimulated BV2 microglial cells and to identify the anti-inflammatory components in ESS. The level of proinflammatory cytokines was measured by enzyme-linked immunosorbent assay. The expression of inflammation-related proteins and mRNA was evaluated by Western blot and reverse transcription-polymerase chain reaction analysis, respectively. Anti-inflammatory activities of isolated components from ESS were analyzed in LPS-stimulated BV2 cells. ESS inhibited LPS-induced nitric oxide (NO) and prostaglandin E2 and the expression of inducible NO synthase and cyclooxygenase-2. ESS also decreased the release of proinflammatory cytokines in a dose-dependent manner. LPS-induced nuclear factor-kappa B (κB) transcriptional activity and translocation into the nucleus were remarkably suppressed by ESS through the prevention of inhibitor κB-α degradation. The main anti-inflammatory components in ESS were identified as sargahydroquinoic acid, sargachromenol, and sargaquinoic acid based on the inhibition of NO production using LPS-stimulated BV2 cells. Furthermore, treatment with ESS significantly reduced levels of tumor necrosis factor-α and interleukin-1β stimulated with LPS in mouse hippocampus. Our results indicate that ESS can be used as a functional food or therapeutic agent for the treatment of neuroinflammatory diseases.

  6. A Pair of Dopamine Neurons Target the D1-Like Dopamine Receptor DopR in the Central Complex to Promote Ethanol-Stimulated Locomotion in Drosophila

    PubMed Central

    Kong, Eric C.; Woo, Katherine; Li, Haiyan; Lebestky, Tim; Mayer, Nasima; Sniffen, Melissa R.; Heberlein, Ulrike; Bainton, Roland J.; Hirsh, Jay; Wolf, Fred W.

    2010-01-01

    Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol. PMID:20376353

  7. Long-term exposure of MCF-7 breast cancer cells to ethanol stimulates oncogenic features

    PubMed Central

    Gelfand, Robert; Vernet, Dolores; Bruhn, Kevin W.; Sarkissyan, Suren; Heber, David; Vadgama, Jaydutt V.; Gonzalez-Cadavid, Nestor F.

    2017-01-01

    Alcohol consumption is a risk factor for breast cancer. Little is known regarding the mechanism, although it is assumed that acetaldehyde or estrogen mediated pathways play a role. We previously showed that long-term exposure to 2.5 mM ethanol (blood alcohol ~0.012%) of MCF-12A, a human normal epithelial breast cell line, induced epithelial mesenchymal transition (EMT) and oncogenic transformation. In this study, we investigated in the human breast cancer cell line MCF-7, whether a similar exposure to ethanol at concentrations ranging up to peak blood levels in heavy drinkers would increase malignant progression. Short-term (1-week) incubation to ethanol at as low as 1–5 mM (corresponding to blood alcohol concentration of ~0.0048–0.024%) upregulated the stem cell related proteins Oct4 and Nanog, but they were reduced after exposure at 25 mM. Long-term (4-week) exposure to 25 mM ethanol upregulated the Oct4 and Nanog proteins, as well as the malignancy marker Ceacam6. DNA microarray analysis in cells exposed for 1 week showed upregulated expression of metallothionein genes, particularly MT1X. Long-term exposure upregulated expression of some malignancy related genes (STEAP4, SERPINA3, SAMD9, GDF15, KRT15, ITGB6, TP63, and PGR, as well as the CEACAM, interferon related, and HLA gene families). Some of these findings were validated by RT-PCR. A similar treatment also modulated numerous microRNAs (miRs) including one regulator of Oct4 as well as miRs involved in oncogenesis and/or malignancy, with only a few estrogen-induced miRs. Long-term 25 mM ethanol also induced a 5.6-fold upregulation of anchorage-independent growth, an indicator of malignant-like features. Exposure to acetaldehyde resulted in little or no effect comparable to that of ethanol. The previously shown alcohol induction of oncogenic transformation of normal breast cells is now complemented by the current results suggesting alcohol's potential involvement in malignant progression of breast cancer

  8. Long-term exposure of MCF-7 breast cancer cells to ethanol stimulates oncogenic features.

    PubMed

    Gelfand, Robert; Vernet, Dolores; Bruhn, Kevin W; Sarkissyan, Suren; Heber, David; Vadgama, Jaydutt V; Gonzalez-Cadavid, Nestor F

    2017-01-01

    Alcohol consumption is a risk factor for breast cancer. Little is known regarding the mechanism, although it is assumed that acetaldehyde or estrogen mediated pathways play a role. We previously showed that long-term exposure to 2.5 mM ethanol (blood alcohol ~0.012%) of MCF-12A, a human normal epithelial breast cell line, induced epithelial mesenchymal transition (EMT) and oncogenic transformation. In this study, we investigated in the human breast cancer cell line MCF-7, whether a similar exposure to ethanol at concentrations ranging up to peak blood levels in heavy drinkers would increase malignant progression. Short-term (1-week) incubation to ethanol at as low as 1-5 mM (corresponding to blood alcohol concentration of ~0.0048-0.024%) upregulated the stem cell related proteins Oct4 and Nanog, but they were reduced after exposure at 25 mM. Long-term (4-week) exposure to 25 mM ethanol upregulated the Oct4 and Nanog proteins, as well as the malignancy marker Ceacam6. DNA microarray analysis in cells exposed for 1 week showed upregulated expression of metallothionein genes, particularly MT1X. Long-term exposure upregulated expression of some malignancy related genes (STEAP4, SERPINA3, SAMD9, GDF15, KRT15, ITGB6, TP63, and PGR, as well as the CEACAM, interferon related, and HLA gene families). Some of these findings were validated by RT-PCR. A similar treatment also modulated numerous microRNAs (miRs) including one regulator of Oct4 as well as miRs involved in oncogenesis and/or malignancy, with only a few estrogen-induced miRs. Long-term 25 mM ethanol also induced a 5.6-fold upregulation of anchorage-independent growth, an indicator of malignant-like features. Exposure to acetaldehyde resulted in little or no effect comparable to that of ethanol. The previously shown alcohol induction of oncogenic transformation of normal breast cells is now complemented by the current results suggesting alcohol's potential involvement in malignant progression of breast cancer.

  9. The role of nucleus accumbens shell GABA receptors on ventral tegmental area intracranial self-stimulation and a potential role for the 5-HT(2C) receptor.

    PubMed

    Hayes, Dave J; Hoang, John; Greenshaw, Andrew J

    2011-12-01

    Brain γ-aminobutyric acid (GABA) and 5-hydroxytryptamine (5-HT)(2C) receptors are implicated in the neuronal regulation of reward- and aversion-related behaviour. Within the mesocorticolimbic pathways of the brain, relationships between GABA containing neurons and 5-HT(2C) receptor activity may be important in this context. The primary aim of this study was to investigate the role of NAc shell GABA receptors on ventral tegmental area intracranial self-stimulation (ICSS) and to examine the systemic effects of GABAergic ligands in this context. The second aim was to investigate the relationship between GABA receptor- and 5-HT(2C) receptor-related ICSS behaviour, using systemic administration of the selective agonist WAY 161503. Locomotor activity was assessed to compare the potential motor effects of drugs; feeding behaviour and intra-NAc injections of amphetamine (1.0 µg/side) were used as positive controls. When administered systemically the GABA(A) receptor agonist muscimol and antagonist picrotoxin did not selectively change ICSS reward thresholds, although the 5-HT(2C) receptor agonist WAY 161503 (1.0 mg/kg) decreased reward measures. Intra-NAc shell administration of muscimol (225 ng/side) and picrotoxin (125 ng/side), respectively, decreased and increased measures of reward. Intra-NAc shell baclofen (0-225 ng/side; GABA(B) receptor agonist) did not affect any ICSS measures although it increased feeding. Combining picrotoxin and WAY 161503 attenuated the effects of each. These results suggest that a 5-HT(2C) and GABA(A) receptor-mediated neuronal relationship in the NAc shell may be relevant for the regulation of brain reward pathways.

  10. Prenatal ethanol exposure alters met-enkephalin expression in brain regions related with reinforcement: possible mechanism for ethanol consumption in offspring.

    PubMed

    Abate, P; Hernández-Fonseca, K; Reyes-Guzmán, A C; Barbosa-Luna, I G; Méndez, M

    2014-11-01

    The endogenous opioid system is involved in ethanol reinforcement. Ethanol-induced changes in opioidergic transmission have been extensively studied in adult organisms. However, the impact of ethanol exposure at low or moderate doses during early ontogeny has been barely explored. We investigated the effect of prenatal ethanol exposure on alcohol intake and Methionine-enkephalin (Met-enk) content in rat offspring. Met-enk content was assessed in the ventral tegmental area [VTA], nucleus accumbens [NAcc], prefrontal cortex [PFC], substantia nigra [SN], caudate-putamen [CP], amygdala, hypothalamus and hippocampus. Pregnant rats were treated with ethanol (2g/kg) or water during GDs 17-20. At PDs 14 and 15, preweanlings were evaluated in an intake test (5% and 10% ethanol, or water). Met-enk content in brain regions of infants prenatally exposed to ethanol was quantitated by radioimmunoassay. Ethanol consumption was facilitated by prenatal experience with the drug, particularly in females. Met-enk content in mesocorticolimbic regions - PFC and NAcc - was increased as a consequence of prenatal exposure to ethanol. Conversely, Met-enk levels in the VTA were reduced by prenatal ethanol manipulation. Prenatal ethanol also increased peptide levels in the medial-posterior zone of the CP, and strongly augmented Met-enk content in the hippocampus and hypothalamus. These findings show that prenatal ethanol exposure stimulates consumption of the drug in infant rats, and induces selective changes in Met-enk levels in regions of the mesocorticolimbic and nigrostriatal systems, the hypothalamus and hippocampus. Our results support the role of mesocorticolimbic enkephalins in ethanol reinforcement in offspring, as has been reported in adults.

  11. Propolis Ethanol Extract Stimulates Cytokine and Chemokine Production through NF-κB Activation in C2C12 Myoblasts

    PubMed Central

    Washio, Kohei; Kobayashi, Mao; Saito, Natsuko; Amagasa, Misato; Kitamura, Hiroshi

    2015-01-01

    Myoblast activation is a triggering event for muscle remodeling. We assessed the stimulatory effects of propolis, a beehive product, on myoblasts. After an 8 h treatment with 100 μg/mL of Brazilian propolis ethanol extract, expression of various chemokines, including CCL-2 and CCL-5, and cytokines, such as IL-6, increased. This propolis-induced cytokine production appears to depend on NF-κB activation, because the IKK inhibitor BMS-345541 repressed mRNA levels of CCL-2 by ~66%, CCL-5 by ~81%, and IL-6 by ~69% after propolis treatment. Supernatant from propolis-conditioned C2C12 cells upregulated RAW264 macrophage migration. The supernatant also stimulated RAW264 cells to produce angiogenic factors, including VEGF-A and MMP-12. Brazilian green propolis therefore causes myoblasts to secrete cytokines and chemokines, which might contribute to tissue remodeling of skeletal muscle. PMID:26604971

  12. Region-specific depression of striatal activity in Wistar rat by modest ethanol consumption over a ten-month period.

    PubMed

    Adermark, L; Jonsson, S; Söderpalm, B; Ericson, M

    2013-06-01

    The nucleus accumbens (nAc) is the primary target for the mesolimbic dopamine system and a key brain region for the reinforcing effects displayed by drugs of abuse, including ethanol. During the transition from recreational to compulsive consumption of reinforcing drugs, however, the dorsal striatum seems to be recruited. Understanding how synaptic activity is altered in a sub-region specific manner in the striatum during the course of long-term drug consumption thus could be essential for understanding the long-lasting changes produced by addictive substances, including ethanol. Here we evaluated synaptic activity in the dorsolateral striatum (DLS) and ventral striatum (nucleus accumbens, nAc) of single-housed Wistar rats consuming water, or water and ethanol, for up to 10 months. Even though ethanol intake was moderate, it was sufficient to decrease input/output function in response to stimulation intensity in the DLS, while recorded population spike (PS) amplitudes in the nAc were unaffected. Striatal disinhibition induced by the GABAA receptor antagonist bicuculline had a slower onset in rats that had consumed ethanol for 2 months, and was significantly depressed in slices from rats that had consumed ethanol for 4 months. Bicuculline-induced disinhibition in the nAc, on the other hand, was not significantly altered by long-term ethanol intake. Changes in PS amplitude induced by taurine or the glycine receptor antagonist strychnine were not significantly altered by ethanol in any brain region. Even though input/output function was not significantly affected by age, there was a significant decline in antagonist-induced disinhibition in brain slices from aged rats. The data presented here suggest that even modest consumption of ethanol is sufficient to alter neurotransmission in the striatum, while synaptic activity appears to be relatively well-preserved in the nAc during the course of long-term ethanol consumption. Copyright © 2013 Elsevier Inc. All rights

  13. Native CB1 receptor affinity, intrinsic activity and accumbens shell dopamine stimulant properties of third generation SPICE/K2 cannabinoids: BB-22, 5F-PB-22, 5F-AKB-48 and STS-135.

    PubMed

    De Luca, Maria Antonietta; Castelli, M Paola; Loi, Barbara; Porcu, Alessandra; Martorelli, Mariella; Miliano, Cristina; Kellett, Kathryn; Davidson, Colin; Stair, Jacqueline L; Schifano, Fabrizio; Di Chiara, Gaetano

    2016-06-01

    In order to investigate the in vivo dopamine (DA) stimulant properties of selected 3rd generation Spice/K2 cannabinoids, BB-22, 5F-PB-22, 5F-AKB-48 and STS-135, their in vitro affinity and agonist potency at native rat and mice CB1 receptors was studied. The compounds bind with high affinity to CB1 receptors in rat cerebral cortex homogenates and stimulate CB1-induced [(35)S]GTPγS binding with high potency and efficacy. BB-22 and 5F-PB-22 showed the lowest Ki of binding to CB1 receptors (0.11 and 0.13 nM), i.e., 30 and 26 times lower respectively than that of JWH-018 (3.38 nM), and a potency (EC50, 2.9 and 3.7 nM, respectively) and efficacy (Emax, 217% and 203%, respectively) as CB1 agonists higher than JWH-018 (EC50, 20.2 nM; Emax, 163%). 5F-AKB-48 and STS-135 had higher Ki for CB1 binding, higher EC50 and lower Emax as CB1 agonists than BB-22 and 5F-PB-22 but still comparatively more favourable than JWH-018. The agonist properties of all the compounds were abolished or drastically reduced by the CB1 antagonist/inverse agonist AM251 (0.1 μM). No activation of G-protein was observed in CB1-KO mice. BB-22 (0.003-0.01 mg/kg i.v.) increased dialysate DA in the accumbens shell but not in the core or in the medial prefrontal cortex, with a bell shaped dose-response curve and an effect at 0.01 mg/kg and a biphasic time-course. Systemic AM251 (1.0 mg/kg i.p.) completely prevented the stimulant effect of BB-22 on dialysate DA in the NAc shell. All the other compounds increased dialysate DA in the NAc shell at doses consistent with their in vitro affinity for CB1 receptors (5F-PB-22, 0.01 mg/kg; 5F-AKB-48, 0.1 mg/kg; STS-135, 0.15 mg/kg i.v.). 3rd generation cannabinoids can be even more potent and super-high CB1 receptor agonists compared to JWH-018. Future research will try to establish if these properties can explain the high toxicity and lethality associated with these compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Alcohol drinking increases the dopamine-stimulating effects of ethanol and reduces D2 auto-receptor and group II metabotropic glutamate receptor function within the posterior ventral tegmental area of alcohol preferring (P) rats.

    PubMed

    Ding, Zheng-Ming; Ingraham, Cynthia M; Rodd, Zachary A; McBride, William J

    2016-10-01

    Repeated local administration of ethanol (EtOH) sensitized the posterior ventral tegmental area (pVTA) to the local dopamine (DA)-stimulating effects of EtOH. Chronic alcohol drinking increased nucleus accumbens (NAC) DA transmission and pVTA glutamate transmission in alcohol-preferring (P) rats. The objectives of the present study were to determine the effects of chronic alcohol drinking by P rats on the (a) sensitivity and response of the pVTA DA neurons to the DA-stimulating actions of EtOH, and (b) negative feedback control of DA (via D2 auto-receptors) and glutamate (via group II mGlu auto-receptors) release in the pVTA. EtOH (50 or 150 mg%) or the D2/3 receptor antagonist sulpiride (100 or 200 μM) was microinjected into the pVTA while DA was sampled with microdialysis in the NAC shell (NACsh). The mGluR2/3 antagonist LY341495 (1 or 10 μM) was perfused through the pVTA via reverse microdialysis and local extracellular glutamate and DA levels were measured. EtOH produced a more robust increase of NACsh DA in the 'EtOH' than 'Water' groups (e.g., 150 mg% EtOH: to ∼ 210 vs 150% of baseline). In contrast, sulpiride increased DA release in the NACsh more in the 'Water' than 'EtOH' groups (e.g., 200 μM sulpiride: to ∼ 190-240 vs 150-160% of baseline). LY341495 (at 10 μM) increased extracellular glutamate and DA levels in the 'Water' (to ∼ 150-180% and 180-230% of baseline, respectively) but not the 'EtOH' groups. These results indicate that alcohol drinking enhanced the DA-stimulating effects of EtOH, and attenuated the functional activities of D2 auto-receptors and group II mGluRs within the pVTA.

  15. Induction of brain cytochrome P450 2E1 boosts the locomotor-stimulating effects of ethanol in mice.

    PubMed

    Ledesma, Juan Carlos; Miquel, Marta; Pascual, María; Guerri, Consuelo; Aragon, Carlos M G

    2014-10-01

    In the central nervous system ethanol (EtOH) is metabolized into acetaldehyde by different enzymes. Brain catalase accounts for 60% of the total production of EtOH-derived acetaldehyde, whereas cerebral cytochrome P450 2E1 (CYP 2E1) produces 20% of this metabolite. Acetaldehyde formed by the activity of central catalase has been implicated in some of the neurobehavioral properties of EtOH, yet the contribution of CYP 2E1 to the pharmacological actions of this drug has not been investigated. Here we assessed the possible participation of CYP 2E1 in the behavioral effects of EtOH. Thus, we induced CYP 2E1 activity and expression by exposing mice to chronic acetone intake (1% v/v for 10 days) and examined its consequences on the stimulating and uncoordinating effects of EtOH (0-3.2 g/kg) injected intraperitoneally. Our data showed that 24 h after withdrawal of acetone brain expression and activity of CYP 2E1 was induced. Furthermore, the locomotion produced by EtOH was boosted over the same interval of time. Locomotor stimulation produced by amphetamine or tert-butanol was unchanged by previous treatment with acetone. EtOH-induced motor impairment as evaluated in a Rota-Rod apparatus was unaffected by the preceding exposure to acetone. These results indicate that cerebral CYP 2E1 activity could contribute to the locomotor-stimulating effects of EtOH, and therefore we suggest that centrally produced acetaldehyde might be a possible mediator of some EtOH-induced pharmacological effects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Conditional stimulation by galanin of saccharin and ethanol consumption under free and response contingent access.

    PubMed

    McNamara, I M; Robinson, J K

    2010-10-01

    Prior research has shown that the neuropeptide galanin strongly stimulates food intake in sated rats when food is made freely available. However, when access to food is made contingent upon lever pressing on a reinforcement schedule, no such stimulation occurs. This dissociation is consistent with the theorized "behavioral energizing" function of the ascending mesolimbic dopamine system, which purports that this ascending dopamine system is involved in only the goal directed effort maintaining (appetitive) and not the hedonic (consummatory) aspects of reward. Further, these results suggest that galanin may play an inhibitory role therein, or itself may be inhibited by mesolimbic dopamine activity underlying instrumental behavior. Prior research into this phenomenon has only utilized caloric foods or water, so the current work assessed the generality of this finding by determining if a similar dissociation also applies to commodities with other properties. For the present experiments, two commodities which varied in the dimensions of palatability and caloric load but which are both known to serve as reinforcers in other settings were chosen. In the first experiment, under the current single commodity free consumption test conditions shown to be sensitive to galanin effects of food and water consumption, galanin did not significantly alter the consumption of caloric laden but poorly palatable 7% alcohol solution. However, in the second experiment, galanin significantly increased free consumption of a highly palatable but non-caloric 0.2% saccharin solution but not when operant responding was required for access to saccharin, extending the basic appetitive-consummatory dissociation observed for food. Taken together, these results suggest that the gustatory properties may be a specific factor involved in galanin stimulation of free consumption, and that there may be a continuum of influence of galanin based on the relative "elasticity" of the commodities as reinforcers.

  17. An acetaldehyde-sequestering agent inhibits appetitive reinforcement and behavioral stimulation induced by ethanol in preweanling rats.

    PubMed

    Pautassi, Ricardo Marcos; Nizhnikov, Michael E; Fabio, Ma Carolina; Spear, Norman E

    2011-01-01

    Ethanol's motivational consequences have been related to the actions of acetaldehyde, a metabolic product of ethanol oxidation. The present study assessed the role of acetaldehyde in the motivational effects of ethanol on preweanling rats. In Experiment 1 pups (postnatal days 13-14, PD 13-14) were given systemic administration of D-penicillamine (DP, a drug that sequesters acetaldehyde: 0, 25, 50 or 75 mg/kg) before pairings of 1.0 g/kg ethanol and a rough surface (sandpaper, conditioned stimulus, CS). At test, pups given sandpaper-ethanol pairings exhibited greater preference for the CS than unpaired controls, but this preference was not expressed by pups given DP. Pre-training administration of 25 or 50 mg/kg DP completely blocked the expression of ethanol-mediated appetitive conditioning. D-penicillamine did not alter blood ethanol levels. Subsequent experiments revealed that ethanol-induced activation was blocked by central (intra-cisterna magna injections, volume: 1 μl, dose: 0 or 75 μg) but not systemic treatment with DP (0, 25, 50 or 75 mg/kg; ip). These results indicate that: (a) preweanling rats are sensitive to the reinforcing effect of ethanol, and (b) that this effect is associated with the motor activating effect of the drug. These effects seem to be mediated by the first metabolite of ethanol, acetaldehyde.

  18. AN ACETALDEHYDE-SEQUESTERING AGENT INHIBITS APPETITIVE REINFORCEMENT AND BEHAVIORAL STIMULATION INDUCED BY ETHANOL IN PREWEANLING RATS

    PubMed Central

    Pautassi, Ricardo Marcos; Nizhnikov, Michael E.; Fabio, Ma. Carolina; Spear, Norman E.

    2010-01-01

    Ethanol's motivational consequences have been related to the actions of acetaldehyde, a metabolic product of ethanol oxidation. The present study assessed the role of acetaldehyde in the motivational effects of ethanol on pre-weanling rats. In Experiment 1 pups (postnatal days 13–14, PD 13–14) were given systemic administration of d-penicillamine (DP, a drug that sequesters acetaldehyde: 0, 25, 50 or 75 mg/kg) before pairings of 1.0 g/kg ethanol and a rough surface (sandpaper, conditioned stimulus, CS). At test, pups given sandpaper-ethanol pairings exhibited greater preference for the CS than unpaired controls, but this preference was not expressed by pups given DP. Pre-training administration of 25 or 50 mg/kg DP completely blocked the expression of ethanol-mediated appetitive conditioning. D-penicillamine did not alter blood ethanol levels. Subsequent experiments revealed that ethanol-induced activation was blocked by central (intra-cisterna magna injections, volume: 1 μl, dose: 0 or 75 μg) but not systemic treatment with DP (0, 25, 50 or 75 mg/kg; ip). These results indicate that: (a) pre-weanling rats are sensitive to the reinforcing effect of ethanol, and (b) that this effect is associated with the motor activating effect of the drug. These effects seem to be mediated by the first metabolite of ethanol, acetaldehyde. PMID:20951160

  19. The interference of ethanol with heroin-stimulated psychomotor activation in mice is not related to changed brain concentrations of the active metabolites 6MAM or morphine.

    PubMed

    Andersen, Jannike M; Haugen, Karianne S; Ripel, Ase; Mørland, Jørg

    2014-02-01

    It has been suggested that the potentiating effect observed in human beings when combining alcohol and heroin may be due to an interference of ethanol with the pharmacokinetics of heroin, leading to accumulation of the biologically active metabolites, 6-monoacetylmorphine (6MAM) and morphine. However, experimental evidence for this hypothesis is lacking. In this study, we used mice and examined the effect of ethanol on the metabolism of heroin by combining a locomotor activity test, which is a behaviour model representative of psychomotor stimulation, with pharmacokinetic studies in blood and brain tissue. Pre-treatment with ethanol (1 and 2.5 g/kg, po) affected heroin-stimulated (2.5 and 15 μmol/kg, sc) locomotor activation significantly, resulting in a dose-dependent reduction in run distance. However, the change in the activity profiles did not indicate any increase in the concentration of active metabolites. Pharmacokinetic studies in blood and brain supported the behavioural findings, showing no change in the time-versus-concentration curves of either 6MAM or morphine after administration of heroin (15 μmol/kg, sc) to mice pre-treated with ethanol (2.5 g/kg, po). The concentration of heroin itself was elevated, but is probably of minor importance because heroin has low biological activity by itself. The in vivo pharmacokinetic findings were supported by experiments in vitro. In conclusion, studies in mice do not support the hypothesis from epidemiological studies of a pharmacokinetic interaction between alcohol and heroin.

  20. Gamma1- and gamma2-melanocyte stimulating hormones induce central anxiogenic effects and potentiate ethanol withdrawal responses in the elevated plus-maze test in mice.

    PubMed

    Jansone, Baiba; Rumaks, Juris; Dzirkale, Zane; Pupure, Jolanta; Svirskis, Simons; Muceniece, Ruta; Klusa, Vija

    2009-04-01

    Little is known about the endogenous functions of gamma1- and gamma2-melanocyte stimulating hormones (gamma1- and gamma2-MSH). Although gamma-MSHs bind to melanocortin receptor subtypes 3 and 4, we have previously shown that these peptides also influence non-melanocortinergic processes, such as dopaminergic and GABAergic. The aim of this study was to determine the effects of gamma1- and gamma2-MSH (at doses 0.3, 1 and 2 nmol/mouse/5 microl) on the anxiety levels in mice in elevated plus maze. Three experimental paradigms were performed to assess the effects of peptides on: a) ethanol withdrawal; b) acute ethanol-induced anxiolytic action; c) peptides per se. We used ethanol as the model substance, since its action involves either dopaminergic/GABAergic or melanocortinergic processes. gamma-MSHs were administered intracisternally in mice and behavioural responses were assessed in the elevated plus maze test. This study provides the first demonstration of an anxiogenic effect of gamma1- and gamma2-MSH, their synergistic/additive effect on ethanol withdrawal-induced anxiety behaviour, and an antagonism of peptides involved in the anxiolytic action of ethanol. Furthermore, results suggest that gamma-MSHs belong to an anxiogenic peptide family that may play an important role in anxiety disorders as well as in the development of alcohol dependence and/or alcohol withdrawal-induced behaviours.

  1. Tickling increases dopamine release in the nucleus accumbens and 50 kHz ultrasonic vocalizations in adolescent rats.

    PubMed

    Hori, Miyo; Shimoju, Rie; Tokunaga, Ryota; Ohkubo, Masato; Miyabe, Shigeki; Ohnishi, Junji; Murakami, Kazuo; Kurosawa, Mieko

    2013-03-27

    Adolescent rats emit 50 kHz ultrasonic vocalizations, a marker of positive emotion, during rough-and-tumble play or on tickling stimulation. The emission of 50 kHz ultrasonic vocalizations in response to tickling is suggested to be mediated by dopamine release in the nucleus accumbens; however, there is no direct evidence supporting this hypothesis. The present study aimed to elucidate whether play behavior (tickling) in adolescent rats can trigger dopamine release in the nucleus accumbens with hedonic 50 kHz ultrasonic vocalizations. The effect of tickling stimulation was compared with light-touch stimulation, as a discernible stimulus. We examined 35-40-day-old rats, which corresponds to the period of midadolescence. Tickling stimulation for 5 min significantly increased dopamine release in the nucleus accumbens (118±7% of the prestimulus control value). Conversely, light-touch stimulation for 5 min did not significantly change dopamine release. In addition, 50 kHz ultrasonic vocalizations were emitted during tickling stimulation but not during light-touch stimulation. Further, tickling-induced 50 kHz ultrasonic vocalizations were significantly blocked by the direct application of SCH23390 (D1 receptor antagonist) and raclopride (D2/D3 receptor antagonist) into the nucleus accumbens. Our study demonstrates that tickling stimulation in adolescent rats increases dopamine release in the nucleus accumbens, leading to the generation of 50 kHz ultrasonic vocalizations.

  2. Neuromodulatory action of dopamine in the nucleus accumbens: an in vivo intracellular study.

    PubMed

    Yim, C Y; Mogenson, G J

    1988-08-01

    Intracellular recordings were made from neurons in the nucleus accumbens in situ to determine how dopamine produces the selective neuromodulatory action in the accumbens observed in previous studies. Electrical stimulation of the basolateral nucleus of the amygdala was found to produce monosynaptically evoked depolarizing and hyperpolarizing postsynaptic potential sequences in a large proportion of the accumbens neurons sampled. Dopamine applied iontophoretically or released endogenously by stimulation of the ventral tegmental area produced consistent membrane depolarization and an increase in membrane conductance but not an increase in spontaneous activity of the accumbens neurons. Stimulation of the ventral tegmental area with trains of 10 pulses at 10 Hz prior to stimulation of the amygdala produced 8-58% reduction in the amplitude of the depolarizing postsynaptic potential but no change in the late hyperpolarizing postsynaptic potential. Although attenuation of the depolarizing postsynaptic potential amplitude from ventral tegmental area stimulation was often accompanied by membrane depolarization, it appeared that the two responses were not causally related. The effect of ventral tegmental area stimulation on the evoked depolarizing postsynaptic potential and the membrane potential were blocked by haloperidol indicating the involvement of dopamine. Iontophoretically applied dopamine produced responses similar to ventral tegmental area stimulation with two exceptions: (i) iontophoretically applied dopamine produced consistently stronger maximal attenuation of the depolarizing postsynaptic potential than did ventral tegmental area stimulation; and (ii) iontophoretically applied dopamine always attenuated both the depolarizing postsynaptic potential and hyperpolarizing postsynaptic potential whereas ventral tegmental area stimulation produced selective attenuation of the depolarizing postsynaptic potential only. These electrophysiological results are

  3. Ethanol activates cAMP response element-mediated gene expression in select regions of the mouse brain.

    PubMed

    Asyyed, Asma; Storm, Daniel; Diamond, Ivan

    2006-08-23

    The specific brain regions that contribute to behavioral changes produced by ethanol are not clearly understood. We know that cAMP-PKA signaling has been strongly implicated in the CNS effects of ethanol. Ethanol promotes activation and translocation of the PKA catalytic subunit (Calpha) into the nucleus in cell lines and primary neuronal cultures. PKA Calpha translocation to the nucleus is followed by cAMP Response Element protein phosphorylation (pCREB) and cAMP Response Element (CRE)-mediated gene expression. Here, we use X-gal histochemistry to map CRE-mediated gene transcription in the brain of CRE-lacZ transgenic mice following ethanol injection. 3 h after i.p. ethanol injection (3.2 g/kg, 16% wt/vol.), the number of X-gal positive cells was increased in the nucleus accumbens (202 +/- 63 cells/field compared to 71 +/- 47 cells/field in saline injected controls, P < 0.05 by paired t-test, n = 10). Similar increases were found in other mesolimbic areas and brain regions associated with rewarding and addictive responses. These include: prefrontal cortex, lateral and medial septum, basolateral amygdala, paraventricular and anterior hypothalamus, centromedial thalamus, CA1 region of hippocampus and dentate gyrus, substantia nigra pars compacta, ventral tegmental area, geniculate nucleus and the superior colliculus. these results confirm and extend current concepts that ethanol stimulates cAMP-PKA signaling in brain regions involved in CNS responses to ethanol.

  4. Increased susceptibility to liver injury after hemorrhagic shock in rats chronically fed ethanol: role of nuclear factor-kappa B, interleukin-6, and granulocyte colony-stimulating factor.

    PubMed

    Ono, Masafumi; Yu, Bi; Hardison, Edith G; Mastrangelo, Mary-Ann A; Tweardy, David J

    2004-06-01

    Chronic ethanol use preceding severe trauma and hemorrhagic shock (HS) is associated with an increased incidence of multiorgan failure (MOF) and death; however, the molecular basis for this increased susceptibility is unknown. We previously demonstrated that production of interleukin-6 (IL-6) and granulocyte colony-stimulating factor (G-CSF), mediated by nuclear factor-kappa B (NF-kappa B), each make essential contributions to organ injury and inflammation in a rodent model of controlled HS, and we proposed in this study to examine the hypothesis that the increased susceptibility to MOF after shock/trauma in the setting of chronic ethanol use is due to an exaggerated activation of NF-kappa B and production of these proinflammatory cytokines. We observed increased HS-induced liver injury 4 h after resuscitation in rats fed the ethanol-containing Lieber-DeCarli liquid diet for 8 weeks compared with rats fed the control liquid diet (3-fold increase in serum alanine aminotransferase [ALT], P = 0.008, and 2-fold increase in focal liver necrosis, P = 0.005). The increased liver injury in the ethanol-fed HS rats was accompanied by a 70% increase in liver NF-kappa B activation (P < 0.05), a 3- to 5-fold increase in hepatocyte and Kupffer cell production of IL-6 and G-CSF (P < 0.05 for each), and a 2-fold increase in neutrophil infiltration (P < 0.005) compared with the control diet-fed HS rats. Thus, increased susceptibility to HS-induced liver injury in the setting of chronic ethanol use may be mediated, at least in part, by increased NF-kappa B activation resulting in increased local production of IL-6 and G-CSF and increased infiltration of neutrophils, which can damage liver cells directly and contribute to impaired sinusoidal blood flow.

  5. Optogenetically-induced tonic dopamine release from VTA-nucleus accumbens projections inhibits reward consummatory behaviors.

    PubMed

    Mikhailova, Maria A; Bass, Caroline E; Grinevich, Valentina P; Chappell, Ann M; Deal, Alex L; Bonin, Keith D; Weiner, Jeff L; Gainetdinov, Raul R; Budygin, Evgeny A

    2016-10-01

    Recent optogenetic studies demonstrated that phasic dopamine release in the nucleus accumbens may play a causal role in multiple aspects of natural and drug reward-related behaviors. The role of tonic dopamine release in reward consummatory behavior remains unclear. The current study used a combinatorial viral-mediated gene delivery approach to express ChR2 on mesolimbic dopamine neurons in rats. We used optical activation of this dopamine circuit to mimic tonic dopamine release in the nucleus accumbens and to explore the causal relationship between this form of dopamine signaling within the ventral tegmental area (VTA)-nucleus accumbens projection and consumption of a natural reward. Using a two bottle choice paradigm (sucrose vs. water), the experiments revealed that tonic optogenetic stimulation of mesolimbic dopamine transmission significantly decreased reward consummatory behaviors. Specifically, there was a significant decrease in the number of bouts, licks and amount of sucrose obtained during the drinking session. Notably, activation of VTA dopamine cell bodies or dopamine terminals in the nucleus accumbens resulted in identical behavioral consequences. No changes in water intake were evident under the same experimental conditions. Collectively, these data demonstrate that tonic optogenetic stimulation of VTA-nucleus accumbens dopamine release is sufficient to inhibit reward consummatory behavior, possibly by preventing this circuit from engaging in phasic activity that is thought to be essential for reward-based behaviors. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Honey-induced stimulation of blood ethanol elimination and its influence on serum triacylglycerol and blood pressure in man.

    PubMed

    Onyesom, I

    2005-01-01

    The effect of honey on blood alcohol metabolism and the accompanying changes in serum triacylglycerol and blood pressure were investigated using volunteers. Fifty consenting undergraduates in apparent good health, between the ages of 15 and 30 years (23.6 +/- 7.4), were recruited for the study. The subjects were moderate alcohol drinkers (<30 g ethanol/day), matched in body weight and frame size. The participants were given ethanol (0.5 g/kg) and ethanol + honey (0.5 g/kg + 1.25 ml/kg) on two different occasions separated by 1 week. The results show that honey significantly (p < 0.01) increased blood alcohol disappearance and elimination rates by 32.4 and 28.6%, respectively, but reduced the intoxication time (that is, the time taken to attain zero blood alcohol level) and its degree (the peak blood alcohol level) by 30.0 and 4.4%. Ethanol + honey further increased serum triacylglycerol and blood pressure by 20.8 and 1.3/1.4% when compared with the proportion induced by ethanol after about 10 h of ingestion. The occasional use of honey as an anti-intoxicating agent may be approved. Meanwhile, further studies on how to ameliorate or prevent the associated increase in serum triacylglycerol and blood pressure is required. Copyright (c) 2005 S. Karger AG, Basel.

  7. Switch from excitatory to inhibitory actions of ethanol on dopamine levels after chronic exposure: Role of kappa opioid receptors.

    PubMed

    Karkhanis, Anushree N; Huggins, Kimberly N; Rose, Jamie H; Jones, Sara R

    2016-11-01

    Acute ethanol exposure is known to stimulate the dopamine system; however, chronic exposure has been shown to downregulate the dopamine system. In rodents, chronic intermittent exposure (CIE) to ethanol also increases negative affect during withdrawal, such as, increases in anxiety- and depressive-like behavior. Moreover, CIE exposure results in increased ethanol drinking and preference during withdrawal. Previous literature documents reductions in CIE-induced anxiety-, depressive-like behaviors and ethanol intake in response to kappa opioid receptor (KOR) blockade. KORs are located on presynaptic dopamine terminals in the nucleus accumbens (NAc) and inhibit release, an effect which has been linked to negative affective behaviors. Previous reports show an upregulation in KOR function following extended CIE exposure; however it is not clear whether there is a direct link between KOR upregulation and dopamine downregulation during withdrawal from CIE. This study aimed to examine the effects of KOR modulation on dopamine responses to ethanol of behaving mice exposed to air or ethanol vapor in a repeated intermittent pattern. First, we showed that KORs have a greater response to an agonist after moderate CIE compared to air exposed mice using ex vivo fast scan cyclic voltammetry. Second, using in vivo microdialysis, we showed that, in contrast to the expected increase in extracellular levels of dopamine following an acute ethanol challenge in air exposed mice, CIE exposed mice exhibited a robust decrease in dopamine levels. Third, we showed that blockade of KORs reversed the aberrant inhibitory dopamine response to ethanol in CIE exposed mice while not affecting the air exposed mice demonstrating that inhibition of KORs "rescued" dopamine responses in CIE exposed mice. Taken together, these findings indicate that augmentation of dynorphin/KOR system activity drives the reduction in stimulated (electrical and ethanol) dopamine release in the NAc. Thus, blockade of

  8. Anti-inflammatory effects of ethanolic extract from Sargassum horneri (Turner) C. Agardh on lipopolysaccharide-stimulated macrophage activation via NF-κB pathway regulation.

    PubMed

    Kim, Mi Eun; Jung, Yun Chan; Jung, Inae; Lee, Hee-Woo; Youn, Hwa-Young; Lee, Jun Sik

    2015-01-01

    Inflammation is major symptom of the innate immune response by infection of microbes. Macrophages, one of immune response related cells, play a role in inflammatory response. Recent studies reported that various natural products can regulate the activation of immune cells such as macrophage. Sargassum horneri (Turner) C. Agardh is one of brown algae. Recently, various seaweeds including brown algae have antioxidant and anti-inflammatory effects. However, anti-inflammatory effects of Sargassum horneri (Turner) C. Agardh are still unknown. In this study, we investigated anti-inflammatory effects of ethanolic extract of Sargassum horneri (Turner) C. Agardh (ESH) on RAW 264.7 murine macrophage cell line. The ESH was extracted from dried Sargassum horneri (Turner) C. Agardh with 70% ethanol and then lyophilized at -40 °C. ESH was not cytotoxic to RAW 264.7, and nitric oxide (NO) production induced by LPS-stimulated macrophage activation was significantly decreased by the addition of 200 μg/mL of ESH. Moreover, ESH treatment reduced mRNA level of cytokines, including IL-1β, and pro-inflammatory genes such as iNOS and COX-2 in LPS-stimulated macrophage activation in a dose-dependent manner. ESH was found to elicit anti-inflammatory effects by inhibiting ERK, p-p38 and NF-κB phosphorylation. In addition, ESH inhibited the release of IL-1β in LPS-stimulated macrophages. These results suggest that ESH elicits anti-inflammatory effects on LPS-stimulated macrophage activation via the inhibition of ERK, p-p38, NF-κB, and pro-inflammatory gene expression.

  9. Ethanol-induced alterations of c-Fos immunoreactivity in specific limbic brain regions following ethanol discrimination training.

    PubMed

    Besheer, Joyce; Schroeder, Jason P; Stevenson, Rebekah A; Hodge, Clyde W

    2008-09-26

    The discriminative stimulus properties of ethanol are functionally regulated by ionotropic GABA(A) and NMDA receptors in specific limbic brain regions including the nucleus accumbens, amygdala, and hippocampus, as determined by microinjection studies. The purpose of the present work was to further investigate potential neural substrates of ethanol's discriminative stimulus effects by examining if ethanol discrimination learning produces changes in brain regional response to ethanol. To accomplish this goal, immunohistochemistry was used to assess the effects of ethanol (2 g/kg) on c-Fos immunoreactivity (Fos-IR). Comparisons in ethanol-induced Fos-IR were made between a group of rats that was trained to discriminate the stimulus properties of ethanol (2 g/kg, IG) from water (IG) and a drug/behavior-matched control group that did not receive differential reinforcement for lever selection, which precluded acquisition of discriminative stimulus control by ethanol. In some brain regions discrimination training had no effect on ethanol-induced Fos-IR changes (caudate putamen, bed nucleus of the stria terminalis, and CA1 region of the hippocampus). In contrast, discrimination training altered the pattern of ethanol-induced Fos-IR in the nucleus accumbens (core), medial septum, and the hippocampus (dentate and CA3). These results indicate that having behavior under the stimulus control of ethanol can change ethanol-induced Fos-IR in some brain regions. This suggests that learning about the subjective properties of ethanol produces adaptive changes in how the brain responds to acute ethanol exposure.

  10. Accumbens nNOS Interneurons Regulate Cocaine Relapse

    PubMed Central

    Smith, Alexander C.W.; Scofield, Michael D.; Heinsbroek, Jasper A.; Gipson, Cassandra D.; Neuhofer, Daniela; Roberts-Wolfe, Doug J.; Spencer, Sade; Garcia-Keller, Constanza; Stankeviciute, Neringa M.; Smith, Rachel J.; Allen, Nicholas P.; Lorang, Melissa R.; Griffin, William C.; Boger, Heather A.

    2017-01-01

    Relapse to drug use can be initiated by drug-associated cues. The intensity of cue-induced relapse is correlated with the induction of transient synaptic potentiation (t-SP) at glutamatergic synapses on medium spiny neurons (MSNs) in the nucleus accumbens core (NAcore) and requires spillover of glutamate from prefrontal cortical afferents. We used a rodent self-administration/reinstatement model of relapse to show that cue-induced t-SP and reinstated cocaine seeking result from glutamate spillover, initiating a metabotropic glutamate receptor 5 (mGluR5)-dependent increase in nitric oxide (NO) production. Pharmacological stimulation of mGluR5 in NAcore recapitulated cue-induced reinstatement in the absence of drug-associated cues. Using NO-sensitive electrodes, mGluR5 activation by glutamate was shown to stimulate NO production that depended on activation of neuronal nitric oxide synthase (nNOS). nNOS is expressed in ∼1% of NAcore neurons. Using a transgene strategy to express and stimulate designer receptors that mimicked mGluR5 signaling through Gq in nNOS interneurons, we recapitulated cue-induced reinstatement in the absence of cues. Conversely, using a transgenic caspase strategy, the intensity of cue-induced reinstatement was correlated with the extent of selective elimination of nNOS interneurons. The induction of t-SP during cued reinstatement depends on activating matrix metalloproteinases (MMPs) and selective chemogenetic stimulation of nNOS interneurons recapitulated MMP activation and t-SP induction (increase in AMPA currents in MSNs). These data demonstrate critical involvement of a sparse population of nNOS-expressing interneurons in cue-induced cocaine seeking, revealing a bottleneck in brain processing of drug-associated cues where therapeutic interventions could be effective in treating drug addiction. SIGNIFICANCE STATEMENT Relapse to cocaine use in a rat model is associated with transient increases in synaptic strength at prefrontal cortex

  11. Exposure to nicotine increases nicotinic acetylcholine receptor density in the reward pathway and binge ethanol consumption in C57BL/6J adolescent female mice.

    PubMed

    Locker, Alicia R; Marks, Michael J; Kamens, Helen M; Klein, Laura Cousino

    2016-05-01

    Nearly 80% of adult smokers begin smoking during adolescence. Binge alcohol consumption is also common during adolescence. Past studies report that nicotine and ethanol activate dopamine neurons in the reward pathway and may increase synaptic levels of dopamine in the nucleus accumbens through nicotinic acetylcholine receptor (nAChR) stimulation. Activation of the reward pathway during adolescence through drug use may produce neural alterations affecting subsequent drug consumption. Consequently, the effect of nicotine exposure on binge alcohol consumption was examined along with an assessment of the neurobiological underpinnings that drive adolescent use of these drugs. Adolescent C57BL/6J mice (postnatal days 35-44) were exposed to either water or nicotine (200μg/ml) for ten days. On the final four days, ethanol intake was examined using the drinking-in-the-dark paradigm. Nicotine-exposed mice consumed significantly more ethanol and displayed higher blood ethanol concentrations than did control mice. Autoradiographic analysis of nAChR density revealed higher epibatidine binding in frontal cortical regions in mice exposed to nicotine and ethanol compared to mice exposed to ethanol only. These data show that nicotine exposure during adolescence increases subsequent binge ethanol consumption, and may affect the number of nAChRs in regions of the brain reward pathway, specifically the frontal cortex.

  12. 14-Deoxyandrographolide alleviates ethanol-induced hepatosteatosis through stimulation of AMP-activated protein kinase activity in rats.

    PubMed

    Mandal, Samir; Mukhopadhyay, Sibabrata; Bandhopadhyay, Sukdeb; Sen, Gargi; Biswas, Tuli

    2014-03-01

    Andrographis paniculata (AP) is a traditional medicinal plant of Ayurveda. It grows widely in Asia and is prescribed in the treatment of liver diseases. Here we have investigated the beneficial role of 14-deoxyandrographolide (14-DAG), a bioactive diterpenoid from AP, against alcoholic steatosis in rats. 14-DAG was extracted from aerial parts (leaves and stems) of AP. Rats were fed with ethanol for 8 weeks. Animals were treated with 14-DAG during the last 4 weeks of ethanol treatment. In vitro studies were undertaken in a human hepatocellular liver carcinoma cell line culture. Hepatosteatosis was assessed from histopathological studies of liver sections. Acetyl-CoA, malonyl-CoA, and triglyceride contents were determined using commercially available kits. Fatty acid synthesis was evaluated from incorporation of 1-(14)C acetate. Regulation of fatty acid oxidation and lipogenesis were monitored with immunoblotting and immunoprecipitation studies. Ethanol exposure led to hepatotoxicity, as evident from the marked enhancement in the levels of AST and ALT. The values decreased almost to control levels in response to 14-DAG treatment. Results showed that ethanol feeding induced deactivation of AMP-activated protein kinase (AMPK) that led to enhanced lipid synthesis and decreased fatty acid oxidation, culminating in hepatic fat accumulation. Treatment with 14-DAG activated AMPK through induction of cyclic AMP-protein kinase A pathway. Activation of AMPK was followed by down-regulation of sterol regulatory element binding protein-1c, acetyl-CoA carboxylase, and fatty acid synthase, leading to suppression of lipogenesis. This was associated with up-regulation of sirtuin 1 and depletion of malonyl-CoA, in favor of increased fatty acid oxidation. 14-DAG controlled ethanol-induced hepatosteatosis by interfering with dysregulation of lipid metabolism. In conclusion, our results indicated that 14-DAG was capable of preventing the development of fatty liver through AMPK

  13. Intra-accumbens injections of the adenosine A2A agonist CGS 21680 affect effort-related choice behavior in rats.

    PubMed

    Font, Laura; Mingote, Susana; Farrar, Andrew M; Pereira, Mariana; Worden, Lila; Stopper, Colin; Port, Russell G; Salamone, John D

    2008-09-01

    Nucleus accumbens dopamine (DA) participates in the modulation of instrumental behavior, including aspects of behavioral activation and effort-related choice behavior. Rats with impaired accumbens DA transmission reallocate their behavior away from food-reinforced activities that have high response requirements and instead select less-effortful types of food-seeking behavior. Although accumbens DA is considered a critical component of the brain circuitry regulating effort-related processes, emerging evidence also implicates adenosine A(2A) receptors. The present work was undertaken to test the hypothesis that accumbens A(2A) receptor stimulation would produce effects similar to those produced by DA depletion or antagonism. Three experiments assessed the effects of the adenosine A(2A) agonist CGS 21680 on performance of a concurrent choice task (lever pressing for preferred food vs. intake of less preferred chow) that is known to be sensitive to DA antagonists and accumbens DA depletions. Systemic injections of CGS 21680 reduced lever pressing but did not increase feeding. In contrast, bilateral infusions of the adenosine A(2A) receptor agonist CGS 21680 (6.0-24.0 ng) into the nucleus accumbens decreased lever pressing for the preferred food but substantially increased consumption of the less preferred chow. Injections of CGS 21680 into a control site dorsal to the accumbens were ineffective. Taken together, these results are consistent with the hypothesis that local stimulation of adenosine A(2A) receptors in nucleus accumbens produces behavioral effects similar to those induced by accumbens DA depletions. Accumbens adenosine A(2A) receptors appear to be a component of the brain circuitry regulating effort-related choice behavior.

  14. Music and the nucleus accumbens.

    PubMed

    Mavridis, Ioannis N

    2015-03-01

    Music is a universal feature of human societies over time, mainly because it allows expression and regulation of strong emotions, thus influencing moods and evoking pleasure. The nucleus accumbens (NA), the most important pleasure center of the human brain (dominates the reward system), is the 'king of neurosciences' and dopamine (DA) can be rightfully considered as its 'crown' due to the fundamental role that this neurotransmitter plays in the brain's reward system. Purpose of this article was to review the existing literature regarding the relation between music and the NA. Studies have shown that reward value for music can be coded by activity levels in the NA, whose functional connectivity with auditory and frontal areas increases as a function of increasing musical reward. Listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the NA. The functional connectivity between brain regions mediating reward, autonomic and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. Musical stimuli can significantly increase extracellular DA levels in the NA. NA DA and serotonin were found significantly higher in animals exposed to music. Finally, passive listening to unfamiliar although liked music showed activations in the NA.

  15. Ethanol immunosuppression in vitro

    SciTech Connect

    Kaplan, D.R.

    1986-03-01

    Ethanol in concentrations equivalent to levels achieved by the ingestion of moderate to large amounts of alcoholic beverages has been shown to inhibit mitogen and anti-CD3 stimulated human T lymphocyte proliferation. This inhibition was monophasic suggesting that ethanol affected a single limiting component of T cell proliferation. In experiments designed to test the effect of ethanol on various aspects of proliferation, it was demonstrated that ethanol inhibited the capacity of exogenously supplied interleukin 2 to stimulate proliferation of T cells that had previously acquired interleukin 2 receptors in a monophasic, dose-dependent manner. Moreover, there was no suppression of interleukin 2 production or interleukin 2 receptor acquisition. Thus, ethanol was shown to mediate immunosuppression by a mechanism specific to one component of proliferation. Additive inhibition of T cell proliferation was seen with ethanol plus cyclosporin A which inhibits interleukin 2 production. The level of inhibition with 250 ng/ml cyclosporin A alone was equivalent to the level seen with 62 ng/ml cyclosporin A plus 20 mM (94 mg%) ethanol. Ethanol also suppressed an immune effector mechanism. NK cytotoxicity was depressed in a monophasic, dose-dependent manner. Thus, ethanol might be considered as a possible adjunct in immunosuppressive therapy.

  16. Chronic ethanol intake modifies pyrrolidon carboxypeptidase activity in mouse frontal cortex synaptosomes under resting and K+ -stimulated conditions: role of calcium.

    PubMed

    Mayas, María Dolores; Ramírez-Expósito, María Jesús; García-López, María Jesús; Carrera, María Pilar; Martínez-Martos, José Manuel

    2008-07-04

    Pyrrolidon carboxypeptidase (Pcp) is an omega peptidase that removes pyroglutamyl N-terminal residues of peptides such as thyrotrophin-releasing hormone (TRH), which is one of the neuropeptides that has been localized into many areas of the brain and acts as an endogenous neuromodulator of several parameters related to ethanol (EtOH) consumption. In this study, we analysed the effects of chronic EtOH intake on Pcp activity on mouse frontal cortex synaptosomes and their corresponding supernatant under basal and K+ -stimulated conditions, in presence and absence of calcium (Ca2+) to know the regulation of Pcp on TRH. In basal conditions, chronic EtOH intake significantly decreased synaptosomes Pcp activity but only in absence of Ca2+. However, supernatant Pcp activity is also decreased in presence and absence of calcium. Under K+-stimulated conditions, chronic EtOH intake decreased synaptosomes Pcp activity but only in absence of Ca2+, whereas supernatant Pcp activity was significantly decreased only in presence of Ca2+. The general inhibitory effect of chronic EtOH intake on Pcp activity suggests an inhibition of TRH metabolism and an enhancement of TRH neurotransmitter/neuromodulator functions, which could be related to putative processes of tolerance to EtOH in which TRH has been involved. Our data may also indicate that active peptides and their degrading peptidases are released together to the synaptic cleft to regulate the neurotransmitter/neuromodulator functions of these peptides, through a Ca2+ -dependent mechanism.

  17. Actions of Ethanol on Voltage-Sensitive Sodium Channels. Effects on Neurotoxin-Stimulated Sodium Uptake in Synaptosomes

    DTIC Science & Technology

    1985-01-01

    concentration in the nonaqueuus (membrane) phase (Lyon et aL, 1981). Concentration- effect summarized in table 1 . When sodium channels were activated curves were...Voltage-Sensitive Sodium Channels : Effects on Neurotoxin-Stimulated Sodium Uptake in DT (7 Synaptosomes E L C MICHAEL J. MULLIN’ and WALTER A. HUNT...1984). At the present time, the 8 1 structural and functional properties of the voltage-sensitive sodium channels are understood most completely

  18. Anti-inflammatory effects of Perillae Herba ethanolic extract against TNF-α/IFN-γ-stimulated human keratinocyte HaCaT cells.

    PubMed

    Yang, Ju-Hye; Yoo, Jae-Myung; Lee, Esther; Lee, BoHyoung; Cho, Won-Kyung; Park, Kwang-Il; Yeul Ma, Jin

    2017-09-29

    Perillae Herba is a perennial plant that is widely distributed throughout Asia. The leaves of Perillae Herba have been widely used to treat various diseases, such as cold due to wind-cold, headache, cough, abdominal fullness, distention, and fish and crab poisoning. To assess the anti-inflammatory activity of Perillae Herba leaf ethanolic extract (PHE) in human keratinocytes, we measured the tumor necrosis factor (TNF)-α/interferon (IFN)-γ-induced mRNA expression and production of proinflammatory chemokines such as thymus and activation-regulated chemokines; regulated on activation, normal T cell expressed and secreted; interleukin (IL)-6; and IL-8 in HaCaT cells. We evaluated the ability of PHE to decrease the expression of proinflammatory marker proteins, such as mitogen-activated protein kinase (MAPK), STAT-1, and NK-κB, using western blot analysis and immunocytochemistry. PHE inhibited activation of p38, ERK, and JNK and suppressed the phosphorylation of STAT-1 and NK-κB in TNF-α/IFN-γ-stimulated HaCaT cells. PHE also suppressed chemokine mRNA and protein levels in TNF-α/IFN-γ-stimulated HaCaT cells. PHE appears to regulate chemokine formation by inhibiting activation of MAPK, as well as the STAT-1 and NK-κB pathways. PHE suppresses the expression and production of TNF-α/IFN-γ-stimulated proinflammatory chemokines by blocking NF-κB, STAT-1, and MAPK activation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Oral alprazolam acutely increases nucleus accumbens perfusion

    PubMed Central

    Wolf, Daniel H.; Pinkham, Amy E.; Satterthwaite, Theodore D.; Ruparel, Kosha; Elliott, Mark A.; Valdez, Jeffrey; Smith, Mark A.; Detre, John A.; Gur, Ruben C.; Gur, Raquel E.

    2014-01-01

    Benzodiazepines treat anxiety, but can also produce euphoric effects, contributing to abuse. Using perfusion magnetic resonance imaging, we provide the first direct evidence in humans that alprazolam (Xanax) acutely increases perfusion in the nucleus accumbens, a key reward-processing region linked to addiction. PMID:23070072

  20. Concomitant Caffeine Increases Binge Consumption of Ethanol in Adolescent and Adult Mice, But Produces Additive Motor Stimulation Only in Adolescent Animals.

    PubMed

    Fritz, Brandon M; Quoilin, Caroline; Kasten, Chelsea R; Smoker, Michael; Boehm, Stephen L

    2016-06-01

    Binge co-consumption of highly caffeinated energy drinks with alcohol (ethanol [EtOH]) has become a common practice among adolescents/young adults and has been associated with an increased incidence of hazardous behaviors. Animal models are critical in advancing our understanding the neurobehavioral consequences of this form of binge drinking. Surprisingly, virtually no work has explored caffeine and EtOH co-consumption or its long-term consequences in adolescent animals. The primary objective of the current study was to extend a previously established mouse model of voluntary binge caffeine and EtOH co-consumption to explore adolescent consumption and responses compared to adults. Adolescent and adult male C57BL/6J mice had daily limited access to caffeine (0.03% w/v), EtOH (20% v/v), a combined EtOH/caffeine solution, or water for 14 days via the binge-like drinking paradigm, drinking-in-the-dark (DID). Home cage locomotor activity was measured during DID in a subset of mice. Following DID, all mice rested for 18 days so that adolescents reached adulthood, whereupon all mice underwent 7 days of continuous access 2-bottle choice drinking for 10% (v/v) EtOH or water. Co-consumption with caffeine significantly increased EtOH intake and resultant blood ethanol concentrations in both adolescent and adult mice. In addition, adolescent mice exhibited a uniquely robust locomotor stimulant response to caffeine and EtOH co-consumption. Later EtOH intake and preference was not influenced, however, by prior fluid consumption history via DID. Together with findings from the human literature, our results suggest that caffeine co-consumption may positively influence binge alcohol consumption in adolescents/young adults. Importantly, this age group may be particularly sensitive to the additive stimulant effects of caffeinated alcohol consumption, an effect which may be related to the high incidence of associated negative outcomes in this population. These observations are

  1. Regulation of /sup 3/H-dopamine release by presynaptic GABA and glutamate heteroreceptors in rat brain nucleus accumbens synaptosomes

    SciTech Connect

    Kovalev, G.I.; Hetey, L.

    1987-06-01

    The aim of this investigation was a neurochemical study of the effect of agonists of different types of GABA receptors - muscimol (type A receptor), baclofen (type B receptor), delta-aminolevulinic acid (DALA; GABA autoreceptor), and also of GABA itself - on tritium-labelled dopamine release, stimulated by potassium cations, from synaptosomes of the nuclei accumbenes of the rat brain.

  2. Interactions between Brainstem Noradrenergic Neurons and the Nucleus Accumbens Shell in Modulating Memory for Emotionally Arousing Events

    ERIC Educational Resources Information Center

    Kerfoot, Erin C.; Williams, Cedric L.

    2011-01-01

    The nucleus accumbens shell (NAC) receives axons containing dopamine-[beta]-hydroxylase that originate from brainstem neurons in the nucleus of the solitary tract (NTS). Recent findings show that memory enhancement produced by stimulating NTS neurons after learning may involve interactions with the NAC. However, it is unclear whether these…

  3. Interactions between Brainstem Noradrenergic Neurons and the Nucleus Accumbens Shell in Modulating Memory for Emotionally Arousing Events

    ERIC Educational Resources Information Center

    Kerfoot, Erin C.; Williams, Cedric L.

    2011-01-01

    The nucleus accumbens shell (NAC) receives axons containing dopamine-[beta]-hydroxylase that originate from brainstem neurons in the nucleus of the solitary tract (NTS). Recent findings show that memory enhancement produced by stimulating NTS neurons after learning may involve interactions with the NAC. However, it is unclear whether these…

  4. Food restriction increases NMDA receptor-mediated calcium-calmodulin kinase II and NMDA receptor/extracellular signal-regulated kinase 1/2-mediated cyclic amp response element-binding protein phosphorylation in nucleus accumbens upon D-1 dopamine receptor stimulation in rats.

    PubMed

    Haberny, S L; Carr, K D

    2005-01-01

    Biological drive states exert homeostatic control in part by increasing the reinforcing effects of environmental incentive stimuli. An apparent by-product of this adaptive response is the enhanced acquisition of drug self-administration behavior in food-restricted (FR) animals. While previous research has demonstrated increased central sensitivity to rewarding effects of abused drugs and direct dopamine (DA) receptor agonists in FR subjects, the underlying neurobiology is not well understood. Recently, it was demonstrated that intracerebroventricular (i.c.v.) injection of the D-1 DA receptor agonist, SKF-82958 produces a stronger activation of striatal extracellular signal-regulated kinase (ERK) 1/2 and cyclic AMP response element-binding protein (CREB) in FR relative to ad libitum (AL) fed rats. The main purpose of the present study was to characterize the involvement and mechanisms of interaction between NMDA receptor function and the augmented cellular responses to D-1 DA receptor stimulation in nucleus accumbens (NAc) of FR rats. In experiment 1, Western immunoblotting was used to demonstrate that i.c.v. injection of SKF-82958 (20 microg) produces greater phosphorylation of the NMDA NR1 subunit and calcium-calmodulin kinase II (CaMK II) in NAc of FR as compared with AL rats. In experiment 2, pretreatment of subjects with the NMDA antagonist, MK-801 (1.0 mg/kg, i.p.) decreased SKF-82958-induced activation of CaMK II, ERK1/2 and CREB, and reversed the augmenting effect of FR on activation of all three proteins. In experiment 3, pretreatment with the mitogen-activated protein kinase/ERK kinase inhibitor SL-327 (60 mg/kg, i.p.) suppressed SKF-82958- induced activation of ERK1/2 and reversed the augmenting effect of FR on CREB activation. These results point to specific neuroadaptations in the NAc of FR rats whereby D-1 DA receptor stimulation leads to increased NMDA NR1 subunit phosphorylation and consequent increases in NMDA receptor-dependent CaMK II and ERK1

  5. Accumbens nNOS Interneurons Regulate Cocaine Relapse.

    PubMed

    Smith, Alexander C W; Scofield, Michael D; Heinsbroek, Jasper A; Gipson, Cassandra D; Neuhofer, Daniela; Roberts-Wolfe, Doug J; Spencer, Sade; Garcia-Keller, Constanza; Stankeviciute, Neringa M; Smith, Rachel J; Allen, Nicholas P; Lorang, Melissa R; Griffin, William C; Boger, Heather A; Kalivas, Peter W

    2017-01-25

    Relapse to drug use can be initiated by drug-associated cues. The intensity of cue-induced relapse is correlated with the induction of transient synaptic potentiation (t-SP) at glutamatergic synapses on medium spiny neurons (MSNs) in the nucleus accumbens core (NAcore) and requires spillover of glutamate from prefrontal cortical afferents. We used a rodent self-administration/reinstatement model of relapse to show that cue-induced t-SP and reinstated cocaine seeking result from glutamate spillover, initiating a metabotropic glutamate receptor 5 (mGluR5)-dependent increase in nitric oxide (NO) production. Pharmacological stimulation of mGluR5 in NAcore recapitulated cue-induced reinstatement in the absence of drug-associated cues. Using NO-sensitive electrodes, mGluR5 activation by glutamate was shown to stimulate NO production that depended on activation of neuronal nitric oxide synthase (nNOS). nNOS is expressed in ∼1% of NAcore neurons. Using a transgene strategy to express and stimulate designer receptors that mimicked mGluR5 signaling through Gq in nNOS interneurons, we recapitulated cue-induced reinstatement in the absence of cues. Conversely, using a transgenic caspase strategy, the intensity of cue-induced reinstatement was correlated with the extent of selective elimination of nNOS interneurons. The induction of t-SP during cued reinstatement depends on activating matrix metalloproteinases (MMPs) and selective chemogenetic stimulation of nNOS interneurons recapitulated MMP activation and t-SP induction (increase in AMPA currents in MSNs). These data demonstrate critical involvement of a sparse population of nNOS-expressing interneurons in cue-induced cocaine seeking, revealing a bottleneck in brain processing of drug-associated cues where therapeutic interventions could be effective in treating drug addiction. Relapse to cocaine use in a rat model is associated with transient increases in synaptic strength at prefrontal cortex synapses in the nucleus

  6. PRENATAL ETHANOL EXPOSURE INCREASES ETHANOL INTAKE AND REDUCES C-FOS EXPRESSION IN INFRALIMBIC CORTEX OF ADOLESCENT RATS

    PubMed Central

    Fabio, Maria Carolina; March, Samanta M.; Molina, Juan Carlos; Nizhnikov, Michael E; Spear, Norman E; Pautassi, Ricardo Marcos

    2013-01-01

    Prenatal ethanol exposure significantly increases later predisposition for alcohol intake, but the mechanisms associated with this phenomenon remain hypothetical. This study analyzed (Exp. 1) ethanol intake in adolescent inbred WKAH/Hok Wistar rats prenatally exposed to ethanol (2.0 g/kg) or vehicle, on gestational days 17–20. Subsequent Experiments (2, 3 and 4) tested several variables likely to underlie the effect of gestational ethanol on adolescent ethanol preference, including ethanol-induced locomotor activation (LMA), ethanol-induced emission of ultrasonic vocalizations (USVs) after exposure to a rough exteroceptive stimulus, and induction of the immediate early gene C-fos in brain areas associated with processing of reward stimuli and with the retrieval and extinction of associative learning. Prenatal ethanol induced a two-fold increase in ethanol intake. Adolescents exhibited significant ethanol-induced LMA, emitted more aversive than appetitive USVs, and postnatal ethanol administration significantly exacerbated the emission of USVs. These effects, however, were not affected by prenatal ethanol. Adolescents prenatally exposed to ethanol as fetuses exhibited reduced neural activity in infralimbic cortex (but not in prelimbic cortex or nucleus accumbens core or shell), an area that has been implicated in the extinction of drug-mediated associative memories. Ethanol metabolism was not affected by prenatal ethanol. Late gestational exposure to ethanol significantly heightened drinking in the adolescent offspring of an inbred rat strain. Ethanol-induced LMA and USVs were not associated with differential ethanol intake due to prenatal ethanol exposure. Prenatal ethanol, however, altered basal neural activity in the infralimbic prefrontal cortex. Future studies should analyze the functionality of medial prefrontal cortex after prenatal ethanol and its potential association with predisposition for heightened ethanol intake. PMID:23266368

  7. Prenatal ethanol exposure increases ethanol intake and reduces c-Fos expression in infralimbic cortex of adolescent rats.

    PubMed

    Fabio, Maria Carolina; March, Samanta M; Molina, Juan Carlos; Nizhnikov, Michael E; Spear, Norman E; Pautassi, Ricardo Marcos

    2013-02-01

    Prenatal ethanol exposure significantly increases later predisposition for alcohol intake, but the mechanisms associated with this phenomenon remain hypothetical. This study analyzed (Experiment 1) ethanol intake in adolescent inbred WKAH/Hok Wistar rats prenatally exposed to ethanol (2.0g/kg) or vehicle, on gestational days 17-20. Subsequent Experiments (2, 3 and 4) tested several variables likely to underlie the effect of gestational ethanol on adolescent ethanol preference, including ethanol-induced locomotor activation (LMA), ethanol-induced emission of ultrasonic vocalizations (USVs) after exposure to a rough exteroceptive stimulus, and induction of the immediate early gene C-fos in brain areas associated with processing of reward stimuli and with the retrieval and extinction of associative learning. Prenatal ethanol induced a two-fold increase in ethanol intake. Adolescents exhibited significant ethanol-induced LMA, emitted more aversive than appetitive USVs, and postnatal ethanol administration significantly exacerbated the emission of USVs. These effects, however, were not affected by prenatal ethanol. Adolescents prenatally exposed to ethanol as fetuses exhibited reduced neural activity in infralimbic cortex (but not in prelimbic cortex or nucleus accumbens core or shell), an area that has been implicated in the extinction of drug-mediated associative memories. Ethanol metabolism was not affected by prenatal ethanol. Late gestational exposure to ethanol significantly heightened drinking in the adolescent offspring of an inbred rat strain. Ethanol-induced LMA and USVs were not associated with differential ethanol intake due to prenatal ethanol exposure. Prenatal ethanol, however, altered basal neural activity in the infralimbic prefrontal cortex. Future studies should analyze the functionality of medial prefrontal cortex after prenatal ethanol and its potential association with predisposition for heightened ethanol intake.

  8. Simultaneous prenatal ethanol and nicotine exposure affect ethanol consumption, ethanol preference and oxytocin receptor binding in adolescent and adult rats.

    PubMed

    Williams, Sarah K; Cox, Elizabeth T; McMurray, Matthew S; Fay, Emily E; Jarrett, Thomas M; Walker, Cheryl H; Overstreet, David H; Johns, Josephine M

    2009-01-01

    Ethanol consumption and smoking during pregnancy are common, despite the known adverse effects on the fetus. The teratogenicity of each drug independently is well established; however, the effects of concurrent exposure to ethanol and nicotine in preclinical models remain unclear. This study examined the impact of simultaneous prenatal exposure to both ethanol and nicotine on offspring ethanol preference behaviors and oxytocin system dynamics. Rat dams were given liquid diet (17% ethanol derived calories (EDC)) on gestational day (GD) 5 and 35% EDC from GD 6-20 and concurrently an osmotic minipump delivered nicotine (3-6mg/kg/day) from GD 4-postpartum day 10. Offspring were tested for ethanol preference during adolescence (postnatal day (PND) 30-43) and again at adulthood (PND 60-73), followed by assays for oxytocin mRNA expression and receptor binding in relevant brain regions. Prenatal exposure decreased ethanol preference in males during adolescence, and decreased consumption and preference in females during adulthood compared to controls. Oxytocin receptor binding in the nucleus accumbens and hippocampus was increased in adult prenatally exposed males only. Prenatal exposure to these drugs sex-specifically decreased ethanol preference behavior in offspring unlike reports for either drug separately. The possible role of oxytocin in reduction of ethanol consumption behavior is highlighted.

  9. Simultaneous Prenatal Ethanol and Nicotine Exposure Affect Ethanol Consumption, Ethanol Preference and Oxytocin Receptor Binding in Adolescent and Adult Rats

    PubMed Central

    Williams, Sarah K.; Cox, Elizabeth T.; McMurray, Matthew S.; Fay, Emily E.; Jarrett, Thomas M.; Walker, Cheryl H.; Overstreet, David H.; Johns, Josephine M.

    2009-01-01

    Ethanol consumption and smoking during pregnancy are common, despite the known adverse effects on the fetus. The teratogenicity of each drug independently is well established; however, the effects of concurrent exposure to ethanol and nicotine in preclinical models remain unclear. This study examined the impact of simultaneous prenatal exposure to both ethanol and nicotine on offspring ethanol preference behaviors and oxytocin system dynamics. Rat dams were given liquid diet (17% ethanol derived calories(EDC)) on gestational day (GD) 5 and 35% EDC fromGD 6-20 and concurrently an osmotic minipump delivered nicotine (3-6 mg/kg/day) from GD 4 - postpartum day 10. Offspring were tested for ethanol preference during adolescence (postnatal day (PND) 30-43) and again at adulthood (PND 60-73), followed by assays for oxytocin mRNA expression and receptor binding in relevant brain regions. Prenatal exposure decreased ethanol preference in males during adolescence, and decreased consumption and preference in females during adulthood compared to controls. Oxytocin receptor binding in the nucleus accumbens and hippocampus was increased in adult prenatally exposed males only. Prenatal exposure to these drugs sex-specifically decreased ethanol preference behavior in offspring unlike reports for either drug separately. The possible role of oxytocin in reduction of ethanol consumption behavior is highlighted. PMID:19539752

  10. Acquisition of an appetitive behavior prevents development of stress-induced neurochemical modifications in rat nucleus accumbens.

    PubMed

    Nanni, Giulio; Scheggi, Simona; Leggio, Benedetta; Grappi, Silvia; Masi, Flavio; Rauggi, Riccardo; De Montis, Maria Graziella

    2003-08-15

    In rats, exposure to chronic unavoidable stress produces a decrease in dopamine output in the nucleus accumbens shell that is accompanied by a decreased density of the dopamine transporter and an increased activity of the dopamine-D(1) receptor complex. These modifications have been hypothesized to be adaptive to decreased dopamine output in stressed rats. We investigated whether the learning of an appetitive behavior sustained by palatable food, which is associated with increased dopamine output in the nucleus accumbens shell as measured by microdialysis experiments, would affect the modifications induced by chronic stress exposure on dopamine transporter density and dopamine-D(1) receptor complex activity in the nucleus accumbens. Rats exposed to chronic unavoidable stress after acquisition of the appetitive behavior showed a higher dopamine extraneuronal release in the nucleus accumbens shell than that of stressed animals, and similar to that of control rats. Moreover, previous acquisition of the appetitive behavior prevented development of a stress-induced decrease in dopamine transporter density, measured by [(3)H]-WIN 35428 binding, a stress-induced increase in dopamine-D(1) receptor density, measured by binding of [(3)H]-SCH 23390, and SKF 38393-stimulated adenylyl cyclase activity in the nucleus accumbens. These results support the hypothesis that changes induced in pre- and postsynaptic dopaminergic transmission by chronic stress exposure are related to decreased dopamine output. Copyright 2003 Wiley-Liss, Inc.

  11. Alcohol intoxications during adolescence increase motivation for alcohol in adult rats and induce neuroadaptations in the nucleus accumbens.

    PubMed

    Alaux-Cantin, Stéphanie; Warnault, Vincent; Legastelois, Rémi; Botia, Béatrice; Pierrefiche, Olivier; Vilpoux, Catherine; Naassila, Mickaël

    2013-04-01

    Adolescent alcohol binge drinking constitutes a major vulnerability factor to develop alcoholism. However, mechanisms underlying this susceptibility remain unknown. We evaluated the effect of adolescent binge-like ethanol intoxication on vulnerability to alcohol abuse in Sprague-Dawley rats. To model binge-like ethanol intoxication, every 2 days, rats received an ethanol injection (3.0 g/kg) for 2 consecutive days across 14 days either from postnatal day 30 (PND30) to 43 (early adolescence) or from PND 45 to PND 58 (late adolescence). In young adult animals, we measured free ethanol consumption in the two-bottle choice paradigm, motivation for ethanol in the operant self-administration task and both ethanol's rewarding and aversive properties in the conditioned place preference (CPP) and taste aversion (CTA) paradigms. While intermittent ethanol intoxications (IEI) during late adolescence had no effect on free-choice 10% ethanol consumption, we found that IEI during early adolescence promoted free-choice 10% ethanol consumption, enhanced motivation for ethanol in the self-administration paradigm and induced a loss of both ethanol-induced CPP and CTA in young adults. No modification in either sucrose self-administration or amphetamine-induced CPP was observed. As the nucleus accumbens (Nac) is particularly involved in addictive behavior, we analyzed IEI-induced long-term neuroadaptations in the Nac using c-Fos immunohistochemistry and an array of neurotransmission-related genes. This vulnerability to ethanol abuse was associated with a lower c-Fos immunoreactivity in the Nac and enduring alterations of the expression of Penk and Slc6a4, 2 neurotransmission-related genes that have been shown to play critical roles in the behavioral effects of ethanol and alcoholism.

  12. Intra-accumbens baclofen, but not muscimol, increases second order instrumental responding for food reward in rats.

    PubMed

    Pulman, Kim G T; Somerville, Elizabeth M; Clifton, Peter G

    2012-01-01

    Stimulation of either GABA(A) or GABA(B) receptors within the nucleus accumbens shell strongly enhances food intake in rats. However the effects of subtype-selective stimulation of GABA receptors on instrumental responses for food reward are less well characterized. Here we contrast the effects of the GABA(A) receptor agonist muscimol and GABA(B) receptor agonist baclofen on instrumental responding for food using a second order reinforcement schedule. Bilateral intra-accumbens administration of baclofen (220-440 pmol) stimulated responding but a higher dose (660 pmol) induced stereotyped oral behaviour that interfered with responding. Baclofen (220-660 pmol) also stimulated intake of freely available chow. Muscimol (220-660 pmol) was without effect on responding for food on this schedule but did stimulate intake of freely available chow. Unilateral administration of either baclofen or muscimol (220 pmol) induced similar patterns of c-fos immunoreactivity in several hypothalamic sites but differed in its induction in the central nucleus of the amygdala. We conclude that stimulation of GABA(A) or GABA(B) receptors in the nucleus accumbens shell of rats produces clearly distinguishable effects on operant responding for food.

  13. Acute administration of 3-nitropropionic acid, a reactive oxygen species generator, boosts ethanol-induced locomotor stimulation. New support for the role of brain catalase in the behavioural effects of ethanol.

    PubMed

    Manrique, Héctor M; Miquel, Marta; Aragon, Carlos M G

    2006-12-01

    The antioxidant enzyme catalase by reacting with H(2)O(2), forms the compound known as compound I (catalase-H(2)O(2)). This compound is able to oxidise ethanol to acetaldehyde in the CNS. It has been demonstrated that 3-nitropropionic acid (3-NPA) induces the activity of the brain catalase-H(2)O(2) system. In this study, we tested the effect of 3-NPA on both the brain catalase-H(2)O(2) system and on the acute locomotor effect of ethanol. To find the optimal interval for the 3-NPA-ethanol interaction mice were treated with 3-NPA 0, 45, 90 and 135min before an ethanol injection (2.4mg/kg). In a second study, 3-NPA (0, 15, 30 or 45mg/kg) was administered SC to animals 90min before saline or several doses of ethanol (1.6 or 2.4g/kg), and the open-field behaviour was registered. The specificity of the effect of 3-NPA (45mg/kg) was evaluated on caffeine (10mg/kg IP) and cocaine (4mg/kg)-induced locomotion. The prevention of 3-NPA effects on both ethanol-induced locomotion and brain catalase activity by L-carnitine, a potent antioxidant, was also studied. Nitropropionic acid boosted ethanol-induced locomotion and brain catalase activity after 90min. The effect of 3-NPA was prevented by l-carnitine administration. These results indicate that 3-NPA enhanced ethanol-induced locomotion by increasing the activity of the brain catalase system.

  14. The nucleus accumbens beyond the anterior commissure: implications for psychosurgery.

    PubMed

    Lucas-Neto, Lia; Mourato, Beatriz; Neto, Daniel; Oliveira, Edson; Martins, Hugo; Correia, Francisco; Gonçalves-Ferreira, António

    2014-01-01

    The nucleus accumbens (Acc) is a basal forebrain structure integrated in the dopaminergic cerebral rewarding circuits and implicated in some neuropsychiatric disorders. It has become a target for deep brain stimulation for some of these disorders when refractory to medical treatment. However, it is controversial as to which target is the best and similar results have been achieved with the stimulation of neighboring structures such as the bed nucleus of the stria terminalis (BNST). Previous studies have established the stereotactic anatomy of the human Acc, but some difficulties remain concerning its precise posterior limit, which is assumed to be at the level of the anterior commissure (AC). It is our purpose to clarify the anatomy of this zone, given the importance of its exact identification in psychosurgery. A total of 16 Acc were collected by autopsy, fixed, dissected, embedded and cut in coronal 5-µm slices. The slices were stained with hematoxylin and eosin, marked with anti-D1 and anti-D2 antibodies and analyzed under a microscope. The human Acc has the same cellular structure as the dorsal striatum, except in its posterior subcommissural part where voluminous neurons prevail, similar to and contiguous with the BNST. The Acc is longer than previously described, with a sub- and postcommissural extension behind the AC, continuous with the BNST. © 2014 S. Karger AG, Basel.

  15. Kappa Opioid Receptor Activation Potentiates the Cocaine-Induced Increase in Evoked Dopamine Release Recorded In Vivo in the Mouse Nucleus Accumbens

    PubMed Central

    Ehrich, Jonathan M; Phillips, Paul E M; Chavkin, Charles

    2014-01-01

    Behavioral stressors increase addiction risk in humans and increase the rewarding valence of drugs of abuse including cocaine, nicotine and ethanol in animal models. Prior studies have established that this potentiation of drug reward was mediated by stress-induced release of the endogenous dynorphin opioids and subsequent kappa opioid receptor (KOR) activation. In this study, we used in vivo fast scan cyclic voltammetry to test the hypothesis that KOR activation before cocaine administration might potentiate the evoked release of dopamine from ventral tegmental (VTA) synaptic inputs to the nucleus accumbens (NAc) and thereby increase the rewarding valence of cocaine. The KOR agonist U50488 inhibited dopamine release evoked by either medial forebrain bundle (MFB) or pedunculopontine tegmental nucleus (PPTg) activation of VTA inputs to the shell or core of the mouse NAc. Cocaine administration increased the dopamine response recorded in either the shell or core evoked by either MFB or PPTg stimulation. Administration of U50488 15 min before cocaine blocked the conditioned place preference (CPP) to cocaine, but only significantly reduced the effect of cocaine on the dopamine response evoked by PPTg stimulation to NAc core. In contrast, administration of U50488 60 min before cocaine significantly potentiated cocaine CPP and significantly increased the effects of cocaine on the dopamine response evoked by either MFB or PPTg stimulation, recorded in either NAc shell or core. Results of this study support the concept that stress-induced activation of KOR by endogenous dynorphin opioids may enhance the rewarding valence of drugs of abuse by potentiating the evoked dopamine response. PMID:24971603

  16. Ethanol Basics

    SciTech Connect

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  17. Myeloid Cell-Specific Lipin-1 Deficiency Stimulates Endocrine Adiponectin-FGF15 Axis and Ameliorates Ethanol-Induced Liver Injury in Mice

    PubMed Central

    Wang, Jiayou; Kim, Chunki; Jogasuria, Alvin; Han, Yoonhee; Hu, Xudong; Wu, Jiashin; Shen, Hong; Chrast, Roman; Finck, Brian N.; You, Min

    2016-01-01

    Lipin-1 is a phosphatidate phosphohydrolase (PAP) required for the generation of diacylglycerol during glycerolipid synthesis, and exhibits dual functions in the regulation of lipid metabolism. Lipin-1 has been implicated in the pathogenesis of alcoholic liver disease (ALD). In the present study, we assessed lipin-1 function in myeloid cells in ALD using a myeloid cell-specific lipin-1 knockout (mLipin-1KO) mouse model. Utilizing the Gao-binge ethanol feeding protocol, matched mLipin-1KO mice and littermate loxP control (WT) mice were pair-fed with either an ethanol-containing diet or an ethanol-free diet (control). Surprisingly, deletion of lipin-1 in myeloid cells dramatically attenuated liver inflammatory responses and ameliorated liver injury that would normally occur following the ethanol feeding protocol, but slightly exacerbated the ethanol-induced steatosis in mice. Mechanistically, myeloid cell-specific lipin-1 deficiency concomitantly increased the fat-derived adiponectin and ileum-derived fibroblast growth factor (FGF) 15. In concordance with concerted elevation of circulating adiponectin and FGF15, myeloid cell-specific lipin-1 deficiency diminished hepatic nuclear factor kappa B (NF-κB) activity, limited liver inflammatory responses, normalized serum levels of bile acids, and protected mice from liver damage after ethanol challenge. Our novel data demonstrate that myeloid cell-specific deletion of lipin-1 ameliorated inflammation and alcoholic hepatitis in mice via activation of endocrine adiponectin-FGF15 signaling. PMID:27666676

  18. Prefrontal Cortex to Accumbens Projections in Sleep Regulation of Reward

    PubMed Central

    Liu, Zheng; Wang, Yao; Cai, Li; Li, Yizhi; Chen, Bo; Dong, Yan

    2016-01-01

    Sleep profoundly affects the emotional and motivational state. In humans and animals, loss of sleep often results in enhanced motivation for reward, which has direct implications for health risks as well as potential benefits. Current study aims at understanding the mechanisms underlying sleep deprivation (SDe)-induced enhancement of reward seeking. We found that after acute SDe, mice had an increase in sucrose seeking and consumption but not food intake, suggesting a selective enhancement of motivation for reward. In the nucleus accumbens (NAc), a key brain region regulating emotional and motivational responses, we observed a decrease in the ratio of the overall excitatory over inhibitory synaptic inputs onto NAc principle neurons after SDe. The shift was partly mediated by reduced glutamatergic transmission of presynaptic origin. Further analysis revealed that there was selective reduction of the glutamate release probability at the medial prefrontal cortex (mPFC)-to-NAc synapses, but not those from the hippocampus, thalamus, or the basal lateral amygdala. To reverse this SDe-induced synaptic alteration, we expressed the stabilized step function opsin (SSFO) in the mPFC; optogenetic stimulation of SSFO at mPFC-to-NAc projection terminals persistently enhanced the action potential-dependent glutamate release. Intra-NAc optogenetic stimulation of SSFO selectively at mPFC-to-NAc terminals restored normal sucrose seeking in mice after SDe without affecting food intake. These results highlight the mPFC-to-NAc projection as a key circuit-based target for sleep to regulate reward-motivated behaviors. SIGNIFICANCE STATEMENT Sleep loss, a costly challenge of modern society, has profound physiological and psychological consequences, including altered reward processing of the brain. The current study aims at understanding the mechanisms underlying sleep deprivation-induced enhancement of reward seeking. We identify that the medial prefrontal cortex (m

  19. Prefrontal Cortex to Accumbens Projections in Sleep Regulation of Reward.

    PubMed

    Liu, Zheng; Wang, Yao; Cai, Li; Li, Yizhi; Chen, Bo; Dong, Yan; Huang, Yanhua H

    2016-07-27

    Sleep profoundly affects the emotional and motivational state. In humans and animals, loss of sleep often results in enhanced motivation for reward, which has direct implications for health risks as well as potential benefits. Current study aims at understanding the mechanisms underlying sleep deprivation (SDe)-induced enhancement of reward seeking. We found that after acute SDe, mice had an increase in sucrose seeking and consumption but not food intake, suggesting a selective enhancement of motivation for reward. In the nucleus accumbens (NAc), a key brain region regulating emotional and motivational responses, we observed a decrease in the ratio of the overall excitatory over inhibitory synaptic inputs onto NAc principle neurons after SDe. The shift was partly mediated by reduced glutamatergic transmission of presynaptic origin. Further analysis revealed that there was selective reduction of the glutamate release probability at the medial prefrontal cortex (mPFC)-to-NAc synapses, but not those from the hippocampus, thalamus, or the basal lateral amygdala. To reverse this SDe-induced synaptic alteration, we expressed the stabilized step function opsin (SSFO) in the mPFC; optogenetic stimulation of SSFO at mPFC-to-NAc projection terminals persistently enhanced the action potential-dependent glutamate release. Intra-NAc optogenetic stimulation of SSFO selectively at mPFC-to-NAc terminals restored normal sucrose seeking in mice after SDe without affecting food intake. These results highlight the mPFC-to-NAc projection as a key circuit-based target for sleep to regulate reward-motivated behaviors. Sleep loss, a costly challenge of modern society, has profound physiological and psychological consequences, including altered reward processing of the brain. The current study aims at understanding the mechanisms underlying sleep deprivation-induced enhancement of reward seeking. We identify that the medial prefrontal cortex (mPFC)-to-nucleus accumbens (NAc) glutamatergic

  20. Estradiol in the Preoptic Area Regulates the Dopaminergic Response to Cocaine in the Nucleus Accumbens

    PubMed Central

    Tobiansky, Daniel J; Will, Ryan G; Lominac, Kevin D; Turner, Jonathan M; Hattori, Tomoko; Krishnan, Krittika; Martz, Julia R; Nutsch, Victoria L; Dominguez, Juan M

    2016-01-01

    The sex-steroid hormone estradiol (E2) enhances the psychoactive effects of cocaine, as evidenced by clinical and preclinical studies. The medial preoptic area (mPOA), a region in the hypothalamus, is a primary neural locus for neuroendocrine integration, containing one of the richest concentrations of estrogen receptors in the CNS and also has a key role in the regulation of naturally rewarding behaviors. However, whether estradiol enhances the neurochemical response to cocaine by acting in the mPOA is still unclear. Using neurotoxic lesions and microdialysis, we examined whether the mPOA modulates cocaine-induced neurochemical activity in the nucleus accumbens. Tract tracing and immunohistochemical staining were used to determine whether projections from the mPOA to the ventral tegmental area (VTA) are sensitive to estrogen signaling. Finally, estradiol microinjections followed by microdialysis were used to determine whether estrogenic signaling in the mPOA modulates cocaine-induced changes of dopamine in the nucleus accumbens. Results showed that lesions of the mPOA or microinjections of estradiol directly into the mPOA increased cocaine-induced release of dopamine in the nucleus accumbens. Immunohistochemical analyses revealed that the mPOA modulates cocaine responsiveness via projections to both dopaminergic and GABAergic neurons in the VTA, and that these projections are sensitive to estrogenic stimulation. Taken together, these findings point to a novel estradiol-dependent pathway that modulates cocaine-induced neurochemical activity in the mesolimbic system. PMID:26647972

  1. Perimovement decrease of alpha/beta oscillations in the human nucleus accumbens

    PubMed Central

    Dürschmid, Stefan; Rutledge, Robb B.; Zaehle, Tino; Schmitt, Friedhelm C.; Kaufmann, Jörn; Voges, Jürgen; Heinze, Hans-Jochen; Dolan, Raymond J.; Schoenfeld, Mircea Ariel

    2016-01-01

    The human nucleus accumbens is thought to play an important role in guiding future action selection via an evaluation of current action outcomes. Here we provide electrophysiological evidence for a more direct, i.e., online, role during action preparation. We recorded local field potentials from the nucleus accumbens in patients with epilepsy undergoing surgery for deep brain stimulation. We found a consistent decrease in the power of alpha/beta oscillations (10–30 Hz) before and around the time of movements. This perimovement alpha/beta desynchronization was observed in seven of eight patients and was present both before instructed movements in a serial reaction time task as well as before self-paced, deliberate choices in a decision making task. A similar beta decrease over sensorimotor cortex and in the subthalamic nucleus has been directly related to movement preparation and execution. Our results support the idea of a direct role of the human nucleus accumbens in action preparation and execution. PMID:27486103

  2. Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving

    PubMed Central

    Lee, Brian R.; Ma, Yao-ying; Huang, Yanhua H.; Wang, Xiusong; Otaka, Mami; Ishikawa, Masago; Neumann, Peter A.; Graziane, Nicolas M.; Brown, Travis E.; Suska, Anna; Guo, Changyong; Lobo, Mary Kay; Sesack, Susan R.; Wolf, Marina E.; Nestler, Eric J.; Shaham, Yavin; Schlüter, Oliver M.; Dong, Yan

    2013-01-01

    In rat models of drug relapse and craving, cue-induced cocaine seeking progressively increases after drug withdrawal. This ‘incubation of cocaine craving’ is partially mediated by time-dependent adaptations at glutamatergic synapses in nucleus accumbens. However, the circuit-level adaptations mediating this plasticity remain elusive. Here we studied silent synapses—often regarded as immature synapses that express stable NMDA receptors with AMPA receptors either absent or labile—in basolateral amygdala-to-accumbens projection in incubation of cocaine craving. Silent synapses were detected within this projection during early withdrawal from cocaine. As the withdrawal period progressed, these silent synapses became ‘unsilenced’, a process involving synaptic insertion of calcium-permeable AMPA receptors (CP-AMPARs). In vivo optogenetic stimulation-induced downregulation of CP-AMPARs at amygdala-to-NAc synapses, which re-silenced some of the previously silent synapses after prolonged withdrawal, decreased cocaine incubation. Our finding indicates that silent synapse-based reorganization of the amygdala-to-accumbens projection is critical for persistent cocaine craving and relapse after withdrawal. PMID:24077564

  3. Ethanol Stimulates Endoplasmic Reticulum Inositol Triphosphate and Sigma Receptors to Promote Withdrawal-Associated Loss of Neuron-Specific Nuclear Protein/Fox-3.

    PubMed

    Reynolds, Anna R; Saunders, Meredith A; Prendergast, Mark A

    2016-07-01

    Prior studies demonstrate that ethanol (EtOH) exposure induces the release of intracellular calcium (CA(2+) ) in modulation of γ-aminobutyric acid-ergic tone and produces concomitant alterations in sigma (σ)-1 protein expression that may contribute to the development EtOH dependence. However, the influence of CA(2+) released from endoplasmic reticulum (ER)-bound inositol triphosphate (IP3) and σ-1 receptors in regulating hippocampal function has yet to be delineated. Rat hippocampal explants were subjected to chronic intermittent EtOH (CIE) exposure with or without the addition of IP3 inhibitor xestospongin C (0 to 0.5 μM) or σ-1 receptor antagonist BD-1047 (0 to 80 μM). Hippocampal viability was assessed via immunohistochemical labeling of neuron-specific nuclear protein (NeuN)/Fox-3 in CA1, CA3, and dentate gyrus (DG) subregions. Exposure to CIE produced consistent and significant decreases of NeuN/Fox-3 in each primary cell layer of the hippocampal formation. Co-exposure to xestospongin reversed these effects in the CA1 subregion and significantly attenuated these effects in the CA3 and DG regions. Xestospongin application also significantly increased NeuN/Fox-3 immunofluorescence in EtOH-naïve hippocampi. Co-exposure to 20 μM BD-1047 also reversed the loss of NeuN/Fox-3 during CIE exposure in each hippocampal cell layer, whereas exposure to 80 μM BD-1047 did not alter NeuN/Fox-3 in EtOH-treated hippocampi. By contrast, 80 μM BD-1047 application significantly increased NeuN/Fox-3 immunofluorescence in EtOH-naïve hippocampi in each subregion. These data suggest that EtOH stimulates ER IP3 and σ-1 receptors to promote hippocampal loss of NeuN/Fox-3 during CIE. Copyright © 2016 by the Research Society on Alcoholism.

  4. Apathy in Parkinson's disease is associated with nucleus accumbens atrophy: a magnetic resonance imaging shape analysis.

    PubMed

    Carriere, Nicolas; Besson, Pierre; Dujardin, Kathy; Duhamel, Alain; Defebvre, Luc; Delmaire, Christine; Devos, David

    2014-06-01

    Apathy is characterized by lack of interest, loss of initiative, and flattening of affect. It is a frequent, very disabling nonmotor complication of Parkinson's disease (PD). The condition may notably occur when dopaminergic medications are tapered after the initiation of subthalamic stimulation and thus can be referred to as "dopaminergic apathy." Even in the absence of tapering, some patients may develop a form of apathy as PD progresses. This form is often related to cognitive decline and does not respond to dopaminergic medications (dopa-resistant apathy). We aimed at determining whether dopa-resistant apathy in PD is related to striatofrontal morphological changes. We compared the shape of the striatum (using spherical harmonic parameterization and sampling in a three-dimensional point distribution model [SPHARM-PDM]), cortical thickness, and fractional anisotropy (using tract-based spatial statistics) in 10 consecutive patients with dopamine-refractory apathy, 10 matched nonapathetic PD patients and 10 healthy controls. Apathy in PD was associated with atrophy of the left nucleus accumbens. The SPHARM-PDM analysis highlighted (1) a positive correlation between the severity of apathy and atrophy of the left nucleus accumbens, (2) greater atrophy of the dorsolateral head of the left caudate in apathetic patients than in nonapathetic patients, and (3) greater atrophy in the bilateral nucleus accumbens in apathetic patients than in controls. There were no significant intergroup differences in cortical thickness or fractional anisotropy. Dopa-resistant apathy in PD was associated with atrophy of the left nucleus accumbens and the dorsolateral head of the left caudate.

  5. α2δ-1 signaling in nucleus accumbens is necessary for cocaine-induced relapse.

    PubMed

    Spencer, Sade; Brown, Robyn M; Quintero, Gabriel C; Kupchik, Yonatan M; Thomas, Charles A; Reissner, Kathryn J; Kalivas, Peter W

    2014-06-18

    Relapse to cocaine seeking is associated with potentiated excitatory synapses in nucleus accumbens. α2δ-1 is an auxiliary subunit of voltage-gated calcium channels that affects calcium-channel trafficking and kinetics, initiates extracellular signaling cascades, and promotes excitatory synaptogenesis. Previous data demonstrate that repeated exposure to alcohol, nicotine, methamphetamine, and morphine upregulates α2δ-1 in reward-related brain regions, but it was unclear whether this alteration generalized to cocaine. Here, we show that α2δ-1 protein was increased in nucleus accumbens after cocaine self-administration and extinction compared with saline controls. Furthermore, the endogenous ligand thrombospondin-1, responsible for the synaptogenic properties of the α2δ-1 receptor, was likewise elevated. Using whole-cell patch-clamp recordings of EPSCs in nucleus accumbens, we demonstrated that gabapentin, a specific α2δ-1 antagonist, preferentially reduced the amplitude and increased the paired-pulse ratio of EPSCs evoked by electrical stimulation in slices from cocaine-experienced rats compared with controls. In vivo, gabapentin microinjected in the nucleus accumbens core attenuated cocaine-primed but not cue-induced reinstatement. Importantly, gabapentin's effects on drug seeking were not due to a general depression of spontaneous or cocaine-induced locomotor activity. Moreover, gabapentin had no effect on reinstatement of sucrose seeking. These data indicate that α2δ-1 contributes specifically to cocaine-reinstated drug seeking, and identifies this protein as a target for the development of cocaine relapse medications. These results also inform ongoing discussion in the literature regarding efficacy of gabapentin as a candidate addiction therapy. Copyright © 2014 the authors 0270-6474/14/338605-07$15.00/0.

  6. α2δ-1 Signaling in Nucleus Accumbens Is Necessary for Cocaine-Induced Relapse

    PubMed Central

    Brown, Robyn M.; Quintero, Gabriel C.; Kupchik, Yonatan M.; Thomas, Charles A.; Reissner, Kathryn J.; Kalivas, Peter W.

    2014-01-01

    Relapse to cocaine seeking is associated with potentiated excitatory synapses in nucleus accumbens. α2δ-1 is an auxiliary subunit of voltage-gated calcium channels that affects calcium-channel trafficking and kinetics, initiates extracellular signaling cascades, and promotes excitatory synaptogenesis. Previous data demonstrate that repeated exposure to alcohol, nicotine, methamphetamine, and morphine upregulates α2δ-1 in reward-related brain regions, but it was unclear whether this alteration generalized to cocaine. Here, we show that α2δ-1 protein was increased in nucleus accumbens after cocaine self-administration and extinction compared with saline controls. Furthermore, the endogenous ligand thrombospondin-1, responsible for the synaptogenic properties of the α2δ-1 receptor, was likewise elevated. Using whole-cell patch-clamp recordings of EPSCs in nucleus accumbens, we demonstrated that gabapentin, a specific α2δ-1 antagonist, preferentially reduced the amplitude and increased the paired-pulse ratio of EPSCs evoked by electrical stimulation in slices from cocaine-experienced rats compared with controls. In vivo, gabapentin microinjected in the nucleus accumbens core attenuated cocaine-primed but not cue-induced reinstatement. Importantly, gabapentin's effects on drug seeking were not due to a general depression of spontaneous or cocaine-induced locomotor activity. Moreover, gabapentin had no effect on reinstatement of sucrose seeking. These data indicate that α2δ-1 contributes specifically to cocaine-reinstated drug seeking, and identifies this protein as a target for the development of cocaine relapse medications. These results also inform ongoing discussion in the literature regarding efficacy of gabapentin as a candidate addiction therapy. PMID:24948814

  7. Beer self-administration provokes lateralized nucleus accumbens dopamine release in male heavy drinkers

    PubMed Central

    Oberlin, Brandon Gregg; Dzemidzic, Mario; Tran, Stella Maria; Soeurt, Christina Marie; O’Connor, Sean Joseph; Yoder, Karmen Kay; Kareken, David Alexander

    2014-01-01

    Rationale Although striatal dopamine (DA) is important in alcohol abuse, the nature of DA release during actual alcohol drinking is unclear, since drinking includes self-administration of both conditioned flavor stimuli (CS) of the alcoholic beverage and subsequent intoxication, the unconditioned stimulus (US). Objectives Here we used a novel self-administration analog to distinguish nucleus accumbens (NAcc) DA responses specific to the CS and US. Methods Right-handed male heavy drinkers (n=26) received 3 positron emission tomography (PET) scans with the D2/D3 radioligand [11C]raclopride (RAC), and performed a pseudo self-administration task that separately administered a flavor CS of either a habitually consumed beer or the appetitive control Gatorade®, concomitant with the US of ethanol intoxication (0.06 g/dL IV administration) or IV saline. Scan conditions were Gatorade flavor + saline (Gat&Sal); Gatorade flavor + ethanol (Gat&Eth); and beer flavor + ethanol (Beer&Eth). Results Ethanol (US) reduced RAC binding (inferring DA release) in the left (L) NAcc [Gat&Sal > Gat&Eth]. Beer flavor (CS) increased DA in the right (R) NAcc [Gat&Eth > Beer&Eth]. The combination of beer flavor and ethanol (CS + US), [Gat&Sal > Beer&Eth], induced DA release in bilateral NAcc. Self-reported intoxication during scanning correlated with L NAcc DA release. Relative to saline, infusion of ethanol increased alcoholic drink wanting. Conclusions Our findings suggest lateralized DA function in the NAcc, with L NAcc DA release most reflecting intoxication, R NAcc DA release most reflecting the flavor CS, and the conjoint CS+US producing a bilateral NAcc response. PMID:25163422

  8. Beer self-administration provokes lateralized nucleus accumbens dopamine release in male heavy drinkers.

    PubMed

    Oberlin, Brandon G; Dzemidzic, Mario; Tran, Stella M; Soeurt, Christina M; O'Connor, Sean J; Yoder, Karmen K; Kareken, David A

    2015-03-01

    Although striatal dopamine (DA) is important in alcohol abuse, the nature of DA release during actual alcohol drinking is unclear, since drinking includes self-administration of both conditioned flavor stimuli (CS) of the alcoholic beverage and subsequent intoxication, the unconditioned stimulus (US). Here, we used a novel self-administration analog to distinguish nucleus accumbens (NAcc) DA responses specific to the CS and US. Right-handed male heavy drinkers (n = 26) received three positron emission tomography (PET) scans with the D2/D3 radioligand [(11)C]raclopride (RAC) and performed a pseudo self-administration task that separately administered a flavor CS of either a habitually consumed beer or the appetitive control Gatorade®, concomitant with the US of ethanol intoxication (0.06 g/dL intravenous (IV) administration) or IV saline. Scan conditions were Gatorade flavor + saline (Gat&Sal), Gatorade flavor + ethanol (Gat&Eth), and beer flavor + ethanol (Beer&Eth). Ethanol (US) reduced RAC binding (inferring DA release) in the left (L) NAcc [Gat&Sal > Gat&Eth]. Beer flavor (CS) increased DA in the right (R) NAcc [Gat&Eth > Beer&Eth]. The combination of beer flavor and ethanol (CS + US), [Gat&Sal > Beer&Eth], induced DA release in bilateral NAcc. Self-reported intoxication during scanning correlated with L NAcc DA release. Relative to saline, infusion of ethanol increased alcoholic drink wanting. Our findings suggest lateralized DA function in the NAcc, with L NAcc DA release most reflecting intoxication, R NAcc DA release most reflecting the flavor CS, and the conjoint CS + US producing a bilateral NAcc response.

  9. Congenital brain serotonin deficiency leads to reduced ethanol sensitivity and increased ethanol consumption in mice.

    PubMed

    Sachs, Benjamin D; Salahi, A Ayten; Caron, Marc G

    2014-02-01

    Serotonergic dysfunction has been hypothesized to play an important role in the pathophysiology of alcoholism. However, whether congenital serotonin (5-HT) deficiency leads to increased alcohol consumption or affects ethanol-related behaviors has not been established. Here, we use a transgenic mouse line that expresses a hypofunctional variant of the 5-HT synthesis enzyme, tryptophan hydroxylase 2, to examine the impact of 5-HT deficiency on responses to alcohol. We demonstrate that these 5-HT-deficient transgenic animals (Tph2KI mice) recover their righting reflex more rapidly than wild-type controls following a high dose of ethanol and exhibit blunted locomotor retardation in response to repeated ethanol administration. In addition, compared to WT controls, 5-HT-deficient animals consume significantly more ethanol and exhibit increased preference for ethanol in two-bottle choice tests. Our data also suggest that 5-HT plays a critical role in mediating the effects of ethanol on Akt/GSK3β signaling in the nucleus accumbens. Overall, our results corroborate previous theories regarding the importance of brain 5-HT levels in mediating responsiveness to alcohol and demonstrate, for the first time, that congenital 5-HT deficiency leads to increased ethanol consumption and decreased sensitivity to the sedative-like effects of ethanol, perhaps in part through modulating Akt/GSK3β signaling.

  10. The Nucleus Accumbens: A Switchboard for Goal-Directed Behaviors

    PubMed Central

    O'Donnell, Patricio

    2009-01-01

    Reward intake optimization requires a balance between exploiting known sources of rewards and exploring for new sources. The prefrontal cortex (PFC) and associated basal ganglia circuits are likely candidates as neural structures responsible for such balance, while the hippocampus may be responsible for spatial/contextual information. Although studies have assessed interactions between hippocampus and PFC, and between hippocampus and the nucleus accumbens (NA), it is not known whether 3-way interactions among these structures vary under different behavioral conditions. Here, we investigated these interactions with multichannel recordings while rats explored an operant chamber and while they performed a learned lever-pressing task for reward in the same chamber shortly afterward. Neural firing and local field potentials in the NA core synchronized with hippocampal activity during spatial exploration, but during lever pressing they instead synchronized more strongly with the PFC. The latter is likely due to transient drive of NA neurons by bursting prefrontal activation, as in vivo intracellular recordings in anesthetized rats revealed that NA up states can transiently synchronize with spontaneous PFC activity and PFC stimulation with a bursting pattern reliably evoked up states in NA neurons. Thus, the ability to switch synchronization in a task-dependent manner indicates that the NA core can dynamically select its inputs to suit environmental demands, thereby contributing to decision-making, a function that was thought to primarily depend on the PFC. PMID:19352511

  11. Fuel ethanol

    SciTech Connect

    Not Available

    1989-02-01

    This report discusses the Omnibus Trade and Competitiveness Act of 1988 which requires GAO to examine fuel ethanol imports from Central America and the Caribbean and their impact on the U.S. fuel ethanol industry. Ethanol is the alcohol in beverages, such as beer, wine, and whiskey. It can also be used as a fuel by blending with gasoline. It can be made from renewable resources, such as corn, wheat, grapes, and sugarcane, through a process of fermentation. This report finds that, given current sugar and gasoline prices, it is not economically feasible for Caribbean ethanol producers to meet the current local feedstock requirement.

  12. Kinetic analysis and modeling of oleate and ethanol stimulated uranium (VI) bio-reduction in contaminated sediments under sulfate reduction conditions

    SciTech Connect

    Zhang, Fan; Wu, Wei-min; Parker, Jack C.; Mehlhorn, Tonia L; Kelly, Shelly D; Kemner, Kenneth M; Zhang, Gengxin; Schadt, Christopher Warren; Brooks, Scott C; Criddle, Craig; Watson, David B; Jardine, Philip M

    2010-01-01

    Microcosm tests with uranium contaminated sediments were performed to explore the feasibility of using oleate as a slow-release electron donor for U(VI) reduction in comparison to ethanol. Oleate degradation proceeded more slowly than ethanol with acetate produced as an intermediate for both electron donors under a range of initial sulfate concentrations. A kinetic microbial reduction model was developed and implemented to describe and compare the reduction of sulfate and U(VI) with oleate or ethanol. The reaction path model considers detailed oleate/ethanol degradation and the production and consumption of intermediates, acetate and hydrogen. Although significant assumptions are made, the model tracked the major trend of sulfate and U(VI) reduction and describes the successive production and consumption of acetate, concurrent with microbial reduction of aqueous sulfate and U(VI) species. The model results imply that the overall rate of U(VI) bioreduction is influenced by both the degradation rate of organic substrates and consumption rate of intermediate products.

  13. Reduced operant ethanol self-administration and in vivo mesolimbic dopamine responses to ethanol in PKCepsilon-deficient mice.

    PubMed

    Olive, M F; Mehmert, K K; Messing, R O; Hodge, C W

    2000-11-01

    There is increasing evidence that individual protein kinase C (PKC) isozymes mediate specific effects of ethanol on the nervous system. In addition, multiple lines of evidence suggest that the mesoaccumbens dopamine reward system is critically involved in the rewarding and reinforcing effects of ethanol. Yet little is known about the role of individual PKC isozymes in ethanol reinforcement processes or in regulation of mesolimbic systems. In this study, we report that mice lacking the epsilon isoform of PKC (PKCepsilon) show reduced operant ethanol self-administration and an absence of ethanol-induced increase in extracellular dopamine levels in the nucleus accumbens. PKCepsilon null mice exhibited a 53% decrease in alcohol-reinforced operant responses under basal conditions, as well as following ethanol deprivation. Behavioural analysis revealed that while both genotypes had the same number of drinking bouts following deprivation, PKCepsilon null mice demonstrated a 61% reduction in number of ethanol reinforcers per bout and a 57% reduction in ethanol-reinforced response rate. In vivo microdialysis experiments showed that, in contrast to wild-type mice, PKCepsilon null mice exhibited no change in extracellular levels of dopamine in the nucleus accumbens following acute administration of ethanol (1 and 2 g/kg i.p.), while mesolimbic dopamine responses to cocaine (20 mg/kg i.p.) or high potassium (100 mM) in these mice were comparable with that of wild-types. These data provide further evidence that increases in extracellular mesolimbic dopamine levels contribute to the reinforcing effects of ethanol, and indicate that pharmacological agents inhibiting PKCepsilon may be useful in the treatment of alcohol dependence.

  14. Nucleus accumbens GLP-1 receptors influence meal size and palatability.

    PubMed

    Dossat, Amanda M; Diaz, Ryan; Gallo, Lindsay; Panagos, Alyssa; Kay, Kristen; Williams, Diana L

    2013-06-15

    Recent evidence suggests that the glucagon-like peptide-1 (GLP-1) neuronal projection to the nucleus accumbens core (NAcC) contributes to food intake control. To investigate the role of endogenous stimulation of GLP-1 receptors (GLP-1R) in NAcC, we examined the effects of the GLP-1R antagonist exendin-(9-39) (Ex9) on meal pattern and microstructure of ingestive behavior in rats. Intra-NAcC Ex9 treatment selectively increased meal size relative to vehicle in rats consuming 0.25 M sucrose solution or sweetened condensed milk. Microstructural analysis revealed effects of NAcC Ex9 on initial lick rate and the size and duration of licking bursts in rats consuming 0.1 or 0.25 M sucrose, suggesting that blockade of NAcC GLP-1R increases palatability. Because NAcC Ex9 did not affect licking for nonnutritive saccharin (0.1%), we suggest that the presence of nutrients in the gut may be required for endogenous stimulation of NAcC GLP-1R. Consistent with this, we also found that the meal size-suppressive effects of intragastric nutrient infusion were attenuated by NAcC delivery of Ex9 at a dose that had no effect when delivered alone. Analysis of licking patterns revealed that NAcC Ex9 did not reverse intragastric nutrient-induced suppression of burst number but rather blunted the effect of nutrient infusion on meal size primarily by increasing the size and duration of licking bursts. Together, our results suggest that NAcC Ex9 influences taste evaluation. We conclude that GLP-1 released in NAcC in response to gastrointestinal nutrients reduces the hedonic value of food.

  15. Rapid feedback processing in human nucleus accumbens and motor thalamus.

    PubMed

    Schüller, Thomas; Gruendler, Theo O J; Jocham, Gerhard; Klein, Tilmann A; Timmermann, Lars; Visser-Vandewalle, Veerle; Kuhn, Jens; Ullsperger, Markus

    2015-04-01

    The nucleus accumbens (NAcc) and thalamus are integral parts in models of feedback processing. Deep brain stimulation (DBS) has been successfully employed to alleviate symptoms of psychiatric conditions including obsessive-compulsive disorder (OCD) and Tourette's syndrome (TS). Common target structures are the NAcc and the ventral anterior and ventro-lateral nuclei (VA/VL) of the thalamus, for OCD and TS, respectively. The feedback related negativity (FRN) is an event-related potential associated with feedback processing reflecting posterior medial frontal cortex (pMFC) activity. Here we report on three cases where we recorded scalp EEG and local field potentials (LFP) from externalized electrodes located in the NAcc or thalamus (VA/VL) while patients engaged in a modified time estimation task, known to engage feedback processing and elicit the FRN. Additionally, scalp EEG were recorded from 29 healthy participants (HP) engaged in the same task. The signal in all structures (pMFC, NAcc, and thalamus) was differently modulated by positive and negative feedback. LFP activity in the NAcc showed a biphasic time course after positive feedback during the FRN time interval. Negative feedback elicited a much weaker and later response. In the thalamus a monophasic modulation was recorded during the FRN time interval. Again, this modulation was more pronounced after positive performance feedback compared to negative feedback. In channels outside the target area no modulation was observed. The surface-FRN was reliably elicited on a group level in HP and showed no significant difference following negative feedback between patients and HP. German Clinical Trial Register: Neurocognitive specification of dysfunctions within basal ganglia-cortex loops and their therapeutic modulation by deep brain stimulation in patients with obsessive compulsive disorder and Tourette syndrome, http://www.drks.de/DRKS00005316. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Response-reinforcement learning is dependent on N-methyl-D-aspartate receptor activation in the nucleus accumbens core.

    PubMed

    Kelley, A E; Smith-Roe, S L; Holahan, M R

    1997-10-28

    The nucleus accumbens, a site within the ventral striatum, is best known for its prominent role in mediating the reinforcing effects of drugs of abuse such as cocaine, alcohol, and nicotine. Indeed, it is generally believed that this structure subserves motivated behaviors, such as feeding, drinking, sexual behavior, and exploratory locomotion, which are elicited by natural rewards or incentive stimuli. A basic rule of positive reinforcement is that motor responses will increase in magnitude and vigor if followed by a rewarding event. It is likely, therefore, that the nucleus accumbens may serve as a substrate for reinforcement learning. However, there is surprisingly little information concerning the neural mechanisms by which appetitive responses are learned. In the present study, we report that treatment of the nucleus accumbens core with the selective competitive N-methyl-D-aspartate (NMDA) antagonist 2-amino-5-phosphonopentanoic acid (AP-5; 5 nmol/0.5 microl bilaterally) impairs response-reinforcement learning in the acquisition of a simple lever-press task to obtain food. Once the rats learned the task, AP-5 had no effect, demonstrating the requirement of NMDA receptor-dependent plasticity in the early stages of learning. Infusion of AP-5 into the accumbens shell produced a much smaller impairment of learning. Additional experiments showed that AP-5 core-treated rats had normal feeding and locomotor responses and were capable of acquiring stimulus-reward associations. We hypothesize that stimulation of NMDA receptors within the accumbens core is a key process through which motor responses become established in response to reinforcing stimuli. Further, this mechanism, may also play a critical role in the motivational and addictive properties of drugs of abuse.

  17. beta-Alanine elevates dopamine levels in the rat nucleus accumbens: antagonism by strychnine.

    PubMed

    Ericson, Mia; Clarke, Rhona B C; Chau, PeiPei; Adermark, Louise; Söderpalm, Bo

    2010-04-01

    Glycine receptors (GlyRs) in the nucleus accumbens (nAc) have recently been suggested to be involved in the reinforcing and dopamine-elevating properties of ethanol via a neuronal circuitry involving the VTA. Apart from ethanol, both glycine and taurine have the ability to modulate dopamine output via GlyRs in the same brain region. In the present study, we wanted to explore whether yet another endogenous ligand for the GlyR, beta-alanine, had similar effects. To this end, we monitored dopamine in the nAc by means of in vivo microdialysis and found that local perfusion of beta-alanine increased dopamine output. In line with previous observations investigating ethanol, glycine and taurine, the competitive GlyR antagonist strychnine completely blocked the dopamine elevation. The present results suggest that beta-alanine has the ability to modulate dopamine levels in the nAc via strychnine-sensitive GlyRs, and are consistent with previous studies suggesting the importance of this receptor for modulating dopamine output.

  18. Cannabidiol reduces ethanol consumption, motivation and relapse in mice.

    PubMed

    Viudez-Martínez, Adrián; García-Gutiérrez, María S; Navarrón, Carmen María; Morales-Calero, María Isabel; Navarrete, Francisco; Torres-Suárez, Ana Isabel; Manzanares, Jorge

    2017-02-13

    This study evaluated the effects of cannabidiol (CBD) on ethanol reinforcement, motivation and relapse in C57BL/6 J mice. The effects of CBD (60 mg/kg, i.p.) on blood ethanol concentration, hypothermia and handling-induced convulsions associated to acute ethanol administration were evaluated. The two-bottle choice paradigm was performed to assess the effects of CBD (30, 60 and 120 mg/kg/day, i.p.) on ethanol intake and preference. In addition, an oral ethanol self-administration experiment was carried out to evaluate the effects of CBD [a single s.c. administration of a microparticle formulation providing CBD continuous controlled release (30 mg/kg/day)] on the reinforcement and motivation for ethanol. The effects of CBD (60 and 120 mg/kg/day, i.p.) on ethanol-induced relapse were also evaluated. Gene expression analyses of tyrosine hydroxylase in ventral tegmental area and μ-opioid (Oprm1), cannabinoid (CB1 r and CB2 r) and GPR55 receptors in nucleus accumbens (NAcc) were carried out by real-time polymerase chain reaction. Cannabidiol reduced the ethanol-induced hypothermia and handling-induced convulsion but failed to modify blood ethanol concentration. CBD reduced ethanol consumption and preference in the two-bottle choice, significantly decreased ethanol intake and the number of effective responses in the oral ethanol self-administration, and reduced ethanol-induced relapse. Furthermore, the administration of CBD significantly reduced relative gene expression of tyrosine hydroxylase in the ventral tegmental area, Oprm1, CB1 r and GPR55 in the NAcc and significantly increased CB2 r in the NAcc. Taken together, these results reveal that the administration of CBD reduced the reinforcing properties, motivation and relapse for ethanol. These findings strongly suggest that CBD may result useful for the treatment of alcohol use disorders.

  19. HIGH ETHANOL DOSE DURING EARLY ADOLESCENCE INDUCES LOCOMOTOR ACTIVATION AND INCREASES SUBSEQUENT ETHANOL INTAKE DURING LATE ADOLESCENCE

    PubMed Central

    Acevedo, María Belén; Molina, Juan Carlos; Nizhnikov, Michael E.; Spear, Norman E.; Pautassi, Ricardo Marcos

    2011-01-01

    Adolescent initiation of ethanol consumption is associated with subsequent heightened probability of ethanol-use disorders. The present study examined the relationship between motivational sensitivity to ethanol initiation in adolescent rats and later ethanol intake. Experiment 1 determined that ethanol induces locomotor activation shortly after administration but not if tested at a later post-administration interval. In Experiment 2, adolescents were assessed for ethanol-induced locomotor activation on postnatal day 28. These animals were then evaluated for ethanol-mediated conditioned taste aversion and underwent a 16-day-long ethanol intake protocol. Ethanol-mediated aversive effects were unrelated to ethanol locomotor stimulation or subsequent ethanol consumption patterns. Ethanol intake during late adolescence was greatest in animals initiated to ethanol earliest at postnatal day 28. Females that were more sensitive to ethanol’s locomotor-activating effects showed a transient increase in ethanol self-administration. Blood ethanol concentrations during initiation were not related to ethanol-induced locomotor activation. Adolescent rats appeared sensitive to the locomotor-stimulatory effects of ethanol. Even brief ethanol exposure during adolescence may promote later ethanol intake. PMID:20373327

  20. Anti-inflammatory effects of ethanolic extract of Antrodia salmonea in the lipopolysaccharide-stimulated RAW246.7 macrophages and the λ-carrageenan-induced paw edema model.

    PubMed

    Huang, Guan-Jhong; Pan, Chun-Hsu; Liu, Fon-Chang; Wu, Tian-Shung; Wu, Chieh-Hsi

    2012-05-01

    The purpose of this study was to examine anti-inflammatory effect of ethanolic extract of Antrodia salmonea (EAS) in the lipopolysaccharide (LPS)-stimulated RAW246.7 macrophages and the carrageenan (Carr)-induced edema paw model, and to clarify its possible molecular mechanisms. Inhibitory effects of EAS were examined on cells proliferation, nitric oxide (NO) production, expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins, and activity of antioxidant enzymes. Our data demonstrated that EAS inhibited cell growth, NO production, and expression of iNOS and COX-2 proteins in LPS-stimulated RAW246.7 cells. EAS can also significantly reduce paw edema, content of NO, TNF-α and malondialdehyde (MDA), expression of iNOS and COX-2 proteins, and neutrophil infiltration within the tissues stimulated by Carr. The anti-inflammatory mechanisms of EAS might be related to the decrease of inflammatory cytokine and increase of antioxidant enzymes activities, which would result in reduction of iNOS, COX-2 and MDA and subsequently inflammatory responses.

  1. Control of nucleus accumbens activity with neurofeedback

    PubMed Central

    Greer, Stephanie M.; Trujillo, Andrew J.; Glover, Gary H.; Knutson, Brian

    2014-01-01

    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be presented as “neurofeedback.” In an fMRI-based neurofeedback experiment designed to elicit NAcc activity, we found that subjects could increase their own NAcc activity, and that display of neurofeedback significantly enhanced their ability to do so. Subjects were not as capable of decreasing their NAcc activity, however, and enhanced control did not persist after subsequent removal of neurofeedback. Further analyses suggested that individuals who recruited positive arousal affect were better able to increase NAcc activity in response to neurofeedback, and that NAcc neurofeedback also elicited functionally correlated activity in the medial prefrontal cortex. Together, these findings suggest that humans can modulate their own NAcc activity and that fMRI-based neurofeedback may augment their efforts. The observed association between positive arousal and effective NAcc control further supports an anticipatory affect account of NAcc function. PMID:24705203

  2. Control of nucleus accumbens activity with neurofeedback.

    PubMed

    Greer, Stephanie M; Trujillo, Andrew J; Glover, Gary H; Knutson, Brian

    2014-08-01

    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be presented as "neurofeedback." In an fMRI-based neurofeedback experiment designed to elicit NAcc activity, we found that subjects could increase their own NAcc activity, and that display of neurofeedback significantly enhanced their ability to do so. Subjects were not as capable of decreasing their NAcc activity, however, and enhanced control did not persist after subsequent removal of neurofeedback. Further analyses suggested that individuals who recruited positive aroused affect were better able to increase NAcc activity in response to neurofeedback, and that NAcc neurofeedback also elicited functionally correlated activity in the medial prefrontal cortex. Together, these findings suggest that humans can modulate their own NAcc activity and that fMRI-based neurofeedback may augment their efforts. The observed association between positive arousal and effective NAcc control further supports an anticipatory affect account of NAcc function.

  3. Temporal Profiles Dissociate Regional Extracellular Ethanol versus Dopamine Concentrations

    PubMed Central

    2015-01-01

    In vivo monitoring of dopamine via microdialysis has demonstrated that acute, systemic ethanol increases extracellular dopamine in regions innervated by dopaminergic neurons originating in the ventral tegmental area and substantia nigra. Simultaneous measurement of dialysate dopamine and ethanol allows comparison of the time courses of their extracellular concentrations. Early studies demonstrated dissociations between the time courses of brain ethanol concentrations and dopaminergic responses in the nucleus accumbens (NAc) elicited by acute ethanol administration. Both brain ethanol and extracellular dopamine levels peak during the first 5 min following systemic ethanol administration, but the dopamine response returns to baseline while brain ethanol concentrations remain elevated. Post hoc analyses examined ratios of the dopamine response (represented as a percent above baseline) to tissue concentrations of ethanol at different time points within the first 25–30 min in the prefrontal cortex, NAc core and shell, and dorsomedial striatum following a single intravenous infusion of ethanol (1 g/kg). The temporal patterns of these “response ratios” differed across brain regions, possibly due to regional differences in the mechanisms underlying the decline of the dopamine signal associated with acute intravenous ethanol administration and/or to the differential effects of acute ethanol on the properties of subpopulations of midbrain dopamine neurons. This Review draws on neurochemical, physiological, and molecular studies to summarize the effects of acute ethanol administration on dopamine activity in the prefrontal cortex and striatal regions, to explore the potential reasons for the regional differences observed in the decline of ethanol-induced dopamine signals, and to suggest directions for future research. PMID:25537116

  4. Protective effect of Pimpinella anisoides ethanolic extract and its constituents on oxidative damage and its inhibition of nitric oxide in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    PubMed

    Conforti, Filomena; Tundis, Rosa; Marrelli, Mariangela; Menichini, Federica; Statti, Giancarlo A; De Cindio, Bruno; Menichini, Francesco; Houghton, Peter J

    2010-02-01

    The present study shows for the first time the chemical profile and the in vitro properties (antioxidant and inhibition of nitric oxide [NO] production) of the aromatic plant Pimpinella anisoides V Brig. (Family Apiaceae). The ethanolic extract of the fruits is characterized by 23 major components. Fourteen monoterpenes, two sesquiterpenes, one fatty acid, five methyl esters and one aldehyde were identified. Among them the most abundant components were the monoterpenes trans-anethole (54.5%), limonene (13.5%), and sabinene (4.4%). The extract showed significant antioxidant activity (50% inhibitory concentration [IC(50)], 3.02 mg/mL) using the 2,2-diphenyl-1-picrylhydrazyl test. The test for inhibition of NO production was performed using the murine monocytic macrophage cell line RAW 264.7. The ethanolic extract had significant activity with an IC(50) value of 72.7 microg/mL, and this might indicate that it would have an anti-inflammatory effect in vivo. Among the pure compounds that most effectively inhibited lipopolysaccharide-induced NO production were the most abundant constituents, trans-anethole and limonene, with IC(50) values of 102.7 microg/mL and 70.1 microg/mL, respectively. The cytotoxic effect of P. anisoides extract and pure compounds in the presence of lipopolysaccharide (1 microg/mL) was evaluated but found to be negligible.

  5. Ganoderma lucidum ethanol extract inhibits the inflammatory response by suppressing the NF-κB and toll-like receptor pathways in lipopolysaccharide-stimulated BV2 microglial cells

    PubMed Central

    YOON, HYUN-MIN; JANG, KYUNG-JUN; HAN, MIN SEOK; JEONG, JIN-WOO; KIM, GI YOUNG; LEE, JAI-HEON; CHOI, YUNG HYUN

    2013-01-01

    Ganoderma lucidum is a traditional Oriental medicine that has been widely used as a tonic to promote longevity and health in Korea and other Asian countries. Although a great deal of work has been carried out on the therapeutic potential of this mushroom, the pharmacological mechanisms of its anti-inflammatory actions remain unclear. In this study, we evaluated the inhibitory effects of G. lucidum ethanol extract (EGL) on the production of inflammatory mediators and cytokines in lipopolysaccharide (LPS)-stimulated murine BV2 microglia. We also investigated the effects of EGL on the LPS-induced activation of nuclear factor kappaB (NF-κB) and upregulation of toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88). Elevated levels of nitric oxide (NO), prostaglandin E2 (PGE2) and pro-inflammatory cytokine production were detected in BV2 microglia following LPS stimulation. We identifed that EGL significantly inhibits the excessive production of NO, PGE2 and pro-inflammatory cytokines, including interleukin (IL)-1β and tumor necrosis factor-α in a concentration-dependent manner without causing cytotoxicity. In addition, EGL suppressed NF-κB translocation and transcriptional activity by blocking IκB degradation and inhibiting TLR4 and MyD88 expression in LPS-stimulated BV2 cells. Our results indicate that the inhibitory effects of EGL on LPS-stimulated inflammatory responses in BV2 microglia are associated with the suppression of the NF-κB and TLR signaling pathways. Therefore, EGL may be useful in the treatment of neurodegenerative diseases by inhibiting inflammatory mediator responses in activated microglia. PMID:23408713

  6. An ethanol root extract of Cynanchum wilfordii containing acetophenones suppresses the expression of VCAM-1 and ICAM-1 in TNF-α-stimulated human aortic smooth muscle cells through the NF-κB pathway

    PubMed Central

    KOO, HYUN JUNG; SOHN, EUN-HWA; PYO, SUHKNEUNG; WOO, HAN GOO; PARK, DAE WON; HAM, YOUNG-MIN; JANG, SEON-A; PARK, SOO-YEONG; KANG, SE CHAN

    2015-01-01

    The root of Cynanchum wilfordii (C. wilfordii) contains several biologically active compounds which have been used as traditional medicines in Asia. In the present study, we evaluated the anti-inflammatory effects of an ethanol root extract of C. wilfordii (CWE) on tumor necrosis factor (TNF)-α-stimulated human aortic smooth muscle cells (HASMCs). The inhibitory effects of CWE on vascular cell adhesion molecule (VCAM)-1 expression under an optimum extraction condition were examined. CWE suppressed the expression of VCAM-1 and ICAM-1 and the adhesion of THP-1 monocytes to the TNF-α-stimulated HASMCs. Consistent with the in vitro observations, CWE inhibited the aortic expression of ICAM-1 and VCAM-1 in atherogenic diet-fed mice. CWE also downregulated the expression of nuclear factor-κB (NF-κB p65) and its uclear translocation in the stimulated HASMCs. In order to identify the active components in CWE, we re-extracted CWE using several solvents, and found that the ethyl acetate fraction was the most effective in suppressing the expression of VCAM-1 and ICAM-1. Four major acetophenones were purified from the ethyl acetate fraction, and two components, p-hydroxyacetophenone and cynandione A, potently inhibited the expression of ICAM-1 and VCAM-1 in the stimulated HASMCs. We assessed and determined the amounts of these two active components from CWE, and our results suggested that the root of C. wilfordii and its two bioactive acetophenones may be used for the prevention and treatment of atherosclerosis and vascular inflammatory diseases. PMID:25716870

  7. Nucleus Accumbens Invulnerability to Methamphetamine Neurotoxicity

    PubMed Central

    Kuhn, Donald M.; Angoa-Pérez, Mariana; Thomas, David M.

    2016-01-01

    Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure. PMID:23382149

  8. Nucleus accumbens invulnerability to methamphetamine neurotoxicity.

    PubMed

    Kuhn, Donald M; Angoa-Pérez, Mariana; Thomas, David M

    2011-01-01

    Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure.

  9. Nucleus accumbens μ-opioid receptors mediate social reward.

    PubMed

    Trezza, Viviana; Damsteegt, Ruth; Achterberg, E J Marijke; Vanderschuren, Louk J M J

    2011-04-27

    Positive social interactions are essential for emotional well-being and proper behavioral development of young individuals. Here, we studied the neural underpinnings of social reward by investigating the involvement of opioid neurotransmission in the nucleus accumbens (NAc) in social play behavior, a highly rewarding social interaction in adolescent rats. Intra-NAc infusion of morphine (0.05-0.1 μg) increased pinning and pouncing, characteristic elements of social play behavior in rats, and blockade of NAc opioid receptors with naloxone (0.5 μg) prevented the play-enhancing effects of systemic morphine (1 mg/kg, s.c.) administration. Thus, stimulation of opioid receptors in the NAc was necessary and sufficient for morphine to increase social play. Intra-NAc treatment with the selective μ-opioid receptor agonist [D-Ala(2),N-MePhe(4),Gly(5)-ol]enkephalin (DAMGO) (0.1-10 ng) and the μ-opioid receptor antagonist Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP) (0.3-3 μg) increased and decreased social play, respectively. The δ-opioid receptor agonist DPDPE ([D-Pen(2),D-Pen(5)]-enkephalin) (0.3-3 μg) had no effects, whereas the κ-opioid receptor agonist U69593 (N-methyl-2-phenyl-N-[(5R,7S,8S)-7-(pyrrolidin-1-yl)-1-oxaspiro[4.5]dec-8-yl]acetamide) (0.01-1 μg) decreased social play. Intra-NAc treatment with β-endorphin (0.01-1 μg) increased social play, but met-enkephalin (0.1-5 μg) and the enkephalinase inhibitor thiorphan (0.1-1 μg) were ineffective. DAMGO (0.1-10 ng) increased social play after infusion into both the shell and core subregions of the NAc. Last, intra-NAc infusion of CTAP (3 μg) prevented the development of social play-induced conditioned place preference. These findings identify NAc μ-opioid receptor stimulation as an important neural mechanism for the attribution of positive value to social interactions in adolescent rats. Altered NAc μ-opioid receptor function may underlie social impairments in psychiatric disorders such as autism

  10. Olanzapine treatment of adolescent rats alters adult reward behaviour and nucleus accumbens function.

    PubMed

    Vinish, Monika; Elnabawi, Ahmed; Milstein, Jean A; Burke, Jesse S; Kallevang, Jonathan K; Turek, Kevin C; Lansink, Carien S; Merchenthaler, Istvan; Bailey, Aileen M; Kolb, Bryan; Cheer, Joseph F; Frost, Douglas O

    2013-08-01

    Antipsychotic drugs are increasingly used in children and adolescents to treat a variety of psychiatric disorders. However, little is known about the long-term effects of early life antipsychotic drug (APD) treatment. Most APDs are potent antagonists or partial agonists of dopamine (DA) D₂ receptors; atypical APDs also have multiple serotonergic activities. DA and serotonin regulate many neurodevelopmental processes. Thus, early life APD treatment can, potentially, perturb these processes, causing long-term behavioural and neurobiological sequelae. We treated adolescent, male rats with olanzapine (Ola) on post-natal days 28-49, under dosing conditions that approximate those employed therapeutically in humans. As adults, they exhibited enhanced conditioned place preference for amphetamine, as compared to vehicle-treated rats. In the nucleus accumbens core, DA D₁ receptor binding was reduced, D₂ binding was increased and DA release evoked by electrical stimulation of the ventral tegmental area was reduced. Thus, adolescent Ola treatment enduringly alters a key behavioural response to rewarding stimuli and modifies DAergic neurotransmission in the nucleus accumbens. The persistence of these changes suggests that even limited periods of early life Ola treatment may induce enduring changes in other reward-related behaviours and in behavioural and neurobiological responses to therapeutic and illicit psychotropic drugs. These results underscore the importance of improved understanding of the enduring sequelae of paediatric APD treatment as a basis for weighing the benefits and risks of adolescent APD therapy, especially prophylactic treatment in high-risk, asymptomatic patients.

  11. The effect of yacon (Samallanthus sonchifolius) ethanol extract on cell proliferation and migration of C6 glioma cells stimulated with fetal bovine serum.

    PubMed

    Lee, Kang Pa; Choi, Nan Hee; Kim, Jin Teak; Park, In-Sik

    2015-06-01

    Yacon (Samallanthus sonchifolius), a common edible plant grown throughout the world, is well known for its antidiabetic properties. It is also known to have several other pharmacological properties including anti-inflammatory, anti-oxidant, anti-allergic, and anti-cancer effects. To date, the effect of yacon on gliomas has not been studied. In this study, we investigated the effects of yacon on the migration and proliferation of C6 glioma cells stimulated by fetal bovine serum (FBS). Cell growth and proliferation were determined by evaluating cell viability using an EZ-Cytox Cell Viability Assay Kit. FBS-induced migration of C6 glioma cells was evaluated by performing the scratch wound healing assay and the Boyden chamber assay. We also used western blot analysis to determine the expression levels of extracellular signal-regulated kinase 1/2 (ERK1/2), a major regulator of migration and proliferation of glioma cells. Matrix metallopeptidase (MMP) 9 and TIMP-1 levels were measured by performing reverse transcription PCR. Yacon (300 µg/mL) reduced both the FBS-induced proliferation of C6 glioma cells and the dose-dependent migration of the FBS-stimulated C6 cells. FBS-stimulated C6 glioma cells treated with yacon (200 and 300 µg/mL) showed reduced phosphorylation of ERK1/2 and inhibition of MMP 9 expression compared to those shown by the untreated FBS-stimulated C6 cells. In contrast, yacon (200 and 300 µg/mL) induced TIMP-1 expression. On the basis of these results, we suggest that yacon may exert an anti-cancer effect on FBS-stimulated C6 glioma cells by inhibiting their proliferation and migration. The most likely mechanism for this is down-regulation of ERK1/2 and MMP9 and up-regulation of TIMP-1 expression levels.

  12. The effect of yacon (Samallanthus sonchifolius) ethanol extract on cell proliferation and migration of C6 glioma cells stimulated with fetal bovine serum

    PubMed Central

    Lee, Kang Pa; Choi, Nan Hee; Kim, Jin Teak

    2015-01-01

    BACKGROUND/OBJECTIVES Yacon (Samallanthus sonchifolius), a common edible plant grown throughout the world, is well known for its antidiabetic properties. It is also known to have several other pharmacological properties including anti-inflammatory, anti-oxidant, anti-allergic, and anti-cancer effects. To date, the effect of yacon on gliomas has not been studied. In this study, we investigated the effects of yacon on the migration and proliferation of C6 glioma cells stimulated by fetal bovine serum (FBS). MATERIALS/METHODS Cell growth and proliferation were determined by evaluating cell viability using an EZ-Cytox Cell Viability Assay Kit. FBS-induced migration of C6 glioma cells was evaluated by performing the scratch wound healing assay and the Boyden chamber assay. We also used western blot analysis to determine the expression levels of extracellular signal-regulated kinase 1/2 (ERK1/2), a major regulator of migration and proliferation of glioma cells. Matrix metallopeptidase (MMP) 9 and TIMP-1 levels were measured by performing reverse transcription PCR. RESULTS Yacon (300 µg/mL) reduced both the FBS-induced proliferation of C6 glioma cells and the dose-dependent migration of the FBS-stimulated C6 cells. FBS-stimulated C6 glioma cells treated with yacon (200 and 300 µg/mL) showed reduced phosphorylation of ERK1/2 and inhibition of MMP 9 expression compared to those shown by the untreated FBS-stimulated C6 cells. In contrast, yacon (200 and 300 µg/mL) induced TIMP-1 expression. CONCLUSIONS On the basis of these results, we suggest that yacon may exert an anti-cancer effect on FBS-stimulated C6 glioma cells by inhibiting their proliferation and migration. The most likely mechanism for this is down-regulation of ERK1/2 and MMP9 and up-regulation of TIMP-1 expression levels. PMID:26060537

  13. Nucleus accumbens shell and core dopamine: differential role in behavior and addiction.

    PubMed

    Di Chiara, Gaetano

    2002-12-02

    Drug addiction can be conceptualized as a disturbance of behavior motivated by drug-conditioned incentives. This abnormality has been explained by Incentive-Sensitization and Allostatic-Counteradaptive theories as the result of non-associative mechanisms acting at the stage of the expression of incentive motivation and responding for drug reinforcement. Each one of these theories, however, does not account per se for two basic properties of the motivational disturbance of drug addiction: (1). focussing on drug- at the expenses of non-drug-incentives; (2). virtual irreversibility. To account for the above aspects we have proposed an associative learning hypothesis. According to this hypothesis the basic disturbance of drug addiction takes place at the stage of acquisition of motivation and in particular of Pavlovian incentive learning. Drugs share with non-drug rewards the property of stimulating dopamine (DA) transmission in the nucleus accumbens shell but this effect does not undergo habituation upon repeated drug exposure, as instead is the case of non-drug rewards. Repetitive, non-decremental stimulation of DA transmission by drugs in the nucleus accumbens septi (NAc) shell abnormally strengthens stimulus-drug associations. Thus, stimuli contingent upon drug reward acquire powerful incentive properties after a relatively limited number of predictive associations with the drug and become particularly resistant to extinction. Non-contingent occurrence of drug-conditioned incentive cues or contexts strongly facilitates and eventually reinstates drug self-administration. Repeated drug exposure also induces a process of sensitization of drug-induced stimulation of DA transmission in the NAc core. The precise significance of this adaptive change for the mechanism of drug addiction is unclear given the complexity and uncertainties surrounding the role of NAc core DA in responding but might be more directly related to instrumental performance.

  14. New neuronal networks involved in ethanol reinforcement.

    PubMed

    Kiianmaa, Kalervo; Hyytiä, Petri; Samson, Herman H; Engel, Jörgen A; Svensson, Lennart; Söderpalm, Bo; Larsson, Anna; Colombo, Giancarlo; Vacca, Giovanni; Finn, Deborah A; Bachtell, Ryan K; Ryabinin, Andrey E

    2003-02-01

    This article represents the proceedings of a symposium at the 2002 ISBRA/RSA meeting in San Francisco. The organizers were Kalervo Kiianmaa and Andrey E. Ryabinin. The chairs were Kalervo Kiianmaa and Jörgen A. Engel. The presentations were (1) The role of opioidergic and dopaminergic networks in ethanol-seeking behavior, by Kalervo Kiianmaa and Petri Hyytiä; (2) Interaction between the dopamine systems in the prefrontal cortex and nucleus accumbens during ethanol self-administration, by Herman H. Samson; (3) Neurochemical and behavioral studies on ethanol and nicotine interactions, by Jörgen A. Engel, Lennart Svensson, Bo Söderpalm, and Anna Larsson; (4) Involvement of the GABA receptor in alcohol reinforcement in sP rats, by Giancarlo Colombo and Giovanni Vacca; (5) Neuroactive steroids and ethanol reinforcement, by Deborah A. Finn, and (6) Potential contribution of the urocortin system to regulation of alcohol self-administration, by Andrey E. Ryabinin and Ryan K. Bachtell.(B)

  15. Mice lacking adenylyl cyclase type 5 (AC5) show increased ethanol consumption and reduced ethanol sensitivity.

    PubMed

    Kim, Kyoung-Shim; Kim, Hannah; Baek, In-Sun; Lee, Ko-Woon; Han, Pyung-Lim

    2011-05-01

    The adenylyl cyclase (AC)/cAMP system is believed to be a key component in regulating alcohol-drinking behavior. It was reported that adenylyl cyclase-5 (AC5) is expressed widely in the brain, with a preferential concentration in the dorsal striatum and nucleus accumbens, brain regions which are important for addiction and emotion. AC5 has been shown to be an essential mediator of morphine addiction and dopamine receptor function; however, it remains unknown whether or not AC5 plays a role in ethanol preference and sensitivity in animals. This work was carried out to determine the role of AC5 in alcohol consumption and the hypnotic response to alcohol using AC5 knockout (KO) mice. In the test for ethanol preference employing a two-bottle free-choice paradigm, AC5 KO mice showed increased ethanol consumption and preference compared with the wild-type mice. Ethanol-induced hypothermia was weakly reduced in AC5 KO mice. AC5 KO mice exhibited sedation/behavioral sleep to high-dose ethanol, but their responses were greatly suppressed compared with the wild-type mice. These results suggest that AC5 is an important signaling molecule regulating alcohol sensitivity and preference in animals. These data provide critical information for AC5 activation as a candidate target for the treatment of alcoholism.

  16. Stimulation and inhibition of 5 ALA induced PplX fluorescence in the diagnosis of fibrosarcoma cultivated on the CAM using glucose versus ethanol as modulating agents.

    PubMed

    Ismail, M Samy

    2008-07-01

    The fluorescence properties of biological tissues have been considered as intrinsic parameters to discriminate diseased from normal conditions. In vivo fluorescence diagnosis of cancer is based on special fluorescent dyes and their properties of tumour selective retention. The experimental in vivo model of the chorioallantoic membrane (CAM) of chicken embryos was used for cultivating a murine tumourous system consisting of the SSK II fibrosarcoma. Proto porphyrine (PplX) synthesis in CAM inoculated tissues as well as in native CAM was induced by 5-ALA. The modulation effects of several biochemicals on the 5-ALA induced PplX production were tested. The fibrosarcoma cells have not revealed autofluorescence with distinctively higher signal intensities than the substrate tissue. Fibrosarcoma cells are clearly distinguished by higher xenofluorescence intensities compared to the CAM tissue in the background. 5-ALA induced xenofluorescence intensity in fibrosarcoma was significantly enhanced by glucose and inhibited by ethanol. It can be concluded that some chemical agents can modulate the intensity of 5-ALA induced xenofluorescence through their modulation the enzymatic cell activity and these can be used for improvement by varying both the diagnostic and the therapeutic effectiveness of the photosensitizers in its application in the photo therapy process.

  17. Plasticity of GABAA receptor-mediated neurotransmission in the nucleus accumbens of alcohol-dependent rats

    PubMed Central

    Liang, Jing; Lindemeyer, A. Kerstin; Suryanarayanan, Asha; Meyer, Edward M.; Marty, Vincent N.; Ahmad, S. Omar; Shao, Xuesi Max; Olsen, Richard W.

    2014-01-01

    Chronic alcohol exposure-induced changes in reinforcement mechanisms and motivational state are thought to contribute to the development of cravings and relapse during protracted withdrawal. The nucleus accumbens (NAcc) is a key structure of the mesolimbic dopaminergic reward system and plays an important role in mediating alcohol-seeking behaviors. Here we describe the long-lasting alterations of γ-aminobutyric acid type A receptors (GABAARs) of medium spiny neurons (MSNs) in the NAcc after chronic intermittent ethanol (CIE) treatment, a rat model of alcohol dependence. CIE treatment and withdrawal (>40 days) produced decreases in the ethanol and Ro15-4513 potentiation of extrasynaptic GABAARs, which mediate the picrotoxin-sensitive tonic current (Itonic), while potentiation of synaptic receptors, which give rise to miniature inhibitory postsynaptic currents (mIPSCs), was increased. Diazepam sensitivity of both Itonic and mIPSCs was decreased by CIE treatment. The average magnitude of Itonic was unchanged, but mIPSC amplitude and frequency decreased and mIPSC rise time increased after CIE treatment. Rise-time histograms revealed decreased frequency of fast-rising mIPSCs after CIE treatment, consistent with possible decreases in somatic GABAergic synapses in MSNs from CIE rats. However, unbiased stereological analysis of NeuN-stained NAcc neurons did not detect any decreases in NAcc volume, neuronal numbers, or neuronal cell body volume. Western blot analysis of surface subunit levels revealed selective decreases in α1 and δ and increases in α4, α5, and γ2 GABAAR subunits after CIE treatment and withdrawal. Similar, but reversible, alterations occurred after a single ethanol dose (5 g/kg). These data reveal CIE-induced long-lasting neuroadaptations in the NAcc GABAergic neurotransmission. PMID:24694935

  18. Taurine elevates dopamine levels in the rat nucleus accumbens; antagonism by strychnine.

    PubMed

    Ericson, Mia; Molander, Anna; Stomberg, Rosita; Söderpalm, Bo

    2006-06-01

    The mesolimbic dopamine (DA) system, projecting from the ventral tegmental area (VTA) to the nucleus accumbens (nAcc), is involved in reward-related behaviours and addictive processes, such as alcoholism and drug addiction. It was recently suggested that strychnine-sensitive glycine receptors (GlyR) in the nAcc regulate both basal and ethanol-induced mesolimbic DA activity via a neuronal loop involving endogenous activation of nicotinic acetylcholine receptors (nAChR) in the VTA. However, as the nAcc appears to contain few glycine-immunoreactive cell bodies or fibres, the question as to what may be the endogenous ligand for GlyRs in this brain region remains open. Here we have investigated whether the amino acid taurine could serve this purpose using in vivo microdialysis in awake, freely moving male Wistar rats. Local perfusion of taurine (1, 10 or 100 mm in the perfusate) increased DA levels in the nAcc. The taurine (10 mm)-induced DA increase was, similarly to that previously observed after ethanol, completely blocked by (i) perfusion of the competitive GlyR antagonist strychnine in the nAcc, (ii) perfusion of the nAChR antagonist mecamylamine (100 microm) in the VTA, and (iii) systemic administration of the acetylcholine-depleting drug vesamicol (0.4 mg/kg, i.p). The present results suggest that taurine may be an endogenous ligand for GlyRs in the nAcc and that the taurine-induced elevation of DA levels in this area, similarly to that observed after local ethanol, is mediated via a neuronal loop involving endogenous activation of nAChRs in the VTA.

  19. Prenatal ethanol exposure alters ethanol-induced Fos immunoreactivity and dopaminergic activity in the mesocorticolimbic pathway of the adolescent brain.

    PubMed

    Fabio, M C; Vivas, L M; Pautassi, R M

    2015-08-20

    Prenatal ethanol exposure (PEE) promotes alcohol intake during adolescence, as shown in clinical and pre-clinical animal models. The mechanisms underlying this effect of prenatal ethanol exposure on postnatal ethanol intake remain, however, mostly unknown. Few studies assessed the effects of moderate doses of prenatal ethanol on spontaneous and ethanol-induced brain activity on adolescence. This study measured, in adolescent (female) Wistar rats prenatally exposed to ethanol (0.0 or 2.0g/kg/day, gestational days 17-20) or non-manipulated (NM group) throughout pregnancy, baseline and ethanol-induced cathecolaminergic activity (i.e., colocalization of c-Fos and tyrosine hydroxylase) in ventral tegmental area (VTA), and baseline and ethanol-induced Fos immunoreactivity (ir) in nucleus accumbens shell and core (AcbSh and AcbC, respectively) and prelimbic (PrL) and infralimbic (IL) prefrontal cortex. The rats were challenged with ethanol (dose: 0.0, 1.25, 2.5 or 3.25g/kg, i.p.) at postnatal day 37. Rats exposed to vehicle prenatally (VE group) exhibited reduced baseline dopaminergic tone in VTA; an effect that was inhibited by prenatal ethanol exposure (PEE group). Dopaminergic activity in VTA after the postnatal ethanol challenge was greater in PEE than in VE or NM animals. Ethanol-induced Fos-ir at AcbSh was found after 1.25g/kg and 2.5g/kg ethanol, in VE and PEE rats, respectively. PEE did not alter ethanol-induced Fos-ir at IL but reduced ethanol-induced Fos-ir at PrL. These results suggest that prenatal ethanol exposure heightens dopaminergic activity in the VTA and alters the response of the mesocorticolimbic pathway to postnatal ethanol exposure. These effects may underlie the enhanced vulnerability to develop alcohol-use disorders of adolescents with a history of in utero ethanol exposure. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Synaptic and Behavioral Profile of Multiple Glutamatergic Inputs to the Nucleus Accumbens

    PubMed Central

    Britt, Jonathan P.; Benaliouad, Faiza; McDevitt, Ross A.; Stuber, Garret D.; Wise, Roy A.; Bonci, Antonello

    2013-01-01

    SUMMARY Excitatory afferents to the nucleus accumbens (NAc) are thought to facilitate reward seeking by encoding reward-associated cues. Selective activation of different glutamatergic inputs to the NAc can produce divergent physiological and behavioral responses, but mechanistic explanations for these pathway-specific effects are lacking. Here, we compared the innervation patterns and synaptic properties of ventral hippocampus, basolateral amygdala, and prefrontal cortex input to the NAc. Ventral hippocampal input was found to be uniquely localized to the medial NAc shell, where it was predominant and selectively potentiated following cocaine exposure. In vivo, bidirectional optogenetic manipulations of this pathway attenuated and enhanced cocaine-induced locomotion. Challenging the idea that any of these inputs encode motivationally-neutral information, activation of each discrete pathway reinforced instrumental behaviors. Finally, direct optical activation of medium spiny neurons proved to be capable of supporting self-stimulation, demonstrating that behavioral reinforcement is an explicit consequence of strong excitatory drive to the NAc. PMID:23177963

  1. Hydro-ethanolic extract of cashew tree (Anacardium occidentale) nut and its principal compound, anacardic acid, stimulate glucose uptake in C2C12 muscle cells.

    PubMed

    Tedong, Leonard; Madiraju, Padma; Martineau, Louis C; Vallerand, Diane; Arnason, John T; Desire, Dzeufiet D P; Lavoie, Louis; Kamtchouing, Pierre; Haddad, Pierre S

    2010-12-01

    Products of cashew tree (Anacardium occidentale) are used in traditional medicine for various ailments, including diabetes. The anti-diabetic properties of cashew plant parts were studied using differentiated C2C12 myoblasts (myotubes) and rat liver mitochondria. Hydroethanolic extract of cashew seed (CSE) and its active component, anacardic acid (AA), stimulated glucose transport into C2C12 myotubes in a concentration-dependent manner. Extracts of other parts (leaves, bark and apple) of cashew plant were inactive. Significant synergistic effect on glucose uptake with insulin was noticed at 100 μg/mL CSE. CSE and AA caused activation of adenosine monophosphate-activated protein kinase in C2C12 myotubes after 6 h of incubation. No significant effect was noticed on Akt and insulin receptor phosphorylation. Both CSE and AA exerted significant uncoupling of succinate-stimulated respiration in rat liver mitochondria. Activation of adenosine monophosphate-activated protein kinase by CSE and AA likely increases plasma membrane glucose transporters, resulting in elevated glucose uptake. In addition, the dysfunction of mitochondrial oxidative phosphorylation may enhance glycolysis and contribute to increased glucose uptake. These results collectively suggest that CSE may be a potential anti-diabetic nutraceutical. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effects of the AMPA/kainate receptor antagonist DNQX in the nucleus accumbens on drug-induced conditioned place preference.

    PubMed

    Layer, R T; Uretsky, N J; Wallace, L J

    1993-07-23

    Activation of AMPA/kainate glutamatergic receptors in the nucleus accumbens may be a component of the mechanism of drug induced reward. To test this hypothesis, 6,7-dinitroquinoxaline-2,3-dione (DNQX), an alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA)/kainate glutamatergic receptor anatagonist, was injected into the nucleus accumbens before the administration of amphetamine or morphine during the training phase (acquisition) of a conditioned place preference paradigm. Rats were then tested for place preference in the absence of drugs. In other experiments, DNQX was given before testing for place preference (expression) but not during the training phase. Bilateral injection of DNQX (1 microgram/0.5 microliters/side) inhibited acquisition of place preference to amphetamine (1 mg/kg) but not morphine (10 mg/kg). During acquisition, DNQX marginally attenuated the locomotor stimulation elicited by amphetamine during the first but not subsequent training sessions, while the combination of morphine plus DNQX produced marked akinesia during each training session. When given prior to testing, DNQX inhibited the expression of place preference induced by amphetamine and morphine but did not affect locomotor activity. The results suggest that activation of AMPA/kainate receptors is involved in the primary reward stimulation (acquisition of place preference) of amphetamine but not morphine and in behaviors elicited by memory of primary reward stimulation (expression of place preference) for both drugs. Furthermore, locomotor activity during conditioning is not necessary for acquisition of place preference.

  3. Adolescent rats are resistant to the development of ethanol-induced chronic tolerance and ethanol-induced conditioned aversion.

    PubMed

    Pautassi, Ricardo Marcos; Godoy, Juan Carlos; Molina, Juan Carlos

    2015-11-01

    The analysis of chronic tolerance to ethanol in adult and adolescent rats has yielded mixed results. Tolerance to some effects of ethanol has been reported in adolescents, yet other studies found adults to exhibit greater tolerance than adolescents or comparable expression of the phenomena at both ages. Another unanswered question is how chronic ethanol exposure affects subsequent ethanol-mediated motivational learning at these ages. The present study examined the development of chronic tolerance to ethanol's hypothermic and motor stimulating effects, and subsequent acquisition of ethanol-mediated odor conditioning, in adolescent and adult male Wistar rats given every-other-day intragastric administrations of ethanol. Adolescent and adult rats exhibited lack of tolerance to the hypothermic effects of ethanol during an induction phase; whereas adults, but not adolescents, exhibited a trend towards a reduction in hypothermia at a challenge phase (Experiment 1). Adolescents, unlike adults, exhibited ethanol-induced motor activation after the first ethanol administration. Adults, but not adolescents, exhibited conditioned odor aversion by ethanol. Subsequent experiments conducted only in adolescents (Experiment 2, Experiment 3 and Experiment 4) manipulated the context, length and predictability of ethanol administration. These manipulations did not promote the expression of ethanol-induced tolerance. This study indicated that, when moderate ethanol doses are given every-other day for a relatively short period, adolescents are less likely than adults to develop chronic tolerance to ethanol-induced hypothermia. This resistance to tolerance development could limit long-term maintenance of ethanol intake. Adolescents, however, exhibited greater sensitivity than adults to the acute motor stimulating effects of ethanol and a blunted response to the aversive effects of ethanol. This pattern of response may put adolescents at risk for early initiation of ethanol intake.

  4. Serotonergic antidepressants decrease hedonic signals but leave learning signals in the nucleus accumbens unaffected.

    PubMed

    Graf, Heiko; Metzger, Coraline D; Walter, Martin; Abler, Birgit

    2016-01-06

    Investigating the effects of serotonergic antidepressants on neural correlates of visual erotic stimulation revealed decreased reactivity within the dopaminergic reward network along with decreased subjective sexual functioning compared with placebo. However, a global dampening of the reward system under serotonergic drugs is not intuitive considering clinical observations of their beneficial effects in the treatment of depression. Particularly, learning signals as coded in prediction error processing within the dopaminergic reward system can be assumed to be rather enhanced as antidepressant drugs have been demonstrated to facilitate the efficacy of psychotherapeutic interventions relying on learning processes. Within the same study sample, we now explored the effects of serotonergic and dopaminergic/noradrenergic antidepressants on prediction error signals compared with placebo by functional MRI. A total of 17 healthy male participants (mean age: 25.4 years) were investigated under the administration of paroxetine, bupropion and placebo for 7 days each within a randomized, double-blind, within-subject cross-over design. During functional MRI, we used an established monetary incentive task to explore neural prediction error signals within the bilateral nucleus accumbens as region of interest within the dopaminergic reward system. In contrast to diminished neural activations and subjective sexual functioning under the serotonergic agent paroxetine under visual erotic stimulation, we revealed unaffected or even enhanced neural prediction error processing within the nucleus accumbens under this antidepressant along with unaffected behavioural processing. Our study provides evidence that serotonergic antidepressants facilitate prediction error signalling and may support suggestions of beneficial effects of these agents on reinforced learning as an essential element in behavioural psychotherapy.

  5. New rules governing synaptic plasticity in core nucleus accumbens medium spiny neurons.

    PubMed

    Ji, Xincai; Martin, Gilles E

    2012-12-01

    The nucleus accumbens is a forebrain region responsible for drug reward and goal-directed behaviors. It has long been believed that drugs of abuse exert their addictive properties on behavior by altering the strength of synaptic communication over long periods of time. To date, attempts at understanding the relationship between drugs of abuse and synaptic plasticity have relied on the high-frequency long-term potentiation model of T.V. Bliss & T. Lømo [(1973) Journal of Physiology, 232, 331-356]. We examined synaptic plasticity using spike-timing-dependent plasticity, a stimulation paradigm that reflects more closely the in vivo firing patterns of mouse core nucleus accumbens medium spiny neurons and their afferents. In contrast to other brain regions, the same stimulation paradigm evoked bidirectional long-term plasticity. The magnitude of spike-timing-dependent long-term potentiation (tLTP) changed with the delay between action potentials and excitatory post-synaptic potentials, and frequency, whereas that of spike-timing-dependent long-term depression (tLTD) remained unchanged. We showed that tLTP depended on N-methyl-d-aspartate receptors, whereas tLTD relied on action potentials. Importantly, the intracellular calcium signaling pathways mobilised during tLTP and tLTD were different. Thus, calcium-induced calcium release underlies tLTD but not tLTP. Finally, we found that the firing pattern of a subset of medium spiny neurons was strongly inhibited by dopamine receptor agonists. Surprisingly, these neurons were exclusively associated with tLTP but not with tLTD. Taken together, these data point to the existence of two subgroups of medium spiny neurons with distinct properties, each displaying unique abilities to undergo synaptic plasticity.

  6. Stress, Ethanol, and Neuroactive Steroids

    PubMed Central

    Biggio, Giovanni; Concas, Alessandra; Follesa, Paolo; Sanna, Enrico; Serra, Mariangela

    2010-01-01

    Neurosteroids play a crucial role in stress, alcohol dependence and withdrawal, and other physiological and pharmacological actions by potentiating or inhibiting neurotransmitter action. This review article focuses on data showing that the interaction among stress, ethanol, and neuroactive steroids may result in plastic molecular and functional changes of GABAergic inhibitory neurotransmission. The molecular mechanisms by which stress-ethanol-neuroactive steroids interactions can produce plastic changes in GABAA receptors have been studied using different experimental models in vivo and in vitro in order to provide useful evidence and new insights into the mechanisms through which acute and chronic ethanol and stress exposure modulate the activity of GABAergic synapses. We show detailed data on a) the effect of acute and chronic stress on peripheral and brain neurosteroid levels and GABAA receptor gene expression and function; b) ethanol-stimulated brain steroidogenesis; c) plasticity of GABAA receptor after acute and chronic ethanol exposure. The implications of these new mechanistic insights to our understanding of the effects of ethanol during stress are also discussed. The understanding of these neurochemical and molecular mechanisms may shed new light on the physiopathology of diseases, such as anxiety, in which GABAergic transmission play a pivotal role. These data may also lead to the need for new anxiolytic, hypnotic and anticonvulsant selective drugs devoid of side effects. PMID:17555824

  7. Adolescent intermittent ethanol exposure diminishes anhedonia during ethanol withdrawal in adulthood.

    PubMed

    Boutros, Nathalie; Semenova, Svetlana; Markou, Athina

    2014-06-01

    Adolescent alcohol use may interfere with neurodevelopment, increasing the likelihood of adult alcohol use disorders (AUDs). We investigated whether adolescent intermittent ethanol (AIE) exposure alters the adult reward response to ethanol. Adolescent rats were administered ethanol once (moderate exposure; Cohort 1) or three times per day (severe exposure; Cohort 2) in a 2 days on/2 days off pattern. In adulthood, subjects responded for electrical stimulation directed at the posterior lateral hypothalamus in a discrete-trial intracranial self-stimulation (ICSS) procedure that provides current-intensity thresholds as a measure of brain reward function. The effects of ethanol administration and withdrawal were assessed. Control rats showed dose-dependent threshold elevations after acute ethanol, indicating reward deficits. A majority of moderately AIE-exposed rats (Cohort 1) showed threshold lowering after ethanol, suggesting ethanol-induced reward enhancement in this sub-set of rats. Rats exposed to severe AIE (Cohort 2) showed no threshold elevation or lowering, suggesting a blunted affective ethanol response. Daily ethanol induced threshold elevations 24h after administration in control rats but not in either group of AIE-exposed rats, suggesting decreased sensitivity to the negative affective state of ethanol withdrawal. Withdrawal from a 4-day ethanol binge produced robust and enduring threshold elevations in all rats, although threshold elevations were diminished in rats exposed to severe AIE. These results indicate that AIE exposure diminished reward deficits associated with ethanol intoxication and withdrawal and may have increased ethanol-induced reward enhancement in a sub-set of rats. In humans, enhanced ethanol reward accompanied by reduced withdrawal severity may contribute to the development of AUDs.

  8. Antioxidant activity and anti-inflammatory activity of ethanol extract and fractions of Doenjang in LPS-stimulated RAW 264.7 macrophages

    PubMed Central

    Son, Dahee; Chung, Young-Shin; Kwon, Young Hye

    2015-01-01

    BACKGROUND/OBJECTIVES Fermentation can increase functional compounds in fermented soybean products, thereby improving antioxidant and/or anti-inflammatory activities. We investigated the changes in the contents of phenolics and isoflavones, antioxidant activity and anti-inflammatory activity of Doenjang during fermentation and aging. MATERIALS/METHODS Doenjang was made by inoculating Aspergillus oryzae and Bacillus licheniformis in soybeans, fermenting and aging for 1, 3, 6, 8, and 12 months (D1, D3, D6, D8, and D12). Doenjang was extracted using ethanol, and sequentially fractioned by hexane, dichloromethane (DM), ethylacetate (EA), n-butanol, and water. The contents of total phenolics, flavonoids and isoflavones, 2,2-diphenyl-1 picryl hydrazyl (DPPH) radical scavenging activity, and ferric reducing antioxidant power (FRAP) were measured. Anti-inflammatory effects in terms of nitric oxide (NO), prostaglandin (PG) E2 and pro-inflammatory cytokine production and inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 expressions were also measured using LPS-treated RAW 264.7 macrophages. RESULTS Total phenolic and flavonoid contents showed a gradual increase during fermentation and 6 months of aging and were sustained thereafter. DPPH radical scavenging activity and FRAP were increased by fermentation. FRAP was further increased by aging, but DPPH radical scavenging activity was not. Total isoflavone and glycoside contents decreased during fermentation and the aging process, while aglycone content and its proportion increased up to 3 or 6 months of aging and then showed a slow decrease. DM and EA fractions of Doenjang showed much higher total phenolic and flavonoid contents, and DPPH radical scavenging activity than the others. At 100 µg/mL, DM and EA fractions of D12 showed strongly suppressed NO production to 55.6% and 52.5% of control, respectively, and PGE2 production to 25.0% and 28.3% of control with inhibition of iNOS or COX-2 protein expression in

  9. Effects of culture conditions on the fermentation of xylose to ethanol by Candida shehatae

    Treesearch

    T. W. Jeffries

    1985-01-01

    This research examined four factors on the fermentation of xylose by Candida shehatae, and the following conclusions were reached: (1) A minimal medium is effective for producing ethanol. (2) Peptone and casamino acids stimulate ethanol production. (3) Aeration is important in obtaining good ethanol production rates and yields. (4) The maximal rate of ethanol...

  10. Ethanol-induced Locomotor Sensitization in DBA/2J Mice is Associated with Alterations in GABAA Subunit Gene Expression and Behavioral Sensitivity to GABAA Acting Drugs

    PubMed Central

    Linsenbardt, David N.; Boehm, Stephen L.

    2013-01-01

    Repeated exposure to ethanol may produce increased sensitivity to its acute locomotor stimulant actions, a process referred to as locomotor sensitization. Neuroadaptation within certain brain circuits, including those possessing GABAA receptors, may underlie locomotor sensitization to ethanol. Indeed, GABAA receptors are documented mediators of ethanol's cellular and behavioral actions. Moreover, because subunit composition of this receptor is predictive of its pharmacology, it is possible that alterations in subunit composition contribute to the expression of locomotor sensitization to ethanol. The goal of the present study was to determine if alterations in GABAA subunit composition are associated with the expression of locomotor sensitization in DBA/2J mice, a strain known to be particularly susceptible to the development of this behavioral phenomenon. Following a modified 14 day sensitization procedure (Phillips et al., 1994) relative changes in GABAA subunit gene expression were assessed in discrete mesolimbic brain regions. To determine if the observed changes in gene expression produced functional changes in the locomotor responses to drugs known to either preferentially or generally activate GABAA receptors normally possessing the significantly altered subunits, separate cohorts of animals were challenged with one of several low doses of zolpidem (α1-selective), etomidate (β2/3-selective), or flurazepam (γ2-directed) and assessed for locomotor alterations. Sensitized animals displayed increased expression of the α1, β2, and γ2 (v1) subunits in the Nucleus Accumbens (NAc) but not Ventral Tegmental Area (VTA). Additionally, sensitized animals displayed altered sensitivity to the locomotor actions of etomidate and flurazepam. These results support the hypothesis that neuroadaptive changes in GABAA subunit composition participate in the expression of locomotor sensitization. PMID:20219525

  11. Regulation of adenosine transport by acute and chronic ethanol exposure

    SciTech Connect

    Nagy, L.E.; Casso, D.; Diamond, I.; Gordon, A.S. )

    1989-02-09

    Chronic exposure to ethanol results in a desensitization of adenosine receptor-stimulated cAMP production. Since adenosine is released by cells and is known to desensitize its own as well as other receptors, it may be involved in ethanol-induced desensitization of adenosine receptor function. Therefore, we have examine the acute and chronic effects of ethanol on the transport of adenosine via the nucleoside transport. Acute exposure to ethanol caused an inhibition of adenosine uptake in S49 lymphoma cells. This decrease in uptake resulted in accumulation of extracellular adenosine after ethanol exposure. The effect of ethanol was specific to nucleoside transport. Uptake of uridine, also transported by the nucleoside transporter, was inhibited by ethanol to the same degree as adenosine uptake, while neither isoleucine nor deoxyglucose uptake was altered by ethanol treatment. Inhibition of adenosine uptake by ethanol was non-competitive and dependent on the concentration of ethanol. After chronic exposure to ethanol, cells became tolerant to the acute effects of ethanol. There was no longer an acute inhibition of adenosine uptake, nor was these accumulation of extracellular adenosine. Chronic ethanol exposure also resulted in a decrease in the absolute rate of adenosine uptake. Binding studies using a high affinity lignad for the nucleoside transporter, nitrobenzylthioinosine (NBMPR), indicate that this decreased uptake was due to a decrease in the maximal number of binding sites. These ethanol-induced changes in adenosine transport may be important for the acute and chronic effects of ethanol.

  12. Central orexin (hypocretin) 2 receptor antagonism reduces ethanol self-administration, but not cue-conditioned ethanol-seeking, in ethanol-preferring rats.

    PubMed

    Brown, Robyn Mary; Khoo, Shaun Yon-Seng; Lawrence, Andrew John

    2013-10-01

    Orexins are hypothalamic neuropeptides which bind to two G-protein-coupled receptors, orexin-1 (OX(1)R) and orexin-2 (OX(2)R) receptor. While a role for OX(1)R has been established in both ethanol reinforcement and ethanol-seeking behaviour, the role of OX(2)R in these behaviours is relatively less-studied. The aim of this study was to determine the role of central OX(2)R in ethanol-taking and ethanol-seeking behaviour. Indiana ethanol-preferring rats were trained to self-administer ethanol (10% w/v) or sucrose (0.7–1% w/v) in the presence of reward-associated cues before being implanted with indwelling guide cannulae. The selective OX(2)R antagonist TCS-OX2-29 was administered i.c.v. to assess its effect on operant self-administration and cue-induced reinstatement following extinction. Following i.c.v. injection TCS-OX2-29 reduced self-administration of ethanol, but not sucrose. Despite reducing ethanol self-administration, TCS-OX2-29 had no impact on cue-induced reinstatement of ethanol seeking. To determine where in the brain OX(2)R were acting to modulate ethanol self-administration, TCS-OX2-29 was microinjected into either the shell or core of the nucleus accumbens (NAc). Intra-NAc core, but not shell, infusions of TCS-OX2-29 decreased responding for ethanol. Importantly, the doses of TCS-OX2-029 used were non-sedating. Collectively, these findings implicate OX(2)R in the NAc in mediating the reinforcing effects of ethanol. This effect appears to be drug-specific as antagonism of central OX(2)R had no impact on sucrose self-administration. Thus, OX(2)R in addition to OX(1)R may represent a potential therapeutic target for the treatment of ethanol-use disorders. However, unlike OX(1)R, no impact of OX(2)R antagonism was observed on cue-induced reinstatement, suggesting a more prominent role for OX(2)R in ethanol self-administration compared to cue-conditioned ethanol-seeking.

  13. Prenatal ethanol increases ethanol intake throughout adolescence, alters ethanol-mediated aversive learning, and affects μ but not δ or κ opioid receptor mRNA expression.

    PubMed

    Fabio, María Carolina; Macchione, Ana Fabiola; Nizhnikov, Michael E; Pautassi, Ricardo Marcos

    2015-06-01

    Animal models of prenatal ethanol exposure (PEE) have indicated a facilitatory effect of PEE on adolescent ethanol intake, but few studies have assessed the effects of moderate PEE throughout adolescence. The mechanisms underlying this facilitatory effect remain largely unknown. In the present study, we analysed ethanol intake in male and female Wistar rats with or without PEE (2.0 g/kg, gestational days 17-20) from postnatal days 37 to 62. The results revealed greater ethanol consumption in PEE rats than in controls, which persisted throughout adolescence. By the end of testing, ethanol ingestion in PEE rats was nearly 6.0 g/kg. PEE was associated with insensitivity to ethanol-induced aversion. PEE and control rats were further analysed for levels of μ, δ and κ opioid receptor mRNA in the infralimbic cortex, nucleus accumbens shell, and ventral tegmental area. Similar levels of mRNA were observed across most areas and opioid receptors, but μ receptor mRNA in the ventral tegmental area was significantly increased by PEE. Unlike previous studies that assessed the effects of PEE on ethanol intake close to birth, or in only a few sessions during adolescence, the present study observed a facilitatory effect of PEE that lasted throughout adolescence. PEE was associated with insensitivity to the aversive effect of ethanol, and increased levels of μ opioid receptor transcripts. PEE is a prominent vulnerability factor that probably favors the engagement of adolescents in risky trajectories of ethanol use. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Administration of the D1-like dopamine receptor antagonist SCH-23390 into the medial nucleus accumbens shell attenuates cocaine priming-induced reinstatement of drug-seeking behavior in rats.

    PubMed

    Anderson, Sharon M; Bari, Ausaf A; Pierce, R Christopher

    2003-07-01

    A growing literature indicates that increased dopamine transmission in the nucleus accumbens contributes to priming-induced reinstatement of cocaine-seeking behavior. The present experiments were designed to assess the role of D(1)-like dopamine receptors in the nucleus accumbens core and shell subregions in cocaine priming-induced reinstatement of drug seeking. Rats were trained to lever press for cocaine using a fixed ratio (FR) 5 schedule of reinforcement. Drug-seeking was measured by active lever presses during daily 2-h sessions. After approximately 30 days of cocaine self-administration, the animals underwent an extinction phase during which cocaine was replaced with saline. Daily extinction sessions were conducted until responding was consistently less than 10% of the response rate maintained by cocaine self-administration. After the extinction phase, priming-induced reinstatement of cocaine-seeking behavior was assessed. Cocaine dose-dependently reinstated cocaine seeking, with robust drug seeking at 10 mg/kg cocaine. Administration of the D(1)-like dopamine receptor antagonist, SCH-23390 (0.1-1.0 micro g), directly into the medial nucleus accumbens shell dose-dependently attenuated drug seeking induced by 10 mg/kg cocaine. Microinjection of 1.0 micro g SCH-23390 into either the nucleus accumbens core or lateral septum had no influence on cocaine-seeking behavior. These results indicate that stimulation of D(1)-like dopamine receptors in the medial nucleus accumbens shell contributes to drug-induced reinstatement of cocaine-seeking behavior.

  15. Correlation between ethanol behavioral sensitization and midbrain dopamine neuron reactivity to ethanol.

    PubMed

    Didone, Vincent; Masson, Sébastien; Quoilin, Caroline; Seutin, Vincent; Quertemont, Etienne

    2016-03-01

    Repeated ethanol injections lead to a sensitization of its stimulant effects in mice. Some recent results argue against a role for ventral tegmental area (VTA) dopamine neurons in ethanol behavioral sensitization. The aim of the present study was to test whether in vivo ethanol locomotor sensitization correlates with changes in either basal- or ethanol-evoked firing rates of dopamine neurons in vitro. Female Swiss mice were daily injected with 2.5 g/kg ethanol (or saline in the control group) for 7 days and their locomotor activity was recorded. At the end of the sensitization procedure, extracellular recordings were made from dopaminergic neurons in midbrain slices from these mice. Significantly higher spontaneous basal firing rates of dopamine neurons were recorded in ethanol-sensitized mice relative to control mice, but without correlations with the behavioral effects. The superfusion of sulpiride, a dopamine D2 antagonist, induced a stronger increase of dopamine neuron firing rates in ethanol-sensitized mice. This shows that the D2 feedback in dopamine neurons is preserved after chronic ethanol administration and argues against a reduced D2 feedback as an explanation for the increased dopamine neuron basal firing rates in ethanol-sensitized mice. Finally, ethanol superfusion (10-100 mM) significantly increased the firing rates of dopamine neurons and this effect was of higher magnitude in ethanol-sensitized mice. Furthermore, there were significant correlations between such a sensitization of dopamine neuron activity and ethanol behavioral sensitization. These results support the hypothesis that changes in brain dopamine neuron activity contribute to the behavioral sensitization of the stimulant effects of ethanol. © 2014 Society for the Study of Addiction.

  16. GIRK3 gates activation of the mesolimbic dopaminergic pathway by ethanol.

    PubMed

    Herman, Melissa A; Sidhu, Harpreet; Stouffer, David G; Kreifeldt, Max; Le, David; Cates-Gatto, Chelsea; Munoz, Michaelanne B; Roberts, Amanda J; Parsons, Loren H; Roberto, Marisa; Wickman, Kevin; Slesinger, Paul A; Contet, Candice

    2015-06-02

    G protein-gated inwardly rectifying potassium (GIRK) channels are critical regulators of neuronal excitability and can be directly activated by ethanol. Constitutive deletion of the GIRK3 subunit has minimal phenotypic consequences, except in response to drugs of abuse. Here we investigated how the GIRK3 subunit contributes to the cellular and behavioral effects of ethanol, as well as to voluntary ethanol consumption. We found that constitutive deletion of GIRK3 in knockout (KO) mice selectively increased ethanol binge-like drinking, without affecting ethanol metabolism, sensitivity to ethanol intoxication, or continuous-access drinking. Virally mediated expression of GIRK3 in the ventral tegmental area (VTA) reversed the phenotype of GIRK3 KO mice and further decreased the intake of their wild-type counterparts. In addition, GIRK3 KO mice showed a blunted response of the mesolimbic dopaminergic (DA) pathway to ethanol, as assessed by ethanol-induced excitation of VTA neurons and DA release in the nucleus accumbens. These findings support the notion that the subunit composition of VTA GIRK channels is a critical determinant of DA neuron sensitivity to drugs of abuse. Furthermore, our study reveals the behavioral impact of this cellular effect, whereby the level of GIRK3 expression in the VTA tunes ethanol intake under binge-type conditions: the more GIRK3, the less ethanol drinking.

  17. GIRK3 gates activation of the mesolimbic dopaminergic pathway by ethanol

    PubMed Central

    Herman, Melissa A.; Sidhu, Harpreet; Stouffer, David G.; Kreifeldt, Max; Le, David; Cates-Gatto, Chelsea; Munoz, Michaelanne B.; Roberts, Amanda J.; Parsons, Loren H.; Roberto, Marisa; Wickman, Kevin; Slesinger, Paul A.; Contet, Candice

    2015-01-01

    G protein-gated inwardly rectifying potassium (GIRK) channels are critical regulators of neuronal excitability and can be directly activated by ethanol. Constitutive deletion of the GIRK3 subunit has minimal phenotypic consequences, except in response to drugs of abuse. Here we investigated how the GIRK3 subunit contributes to the cellular and behavioral effects of ethanol, as well as to voluntary ethanol consumption. We found that constitutive deletion of GIRK3 in knockout (KO) mice selectively increased ethanol binge-like drinking, without affecting ethanol metabolism, sensitivity to ethanol intoxication, or continuous-access drinking. Virally mediated expression of GIRK3 in the ventral tegmental area (VTA) reversed the phenotype of GIRK3 KO mice and further decreased the intake of their wild-type counterparts. In addition, GIRK3 KO mice showed a blunted response of the mesolimbic dopaminergic (DA) pathway to ethanol, as assessed by ethanol-induced excitation of VTA neurons and DA release in the nucleus accumbens. These findings support the notion that the subunit composition of VTA GIRK channels is a critical determinant of DA neuron sensitivity to drugs of abuse. Furthermore, our study reveals the behavioral impact of this cellular effect, whereby the level of GIRK3 expression in the VTA tunes ethanol intake under binge-type conditions: the more GIRK3, the less ethanol drinking. PMID:25964320

  18. Effects of cytotoxic nucleus accumbens lesions on instrumental conditioning in rats.

    PubMed

    de Borchgrave, R; Rawlins, J N P; Dickinson, A; Balleine, B W

    2002-05-01

    In two experiments the involvement of the nucleus accumbens in instrumental conditioning was investigated using rats as subjects. In experiment 1, extensive bilateral cytotoxic lesions of the nucleus accumbens mildly suppressed instrumental responding reinforced with food, but had no detectable effect on the sensitivity of the rats' performance either to outcome devaluation or to degradation of the instrumental contingency. In experiment 2, restricted accumbens lesions reliably attenuated the excitatory effect of systemically administered d-amphetamine on lever pressing for a conditioned reinforcer, and completely abolished Pavlovian-instrumental transfer. Taken together these results give a picture of the involvement of the rat nucleus accumbens in instrumental conditioning. They support the widely held theory that the nucleus accumbens mediates the excitatory effects of appetitively conditioned Pavlovian signals on instrumental performance and refute the hypothesis that the nucleus accumbens is part of the neural circuitry by which incentive value is attached to the representations of instrumental outcomes.

  19. Genetic Dissection of Acute Ethanol Responsive Gene Networks in Prefrontal Cortex: Functional and Mechanistic Implications

    PubMed Central

    Wolen, Aaron R.; Phillips, Charles A.; Langston, Michael A.; Putman, Alex H.; Vorster, Paul J.; Bruce, Nathan A.; York, Timothy P.; Williams, Robert W.; Miles, Michael F.

    2012-01-01

    Background Individual differences in initial sensitivity to ethanol are strongly related to the heritable risk of alcoholism in humans. To elucidate key molecular networks that modulate ethanol sensitivity we performed the first systems genetics analysis of ethanol-responsive gene expression in brain regions of the mesocorticolimbic reward circuit (prefrontal cortex, nucleus accumbens, and ventral midbrain) across a highly diverse family of 27 isogenic mouse strains (BXD panel) before and after treatment with ethanol. Results Acute ethanol altered the expression of ∼2,750 genes in one or more regions and 400 transcripts were jointly modulated in all three. Ethanol-responsive gene networks were extracted with a powerful graph theoretical method that efficiently summarized ethanol's effects. These networks correlated with acute behavioral responses to ethanol and other drugs of abuse. As predicted, networks were heavily populated by genes controlling synaptic transmission and neuroplasticity. Several of the most densely interconnected network hubs, including Kcnma1 and Gsk3β, are known to influence behavioral or physiological responses to ethanol, validating our overall approach. Other major hub genes like Grm3, Pten and Nrg3 represent novel targets of ethanol effects. Networks were under strong genetic control by variants that we mapped to a small number of chromosomal loci. Using a novel combination of genetic, bioinformatic and network-based approaches, we identified high priority cis-regulatory candidate genes, including Scn1b, Gria1, Sncb and Nell2. Conclusions The ethanol-responsive gene networks identified here represent a previously uncharacterized intermediate phenotype between DNA variation and ethanol sensitivity in mice. Networks involved in synaptic transmission were strongly regulated by ethanol and could contribute to behavioral plasticity seen with chronic ethanol. Our novel finding that hub genes and a small number of loci exert major influence

  20. Altered morphology of the nucleus accumbens in persistent developmental stuttering.

    PubMed

    Neef, Nicole E; Bütfering, Christoph; Auer, Tibor; Metzger, F Luise; Euler, Harald A; Frahm, Jens; Paulus, Walter; Sommer, Martin

    2017-05-24

    Neuroimaging studies in persistent developmental stuttering repeatedly report altered basal ganglia functions. Together with thalamus and cerebellum, these structures mediate sensorimotor functions and thus represent a plausible link between stuttering and neuroanatomy. However, stuttering is a complex, multifactorial disorder. Besides sensorimotor functions, emotional and social-motivational factors constitute major aspects of the disorder. Here, we investigated cortical and subcortical gray matter regions to study whether persistent developmental stuttering is also linked to alterations of limbic structures. The study included 33 right-handed participants who stutter and 34 right-handed control participants matched for sex, age, and education. Structural images were acquired using magnetic resonance imaging to estimate volumetric characteristics of the nucleus accumbens, hippocampus, amygdala, pallidum, putamen, caudate nucleus, and thalamus. Volumetric comparisons and vertex-based shape comparisons revealed structural differences. The right nucleus accumbens was larger in participants who stutter compared to controls. Recent theories of basal ganglia functions suggest that the nucleus accumbens is a motivation-to-movement interface. A speaker intends to reach communicative goals, but stuttering can derail these efforts. It is therefore highly plausible to find alterations in the motivation-to-movement interface in stuttering. While behavioral studies of stuttering sought to find links between the limbic and sensorimotor system, we provide the first neuroimaging evidence of alterations in the limbic system. Thus, our findings might initialize a unified neurobiological framework of persistent developmental stuttering that integrates sensorimotor and social-motivational neuroanatomical circuitries. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Relief memory consolidation requires protein synthesis within the nucleus accumbens.

    PubMed

    Bruning, Johann E A; Breitfeld, Tino; Kahl, Evelyn; Bergado-Acosta, Jorge R; Fendt, Markus

    2016-06-01

    Relief learning refers to the association of a stimulus with the relief from an aversive event. The thus-learned relief stimulus then can induce, e.g., an attenuation of the startle response or approach behavior, indicating positive valence. Previous studies revealed that the nucleus accumbens is essential for the acquisition and retrieval of relief memory. Here, we ask whether the nucleus accumbens is also the brain site for consolidation of relief memory into a long-term form. In rats, we blocked local protein synthesis within the nucleus accumbens by local infusions of anisomycin at different time points during a relief conditioning experiment. Accumbal anisomycin injections immediately after the relief conditioning session, but not 4 h later, prevented the consolidation into long-term relief memory. The retention of already consolidated relief memory was not affected by anisomycin injections. This identifies a time window and site for relief memory consolidation. These findings should complement our understanding of the full range of effects of adverse experiences, including cases of their distortion in humans such as post-traumatic stress disorder and/or phobias. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Left nucleus accumbens atrophy in deficit schizophrenia: A preliminary study.

    PubMed

    De Rossi, Pietro; Dacquino, Claudia; Piras, Fabrizio; Caltagirone, Carlo; Spalletta, Gianfranco

    2016-08-30

    A question that remains to be answered is whether schizophrenia can be characterized by a single etiopathophysiology or whether separate sub-syndromes should be differentiated to define specific mechanisms for each sub-type. Individuals affected by the deficit subtype of schizophrenia (DSZ) display avolitional/amotivational features that respond poorly to conventional treatments. Characterizing DSZ from a neuroanatomical point of view may help clarify this issue and develop new treatment strategies. To determine if DSZ is associated with structural alterations in specific deep grey matter structures linked to its key clinical features, 22 DSZ patients, 22 non-deficit schizophrenia (NDSZ) patients and 22 healthy controls (HC) were recruited for a case-control cross-sectional study. High-resolution magnetic resonance imaging was performed in all subjects and volumes of deep grey matter structures were measured using FreeSurfer. DSZ patients displayed smaller left accumbens volumes compared to both NDSZ patients and HC. Moreover, age and duration of illness were significantly associated with lower volume of the left accumbens in DSZ but not in NDSZ. Findings indicate that DSZ is associated with lower volume of the nucleus accumbens in the dominant hemisphere. This is consistent with the psychopathological features and functional impairments present in DSZ and thus indicates a potential mechanism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Extrasynaptic δ-containing GABAA receptors in the nucleus accumbens dorsomedial shell contribute to alcohol intake

    PubMed Central

    Nie, Hong; Rewal, Mridula; Gill, T. Michael; Ron, Dorit; Janak, Patricia H.

    2011-01-01

    Recent findings suggest that extrasynaptic δ-subunit–containing GABAA receptors are sensitive to low-to-moderate concentrations of alcohol, raising the possibility that these receptors mediate the reinforcing effects of alcohol after consumption of one or a few drinks. We used the technique of viral-mediated RNAi to reduce expression of the GABAA receptor δ-subunit in adult rats in localized regions of the nucleus accumbens (NAc) to test the hypothesis that δ-subunit–containing GABAA receptors in the NAc are necessary for oral alcohol consumption. We found that knockdown of the δ-subunit in the medial shell region of the NAc, but not in the ventral or lateral shell or in the core, reduced alcohol intake. In contrast, δ-subunit knockdown in the medial shell did not affect intake of a 2% sucrose solution, suggesting that the effects of GABAA receptor δ-subunit reduction are specific to alcohol. These results provide strong evidence that extrasynaptic δ-subunit–containing GABAA receptors in the medial shell of the NAc are critical for the reinforcing effects of oral ethanol. PMID:21368141

  4. Local salsolinol modulates dopamine extracellular levels from rat nucleus accumbens: shell/core differences.

    PubMed

    Hipólito, Lucía; Sánchez-Catalán, María José; Granero, Luis; Polache, Ana

    2009-09-01

    Salsolinol (SAL), a condensation product of dopamine and acetaldehyde that appears in the rat and human brain after ethanol ingestion, has been largely implicated in the aetiology of alcoholism. Although the behavioural consequences of systemic or intracerebral SAL administrations have been described, the neurochemical effects of pharmacologically relevant doses of SAL and other tetrahydroisoquinolines (THIQs) in the brain areas involved in alcohol addiction are practically unknown. To gain an insight into this topic, male Wistar rats were stereotaxically implanted with one concentric microdialysis probe in either the shell or the core of the nucleus accumbens (NAc). Treatments involved local administration of 0.1, 5 and 25 microM SAL for 20 min through the dialysis probe. Dopamine (DA) concentrations in the shell or core of the NAc were on-line analyzed every 20 min by HPLC with electrochemical detection. Implantation of the probe was histologically evaluated at the end of the experiments. Our results indicate that dialysis application of 5 and 25 microM SAL into the core increased the dialysate levels of DA. Conversely, the administration of the same doses of this drug into the shell significantly reduced the DA levels in this subregion. In conclusion, these data reveal that local application of SAL affects the DA levels in the NAc subterritories in a region-specific manner. These findings may prove useful in probing CNS sites and mechanisms involved in alcohol consumption.

  5. The role of nucleus accumbens adenosine–opioid interaction in mediating palatable food intake

    PubMed Central

    Pritchett, Carolyn E.; Pardee, Alicia L.; McGuirk, Sophia R.; Will, Matthew J.

    2015-01-01

    Nucleus accumbens µ-opioid stimulation leads to robust increases in the intake of highly palatable foods, such as a high-fat diet. While interactions between opioids and certain striatal neurotransmitters underlying this phenomenon have been explored, many potential interactions have not. Striatal adenosine has been shown to have a significant influence on striatal neurotransmission and locomotor activity behavior, however the interaction between opioids and adenosine on feeding behaviors has received less attention. The present study explored this interaction within the context of opioid-driven consumption of a high-fat diet. Specifically, intra-accumbens administration of selective A1 and A2A adenosine receptor ligands, with or without concurrent administration of the µ-opioid agonist DAla2,N,Me-Phe4,Gly-ol5-enkaphalin (DAMGO), on high-fat consumption and associated locomotor activity was examined. The A1 receptor agonist 2-Chloro-N6-cyclopentyladenosine (CCPA) had no effect on either baseline or DAMGO-induced locomotor or consumption behaviors associated with the high-fat diet. However, the A2A receptor agonist 2-p-(2 carboxyethyl)-phenethylamino-5′-N-ethylcarboxamido adenosine hydrochloride (CGS 21680) and the prodrug of the A2A receptor antagonist MSX-2, 3-(3-hydroxypropyl)-8-(m-methoxystyryl)-7-methyl-1-propargylxanthine phosphate disodium salt (MSX-3) produced the expected decrease and increase in locomotor activity, respectively. CGS 21680 had no effect on baseline or DAMGO-driven consumption of the high-fat diet. MSX-3 had no effect on DAMGO-induced locomotor activity but increased DAMGO-induced consumption. Lastly, the increased activity and consumption produced by MSX-3 alone was blocked by prior administration of the opioid antagonist naltrexone. In summary, these results suggest a potential role of striatal adenosine A2A receptors in mediating baseline and striatal opioid-mediated intake of a high-fat diet. PMID:19822132

  6. The role of nucleus accumbens adenosine-opioid interaction in mediating palatable food intake.

    PubMed

    Pritchett, Carolyn E; Pardee, Alicia L; McGuirk, Sophia R; Will, Matthew J

    2010-01-08

    Nucleus accumbens micro-opioid stimulation leads to robust increases in the intake of highly palatable foods, such as a high-fat diet. While interactions between opioids and certain striatal neurotransmitters underlying this phenomenon have been explored, many potential interactions have not. Striatal adenosine has been shown to have a significant influence on striatal neurotransmission and locomotor activity behavior, however the interaction between opioids and adenosine on feeding behaviors has received less attention. The present study explored this interaction within the context of opioid-driven consumption of a high-fat diet. Specifically, intra-accumbens administration of selective A1 and A2(A) adenosine receptor ligands, with or without concurrent administration of the micro-opioid agonist (D)-Ala(2),N,Me-Phe(4),Gly-ol(5)-enkaphalin (DAMGO), on high-fat consumption and associated locomotor activity was examined. The A1 receptor agonist 2-Chloro-N6-cyclopentyladenosine (CCPA) had no effect on either baseline or DAMGO-induced locomotor or consumption behaviors associated with the high-fat diet. However, the A2(A) receptor agonist 2-p-(2 carboxyethyl)-phenethylamino-5'-N-ethylcarboxamido adenosine hydrochloride (CGS 21680) and the prodrug of the A2(A) receptor antagonist MSX-2, 3-(3-hydroxypropyl)-8-(m-methoxystyryl)-7-methyl-1-propargylxanthine phosphate disodium salt (MSX-3) produced the expected decrease and increase in locomotor activity, respectively. CGS 21680 had no effect on baseline or DAMGO-driven consumption of the high-fat diet. MSX-3 had no effect on DAMGO-induced locomotor activity but increased DAMGO-induced consumption. Lastly, the increased activity and consumption produced by MSX-3 alone was blocked by prior administration of the opioid antagonist naltrexone. In summary, these results suggest a potential role of striatal adenosine A2(A) receptors in mediating baseline and striatal opioid-mediated intake of a high-fat diet.

  7. The effect of N-acetylcysteine in the nucleus accumbens on neurotransmission and relapse to cocaine.

    PubMed

    Kupchik, Yonatan M; Moussawi, Khaled; Tang, Xing-Chun; Wang, Xiusong; Kalivas, Benjamin C; Kolokithas, Rosalia; Ogburn, Katelyn B; Kalivas, Peter W

    2012-06-01

    Relapse to cocaine seeking has been linked with low glutamate in the nucleus accumbens core (NAcore) causing potentiation of synaptic glutamate transmission from prefrontal cortex (PFC) afferents. Systemic N-acetylcysteine (NAC) has been shown to restore glutamate homeostasis, reduce relapse to cocaine seeking, and depotentiate PFC-NAcore synapses. Here, we examine the effects of NAC applied directly to the NAcore on relapse and neurotransmission in PFC-NAcore synapses, as well as the involvement of the metabotropic glutamate receptors 2/3 (mGluR2/3) and 5 (mGluR5). Rats were trained to self-administer cocaine for 2 weeks and following extinction received either intra-accumbens NAC or systemic NAC 30 or 120 minutes, respectively, before inducing reinstatement with a conditioned cue or a combined cue and cocaine injection. We also recorded postsynaptic currents using in vitro whole cell recordings in acute slices and measured cystine and glutamate uptake in primary glial cultures. NAC microinjection into the NAcore inhibited the reinstatement of cocaine seeking. In slices, a low concentration of NAC reduced the amplitude of evoked glutamatergic synaptic currents in the NAcore in an mGluR2/3-dependent manner, while high doses of NAC increased amplitude in an mGluR5-dependent manner. Both effects depended on NAC uptake through cysteine transporters and activity of the cysteine/glutamate exchanger. Finally, we showed that by blocking mGluR5 the inhibition of cocaine seeking by NAC was potentiated. The effect of NAC on relapse to cocaine seeking depends on the balance between stimulating mGluR2/3 and mGluR5 in the NAcore, and the efficacy of NAC can be improved by simultaneously inhibiting mGluR5. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Effects of systemic L-tyrosine on dopamine release from rat corpus striatum and nucleus accumbens

    NASA Technical Reports Server (NTRS)

    During, Matthew J.; Acworth, Ian N.; Wurtman, Richard J.

    1988-01-01

    Intracerebral dialysis was used to monitor extracellular fluid from rat striatum and nucleus accumbens following the intraperitoneal administration of tyrosine. Dopamine concentrations in dialysates from both the striatum and the nucleus accumbens increased significantly in response to the tyrosine. The magnitude of the tyrosine effect was greater in the nucleus accumbens than in the striatum. Hence, mesolimbic dopaminergic neurons may be especially responsive to precursor availability.

  9. GDNF is a novel ethanol-responsive gene in the VTA: Implications for the development and persistence of excessive drinking

    PubMed Central

    Ahmadiantehrani, Somayeh; Barak, Segev; Ron, Dorit

    2012-01-01

    Glial cell line-derived neurotrophic factor (GDNF) is a potent inhibitor of ethanol consumption and relapse (Carnicella et al., 2008; Carnicella and Ron, 2009; Carnicella et al., 2009c; Barak et al., 2011a), and GDNF heterozygous knockout mice display increased reward sensitivity to ethanol, and consume more ethanol after a period of abstinence, than their wild-type littermates (Carnicella et al., 2009b). Here, we tested whether ethanol alters GDNF expression in the ventral tegmental area (VTA; GDNF’s site of action) and/or the nucleus accumbens (NAc; the main source of GDNF), and if so, determine the role of the endogenous growth factor in the regulation of ethanol consumption. Systemic administration of ethanol increased GDNF expression and protein levels in the VTA, but not the NAc. Additionally, GDNF levels were elevated after an ethanol-drinking session in rats that consumed ethanol in the intermittent-access two-bottle choice procedure for 1 week, but not 7 weeks. Deprivation following 7 weeks of excessive ethanol intake reduced GDNF levels, while a short ethanol binge drinking period following deprivation upregulated GDNF expression. Importantly, knockdown of GDNF within the VTA using adenovirus expressing short hairpin RNA facilitated the escalation of ethanol drinking by ethanol-naïve rats, but not by rats with a history of excessive ethanol consumption. These results suggest that during initial ethanol-drinking experiences, GDNF in the VTA is increased and protects against the development of excessive ethanol intake. However, the growth factor’s protective response to ethanol breaks down after protracted excessive ethanol intake and withdrawal, resulting in persistent, excessive ethanol consumption. PMID:23298382

  10. The allostatic impact of chronic ethanol on gene expression: A genetic analysis of chronic intermittent ethanol treatment in the BXD cohort.

    PubMed

    van der Vaart, Andrew D; Wolstenholme, Jennifer T; Smith, Maren L; Harris, Guy M; Lopez, Marcelo F; Wolen, Aaron R; Becker, Howard C; Williams, Robert W; Miles, Michael F

    2017-02-01

    The transition from acute to chronic ethanol exposure leads to lasting behavioral and physiological changes such as increased consumption, dependence, and withdrawal. Changes in brain gene expression are hypothesized to underlie these adaptive responses to ethanol. Previous studies on acute ethanol identified genetic variation in brain gene expression networks and behavioral responses to ethanol across the BXD panel of recombinant inbred mice. In this work, we have performed the first joint genetic and genomic analysis of transcriptome shifts in response to chronic intermittent ethanol (CIE) by vapor chamber exposure in a BXD cohort. CIE treatment is known to produce significant and sustained changes in ethanol consumption with repeated cycles of ethanol vapor. Using Affymetrix microarray analysis of prefrontal cortex (PFC) and nucleus accumbens (NAC) RNA, we compared CIE expression responses to those seen following acute ethanol treatment, and to voluntary ethanol consumption. Gene expression changes in PFC and NAC after CIE overlapped significantly across brain regions and with previously published expression following acute ethanol. Genes highly modulated by CIE were enriched for specific biological processes including synaptic transmission, neuron ensheathment, intracellular signaling, and neuronal projection development. Expression quantitative trait locus (eQTL) analyses identified genomic loci associated with ethanol-induced transcriptional changes with largely distinct loci identified between brain regions. Correlating CIE-regulated genes to ethanol consumption data identified specific genes highly associated with variation in the increase in drinking seen with repeated cycles of CIE. In particular, multiple myelin-related genes were identified. Furthermore, genetic variance in or near dynamin3 (Dnm3) on Chr1 at ∼164 Mb may have a major regulatory role in CIE-responsive gene expression. Dnm3 expression correlates significantly with ethanol consumption

  11. GABAergic mechanisms in the nucleus accumbens septi regulating rat motor activity: the effect of chronic treatment with desipramine.

    PubMed

    Płaznik, A; Stefański, R; Kostowski, W

    1990-07-01

    The influence of chronic treatment with desipramine upon GABAergic mechanisms within the nucleus accumbens septi (NAS) affecting rat motor behavior was studied in the automatic open fields. It was shown that intra-accumbens injections of picrotoxin on one hand and muscimol and baclofen on the other, produced dose-dependent increase or decrease in rat motility, respectively. Locomotor stimulation usually observed after picrotoxin did not occur in rats given local injections of a solution containing both picrotoxin and GABA A receptor agonist muscimol. Muscimol (130 ng as a pure compound) blocked also hypermotility produced by intra-accumbens administration of dopamine releasing drug d-amphetamine (10 micrograms). This part of the experiment was summarized as indicating that both GABA A and GABA B receptor-related mechanisms, which are under negative control of dopaminergic neurons in the NAS, play an important role in regulating behavior in the rat. In the second part of the experiment it was observed that chronic treatment of rats with desipramine (DMI) (10 mg/kg, PO, twice daily for 21 days, rats were tested 24 hr after the last dose of the drug) significantly attenuated or blocked the inhibitory effect on locomotion of both baclofen and muscimol. The stimulatory influence of picrotoxin seemed also to be diminished, but it still attained the level of accepted statistical significance. On the basis of these and other data it is concluded that observed changes in the effects of GABAergic agonists in DMI-treated rats are probably due to an enhancement of local dopaminergic mechanisms, thus leading to the potentiation of a negative interaction between dopaminergic and GABAergic mechanisms within the NAS.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Chronic alcohol consumption leads to neurochemical changes in the nucleus accumbens that are not fully reversed by withdrawal.

    PubMed

    Pereira, Pedro A; Neves, João; Vilela, Manuel; Sousa, Sérgio; Cruz, Catarina; Madeira, M Dulce

    2014-01-01

    Neuropeptide Y (NPY)- and acetylcholine-containing interneurons of the nucleus accumbens (NAc) seem to play a major role in the rewarding effects of alcohol. This study investigated the relationship between chronic alcohol consumption and subsequent withdrawal and the expression of NPY and acetylcholine in the NAc, and the possible involvement of nerve growth factor (NGF) in mediating the effects of ethanol. Rats ingesting an aqueous ethanol solution over 6months and rats subsequently deprived from ethanol during 2months were used to estimate the total number and the somatic volume of NPY and cholinergic interneurons, and the numerical density of cholinergic varicosities in the NAc. The tissue content of choline acetyltransferase (ChAT) and catecholamines were also determined. The number of NPY interneurons increased during alcohol ingestion and returned to control values after withdrawal. Conversely, the number and the size of cholinergic interneurons, and the amount of ChAT were unchanged in ethanol-treated and withdrawn rats, but the density of cholinergic varicosities was reduced by 50% during alcohol consumption and by 64% after withdrawal. The concentrations of dopamine and norepinephrine were unchanged both during alcohol consumption and after withdrawal. The administration of NGF to withdrawn rats significantly increased the number of NPY-immunoreactive neurons, the size of cholinergic neurons and the density of cholinergic varicosities. Present data show that chronic alcohol consumption leads to long-lasting neuroadaptive changes of the cholinergic innervation of the NAc and suggest that the cholinergic system is a potential target for the development of therapeutic strategies in alcoholism and abstinence.

  13. Nicotinic activation of mesolimbic neurons assessed by rubidium efflux in rat accumbens and ventral tegmentum.

    PubMed

    Rowell, Peter P; Volk, Kelly A

    2004-01-01

    Dopaminergic mesolimbic neurons, with cell bodies in the ventral tegmental area (VTA) projecting to the nucleus accumbens (NAc), have been shown to be involved in the development of drug dependence. The application of nicotine to either the VTA or NAc produces an increase in dopamine release; however, the positive reinforcement produced by the systemic injection of nicotine is primarily due to stimulation of nicotinic acetylcholine receptors (nAChRs) in the VTA. Because the brain levels of nicotine would likely be the same in both brain areas, the nAChRs in the NAc may be less sensitive than those in the VTA. This study was undertaken to make a direct comparison of the native nAChRs in intact slices of NAc and VTA by measuring nicotine-stimulated efflux of (86)Rb(+) in a superfusion assay. The potency of nicotine and several other agonists was similar in both brain areas, but nicotine was somewhat more efficacious in the NAc. The effects of treatment duration, calcium and nicotinic antagonists were also determined. The results suggest that the predominant effect of nicotine in the VTA following systemic administration is due to differences in neuronal circuitry or firing patterns rather than inherent differences in the two nAChR populations. Copyright 2004 S. Karger AG, Basel

  14. Dopamine release in the nucleus accumbens is altered following traumatic brain injury.

    PubMed

    Chen, Yuan-Hao; Huang, Eagle Yi-Kung; Kuo, Tung-Tai; Hoffer, Barry J; Miller, Jonathan; Chou, Yu-Ching; Chiang, Yung-Hsiao

    2017-04-21

    Mild-to-severe traumatic brain injury (TBI) is frequently associated with prolonged dysfunction of reward circuitry, including motivation and salience, which suggests alterations of dopamine (DA) processing within the core and shell of the nucleus accumbens (NAC). Using fast-scan cyclic voltammetry in a rodent model of traumatic brain injury, we found that stimulus-evoked DA release is distinct in the core and shell of the NAC, with the shell being less responsive to tonic stimulation and more sensitive to the number of pulses when phasic stimulation is applied. Exposure to TBI was associated with major changes in both release and reuptake of DA in both the core and shell of NAC, with greater changes seen in the core. These alterations evolved over time, becoming most severe 1-2weeks after injury with subsequent recovery, and the extent and progression of these abnormalities was correlated with severity of injury. Taken together, these data support behavior and anatomical studies suggesting the NAC core and striatum may subserve parallel functions, whereas the shell is distinct. These data offer a unique window on how different neurological systems respond to TBI and may help explain affective and cognitive changes that are seen.

  15. Experience-Dependent Effects of Cocaine Self-Administration/Conditioning on Prefrontal and Accumbens Dopamine Responses

    PubMed Central

    Ikegami, Aiko; Olsen, Christopher M.; D’Souza, Manoranjan S.; Duvauchelle, Christine L.

    2008-01-01

    Experiments were performed to examine the effects of cocaine self-administration and conditioning experience on operant behavior, locomotor activity, and nucleus accumbens (NAcc) and prefrontal cortex (PFC) dopamine (DA) responses. Sensory cues were paired with alternating cocaine and nonreinforcement during 12 (limited training) or 40 (long-term training) daily operant sessions. After limited training, NAcc DA responses to cocaine were significantly enhanced in the presence of cocaine-associated cues compared with nonreward cues and significantly depressed after cocaine-paired cues accompanied a nonreinforced lever response. PFC DA levels were generally nonresponsive to cues after the same training duration. However, after long-term training, cocaine-associated cues increased the magnitude of cocaine-stimulated PFC DA levels significantly over levels observed with nonreinforcement cues. Conversely, conditioned cues no longer influenced NAcc DA levels after long-term training. In addition, cocaine-stimulated locomotor activity was enhanced by cocaine-paired cues after long-term, but not after limited, training. Findings demonstrate that cue-induced cocaine expectation exerts a significant impact on dopaminergic and behavioral systems, progressing from mesolimbic to mesocortical regions and from latent to patent behaviors as cocaine and associative experiences escalate. PMID:17469929

  16. Chronic lithium treatment rectifies maladaptive dopamine release in the nucleus accumbens.

    PubMed

    Can, Adem; Frost, Douglas O; Cachope, Roger; Cheer, Joseph F; Gould, Todd D

    2016-11-01

    Chronic lithium treatment effectively reduces behavioral phenotypes of mania in humans and rodents. The mechanisms by which lithium exerts these actions are poorly understood. Pre-clinical and clinical evidence have implicated increased mesolimbic dopamine (DA) neurotransmission with mania. We used fast-scan cyclic voltammetry to characterize changes in extracellular DA concentrations in the nucleus accumbens (NAc) core evoked by 20 and 60 Hz electrical stimulation of the ventral tegmental area (VTA) in C57BL6/J mice treated either acutely or chronically with lithium. The effects of chronic lithium treatment on the availability of DA for release were assessed by depleting readily releasable DA using short inter-train intervals, or administering d-amphetamine acutely to mobilize readily releasable DA. Chronic, but not acute, lithium treatment decreased the amplitude of DA responses in the NAc following 60 Hz pulse train stimulation. Neither lithium treatment altered the kinetics of DA release or reuptake. Chronic treatment did not impact the progressive reduction in the amplitude of DA responses when, using 20 or 60 Hz pulse trains, the VTA was stimulated every 6 s to deplete DA. Specifically, the amplitude of DA responses to 60 Hz pulse trains was initially reduced compared to control mice, but by the fifth pulse train, there was no longer a treatment effect. However, chronic lithium treatment attenuated d-amphetamine-induced increases in DA responses to 20 Hz pulse trains stimulation. Our data suggest that long-term administration of lithium may ameliorate mania phenotypes by normalizing the readily releasable DA pool in VTA axon terminals in the NAc. Read the Editorial Highlight for this article on Page 520. © 2016 International Society for Neurochemistry.

  17. New evidence of ethanol's anxiolytic properties in the infant rat

    PubMed Central

    Miranda-Morales, Roberto Sebastián; Nizhnikov, Michael E.; Waters, Dustin H.; Spear, Norman E.

    2014-01-01

    Ethanol induces appetitive, aversive, and anxiolytic effects that are involved in the development of ethanol use and dependence. Because early ethanol exposure produces later increased responsiveness to ethanol, considerable effort has been devoted to analysis of ethanol's appetitive and aversive properties during early ontogeny. Yet, there is a relative scarcity of research related to the anxiolytic effects of ethanol during early infancy, perhaps explained by a lack of age-appropriate tests. The main aim of this study was to validate a model for the assessment of ethanol's anxiolytic effects in the infant rat (postnatal days 13– 16). The potentially anxiolytic effects of ethanol tested included: i) amelioration of conditioned place aversion, ii) ethanol intake in the presence of an aversive conditioned stimulus, iii) the inhibitory behavioral effect in an anxiogenic environment, and iv) innate aversion to a brightly illuminated area in a modified light/dark paradigm. Ethanol doses employed across experiments were 0.0, 0.5, and 2.0 g/kg. Results indicated that a low ethanol dose (0.5 g/kg) was effective in attenuating expression of a conditioned aversion. Ethanol intake, however, was unaffected by simultaneous exposure to an aversive stimulus. An anxiogenic environment diminished ethanol-induced locomotor stimulation. Finally, animals given 0.5 g/kg ethanol and evaluated in a light/dark box showed increased time spent in the illuminated area and increased latency to escape from the brightly lit compartment than rats treated with a higher dose of ethanol or vehicle. These new results suggest that ethanol doses as low as 0.5 g/kg are effective in ameliorating an aversive and/or anxiogenic state in preweanling rats. These behavioral preparations can be used to assess ethanol's anxiolytic properties during early development. PMID:24776303

  18. Chronic cocaine-regulated epigenomic changes in mouse nucleus accumbens

    PubMed Central

    2014-01-01

    Background Increasing evidence supports a role for altered gene expression in mediating the lasting effects of cocaine on the brain, and recent work has demonstrated the involvement of chromatin modifications in these alterations. However, all such studies to date have been restricted by their reliance on microarray technologies that have intrinsic limitations. Results We use next generation sequencing methods, RNA-seq and ChIP-seq for RNA polymerase II and several histone methylation marks, to obtain a more complete view of cocaine-induced changes in gene expression and associated adaptations in numerous modes of chromatin regulation in the mouse nucleus accumbens, a key brain reward region. We demonstrate an unexpectedly large number of pre-mRNA splicing alterations in response to repeated cocaine treatment. In addition, we identify combinations of chromatin changes, or signatures, that correlate with cocaine-dependent regulation of gene expression, including those involving pre-mRNA alternative splicing. Through bioinformatic prediction and biological validation, we identify one particular splicing factor, A2BP1(Rbfox1/Fox-1), which is enriched at genes that display certain chromatin signatures and contributes to drug-induced behavioral abnormalities. Together, this delineation of the cocaine-induced epigenome in the nucleus accumbens reveals several novel modes of regulation by which cocaine alters the brain. Conclusions We establish combinatorial chromatin and transcriptional profiles in mouse nucleus accumbens after repeated cocaine treatment. These results serve as an important resource for the field and provide a template for the analysis of other systems to reveal new transcriptional and epigenetic mechanisms of neuronal regulation. PMID:24758366

  19. Reversal of morphine-induced cell-type–specific synaptic plasticity in the nucleus accumbens shell blocks reinstatement

    PubMed Central

    Hearing, Matthew C.; Jedynak, Jakub; Ebner, Stephanie R.; Ingebretson, Anna; Asp, Anders J.; Fischer, Rachel A.; Schmidt, Clare; Larson, Erin B.; Thomas, Mark John

    2016-01-01

    Drug-evoked plasticity at excitatory synapses on medium spiny neurons (MSNs) of the nucleus accumbens (NAc) drives behavioral adaptations in addiction. MSNs expressing dopamine D1 (D1R-MSN) vs. D2 receptors (D2R-MSN) can exert antagonistic effects in drug-related behaviors, and display distinct alterations in glutamate signaling following repeated exposure to psychostimulants; however, little is known of cell-type–specific plasticity induced by opiates. Here, we find that repeated morphine potentiates excitatory transmission and increases GluA2-lacking AMPA receptor expression in D1R-MSNs, while reducing signaling in D2-MSNs following 10–14 d of forced abstinence. In vivo reversal of this pathophysiology with optogenetic stimulation of infralimbic cortex-accumbens shell (ILC-NAc shell) inputs or treatment with the antibiotic, ceftriaxone, blocked reinstatement of morphine-evoked conditioned place preference. These findings confirm the presence of overlapping and distinct plasticity produced by classes of abused drugs within subpopulations of MSNs that may provide targetable molecular mechanisms for future pharmacotherapies. PMID:26739562

  20. Regional influence of cocaine on evoked dopamine release in the nucleus accumbens core: A role for the caudal brainstem.

    PubMed

    Gerth, Ashlynn I; Alhadeff, Amber L; Grill, Harvey J; Roitman, Mitchell F

    2017-01-15

    Cocaine increases dopamine concentration in the nucleus accumbens through competitive binding to the dopamine transporter (DAT). However, it also increases the frequency of dopamine release events, a finding that cannot be explained by action at the DAT alone. Rather, this effect may be mediated by cocaine-induced modulation of brain regions that project to dopamine neurons. To explore regional contributions of cocaine to dopamine signaling, we administered cocaine to the lateral or fourth ventricles and compared the effects on dopamine release in the nucleus accumbens evoked by electrical stimulation of the ventral tegmental area to that of systemically-delivered cocaine. Stimulation trains caused a sharp rise in dopamine followed by a slower return to baseline. The magnitude of dopamine release ([DA]max) as well as the latency to decay to fifty percent of the maximum (t(1/2); index of DAT activity) by each stimulation train were recorded. All routes of cocaine delivery caused an increase in [DA]max; only systemic cocaine caused an increase in t(1/2). Importantly, these data are the first to show that hindbrain (fourth ventricle)-delivered cocaine modulates phasic dopamine signaling. Fourth ventricular cocaine robustly increased cFos immunoreactivity in the nucleus of the solitary tract (NTS), suggesting a neural substrate for hindbrain cocaine-mediated effects on [DA]max. Together, the data demonstrate that cocaine-induced effects on phasic dopamine signaling are mediated via actions throughout the brain including the hindbrain. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Ethanol extract of Poria cocos reduces the production of inflammatory mediators by suppressing the NF-kappaB signaling pathway in lipopolysaccharide-stimulated RAW 264.7 macrophages

    PubMed Central

    2014-01-01

    Background Poria cocos Wolf, a medicinal fungus, is widely used in traditional medicines in East Asian countries owing to its various therapeutic potentials. Although several studies have demonstrated the anti-inflammatory activity of this fungus, its underlying mechanisms have not yet been clearly defined. Methods In the present study, we have demonstrated the anti-inflammatory effects of ethanol extract of P. cocos (EEPC) in lipopolysaccaride (LPS)-stimulated RAW 264.7 macrophages. As inflammatory parameters, the productions of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin (IL)-1β and tumor necrosis factor (TNF)-α were evaluated. We also examined the EEPC’s effect on the nuclear factor-kappaB (NF-κB) signaling pathway. Results Our results indicated that EEPC exhibits a potent inhibitory effect on NO production and inhibits PGE2 release in LPS-induced macrophages without affecting cell viability. EEPC also significantly attenuated LPS-induced secretion of inflammatory cytokines IL-1β and TNF-α. Additionally, LPS-induced expression of inducible NO synthase (iNOS), cyclooxygenase (COX)-2, IL-1β, and TNF-α was decreased by pre-treatment with EEPC at the transcriptional level. Moreover, EEPC clearly inhibited LPS-induced nuclear translocation of NF-κB p65 subunits, which correlated with EEPC’s inhibitory effects on inhibitor kappaB (IκB) degradation. Moreover, EEPC clearly suppressed the LPS-induced DNA-binding activity of NF-κB, as well as the nuclear translocation of the NF-κB p65, which correlated with EEPC’s inhibitory effects on inhibitor kappaB (IκB) degradation. Conclusions Taken together, our data indicates that EEPC targets the inflammatory response of macrophages via inhibition of iNOS, COX-2, IL-1β, and TNF-α through inactivation of the NF-κB signaling pathway, supporting the pharmacological basis of P. cocos as a traditional herbal medicine for treatment of inflammation and its associated disorders. PMID:24628870

  2. Ethanol-induced leakage in Saccharomyces cerevisiae: kinetics and relationship to yeast ethanol tolerance and alcohol fermentation productivity

    SciTech Connect

    Salgueiro, S.P.; Sa-Correia, I.; Novais, J.M.

    1988-04-01

    Ethanol stimulated the leakage of amino acids and 260-nm-light-absorbing compounds from cells of Saccharomyces cerevisiae. The efflux followed first-order kinetics over an initial period. In the presence of lethal concentrations of ethanol, the efflux rates at 30 and 36/sup 0/C were an exponential function of ethanol concentration. At 36/sup 0/C, as compared with the corresponding values at 30/sup 0/C, the efflux rates were higher and the minimal concentration of ethanol was lower. The exponential constants for the enhancement of the rate of leakage had similar values at 30 or 36/sup 0/C and were of the same order of magnitude as the corresponding exponential constants for ethanol-induced death. Under isothermic conditions (30/sup 0/C) and up to 22% (vol/vol) ethanol, the resistance to ethanol-induced leakage of 260-nm-light-absorbing compounds was found to be closely related with the ethanol tolerance of three strains of yeasts, Kluyveromyces marxianus, Saccharomyces cerevisiae, and Saccharomyces bayanus. The resistance to ethanol-induced leakage indicates the possible adoption of the present method for the rapid screening of ethanol-tolerant strains. The addition to a fermentation medium of the intracellular material obtained by ethanol permeabilization of yeast cells led to improvements in alcohol fermentation by S. cerevisiae and S. bayanus. The action of the intracellular material, by improving yeast ethanol tolerance, and the advantages of partially recycling the fermented medium after distillation were discussed.

  3. Nucleus accumbens shell excitability is decreased by methamphetamine self-administration and increased by 5-HT2C receptor inverse agonism and agonism

    PubMed Central

    Graves, Steven M.; Clark, Mary J.; Traynor, John R.; Hu, Xiu-Ti; Napier, T. Celeste

    2014-01-01

    Methamphetamine profoundly increases brain monoamines and is a widely abused psychostimulant. The effects of methamphetamine self-administration on neuron function are not known for the nucleus accumbens, a brain region involved in addictive behaviors, including drug-seeking. One therapeutic target showing preclinical promise at attenuating psychostimulant-seeking is 5-HT2C receptors; however, the effects of 5-HT2C receptor ligands on neuronal physiology are unclear. 5-HT2C receptor agonism decreases psychostimulant-mediated behaviors, and the putative 5-HT2C receptor inverse agonist, SB 206553, attenuates methamphetamine-seeking in rats. To ascertain the effects of methamphetamine, and 5-HT2C receptor inverse agonism and agonism, on neuronal function in the nucleus accumbens, we evaluated methamphetamine, SB 206553, and the 5-HT2C receptor agonist and Ro 60-0175, on neuronal excitability within the accumbens shell subregion using whole-cell current-clamp recordings in forebrain slices ex vivo. We reveal that methamphetamine self-administration decreased generation of evoked action potentials. In contrast, SB 206553 and Ro 60-0175 increased evoked spiking, effects that were prevented by the 5-HT2C receptor antagonist, SB 242084. We also assessed signaling mechanisms engaged by 5-HT2C receptors, and determined that accumbal 5-HT2C receptors stimulated Gq, but not Gi/o. These findings demonstrate that methamphetamine-induced decreases in excitability of neurons within the nucleus accumbens shell were abrogated by both 5-HT2C inverse agonism and agonism, and this effect likely involved activation of Gq–mediated signaling pathways. PMID:25229719

  4. Nucleus accumbens shell excitability is decreased by methamphetamine self-administration and increased by 5-HT2C receptor inverse agonism and agonism.

    PubMed

    Graves, Steven M; Clark, Mary J; Traynor, John R; Hu, Xiu-Ti; Napier, T Celeste

    2015-02-01

    Methamphetamine profoundly increases brain monoamines and is a widely abused psychostimulant. The effects of methamphetamine self-administration on neuron function are not known for the nucleus accumbens, a brain region involved in addictive behaviors, including drug-seeking. One therapeutic target showing preclinical promise at attenuating psychostimulant-seeking is 5-HT2C receptors; however, the effects of 5-HT2C receptor ligands on neuronal physiology are unclear. 5-HT2C receptor agonism decreases psychostimulant-mediated behaviors, and the putative 5-HT2C receptor inverse agonist, SB 206553, attenuates methamphetamine-seeking in rats. To ascertain the effects of methamphetamine, and 5-HT2C receptor inverse agonism and agonism, on neuronal function in the nucleus accumbens, we evaluated methamphetamine, SB 206553, and the 5-HT2C receptor agonist and Ro 60-0175, on neuronal excitability within the accumbens shell subregion using whole-cell current-clamp recordings in forebrain slices ex vivo. We reveal that methamphetamine self-administration decreased generation of evoked action potentials. In contrast, SB 206553 and Ro 60-0175 increased evoked spiking, effects that were prevented by the 5-HT2C receptor antagonist, SB 242084. We also assessed signaling mechanisms engaged by 5-HT2C receptors, and determined that accumbal 5-HT2C receptors stimulated Gq, but not Gi/o. These findings demonstrate that methamphetamine-induced decreases in excitability of neurons within the nucleus accumbens shell were abrogated by both 5-HT2C inverse agonism and agonism, and this effect likely involved activation of Gq-mediated signaling pathways.

  5. The nucleus accumbens 5-HTR4-CART pathway ties anorexia to hyperactivity

    PubMed Central

    Jean, A; Laurent, L; Bockaert, J; Charnay, Y; Dusticier, N; Nieoullon, A; Barrot, M; Neve, R; Compan, V

    2012-01-01

    In mental diseases, the brain does not systematically adjust motor activity to feeding. Probably, the most outlined example is the association between hyperactivity and anorexia in Anorexia nervosa. The neural underpinnings of this ‘paradox', however, are poorly elucidated. Although anorexia and hyperactivity prevail over self-preservation, both symptoms rarely exist independently, suggesting commonalities in neural pathways, most likely in the reward system. We previously discovered an addictive molecular facet of anorexia, involving production, in the nucleus accumbens (NAc), of the same transcripts stimulated in response to cocaine and amphetamine (CART) upon stimulation of the 5-HT4 receptors (5-HTR4) or MDMA (ecstasy). Here, we tested whether this pathway predisposes not only to anorexia but also to hyperactivity. Following food restriction, mice are expected to overeat. However, selecting hyperactive and addiction-related animal models, we observed that mice lacking 5-HTR1B self-imposed food restriction after deprivation and still displayed anorexia and hyperactivity after ecstasy. Decryption of the mechanisms showed a gain-of-function of 5-HTR4 in the absence of 5-HTR1B, associated with CART surplus in the NAc and not in other brain areas. NAc-5-HTR4 overexpression upregulated NAc-CART, provoked anorexia and hyperactivity. NAc-5-HTR4 knockdown or blockade reduced ecstasy-induced hyperactivity. Finally, NAc-CART knockdown suppressed hyperactivity upon stimulation of the NAc-5-HTR4. Additionally, inactivating NAc-5-HTR4 suppressed ecstasy's preference, strengthening the rewarding facet of anorexia. In conclusion, the NAc-5-HTR4/CART pathway establishes a ‘tight-junction' between anorexia and hyperactivity, suggesting the existence of a primary functional unit susceptible to limit overeating associated with resting following homeostasis rules. PMID:23233022

  6. The nucleus accumbens 5-HTR₄-CART pathway ties anorexia to hyperactivity.

    PubMed

    Jean, A; Laurent, L; Bockaert, J; Charnay, Y; Dusticier, N; Nieoullon, A; Barrot, M; Neve, R; Compan, V

    2012-12-11

    In mental diseases, the brain does not systematically adjust motor activity to feeding. Probably, the most outlined example is the association between hyperactivity and anorexia in Anorexia nervosa. The neural underpinnings of this 'paradox', however, are poorly elucidated. Although anorexia and hyperactivity prevail over self-preservation, both symptoms rarely exist independently, suggesting commonalities in neural pathways, most likely in the reward system. We previously discovered an addictive molecular facet of anorexia, involving production, in the nucleus accumbens (NAc), of the same transcripts stimulated in response to cocaine and amphetamine (CART) upon stimulation of the 5-HT(4) receptors (5-HTR(4)) or MDMA (ecstasy). Here, we tested whether this pathway predisposes not only to anorexia but also to hyperactivity. Following food restriction, mice are expected to overeat. However, selecting hyperactive and addiction-related animal models, we observed that mice lacking 5-HTR(1B) self-imposed food restriction after deprivation and still displayed anorexia and hyperactivity after ecstasy. Decryption of the mechanisms showed a gain-of-function of 5-HTR(4) in the absence of 5-HTR(1B), associated with CART surplus in the NAc and not in other brain areas. NAc-5-HTR(4) overexpression upregulated NAc-CART, provoked anorexia and hyperactivity. NAc-5-HTR(4) knockdown or blockade reduced ecstasy-induced hyperactivity. Finally, NAc-CART knockdown suppressed hyperactivity upon stimulation of the NAc-5-HTR(4). Additionally, inactivating NAc-5-HTR(4) suppressed ecstasy's preference, strengthening the rewarding facet of anorexia. In conclusion, the NAc-5-HTR(4)/CART pathway establishes a 'tight-junction' between anorexia and hyperactivity, suggesting the existence of a primary functional unit susceptible to limit overeating associated with resting following homeostasis rules.

  7. Effects of ethanol exposure in a familiar or isolated context during infancy on ethanol intake during adolescence.

    PubMed

    Miranda-Morales, Roberto Sebastián; Haymal, Beatriz; Pautassi, Ricardo M

    2016-12-01

    Early exposure to ethanol affects ethanol intake later in life. This early experience encompasses exposure to social stimuli and the pharmacological and orosensory properties of ethanol. The specific contribution of each type of stimulus to subsequent ethanol intake remains unknown. We assessed the intake of various concentrations of ethanol in a familiar or isolated context during infancy and the lingering effects of this experience on ethanol intake during adolescence. On postnatal day 3 (PD3), PD7, and PD11, rats were given 5% ethanol or water in a nursing or isolated context (Experiments 1 and 2). Intake tests (ethanol vs. water) were conducted during adolescence. Experiment 2 matched the amount of fluid ingested during infancy in both contexts and subsequently tested ethanol consumption during adolescence. The results revealed a facilitative effect of the nursing context on fluid intake during the tests in infancy. Pups stimulated with ethanol but not water in the isolated context exhibited an increase in ethanol consumption during adolescence. This effect disappeared when the isolated infants were matched to receive the same amount of ethanol ingested by their nursed counterparts. In Experiment 3, isolated infant rats were exposed to different ethanol concentrations (.0%, 2.5%, 5.0%, and 10.0%), and drug consumption was tested during adolescence. This exposure increased adolescent ethanol intake, regardless of the alcohol concentration (Experiment 3). The common denominators that resulted in enhanced ethanol intake during adolescence were preexposure to ethanol via active consumption of the drug that induced a low-to-moderate level of intoxication in an isolated context.

  8. Xylose fermentation to ethanol by Pachysolen tannophilus

    SciTech Connect

    Schvester, P.; Robinson, C.W.; Moo-Young, M.

    1983-01-01

    Results of batch studies on the bioconversion of D-xylose by the pentose-fermenting yeast Pachysolen tannophilus are reported. A significant level of aeration was found to be necessary to stimulate biomass growth and to enhance the rate of ethanol production. Ethanol production appears to be restricted by substrate inhibition at initial D-xylose concentrations in excess of about 40 g/l. At this value, a maximum ethanol yield from substrate of only 27.4 mass % was achieved, which was only 53.7% of the theoretical maximum. Significant amounts (up to 14% mass yield) of by-product xylitol also were produced. The advantages and disadvantages of this direct bioconversion process for industrial application are discussed and compared to other ethanol production processes. 15 references, 10 figures, 4 tables.

  9. Glycine Receptors Containing α2 or α3 Subunits Regulate Specific Ethanol-Mediated Behaviors

    PubMed Central

    Blednov, Yuri A.; Benavidez, Jillian M.; Black, Mendy; Leiter, Courtney R.; Osterndorff-Kahanek, Elizabeth

    2015-01-01

    Glycine receptors (GlyRs) are broadly expressed in the central nervous system. Ethanol enhances the function of brain GlyRs, and the GlyRα1 subunit is associated with some of the behavioral actions of ethanol, such as loss of righting reflex. The in vivo role of GlyRα2 and α3 subunits in alcohol responses has not been characterized despite high expression levels in the nucleus accumbens and amygdala, areas that are important for the rewarding properties of drugs of abuse. We used an extensive panel of behavioral tests to examine ethanol actions in mice lacking Glra2 (the gene encoding the glycine receptor alpha 2 subunit) or Glra3 (the gene encoding the glycine receptor alpha 3 subunit). Deletion of Glra2 or Glra3 alters specific ethanol-induced behaviors. Glra2 knockout mice demonstrate reduced ethanol intake and preference in the 24-hour two-bottle choice test and increased initial aversive responses to ethanol and lithium chloride. In contrast, Glra3 knockout mice show increased ethanol intake and preference in the 24-hour intermittent access test and increased development of conditioned taste aversion to ethanol. Mutants and wild-type mice consumed similar amounts of ethanol in the limited access drinking in the dark test. Other ethanol effects, such as anxiolysis, motor incoordination, loss of righting reflex, and acoustic startle response, were not altered in the mutants. The behavioral changes in mice lacking GlyRα2 or α3 subunits were distinct from effects previously observed in mice with knock-in mutations in the α1 subunit. We provide evidence that GlyRα2 and α3 subunits may regulate ethanol consumption and the aversive response to ethanol. PMID:25678534

  10. The sigma-receptor antagonist BD-1063 decreases ethanol intake and reinforcement in animal models of excessive drinking.

    PubMed

    Sabino, Valentina; Cottone, Pietro; Zhao, Yu; Iyer, Malliga R; Steardo, Luca; Steardo, Luca; Rice, Kenner C; Conti, Bruno; Koob, George F; Zorrilla, Eric P

    2009-05-01

    Sigma-Receptors (SigRs) have been implicated in behavioral and appetitive effects of psychostimulants and may also modulate the motivating properties of ethanol. This study tested the hypothesis that SigRs modulate ethanol reinforcement and contribute to excessive ethanol intake. The effects of subcutaneous treatment with the potent, selective Sig-1R antagonist BD-1063 on operant ethanol self-administration were studied in two models of excessive drinking-Sardinian alcohol-preferring (sP) rats and acutely withdrawn ethanol-dependent Wistar rats-and compared to ethanol self-administration in nondependent Wistar controls. To assess the specificity of action, the effects of BD-1063 on self-administration of an equally reinforcing saccharin solution were determined in Wistar and sP rats. Gene expression of Sig-1R in reward-related brain areas implicated in ethanol reinforcement was compared between ethanol-naive sP and Wistar rats and withdrawn ethanol-dependent Wistar rats. BD-1063 dose dependently reduced ethanol self-administration in sP rats (3.3-11 mg/kg) and withdrawn, dependent Wistar rats (4-11 mg/kg) at doses that did not modify mean ethanol self-administration in nondependent Wistar controls. BD-1063 did not reduce concurrent water self-administration and did not comparably suppress saccharin self-administration, suggesting selectivity of action. BD-1063 also reduced the breakpoints of sP rats to work for ethanol under a progressive-ratio reinforcement schedule. Ethanol-naive sP rats and 24-h withdrawn, dependent Wistar rats showed reduced Sig-1R mRNA expression in the nucleus accumbens. The results suggest that SigR systems may contribute to innate or ethanol-induced increases in susceptibility to self-administer high ethanol levels, identifying a potential neuroadaptive mechanism contributing to excessive drinking and a therapeutic target for alcohol abuse and dependence.

  11. Plasticity of GABA(A) receptor-mediated neurotransmission in the nucleus accumbens of alcohol-dependent rats.

    PubMed

    Liang, Jing; Lindemeyer, A Kerstin; Suryanarayanan, Asha; Meyer, Edward M; Marty, Vincent N; Ahmad, S Omar; Shao, Xuesi Max; Olsen, Richard W; Spigelman, Igor

    2014-07-01

    Chronic alcohol exposure-induced changes in reinforcement mechanisms and motivational state are thought to contribute to the development of cravings and relapse during protracted withdrawal. The nucleus accumbens (NAcc) is a key structure of the mesolimbic dopaminergic reward system and plays an important role in mediating alcohol-seeking behaviors. Here we describe the long-lasting alterations of γ-aminobutyric acid type A receptors (GABA(A)Rs) of medium spiny neurons (MSNs) in the NAcc after chronic intermittent ethanol (CIE) treatment, a rat model of alcohol dependence. CIE treatment and withdrawal (>40 days) produced decreases in the ethanol and Ro15-4513 potentiation of extrasynaptic GABA(A)Rs, which mediate the picrotoxin-sensitive tonic current (I(tonic)), while potentiation of synaptic receptors, which give rise to miniature inhibitory postsynaptic currents (mIPSCs), was increased. Diazepam sensitivity of both I(tonic) and mIPSCs was decreased by CIE treatment. The average magnitude of I(tonic) was unchanged, but mIPSC amplitude and frequency decreased and mIPSC rise time increased after CIE treatment. Rise-time histograms revealed decreased frequency of fast-rising mIPSCs after CIE treatment, consistent with possible decreases in somatic GABAergic synapses in MSNs from CIE rats. However, unbiased stereological analysis of NeuN-stained NAcc neurons did not detect any decreases in NAcc volume, neuronal numbers, or neuronal cell body volume. Western blot analysis of surface subunit levels revealed selective decreases in α1 and δ and increases in α4, α5, and γ2 GABA(A)R subunits after CIE treatment and withdrawal. Similar, but reversible, alterations occurred after a single ethanol dose (5 g/kg). These data reveal CIE-induced long-lasting neuroadaptations in the NAcc GABAergic neurotransmission. Copyright © 2014 the American Physiological Society.

  12. Alcohol consumption increases basal extracellular glutamate in the nucleus accumbens core of Sprague-Dawley rats without increasing spontaneous glutamate release.

    PubMed

    Pati, Dipanwita; Kelly, Kyle; Stennett, Bethany; Frazier, Charles J; Knackstedt, Lori A

    2016-07-01

    Glutamate neurotransmission in the nucleus accumbens core (NAc) mediates ethanol consumption. Previous studies using non-contingent and voluntary alcohol administration in inbred rodents have reported increased basal extracellular glutamate levels in the NAc. Here, we assessed basal glutamate levels in the NAc following intermittent alcohol consumption in male Sprague-Dawley rats that had access to ethanol for 7 weeks on alternating days. We found increased basal NAc glutamate at 24 h withdrawal from ethanol and thus sought to identify the source of this glutamate. To do so, we employed a combination of microdialysis, slice electrophysiology and western blotting. Reverse dialysis of the voltage-gated sodium channel blocker tetrodotoxin did not affect glutamate levels in either group. Electrophysiological recordings in slices made after 24 h withdrawal revealed a decrease in spontaneous excitatory postsynaptic current (sEPSC) frequency relative to controls, with no change in sEPSC amplitude. No change in metabotropic glutamate receptor 2/3 (mGlu2/3) function was detected as bath application of the mGlu2/3 agonist LY379268 decreased spontaneous and miniature EPSC frequency in slices from both control and ethanol-consuming rats. The increase in basal glutamate was not associated with changes in the surface expression of GLT-1, however, a decrease in slope of the no-net-flux dialysis function was observed following ethanol consumption, indicating a potential decrease in glutamate reuptake. Taken together, these findings indicate that the increase in basal extracellular glutamate occurring after chronic ethanol consumption is not mediated by an increase in action potential-dependent glutamate release or a failure of mGlu2/3 autoreceptors to regulate such release. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Nucleus accumbens serotonin transporters in alcoholics measured by whole-hemisphere autoradiography.

    PubMed

    Storvik, Markus; Tiihonen, Jari; Haukijärvi, Tuija; Tupala, Erkki

    2006-11-01

    Nucleus accumbens (NAC) is regulated by the dopaminergic and serotonergic pathways, and it is a brain area with a crucial role in the rewarding effects of ethanol. In this preliminary study, possible alterations of [3H]citalopram binding to serotonin transporter (SERT) were evaluated in the NAC of Cloninger type 1 and 2 alcoholics (nine and seven subjects, respectively), and nonalcoholic controls (10 subjects) by human postmortem whole-hemisphere autoradiography. The [3H]citalopram binding in the NAC was 35% higher in the alcoholics than in the controls; in the type 1 alcoholics, the binding was 54% and in the type 2 alcoholics it was 17% higher. Although the effect size showed medium effects (0.49-0.60), the results did not reach statistical significance due to large standard deviations. The [3H]citalopram binding declined significantly with age in the controls, but not in the alcoholics. In the controls, there was a significant positive correlation between the [3H]citalopram binding in the NAC and in the anterior cingulate gyrus, an area in which the [3H]citalopram binding has been shown to be lower among alcoholics. On the contrary, a significant negative correlation was observed in the type 2 alcoholics and no correlation in the type 1 alcoholics. In addition, there was a strong tendency toward a positive correlation between the SERT and dopamine transporter binding in the type 2 alcoholics, but not in the other groups. These preliminary results suggest a differential monoaminergic imbalance in type 1 and 2 alcoholism in brain areas important for the regulation of motivation, reward, and reinforcement.

  14. Conversion of xylose to ethanol under aerobic conditions by Candida tropicalis

    Treesearch

    T. W. Jeffries

    1981-01-01

    Candida tropicalis converts xylose to ethanol under aerobic, but not anaerobic, conditions. Ethanol production lags behind growth and is accelerated by increased aeration. Adding xylose to active cultures stimulates ethanol production as does serial subculture in a medium containing xylose as a sole carbon source.

  15. β-Lactamase inhibitor, clavulanic acid, attenuates ethanol intake and increases glial glutamate transporters expression in alcohol preferring rats.

    PubMed

    Hakami, Alqassem Y; Sari, Youssef

    2017-09-14

    Studies from our laboratory showed that upregulation of glutamate transporter 1 (GLT-1) and cystine-glutamate exchanger (xCT) expression with ceftriaxone, β-lactam antibiotic, in the brain was associated with attenuation of ethanol consumption. In this study, we tested clavulanic acid, which is another β-lactam compound with negligible antimicrobial activity, on ethanol consumption and expression of GLT-1, xCT and glutamate aspartate transporter (GLAST) in male alcohol-preferring (P) rats. Clavulanic acid has the central β-lactam pharmacophore that is critical for the upregulation of GLT-1 and xCT expression. We found that clavulanic acid, at 5mg/kg (i.p.) dose, significantly attenuated ethanol consumption and ethanol preference in P rats as compared to vehicle-treated group. This effect was associated with a significant increase in water intake in clavulanic acid treated group. Importantly, we found that clavulanic acid increased the expression of GLT-1 and xCT in nucleus accumbens. However, there was no effect of clavulanic acid on GLAST expression in the nucleus accumbens. Clavulanic acid treatment did not upregulate the expression of GLT-1, xCT and GLAST in prefrontal cortex. These findings revealed that clavulanic acid at 20-40 fold lower dose than ceftriaxone can attenuate ethanol consumption, in part through upregulation of GLT-1 and xCT expression in the nucleus accumbens. Thus, we suggest that clavulanic acid might be used as an alternative option to ceftriaxone to attenuate ethanol drinking behavior. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Kansas Ethanol Lyons Approval

    EPA Pesticide Factsheets

    This update August 9, 2016 letter from EPA approves, with modifications, the petition from Kansas Ethanol, LLC, Lyons facility, regarding non-grandfathered ethanol produced through a dry mill process, qualifying under the Clean Air Act for renewable fuel

  17. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis

    PubMed Central

    Heinsbroek, J. A.; Gipson, C. D.; Kupchik, Y. M.; Spencer, S.; Smith, A. C. W.; Roberts-Wolfe, D.; Kalivas, P. W.

    2016-01-01

    The nucleus accumbens is a major input structure of the basal ganglia and integrates information from cortical and limbic structures to mediate goal-directed behaviors. Chronic exposure to several classes of drugs of abuse disrupts plasticity in this region, allowing drug-associated cues to engender a pathologic motivation for drug seeking. A number of alterations in glutamatergic transmission occur within the nucleus accumbens after withdrawal from chronic drug exposure. These drug-induced neuroadaptations serve as the molecular basis for relapse vulnerability. In this review, we focus on the role that glutamate signal transduction in the nucleus accumbens plays in addiction-related behaviors. First, we explore the nucleus accumbens, including the cell types and neuronal populations present as well as afferent and efferent connections. Next we discuss rodent models of addiction and assess the viability of these models for testing candidate pharmacotherapies for the prevention of relapse. Then we provide a review of the literature describing how synaptic plasticity in the accumbens is altered after exposure to drugs of abuse and withdrawal and also how pharmacological manipulation of glutamate systems in the accumbens can inhibit drug seeking in the laboratory setting. Finally, we examine results from clinical trials in which pharmacotherapies designed to manipulate glutamate systems have been effective in treating relapse in human patients. Further elucidation of how drugs of abuse alter glutamatergic plasticity within the accumbens will be necessary for the development of new therapeutics for the treatment of addiction across all classes of addictive substances. PMID:27363441

  18. Serotonin 1A, 1B, and 7 receptors of the rat medial nucleus accumbens differentially regulate feeding, water intake, and locomotor activity.

    PubMed

    Clissold, Kara A; Choi, Eugene; Pratt, Wayne E

    2013-11-01

    Serotonin (5-HT) signaling has been widely implicated in the regulation of feeding behaviors in both humans and animal models. Recently, we reported that co-stimulation of 5-HT1&7 receptors of the anterior medial nucleus accumbens with the drug 5-CT caused a dose-dependent decrease in food intake, water intake, and locomotion in rats (Pratt et al., 2009). The current experiments sought to determine which of three serotonin receptor subtypes (5-HT1A, 5-HT1B, or 5-HT7) might be responsible for these consummatory and locomotor effects. Food-deprived rats were given 2-h access to rat chow after stimulation of nucleus accumbens 5-HT1A, 5-HT1B, or 5-HT7 receptors, or blockade of the 5-HT1A or 5-HT1B receptors. Stimulation of 5-HT1A receptors with 8-OH-DPAT (at 0.0, 2.0, 4.0, and 8.0 μg/0.5 μl/side) caused a dose-dependent decrease in food and water intake, and reduced rearing behavior but not ambulation. In contrast, rats that received the 5-HT1B agonist CP 93129 (at 0.0, 1.0, 2.0 and 4.0 μg/0.5 μl/side) showed a significant dose-dependent decrease in water intake only; stimulation of 5-HT7 receptors (AS 19; at 0.0, 1.0, and 5.0 μg/0.5 μl/side) decreased ambulatory activity but did not affect food or water consumption. Blockade of 5-HT1A or 5-HT1B receptors had no lasting effects on measures of food consumption. These data suggest that the food intake, water intake, and locomotor effects seen after medial nucleus accumbens injections of 5-CT are due to actions on separate serotonin receptor subtypes, and contribute to growing evidence for selective roles of individual serotonin receptors within the nucleus accumbens on motivated behavior.

  19. Dopamine and opioid systems interact within the nucleus accumbens to maintain monogamous pair bonds

    PubMed Central

    Resendez, Shanna L; Keyes, Piper C; Day, Jeremy J; Hambro, Caely; Austin, Curtis J; Maina, Francis K; Eidson, Lori N; Porter-Stransky, Kirsten A; Nevárez, Natalie; McLean, J William; Kuhnmuench, Morgan A; Murphy, Anne Z; Mathews, Tiffany A; Aragona, Brandon J

    2016-01-01

    Prairie vole breeder pairs form monogamous pair bonds, which are maintained through the expression of selective aggression toward novel conspecifics. Here, we utilize behavioral and anatomical techniques to extend the current understanding of neural mechanisms that mediate pair bond maintenance. For both sexes, we show that pair bonding up-regulates mRNA expression for genes encoding D1-like dopamine (DA) receptors and dynorphin as well as enhances stimulated DA release within the nucleus accumbens (NAc). We next show that D1-like receptor regulation of selective aggression is mediated through downstream activation of kappa-opioid receptors (KORs) and that activation of these receptors mediates social avoidance. Finally, we also identified sex-specific alterations in KOR binding density within the NAc shell of paired males and demonstrate that this alteration contributes to the neuroprotective effect of pair bonding against drug reward. Together, these findings suggest motivational and valence processing systems interact to mediate the maintenance of social bonds. DOI: http://dx.doi.org/10.7554/eLife.15325.001 PMID:27371827

  20. AUTS2 in the nucleus accumbens is essential for heroin-induced behavioral sensitization.

    PubMed

    Zhu, Yongsheng; Xing, Bo; Dang, Wei; Ji, Yuanyuan; Yan, Peng; Li, Yunxiao; Qiao, Xiaomeng; Lai, Jianghua

    2016-10-01

    Autism susceptibility candidate 2 (AUTS2) is a gene associated with autism and mental retardation. Recent studies have suggested an association of the AUTS2 gene with heroin dependence, and reduced AUTS2 gene expression may confer increased susceptibility to heroin dependence. However, the functional role of the AUTS2 protein in regulating enduring neuroadaptations in response to heroin exposure has not been established. Here, we investigated the effects of acute and chronic heroin exposure on AUTS2 mRNA and protein expression in the nucleus accumbens (NAc) and caudate-putamen (CPu) to determine whether changes in AUTS2 expression are associated with heroin-induced locomotor sensitization in mice. Moreover, we explored whether AUST2 knockdown affects heroin-induced locomotor sensitization. AUTS2 mRNA and protein expression in the NAc, but not the CPu, was decreased after chronic heroin (1mg/kg) administration. In the NAc, the expression of heroin-induced locomotor sensitization was enhanced through the lentiviral-AUTS2-shRNA-mediated knockdown of AUTS2, while the overexpression of AUTS2 attenuated the locomotor-stimulant effects of heroin. Together, these results indicate that AUTS2 in the NAc, but not the CPu, suppresses the initiation and expression of heroin-induced behavioral sensitization, suggesting that AUST2 may be a potential target for the treatment of heroin dependence. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Acute and prolonged effects of clocinnamox and methoclocinnamox on nucleus accumbens dopamine overflow.

    PubMed

    Zernig, G; Fibiger, H C

    1998-01-01

    The mu opioid antagonist clocinnamox (CCAM) insurmountably inhibits opioid self-administration. In contrast, CCAM's prodrug, methoclocinnamox (MCCAM), acts as a weak partial agonist in this paradigm when given acutely and inhibits opioid self-administration for up to 5 days. In vivo microdialysis was employed to determine if these effects are paralleled in basal and opioid-stimulated dopamine (DA) overflow in the rat nucleus accumbens (NAC). When given acutely, CCAM (10 mg/kg s.c.) was essentially without effect. CCAM also markedly attenuated the overflow of DA induced by heroin (0.5 mg/kg s.c.; 200% of DA baseline) 24 h later. In contrast, MCCAM (10 mg/kg s.c.) acutely increased NAC DA overflow to 200-245% baseline within 30 min. NAC DA remained at this elevated level for the whole 3-h period of the experiment. Even after 24 h, NAC DA overflow of MCCAM-pretreated animals remained elevated at 165% of VEH-treated animals. Administration of heroin did not result in any further elevation of NAC DA release under these conditions. Thus, the suggested therapeutic profile of MCCAM, i.e., an acute partial agonistic reinforcing effect followed by antagonism of the reinforcing effects of subsequently abused opioids, was confirmed in NAC DA overflow, a neurochemical correlate of the reinforcing effects of drugs of abuse. The most parsimonious explanation for MCCAM's effect on NAC DA overflow is that it acted as an essentially irreversible partial agonist.

  2. Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving.

    PubMed

    Lee, Brian R; Ma, Yao-Ying; Huang, Yanhua H; Wang, Xiusong; Otaka, Mami; Ishikawa, Masago; Neumann, Peter A; Graziane, Nicholas M; Brown, Travis E; Suska, Anna; Guo, Changyong; Lobo, Mary Kay; Sesack, Susan R; Wolf, Marina E; Nestler, Eric J; Shaham, Yavin; Schlüter, Oliver M; Dong, Yan

    2013-11-01

    In rat models of drug relapse and craving, cue-induced cocaine seeking progressively increases after withdrawal from the drug. This 'incubation of cocaine craving' is partially mediated by time-dependent adaptations at glutamatergic synapses in nucleus accumbens (NAc). However, the circuit-level adaptations mediating this plasticity remain elusive. We studied silent synapses, often regarded as immature synapses that express stable NMDA receptors with AMPA receptors being either absent or labile, in the projection from the basolateral amygdala to the NAc in incubation of cocaine craving. Silent synapses were detected in this projection during early withdrawal from cocaine. As the withdrawal period progressed, these silent synapses became unsilenced, a process that involved synaptic insertion of calcium-permeable AMPA receptors (CP-AMPARs). In vivo optogenetic stimulation-induced downregulation of CP-AMPARs at amygdala-to-NAc synapses, which re-silenced some of the previously silent synapses after prolonged withdrawal, decreased incubation of cocaine craving. Our findings indicate that silent synapse-based reorganization of the amygdala-to-NAc projection is critical for persistent cocaine craving and relapse after withdrawal.

  3. Sexual behavior in male rats after radiofrequency or dopamine-depleting lesions in nucleus accumbens.

    PubMed

    Liu, Y C; Sachs, B D; Salamone, J D

    1998-06-01

    Considerable neurochemical evidence links dopamine (DA) in nucleus accumbens (NAcc) to male sexual behavior. The present experiments were conducted to extend this information to the male's sexual response to remote stimuli from estrous female (noncontact erection; NCE). Male rats were tested for copulation and NCE after either 6-hydroxydopamine (6-OHDA) or radiofrequency (RF) lesions in NAcc). Males with an average 78% depletion of DA in NAcc had a lower incidence of NCE, longer latency to display NCE, and fewer erections. DA-depleted males also had less locomotor activity after injections of d-amphetamine, and reductions in apomorphine-induced yawning, but a normal incidence of penile erection. Males with RF lesions of the NAcc had longer NCE latencies. All males copulated to ejaculation after either 6-OHDA or RF lesions with little or no deficit, although the 6-OHDA-treated males had longer intromission latencies. The NCE deficit supports the hypothesized role of NAcc DA in arousal processes in responding to remote cues from estrous females. The minimal effect of lesions on copulation suggests that the presence of additional proximal stimulation during copulation may overcome the deficits induced by DA depletions or lesions in NAcc.

  4. Chronic cocaine administration induces opposite changes in dopamine receptors in the striatum and nucleus accumbens

    SciTech Connect

    Goeders, N.E.; Kuhar, M.J.

    1987-01-01

    A variety of clinical and animal data suggest that the repeated administration of cocaine and related psychomotor stimulants may be associated with a behavioral sensitization whereby the same dose of the drug results in increasing behavioral pathology. This investigation was designed to determine the effects of chronic cocaine administration on the binding of (/sup 3/H)sulpiride, a relatively specific ligand for D2 dopaminergic receptors, in the rat brain using in vitro homogenate binding and light microscopic quantitative autoradiographic methodologies. Chronic daily injections of cocaine (10 mg/kg, i.p.) for 15 days resulted in a significant decrease in the maximum concentration of sulpiride binding sites in the striatum and a significant increase in the maximum number of these binding sites in the nucleus accumbens. No significant differences in binding affinity were observed in either brain region. These data suggest that chronic cocaine administration may result in differential effects on D2 receptors in the nigro-striatal and mesolimbic dopaminergic systems.

  5. Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression

    PubMed Central

    Bagot, Rosemary C.; Parise, Eric M.; Peña, Catherine J.; Zhang, Hong-Xing; Maze, Ian; Chaudhury, Dipesh; Persaud, Brianna; Cachope, Roger; Bolaños-Guzmán, Carlos A.; Cheer, Joseph; Deisseroth, Karl; Han, Ming-Hu; Nestler, Eric J.

    2015-01-01

    Enhanced glutamatergic transmission in the nucleus accumbens (NAc), a region critical for reward and motivation, has been implicated in the pathophysiology of depression; however, the afferent source of this increased glutamate tone is not known. The NAc receives glutamatergic inputs from the medial prefrontal cortex (mPFC), ventral hippocampus (vHIP) and basolateral amygdala (AMY). Here, we demonstrate that glutamatergic vHIP afferents to NAc regulate susceptibility to chronic social defeat stress (CSDS). We observe reduced activity in vHIP in mice resilient to CSDS. Furthermore, attenuation of vHIP-NAc transmission by optogenetic induction of long-term depression is pro-resilient, whereas acute enhancement of this input is pro-susceptible. This effect is specific to vHIP afferents to the NAc, as optogenetic stimulation of either mPFC or AMY afferents to the NAc is pro-resilient. These data indicate that vHIP afferents to NAc uniquely regulate susceptibility to CSDS, highlighting an important, novel circuit-specific mechanism in depression. PMID:25952660

  6. Operant self-administration of ethanol in infant rats.

    PubMed

    Pautassi, Ricardo Marcos; Miranda-Morales, Roberto Sebastián; Nizhnikov, Michael

    2015-09-01

    The review focuses on operant self-administration of ethanol in immature, infant rats. Several methods for the analysis of ethanol intake in infants are available, yet only oral self-administration models the typical pattern of ethanol consumption found in humans. The study of ethanol intake in infants is important for our understanding of how early alcohol experiences facilitate subsequent engagement with alcohol. It seems that sensitivity to ethanol-induced operant reinforcement is found very early in life, a few hours after birth, and throughout the first three weeks of life. Most of the studies reviewed complied with most, albeit not all, of the criteria for operant behavior (e.g., greater responding than yoked controls and persistence of this difference after withholding the reinforcer). Operant self-administration of ethanol in infant rats seems to be, at least partially, mediated by endogenous opioid transmission and can be enhanced by prior exposure to ethanol. Furthermore, acquisition of ethanol-mediated operant learning seems to facilitate drug self-administration during adolescence. Relative to older subjects, infants exhibit lower sensitivity to ethanol's sedative, hypnotic and motor impairing effects. On the other hand, they exhibit increased sensitivity to the motor stimulant and rewarding effects of ethanol. We suggest that this pattern of response to ethanol may favor the rapid acquisition of operant self-administration in infant rats.

  7. Anaphylactoid reaction to ethanol.

    PubMed

    Kelso, J M; Keating, M U; Squillace, D L; O'Connell, E J; Yunginger, J W; Sachs, M I

    1990-05-01

    We studied a 14-year-old boy who developed a pruritic rash and facial swelling after ingestion of beer or wine. A blinded challenge with purified ethanol was positive demonstrating ethanol itself to be the offending agent. An IgE-mediated reaction to ethanol or one of its metabolites as a hapten is possible, or the reaction may involve unusual metabolism of ethanol with accumulation of acetaldehyde and/or direct mast cell degranulation.

  8. The effects of dietary thiamin on voluntary ethanol drinking and ethanol metabolism in the rat.

    PubMed

    Eriksson, K; Pekkanen, L; Rusi, M

    1980-01-01

    1. The influence of a deficiency or surplus of thiamin in the diet on voluntary ethanol consumption, ethanol elimination rate and blood acetaldehyde concentration was studied in rats. 2. Both the high-thiamin diet containing 20 mg thiamin hydrochloride/kg and the thiamin deficient diet containing no measurable thiamin produced obvious functional effects on thiamin metabolism in rat tissues after 4 weeks as demonstrated by measurements of the blood transketolase (sedoheptulose-7-phosphate: D-glyceraldehyde-3-phosphate glycolaldehyde-transferase; EC 2.2.1.1) activity and the extent of thiamin pyrophosphate-stimulation of the enzyme. 3. During the first week on the test diets the prospective ethanol free-choice groups had 1.72 M-ethanol as their only drinking-fluid. Subsequently they had a choice between ethanol and tap water for three weeks. During the free-choice period the rats on the high-thiamin diet drank only one-fifth as much ethanol as the rats given the optimum diet with 4 mg thiamin hydrochloride/kg. 4. The thiamin-deficient rats showed a significant tendency to increase ethanol drinking, when intake was expressed relative to total energy intake, but their intake of ethanol on a g/kg body-weight basis was approximately the same as that of the group given the optimum-diet. 5. The observed differences in voluntary ethanol drinking associated with different levels of dietary thiamin cannot be explained by changes in the ethanol elimination rate or the acetaldehyde accumulation in blood during the oxidation of ethanol.

  9. Ethanol Basics (Fact Sheet)

    SciTech Connect

    Not Available

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  10. Development and characterization of an implantable biosensor for telemetric monitoring of ethanol in the brain of freely moving rats.

    PubMed

    Rocchitta, Gaia; Secchi, Ottavio; Alvau, Maria Domenica; Migheli, Rossana; Calia, Giammario; Bazzu, Gianfranco; Farina, Donatella; Desole, Maria Speranza; O'Neill, Robert D; Serra, Pier Andrea

    2012-08-21

    Ethanol is one of the most widespread psychotropic agents in western society. While its psychoactive effects are mainly associated with GABAergic and glutamatergic systems, the positive reinforcing properties of ethanol are related to activation of mesolimbic dopaminergic pathways resulting in a release of dopamine in the nucleus accumbens. Given these neurobiological implications, the detection of ethanol in brain extracellular fluid (ECF) is of great importance. In this study, we describe the development and characterization of an implantable biosensor for the amperometric detection of brain ethanol in real time. Ten different designs were characterized in vitro in terms of Michaelis-Menten kinetics (V(MAX) and K(M)), sensitivity (linear region slope, limit of detection (LOD), and limit of quantification (LOQ)), and electroactive interference blocking. The same parameters were monitored in selected designs up to 28 days after fabrication in order to quantify their stability. Finally, the best performing biosensor design was selected for implantation in the nucleus accumbens and coupled with a previously developed telemetric device for the real-time monitoring of ethanol in freely moving, untethered rats. Ethanol was then administered systemically to animals, either alone or in combination with ranitidine (an alcohol dehydrogenase inhibitor) while the biosensor signal was continuously recorded. The implanted biosensor, integrated in the low-cost telemetry system, was demonstrated to be a reliable device for the short-time monitoring of exogenous ethanol in brain ECF and represents a new generation of analytical tools for studying ethanol toxicokinetics and the effect of drugs on brain ethanol levels.

  11. Acute ethanol administration rapidly increases phosphorylation of conventional protein kinase C in specific mammalian brain regions in vivo.

    PubMed

    Wilkie, Mary Beth; Besheer, Joyce; Kelley, Stephen P; Kumar, Sandeep; O'Buckley, Todd K; Morrow, A Leslie; Hodge, Clyde W

    2007-07-01

    Protein kinase C (PKC) is a family of isoenzymes that regulate a variety of functions in the central nervous system including neurotransmitter release, ion channel activity, and cell differentiation. Growing evidence suggests that specific isoforms of PKC influence a variety of behavioral, biochemical, and physiological effects of ethanol in mammals. The purpose of this study was to determine whether acute ethanol exposure alters phosphorylation of conventional PKC isoforms at a threonine 674 (p-cPKC) site in the hydrophobic domain of the kinase, which is required for its catalytic activity. Male rats were administered a dose range of ethanol (0, 0.5, 1, or 2 g/kg, intragastric) and brain tissue was removed 10 minutes later for evaluation of changes in p-cPKC expression using immunohistochemistry and Western blot methods. Immunohistochemical data show that the highest dose of ethanol (2 g/kg) rapidly increases p-cPKC immunoreactivity specifically in the nucleus accumbens (core and shell), lateral septum, and hippocampus (CA3 and dentate gyrus). Western blot analysis further showed that ethanol (2 g/kg) increased p-cPKC expression in the P2 membrane fraction of tissue from the nucleus accumbens and hippocampus. Although p-cPKC was expressed in numerous other brain regions, including the caudate nucleus, amygdala, and cortex, no changes were observed in response to acute ethanol. Total PKCgamma immunoreactivity was surveyed throughout the brain and showed no change following acute ethanol injection. These results suggest that ethanol rapidly promotes phosphorylation of cPKC in limbic brain regions, which may underlie effects of acute ethanol on the nervous system and behavior.

  12. Mesolimbic dopamine in desire and dread: enabling motivation to be generated by localized glutamate disruptions in nucleus accumbens.

    PubMed

    Faure, Alexis; Reynolds, Sheila M; Richard, Jocelyn M; Berridge, Kent C

    2008-07-09

    An important issue in affective neuroscience concerns the role of mesocorticolimbic dopamine systems in positive-valenced motivation (e.g., reward) versus negative-valenced motivation (e.g., fear). Here, we assessed whether endogenous dopamine receptor stimulation in nucleus accumbens contributes to both appetitive behavior and fearful behavior that is generated in keyboard manner by local glutamate disruptions at different sites in medial shell. 6,7-Dinitroquinoxaline-2,3(1H,4H)-dione (DNQX) microinjections (450 ng) locally disrupt glutamate signals in <4 mm(3) of nucleus accumbens, and generate either desire or fear (or both) depending on precise rostrocaudal location in medial shell. At rostral shell sites, local AMPA/kainate blockade generates positive ingestive behavior, but the elicited motivated behavior becomes incrementally more fearful as the same microinjection is moved caudally. A dopamine-blocking mixture of D(1) and D(2) antagonists (raclopride and SCH-23390 [R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5,-tetrahydro-1H-3-benzazepine hydrochloride]) was combined here in the same microinjection with DNQX to assess the role of endogenous local dopamine in mediating the DNQX-motivated behaviors. We report that local dopamine blockade prevented DNQX microinjections from generating appetitive behavior (eating) in rostral shell, and equally prevented DNQX from generating fearful behavior (defensive treading) in caudal shell. We conclude that local dopamine is needed to enable disruptions of corticolimbic glutamate signals in shell to generate either positive incentive salience or negative fearful salience (valence depending on site and other conditions). Thus, dopamine interacts with localization of valence-biased glutamate circuits in medial shell to facilitate keyboard stimulation of both appetitive and fearful motivations.

  13. Dopamine DARPP-32-Dependent Modulation of Prefrontal Cortical Input and Intercellular Coupling in Mouse Accumbens Spiny and Aspiny Neurons

    PubMed Central

    Onn, S-P; Lin, M; Liu, J; Grace, AA

    2010-01-01

    The roles of DARPP-32 in mediating dopamine (DA)-dependent modulation of corticoaccumbens transmission and intercellular coupling were examined in mouse accumbens (NAC) neurons by both intracellular sharp electrode and whole cell recordings. In wildtype (WT) mice bath application of the D2-like agonist quinpirole resulted in 73% coupling incidence in NAC spiny neurons, compared to baseline (9%), whereas quinpirole failed to affect the basal coupling (24%) in slices from DARPP-32 knockout (KO) mice. Thus, D2 stimulation attenuated DARPP-32-mediated suppression of coupling in WT spiny neurons, but this modulation was absent in KO mice. Further, whole cell recordings revealed that quinpirole reversibly decreased the amplitude of cortical-evoked EPSPs in spiny neurons of WT mice, but this reduction was markedly attenuated in KO mice. Bath application of the D1/D5 agonist SKF 38393 did not alter evoked EPSP amplitude in WT or KO spiny neurons. Therefore, DA D2 receptor regulation of both cortical synaptic (chemical) and local non-synaptic (dye coupling) communications in NAC spiny neurons is critically dependent on intracellular DARPP-32 cascades. Conversely, in fast-spiking interneurons, blockade of D1/D5 receptors produced a substantial decrease in EPSP amplitude in WT, but not in KO mice. Lastly, in putative cholinergic interneurons, cortical-evoked disynaptic IPSPs were attenuated by D2-like receptor stimulation in WT but not KO slices. These data indicate that DARPP-32 plays a central role in 1) modulating intercellular coupling, 2) cortical excitatory drive of spiny and aspiny GABAergic neurons, and 3) local feedforward inhibitory drive of cholinergic-like interneurons within accumbens circuits PMID:18155847

  14. [Extracellular aminoacids in the amygdala and nucleus accumbens in the rat during acute pain].

    PubMed

    Silva, Elizabeth; Hernández, Luis

    2007-06-01

    In the present experiments extracellular arginine, glutamate and aspartate were studied in the basolateral nucleus of the amygdala and core of the nucleus accumbens during the formalin test (phase I). A combination of capillary zone electrophoresis with laser induced fluorescence detection and microdialysis in freely moving rats was used. Glutamate and arginine significantly increased in the nucleus accumbens after formalin injection; glutamate, arginine and aspartate significantly increased in the basolateral nucleus of the amygdala, after formalin injection. These experiments suggest that rapid neurotransmitters changes observed in the nucleus accumbens and amygdala, are possibly related to immobility and emotional states such as anxiety, aversion and/or depression caused by pain.

  15. Relationship between ethanol-induced activity and anxiolysis in the open field, elevated plus maze, light-dark box, and ethanol intake in adolescent rats.

    PubMed

    Acevedo, María Belén; Nizhnikov, Michael E; Molina, Juan C; Pautassi, Ricardo Marcos

    2014-05-15

    It is yet unclear if ethanol-induced motor stimulation in the open field (OF) merely reflects psychomotor stimulating effects of the drug or if this stimulation is driven or modulated by ethanol's antianxiety properties. In the present study, adolescent rats were administered with different ethanol doses or remained untreated. They were sequentially assessed in the OF, elevated plus maze (EPM), and light-dark box (LDB) and then assessed for ethanol intake. The aims were to assess the relationship between measures of ethanol-induced activity and anxiolysis, analyze ethanol intake as a function of prior ethanol exposure, and associate behavioral responsiveness in these apparatus with ethanol intake during adolescence. The results suggested that the enhanced exploration of the OF observed after 2.5 and 3.25 g/kg ethanol reflected a motor-stimulating effect that appeared to be relatively independent of anxiolysis. The 1.25 g/kg dose induced motor stimulation in the OF and anti-anxiety effects in the EPM, but these effects were relatively independent. The 0.5 g/kg ethanol dose exerted significant anxiolytic effects in the EPM in the absence of stimulating effects in the OF. A multivariate regression analysis indicated that adolescents with a higher frequency of rearing behavior in the OF, higher percentage of open arm entries in the EPM, and lower propensity to enter the central area of the OF exhibited greater ethanol intake. These results indicate that the OF is a valid procedure for the measurement of ethanol-induced stimulation, and provide information toward characterizing subpopulations of adolescents at risk for initiating alcohol drinking.

  16. Ethanol-Induced Leakage in Saccharomyces cerevisiae: Kinetics and Relationship to Yeast Ethanol Tolerance and Alcohol Fermentation Productivity.

    PubMed

    Salgueiro, S P; Sá-Correia, I; Novais, J M

    1988-04-01

    Ethanol stimulated the leakage of amino acids and 260-nm-light-absorbing compounds from cells of Saccharomyces cerevisiae. The efflux followed first-order kinetics over an initial period. In the presence of lethal concentrations of ethanol, the efflux rates at 30 and 36 degrees C were an exponential function of ethanol concentration: k(e) = k(e)e, where k(e) and k(e) are the efflux rate constants, respectively, in the presence of a concentration X of ethanol or the minimal concentration of ethanol, X(m), above which the equation was applicable, coincident with the minimal lethal concentration of ethanol. E is the enhancement constant. At 36 degrees C, as compared with the corresponding values at 30 degrees C, the efflux rates were higher and the minimal concentration of ethanol (X(m)) was lower. The exponential constants for the enhancement of the rate of leakage (E) had similar values at 30 or 36 degrees C and were of the same order of magnitude as the corresponding exponential constants for ethanol-induced death. Under isothermic conditions (30 degrees C) and up to 22% (vol/vol) ethanol, the resistance to ethanol-induced leakage of 260-nm-light-absorbing compounds was found to be closely related with the ethanol tolerance of three strains of yeasts, Kluyveromyces marxianus, Saccharomyces cerevisiae, and Saccharomyces bayanus. The resistance to ethanol-induced leakage indicates the possible adoption of the present method for the rapid screening of ethanol-tolerant strains. The addition to a fermentation medium of the intracellular material obtained by ethanol permeabilization of yeast cells led to improvements in alcohol fermentation by S. cerevisiae and S. bayanus. The action of the intracellular material, by improving yeast ethanol tolerance, and the advantages of partially recycling the fermented medium after distillation were discussed.

  17. Ethanol-Induced Leakage in Saccharomyces cerevisiae: Kinetics and Relationship to Yeast Ethanol Tolerance and Alcohol Fermentation Productivity

    PubMed Central

    Salgueiro, Sancha P.; Sá-Correia, Isabel; Novais, Júlio M.

    1988-01-01

    Ethanol stimulated the leakage of amino acids and 260-nm-light-absorbing compounds from cells of Saccharomyces cerevisiae. The efflux followed first-order kinetics over an initial period. In the presence of lethal concentrations of ethanol, the efflux rates at 30 and 36°C were an exponential function of ethanol concentration: keX = keXmeE (X-Xm), where keX and keXm are the efflux rate constants, respectively, in the presence of a concentration X of ethanol or the minimal concentration of ethanol, Xm, above which the equation was applicable, coincident with the minimal lethal concentration of ethanol. E is the enhancement constant. At 36°C, as compared with the corresponding values at 30°C, the efflux rates were higher and the minimal concentration of ethanol (Xm) was lower. The exponential constants for the enhancement of the rate of leakage (E) had similar values at 30 or 36°C and were of the same order of magnitude as the corresponding exponential constants for ethanol-induced death. Under isothermic conditions (30°C) and up to 22% (vol/vol) ethanol, the resistance to ethanol-induced leakage of 260-nm-light-absorbing compounds was found to be closely related with the ethanol tolerance of three strains of yeasts, Kluyveromyces marxianus, Saccharomyces cerevisiae, and Saccharomyces bayanus. The resistance to ethanol-induced leakage indicates the possible adoption of the present method for the rapid screening of ethanol-tolerant strains. The addition to a fermentation medium of the intracellular material obtained by ethanol permeabilization of yeast cells led to improvements in alcohol fermentation by S. cerevisiae and S. bayanus. The action of the intracellular material, by improving yeast ethanol tolerance, and the advantages of partially recycling the fermented medium after distillation were discussed. PMID:16347612

  18. Conditioned Reinforcement and Locomotor Activating Effects of Caffeine and Ethanol Combinations in Mice

    PubMed Central

    Hilbert, Megan L.T.; May, Christina E.; Griffin, William C.

    2013-01-01

    A growing trend among ethanol drinkers, especially young adults, is to combine caffeinated energy drinks with ethanol during a drinking episode. The primary active ingredient of these mixers is caffeine, which may significantly interact with ethanol. We tested the two hypotheses that caffeine would enhance ethanol-conditioned place preference and also enhance ethanol-stimulated locomotor activity. The interactive pharmacology of ethanol and caffeine was examined in C57BL/6J (B6) mice in a conditioned place preference procedure with 1.75 g/kg ethanol and 3 mg/kg caffeine. Additionally, we used B6 mice to evaluate ethanol/caffeine combinations on locomotor activity using 3 doses of ethanol (1.75, 2.5 and 3.25 g/kg) and 2 two doses of caffeine (3 and 15 mg/kg). Both ethanol and caffeine administered alone increased preference for the drug paired side, though the effect of caffeine was more modest than that of ethanol. The drug combination produced significant place preference itself, but this was not greater than that for ethanol alone. Additionally, the combination of caffeine and ethanol significantly increased locomotion compared to giving either drug alone. The effect was strongest with a stimulatory dose of ethanol (1.75 g/kg) and waned with increasing doses of ethanol. Thus, combinations of caffeine and ethanol had significant conditioned reinforcing and locomotor activating effects in mice. PMID:23872371

  19. Reward and reinforcement activity in the nucleus accumbens during learning

    PubMed Central

    Gale, John T.; Shields, Donald C.; Ishizawa, Yumiko; Eskandar, Emad N.

    2014-01-01

    The nucleus accumbens core (NAcc) has been implicated in learning associations between sensory cues and profitable motor responses. However, the precise mechanisms that underlie these functions remain unclear. We recorded single-neuron activity from the NAcc of primates trained to perform a visual-motor associative learning task. During learning, we found two distinct classes of NAcc neurons. The first class demonstrated progressive increases in firing rates at the go-cue, feedback/tone and reward epochs of the task, as novel associations were learned. This suggests that these neurons may play a role in the exploitation of rewarding behaviors. In contrast, the second class exhibited attenuated firing rates, but only at the reward epoch of the task. These findings suggest that some NAcc neurons play a role in reward-based reinforcement during learning. PMID:24765069

  20. The nucleus accumbens: an interface between cognition, emotion, and action.

    PubMed

    Floresco, Stan B

    2015-01-03

    Nearly 40 years of research on the function of the nucleus accumbens (NAc) has provided a wealth of information on its contributions to behavior but has also yielded controversies and misconceptions regarding these functions. A primary tenet of this review is that, rather than serving as a "reward" center, the NAc plays a key role in action selection, integrating cognitive and affective information processed by frontal and temporal lobe regions to augment the efficiency and vigor of appetitively or aversively motivated behaviors. Its involvement in these functions is most prominent when the appropriate course of action is ambiguous, uncertain, laden with distractors, or in a state of flux. To this end, different subregions of the NAc play dissociable roles in refining action selection, promoting approach toward motivationally relevant stimuli, suppressing inappropriate actions so that goals may be obtained more efficiently, and encoding action outcomes that guide the direction of subsequent ones.

  1. Lmo4 in the nucleus accumbens regulates cocaine sensitivity

    PubMed Central

    Lasek, A. W.; Kapfhamer, D.; Kharazia, V.; Gesch, J.; Giorgetti, F.; Heberlein, U.

    2011-01-01

    An estimated 2 million Americans use cocaine, resulting in large personal and societal costs. Discovery of the genetic factors that contribute to cocaine abuse is important for understanding this complex disease. Previously, mutations in the Drosophila LIM-only (dLmo) gene were identified because of their increased behavioral sensitivity to cocaine. Here we show that the mammalian homolog Lmo4, which is highly expressed in brain regions implicated in drug addiction, plays a similar role in cocaine-induced behaviors. Mice with a global reduction in Lmo4 levels show increased sensitivity to the locomotor stimulatory effects of cocaine upon chronic cocaine administration. This effect is reproduced with downregulation of Lmo4 in the nucleus accumbens by RNA interference. Thus, Lmo genes play conserved roles in regulating the behavioral effects of cocaine in invertebrate and mammalian models of drug addiction. PMID:20618444

  2. Glutamatergic signaling by mesolimbic dopamine neurons in the nucleus accumbens.

    PubMed

    Tecuapetla, Fatuel; Patel, Jyoti C; Xenias, Harry; English, Daniel; Tadros, Ibrahim; Shah, Fulva; Berlin, Joshua; Deisseroth, Karl; Rice, Margaret E; Tepper, James M; Koos, Tibor

    2010-05-19

    Recent evidence suggests the intriguing possibility that midbrain dopaminergic (DAergic) neurons may use fast glutamatergic transmission to communicate with their postsynaptic targets. Because of technical limitations, direct demonstration of the existence of this signaling mechanism has been limited to experiments using cell culture preparations that often alter neuronal function including neurotransmitter phenotype. Consequently, it remains uncertain whether glutamatergic signaling between DAergic neurons and their postsynaptic targets exists under physiological conditions. Here, using an optogenetic approach, we provide the first conclusive demonstration that mesolimbic DAergic neurons in mice release glutamate and elicit excitatory postsynaptic responses in projection neurons of the nucleus accumbens. In addition, we describe the properties of the postsynaptic glutamatergic responses of these neurons during experimentally evoked burst firing of DAergic axons that reproduce the reward-related phasic population activity of the mesolimbic projection. These observations indicate that, in addition to DAergic mechanisms, mesolimbic reward signaling may involve glutamatergic transmission.

  3. Glutamatergic Signaling by Mesolimbic Dopamine Neurons in the Nucleus Accumbens

    PubMed Central

    Tecuapetla, Fatuel; Patel, Jyoti C.; Xenias, Harry; English, Daniel; Tadros, Ibrahim; Shah, Fulva; Berlin, Joshua; Deisseroth, Karl; Rice, Margaret E.; Tepper, James M.

    2010-01-01

    Recent evidence suggests the intriguing possibility that midbrain dopaminergic (DAergic) neurons may use fast glutamatergic transmission to communicate with their postsynaptic targets. Because of technical limitations, direct demonstration of the existence of this signaling mechanism has been limited to experiments using cell culture preparations that often alter neuronal function including neurotransmitter phenotype. Consequently, it remains uncertain whether glutamatergic signaling between DAergic neurons and their postsynaptic targets exists under physiological conditions. Here, using an optogenetic approach, we provide the first conclusive demonstration that mesolimbic DAergic neurons in mice release glutamate and elicit excitatory postsynaptic responses in projection neurons of the nucleus accumbens. In addition, we describe the properties of the postsynaptic glutamatergic responses of these neurons during experimentally evoked burst firing of DAergic axons that reproduce the reward-related phasic population activity of the mesolimbic projection. These observations indicate that, in addition to DAergic mechanisms, mesolimbic reward signaling may involve glutamatergic transmission. PMID:20484653

  4. Endogenous Opioids as Substrates for Ethanol Intake in the Neonatal Rat: The impact of prenatal ethanol exposure on the opioid family in the early postnatal period

    PubMed Central

    Bordner, Kelly; Deak, Terrence

    2015-01-01

    Background Despite considerable knowledge that prenatal ethanol exposure can lead to devastating effects on the developing fetus, alcohol consumption by pregnant women remains strikingly prevalent. Both clinical and basic research has suggested that, in addition to possible physical, behavioral, and cognitive deficits, gestational exposure to alcohol may lead to an increased risk for the development of later alcohol-related use and abuse disorders. The current work sought to characterize alterations in endogenous opioid signaling peptides and gene expression produced by ethanol exposure during the last days of gestation. Methods Experimental subjects were 4-, 8-, and 12-day old infant rats obtained from pregnant females that were given daily intubations of 0, 1, or 2 g/kg ethanol during the last few days of gestation (GD17-20). Using real-time RT-PCR, western blotting analysis, and enzyme immunoassays, we examined mRNA and protein for three opioid receptors and ligands in the nucleus accumbens, ventral tegmental area, and hypothalamus. Results Three main trends emerged - (1) mRNA for the majority of factors were found to upregulate across each of the three postnatal ages assessed, indicative of escalating ontogenetic expression of opioid-related genes; (2) prenatal ethanol significantly reduced many opioid peptides, suggesting a possible mechanism by which prenatal exposure can affect future responsiveness towards ethanol; and (3) the nucleus accumbens emerged as a key site for ethanol-dependent effects, suggesting a potential target for additional assessment and intervention towards understanding the ethanol's ability to program the developing brain. Conclusion We provide a global assessment of relatively long-term changes in both opioid gene expression and protein following exposure to only moderate amounts of ethanol during a relatively short window in the prenatal period. These results suggest that, while continuing to undergo ontogenetic changes, the infant

  5. In Vivo Voltammetric Monitoring of Catecholamine Release in Subterritories of the Nucleus Accumbens Shell

    PubMed Central

    Park, Jinwoo; Aragona, Brandon J.; Kile, Brian M.; Carelli, Regina M.; Wightman, R. Mark

    2010-01-01

    Fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes has been used to demonstrate that sub-second changes in catecholamine concentration occur within the nucleus accumbens (NAc) shell during motivated behaviors, and these fluctuations have been attributed to rapid dopamine signaling. However, FSCV cannot distinguish between dopamine and norepinephrine, and caudal regions of the NAc shell receive noradrenergic projections. Therefore, in the present study, we examined the degree to which norepinephrine contributes to catecholamine release within rostral and caudal portion of NAc shell. Analysis of tissue content revealed that dopamine was the major catecholamine detectable in the rostral NAc shell, whereas both dopamine and norepinephrine were found in the caudal subregion. To examine releasable catecholamines, electrical stimulation was used to evoke release in anesthetized rats with either stimulation of the medial forebrain bundle, a pathway containing both dopaminergic and noradrenergic projections to the NAc, or the ventral tegmental area/substantia nigra, the origin of dopaminergic projections. The catecholamines were distinguished by their responses to different pharmacological agents. The dopamine autoreceptor blocker, raclopride, as well as the monoamine and dopamine transporter blockers, cocaine and GBR 12909, increased evoked catecholamine overflow in both the rostral and caudal NAc shell. The norepinephrine autoreceptor blocker, yohimbine, and the norepinephrine transporter blocker, desipramine, increased catecholamine overflow in the caudal NAc shell without significant alteration of evoked responses in the rostral NAc shell. Thus, the neurochemical and pharmacological results show that norepinephrine signaling is restricted to caudal portions of the NAc shell. Following raclopride and cocaine or raclopride and GBR 12909, robust catecholamine transients were observed within the rostral shell but these were far less apparent in the caudal

  6. New Rules Governing Synaptic Plasticity In Core Nucleus Accumbens Medium Spiny Neurons

    PubMed Central

    Ji, Xincai; Martin, Gilles E.

    2012-01-01

    The nucleus accumbens is a forebrain region responsible for drug reward and goal directed behaviors. It has long been believed that drugs of abuse exert their addictive properties on behavior by altering the strength of synaptic communication over long periods of time. To date, attempts at understanding the relationship between drugs of abuse and synaptic plasticity have relied on the high-frequency long-term potentiation model of Bliss and LØmo (1973). We examined synaptic plasticity using spike-timing-dependent plasticity, a stimulation paradigm that reflects more closely in vivo firing patterns of core NAcc medium spiny neurons and their afferents. In contrast to other brain regions, the same stimulation paradigm evoked bidirectional long-term plasticity. Long-term potentiation (tLTP) magnitude changed with delay between action potentials (APs) and excitatory post-synaptic potentials (EPSPs), and frequency, while that of long-term depression (tLTD) remained unchanged. We showed that tLTP depended on NMDA receptors, whereas tLTD relied on action potentials. Importantly, intracellular calcium signaling pathways mobilized during tLTP and tLTD were different. Thus, calcium-induced calcium release underlies tLTD but not tLTP. Finally, we found that the firing pattern of a subset of MSNs was strongly inhibited by dopamine receptor agonists. Surprisingly, these neurons were exclusively associated with tLTP but not with tLTD. Taken together, these data point to the existence of two subgroups of MSNs with distinct properties, each displaying unique abilities to undergo synaptic plasticity. PMID:23013293

  7. Ethanol increases HSP70 concentrations in honeybee (Apis mellifera L.) brain tissue.

    PubMed

    Hranitz, John M; Abramson, Charles I; Carter, Richard P

    2010-05-01

    Previous research on the honeybee ethanol model established how acute ethanol exposure altered function at different levels of organization: behavior and learning, ecology, and physiology. The purpose of this study was to evaluate whether ethanol doses that affect honeybee behavior also induce a significant stress response, measured by heat shock protein 70 (HSP70) concentrations, in honeybee brain tissues. Experiment 1 examined how pretreatment handling influenced brain HSP70 concentrations in three pretreatment groups of bees; immediately after being collected, after being harnessed and fed, and after 22-24h in a harness. HSP70 concentrations did not differ among pretreatment groups within replicates, although we observed significantly different HSP70 concentrations between the two replicates. Experiment 2 investigated the relationship between ethanol dose and brain HSP70 concentrations. Bees were placed in seven experimental groups, the three pretreatment groups as in Experiment 1 and four ethanol-fed groups. Bees in ethanol treatments were fed 1.5M sucrose (control) and 1.5M sucrose-ethanol solutions containing 2.5, 5, and 10% ethanol, allowed to sit for 4h, and dissected brains were assayed for HSP70. We observed ethanol-induced increases in honeybee brain HSP70 concentrations from the control group through the 5% ethanol group. Only bees in the 5% ethanol group had HSP70 concentrations significantly higher than the control group. The inverted U-shaped ethanol dose-HSP70 concentration response curve indicated that ingestion of 2.5% ethanol and 5% ethanol stimulated the stress response, whereas ingestion of 10% ethanol inhibited the stress response. Doses that show maximum HSP70 concentration (5% ethanol) or HSP70 inhibition (10% ethanol) correspond to those (> or =5% ethanol) that also impaired honeybees in previous studies. We conclude that acute ethanol intoxication by solutions containing > or =5% ethanol causes significant ethanol-induced stress in brain

  8. Short-term selection for high and low ethanol intake yields differential sensitivity to ethanol's motivational effects and anxiety-like responses in adolescent Wistar rats.

    PubMed

    Fernández, Macarena Soledad; Báez, Bárbara; Bordón, Ana; Espinosa, Laura; Martínez, Eliana; Pautassi, Ricardo Marcos

    2017-10-03

    Alcohol use disorders are modulated by genetic factors, but the identification of specific genes and their concomitant biological changes that are associated with a higher risk for these disorders has proven difficult. Alterations in the sensitivity to the motivational effects of ethanol may be one way by which genes modulate the initiation and escalation of ethanol intake. Rats and mice have been selectively bred for high and low ethanol consumption during adulthood. However, selective breeding programs for ethanol intake have not focused on adolescence. This phase of development is associated with the initiation and escalation of ethanol intake and characterized by an increase in the sensitivity to ethanol's appetitive effects and a decrease in the sensitivity to ethanol's aversive effects compared with adulthood. The present study performed short-term behavioral selection to select rat lines that diverge in the expression of ethanol drinking during adolescence. A progenitor nucleus of Wistar rats (F0) and filial generation 1 (F1), F2, and F3 adolescent rats were derived from parents that were selected for high (STDRHI) and low (STDRLO) ethanol consumption during adolescence and were tested for ethanol intake and responsivity to ethanol's motivational effects. STDRHI rats exhibited significantly greater ethanol intake and preference than STDRLO rats. Compared with STDRLO rats, STDRHI F2 and F3 rats exhibited a blunted response to ethanol in the conditioned taste aversion test. F2 and F3 STDRHI rats but not STDRLO rats exhibited ethanol-induced motor stimulation. STDRHI rats exhibited avoidance of the white compartment of the light-dark box, a reduction of locomotion, and a reduction of saccharin consumption, suggesting an anxiety-prone phenotype. The results suggest that the genetic risk for enhanced ethanol intake during adolescence is associated with lower sensitivity to the aversive effects of ethanol, heightened reactivity to ethanol's stimulating effects

  9. ETHANOL-INDUCED LOCOMOTOR ACTIVITY IN ADOLESCENT RATS AND THE RELATIONSHIP WITH ETHANOL-INDUCED CONDITIONED PLACE PREFERENCE AND CONDITIONED TASTE AVERSION

    PubMed Central

    Acevedo, María Belén; Nizhnikov, Michael E.; Spear, Norman E.; Molina, Juan C.; Pautassi, Ricardo Marcos

    2012-01-01

    Adolescent rats exhibit ethanol-induced locomotor activity (LMA), which is considered an index of ethanol’s motivational properties likely to predict ethanol self-administration, but few studies have reported or correlated ethanol-induced LMA with conditioned place preference by ethanol at this age. The present study assessed age-related differences in ethanol’s motor stimulating effects and analysed the association between ethanol-induced LMA and conventional measures of ethanol-induced reinforcement. Experiment 1 compared ethanol-induced LMA in adolescent and adult rats. Subsequent experiments analyzed ethanol-induced conditioned place preference and conditioned taste aversion in adolescent rats evaluated for ethanol-induced LMA. Adolescent rats exhibit a robust LMA after high-dose ethanol. Ethanol-induced LMA was fairly similar across adolescents and adults. As expected, adolescents were sensitive to ethanol’s aversive reinforcement, but they also exhibited conditioned place preference. These measures of ethanol reinforcement, however, were not related to ethanol-induced LMA. Spontaneous LMA in an open field was, however, negatively associated with ethanol-induced CTA. PMID:22592597

  10. Facebook usage on smartphones and gray matter volume of the nucleus accumbens.

    PubMed

    Montag, Christian; Markowetz, Alexander; Blaszkiewicz, Konrad; Andone, Ionut; Lachmann, Bernd; Sariyska, Rayna; Trendafilov, Boris; Eibes, Mark; Kolb, Julia; Reuter, Martin; Weber, Bernd; Markett, Sebastian

    2017-06-30

    A recent study has implicated the nucleus accumbens of the ventral striatum in explaining why online-users spend time on the social network platform Facebook. Here, higher activity of the nucleus accumbens was associated with gaining reputation on social media. In the present study, we touched a related research field. We recorded the actual Facebook usage of N=62 participants on their smartphones over the course of five weeks and correlated summary measures of Facebook use with gray matter volume of the nucleus accumbens. It appeared, that in particular higher daily frequency of checking Facebook on the smartphone was robustly linked with smaller gray matter volumes of the nucleus accumbens. The present study gives additional support for the rewarding aspects of Facebook usage. Moreover, it shows the feasibility to include real life behavior variables in human neuroscientific research. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effects of ethanol on neurotransmitter release and intracellular free calcium in PC12 cells

    SciTech Connect

    Rabe, C.S.; Weight, F.F.

    1988-02-01

    The effect of ethanol on muscarine-stimulated release of l-(/sup 3/H)norepinephrine ((/sup 3/H)NE) was studied using the rat pheochromocytoma cell line, PC12. At concentrations of 25 mM and above, ethanol produced a dose-dependent inhibition of muscarine-stimulated release of (/sup 3/H)NE. The inhibition of muscarine-stimulated transmitter release occurred in the absence of any detectable effect of ethanol on (/sup 3/H)NE uptake or on muscarinic binding to the cells. However, ethanol produced an inhibition of muscarine-stimulated elevation of intracellular free Ca++ which corresponded with the inhibition of transmitter release. At concentrations greater than 100 mM, ethanol produced an increase in the basal release of (/sup 3/H)NE. Intracellular free Ca++ also was increased by ethanol concentrations greater than 100 mM. The elevation of basal transmitter release and intracellular free Ca++ by concentrations of ethanol greater than 100 mM occurred independently of the inhibition by ethanol of muscarine-stimulated elevation of intracellular free Ca++ and transmitter secretion. These results suggest that the effects of ethanol on neurotransmitter release are associated with the effects of ethanol on intracellular free Ca++.

  12. Water apparent diffusion coefficient correlates with gamma oscillation of local field potentials in the rat brain nucleus accumbens following alcohol injection.

    PubMed

    Tsurugizawa, Tomokazu; Abe, Yoshifumi; Le Bihan, Denis

    2017-09-01

    Ethanol is a vasoactive agent as well as psychoactive drug. The neurovascular response, coupled with neuronal activity, can be disturbed by alcohol intake. Hence, blood oxygenation level-dependent (BOLD) fMRI, which relies on neurovascular coupling, might not be reliable to reflect alcohol-induced neuronal responses. Recently, diffusion fMRI has been shown to be more sensitive to neural activity than BOLD fMRI even when neurovascular coupling is disrupted. Especially, the apparent diffusion coefficient (ADC) is sensitive to changes occurring in the cellular tissue structure upon activation. In the present study, we compared BOLD fMRI signals, ADC, and local field potentials (LFPs) in the nucleus accumbens (NAc) following injection of an ethanol solution (0.4 g/kg body weight) in rats under medetomidine anesthesia. An increase in the gamma oscillation power of LFP and an ADC decrease were observed 5 min after the injection of EtOH. The BOLD signals showed a negative slow drift, similar to mean arterial pressure with a peak approximately 10 min after the injection. These results confirm that DfMRI can be a better marker of the neuronal activity than BOLD fMRI, especially when the brain hemodynamic status is changed by vasoactive drugs such as ethanol.

  13. The role of the nucleus accumbens in instrumental conditioning: Evidence of a functional dissociation between accumbens core and shell.

    PubMed

    Corbit, L H; Muir, J L; Balleine, B W

    2001-05-01

    In three experiments we examined the effect of bilateral excitotoxic lesions of the nucleus accumbens core or shell subregions on instrumental performance, outcome devaluation, degradation of the instrumental contingency, Pavlovian conditioning, and Pavlovian-instrumental transfer. Rats were food deprived and trained to press two levers, one delivering food pellets and the other a sucrose solution. All animals acquired the lever-press response although the rate of acquisition and overall response rates in core-lesioned animals were depressed relative to that in the shell- or sham-lesioned animals. Furthermore, in shell- and sham-lesioned rats, post-training devaluation of one of the two outcomes using a specific satiety procedure produced a selective reduction in performance on the lever that, in training, delivered the prefed outcome. In contrast, the core-lesioned rats failed to show a selective devaluation effect and reduced responding on both levers. Subsequent tests revealed that these effects of core lesions were not caused by an impairment in their ability to recall the devalued outcome, to discriminate the two outcomes, or to encode the instrumental action-outcome contingencies to which they were exposed. Additionally, the core lesions did not have any marked effect on Pavlovian conditioning or on Pavlovian-instrumental transfer. Importantly, although shell-lesioned rats showed no deficit in any test of instrumental conditioning or in Pavlovian conditioning, they failed to show any positive transfer in the Pavlovian-instrumental transfer test. This double dissociation suggests that nucleus accumbens core and shell differentially mediate the impact of instrumental and Pavlovian incentive processes, respectively, on instrumental performance.

  14. Persistent cue-evoked activity of accumbens neurons after prolonged abstinence from self-administered cocaine.

    PubMed

    Ghitza, Udi E; Fabbricatore, Anthony T; Prokopenko, Volodymyr; Pawlak, Anthony P; West, Mark O

    2003-08-13

    Persistent neural processing of information regarding drug-predictive environmental stimuli may be involved in motivating drug abusers to engage in drug seeking after abstinence. The addictive effects of various drugs depend on the mesocorticolimbic dopamine system innervating the nucleus accumbens. We used single-unit recording in rats to test whether accumbens neurons exhibit responses to a discriminative stimulus (SD) tone previously paired with cocaine availability during cocaine self-administration. Presentation of the tone after 3-4 weeks of abstinence resulted in a cue-induced relapse of drug seeking under extinction conditions. Accumbens neurons did not exhibit tone-evoked activity before cocaine self-administration training but exhibited significant SD tone-evoked activity during extinction. Under extinction conditions, shell neurons exhibited significantly greater activity evoked by the SD tone than that evoked by a neutral tone (i.e., never paired with reinforcement). In contrast, core neurons responded indiscriminately to presentations of the SD tone or the neutral tone. Accumbens shell neurons exhibited significantly greater SD tone-evoked activity than did accumbens core neurons. Although the onset of SD tone-evoked activity occurred well before the earliest movements commenced (150 msec), this activity often persisted beyond the onset of tone-evoked movements. These results indicate that accumbens shell neurons exhibit persistent processing of information regarding reward-related stimuli after prolonged drug abstinence. Moreover, the accumbens shell appears to be involved in discriminating the motivational value of reward-related associative stimuli, whereas the accumbens core does not.

  15. Effects of repeated daily treatments with a 5-HT3 receptor antagonist on dopamine neurotransmission and functional activity of 5-HT3 receptors within the nucleus accumbens of Wistar rats.

    PubMed

    Liu, Wen; Thielen, Richard J; McBride, William J

    2006-06-01

    A previous study indicated that pretreatment with repeated daily injections of serotonin-3 (5-HT3) receptor antagonists subsequently reduced the effectiveness of the 5-HT3 antagonists to attenuate ethanol intake under 24-h free-choice conditions; one possibility to account for this is that the functional activity of the 5-HT3 receptor may have been altered by prior treatment with the antagonists. The present experiments were conducted to examine the effects of local perfusion of the 5-HT3 agonist 1-(m-chlorophenyl)-biguanide (CPBG) on the extracellular levels of dopamine (DA) in the nucleus accumbens (ACB) and ventral tegmental area (VTA) of adult male Wistar rats that had received repeated daily injections of the 5-HT3 antagonist, MDL 72222 (MDL). In vivo microdialysis was used to test the hypothesis that alterations in 5-HT3 receptor function have occurred with repeated antagonist injections. One group was given daily injections of MDL (1 mg/kg, s.c.) for 10 consecutive days (MDL group), and the other group was administered saline for 10 days (saline group). On the day after the last treatment, rats were implanted with a unilateral guide cannula aimed at either the ACB or VTA. Two days later, the microdialysis probe was inserted into the guide cannula; on the next day, microdialysis experiments were conducted to determine the extracellular levels of DA in the ACB or VTA. Local perfusion of CPBG (17.5, 35, 70 microM) in the ACB significantly stimulated DA release in the saline- and MDL-treated animals. In terms of percent baseline, the CPBG-stimulated DA release was higher in the MDL-treated group than in the saline-treated group in both the ACB and VTA; however, on the basis of the extracellular concentration, there were no significant differences in the ACB between the two groups. Using the no-net-flux microdialysis, it was determine that the basal extracellular concentration of DA in the ACB was approximately 60% lower in the MDL group than saline group; there

  16. Relationship between ethanol-induced activity and anxiolysis in the open field, elevated plus maze, light-dark box, and ethanol intake in adolescent rats

    PubMed Central

    Acevedo, María Belén; Nizhnikov, Michael E.; Molina, Juan C.; Pautassi, Ricardo Marcos

    2014-01-01

    It is yet unclear if ethanol-induced motor stimulation in the open field (OF) merely reflects psychomotor stimulating effects of the drug or if this stimulation is driven or modulated by ethanol’s antianxiety properties. In the present study, adolescent rats were administered with different ethanol doses or remained untreated. They were sequentially assessed in the OF, elevated plus maze (EPM), and light-dark box (LDB) and then assessed for ethanol intake. The aims were to assess the relationship between measures of ethanol-induced activity and anxiolysis, analyze ethanol intake as a function of prior ethanol exposure, and associate behavioral responsiveness in these apparatus with ethanol intake during adolescence. The results suggested that the enhanced exploration of the OF observed after 2.5 and 3.25 g/kg ethanol reflected a motor-stimulating effect that appeared to be relatively independent of anxiolysis. The 1.25 g/kg dose induced motor stimulation in the OF and anti-anxiety effects in the EPM, but these effects were relatively independent. The 0.5 g/kg ethanol dose exerted significant anxiolytic effects in the EPM in the absence of stimulating effects in the OF. A multivariate regression analysis indicated that adolescents with a higher frequency of rearing behavior in the OF, higher percentage of open arm entries in the EPM, and lower propensity to enter the central area of the OF exhibited greater ethanol intake. These results indicate that the OF is a valid procedure for the measurement of ethanol-induced stimulation, and provide information towards characterizing subpopulations of adolescents at risk for initiating alcohol drinking. PMID:24583190

  17. The nucleus accumbens as part of a basal ganglia action selection circuit.

    PubMed

    Nicola, Saleem M

    2007-04-01

    The nucleus accumbens is the ventral extent of the striatum, the main input nucleus of the basal ganglia. Recent hypotheses propose that the accumbens and its dopamine projection from the midbrain contribute to appetitive behaviors required to obtain reward. However, the specific nature of this contribution is unclear. In contrast, significant advances have been made in understanding the role of the dorsal striatum in action selection and decision making. In order to develop a hypothesis of the role of nucleus accumbens dopamine in action selection, the physiology and behavioral pharmacology of the nucleus accumbens are compared to those of the dorsal striatum. Three hypotheses concerning the role of dopamine in these structures are proposed: (1) that dopamine release in the dorsal striatum serves to facilitate the ability to respond appropriately to temporally predictable stimuli (that is, stimuli that are so predictable that animals engage in anticipatory behavior just prior to the stimulus); (2) that dopamine in the nucleus accumbens facilitates the ability to respond to temporally unpredictable stimuli (which require interruption of ongoing behavior); and (3) that accumbens neurons participate in action selection in response to such stimuli by virtue of their direct (monosynaptic inhibitory) and indirect (polysynaptic excitatory) projections to basal ganglia output nuclei.

  18. Development of tolerance to the inhibitory effects of ethanol in the rat isolated vas deferens: effect of acute and chronic ethanol administration in vivo.

    PubMed Central

    DeTurck, K. H.; Pohorecky, L. A.

    1986-01-01

    Contractions of the rat vas deferens elicited by the addition of noradrenaline (NA), K+-depolarizing solutions or by electrical stimulation were recorded before and after incubation with ethanol 181 mM. In tissues from untreated rats, the contractions were inhibited 40-50% by such exposure. Injection of ethanol (2 g kg-1) significantly attenuated ethanol's reduction of peak tension generated by the lowest concentration of NA (10(-4) mM). Chronic administration of ethanol, 18-14 g kg-1 daily for two weeks, resulted in significant tolerance to ethanol. Tissues of treated animals demonstrated ethanol-induced decreases of roughly one-half those of the maltose dextrin (isocaloric) and water (fluid control) groups. This tolerance persisted for at least 48 h after ethanol treatment had been terminated. Overall, the data suggest that ethanol acts both pre- and postsynaptically to produce acute inhibition of smooth muscle contractions or tolerance to these actions upon chronic exposure. PMID:3730699

  19. Early role of the κ opioid receptor in ethanol-induced reinforcement.

    PubMed

    Pautassi, Ricardo Marcos; Nizhnikov, Michael E; Acevedo, Ma Belén; Spear, Norman E

    2012-03-20

    Effects of early ethanol exposure on later ethanol intake emphasize the importance of understanding the neurobiology of ethanol-induced reinforcement early in life. Infant rats exhibit ethanol-induced appetitive conditioning and ethanol-induced locomotor activation, which have been linked in theory and may have mechanisms in common. The appetitive effects of ethanol are significantly modulated by μ and δ opioid receptors, whereas μ but not δ receptors are involved in the motor stimulant effects of ethanol during early development. The involvement of the κ opioid receptor (KOR) system in the motivational effects of ethanol has been much less explored. The present study assessed, in preweanling (infant) rats, the modulatory role of the KOR system in several paradigms sensitive to ethanol-induced reinforcement. Kappa opioid activation and blockade were examined in second-order conditioned place preference with varied timing before conditioning and with varied ethanol doses. The role of KOR on ethanol-induced locomotion and ethanol-induced taste conditioning was also explored. The experiments were based on the assumption that ethanol concurrently induces appetitive and aversive effects and that the latter may be mediated by activation of kappa receptors. The main result was that blockade of kappa function facilitated the expression of appetitive ethanol reinforcement in terms of tactile and taste conditioning. The effects of kappa activation on ethanol conditioning seemed to be independent from ethanol's stimulant effects. Kappa opioid activation potentiated the motor depressing effects of ethanol but enhanced motor activity in control subjects. Overall, the results support the hypothesis that a reduced function of the KOR system in nondependent subjects should attenuate the aversive consequences of ethanol.

  20. Early role of the κ opioid receptor in ethanol-induced reinforcement

    PubMed Central

    Pautassi, Ricardo Marcos; Nizhnikov, Michael E.; Acevedo, Ma. Belén; Spear, Norman E.

    2012-01-01

    Effects of early ethanol exposure on later ethanol intake emphasize the importance of understanding the neurobiology of ethanol-induced reinforcement early in life. Infant rats exhibit ethanol-induced appetitive conditioning and ethanol-induced locomotor activation, which have been linked in theory and may have mechanisms in common. The appetitive effects of ethanol are significantly modulated by μ and δ opioid receptors, whereas μ but not δ receptors are involved in the motor stimulant effects of ethanol during early development. The involvement of the κ opioid receptor (KOR) system in the motivational effects of ethanol has been much less explored. The present study assessed, in preweanling (infant) rats, the modulatory role of the KOR system in several paradigms sensitive to ethanol-induced reinforcement. Kappa opioid activation and blockade was examined in second-order conditioned place preference with varied timing before conditioning and with varied ethanol doses. The role of KOR on ethanol-induced locomotion and ethanol-induced taste conditioning was also explored. The experiments were based on the assumption that ethanol concurrently induces appetitive and aversive effects and that the latter may be mediated by activation of kappa receptors. The main result was that blockade of kappa function facilitated the expression of appetitive ethanol reinforcement in terms of tactile and taste conditioning. The effects of kappa activation on ethanol conditioning seemed to be independent from ethanol's stimulant effects. Kappa opioid activation potentiated the motor depressing effects of ethanol but enhanced motor activity in control subjects. Overall, the results support the hypothesis that a reduced function of the KOR system in nondependent subjects should attenuate the aversive consequences of ethanol. PMID:22261437

  1. N-Methyl-d-aspartate Modulation of Nucleus Accumbens Dopamine Release by Metabotropic Glutamate Receptors: Fast Cyclic Voltammetry Studies in Rat Brain Slices in Vitro.

    PubMed

    Yavas, Ersin; Young, Andrew M J

    2017-02-15

    The N-methyl-d-aspartate (NMDA) receptor antagonist, phencyclidine, induces behavioral changes in rodents mimicking symptoms of schizophrenia, possibly mediated through dysregulation of glutamatergic control of mesolimbic dopamine release. We tested the hypothesis that NMDA receptor activation modulates accumbens dopamine release, and that phencyclidine pretreatment altered this modulation. NMDA caused a receptor-specific, dose-dependent decrease in electrically stimulated dopamine release in nucleus accumbens brain slices. This decrease was unaffected by picrotoxin, making it unlikely to be mediated through GABAergic neurones, but was decreased by the metabotropic glutamate receptor antagonist, (RS)-α-methyl-4-sulfonophenylglycine, indicating that NMDA activates mechanisms controlled by these receptors to decrease stimulated dopamine release. The effect of NMDA was unchanged by in vivo pretreatment with phencyclidine (twice daily for 5 days), with a washout period of at least 7 days before experimentation, which supports the hypothesis that there is no enduring direct effect of PCP at NMDA receptors after this pretreatment procedure. We propose that NMDA depression of accumbal dopamine release is mediated by metabotropic glutamate receptors located pre- or perisynaptically, and suggest that NMDA evoked increased extrasynaptic spillover of glutamate is sufficient to activate these receptors that, in turn, inhibit dopamine release. Furthermore, we suggest that enduring functional changes brought about by subchronic phencyclidine pretreatment, modeling deficits in schizophrenia, are downstream effects consequent on chronic blockade of NMDA receptors, rather than direct effects on NMDA receptors themselves.

  2. Full-gestational exposure to nicotine and ethanol augments nicotine self-administration by altering ventral tegmental dopaminergic function due to NMDA receptors in adolescent rats.

    PubMed

    Roguski, Emily E; Sharp, Burt M; Chen, Hao; Matta, Shannon G

    2014-03-01

    In adult rats, we have shown full-gestational exposure to nicotine and ethanol (Nic + EtOH) augmented nicotine self-administration (SA) (increased nicotine intake) compared to pair-fed (PF) offspring. Therefore, we hypothesized that full-gestational exposure to Nic + EtOH disrupts control of dopaminergic (DA) circuitry by ventral tegmental area (VTA) NMDA receptors, augmenting nicotine SA and DA release in nucleus accumbens (NAcc) of adolescents. Both NAcc DA and VTA glutamate release were hyper-responsive to intra-VTA NMDA in Nic + EtOH offspring versus PF (p = 0.03 and 0.02, respectively). Similarly, DA release was more responsive to i.v. nicotine in Nic + EtOH offspring (p = 0.02). Local DL-2-Amino-5-phosphonopentanoic acid sodium salt (AP5) (NMDA receptor antagonist) infusion into the VTA inhibited nicotine-stimulated DA release in Nic + EtOH and PF offspring. Nicotine SA was augmented in adolescent Nic + EtOH versus PF offspring (p = 0.000001). Daily VTA microinjections of AP5 reduced nicotine SA by Nic + EtOH offspring, without affecting PF (p = 0.000032). Indeed, nicotine SA in Nic + EtOH offspring receiving AP5 was not different from PF offspring. Both VTA mRNA transcripts and NMDA receptor subunit proteins were not altered in Nic + EtOH offspring. In summary, adolescent offspring exposed to gestational Nic + EtOH show markedly increased vulnerability to become dependent on nicotine. This reflects the enhanced function of a subpopulation of VTA NMDA receptors that confer greater nicotine-induced DA release in NAcc. We hypothesized that concurrent gestational exposure to nicotine and ethanol would disrupt the control of VTA dopaminergic circuitry by NMDA receptors. Resulting in the augmented nicotine self-administration (SA) in adolescent offspring.

  3. Effects of Ceftriaxone on Glial Glutamate Transporters in Wistar Rats Administered Sequential Ethanol and Methamphetamine

    PubMed Central

    Althobaiti, Yusuf S.; Alshehri, Fahad S.; Almalki, Atiah H.; Sari, Youssef

    2016-01-01

    Methamphetamine (METH) is one of the psychostimulants that is co-abused with ethanol. Repeated exposure to high dose of METH has been shown to cause increases in extracellular glutamate concentration. We have recently reported that ethanol exposure can also increase the extracellular glutamate concentration and downregulate the expression of glutamate transporter subtype 1 (GLT-1). GLT-1 is a glial transporter that regulates the majority of extracellular glutamate. A Wistar rat model of METH and ethanol co-abuse was used to examine the expression of GLT-1 as well as other glutamate transporters such as cystine/glutamate exchanger (xCT) and glutamate aspartate transporter (GLAST). We also examined the body temperature in rats administered METH, ethanol or both drugs. We further investigated the effects of ceftriaxone (CEF), a β-lactam antibiotic known to upregulate GLT-1, in this METH/ethanol co-abuse rat model. After 7 days of either ethanol (6 g/kg) or water oral gavage, Wistar rats received either saline or METH (10 mg/kg i.p. every 2 h × 4), followed by either saline or CEF (200 mg/kg) posttreatment. METH administered alone decreased GLT-1 expression in the nucleus accumbens (NAc) and prefrontal cortex (PFC) and increased body temperature, but did not reduce either xCT or GLAST expression in ethanol and water-pretreated rats. Interestingly, ethanol and METH were found to have an additive effect on the downregulation of GLT-1 expression in the NAc but not in the PFC. Moreover, ethanol alone caused GLT-1 downregulation in the NAc and elevated body temperature compared to control. Finally, CEF posttreatment significantly reversed METH-induced hyperthermia, restored GLT-1 expression, and increased xCT expression. These findings suggest the potential therapeutic role of CEF against METH- or ethanol/METH-induced hyperglutamatergic state and hyperthermia. PMID:27713684

  4. Acupuncture Attenuates Anxiety-Like Behavior by Normalizing Amygdaloid Catecholamines during Ethanol Withdrawal in Rats

    PubMed Central

    Zhao, Zheng Lin; Zhao, Guang Wen; Li, Hou Zhong; Yang, Xu Dong; Wu, Yi Yan; Lin, Feng; Guan, Li Xin; Zhai, Feng Guo; Liu, Jia Qi; Yang, Chae Ha; Kim, Sang Chan; Kim, Kee Won; Zhao, Rong Jie

    2011-01-01

    Previously, we demonstrated acupuncture at acupoint HT7 (Shen-Men) attenuated ethanol withdrawal syndrome by normalizing the dopamine release in nucleus accumbens shell. In the present study, we investigated the effect of acupuncture on anxiety-like behavior in rats and its relevant mechanism by studying neuro-endocrine parameters during ethanol withdrawal. Rats were treated with 3 g kg−1day−1 of ethanol (20%, w/v) or saline by intraperitoneal injections for 28 days. The rats undergoing ethanol withdrawal exhibited anxiety-like behavior 72 h after the last dose of ethanol characterized by the decrease of time spent in the open arms of the elevated plus maze compared with the saline-treated rats (P < .05). Radioimmunoassay exhibited there were notably increased concentrations of plasma corticosterone in ethanol-withdrawn rats compared with saline-treated rats (P < .05). Additionally, high performance liquid chromatography analysis also showed the levels of norepinephrine and 3-methoxy-4-hydroxy-phenylglycol were markedly increased while the levels of dopamine and 3,4-dihydroxyphenylacetic acid were significantly decreased in the central nucleus of the amygdala of ethanol-withdrawn rats compared with saline-treated rats (P < .01). Acupuncture groups were treated with acupuncture at acupoint HT7 or PC6 (Nei-Guan). Acupuncture at HT7 but not PC6 greatly attenuated the anxiety-like behavior during ethanol withdrawal as evidenced by significant increases in the percentage of time spent in open arms (P < .05). In the meantime, acupuncture at HT7 also markedly inhibited the alterations of neuro-endocrine parameters induced by ethanol withdrawal (P < .05). These results suggest that acupuncture may attenuate anxiety-like behavior during ethanol withdrawal through regulation of neuro-endocrine system. PMID:21869897

  5. Selective blockade of the orexin-2 receptor attenuates ethanol self-administration, place preference, and reinstatement.

    PubMed

    Shoblock, James R; Welty, Natalie; Aluisio, Leah; Fraser, Ian; Motley, S Timothy; Morton, Kirsten; Palmer, James; Bonaventure, Pascal; Carruthers, Nicholas I; Lovenberg, Timothy W; Boggs, Jamin; Galici, Ruggero

    2011-05-01

    Orexin-1 receptor antagonists have been shown to block the reinforcing effects of drugs of abuse and food. However, whether blockade of orexin-2 receptor has similar effects has not been determined. We have recently described the in vitro and in vivo effects of JNJ-10397049, a selective and brain penetrant orexin-2 receptor antagonist. The goal of these studies was to evaluate whether systemic administration of JNJ-10397049 blocks the rewarding effects of ethanol and reverses ethanol withdrawal in rodents. As a comparison, SB-408124, a selective orexin-1 receptor antagonist, was also evaluated. Rats were trained to orally self-administer ethanol (8% v/v) or saccharin (0.1% v/v) under a fixed-ratio 3 schedule of reinforcement. A separate group of rats received a liquid diet of ethanol (8% v/v) and withdrawal signs were evaluated 4 h after ethanol discontinuation. In addition, ethanol-induced increases in extracellular dopamine levels in the nucleus accumbens were tested. In separate experiments, the acquisition, expression, and reinstatement of conditioned place preference (CPP) were evaluated in mice. Our results indicate that JNJ-10397049 (1, 3, and 10 mg/kg, sc) dose-dependently reduced ethanol self-administration without changing saccharin self-administration, dopamine levels, or withdrawal signs in rats. Treatment with JNJ-10397049 (10 mg/kg, sc) attenuated the acquisition, expression, and reinstatement of ethanol CPP and ethanol-induced hyperactivity in mice. Surprisingly, SB-408124 (3, 10 and 30 mg/kg, sc) did not have any effect in these procedures. Collectively, these results indicate, for the first time, that blockade of orexin-2 receptors is effective in reducing the reinforcing effects of ethanol.

  6. Ethanol inhibits neuritogenesis induced by astrocyte muscarinic receptors.

    PubMed

    Guizzetti, Marina; Moore, Nadia H; Giordano, Gennaro; VanDeMark, Kathryn L; Costa, Lucio G

    2010-09-01

    In utero alcohol exposure can lead to fetal alcohol spectrum disorders, characterized by cognitive and behavioral deficits. In vivo and in vitro studies have shown that ethanol alters neuronal development. We have recently shown that stimulation of M(3) muscarinic receptors in astrocytes increases the synthesis and release of fibronectin, laminin, and plasminogen activator inhibitor-1, causing neurite outgrowth in hippocampal neurons. As M(3) muscarinic receptor signaling in astroglial cells is strongly inhibited by ethanol, we hypothesized that ethanol may also inhibit neuritogenesis in hippocampal neurons induced by carbachol-stimulated astrocytes. In the present study, we report that the effect of carbachol-stimulated astrocytes on hippocampal neuron neurite outgrowth was inhibited in a concentration-dependent manner (25-100 mM) by ethanol. This effect was because of the inhibition of the release of fibronectin, laminin, and plasminogen activator inhibitor-1. Similar effects on neuritogenesis and on the release of astrocyte extracellular proteins were observed after the incubation of astrocytes with carbachol in the presence of 1-butanol, another short-chain alcohol, which like ethanol is a competitive substrate for phospholipase D, but not by tert-butanol, its analog that is not a substrate for this enzyme. This study identifies a potential novel mechanism involved in the developmental effects of ethanol mediated by the interaction of ethanol with cell signaling in astrocytes, leading to an impairment in neuron-astrocyte communication.

  7. Fermentation method producing ethanol

    DOEpatents

    Wang, Daniel I. C.; Dalal, Rajen

    1986-01-01

    Ethanol is the major end product of an anaerobic, thermophilic fermentation process using a mutant strain of bacterium Clostridium thermosaccharolyticum. This organism is capable of converting hexose and pentose carbohydrates to ethanol, acetic and lactic acids. Mutants of Clostridium thermosaccharolyticum are capable of converting these substrates to ethanol in exceptionally high yield and with increased productivity. Both the mutant organism and the technique for its isolation are provided.

  8. Taurine and ethanol interactions: behavioral effects in mice

    PubMed Central

    Ginsburg, Brett C.; Lamb, Richard J.

    2011-01-01

    Taurine is an abundant amino acid in the brain that shares pharmacological effects and similar potency with ethanol. Recently, taurine-containing beverages have been reported to enhance the euphoric effects of ethanol, though the extent of this effect and the role of taurine remain speculative. The present study was designed to explore interactions between taurine and ethanol on several behaviors including locomotion, ataxia, and loss of righting. Two strains of mice, C57BL/6J and DBA/2J mice, were used to examine potential strain differences. In the first experiment, effects of various doses of taurine (0.3–3.0 g/kg), ethanol (1.0–4.2 g/kg), or taurine in combination with ethanol were assessed in a within-subjects design. Although taurine did not appear to alter effects of ethanol on any measure in either strain, the development of tolerance to locomotor effects and sensitization to ataxic effects of ethanol in DBA/2J mice complicated interpretation of these results. In a second experiment, drug-naïve mice were assigned to one of four treatment groups: saline + saline, saline + ethanol (1.78 g/kg), taurine (1.78 g/kg) + saline, or ethanol + taurine. In this experiment, taurine pretreatment significantly attenuated the locomotor-stimulating effect of ethanol in both strains (but to a greater extent in C57BL/6J mice) and appeared to reduce the ataxic effects of ethanol in C57BL/6J mice. In conclusion, the interaction between taurine and ethanol is subtle. Further, results are inconsistent with the notion that taurine plays a major role in the locomotor, ataxic, or loss of righting effects of ethanol. PMID:17961547

  9. Long-term nicotine treatment down-regulates α6β2* nicotinic receptor expression and function in nucleus accumbens.

    PubMed

    Perez, Xiomara A; McIntosh, J Michael; Quik, Maryka

    2013-12-01

    Long-term nicotine exposure induces alterations in dopamine transmission in nucleus accumbens that sustain the reinforcing effects of smoking. One approach to understand the adaptive changes that arise involves measurement of endogenous dopamine release using voltammetry. We therefore treated rats for 2-3 months with nicotine and examined alterations in nAChR subtype expression and electrically evoked dopamine release in rat nucleus accumbens shell, a region key in addiction. Long-term nicotine treatment selectively decreased stimulated α6β2* nAChR-mediated dopamine release compared with vehicle-treated rats. It also reduced α6β2* nAChRs, suggesting the receptor decline may contribute to the functional loss. This decreased response in release after chronic nicotine treatment was still partially sensitive to the agonist nicotine. Studies with an acetylcholinesterase inhibitor demonstrated that the response was also sensitive to increased endogenous acetylcholine. However, unlike the agonists, nAChR antagonists decreased dopamine release only in vehicle- but not nicotine-treated rats. As antagonists function by blocking the action of acetylcholine, their ineffectiveness suggests that reduced acetylcholine levels partly underlie the dampened α6β2* nAChR-mediated function in nicotine-treated rats. As long-term nicotine modifies dopamine release by decreasing α6β2* nAChRs and their function, these data suggest that interventions that target this subtype may be useful for treating nicotine dependence. Long-term nicotine treatment decreases dopamine (DA) transmission in the mesolimbic dopaminergic system. Our data suggest this may involve a decrease in α6β2* nicotinic receptor expression and function. These changes may play a key role in nicotine reward and dependence.

  10. Prelimbic Cortex and Ventral Tegmental Area Modulate Synaptic Plasticity Differentially in Nucleus Accumbens During Cocaine-Reinstated Drug Seeking

    PubMed Central

    Shen, Hao-wei; Gipson, Cassandra D; Huits, Martijn; Kalivas, Peter W

    2014-01-01

    Addictive drug use causes long-lasting changes in synaptic strength and dendritic spine morphology in the nucleus accumbens that might underlie the vulnerability to relapse. Although activity in mesocorticolimbic circuitry is required for reinstating cocaine seeking, its role in reinstatement-associated synaptic plasticity is not well characterized. Using rats extinguished from cocaine self-administration, we found potentiated synaptic strength (assessed as the AMPA/NMDA current amplitude ratio) and increased spine head diameter in medium spiny neurons in the accumbens core (NAcore). The basal changes in synaptic strength and morphology in cocaine-extinguished animals were further augmented during cocaine-induced reinstatement. Two NAcore afferents contributing to cocaine reinstatement are glutamatergic inputs from the prelimbic prefrontal cortex (PL) and dopamine from the ventral tegmental area (VTA). Pharmacological inhibition of either PL or VTA prevented cocaine-primed reinstatement. However, inhibiting the PL further potentiated AMPA/NMDA and spine head diameter, while inactivating the VTA or the combined systemic administration of dopamine D1 and D2 antagonists prevented the increase in AMPA/NMDA and spine diameter induced by cocaine priming. These data indicate that neuronal activity in the VTA and associated dopamine receptor stimulation is necessary for the synaptic potentiation in the NAcore during cocaine-induced reinstatement. Although activity in the PL was necessary for reinstatement, it inhibited synaptic potentiation initiated by an acute cocaine injection. Thus, although the PL and VTA differentially regulate the direction of synaptic plasticity induced by a cocaine-priming injection, coordinated synaptic potentiation by both NAcore afferents is necessary for cocaine-induced relapse. PMID:24232172

  11. Prelimbic cortex and ventral tegmental area modulate synaptic plasticity differentially in nucleus accumbens during cocaine-reinstated drug seeking.

    PubMed

    Shen, Hao-wei; Gipson, Cassandra D; Huits, Martijn; Kalivas, Peter W

    2014-04-01

    Addictive drug use causes long-lasting changes in synaptic strength and dendritic spine morphology in the nucleus accumbens that might underlie the vulnerability to relapse. Although activity in mesocorticolimbic circuitry is required for reinstating cocaine seeking, its role in reinstatement-associated synaptic plasticity is not well characterized. Using rats extinguished from cocaine self-administration, we found potentiated synaptic strength (assessed as the AMPA/NMDA current amplitude ratio) and increased spine head diameter in medium spiny neurons in the accumbens core (NAcore). The basal changes in synaptic strength and morphology in cocaine-extinguished animals were further augmented during cocaine-induced reinstatement. Two NAcore afferents contributing to cocaine reinstatement are glutamatergic inputs from the prelimbic prefrontal cortex (PL) and dopamine from the ventral tegmental area (VTA). Pharmacological inhibition of either PL or VTA prevented cocaine-primed reinstatement. However, inhibiting the PL further potentiated AMPA/NMDA and spine head diameter, while inactivating the VTA or the combined systemic administration of dopamine D1 and D2 antagonists prevented the increase in AMPA/NMDA and spine diameter induced by cocaine priming. These data indicate that neuronal activity in the VTA and associated dopamine receptor stimulation is necessary for the synaptic potentiation in the NAcore during cocaine-induced reinstatement. Although activity in the PL was necessary for reinstatement, it inhibited synaptic potentiation initiated by an acute cocaine injection. Thus, although the PL and VTA differentially regulate the direction of synaptic plasticity induced by a cocaine-priming injection, coordinated synaptic potentiation by both NAcore afferents is necessary for cocaine-induced relapse.

  12. Effects of ethanol on cAMP production in murine embryonic palate mesenchymal cells

    SciTech Connect

    Weston, W.M.; Greene, R.M. )

    1991-01-01

    Ethanol affected the ability of murine embryonic palate mesenchymal (MEPM) cells to produce cAMP in response to hormone treatment. Acute exposure to ethanol resulted in an increase in hormone-stimulated cAMP levels, while chronic ethanol treatment led to decreased sensitivity to hormone. Forskolin-stimulated cAMP levels were decreased by both acute and chronic ethanol treatment, while the cells' response to cholera toxin was unchanged by ethanol treatment. The lack of sensitivity of the cholera toxin response to ethanol suggests that,in contrast to what has been observed in other systems, ethanol does not affect the production or activity of G{alpha}s in MEPM cells. These results suggest a possible explanation for the molecular basis for the craniofacial abnormalities observed in the fetal alcohol syndrome.

  13. Ceftriaxone, a beta-lactam antibiotic, attenuates relapse-like ethanol-drinking behavior in alcohol-preferring rats.

    PubMed

    Qrunfleh, Abeer M; Alazizi, Adnan; Sari, Youssef

    2013-06-01

    Relapse-like ethanol-drinking behavior depends on increased glutamate transmission in the mesocorticolimbic motive circuit. Extracellular glutamate is regulated by a number of glutamate transporters. Of these transporters, glutamate transporter 1 (GLT1) is responsible for the majority of extracellular glutamate uptake. We have recently reported that ceftriaxone (CEF) treatment (i.p.), a β-lactam antibiotic known to elevate GTL1 expression, reduced ethanol intake in male alcohol-preferring (P) rats. We investigated here whether CEF treatment attenuates relapse-like ethanol-drinking behavior. P rats were exposed to free choice of 15% and 30% ethanol for 5 weeks and treated with CEF (50 and 100 mg/kg, i.p.) during the last 5 days of the 2-week deprivation period. Rats treated with CEF during the deprivation period showed a reduction in ethanol intake compared with saline-treated rats upon re-exposure to ethanol; this effect persisted for 9 days. Moreover, CEF-mediated attenuation in relapse to ethanol-drinking behavior was associated with upregulation of GLT1 level in prefrontal cortex and nucleus accumbens core. GLT1 upregulation was revealed only at the higher dose of CEF. In addition, CEF has no effect on relapse-like sucrose-drinking behavior. These findings suggest that ceftriaxone might be used as a potential therapeutic treatment for the attenuation of relapse-like ethanol-drinking behavior.

  14. Differential neural representation of oral ethanol by central taste-sensitive neurons in ethanol-preferring and genetically heterogeneous rats

    PubMed Central

    Wilson, David M.; Brasser, Susan M.

    2011-01-01

    In randomly bred rats, orally applied ethanol stimulates neural substrates for appetitive sweet taste. To study associations between ethanol's oral sensory characteristics and genetically mediated ethanol preference, we made electrophysiological recordings of oral responses (spike density) by taste-sensitive nucleus tractus solitarii neurons in anesthetized selectively bred ethanol-preferring (P) rats and their genetically heterogeneous Wistar (W) control strain. Stimuli (25 total) included ethanol [3%, 5%, 10%, 15%, 25%, and 40% (vol/vol)], a sucrose series (0.01, 0.03, 0.1, 0.3, 0.5, and 1 M), and other sweet, salt, acidic, and bitter stimuli; 50 P and 39 W neurons were sampled. k-means clustering applied to the sucrose response series identified cells showing high (S1) or relatively low (S0) sensitivity to sucrose. A three-way factorial analysis revealed that activity to ethanol was influenced by a neuron's sensitivity to sucrose, ethanol concentration, and rat line (P = 0.01). Ethanol produced concentration-dependent responses in S1 neurons that were larger than those in S0 cells. Although responses to ethanol by S1 cells did not differ between lines, neuronal firing rates to ethanol in S0 cells increased across concentration only in P rats. Correlation and multivariate analyses revealed that ethanol evoked responses in W neurons that were strongly and selectively associated with activity to sweet stimuli, whereas responses to ethanol by P neurons were not easily associated with activity to representative sweet, sodium salt, acidic, or bitter stimuli. These findings show differential central neural representation of oral ethanol between genetically heterogeneous rats and P rats genetically selected to prefer alcohol. PMID:21918002

  15. Increased brain nitric oxide levels following ethanol administration.

    PubMed

    Finnerty, Niall; O'Riordan, Saidhbhe L; Klamer, Daniel; Lowry, John; Pålsson, Erik

    2015-05-01

    Nitric oxide is a ubiquitous messenger molecule, which at elevated concentrations has been implicated in the pathogenesis of several neurological disorders. Its role in oxidative stress, attributed in particular to the formation of peroxynitrite, proceeds through its high affinity for the superoxide radical. Alcoholism has recently been associated with the induction of oxidative stress, which is generally defined as a shift in equilibrium between pro-oxidant and anti-oxidant species in the direction of the former. Furthermore, its primary metabolite acetaldehyde, has been extensively associated with oxidative damage related toxic effects following alcohol ingestion. The principal objective of this study was the application of long term in vivo electrochemistry (LIVE) to investigate the effect of ethanol (0.125, 0.5 and 2.0 g kg(-1)) and acetaldehyde (12.5, 50 and 200 mg kg(-1)) on NO levels in the nucleus accumbens of freely moving rats. Systemic administrations of ethanol and acetaldehyde resulted in a dose-dependent increases in NO levels, albeit with very differing time courses. Subsequent to this the effect on accumbal NO levels, of subjecting the animal to different drug combinations, was also elucidated. The nitric oxide synthase inhibitor L-NAME (20 mg kg(-1)) and acetaldehyde sequestering agent D-penicillamine (50 mg kg(-1)) both attenuated the increase in NO levels following ethanol (1 g kg(-1)) administration. Conversely, the alcohol dehydrogenase inhibitor 4-methylpyrazole (25 mg kg(-1)) and catalase inhibitor sodium azide (10 mg kg(-1)) potentiated the increase in NO levels following ethanol administration. Finally, dual inhibition of aldehyde dehydrogenase and catalase by cyanamide (25 mg kg(-1)) caused an attenuation of ethanol effects on NO levels. Taken together these data highlight a robust increase in brain NO levels following systemic alcohol administration which is dependent on NO synthase activity and may involve both alcohol- and acetaldehyde

  16. Effects of MS-153 on glutamate transporter 1 and cysteine/glutamate exchanger as well as ethanol drinking behavior in male P rats

    PubMed Central

    Aal-Aaboda, Munaf; Alhaddad, Hasan; Osowik, Francis; Nauli, Surya M.; Sari, Youssef

    2014-01-01

    Alcohol consumption is largely associated with alterations in the extracellular glutamate concentrations in several brain reward regions. We have recently found that glutamate transporter 1 (GLT-1) is downregulated following chronic exposure to ethanol for five weeks in alcohol-preferring rats, and upregulation of the GLT-1 levels in nucleus accumbens and prefrontal cortex resulted, in part, in attenuating ethanol consumption. Cysteine glutamate antiporter (xCT) was also found to be downregulated after chronic ethanol exposure in P rats, and its upregulation could be valuable in attenuating ethanol drinking. In this study, we examined the effect of a synthetic compound, (R)-(−)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153), on ethanol drinking and expression of GLT-1 and xCT in the amygdala and hippocampus of P rats. P rats were exposed to continuous free-choice access to water, 15% and 30% ethanol, and food for five weeks, and then after which they received treatments of MS-153 or vehicle for five days. The results showed that MS-153 treatment significantly reduced ethanol consumption in P rats. It was revealed that GLT-1 and xCT expressions were downregulated in both the amygdala and hippocampus of ethanol-vehicle treated rats (ethanol vehicle group) as compared to water control animals. Importantly, MS-153 treatment upregulated GLT-1 and xCT expression in these brain regions. These findings provide important role of MS-153 on these glutamate transporters for the attenuation of ethanol drinking behavior. PMID:25601490

  17. Rats self-administer carbachol directly into the nucleus accumbens.

    PubMed

    Ikemoto, S; Glazier, B S; Murphy, J M; McBride, W J

    1998-03-01

    The potential reinforcing effect of the muscarinic cholinergic agonist carbachol within the nucleus accumbens (ACB) was examined in female Wistar rats by using the technique of intracranial self-administration. Rats dose dependently self-administered solutions of 0.0-6.6 mM (in a volume of 100 nL per injection) directly into the ACB. Rats self-administered the 3.3 and 6.6 mM doses significantly more than the group given only vehicle. The caudate putamen did not support reliable self-administration of the 6.6-mM dose. Rats exhibited preference for the lever that produced infusions of 3.3 and 6.6 mM carbachol into the ACB over the lever that had no consequence. The self-infusion of the 6.6-mM dose into the ACB was inhibited by the coadministration of the muscarinic antagonist scopolamine (0.25 mM), but not by the nicotinic antagonist mecamylamine (6.6 mM). The present results suggest that direct activation of muscarinic receptors within the ACB supports self-administration and could result from reinforcement or from elicitation of a novel stimulus.

  18. Reduced volume of the nucleus accumbens in heroin addiction.

    PubMed

    Seifert, Christian L; Magon, Stefano; Sprenger, Till; Lang, Undine E; Huber, Christian G; Denier, Niklaus; Vogel, Marc; Schmidt, André; Radue, Ernst-Wilhelm; Borgwardt, Stefan; Walter, Marc

    2015-12-01

    The neural mechanisms of heroin addiction are still incompletely understood, even though modern neuroimaging techniques offer insights into disease-related changes in vivo. While changes on cortical structure have been reported in heroin addiction, evidence from subcortical areas remains underrepresented. Functional imaging studies revealed that the brain reward system and particularly the nucleus accumbens (NAcc) play a pivotal role in the pathophysiology of drug addiction. The aim of this study was to investigate whether there was a volume difference of the NAcc in heroin addiction in comparison to healthy controls. A further aim was to correlate subcortical volumes with clinical measurements on negative affects in addiction. Thirty heroin-dependent patients under maintenance treatment with diacetylmorphine and twenty healthy controls underwent structural MRI scanning at 3T. Subcortical segmentation analysis was performed using FMRIB's Integrated Registration and Segmentation Tool function of FSL. The State-Trait Anxiety Inventory and the Beck Depression Inventory were used to assess trait anxiety and depressive symptoms, respectively. A decreased volume of the left NAcc was observed in heroin-dependent patients compared to healthy controls. Depression score was negatively correlated with left NAcc volume in patients, whereas a positive correlation was found between the daily opioid dose and the volume of the right amygdala. This study indicates that there might be structural differences of the NAcc in heroin-dependent patients in comparison with healthy controls. Furthermore, correlations of subcortical structures with negative emotions and opioid doses might be of future relevance for the investigation of heroin addiction.

  19. A thalamic input to the nucleus accumbens mediates opiate dependence

    PubMed Central

    Zhu, Yingjie; Wienecke, Carl F.R.; Nachtrab, Gregory; Chen, Xiaoke

    2016-01-01

    Chronic opiate use induces opiate dependence, which is characterized by extremely unpleasant physical and emotional feelings after drug use is terminated. Both rewarding effects of drug and the desire to avoid withdrawal symptoms motivate continued drug use1-3, and the nucleus accumbens (NAc) is important for orchestrating both processes4,5. While multiple inputs to the NAc regulate reward6-9, little is known about the NAc circuitry underlying withdrawal. Here we identify the paraventricular nucleus of the thalamus (PVT) as a prominent input to the NAc mediating the expression of opiate withdrawal induced physical signs and aversive memory. Activity in the PVT to NAc pathway is necessary and sufficient to mediate behavioral aversion. Selectively silencing this pathway abolishes aversive symptoms in two different mouse models of opiate withdrawal. Chronic morphine exposure selectively potentiates excitatory transmission between the PVT and D2-receptor-expressing medium spiny neurons (D2-MSNs) via synaptic insertion of GluA2-lacking AMPA receptors. Notably, in vivo optogenetic depotentiation restores normal transmission at PVT→D2-MSNs synapses and robustly suppresses morphine withdrawal symptoms. These results link morphine-evoked pathway- and cell type-specific plasticity in the PVT→NAc circuit to opiate dependence, and suggest that reprogramming this circuit holds promise for treating opiate addiction. PMID:26840481

  20. Oxytocin excites nucleus accumbens shell neurons in vivo.

    PubMed

    Moaddab, Mahsa; Hyland, Brian I; Brown, Colin H

    2015-09-01

    Oxytocin modulates reward-related behaviors. The nucleus accumbens shell (NAcSh) is a major relay in the brain reward pathway and expresses oxytocin receptors, but the effects of oxytocin on the activity of NAcSh neurons in vivo are unknown. Hence, we used in vivo extracellular recording to show that intracerebroventricular (ICV) oxytocin administration (0.2μg) robustly increased medial NAcSh neuron mean firing rate; this increase was almost exclusively evident in slow-firing neurons and was not associated with any change in firing pattern. To determine whether oxytocin excitation of medial NAcSh neurons is modulated by drugs that impact the brain reward pathway, we next tested the effects of ICV oxytocin following repeated morphine treatment. In morphine-treated rats, ICV oxytocin did not affect the mean firing rate of medial NAcSh neurons. Taken together, these results show that oxytocin excites medial NAcSh neurons but does not do so after repeated morphine. This could be an important factor in oxytocin modulation of reward-related behaviors, such as drug addiction.

  1. Regulation of nucleus accumbens activity by the hypothalamic neuropeptide MCH

    PubMed Central

    Sears, Robert M.; Liu, Rong-Jian; Narayanan, Nandakumar S.; Sharf, Ruth; Yeckel, Mark F.; Laubach, Mark; Aghajanian, George K.; DiLeone, Ralph J.

    2010-01-01

    The lateral hypothalamus (LH) and the nucleus accumbens shell (AcbSh) are brain regions important for food intake. The AcbSh contains high levels of receptor for melanin-concentrating hormone (MCH), a lateral hypothalamic peptide critical for feeding and metabolism. MCH receptor (MCHR1) activation in the AcbSh increases food intake while AcbSh MCHR1 blockade reduces feeding. Here biochemical and cellular mechanisms of MCH action in the rodent AcbSh are described. A reduction of phosphorylation of GluR1 at Serine 845 (pSer845) is shown to occur after both pharmacological and genetic manipulations of MCHR1 activity. These changes depend upon signaling through Gi/o, and result in decreased surface expression of GluR1-containing AMPA receptors (AMPARs). Electrophysiological analysis of medium spiny neurons (MSNs) in the AcbSh revealed decreased amplitude of AMPAR-mediated synaptic events (mEPSC) with MCH treatment. In addition, MCH suppressed action potential firing MSNs through K+ channel activation. Finally, in vivo recordings confirmed that MCH reduces neuronal cell firing in the AcbSh in freely moving animals. The ability of MCH to reduce cell firing in the AcbSh is consistent with a general model from other pharmacological and electrophysiological studies whereby reduced AcbSh neuronal firing leads to food intake. The current work integrates the hypothalamus into this model, providing biochemical and cellular mechanisms whereby metabolic and limbic signals converge to regulate food intake. PMID:20554878

  2. Sexual activity increases dopamine transmission in the nucleus accumbens and striatum of female rats.

    PubMed

    Pfaus, J G; Damsma, G; Wenkstern, D; Fibiger, H C

    1995-09-25

    In vivo microdialysis was used to monitor extracellular concentrations of dopamine (DA), and its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the nucleus accumbens and dorsal striatum of sexually active female rats during tests of locomotor activity, exposure to a novel chamber, exposure to sex odors, the presentation of a sexually active male rat, and copulation. DA increased slightly but significantly in the nucleus accumbens when a sexually active male was placed behind a wire-mesh screen, and further during copulation. DA also increased significantly in the dorsal striatum during copulation; however, the magnitude of this effect was significantly lower than that observed in the nucleus accumbens. The metabolites DOPAC and HVA generally followed DA with a delay, and increased significantly during copulation in both regions. In contrast, forced locomotion on a rotating drum, exposure to a novel testing chamber, and exposure to sex odors did not increase DA significantly in either region, although forced locomotion increased DOPAC significantly in both regions, and HVA significantly in the nucleus accumbens. The magnitude of DA release in the nucleus accumbens was significantly greater during copulation than running, whereas no significant difference was detected for striatal DA release between these two behavioral conditions. These results indicate that novelty or locomotor activity alone do not account for the increase in DA observed in the nucleus accumbens of female rats during copulation, and suggest that DA transmission in the nucleus accumbens is associated with anticipatory and consummatory aspects of sexual activity, as it is in male rats. In the dorsal striatum, however, DA release during copulation may reflect an increase in locomotor activity associated with active pacing of the male.

  3. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis.

    PubMed

    Scofield, M D; Heinsbroek, J A; Gipson, C D; Kupchik, Y M; Spencer, S; Smith, A C W; Roberts-Wolfe, D; Kalivas, P W

    2016-07-01

    The nucleus accumbens is a major input structure of the basal ganglia and integrates information from cortical and limbic structures to mediate goal-directed behaviors. Chronic exposure to several classes of drugs of abuse disrupts plasticity in this region, allowing drug-associated cues to engender a pathologic motivation for drug seeking. A number of alterations in glutamatergic transmission occur within the nucleus accumbens after withdrawal from chronic drug exposure. These drug-induced neuroadaptations serve as the molecular basis for relapse vulnerability. In this review, we focus on the role that glutamate signal transduction in the nucleus accumbens plays in addiction-related behaviors. First, we explore the nucleus accumbens, including the cell types and neuronal populations present as well as afferent and efferent connections. Next we discuss rodent models of addiction and assess the viability of these models for testing candidate pharmacotherapies for the prevention of relapse. Then we provide a review of the literature describing how synaptic plasticity in the accumbens is altered after exposure to drugs of abuse and withdrawal and also how pharmacological manipulation of glutamate systems in the accumbens can inhibit drug seeking in the laboratory setting. Finally, we examine results from clinical trials in which pharmacotherapies designed to manipulate glutamate systems have been effective in treating relapse in human patients. Further elucidation of how drugs of abuse alter glutamatergic plasticity within the accumbens will be necessary for the development of new therapeutics for the treatment of addiction across all classes of addictive substances. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Pavlovian-to-instrumental transfer effects in the nucleus accumbens relate to relapse in alcohol dependence.

    PubMed

    Garbusow, Maria; Schad, Daniel J; Sebold, Miriam; Friedel, Eva; Bernhardt, Nadine; Koch, Stefan P; Steinacher, Bruno; Kathmann, Norbert; Geurts, Dirk E M; Sommer, Christian; Müller, Dirk K; Nebe, Stephan; Paul, Sören; Wittchen, Hans-Ulrich; Zimmermann, Ulrich S; Walter, Henrik; Smolka, Michael N; Sterzer, Philipp; Rapp, Michael A; Huys, Quentin J M; Schlagenhauf, Florian; Heinz, Andreas

    2016-05-01

    In detoxified alcohol-dependent patients, alcohol-related stimuli can promote relapse. However, to date, the mechanisms by which contextual stimuli promote relapse have not been elucidated in detail. One hypothesis is that such contextual stimuli directly stimulate the motivation to drink via associated brain regions like the ventral striatum and thus promote alcohol seeking, intake and relapse. Pavlovian-to-Instrumental-Transfer (PIT) may be one of those behavioral phenomena contributing to relapse, capturing how Pavlovian conditioned (contextual) cues determine instrumental behavior (e.g. alcohol seeking and intake). We used a PIT paradigm during functional magnetic resonance imaging to examine the effects of classically conditioned Pavlovian stimuli on instrumental choices in n = 31 detoxified patients diagnosed with alcohol dependence and n = 24 healthy controls matched for age and gender. Patients were followed up over a period of 3 months. We observed that (1) there was a significant behavioral PIT effect for all participants, which was significantly more pronounced in alcohol-dependent patients; (2) PIT was significantly associated with blood oxygen level-dependent (BOLD) signals in the nucleus accumbens (NAcc) in subsequent relapsers only; and (3) PIT-related NAcc activation was associated with, and predictive of, critical outcomes (amount of alcohol intake and relapse during a 3 months follow-up period) in alcohol-dependent patients. These observations show for the first time that PIT-related BOLD signals, as a measure of the influence of Pavlovian cues on instrumental behavior, predict alcohol intake and relapse in alcohol dependence. © 2015 Society for the Study of Addiction.

  5. Neural Basis of Benzodiazepine Reward: Requirement for α2 Containing GABAA Receptors in the Nucleus Accumbens

    PubMed Central

    Engin, Elif; Bakhurin, Konstantin I; Smith, Kiersten S; Hines, Rochelle M; Reynolds, Lauren M; Tang, Wannan; Sprengel, Rolf; Moss, Stephen J; Rudolph, Uwe

    2014-01-01

    Despite long-standing concerns regarding the abuse liability of benzodiazepines, the mechanisms underlying properties of benzodiazepines that may be relevant to abuse are still poorly understood. Earlier studies showed that compounds selective for α1-containing GABAA receptors (α1GABAARs) are abused by humans and self-administered by animals, and that these receptors may underlie a preference for benzodiazepines as well as neuroplastic changes observed in the ventral tegmental area following benzodiazepine administration. There is some evidence, however, that even L-838, 417, a compound with antagonistic properties at α1GABAARs and agonistic properties at the other three benzodiazepine-sensitive GABAA receptor subtypes, is self-administered, and that the α2GABAARs may have a role in benzodiazepine-induced reward enhancement. Using a two-bottle choice drinking paradigm to evaluate midazolam preference and an intracranial self-stimulation (ICSS) paradigm to evaluate the impact of midazolam on reward enhancement, we demonstrated that mice carrying a histidine-to-arginine point mutation in the α2 subunit which renders it insensitive to benzodiazepines (α2(H101R) mice) did not prefer midazolam and did not show midazolam-induced reward enhancement in ICSS, in contrast to wild-type controls, suggesting that α2GABAARs are necessary for the reward enhancing effects and preference for oral benzodiazepines. Through a viral-mediated knockdown of α2GABAARs in the nucleus accumbens (NAc), we demonstrated that α2 in the NAc is necessary for the preference for midazolam. Findings imply that α2GABAARs in the NAc are involved in at least some reward-related properties of benzodiazepines, which might partially underlie repeated drug-taking behavior. PMID:24553732

  6. Antipsychotic treatment leading to dopamine supersensitivity persistently alters nucleus accumbens function.

    PubMed

    El Hage, Cynthia; Bédard, Anne-Marie; Samaha, Anne-Noël

    2015-12-01

    Chronic exposure to some antipsychotic medications can induce supersensitivity to dopamine receptor stimulation. This is linked to a worsening of clinical outcome and to antipsychotic treatment failure. Here we investigated the role of striatal subregions [nucleus accumbens (NAc) and caudate-putamen (CPu)] in the expression of antipsychotic-induced dopamine supersensitivity. We treated rats with haloperidol (HAL) or olanzapine (OLZ), using regimens that achieve clinically relevant kinetics of striatal D2 receptor occupancy. Under these conditions, HAL produces dopamine supersensitivity whereas OLZ does not. We then assessed behaviors evoked by the dopamine agonist amphetamine (AMPH). We either injected AMPH into the striatum or inhibited striatal function with microinjections of GABA receptor agonists prior to injecting AMPH systemically. HAL-treated rats were dopamine supersensitive, as indicated by sensitization to systemic AMPH-induced potentiation of both locomotor activity and operant responding for a conditioned reward (CR). Intra-CPu injections of AMPH had no effect on these behaviors, in any group. Intra-NAc injections of AMPH enhanced operant responding for CR in OLZ-treated and control rats, but not in HAL-treated rats. In HAL-treated rats, inhibition of the NAc also failed to disrupt systemic AMPH-induced potentiation of operant responding for CR. Furthermore, while intra-NAc AMPH enhanced locomotion in both HAL-treated and control animals, inhibition of the NAc disrupted systemic AMPH-induced locomotion only in control rats. Thus, antipsychotic-induced dopamine supersensitivity persistently disrupts NAc function, such that some behaviors that normally depend upon NAc dopamine no longer do so. This has implications for understanding dysfunctions in dopamine-mediated behaviors in patients undergoing chronic antipsychotic treatment.

  7. Receptor-Specific Modulation of Risk-Based Decision Making by Nucleus Accumbens Dopamine

    PubMed Central

    Stopper, Colin M; Khayambashi, Shahin; Floresco, Stan B

    2013-01-01

    The nucleus accumbens (NAc) serves as an integral node within cortico-limbic circuitry that regulates various forms of cost–benefit decision making. The dopamine (DA) system has also been implicated in enabling organisms to overcome a variety of costs to obtain more valuable rewards. However, it remains unclear how DA activity within the NAc may regulate decision making involving reward uncertainty. This study investigated the contribution of different DA receptor subtypes in the NAc to risk-based decision making, assessed with a probabilistic discounting task. In well-trained rats, D1 receptor blockade with SCH 23 390 decreased preference for larger, uncertain rewards, which was associated with enhanced negative-feedback sensitivity (ie, an increased tendency to select a smaller/certain option after an unrewarded risky choice). Treatment with a D1 agonist (SKF 81 297) optimized decision making, increasing choice of the risky option when reward probability was high, and decreasing preference under low probability conditions. In stark contrast, neither blockade of NAc D2 receptors with eticlopride, nor stimulation of these receptors with quinpirole or bromocriptine influenced risky choice. In comparison, infusion of the D3-preferring agonist PD 128 907 decreased reward sensitivity and risky choice. Collectively, these results show that mesoaccumbens DA refines risk–reward decision biases via dissociable mechanisms recruiting D1 and D3, but not D2 receptors. D1 receptor activity mitigates the effect of reward omissions on subsequent choices to promote selection of reward options that may have greater long-term utility, whereas excessive D3 receptor activity blunts the impact that larger/uncertain rewards have in promoting riskier choices. PMID:23303055

  8. Nucleus accumbens D2R cells signal prior outcomes and control risky decision-making.

    PubMed

    Zalocusky, Kelly A; Ramakrishnan, Charu; Lerner, Talia N; Davidson, Thomas J; Knutson, Brian; Deisseroth, Karl

    2016-03-31

    A marked bias towards risk aversion has been observed in nearly every species tested. A minority of individuals, however, instead seem to prefer risk (repeatedly choosing uncertain large rewards over certain but smaller rewards), and even risk-averse individuals sometimes opt for riskier alternatives. It is not known how neural activity underlies such important shifts in decision-making--either as a stable trait across individuals or at the level of variability within individuals. Here we describe a model of risk-preference in rats, in which stable individual differences, trial-by-trial choices, and responses to pharmacological agents all parallel human behaviour. By combining new genetic targeting strategies with optical recording of neural activity during behaviour in this model, we identify relevant temporally specific signals from a genetically and anatomically defined population of neurons. This activity occurred within dopamine receptor type-2 (D2R)-expressing cells in the nucleus accumbens (NAc), signalled unfavourable outcomes from the recent past at a time appropriate for influencing subsequent decisions, and also predicted subsequent choices made. Having uncovered this naturally occurring neural correlate of risk selection, we then mimicked the temporally specific signal with optogenetic control during decision-making and demonstrated its causal effect in driving risk-preference. Specifically, risk-preferring rats could be instantaneously converted to risk-averse rats with precisely timed phasic stimulation of NAc D2R cells. These findings suggest that individual differences in risk-preference, as well as real-time risky decision-making, can be largely explained by the encoding in D2R-expressing NAc cells of prior unfavourable outcomes during decision-making.

  9. Serotonergic hallucinogens differentially modify gamma and high frequency oscillations in the rat nucleus accumbens.

    PubMed

    Goda, Sailaja A; Piasecka, Joanna; Olszewski, Maciej; Kasicki, Stefan; Hunt, Mark J

    2013-07-01

    The nucleus accumbens (NAc) is a site critical for the actions of many drugs of abuse. Psychoactive compounds, such as N-methyl-D-aspartate receptor (NMDAR) antagonists, modify gamma (40-90) and high frequency oscillations (HFO, 130-180 Hz) in local field potentials (LFPs) recorded in the NAc. Lysergic acid diethylamide (LSD) and 2,5-dimethoxy-4-iodoamphetamine (DOI) are serotonergic hallucinogens and activation of 5HT2A receptors likely underlies their hallucinogenic effects. Whether these compounds can also modulate LFP oscillations in the NAc is unclear. This study aims to examine the effect of serotonergic hallucinogens on gamma and HFO recorded in the NAc and to test whether 5HT2A receptors mediate the effects observed. LFPs were recorded from the NAc of freely moving rats. Drugs were administered intraperitoneally. LSD (0.03-0.3 mg/kg) and DOI (0.5-2.0 mg/kg) increased the power and reduced the frequency of HFO. In contrast, the hallucinogens produced a robust reduction in the power of low (40-60 Hz), but not high gamma oscillations (70-90 Hz). MDL 11939 (1.0 mg/kg), a 5HT2A receptor antagonist, fully reversed the changes induced by DOI on HFO but only partially for the low gamma band. Equivalent increases in HFO power were observed after TCB-2 (5HT2A receptor agonist, 0.1-1.5 mg/kg), but not CP 809101 (5H2C receptor agonist, 0.1-3 mg/kg). Notably, hallucinogen-induced increases in HFO power were smaller than those produced by ketamine (25 mg/kg). Serotonergic hallucinogen-induced changes in HFO and gamma are mediated, at least in part, by stimulation of 5HT2A receptors. Comparison of the oscillatory changes produced by serotonergic hallucinogens and NMDAR antagonists are also discussed.

  10. The Retrograde Connections and Anatomical Segregation of the Göttingen Minipig Nucleus Accumbens

    PubMed Central

    Meidahl, Anders C.; Orlowski, Dariusz; Sørensen, Jens C. H.; Bjarkam, Carsten R.

    2016-01-01

    Nucleus accumbens (NAcc) has been implicated in several psychiatric disorders such as treatment resistant depression (TRD), and obsessive-compulsive disorder (OCD), and has been an ongoing experimental target for deep brain stimulation (DBS) in both rats and humans. In order to translate basic scientific results from rodents to the human setting a large animal model is needed to thoroughly study the effect of such therapeutic interventions. The aim of the study was, accordingly, to describe the basic anatomy of the Göttingen minipig NAcc and its retrograde connections. Tracing was carried out by MRI-guided stereotactic unilateral fluorogold injections in the NAcc of Göttingen minipigs. After 2 weeks the brains were sectioned and subsequently stained with Nissl-, autometallographic (AMG) development of myelin, and DARPP-32 and calbindin immunohistochemistry. The minipig NAcc was divided in a central core and an outer medial, ventral and lateral shell. We confirmed the NAcc to be a large and well-segregated structure toward its medial, ventral and lateral borders. The fluorogold tracing revealed inputs to NAcc from the medial parts of the prefrontal cortex, BA 25 (subgenual cortex), insula bilaterally, amygdala, the CA1-region of hippocampus, entorhinal cortex, subiculum, paraventricular and anterior parts of thalamus, dorsomedial parts of hypothalamus, substantia nigra, ventral tegmental area (VTA), the retrorubral field and the dorsal and median raphe nuclei. In conclusion the Göttingen minipig NAcc is a large ventral striatal structure that can be divided into a core and shell with prominent afferent connections from several subrhinal and infra-/prelimbic brain areas. PMID:27994542

  11. Exogenous and endogenous cannabinoids control synaptic transmission in mice nucleus accumbens.

    PubMed

    Robbe, David; Alonso, Gerard; Manzoni, Oliver J

    2003-11-01

    Addictive drugs are thought to alter normal brain function and cause the remodeling of synaptic functions in areas important to memory and reward. Excitatory transmission to the nucleus accumbens (NAc) is involved in the actions of most drugs of abuse, including cannabis. We have explored the functions of the endocannabinoid system at the prefrontal cortex-NAc synapses. Immunocytochemistry showed cannabinoid receptor (CB1) expression on axonal terminals making contacts with NAc neurons. In NAc slices, synthetic cannabinoids inhibit spontaneous and evoked glutamate-mediated transmission through presynaptic activation of presynaptic K+ channels and GABA-mediated transmission most likely via a direct presynaptic action on the vesicular release machinery. How does synaptic activity lead to the production of endogenous cannabinoids (eCBs) in the NAc? More generally, do eCBs participate in long-term synaptic plasticity in the brain? We found that tetanic stimulation (mimicking naturally occurring frequencies) of prelimbic glutamatergic afferents induced a presynaptic LTD dependent on eCB and CB1 receptors (eCB-LTD). Induction of eCB-LTD required postsynaptic activation of mGlu5 receptors and a rise in postsynaptic Ca2+ from ryanodine-sensitive intracellular Ca2+ stores. This retrograde signaling cascade involved postsynaptic eCB release and activation of presynaptic CB1 receptors. In the NAc, eCB-LTD might be part of a negative feedback loop, reducing glutamatergic synaptic strength during sustained cortical activity. The fact that this new form of LTD was occluded by an exogenous cannabinoid suggested that cannabis derivatives, such as marijuana, may alter normal eCB-mediated synaptic plasticity. These data suggest a major role of the eCB system in long-term synaptic plasticity and give insights into how cannabis derivatives, such as marijuana, alter normal eCB functions in the brain reward system.

  12. Long-term ethanol self-administration induces ΔFosB in male and female adolescent, but not in adult, Wistar rats.

    PubMed

    Wille-Bille, Aranza; de Olmos, Soledad; Marengo, Leonardo; Chiner, Florencia; Pautassi, Ricardo Marcos

    2017-03-06

    Early-onset ethanol consumption predicts later development of alcohol use disorders. Age-related differences in reactivity to ethanol's effects may underlie this effect. Adolescent rats are more sensitive and less sensitive than adults to the appetitive and aversive behavioral effects of ethanol, respectively, and more sensitive to the neurotoxic effects of experimenter-administered binge doses of ethanol. However, less is known about age-related differences in the neural consequences of self-administered ethanol. ΔFosB is a transcription factor that accumulates after chronic drug exposure and serves as a molecular marker of neural plasticity associated with the transition to addiction. We analyzed the impact of chronic (18 two-bottle choice intake sessions spread across 42days, session length: 18h) ethanol [or only vehicle (control group)] self-administration during adolescence or adulthood on the induction of ΔFosB in several brain areas, anxiety-like behavior, and ethanol-induced locomotor activity and conditioned place preference (CPP) in Wistar rats. Adolescent rats exhibited a progressive escalation of ethanol intake and preference, whereas adult rats exhibited a stable pattern of ingestion. Few behavioral differences in the open field or light-dark test were observed after the intake test. Furthermore, ethanol self-administration did not promote the expression of ethanol-induced CPP. There were, however, large age-related differences in the neural consequences of ethanol drinking: a significantly greater number of ethanol-induced ΔFosB-positive cells was found in adolescents vs. adults in the prelimbic cortex, dorsolateral striatum, nucleus accumbens core and shell, and central amygdala nucleus capsular and basolateral amygdala, with sex-related differences found at central amygdala. This greater ethanol-induced ΔFosB induction may represent yet another age-related difference in the sensitivity to ethanol that may put adolescents at higher risk for

  13. Transcriptional changes associated with ethanol tolerance in Saccharomyces cerevisiae.

    PubMed

    Stanley, Dragana; Chambers, Paul J; Stanley, Grant A; Borneman, Anthony; Fraser, Sarah

    2010-09-01

    Saccharomyces spp. are widely used for ethanol production; however, fermentation productivity is negatively affected by the impact of ethanol accumulation on yeast metabolic rate and viability. This study used microarray and statistical two-way ANOVA analysis to compare and evaluate gene expression profiles of two previously generated ethanol-tolerant mutants, CM1 and SM1, with their parent, Saccharomyces cerevisiae W303-1A, in the presence and absence of ethanol stress. Although sharing the same parentage, the mutants were created differently: SM1 by adaptive evolution involving long-term exposure to ethanol stress and CM1 using chemical mutagenesis followed by adaptive evolution-based screening. Compared to the parent, differences in the expression levels of genes associated with a number of gene ontology categories in the mutants suggest that their improved ethanol stress response is a consequence of increased mitochondrial and NADH oxidation activities, stimulating glycolysis and other energy-yielding pathways. This leads to increased activity of energy-demanding processes associated with the production of proteins and plasma membrane components, which are necessary for acclimation to ethanol stress. It is suggested that a key function of the ethanol stress response is restoration of the NAD(+)/NADH redox balance, which increases glyceraldehyde-3-phosphate dehydrogenase activity, and higher glycolytic flux in the ethanol-stressed cell. Both mutants achieved this by a constitutive increase in carbon flux in the glycerol pathway as a means of increasing NADH oxidation.

  14. Binge ethanol withdrawal: Effects on post-withdrawal ethanol intake, glutamate-glutamine cycle and monoamine tissue content in P rat model

    PubMed Central

    Das, Sujan C.; Althobaiti, Yusuf S.; Alshehri, Fahad S.; Sari, Youssef

    2016-01-01

    Alcohol withdrawal syndrome (AWS) is a medical emergency situation which appears after abrupt cessation of ethanol intake. Decreased GABA-A function and increased glutamate function are known to exist in the AWS. However, the involvement of glutamate transporters in the context of AWS requires further investigation. In this study, we used a model of ethanol withdrawal involving abrupt cessation of binge ethanol administration (4 g/kg/gavage three times a day for three days) using male alcohol-preferring (P) rats. After 48 hours of withdrawal, P rats were re-exposed to voluntary ethanol intake. The amount of ethanol consumed was measured during post-withdrawal phase. In addition, the expression of GLT-1, GLAST and xCT were determined in both medial prefrontal cortex (mPFC) and nucleus accumbens (NAc). We also measured glutamine synthetase (GS) activity, and the tissue content of glutamate, glutamine, dopamine and serotonin in both mPFC and NAc. We found that binge ethanol withdrawal escalated post-withdrawal ethanol intake, which was associated with downregulation of GLT-1 expression in both mPFC and NAc. The expression of GLAST and xCT were unchanged in the ethanol-withdrawal (EW) group compared to control group. Tissue content of glutamate was significantly lower in both mPFC and NAc, whereas tissue content of glutamine was higher in mPFC but unchanged in NAc in the EW group compared to control group. The GS activity was unchanged in both mPFC and NAc. The tissue content of DA was significantly lower in both mPFC and NAc, whereas tissue content of serotonin was unchanged in both mPFC and NAc. These findings provide important information of the critical role of GLT-1 in context of AWS. PMID:26821293

  15. Binge ethanol withdrawal: Effects on post-withdrawal ethanol intake, glutamate-glutamine cycle and monoamine tissue content in P rat model.

    PubMed

    Das, Sujan C; Althobaiti, Yusuf S; Alshehri, Fahad S; Sari, Youssef

    2016-04-15

    Alcohol withdrawal syndrome (AWS) is a medical emergency situation which appears after abrupt cessation of ethanol intake. Decreased GABA-A function and increased glutamate function are known to exist in the AWS. However, the involvement of glutamate transporters in the context of AWS requires further investigation. In this study, we used a model of ethanol withdrawal involving abrupt cessation of binge ethanol administration (4 g/kg/gavage three times a day for three days) using male alcohol-preferring (P) rats. After 48 h of withdrawal, P rats were re-exposed to voluntary ethanol intake. The amount of ethanol consumed was measured during post-withdrawal phase. In addition, the expression of GLT-1, GLAST and xCT were determined in both medial prefrontal cortex (mPFC) and nucleus accumbens (NAc). We also measured glutamine synthetase (GS) activity, and the tissue content of glutamate, glutamine, dopamine and serotonin in both mPFC and NAc. We found that binge ethanol withdrawal escalated post-withdrawal ethanol intake, which was associated with downregulation of GLT-1 expression in both mPFC and NAc. The expression of GLAST and xCT were unchanged in the ethanol-withdrawal (EW) group compared to control group. Tissue content of glutamate was significantly lower in both mPFC and NAc, whereas tissue content of glutamine was higher in mPFC but unchanged in NAc in the EW group compared to control group. The GS activity was unchanged in both mPFC and NAc. The tissue content of DA was significantly lower in both mPFC and NAc, whereas tissue content of serotonin was unchanged in both mPFC and NAc. These findings provide important information of the critical role of GLT-1 in context of AWS.

  16. Ethanol tolerance in bacteria.

    PubMed

    Ingram, L O

    1990-01-01

    The adverse effects of ethanol on bacterial growth, viability, and metabolism are caused primarily by ethanol-induced leakage of the plasma membrane. This increase in membrane leakage is consistent with known biophysical properties of membranes and ethanolic solutions. The primary actions of ethanol result from colligative effects of the high molar concentrations rather than from specific interactions with receptors. The ethanol tolerance of growth in different microorganisms appears to result in large part from adaptive and evolutionary changes in cell membrane composition. Different cellular activities vary in their tolerance to ethanol. Therefore, it is essential that the aspect of cellular function under study be specifically defined and that comparisons of ethanol tolerance among systems share this common definition. Growth is typically one of the most sensitive cellular activities to inhibition by ethanol, followed by survival, or loss of reproductive ability. Glycolysis is the most resistant of these three activities. Since glycolysis is an exergonic process, a cell need not be able to grow or remain viable for glycolysis to occur.

  17. Cocaine-seeking is associated with PKC-dependent reduction of excitatory signaling in accumbens shell D2 dopamine receptor-expressing neurons

    PubMed Central

    Ortinski, Pavel I.; Briand, Lisa A.; Pierce, R. Christopher; Schmidt, Heath D.

    2015-01-01

    Stimulation of D1-like dopamine receptors (D1DRs) or D2-like dopamine receptors (D2DRs) in the nucleus accumbens (NAc) shell reinstates cocaine seeking in rats, an animal model of relapse. D2DRs and D1DRs activate protein kinase C (PKC) and recent studies indicate that activation of PKC in the NAc plays an important role in the reinstatement of drug seeking induced by a systemic cocaine priming injection. In the present study, pharmacological inhibition of PKC in the NAc shell attenuated cocaine seeking induced by intra-accumbens shell microinjection of a D2DR agonist, but not a D1DR agonist. D1DRs and D2DRs are primarily expressed on different accumbens medium spiny (MSN) neurons. Neuronal signaling and activity were assessed in these two populations of NAc neurons with transgenic mice expressing fluorescent labels under the control of D1DR and D2DR promoters. Following the extinction of cocaine self-administration, bath application of a PKC inhibitor produced similar effects on single evoked excitatory and inhibitory post-synaptic currents in D1DR- and D2DR-positive MSNs in the NAc shell. However, inhibition of PKC preferentially improved the ability of excitatory, but not inhibitory, synapses to sustain responding to brief train of stimuli specifically in D2DR-positive MSNs. This effect did not appear to involve modulation of presynaptic release mechanisms. Taken together, these findings indicate that the reinstatement of cocaine seeking is at least partially due to D2DR-dependent increases in PKC signaling in the NAc shell, which reduce excitatory synaptic efficacy in D2DR-expressing MSNs. PMID:25596492

  18. Cocaine-seeking is associated with PKC-dependent reduction of excitatory signaling in accumbens shell D2 dopamine receptor-expressing neurons.

    PubMed

    Ortinski, Pavel I; Briand, Lisa A; Pierce, R Christopher; Schmidt, Heath D

    2015-05-01

    Stimulation of D1-like dopamine receptors (D1DRs) or D2-like dopamine receptors (D2DRs) in the nucleus accumbens (NAc) shell reinstates cocaine seeking in rats, an animal model of relapse. D2DRs and D1DRs activate protein kinase C (PKC) and recent studies indicate that activation of PKC in the NAc plays an important role in the reinstatement of drug seeking induced by a systemic cocaine priming injection. In the present study, pharmacological inhibition of PKC in the NAc shell attenuated cocaine seeking induced by intra-accumbens shell microinjection of a D2DR agonist, but not a D1DR agonist. D1DRs and D2DRs are primarily expressed on different accumbens medium spiny (MSN) neurons. Neuronal signaling and activity were assessed in these two populations of NAc neurons with transgenic mice expressing fluorescent labels under the control of D1DR and D2DR promoters. Following the extinction of cocaine self-administration, bath application of a PKC inhibitor produced similar effects on single evoked excitatory and inhibitory post-synaptic currents in D1DR- and D2DR-positive MSNs in the NAc shell. However, inhibition of PKC preferentially improved the ability of excitatory, but not inhibitory, synapses to sustain responding to brief train of stimuli specifically in D2DR-positive MSNs. This effect did not appear to involve modulation of presynaptic release mechanisms. Taken together, these findings indicate that the reinstatement of cocaine seeking is at least partially due to D2DR-dependent increases in PKC signaling in the NAc shell, which reduce excitatory synaptic efficacy in D2DR-expressing MSNs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Observational Learning in Mice Can Be Prevented by Medial Prefrontal Cortex Stimulation and Enhanced by Nucleus Accumbens Stimulation

    ERIC Educational Resources Information Center

    Jurado-Parras, M. Teresa; Gruart, Agnes; Delgado-Garcia, Jose M.

    2012-01-01

    The neural structures involved in ongoing appetitive and/or observational learning behaviors remain largely unknown. Operant conditioning and observational learning were evoked and recorded in a modified Skinner box provided with an on-line video recording system. Mice improved their acquisition of a simple operant conditioning task by…

  20. Observational Learning in Mice Can Be Prevented by Medial Prefrontal Cortex Stimulation and Enhanced by Nucleus Accumbens Stimulation

    ERIC Educational Resources Information Center

    Jurado-Parras, M. Teresa; Gruart, Agnes; Delgado-Garcia, Jose M.

    2012-01-01

    The neural structures involved in ongoing appetitive and/or observational learning behaviors remain largely unknown. Operant conditioning and observational learning were evoked and recorded in a modified Skinner box provided with an on-line video recording system. Mice improved their acquisition of a simple operant conditioning task by…

  1. Genetic and Pharmacologic Manipulation of TLR4 Has Minimal Impact on Ethanol Consumption in Rodents.

    PubMed

    Harris, R Adron; Bajo, Michal; Bell, Richard L; Blednov, Yuri A; Varodayan, Florence P; Truitt, Jay M; de Guglielmo, Giordano; Lasek, Amy W; Logrip, Marian L; Vendruscolo, Leandro F; Roberts, Amanda J; Roberts, Edward; George, Olivier; Mayfield, Jody; Billiar, Timothy R; Hackam, David J; Mayfield, R Dayne; Koob, George F; Roberto, Marisa; Homanics, Gregg E

    2017-02-01

    Toll-like receptor 4 (TLR4) is a critical component of innate immune signaling and has been implicated in alcohol responses in preclinical and clinical models. Members of the Integrative Neuroscience Initiative on Alcoholism (INIA-Neuroimmune) consortium tested the hypothesis that TLR4 mediates excessive ethanol drinking using the following models: (1) Tlr4 knock-out (KO) rats, (2) selective knockdown of Tlr4 mRNA in mouse nucleus accumbens (NAc), and (3) injection of the TLR4 antagonist (+)-naloxone in mice. Lipopolysaccharide (LPS) decreased food/water intake and body weight in ethanol-naive and ethanol-trained wild-type (WT), but not Tlr4 KO rats. There were no consistent genotypic differences in two-bottle choice chronic ethanol intake or operant self-administration in rats before or after dependence. In mice, (+)-naloxone did not decrease drinking-in-the-dark and only modestly inhibited dependence-driven consumption at the highest dose. Tlr4 knockdown in mouse NAc did not decrease drinking in the two-bottle choice continuous or intermittent access tests. However, the latency to ethanol-induced loss of righting reflex increased and the duration decreased in KO versus WT rats. In rat central amygdala neurons, deletion of Tlr4 altered GABAA receptor function, but not GABA release. Although there were no genotype differences in acute ethanol effects before or after chronic intermittent ethanol exposure, genotype differences were observed after LPS exposure. Using different species and sexes, different methods to inhibit TLR4 signaling, and different ethanol consumption tests, our comprehensive studies indicate that TLR4 may play a role in ethanol-induced sedation and GABAA receptor function, but does not regulate excessive drinking directly and would not be an effective therapeutic target.

  2. Acamprosate-responsive brain sites for suppression of ethanol intake and preference

    PubMed Central

    Brager, Allison; Prosser, Rebecca A.

    2011-01-01

    Acamprosate suppresses alcohol intake and craving in recovering alcoholics; however, the central sites of its action are unclear. To approach this question, brain regions responsive to acamprosate were mapped using acamprosate microimplants targeted to brain reward and circadian areas implicated in alcohol dependence. mPer2 mutant mice with nonfunctional mPer2, a circadian clock gene that gates endogenous timekeeping, were included, owing to their high levels of ethanol intake and preference. Male wild-type (WT) and mPer2 mutant mice received free-choice (15%) ethanol/water for 3 wk. The ethanol was withdrawn for 3 wk and then reintroduced to facilitate relapse. Four days before