Science.gov

Sample records for accumulate extremely high

  1. Nitrogen Accumulation and Partitioning in High Arctic Tundra from Extreme Atmospheric N Deposition Events

    NASA Astrophysics Data System (ADS)

    Phoenix, G. K.; Osborn, A.; Blaud, A.; Press, M. C.; Choudhary, S.

    2013-12-01

    Arctic ecosystems are threatened by pollution from extreme atmospheric nitrogen (N) deposition events. These events occur from the long-range transport of reactive N from pollution sources at lower latitudes and can deposit up to 80% of the annual N deposition in just a few days. To date, the fate and impacts of these extreme pollutant events has remained unknown. Using a field simulation study, we undertook the first assessment of the fate of acutely deposited N on arctic tundra. Extreme N deposition events were simulated on field plots at Ny-Ålesund, Svalbard (79oN) at rates of 0, 0.04, 0.4 and 1.2 g N m-2 yr-1 applied as NH4NO3 solution over 4 days, with 15N tracers used in the second year to quantify the fate of the deposited N in the plant, soil, microbial and leachate pools. Separate applications of 15NO3- and 15NH4+ were also made to determine the importance of N form in the fate of N. Recovery of the 15N tracer at the end of the first growing season approached 100% of the 15N applied irrespective of treatment level, demonstrating the considerable capacity of High Arctic tundra to capture pollutant N from extreme deposition events. Most incorporation of the 15N was found in bryophytes, followed by the dominant vascular plant (Salix polaris) and the microbial biomass of the soil organic layer. Total recovery remained high in the second growing season (average of 90%), indicating highly conservative N retention. Between the two N forms, recovery of 15NO3- and 15NH4+ were equal in the non-vascular plants, whereas in the vascular plants (particularly Salix polaris) recovery of 15NO3- was four times higher than of 15NH4+. Overall, these findings show that High Arctic tundra has considerable capacity to capture and retain the pollutant N deposited in acute extreme deposition events. Given they can represent much of the annual N deposition, extreme deposition events may be more important than increased chronic N deposition as a pollution source. Furthermore

  2. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events.

    PubMed

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A Mark; Press, Malcolm C; Phoenix, Gareth K

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem (15)N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g Nm(-2)yr(-1), applied as (15)NH4(15)NO3 in Svalbard (79(°)N), during the summer. Separate applications of (15)NO3(-) and (15)NH4(+) were also made to determine the importance of N form in their retention. More than 95% of the total (15)N applied was recovered after one growing season (~90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants>vascular plants>organic soil>litter>mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of (15)N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater (15)NO3(-) than (15)NH4(+), suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication. PMID:26956177

  3. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events.

    PubMed

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A Mark; Press, Malcolm C; Phoenix, Gareth K

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem (15)N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g Nm(-2)yr(-1), applied as (15)NH4(15)NO3 in Svalbard (79(°)N), during the summer. Separate applications of (15)NO3(-) and (15)NH4(+) were also made to determine the importance of N form in their retention. More than 95% of the total (15)N applied was recovered after one growing season (~90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants>vascular plants>organic soil>litter>mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of (15)N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater (15)NO3(-) than (15)NH4(+), suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication.

  4. Extreme accumulation of nucleotides in simulated hydrothermal pore systems

    PubMed Central

    Baaske, Philipp; Weinert, Franz M.; Duhr, Stefan; Lemke, Kono H.; Russell, Michael J.; Braun, Dieter

    2007-01-01

    We simulate molecular transport in elongated hydrothermal pore systems influenced by a thermal gradient. We find extreme accumulation of molecules in a wide variety of plugged pores. The mechanism is able to provide highly concentrated single nucleotides, suitable for operations of an RNA world at the origin of life. It is driven solely by the thermal gradient across a pore. On the one hand, the fluid is shuttled by thermal convection along the pore, whereas on the other hand, the molecules drift across the pore, driven by thermodiffusion. As a result, millimeter-sized pores accumulate even single nucleotides more than 108-fold into micrometer-sized regions. The enhanced concentration of molecules is found in the bulk water near the closed bottom end of the pore. Because the accumulation depends exponentially on the pore length and temperature difference, it is considerably robust with respect to changes in the cleft geometry and the molecular dimensions. Whereas thin pores can concentrate only long polynucleotides, thicker pores accumulate short and long polynucleotides equally well and allow various molecular compositions. This setting also provides a temperature oscillation, shown previously to exponentially replicate DNA in the protein-assisted PCR. Our results indicate that, for life to evolve, complicated active membrane transport is not required for the initial steps. We find that interlinked mineral pores in a thermal gradient provide a compelling high-concentration starting point for the molecular evolution of life. PMID:17494767

  5. Extremely high latitude auroras

    NASA Astrophysics Data System (ADS)

    Gussenhoven, M. S.

    1982-04-01

    It is pointed out that imaging devices on the polar orbiting ISIS and Defense Meteorological Satellite Program (DMSP) satellites have greatly increased the extent of polar cap and auroral zone coverage and have prompted several studies of polar cap arcs. A description is presented of a statistical study of the occurrence conditions for arcs recorded in DMSP images at extremely high latitudes, taking into account corrected geomagnetic latitudes equal to or greater than 80 deg. The 80 deg boundary is chosen to minimize the problems associated with defining a polar cap boundary. Attention is given to the data base and categorization of extremely high latitude auroras, the relationship to magnetic activity, and the relationship to solar wind conditions. It is found that one category of extremely high latitude auroras is distinctly different from the rest. This category includes the oval auroras which expand poleward in the midnight sector.

  6. Identification of Novel Clinical Factors Associated with Hepatic Fat Accumulation in Extreme Obesity

    PubMed Central

    Gerhard, Glenn S.; Benotti, Peter; Chu, Xin; Strodel, William E.; Gabrielsen, Jon D.; Ibele, Anna; Still, Christopher D.

    2014-01-01

    Objectives. The accumulation of lipids stored as excess triglycerides in the liver (steatosis) is highly prevalent in obesity and has been associated with several clinical characteristics, but most studies have been based on relatively small sample sizes using a limited set of variables. We sought to identify clinical factors associated with liver fat accumulation in a large cohort of patients with extreme obesity. Methods. We analyzed 2929 patients undergoing intraoperative liver biopsy during a primary bariatric surgery. Univariate and multivariate regression modeling was used to identify associations with over 200 clinical variables with the presence of any fat in the liver and with moderate to severe versus mild fat accumulation. Results. A total of 19 data elements were associated with the presence of liver fat and 11 with severity of liver fat including ALT and AST, plasma lipid, glucose, and iron metabolism variables, several medications and laboratory measures, and sleep apnea. The accuracy of a multiple logistic regression model for presence of liver fat was 81% and for severity of liver fat accumulation was 77%. Conclusions. A limited set of clinical factors can be used to model hepatic fat accumulation with moderate accuracy and may provide potential mechanistic insights in the setting of extreme obesity. PMID:25610640

  7. Intracellular accumulation of trehalose and glycogen in an extreme oligotroph, Rhodococcus erythropolis N9T-4.

    PubMed

    Yano, Takanori; Funamizu, Yuhei; Yoshida, Nobuyuki

    2016-01-01

    An extreme oligotroph, Rhodococcus erythropolis N9T-4, showed intracellular accumulation of trehalose and glycogen under oligotrophic conditions. No trehalose accumulation was observed in cells grown on the rich medium. Deletion of the polyphosphate kinase genes enhanced the trehalose accumulation and decreases the intracellular glycogen contents, suggesting an oligotrophic relationship between among the metabolic pathways of trehalose, glycogen, and inorganic polyphosphate biosyntheses.

  8. Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida.

    PubMed

    Rámila, Consuelo D P; Contreras, Samuel A; Di Domenico, Camila; Molina-Montenegro, Marco A; Vega, Andrea; Handford, Michael; Bonilla, Carlos A; Pizarro, Gonzalo E

    2016-11-01

    Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500mg/L), and within its tissues (>5000mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems.

  9. Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida.

    PubMed

    Rámila, Consuelo D P; Contreras, Samuel A; Di Domenico, Camila; Molina-Montenegro, Marco A; Vega, Andrea; Handford, Michael; Bonilla, Carlos A; Pizarro, Gonzalo E

    2016-11-01

    Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500mg/L), and within its tissues (>5000mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems. PMID:27322905

  10. Extremely high energy neutrinos from cosmic strings

    SciTech Connect

    Berezinsky, Veniamin; Sabancilar, Eray; Vilenkin, Alexander

    2011-10-15

    Superstring theory and other supersymmetric theories predict the existence of relatively light, weakly interacting scalar particles, called moduli, with a universal form of coupling to matter. Such particles can be emitted from cusps of cosmic strings, where extremely large Lorentz factors are achieved momentarily. Highly boosted modulus bursts emanating from cusps subsequently decay into gluons; they generate parton cascades which in turn produce large numbers of pions and then neutrinos. Because of very large Lorentz factors, extremely high energy neutrinos, up to the Planck scale and above, are produced. For some model parameters, the predicted flux of neutrinos with energies > or approx. 10{sup 21} eV is observable by JEM-EUSO and by the future large radio detectors LOFAR and SKA.

  11. Extremely low-frequency magnetic field induces manganese accumulation in brain, kidney and liver of rats.

    PubMed

    Çelik, Mustafa Salih; Güven, Kemal; Akpolat, Veysi; Akdağ, Mehmet Zulkuf; Nazıroğlu, Mustafa; Gül-Güven, Reyhan; Çelik, M Yusuf; Erdoğan, Sait

    2015-06-01

    The aim of the present study was to determine the effects of extremely low-frequency magnetic field (ELF-MF) on accumulation of manganese (Mn) in the kidney, liver and brain of rats. A total of 40 rats were randomly divided into eight groups. Four control groups received 0, 3.75, 15 and 60 mg Mn per kg body weight orally every 2 days for 45 days, respectively. The remaining four groups received same concentrations of Mn and were also exposed to ELF-MF (1.5 mT; 50 Hz) for 4 h for 5 days a week during 45 days. Following the last exposure, kidney, liver and brain were taken from all rats and they were analyzed for Mn accumulation levels using an inductively coupled plasma-optical emission spectrometer. In result of the current study, we observed that Mn levels in brain, kidney and liver were higher in Mn groups than in control groups. Mn levels in brain, kidney and liver were also higher in Mn plus ELF-MF groups than in Mn groups. In conclusion, result of the current study showed that the ELF-MF induced manganese accumulation in kidney, liver and brain of rats.

  12. Extremely high frequency RF effects on electronics.

    SciTech Connect

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  13. Extreme Transients in the High Energy Universe

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2013-01-01

    The High Energy Universe is rich in diverse populations of objects spanning the entire cosmological (time)scale, from our own present-day Milky Way to the re-ionization epoch. Several of these are associated with extreme conditions irreproducible in laboratories on Earth. Their study thus sheds light on the behavior of matter under extreme conditions, such as super-strong magnetic fields (in excess of 10^14 G), high gravitational potentials (e.g., Super Massive Black Holes), very energetic collimated explosions resulting in relativistic jet flows (e.g., Gamma Ray Bursts, exceeding 10^53 ergs). In the last thirty years, my work has been mostly focused on two apparently different but potentially linked populations of such transients: magnetars (highly magnetized neutron stars) and Gamma Ray Bursts (strongly beamed emission from relativistic jets), two populations that constitute unique astrophysical laboratories, while also giving us the tools to probe matter conditions in the Universe to redshifts beyond z=10, when the first stars and galaxies were assembled. I did not make this journey alone I have either led or participated in several international collaborations studying these phenomena in multi-wavelength observations; solitary perfection is not sufficient anymore in the world of High Energy Astrophysics. I will describe this journey, present crucial observational breakthroughs, discuss key results and muse on the future of this field.

  14. High resolution extremity CT for biomechanics modeling

    SciTech Connect

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  15. Extremely compliant and highly stretchable patterned graphene

    NASA Astrophysics Data System (ADS)

    Zhu, Shuze; Huang, Yinjun; Li, Teng

    2014-04-01

    Graphene is intrinsically ultra-stiff in its plane. Its huge mechanical mismatch when interfacing with ultra-compliant biological tissues and elastomers (7-9 orders of magnitude difference in stiffness) poses significant challenge in its application to functional devices such as epidermal electronics and sensing prosthesis. We offer a feasible and promising solution to this significant challenge by suitably patterning graphene into a nanomesh. Through systematic coarse-grained simulations, we show that graphene nanomesh can be made extremely compliant with nearly zero stiffness up to about 20% elongation and then remain highly compliant up to about 50% elongation.

  16. Extremely compliant and highly stretchable patterned graphene

    SciTech Connect

    Zhu, Shuze; Huang, Yinjun; Li, Teng

    2014-04-28

    Graphene is intrinsically ultra-stiff in its plane. Its huge mechanical mismatch when interfacing with ultra-compliant biological tissues and elastomers (7–9 orders of magnitude difference in stiffness) poses significant challenge in its application to functional devices such as epidermal electronics and sensing prosthesis. We offer a feasible and promising solution to this significant challenge by suitably patterning graphene into a nanomesh. Through systematic coarse-grained simulations, we show that graphene nanomesh can be made extremely compliant with nearly zero stiffness up to about 20% elongation and then remain highly compliant up to about 50% elongation.

  17. Extreme consumption of Beta vulgaris var. rubra can cause metal ion accumulation in the liver.

    PubMed

    Blázovics, Anna; Sárdi, Eva; Szentmihályi, Klára; Váli, L; Takács-Hájos, Mária; Stefanovits-Bányai, Eva

    2007-09-01

    Redox homeostasis can be considered as the cumulative action of all free radical reactions and antioxidant defences in different tissues, which provide suitable conditions for life. Transition metal ions are ubiquitous in biological systems. Beta vulgaris var. rubra (table beet root) contains several bioactive agents (e.g. betain, betanin, vulgaxanthine, polyphenols, folic acid) and different metal elements (e.g. Al, B, Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Zn), which act on the various physiological routes. Therefore we studied the effect of this metal rich vegetable on element content of the liver in healthy rats. Male Wistar rats (n = 7) (200 +/- 20 g) were treated with lyophilised powder of table beet root (2 g/kg b.w.) added into the rat chow for 10 days. Five healthy animals served as control. We found significant accumulation of Cu, Fe, Mg, Mn, Zn and P in the liver, which was proved by ICP-AES measurements. We suppose that the extreme consumption of table beet root can cause several disturbances not only in cases of healthy patients but, e.g. in patients suffering with metal accumulating diseases, e.g. porphyria cutanea tarda, haemochromatosis or Wilson disease-although moderate consumption may be beneficial in iron-deficiency anaemia and inflammatory bowel diseases. PMID:17899785

  18. Mitochondrial function at extreme high altitude.

    PubMed

    Murray, Andrew J; Horscroft, James A

    2016-03-01

    At high altitude, barometric pressure falls and with it inspired P(O2), potentially compromising O2 delivery to the tissues. With sufficient acclimatisation, the erythropoietic response increases red cell mass such that arterial O2 content (C(aO2)) is restored; however arterial P(O2)(P(aO2)) remains low, and the diffusion of O2 from capillary to mitochondrion is impaired. Mitochondrial respiration and aerobic capacity are thus limited, whilst reactive oxygen species (ROS) production increases. Restoration of P(aO2) with supplementary O2 does not fully restore aerobic capacity in acclimatised individuals, possibly indicating a peripheral impairment. With prolonged exposure to extreme high altitude (>5500 m), muscle mitochondrial volume density falls, with a particular loss of the subsarcolemmal population. It is not clear whether this represents acclimatisation or deterioration, but it does appear to be regulated, with levels of the mitochondrial biogenesis factor PGC-1α falling, and shows similarities to adapted Tibetan highlanders. Qualitative changes in mitochondrial function also occur, and do so at more moderate high altitudes with shorter periods of exposure. Electron transport chain complexes are downregulated, possibly mitigating the increase in ROS production. Fatty acid oxidation capacity is decreased and there may be improvements in biochemical coupling at the mitochondrial inner membrane that enhance O2 efficiency. Creatine kinase expression falls, possibly impairing high-energy phosphate transfer from the mitochondria to myofibrils. In climbers returning from the summit of Everest, cardiac energetic reserve (phosphocreatine/ATP) falls, but skeletal muscle energetics are well preserved, possibly supporting the notion that mitochondrial remodelling is a core feature of acclimatisation to extreme high altitude. PMID:26033622

  19. A Road Map to Extreme High Vacuum

    SciTech Connect

    Myneni, Ganapati Rao

    2007-06-20

    Ultimate pressure of a well-designed vacuum system very much depends on pretreatments, processing and the procedures [1,2]. Until now much attention has been paid in minimizing hydrogen outgassing from the chamber material. However, procedures and processing deserves further scrutiny than hitherto given so far. For reducing the gas load, high sensitivity helium leak detection techniques with sensitivities better than 1× 10-12 Torr l/sec need to be used. Effects that are induced by vacuum instrumentation need to be reduced in order to obtain accurate pressure measurements. This presentation will discuss: clean assembly procedures, metal sponges for cryosorption pumping of hydrogen to extreme high vacuum, low cost surface diffusion barriers for reducing the hydrogen gas load, cascade pumping, sensitive helium leak detection techniques and the use of modified extractor and residual gas analyzers. Further, alternative back up pumping systems based on active NEG’s [3] for turbo molecular pumps will be presented.

  20. Extreme Precipitation and High-Impact Landslides

    NASA Technical Reports Server (NTRS)

    Kirschbaum, Dalia; Adler, Robert; Huffman, George; Peters-Lidard, Christa

    2012-01-01

    It is well known that extreme or prolonged rainfall is the dominant trigger of landslides; however, there remain large uncertainties in characterizing the distribution of these hazards and meteorological triggers at the global scale. Researchers have evaluated the spatiotemporal distribution of extreme rainfall and landslides at local and regional scale primarily using in situ data, yet few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This research uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from Tropical Rainfall Measuring Mission (TRMM) data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurence of precipitation and rainfall-triggered landslides globally. The GLC, available from 2007 to the present, contains information on reported rainfall-triggered landslide events around the world using online media reports, disaster databases, etc. When evaluating this database, we observed that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This research also considers the sources for this extreme rainfall, citing

  1. The Extreme and Variable High Energy Sky

    NASA Astrophysics Data System (ADS)

    A critically important region of the astrophysical spectrum is the hard X-ray/gamma-ray band, from the keV to the GeV energy range. In this band, an unusually rich range of astrophysical processes occur: this is the energy domain where fundamental changes from thermal to non-thermal sources/phenomena are expected, where the effects of absorption are drastically reduced and a clearer picture of the Universe is possible. This is also the energy range where most of the extreme astrophysical behavior is taking place, e.g. cosmic acceleration, explosions and accretion onto black holes and neutron stars; where variability is more the rule than the exception and where a number of instruments are actively working (e.g. INTEGRAL, SWIFT, Suzaku, MAXI, AGILE, Fermi and HESS). These telescopes are providing an unprecedented view of the high energy sky. Combined with data obtained at lower energies from a number of satellites and ground based telescopes we have for the first time the possibility of studying this extreme and variable sky over a very broad energy band and with unprecedented sensitivity.The workshop is aimed at bringing together scientists active across the field of high energy astrophysics in order to focus on the opportunities offered by the high energy window both from the observational and theoretical viewpoints, while a dedicated section will also be devoted to discuss the current status of planned and future missions. The meeting will consist of invited talks and contributions which are welcome as either posters or as short presentations. There will be time for open discussions throughout.We intend to cover the most extreme phenomena associated with acceleration, explosions and accretion onto galactic and extragalactic objects as well as to study variability in all types of objects and environments. In view of the extension of INTEGRAL operational lifetime, the workshop will provide a unique opportunity to prepare for extra observational possibility and to

  2. Biota-sediment accumulation and trophic transfer factors for extremely hydrophobic polychlorinated biphenyls

    SciTech Connect

    Maruya, K.A.; Lee, R.F.

    1998-12-01

    Polychlorinated biphenyls (PCBs) in fish, invertebrates, and sediment from a contaminated tidal creek system in coastal Georgia (USA) were traced to Aroclor 1268, a mixture of hepta through decachlorinated homologs used at a former chlor/alkali plant adjacent to the study site. The base 10 logarithm of the octanol/water partition coefficient (K{sub ow}) for the 15 most abundant Aroclor 1268 components in these samples ranged from 6.7 to >9. The composite mean biota-sediment accumulation factor (BSAF) for these congeners was 3.1, 0.81, and 0.28 for yearling striped mullet, spotted sea trout, and grass shrimp, respectively, species representing three trophic levels of the local food web. Individual congener BSAFs were negatively correlated with log K{sub ow} for all three species. The composite mean trophic transfer factor (TTF{sub lip}), defined as the ratio of lipid-normalized PCB concentrations in fish to grass shrimp, was higher for mullet (12) than for sea trout (2.9). Individual TTF{sub lip} values were two to three times higher for Cl{sub 7} and Cl{sub 8} homologs that were substituted at all four ortho positions, suggesting a difference in PCB retention based on chlorine substitution patterns. The relative magnitude of BSAFs and TTF{sub lip} values indicated that sediment-ingesting forage species like mullet efficiently accumulate PCBs and are an important link in the food web transfer of sediment-ingesting forage in this system. The negative linear relationships between BSAF and log K{sub ow} established in this study are among the first to be reported in the field for extremely hydrophobic PCBs.

  3. A road map to extreme high vacuum

    NASA Astrophysics Data System (ADS)

    Adderley, P.; Myneni, G.

    2008-05-01

    Ultimate pressure of a well-designed vacuum system very much depends on pretreatments, processing and procedures [1, 2]. Until now much attention has been paid to minimizing hydrogen outgassing from the vacuum chamber wall materials, however, procedures and processing deserve further scrutiny. For reducing the gas load, high sensitivity helium leak detection techniques with sensitivities better than 1×10-12 Torr l/sec should be used. Effects that are induced by vacuum instrumentation need to be reduced in order to obtain accurate pressure measurements. This paper presents the current status of the CEBAF DC photogun. This state of the art technology is driving the need for Extreme High Vacuum (XHV). We also present sensitive helium leak detection techniques with RGA's, vacuum gauge and RGA calibration procedures, metal sponges for cryosorption pumping of hydrogen to XHV, low cost surface diffusion barriers for reducing the hydrogen gas load and clean assembly procedures. Further, alternative backing pump systems based on active NEGs [3] for turbo molecular pumps are also discussed.

  4. Dehydrin accumulation and extreme low-temperature tolerance in Siberian spruce (Picea obovata).

    PubMed

    Kjellsen, Trygve Devold; Yakovlev, Igor A; Fossdal, Carl Gunnar; Strimbeck, G Richard

    2013-12-01

    To investigate the role of dehydrins (DHNs) in extreme low-temperature (LT) tolerance, we sampled needle tissue of Siberian spruce (Picea obovata Ledeb.) from trees growing in an arboretum in Trondheim, Norway from August 2006 to April 2007 and tracked changes in LT tolerance via relative electrolyte leakage. We used western blotting to estimate relative amounts of proteins binding a DHN K-segment antibody, measured relative amounts of nine transcripts for small (<25 kDa) DHNs by quantitative reverse transcription-polymerase chain reaction (PCR) using primers developed for DHN transcripts in a closely related species, Picea abies (L.) Karsten, and isolated and sequenced PCR products for five P. obovata DHNs. Three protein bands of 53, 35 and 33 kDa were detected on western blots of SDS-PAGE-separated protein extracts. The 53-kDa DHN was already present late in the growing season, but accumulated during acclimation, and levels decreased rapidly during deacclimation. The 33- and 35-kDa proteins, identified as Picg5 class DHNs by mass spectrometry, first appeared in detectable amounts late in the acclimation process and remained at detectable levels throughout the period of maximum LT tolerance. Levels of the 53-kDa DHN correlated with two LT tolerance parameters, while results for the 33- and 35-kDa proteins were equivocal due to limited sample size and variation in LT tolerance during the mid-winter period. Three additional bands of 30, 28 and 26 kDa were detected in extracts from needles collected in November 2010 using an immunity-purified antibody. Immunoblotting of two-dimensional gel electrophoresis gels loaded with proteins extracted from October and November samples corroborated the results obtained by SDS-PAGE western blots. One large spot in the 53 kDa range and two trains of spots in the same size range as the 33 and 35 kDa DHNs were detected using the K-segment antibody. Eight of the nine DHN transcripts closely tracked LT tolerance parameters, whereas

  5. Jets in AGN at extremely high redshifts

    NASA Astrophysics Data System (ADS)

    Gurvits, Leonid I.; Frey, Sándor; Paragi, Zsolt

    2015-03-01

    The jet phenomenon is a trademark of active galactic nuclei (AGN). In most general terms, the current understanding of this phenomenon explains the jet appearance by effects of relativistic plasma physics. The fundamental source of energy that feeds the plasma flow is believed to be the gravitational field of a central supermassive black hole. While the mechanism of energy transfer and a multitude of effects controlling the plasma flow are yet to be understood, major properties of jets are strikingly similar in a broad range of scales from stellar to galactic. They are supposed to be controlled by a limited number of physical parameters, such as the mass of a central black hole and its spin, magnetic field induction and accretion rate. In a very simplified sense, these parameters define the formation of a typical core-jet structure observed at radio wavelengths in the region of the innermost central tens of parsecs in AGN. These core-jet structures are studied in the radio domain by Very Long Baseline Interferometry (VLBI) with milli- and sub-milliarcsecond angular resolution. Such structures are detectable at a broad range of redshifts. If observed at a fixed wavelength, a typical core-jet AGN morphology would appear as having a steep-spectrum jet fading away with the increasing redshift while a flat-spectrum core becoming more dominant. If core-jet AGN constitute the same population of objects throughout the redshift space, the apparent ``prominence'' of jets at higher redshifts must decrease (Gurvits 1999): well pronounced jets at high z must appear less frequent than at low z.

  6. Extreme Consumption Drinking Gaming and Prepartying among High School Students

    ERIC Educational Resources Information Center

    Tomaso, Cara C.; Zamboanga, Byron L.; Haas, Amie L.; Kenney, Shannon R.; Ham, Lindsay S.; Borsari, Brian

    2016-01-01

    Drinking games and prepartying (i.e., drinking before going to a social gathering/event) have emerged as high-risk drinking behaviors in high school students. The present study examines the current prepartying behaviors of high school students who report current participation in extreme-consumption games (e.g., chugging) with those who do not.…

  7. Recent high mountain rockfalls and warm daily temperature extremes

    NASA Astrophysics Data System (ADS)

    Allen, S. K.; Huggel, C.

    2012-04-01

    Linkages between longer term warming of the climate, related changes in the cryosphere, and destabilisation of high mountain rockwalls have been documented in several studies. Although understanding is far from complete, a range of physical processes related to longer term warming are understood to have an effect on slope stability. More recently, some attention has turned to the possible influence of much shorter periods of extremely warm temperatures, as a contributing factor, or even trigger of slope failures. So far, studies have not extended beyond highlighting one or a few individual events, and no common approach to quantifying the 'extremity' of the prevailing temperatures has been used. In the current study, we integrate established practices used in the climatology community in the analyses of climate extremes, together with an inventory of ca. 20 recent rock failures (1987 - 2010) in the central European Alps, to assess temporal relationships between daily air temperature extremes and rock failure occurrence. Using data from three high elevation recording sites across Switzerland, we focus on daily maximum temperatures in the 4 weeks immediately prior to each rockfall occurrence, where an extremely warm day is defined as exceeding the 95th percentile during the climatological reference period of 1971 - 2000. The 95th percentile is calculated in a 21 day moving window, so that extreme temperatures are considered relative to the time of year, and not on an annual basis. In addition, rock failures from the Southern Alps of New Zealand are analysed, although high elevation climate data are limited from this region. Results from the European Alps show that a majority of recent slope failures have been preceded by one or more extreme, unseasonably warm days, most notably in the week immediately prior to the failure. For example, for 9 slope failures in the Valais - Mt Blanc region (based on Grand St Bernhard climate data), 6 were proceeded by extremely warm

  8. Is Extremely High Life Satisfaction during Adolescence Advantageous?

    ERIC Educational Resources Information Center

    Suldo, Shannon M.; Huebner, E. Scott

    2006-01-01

    This study examined whether extremely high life satisfaction was associated with adaptive functioning or maladaptive functioning. Six hundred ninety-eight secondary level students completed the Students' Life Satisfaction Scale [Huebner, 1991a, School Psychology International, 12, pp. 231-240], Youth Self-Report of the Child Behavior Checklist…

  9. Extreme high-head portables provide more pumping options

    SciTech Connect

    Fiscor, S.

    2006-10-15

    Three years ago, Godwin Pumps, one of the largest manufacturers of portable pumps, introduced its Extreme Duty High Lift (HL) series of pumps and more mines are finding unique applications for these pumps. The Extreme HL series is a range single-stage Dri-Prime pumps with heads up to 600 feet and flows up to 5,000 gallons per minute. The American Coal Co.'s Galatia mine, an underground longwall mine in southern Illinois, used an HL 160 to replace a multiple-staged centrifugal pump. It provided Galatia with 1,500 gpm at 465 ft. 3 photos.

  10. Automatic residue removal for high-NA extreme illumination

    NASA Astrophysics Data System (ADS)

    Moon, James; Nam, Byong-Sub; Jeong, Joo-Hong; Kong, Dong-Ho; Nam, Byung-Ho; Yim, Dong Gyu

    2007-10-01

    An epidemic for smaller node has been that, as the device architecture shrinks, lithography process requires high Numerical Aperture (NA), and extreme illumination system. This, in turn, creates many lithography problems such as low lithography process margin (Depth of Focus, Exposure Latitude), unstable Critical Dimension (CD) uniformity and restricted guideline for device design rule and so on. Especially for high NA, extreme illumination such as immersion illumination systems, above all the related problems, restricted design rule due to forbidden pitch is critical and crucial issue. This forbidden pitch is composed of numerous optical effects but majority of these forbidden pitch compose of photo resist residue and these residue must be removed to relieve some room for already tight design rule. In this study, we propose automated algorithm to remove photo resist residue due to high NA and extreme illumination condition. This algorithm automatically self assembles assist patterns based on the original design layout, therefore insuring the safety and simplicity of the generated assist pattern to the original design and removes any resist residue created by extreme illumination condition. Also we tested our automated algorithm on full chip FLASH memory device and showed the residue removal effect by using commercial verification tools as well as on actual test wafer.

  11. Creating Extreme Material Properties with High-Energy Laser Systems

    NASA Astrophysics Data System (ADS)

    Meyerhofer, David

    2005-07-01

    Laboratory for Laser Energetics, University of Rochester, 250 E. River Rd, Rochester, NY 14623 High-energy laser systems create extreme states of matter by coupling their energy into a target via ablation of the outer layers. In planar experiments on the OMEGA laser system, single-shock pressures can exceed 10 Mbar. In spherical geometry, the compressed target pressures can be significantly higher than 1 Gbar. These pressures will be increased by one or two orders of magnitude on the 1.8-MJUV National Ignition Facility, under construction at LLNL. The inherent flexibility of multibeam laser systems allows many techniques to be applied to studying the properties of materials under extreme conditions. Recent experiments have used Extended X-ray Absorption Fine Structure to observe shock-induced phase transformations in Fe on the ns time scale. Techniques are being used and/or developed to measure the equation of state of compressed materials, including solids, foams, and liquid D2, both on and off the Hugoniot. The coupling of high-energy petawatt (HEPW) lasers to high-energy laser systems will greatly extend the accessible range of material conditions. HEPW lasers produce extremely intense beams of electrons and protons that can be coupled with high-energy compression to access a large region of temperature and density space, for example, by heating a compressed target. These beams, along with the extremely bright x-ray emission, provide new diagnostic opportunities. This presentation will highlight some of the recent advances and future opportunities in creating and measuring extreme materials properties. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460, the University of Rochester, and the NY State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article.

  12. High resolution modelling of extreme precipitation events in urban areas

    NASA Astrophysics Data System (ADS)

    Siemerink, Martijn; Volp, Nicolette; Schuurmans, Wytze; Deckers, Dave

    2015-04-01

    The present day society needs to adjust to the effects of climate change. More extreme weather conditions are expected, which can lead to longer periods of drought, but also to more extreme precipitation events. Urban water systems are not designed for such extreme events. Most sewer systems are not able to drain the excessive storm water, causing urban flooding. This leads to high economic damage. In order to take appropriate measures against extreme urban storms, detailed knowledge about the behaviour of the urban water system above and below the streets is required. To investigate the behaviour of urban water systems during extreme precipitation events new assessment tools are necessary. These tools should provide a detailed and integral description of the flow in the full domain of overland runoff, sewer flow, surface water flow and groundwater flow. We developed a new assessment tool, called 3Di, which provides detailed insight in the urban water system. This tool is based on a new numerical methodology that can accurately deal with the interaction between overland runoff, sewer flow and surface water flow. A one-dimensional model for the sewer system and open channel flow is fully coupled to a two-dimensional depth-averaged model that simulates the overland flow. The tool uses a subgrid-based approach in order to take high resolution information of the sewer system and of the terrain into account [1, 2]. The combination of using the high resolution information and the subgrid based approach results in an accurate and efficient modelling tool. It is now possible to simulate entire urban water systems using extreme high resolution (0.5m x 0.5m) terrain data in combination with a detailed sewer and surface water network representation. The new tool has been tested in several Dutch cities, such as Rotterdam, Amsterdam and The Hague. We will present the results of an extreme precipitation event in the city of Schiedam (The Netherlands). This city deals with

  13. Gomphrena claussenii, the first South-American metallophyte species with indicator-like Zn and Cd accumulation and extreme metal tolerance

    PubMed Central

    Villafort Carvalho, Mina Tomaz; Amaral, Douglas C.; Guilherme, Luiz R. G.; Aarts, Mark G. M.

    2013-01-01

    Plant species with the capacity to tolerate heavy metals are potentially useful for phytoremediation since they have adapted to survive and reproduce under toxic conditions and to accumulate high metal concentrations. Gomphrena claussenii Moq., a South-American species belonging to the Amaranthaceae, is found at a zinc (Zn) mining area in the state of Minas Gerais, Brazil. Through soil and hydroponic experiments, the metal tolerance and accumulation capacities of G. claussenii were assessed and the effects on physiological characteristics were compared with a closely related non-tolerant species, G. elegans Mart. G. claussenii plants grown in soil sampled at the Zn smelting area accumulated up to 5318μgg-1 of Zn and 287 μg g-1 of cadmium (Cd) in shoot dry biomass after 30 days of exposure. Plants were grown in hydroponics containing up to 3000 μM of Zn and 100 μM of Cd for G. claussenii and 100 μM of Zn and 5 μM of Cd for G. elegans. G. claussenii proved to be an extremely tolerant species to both Zn and Cd, showing only slight metal toxicity symptoms at the highest treatment levels, without significant decrease in biomass and no effects on root growth, whereas the non-tolerant species G. elegans showed significant toxicity effects at the highest exposure levels. Both species accumulated more Zn and Cd in roots than in shoots. In G. elegans, over 90% of the Cd remained in the roots, but G. claussenii showed a root:shoot concentration ratio of around 2, with shoots reaching 0.93% Zn and 0.13% Cd on dry matter base. In G. claussenii shoots, the concentrations of other minerals, such as iron (Fe) and manganese (Mn), were only affected by the highest Zn treatment while in G. elegans the Fe and Mn concentrations in shoots decreased drastically at both Zn and Cd treatments. Taking together, these results indicate that G. claussenii is a novel metallophyte, extremely tolerant of high Zn and Cd exposure and an interesting species for further phytoremediation studies

  14. Climate Extreme Effects on the Chemical Composition of Temperate Grassland Species under Ambient and Elevated CO2: A Comparison of Fructan and Non-Fructan Accumulators

    PubMed Central

    Zinta, Gaurav; Van den Ende, Wim; Janssens, Ivan A.; Asard, Han

    2014-01-01

    Elevated CO2 concentrations and extreme climate events, are two increasing components of the ongoing global climatic change factors, may alter plant chemical composition and thereby their economic and ecological characteristics, e.g. nutritional quality and decomposition rates. To investigate the impact of climate extremes on tissue quality, four temperate grassland species: the fructan accumulating grasses Lolium perenne, Poa pratensis, and the nitrogen (N) fixing legumes Medicago lupulina and Lotus corniculatus were subjected to water deficit at elevated temperature (+3°C), under ambient CO2 (392 ppm) and elevated CO2 (620 ppm). As a general observation, the effects of the climate extreme were larger and more ubiquitous in combination with elevated CO2. The imposed climate extreme increased non-structural carbohydrate and phenolics in all species, whereas it increased lignin in legumes and decreased tannins in grasses. However, there was no significant effect of climate extreme on structural carbohydrates, proteins, lipids and mineral contents and stoichiometric ratios. In combination with elevated CO2, climate extreme elicited larger increases in fructan and sucrose content in the grasses without affecting the total carbohydrate content, while it significantly increased total carbohydrates in legumes. The accumulation of carbohydrates in legumes was accompanied by higher activity of sucrose phosphate synthase, sucrose synthase and ADP-Glc pyrophosphorylase. In the legumes, elevated CO2 in combination with climate extreme reduced protein, phosphorus (P) and magnesium (Mg) contents and the total element:N ratio and it increased phenol, lignin, tannin, carbon (C), nitrogen (N) contents and C:N, C:P and N:P ratios. On the other hand, the tissue composition of the fructan accumulating grasses was not affected at this level, in line with recent views that fructans contribute to cellular homeostasis under stress. It is speculated that quality losses will be less

  15. Climate extreme effects on the chemical composition of temperate grassland species under ambient and elevated CO2: a comparison of fructan and non-fructan accumulators.

    PubMed

    AbdElgawad, Hamada; Peshev, Darin; Zinta, Gaurav; Van den Ende, Wim; Janssens, Ivan A; Asard, Han

    2014-01-01

    Elevated CO2 concentrations and extreme climate events, are two increasing components of the ongoing global climatic change factors, may alter plant chemical composition and thereby their economic and ecological characteristics, e.g. nutritional quality and decomposition rates. To investigate the impact of climate extremes on tissue quality, four temperate grassland species: the fructan accumulating grasses Lolium perenne, Poa pratensis, and the nitrogen (N) fixing legumes Medicago lupulina and Lotus corniculatus were subjected to water deficit at elevated temperature (+3°C), under ambient CO2 (392 ppm) and elevated CO2 (620 ppm). As a general observation, the effects of the climate extreme were larger and more ubiquitous in combination with elevated CO2. The imposed climate extreme increased non-structural carbohydrate and phenolics in all species, whereas it increased lignin in legumes and decreased tannins in grasses. However, there was no significant effect of climate extreme on structural carbohydrates, proteins, lipids and mineral contents and stoichiometric ratios. In combination with elevated CO2, climate extreme elicited larger increases in fructan and sucrose content in the grasses without affecting the total carbohydrate content, while it significantly increased total carbohydrates in legumes. The accumulation of carbohydrates in legumes was accompanied by higher activity of sucrose phosphate synthase, sucrose synthase and ADP-Glc pyrophosphorylase. In the legumes, elevated CO2 in combination with climate extreme reduced protein, phosphorus (P) and magnesium (Mg) contents and the total element:N ratio and it increased phenol, lignin, tannin, carbon (C), nitrogen (N) contents and C:N, C:P and N:P ratios. On the other hand, the tissue composition of the fructan accumulating grasses was not affected at this level, in line with recent views that fructans contribute to cellular homeostasis under stress. It is speculated that quality losses will be less

  16. Climate extreme effects on the chemical composition of temperate grassland species under ambient and elevated CO2: a comparison of fructan and non-fructan accumulators.

    PubMed

    AbdElgawad, Hamada; Peshev, Darin; Zinta, Gaurav; Van den Ende, Wim; Janssens, Ivan A; Asard, Han

    2014-01-01

    Elevated CO2 concentrations and extreme climate events, are two increasing components of the ongoing global climatic change factors, may alter plant chemical composition and thereby their economic and ecological characteristics, e.g. nutritional quality and decomposition rates. To investigate the impact of climate extremes on tissue quality, four temperate grassland species: the fructan accumulating grasses Lolium perenne, Poa pratensis, and the nitrogen (N) fixing legumes Medicago lupulina and Lotus corniculatus were subjected to water deficit at elevated temperature (+3°C), under ambient CO2 (392 ppm) and elevated CO2 (620 ppm). As a general observation, the effects of the climate extreme were larger and more ubiquitous in combination with elevated CO2. The imposed climate extreme increased non-structural carbohydrate and phenolics in all species, whereas it increased lignin in legumes and decreased tannins in grasses. However, there was no significant effect of climate extreme on structural carbohydrates, proteins, lipids and mineral contents and stoichiometric ratios. In combination with elevated CO2, climate extreme elicited larger increases in fructan and sucrose content in the grasses without affecting the total carbohydrate content, while it significantly increased total carbohydrates in legumes. The accumulation of carbohydrates in legumes was accompanied by higher activity of sucrose phosphate synthase, sucrose synthase and ADP-Glc pyrophosphorylase. In the legumes, elevated CO2 in combination with climate extreme reduced protein, phosphorus (P) and magnesium (Mg) contents and the total element:N ratio and it increased phenol, lignin, tannin, carbon (C), nitrogen (N) contents and C:N, C:P and N:P ratios. On the other hand, the tissue composition of the fructan accumulating grasses was not affected at this level, in line with recent views that fructans contribute to cellular homeostasis under stress. It is speculated that quality losses will be less

  17. Method For Synthesizing Extremely High-Temperature Melting Materials

    DOEpatents

    Saboungi, Marie-Louise; Glorieux, Benoit

    2005-11-22

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  18. Method for synthesizing extremely high-temperature melting materials

    DOEpatents

    Saboungi, Marie-Louise; Glorieux, Benoit

    2007-11-06

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as carbides and transition-metal, lanthanide and actinide oxides, using an aerodynamic levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  19. Developments of Multi-extreme High Field ESR in Kobe

    NASA Astrophysics Data System (ADS)

    Ohta, H.; Okubo, S.; Ohmichi, E.; Sakurai, T.; Zhang, W.-M.; Shimokawa, T.

    2013-03-01

    Recent developments of "multi-extreme" high magnetic field electron spin resonance (ESR) in Kobe will be reviewed. Our high magnetic field ESR covers the frequency region between 0.03 and 7 THz and the temperature region between 1.8 and 300 K. With this high magnetic field ESR system we can apply the magnetic field up to 55 T using a Cu-Ag pulsed magnet and a 300 kJ (10 kV) capacitor bank. Under this high magnetic field we can also apply the high pressure up to 1.4 GPa. As we can make the measurement under low temperature, high magnetic field and high pressure simultaneously, we name it as "multi-extreme" ESR. Moreover, in order to gain the sensitivity of our high magnetic field ESR, we have developed a micro-cantilever ESR system using a torque method, which enables the ESR measurement of micrometer size single crystal at low temperature. At the moment we are in the process of extending the magnetic field region of micro-cantilever ESR. Recently we have succeeded in making the measurement up to 369 GHz and the achieved sensitivity is about 1010 spins/G, which is much higher than that using the conventional transmission method. Finally our development of magnetization detected ESR using SQUID magnetometer (SQUID ESR) will be also presented.

  20. High northern latitude temperature extremes, 1400-1999

    NASA Astrophysics Data System (ADS)

    Tingley, M. P.; Huybers, P.; Hughen, K. A.

    2009-12-01

    There is often an interest in determining which interval features the most extreme value of a reconstructed climate field, such as the warmest year or decade in a temperature reconstruction. Previous approaches to this type of question have not fully accounted for the spatial and temporal covariance in the climate field when assessing the significance of extreme values. Here we present results from applying BARSAT, a new, Bayesian approach to reconstructing climate fields, to a 600 year multiproxy temperature data set that covers land areas between 45N and 85N. The end result of the analysis is an ensemble of spatially and temporally complete realizations of the temperature field, each of which is consistent with the observations and the estimated values of the parameters that define the assumed spatial and temporal covariance functions. In terms of the spatial average temperature, 1990-1999 was the warmest decade in the 1400-1999 interval in each of 2000 ensemble members, while 1995 was the warmest year in 98% of the ensemble members. A similar analysis at each node of a regular 5 degree grid gives insight into the spatial distribution of warm temperatures, and reveals that 1995 was anomalously warm in Eurasia, whereas 1998 featured extreme warmth in North America. In 70% of the ensemble members, 1601 featured the coldest spatial average, indicating that the eruption of Huaynaputina in Peru in 1600 (with a volcanic explosivity index of 6) had a major cooling impact on the high northern latitudes. Repeating this analysis at each node reveals the varying impacts of major volcanic eruptions on the distribution of extreme cooling. Finally, we use the ensemble to investigate extremes in the time evolution of centennial temperature trends, and find that in more than half the ensemble members, the greatest rate of change in the spatial mean time series was a cooling centered at 1600. The largest rate of centennial scale warming, however, occurred in the 20th Century in

  1. Characteristics of extreme ultraviolet emission from high-Z plasmas

    NASA Astrophysics Data System (ADS)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-03-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics.

  2. Solidification at the High and Low Rate Extreme

    SciTech Connect

    Meco, Halim

    2004-12-19

    The microstructures formed upon solidification are strongly influenced by the imposed growth rates on an alloy system. Depending on the characteristics of the solidification process, a wide range of growth rates is accessible. The prevailing solidification mechanisms, and thus the final microstructure of the alloy, are governed by these imposed growth rates. At the high rate extreme, for instance, one can have access to novel microstructures that are unattainable at low growth rates. While the low growth rates can be utilized for the study of the intrinsic growth behavior of a certain phase growing from the melt. Although the length scales associated with certain processes, such as capillarity, and the diffusion of heat and solute, are different at low and high rate extremes, the phenomena that govern the selection of a certain microstructural length scale or a growth mode are the same. Consequently, one can analyze the solidification phenomena at both high and low rates by using the same governing principles. In this study, we examined the microstructural control at both low and high extremes. For the high rate extreme, the formation of crystalline products and factors that control the microstructure during rapid solidification by free-jet melt spinning are examined in Fe-Si-B system. Particular attention was given to the behavior of the melt pool at different quench-wheel speeds. Since the solidification process takes place within the melt-pool that forms on the rotating quench-wheel, we examined the influence of melt-pool dynamics on nucleation and growth of crystalline solidification products and glass formation. High-speed imaging of the melt-pool, analysis of ribbon microstructure, and measurement of ribbon geometry and surface character all indicate upper and lower limits for melt-spinning rates for which nucleation can be avoided, and fully amorphous ribbons can be achieved. Comparison of the relevant time scales reveals that surface-controlled melt

  3. Heineman Prize: Extreme Transients in the High Energy Universe

    NASA Astrophysics Data System (ADS)

    Kouveliotou, Chryssa

    2013-01-01

    The High Energy Universe is rich in diverse populations of objects spanning the entire cosmological (time)scale, from our own present-day Milky Way to the re-ionization epoch. Several of these are associated with extreme conditions irreproducible in laboratories on Earth. Their study thus sheds light on the behavior of matter under extreme conditions, such as super-strong magnetic fields (in excess of 10^14 G), high gravitational potentials (e.g., Super Massive Black Holes), very energetic collimated explosions resulting in relativistic jet flows (e.g., Gamma Ray Bursts, exceeding 10^53 ergs). In the last thirty years, my work has been mostly focused on two apparently different but potentially linked populations of such transients: magnetars (highly magnetized neutron stars) and Gamma Ray Bursts (strongly beamed emission from relativistic jets), two populations that constitute unique astrophysical laboratories, while also giving us the tools to probe matter conditions in the Universe to redshifts beyond z=10, when the first stars and galaxies were assembled. I did not make this journey alone - I have either led or participated in several international collaborations studying these phenomena in multi-wavelength observations; solitary perfection is not sufficient anymore in the world of High Energy Astrophysics. I will describe this journey, present crucial observational breakthroughs, discuss key results and muse on the future of this field.

  4. Studying and applying channeling at extremely high bunch charges

    SciTech Connect

    Carrigan, R.A.; /Fermilab

    2005-01-01

    The potentially high plasma densities possible in solids might produce extremely high acceleration gradients. However solid-state plasmas could pose daunting challenges. Crystal channeling has been suggested as a mechanism to ameliorate these problems. A high-density plasma in a crystal lattice could quench the channeling process. There is no experimental or theoretical guidance on channeling for intense charged particle beams. An experiment has been carried out at the Fermilab A0 photoinjector to observe electron channeling radiation at high bunch charges. An electron beam with up to 8 nC per electron bunch was used to investigate the electron-crystal interaction. No evidence was found of quenching of channeling at charge densities two orders of magnitude larger than in earlier experiments. Possible new channeling experiments are discussed for the much higher bunch charge densities and shorter times required to probe channeling breakdown and plasma behavior.

  5. High numerical aperture projection system for extreme ultraviolet projection lithography

    DOEpatents

    Hudyma, Russell M.

    2000-01-01

    An optical system is described that is compatible with extreme ultraviolet radiation and comprises five reflective elements for projecting a mask image onto a substrate. The five optical elements are characterized in order from object to image as concave, convex, concave, convex, and concave mirrors. The optical system is particularly suited for ring field, step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width which effectively minimizes dynamic distortion. The present invention allows for higher device density because the optical system has improved resolution that results from the high numerical aperture, which is at least 0.14.

  6. Bacterial survival responses to extreme desiccation and high humidity

    NASA Astrophysics Data System (ADS)

    Yang, Yinjie; Yokobori, Shinichi; Yamagishi, Akihiko

    The presence of water is thought to be essential for life and strongly considered in life searching operation on extraterrestrial planets. In this study we show different survival responses of bacterial species to water availability and temperatures (25, 4 and - 70 o C). At these temperatures, E.coli lost viability much faster under extreme desiccation than under high humidity. Deinococcus radiodurans exhibited much higher survival rate under desiccation than under high humidity at 25 o C, while its survivals under desiccation and high humidity increased to the same level at 4 and - 70 o C. Bacillus pumilus spores generally survived well under all tested conditions. Water is favorable for the survival of most microorganisms but not a "safeguard" for all microorganisms. Microbial survival at low temperatures may not be affected by water availability. Water absence should not preclude us from seeking life on other planets.

  7. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  8. Different responses of low grain-Cd-accumulating and high grain-Cd-accumulating rice cultivars to Cd stress.

    PubMed

    Wang, Feijuan; Wang, Min; Liu, Zhouping; Shi, Yan; Han, Tiqian; Ye, Yaoyao; Gong, Ning; Sun, Junwei; Zhu, Cheng

    2015-11-01

    Cadmium (Cd) is a major heavy metal pollutant which is highly toxic to plants and animals. The accumulation of Cd in rice grains is a major agricultural problem in regions with Cd pollution. A hydroponics experiment using low grain-Cd-accumulating rice (xiushui 11) and high grain-Cd-accumulating rice (xiushui 110) was carried out to characterize the different responses of rice cultivars to Cd stress. We found that xiushui 11 was more tolerant to Cd than xiushui 110, and xiushui 11 suffered less oxidative damage. Cell walls played an important role in limiting the amount of Cd that entered the protoplast, especially in xiushui 11. Cd stored in organelles as soluble fractions, leading to greater physiological stress of Cd detoxification. We found that Cd can disturb the ion homeostasis in rice roots because Cd(2+) and Ca(2+) may have a similar uptake route. Xiushui 11 had a faster root-to-shoot transport of Cd, and the expression level of OsPCR1 gene which was predicted related with Cd accumulation in rice was consist with the Cd transport of root-to-shoot in rice and maintain the greater Cd tolerance of xiushui 11. These results suggest there are different Cd detoxification and accumulation mechanisms in rice cultivars.

  9. Different responses of low grain-Cd-accumulating and high grain-Cd-accumulating rice cultivars to Cd stress.

    PubMed

    Wang, Feijuan; Wang, Min; Liu, Zhouping; Shi, Yan; Han, Tiqian; Ye, Yaoyao; Gong, Ning; Sun, Junwei; Zhu, Cheng

    2015-11-01

    Cadmium (Cd) is a major heavy metal pollutant which is highly toxic to plants and animals. The accumulation of Cd in rice grains is a major agricultural problem in regions with Cd pollution. A hydroponics experiment using low grain-Cd-accumulating rice (xiushui 11) and high grain-Cd-accumulating rice (xiushui 110) was carried out to characterize the different responses of rice cultivars to Cd stress. We found that xiushui 11 was more tolerant to Cd than xiushui 110, and xiushui 11 suffered less oxidative damage. Cell walls played an important role in limiting the amount of Cd that entered the protoplast, especially in xiushui 11. Cd stored in organelles as soluble fractions, leading to greater physiological stress of Cd detoxification. We found that Cd can disturb the ion homeostasis in rice roots because Cd(2+) and Ca(2+) may have a similar uptake route. Xiushui 11 had a faster root-to-shoot transport of Cd, and the expression level of OsPCR1 gene which was predicted related with Cd accumulation in rice was consist with the Cd transport of root-to-shoot in rice and maintain the greater Cd tolerance of xiushui 11. These results suggest there are different Cd detoxification and accumulation mechanisms in rice cultivars. PMID:26318143

  10. Impurity accumulation in plasma regimes with high energy confinement

    NASA Astrophysics Data System (ADS)

    Ran, L. B.; Roberts, D. E.; Yang, H. R.; Dodel, G.; Gentle, K.; Von Goeler, S.; Holzhauer, E.; Hübner, K.; Keilhacker, M.; Korotkov, A.; Luce, T. C.; Miura, Y.; Tsois, N.; Würz, H.; Fussmann, G.; Hofmann, J.; Janeschitz, G.; Krieger, K.; Müller, E. R.; Nolte, R.; Röhr, H.; Steuer, K. H.; Becker, G.; Bomba, B.; Bruhns, H.; Büchl, K.; Carlson, A.; Eberhagen, A.; Fahrbach, H.-U.; Gehre, O.; Gernhardt, J.; Giannone, L.; Von Gierke, G.; Glock, E.; Gruber, O.; Haas, G.; Herrmann, H.; Kaesdorf, S.; Karger, F.; Kaufmann, M.; Klüber, O.; Kornherr, M.; Lackner, K.; Lang, R.; Lee, P.; Lisitano, G.; Mast, F.; Mayer, H. M.; McCormick, K.; Meisel, D.; Mertens, V.; Murmann, H.; Neuhauser, J.; Niedermeyer, H.; Noterdaeme, J. M.; Poschenrieder, W.; Preis, R.; Rapp, H.; Rudyj, A.; Sandmann, W.; Schneider, F.; Schnider, U.; Siller, G.; Simmet, E.; Speth, E.; Söldner, F.; Stäbler, A.; Steinmetz, K.; Stroth, U.; Vollmer, O.; Zasche, D.

    1989-04-01

    Investigations of impurity accumulation phenomena in ASDEX are reviewed. There are four different operating regimes where pronounced accumulation is observed and these regimes are also characterized by improved energy confinement. In particular, medium-Z metallic ions are involved in accumulation processes whereas low-Z ions appear almost unaffected. The rapid accumulation observed in the case of metallic ions may be explained by neoclassical inward drifts if we assume that the anomalous diffusion is sufficiently suppressed, some indication of this being found from laser blow-off studies. The present results, however, can only be partly explained by neoclassical theory, according to which accumulation of low-Z impurities should also occur. The temporal behaviour of accumulation and the retarding effect of proton dilution for collision dominated transport are also discussed. Finally, we conclude that the full benefits of improved energy confinement can be achieved only if the impurity influxes are kept to a sufficiently low level. Expressed in terms of concentrations under low confinement conditions we have to postulate, for ASDEX, concentrations ≲ 10 -4 for metals and ≲ 2% for all light impurities.

  11. The association of very high hair manganese accumulation and high oxidative stress in Mongolian people.

    PubMed

    Komatsu, Fumio; Kagawa, Yasuo; Ishiguro, Kiyomi; Kawabata, Terue; Purvee, Baatar; Otgon, Jugder; Chimedregzen, Ulziiburen

    2009-03-01

    Oxidative stress induces several diseases and early aging. Previously, we reported that Mongolians are exposed in high oxidative stress, which may cause their early aging. In this study, to know the reason of high oxidative stress, we measured hair metals. This investigation was performed in Murun city, in the northern area of this country, and 469 healthy subjects, ranging from 10 to 82 years of age, were randomly enrolled. Oxidative stress was evaluated by the levels of serum reactive oxygen metabolites (ROM), malondialdehyde-modified low-density lipoprotein (MDA-LDL) and urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG). Antioxidant capacity (AOC) was estimated by the levels of biological antioxidant potential (BAP) and superoxide dismutase (SOD) activity. Scalp hair metals were measured using an inductively coupled plasma mass spectrometry method. Murun subjects showed high ROM levels of 394+/-75 Carr U (n=342), compared with Japanese healthy subjects (n=356, 326+/-51 Carr U, p<0.001). MDA-LDL and 8-OHdG levels also showed high levels. While, BAP levels of Murun subjects were 2263+/-203 micromol/L (n=210), Japanese subjects (n=356, 2087+/-215 micromol/L, p<0.001). SOD activities were also high, suggesting that the high oxidative may accelerate the state of AOC. Murun subjects demonstrated high accumulation of several metals in the hairs. In particular, Mn accumulation exhibited from 2 fold to 40 fold increases of Japanese standard. These findings are indicative that the high Mn accumulation may contribute to the high oxidative stress. The mechanism of its high accumulation was not explained by food materials or drinking water. We should further investigate another influence such as sandy wind. In order to suppress the high oxidative stress, elimination of the high Mn accumulation should be urgently studied. PMID:20021397

  12. High Temperature Polyimide Materials in Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Gates, Thomas S.

    2001-01-01

    At the end of the NASA High Speed Research (HSR) Program, NASA Langley Research Center (LaRC) began a program to screen the high-temperature Polymeric Composite Materials (PMCs) characterized by the HSR Durability Program for possible use in Reusable Launch Vehicles (RLVs) operating under extreme temperature conditions. The HSR Program focused on developing material-related technologies to enable a High Speed Civil Transport (HSCT) capable of operating temperatures ranging from 54 C (-65 F) to 177 C (350 F). A high-temperature polymeric resin, PETI-5 was used in the HSR Program to satisfy the requirements for performance and durability for a PMC. For RLVs, it was anticipated that this high temperature material would contribute to reducing the overall weight of a vehicle by eliminating or reducing the thermal protection required to protect the internal structural elements of the vehicle and increasing the structural strain limits. The tests were performed to determine temperature-dependent mechanical and physical proper-ties of IM7/PETI-5 composite over a temperature range from cryogenic temperature -253 C (-423F) to the material's maximum use temperature of 230 C (450 F). This paper presents results from the test program for the temperature-dependent mechanical and physical properties of IM7/PETI-5 composite in the temperature range from -253 C (-423 F) to 27 C (80 F).

  13. Ptychographic hyperspectral spectromicroscopy with an extreme ultraviolet high harmonic comb.

    PubMed

    Zhang, Bosheng; Gardner, Dennis F; Seaberg, Matthew H; Shanblatt, Elisabeth R; Porter, Christina L; Karl, Robert; Mancuso, Christopher A; Kapteyn, Henry C; Murnane, Margaret M; Adams, Daniel E

    2016-08-01

    We report a proof-of-principle demonstration of a new scheme of spectromicroscopy in the extreme ultraviolet (EUV) spectral range, where the spectral response of the sample at different wavelengths is imaged simultaneously. This scheme is enabled by combining ptychographic information multiplexing (PIM) with a tabletop EUV source based on high harmonic generation, where four spectrally narrow harmonics near 30 nm form a spectral comb structure. Extending PIM from previously demonstrated visible wavelengths to the EUV/X-ray wavelengths promises much higher spatial resolution and a more powerful spectral contrast mechanism, making PIM an attractive spectromicroscopy method in both microscopy and spectroscopy aspects. In addition to spectromicroscopy, this method images the multicolor EUV beam in situ, making this a powerful beam characterization technique. In contrast to other methods, the techniques described here use no hardware to separate wavelengths, leading to efficient use of the EUV radiation. PMID:27505837

  14. Ptychographic hyperspectral spectromicroscopy with an extreme ultraviolet high harmonic comb

    NASA Astrophysics Data System (ADS)

    Zhang, Bosheng; Gardner, Dennis F.; Seaberg, Matthew H.; Shanblatt, Elisabeth R.; Porter, Christina L.; Karl, Robert; Mancuso, Christopher A.; Kapteyn, Henry C.; Murnane, Margaret M.; Adams, Daniel E.

    2016-08-01

    We demonstrate a new scheme of spectromicroscopy in the extreme ultraviolet (EUV) spectral range, where the spectral response of the sample at different wavelengths is imaged simultaneously. It is enabled by applying ptychographical information multiplexing (PIM) to a tabletop EUV source based on high harmonic generation, where four spectrally narrow harmonics near 30 nm form a spectral comb structure. Extending PIM from previously demonstrated visible wavelengths to the EUV/X-ray wavelengths promises much higher spatial resolution and more powerful spectral contrast mechanism, making PIM an attractive spectromicroscopy method in both the microscopy and the spectroscopy aspects. Besides the sample, the multicolor EUV beam is also imaged in situ, making our method a powerful beam characterization technique. No hardware is used to separate or narrow down the wavelengths, leading to efficient use of the EUV radiation.

  15. High sea-floor stress induced by extreme hurricane waves

    NASA Astrophysics Data System (ADS)

    Wijesekera, Hemantha W.; Wang, David W.; Teague, William J.; Jarosz, Ewa

    2010-06-01

    Strong surface waves and currents generated by major hurricanes can produce extreme forces at the seabed that scour the seafloor and cause massive underwater mudslides. Our understanding of these forces is poor due to lack of concurrent measurements of waves and currents under these storms. Using unique observations collected during the passage of a category-4 hurricane, Ivan, bottom stress due to currents and waves over the outer continental shelf in the Gulf of Mexico was examined. During the passage of Ivan, the bottom stress was highly correlated with the wind with a maximum of about 40% of the wind stress. The bottom stress was dominated by the wave-induced stresses, and exceeded critical levels at depths as large as 90 m. Surprisingly, the bottom damaging stress persisted after the passage of Ivan for about a week, and was modulated by near-inertial waves.

  16. Extreme ultraviolet spectra of highly ionized oxygen and fluorine

    NASA Technical Reports Server (NTRS)

    Pegg, D. J.; Griffin, P. M.; Haselton, H. H.; Laubert, R.; Mowat, J. R.; Thoe, R. S.; Peterson, R. S.; Sellin, I. A.

    1974-01-01

    The foil-excitation method has been used to study the extreme ultraviolet spectra of highly ionized oxygen and fluorine. Several previously unreported lines in heliumlike fluorine are reported and other newly reported lines in heliumlike oxygen have been measured to higher accuracy. Included in the measurements are certain heliumlike oxygen transitions of significance in interpretation of solar-flare spectral observations. The wavelength determinations are usually in good agreement with calculated results which includes relativistic corrections, but discrepancies arise when nonrelativistic calculations are used. A comparison of the present results and those recently obtained by theta-pinch and laser-induced plasma sources is made for both heliumlike and lithiumlike ions; a few discrepancies occur, with results in most cases in better agreement with relativistically corrected calculations. Certain unidentified lines in the spectra may be attributable to radiative transitions between quartet states of lithiumlike ions.

  17. [Effects of nitrogen fertilization rate and planting density on cotton boll biomass and nitrogen accumulation in extremely early maturing cotton region of Northeast China].

    PubMed

    Wang, Zi-Sheng; Wu, Xiao-Dong; Gao, Xiang-Bin; Xu, Min; Shen, Dan; Jin, Lu-Lu; Zhou, Zhi-Guo

    2012-02-01

    Taking cotton cultivars Liaomian 19 and NuCoTN 33B as test materials, a field experiment was conducted to study the effects of nitrogen fertilization rate (0, 240 and 480 kg x hm(-2)) and planting density (75000, 97500 and 120000 plants x hm(-2)) on the boll biomass and nitrogen accumulation in the extremely early maturing cotton region of Northeast China. With the growth and development of cotton, the biomass and nitrogen accumulation of cotton boll, cotton seed, and cotton fiber varied in 'S' shape. Both nitrogen fertilization rate and planting density had significant effects on the dynamic characteristics of boll biomass and nitrogen accumulation, and on the fiber yield and quality. In treatment 240 kg x hm(-2) and 97500 plants x hm(-2), the biomass of single boll, cotton seed and cotton fiber was the maximum, the starting time and ending time of the rapid accumulation period of the biomass and nitrogen were earlier but the duration of the accumulation was shorter, the rapid accumulation speed of the biomass was the maximum, and the distribution indices of the biomass and nitrogen were the lowest in boll shell but the highest in cotton seed and cotton fiber.

  18. Proton delocalization under extreme conditions of high pressure and temperature

    SciTech Connect

    Goncharov, Alexander F.; Crowhurst, Jonathan

    2008-10-02

    Knowledge of the behaviour of light hydrogen-containing molecules under extreme conditions of high pressure and temperature is crucial to a comprehensive understanding of the fundamental physics and chemistry that is relevant under such conditions. It is also vital for interpreting the results of planetary observations, in particular those of the gas giants, and also for various materials science applications. On a fundamental level, increasing pressure causes the redistribution of the electronic density, which results in a modification of the interatomic potentials followed by a consequent qualitative change in the character of the associated bonding. Ultimately, at sufficiently high pressure, one may anticipate a transformation to a homogeneously bonded material possessing unusual physical properties (e.g. a quantum fluid). As temperature increases so does the concentration of ionised species leading ultimately to a plasma. Considerable improvements have recently been made in both the corresponding experimental and theoretical investigations. Here we review recent results for hydrogen and water that reveal unexpected routes of transformation to nonmolecular materials. We stress the importance of quantum effects, which remain significant even at high temperatures.

  19. Biofiltration of high concentration of H2S in waste air under extreme acidic conditions.

    PubMed

    Ben Jaber, Mouna; Couvert, Annabelle; Amrane, Abdeltif; Rouxel, Franck; Le Cloirec, Pierre; Dumont, Eric

    2016-01-25

    Removal of high concentrations of hydrogen sulfide using a biofilter packed with expanded schist under extreme acidic conditions was performed. The impact of various parameters such as H2S concentration, pH changes and sulfate accumulation on the performances of the process was evaluated. Elimination efficiency decreased when the pH was lower than 1 and the sulfate accumulation was more than 12 mg S-SO4(2-)/g dry media, due to a continuous overloading by high H2S concentrations. The influence of these parameters on the degradation of H2S was clearly underlined, showing the need for their control, performed through an increase of watering flow rate. A maximum elimination capacity (ECmax) of 24.7 g m(-3) h(-1) was recorded. As a result, expanded schist represents an interesting packing material to remove high H2S concentration up to 360 ppmv with low pressure drops. In addition, experimental data were fitted using both Michaelis-Menten and Haldane models, showing that the Haldane model described more accurately experimental data since the inhibitory effect of H2S was taken into account.

  20. Extremely high-frequency micro-Doppler measurements of humans

    NASA Astrophysics Data System (ADS)

    Hedden, Abigail S.; Silvious, Jerry L.; Dietlein, Charles R.; Green, Jeremy A.; Wikner, David A.

    2014-05-01

    The development of sensors that are capable of penetrating smoke, dust, fog, clouds, and rain is critical for maintaining situational awareness in degraded visual environments and for providing support to the Warfighter. Atmospheric penetration properties, the ability to form high-resolution imagery with modest apertures, and available source power make the extremely high-frequency (EHF) portion of the spectrum promising for the development of radio frequency (RF) sensors capable of penetrating visual obscurants. Comprehensive phenomenology studies including polarization and backscatter properties of relevant targets are lacking at these frequencies. The Army Research Laboratory (ARL) is developing a fully-polarimetric frequency-modulated continuous-wave (FMCW) instrumentation radar to explore polarization and backscatter properties of in-situ rain, scattering from natural and man-made surfaces, and the radar cross section and micro-Doppler signatures of humans at EHF frequencies, specifically, around the 220 GHz atmospheric window. This work presents an overview of the design and construction of the radar system, hardware performance, data acquisition software, and initial results including an analysis of human micro-Doppler signatures.

  1. Extreme-ultraviolet ultrafast ARPES at high repetition rates

    NASA Astrophysics Data System (ADS)

    Buss, Jan; Wang, He; Xu, Yiming; Stoll, Sebastian; Zeng, Lingkun; Ulonska, Stefan; Denlinger, Jonathan; Hussain, Zahid; Jozwiak, Chris; Lanzara, Alessandra; Kaindl, Robert

    Time- and angle-resolved photoemission spectroscopy (trARPES) represents a powerful approach to resolve the electronic structure and quasiparticle dynamics in complex materials, yet is often limited in either momentum space (incident photon energy), probe sensitivity (pulse repetition rate), or energy resolution. We demonstrate a novel table-top trARPES setup that combines a bright 50-kHz source of narrowband, extreme ultraviolet (XUV) pulses at 22.3 eV with UHV photoemission instrumentation to sensitively access dynamics for a large momentum space. The output of a high-power Ti:sapphire amplifier is split to provide the XUV probe and intense photoexcitation (up to mJ/cm2) . A vacuum beamline delivers spectral and flux characterization, differential pumping, as well as XUV beam steering and toroidal refocusing onto the sample with high incident flux of 3x1011 ph/s. Photoemission studies are carried out in a customized UHV chamber equipped with a hemispherical analyzer (R4000), six-axis sample cryostat, and side chambers for sample loading, storage and preparation. An ARPES energy resolution down to 70 meV with the direct XUV output is demonstrated. We will discuss initial applications of this setup including Fermi surface mapping and trARPES of complex materials.

  2. Cadmium accumulation characteristics and removal potentials of high cadmium accumulating rice line grown in cadmium-contaminated soils.

    PubMed

    Tang, Hao; Li, Tingxuan; Yu, Haiying; Zhang, Xizhou

    2016-08-01

    Phytoextraction is a promising technique to remove cadmium (Cd) from contaminated soils. In this research, the two different Cd accumulation rice lines of Lu527-8 (the high Cd accumulating rice line) and Lu527-4 (the normal rice line) were grown in soils with different Cd treatments (0, 5, 10, and 20 mg kg(-1) soil) to evaluate Cd accumulation characteristics and Cd removal potentials. When the concentration of Cd in soil increased, Lu527-8 showed less symptoms of phytotoxicity when compared to Lu527-4. Furthermore, Lu527-8 demonstrated greater shoot Cd accumulation (321.17-964.95 mg plant(-1)) than Lu527-4 (50.37-201.66 μg plant(-1)) at the jointing and filling stages. The soil available Cd content of Lu527-8 significantly decreased by 26.92-38.97 and 27.77-63.44 % at the jointing and filling stages, respectively. Meanwhile, the total Cd content in soil also reduced by 11.64-46.75 and 21.41-54.11 % at jointing and filling stages, respectively. When the Cd concentration in soil was 20 mg kg(-1), the Cd extraction rate in shoots of Lu527-8 reached 2.12 and 2.85 % which increased 10.60 and 6.48 times compared with that of Lu527-4 at the jointing and filling stages, respectively. In conclusion, this study demonstrates that Lu527-8 shows great abilities of Cd accumulation and Cd removal potential from contaminated soils with different Cd treatments and it is a promising species for phytoextraction of Cd-contaminated soils.

  3. Large woody debris mobility and accumulation by an extreme flood - an example from the Dyje River, Czech Republic

    NASA Astrophysics Data System (ADS)

    Macka, Zdenek; Krejci, Lukas

    2010-05-01

    Large woody debris (LWD) in the form of logs, branches and their fragments play an important geomorphic and ecological role in forested watersheds. Especially when organized in accumulations and jams, LWD have been found to change hydraulic, morphological, sedimentary and biological characteristics of fluvial ecosystems. Our study focuses on LWD jams distribution and properties within the 44 km long forested reach of the Dyje River in south-eastern Czech Republic. The study reach is located between two large water reservoirs and the flow is regulated showing significant daily fluctuation of discharges due to water releases for power generation. River flows in the deeply incised meandering valley with the narrow and patchy floodplain. In 2002, and especially 2006 large volumes of LWD have been transported by river and the water reservoir downstream was congested with wood. Peak discharge of 2006 flood equalled 306 m3.s-1 which was estimated as 500 year flood. The flood caused significant mobility and redistribution of woody debris as in aquatic, so in riparian segment of the river corridor. The high rate of LWD transport is favoured by large bankfull channel width which exceeds the average tree height. LWD jams were defined as aggregations of three or more wood pieces with diameter ≥ 0.1 m and length ≥ 1 m. We surveyed LWD jams in 62 river reaches, which have been located at meander apexes, inflections and intermediate positions; the length of the reaches was 200 m. The overall number of registered LWD jams was 200. Majority of jams consist of solely allochthonous (transported) wood pieces (65 %), some jams are combination of large key trees and trapped transported pieces (29%), and only small proportion are jams formed by locally uprooted trees (12,6%). Number of wood pieces varies greatly from 3 to 98, the most common being the interval 5 - 10 pieces per jam. Spatial distribution of jams is longitudinally and transversally irregular within the river corridor

  4. Extreme ultraviolet high-harmonic spectroscopy of solids.

    PubMed

    Luu, T T; Garg, M; Kruchinin, S Yu; Moulet, A; Hassan, M Th; Goulielmakis, E

    2015-05-28

    Extreme ultraviolet (EUV) high-harmonic radiation emerging from laser-driven atoms, molecules or plasmas underlies powerful attosecond spectroscopy techniques and provides insight into fundamental structural and dynamic properties of matter. The advancement of these spectroscopy techniques to study strong-field electron dynamics in condensed matter calls for the generation and manipulation of EUV radiation in bulk solids, but this capability has remained beyond the reach of optical sciences. Recent experiments and theoretical predictions paved the way to strong-field physics in solids by demonstrating the generation and optical control of deep ultraviolet radiation in bulk semiconductors, driven by femtosecond mid-infrared fields or the coherent up-conversion of terahertz fields to multi-octave spectra in the mid-infrared and optical frequencies. Here we demonstrate that thin films of SiO2 exposed to intense, few-cycle to sub-cycle pulses give rise to wideband coherent EUV radiation extending in energy to about 40 electronvolts. Our study indicates the association of the emitted EUV radiation with intraband currents of multi-petahertz frequency, induced in the lowest conduction band of SiO2. To demonstrate the applicability of high-harmonic spectroscopy to solids, we exploit the EUV spectra to gain access to fine details of the energy dispersion profile of the conduction band that are as yet inaccessible by photoemission spectroscopy in wide-bandgap dielectrics. In addition, we use the EUV spectra to trace the attosecond control of the intraband electron motion induced by synthesized optical transients. Our work advances lightwave electronics in condensed matter into the realm of multi-petahertz frequencies and their attosecond control, and marks the advent of solid-state EUV photonics.

  5. Extreme ultraviolet high-harmonic spectroscopy of solids.

    PubMed

    Luu, T T; Garg, M; Kruchinin, S Yu; Moulet, A; Hassan, M Th; Goulielmakis, E

    2015-05-28

    Extreme ultraviolet (EUV) high-harmonic radiation emerging from laser-driven atoms, molecules or plasmas underlies powerful attosecond spectroscopy techniques and provides insight into fundamental structural and dynamic properties of matter. The advancement of these spectroscopy techniques to study strong-field electron dynamics in condensed matter calls for the generation and manipulation of EUV radiation in bulk solids, but this capability has remained beyond the reach of optical sciences. Recent experiments and theoretical predictions paved the way to strong-field physics in solids by demonstrating the generation and optical control of deep ultraviolet radiation in bulk semiconductors, driven by femtosecond mid-infrared fields or the coherent up-conversion of terahertz fields to multi-octave spectra in the mid-infrared and optical frequencies. Here we demonstrate that thin films of SiO2 exposed to intense, few-cycle to sub-cycle pulses give rise to wideband coherent EUV radiation extending in energy to about 40 electronvolts. Our study indicates the association of the emitted EUV radiation with intraband currents of multi-petahertz frequency, induced in the lowest conduction band of SiO2. To demonstrate the applicability of high-harmonic spectroscopy to solids, we exploit the EUV spectra to gain access to fine details of the energy dispersion profile of the conduction band that are as yet inaccessible by photoemission spectroscopy in wide-bandgap dielectrics. In addition, we use the EUV spectra to trace the attosecond control of the intraband electron motion induced by synthesized optical transients. Our work advances lightwave electronics in condensed matter into the realm of multi-petahertz frequencies and their attosecond control, and marks the advent of solid-state EUV photonics. PMID:26017451

  6. Refractory dissolved organic nitrogen accumulation in high-elevation lakes.

    PubMed

    Goldberg, S J; Ball, G I; Allen, B C; Schladow, S G; Simpson, A J; Masoom, H; Soong, R; Graven, H D; Aluwihare, L I

    2015-01-01

    The role of dissolved organic matter (DOM) as either a sink for inorganic nutrients or an additional nutrient source is an often-neglected component of nutrient budgets in aquatic environments. Here, we examined the role of DOM in reactive nitrogen (N) storage in Sierra Nevada (California, USA) lakes where atmospheric deposition of N has shifted the lakes toward seasonal phosphorus (P)-limitation. Nuclear magnetic resonance (NMR) spectroscopy and isotope analyses performed on DOM isolated from Lake Tahoe reveal the accumulation of refractory proteinaceous material with a 100-200-year residence time. In contrast, smaller lakes in the same watershed contain DOM with typical terrestrial characteristics, indicating that proteins in Lake Tahoe are autochthonously produced. These data support the role of DOM as a possible sink for reactive N in these lake ecosystems and identify a potential role for DOM in affecting the inorganic nutrient stoichiometry of these environments. PMID:25704539

  7. Towards High Accuracy Reflectometry for Extreme-Ultraviolet Lithography.

    PubMed

    Tarrio, Charles; Grantham, Steven; Squires, Matthew B; Vest, Robert E; Lucatorto, Thomas B

    2003-01-01

    Currently the most demanding application of extreme ultraviolet optics is connected with the development of extreme ultraviolet lithography. Not only does each of the Mo/Si multilayer extreme-ultraviolet stepper mirrors require the highest attainable reflectivity at 13 nm (nearly 70 %), but the central wavelength of the reflectivity of these mirrors must be measured with a wavelength repeatability of 0.001 nm and the peak reflectivity of the reflective masks with a repeatability of 0.12 %. We report on two upgrades of our NIST/DARPA Reflectometry Facility that have given us the ability to achieve 0.1 % repeatability and 0.3 % absolute uncertainty in our reflectivity measurements. A third upgrade, a monochromator with thermal and mechanical stability for improved wavelength repeatability, is currently in the design phase.

  8. Transformation and accumulation of PAH and bound residues in soil under extreme conditions - a risk assessment approach

    NASA Astrophysics Data System (ADS)

    Eschenbach, Annette

    2010-05-01

    The degradation of PAH in contaminated soil does not proceed completely in the majority of cases. However microorganisms which are able to degrade PAH are present in PAH-contaminated soils normally. A total degradation of PAH in contaminated soils is often limited by a lack of bioavailability, which results from a lack of mass transfer. The analytical depletion of contaminants in soil is not only based on degradation processes but also on a fixation or immobilization of the xenobiotic substances as stronger adsorbed to or bound residues in the soil matrix. These bound residues were verified by using 14C-labelled PAH in different soil samples. To evaluate the long term fate of theses PAH-residues the stability and transformation of 14C-labelled non-extractable PAH-residues was investigated in detail under different extreme ecological and climate conditions such as biological stress, freezing and thawing cycles, and chemical worst case conditions. The transformation and remobilization of non-extractable PAH-residues was observed in long-time experiments and was very limited in general (Eschenbach et al. 2001). Only small amounts of non extractable residues were transformed and converted to CO2 and thereby detoxified. However the treatment with a complexing agent led to an increase of extractable 14C-activity. In a further set of experiments the long term risk of a groundwater contamination was assessed. Therefore the elution rate of 14C-PAH was investigated by a routinely usable column test system. It was found that the PAH elution was not solely controlled by desorption processes. The extractable PAH concentrations and elution rates were affected by the mineralization and formation of bound residues as well. For the assessment of the maximum PAH release rate the soil material was treated by extreme and worst case conditions as well. The impact of the elution of bidestillated water, of repeated freeze-thaw cycles and a simulation of acidic rain was investigated. The

  9. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non

  10. Mineral accumulation by perennial grasses in a high rainfall environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Straw produced as a co-product of perennial ryegrass (Lolium perenne L.), orchardgrass (Dactylis glomerata), tall fescue (Schedonorus phoenix (Scop.) Holub), and Kentucky bluegrass (Poa pratensis L.) seed production in the high rainfall area of western Oregon as well as clippings from urban and recr...

  11. Identification of Extremely Premature Infants at High Risk of Rehospitalization

    PubMed Central

    Carlo, Waldemar A.; McDonald, Scott A.; Yao, Qing; Das, Abhik; Higgins, Rosemary D.

    2011-01-01

    OBJECTIVE: Extremely low birth weight infants often require rehospitalization during infancy. Our objective was to identify at the time of discharge which extremely low birth weight infants are at higher risk for rehospitalization. METHODS: Data from extremely low birth weight infants in Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network centers from 2002–2005 were analyzed. The primary outcome was rehospitalization by the 18- to 22-month follow-up, and secondary outcome was rehospitalization for respiratory causes in the first year. Using variables and odds ratios identified by stepwise logistic regression, scoring systems were developed with scores proportional to odds ratios. Classification and regression-tree analysis was performed by recursive partitioning and automatic selection of optimal cutoff points of variables. RESULTS: A total of 3787 infants were evaluated (mean ± SD birth weight: 787 ± 136 g; gestational age: 26 ± 2 weeks; 48% male, 42% black). Forty-five percent of the infants were rehospitalized by 18 to 22 months; 14.7% were rehospitalized for respiratory causes in the first year. Both regression models (area under the curve: 0.63) and classification and regression-tree models (mean misclassification rate: 40%–42%) were moderately accurate. Predictors for the primary outcome by regression were shunt surgery for hydrocephalus, hospital stay of >120 days for pulmonary reasons, necrotizing enterocolitis stage II or higher or spontaneous gastrointestinal perforation, higher fraction of inspired oxygen at 36 weeks, and male gender. By classification and regression-tree analysis, infants with hospital stays of >120 days for pulmonary reasons had a 66% rehospitalization rate compared with 42% without such a stay. CONCLUSIONS: The scoring systems and classification and regression-tree analysis models identified infants at higher risk of rehospitalization and might assist planning for care after

  12. HIGH INTENSITY EFFECTS IN THE SNS ACCUMULATOR RING

    SciTech Connect

    Holmes, Jeffrey A; Cousineau, Sarah M; Danilov, Viatcheslav; Plum, Michael A; Shishlo, Andrei P

    2008-01-01

    Currently operating at 0.5 MW beam power on target, the Spallation Neutron Source (SNS) is already the world's most powerful pulsed neutron source. However, we are only one third of the way to full power. As we ramp toward full power, the control of the beam and beam loss in the ring will be critical. In addition to practical considerations, such as choice of operating point, painting scheme, RF bunching, and beam scattering, it may be necessary to understand and mitigate collective effects due to space charge, impedances, and electron clouds. At each stage of the power ramp-up, we use all available resources to understand and to minimize beam losses. From the standpoint of beam dynamics, the losses observed so far under normal operating conditions have not involved collective phenomena. We are now entering the intensity regime in which this may change. In dedicated high intensity beam studies, we have already observed resistive wall, extraction kicker impedance-driven, and electron cloud activities. The analysis and simulation of this data are important ongoing activities at SNS. This paper discusses the status of this work, as well as other considerations necessary to the successful full power operation of SNS.

  13. High-order harmonic generation yielding tunable extreme-ultraviolet radiation of high spectral purity.

    PubMed

    Brandi, F; Neshev, D; Ubachs, W

    2003-10-17

    Production of extreme-ultraviolet radiation by high-order harmonic generation is demonstrated to yield unprecedented spectral purity of lambda/Delta lambda=2.5 x 10(5) at wavelengths covering the entire range 40-100 nm. Tunability and sub-cm(-1) bandwidth of the harmonics are demonstrated in recordings of the He (1s4p) and Ar (3p(5)3d') resonance lines at 52.2 and 86.6 nm. Frequency shift of the harmonics due to chirp-induced phenomena are investigated and found to be small, resulting in a frequency accuracy of about 5 x 10(-7) in the domain of extreme-ultraviolet radiation.

  14. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  15. High accumulation of arsenic in the esophagus of mice after exposure to arsenite.

    PubMed

    Sumi, Daigo; Tsurumoto, Miyu; Yoshino, Yuri; Inoue, Masahisa; Yokobori, Takehiko; Kuwano, Hiroyuki; Himeno, Seiichiro

    2015-10-01

    Arsenic-induced toxicity appears to be dependent on the tissue- or cell-specific accumulation of this metalloid. An early study showed that arsenic was retained in the esophagus as well as the liver, kidney cortex and skin of marmosets after intraperitoneal administration of (74)As-arsenite. However, there is little available information regarding the distribution of arsenic in the esophagus. Here, we compared the retention of arsenic in the esophagus, liver, lung, kidney and heart in mice intraperitoneally administered 1 or 5 mg/kg sodium arsenite (As(III)) daily for 3 or 7 days. The results showed that the arsenic concentration was highest in the esophagus. We compared the mRNA levels of aquaglyceroporin (AQP) 3, AQP7 and AQP9, which are responsible for arsenic influx, and those of multidrug-resistance protein (MRP) 1 and MRP2, which are responsible for arsenic efflux. The levels of AQP3 mRNA in the esophagus were much higher than those in liver, lung and heart, while the mRNA levels of MRP2 were very low in the esophagus. In addition, we found extremely low expression of Nrf2 in the esophagus at the basal and under the activated conditions, which might have resulted in low levels of glutamyl-cysteine ligase catalytic and modulatory subunits, and subsequently in the low levels of glutathione. Thus, the highest retention of arsenic was detected in the esophagus after intraperitoneal administration of As(III) to mice, and this appeared to result from multiple factors, including high expression of AQP3, low expression of MRP2, low capacity of glutathione synthesis and low activation of Nrf2.

  16. Reliability of high I/O high density CCGA interconnect electronic packages under extreme thermal environments

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2012-03-01

    Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surfacemount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions.

  17. Estimation of friction velocity from the wind-wave spectrum at extremely high wind speeds

    NASA Astrophysics Data System (ADS)

    Takagaki, N.; Komori, S.; Suzuki, N.

    2016-05-01

    The equilibrium range of wind-waves at normal and extremely high wind speeds was investigated experimentally using a high-speed wind-wave tank together with field measurements at normal wind speeds. Water level fluctuations at normal and extremely high wind speeds were measured with resistance-type wave gauges, and the wind-wave spectrum and significant phase velocity were calculated. The equilibrium range constant was estimated from the wind-wave spectrum and showed the strong relationship with inverse wave age at normal and extremely high wind speeds. Using the strong relation between the equilibrium range constant and inverse wave age, a new method for estimating the wind speed at 10-m height (U 10) and friction velocity (u*) was proposed. The results suggest that U 10 and u* can be estimated from wave measurements alone at extremely high wind speeds in oceans under tropical cyclones.

  18. Metronidazole as a protector of cells from electromagnetic radiation of extremely high frequencies

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Pavel E.; Malinina, Ulia A.; Popyhova, Era B.; Rogacheva, Svetlana M.; Somov, Alexander U.

    2006-08-01

    It is well known that weak electromagnetic fields of extremely high frequencies cause significant modification of the functional status of biological objects of different levels of organization. The aim of the work was to study the combinatory effect of metronidazole - the drug form of 1-(2'hydroxiethil)-2-methil-5-nitroimidazole - and electromagnetic radiation of extremely high frequencies (52...75 GHz) on the hemolytic stability of erythrocytes and hemotaxis activity of Infusoria Paramecium caudatum.

  19. Equiatomic CoPt thin films with extremely high coercivity

    SciTech Connect

    Varghese, Binni; Piramanayagam, S. N. Yang, Yi; Kai Wong, Seng; Khume Tan, Hang; Kiat Lee, Wee; Okamoto, Iwao

    2014-05-07

    In this paper, magnetic and structural properties of near-equiatomic CoPt thin films, which exhibited a high coercivity in the film-normal direction—suitable for perpendicular magnetic recording media applications—are reported. The films exhibited a larger coercivity of about 6.5 kOe at 8 nm. The coercivity showed a monotonous decrease as the film thickness was increased. The transmission electron microscopy images indicated that the as fabricated CoPt film generally consists of a stack of magnetically hard hexagonal-close-packed phase, followed by stacking faults and face-centred-cubic phase. The thickness dependent magnetic properties are explained on the basis of exchange-coupled composite media. Epitaxial growth on Ru layers is a possible factor leading to the unusual observation of magnetically hard hcp-phase at high concentrations of Pt.

  20. Adaptation potential of naturally ventilated barns to high temperature extremes: The OptiBarn project

    NASA Astrophysics Data System (ADS)

    Menz, Christoph

    2016-04-01

    Climate change interferes with various aspects of the socio-economic system. One important aspect is its influence on animal husbandry, especially dairy faming. Dairy cows are usually kept in naturally ventilated barns (NVBs) which are particular vulnerable to extreme events due to their low adaptation capabilities. An effective adaptation to high outdoor temperatures for example, is only possible under certain wind and humidity conditions. High temperature extremes are expected to increase in number and strength under climate change. To assess the impact of this change on NVBs and dairy cows also the changes in wind and humidity needs to be considered. Hence we need to consider the multivariate structure of future temperature extremes. The OptiBarn project aims to develop sustainable adaptation strategies for dairy housings under climate change for Europe, by considering the multivariate structure of high temperature extremes. In a first step we identify various multivariate high temperature extremes for three core regions in Europe. With respect to dairy cows in NVBs we will focus on the wind and humidity field during high temperature events. In a second step we will use the CORDEX-EUR-11 ensemble to evaluate the capability of the RCMs to model such events and assess their future change potential. By transferring the outdoor conditions to indoor climate and animal wellbeing the results of this assessment can be used to develop technical, architectural and animal specific adaptation strategies for high temperature extremes.

  1. Extremely high electron mobility in a phonon-glass semimetal.

    PubMed

    Ishiwata, S; Shiomi, Y; Lee, J S; Bahramy, M S; Suzuki, T; Uchida, M; Arita, R; Taguchi, Y; Tokura, Y

    2013-06-01

    The electron mobility is one of the key parameters that characterize the charge-carrier transport properties of materials, as exemplified by the quantum Hall effect as well as high-efficiency thermoelectric and solar energy conversions. For thermoelectric applications, introduction of chemical disorder is an important strategy for reducing the phonon-mediated thermal conduction, but is usually accompanied by mobility degradation. Here, we show a multilayered semimetal β-CuAgSe overcoming such a trade-off between disorder and mobility. The polycrystalline ingot shows a giant positive magnetoresistance and Shubnikov de Haas oscillations, indicative of a high-mobility small electron pocket derived from the Ag s-electron band. Ni doping, which introduces chemical and lattice disorder, further enhances the electron mobility up to 90,000 cm(2) V(-1) s(-1) at 10 K, leading not only to a larger magnetoresistance but also a better thermoelectric figure of merit. This Ag-based layered semimetal with a glassy lattice is a new type of promising thermoelectric material suitable for chemical engineering.

  2. High Performance Multivariate Visual Data Exploration for Extremely Large Data

    SciTech Connect

    Rubel, Oliver; Wu, Kesheng; Childs, Hank; Meredith, Jeremy; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Ahern, Sean; Weber, Gunther H.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes; Prabhat,

    2008-08-22

    One of the central challenges in modern science is the need to quickly derive knowledge and understanding from large, complex collections of data. We present a new approach that deals with this challenge by combining and extending techniques from high performance visual data analysis and scientific data management. This approach is demonstrated within the context of gaining insight from complex, time-varying datasets produced by a laser wakefield accelerator simulation. Our approach leverages histogram-based parallel coordinates for both visual information display as well as a vehicle for guiding a data mining operation. Data extraction and subsetting are implemented with state-of-the-art index/query technology. This approach, while applied here to accelerator science, is generally applicable to a broad set of science applications, and is implemented in a production-quality visual data analysis infrastructure. We conduct a detailed performance analysis and demonstrate good scalability on a distributed memory Cray XT4 system.

  3. Phosphatidylserine Reversibly Binds Cu2+ with Extremely High Affinity

    PubMed Central

    Monson, Christopher F.; Cong, Xiao; Robison, Aaron; Pace, Hudson P.; Liu, Chunming; Poyton, Matthew F.; Cremer, Paul S.

    2012-01-01

    Phosphatidylserine (PS) embedded within supported lipid bilayers (SLBs) was found to bind Cu2+ from solution with extraordinarily high affinity. In fact, the equilibrium dissociation constant was in the femtomolar range. The resulting complex formed in a 1:2 Cu2+ to PS ratio and quenches a broad spectrum of lipid-bound fluorophores in a reversible and pH-dependent fashion. At acidic pH values, the fluorophores were almost completely unquenched, while at basic pH values significant quenching (85–90%) was observed. The pH at which the transition occurred was dependent on the PS concentration and ranged from approximately pH 5 to 8. The quenching kinetics was slow at low Cu2+ concentrations and basic values pH (up to several hours), while the unquenching reaction was orders of magnitude more rapid upon lowering the pH. This was consistent with diffusion limited complex formation at basic pH, but rapid dissociation under acidic conditions. The tight binding of Cu2+ to PS may have physiological consequences under certain circumstances. PMID:22548290

  4. An extremely high altitude plume seen at Mars morning terminator

    NASA Astrophysics Data System (ADS)

    Sanchez-Lavega, Agustin; Garcia-Muñoz, Antonio; Garcia-Melendo, Enrique; Perez-Hoyos, Santiago; Gomez-Forrellad, Josep M.; Pellier, Christophe; Delcroix, Marc; Lopez-Valverde, Miguel Angel; Gonzalez-Galindo, Francisco; Jaeschke, Wayne; Parker, Donald C.; Phillips, James H.; Peach, Damian

    2014-11-01

    We report the occurrence in March and April 2012 of two bright very high altitude plumes at the Martian terminator at 250 km or more above the surface, thus well into the ionosphere and bordering on the exosphere. They were located at about 195 deg West longitude and -45 deg latitude (at Terra Cimmeria) and lasted for about 10 days. The features showed day-to-day variability, and were seen at the morning terminator but not at the evening limb, which indicates rapid evolution in less than 10 hours and a cyclic behavior. Photometric measurements are used to explore two possible scenarios to explain their nature. If the phenomenon is due to suspended particles (dust, CO2 or H2O ice clouds) reflecting solar radiation, the mean size is about 0.1 microns with a nadir optical depth > 0.06. Alternatively, the plume could be auroral emission above a region with a strong magnetic anomaly and where aurora has previously been detected. Importantly, both explanations defy our current understanding of the Mars upper atmosphere.AcknowledgementsThis work was supported by the Spanish MINECO projects AYA2012-36666 with FEDER support, CONSOLIDER program ASTROMOL CSD2009-00038 and AYA2011-30613-CO2-1. Grupos Gobierno Vasco IT765-13 and UPV/EHU UFI11/55.

  5. Effects of frequency of "extreme" temperature highs on development of soybean rust.

    PubMed

    Bonde, M R; Nester, S E; Berner, D K

    2013-07-01

    Previously, we hypothesized that summer "extreme" diurnal temperature highs in the southeastern United States were responsible for the yearly absence or delay of soybean rust development until fall. Utilizing temperature-controlled growth chambers, a diurnal temperature pattern of 33°C high and 20°C low reduced urediniospore production by 81%. However, that study did not consider the influence of frequency of extreme temperatures on soybean rust. We now report that a temperature high of 35°C for 1 h on three consecutive days, initiated 15 days after inoculation, when lesions had formed, reduced urediniospore production by 50% and required 9 to 12 days for sporulation to resume once the extreme temperature highs ceased. Furthermore, three consecutive days in which the temperature high was 37°C, beginning immediately after inoculation and subsequent dew period, reduced lesion numbers by 60%. The combined effects of reduced numbers of lesions and urediniospores per lesion caused by extreme temperature highs can account for observed absence or delay of soybean rust development in the southeastern United States until fall. A comparison of frequency of extreme temperature highs with numbers of counties reporting presence of soybean rust from 2005 to 2012 verified that extreme temperature highs may be largely responsible for absence or delay of soybean rust development. This is the first report showing the effect of frequency of extreme temperature highs on development of soybean rust. Because the south-to-north progression of soybean rust is required for the disease to occur in the major soybean-production regions of the United States, temperatures in the southeastern United States have a major effect on the entire U.S. soybean industry.

  6. Interannual to millennial variability of climate extreme indices over Europe: evidence from high resolution proxy data

    NASA Astrophysics Data System (ADS)

    Rimbu, Norel; Ionita, Monica; Lohmann, Gerrit

    2016-04-01

    Interannual to millennial time scale variability of precipitation (R20mm, Rx5day, R95pTOT), cold (TN10p, CSDI and CFD), heat (TX90p and WSDI) and drought (CDD) extreme climate indices is investigated using long-term observational and proxy records. We detect significant correlations between these indices and various high resolution proxy records like lake sediments from southern Germany, stable oxygen isotopes from Greenland ice cores and stable oxygen isotopes from Red Sea corals during observational period. The analysis of long-term reanalysis data in combination with extreme climate indices and proxy data reveals that distinct atmospheric circulation patterns explain most of the identified relationships. In particular, we show that a sediment record from southern Germany (lake Ammersee), which records flood frequency of River Ammer during the last 5500 years, is related to a wave-train atmospheric circulation pattern with a pronounced negative center over western Europe. We show that high frequency of River Ammer floods is related not only to high frequency of extreme precipitation events (R95p) in the Ammer region but also with significant positive anomalies of various extreme temperature indices (TX90p and TXx) over northeastern Europe. Such extreme temperatures are forced by cloudiness anomaly pattern associated with flood related atmospheric circulation pattern. Based on this record we discuss possible interannual to millennial scale variations of extreme precipitation and temperature indices over Europe during the last 5500 years. Coherent variations of extreme precipitation and temperature indices over Europe and stable oxygen isotopes from Greenland ice cores and northern Red Sea corals during observational period are related to atmospheric blocking variability in the North Atlantic region. Possible variations of climate extreme indices during different time slices of the Holocene period and their implications for future extreme climate variability are

  7. The HSP terminator of Arabidopsis thaliana induces a high level of miraculin accumulation in transgenic tomatoes.

    PubMed

    Hirai, Tadayoshi; Kurokawa, Natsuko; Duhita, Narendra; Hiwasa-Tanase, Kyoko; Kato, Kazuhisa; Kato, Ko; Ezura, Hiroshi

    2011-09-28

    High-level accumulation of the target recombinant protein is a significant issue in heterologous protein expression using transgenic plants. Miraculin, a taste-modifying protein, was accumulated in transgenic tomatoes using an expression cassette in which the miraculin gene was expressed by the cauliflower mosaic virus (CaMV) 35S promoter and the heat shock protein (HSP) terminator (MIR-HSP). The HSP terminator was derived from heat shock protein 18.2 in Arabidopsis thaliana . Using this HSP-containing cassette, the miraculin concentration in T0 transgenic tomato lines was 1.4-13.9% of the total soluble protein (TSP), and that in the T1 transgenic tomato line homozygous for the miraculin gene reached 17.1% of the TSP. The accumulation level of the target protein was comparable to levels observed with chloroplast transformation. The high-level accumulation of miraculin in T0 transgenic tomato lines achieved by the HSP terminator was maintained in the successive T1 generation, demonstrating the genetic stability of this accumulation system. PMID:21861502

  8. Regional-Scale High-Latitude Extreme Geoelectric Fields Pertaining to Geomagnetically Induced Currents

    NASA Technical Reports Server (NTRS)

    Pulkkinen, Antti; Bernabeu, Emanuel; Eichner, Jan; Viljanen, Ari; Ngwira, Chigomezyo

    2015-01-01

    Motivated by the needs of the high-voltage power transmission industry, we use data from the high-latitude IMAGE magnetometer array to study characteristics of extreme geoelectric fields at regional scales. We use 10-s resolution data for years 1993-2013, and the fields are characterized using average horizontal geoelectric field amplitudes taken over station groups that span about 500-km distance. We show that geoelectric field structures associated with localized extremes at single stations can be greatly different from structures associated with regionally uniform geoelectric fields, which are well represented by spatial averages over single stations. Visual extrapolation and rigorous extreme value analysis of spatially averaged fields indicate that the expected range for 1-in-100-year extreme events are 3-8 V/km and 3.4-7.1 V/km, respectively. The Quebec reference ground model is used in the calculations.

  9. Extreme-ultraviolet beam-foil spectroscopy of highly ionized neon and argon. Doctoral thesis

    SciTech Connect

    Demarest, J.A.

    1986-08-01

    A study of the extreme-ultraviolet radiation emitted by ion beams of highly ionized neon and argon after passage through thin foils was conducted. A grazing-incidence spectrometer was equipped with a position-sensitive microchannel plate (MCP) detector, which improved the detection efficiency by two orders of magnitude. The position information of the MCP was determined to be linear over 90% of the 50-mm-wide detector. Spectra spanning regions of over 100 A were accumulated at a resolution of less than 1 A. A wavelength calibration based on a second order equation of spectrometer position was found to result in an accuracy of - 0.1 A. Over 40 transitions of Ne VIII, Ne IX, and Ne X were observed in the wavelength region from 350 to 30 A from n=2-3,4,5; n=3-4,5,6,7,8; n=4-6,7; and n=5-9. An intensity calibration of the detection system allowed the determination of the relative populations of n=3 states of Ne VIII and Ne IX. An overpopulation of states with low orbital angular momenta support electron-capture predictions by the first-order Born approximation. The argon beam-foil data confirmed the wavelength predictions of 30 previously unobserved transitions in the wavlength region from 355 to 25 A from n=2-2; n=3-4; n=4-5,6,7; and n=6-8. Lifetime determinations were made by the simultaneous measurement of 26 argon lines in the spectral region from 295-180 A. Many of the n=2-2 transitions agreed well with theory.

  10. Sugar loss and enzyme inhibition due to oligosaccharides accumulation during high solids-loading enzymatic hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oligosaccharide accumulation occurs during high solid loading enzymatic hydrolysis of corn stover (CS) irrespective of using different pretreated corn stover (dilute acid: DA, ionic liquids: IL, ammonia fiber expansion: AFEX and extractive ammonia: EA). The methodology for large-scale separation of ...

  11. COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions.

    PubMed

    Maier, Alexander; Hoecker, Ute

    2015-01-01

    In Arabidopsis and many other plant species, anthocyanin pigments accumulate only after light exposure and not in darkness. Excess light of very high fluence rates leads to a further, very strong increase in anthocyanin levels. How excess light is sensed is not well understood. Here, we show that mutations in the key repressor of light signaling, the COP1/SPA complex, cause a strong hyperaccumulation of anthocyanins not only under normal light but also under excess, high light conditions. Hence, normal light signaling via COP1/SPA is required to prevent hyperaccumulation of anthocyanins under these high light conditions. However, since cop1 and spa mutants show a similar high-light responsiveness of anthocyanin accumulation as the wild type it remains to be resolved whether COP1/SPA is directly involved in the high-light response itself.

  12. Prospects of hydroacoustic detection of ultra-high and extremely high energy cosmic neutrinos

    NASA Astrophysics Data System (ADS)

    Dedenko, L. G.; Karlik, Ya. S.; Learned, J. G.; Svet, V. D.; Zheleznykh, I. M.

    2001-07-01

    The prospects of construction of deep underwater neutrino telescopes in the world's oceans for the goals of ultra-high and super-high energy neutrino astrophysics (astronomy) using acoustic technologies are reviewed. The effective detection volume of the acoustic neutrino telescopes can be far greater than a cubic kilometer for extreme energies. In recent years, it was proposed that an existing hydroacoustic array of 2400 hydrophones in the Pacific Ocean near Kamchatka Peninsula could be used as a test base for an acoustic neutrino telescope SADCO (Sea-based Acoustic Detector of Cosmic Objects) which should be capable of detecting acoustic signals produced in water by the cosmic neutrinos with energies 1019-21 eV (e.g., topological defect neutrinos). We report on simulations of super-high energy electron-hadron and electron-photon cascades with the Landau-Pomeranchuk-Migdal effect taken into account. Acoustic signals emitted by neutrino-induced cascades with energies 1020-21 eV were calculated. The possibilities of using a converted hydroacoustic station MG-10 (MG-10M) of 132 hydrophones as a basic module for a deep water acoustic neutrino detector with the threshold detection energy 1015 eV in the Mediterranean Sea are analyzed (with the aim of searching for neutrinos with energies 1015-16 eV from Active Galactic Nuclei). .

  13. Characterization of upregulated genes associated with high phosphorus accumulation in cucumber.

    PubMed

    Padmanabhan, Priya; Venkatachalam, Perumal; Sahi, Shivendra V

    2011-12-01

    Excessive application of phosphorus (P)-rich manures to agricultural lands often results in P-accumulation in soils leading to water pollution through runoffs and leaching. Use of suitable plant species that can extract and sequester excess P from soil into their biomass is an effective method of remediation of P-contaminated soils. Knowledge on the molecular responses of plants to high P-accumulation and tolerance is lacking. Therefore, a suppression subtractive hybridization (SSH) strategy was employed to identify and elucidate the pattern of gene expression related to P-tolerance and accumulation in cucumber (Cucumis sativus L.), a P-accumulator plant. RNA isolated from cucumber grown in high P was used for 'tester' cDNA synthesis and SSH library preparation. A total of 63 cDNAs were identified as showing upregulated expression in this plant in response to high P. No putative function could be assigned to 7 (11%) of the 63 upregulated high P-modulated genes and 11 expressed sequence tags (ESTs) (17%) did not match database entries. The remaining 45 ESTs were grouped into five functional classes. The majority of these ESTs belonged to three groups: 'metabolism', 'protein synthesis/degradation and signaling' and 'cell structure/cell wall'. Only six 'stress/defense'-related ESTs were identified from this library. The results of reverse northern blot analysis was further confirmed and validated through semi-quantitative RT-PCR carried out with representative ESTs identified in this study. The research reported here may contribute to a preliminary understanding of the high P-related gene expression in this P-accumulating plant. PMID:21883253

  14. Effects of high ammonium level on biomass accumulation of common duckweed Lemna minor L.

    PubMed

    Wang, Wenguo; Yang, Chuang; Tang, Xiaoyu; Gu, Xinjiao; Zhu, Qili; Pan, Ke; Hu, Qichun; Ma, Danwei

    2014-12-01

    Growing common duckweed Lemna minor L. in diluted livestock wastewater is an alternative option for pollutants removal and consequently the accumulated duckweed biomass can be used for bioenergy production. However, the biomass accumulation can be inhibited by high level of ammonium (NH4 (+)) in non-diluted livestock wastewater and the mechanism of ammonium inhibition is not fully understood. In this study, the effect of high concentration of NH4 (+) on L. minor biomass accumulation was investigated using NH4 (+) as sole source of nitrogen (N). NH4 (+)-induced toxicity symptoms were observed when L. minor was exposed to high concentrations of ammonium nitrogen (NH4 (+)-N) after a 7-day cultivation. L. minor exposed to the NH4 (+)-N concentration of 840 mg l(-1) exhibited reduced relative growth rate, contents of carbon (C) and photosynthetic pigments, and C/N ratio. Ammonium irons were inhibitory to the synthesis of photosynthetic pigments and caused C/N imbalance in L. minor. These symptoms could further cause premature senescence of the fronds, and restrain their reproduction, growth and biomass accumulation. L. minor could grow at NH4 (+)-N concentrations of 7-84 mg l(-1) and the optimal NH4 (+)-N concentration was 28 mg l(-1).

  15. Effects of high ammonium level on biomass accumulation of common duckweed Lemna minor L.

    PubMed

    Wang, Wenguo; Yang, Chuang; Tang, Xiaoyu; Gu, Xinjiao; Zhu, Qili; Pan, Ke; Hu, Qichun; Ma, Danwei

    2014-12-01

    Growing common duckweed Lemna minor L. in diluted livestock wastewater is an alternative option for pollutants removal and consequently the accumulated duckweed biomass can be used for bioenergy production. However, the biomass accumulation can be inhibited by high level of ammonium (NH4 (+)) in non-diluted livestock wastewater and the mechanism of ammonium inhibition is not fully understood. In this study, the effect of high concentration of NH4 (+) on L. minor biomass accumulation was investigated using NH4 (+) as sole source of nitrogen (N). NH4 (+)-induced toxicity symptoms were observed when L. minor was exposed to high concentrations of ammonium nitrogen (NH4 (+)-N) after a 7-day cultivation. L. minor exposed to the NH4 (+)-N concentration of 840 mg l(-1) exhibited reduced relative growth rate, contents of carbon (C) and photosynthetic pigments, and C/N ratio. Ammonium irons were inhibitory to the synthesis of photosynthetic pigments and caused C/N imbalance in L. minor. These symptoms could further cause premature senescence of the fronds, and restrain their reproduction, growth and biomass accumulation. L. minor could grow at NH4 (+)-N concentrations of 7-84 mg l(-1) and the optimal NH4 (+)-N concentration was 28 mg l(-1). PMID:25056754

  16. Accumulate-Repeat-Accumulate-Accumulate-Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Thorpe, Jeremy

    2004-01-01

    Inspired by recently proposed Accumulate-Repeat-Accumulate (ARA) codes [15], in this paper we propose a channel coding scheme called Accumulate-Repeat-Accumulate-Accumulate (ARAA) codes. These codes can be seen as serial turbo-like codes or as a subclass of Low Density Parity Check (LDPC) codes, and they have a projected graph or protograph representation; this allows for a high-speed iterative decoder implementation using belief propagation. An ARAA code can be viewed as a precoded Repeat-and-Accumulate (RA) code with puncturing in concatenation with another accumulator, where simply an accumulator is chosen as the precoder; thus ARAA codes have a very fast encoder structure. Using density evolution on their associated protographs, we find examples of rate-lJ2 ARAA codes with maximum variable node degree 4 for which a minimum bit-SNR as low as 0.21 dB from the channel capacity limit can be achieved as the block size goes to infinity. Such a low threshold cannot be achieved by RA or Irregular RA (IRA) or unstructured irregular LDPC codes with the same constraint on the maximum variable node degree. Furthermore by puncturing the accumulators we can construct families of higher rate ARAA codes with thresholds that stay close to their respective channel capacity thresholds uniformly. Iterative decoding simulation results show comparable performance with the best-known LDPC codes but with very low error floor even at moderate block sizes.

  17. WEAK LINE QUASARS AT HIGH REDSHIFT: EXTREMELY HIGH ACCRETION RATES OR ANEMIC BROAD-LINE REGIONS?

    SciTech Connect

    Shemmer, Ohad; Trakhtenbrot, Benny; Netzer, Hagai; Anderson, Scott F.; Brandt, W. N.; Schneider, Donald P.; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Lira, Paulina; Plotkin, Richard M.; Richards, Gordon T.; Strauss, Michael A.

    2010-10-20

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad H{beta} line and place tight upper limits on the strengths of their [O III] lines. Virial, H{beta}-based black hole mass determinations indicate normalized accretion rates of L/L {sub Edd}=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of {Gamma} = 1.91{sup +0.24} {sub -0.22}, which supports the virial L/L {sub Edd} determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  18. Weak Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-line Regions?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Trakhtenbrot, Benny; Anderson, Scott F.; Brandt, W. N.; Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Lira, Paulina; Netzer, Hagai; Plotkin, Richard M.; Richards, Gordon T.; Schneider, Donald P.; Strauss, Michael A.

    2010-10-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad Hβ line and place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black hole mass determinations indicate normalized accretion rates of L/L Edd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ = 1.91+0.24 -0.22, which supports the virial L/L Edd determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  19. About the biological effects of high and extremely high frequency electromagnetic fields.

    PubMed

    Mileva, K; Georgieva, B; Radicheva, N

    2003-01-01

    This paper deals with the effects of high (microwave) and extremely high (millimetre waves, MMW) frequency electromagnetic fields on the membrane processes and ion channels, molecular complexes, excitable and other structures. Microwaves as well as millimetre waves are widely used in medical practice and in everyday life. The existence of interaction between the exogenous and endogenous electromagnetic fields with biological systems is now a subject of intense discussion. The most contentious question is the existence of a possible specific (non-thermal) effect of microwaves, unrelated to that caused by increased temperature. Although numerous data have been published on the possible non-thermal effects of the studied electromagnetic fields on different kinds of living systems, only little understanding is gained about the modes of microwave action. Here we review data, which provide evidence that non-thermal microwave effects do exist and may play a significant role. This evidence is based on research at all biological levels, from cell-free systems through cells, tissues and organs, to animal and human organisms. PMID:14570154

  20. High-resolution stochastic generation of extreme rainfall intensity for urban drainage modelling applications

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo

    2016-04-01

    Urban drainage response is highly dependent on the spatial and temporal structure of rainfall. Therefore, measuring and simulating rainfall at a high spatial and temporal resolution is a fundamental step to fully assess urban drainage system reliability and related uncertainties. This is even more relevant when considering extreme rainfall events. However, the current space-time rainfall models have limitations in capturing extreme rainfall intensity statistics for short durations. Here, we use the STREAP (Space-Time Realizations of Areal Precipitation) model, which is a novel stochastic rainfall generator for simulating high-resolution rainfall fields that preserve the spatio-temporal structure of rainfall and its statistical characteristics. The model enables a generation of rain fields at 102 m and minute scales in a fast and computer-efficient way matching the requirements for hydrological analysis of urban drainage systems. The STREAP model was applied successfully in the past to generate high-resolution extreme rainfall intensities over a small domain. A sub-catchment in the city of Luzern (Switzerland) was chosen as a case study to: (i) evaluate the ability of STREAP to disaggregate extreme rainfall intensities for urban drainage applications; (ii) assessing the role of stochastic climate variability of rainfall in flow response and (iii) evaluate the degree of non-linearity between extreme rainfall intensity and system response (i.e. flow) for a small urban catchment. The channel flow at the catchment outlet is simulated by means of a calibrated hydrodynamic sewer model.

  1. How extreme are extremes?

    NASA Astrophysics Data System (ADS)

    Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro

    2016-04-01

    High temperatures have an impact on the energy balance of any living organism and on the operational capabilities of critical infrastructures. Heat-wave indicators have been mainly developed with the aim of capturing the potential impacts on specific sectors (agriculture, health, wildfires, transport, power generation and distribution). However, the ability to capture the occurrence of extreme temperature events is an essential property of a multi-hazard extreme climate indicator. Aim of this study is to develop a standardized heat-wave indicator, that can be combined with other indices in order to describe multiple hazards in a single indicator. The proposed approach can be used in order to have a quantified indicator of the strenght of a certain extreme. As a matter of fact, extremes are usually distributed in exponential or exponential-exponential functions and it is difficult to quickly asses how strong was an extreme events considering only its magnitude. The proposed approach simplify the quantitative and qualitative communication of extreme magnitude

  2. Effect of Nutrient Starvation under High Irradiance on Lipid and Starch Accumulation in Chlorella fusca (Chlorophyta).

    PubMed

    Jerez, Celia G; Malapascua, José R; Sergejevová, Magda; Figueroa, Félix L; Masojídek

    2016-02-01

    The effect of nitrogen and sulphur limitation under high irradiance (PAR) was studied in the green microalga Chlorella fusca (Chlorophyta) in order to follow lipid and/or starch accumulation. Growth, biomass composition and the changes in photosynthetic activity (in vivo chlorophyll a fluorescence) were followed in the trials. The full nutrient culture showed high biomass production and starch accumulation at Day 1, when photosynthetic activity was high. Gradual deprivation (no nutrients added) became evident when photosynthesis was significantly suppressed (Day 3 onwards), which entailed a decrease of maximum relative electron transport rate (rETRmax) and increase of non-photochemical quenching (NPQ), accompanied by the onset of lipid accumulation and decline in starch content. In N- and S-starved cultures, rETRmax significantly decreased by Day 3, which caused a substantial drop in biomass production, cell number, biovolume and induction of lipid and starch accumulation. High starch content (45-50 % of DW) was found at the initial stage in full nutrient culture and at the stationary phase in nutrient-starved cultures. By the end of the trial, all treatments showed high lipid content (~30 % of DW). The full nutrient culture had higher biomass yield than starved treatments although starch (~0.2 g L(-1) day(-1)) and lipid (~0.15 g L(-1) day(-1) productivities were fairly similar in all the cultures. Our results showed that we could enrich biomass of C. fusca (% DW) in lipids using a two-stage strategy (a nutrient replete stage followed by gradual nutrient limitation) while under either procedure, N- or S-starvation, both high lipid and starch contents could be achieved.

  3. Accumulate-Repeat-Accumulate-Accumulate Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Thorpe, Jeremy

    2007-01-01

    Accumulate-repeat-accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate-repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity-check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.

  4. Wave-mixing with high-order harmonics in extreme ultraviolet region

    SciTech Connect

    Dao, Lap Van; Dinh, Khuong Ba; Le, Hoang Vu; Gaffney, Naylyn; Hannaford, Peter

    2015-01-12

    We report studies of the wave-mixing process in the extreme ultraviolet region with two near-infrared driving and controlling pulses with incommensurate frequencies (at 1400 nm and 800 nm). A non-collinear scheme for the two beams is used in order to spatially separate and to characterise the properties of the high-order wave-mixing field. We show that the extreme ultraviolet frequency mixing can be treated by perturbative, very high-order nonlinear optics; the modification of the wave-packet of the free electron needs to be considered in this process.

  5. [Characteristics of dry matter production and nitrogen accumulation in barley genotypes with high nitrogen utilization efficiency].

    PubMed

    Huang, Yi; Li, Ting-Xuan; Zhang, Xi-Zhou; Ji, Lin

    2014-07-01

    A pot experiment was conducted under low (125 mg x kg-1) and normal (250 mg x kg(-1)) nitrogen treatments. The nitrogen uptake and utilization efficiency of 22 barley cultivars were investigated, and the characteristics of dry matter production and nitrogen accumulation in barley were analyzed. The results showed that nitrogen uptake and utilization efficiency were different for barley under two nitrogen levels. The maximal values of grain yield, nitrogen utilization efficiency for grain and nitrogen harvest index were 2.87, 2.91 and 2.47 times as those of the lowest under the low nitrogen treatment. Grain yield and nitrogen utilization efficiency for grain and nitrogen harvest index of barley genotype with high nitrogen utilization efficiency were significantly greater than low nitrogen utilization efficiency, and the parameters of high nitrogen utilization efficiency genotype were 82.1%, 61.5% and 50.5% higher than low nitrogen utilization efficiency genotype under the low nitrogen treatment. Dry matter mass and nitrogen utilization of high nitrogen utilization efficiency was significantly higher than those of low nitrogen utilization efficiency. A peak of dry matter mass of high nitrogen utilization efficiency occurred during jointing to heading stage, while that of nitrogen accumulation appeared before jointing. Under the low nitrogen treatment, dry matter mass of DH61 and DH121+ was 34.4% and 38.3%, and nitrogen accumulation was 54. 8% and 58.0% higher than DH80, respectively. Dry matter mass and nitrogen accumulation seriously affected yield before jointing stage, and the contribution rates were 47.9% and 54.7% respectively under the low nitrogen treatment. The effect of dry matter and nitrogen accumulation on nitrogen utilization efficiency for grain was the largest during heading to mature stages, followed by sowing to jointing stages, with the contribution rate being 29.5% and 48.7%, 29.0% and 15.8%, respectively. In conclusion, barley genotype with high

  6. High aspect ratio tungsten grating on ultrathin Si membranes for extreme UV lithography

    NASA Astrophysics Data System (ADS)

    Peng, Xinsheng; Ying, Yulong

    2016-09-01

    Extreme ultraviolet lithography is one of the modern lithography tools for high-volume manufacturing with 22 nm resolution and beyond. But critical challenges exist to the design and fabrication of large-scale and highly efficient diffraction transmission gratings, significantly reducing the feature sizes down to 22 nm and beyond. To achieve such a grating, the surface flatness, the line edge roughness, the transmission efficiency and aspect ratio should be improved significantly. Delachat et al (2015 Nanotechnology 26 108262) develop a full process to fabricate a tungsten diffraction grating on an ultrathin silicon membrane with higher aspect ratio up to 8.75 that met all the aforementioned requirements for extreme ultraviolet lithography. This process is fully compatible with standard industrial extreme ultraviolet lithography.

  7. High aspect ratio tungsten grating on ultrathin Si membranes for extreme UV lithography.

    PubMed

    Peng, Xinsheng; Ying, Yulong

    2016-09-01

    Extreme ultraviolet lithography is one of the modern lithography tools for high-volume manufacturing with 22 nm resolution and beyond. But critical challenges exist to the design and fabrication of large-scale and highly efficient diffraction transmission gratings, significantly reducing the feature sizes down to 22 nm and beyond. To achieve such a grating, the surface flatness, the line edge roughness, the transmission efficiency and aspect ratio should be improved significantly. Delachat et al (2015 Nanotechnology 26 108262) develop a full process to fabricate a tungsten diffraction grating on an ultrathin silicon membrane with higher aspect ratio up to 8.75 that met all the aforementioned requirements for extreme ultraviolet lithography. This process is fully compatible with standard industrial extreme ultraviolet lithography. PMID:27458188

  8. Alaska pollack protein prevents the accumulation of visceral fat in rats fed a high fat diet.

    PubMed

    Oishi, Yoshie; Dohmoto, Nobuhiko

    2009-04-01

    In the first study (Study 1), 4-wk-old Sprague-Dawley (SD) rats were fed high fat diets containing casein, Alaska pollack, yellowfin tuna, or chicken as the protein source for 28 d. The purpose of this study was to compare the effect of Alaska pollack protein with other animal proteins (casein, yellowfin tuna, and chicken) on the prevention of visceral fat accumulation. We found that Alaska pollack protein was a more potent inhibitor of visceral fat accumulation than the other proteins (p<0.05). In the second study (Study 2), we determined the quantity of Alaska pollack protein needed to have an effect. To test this, 4-wk-old SD rats were fed diets containing different percentages of Alaska pollack proteins (0, 3, 10, 30 or 100%) to replace casein as the protein source for 28 d. The diets with 30 or 100% Alaska pollack protein as the protein source prevented visceral fat accumulation and elevated plasma adiponectin levels. Based on these findings, an inhibitory effect on the accumulation of visceral fats can be achieved by consuming a diet in which 30% or more of the total protein content comes from Alaska pollack. PMID:19436142

  9. Probability modeling of high flow extremes in Yingluoxia watershed, the upper reaches of Heihe River basin

    NASA Astrophysics Data System (ADS)

    Li, Zhanling; Li, Zhanjie; Li, Chengcheng

    2014-05-01

    Probability modeling of hydrological extremes is one of the major research areas in hydrological science. Most basins in humid and semi-humid south and east of China are concerned for probability modeling analysis of high flow extremes. While, for the inland river basin which occupies about 35% of the country area, there is a limited presence of such studies partly due to the limited data availability and a relatively low mean annual flow. The objective of this study is to carry out probability modeling of high flow extremes in the upper reach of Heihe River basin, the second largest inland river basin in China, by using the peak over threshold (POT) method and Generalized Pareto Distribution (GPD), in which the selection of threshold and inherent assumptions for POT series are elaborated in details. For comparison, other widely used probability distributions including generalized extreme value (GEV), Lognormal, Log-logistic and Gamma are employed as well. Maximum likelihood estimate is used for parameter estimations. Daily flow data at Yingluoxia station from 1978 to 2008 are used. Results show that, synthesizing the approaches of mean excess plot, stability features of model parameters, return level plot and the inherent independence assumption of POT series, an optimum threshold of 340m3/s is finally determined for high flow extremes in Yingluoxia watershed. The resulting POT series is proved to be stationary and independent based on Mann-Kendall test, Pettitt test and autocorrelation test. In terms of Kolmogorov-Smirnov test, Anderson-Darling test and several graphical diagnostics such as quantile and cumulative density function plots, GPD provides the best fit to high flow extremes in the study area. The estimated high flows for long return periods demonstrate that, as the return period increasing, the return level estimates are probably more uncertain. The frequency of high flow extremes exhibits a very slight but not significant decreasing trend from 1978 to

  10. A genome-wide analysis of putative functional and exonic variation associated with extremely high intelligence.

    PubMed

    Spain, S L; Pedroso, I; Kadeva, N; Miller, M B; Iacono, W G; McGue, M; Stergiakouli, E; Smith, G D; Putallaz, M; Lubinski, D; Meaburn, E L; Plomin, R; Simpson, M A

    2016-08-01

    Although individual differences in intelligence (general cognitive ability) are highly heritable, molecular genetic analyses to date have had limited success in identifying specific loci responsible for its heritability. This study is the first to investigate exome variation in individuals of extremely high intelligence. Under the quantitative genetic model, sampling from the high extreme of the distribution should provide increased power to detect associations. We therefore performed a case-control association analysis with 1409 individuals drawn from the top 0.0003 (IQ >170) of the population distribution of intelligence and 3253 unselected population-based controls. Our analysis focused on putative functional exonic variants assayed on the Illumina HumanExome BeadChip. We did not observe any individual protein-altering variants that are reproducibly associated with extremely high intelligence and within the entire distribution of intelligence. Moreover, no significant associations were found for multiple rare alleles within individual genes. However, analyses using genome-wide similarity between unrelated individuals (genome-wide complex trait analysis) indicate that the genotyped functional protein-altering variation yields a heritability estimate of 17.4% (s.e. 1.7%) based on a liability model. In addition, investigation of nominally significant associations revealed fewer rare alleles associated with extremely high intelligence than would be expected under the null hypothesis. This observation is consistent with the hypothesis that rare functional alleles are more frequently detrimental than beneficial to intelligence.

  11. Enhanced lipid accumulation of photoautotrophic microalgae by high-dose CO2 mimics a heterotrophic characterization.

    PubMed

    Sun, Zhilan; Dou, Xiao; Wu, Jun; He, Bing; Wang, Yuancong; Chen, Yi-Feng

    2016-01-01

    Microalgae possess higher photosynthetic efficiency and accumulate more neutral lipids when supplied with high-dose CO2. However, the nature of lipid accumulation under conditions of elevated CO2 has not been fully elucidated so far. We now revealed that the enhanced lipid accumulation of Chlorella in high-dose CO2 was as efficient as under heterotrophic conditions and this may be attributed to the driving of enlarged carbon source. Both photoautotrophic and heterotrophic cultures were established by using Chlorella sorokiniana CS-1. A series of changes in the carbon fixation, lipid accumulation, energy conversion, and carbon-lipid conversion under high-dose CO2 (1-10%) treatment were characterized subsequently. The daily carbon fixation rate of C. sorokiniana LS-2 in 10% CO2 aeration was significantly increased compared with air CO2. Correspondingly, double oil content (28%) was observed in 10% CO2 aeration, close to 32.3% produced under heterotrophic conditions. In addition, with 10% CO2 aeration, the overall energy yield (Ψ) in Chlorella reached 12.4 from 7.3% (with air aeration) because of the enhanced daily carbon fixation rates. This treatment also improved the energetic lipid yield (Ylipid/Es) with 4.7-fold, tending to the heterotrophic parameters. More significantly, 2.2 times of carbon-lipid conversion efficiency (ηClipid/Ctotal, 42.4%) was observed in 10% CO2 aeration, towards to 53.7% in heterotrophic cultures, suggesting that more fixed carbon might flow into lipid synthesis under both 10% CO2 aeration and heterotrophic conditions. Taken together, all our evidence showed that 10% CO2 may push photoautotrophic Chlorella to display heterotrophic-like efficiency at least in lipid production. It might bring us an efficient model of lipid production based on microalgal cells with high-dose CO2, which is essential to sustain biodiesel production at large scales. PMID:26712624

  12. HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply.

    PubMed

    Tiong, Jingwen; McDonald, Glenn K; Genc, Yusuf; Pedas, Pai; Hayes, Julie E; Toubia, John; Langridge, Peter; Huang, Chun Y

    2014-01-01

    High expression of zinc (Zn)-regulated, iron-regulated transporter-like protein (ZIP) genes increases root Zn uptake in dicots, leading to high accumulation of Zn in shoots. However, none of the ZIP genes tested previously in monocots could enhance shoot Zn accumulation. In this report, barley (Hordeum vulgare) HvZIP7 was investigated for its functions in Zn transport. The functions of HvZIP7 in planta were studied using in situ hybridization and transient analysis of subcellular localization with a green fluorescent protein (GFP) reporter. Transgenic barley lines overexpressing HvZIP7 were also generated to further understand the functions of HvZIP7 in metal transport. HvZIP7 is strongly induced by Zn deficiency, primarily in vascular tissues of roots and leaves, and its protein was localized in the plasma membrane. These properties are similar to its closely related homologs in dicots. Overexpression of HvZIP7 in barley plants increased Zn uptake when moderately high concentrations of Zn were supplied. Significantly, there was a specific enhancement of shoot Zn accumulation, with no measurable increase in iron (Fe), manganese (Mn), copper (Cu) or cadmium (Cd). HvZIP7 displays characteristics of low-affinity Zn transport. The unique function of HvZIP7 provides new insights into the role of ZIP genes in Zn homeostasis in monocots, and offers opportunities to develop Zn biofortification strategies in cereals.

  13. Protaphorura tricampata, a euedaphic and highly permeable springtail that can sustain activity by osmoregulation during extreme drought.

    PubMed

    Holmstrup, Martin; Bayley, Mark

    2013-11-01

    We have investigated drought physiology of soil dwelling springtails since water availability is a key environmental factor governing their performance, and predictions of climate change suggest increased frequency and intensity of summer droughts. Here we show in field and laboratory experiments that the typical euedaphic springtail, Protaphorura tricampata, can survive extreme drought and remain active in soils where the water potential is much lower than equivalent to normal osmotic pressure of springtails. Euedaphic springtails (i.e. species living in deeper soil layers) have an extraordinary ability to up-regulate osmotic pressure of body fluids and prevent water loss in soils where the water potential has dropped to well below the permanent wilting percentage of plants. The ability to regulate osmotic pressure of body fluids is based on accumulation of compatible osmolytes such as sugars and free amino acids. Alanine was the most important osmolyte in P. tricampata and accumulated to concentrations of about 300μmolg(-1) dry weight. It is suggested that alanine also serves as a non-toxic storage of ammonia during drought periods where the normal urine production is hampered. The results presented here show, contrary to convention, that high cuticular permeability is not necessarily accompanied by poor drought tolerance, and is not a good predictor of drought susceptibility. PMID:24035747

  14. Using high-resolution atmospheric modeling to understand the characteristics of extreme flash-flood triggering storms in mountainous areas

    NASA Astrophysics Data System (ADS)

    Bartsotas, N. S.; Solomos, S.; Nikolopoulos, E. I.; Anagnostou, E. N.; Kallos, G. B.

    2013-12-01

    The Mediterranean is a large complex terrain region that is particularly prone to heavy precipitation events (HPE) and devastating floods. Large amounts of precipitation can accumulate over several day-long periods when frontal disturbances are slowed down and strengthened by the mountain ranges. Understanding the key elements behind the generation and evolution of these multi-hundred-year return storms, is a particularly challenging task. This is partly attributed to the increased susceptibility of orographic convection towards aerosol forcing. Therefore, a high resolution integrated atmospheric model that is capable of resolving both the convective activity and aerosol-cloud interactions, is expected to provide a better insight on the mechanisms of such events. In this study, RAMS / ICLAMS model was used at very fine resolutions (250m) with an implemented detailed topography from the NASA SRTM mission (3 arcsec). Four extreme flash-flood cases in the Italian Alps (Fella and Sesia) as well as one in Southern France (Gard) are analysed. The comparison of model results with raingauge-adjusted radar-rainfall datasets indicated that the detailed representation of ice-driven processes in the model resulted in an improved model performance regarding both precipitation accumulation and its spatial distribution.

  15. Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds.

    PubMed

    Ding, YanFen; Cheng, HongYan; Song, SongQuan

    2008-09-01

    Sacred lotus (Nelumbo nucifera Gaertn. 'Tielian') seed is long-lived and extremely tolerant of high temperature. Water content of lotus and maize seeds was 0.103 and 0.129 g H2O [g DW](-1), respectively. Water content, germination percentage and fresh weight of seedlings produced by surviving seeds gradually decreased with increasing treatment time at 100 degrees C. Germination percentage of maize (Zea mays L. 'Huangbaogu') seeds was zero after they were treated at 100 degrees C for 15 min and that of lotus seeds was 13.5% following the treatment at 100 degrees C for 24 h. The time in which 50% of lotus and maize seeds were killed by 100 degrees C was about 14.5 h and 6 min, respectively. With increasing treatment time at 100 degrees C, relative electrolyte leakage of lotus axes increased significantly, and total chlorophyll content of lotus axes markedly decreased. When treatment time at 100 degrees C was less than 12 h, subcellular structure of lotus hypocotyls remained fully intact. When treatment time at 100 degrees C was more than 12 h, plasmolysis gradually occurred, endoplasmic reticulum became unclear, nuclei and nucleoli broke down, most of mitochondria swelled, lipid granules accumulated at the cell periphery, and organelles and plasmolemma collapsed. Malondialdehyde (MDA) content of lotus axes and cotyledons decreased during 0 -12 h of the treatment at 100 degrees C and then increased. By contrast, the MDA content of maize embryos and endosperms increased during 5-10 min of the treatment at 100 degrees C and then decreased slightly. For lotus seeds: (1) activities of superoxide dismutase (SOD) and glutathione reductase (GR) of axes and cotyledons and of catalase (CAT) of axes increased during the early phase of treatment at 100 degrees C and then decreased; and (2) activities of ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) of axes and cotyledons and of CAT of cotyledons gradually decreased with increasing treatment time at 100 degrees

  16. High-resolution analysis of 1 day extreme precipitation in Sicily

    NASA Astrophysics Data System (ADS)

    Maugeri, M.; Brunetti, M.; Garzoglio, M.; Simolo, C.

    2015-04-01

    Sicily, the major Mediterranean island, experienced several exceptional precipitation episodes and floods during the last century, with dramatic consequences on human life and environment. A long term, rational planning of urban development is mandatory for protecting population and avoiding huge economic losses in the future. This requires a deep knowledge of the distributional features of extreme precipitation over the complex territory of Sicily. In the present study, we address this issue, and attempt a detailed investigation of observed 1-day precipitation extremes and their frequency distribution, based on a dense data-set of high-quality, homogenized station records in 1921-2005. We extrapolate very high quantiles (return levels) corresponding to 10-, 50- and 100-year return periods, as predicted by a generalized extreme value distribution. Return level estimates are produced on a regular high-resolution grid (30 arcsec) using a variant of regional frequency analysis combined with regression techniques. Results clearly reflect the complexity of this region, and make evident the high vulnerability of its eastern and northeastern parts as those prone to the most intense and potentially damaging events. This analysis thus provides an operational tool for extreme precipitation risk assessment and, at the same time, is an useful basis for validation and downscaling of regional climate models.

  17. High-Affinity Accumulation of a Maytansinoid in Cells via Weak Tubulin Interaction

    PubMed Central

    Goldmacher, Victor S.; Audette, Charlene A.; Guan, Yinghua; Sidhom, Eriene-Heidi; Shah, Jagesh V.; Whiteman, Kathleen R.; Kovtun, Yelena V.

    2015-01-01

    The microtubule-targeting maytansinoids accumulate in cells and induce mitotic arrest at 250- to 1000-fold lower concentrations than those required for their association with tubulin or microtubules. To identify the mechanisms of this intracellular accumulation and exceptional cytotoxicity of maytansinoids we studied interaction of a highly cytotoxic maytansinoid, S-methyl DM1 and several other maytansinoids with cells. S-methyl DM1 accumulated inside the cells with a markedly higher apparent affinity than to tubulin or microtubules. The apparent affinities of maytansinoids correlated with their cytotoxicities. The number of intracellular binding sites for S-methyl DM1 in MCF7 cells was comparable to the number of tubulin molecules per cell (~ 4–6 × 107 copies). Efflux of 3 [H]-S-methyl DM1 from cells was enhanced in the presence of an excess of non-labeled S-methyl DM1, indicating that re-binding of 3 [H]-S-methyl DM1 to intracellular binding sites contributed to its intracellular retention. Liposomes loaded with non-polymerized tubulin recapitulated the apparent high-affinity association of S-methyl DM1 to cells. We propose a model for the intracellular accumulation of maytansinoids in which molecules of the compounds diffuse into a cell and associate with tubulin. Affinities of maytansinoids for individual tubulin molecules are weak, but the high intracellular concentration of tubulin favors, after dissociation of a compound-tubulin complex, their re-binding to a tubulin molecule, or to a tip of a microtubule in the same cell, over their efflux. As a result, a significant fraction of microtubule tips is occupied with a maytansinoid when added to cells at sub-nanomolar concentrations, inducing mitotic arrest and cell death. PMID:25671541

  18. Design, fabrication, and characterization of high-efficiency extreme ultraviolet diffusers

    SciTech Connect

    Naulleau, Patrick P.; Liddle, J. Alexander; Salmassi, Farhad; Anderson, Erik H.; Gullikson, Eric M.

    2004-02-19

    As the development of extreme ultraviolet (EUV) lithography progresses, interest grows in the extension of traditional optical components to the EUV regime. The strong absorption of EUV by most materials and its extremely short wavelength, however, makes it very difficult to implement many components that are commonplace in the longer wavelength regimes. One such example is the diffuser often implemented with ordinary ground glass in the visible light regime. Here we demonstrate the fabrication of reflective EUV diffusers with high efficiency within a controllable bandwidth. Using these techniques we have fabricated diffusers with efficiencies exceeding 10% within a moderate angular single-sided bandwidth of approximately 0.06 radians.

  19. Extreme deformations and clusterization at high spin in the A ~ 40 mass region

    NASA Astrophysics Data System (ADS)

    Ray, Debisree; Afanasjev, Anatoli

    2015-10-01

    Recent revival of the interest to the study of superdeformation and clusterization in light nuclei has motivated us to undertake the study of extreme deformations in the A ~ 32 - 50 N ~ Z nuclei. Unfortunately, at spin zero the predicted structures with extreme deformation are located at high excitation energies which prevents their experimental observation. On the other hand, the rotation brings such structures closer to the yrast line and, in principle, makes their observation possible with future generation of facilities such as GRETA. Thus, the systematic study of the extremely deformed structures and clusterization has been performed in the framework of cranked relativistic mean field theory. The major features of such structures, the spins at which they become yrast and the possiblities of their experimental observation will be discussed in this presentation. This work has been supported by the U.S. Department of Energy under the Grant DE-FG02-07ER41459.

  20. Molecular nitrogen in natural gas accumulations: Generation from sedimentary organic matter at high temperatures

    SciTech Connect

    Littke, R.; Krooss, B.; Frielingsdorf, J.; Idiz, E.

    1995-03-01

    The occurrence of natural gas accumulations with high percentages (up to 100%) of molecular nitrogen in various hydrocarbon provinces represents a largely unresolved problem and a serious exploration risk. In this context, a geochemical and basin modeling study was performed to evaluate the potential of sedimentary organic matter to generate molecular nitrogen. The masses of nitrogen present in coals - if converted into molecular nitrogen - are sufficient to fill commercial gas reservoirs. A calculation for gas accumulations in northern Germany, where percentages of molecular nitrogen range from less than 5 to greater than 90%, reveals that the molecular nitrogen generated in underlying coal-bearing strata is sufficient to account for the nitrogen gas even in the largest fields. In addition, much of the total nitrogen in clay-rich rock types, such as shales and mudstones, is fixed in sedimentary organic matter and may add to the nitrogen generation capacity of the coals.

  1. Using a High-Resolution Global Climate Model to Simulate Extreme Extratropical Cyclones

    NASA Astrophysics Data System (ADS)

    Catalano, A. J.; Kapnick, S. B.; Broccoli, A. J.

    2015-12-01

    Extreme coastal storms devastate heavily populated areas around the world. Our understanding of exposure to extreme storms is limited due to the short duration of the observational record, which causes difficulty in assessing their true probability of occurrence. Global climate models provide a means of simulating a much larger sample of extreme events, allowing for better resolution of the tail of the distribution. Both tropical and extratropical cyclones (ETCs) occur over the northwestern Atlantic Ocean, and the risks associated with ETCs can be just as severe as those associated with tropical storms (e.g. high winds, storm surge). Therefore, we examine the ability of a high-resolution coupled atmosphere-ocean general circulation model (GFDL FLOR) to realistically simulate extreme ETCs in the northwestern Atlantic Ocean. We analyze similarities between results from a long (i.e. multi-century) FLOR simulation and several atmospheric reanalysis products. After considering differences in spatial and temporal resolution, results indicate that atmospheric measures of ETC intensity are comparable to those diagnosed from reanalyses. The full 1500-year simulation provides a higher frequency of the strongest intensity measures over the northwestern Atlantic Ocean compared with reanalyses. This illustrates that the larger number of realizations in the simulation provides a better opportunity to sample the tail of the ETC distribution. We further investigate the realism of simulated ETCs by using a tracking algorithm to conduct quantitative comparisons of feature, track, cyclogenesis, and cyclolysis densities of simulated ETC subsamples with storms from recent history (using reanalyses).

  2. Carbon accumulation rate of peatland in the High Arctic, Svalbard: Implications for carbon sequestration

    NASA Astrophysics Data System (ADS)

    Nakatsubo, Takayuki; Uchida, Masaki; Sasaki, Akiko; Kondo, Miyuki; Yoshitake, Shinpei; Kanda, Hiroshi

    2015-06-01

    Moss tundra that accumulates a thick peat layer is one of the most important ecosystems in the High Arctic, Svalbard. The importance of this ecosystem for carbon sequestration was estimated from the apparent rates of carbon accumulation based on the 14C age and amount of peat in the active layer. The study site at Stuphallet, Brøgger Peninsula, northwestern Svalbard was covered with a thick peat layer dominated by moss species such as Calliergon richardsonii, Paludella squarrosa, Tomenthypnum nitens, and Warnstorfia exannulata. The average thickness of the active layer (brown moss and peat) was approximately 28 cm in 1 August 2011. The calibrated (cal) age of peat from the bottom of the active layer (20-30 cm below the peatland surface) ranged from 81 to 701 cal yr BP (median value of 2σ range). Based on the total carbon (4.5-9.2 kg C m-2), the apparent rate of carbon accumulation in the active layer was 9.0-19.2 (g C m-2 yr-1), which is similar to or greater than the net ecosystem production or net primary production reported for other vegetation types in this area. Our data suggest that moss tundra plays an important role in carbon sequestration in this area.

  3. Chemicals to enhance microalgal growth and accumulation of high-value bioproducts

    PubMed Central

    Yu, Xinheng; Chen, Lei; Zhang, Weiwen

    2015-01-01

    Photosynthetic microalgae have attracted significant attention as they can serve as important sources for cosmetic, food and pharmaceutical products, industrial materials and even biofuel biodiesels. However, current productivity of microalga-based processes is still very low, which has restricted their scale-up application. In addition to various efforts in strain improvement and cultivation optimization, it was proposed that the productivity of microalga-based processes can also be increased using various chemicals to trigger or enhance cell growth and accumulation of bioproducts. Herein, we summarized recent progresses in applying chemical triggers or enhancers to improve cell growth and accumulation of bioproducts in algal cultures. Based on their enhancing mechanisms, these chemicals can be classified into four categories:chemicals regulating biosynthetic pathways, chemicals inducing oxidative stress responses, phytohormones and analogs regulating multiple aspects of microalgal metabolism, and chemicals directly as metabolic precursors. Taken together, the early researches demonstrated that the use of chemical stimulants could be a very effective and economical way to improve cell growth and accumulation of high-value bioproducts in large-scale cultivation of microalgae. PMID:25741321

  4. Chemicals to enhance microalgal growth and accumulation of high-value bioproducts.

    PubMed

    Yu, Xinheng; Chen, Lei; Zhang, Weiwen

    2015-01-01

    Photosynthetic microalgae have attracted significant attention as they can serve as important sources for cosmetic, food and pharmaceutical products, industrial materials and even biofuel biodiesels. However, current productivity of microalga-based processes is still very low, which has restricted their scale-up application. In addition to various efforts in strain improvement and cultivation optimization, it was proposed that the productivity of microalga-based processes can also be increased using various chemicals to trigger or enhance cell growth and accumulation of bioproducts. Herein, we summarized recent progresses in applying chemical triggers or enhancers to improve cell growth and accumulation of bioproducts in algal cultures. Based on their enhancing mechanisms, these chemicals can be classified into four categories:chemicals regulating biosynthetic pathways, chemicals inducing oxidative stress responses, phytohormones and analogs regulating multiple aspects of microalgal metabolism, and chemicals directly as metabolic precursors. Taken together, the early researches demonstrated that the use of chemical stimulants could be a very effective and economical way to improve cell growth and accumulation of high-value bioproducts in large-scale cultivation of microalgae.

  5. Rapid Sediment Accumulation Results in High Methane Effluxes from Coastal Sediments

    PubMed Central

    Lenstra, Wytze; Jong, Dirk; Meysman, Filip J. R.; Sapart, Célia J.; van der Veen, Carina; Röckmann, Thomas; Gonzalez, Santiago; Slomp, Caroline P.

    2016-01-01

    Globally, the methane (CH4) efflux from the ocean to the atmosphere is small, despite high rates of CH4 production in continental shelf and slope environments. This low efflux results from the biological removal of CH4 through anaerobic oxidation with sulfate in marine sediments. In some settings, however, pore water CH4 is found throughout the sulfate-bearing zone, indicating an apparently inefficient oxidation barrier for CH4. Here we demonstrate that rapid sediment accumulation can explain this limited capacity for CH4 removal in coastal sediments. In a saline coastal reservoir (Lake Grevelingen, The Netherlands), we observed high diffusive CH4 effluxes from the sediment into the overlying water column (0.2–0.8 mol m-2 yr-1) during multiple years. Linear pore water CH4 profiles and the absence of an isotopic enrichment commonly associated with CH4 oxidation in a zone with high rates of sulfate reduction (50–170 nmol cm-3 d-1) both suggest that CH4 is bypassing the zone of sulfate reduction. We propose that the rapid sediment accumulation at this site (~ 13 cm yr-1) reduces the residence time of the CH4 oxidizing microorganisms in the sulfate/methane transition zone (< 5 years), thus making it difficult for these slow growing methanotrophic communities to build-up sufficient biomass to efficiently remove pore water CH4. In addition, our results indicate that the high input of organic matter (~ 91 mol C m-2 yr-1) allows for the co-occurrence of different dissimilatory respiration processes, such as (acetotrophic) methanogenesis and sulfate reduction in the surface sediments by providing abundant substrate. We conclude that anthropogenic eutrophication and rapid sediment accumulation likely increase the release of CH4 from coastal sediments. PMID:27560511

  6. Rapid Sediment Accumulation Results in High Methane Effluxes from Coastal Sediments.

    PubMed

    Egger, Matthias; Lenstra, Wytze; Jong, Dirk; Meysman, Filip J R; Sapart, Célia J; van der Veen, Carina; Röckmann, Thomas; Gonzalez, Santiago; Slomp, Caroline P

    2016-01-01

    Globally, the methane (CH4) efflux from the ocean to the atmosphere is small, despite high rates of CH4 production in continental shelf and slope environments. This low efflux results from the biological removal of CH4 through anaerobic oxidation with sulfate in marine sediments. In some settings, however, pore water CH4 is found throughout the sulfate-bearing zone, indicating an apparently inefficient oxidation barrier for CH4. Here we demonstrate that rapid sediment accumulation can explain this limited capacity for CH4 removal in coastal sediments. In a saline coastal reservoir (Lake Grevelingen, The Netherlands), we observed high diffusive CH4 effluxes from the sediment into the overlying water column (0.2-0.8 mol m-2 yr-1) during multiple years. Linear pore water CH4 profiles and the absence of an isotopic enrichment commonly associated with CH4 oxidation in a zone with high rates of sulfate reduction (50-170 nmol cm-3 d-1) both suggest that CH4 is bypassing the zone of sulfate reduction. We propose that the rapid sediment accumulation at this site (~ 13 cm yr-1) reduces the residence time of the CH4 oxidizing microorganisms in the sulfate/methane transition zone (< 5 years), thus making it difficult for these slow growing methanotrophic communities to build-up sufficient biomass to efficiently remove pore water CH4. In addition, our results indicate that the high input of organic matter (~ 91 mol C m-2 yr-1) allows for the co-occurrence of different dissimilatory respiration processes, such as (acetotrophic) methanogenesis and sulfate reduction in the surface sediments by providing abundant substrate. We conclude that anthropogenic eutrophication and rapid sediment accumulation likely increase the release of CH4 from coastal sediments. PMID:27560511

  7. Detection and Attribution of Simulated Climatic Extreme Events and Impacts: High Sensitivity to Bias Correction

    NASA Astrophysics Data System (ADS)

    Sippel, S.; Otto, F. E. L.; Forkel, M.; Allen, M. R.; Guillod, B. P.; Heimann, M.; Reichstein, M.; Seneviratne, S. I.; Kirsten, T.; Mahecha, M. D.

    2015-12-01

    Understanding, quantifying and attributing the impacts of climatic extreme events and variability is crucial for societal adaptation in a changing climate. However, climate model simulations generated for this purpose typically exhibit pronounced biases in their output that hinders any straightforward assessment of impacts. To overcome this issue, various bias correction strategies are routinely used to alleviate climate model deficiencies most of which have been criticized for physical inconsistency and the non-preservation of the multivariate correlation structure. We assess how biases and their correction affect the quantification and attribution of simulated extremes and variability in i) climatological variables and ii) impacts on ecosystem functioning as simulated by a terrestrial biosphere model. Our study demonstrates that assessments of simulated climatic extreme events and impacts in the terrestrial biosphere are highly sensitive to bias correction schemes with major implications for the detection and attribution of these events. We introduce a novel ensemble-based resampling scheme based on a large regional climate model ensemble generated by the distributed weather@home setup[1], which fully preserves the physical consistency and multivariate correlation structure of the model output. We use extreme value statistics to show that this procedure considerably improves the representation of climatic extremes and variability. Subsequently, biosphere-atmosphere carbon fluxes are simulated using a terrestrial ecosystem model (LPJ-GSI) to further demonstrate the sensitivity of ecosystem impacts to the methodology of bias correcting climate model output. We find that uncertainties arising from bias correction schemes are comparable in magnitude to model structural and parameter uncertainties. The present study consists of a first attempt to alleviate climate model biases in a physically consistent way and demonstrates that this yields improved simulations of

  8. Chlamydomonas reinhardtii PsbS Protein Is Functional and Accumulates Rapidly and Transiently under High Light.

    PubMed

    Tibiletti, Tania; Auroy, Pascaline; Peltier, Gilles; Caffarri, Stefano

    2016-08-01

    Photosynthetic organisms must respond to excess light in order to avoid photo-oxidative stress. In plants and green algae the fastest response to high light is non-photochemical quenching (NPQ), a process that allows the safe dissipation of the excess energy as heat. This phenomenon is triggered by the low luminal pH generated by photosynthetic electron transport. In vascular plants the main sensor of the low pH is the PsbS protein, while in the green alga Chlamydomonas reinhardtii LhcSR proteins appear to be exclusively responsible for this role. Interestingly, Chlamydomonas also possesses two PsbS genes, but so far the PsbS protein has not been detected and its biological function is unknown. Here, we reinvestigated the kinetics of gene expression and PsbS and LhcSR3 accumulation in Chlamydomonas during high light stress. We found that, unlike LhcSR3, PsbS accumulates very rapidly but only transiently. In order to determine the role of PsbS in NPQ and photoprotection in Chlamydomonas, we generated transplastomic strains expressing the algal or the Arabidopsis psbS gene optimized for plastid expression. Both PsbS proteins showed the ability to increase NPQ in Chlamydomonas wild-type and npq4 (lacking LhcSR3) backgrounds, but no clear photoprotection activity was observed. Quantification of PsbS and LhcSR3 in vivo indicates that PsbS is much less abundant than LhcSR3 during high light stress. Moreover, LhcSR3, unlike PsbS, also accumulates during other stress conditions. The possible role of PsbS in photoprotection is discussed. PMID:27329221

  9. High-resolution analysis of 1 day extreme precipitation in Sicily

    NASA Astrophysics Data System (ADS)

    Maugeri, Maurizio; Brunetti, Michele; Garzoglio, Mistral; Simolo, Claudia; Bertolini, Andrea

    2016-04-01

    Sicily, the major Mediterranean island, experienced several exceptional precipitation episodes and floods during the last century, with serious damage to human life and environment. A long term, rational planning of urban development is indispensable to protect the population and to avoid huge economic losses in the future. This requires a thorough knowledge of the distributional features of extreme precipitation over the complex territory of Sicily. In this study, we perform a detailed investigation of observed 1-day precipitation extremes and their frequency distribution, based on a dense data-set of high-quality, homogenized station records in 1921-2005. We estimate very high quantiles (return levels) corresponding to 10-, 50- and 100-yr return periods, as predicted by a generalized extreme value distribution. Return level estimates are produced on a regular high-resolution grid (30 arcsec) using a variant of regional frequency analysis combined with regression techniques. Results clearly reflect the complexity of this region, and show the high vulnerability of its eastern and northeastern parts as those prone to the most intense and potentially damaging events.

  10. High-resolution analysis of 1 day extreme precipitation in Sicily

    NASA Astrophysics Data System (ADS)

    Maugeri, M.; Brunetti, M.; Garzoglio, M.; Simolo, C.

    2015-10-01

    Sicily, a major Mediterranean island, has experienced several exceptional precipitation episodes and floods during the last century, with serious damage to human life and the environment. Long-term, rational planning of urban development is indispensable to protect the population and to avoid huge economic losses in the future. This requires a thorough knowledge of the distributional features of extreme precipitation over the complex territory of Sicily. In this study, we perform a detailed investigation of observed 1 day precipitation extremes and their frequency distribution, based on a dense data set of high-quality, homogenized station records in 1921-2005. We estimate very high quantiles (return levels) corresponding to 10-, 50- and 100-year return periods, as predicted by a generalized extreme value distribution. Return level estimates are produced on a regular high-resolution grid (30 arcsec) using a variant of regional frequency analysis combined with regression techniques. Results clearly reflect the complexity of this region, and show the high vulnerability of its eastern and northeastern parts as those prone to the most intense and potentially damaging events.

  11. Potential accumulation of contaminated sediments in a reservoir of a high-Andean watershed: Morphodynamic connections with geochemical processes

    NASA Astrophysics Data System (ADS)

    Contreras, María. Teresa; Müllendorff, Daniel; Pastén, Pablo; Pizarro, Gonzalo E.; Paola, Chris; Escauriaza, Cristián.

    2015-05-01

    Rapid changes due to anthropic interventions in high-altitude environments, such as the Altiplano region in South America, require new approaches to understand the connections between physical and geochemical processes. Alterations of the water quality linked to the river morphology can affect the ecosystems and human development in the long term. The future construction of a reservoir in the Lluta River, located in northern Chile, will change the spatial distribution of arsenic-rich sediments, which can have significant effects on the lower parts of the watershed. In this investigation, we develop a coupled numerical model to predict and evaluate the interactions between morphodynamic changes in the Lluta reservoir, and conditions that can potentially desorb arsenic from the sediments. Assuming that contaminants are mobilized under anaerobic conditions, we calculate the oxygen concentration within the sediments to study the interactions of the delta progradation with the potential arsenic release. This work provides a framework for future studies aimed to analyze the complex connections between morphodynamics and water quality, when contaminant-rich sediments accumulate in a reservoir. The tool can also help to design effective risk management and remediation strategies in these extreme environments. This article was corrected on 15 JUNE 2015. See the end of the full text for details.

  12. Characteristic of nitrous oxide production in partial denitrification process with high nitrite accumulation.

    PubMed

    Du, Rui; Peng, Yongzhen; Cao, Shenbin; Wang, Shuying; Niu, Meng

    2016-03-01

    Nitrous oxide (N2O) production during the partial denitrification process with nitrate (NO3(-)-N) to nitrite (NO2(-)-N) transformation ratio of 80% was investigated in this study. Results showed that N2O was seldom observed before complete depletion of NO3(-)-N, but it was closely related to the reduction of NO2(-)-N rather than NO3(-)-N. High COD/NO3(-)-N was in favor of N2O production in partial denitrification with high NO2(-)-N accumulation. It was seriously enhanced at constant acidic pH due to the free nitrous acid (FNA) inhibition. However, the N2O production was much lower at initial pH of 5.5 and 6.5 due to the pH increase during denitrification process. Significantly, the pH turning point could be chosen as a controlled parameter to denote the end of NO3(-)-N reduction, which could not only achieve high NO2(-)-N accumulation but also decrease the N2O production significantly for practical application.

  13. Proline accumulation in baker's yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough.

    PubMed

    Sasano, Yu; Haitani, Yutaka; Ohtsu, Iwao; Shima, Jun; Takagi, Hiroshi

    2012-01-01

    During bread-making processes, yeast cells are exposed to various baking-associated stresses. High-sucrose concentrations exert severe osmotic stress that seriously damages cellular components by generation of reactive oxygen species (ROS). Previously, we found that the accumulation of proline conferred freeze-thaw stress tolerance and the baker's yeast strain that accumulated proline retained higher-level fermentation abilities in frozen doughs than the wild-type strain. In this study, we constructed self-cloning diploid baker's yeast strains that accumulate proline. These resultant strains showed higher cell viability and lower intracellular oxidation levels than that observed in the wild-type strain under high-sucrose stress condition. Proline accumulation also enhanced the fermentation ability in high-sucrose-containing dough. These results demonstrate the usefulness of proline-accumulating baker's yeast for sweet dough baking. PMID:22041027

  14. Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis

    DOE PAGES

    Xue, Saisi; Uppugundla, Nirmal; Bowman, Michael J.; Cavalier, David; Da Costa Sousa, Leonardo; Dale, Bruce E.; Balan, Venkatesh

    2015-11-26

    Accumulation of recalcitrant oligosaccharides during high-solids loading enzymatic hydrolysis of cellulosic biomass reduces biofuel yields and increases processing costs for a cellulosic biorefinery. Recalcitrant oligosaccharides in AFEX-pretreated corn stover hydrolysate accumulate to the extent of about 18–25 % of the total soluble sugars in the hydrolysate and 12–18 % of the total polysaccharides in the inlet biomass (untreated), equivalent to a yield loss of about 7–9 kg of monomeric sugars per 100 kg of inlet dry biomass (untreated). These oligosaccharides represent a yield loss and also inhibit commercial hydrolytic enzymes, with both being serious bottlenecks for economical biofuel production frommore » cellulosic biomass. Very little is understood about the nature of these oligomers and why they are recalcitrant to commercial enzymes. This work presents a robust method for separating recalcitrant oligosaccharides from high solid loading hydrolysate in gramme quantities. Composition analysis, recalcitrance study and enzyme inhibition study were performed to understand their chemical nature. Results indicate that, oligosaccharide accumulation occurs during high solid loading enzymatic hydrolysis of corn stover (CS) irrespective of using different pretreated corn stover (dilute acid: DA, ionic liquids: IL, and ammonia fibre expansion: AFEX). The methodology for large-scale separation of recalcitrant oligosaccharides from 25 % solids-loading AFEXcorn stover hydrolysate using charcoal fractionation and size exclusion chromatography is reported for the first time. Oligosaccharides with higher degree of polymerization (DP) were recalcitrant towards commercial enzyme mixtures [Ctec2, Htec2 and Multifect pectinase (MP)] compared to lower DP oligosaccharides. Enzyme inhibition studies using processed substrates (Avicel and xylan) showed that low DP oligosaccharides also inhibit commercial enzymes. Addition of monomeric sugars to oligosaccharides increases the

  15. Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis

    SciTech Connect

    Xue, Saisi; Uppugundla, Nirmal; Bowman, Michael J.; Cavalier, David; Da Costa Sousa, Leonardo; Dale, Bruce E.; Balan, Venkatesh

    2015-11-26

    Accumulation of recalcitrant oligosaccharides during high-solids loading enzymatic hydrolysis of cellulosic biomass reduces biofuel yields and increases processing costs for a cellulosic biorefinery. Recalcitrant oligosaccharides in AFEX-pretreated corn stover hydrolysate accumulate to the extent of about 18–25 % of the total soluble sugars in the hydrolysate and 12–18 % of the total polysaccharides in the inlet biomass (untreated), equivalent to a yield loss of about 7–9 kg of monomeric sugars per 100 kg of inlet dry biomass (untreated). These oligosaccharides represent a yield loss and also inhibit commercial hydrolytic enzymes, with both being serious bottlenecks for economical biofuel production from cellulosic biomass. Very little is understood about the nature of these oligomers and why they are recalcitrant to commercial enzymes. This work presents a robust method for separating recalcitrant oligosaccharides from high solid loading hydrolysate in gramme quantities. Composition analysis, recalcitrance study and enzyme inhibition study were performed to understand their chemical nature. Results indicate that, oligosaccharide accumulation occurs during high solid loading enzymatic hydrolysis of corn stover (CS) irrespective of using different pretreated corn stover (dilute acid: DA, ionic liquids: IL, and ammonia fibre expansion: AFEX). The methodology for large-scale separation of recalcitrant oligosaccharides from 25 % solids-loading AFEXcorn stover hydrolysate using charcoal fractionation and size exclusion chromatography is reported for the first time. Oligosaccharides with higher degree of polymerization (DP) were recalcitrant towards commercial enzyme mixtures [Ctec2, Htec2 and Multifect pectinase (MP)] compared to lower DP oligosaccharides. Enzyme inhibition studies using processed substrates (Avicel and xylan) showed that low DP oligosaccharides also inhibit commercial enzymes. Addition of monomeric sugars to oligosaccharides increases the

  16. Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation

    PubMed Central

    2013-01-01

    Background Duckweed can thrive on anthropogenic wastewater and produce tremendous biomass production. Due to its relatively high starch and low lignin percentage, duckweed is a good candidate for bioethanol fermentation. Previous studies have observed that water devoid of nutrients is good for starch accumulation, but its molecular mechanism remains unrevealed. Results This study globally analyzed the response to nutrient starvation in order to investigate the starch accumulation in duckweed (Landoltia punctata). L. punctata was transferred from nutrient-rich solution to distilled water and sampled at different time points. Physiological measurements demonstrated that the activity of ADP-glucose pyrophosphorylase, the key enzyme of starch synthesis, as well as the starch percentage in duckweed, increased continuously under nutrient starvation. Samples collected at 0 h, 2 h and 24 h time points respectively were used for comparative gene expression analysis using RNA-Seq. A comprehensive transcriptome, comprising of 74,797 contigs, was constructed by a de novo assembly of the RNA-Seq reads. Gene expression profiling results showed that the expression of some transcripts encoding key enzymes involved in starch biosynthesis was up-regulated, while the expression of transcripts encoding enzymes involved in starch consumption were down-regulated, the expression of some photosynthesis-related transcripts were down-regulated during the first 24 h, and the expression of some transporter transcripts were up-regulated within the first 2 h. Very interestingly, most transcripts encoding key enzymes involved in flavonoid biosynthesis were highly expressed regardless of starvation, while transcripts encoding laccase, the last rate-limiting enzyme of lignifications, exhibited very low expression abundance in all three samples. Conclusion Our study provides a comprehensive expression profiling of L. punctata under nutrient starvation, which indicates that nutrient starvation down

  17. High-Flow Arteriovenous Malformation of the Lower Extremity: Ethanolamine Oleate Sclerotherapy

    SciTech Connect

    Hyodoh, Hideki; Fujita, Akifumi; Hyodoh, Kazusa; Furuse, Makoto; Kamisawa, Osamu; Hareyama, Masato

    2001-09-15

    We report the case of a young man presenting with high-flow arteriovenous malformation (AVM), in whom percutaneous direct nidus puncture ethanolamine oleate (EO) sclerotherapy was useful in the management of the AVM. To our knowledge, this is the first report of percutaneous trans-nidus EO sclerotherapy for AVM in the extremities. Percutaneous trans-nidus sclerotherapy should be considered as an alternative choice for the management of symptomatic AVM.

  18. High-resolution extreme-ultraviolet spectroscopy of potassium using anti-Stokes radiation

    NASA Technical Reports Server (NTRS)

    Rothenberg, J. E.; Young, J. F.; Harris, S. E.

    1981-01-01

    The use of a new extreme-ultraviolet radiation source based on spontaneous anti-Stokes scattering for high-resolution absorption spectroscopy of transition originating from the 3p6 shell of potassium is reported. The region from 546.6 to 536.8 A is scanned at a resolution of about 1.2 Kayser. Within this region, four previously unreported lines are observed.

  19. Accumulated source imaging of brain activity with both low and high-frequency neuromagnetic signals

    PubMed Central

    Xiang, Jing; Luo, Qian; Kotecha, Rupesh; Korman, Abraham; Zhang, Fawen; Luo, Huan; Fujiwara, Hisako; Hemasilpin, Nat; Rose, Douglas F.

    2014-01-01

    Recent studies have revealed the importance of high-frequency brain signals (>70 Hz). One challenge of high-frequency signal analysis is that the size of time-frequency representation of high-frequency brain signals could be larger than 1 terabytes (TB), which is beyond the upper limits of a typical computer workstation's memory (<196 GB). The aim of the present study is to develop a new method to provide greater sensitivity in detecting high-frequency magnetoencephalography (MEG) signals in a single automated and versatile interface, rather than the more traditional, time-intensive visual inspection methods, which may take up to several days. To address the aim, we developed a new method, accumulated source imaging, defined as the volumetric summation of source activity over a period of time. This method analyzes signals in both low- (1~70 Hz) and high-frequency (70~200 Hz) ranges at source levels. To extract meaningful information from MEG signals at sensor space, the signals were decomposed to channel-cross-channel matrix (CxC) representing the spatiotemporal patterns of every possible sensor-pair. A new algorithm was developed and tested by calculating the optimal CxC and source location-orientation weights for volumetric source imaging, thereby minimizing multi-source interference and reducing computational cost. The new method was implemented in C/C++ and tested with MEG data recorded from clinical epilepsy patients. The results of experimental data demonstrated that accumulated source imaging could effectively summarize and visualize MEG recordings within 12.7 h by using approximately 10 GB of computer memory. In contrast to the conventional method of visually identifying multi-frequency epileptic activities that traditionally took 2–3 days and used 1–2 TB storage, the new approach can quantify epileptic abnormalities in both low- and high-frequency ranges at source levels, using much less time and computer memory. PMID:24904402

  20. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment

    PubMed Central

    Schoepf, Verena; Stat, Michael; Falter, James L.; McCulloch, Malcolm T.

    2015-01-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events. PMID:26627576

  1. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment

    NASA Astrophysics Data System (ADS)

    Schoepf, Verena; Stat, Michael; Falter, James L.; McCulloch, Malcolm T.

    2015-12-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.

  2. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment.

    PubMed

    Schoepf, Verena; Stat, Michael; Falter, James L; McCulloch, Malcolm T

    2015-01-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events. PMID:26627576

  3. High dimensional spatial modeling of extremes with applications to United States Rainfalls

    NASA Astrophysics Data System (ADS)

    Zhou, Jie

    2007-12-01

    Spatial statistical models are used to predict unobserved variables based on observed variables and to estimate unknown model parameters. Extreme value theory(EVT) is used to study large or small observations from a random phenomenon. Both spatial statistics and extreme value theory have been studied in a lot of areas such as agriculture, finance, industry and environmental science. This dissertation proposes two spatial statistical models which concentrate on non-Gaussian probability densities with general spatial covariance structures. The two models are also applied in analyzing United States Rainfalls and especially, rainfall extremes. When the data set is not too large, the first model is used. The model constructs a generalized linear mixed model(GLMM) which can be considered as an extension of Diggle's model-based geostatistical approach(Diggle et al. 1998). The approach improves conventional kriging with a form of generalized linear mixed structure. As for high dimensional problems, two different methods are established to improve the computational efficiency of Markov Chain Monte Carlo(MCMC) implementation. The first method is based on spectral representation of spatial dependence structures which provides good approximations on each MCMC iteration. The other method embeds high dimensional covariance matrices in matrices with block circulant structures. The eigenvalues and eigenvectors of block circulant matrices can be calculated exactly by Fast Fourier Transforms(FFT). The computational efficiency is gained by transforming the posterior matrices into lower dimensional matrices. This method gives us exact update on each MCMC iteration. Future predictions are also made by keeping spatial dependence structures fixed and using the relationship between present days and future days provided by some Global Climate Model(GCM). The predictions are refined by sampling techniques. Both ways of handling high dimensional covariance matrices are novel to analyze large

  4. Multiplex APLP System for High-Resolution Haplogrouping of Extremely Degraded East-Asian Mitochondrial DNAs

    PubMed Central

    Kakuda, Tsuneo; Shojo, Hideki; Tanaka, Mayumi; Nambiar, Phrabhakaran; Minaguchi, Kiyoshi; Umetsu, Kazuo; Adachi, Noboru

    2016-01-01

    Mitochondrial DNA (mtDNA) serves as a powerful tool for exploring matrilineal phylogeographic ancestry, as well as for analyzing highly degraded samples, because of its polymorphic nature and high copy numbers per cell. The recent advent of complete mitochondrial genome sequencing has led to improved techniques for phylogenetic analyses based on mtDNA, and many multiplex genotyping methods have been developed for the hierarchical analysis of phylogenetically important mutations. However, few high-resolution multiplex genotyping systems for analyzing East-Asian mtDNA can be applied to extremely degraded samples. Here, we present a multiplex system for analyzing mitochondrial single nucleotide polymorphisms (mtSNPs), which relies on a novel amplified product-length polymorphisms (APLP) method that uses inosine-flapped primers and is specifically designed for the detailed haplogrouping of extremely degraded East-Asian mtDNAs. We used fourteen 6-plex polymerase chain reactions (PCRs) and subsequent electrophoresis to examine 81 haplogroup-defining SNPs and 3 insertion/deletion sites, and we were able to securely assign the studied mtDNAs to relevant haplogroups. Our system requires only 1×10−13 g (100 fg) of crude DNA to obtain a full profile. Owing to its small amplicon size (<110 bp), this new APLP system was successfully applied to extremely degraded samples for which direct sequencing of hypervariable segments using mini-primer sets was unsuccessful, and proved to be more robust than conventional APLP analysis. Thus, our new APLP system is effective for retrieving reliable data from extremely degraded East-Asian mtDNAs. PMID:27355212

  5. Multiplex APLP System for High-Resolution Haplogrouping of Extremely Degraded East-Asian Mitochondrial DNAs.

    PubMed

    Kakuda, Tsuneo; Shojo, Hideki; Tanaka, Mayumi; Nambiar, Phrabhakaran; Minaguchi, Kiyoshi; Umetsu, Kazuo; Adachi, Noboru

    2016-01-01

    Mitochondrial DNA (mtDNA) serves as a powerful tool for exploring matrilineal phylogeographic ancestry, as well as for analyzing highly degraded samples, because of its polymorphic nature and high copy numbers per cell. The recent advent of complete mitochondrial genome sequencing has led to improved techniques for phylogenetic analyses based on mtDNA, and many multiplex genotyping methods have been developed for the hierarchical analysis of phylogenetically important mutations. However, few high-resolution multiplex genotyping systems for analyzing East-Asian mtDNA can be applied to extremely degraded samples. Here, we present a multiplex system for analyzing mitochondrial single nucleotide polymorphisms (mtSNPs), which relies on a novel amplified product-length polymorphisms (APLP) method that uses inosine-flapped primers and is specifically designed for the detailed haplogrouping of extremely degraded East-Asian mtDNAs. We used fourteen 6-plex polymerase chain reactions (PCRs) and subsequent electrophoresis to examine 81 haplogroup-defining SNPs and 3 insertion/deletion sites, and we were able to securely assign the studied mtDNAs to relevant haplogroups. Our system requires only 1×10-13 g (100 fg) of crude DNA to obtain a full profile. Owing to its small amplicon size (<110 bp), this new APLP system was successfully applied to extremely degraded samples for which direct sequencing of hypervariable segments using mini-primer sets was unsuccessful, and proved to be more robust than conventional APLP analysis. Thus, our new APLP system is effective for retrieving reliable data from extremely degraded East-Asian mtDNAs. PMID:27355212

  6. The value of crossdating to retain high-frequency variability, climate signals, and extreme events in environmental proxies.

    PubMed

    Black, Bryan A; Griffin, Daniel; van der Sleen, Peter; Wanamaker, Alan D; Speer, James H; Frank, David C; Stahle, David W; Pederson, Neil; Copenheaver, Carolyn A; Trouet, Valerie; Griffin, Shelly; Gillanders, Bronwyn M

    2016-07-01

    High-resolution biogenic and geologic proxies in which one increment or layer is formed per year are crucial to describing natural ranges of environmental variability in Earth's physical and biological systems. However, dating controls are necessary to ensure temporal precision and accuracy; simple counts cannot ensure that all layers are placed correctly in time. Originally developed for tree-ring data, crossdating is the only such procedure that ensures all increments have been assigned the correct calendar year of formation. Here, we use growth-increment data from two tree species, two marine bivalve species, and a marine fish species to illustrate sensitivity of environmental signals to modest dating error rates. When falsely added or missed increments are induced at one and five percent rates, errors propagate back through time and eliminate high-frequency variability, climate signals, and evidence of extreme events while incorrectly dating and distorting major disturbances or other low-frequency processes. Our consecutive Monte Carlo experiments show that inaccuracies begin to accumulate in as little as two decades and can remove all but decadal-scale processes after as little as two centuries. Real-world scenarios may have even greater consequence in the absence of crossdating. Given this sensitivity to signal loss, the fundamental tenets of crossdating must be applied to fully resolve environmental signals, a point we underscore as the frontiers of growth-increment analysis continue to expand into tropical, freshwater, and marine environments.

  7. The value of crossdating to retain high-frequency variability, climate signals, and extreme events in environmental proxies.

    PubMed

    Black, Bryan A; Griffin, Daniel; van der Sleen, Peter; Wanamaker, Alan D; Speer, James H; Frank, David C; Stahle, David W; Pederson, Neil; Copenheaver, Carolyn A; Trouet, Valerie; Griffin, Shelly; Gillanders, Bronwyn M

    2016-07-01

    High-resolution biogenic and geologic proxies in which one increment or layer is formed per year are crucial to describing natural ranges of environmental variability in Earth's physical and biological systems. However, dating controls are necessary to ensure temporal precision and accuracy; simple counts cannot ensure that all layers are placed correctly in time. Originally developed for tree-ring data, crossdating is the only such procedure that ensures all increments have been assigned the correct calendar year of formation. Here, we use growth-increment data from two tree species, two marine bivalve species, and a marine fish species to illustrate sensitivity of environmental signals to modest dating error rates. When falsely added or missed increments are induced at one and five percent rates, errors propagate back through time and eliminate high-frequency variability, climate signals, and evidence of extreme events while incorrectly dating and distorting major disturbances or other low-frequency processes. Our consecutive Monte Carlo experiments show that inaccuracies begin to accumulate in as little as two decades and can remove all but decadal-scale processes after as little as two centuries. Real-world scenarios may have even greater consequence in the absence of crossdating. Given this sensitivity to signal loss, the fundamental tenets of crossdating must be applied to fully resolve environmental signals, a point we underscore as the frontiers of growth-increment analysis continue to expand into tropical, freshwater, and marine environments. PMID:26910504

  8. Shishaldin volcano: Aleutian high-alumina basalts and the question of plagioclase accumulation

    SciTech Connect

    Fournelle, J.; Marsh, B.D. )

    1991-03-01

    High-alumina basalts (HABs) from volcanic arcs commonly contain 30%-50% (modal) plagioclase. It has been suggested that they reflect plagioclase addition and are not primary compositions. In rocks from the Aleutian volcano Shishaldin, the authors search for evidence of plagioclase accumulation: Al{sub 2}O{sub 3}, CaO, and Na{sub 2}O vs. modal plagioclase; europium anomalies in HABs; plagioclase-liquid equilibrium; and the HAB groundmass. The HABs do not appear to be results of plagioclase addition to liquids of dacitic, Fe-Ti enriched, or high-Mg basaltic compositions. Plagioclase loss from HABs does appear to yield the Fe-Ti-enriched basalts. Shishaldin HABs may reflect near-primary compositions, and HAB phase equilibria may thus be useful in evaluating the origin of such arc basalts.

  9. Extremely high boron tolerance in Puccinellia distans (Jacq.) Parl. related to root boron exclusion and a well-regulated antioxidant system.

    PubMed

    Hamurcu, Mehmet; Hakki, Erdogan E; Demiral Sert, Tijen; Özdemir, Canan; Minareci, Ersin; Avsaroglu, Zuhal Z; Gezgin, Sait; Ali Kayis, Seyit; Bell, Richard W

    2016-01-01

    Recent studies indicate an extremely high level of tolerance to boron (B) toxicity in Puccinellia distans (Jacq.) Parl. but the mechanistic basis is not known. Puccinellia distans was exposed to B concentrations of up to 1000 mg B L-1 and root B uptake, growth parameters, B and N contents, H2O2 accumulation and ·OH-scavenging activity were measured. Antioxidant enzyme activities including superoxide dismutase (SOD), ascorbate peroxidase, catalase, peroxidase and glutathione reductase, and lipid peroxidation products were determined. B appears to be actively excluded from roots. Excess B supply caused structural deformations in roots and leaves, H2O2 accumulation and simultaneous up-regulation of the antioxidative system, which prevented lipid peroxidation even at the highest B concentrations. Thus, P. distans has an efficient root B-exclusion capability and, in addition, B tolerance in shoots is achieved by a well-regulated antioxidant defense system. PMID:27356235

  10. EMG analysis of the lower extremities during pitching in high-school baseball.

    PubMed

    Yamanouchi, T

    1998-01-01

    I evaluated the contractions of the muscles of the lower extremities during baseball pitching using video imaging and simultaneous surface EMG. The subjects were 10 members of a high school baseball club and, for contrast, 10 students without any baseball club experience. I divided their pitching movements into two phases determined with respect to the landing of the non-pivot leg. The EMG signal intensities over the 2 seconds prior to landing, and over the 2 seconds after landing, were then integrated to give an EMG value to each phase. I then computed this value as the % MMT. The abductor and adductor of the hip muscles of both lower extremities in the players were strongly contracted, especially the adductor. This finding was consistent with the observation that pitching tends to lead to adductor muscle disorders. Strengthening the adductor and its antagonist abductor can therefore directly influence the capability for pitching, and can reduce the risk for the adductor disorders. PMID:9658746

  11. EMG analysis of the lower extremities during pitching in high-school baseball.

    PubMed

    Yamanouchi, T

    1998-01-01

    I evaluated the contractions of the muscles of the lower extremities during baseball pitching using video imaging and simultaneous surface EMG. The subjects were 10 members of a high school baseball club and, for contrast, 10 students without any baseball club experience. I divided their pitching movements into two phases determined with respect to the landing of the non-pivot leg. The EMG signal intensities over the 2 seconds prior to landing, and over the 2 seconds after landing, were then integrated to give an EMG value to each phase. I then computed this value as the % MMT. The abductor and adductor of the hip muscles of both lower extremities in the players were strongly contracted, especially the adductor. This finding was consistent with the observation that pitching tends to lead to adductor muscle disorders. Strengthening the adductor and its antagonist abductor can therefore directly influence the capability for pitching, and can reduce the risk for the adductor disorders.

  12. Extreme hydrophobicity and omniphilicity of high-aspect-ratio silicon structures

    NASA Astrophysics Data System (ADS)

    Kwak, Moon Kyu; Park, Cheol Woo; Hwang, Kwang-Il; Park, Choon Man; Jeong, Hoon Eui; Choi, Jun Ho

    2015-03-01

    We present an application of high-aspect-ratio (high-AR) silicon structures (black silicon) with high water repellency and good wettability by oils and solvents. The fabrication of black silicon consists of a deep reactive-ion etching process for extremely-high-AR silicon structures and surface treatment with C4F8 gas. Such high-AR structures were found to be highly resistant against wetting by water, but they also have good wetting characteristics with respect to certain liquids such as ethanol, hexane and mineral oil. To determine the relationship between the AR of nanostructures and wetting selectivity, four different black silicon samples with different pattern heights were used. The static contact angles of various liquid were measured for the analysis of wetting properties of the four black silicon samples. To explore feasible applications, ethanol-water separation was performed as a miniaturized experimental simulation of environmental remediation.

  13. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    SciTech Connect

    Lyons, K.D.; Honeygan, S.; Moroz, T.H.

    2008-12-01

    The U.S. Department of Energy's National Energy Technology Laboratory (NETL) established the Extreme Drilling Laboratory to engineer effective and efficient drilling technologies viable at depths greater than 20,000 ft. This paper details the challenges of ultradeep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL's research and development activities. NETL is invested in laboratory-scale physical simulation. Its physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480°F around a single drill cutter. This simulator is not yet operational; therefore, the results will be limited to the identification of leading hypotheses of drilling phenomena and NETL's test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Laboratory's studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.

  14. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    SciTech Connect

    Lyons, K.D.; Honeygan, S.; Moroz, T

    2007-06-01

    The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) established an Extreme Drilling Lab to engineer effective and efficient drilling technologies viable at depths greater than 20,000 feet. This paper details the challenges of ultra-deep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL’s Research and Development activities. NETL is invested in laboratory-scale physical simulation. Their physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480 °F around a single drill cutter. This simulator will not yet be operational by the planned conference dates; therefore, the results will be limited to identification of leading hypotheses of drilling phenomena and NETL’s test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Lab’s studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.

  15. Evolution of laser-produced Sn extreme ultraviolet source diameter for high-brightness source

    SciTech Connect

    Roy, Amitava E-mail: aroy@barc.gov.in; Arai, Goki; Hara, Hiroyuki; Higashiguchi, Takeshi; Ohashi, Hayato; Sunahara, Atsushi; Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry; Miura, Taisuke; Mocek, Tomas; Endo, Akira

    2014-08-18

    We have investigated the effect of irradiation of solid Sn targets with laser pulses of sub-ns duration and sub-mJ energy on the diameter of the extreme ultraviolet (EUV) emitting region and source conversion efficiency. It was found that an in-band EUV source diameter as low as 18 μm was produced due to the short scale length of a plasma produced by a sub-ns laser. Most of the EUV emission occurs in a narrow region with a plasma density close to the critical density value. Such EUV sources are suitable for high brightness and high repetition rate metrology applications.

  16. High resolution extreme ultraviolet spectrometer for an electron beam ion trap

    SciTech Connect

    Ohashi, Hayato; Yatsurugi, Junji; Nakamura, Nobuyuki; Sakaue, Hiroyuki A.

    2011-08-15

    An extreme ultraviolet spectrometer has been developed for spectroscopic studies of highly charged ions with an electron beam ion trap. It has a slit-less configuration with a spherical varied-line-spacing grating that provides a flat focal plane for grazing incidence light. Alternative use of two different gratings enables us to cover the wavelength range 1-25 nm. Test observations with the Tokyo electron beam ion trap demonstrate the high performance of the present spectrometer such as a resolving power of above 1000.

  17. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    NASA Astrophysics Data System (ADS)

    Hansen, Brage B.; Isaksen, Ketil; Benestad, Rasmus E.; Kohler, Jack; Pedersen, Åshild Ø.; Loe, Leif E.; Coulson, Stephen J.; Larsen, Jan Otto; Varpe, Øystein

    2014-11-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January-February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (˜5-20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties.

  18. High-energy carbonate-sand accumulation, the Quicksands, southwest Florida Keys

    USGS Publications Warehouse

    Shinn, Eugene A.; Lidz, Barbara H.; Holmes, Charles W.

    1990-01-01

    High-resolution seismic-reflection profiles of the Quicksands, located along a broad ridge on the platform shelf west of Key West, Florida, indicate a significant deposit of non-oolitic carbonate sand occurs in a belt 47 km long by 28 km wide. The surface of the belt is ornamented by large (5 m), migrating tidal bars, oriented in a north-south direction, on which sand waves, oriented in an east-west direction, are superimposed. Some of the sand waves are awash at low tide. The sand waves are formed by strong reversing tidal currents flowing between the Gulf of Mexico and the Straits of Florida. The waves migrate directly over Pleistocene bedrock to the east, but the deposit thickens to the west and sand waves there overlie non-oolitic Holocene accumulations as thick as 12 m. Westward-dipping accretionary bedding indicates that net migration of the sands is to the west, despite north-south movement of tidal currents. The westward edge of the accumulation has accreted over deeper, muddier deposits. Although tidal currents and resultant bedforms appear identical to those of active ooid deposits in the Bahamas and elsewhere, no oolitically coated grains were found in this study. Thin-section analyses show the principal component (average 48%) of the sands is fragmented plates of species of the green alga Halimeda , followed by particulate coral (average 17%), which increases off the flanks of the main sand body. Short vibracores confirm the presence of cross-bedding.

  19. The fate of fertilizer nitrogen in a high nitrate accumulated agricultural soil.

    PubMed

    Quan, Zhi; Huang, Bin; Lu, Caiyan; Shi, Yi; Chen, Xin; Zhang, Haiyang; Fang, Yunting

    2016-02-12

    Well-acclimatized nitrifiers in high-nitrate agricultural soils can quickly nitrify NH4(+) into NO3(-) subject to leaching and denitrifying loss. A 120-day incubation experiment was conducted using a greenhouse soil to explore the fates of applied fertilizer N entering into seven soil N pools and to examine if green manure (as ryegrass) co-application can increase immobilization of the applied N into relatively stable N pools and thereby reduce NO3(-) accumulation and loss. We found that 87-92% of the applied (15)N-labelled NH4(+) was rapidly recovered as NO3(-) since day 3 and only 2-4% as microbial biomass and soil organic matter (SOM), while ryegrass co-application significantly decreased its recovery as NO3(-) but enhanced its recovery as SOM (17%) at the end of incubation. The trade-off relationship between (15)N recoveries in microbial biomass and SOM indicated that ryegrass co-application stabilized newly immobilized N via initial microbial uptake and later breakdown. Nevertheless, ryegrass application didn't decrease soil total NO3(-) accumulation due to its own decay. Our results suggest that green manure co-application can increase immobilization of applied N into stable organic N via microbial turnover, but the quantity and quality of green manure should be well considered to reduce N release from itself.

  20. The fate of fertilizer nitrogen in a high nitrate accumulated agricultural soil

    PubMed Central

    Quan, Zhi; Huang, Bin; Lu, Caiyan; Shi, Yi; Chen, Xin; Zhang, Haiyang; Fang, Yunting

    2016-01-01

    Well-acclimatized nitrifiers in high-nitrate agricultural soils can quickly nitrify NH4+ into NO3− subject to leaching and denitrifying loss. A 120-day incubation experiment was conducted using a greenhouse soil to explore the fates of applied fertilizer N entering into seven soil N pools and to examine if green manure (as ryegrass) co-application can increase immobilization of the applied N into relatively stable N pools and thereby reduce NO3− accumulation and loss. We found that 87–92% of the applied 15N-labelled NH4+ was rapidly recovered as NO3− since day 3 and only 2–4% as microbial biomass and soil organic matter (SOM), while ryegrass co-application significantly decreased its recovery as NO3− but enhanced its recovery as SOM (17%) at the end of incubation. The trade-off relationship between 15N recoveries in microbial biomass and SOM indicated that ryegrass co-application stabilized newly immobilized N via initial microbial uptake and later breakdown. Nevertheless, ryegrass application didn’t decrease soil total NO3− accumulation due to its own decay. Our results suggest that green manure co-application can increase immobilization of applied N into stable organic N via microbial turnover, but the quantity and quality of green manure should be well considered to reduce N release from itself. PMID:26868028

  1. Detection of polyhydroxyalkanoate-accumulating bacteria from domestic wastewater treatment plant using highly sensitive PCR primers.

    PubMed

    Huang, Yu-Tzu; Chen, Pi-Ling; Semblante, Galilee Uy; You, Sheng-Jie

    2012-08-01

    Polyhydroxyalkanoate (PHA) is a class of biodegradable plastics that have great potential applications in the near future. In this study, the micro-biodiversity and productivity of PHA-accumulating bacteria in activated sludge from a domestic wastewater treatment plant were investigated. A previously reported primer set and a selfdesigned primer set (phaCF1BO/phaCR2BO) were both used to amplify the PHA synthase (phaC) gene of isolated colonies. The new primers demonstrated higher sensitivity for phaC, and combining the PCR results of the two primer sets was able to widen the range of detected genera and raise the sensitivity to nearly 90%. Results showed that 85.3% of the identified bacteria were Gram-negative, with Ralstonia as the dominant genus, and 14.7% were Gram-positive. In addition, Zoogloea and Rhizobium contained the highest amounts of intracellular PHA. It is apparent that glucose was a better carbon source than pentone or tryptone for promoting PHA production in Micrococcus. Two different classes, class I and class II, of phaC were detected from alphaproteobacteria, betaproteobacteria, and gammaproteobacteria, indicating the wide diversity of PHA-accumulating bacteria in this particular sampling site. Simultaneous wastewater treatment and PHA production is promising by adopting the high PHAaccumulating bacteria isolated from activated sludge.

  2. Atmospheric Controls of Snow Accumulation on Glaciers and Ice Caps in High Asia

    NASA Astrophysics Data System (ADS)

    Scherer, D.; Curio, J.

    2015-12-01

    Snowfall is the major contributor to snow accumulation on glaciers and ice caps. Unfortunately, its quantification is rather difficult, both by observations and by numerical modelling. Field measurements of snowfall are generally problematic, and particularly inaccurate in mountainous regions. This holds true also for data from remote sensing systems like the TRMM. Numerical modelling of precipitation in general, and of snowfall in particular, is depending on parameterization of sub-grid processes occurring at a wide range of spatial scales. The scarcity of reliable observational data on snowfall required to test and validate the relevant parameterization schemes is one of the major obstacles for deepening our understanding of atmospheric controls of snow accumulation on glaciers and ice caps. In addition, the often made assumption that easy-to-measure snow accumulation equals snowfall is not valid in areas where other processes like snowdrift or avalanches cause snow deposition or erosion. Besides a general discussion of the above-mentioned problems, the presentation will focus on results obtained from a gridded atmospheric data set, i.e., the so-called High Asia Refined analysis (HAR), covering the study region by two nested domains of 30 km and 10 km grid spacing. Starting from autumn 2000, three-hourly (30 km) and hourly (10 km) data are available for a comprehensive set of atmospheric variables (see www.klima.tu-berlin.de/HAR). HAR data was used to analyse annual and seasonal patterns of precipitation and atmospheric water transport, as well as to drive numerical models for surface mass balance of glaciers and ice sheets. A new study, which is the main subject of this presentation, reveals specific regimes of dynamic controls of precipitation in different regions of High Asia. One of the striking results is that the analysis identified a specific regime that is able to explain some of the atmospheric controls behind the so-called Karakoram anomaly (glaciers in

  3. Isolation of an extremely acidophilic and highly efficient strain Acidithiobacillus sp. for chalcopyrite bioleaching.

    PubMed

    Feng, Shoushuai; Yang, Hailin; Xin, Yu; Zhang, Ling; Kang, Wenliang; Wang, Wu

    2012-11-01

    An extremely acidophilic sulfur-oxidizing bacterium was isolated from an industrial-scale bioheap of the Zijinshan copper mine and was named ZJJN. A tuft of flagella and a layer of thick capsule outside the cell envelope were clearly observed under transmission electron microscopy (TEM), which might be closely related to the extremely acid-proof capacity of ZJJN cells in the bioleaching system; 16S ribosomal RNA (rRNA) phylogeny showed that the isolated strain was highly homologous to the genera of Acidithiobacillus. The optimum temperature of ZJJN was determined at 30 °C and pH at 1.0. It was capable of growth at even pH 0. Strain ZJJN can utilize reduced sulfur as an energy source but not with organics or ferrous ion. Strain ZJJN was sensitive to all antibiotics with different concentrations; when it showed a certain resistance to different concentrations of Cu(2+). In the mixed strains of ZJJN and A. ferrooxidans system (initial pH 1.0), the copper-leaching efficiency was up to 60.1 %, which was far higher than other systems. Scanning electron microscopy (SEM) analysis showed that less jarosite precipitation was produced in the most efficient system. The extremely acidophilic strain ZJJN would be of great potential in the application of chalcopyrite bioleaching.

  4. Performance of High Temperature Operational Amplifier, Type LM2904WH, under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Operation of electronic parts and circuits under extreme temperatures is anticipated in NASA space exploration missions as well as terrestrial applications. Exposure of electronics to extreme temperatures and wide-range thermal swings greatly affects their performance via induced changes in the semiconductor material properties, packaging and interconnects, or due to incompatibility issues between interfaces that result from thermal expansion/contraction mismatch. Electronics that are designed to withstand operation and perform efficiently in extreme temperatures would mitigate risks for failure due to thermal stresses and, therefore, improve system reliability. In addition, they contribute to reducing system size and weight, simplifying its design, and reducing development cost through the elimination of otherwise required thermal control elements for proper ambient operation. A large DC voltage gain (100 dB) operational amplifier with a maximum junction temperature of 150 C was recently introduced by STMicroelectronics [1]. This LM2904WH chip comes in a plastic package and is designed specifically for automotive and industrial control systems. It operates from a single power supply over a wide range of voltages, and it consists of two independent, high gain, internally frequency compensated operational amplifiers. Table I shows some of the device manufacturer s specifications.

  5. The evolutionary status of high and extremely low surface brightness dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Janowiecki, Steven

    2015-10-01

    Studying dwarf galaxies can shed light on the original building blocks of galaxy formation. Most large galaxies are thought to be built up over billions of years through the collisions and mergers of smaller galaxies. The dwarf galaxies we see today are the evolved remnants of those building blocks, and by understanding their nature and evolution, we can study the raw ingredients of galaxy formation. Blue Compact Dwarf galaxies (BCDs) and Almost Dark galaxies are at opposite extremes of today's population of dwarf galaxies. BCDs are exceptionally compact and host very intense starbursts, while Almost Dark galaxies are much more diffuse and have weak stellar populations. This work studies the evolutionary context of BCDs by using deep, high-resolution images to study the detailed structure of their components, and by fitting our multi-wavelength observations with models to describe the properties of their stars, gas, and dust. BCDs appear to have exceptionally compact old stellar populations and unusually large star formation rates, when compared to typical dwarf galaxies. By contrast, the optically faint, gas-dominated Almost Dark galaxies have extremely low star formation rates and weak stellar populations. In particular, one of the Almost Darks studied in this work has very unusual properties and is in disagreement with widely-studied scaling relations for large samples of galaxies. It appears to have too little stellar mass, a distribution of HI that is too extended to be supported by its modest rotation, and the highest well-measured gas mass-to-light ratio ever observed. These two extreme classes may represent evolutionary stages that all galaxies pass through, and appear to be extreme ends of the broad continuum of dwarf galaxy properties. In order to use today's dwarf galaxies as windows into the building blocks of early galaxy formation, these unusual states and evolutionary pathways must be understood.

  6. The evolutionary status of high and extremely low surface brightness dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Janowiecki, Steven

    2015-07-01

    Studying dwarf galaxies can shed light on the original building blocks of galaxy formation. Most large galaxies are thought to be built up over billions of years through the collisions and mergers of smaller galaxies. The dwarf galaxies we see today are the evolved remnants of those building blocks, and by understanding their nature and evolution, we can study the raw ingredients of galaxy formation. Blue Compact Dwarf galaxies (BCDs) and Almost Dark galaxies are at opposite extremes of today's population of dwarf galaxies. BCDs are exceptionally compact and host very intense starbursts, while Almost Dark galaxies are much more diffuse and have weak stellar populations. This work studies the evolutionary context of BCDs by using deep, high-resolution images to study the detailed structure of their components, and by fitting our multi-wavelength observations with models to describe the properties of their stars, gas, and dust. BCDs appear to have exceptionally compact old stellar populations and unusually large star formation rates, when compared to typical dwarf galaxies. By contrast, the optically faint, gas-dominated Almost Dark galaxies have extremely low star formation rates and weak stellar populations. In particular, one of the Almost Darks studied in this work has very unusual properties and is in disagreement with widely-studied scaling relations for large samples of galaxies. It appears to have too little stellar mass, a distribution of HI that is too extended to be supported by its modest rotation, and the highest well-measured gas mass-to-light ratio ever observed. These two extreme classes may represent evolutionary stages that all galaxies pass through, and appear to be extreme ends of the broad continuum of dwarf galaxy properties. In order to use today's dwarf galaxies as windows into the building blocks of early galaxy formation, these unusual states and evolutionary pathways must be understood.

  7. Examining Spatio-Temporal Intensity-Frequency Variations in Extreme Monsoon Rainfall using High Resolution Data

    NASA Astrophysics Data System (ADS)

    Devak, M.; Rajendran, V.; C T, D.

    2015-12-01

    The study of extreme events has gained the attention of hydrologists in recent times. Though these events are rare, the effects are catastrophic. It is reported that the frequency of the occurrence of these events has increased in recent decades, and is attributed to the recent revelation of climate change. Numerous studies have pointed out significant changes in extremely heavy precipitation over India, using coarse resolution data. Though there are disagreements in the results and its spatial uniformity, all these studies emphasize the need of fine resolution analysis. Fine resolution analysis is necessary mainly due to the highly heterogeneous characteristics of Indian monsoon, and for the proper employment in flood hazard preparedness and water resources management. The present study aims to analyse the spatio-temporal variation and trends in the intensity and frequency of heavy precipitation during Indian monsoon using 0.25°×0.25° resolution gridded data for a period of 113 years (1901-2013). The exceedance threshold is fixed at 90th percentile of rainfall over 113 years and parameters are defined accordingly. The maximum intensity of each extreme rainfall episode of 30 year moving window has been modelled using Peak Over Threshold based Extreme Value Theory to compute return level (considered for intensity). In addition, the number of such episodes in a particular year has been termed as frequency. Non-parametric Mann-Kendall test has been carried out for both intensity and frequency, to compute the statistical trend. In addition, moving block bootstrap approach has been used to incorporate the serial correlation. The significance of the trend has been evaluated at different significance levels and finally, change in trend over last century has been examined.

  8. From ozone mini-holes and mini-highs towards extreme value theory: New insights from extreme events and non-stationarity

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Ribatet, M.; Stübi, R.; Weihs, P.; Holawe, F.; Peter, T.; Davison, A. C.

    2009-04-01

    Over the last few decades negative trends in stratospheric ozone have been studied because of the direct link between decreasing stratospheric ozone and increasing surface UV-radiation. Recently a discussion on ozone recovery has begun. Long-term measurements of total ozone extending back earlier than 1958 are limited and only available from a few stations in the northern hemisphere. The world's longest total ozone record is available from Arosa, Switzerland (Staehelin et al., 1998a,b). At this site total ozone measurements have been made since late 1926 through the present day. Within this study (Rieder et al., 2009) new tools from extreme value theory (e.g. Coles, 2001; Ribatet, 2007) are applied to select mathematically well-defined thresholds for extreme low and extreme high total ozone. A heavy-tail focused approach is used by fitting the Generalized Pareto Distribution (GPD) to the Arosa time series. Asymptotic arguments (Pickands, 1975) justify the use of the GPD for modeling exceedances over a sufficiently high (or below a sufficiently low) threshold (Coles, 2001). More precisely, the GPD is the limiting distribution of normalized excesses over a threshold, as the threshold approaches the endpoint of the distribution. In practice, GPD parameters are fitted, to exceedances by maximum likelihood or other methods - such as the probability weighted moments. A preliminary step consists in defining an appropriate threshold for which the asymptotic GPD approximation holds. Suitable tools for threshold selection as the MRL-plot (mean residual life plot) and TC-plot (stability plot) from the POT-package (Ribatet, 2007) are presented. The frequency distribution of extremes in low (termed ELOs) and high (termed EHOs) total ozone and their influence on the long-term changes in total ozone are analyzed. Further it is shown that from the GPD-model the distribution of so-called ozone mini holes (e.g. Bojkov and Balis, 2001) can be precisely estimated and that the

  9. Highly accumulative production of L(+)-lactate from glucose by crystallization fermentation with immobilized Rhizopus oryzae.

    PubMed

    Yamane, Tsuneo; Tanaka, Ryohsuke

    2013-01-01

    In order to produce microbiologically large amount of l(+)-lactic acid (LA) from glucose, batch and fed-batch (intermittent addition of sterilized glucose powder aseptically) cultures of Rhizopus oryzae NBRC 5384 (identical to NRRL 395 and ATCC 9363) whose mycelia were immobilized in situ within sponge-like cubic particles (3.5 mm edge long) were carried out at 37°C in a three baffled shake flask. Appropriately calculated amount of fine powdery calcium carbonate (CaCO(3)) was added initially or intermittently to control pH of the culture liquids. High accumulations of LA (145 g/L and 231 g/L, in reality 176 g/L and 280 g/L as anhydrous calcium lactate) were achieved by a batch (glucose concentration = 150 g/L) and a fed-batch cultures (the initial glucose concentration = 150 g/L and the intermittent addition of glucose equivalent to 100 g/L). In these cultures the yields and productivities of LA were, 95.0%, 1.42 g/L·h and 92.5%, 1.83 g/L·h, respectively. Existence of considerable amounts of calcium lactate (Ca(LA)(2)) as crystals in the culture broth was experimentally proved by two evidences: (i) heating up (70°C) followed by quick low centrifugal force to remove remaining CaCO(3) solids from culture broth and then cooling down (37°C) followed by incubation of the culture supernatant at 37°C to observe recrystallization of Ca(LA)(2), and (ii) the measurement of solubility of Ca(LA)(2) in the culture media. It was conceptually discussed to be able to avoid the product inhibition by means of crystallization fermentation for the high accumulation of LA by R. oryzae. PMID:22938823

  10. EEE - Extreme Energy Events: an astroparticle physics experiment in Italian High Schools

    NASA Astrophysics Data System (ADS)

    Abbrescia, M.; Avanzini, C.; Baldini, L.; Baldini Ferroli, R.; Batignani, G.; Bencivenni, G.; Bossini, E.; Bressan, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccia, E.; Corvaglia, A.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Fattibene, E.; Ferrarov, A.; Forster, R.; Frolov, V.; Galeotti, P.; Garbini, M.; Gemme, G.; Gnesi, I.; Grazzi, S.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Maggiora, A.; Maron, G.; Mazziotta, M. N.; Miozzi, S.; Noferini, F.; Nozzoli, F.; Panareo, M.; Panetta, M. P.; Paoletti, R.; Perasso, L.; Pilo, F.; Piragino, G.; Riggi, F.; Righini, G. C.; Rodriguez Rodriguez, A.; Sartorelli, G.; Scapparone, E.; Schioppa, M.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Squarcia, S.; Taiuti, M.; Terreni, G.; Vistoli, M. C.; Votano, L.; Williams, M. C. S.; Zani, S.; Zichichi, A.; Zuyeuski, R.

    2016-05-01

    The Extreme Energy Events project (EEE) is aimed to study Extensive Air Showers (EAS) from primary cosmic rays of more than 1018 eV energy detecting the ground secondary muon component using an array of telescopes with high spatial and time resolution. The second goal of the EEE project is to involve High School teachers and students in this advanced research work and to initiate them in scientific culture: to reach both purposes the telescopes are located inside High School buildings and the detector construction, assembling and monitoring - together with data taking and analysis - are done by researchers from scientific institutions in close collaboration with them. At present there are 42 telescopes in just as many High Schools scattered all over Italy, islands included, plus two at CERN and three in INFN units. We report here some preliminary physics results from the first two common data taking periods together with the outreach impact of the project.

  11. In situ observation and measurement of composites subjected to extremely high temperature

    NASA Astrophysics Data System (ADS)

    Fang, Xufei; Yu, Helong; Zhang, Guobing; Su, Hengqiang; Tang, Hongxiang; Feng, Xue

    2014-03-01

    In this work, we develop an instrument to study the ablation and oxidation process of materials such as C/SiC (carbon fiber reinforced silicon carbide composites) and ultra-high temperature ceramic in extremely high temperature environment. The instrument is integrated with high speed cameras with filtering lens, infrared thermometers and water vapor generator for image capture, temperature measurement, and humid atmosphere, respectively. The ablation process and thermal shock as well as the temperature on both sides of the specimen can be in situ monitored. The results show clearly the dynamic ablation and liquid oxide flowing. In addition, we develop an algorithm for the post-processing of the captured images to obtain the deformation of the specimens, in order to better understand the behavior of the specimen subjected to high temperature.

  12. In situ observation and measurement of composites subjected to extremely high temperature.

    PubMed

    Fang, Xufei; Yu, Helong; Zhang, Guobing; Su, Hengqiang; Tang, Hongxiang; Feng, Xue

    2014-03-01

    In this work, we develop an instrument to study the ablation and oxidation process of materials such as C/SiC (carbon fiber reinforced silicon carbide composites) and ultra-high temperature ceramic in extremely high temperature environment. The instrument is integrated with high speed cameras with filtering lens, infrared thermometers and water vapor generator for image capture, temperature measurement, and humid atmosphere, respectively. The ablation process and thermal shock as well as the temperature on both sides of the specimen can be in situ monitored. The results show clearly the dynamic ablation and liquid oxide flowing. In addition, we develop an algorithm for the post-processing of the captured images to obtain the deformation of the specimens, in order to better understand the behavior of the specimen subjected to high temperature.

  13. Burst train generator of high energy femtosecond laser pulses for driving heat accumulation effect during micromachining.

    PubMed

    Rezaei, Saeid; Li, Jianzhao; Herman, Peter R

    2015-05-01

    A new method for generating high-repetition-rate (12.7-38.2 MHz) burst trains of femtosecond laser pulses has been demonstrated for the purpose of tailoring ultrashort laser interactions in material processing that can harness the heat accumulation effect among pulses separated by a short interval (i.e., 26 ns). Computer-controlled time delays were applied to synchronously trigger the high frequency switching of a high voltage Pockels cell to specify distinctive values of polarization rotation for each round-trip of a laser pulse cycling within a passive resonator. Polarization dependent output coupling facilitated the flexible shaping of the burst envelope profile to provide burst trains of up to ∼1  mJ of burst energy divided over a selectable number (1 to 25) of pulses. Individual pulses of variable energy up to 150 μJ and with pulse duration tunable over 70 fs to 2 ps, were applied in burst trains to generate deep and high aspect ratio holes that could not form with low-repetition-rate laser pulses. PMID:25927785

  14. Image-based motion compensation for high-resolution extremities cone-beam CT

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Stayman, J. W.; Cao, Q.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2016-03-01

    Purpose: Cone-beam CT (CBCT) of the extremities provides high spatial resolution, but its quantitative accuracy may be challenged by involuntary sub-mm patient motion that cannot be eliminated with simple means of external immobilization. We investigate a two-step iterative motion compensation based on a multi-component metric of image sharpness. Methods: Motion is considered with respect to locally rigid motion within a particular region of interest, and the method supports application to multiple locally rigid regions. Motion is estimated by maximizing a cost function with three components: a gradient metric encouraging image sharpness, an entropy term that favors high contrast and penalizes streaks, and a penalty term encouraging smooth motion. Motion compensation involved initial coarse estimation of gross motion followed by estimation of fine-scale displacements using high resolution reconstructions. The method was evaluated in simulations with synthetic motion (1-4 mm) applied to a wrist volume obtained on a CMOS-based CBCT testbench. Structural similarity index (SSIM) quantified the agreement between motion-compensated and static data. The algorithm was also tested on a motion contaminated patient scan from dedicated extremities CBCT. Results: Excellent correction was achieved for the investigated range of displacements, indicated by good visual agreement with the static data. 10-15% improvement in SSIM was attained for 2-4 mm motions. The compensation was robust against increasing motion (4% decrease in SSIM across the investigated range, compared to 14% with no compensation). Consistent performance was achieved across a range of noise levels. Significant mitigation of artifacts was shown in patient data. Conclusion: The results indicate feasibility of image-based motion correction in extremities CBCT without the need for a priori motion models, external trackers, or fiducials.

  15. High Temperature Extremes - Will They Transform Structure of Avian Assemblages in the Desert Southwest?

    NASA Astrophysics Data System (ADS)

    Mutiibwa, D.; Albright, T. P.; Wolf, B. O.; Mckechnie, A. E.; Gerson, A. R.; Talbot, W. A.; Sadoti, G.; O'Neill, J.; Smith, E.

    2014-12-01

    Extreme weather events can alter ecosystem structure and function and have caused mass mortality events in animals. With climate change, high temperature extremes are increasing in frequency and magnitude. To better understand the consequences of climate change, scientists have frequently employed correlative models based on species occurrence records. However, these approaches may be of limited utility in the context of extremes, as these are often outside historical ranges and may involve strong non-linear responses. Here we describe work linking physiological response informed by experimental data to geospatial climate datasets in order to mechanistically model the dynamics of dehydration risk to dessert passerine birds. Specifically, we modeled and mapped the occurrence of current (1980-2013) high temperature extremes and evaporative water loss rates for eight species of passerine birds ranging in size from 6.5-75g in the US Southwest portion of their range. We then explored the implications of a 4° C warming scenario. Evaporative water loss (EWL) across a range of high temperatures was measured in heat-acclimated birds captured in the field. We used the North American Land Data Assimilation System 2 dataset to obtain hourly estimates of EWL with a 14-km spatial grain. Assuming lethal dehydration occurs when water loss reaches 15% of body weight, we then produced maps of total daily EWL and time to lethal dehydration based on both current data and future scenarios. We found that milder events capable of producing dehydration in passerine birds over four or more hours were not uncommon over the Southwest, but rapid dehydration conditions (<3 hours) were rare. Under the warming scenario, the frequency and extent of dehydration events expanded greatly, often affecting areas several times larger than in present-day climate. Dehydration risk was especially high among smaller bodied passerines due to their higher mass-specific rates of water loss. Even after

  16. Dissecting the molecular basis of the contribution of source strength to high fructan accumulation in wheat.

    PubMed

    Xue, Gang-Ping; Drenth, Janneke; Glassop, Donna; Kooiker, Maarten; McIntyre, C Lynne

    2013-01-01

    Fructans represent the major component of water soluble carbohydrates (WSCs) in the maturing stem of temperate cereals and are an important temporary carbon reserve for grain filling. To investigate the importance of source carbon availability in fructan accumulation and its molecular basis, we performed comparative analyses of WSC components and the expression profiles of genes involved in major carbohydrate metabolism and photosynthesis in the flag leaves of recombinant inbred lines from wheat cultivars Seri M82 and Babax (SB lines). High sucrose levels in the mature flag leaf (source organ) were found to be positively associated with WSC and fructan concentrations in both the leaf and stem of SB lines in several field trials. Analysis of Affymetrix expression array data revealed that high leaf sucrose lines grown in abiotic-stress-prone environments had high expression levels of a number of genes in the leaf involved in the sucrose synthetic pathway and photosynthesis, such as Calvin cycle genes, antioxidant genes involved in chloroplast H(2)O(2) removal and genes involved in energy dissipation. The expression of the majority of genes involved in fructan and starch synthetic pathways were positively correlated with sucrose levels in the leaves of SB lines. The high level of leaf fructans in high leaf sucrose lines is likely attributed to the elevated expression levels of fructan synthetic enzymes, as the mRNA levels of three fructosyltransferase families were consistently correlated with leaf sucrose levels among SB lines. These data suggest that high source strength is one of the important genetic factors determining high levels of WSC in wheat.

  17. Uterine choriocarcinoma accompanied by an extremely high human chorionic gonadotropin level and thyrotoxicosis.

    PubMed

    Hsieh, Tsung-Ying; Hsu, Keng-Fu; Kuo, Pao-Lin; Huang, Soon-Cen

    2008-04-01

    The conventional treatments given to a 24-year-old woman with metastatic uterine choriocarcinoma and clinical and biochemical thyrotoxicosis did not appear to have any effect, probably due to an extremely high serum human chorionic gonadotropin (hCG) level which was up to 11,910,000 mIU/mL, and were initially underscored in light of the 'high-dose hook effect'. To our knowledge, no extremely high hCG level in a uterine choriocarcinoma patient has been reported in the literature. Her decapacitating symptoms subsided after the first course of chemotherapy by etoposide, methotrexate, and actinomycin D-cyclophosphamide and vincristine (EMA-CO) regimen. The serum hCG level, which reflects the quantification of host tumor burden, returned to the reference range after the fifth course of chemotherapy and the thyroid function reached euthyroid status before the third course of chemotherapy; two final courses were administered after the hCG level became undetectable. Two years after remission of disease, the patient experienced a normal pregnancy, and a term baby girl was delivered vaginally. No recurrence of uterine choriocarcinoma has been noted for 7 years. PMID:18412797

  18. Laboratory measurements of materials in extreme conditions; The use of high energy radiation sources for high pressure studies

    SciTech Connect

    Cauble, R.; Remington, B.A.

    1998-06-01

    High energy lasers can be used to study material conditions that are appropriate fort inertial confinement fusion: that is, materials at high densities, temperatures, and pressures. Pulsed power devices can offer similar opportunities. The National Ignition Facility (NIF) will be a high energy multi-beam laser designed to achieve the thermonuclear ignition of a mm-scale DT-filled target in the laboratory. At the same time, NE will provide the physics community with a unique tool for the study of high energy density matter at states unreachable by any other laboratory technique. Here we describe how these lasers and pulsed power tools can contribute to investigations of high energy density matter in the areas of material properties and equations of state, extend present laboratory shock techniques such as high-speed jets to new regimes, and allow study of extreme conditions found in astrophysical phenomena.

  19. Intraspecific variation in cadmium tolerance and accumulation of a high-biomass tropical tree Averrhoa carambola L.: implication for phytoextraction.

    PubMed

    Dai, Zi-yun; Shu, Wen-sheng; Liao, Bin; Wan, Cai-yun; Li, Jin-tian

    2011-06-01

    Averrhoa carambola L., a high-biomass tropical tree, has recently been shown to be a strong accumulator of cadmium (Cd) and has great potential for Cd phytoextraction. In the present study, field studies and a controlled-environment experiment were combined to establish the extent of variation in Cd tolerance and accumulation at the cultivar level using 14 to 19 cultivars of A. carambola. The results indicated that all cultivars tested could accumulate Cd at high but different levels, and that Cd tolerance also varied greatly between these cultivars. It is confirmed that the high Cd tolerance and accumulation capacity are species-level and constitutional traits in A. carambola. However, no correlation was detected between tolerance index and accumulation of Cd in different cultivars, suggesting that the two traits are independent in this woody Cd accumulator. More importantly, cultivar Wuchuan Sweet (WCT) was shown to have the highest Cd-extraction potential; it yielded a high shoot biomass of 30 t ha(-1) in 230 d, and extracted 330 g ha(-1) Cd in the aerial tissues grown in Cd-contaminated field soil, which accounted for 12.8% of the total soil Cd in the top 20 cm of the soil profile.

  20. Polymer nanocomposite films with extremely high nanoparticle loadings via capillary rise infiltration (CaRI)

    NASA Astrophysics Data System (ADS)

    Huang, Yun-Ru; Jiang, Yijie; Hor, Jyo Lyn; Gupta, Rohini; Zhang, Lei; Stebe, Kathleen J.; Feng, Gang; Turner, Kevin T.; Lee, Daeyeon

    2014-12-01

    Polymer nanocomposite films (PNCFs) with extremely high concentrations of nanoparticles are important components in energy storage and conversion devices and also find use as protective coatings in various applications. PNCFs with high loadings of nanoparticles, however, are difficult to prepare because of the poor processability of polymer-nanoparticle mixtures with high concentrations of nanoparticles even at an elevated temperature. This problem is exacerbated when anisotropic nanoparticles are the desired filler materials. Here we report a straightforward method for generating PNCFs with extremely high loadings of nanoparticles. Our method is based on what we call capillary rise infiltration (CaRI) of polymer into a dense packing of nanoparticles. CaRI consists of two simple steps: (1) the preparation of a two-layer film, consisting of a porous layer of nanoparticles and a layer of polymer and (2) annealing of the bilayer structure above the temperature that imparts mobility to the polymer (e.g., glass transition of the polymer). The second step leads to polymer infiltration into the interstices of the nanoparticle layer, reminiscent of the capillary rise of simple fluid into a narrow capillary or a packing of granules. We use in situ spectroscopic ellipsometry and a three-layer Cauchy model to follow the capillary rise of polystyrene into the random network of nanoparticles. The infiltration of polystyrene into a densely packed TiO2 nanoparticle layer is shown to follow the classical Lucas-Washburn type of behaviour. We also demonstrate that PNCFs with densely packed anisotropic TiO2 nanoparticles can be readily generated by spin coating anisotropic TiO2 nanoparticles atop a polystyrene film and subsequently thermally annealing the bilayer film. We show that CaRI leads to PNCFs with modulus, hardness and scratch resistance that are far superior to the properties of films of the component materials. In addition, CaRI fills in cracks that may exist in the

  1. First high-precision differential abundance analysis of extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Reggiani, Henrique; Meléndez, Jorge; Yong, David; Ramírez, Ivan; Asplund, Martin

    2016-02-01

    Context. Studies of extremely metal-poor stars indicate that chemical abundance ratios [X/Fe] have a root mean square scatter as low as 0.05 dex (12%). It remains unclear whether this reflects observational uncertainties or intrinsic astrophysical scatter arising from physical conditions in the interstellar medium at early times. Aims: We measure differential chemical abundance ratios in extremely metal-poor stars to investigate the limits of precision and to understand whether cosmic scatter or observational errors are dominant. Methods: We used high-resolution (R ~ 95 000) and high signal-to-noise (S/N = 700 at 5000 Å) HIRES/Keck spectra to determine high-precision differential abundances between two extremely metal-poor stars through a line-by-line differential approach. We determined stellar parameters for the star G64-37 with respect to the standard star G64-12. We performed EW measurements for the two stars for the lines recognized in both stars and performed spectral synthesis to study the carbon abundances. Results: The differential approach allowed us to obtain errors of σ(Teff) = 27 K, σ(log g) = 0.06 dex, σ( [Fe/H] ) = 0.02 dex and σ(vt) = 0.06 km s-1. We estimated relative chemical abundances with a precision as low as σ([X/Fe]) ≈ 0.01 dex. The small uncertainties demonstrate that there are genuine abundance differences larger than the measurement errors. The observed Li difference cannot be explained by the difference in mass because the less massive star has more Li. Conclusions: It is possible to achieve an abundance precision around ≈ 0.01-0.05 dex for extremely metal-poor stars, which opens new windows on the study of the early chemical evolution of the Galaxy. Table A.1 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A67

  2. Organochlorine accumulation on a highly consumed bivalve (Scrobicularia plana) and its main implications for human health.

    PubMed

    Grilo, T F; Cardoso, P G; Pato, P; Duarte, A C; Pardal, M A

    2013-09-01

    Contamination by polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) was investigated along a spatial gradient in water, sediments and in commercially important bivalve species Scrobicularia plana, from Ria de Aveiro (Portugal). Organochlorines dissolved in water were below detection limit and concerning suspended particulate matter, only PCBs were quantified, ranging from 3.8 to 5.8 ng∙g(-1) DW (Σ13PCBs). There was a distinct spatial gradient regarding PCB accumulation in sediments. The highest concentrations were found in deeper layers and closest to the pollution source, decreasing gradually along a 3 km area. Contamination in sediments exceeded the Canadian and Norwegian sediment quality guidelines, inducing potential toxic effects in related biota. PCBs tended to bioaccumulate throughout S. plana lifespan but with different annual rates along the spatial gradient. The maximum values were found in older individuals up to 3+ years old, reaching 19.4 ng∙g(-1) DW. HCB concentrations were residual and no bioaccumulation pattern was evident. Congeners 138, 153 and 180 were the most accumulated due to their abundance and long-term persistence in the environment. In the inner area of the Laranjo Bay (0.6 km(2)), the species was able to remove up to 0.4 g of PCBs annually from sediments into their own tissues, which is consequently free for trophic transfer (biomagnification). Concerning human health, and despite the high concentrations found in sediments, PCB levels in bivalves do not exceed the limit established by the European Union for fishery products and are largely below tolerable daily intake. Although PCBs in Scrobicularia plana are present at low levels, their impact to human health after consumption over many years might be harmful and should be monitored in future studies.

  3. High dose of tigecycline for extremely resistant Gram-negative pneumonia: yes, we can

    PubMed Central

    2014-01-01

    Few antimicrobials are currently active to treat infections caused by extremely resistant Gram-negative bacilli (ERGNB), which represent a serious global public health concern. Tigecycline, which covers the majority of these ERGNB (with the exception of Pseudomonas aeruginosa), is not currently approved for hospital-acquired pneumonia, and several meta-analyses have suggested an increased risk of death in patients receiving this antibiotic. Other studies suggest that the use of high-dose tigecycline may represent an alternative in daily practice. De Pascale and colleagues report that the clinical cure rate in patients with ventilator-associated pneumonia is significantly higher with a high dose of tigecycline than with the conventional dose, although mortality was unaffected. This high dose is safe; no patients required discontinuation or dose reduction. PMID:25043402

  4. Extreme Adaptive Optics Testbed: High Contrast Measurements with a MEMS Deformable Mirror

    SciTech Connect

    Evans, J W; Morzinski, K; Reza, L; Severson, S; Poyneer, L; Macintosh, B; Dillon, D; Sommargren, G

    2005-08-16

    ''Extreme'' adaptive optics systems are optimized for ultra-high-contrast applications, such as ground-based extrasolar planet detection. The Extreme Adaptive Optics Testbed at UC Santa Cruz is being used to investigate and develop technologies for high-contrast imaging, especially wavefront control. We use a simple optical design to minimize wavefront error and maximize the experimentally achievable contrast. A phase shifting diffraction interferometer (PSDI) measures wavefront errors with sub-nm precision and accuracy for metrology and wavefront control. Previously, we have demonstrated RMS wavefront errors of <1.5 nm and a contrast of >10{sup 7} over a substantial region using a shaped pupil without a deformable mirror. Current work includes the installation and characterization of a 1024-actuator Micro-Electro-Mechanical-Systems (MEMS) deformable mirror, manufactured by Boston Micro-Machines for active wavefront control. Using the PSDI as the wavefront sensor we have flattened the deformable mirror to <1 nm within the controllable spatial frequencies and measured a contrast in the far field of >10{sup 6}. Consistent flattening required testing and characterization of the individual actuator response, including the effects of dead and low-response actuators. Stability and repeatability of the MEMS devices was also tested. Ultimately this testbed will be used to test all aspects of the system architecture for an extrasolar planet-finding AO system.

  5. Highly stable, extremely high-temperature, nonvolatile memory based on resistance switching in polycrystalline Pt nanogaps

    NASA Astrophysics Data System (ADS)

    Suga, Hiroshi; Suzuki, Hiroya; Shinomura, Yuma; Kashiwabara, Shota; Tsukagoshi, Kazuhito; Shimizu, Tetsuo; Naitoh, Yasuhisa

    2016-10-01

    Highly stable, nonvolatile, high-temperature memory based on resistance switching was realized using a polycrystalline platinum (Pt) nanogap. The operating temperature of the memory can be drastically increased by the presence of a sharp-edged Pt crystal facet in the nanogap. A short distance between the facet edges maintains the nanogap shape at high temperature, and the sharp shape of the nanogap densifies the electric field to maintain a stable current flow due to field migration. Even at 873 K, which is a significantly higher temperature than feasible for conventional semiconductor memory, the nonvolatility of the proposed memory allows stable ON and OFF currents, with fluctuations of less than or equal to 10%, to be maintained for longer than eight hours. An advantage of this nanogap scheme for high-temperature memory is its secure operation achieved through the assembly and disassembly of a Pt needle in a high electric field.

  6. Highly stable, extremely high-temperature, nonvolatile memory based on resistance switching in polycrystalline Pt nanogaps

    PubMed Central

    Suga, Hiroshi; Suzuki, Hiroya; Shinomura, Yuma; Kashiwabara, Shota; Tsukagoshi, Kazuhito; Shimizu, Tetsuo; Naitoh, Yasuhisa

    2016-01-01

    Highly stable, nonvolatile, high-temperature memory based on resistance switching was realized using a polycrystalline platinum (Pt) nanogap. The operating temperature of the memory can be drastically increased by the presence of a sharp-edged Pt crystal facet in the nanogap. A short distance between the facet edges maintains the nanogap shape at high temperature, and the sharp shape of the nanogap densifies the electric field to maintain a stable current flow due to field migration. Even at 873 K, which is a significantly higher temperature than feasible for conventional semiconductor memory, the nonvolatility of the proposed memory allows stable ON and OFF currents, with fluctuations of less than or equal to 10%, to be maintained for longer than eight hours. An advantage of this nanogap scheme for high-temperature memory is its secure operation achieved through the assembly and disassembly of a Pt needle in a high electric field. PMID:27725705

  7. Application of cyclic damage accumulation life prediction model to high temperature components

    NASA Technical Reports Server (NTRS)

    Nelson, Richard S.

    1989-01-01

    A high temperature, low cycle fatigue life prediction method was developed. This method, Cyclic Damage Accumulation (CDA), was developed for use in predicting the crack initiation lifetime of gas turbine engine materials, but it can be applied to other materials as well. The method is designed to account for the effects on creep-fatigue life of complex loading such as thermomechanical fatigue, hold periods, waveshapes, mean stresses, multiaxiality, cumulative damage, coatings, and environmental attack. Several features of this model were developed to make it practical for application to actual component analysis, such as the ability to handle nonisothermal loading (including TMF), arbitrary cycle paths, and multiple damage modes. The CDA life prediction model was derived from extensive specimen tests conducted on cast nickel-base superalloy B1900 + Hf. These included both monotonic tests (tensile and creep) and strain-controlled fatigue experiments (uniaxial, biaxial, TMF, mixed creep-fatigue, and controlled mean stress). Additional specimen tests were conducted on wrought INCO 718 to verify the applicability of the final CDA model to other high-temperature alloys. The model will be available to potential users in the near future in the form of a FORTRAN-77 computer program.

  8. Global Distribution of Extreme Precipitation and High-Impact Landslides in 2010 Relative to Previous Years

    NASA Technical Reports Server (NTRS)

    Kirschbaum, Dalia; Adler, Robert; Adler, David; Peters-Lidard, Christa; Huffman, George

    2012-01-01

    It is well known that extreme or prolonged rainfall is the dominant trigger of landslides worldwide. While research has evaluated the spatiotemporal distribution of extreme rainfall and landslides at local or regional scales using in situ data, few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This study uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from TRMM data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurrence of precipitation and landslides globally. Evaluation of the GLC indicates that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This study characterizes the variability of satellite precipitation data and reported landslide activity at the globally scale in order to improve landslide cataloging, forecasting and quantify potential triggering sources at daily, monthly and yearly time scales.

  9. AlGaInP red-emitting light emitting diode under extremely high pulsed pumping

    NASA Astrophysics Data System (ADS)

    Yadav, Amit; Titkov, Ilya E.; Sokolovskii, Grigorii S.; Karpov, Sergey Y.; Dudelev, Vladislav V.; Soboleva, Ksenya K.; Strassburg, Martin; Pietzonka, Ines; Lugauer, Hans-Juergen; Rafailov, Edik U.

    2016-03-01

    Efficiency of commercial 620 nm AlGaInP Golden Dragon-cased high-power LEDs has been studied under extremely high pump current density up to 4.5 kA/cm2 and pulse duration from microsecond down to sub-nanosecond range. To understand the nature of LED efficiency decrease with current, pulse width variation is used. Analysis of the pulse-duration dependence of the LED efficiency and emission spectrum suggests the active region overheating to be the major factor controlling the LED efficiency reduction at CW and sub-microsecond pumping. The overheating can be effectively avoided by the use of sub-nanosecond current pulses. A direct correlation between the onset of the efficiency decrease and LED overheating is demonstrated.

  10. The physiology of extremes: Ancel Keys and the International High Altitude Expedition of 1935.

    PubMed

    Tracy, Sarah W

    2012-01-01

    This article examines the International High Altitude Expedition of 1935 and its significance in the life and science of Ancel Keys. Both the expedition and Keys's story afford excellent opportunities to explore the growing reach of interwar physiology into extreme climates-whether built or natural. As IHAE scientists assessed human performance and adaptation to hypoxia, low barometric pressure, and cold, they not only illuminated the physiological and psychological processes of high altitude acclimatization, but they also drew borderlines between the normal and the pathological, paved the way for the neocolonial exploitation of natural and human resources in Latin America, and pioneered field methods in physiology that were adapted and adopted by the Allied Forces during the Second World War. This case study in the physiology of place reveals the power and persistence of environmental determinism within biomedicine well into the twentieth century. PMID:23263349

  11. Wide-field broadband extreme ultraviolet transmission ptychography using a high-harmonic source.

    PubMed

    Baksh, Peter D; Odstrčil, Michal; Kim, Hyun-Su; Boden, Stuart A; Frey, Jeremy G; Brocklesby, William S

    2016-04-01

    High-harmonic generation (HHG) provides a laboratory-scale source of coherent radiation ideally suited to lensless coherent diffractive imaging (CDI) in the EUV and x-ray spectral region. Here we demonstrate transmission extreme ultraviolet (EUV) ptychography, a scanning variant of CDI, using radiation at a wavelength around 29 nm from an HHG source. Image resolution is diffraction-limited at 54 nm and fields of view up to ∼100  μm are demonstrated. These results demonstrate the potential for wide-field, high-resolution, laboratory-scale EUV imaging using HHG-based sources with potential application in biological imaging or EUV lithography pellicle inspection. PMID:27192225

  12. Beyond Extreme Ultra Violet (BEUV) Radiation from Spherically symmetrical High-Z plasmas

    NASA Astrophysics Data System (ADS)

    Yoshida, Kensuke; Fujioka, Shinsuke; Higashiguchi, Takeshi; Ugomori, Teruyuki; Tanaka, Nozomi; Kawasaki, Masato; Suzuki, Yuhei; Suzuki, Chihiro; Tomita, Kentaro; Hirose, Ryouichi; Eshima, Takeo; Ohashi, Hayato; Nishikino, Masaharu; Scally, Enda; Nshimura, Hiroaki; Azechi, Hiroshi; O'Sullivan, Gerard

    2016-03-01

    Photo-lithography is a key technology for volume manufacture of high performance and compact semiconductor devices. Smaller and more complex structures can be fabricated by using shorter wavelength light in the photolithography. One of the most critical issues in development of the next generation photo-lithography is to increase energy conversion efficiency (CE) from laser to shorter wavelength light. Experimental database of beyond extreme ultraviolet (BEUV) radiation was obtained by using spherically symmetrical high-Z plasmas generated with spherically allocated laser beams. Absolute energy and spectra of BEUV light emitted from Tb, Gd, and Mo plasmas were measured with a absolutely calibrated BEUV calorimeter and a transmission grating spectrometer. 1.0 x 1012 W/cm2 is the optimal laser intensity to produced efficient BEUV light source plasmas with Tb and Gd targets. Maximum CE is achieved at 0.8% that is two times higher than the published CEs obtained with planar targets.

  13. The physiology of extremes: Ancel Keys and the International High Altitude Expedition of 1935.

    PubMed

    Tracy, Sarah W

    2012-01-01

    This article examines the International High Altitude Expedition of 1935 and its significance in the life and science of Ancel Keys. Both the expedition and Keys's story afford excellent opportunities to explore the growing reach of interwar physiology into extreme climates-whether built or natural. As IHAE scientists assessed human performance and adaptation to hypoxia, low barometric pressure, and cold, they not only illuminated the physiological and psychological processes of high altitude acclimatization, but they also drew borderlines between the normal and the pathological, paved the way for the neocolonial exploitation of natural and human resources in Latin America, and pioneered field methods in physiology that were adapted and adopted by the Allied Forces during the Second World War. This case study in the physiology of place reveals the power and persistence of environmental determinism within biomedicine well into the twentieth century.

  14. Extreme Energy Events Project: Construction of the detectors and installation in Italian High Schools

    NASA Astrophysics Data System (ADS)

    Abbrescia, M.; An, S.; Antolini, R.; Badalà, A.; Baldini Ferroli, R.; Bencivenni, G.; Blanco, F.; Bressan, E.; Chiavassa, A.; Chiri, C.; Cifarelli, L.; Cindolo, F.; Coccia, E.; de Pasquale, S.; di Giovanni, A.; D'Incecco, M.; Fabbri, F. L.; Frolov, V.; Garbini, M.; Gustavino, C.; Hatzifotiadou, D.; Imponente, G.; Kim, J.; La Rocca, P.; Librizzi, F.; Maggiora, A.; Menghetti, H.; Miozzi, S.; Moro, R.; Panareo, M.; Pappalardo, G. S.; Piragino, G.; Riggi, F.; Romano, F.; Sartorelli, G.; Sbarra, C.; Selvi, M.; Serci, S.; Williams, C.; Zichichi, A.; Zuyeuski, R.

    2008-04-01

    The EEE Project, conceived by its leader Antonino Zichichi, aims to detect Extreme Energy Events of cosmic rays with an array of muon telescopes distributed over the Italian territory. The Project involves Italian High Schools in order to introduce young people to Physics, also countervailing the recent crisis of university scientific classes inscriptions. The detectors for the EEE telescopes are Multigap Resistive Plate Chambers (MRPC) and have been constructed by teams of High School students who went in shift at the CERN laboratories. The mechanics and the electronics were developed by groups of researchers from CERN, the Italian Centro Fermi and INFN. The first group of schools of the EEE Project has inaugurated their telescopes recently. A status report of the Project and the preliminary results are presented.

  15. Numerical evaluation of a 13.5-nm high-brightness microplasma extreme ultraviolet source

    SciTech Connect

    Hara, Hiroyuki Arai, Goki; Dinh, Thanh-Hung; Higashiguchi, Takeshi; Jiang, Weihua; Miura, Taisuke; Endo, Akira; Ejima, Takeo; Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry; Sunahara, Atsushi

    2015-11-21

    The extreme ultraviolet (EUV) emission and its spatial distribution as well as plasma parameters in a microplasma high-brightness light source are characterized by the use of a two-dimensional radiation hydrodynamic simulation. The expected EUV source size, which is determined by the expansion of the microplasma due to hydrodynamic motion, was evaluated to be 16 μm (full width) and was almost reproduced by the experimental result which showed an emission source diameter of 18–20 μm at a laser pulse duration of 150 ps [full width at half-maximum]. The numerical simulation suggests that high brightness EUV sources should be produced by use of a dot target based microplasma with a source diameter of about 20 μm.

  16. Extremely scaled high-k/In₀.₅₃Ga₀.₄₇As gate stacks with low leakage and low interface trap densities

    SciTech Connect

    Chobpattana, Varistha; Mikheev, Evgeny; Zhang, Jack Y.; Mates, Thomas E.; Stemmer, Susanne

    2014-09-28

    Highly scaled gate dielectric stacks with low leakage and low interface trap densities are required for complementary metal-oxide-semiconductor technology with III-V semiconductor channels. Here, we show that a novel pre-deposition technique, consisting of alternating cycles of nitrogen plasma and tetrakis(dimethylamino)titanium, allows for HfO₂ and ZrO₂ gate stacks with extremely high accumulation capacitance densities of more than 5 μF/cm₂ at 1 MHz, low leakage current, low frequency dispersion, and low midgap interface trap densities (10¹²cm⁻²eV⁻¹range). Using x-ray photoelectron spectroscopy, we show that the interface contains TiO₂ and small quantities of In₂O₃, but no detectable Ga- or As-oxides, or As-As bonding. The results allow for insights into the microscopic mechanisms that control leakage and frequency dispersion in high-k/III-V gate stacks.

  17. Endogenous post-transcriptional gene silencing of flavone synthase resulting in high accumulation of anthocyanins in black dahlia cultivars.

    PubMed

    Deguchi, Ayumi; Ohno, Sho; Hosokawa, Munetaka; Tatsuzawa, Fumi; Doi, Motoaki

    2013-05-01

    Black color in flowers is a highly attractive trait in the floricultural industry, but its underlying mechanisms are largely unknown. This study was performed to identify the bases of the high accumulation of anthocyanidins in black cultivars and to determine whether the high accumulation of total anthocyanidins alone leads to the black appearance. Our approach was to compare black dahlia (Dahlia variabilis) cultivars with purple cultivars and a purple flowering mutant of a black cultivar, using pigment and molecular analyses. Black cultivars characteristically exhibited low lightness, high petal accumulation of cyanidin and total anthocyanidins without flavones, and marked suppression of flavone synthase (DvFNS) expression. A comparative study using black and purple cultivars revealed that neither the absence of flavones nor high accumulation of total anthocyanidins is solely sufficient for black appearance, but that cyanidin content in petals is also an important factor in the phenotype. A study comparing the black cultivar 'Kokucho' and its purple mutant showed that suppression of DvFNS abolishes the competition between anthocyanidin and flavone synthesis and leads to accumulation of cyanidin and total anthocyanidins that produce a black appearance. Surprisingly, in black cultivars the suppression of DvFNS occurred in a post-transcriptional manner, as determined by small RNA mapping. PMID:23389674

  18. A high-frequency response relaxed eddy accumulation flux measurement system for sampling short-lived biogenic volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Arnts, Robert R.; Mowry, Fred L.; Hampton, Gary A.

    2013-05-01

    second-generation relaxed eddy accumulation system was built and tested with the capability to measure vertical biogenic volatile organic compound (VOC) fluxes at levels as low as 10 µg C m-2 hr-1. The system features a continuous, integrated gas-phase ozone removal procedure to allow for the measurement of highly reactive species such as β-caryophyllene and polar terpenoids such as linalool. A two-component internal standard continuously added to the accumulators was used to correct for switching-induced volumetric errors and as a check on VOC losses exceeding accumulator tube adsorption limits. In addition, the internal standards were used to demonstrate that accumulators quickly return to target flow rates at segregation valve switching frequencies up to at least 0.8 Hz. The system was able to measure daytime hourly fluxes of individual biogenic VOC including oxygenated terpenoids, monoterpenes, and sesquiterpenes.

  19. Tolerance of Ricinus communis L. to Cd and screening of high Cd accumulation varieties for remediation of Cd contaminated soils.

    PubMed

    Wu, Shanshan; Shen, Chuang; Yang, Zhongyi; Lin, Biyun; Yuan, Jiangang

    2016-11-01

    Response of castor (Ricinus communis L.) to cadmium (Cd) was assessed by a seed-suspending seedbed approach. Length of total radicle was the most sensitive indicator of Cd tolerance among the tested germination and growth characters. The ED50 value for Cd was 11.87 mg L(-1), indicating high Cd tolerance in castor. A pot experiment was conducted by growing 46 varieties of castor under CK (without Cd) and Cd1 (10 mg kg(-1) of Cd) and Cd2 (50 mg kg(-1) of Cd) treatments to investigate genotype variations in growth response and Cd accumulation of castor under different Cd exposures. Castor possessed high Cd accumulation ability; average shoot and root Cd concentrations of the 46 tested varieties were 21.83 and 185.43 mg kg(-1), and 174.99 and 1181.96 mg kg(-1) under Cd1 and Cd2, respectively. Great variation in Cd accumulation was observed among varieties, and Cd concentration of castor was genotype dependent. The correlation between biomass and Cd accumulation was significantly positive, while no significant correlation was observed between Cd concentration and Cd accumulation, which indicated that biomass performance is the dominant factor in determining Cd accumulation ability.

  20. Growth of high-elevation Cryptococcus sp. during extreme freeze-thaw cycles.

    PubMed

    Vimercati, L; Hamsher, S; Schubert, Z; Schmidt, S K

    2016-09-01

    Soils above 6000 m.a.s.l. are among the most extreme environments on Earth, especially on high, dry volcanoes where soil temperatures cycle between -10 and 30 °C on a typical summer day. Previous studies have shown that such sites are dominated by yeast in the cryophilic Cryptococcus group, but it is unclear if they can actually grow (or are just surviving) under extreme freeze-thaw conditions. We carried out a series of experiments to determine if Cryptococcus could grow during freeze-thaw cycles similar to those measured under field conditions. We found that Cryptococcus phylotypes increased in relative abundance in soils subjected to 48 days of freeze-thaw cycles, becoming the dominant organisms in the soil. In addition, pure cultures of Cryptococcus isolated from these same soils were able to grow in liquid cultures subjected to daily freeze-thaw cycles, despite the fact that the culture medium froze solid every night. Furthermore, we showed that this organism is metabolically versatile and phylogenetically almost identical to strains from Antarctic Dry Valley soils. Taken together these results indicate that this organism has unique metabolic and temperature adaptations that make it able to thrive in one of the harshest and climatically volatile places on Earth. PMID:27315166

  1. High Intensive Processes and Extreme States of Matter: Achievements and Problems

    SciTech Connect

    Simonenko, V. A.

    2006-08-03

    The paper briefly presents some main highlights of High Energy Density Physics (HEDP) achievements starting from its origin in the 1940s to the current time. A decisive role of high explosives (HE) is emphasized in studying high intensive processes and high energy density states of matter. Mechanisms of detonation and kinetics of energy release still remain acute in the HE studying. Research and scientific applications of nuclear explosions opened a new stage in HEDP development. They provided a million-fold increase of energy density if compared to that of high explosives. High intensive heat waves and strong shock waves were studied and used to measure dense plasma opacities and matter properties under extreme conditions. This data remains important for the development of theoretical models of matter. Powerful pulsed facilities (lasers, electric explosion installations, and charged particle accelerators) were constructed to extend opportunities for the HEDP research. One of their main goals is to study inertial confinement fusion. HEDP technologies and results are very useful in space and astrophysical research, and on the contrary, astrophysical studies enrich HEDP with new models, problems and solutions.

  2. Crystal accumulation and very high short-circuit currents in rabbit urinary bladder.

    PubMed

    Loo, D D; Diamond, J M

    1985-01-01

    We describe a condition in rabbits characterized by CaCO3 crystal accumulation and very high short-circuit current (Isc) in the urinary bladder. The incidence of the condition was high in rabbits kept for 2 mo or more in the vivarium. The crystal mass in the bladder increased with age or time until it occupied up to one-third of the bladder volume and occasionally aggregated as stones, and the urine attained a sludgy consistency. In animals with sludgy urine, the urine excreted had a crystal content 20 times lower than that of urine contained in the bladder at time of death, implying retention of crystals in the bladder. Kidney stones were not detected in rabbits with bladder crystals, and bladder crystals were absent in rabbits with kidney stones induced experimentally by uremia. In old rabbits with sludgy urine the Isc, a measure of Na+ transport, was up to 46 microA/cm2 and averaged 12 microA/cm2, seven times the Isc of rabbits with nonsludgy urine. The increased Isc was entirely amiloride sensitive. Noise analysis showed it to arise entirely from increased channel density, without change in single-channel current. With one possible exception, we could not find bacterial infection or abnormalities in plasma aldosterone, GFR, or urinary [Na+], [Ca2+], pH, or osmolality that could explain the condition. The exception is that some unidentified component accounting for half the osmolality of nonsludgy urine is absent or at low concentration in sludgy urine. It remains unknown why the condition develops and whether CaCO3 crystals cause high Isc or vice versa or whether both result from a third factor. PMID:3970165

  3. Environmental extremes versus ecological extremes: impact of a massive iceberg on the population dynamics of a high-level Antarctic marine predator†

    PubMed Central

    Chambert, Thierry; Rotella, Jay J.; Garrott, Robert A.

    2012-01-01

    Extreme events have been suggested to play a disproportionate role in shaping ecological processes, but our understanding of the types of environmental conditions that elicit extreme consequences in natural ecosystems is limited. Here, we investigated the impact of a massive iceberg on the dynamics of a population of Weddell seals. Reproductive rates of females were reduced, but survival appeared unaffected. We also found suggestive evidence for a prolonged shift towards higher variability in reproductive rates. The annual number of females attending colonies showed unusual swings during the iceberg period, a pattern that was apparently the consequence of changes in sea-ice conditions. In contrast to the dramatic effects that were recorded in nearby populations of emperor penguins, our results suggest that this unusual environmental event did not have an extreme impact on the population of seals in the short-term, as they managed to avoid survival costs and were able to rapidly re-achieve high levels of reproduction by the end of the perturbation. Nevertheless, population projections suggest that even this modest impact on reproductive rates could negatively affect the population in the long run if such events were to occur more frequently, as is predicted by models of climate change. PMID:23015628

  4. Environmental extremes versus ecological extremes: impact of a massive iceberg on the population dynamics of a high-level Antarctic marine predator.

    PubMed

    Chambert, Thierry; Rotella, Jay J; Garrott, Robert A

    2012-11-22

    Extreme events have been suggested to play a disproportionate role in shaping ecological processes, but our understanding of the types of environmental conditions that elicit extreme consequences in natural ecosystems is limited. Here, we investigated the impact of a massive iceberg on the dynamics of a population of Weddell seals. Reproductive rates of females were reduced, but survival appeared unaffected. We also found suggestive evidence for a prolonged shift towards higher variability in reproductive rates. The annual number of females attending colonies showed unusual swings during the iceberg period, a pattern that was apparently the consequence of changes in sea-ice conditions. In contrast to the dramatic effects that were recorded in nearby populations of emperor penguins, our results suggest that this unusual environmental event did not have an extreme impact on the population of seals in the short-term, as they managed to avoid survival costs and were able to rapidly re-achieve high levels of reproduction by the end of the perturbation. Nevertheless, population projections suggest that even this modest impact on reproductive rates could negatively affect the population in the long run if such events were to occur more frequently, as is predicted by models of climate change.

  5. High-Level Accumulation of Triacylglycerol and Starch in Photoautotrophically Grown Chlamydomonas debaryana NIES-2212.

    PubMed

    Toyoshima, Masakazu; Sato, Naoki

    2015-12-01

    Microalgae have the potential to produce triacylglycerol (TAG) and starch, which provide alternative sources of biofuel. A problem in using Chlamydomonas reinhardtii as a model for TAG production has been that this alga lacks phosphatidylcholine (PC), which is thought to be important for TAG synthesis in plants. We found that C. debaryana is one of the rare species of Chlamydomonas having PC. Here we show that this strain, grown under complete photoautotrophic conditions, accumulated TAG and starch up to 20 and 250 pg per cell, respectively, during the stationary phase without nutrient deprivation. Addition of nutrients in this state did not cause loss of TAG, which was found in dilution with fresh medium. The photosynthetically produced TAG contained a high level of monounsaturated fatty acids, which is a preferred property as a material for biodiesel. The oil bodies were present in the cytoplasm, either between the cytoplasmic membrane and the chloroplast or between the chloroplast and the nucleus, whereas the starch granules were present within the chloroplast. Oil bodies were also deposited as a broad layer in the peripheral space of the cytoplasm outside the chloroplast, and might be easily released from the cells by genetic, chemical or mechanical manipulation. These results suggest that C. debaryana is a promising seed organism for developing a good biofuel producer.

  6. Monitoring of Wet Snow and Accumulations at High Alpine Glaciers Using Radar Technologies

    NASA Astrophysics Data System (ADS)

    Wendleder, A.; Heilig, A.; Schmitt, A.; Mayer, C.

    2015-04-01

    Conventional studies to assess the annual mass balance for glaciers rely on single point observations in combination with model and interpolation approaches. Just recently, airborne and spaceborne data is used to support such mass balance determinations. Here, we present an approach to map temporal changes of the snow cover in glaciated regions of Tyrol, Austria, using SAR-based satellite data. Two dual-polarized SAR images are acquired on 22 and 24 September 2014. As X and C-band reveal different backscattering properties of snow, both TerraSAR-X and RADARSAT-2 images are analysed and compared to ground truth data. Through application of filter functions and processing steps containing a Kennaugh decomposition, ortho-rectification, radiometric enhancement and normalization, we were able to distinguish between dry and wet parts of the snow surface. The analyses reveal that the wet-snow can be unambiguously classified by applying a threshold of -11 dB. Bare ice at the surface or a dry snowpack does not appear in radar data with such low backscatter values. From the temporal shift of wet-snow, a discrimination of accumulation areas on glaciers is possible for specific observation dates. Such data can reveal a periodic monitoring of glaciers with high spatial coverage independent from weather or glacier conditions.

  7. High hydrostatic pressure leads to free radicals accumulation in yeast cells triggering oxidative stress.

    PubMed

    Bravim, Fernanda; Mota, Mainã M; Fernandes, A Alberto R; Fernandes, Patricia M B

    2016-08-01

    Saccharomyces cerevisiae is a unicellular organism that during the fermentative process is exposed to a variable environment; hence, resistance to multiple stress conditions is a desirable trait. The stress caused by high hydrostatic pressure (HHP) in S. cerevisiae resembles the injuries generated by other industrial stresses. In this study, it was confirmed that gene expression pattern in response to HHP displays an oxidative stress response profile which is expanded upon hydrostatic pressure release. Actually, reactive oxygen species (ROS) concentration level increased in yeast cells exposed to HHP treatment and an incubation period at room pressure led to a decrease in intracellular ROS concentration. On the other hand, ethylic, thermic and osmotic stresses did not result in any ROS accumulation in yeast cells. Microarray analysis revealed an upregulation of genes related to methionine metabolism, appearing to be a specific cellular response to HHP, and not related to other stresses, such as heat and osmotic stresses. Next, we investigated whether enhanced oxidative stress tolerance leads to enhanced tolerance to HHP stress. Overexpression of STF2 is known to enhance tolerance to oxidative stress and we show that it also leads to enhanced tolerance to HHP stress. PMID:27388472

  8. High hepcidin level accounts for the nigral iron accumulation in acute peripheral iron intoxication rats.

    PubMed

    Sun, Chao; Song, Ning; Xie, Anmu; Xie, Junxia; Jiang, Hong

    2012-08-01

    Hepcidin is considered to be a circulatory hormone and a major mechanism regulating iron homeostasis. Our previous publication revealed that acute iron intoxication induced iron deposit and dopaminergic neuron degeneration in the substantia nigra (SN) of a rat model. However, whether and how hepcidin functions in this nigral iron accumulation has not been elucidated. In the present study, we observed a decreased of FPN1 protein level in the SN triggered by peripheral iron overload within 4 h, which correlated with a high hepcidin level. To further investigate the role of intracellular hepcidin under iron overload circumstances, we assessed the expression of hepcidin mRNA and FPN1 protein in vitro. We observed that hepcidin mRNA level was up-regulated and FPN1 protein level was down-regulated in MES23.5 dopaminergic cells in a period of 4h incubation with iron. Both in pCMV-XL4-hepcidin transfected and hepcidin-treated cells, decreased FPN1 protein levels were observed. Our data provide direct evidence that the role for intracellular hepcidin generated in the SN is particularly relevant to restrict iron release by down-regulation FPN1 expression in this region, thus an important contributor to the abnormal iron deposit occurred at an early stage in conditions of peripheral iron intoxication. PMID:22659129

  9. Was the extreme and wide-spread marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event during the Deepwater Horizon blow-out unique?

    PubMed

    Vonk, Sophie M; Hollander, David J; Murk, AlberTinka J

    2015-11-15

    During the Deepwater Horizon blowout, thick layers of oiled material were deposited on the deep seafloor. This large scale benthic concentration of oil is suggested to have occurred via the process of Marine Oil Snow Sedimentation and Flocculent Accumulation (MOSSFA). This meta-analysis investigates whether MOSSFA occurred in other large oil spills and identifies the main drivers of oil sedimentation. MOSSFA was found to have occurred during the IXTOC I blowout and possibly during the Santa Barbara blowout. Unfortunately, benthic effects were not sufficiently studied for the 52 spills we reviewed. However, based on the current understanding of drivers involved, we conclude that MOSSFA and related benthic contamination may be widespread. We suggest to collect and analyze sediment cores at specific spill locations, as improved understanding of the MOSSFA process will allow better informed spill responses in the future, taking into account possible massive oil sedimentation and smothering of (deep) benthic ecosystems. PMID:26359115

  10. Was the extreme and wide-spread marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event during the Deepwater Horizon blow-out unique?

    PubMed

    Vonk, Sophie M; Hollander, David J; Murk, AlberTinka J

    2015-11-15

    During the Deepwater Horizon blowout, thick layers of oiled material were deposited on the deep seafloor. This large scale benthic concentration of oil is suggested to have occurred via the process of Marine Oil Snow Sedimentation and Flocculent Accumulation (MOSSFA). This meta-analysis investigates whether MOSSFA occurred in other large oil spills and identifies the main drivers of oil sedimentation. MOSSFA was found to have occurred during the IXTOC I blowout and possibly during the Santa Barbara blowout. Unfortunately, benthic effects were not sufficiently studied for the 52 spills we reviewed. However, based on the current understanding of drivers involved, we conclude that MOSSFA and related benthic contamination may be widespread. We suggest to collect and analyze sediment cores at specific spill locations, as improved understanding of the MOSSFA process will allow better informed spill responses in the future, taking into account possible massive oil sedimentation and smothering of (deep) benthic ecosystems.

  11. SU-E-T-315: The Change of Optically Stimulated Luminescent Dosimeters (OSLDs) Sensitivity by Accumulated Dose and High Dose

    SciTech Connect

    Han, S; Jung, H; Kim, M; Ji, Y; Kim, K; Choi, S; Park, S; Yoo, H; Yi, C

    2014-06-01

    Purpose: The objective of this study is to evaluate radiation sensitivity of optical stimulated luminance dosimeters (OSLDs) by accumulated dose and high dose. Methods: This study was carried out in Co-60 unit (Theratron 780, AECL, and Canada) and used InLight MicroStar reader (Landauer, Inc., Glenwood, IL) for reading. We annealed for 30 min using optical annealing system which contained fluorescent lamps (Osram lumilux, 24 W, 280 ∼780 nm). To evaluate change of OSLDs sensitivity by repeated irradiation, the dosimeters were repeatedly irradiated with 1 Gy. And whenever a repeated irradiation, we evaluated OSLDs sensitivity. To evaluate OSLDs sensitivity after accumulated dose with 5 Gy, We irradiated dose accumulatively (from 1 Gy to 5 Gy) without annealing. And OSLDs was also irradiated with 15, 20, 30 Gy to certify change of OSLDs sensitivity after high dose irradiation. After annealing them, they were irradiated with 1Gy, repeatedly. Results: The OSLDs sensitivity increased up to 3% during irradiating seven times and decreased continuously above 8 times. That dropped by about 0.35 Gy per an irradiation. Finally, after 30 times irradiation, OSLDs sensitivity decreased by about 7%. For accumulated dose from 1 Gy to 5 Gy, OSLDs sensitivity about 1 Gy increased until 4.4% after second times accumulated dose compared with before that. OSLDs sensitivity about 1 Gy decreased by 1.6% in five times irradiation. When OSLDs were irradiated ten times with 1Gy after irradiating high dose (10, 15, 20 Gy), OSLDs sensitivity decreased until 6%, 9%, 12% compared with it before high dose irradiation, respectively. Conclusion: This study certified OSLDs sensitivity by accumulated dose and high dose. When irradiated with 1Gy, repeatedly, OSLDs sensitivity decreased linearly and the reduction rate of OSLDs sensitivity after high dose irradiation had dependence on irradiated dose.

  12. High-altitude cusp: The tremendous large and extremely dynamic region in geospace

    NASA Astrophysics Data System (ADS)

    Chen, J.; Fritz, T. A.

    2003-04-01

    High-altitude dayside cusps (both northern and southern) are the tremendous large and extremely dynamic regions in geospace. They have a size of as large as 6 Re and are always there day after day. Turbulent diamagnetic cavities have been observed there. Associated with these cavities are charged particles with energies from 20 keV up to 10 MeV. The intensities of the cusp energetic ions are observed to increase by as large as four orders of the magnitude when compared to regions adjacent to the cusp which includes the magnetosheath. Their seed populations is a mixture of ionospheric and solar wind particles. Some of the diamagnetic cavities were independent of the IMF directions, suggesting that the cusp diamagnetic cavities are different from the magnetospheric sash predicted by MHD simulations. Turbulent electrical field with an amplitude of about 10 mV/m also presents in the cusp, and a cusp resonant acceleration mechanism is suggested.

  13. Performance Analysis of Cooperative Wireless Backhaul Networks Operating at Extremely High Frequencies

    NASA Astrophysics Data System (ADS)

    Sakarellos, Vasileios K.; Chortatou, Maria; Skraparlis, Dimitrios; Panagopoulos, Athanasios D.; Kanellopoulos, John D.

    2011-04-01

    Extremely high frequency (EHF) bands above 50 GHz have been proposed to be used as backhaul links of modern cellular mobile networks. They provide interconnectivity between the base stations and the core network. In this paper, we propose the employment of cooperative techniques in backhaul networks. More specifically, the outage performance analysis of a simple cooperative diversity system operating at EHF bands is presented. The destination node combines the direct link with the signal received through a regenerative relay using selection combining. A combined statiform and convective model of rainfall rate for the rain attenuation prediction is considered. The correlation properties and the joint statistics among the microwave paths are also calculated. Numerical results present the impact of the geometrical parameters and the climatic conditions on the outage performance.

  14. Reduction of image optics dependence of resist image performance for high NA extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Chun, Ouyang; Li, Yanqiu; Liu, Lihui

    2013-12-01

    High Numerical Aperture (NA) extreme ultraviolet lithography (EUVL) with different reduction is one option for 16 nm node and below. In our work, as NA increases to about 0.45, we discuss the impacts of reduction ratio of 5 or 6 on resist image performance such as Horizontal-Vertical (H-V) critical dimension (CD) bias for various incident angles and CD Uniformity induced by mask CD errors at wafer level. Commercial software PROLITH ™ and in-house program are adopted in simulation referred above. In conclusion, resist image performance can be improved with the increase of reduction ratio. H-V CD Bias with reduction ratio of 6 is obviously smaller than that with reduction ratio of 5 at maximum incident angle. Additionally, CD Uniformity (nm, 3 sigma) induced by mask CD errors for 5× optics system is larger, which means image quality is worse at 5× optics system.

  15. Note: Thermally stable thin-film filters for high-power extreme-ultraviolet applications.

    PubMed

    Tarrio, C; Berg, R F; Lucatorto, T B; Lairson, B; Lopez, H; Ayers, T

    2015-11-01

    We investigated several types of thin-film filters for high intensity work in the extreme-ultraviolet (EUV) spectral range. In our application, with a peak EUV intensity of 2.7 W cm(-2), Ni-mesh-backed Zr filters have a typical lifetime of 20 h, at which point they suffer from pinholes and a 50% loss of transmission. Initial trials with Si filters on Ni meshes resulted in rupture of the filters in less than an hour. A simple thermal calculation showed that the temperature rise in those filters to be about 634 K. A similar calculation indicated that using a finer mesh with thicker wires and made of Cu reduces the temperature increase to about 60 K. We have exposed a Si filter backed by such a mesh for more than 60 h with little loss of transmission and no leaks. PMID:26628184

  16. Nano-materials for adhesive-free adsorbers for bakable extreme high vacuum cryopump surfaces

    DOEpatents

    Stutzman, Marcy; Jordan, Kevin; Whitney, Roy R.

    2016-10-11

    A cryosorber panel having nanomaterials used for the cryosorption material, with nanomaterial either grown directly on the cryopanel or freestanding nanomaterials attached to the cryopanel mechanically without the use of adhesives. Such nanomaterial cryosorber materials can be used in place of conventional charcoals that are attached to cryosorber panels with special low outgassing, low temperature capable adhesives. Carbon nanotubes and other nanomaterials could serve the same purpose as conventional charcoal cryosorbers, providing a large surface area for cryosorption without the need for adhesive since the nanomaterials can be grown directly on a metallic substrate or mechanically attached. The nanomaterials would be capable of being fully baked by heating above 100.degree. C., thereby eliminating water vapor from the system, eliminating adhesives from the system, and allowing a full bake of the system to reduce hydrogen outgassing, with the goal of obtaining extreme high vacuum where the pump can produce pressures below 1.times.10.sup.-12 Torr.

  17. Measurement of partial pressures in extremely high vacuum region using a modified residual gas analyzer

    NASA Astrophysics Data System (ADS)

    Watanabe, Shu; Oyama, Hitoshi; Kato, Shigeki; Aono, Masakazu

    1999-03-01

    The measurement of partial pressures using a residual gas analyzer (RGA) in an extremely high vacuum (XHV) region has several problems, including the influence of electron stimulated desorption ions and the outgassing rate from the ion source of the RGA. In order to measure partial pressures in the XHV, a commercial RGA was modified as follows: an electrostatic analyzer was used to only measure gas phase ions; a low work function material, thoria, was used as a filament of the ion source to lower temperature of the filament and Cu wires connected the filament and releasing the heat around the ion source to atmosphere. After these modifications, the RGA could measure only gas phase ions and, at the same time the outgassing rate from the RGA was reduced. Partial pressures and total pressure in the XHV could be measured by the RGA.

  18. Molecular chaperone accumulation as a function of stress evidences adaptation to high hydrostatic pressure in the piezophilic archaeon Thermococcus barophilus

    PubMed Central

    Cario, Anaïs; Jebbar, Mohamed; Thiel, Axel; Kervarec, Nelly; Oger, Phil M.

    2016-01-01

    The accumulation of mannosyl-glycerate (MG), the salinity stress response osmolyte of Thermococcales, was investigated as a function of hydrostatic pressure in Thermococcus barophilus strain MP, a hyperthermophilic, piezophilic archaeon isolated from the Snake Pit site (MAR), which grows optimally at 40 MPa. Strain MP accumulated MG primarily in response to salinity stress, but in contrast to other Thermococcales, MG was also accumulated in response to thermal stress. MG accumulation peaked for combined stresses. The accumulation of MG was drastically increased under sub-optimal hydrostatic pressure conditions, demonstrating that low pressure is perceived as a stress in this piezophile, and that the proteome of T. barophilus is low-pressure sensitive. MG accumulation was strongly reduced under supra-optimal pressure conditions clearly demonstrating the structural adaptation of this proteome to high hydrostatic pressure. The lack of MG synthesis only slightly altered the growth characteristics of two different MG synthesis deletion mutants. No shift to other osmolytes was observed. Altogether our observations suggest that the salinity stress response in T. barophilus is not essential and may be under negative selective pressure, similarly to what has been observed for its thermal stress response. PMID:27378270

  19. Gene expression profiles in liver of pigs with extreme high and low levels of androstenone

    PubMed Central

    Moe, Maren; Lien, Sigbjørn; Bendixen, Christian; Hedegaard, Jakob; Hornshøj, Henrik; Berget, Ingunn; Meuwissen, Theo HE; Grindflek, Eli

    2008-01-01

    Background Boar taint is the unpleasant odour and flavour of the meat of uncastrated male pigs that is primarily caused by high levels of androstenone and skatole in adipose tissue. Androstenone is a steroid and its levels are mainly genetically determined. Studies on androstenone metabolism have, however, focused on a limited number of genes. Identification of additional genes influencing levels of androstenone may facilitate implementation of marker assisted breeding practices. In this study, microarrays were used to identify differentially expressed genes and pathways related to androstenone metabolism in the liver from boars with extreme levels of androstenone in adipose tissue. Results Liver tissue samples from 58 boars of the two breeds Duroc and Norwegian Landrace, 29 with extreme high and 29 with extreme low levels of androstenone, were selected from more than 2500 individuals. The samples were hybridised to porcine cDNA microarrays and the 1% most significant differentially expressed genes were considered significant. Among the differentially expressed genes were metabolic phase I related genes belonging to the cytochrome P450 family and the flavin-containing monooxygenase FMO1. Additionally, phase II conjugation genes including UDP-glucuronosyltransferases UGT1A5, UGT2A1 and UGT2B15, sulfotransferase STE, N-acetyltransferase NAT12 and glutathione S-transferase were identified. Phase I and phase II metabolic reactions increase the water solubility of steroids and play a key role in their elimination. Differential expression was also found for genes encoding 17beta-hydroxysteroid dehydrogenases (HSD17B2, HSD17B4, HSD17B11 and HSD17B13) and plasma proteins alpha-1-acid glycoprotein (AGP) and orosomucoid (ORM1). 17beta-hydroxysteroid dehydrogenases and plasma proteins regulate the availability of steroids by controlling the amount of active steroids accessible to receptors and available for metabolism. Differences in the expression of FMO1, NAT12, HSD17B2 and

  20. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  1. Extreme ultraviolet spectroscopy and photometry of VV Puppis during a high accretion state

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane; Szkody, Paula; Sion, Edward M.; Long, Knox S.

    1995-01-01

    We determine the physical properties of the accretion region of the AM Her-type binary VV Puppis using extreme ultraviolet (EUV) medium-resolution spectroscopy and photometry obtained with the Extreme Ultraviolet Explorer (EUVE) observatory. The EUV continuum from VV Pup was detected in the wavelength range from 75 to 135 A and was simultaneously recorded with the Deep Survey/Spectrometer (DS/S) imaging telescope, allowing for the extraction of an accurate light curve. VV Pup appeared to have entered a high-accretion state just prior to the pointed EUVE observations. We use the EUV light curve to infer the diameter of the accretion region (d = 220 km) assuming a hemispherical geometry and a radius of 9000 km for the white dwarf. We perform a model atmosphere analysis and, based on the light curve properties and assuming a distance of 145 pc, we derive an effective temperature of the accretion region in the range 270,000 is less than T(sub eff) is less than 360,000 K and a neutral hydrogen column density in the local interstellar medium of n(sub H) = 1.9 - 3.7 x 10(exp 19)/sq cm. The total EUV/soft X-ray energy radiated by the accretion region is approximately 3.5 x 10(exp 32) ergs/s. Our results provide a first verification of past suggestions that deep heating of the white dwarf surface produces the soft X-ray flux from the polars. We present a possible detection of O VI absortion features, and we suggest that extensive EUVE observations targeting high-accretion events may result in oxygen and heavier element abundance determination in the accretion region.

  2. High Fill-Out, Extreme Mass Ratio Overcontact Binary Systems. VIII. EM Piscium

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; He, J.-J.; Soonthornthum, B.; Liu, L.; Zhu, L.-Y.; Li, L.-J.; Liao, W. P.; Dai, Z.-B.

    2008-11-01

    CCD photometric observations of the newly discovered close binary, EM Piscium, obtained from 2006 December 4 to 2008 January 7, are presented. The light curves are symmetric and show complete eclipses with an eclipse duration of 54 minutes. When comparing the present light curves with those published by González-Rojas et al., it is found that the depths of the two minima of the light curve have been interchanged, and the positive O'Connell effect has disappeared. The symmetric light curves in R and I bands were analyzed with the 2003 version of the W-D code. It is found that EM Piscium is a high fill-out overcontact binary system (f = 95.3 ± 2.7%) with an extreme mass ratio of q = 0.1487, suggesting that it is on the late evolutionary stage of late-type tidal-locked binaries. Based on the nine instances of light minimum that we determined and those published by previous investigators, it is discovered that the orbital period shows a cyclic period variation with a period of 3.3 years, while it undergoes a continuously rapid increase at a rate of dP/dt = +3.97 × 10-6 days year-1. The cyclic period reveals the presence of a tertiary companion, which may play an important role for the formation and evolution of the overcontact binary by drawing angular momentum from the central system via Kozai oscillation or a combination of Kozai cycle and tidal friction. The high fill-out, the extreme mass ratio, and the rapid period increase may suggest that the binary system is quickly evolving into a rapid-rotating single star.

  3. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region

    SciTech Connect

    Hirano, Y. E-mail: hirano.yoichi@phys.cst.nihon-u.ac.jp; Kiyama, S.; Koguchi, H.; Fujiwara, Y.; Sakakita, H.

    2015-11-15

    A high current density (≈3 mA/cm{sup 2}) hydrogen ion beam source operating in an extremely low-energy region (E{sub ib} ≈ 150–200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E{sub ib} is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  4. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region.

    PubMed

    Hirano, Y; Kiyama, S; Fujiwara, Y; Koguchi, H; Sakakita, H

    2015-11-01

    A high current density (≈3 mA/cm(2)) hydrogen ion beam source operating in an extremely low-energy region (E(ib) ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E(ib) is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  5. Multiresolution iterative reconstruction in high-resolution extremity cone-beam CT

    NASA Astrophysics Data System (ADS)

    Cao, Qian; Zbijewski, Wojciech; Sisniega, Alejandro; Yorkston, John; Siewerdsen, Jeffrey H.; Webster Stayman, J.

    2016-10-01

    Application of model-based iterative reconstruction (MBIR) to high resolution cone-beam CT (CBCT) is computationally challenging because of the very fine discretization (voxel size  <100 µm) of the reconstructed volume. Moreover, standard MBIR techniques require that the complete transaxial support for the acquired projections is reconstructed, thus precluding acceleration by restricting the reconstruction to a region-of-interest. To reduce the computational burden of high resolution MBIR, we propose a multiresolution penalized-weighted least squares (PWLS) algorithm, where the volume is parameterized as a union of fine and coarse voxel grids as well as selective binning of detector pixels. We introduce a penalty function designed to regularize across the boundaries between the two grids. The algorithm was evaluated in simulation studies emulating an extremity CBCT system and in a physical study on a test-bench. Artifacts arising from the mismatched discretization of the fine and coarse sub-volumes were investigated. The fine grid region was parameterized using 0.15 mm voxels and the voxel size in the coarse grid region was varied by changing a downsampling factor. No significant artifacts were found in either of the regions for downsampling factors of up to 4×. For a typical extremities CBCT volume size, this downsampling corresponds to an acceleration of the reconstruction that is more than five times faster than a brute force solution that applies fine voxel parameterization to the entire volume. For certain configurations of the coarse and fine grid regions, in particular when the boundary between the regions does not cross high attenuation gradients, downsampling factors as high as 10×  can be used without introducing artifacts, yielding a ~50×  speedup in PWLS. The proposed multiresolution algorithm significantly reduces the computational burden of high resolution iterative CBCT reconstruction and can be extended to other applications of

  6. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric

    NASA Astrophysics Data System (ADS)

    Fujii, Mami N.; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-12-01

    The use of indium-gallium-zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic-inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic-inorganic hybrid devices.

  7. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric.

    PubMed

    Fujii, Mami N; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-01-01

    The use of indium-gallium-zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic-inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic-inorganic hybrid devices. PMID:26677773

  8. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric

    PubMed Central

    Fujii, Mami N.; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-01-01

    The use of indium–gallium–zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic–inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic–inorganic hybrid devices. PMID:26677773

  9. 41 CFR 302-7.20 - Should I include items that are irreplaceable or of extremely high monetary or sentimental value...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that are irreplaceable or of extremely high monetary or sentimental value in my HHG shipment? 302-7.20... that are irreplaceable or of extremely high monetary or sentimental value in my HHG shipment? Generally no; items that are irreplaceable or of extremely high monetary or sentimental value should not...

  10. 41 CFR 302-7.19 - Should I include items that are irreplaceable or of extremely high monetary or sentimental value...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that are irreplaceable or of extremely high monetary or sentimental value in my HHG shipment? 302-7.19... that are irreplaceable or of extremely high monetary or sentimental value in my HHG shipment? Generally no; items that are irreplaceable or of extremely high monetary or sentimental value should not...

  11. 41 CFR 302-7.20 - Should I include items that are irreplaceable or of extremely high monetary or sentimental value...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that are irreplaceable or of extremely high monetary or sentimental value in my HHG shipment? 302-7.20... include items that are irreplaceable or of extremely high monetary or sentimental value in my HHG shipment? Generally no; items that are irreplaceable or of extremely high monetary or sentimental value should not...

  12. 41 CFR 302-7.20 - Should I include items that are irreplaceable or of extremely high monetary or sentimental value...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that are irreplaceable or of extremely high monetary or sentimental value in my HHG shipment? 302-7.20... that are irreplaceable or of extremely high monetary or sentimental value in my HHG shipment? Generally no; items that are irreplaceable or of extremely high monetary or sentimental value should not...

  13. 41 CFR 302-7.19 - Should I include items that are irreplaceable or of extremely high monetary or sentimental value...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that are irreplaceable or of extremely high monetary or sentimental value in my HHG shipment? 302-7.19... that are irreplaceable or of extremely high monetary or sentimental value in my HHG shipment? Generally no; items that are irreplaceable or of extremely high monetary or sentimental value should not...

  14. Effects of puerarin on lipid accumulation and metabolism in high-fat diet-fed mice.

    PubMed

    Zheng, Guodong; Lin, Lezhen; Zhong, Shusheng; Zhang, Qingfeng; Li, Dongming

    2015-01-01

    In order to investigate the mechanisms by which puerarin from kudzu root extract regulates lipid metabolism, fifty mice were randomly assigned to five groups: normal diet, high-fat diet (HFD), and HFD containing 0.2%, 0.4% or 0.8% puerarin for 12 weeks. Body weight, intraperitioneal adipose tissue (IPAT) weight, serum biochemical parameters, and hepatic and feces lipids were measured. Activity and mRNA and protein expressions of hepatic lipid metabolism-related enzymes were analyzed. Compared with HFD, 0.4% and 0.8% puerarin significantly decreased body and IPAT weight. There was a significant decrease in the serum and hepatic concentrations of total cholesterol, triglycerides and leptin in mice fed the 0.4% and 0.8% puerarin diets compared with HFD. Fatty acid synthase activity was suppressed in mice fed the 0.4% and 0.8% puerarin diets, while the activities of AMP-activated protein kinase (AMPK), carnitine acyltransferase (CAT) and hormone-sensitive lipase (HSL) were increased. mRNA expression of peroxisome proliferator-activated receptor γ 2 (PPARγ 2) was down-regulated in liver of mice fed the 0.8% diet compared with HFD, while mRNA expression of CAT and HSL was considerably up-regulated by 0.4% and 0.8% puerarin diets. The protein expression of PPARγ2 in liver was decreased and those of p-AMPK, HSL and p-HSL were increased in mice fed 0.4% and 0.8% puerarin diets. These results suggest that > 0.4% puerarin influenced the activity, mRNA and protein levels of hepatic lipid metabolism-related enzymes, decreasing serum and liver lipids, body weight gain and fat accumulation. Puerarin might be beneficial to prevent lifestyle-related diseases. PMID:25822741

  15. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies.

    PubMed

    Balal, Nezah; Pinhasi, Gad A; Pinhasi, Yosef

    2016-05-23

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide "chirped" Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution.

  16. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies.

    PubMed

    Balal, Nezah; Pinhasi, Gad A; Pinhasi, Yosef

    2016-01-01

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide "chirped" Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution. PMID:27223286

  17. Extreme-ultraviolet polarimeter utilizing laser-generated high-order harmonics.

    PubMed

    Brimhall, Nicole; Turner, Matthew; Herrick, Nicholas; Allred, David D; Turley, R Steven; Ware, Michael; Peatross, Justin

    2008-10-01

    We describe an extreme-ultraviolet (EUV) polarimeter that employs laser-generated high-order harmonics as the light source. The polarimeter is designed to characterize materials and thin films for use with EUV light. Laser high harmonics are highly directional with easily rotatable linear polarization, not typically available with other EUV sources. The harmonics have good wavelength coverage, potentially spanning the entire EUV from a few to a hundred nanometers. Our instrument is configured to measure reflectances from 14 to 30 nm and has approximately 180 spectral resolution (lambda/Delta lambda). The reflection from a sample surface can be measured over a continuous range of incident angles (5 degrees-75 degrees). A secondary 14 cm gas cell attenuates the harmonics in a controlled way to keep signals within the linear dynamic range of the detector, comprised of a microchannel plate coupled to a phosphorous screen and charge coupled device camera. The harmonics are produced using approximately 10 mJ, approximately 35 fs, and approximately 800 nm laser pulses with a repetition rate of 10 Hz. Per-shot energy monitoring of the laser discriminates against fluctuations. The polarimeter reflectance data agree well with data obtained at the Advanced Light Source Synchrotron (Beamline 6.3.2).

  18. A method of batch-purifying microalgae with multiple antibiotics at extremely high concentrations

    NASA Astrophysics Data System (ADS)

    Han, Jichang; Wang, Song; Zhang, Lin; Yang, Guanpin; Zhao, Lu; Pan, Kehou

    2016-01-01

    Axenic microalgal strains are highly valued in diverse microalgal studies and applications. Antibiotics, alone or in combination, are often used to avoid bacterial contamination during microalgal isolation and culture. In our preliminary trials, we found that many microalgae ceased growing in antibiotics at extremely high concentrations but could resume growth quickly when returned to an antibiotics-free liquid medium and formed colonies when spread on a solid medium. We developed a simple and highly efficient method of obtaining axenic microalgal cultures based on this observation. First, microalgal strains of different species or strains were treated with a mixture of ampicillin, gentamycin sulfate, kanamycin, neomycin and streptomycin (each at a concentration of 600 mg/L) for 3 days; they were then transferred to antibiotics-free medium for 5 days; and finally they were spread on solid f/2 media to allow algal colonies to form. With this method, five strains of Nannochloropsis sp. (Eustigmatophyceae), two strains of Cylindrotheca sp. (Bacillariophyceae), two strains of Tetraselmis sp. (Chlorodendrophyceae) and one strain of Amphikrikos sp. (Trebouxiophyceae) were purified successfully. The method shows promise for batch-purifying microalgal cultures.

  19. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus

    PubMed Central

    Hawkes, L. A.; Balachandran, S.; Batbayar, N.; Butler, P. J.; Chua, B.; Douglas, D. C.; Frappell, P. B.; Hou, Y.; Milsom, W. K.; Newman, S. H.; Prosser, D. J.; Sathiyaselvam, P.; Scott, G. R.; Takekawa, J. Y.; Natsagdorj, T.; Wikelski, M.; Witt, M. J.; Yan, B.; Bishop, C. M.

    2013-01-01

    Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world's tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, direct empirical measurements of high-altitude flight are lacking. We test whether migrating bar-headed geese actually minimize flight altitude and make use of favourable winds to reduce flight costs. By tracking 91 geese, we show that these birds typically travel through the valleys of the Himalayas and not over the summits. We report maximum flight altitudes of 7290 m and 6540 m for southbound and northbound geese, respectively, but with 95 per cent of locations received from less than 5489 m. Geese travelled along a route that was 112 km longer than the great circle (shortest distance) route, with transit ground speeds suggesting that they rarely profited from tailwinds. Bar-headed geese from these eastern populations generally travel only as high as the terrain beneath them dictates and rarely in profitable winds. Nevertheless, their migration represents an enormous challenge in conditions where humans and other mammals are only able to operate at levels well below their sea-level maxima. PMID:23118436

  20. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus

    USGS Publications Warehouse

    Hawkes, L.A.; Balachandran, S.; Batbayar, N.; Butler, P.J.; Chua, B.; Douglas, D.C.; Frappell, P.B.; Hou, Y.; Milsom, W.K.; Newman, S.H.; Prosser, D.J.; Sathiyaselvam, P.; Scott, G.R.; Takekawam, J.Y.; Natsagdorj, T.; Wikelski, M.; Witt, M.J.; Yan, B.; Bishop, C.M.

    2012-01-01

    Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world's tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, direct empirical measurements of high-altitude flight are lacking. We test whether migrating bar-headed geese actually minimize flight altitude and make use of favourable winds to reduce flight costs. By tracking 91 geese, we show that these birds typically travel through the valleys of the Himalayas and not over the summits. We report maximum flight altitudes of 7290 m and 6540 m for southbound and northbound geese, respectively, but with 95 per cent of locations received from less than 5489 m. Geese travelled along a route that was 112 km longer than the great circle (shortest distance) route, with transit ground speeds suggesting that they rarely profited from tailwinds. Bar-headed geese from these eastern populations generally travel only as high as the terrain beneath them dictates and rarely in profitable winds. Nevertheless, their migration represents an enormous challenge in conditions where humans and other mammals are only able to operate at levels well below their sea-level maxima.

  1. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies

    PubMed Central

    Balal, Nezah; Pinhasi, Gad A.; Pinhasi, Yosef

    2016-01-01

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide “chirped” Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution. PMID:27223286

  2. Extremely high-frequency piezoelectroacoustic transducer based on BN-tube/SiC-whiskers rope

    NASA Astrophysics Data System (ADS)

    Pokropivny, V.; Pokropivny, A.; Lohmus, A.; Lohmus, R.; Kovrygin, S.; Sylenko, P.; Partch, R.; Prilutskii, E.

    2007-03-01

    Innovative idea of piezoelectric electroacoustic transducer in extremely high-frequency terahertz range on the basis of BN-tube/SiC-whiskers rope is suggested and substantiated. Unlike an acoustic spectrum of solid rectangular pins and films used so far in ultrasonic pulsers and receivers, in the acoustic spectrum of circular hollow nanotubes, the peculiar squash E2g and the subsequent Eng modes of starlike chain belonging to a gallery of whispering acoustic modes was shown by ab initio RHF/6-31G calculations to exist in the Raman spectra. Inherent important feature of these standing vibrations is their weak attenuation and high frequency, which, as depended on the nanotube diameter, fall in the range of about ∼1 GHz-1 THz. Hypersound was suggested to be excited by resonant microwaves using the piezoelectric properties of BN heteropolar nanotubes and then to transmit it into a sample by high modulus encapsulated SiC-whiskers. Such BN-tube/SiC-whiskers of 100-800 nm in diameter and with ∼20 aspect ratio were synthesized by carbothermal and CVD techniques. Cactus-like arrays of SiC nanowhiskers were synthesized by CVD technique. A sketch of the hypersound generator/detector, with the piezoelectroacoustical transducer on the basis of the BN-tube/SiC-whisker assembly serving as hypersonic antenna, was advanced.

  3. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus.

    PubMed

    Hawkes, L A; Balachandran, S; Batbayar, N; Butler, P J; Chua, B; Douglas, D C; Frappell, P B; Hou, Y; Milsom, W K; Newman, S H; Prosser, D J; Sathiyaselvam, P; Scott, G R; Takekawa, J Y; Natsagdorj, T; Wikelski, M; Witt, M J; Yan, B; Bishop, C M

    2013-01-01

    Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world's tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, direct empirical measurements of high-altitude flight are lacking. We test whether migrating bar-headed geese actually minimize flight altitude and make use of favourable winds to reduce flight costs. By tracking 91 geese, we show that these birds typically travel through the valleys of the Himalayas and not over the summits. We report maximum flight altitudes of 7290 m and 6540 m for southbound and northbound geese, respectively, but with 95 per cent of locations received from less than 5489 m. Geese travelled along a route that was 112 km longer than the great circle (shortest distance) route, with transit ground speeds suggesting that they rarely profited from tailwinds. Bar-headed geese from these eastern populations generally travel only as high as the terrain beneath them dictates and rarely in profitable winds. Nevertheless, their migration represents an enormous challenge in conditions where humans and other mammals are only able to operate at levels well below their sea-level maxima.

  4. Impact of surface coupling grids on tropical cyclone extremes in high-resolution atmospheric simulations

    DOE PAGES

    Zarzycki, Colin M.; Reed, Kevin A.; Bacmeister, Julio T.; Craig, Anthony P.; Bates, Susan C.; Rosenbloom, Nan A.

    2016-02-25

    This article discusses the sensitivity of tropical cyclone climatology to surface coupling strategy in high-resolution configurations of the Community Earth System Model. Using two supported model setups, we demonstrate that the choice of grid on which the lowest model level wind stress and surface fluxes are computed may lead to differences in cyclone strength in multi-decadal climate simulations, particularly for the most intense cyclones. Using a deterministic framework, we show that when these surface quantities are calculated on an ocean grid that is coarser than the atmosphere, the computed frictional stress is misaligned with wind vectors in individual atmospheric gridmore » cells. This reduces the effective surface drag, and results in more intense cyclones when compared to a model configuration where the ocean and atmosphere are of equivalent resolution. Our results demonstrate that the choice of computation grid for atmosphere–ocean interactions is non-negligible when considering climate extremes at high horizontal resolution, especially when model components are on highly disparate grids.« less

  5. The Application of High-Order Harmonics to Extreme Ultraviolet Polarimetry

    NASA Astrophysics Data System (ADS)

    Brimhall, Nicole; Painter, John; Turner, Matthew; Turley, R. Steven; Ware, Michael; Peatross, Justin

    2006-10-01

    We report on the construction of an extreme ultraviolet (EUV) polarimeter based on high-order harmonic generation for characterizing optical surfaces from 8-62 nm. High harmonics as an EUV source are advantageous in that they are polarized (linear, same as laser) and measurements of several wavelengths of light can be made simultaneously. Although not as bright as a synchrotron source, the flux of EUV light is 30,000 times that of a commonly used plasma source. We have demonstrated the feasibility of this project with a simple prototype instrument, which measured the reflectance of samples from 30 nm to 62 nm. The prototype demonstrated that sensitivity is sufficient for measuring reflectances as low as 0.5%. The full instrument employs extensive scanning mobility as opposed to the fixed angle and fixed wavelength range of our earlier prototype. This project represents an authentic `work-horse' application for high-order harmonics, as opposed to merely demonstrating proof of concept.

  6. Gene expression profiles in testis of pigs with extreme high and low levels of androstenone

    PubMed Central

    Moe, Maren; Meuwissen, Theo; Lien, Sigbjørn; Bendixen, Christian; Wang, Xuefei; Conley, Lene Nagstrup; Berget, Ingunn; Tajet, Håvard; Grindflek, Eli

    2007-01-01

    Background: Boar taint is a major obstacle when using uncastrated male pigs for swine production. One of the main compounds causing this taint is androstenone, a pheromone produced in porcine testis. Here we use microarrays to study the expression of thousands of genes simultaneously in testis of high and low androstenone boars. The study allows identification of genes and pathways associated with elevated androstenone levels, which is essential for recognising potential molecular markers for breeding purposes. Results: Testicular tissue was collected from 60 boars, 30 with extreme high and 30 with extreme low levels of androstenone, from each of the two breeds Duroc and Norwegian Landrace. The samples were hybridised to porcine arrays containing 26,877 cDNA clones, detecting 563 and 160 genes that were differentially expressed (p < 0.01) in Duroc and Norwegian Landrace, respectively. Of these significantly up- and down-regulated clones, 72 were found to be common for the two breeds, suggesting the possibility of both general and breed specific mechanisms in regulation of, or response to androstenone levels in boars. Ten genes were chosen for verification of expression patterns by quantitative real competitive PCR and real-time PCR. As expected, our results point towards steroid hormone metabolism and biosynthesis as important biological processes for the androstenone levels, but other potential pathways were identified as well. Among these were oxidoreductase activity, ferric iron binding, iron ion binding and electron transport activities. Genes belonging to the cytochrome P450 and hydroxysteroid dehydrogenase families were highly up-regulated, in addition to several genes encoding different families of conjugation enzymes. Furthermore, a number of genes encoding transcription factors were found both up- and down-regulated. The high number of clones belonging to ferric iron and iron ion binding suggests an importance of these genes, and the association between

  7. Impacts of extreme weather events on highly eutrophic marine ecosystem (Rogoznica Lake, Adriatic coast)

    NASA Astrophysics Data System (ADS)

    Ciglenečki, I.; Janeković, I.; Marguš, M.; Bura-Nakić, E.; Carić, M.; Ljubešić, Z.; Batistić, M.; Hrustić, E.; Dupčić, I.; Garić, R.

    2015-10-01

    Rogoznica Lake is highly eutrophic marine system located on the Eastern Adriatic coast (43°32‧N, 15°58‧E). Because of the relatively small size (10,276 m2) and depth (15 m) it experiences strong natural and indirect anthropogenic influences. Dynamics within the lake is characterized by the extreme and highly variable environmental conditions (seasonal variations in salinity and temperature, water stratification and mixing, redox and euxinic conditions, concentrations of nutrients) which significantly influence the biology inside the lake. Due to the high phytoplankton activity, the upper part of the water column is well oxygenated, while hypoxia/anoxia usually occurs in the bottom layers. Anoxic part of the water column is characterized with high concentrations of sulfide (up to 5 mM) and nutrients (NH4+ up to 315 μM; PO43- up to 53 μM; SiO44- up to 680 μM) indicating the pronounced remineralization of the allochthonous organic matter, produced in the surface waters. The mixolimnion varies significantly within a season feeling effects of the Adriatic atmospheric and ocean dynamics (temperature, wind, heat fluxes, rainfall) which all affect the vertical stability and possibly induce vertical mixing and/or turnover. Seasonal vertical mixing usually occurs during the autumn/winter upon the breakdown of the stratification, injecting oxygen-rich water from the surface into the deeper layers. Depending on the intensity and duration of the vertical dynamics (slower diffusion and/or faster turnover of the water layers) anoxic conditions could developed within the whole water column. Extreme weather events such as abrupt change in the air temperature accompanied with a strong wind and consequently heat flux are found to be a key triggering mechanism for the fast turnover, introducing a large amount of nutrients and sulfur species from deeper parts to the surface. Increased concentration of nutrients, especially ammonium, phosphate, and silicates persisting for

  8. Large Differences in Bacterial Community Composition among Three Nearby Extreme Waterbodies of the High Andean Plateau.

    PubMed

    Aguilar, Pablo; Acosta, Eduardo; Dorador, Cristina; Sommaruga, Ruben

    2016-01-01

    The high Andean plateau or Altiplano contains different waterbodies that are subjected to extreme fluctuations in abiotic conditions on a daily and an annual scale. The bacterial diversity and community composition of those shallow waterbodies is largely unexplored, particularly, of the ponds embedded within the peatland landscape (i.e., Bofedales). Here we compare the small-scale spatial variability (<1 m) in bacterial diversity and community composition between two of those ponds with contrasting apparent color, using 454 pyrosequencing of the 16S rRNA gene. Further, we compared the results with the nearest (80 m) main lagoon in the system to elucidate the importance of different environmental factors such as salinity and the importance of these ponds as a source of shared diversity. Bacterial diversity was higher in both ponds than in the lagoon and community composition was largely different among them and characterized by very low operational taxonomic unit sharing. Whereas the "green" pond with relatively low dissolved organic carbon (DOC) concentration (33.5 mg L(-1)) was dominated by Proteobacteria and Bacteroidetes, the one with extreme DOC concentration (424.1 mg L(-1)) and red hue was dominated by Cyanobacteria. By contrast, the lagoon was largely dominated by Proteobacteria, particularly by Gammaproteobacteria. A large percentage (47%) of all reads was unclassified suggesting the existence of large undiscovered bacterial diversity. Our results suggest that even at the very small-scale spatial range considered, local environmental factors are important in explaining differences in bacterial community composition in those systems. Further, our study highlights that Altiplano peatland ponds represent a hitherto unknown source of microbial diversity.

  9. Large Differences in Bacterial Community Composition among Three Nearby Extreme Waterbodies of the High Andean Plateau

    PubMed Central

    Aguilar, Pablo; Acosta, Eduardo; Dorador, Cristina; Sommaruga, Ruben

    2016-01-01

    The high Andean plateau or Altiplano contains different waterbodies that are subjected to extreme fluctuations in abiotic conditions on a daily and an annual scale. The bacterial diversity and community composition of those shallow waterbodies is largely unexplored, particularly, of the ponds embedded within the peatland landscape (i.e., Bofedales). Here we compare the small-scale spatial variability (<1 m) in bacterial diversity and community composition between two of those ponds with contrasting apparent color, using 454 pyrosequencing of the 16S rRNA gene. Further, we compared the results with the nearest (80 m) main lagoon in the system to elucidate the importance of different environmental factors such as salinity and the importance of these ponds as a source of shared diversity. Bacterial diversity was higher in both ponds than in the lagoon and community composition was largely different among them and characterized by very low operational taxonomic unit sharing. Whereas the “green” pond with relatively low dissolved organic carbon (DOC) concentration (33.5 mg L-1) was dominated by Proteobacteria and Bacteroidetes, the one with extreme DOC concentration (424.1 mg L-1) and red hue was dominated by Cyanobacteria. By contrast, the lagoon was largely dominated by Proteobacteria, particularly by Gammaproteobacteria. A large percentage (47%) of all reads was unclassified suggesting the existence of large undiscovered bacterial diversity. Our results suggest that even at the very small-scale spatial range considered, local environmental factors are important in explaining differences in bacterial community composition in those systems. Further, our study highlights that Altiplano peatland ponds represent a hitherto unknown source of microbial diversity. PMID:27446017

  10. Impact of extreme exercise at high altitude on oxidative stress in humans.

    PubMed

    Quindry, John; Dumke, Charles; Slivka, Dustin; Ruby, Brent

    2016-09-15

    Exercise and oxidative stress research continues to grow as a physiological subdiscipline. The influence of high altitude on exercise and oxidative stress is among the recent topics of intense study in this area. Early findings indicate that exercise at high altitude has an independent influence on free radical generation and the resultant oxidative stress. This review provides a detailed summary of oxidative stress biochemistry as gleaned mainly from studies of humans exercising at high altitude. Understanding of the human response to exercise at altitude is largely derived from field-based research at altitudes above 3000 m in addition to laboratory studies which employ normobaric hypoxia. The implications of oxidative stress incurred during high altitude exercise appear to be a transient increase in oxidative damage followed by redox-sensitive adaptations in multiple tissues. These outcomes are consistent for lowland natives, high altitude acclimated sojourners and highland natives, although the latter group exhibits a more robust adaptive response. To date there is no evidence that altitude-induced oxidative stress is deleterious to normal training or recovery scenarios. Limited evidence suggests that deleterious outcomes related to oxidative stress are limited to instances where individuals are exposed to extreme elevations for extended durations. However, confirmation of this tentative conclusion requires further investigation. More applicably, altitude-induced hypoxia may have an independent influence on redox-sensitive adaptive responses to exercise and exercise recovery. If correct, these findings may hold important implications for athletes, mountaineers, and soldiers working at high altitude. These points are raised within the confines of published research on the topic of oxidative stress during exercise at altitude.

  11. Liquid jet impingement cooling with diamond substrates for extremely high heat flux applications

    SciTech Connect

    Lienhard, J.H. V; Khounsary, A.M.

    1993-09-01

    The combination of impinging jets and diamond substrates may provide an effective solution to a class of extremely high heat flux problems in which very localized heat loads must be removed. Some potential applications include the cooling of high-heat-load components in synchrotron x-ray, fusion, and semiconductor laser systems. Impinging liquid jets are a very effective vehicle for removing high heat fluxes. The liquid supply arrangement is relatively simple, and low thermal resistances can be routinely achieved. A jet`s cooling ability is a strong function of the size of the cooled area relative to the jet diameter. For relatively large area targets, the critical heat fluxes can approach 20 W/mm{sup 2}. In this situation, burnout usually originates at the outer edge of the cooled region as increasing heat flux inhibits the liquid supply. Limitations from liquid supply are minimized when heating is restricted to the jet stagnation zone. The high stagnation pressure and high velocity gradients appear to suppress critical flux phenomena, and fluxes of up to 400 W/mm{sup 2} have been reached without evidence of burnout. Instead, the restrictions on heat flux are closely related to properties of the cooled target. Target properties become an issue owing to the large temperatures and large temperature gradients that accompany heat fluxes over 100 W/mm{sup 2}. These conditions necessitate a target with both high thermal conductivity to prevent excessive temperatures and good mechanical properties to prevent mechanical failures. Recent developments in synthetic diamond technology present a possible solution to some of the solid-side constraints on heat flux. Polycrystalline diamond foils can now be produced by chemical vapor deposition in reasonable quantity and at reasonable cost. Synthetic single crystal diamonds as large as 1 cm{sup 2} are also available.

  12. Inhibition by dietary D-psicose of body fat accumulation in adult rats fed a high-sucrose diet.

    PubMed

    Ochiai, Masaru; Nakanishi, Yosuke; Yamada, Takako; Iida, Tetsuo; Matsuo, Tatsuhiro

    2013-01-01

    We investigated the anti-obesity effects of dietary D-psicose on adult rats fed a high-sucrose diet. Wistar rats (16 weeks old) that had previously been fed a high-sucrose diet (HSD) were fed HSD or a high-starch diet (HTD) with or without 5% D-psicose for 8 weeks. The food efficiency, carcass fat percentage, abdominal fat accumulation, and body weight gain were all significantly suppressed by dietary D-psicose.

  13. Extremely high UV-C radiation resistant microorganisms from desert environments with different manganese concentrations.

    PubMed

    Paulino-Lima, Ivan Glaucio; Fujishima, Kosuke; Navarrete, Jesica Urbina; Galante, Douglas; Rodrigues, Fabio; Azua-Bustos, Armando; Rothschild, Lynn Justine

    2016-10-01

    Desiccation resistance and a high intracellular Mn/Fe ratio contribute to ionizing radiation resistance of Deinococcus radiodurans. We hypothesized that this was a general phenomenon and thus developed a strategy to search for highly radiation-resistant organisms based on their natural environment. While desiccation is a typical feature of deserts, the correlation between radiation resistance and the intracellular Mn/Fe ratio of indigenous microorganisms or the Mn/Fe ratio of the environment, has not yet been described. UV-C radiation is highly damaging to biomolecules including DNA. It was used in this study as a selective tool because of its relevance to early life on earth, high altitude aerobiology and the search for life beyond Earth. Surface soil samples were collected from the Sonoran Desert, Arizona (USA), from the Atacama Desert in Chile and from a manganese mine in northern Argentina. Microbial isolates were selected after exposure to UV-C irradiation and growth. The isolates comprised 28 genera grouped within six phyla, which we ranked according to their resistance to UV-C irradiation. Survival curves were performed for the most resistant isolates and correlated with their intracellular Mn/Fe ratio, which was determined by ICP-MS. Five percent of the isolates were highly resistant, including one more resistant than D. radiodurans, a bacterium generally considered the most radiation-resistant organism, thus used as a model for radiation resistance studies. No correlation was observed between the occurrence of resistant microorganisms and the Mn/Fe ratio in the soil samples. However, all resistant isolates showed an intracellular Mn/Fe ratio much higher than the sensitive isolates. Our findings could represent a new front in efforts to harness mechanisms of UV-C radiation resistance from extreme environments. PMID:27614243

  14. Characterizing the Chemical Stability of High Temperature Materials for Application in Extreme Environments

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth

    2005-01-01

    The chemical stability of high temperature materials must be known for use in the extreme environments of combustion applications. The characterization techniques available at NASA Glenn Research Center vary from fundamental thermodynamic property determination to material durability testing in actual engine environments. In this paper some of the unique techniques and facilities available at NASA Glenn will be reviewed. Multiple cell Knudsen effusion mass spectrometry is used to determine thermodynamic data by sampling gas species formed by reaction or equilibration in a Knudsen cell held in a vacuum. The transpiration technique can also be used to determine thermodynamic data of volatile species but at atmospheric pressures. Thermodynamic data in the Si-O-H(g) system were determined with this technique. Free Jet Sampling Mass Spectrometry can be used to study gas-solid interactions at a pressure of one atmosphere. Volatile Si(OH)4(g) was identified by this mass spectrometry technique. A High Pressure Burner Rig is used to expose high temperature materials in hydrocarbon-fueled combustion environments. Silicon carbide (SiC) volatility rates were measured in the burner rig as a function of total pressure, gas velocity and temperature. Finally, the Research Combustion Lab Rocket Test Cell is used to expose high temperature materials in hydrogen/oxygen rocket engine environments to assess material durability. SiC recession due to rocket engine exposures was measured as a function of oxidant/fuel ratio, temperature, and total pressure. The emphasis of the discussion for all techniques will be placed on experimental factors that must be controlled for accurate acquisition of results and reliable prediction of high temperature material chemical stability.

  15. Extreme-Ultraviolet-Initated High-Order Harmonic Generation: Driving Inner-Valence Electrons Using Below-Threshold-Energy Extreme-Ultraviolet Light.

    PubMed

    Brown, A C; van der Hart, H W

    2016-08-26

    We propose a novel scheme for resolving the contribution of inner- and outer-valence electrons in extreme-ultraviolet (XUV)-initiated high-harmonic generation in neon. By probing the atom with a low-energy (below the 2s ionization threshold) ultrashort XUV pulse, the 2p electron is steered away from the core, while the 2s electron is enabled to describe recollision trajectories. By selectively suppressing the 2p recollision trajectories, we can resolve the contribution of the 2s electron to the high-harmonic spectrum. We apply the classical trajectory model to account for the contribution of the 2s electron, which allows for an intuitive understanding of the process.

  16. Extreme-Ultraviolet-Initated High-Order Harmonic Generation: Driving Inner-Valence Electrons Using Below-Threshold-Energy Extreme-Ultraviolet Light.

    PubMed

    Brown, A C; van der Hart, H W

    2016-08-26

    We propose a novel scheme for resolving the contribution of inner- and outer-valence electrons in extreme-ultraviolet (XUV)-initiated high-harmonic generation in neon. By probing the atom with a low-energy (below the 2s ionization threshold) ultrashort XUV pulse, the 2p electron is steered away from the core, while the 2s electron is enabled to describe recollision trajectories. By selectively suppressing the 2p recollision trajectories, we can resolve the contribution of the 2s electron to the high-harmonic spectrum. We apply the classical trajectory model to account for the contribution of the 2s electron, which allows for an intuitive understanding of the process. PMID:27610852

  17. Extreme-Ultraviolet-Initated High-Order Harmonic Generation: Driving Inner-Valence Electrons Using Below-Threshold-Energy Extreme-Ultraviolet Light

    NASA Astrophysics Data System (ADS)

    Brown, A. C.; van der Hart, H. W.

    2016-08-01

    We propose a novel scheme for resolving the contribution of inner- and outer-valence electrons in extreme-ultraviolet (XUV)-initiated high-harmonic generation in neon. By probing the atom with a low-energy (below the 2 s ionization threshold) ultrashort XUV pulse, the 2 p electron is steered away from the core, while the 2 s electron is enabled to describe recollision trajectories. By selectively suppressing the 2 p recollision trajectories, we can resolve the contribution of the 2 s electron to the high-harmonic spectrum. We apply the classical trajectory model to account for the contribution of the 2 s electron, which allows for an intuitive understanding of the process.

  18. Significant mobility enhancement in extremely thin highly doped ZnO films

    SciTech Connect

    Look, David C.; Heller, Eric R.; Yao, Yu-Feng; Yang, C. C.

    2015-04-13

    Highly Ga-doped ZnO (GZO) films of thicknesses d = 5, 25, 50, and 300 nm, grown on 160-nm ZnO buffer layers by molecular beam epitaxy, had 294-K Hall-effect mobilities μ{sub H} of 64.1, 43.4, 37.0, and 34.2 cm{sup 2}/V-s, respectively. This extremely unusual ordering of μ{sub H} vs d is explained by the existence of a very high-mobility Debye tail in the ZnO, arising from the large Fermi-level mismatch between the GZO and the ZnO. Scattering theory in conjunction with Poisson analysis predicts a Debye-tail mobility of 206 cm{sup 2}/V-s at the interface (z = d), falling to 58 cm{sup 2}/V-s at z = d + 2 nm. Excellent fits to μ{sub H} vs d and sheet concentration n{sub s} vs d are obtained with no adjustable parameters.

  19. Potential therapeutic mechanism of extremely low-frequency high-voltage electric fields in cells.

    PubMed

    Kim, Ka-Eun; Park, Soon-Kwon; Nam, Sang-Yun; Han, Tae-Jong; Cho, Il-Young

    2016-05-18

    The aim of this survey was to provide background theory based on previous research to elucidate the potential pathway by which medical devices using extremely low-frequency high-voltage electric fields (ELF-HVEF) exert therapeutic effects on the human body, and to increase understanding of the AC high-voltage electrotherapeutic apparatus for consumers and suppliers of the relevant devices. Our review revealed that an ELF field as weak as 1-10 μ V/m can induce diverse alterations of membrane proteins such as transporters and channel proteins, including changes in Ca + + binding to a specific site of the cell surface, changes in ion (e.g., Ca + + ) influx or efflux, and alterations in the ligand-receptor interaction. These alterations then induce cytoplasmic responses within cells (Ca + + , cAMP, kinases, etc.) that can have impacts on cell growth, differentiation, and other functional properties by promoting the synthesis of macromolecules. Moreover, increased cytoplasmic Ca + + involves calmodulin-dependent signaling and consequent Ca + + /calmodulin-dependent stimulation of nitric oxide synthesis. This event in turn induces the nitric oxide-cGMP-protein kinase G pathway, which may be an essential factor in the observed physiological and therapeutic responses.

  20. Extremely high prevalence of multidrug resistant tuberculosis in Murmansk, Russia: a population-based study.

    PubMed

    Mäkinen, J; Marjamäki, M; Haanperä-Heikkinen, M; Marttila, H; Endourova, L B; Presnova, S E; Mathys, V; Bifani, P; Ruohonen, R; Viljanen, M K; Soini, H

    2011-09-01

    Drug resistance and molecular epidemiology of tuberculosis (TB) in the Murmansk region was investigated in a 2-year, population-based surveillance of the civilian population. During 2003 and 2004, isolates from all culture-positive cases were collected (n = 1,226). Prevalence of multi-drug resistance (MDR) was extremely high, as 114 out of 439 new cases (26.0%), and 574 out of 787 previously treated cases (72.9%) were resistant to at least isoniazid (INH) and rifampin (RIF). Spoligotyping of the primary MDR-TB isolates revealed that most isolates grouped to the Beijing SIT1 genotype (n = 91, 79.8%). Isolates of this genotype were further analyzed by IS6110 RFLP. Sequencing of gene targets associated with INH and RIF resistance further showed that the MDR-TB strains are highly homogeneous as 78% of the MDR, SIT1 strains had the same resistance-conferring mutations. The genetic homogeneity of the MDR-TB strains indicates that they are actively transmitted in Murmansk. PMID:21394425

  1. The High-Resolution Extreme-Ultraviolet Spectrum of N_2 by Electron Impact

    NASA Astrophysics Data System (ADS)

    Heays, Alan; Ajello, Joe M.; Aguilar, Alejandro; Lewis, Brenton R.; Gibson, Stephen

    2014-06-01

    We have recorded high-resolution (FWHM = 0.2 Å) extreme-ultraviolet (EUV, 800--1350 Å) laboratory emission spectra of molecular nitrogen excited by 20 and 100 eV electron impact under mostly optically thin conditions. From these, emission cross sections were determined for a total of 491 features arising from N_2 electronic-vibrational transitions and atomic N I and N II multiplets. Molecular emission was observed from those excited levels which are not completely predissociative and to ground-state vibrational levels as high as v=17. The frequently-blended molecular emission bands were disentangled with the aid of a coupled-channels model of excited N_2 states that includes the strong coupling between valence and Rydberg electronic states and the effects of predissociation. The observed emission bands probe a large range of vibrational motion so that internuclear-distance-dependent electronic transition moments could be deduced experimental. The coupled-channels model could then be used to predict the emission cross sections of unobserved bands and those that are optically thick in the experimental spectra. The electron-impact-induced fluorescence measurements and model were compared with Cassini UVIS observations of emissions from Titan's upper atmosphere.

  2. High pressure research at the Partnership for eXtreme Xtallography (PX^2) Project

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Dera, P.; Zhang, J.; Eng, P. J.; Stubbs, J.; Prakapenka, V.; Rivers, M. L.

    2015-12-01

    The Partnership for eXtreme Xtallography (PX^2) project is a collaboration between the University of Hawaii and GeoSoilEnviroCARS (GSECARS), located at the Advanced Photon Source (APS) experimental station 13-BM-C. PX^2 is providing new capabilities for high-pressure diamond anvil cell research at the GSECARS APS beamline. This beamline provides focused x-rays at two fixed energies: 15 and 29 keV, and a unique 6-circle heavy duty diffractometer, optimized for a variety of advanced crystallography experiments including interface studies, powder and single crystal structure determination, equation of state studies and thermal diffuse scattering. Currently we support high pressure and temperature experiments using resistively heated diamond anvil cells, and have achieved P-T conditions of 100 GPa and 1000 K. Results of multiple recent experiments, including powder and single crystal diffraction over a range of P-T conditions, equations of state and thermal diffuse scattering will be presented to demonstrate the experimental capabilities. These new capabilities are available to all researchers interested in studying deep earth materials through the APS General User Proposal system.

  3. Microsystem for remote sensing of high energy radiation with associated extremely low photon flux densities

    NASA Astrophysics Data System (ADS)

    Otten, A.; Jain, V. K.

    2015-08-01

    This paper presents a microsystem for remote sensing of high energy radiation in extremely low flux density conditions. With wide deployment in mind, potential applications range from nuclear non-proliferation, to hospital radiation-safety. The daunting challenge is the low level of photon flux densities - emerging from a Scintillation Crystal (SC) on to a ~1 mm-square detector, which are a factor of 10000 or so lower than those acceptable to recently reported photonic chips (including `single-photon detection' chips), due to a combination of low Lux, small detector size, and short duration SC output pulses - on the order of 1 μs. These challenges are attempted to be overcome by the design of an innovative `System on a Chip' type microchip, with high detector sensitivity, and effective coupling from the SC to the photodetector. The microchip houses a tiny n+ diff p-epi photodiode (PD) as well as the associated analog amplification and other related circuitry, all fabricated in 0.5micron, 3-metal 2-poly CMOS technology. The amplification, together with pulse-shaping of the photocurrent-induced voltage signal, is achieved through a tandem of two capacitively coupled, double-cascode amplifiers. Included in the paper are theoretical estimates and experimental results.

  4. The extremely high 137Cs inventory in the Sulu Sea: a possible mechanism.

    PubMed

    Yamada, Masatoshi; Wang, Zhong-Liang; Zheng, Jian

    2006-01-01

    Large-volume seawater samples were collected in the Sulu and South China Seas and their (137)Cs activities were determined by gamma-ray spectrometry using a low background type high-purity Ge detector. Vertical distributions of (137)Cs activity showed an exponential decrease in the South China Sea, whereas a subsurface maximum at 200m depth and monotonic decrease below 300m were observed in the Sulu Sea. A significant difference in intermediate water (137)Cs activities in the 500-2000m depth was observed between the Sulu and South China Seas, i.e., the (137)Cs activities in the Sulu Sea were remarkably higher than those in the South China Sea. The difference in the (137)Cs inventory below 500m was approximately 1200Bqm(-2) between the Sulu and South China Seas. The (137)Cs total inventory of 3200Bqm(-2) in the Sulu Sea was 5.7 times higher than that expected from global fallout. A possible mechanism controlling this extremely high (137)Cs total inventory may be inflows of the (137)Cs rich water masses through the Luzon Strait, lateral transport across the Mindoro Strait into the Sulu Sea, and then subduction into the deep layer in the basin.

  5. Exploring thermal and mechanical properties of selected transition elements under extreme conditions: Experiments at high pressures and high temperatures

    NASA Astrophysics Data System (ADS)

    Hrubiak, Rostislav

    Transition metals (Ti, Zr, Hf, Mo, W, V, Nb, Ta, Pd, Pt, Cu, Ag, and Au) are essential building units of many materials and have important industrial applications. Therefore, it is important to understand their thermal and physical behavior when they are subjected to extreme conditions of pressure and temperature. This dissertation presents: • An improved experimental technique to use lasers for the measurement of thermal conductivity of materials under conditions of very high pressure (P, up to 50 GPa) and temperature (T up to 2500 K). • An experimental study of the phase relationship and physical properties of selected transition metals, which revealed new and unexpected physical effects of thermal conductivity in Zr, and Hf under high P-T.. • New phase diagrams created for Hf, Ti and Zr from experimental data. • P-T dependence of the lattice parameters in α-hafnium. Contrary to prior reports, the α-ω phase transition in hafnium has a negative dT/dP slope. • New data on thermodynamic and physical properties of several transition metals and their respective high P-T phase diagrams. • First complete thermodynamic database for solid phases of 13 common transition metals was created. This database has: All the thermochemical data on these elements in their standard state (mostly available and compiled); All the equations of state (EoS) formulated from pressure-volume-temperature data (measured as a part of this study and from literature); Complete thermodynamic data for selected elements from standard to extreme conditions. The thermodynamic database provided by this study can be used with available thermodynamic software to calculate all thermophysical properties and phase diagrams at high P-T conditions. For readers who do not have access to this software, tabulated values of all thermodynamic and volume data for the 13 metals at high P-T are included in the APPENDIX. In the APPENDIX, a description of several other high-pressure studies of selected

  6. Identification of oleaginous yeast strains able to accumulate high intracellular lipids when cultivated in alkaline pretreated corn stover

    PubMed Central

    Sitepu, Irnayuli R.; Jin, Mingjie; Fernandez, J. Enrique; da Costa Sousa, Leonardo; Balan, Venkatesh; Boundy-Mills, Kyria L.

    2015-01-01

    Microbial oil is a potential alternative to food/plant-derived biodiesel fuel. Our previous screening studies identified a wide range of oleaginous yeast species, using a defined laboratory medium known to stimulate lipid accumulation. In this study, the ability of these yeasts to grow and accumulate lipids was further investigated in synthetic hydrolysate (SynH) and authentic ammonia fiber expansion (AFEX™)-pretreated corn stover hydrolysate (ACSH). Most yeast strains tested were able to accumulate lipids in SynH, but only a few were able to grow and accumulate lipids in ACSH medium. Cryptococcus humicola UCDFST 10-1004 was able to accumulate as high as 15.5 g/L lipids, out of a total of 36 g/L cellular biomass when grown in ACSH, with a cellular lipid content of 40% of cell dry weight. This lipid production is among the highest reported values for oleaginous yeasts grown in authentic hydrolysate. Pre-culturing in SynH media with xylose as sole carbon source enabled yeasts to assimilate both glucose and xylose more efficiently in the subsequent hydrolysate medium. This study demonstrates that ACSH is a suitable medium for certain oleaginous yeasts to convert lignocellullosic sugars to triacylglycerols for production of biodiesel and other valuable oleochemicals. PMID:25052467

  7. Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions.

    PubMed

    Takeshita, Tsuyoshi; Ota, Shuhei; Yamazaki, Tomokazu; Hirata, Aiko; Zachleder, Vilém; Kawano, Shigeyuki

    2014-04-01

    The microalgae family Chlorella species are known to accumulate starch and lipids. Although nitrogen or phosphorous deficiencies promote starch and lipids formation in many microalgae, these deficiencies also limit their growth and productivity. Therefore, the Chlorellaceae strains were attempted to increase starch and lipids productivity under high-light-intensity conditions (600-μmol photons m(-2)s(-1)). The 12:12-h light-dark (LD) cycle conditions elicited more stable growth than the continuous light (LL) conditions, whereas the starch and lipids yields increased in LL conditions. The amount of starch and lipids per cell increased in Chlorella viscosa and Chlorella vulgaris in sulfur-deficient medium, and long-chain fatty acids with 20 or more carbon atoms accumulated in cells grown in sulfur-deficient medium. Accumulation of starch and lipids was investigated in eight strains. The accumulation was strain-dependent, and varied according to the medium and light conditions. Five of the eight Chlorella strains exhibited similar accumulation patterns.

  8. Identification of oleaginous yeast strains able to accumulate high intracellular lipids when cultivated in alkaline pretreated corn stover.

    PubMed

    Sitepu, Irnayuli R; Jin, Mingjie; Fernandez, J Enrique; da Costa Sousa, Leonardo; Balan, Venkatesh; Boundy-Mills, Kyria L

    2014-09-01

    Microbial oil is a potential alternative to food/plant-derived biodiesel fuel. Our previous screening studies identified a wide range of oleaginous yeast species, using a defined laboratory medium known to stimulate lipid accumulation. In this study, the ability of these yeasts to grow and accumulate lipids was further investigated in synthetic hydrolysate (SynH) and authentic ammonia fiber expansion (AFEX™)-pretreated corn stover hydrolysate (ACSH). Most yeast strains tested were able to accumulate lipids in SynH, but only a few were able to grow and accumulate lipids in ACSH medium. Cryptococcus humicola UCDFST 10-1004 was able to accumulate as high as 15.5 g/L lipids, out of a total of 36 g/L cellular biomass when grown in ACSH, with a cellular lipid content of 40 % of cell dry weight. This lipid production is among the highest reported values for oleaginous yeasts grown in authentic hydrolysate. Preculturing in SynH media with xylose as sole carbon source enabled yeasts to assimilate both glucose and xylose more efficiently in the subsequent hydrolysate medium. This study demonstrates that ACSH is a suitable medium for certain oleaginous yeasts to convert lignocellullosic sugars to triacylglycerols for production of biodiesel and other valuable oleochemicals.

  9. A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution.

    PubMed

    Iorizzo, Massimo; Ellison, Shelby; Senalik, Douglas; Zeng, Peng; Satapoomin, Pimchanok; Huang, Jiaying; Bowman, Megan; Iovene, Marina; Sanseverino, Walter; Cavagnaro, Pablo; Yildiz, Mehtap; Macko-Podgórni, Alicja; Moranska, Emilia; Grzebelus, Ewa; Grzebelus, Dariusz; Ashrafi, Hamid; Zheng, Zhijun; Cheng, Shifeng; Spooner, David; Van Deynze, Allen; Simon, Philipp

    2016-06-01

    We report a high-quality chromosome-scale assembly and analysis of the carrot (Daucus carota) genome, the first sequenced genome to include a comparative evolutionary analysis among members of the euasterid II clade. We characterized two new polyploidization events, both occurring after the divergence of carrot from members of the Asterales order, clarifying the evolutionary scenario before and after radiation of the two main asterid clades. Large- and small-scale lineage-specific duplications have contributed to the expansion of gene families, including those with roles in flowering time, defense response, flavor, and pigment accumulation. We identified a candidate gene, DCAR_032551, that conditions carotenoid accumulation (Y) in carrot taproot and is coexpressed with several isoprenoid biosynthetic genes. The primary mechanism regulating carotenoid accumulation in carrot taproot is not at the biosynthetic level. We hypothesize that DCAR_032551 regulates upstream photosystem development and functional processes, including photomorphogenesis and root de-etiolation. PMID:27158781

  10. High Rates of Species Accumulation in Animals with Bioluminescent Courtship Displays.

    PubMed

    Ellis, Emily A; Oakley, Todd H

    2016-07-25

    One of the great mysteries of evolutionary biology is why closely related lineages accumulate species at different rates. Theory predicts that populations undergoing strong sexual selection will more quickly differentiate because of increased potential for genetic isolation [1-6]. Whether or not these population genetic processes translate to more species at macroevolutionary scales remains contentious [7]. Here we show that lineages with bioluminescent courtship, almost certainly a sexually selected trait, have more species and faster rates of species accumulation than their non-luminous relatives. In each of ten distantly related animal lineages from insects, crustaceans, annelid worms, and fishes, we find more species in lineages with bioluminescent courtship compared to their sister groups. Furthermore, we find under a Yule model that lineages with bioluminescent courtship displays have significantly higher rates of species accumulation compared to a larger clade that includes them plus non-luminous relatives. In contrast, we do not find more species or higher rates in lineages that use bioluminescence for defense, a function presumably not under sexual selection. These results document an association between the origin of bioluminescent courtship and increased accumulation of species, supporting theory predicting sexual selection increases rates of speciation at macroevolutionary scales to influence global patterns of biodiversity. PMID:27345160

  11. Cadmium tolerance and accumulation in cultivars of a high-biomass tropical tree (Averrhoa carambola) and its potential for phytoextraction.

    PubMed

    Li, J T; Liao, B; Lan, C Y; Ye, Z H; Baker, A J M; Shu, W S

    2010-01-01

    Averrhoa carambola is a high-biomass tropical tree that has been identified as a Cd accumulator. In the present study, field survey, pot, and hydroponic experiments were conducted to investigate the variation of Cd tolerance and accumulation in cultivars of A. carambola as well as its potential for phytoextraction. In the field survey, it was found that concentrations of Cd in aerial tissues of A. carambola varied greatly among sites and cultivars. The Cd bioconcentration factors (BCFs) and Cd removals by the field-grown A. carambola differed significantly among sites but not among cultivars. Nonetheless, all four carambola cultivars investigated were able to accumulate considerably high concentrations of Cd in their shoots, which indicated that the 4-yr-old carambola stands could remove 0.3 to 51.8% of the total Cd content in the top 20-cm soil layer. When cultured in Cd-spiked soils, the carambola cultivar Hua-Di always showed higher Cd tolerance than the other cultivars; however, this tendency was not confirmed by hydroponic experiment. The Cd BCFs of cultivar Thailand grown in soils with 6 and 12 mg Cd kg(-1) were highest among cultivars, whereas this trend was reversed at 120 mg Cd kg(-1) treatment. Nevertheless, the pot- and hydroponics-grown carambola cultivars generally showed higher capacities to tolerate and accumulate Cd, compared with the control species. The present results indicate that a strong ability to tolerate and accumulate Cd seems to be a trait at the species level in A. carambola, although some degree of variances in both Cd tolerance and accumulation exists among cultivars.

  12. Quercetin decreases high-fat diet induced body weight gain and accumulation of hepatic and circulating lipids in mice.

    PubMed

    Hoek-van den Hil, E F; van Schothorst, E M; van der Stelt, I; Swarts, H J M; Venema, D; Sailer, M; Vervoort, J J M; Hollman, P C H; Rietjens, I M C M; Keijer, J

    2014-09-01

    Dietary flavonoids may protect against cardiovascular diseases (CVD). Increased circulating lipid levels and hepatic lipid accumulation are known risk factors for CVD. The aim of this study was to investigate the effects and underlying molecular mechanisms of the flavonoid quercetin on hepatic lipid metabolism in mice with high-fat diet induced body weight gain and hepatic lipid accumulation. Adult male mice received a 40 energy% high-fat diet without or with supplementation of 0.33 % (w/w) quercetin for 12 weeks. Body weight gain was 29 % lower in quercetin fed mice (p < 0.01), while the energy intake was not significantly different. Quercetin supplementation lowered hepatic lipid accumulation to 29 % of the amount present in the control mice (p < 0.01). (1)H nuclear magnetic resonance serum lipid profiling revealed that the supplementation significantly lowered serum lipid levels. Global gene expression profiling of liver showed that cytochrome P450 2b (Cyp2b) genes, key target genes of the transcription factor constitutive androstane receptor (Car; official symbol Nr1i3), were downregulated. Quercetin decreased high-fat diet induced body weight gain, hepatic lipid accumulation and serum lipid levels. This was accompanied by regulation of cytochrome P450 2b genes in liver, which are possibly under transcriptional control of CAR. The quercetin effects are likely dependent on the fat content of the diet.

  13. Evolution of extreme high waters along the east coast of India and at the head of the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Antony, Charls; Unnikrishnan, A. S.; Woodworth, Philip L.

    2016-05-01

    The recent evolution of extreme high waters along the severe cyclone-risk coasts of the Bay of Bengal (the east coast of India and Bangladesh) was assessed using long-term (24-34 years) hourly tide gauge data available from five stations. The highest water levels above mean sea level have the greatest magnitude towards the northern part of the Bay, which decreases towards its south-west. Extreme high waters were observed to result from a combination of moderate, or even small, surges with large tides at these stations in most of the cases. Increasing trends, which are significant, were observed in the extreme high waters at Hiron Point, at the head of the Bay. However, the trends in extremes are slightly lower than its mean sea level trend. For the other stations, Cox's Bazaar, Paradip Visakhapatnam and Chennai, no significant trends were observed. At inter-annual time scales, changes in extreme high waters in the Bay of Bengal were found to be influenced by the El Niño Southern Oscillation and the Indian Ocean Dipole.

  14. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings

    PubMed Central

    Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A. H.

    2015-01-01

    Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal. PMID

  15. Extremely high energy neutrinos in six years of IceCube data

    NASA Astrophysics Data System (ADS)

    Ishihara, Aya; IceCube Collaboration

    2016-05-01

    The IceCube neutrino observatory is capable of detecting ultra-high-energy cosmic neutrinos even above PeV - EeV energies. These extremely high energy (EHE) neutrinos (≥ 10 PeV) are produced from interactions of the most energetic cosmic rays (≥ 1 EeV) and ambient photons/matter in the sources or diffuse photon fields such as the cosmic microwave background. Therefore, observations of these EHE neutrinos can be used to probe the origin of the highest energy cosmic rays with energies extending up to 100 EeV. We present the results of an updated analysis of the EHE neutrino sample with energies greater than ~ 1 PeV in 6 years of IceCube data (3 years of partially completed IceCube data (2008-2011) and 3 years of completed IceCube data (2011-2014)). While one event depositing an energy of 770±200 TeV was observed, it is incompatible with a hypothesis of cosmogenic origin. The resultant improvement in the upper limit corresponds to a factor of more than 2.5 from the previous study of two years of data from the nearly completed IceCube detector. Our limits disfavor the parameter space of sources of ultra-high-energy cosmic rays for which the cosmological evolution is stronger than the star formation rate, where the source candidate classes of active galactic nuclei (AGN) and gamma-ray bursts (GRB) belong, assuming the cosmic-ray composition is proton dominated. Results from a 7-year data analysis by adding another year’s worth of data to the current sample are also anticipated soon.

  16. High Metabolomic Microdiversity within Co-Occurring Isolates of the Extremely Halophilic Bacterium Salinibacter ruber

    PubMed Central

    Antón, Josefa; Lucio, Marianna; Peña, Arantxa; Cifuentes, Ana; Brito-Echeverría, Jocelyn; Moritz, Franco; Tziotis, Dimitrios; López, Cristina; Urdiain, Mercedes; Schmitt-Kopplin, Philippe; Rosselló-Móra, Ramon

    2013-01-01

    Salinibacter ruber is an extremely halophilic member of the Bacteroidetes that thrives in crystallizer ponds worldwide. Here, we have analyzed two sets of 22 and 35 co-occurring S. ruber strains, newly isolated respectively, from 100 microliters water samples from crystalizer ponds in Santa Pola and Mallorca, located in coastal and inland Mediterranean Spain and 350 km apart from each other. A set of old strains isolated from the same setting were included in the analysis. Genomic and taxonomy relatedness of the strains were analyzed by means of PFGE and MALDI-TOF, respectively, while their metabolomic potential was explored with high resolution ion cyclotron resonance Fourier transform mass spectrometry (ICR-FT/MS). Overall our results show a phylogenetically very homogeneous species expressing a very diverse metabolomic pool. The combination of MALDI-TOF and PFGE provides, for the newly isolated strains, the same scenario presented by the previous studies of intra-specific diversity of S. ruber using a more restricted number of strains: the species seems to be very homogeneous at the ribosomal level while the genomic diversity encountered was rather high since no identical genome patterns could be retrieved from each of the samples. The high analytical mass resolution of ICR-FT/MS enabled the description of thousands of putative metabolites from which to date only few can be annotated in databases. Some metabolomic differences, mainly related to lipid metabolism and antibiotic-related compounds, provided enough specificity to delineate different clusters within the co-occurring strains. In addition, metabolomic differences were found between old and new strains isolated from the same ponds that could be related to extended exposure to laboratory conditions. PMID:23741374

  17. Spring Ephemerals Adapt to Extremely High Light Conditions via an Unusual Stabilization of Photosystem II

    PubMed Central

    Tu, Wenfeng; Li, Yang; Liu, Wu; Wu, Lishuan; Xie, Xiaoyan; Zhang, Yuanming; Wilhelm, Christian; Yang, Chunhong

    2016-01-01

    Ephemerals, widely distributed in the Gobi desert, have developed significant characteristics to sustain high photosynthetic efficiency under high light (HL) conditions. Since the light reaction is the basis for photosynthetic conversion of solar energy to chemical energy, the photosynthetic performances in thylakoid membrane of the spring ephemerals in response to HL were studied. Three plant species, namely two C3 spring ephemeral species of Cruciferae: Arabidopsis pumila (A. pumila) and Sisymbrium altissimum (S. altissimum), and the model plant Arabidopsis thaliana (A. thaliana) were chosen for the study. The ephemeral A. pumila, which is genetically close to A. thaliana and ecologically in the same habitat as S. altissimum, was used to avoid complications arising from the superficial differences resulted from comparing plants from two extremely contrasting ecological groups. The findings manifested that the ephemerals showed significantly enhanced activities of photosystem (PS) II under HL conditions, while the activities of PSII in A. thaliana were markedly decreased under the same conditions. Detailed analyses of the electron transport processes revealed that the increased plastoquinone pool oxidization, together with the enhanced PSI activities, ensured a lowered excitation pressure to PSII of both ephemerals, and thus facilitated the photosynthetic control to avoid photodamage to PSII. The analysis of the reaction centers of the PSs, both in terms of D1 protein turnover kinetics and the long-term adaptation, revealed that the unusually stable PSs structure provided the basis for the ephemerals to carry out high photosynthetic performances. It is proposed that the characteristic photosynthetic performances of ephemerals were resulted from effects of the long-term adaptation to the harsh environments. PMID:26779223

  18. Short period, high field cryogenic undulator for extreme performance x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    O'Shea, F. H.; Marcus, G.; Rosenzweig, J. B.; Scheer, M.; Bahrdt, J.; Weingartner, R.; Gaupp, A.; Grüner, F.

    2010-07-01

    Short period, high field undulators can enable short wavelength free electron lasers (FELs) at low beam energy, with decreased gain length, thus allowing much more compact and less costly FEL systems. We describe an ongoing initiative to develop such an undulator based on an approach that utilizes novel cryogenic materials. While this effort was begun in the context of extending the photon energy regime of a laser-plasma accelerator based electron source, we consider here implications of its application to sub-fs scenarios in which more conventional injectors are employed. The use of such low-charge, ultrashort beams, which has recently been proposed as a method of obtaining single-spike performance in x-ray FELs, is seen in simulation to give unprecedented beam brightness. This brightness, when considered in tandem with short wavelength, high field undulators, enables extremely high performance FELs. Two examples discussed in this paper illustrate this point well. The first is the use of the SPARX injector at 2.1 GeV with 1 pC of charge to give 8 GW peak power in a single spike at 6.5 Å with a photon beam peak brightness greater than 1035photons/(smm2mrad20.1%BW), which will also reach LCLS wavelengths on the 5th harmonic. The second is the exploitation of the LCLS injector with 0.25 pC, 150 as pulses to lase at 1.5 Å using only 4.5 GeV energy; beyond this possibility, we present start-to-end simulations of lasing at unprecedented short wavelength, 0.15 Å, using 13.65 GeV LCLS design energy.

  19. Sediment accumulation rates and high-resolution stratigraphy of recent fluvial suspension deposits in various fluvial settings, Morava River catchment area, Czech Republic

    NASA Astrophysics Data System (ADS)

    Sedláček, Jan; Bábek, Ondřej; Kielar, Ondřej

    2016-02-01

    reservoirs, different grain size distribution in both systems, and high variability in thickness of their proximal and distal parts play a crucial role in the analysis of regional accumulation rates. Local effects are much stronger than regional effects, such as rainfall and land use. Combined with the low resolution of time scales (usually only three datums are available: reservoir construction datum, 137Cs fallout event, and top of sediment), these effects may obscure the general trends of regionally increasing or decreasing net SARs, making the analysis of erosion rates from the sedimentary record an extremely difficult task.

  20. Extremely High-Frequency Holographic Radar Imaging of Personnel and Mail

    SciTech Connect

    McMakin, Douglas L.; Sheen, David M.; Griffin, Jeffrey W.; Lechelt, Wayne M.

    2006-08-01

    The awareness of terrorists covertly transporting chemical warfare (CW) and biological warfare (BW) agents into government, military, and civilian facilities to harm the occupants has increased dramatically since the attacks of 9/11. Government and civilian security personnel have a need for innovative surveillance technology that can rapidly detect these lethal agents, even when they are hidden away in sealed containers and concealed either under clothing or in hand-carried items such as mailed packages or handbags. Sensor technology that detects BW and CW agents in mail or sealed containers carried under the clothing are under development. One promising sensor technology presently under development to defeat these threats is active millimeter-wave holographic radar imaging, which can readily image concealed items behind paper, cardboard, and clothing. Feasibility imaging studies at frequencies greater than 40 GHz have been conducted to determine whether simulated biological or chemical agents concealed in mail packages or under clothing could be detected using this extremely high-frequency imaging technique. The results of this imaging study will be presented in this paper.

  1. Extremely high rate deposition of polymer multilayer optical thin film materials

    SciTech Connect

    Affinito, J.D.

    1993-03-01

    This paper highlights a new technique for extremely high rate deposition of optical dielectric films (vacuum deposition of polymer multilayer thin films). This is a way to produce multilayer optical filters comprised of thousands of layers of either linear or nonlinear optical materials. The technique involves the flash evaporation of an acrylic monomer onto a moving substrate; the monomer is then cured. Acrylic polymers deposited to date are very clear for wavelengths between 0.35 and 2.5 {mu}m; they have extinction coefficients of k{approx}10{sup {minus}7}. Application of electric field during cross linking can polarize (``pole``) the film to greatly enhance the nonlinear optical properties. ``Poling`` films with the polymer multilayer technique offers advantages over conventional approaches, in that the polarization should not decay over time. Battelle`s Pacific Northwest Laboratory is well suited for bringing linear and nonlinear polymer multilayer optical filter technology to manufacturing production status for batch and wide area web applications. 10 figs.

  2. Extremely high rate deposition of polymer multilayer optical thin film materials

    SciTech Connect

    Affinito, J.D.

    1993-01-01

    This paper highlights a new technique for extremely high rate deposition of optical dielectric films (vacuum deposition of polymer multilayer thin films). This is a way to produce multilayer optical filters comprised of thousands of layers of either linear or nonlinear optical materials. The technique involves the flash evaporation of an acrylic monomer onto a moving substrate; the monomer is then cured. Acrylic polymers deposited to date are very clear for wavelengths between 0.35 and 2.5 [mu]m; they have extinction coefficients of k[approx]10[sup [minus]7]. Application of electric field during cross linking can polarize (''pole'') the film to greatly enhance the nonlinear optical properties. ''Poling'' films with the polymer multilayer technique offers advantages over conventional approaches, in that the polarization should not decay over time. Battelle's Pacific Northwest Laboratory is well suited for bringing linear and nonlinear polymer multilayer optical filter technology to manufacturing production status for batch and wide area web applications. 10 figs.

  3. The fire-walker's high: affect and physiological responses in an extreme collective ritual.

    PubMed

    Fischer, Ronald; Xygalatas, Dimitris; Mitkidis, Panagiotis; Reddish, Paul; Tok, Penny; Konvalinka, Ivana; Bulbulia, Joseph

    2014-01-01

    How do people feel during extreme collective rituals? Despite longstanding speculation, few studies have attempted to quantify ritual experiences. Using a novel pre/post design, we quantified physiological fluctuations (heart rates) and self-reported affective states from a collective fire-walking ritual in a Mauritian Hindu community. Specifically, we compared changes in levels of happiness, fatigue, and heart rate reactivity among high-ordeal participants (fire-walkers), low-ordeal participants (non-fire-walking participants with familial bonds to fire-walkers) and spectators (unrelated/unknown to the fire-walkers). We observed that fire-walkers experienced the highest increase in heart rate and reported greater happiness post-ritual compared to low-ordeal participants and spectators. Low-ordeal participants reported increased fatigue after the ritual compared to both fire-walkers and spectators, suggesting empathetic identification effects. Thus, witnessing the ritualistic suffering of loved ones may be more exhausting than experiencing suffering oneself. The findings demonstrate that the level of ritual involvement is important for shaping affective responses to collective rituals. Enduring a ritual ordeal is associated with greater happiness, whereas observing a loved-one endure a ritual ordeal is associated with greater fatigue post-ritual. PMID:24586315

  4. European Extremely Large Telescope Site Characterization. II. High Angular Resolution Parameters

    NASA Astrophysics Data System (ADS)

    Vázquez Ramió, Héctor; Vernin, Jean; Muñoz-Tuñón, Casiana; Sarazin, Marc; Varela, Antonia M.; Trinquet, Hervé; Delgado, José Miguel; Fuensalida, Jesús J.; Reyes, Marcos; Benhida, Abdelmajid; Benkhaldoun, Zouhair; García Lambas, Diego; Hach, Youssef; Lazrek, M.; Lombardi, Gianluca; Navarrete, Julio; Recabarren, Pablo; Renzi, Victor; Sabil, Mohammed; Vrech, Rubén

    2012-08-01

    This is the second article of a series devoted to European Extremely Large Telescope (E-ELT) site characterization. In this article we present the main properties of the parameters involved in high angular resolution observations from the data collected in the site testing campaign of the E-ELT during the design study (DS) phase. Observations were made in 2008 and 2009, in the four sites selected to shelter the future E-ELT (characterized under the ELT-DS contract): Aklim mountain in Morocco, Observatorio del Roque de los Muchachos (ORM) in Spain, Macón range in Argentina, and Cerro Ventarrones in Chile. The same techniques, instruments, and acquisition procedures were taken on each site. A multiple aperture scintillation sensor (MASS) and a differential image motion monitor (DIMM) were installed at each site. Global statistics of the integrated seeing, the free atmosphere seeing, the boundary layer seeing, and the isoplanatic angle were studied for each site, and the results are presented here. In order to estimate other important parameters, such as the coherence time of the wavefront and the overall parameter "coherence étendue," additional information of vertical profiles of the wind speed was needed. Data were retrieved from the National Oceanic and Atmospheric Administration (NOAA) archive. Ground wind speed was measured by automatic weather stations (AWS). More aspects of the turbulence parameters, such as their seasonal trend, their nightly evolution, and their temporal stability, were also obtained and analyzed.

  5. The Fire-Walker’s High: Affect and Physiological Responses in an Extreme Collective Ritual

    PubMed Central

    Fischer, Ronald; Xygalatas, Dimitris; Mitkidis, Panagiotis; Reddish, Paul; Tok, Penny; Konvalinka, Ivana; Bulbulia, Joseph

    2014-01-01

    How do people feel during extreme collective rituals? Despite longstanding speculation, few studies have attempted to quantify ritual experiences. Using a novel pre/post design, we quantified physiological fluctuations (heart rates) and self-reported affective states from a collective fire-walking ritual in a Mauritian Hindu community. Specifically, we compared changes in levels of happiness, fatigue, and heart rate reactivity among high-ordeal participants (fire-walkers), low-ordeal participants (non-fire-walking participants with familial bonds to fire-walkers) and spectators (unrelated/unknown to the fire-walkers). We observed that fire-walkers experienced the highest increase in heart rate and reported greater happiness post-ritual compared to low-ordeal participants and spectators. Low-ordeal participants reported increased fatigue after the ritual compared to both fire-walkers and spectators, suggesting empathetic identification effects. Thus, witnessing the ritualistic suffering of loved ones may be more exhausting than experiencing suffering oneself. The findings demonstrate that the level of ritual involvement is important for shaping affective responses to collective rituals. Enduring a ritual ordeal is associated with greater happiness, whereas observing a loved-one endure a ritual ordeal is associated with greater fatigue post-ritual. PMID:24586315

  6. Hypothesis testing at the extremes: fast and robust association for high-throughput data.

    PubMed

    Zhou, Yi-Hui; Wright, Fred A

    2015-07-01

    A number of biomedical problems require performing many hypothesis tests, with an attendant need to apply stringent thresholds. Often the data take the form of a series of predictor vectors, each of which must be compared with a single response vector, perhaps with nuisance covariates. Parametric tests of association are often used, but can result in inaccurate type I error at the extreme thresholds, even for large sample sizes. Furthermore, standard two-sided testing can reduce power compared with the doubled [Formula: see text]-value, due to asymmetry in the null distribution. Exact (permutation) testing is attractive, but can be computationally intensive and cumbersome. We present an approximation to exact association tests of trend that is accurate and fast enough for standard use in high-throughput settings, and can easily provide standard two-sided or doubled [Formula: see text]-values. The approach is shown to be equivalent under permutation to likelihood ratio tests for the most commonly used generalized linear models (GLMs). For linear regression, covariates are handled by working with covariate-residualized responses and predictors. For GLMs, stratified covariates can be handled in a manner similar to exact conditional testing. Simulations and examples illustrate the wide applicability of the approach. The accompanying mcc package is available on CRAN http://cran.r-project.org/web/packages/mcc/index.html.

  7. The fire-walker's high: affect and physiological responses in an extreme collective ritual.

    PubMed

    Fischer, Ronald; Xygalatas, Dimitris; Mitkidis, Panagiotis; Reddish, Paul; Tok, Penny; Konvalinka, Ivana; Bulbulia, Joseph

    2014-01-01

    How do people feel during extreme collective rituals? Despite longstanding speculation, few studies have attempted to quantify ritual experiences. Using a novel pre/post design, we quantified physiological fluctuations (heart rates) and self-reported affective states from a collective fire-walking ritual in a Mauritian Hindu community. Specifically, we compared changes in levels of happiness, fatigue, and heart rate reactivity among high-ordeal participants (fire-walkers), low-ordeal participants (non-fire-walking participants with familial bonds to fire-walkers) and spectators (unrelated/unknown to the fire-walkers). We observed that fire-walkers experienced the highest increase in heart rate and reported greater happiness post-ritual compared to low-ordeal participants and spectators. Low-ordeal participants reported increased fatigue after the ritual compared to both fire-walkers and spectators, suggesting empathetic identification effects. Thus, witnessing the ritualistic suffering of loved ones may be more exhausting than experiencing suffering oneself. The findings demonstrate that the level of ritual involvement is important for shaping affective responses to collective rituals. Enduring a ritual ordeal is associated with greater happiness, whereas observing a loved-one endure a ritual ordeal is associated with greater fatigue post-ritual.

  8. Cry me a river: identifying the behavioral consequences of extremely high-stakes interpersonal deception.

    PubMed

    Ten Brinke, Leanne; Porter, Stephen

    2012-12-01

    Deception evolved as a fundamental aspect of human social interaction. Numerous studies have examined behavioral cues to deception, but most have involved inconsequential lies and unmotivated liars in a laboratory context. We conducted the most comprehensive study to date of the behavioral consequences of extremely high-stakes, real-life deception--relative to comparable real-life sincere displays--via 3 communication channels: speech, body language, and emotional facial expressions. Televised footage of a large international sample of individuals (N = 78) emotionally pleading to the public for the return of a missing relative was meticulously coded frame-by-frame (30 frames/s for a total of 74,731 frames). About half of the pleaders eventually were convicted of killing the missing person on the basis of overwhelming evidence. Failed attempts to simulate sadness and leakage of happiness revealed deceptive pleaders' covert emotions. Liars used fewer words but more tentative words than truth-tellers, likely relating to increased cognitive load and psychological distancing. Further, each of these cues explained unique variance in predicting pleader sincerity. PMID:23205594

  9. Investigating Operating System Noise in Extreme-Scale High-Performance Computing Systems using Simulation

    SciTech Connect

    Engelmann, Christian

    2013-01-01

    Hardware/software co-design for future-generation high-performance computing (HPC) systems aims at closing the gap between the peak capabilities of the hardware and the performance realized by applications (application-architecture performance gap). Performance profiling of architectures and applications is a crucial part of this iterative process. The work in this paper focuses on operating system (OS) noise as an additional factor to be considered for co-design. It represents the first step in including OS noise in HPC hardware/software co-design by adding a noise injection feature to an existing simulation-based co-design toolkit. It reuses an existing abstraction for OS noise with frequency (periodic recurrence) and period (duration of each occurrence) to enhance the processor model of the Extreme-scale Simulator (xSim) with synchronized and random OS noise simulation. The results demonstrate this capability by evaluating the impact of OS noise on MPI_Bcast() and MPI_Reduce() in a simulated future-generation HPC system with 2,097,152 compute nodes.

  10. High-field penning-malmberg trap: confinement properties and use in positron accumulation

    SciTech Connect

    Hartley, J.H.

    1997-09-01

    This dissertation reports on the development of the 60 kG cryogenic positron trap at Lawrence Livermore National Laboratory, and compares the trap`s confinement properties with other nonneutral plasma devices. The device is designed for the accumulation of up to 2{times}10{sup 9} positrons from a linear-accelerator source. This positron plasma could then be used in Bhabha scattering experiments. Initial efforts at time-of-flight accumulation of positrons from the accelerator show rapid ({approximately}100 ms) deconfinement, inconsistent with the long electron lifetimes. Several possible deconfinement mechanisms have been explored, including annihilation on residual gas, injection heating, rf noise from the accelerator, magnet field curvature, and stray fields. Detailed studies of electron confinement demonstrate that the empirical scaling law used to design the trap cannot be extrapolated into the parameter regime of this device. Several possible methods for overcoming these limitations are presented.

  11. Relationship between Lower Extremity Tightness and Star Excursion Balance Test Performance in Junior High School Baseball Players.

    PubMed

    Endo, Yasuhiro; Sakamoto, Masaaki

    2014-05-01

    [Purpose] The purpose of this study was to examine the relationship between lower extremity tightness and lower extremity balance, measured by the Star Excursion Balance Test (SEBT), in junior high school baseball players. [Subjects] Thirty-three male students belonging to baseball clubs in 2 junior high schools participated in this study. [Methods] For the SEBT, we chose to examine the anterior (ANT), posterior (POS), lateral (LAT), and medial (MED) directions. Regarding muscle tightness measurement, the angle of each joint of the bilateral iliopsoas, quadriceps, hamstring, gastrocnemius, hip internal rotator, and hip external rotator was measured. [Results] The ANT direction of the SEBT was significantly negatively correlated with gastrocnemius tightness. The MED direction of the SEBT was significantly positively correlated with hip internal rotator tightness and hamstrings tightness and significantly negatively correlated with gastrocnemius tightness. The LAT direction of the SEBT was significantly negatively correlated with iliopsoas tightness and gastrocnemius tightness. [Conclusion] Since the rate of upper extremity injury is high in these subjects and this could be due to tightness and instability of the lower extremity from a kinetic viewpoint, the SEBT could be used as a standard evaluation test when examining upper extremity injuries in young baseball players.

  12. Plastic litter accumulation on high-water strandline of urban beaches in Mumbai, India.

    PubMed

    Jayasiri, H B; Purushothaman, C S; Vennila, A

    2013-09-01

    Today, almost every beach on every coastline is threatened by human activities. The inadequate recycling and poor management of waste in developing countries has resulted in considerable quantities of plastic contaminating beaches. Though India has long coastline of 5,420 km along the mainland with 43 % of sandy beaches, data on litter accumulation, particularly the plastics, which are one of the most common and persistent pollutants in marine environment, are scanty. The abundance and distribution of plastic litter was quantitatively assessed in four sandy beaches in Mumbai, India, bimonthly from May 2011 to March 2012. Triplicates of 2 × 2 m (4 m(2)) quadrats were sampled in each beach with a total of 72 quadrats. Overall, average abundance of 11.6 items m(-2) (0.25-282.5 items m(-2)) and 3.24 g m(-2) (0.27-15.53 g m(-2)) plastic litter was recorded in Mumbai beaches. Plastic litter accumulation significantly varied temporally and spatially at p = 0.05. Significantly higher plastic litter accumulation was recorded in Juhu beach. Furthermore, the highest abundance by weight was recorded in November and May numerically. More than 80 % of plastic particles were within the size range of 5-100 mm both by number and weight. Moreover, coloured plastics were predominant with 67 % by number of items and 51 % by weight. Probably, the intense use of beaches for recreation, tourism, and religious activities has increased the potential for plastic contamination in urban beaches in Mumbai.

  13. Plastic litter accumulation on high-water strandline of urban beaches in Mumbai, India.

    PubMed

    Jayasiri, H B; Purushothaman, C S; Vennila, A

    2013-09-01

    Today, almost every beach on every coastline is threatened by human activities. The inadequate recycling and poor management of waste in developing countries has resulted in considerable quantities of plastic contaminating beaches. Though India has long coastline of 5,420 km along the mainland with 43 % of sandy beaches, data on litter accumulation, particularly the plastics, which are one of the most common and persistent pollutants in marine environment, are scanty. The abundance and distribution of plastic litter was quantitatively assessed in four sandy beaches in Mumbai, India, bimonthly from May 2011 to March 2012. Triplicates of 2 × 2 m (4 m(2)) quadrats were sampled in each beach with a total of 72 quadrats. Overall, average abundance of 11.6 items m(-2) (0.25-282.5 items m(-2)) and 3.24 g m(-2) (0.27-15.53 g m(-2)) plastic litter was recorded in Mumbai beaches. Plastic litter accumulation significantly varied temporally and spatially at p = 0.05. Significantly higher plastic litter accumulation was recorded in Juhu beach. Furthermore, the highest abundance by weight was recorded in November and May numerically. More than 80 % of plastic particles were within the size range of 5-100 mm both by number and weight. Moreover, coloured plastics were predominant with 67 % by number of items and 51 % by weight. Probably, the intense use of beaches for recreation, tourism, and religious activities has increased the potential for plastic contamination in urban beaches in Mumbai. PMID:23430068

  14. Extremely Large Diamagnetic Cavities Observed In The Dayside High-altitute Cusps

    NASA Astrophysics Data System (ADS)

    Chen, Jiasheng; Fritz, Theodore A.

    Some extremely large diamagnetic cavities have been observed in April, 1999 when the POLAR spacecraft was crossing through the dayside high-altitude cusp regions. These diamagnetic cavities were associated with strong magnetic field turbulence. Some of the diamagnetic cavities were independent of the IMF directions, which is unexpected by the current MHD models, suggesting that the diamagnetic cavities are different from the magnetospheric sash. The size of the cavities were found to be as large as 6 Re. Associated with these cavities are ions with energies from 40 keV up to 8 MeV that are more typical of the trapped ring current and radiation belt populations than the solar wind. The intensities of the energetic ions were observed to increase by as large as four orders of the magnitudes during the cavity crossings, indicating the dayside high-altitude cusp diamagnetic cavity is a key region for transferring the solar wind energy, mass, and momentum into the Earth's magnetosphere. The charge state distribution of these cusp cavity ions was indicative of their seed populations being a mixture of the ionospheric and the solar wind particles. By their geometry cusp mag- netic field lines are connected to all of the magnetopause boundary layers and these cavity charged particles will form an energetic particle layer on the magnetopause. These energetic particles in the cusp diamagnetic cavity together with the cusp's con- nectivity have significant global impacts on the geospace environment research and will be shedding light on the long-standing unsolved fundamental issue about the ori- gins of the energetic particles in the ring current and in upstream ion events.

  15. Radiation Damped Profiles of Extremely High Column Density Neutral Hydrogen : Implications of Cosmic Reionization

    NASA Astrophysics Data System (ADS)

    Bach, Kiehunn

    2016-09-01

    Incorporating the time-dependent second-order perturbation theory for the Lyman scattering cross-section, we investigate the intergalactic absorption profiles of extremely high column density systems near the end of cosmic reionization. Assuming a representative set of the redshift distribution of neutral hydrogen, we quantitatively examined the impact of inhomogeneous density on the intrinsic absorption profiles. The cumulative absorption by neutral patches in the line-of-sight mainly affects the far off-center region of the red damping wing, but the effect is not significant. The shape of the line-center can be modified by the near-zone distribution due to high opacities of the near-resonance scattering. On the other hand, the HWHM (half width at half maximum) as an effective line-width is relatively less sensitive to the local inhomogeneity. Specifically, when the two local damping wings of Lyα and Lyβ are close in spectra of the strongly damped systems, accurate profiles of both lines are required. In the case of N HI ≲ 1021 cm-2, the two-level approximation is marginally applicable for the damping wing fit within 5 - 7% errors. However, as the local column density reaches N HI ˜ 1022.3 cm-2, this classical approximation yields a relative error of a 10% overestimation in the red wing and a 20% underestimation in the blue wing of Lyα. If severe extinction by the Lyα forests is carefully subtracted, the intrinsic absorption profile will provide a better constraint on the local ionized states. For practical applications, an analytic fitting function for the Lyβ scattering is derived.

  16. Parasitic slow extraction of extremely weak beam from a high-intensity proton rapid cycling synchrotron

    NASA Astrophysics Data System (ADS)

    Zou, Ye; Tang, Jingyu; Yang, Zheng; Jing, Hantao

    2014-02-01

    This paper proposes a novel method to extract extremely weak beam from a high-intensity proton rapid cycling synchrotron (RCS) in the parasitic mode, while maintaining the normal fast extraction. The usual slow extraction method from a synchrotron by employing third-order resonance cannot be applied in a high-intensity RCS due to a very short flat-top at the extraction energy and the strict control on beam loss. The proposed parasitic slow extraction method moves the beam to scrape a scattering foil prior to the fast beam extraction by employing either a local orbit bump or momentum deviation or their combination, so that the halo part of the beam will be scattered. A part of the scattered particles will be extracted from the RCS and guided to the experimental area. The slow extraction process can last about a few milliseconds before the beam is extracted by the fast extraction system. The method has been applied to the RCS of China Spallation Neutron Source. With 1.6 GeV in the extraction energy, 62.5 μA in the average current and 25 Hz in the repetition rate for the RCS, the proton intensity by the slow extraction method can be up to 2×104 protons per cycle or 5×105 protons per second. The extracted beam has also a good time structure of approximately uniform in a spill which is required for many applications such as detector tests. Detailed studies including the scattering effect in the foil, the local orbit bump by the bump magnets and dispersive orbit bump by modifying the RF pattern, the multi-particle simulations by ORBIT and TURTLE codes, and some technical features for the extraction magnets are presented.

  17. Ultra high strength nanofilamentary conductors: the way to reach extreme properties

    NASA Astrophysics Data System (ADS)

    Thilly, L.; Lecouturier, F.; Coffe, G.; Peyrade, J. P.; Askénazy, S.

    2001-01-01

    To enhance the intensity of non-destructive magnetic fields with long pulse duration, reinforced conductors are needed with extremely high mechanical strength and good electrical conductivity. The ideal conductors for this application should have an action integral close to that of pure copper. An elaboration process based on cold drawing and restacking has been developed at LNCMP for this purpose. The best results have been obtained with Cu/Nb nanocomposite wires with a section of 3×10 -2 mm 2 composed of a copper matrix embedding 9×10 6 continuous parallel niobium whiskers with a diameter of 40 nm. The ultimate tensile strength is 1950 MPa at 77 K. The fundamental properties linked to the effect of nanometer size have been investigated. Nevertheless, because of their small section these conductors cannot be practically used in the winding of our magnets. Therefore, we are elaborating a new generation of optimized Cu/Nb nanostructured wires exhibiting ultra high strength in a section of 2 mm 2. The latest developments are presented. Concurrently, we are developing Cu/Ta multifilamentary conductors. Since the shear modulus of tantalum is greater than that of Nb ( μTa≈2 μNb), the Cu/Ta UTS should be enhanced. However, drawing of Cu/Ta billets leads to the formation of a macroscopic roughness at the Cu/Ta interface and to the fracture of Ta. This phenomenon is interpreted in terms of stress-driven rearrangement (Grinfeld instabilities). We have investigated some solutions to prevent its formation.

  18. High-precision reflectometry of multilayer coatings for extreme ultraviolet lithography

    SciTech Connect

    Wedowski, M; Underwood, J H; Gullikson, E M; Bajt, S; Folta, J A; Kearney, P A; Montcalm, C; Spiller, E

    1999-12-29

    Synchrotron-based reflectometry is an important technique for the precise determination of optical properties of reflective multilayer coatings for Extreme Ultraviolet Lithography (EUVL). Multilayer coatings enable normal incidence reflectances of more than 65% in the wavelength range between 11 and 15 nm. In order to achieve high resolution and throughput of EUVL systems, stringent requirements not only apply to their mechanical and optical layout, but also apply to the optical properties of the multilayer coatings. Therefore, multilayer deposition on near-normal incidence optical surfaces of projection optics, condenser optics and reflective masks requires suitable high-precision metrology. Most important, due to their small bandpass on the order of only 0.5 nm, all reflective multilayer coatings in EUVL systems must be wavelength-matched to within {+-}0.05 nm. In some cases, a gradient of the coating thickness is necessary for wavelength matching at variable average angle of incidence in different locations on the optical surfaces. Furthermore, in order to preserve the geometrical figure of the optical substrates, reflective multilayer coatings need to be uniform to within 0.01 nm in their center wavelength. This requirement can only be fulfilled with suitable metrology, which provides a precision of a fraction of this value. In addition, for the detailed understanding and the further development of reflective multilayer coatings a precision in the determination of peak reflectances is desirable on the order of 0.1%. Substrates up to 200 mm in diameter and 15 kg in mass need to be accommodated. Above requirements are fulfilled at beamline 6.3.2 of the Advanced Light Source (ALS) in Berkeley. This beamline proved to be precise within 0.2% (ms) for reflectance and 0.002 nm (rms) for wavelength.

  19. An extremely high-altitude plume seen at Mars' morning terminator.

    PubMed

    Sánchez-Lavega, A; Muñoz, A García; García-Melendo, E; Pérez-Hoyos, S; Gómez-Forrellad, J M; Pellier, C; Delcroix, M; López-Valverde, M A; González-Galindo, F; Jaeschke, W; Parker, D; Phillips, J; Peach, D

    2015-02-26

    The Martian limb (that is, the observed 'edge' of the planet) represents a unique window into the complex atmospheric phenomena occurring there. Clouds of ice crystals (CO2 ice or H2O ice) have been observed numerous times by spacecraft and ground-based telescopes, showing that clouds are typically layered and always confined below an altitude of 100 kilometres; suspended dust has also been detected at altitudes up to 60 kilometres during major dust storms. Highly concentrated and localized patches of auroral emission controlled by magnetic field anomalies in the crust have been observed at an altitude of 130 kilometres. Here we report the occurrence in March and April 2012 of two bright, extremely high-altitude plumes at the Martian terminator (the day-night boundary) at 200 to 250 kilometres or more above the surface, and thus well into the ionosphere and the exosphere. They were spotted at a longitude of about 195° west, a latitude of about -45° (at Terra Cimmeria), extended about 500 to 1,000 kilometres in both the north-south and east-west directions, and lasted for about 10 days. The features exhibited day-to-day variability, and were seen at the morning terminator but not at the evening limb, which indicates rapid evolution in less than 10 hours and a cyclic behaviour. We used photometric measurements to explore two possible scenarios and investigate their nature. For particles reflecting solar radiation, clouds of CO2-ice or H2O-ice particles with an effective radius of 0.1 micrometres are favoured over dust. Alternatively, the plume could arise from auroral emission, of a brightness more than 1,000 times that of the Earth's aurora, over a region with a strong magnetic anomaly where aurorae have previously been detected. Importantly, both explanations defy our current understanding of Mars' upper atmosphere. PMID:25686601

  20. Impaired dynamic cerebral autoregulation at extreme high altitude even after acclimatization.

    PubMed

    Iwasaki, Ken-ichi; Zhang, Rong; Zuckerman, Julie H; Ogawa, Yojiro; Hansen, Lærke H; Levine, Benjamin David

    2011-01-01

    Cerebral blood flow (CBF) increases and dynamic cerebral autoregulation is impaired by acute hypoxia. We hypothesized that progressive hypocapnia with restoration of arterial oxygen content after altitude acclimatization would normalize CBF and dynamic cerebral autoregulation. To test this hypothesis, dynamic cerebral autoregulation was examined by spectral and transfer function analyses between arterial pressure and CBF velocity variabilities in 11 healthy members of the Danish High-Altitude Research Expedition during normoxia and acute hypoxia (10.5% O(2)) at sea level, and after acclimatization (for over 1 month at 5,260 m at Chacaltaya, Bolivia). Arterial pressure and CBF velocity in the middle cerebral artery (transcranial Doppler), were recorded on a beat-by-beat basis. Steady-state CBF velocity increased during acute hypoxia, but normalized after acclimatization with partial restoration of SaO(2) (acute, 78% ± 2%; chronic, 89% ± 1%) and progression of hypocapnia (end-tidal carbon dioxide: acute, 34 ± 2 mm Hg; chronic, 21 ± 1 mm Hg). Coherence (0.40 ± 0.05 Units at normoxia) and transfer function gain (0.77 ± 0.13 cm/s per mm Hg at normoxia) increased, and phase (0.86 ± 0.15 radians at normoxia) decreased significantly in the very-low-frequency range during acute hypoxia (gain, 141% ± 24%; coherence, 136% ± 29%; phase, -25% ± 22%), which persisted after acclimatization (gain, 136% ± 36%; coherence, 131% ± 50%; phase, -42% ± 13%), together indicating impaired dynamic cerebral autoregulation in this frequency range. The similarity between both acute and chronic conditions suggests that dynamic cerebral autoregulation is impaired by hypoxia even after successful acclimatization to an extreme high altitude.

  1. An extremely high-altitude plume seen at Mars' morning terminator

    NASA Astrophysics Data System (ADS)

    Sánchez-Lavega, A.; García Muñoz, A.; García-Melendo, E.; Pérez-Hoyos, S.; Gómez-Forrellad, J. M.; Pellier, C.; Delcroix, M.; López-Valverde, M. A.; González-Galindo, F.; Jaeschke, W.; Parker, D.; Phillips, J.; Peach, D.

    2015-02-01

    The Martian limb (that is, the observed `edge' of the planet) represents a unique window into the complex atmospheric phenomena occurring there. Clouds of ice crystals (CO2 ice or H2O ice) have been observed numerous times by spacecraft and ground-based telescopes, showing that clouds are typically layered and always confined below an altitude of 100 kilometres suspended dust has also been detected at altitudes up to 60 kilometres during major dust storms. Highly concentrated and localized patches of auroral emission controlled by magnetic field anomalies in the crust have been observed at an altitude of 130 kilometres. Here we report the occurrence in March and April 2012 of two bright, extremely high-altitude plumes at the Martian terminator (the day-night boundary) at 200 to 250 kilometres or more above the surface, and thus well into the ionosphere and the exosphere. They were spotted at a longitude of about 195° west, a latitude of about -45° (at Terra Cimmeria), extended about 500 to 1,000 kilometres in both the north-south and east-west directions, and lasted for about 10 days. The features exhibited day-to-day variability, and were seen at the morning terminator but not at the evening limb, which indicates rapid evolution in less than 10 hours and a cyclic behaviour. We used photometric measurements to explore two possible scenarios and investigate their nature. For particles reflecting solar radiation, clouds of CO2-ice or H2O-ice particles with an effective radius of 0.1 micrometres are favoured over dust. Alternatively, the plume could arise from auroral emission, of a brightness more than 1,000 times that of the Earth's aurora, over a region with a strong magnetic anomaly where aurorae have previously been detected. Importantly, both explanations defy our current understanding of Mars' upper atmosphere.

  2. An extremely high-altitude plume seen at Mars' morning terminator.

    PubMed

    Sánchez-Lavega, A; Muñoz, A García; García-Melendo, E; Pérez-Hoyos, S; Gómez-Forrellad, J M; Pellier, C; Delcroix, M; López-Valverde, M A; González-Galindo, F; Jaeschke, W; Parker, D; Phillips, J; Peach, D

    2015-02-26

    The Martian limb (that is, the observed 'edge' of the planet) represents a unique window into the complex atmospheric phenomena occurring there. Clouds of ice crystals (CO2 ice or H2O ice) have been observed numerous times by spacecraft and ground-based telescopes, showing that clouds are typically layered and always confined below an altitude of 100 kilometres; suspended dust has also been detected at altitudes up to 60 kilometres during major dust storms. Highly concentrated and localized patches of auroral emission controlled by magnetic field anomalies in the crust have been observed at an altitude of 130 kilometres. Here we report the occurrence in March and April 2012 of two bright, extremely high-altitude plumes at the Martian terminator (the day-night boundary) at 200 to 250 kilometres or more above the surface, and thus well into the ionosphere and the exosphere. They were spotted at a longitude of about 195° west, a latitude of about -45° (at Terra Cimmeria), extended about 500 to 1,000 kilometres in both the north-south and east-west directions, and lasted for about 10 days. The features exhibited day-to-day variability, and were seen at the morning terminator but not at the evening limb, which indicates rapid evolution in less than 10 hours and a cyclic behaviour. We used photometric measurements to explore two possible scenarios and investigate their nature. For particles reflecting solar radiation, clouds of CO2-ice or H2O-ice particles with an effective radius of 0.1 micrometres are favoured over dust. Alternatively, the plume could arise from auroral emission, of a brightness more than 1,000 times that of the Earth's aurora, over a region with a strong magnetic anomaly where aurorae have previously been detected. Importantly, both explanations defy our current understanding of Mars' upper atmosphere.

  3. The High-resolution Extreme-ultraviolet Spectrum of N2 by Electron Impact

    NASA Astrophysics Data System (ADS)

    Heays, A. N.; Ajello, J. M.; Aguilar, A.; Lewis, B. R.; Gibson, S. T.

    2014-04-01

    We have analyzed high-resolution (FWHM = 0.2 Å) extreme-ultraviolet (EUV, 800-1350 Å) laboratory emission spectra of molecular nitrogen excited by an electron impact at 20 and 100 eV under (mostly) optically thin, single-scattering experimental conditions. A total of 491 emission features were observed from N2 electronic-vibrational transitions and atomic N I and N II multiplets and their emission cross sections were measured. Molecular emission was observed at vibrationally excited ground-state levels as high as v'' = 17, from the a 1Π g , b 1Π u , and b'1Σ u + excited valence states and the Rydberg series c'n +1 1Σ u +, cn 1Π u , and on 1Π u for n between 3 and 9. The frequently blended molecular emission bands were disentangled with the aid of a sophisticated and predictive quantum-mechanical model of excited states that includes the strong coupling between valence and Rydberg electronic states and the effects of predissociation. Improved model parameters describing electronic transition moments were obtained from the experiment and allowed for a reliable prediction of the vibrationally summed electronic emission cross section, including an extrapolation to unobserved emission bands and those that are optically thick in the experimental spectra. Vibrationally dependent electronic excitation functions were inferred from a comparison of emission features following 20 and 100 eV electron-impact collisional excitation. The electron-impact-induced fluorescence measurements are compared with Cassini Ultraviolet Imaging Spectrograph observations of emissions from Titan's upper atmosphere.

  4. Construction of an extreme ultraviolet polarimeter based on high-order harmonic generation

    NASA Astrophysics Data System (ADS)

    Brimhall, N.; Painter, J. C.; Turner, M.; Voronov, S. V.; Turley, R. S.; Ware, M.; Peatross, J.

    2006-08-01

    We report on the development of a polarimeter for characterizing reflective surfaces throughout the extreme ultraviolet (EUV). The instrument relies on laser high-order harmonics generated in helium, neon, or argon gas. The 800 nm laser generates a discrete comb of odd harmonics up to order 100 (wavelengths from 8-62 nm). The flux of EUV light is a couple orders of magnitude less than a synchrotron source but 30,000 times greater than a plasma source currently in operation at BYU. The polarimeter determines the reflectance from surfaces as a function of incident angle, linear light polarization orientation, and wavelength. The instrument uses a wave plate in the laser beam to control the orientation of the harmonic polarization (linear, same as laser). After reflecting from the sample, the harmonic beams are dispersed by a grating and focused onto a micro-channel plate coupled to a phosphor screen. We have demonstrated the feasibility of this project with a simple prototype instrument, which measured the reflectance of samples from 30 nm to 62 nm. The prototype demonstrated that sensitivity is sufficient for measuring reflectances as low as 0.5% for both s- and p-polarized light. The full instrument employs extensive scanning mobility as opposed to the fixed angle and fixed wavelength range of our earlier prototype. An advantage of employing harmonics as a source for EUV polarimetry is that a wide range of wavelengths can be measured simultaneously. This project represents an authentic 'work-horse' application for high-order harmonics, as opposed to merely demonstrating proof of concept.

  5. Crossing historical and sedimentary archives to reconstruct an extreme flood event calendar in high alpine areas

    NASA Astrophysics Data System (ADS)

    Wilhelm, B.; Giguet-Covex, C.; Arnaud, F.; Allignol, F.; Legaz, A.; Melo, A.

    2010-09-01

    to reconstruct a high-resolution flood calendar to assess a reliable frequency of extreme flood events which can be compared with precise climatic parameters as the instrumental and reconstructed temperature. Finally it was equally possible to compare the recorded intensity of flood events between the both archives and thus estimate the hazard perception and vulnerability of local people throughout the last three centuries.

  6. High REDOX RESPONSIVE TRANSCRIPTION FACTOR1 Levels Result in Accumulation of Reactive Oxygen Species in Arabidopsis thaliana Shoots and Roots.

    PubMed

    Matsuo, Mitsuhiro; Johnson, Joy Michal; Hieno, Ayaka; Tokizawa, Mutsutomo; Nomoto, Mika; Tada, Yasuomi; Godfrey, Rinesh; Obokata, Junichi; Sherameti, Irena; Yamamoto, Yoshiharu Y; Böhmer, Frank-D; Oelmüller, Ralf

    2015-08-01

    Redox Responsive Transcription Factor1 (RRTF1) in Arabidopsis is rapidly and transiently upregulated by H2O2, as well as biotic- and abiotic-induced redox signals. RRTF1 is highly conserved in angiosperms, but its physiological role remains elusive. Here we show that inactivation of RRTF1 restricts and overexpression promotes reactive oxygen species (ROS) accumulation in response to stress. Transgenic lines overexpressing RRTF1 are impaired in root and shoot development, light sensitive, and susceptible to Alternaria brassicae infection. These symptoms are diminished by the beneficial root endophyte Piriformospora indica, which reduces ROS accumulation locally in roots and systemically in shoots, and by antioxidants and ROS inhibitors that scavenge ROS. More than 800 genes were detected in mature leaves and seedlings of transgenic lines overexpressing RRTF1; ∼ 40% of them have stress-, redox-, ROS-regulated-, ROS-scavenging-, defense-, cell death- and senescence-related functions. Bioinformatic analyses and in vitro DNA binding assays demonstrate that RRTF1 binds to GCC-box-like sequences in the promoter of RRTF1-responsive genes. Upregulation of RRTF1 by stress stimuli and H2O2 requires WRKY18/40/60. RRTF1 is co-regulated with the phylogenetically related RAP2.6, which contains a GCC-box-like sequence in its promoter, but transgenic lines overexpressing RAP2.6 do not accumulate higher ROS levels. RRTF1 also stimulates systemic ROS accumulation in distal non-stressed leaves. We conclude that the elevated levels of the highly conserved RRTF1 induce ROS accumulation in response to ROS and ROS-producing abiotic and biotic stress signals.

  7. High-energy X-ray diffraction of melts and amorphous solids at extreme conditions

    NASA Astrophysics Data System (ADS)

    Prescher, C.; Yu, T.; Wang, Y.; Eng, P. J.; Skinner, L. B.; Stubbs, J.; Prakapenka, V.

    2015-12-01

    The structural analysis of amorphous materials, glasses and liquids at extreme conditions using X-ray diffraction is a very challenging endeavor. The samples are typically very small and surrounded by pressure vessels, which result in a huge background signal which may be orders of magnitude stronger than the actual sample signal. Furthermore, the background signal changes during compression in diamond anvil cells (DAC), making analysis of the diffraction data impossible at large pressures (>60 GPa). A key factor for obtaining high quality structural data is the maximum obtainable Q of the data collection. While at ambient conditions a maximum Q of more than 20 Å-1 has become standard, at high pressures data have been reported and analyzed with a maximum Q as low as 7 Å-1, which significantly reduces the resolution of the obtained real space data for multicomponent systems. In order to overcome those challenges, we have successfully installed a multichannel collimator (MCC) for the DAC setup at APS/GSECARS 13-IDD and for the Paris Edinburgh Press (PEP) at 13-IDC. The MCC leads to a significant increase in signal to background ratio and the background remains almost constant during compression in a DAC and removes the additional diffraction signal from the pressure media in the PEP. The combination of MCC and the high-energy X-ray optics of the 13ID beamline enables data collection of melts, glasses and amorphous materials up to 10 GPa in the PEP with a maximum Q of about 16 Å-1 and the collection of amorphous materials and glasses up to pressures above 150 GPa with a maximum Q of about 13 Å-1, thus, enabling the structural investigation of amorphous materials at much larger pressures than previously achievable. Further, we have developed several new user-friendly software packages for the analysis of X-ray diffraction data with specific data reduction and optimization algorithms for the analysis of amorphous materials at high-pressure. In order to show the

  8. Weak-Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-Line Regions?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Trakhtenbrot, B.; Anderson, S. F.; Brandt, W. N.; Diamond-Stanic, A. M.; Fan, X.; Lira, P.; Netzer, H.; Plotkin, R. M.; Richards, G. T.; Schneider, D. P.; Strauss, M. A.

    2011-01-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z=3.55 and SDSS J123743.08+630144.9 at z=3.49. In both sources we detect an unusually weak broad Hβ line and we place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black-hole mass determinations indicate normalized accretion rates of L/LEdd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ=1.91+0.24-0.22which supports the virial L/LEdd determination in this source. Our results suggest that the weakness of the broad-emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad-emission line region properties.

  9. Resilience of a High Latitude Red Sea Frining Corals Exposed to Extreme Temperatures

    NASA Astrophysics Data System (ADS)

    Moustafa, M.; Moustafa, M. S.; Moustafa, S.; Moustafa, Z. D.

    2013-05-01

    , while minimum daily means at Ein Sokhna were almost equal to those at Ismailia (200 km north). These trends were opposite to what was expected considering each stations geographical locations. The unexpected temperature trends, the daily/half daily dominant frequencies, and the short distance between the mountain range and Zaki's Reef vs. Hurghada (0.5 vs. 35 km), prompted us to hypothesize that a Foehn wind may be responsible for the high air temperatures observed at Ein Sokhna. We applied NOAA's HYSPLIT model to explore local circulation patterns, which suggest that the high mountain range blocks the year-round trade wind and forces it to climb up the western slope, where it loses moisture and reduces its temperature. As this cool, denser air reaches the mountain top, the air parcel starts rolling down the eastern slopes, which causes air temperature to rise and result in an increase in local air temperatures. These warmer than normal air temperatures measured here may aid in securing these northernmost reefs survival. Further scrutiny of the mechanisms by which area reefs are able to thrive extreme environmental conditions continues to be investigated.

  10. Hypothesis testing at the extremes: fast and robust association for high-throughput data

    PubMed Central

    Zhou, Yi-Hui; Wright, Fred A.

    2015-01-01

    A number of biomedical problems require performing many hypothesis tests, with an attendant need to apply stringent thresholds. Often the data take the form of a series of predictor vectors, each of which must be compared with a single response vector, perhaps with nuisance covariates. Parametric tests of association are often used, but can result in inaccurate type I error at the extreme thresholds, even for large sample sizes. Furthermore, standard two-sided testing can reduce power compared with the doubled \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$p$\\end{document}-value, due to asymmetry in the null distribution. Exact (permutation) testing is attractive, but can be computationally intensive and cumbersome. We present an approximation to exact association tests of trend that is accurate and fast enough for standard use in high-throughput settings, and can easily provide standard two-sided or doubled \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$p$\\end{document}-values. The approach is shown to be equivalent under permutation to likelihood ratio tests for the most commonly used generalized linear models (GLMs). For linear regression, covariates are handled by working with covariate-residualized responses and predictors. For GLMs, stratified covariates can be handled in a manner similar to exact conditional testing. Simulations and examples illustrate the wide applicability of the approach. The accompanying mcc package is available on CRAN http://cran.r-project.org/web/packages/mcc/index.html. PMID:25792622

  11. HIGH-RESOLUTION SIMULATION ON STRUCTURE FORMATION WITH EXTREMELY LIGHT BOSONIC DARK MATTER

    SciTech Connect

    Woo, T.-P.; Chiueh Tzihong E-mail: chiuehth@phys.ntu.edu.tw

    2009-05-20

    A bosonic dark matter model is examined in detail via high-resolution simulations. These bosons have particle mass of the order of 10{sup -22} eV and are noninteracting. If they do exist and can account for structure formation, these bosons must be condensed into the Bose-Einstein state and described by a coherent wave function. This matter, also known as fuzzy dark matter, is speculated to be able, first, to eliminate the subgalactic halos to solve the problem of overabundance of dwarf galaxies, and, second, to produce flat halo cores in galaxies suggested by some observations. We investigate this model with simulations up to 1024{sup 3} resolution in a 1 h {sup -1} Mpc box that maintains the background matter density {omega} {sub m} = 0.3 and {omega}{sub {lambda}} = 0.7. Our results show that the extremely light bosonic dark matter can indeed eliminate low-mass halos through the suppression of short-wavelength fluctuations, as predicted by the linear perturbation theory. But in contrast to expectation, our simulations yield singular cores in the collapsed halos, where the halo density profile is similar, but not identical, to the Navarro-Frenk-White profile. Such a profile arises regardless of whether the halo forms through accretion or merger. In addition, the virialized halos exhibit anisotropic turbulence inside a well-defined virial boundary. Much like the velocity dispersion of standard dark matter particles, turbulence is dominated by the random radial flow in most part of the halos and becomes isotropic toward the halo cores. Consequently, the three-dimensional collapsed halo mass distribution can deviate from spherical symmetry, as the cold dark matter halo does.

  12. Extremely high ferritin level after an acute myocardial infarction in an end stage renal disease patient.

    PubMed

    Sandhu, Gagangeet; Mankal, Pavan; Gupta, Isha; Tagani, Adrian; Ranade, Aditi; Jones, James; Bansal, Anip

    2014-07-01

    We present here a case of an asymptomatic end-stage renal disease (ESRD) patient, who had an unexplained persistent mild leukocytosis in the setting of an extremely high ferritin level (8,997 ng/ml; reference range: 12 - 300 ng/ml) 3 weeks after she suffered from a myocardial infarction (MI). Infection as the cause of these laboratory abnormalities was ruled out. A week later, the patient was noted to have asymptomatic hypotension (100/60 mmHg; her baseline blood pressure was 120/70 mmHg) during a maintenance hemodialysis session. An echocardiography revealed an interval development of moderate pericardial effusion when compared to her previous echocardiography 4 weeks before. In the setting of a recent MI with other laboratory markers suggesting an ongoing inflammatory process, a tentative diagnosis of Dressler's syndrome was made. A pericardial tap yielded exudative (bloody) fluid, thus, confirming our suspicion. Dressler's syndrome results from an inflammation of the pericardium as a consequence of an underlying autoimmune process few weeks to months after a myocardial infarction or post-cardiac surgery. Although it typically presents with pleuritic chest pain, fever, leukocytosis, and a friction rub; our case illustrates that the initial presentation may be asymptomatic in ESRD patients. For the same reason, it is likely an under-recognized entity in such patients. An unexplained elevated ferritin in an ESRD patient with recent history of MI should prompt an investigation for Dressler's syndrome. In those with associated significant pericardial effusion, daily HD should be initiated and anticoagulation should be avoided. Unlike other ESRD associated pericarditis, steroids and NSAIDs should be avoided in Dressler's syndrome as they may hamper cardiac remodeling in the immediate post-MI period. Colchicine may offer some benefit in patients with associated chest pain. For those failing medical management or manifesting overt signs of tamponade, surgical drainage

  13. Fluorescent Organic Planar pn Heterojunction Light-Emitting Diodes with Simplified Structure, Extremely Low Driving Voltage, and High Efficiency.

    PubMed

    Chen, Dongcheng; Xie, Gaozhan; Cai, Xinyi; Liu, Ming; Cao, Yong; Su, Shi-Jian

    2016-01-13

    Fluorescent organic light-emitting diodes capable of radiative utilization of both singlet and triplet excitons are achieved via a simple double-layer planar pn hetero-junction configuration without a conventional emission layer, leading to high external quantum efficiency above 10% and extremely low driving voltages close to the theoretical minima.

  14. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    SciTech Connect

    Wang, He; Xu, Yiming; Ulonska, Stefan; Robinson, Joseph S.; Ranitovic, Predrag; Kaindl, Robert A.

    2015-06-11

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. In this article, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s-1 is generated at 22.3 eV, with 5 × 10-5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Finally, spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications.

  15. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    PubMed Central

    Wang, He; Xu, Yiming; Ulonska, Stefan; Robinson, Joseph S.; Ranitovic, Predrag; Kaindl, Robert A.

    2015-01-01

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s−1 is generated at 22.3 eV, with 5 × 10−5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications. PMID:26067922

  16. Micronutrients-fortified rapeseed oil improves hepatic lipid accumulation and oxidative stress in rats fed a high-fat diet

    PubMed Central

    2013-01-01

    Intake of high-fat diet is associated with increased fatty livers. Hepatic lipid accumulation and oxidative stress are key pathophysiological mechanisms in this disease. Micronutrients polyphenols, tocopherols and phytosterols in rapeseed exert potential benefit to hepatoprotection, but most of these micronutrients are removed by the traditional refining process. The purpose of the present study was to determine whether rapeseed oil fortified with these micronutrients can decrease hepatic lipid accumulation and oxidative stress induced by high-fat diet. Sprague–Dawley rats received rodent diet contained 20% fat whose source was refined rapeseed oil (RRO) or fortified RRO with low, middle and high quantities of these micronutrients for 10 weeks. Intake of RRO caused a remarkable hepatic steatosis. Micronutrients supplementation was effective in reducing steatosis as well as total triglyceride and total cholesterol contents in liver. These micronutrients also significantly increased hepatic antioxidant defense capacities, as evaluated by the significant elevation in the activities of SOD and GPx as well as the level of GSH, and the significant decline in lipid peroxidation. These findings suggest that rapeseed oil fortified with micronutrients polyphenols, tocopherols and phytosterols may contribute to prevent fatty livers such as nonalcoholic fatty liver disease by ameliorating hepatic lipid accumulation and oxidative stress. PMID:23510587

  17. High Accumulation and Subcellular Distribution of Thallium in Green Cabbage (Brassica Oleracea L. Var. Capitata L.).

    PubMed

    Ning, Zengping; He, Libin; Xiao, Tangfu; Márton, László

    2015-01-01

    The accumulation of thallium (Tl) in brassicaceous crops is widely known, but both the uptake extents of Tl by the individual cultivars of green cabbage and the distribution of Tl in the tissues of green cabbage are not well understood. Five commonly available cultivars of green cabbage grown in the Tl-spiked pot-culture trials were studied for the uptake extent and subcellular distribution of Tl. The results showed that all the trial cultivars mainly concentrated Tl in the leaves (101∼192 mg/kg, DW) rather than in the roots or stems, with no significant differences among cultivars (p = 0.455). Tl accumulation in the leaves revealed obvious subcellular fractionation: cell cytosol and vacuole > cell wall > cell organelles. The majority (∼ 88%) of leaf-Tl was found to be in the fraction of cytosol and vacuole, which also served as the major storage site for other major elements such as Ca and Mg. This specific subcellular fractionation of Tl appeared to enable green cabbage to avoid Tl damage to its vital organelles and to help green cabbage tolerate and detoxify Tl. This study demonstrated that all the five green cabbage cultivars show a good application potential in the phytoremediation of Tl-contaminated soils.

  18. Nitrogen-enriched carbon with extremely high mesoporosity and tunable mesopore size for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoqing; Li, Chengfei; Fu, Ruowen

    2016-07-01

    As one of the most potential electrode materials for supercapacitors, nitrogen-enriched nanocarbons are still facing challenge of constructing developed mesoporosity for rapid mass transportation and tailoring their pore size for performance optimization and expanding their application scopes. Herein we develop a series of nitrogen-enriched mesoporous carbon (NMC) with extremely high mesoporosity and tunable mesopore size by a two-step method using silica gel as template. In our approach, mesopore size can be easily tailored from 4.7 to 35 nm by increasing the HF/TEOS volume ratio from 1/100 to 1/4. The NMC with mesopores of 6.2 nm presents the largest mesopore volume, surface area and mesopore ratio of 2.56 cm3 g-1, 1003 m2 g-1 and 97.7%, respectively. As a result, the highest specific capacitance of 325 F g-1 can be obtained at the current density of 0.1 A g-1, which can stay over 88% (286 F g-1) as the current density increases by 100 times (10 A g-1). This approach may open the doors for preparation of nitrogen-enriched nanocarbons with desired nanostructure for numerous applications.

  19. Culture Conditions stimulating high γ-Linolenic Acid accumulation by Spirulina platensis

    PubMed Central

    Ronda, Srinivasa Reddy; Lele, S.S.

    2008-01-01

    Gamma-linolenic acid (GLA) production by Spirulina platensis under different stress-inducing conditions was studied. Submerged culture studies showed that low temperature (25°C), strong light intensity (6 klux) and primrose oil supplement (0.8%w/v) induced 13.2 mg/g, 14.6 mg/g and 13.5 mg linolenic acid per gram dry cell weight respectively. A careful observation of fatty acid profile of the cyanobacteria shows that, oleic acid and linoleic acid, in experiments with varying growth temperature and oil supplements respectively, helped in accumulating excess γ-linolenic acid. In addition, cultures grown at increasing light regimes maintained the γ-linolenic acid to the total fatty acid ratio(GLA/TFA) constant, despite any change in γ-linolenic acid content of the cyanobacteria. PMID:24031291

  20. Optimized Rapeseed Oils Rich in Endogenous Micronutrients Protect High Fat Diet Fed Rats from Hepatic Lipid Accumulation and Oxidative Stress

    PubMed Central

    Xu, Jiqu; Liu, Xiaoli; Gao, Hui; Chen, Chang; Deng, Qianchun; Huang, Qingde; Ma, Zhonghua; Huang, Fenghong

    2015-01-01

    Micronutrients in rapeseed exert a potential benefit to hepatoprotection, but most of them are lost during the conventional refining processing. Thus some processing technologies have been optimized to improve micronutrient retention in oil. The aim of this study is to assess whether optimized rapeseed oils (OROs) have positive effects on hepatic lipid accumulation and oxidative stress induced by a high-fat diet. Methods: Rats received experiment diets containing 20% fat and refined rapeseed oil or OROs obtained with various processing technologies as lipid source. After 10 weeks of treatment, liver was assayed for lipid accumulation and oxidative stress. Results: All OROs reduced hepatic triglyceride contents. Microwave pretreatment-cold pressing oil (MPCPO) which had the highest micronutrients contents also reduced hepatic cholesterol level. MPCPO significantly decreased hepatic sterol regulatory element-binding transcription factor 1 (SREBP1) but increased peroxisome proliferator activated receptor α (PPARα) expressions, and as a result, MPCPO significantly suppressed acetyl CoA carboxylase and induced carnitine palmitoyl transferase-1 and acyl CoA oxidase expression. Hepatic catalase (CAT) and glutathione peroxidase (GPx) activities as well as reduced glutathione (GSH) contents remarkably increased and lipid peroxidation levels decreased in parallel with the increase of micronutrients. Conclusion: OROs had the ability to reduce excessive hepatic fat accumulation and oxidative stress, which indicated that OROs might contribute to ameliorating nonalcoholic fatty liver induced by high-fat diet. PMID:26473919

  1. Anaerobic granule-based biofilms formation reduces propionate accumulation under high H2 partial pressure using conductive carbon felt particles.

    PubMed

    Xu, Heng; Wang, Cuiping; Yan, Kun; Wu, Jing; Zuo, Jiane; Wang, Kaijun

    2016-09-01

    Syngas based co-digestion is not only more economically attractive than separate syngas methanation but also able to upgrade biogas and increase overall CH4 amount simultaneously. However, high H2 concentration in the syngas could inhibit syntrophic degradation of propionate, resulting in propionate accumulation and even failure of the co-digestion system. In an attempt to reduce propionate accumulation via enhancing both H2 interspecies transfer (HIT) and direct interspecies electron transfer (DIET) pathways, layered granule-based biofilms induced by conductive carbon felt particles (CCFP) was employed. The results showed that propionate accumulation was effectively reduced with influent COD load up to 7gL(-1)d(-1). Two types of granule-based biofilms, namely biofilm adhered to CCFP (B-CCFP) and granules formed by self-immobilization (B-SI) were formed in the reactor. Clostridium, Syntrophobacter, Methanospirillum were possibly involved in HIT and Clostridium, Geobacter, Anaerolineaceae, Methanosaeta in DIET, both of which might be responsible for the high-rate propionate degradation. PMID:27289059

  2. Extreme Weight-Control Behaviors and Suicide Risk among High School Students

    ERIC Educational Resources Information Center

    Johnson, Emily R.; Weiler, Robert M.; Barnett, Tracey E.; Pealer, Lisa N.

    2016-01-01

    Background: Suicide is the third leading cause of death for people ages 15-19. Research has established an association across numerous risk factors and suicide, including depression, substance abuse, bullying victimization, and feelings of alienation. However, the connection between disordered eating as manifested in extreme weight-control…

  3. Discovery of extreme [O III] λ5007 Å outflows in high-redshift red quasars

    NASA Astrophysics Data System (ADS)

    Zakamska, Nadia L.; Hamann, Fred; Pâris, Isabelle; Brandt, W. N.; Greene, Jenny E.; Strauss, Michael A.; Villforth, Carolin; Wylezalek, Dominika; Alexandroff, Rachael M.; Ross, Nicholas P.

    2016-07-01

    Black hole feedback is now a standard component of galaxy formation models. These models predict that the impact of black hole activity on its host galaxy likely peaked at z = 2-3, the epoch of strongest star formation activity and black hole accretion activity in the Universe. We used XSHOOTER on the Very Large Telescope to measure rest-frame optical spectra of four z ˜ 2.5 extremely red quasars with infrared luminosities ˜1047 erg s-1. We present the discovery of very broad (full width at half max = 2600-5000 km s-1), strongly blueshifted (by up to 1500 km s-1) [O III] λ5007 Å emission lines in these objects. In a large sample of type 2 and red quasars, [O III] kinematics are positively correlated with infrared luminosity, and the four objects in our sample are on the extreme end in both [O III] kinematics and infrared luminosity. We estimate that at least 3 per cent of the bolometric luminosity in these objects is being converted into the kinetic power of the observed wind. Photo-ionization estimates suggest that the [O III] emission might be extended on a few kpc scales, which would suggest that the extreme outflow is affecting the entire host galaxy of the quasar. These sources may be the signposts of the most extreme form of quasar feedback at the peak epoch of galaxy formation, and may represent an active `blow-out' phase of quasar evolution.

  4. Number of Black Children in Extreme Poverty Hits Record High. Analysis Background.

    ERIC Educational Resources Information Center

    Children's Defense Fund, Washington, DC.

    To examine the experiences of black children and poverty, researchers conducted a computer analysis of data from the U.S. Census Bureau's Current Population Survey, the source of official government poverty statistics. The data are through 2001. Results indicated that nearly 1 million black children were living in extreme poverty, with after-tax…

  5. Further Evidence on the "Costs of Privilege": Perfectionism in High-Achieving Youth at Socioeconomic Extremes

    ERIC Educational Resources Information Center

    Lyman, Emily L.; Luthar, Suniya S.

    2014-01-01

    This study involved two academically-gifted samples of 11th and 12th grade youth at the socioeconomic status (SES) extremes; one from an exclusive private, affluent school, and the other from a magnet school with low-income students. Negative and positive adjustment outcomes were examined in relation to multiple dimensions of perfectionism…

  6. Effects of salicylic acid on thermotolerance and cardenolide accumulation under high temperature stress in Digitalis trojana Ivanina.

    PubMed

    Cingoz, Gunce Sahin; Gurel, Ekrem

    2016-08-01

    Long periods of high temperature or transitory increased temperature, a widespread agricultural problem, may lead to a drastic reduction in economic yield, affecting plant growth and development in many areas of the world. Heat stress causes many anatomical and physiological changes in plants. Its unfavorable effects can be alleviated by thermotolerance induced by exogenous application of plant growth regulators and osmoprotectants or by gradual application of temperature stress. Digitalis trojana Ivanina is an important medicinal plant species well known mainly for its cardenolides. The production of cardenolides via traditional agriculture is commercially inadequate. In this study, elicitation strategies were employed for improving crop thermotolerance and accumulation of cardenolides. For these purposes, the effects of salicylic acid (SA) and/or high temperature treatments in inducing cardenolide accumulation and thermotolerance were tested in callus cultures of D. trojana. Considerable increases in the production of cardenolides (up to 472.28 μg.g(-1) dry weight, dw) and induction of thermotolerance capacity were observed when callus cultures were exposed to high temperature for 2 h after pretreating with SA. High temperature treatments (2 h and 4 h) caused a marked reduction in superoxide dismutase (SOD; EC 1.15.1.1) and catalase (CAT; EC 1.11.1.6) activities, while SA pretreatment increased their activities. High temperature and/or SA appeared to increase the levels of proline, total phenolic, and flavonoid content. Elevated phenolic accumulation could be associated with increased stress protection. These results indicated that SA treatments induced synthesis of antioxidants and cardenolides, which may play a significant role in resistance to high temperature stress. PMID:27105421

  7. Aerosol and CCN Concentrations under Extremely High DMS Levels over the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Deng, C.; Brooks, S. D.; Thornton, D. C.; Bell, T. G.; Saltzman, E. S.; De Bruyn, W. J.

    2013-12-01

    Despite numerous studies since the CLAW hypothesis was first suggested in 1987, the extent to which marine phytoplankton derived dimethyl sulfide (CH3SCH3, DMS) contributes to marine atmospheric aerosol populations and the ability of those aerosols to act as cloud condensation nuclei (CCN) remains unclear, especially over oceanic areas obviously influenced by continental sources. Here, we present data from a cruise aboard the R/V Knorr over the North Atlantic during June-July 2011which passed through areas of both high and low phytoplankton biomasses, as well as intermediate primary production bloom regions where extremely high DMS concentrations (over 1800 pptv) were observed. Continuous ambient measurements of aerosol concentration, cloud condensation nuclei (CCN) concentration, aerosol particle size distributions, and surface seawater and atmospheric dimethyl sulfide (DMS) concentrations were performed simultaneously during the three-week-cruise. Throughout the cruise, CCN concentrations were measured at a series of five supersaturation levels and used to derive the critical supersaturation required for aerosols to activate as CCN. Air masses have been classified into three different categories based on the 48-hr back trajectories, i.e., air mass influenced by continents, coasts and the open ocean. Aerosol concentrations have noticeably different patterns depending on the air mass paths. Continually high CCN and aerosol concentrations had been found to coincide with high DMS concentration over the open ocean, which may be explained by the nucleation and condensational growth in marine boundary layer (MBL) resulting from the oxidation products of DMS or primary aerosols from the sea surface. Calculation of DMS oxidation rates based on the variation of DMS in the lower atmosphere and sea-to-air flux measurement during the whole cruise verified that the influence of continental sources on marine atmosphere is significant during the majority of sample times

  8. Temporal Changes in Extreme High Temerature, Heat Waves in Istanbul Between 1960-2014

    NASA Astrophysics Data System (ADS)

    Yürük, C.; Ünal, Y. S.; Bilgen, S. I.; Menteş, Ş. S.; İncecik, S.

    2015-12-01

    Climate change has crucial effects on cities and especially for informal settlements, urban poor and other vulnerable groups by influencing human health, assets and livelihoods. These impacts directly result from the variations in temperature and precipitation, and emergence of heat waves, droughts, floods and fires (IPCC, 2014). Summertime episodes with extremely high air temperatures which last for several days or longer are addressed to as heat waves and affect the weather and climate in the globe. The aim of this study is to analyze the occurrence of heat waves in terms of quantity, duration and frequency and also to evaluate the accuracy of the COSMO-CLM (CCLM) model in reproducing the characteristics of heat waves in Istanbul. The summer maximum temperatures of six Turkish State Meteorological Service (TSMS) stations are selected between 1960 and 2014 to estimate the characteristics of heat waves in Istanbul. We define the heat wave if the maximum temperatures exceed a threshold value for at least three consecutive days. The threshold value is determined as 30.5 from the 90th percentile of all six station's observations. Then it is used in the detection of the hot days, heat waves and their durations. The results show that not only the number of heat waves but also duration of heat waves increase towards the end of the study period. Especially, a significant increase in heat wave events is evident after 1990s. In 2012, the number of hot days reaches the maximum value in all stations and Kartal station located southern part of city, has the highest value of 60 hot days. Furthermore, Kartal as an urban area in the Asian side of the city, exhibits highest heat wave duration with 18 consecutive days in 1998. To estimate the relationship between urban heat island intensity and the heat waves, we examined data at 43 stations collected by Disaster Coordination Center and TSMS between 2007 and 2012. Urban heat island phenomenon is found to be related to higher

  9. Extreme High and Low Temperature Operation of the Silicon-On-Insulator Type CHT-OPA Operational Amplifier

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    A new operational amplifier chip based on silicon-on-insulator technology was evaluated for potential use in extreme temperature environments. The CHT-OPA device is a low power, precision operational amplifier with rail-to-rail output swing capability, and it is rated for operation between -55 C and +225 C. A unity gain inverting circuit was constructed utilizing the CHT-OPA chip and a few passive components. The circuit was evaluated in the temperature range from -190 C to +200 C in terms of signal gain and phase shift, and supply current. The investigations were carried out to determine suitability of this device for use in space exploration missions and aeronautic applications under wide temperature incursion. Re-restart capability at extreme temperatures, i.e. power switched on while the device was soaked at extreme temperatures, was also investigated. In addition, the effects of thermal cycling under a wide temperature range on the operation of this high performance amplifier were determined. The results from this work indicate that this silicon-on-insulator amplifier chip maintained very good operation between +200 C and -190 C. The limited thermal cycling had no effect on the performance of the amplifier, and it was able to re-start at both -190 C and +200 C. In addition, no physical degradation or packaging damage was introduced due to either extreme temperature exposure or thermal cycling. The good performance demonstrated by this silicon-on-insulator operational amplifier renders it a potential candidate for use in space exploration missions or other environments under extreme temperatures. Additional and more comprehensive characterization is, however, required to establish the reliability and suitability of such devices for long term use in extreme temperature applications.

  10. P accumulation and physiological responses to different high P regimes in Polygonum hydropiper for understanding a P-phytoremediation strategy.

    PubMed

    Ye, Daihua; Li, Tingxuan; Liu, Dan; Zhang, Xizhou; Zheng, Zicheng

    2015-01-01

    Phosphorus (P) accumulators used for phytoremediation vary in their potential to acquire P from different high P regimes. Growth and P accumulation in Polygonum hydropiper were both dependent on an increasing level of IHP (1-8 mM P) and on a prolonged growth period (3-9 weeks), and those of the mining ecotype (ME) were higher than the non-mining ecotype (NME). Biomass increments in root, stem, and leaf of both ecotypes were significantly greater in IHP relative to other organic P (Po) sources (G1P, AMP, ATP), but lower than those in inorganic P (Pi) treatment (KH2PO4). P accumulation in the ME exceeded the NME from different P regimes. The ME demonstrated higher root activity compared to the NME grown in various P sources. Acid phosphatase (Apase) and phytase activities in root extracts of both ecotypes grown in IHP were comparable to that in Pi, or even higher in IHP. Higher secreted Apase and phytase activities were detected in the ME treated with different P sources relative to the NME. Therefore, the ME demonstrates higher P-uptake efficiency and it is a potential material for phytoextraction from P contaminated areas, irrespective of Pi or Po contamination. PMID:26648137

  11. P accumulation and physiological responses to different high P regimes in Polygonum hydropiper for understanding a P-phytoremediation strategy

    PubMed Central

    Ye, Daihua; Li, Tingxuan; Liu, Dan; Zhang, Xizhou; Zheng, Zicheng

    2015-01-01

    Phosphorus (P) accumulators used for phytoremediation vary in their potential to acquire P from different high P regimes. Growth and P accumulation in Polygonum hydropiper were both dependent on an increasing level of IHP (1–8 mM P) and on a prolonged growth period (3-9 weeks), and those of the mining ecotype (ME) were higher than the non-mining ecotype (NME). Biomass increments in root, stem, and leaf of both ecotypes were significantly greater in IHP relative to other organic P (Po) sources (G1P, AMP, ATP), but lower than those in inorganic P (Pi) treatment (KH2PO4). P accumulation in the ME exceeded the NME from different P regimes. The ME demonstrated higher root activity compared to the NME grown in various P sources. Acid phosphatase (Apase) and phytase activities in root extracts of both ecotypes grown in IHP were comparable to that in Pi, or even higher in IHP. Higher secreted Apase and phytase activities were detected in the ME treated with different P sources relative to the NME. Therefore, the ME demonstrates higher P-uptake efficiency and it is a potential material for phytoextraction from P contaminated areas, irrespective of Pi or Po contamination. PMID:26648137

  12. P accumulation and physiological responses to different high P regimes in Polygonum hydropiper for understanding a P-phytoremediation strategy.

    PubMed

    Ye, Daihua; Li, Tingxuan; Liu, Dan; Zhang, Xizhou; Zheng, Zicheng

    2015-12-09

    Phosphorus (P) accumulators used for phytoremediation vary in their potential to acquire P from different high P regimes. Growth and P accumulation in Polygonum hydropiper were both dependent on an increasing level of IHP (1-8 mM P) and on a prolonged growth period (3-9 weeks), and those of the mining ecotype (ME) were higher than the non-mining ecotype (NME). Biomass increments in root, stem, and leaf of both ecotypes were significantly greater in IHP relative to other organic P (Po) sources (G1P, AMP, ATP), but lower than those in inorganic P (Pi) treatment (KH2PO4). P accumulation in the ME exceeded the NME from different P regimes. The ME demonstrated higher root activity compared to the NME grown in various P sources. Acid phosphatase (Apase) and phytase activities in root extracts of both ecotypes grown in IHP were comparable to that in Pi, or even higher in IHP. Higher secreted Apase and phytase activities were detected in the ME treated with different P sources relative to the NME. Therefore, the ME demonstrates higher P-uptake efficiency and it is a potential material for phytoextraction from P contaminated areas, irrespective of Pi or Po contamination.

  13. Extremely Preterm Born Children at Very High Risk for Developing Autism Spectrum Disorder.

    PubMed

    Verhaeghe, Liedewij; Dereu, Mieke; Warreyn, Petra; De Groote, Isabel; Vanhaesebrouck, Piet; Roeyers, Herbert

    2016-10-01

    This study aimed to provide a more comprehensive picture of the prevalence of autism spectrum disorder (ASD) in a geographic cohort of extremely preterm born adolescents by using established diagnostic instruments in addition to screening instruments. 53 participants passed a screening procedure with two screening instruments and a diagnostic evaluation with a semi-structured assessment and a parent interview. 28 % of the adolescents had a community based clinical diagnosis of ASD. When research diagnoses were also taken into account, this rate increased to 40 %. Intellectual disability, language impairment and behavioural difficulties are characteristic for these children with ASD. This study is to our knowledge the first to use ASD-specific diagnostic instruments to confirm ASD diagnoses in extremely preterm born children in early adolescence. The study expands findings of previous research and raises the need for follow-up into late childhood and early adolescence. PMID:26546379

  14. Selection and molecular characterization of a high tocopherol accumulation rice mutant line induced by gamma irradiation.

    PubMed

    Hwang, Jung Eun; Ahn, Joon-Woo; Kwon, Soon-Jae; Kim, Jin-Baek; Kim, Sang Hoon; Kang, Si-Yong; Kim, Dong Sub

    2014-11-01

    Tocopherols are micronutrients with antioxidant properties. They are synthesized by photosynthetic bacteria and plants, and play important roles in animal and human nutrition. In this study, we isolated a new rice mutant line with elevated tocopherol content (MRXII) from an in vitro mutagenized population induced by gamma irradiation. The mutant exhibited greater seed longevity than the control, indicating a crucial role for tocopherols in maintaining viability during quiescence, and displayed faster seedling growth during the early growth stage. To study the molecular mechanism underlying vitamin E biosynthesis, we examined the expression patterns of seven rice genes encoding vitamin E biosynthetic enzymes. Accumulation levels of the OsVTE2 transcript and OsVTE2 protein in the MRXII mutant were significantly higher than in the control. Sequence analysis revealed that the MRXII mutant harbored a point mutation in the OsVTE2 promoter region, which resulted in the generation of MYB transcription factor-binding cis-element. These results help identify the promoter regions that regulate OsVTE2 transcription, and offer insights into the regulation of tocopherol content.

  15. Selection of microalgae for high CO2 fixation efficiency and lipid accumulation from ten Chlorella strains using municipal wastewater.

    PubMed

    Hu, Xia; Zhou, Jiti; Liu, Guangfei; Gui, Bing

    2016-08-01

    As significant differences in cellular physiology, metabolic potential and genetics occur among strains with morphological similarity, the screening of appropriate microalgae species for effective CO2 fixation and biodiesel production is extremely critical. In this study, ten strains of Chlorella were cultivated in municipal wastewater influent (MWI) and their tolerance for MWI, CO2 fixation efficiency and lipid productivity were assessed. The results showed that the biomass concentrations of four strains (Chlorella vulgaris, Chlorella 64.01, Chlorella regularis var. minima and Chlorella sp.) were significantly higher than other strains. When the cultivation systems were aerated with 10% CO2, Chlorella sp. showed the highest CO2 fixation efficiency (35.51%), while the highest lipid accumulation (58.48%) was observed with C. vulgaris. Scanning electron microscopy images revealed that the cells of both Chlorella sp. and C. vulgaris kept their normal morphologies after 15day batch culture. These findings indicated that Chlorella sp. and C. vulgaris have fairly good tolerance for MWI, and moreover, Chlorella sp. was appropriate for CO2 fixation while C. vulgaris represented the highest potential for producing biodiesel.

  16. Selection of microalgae for high CO2 fixation efficiency and lipid accumulation from ten Chlorella strains using municipal wastewater.

    PubMed

    Hu, Xia; Zhou, Jiti; Liu, Guangfei; Gui, Bing

    2016-08-01

    As significant differences in cellular physiology, metabolic potential and genetics occur among strains with morphological similarity, the screening of appropriate microalgae species for effective CO2 fixation and biodiesel production is extremely critical. In this study, ten strains of Chlorella were cultivated in municipal wastewater influent (MWI) and their tolerance for MWI, CO2 fixation efficiency and lipid productivity were assessed. The results showed that the biomass concentrations of four strains (Chlorella vulgaris, Chlorella 64.01, Chlorella regularis var. minima and Chlorella sp.) were significantly higher than other strains. When the cultivation systems were aerated with 10% CO2, Chlorella sp. showed the highest CO2 fixation efficiency (35.51%), while the highest lipid accumulation (58.48%) was observed with C. vulgaris. Scanning electron microscopy images revealed that the cells of both Chlorella sp. and C. vulgaris kept their normal morphologies after 15day batch culture. These findings indicated that Chlorella sp. and C. vulgaris have fairly good tolerance for MWI, and moreover, Chlorella sp. was appropriate for CO2 fixation while C. vulgaris represented the highest potential for producing biodiesel. PMID:27521939

  17. Phytoplankton dynamics and blooms: study of the spectral dynamics and extreme intensities using high frequency data

    NASA Astrophysics Data System (ADS)

    Derot, J.; Schmitt, F. G.; Gentilhomme, V.; Zongo, S.

    2012-12-01

    We consider in this study the fluorescence time series from an automatic measuring buoy in the Eastern English Channel (Boulogne-sur-mer, France). The data are recorded at an automatic station equipped with physic-chemical measuring devices with time resolution of 20 minutes. The fluorescence data are measured from 2004 to present and the fluorescence sensor covers measurement from 0 up to 50 FFU. The fluorescence data from 2004 to 2012 reveal very large fluctuations at all scales showing the different intensities that are often associated with phytoplankton blooms. We consider the dynamics by studying the Fourier power-law regimes and also by using empirical mode decomposition of the time series. In order to consider the extremes, we estimate the probability density function of fluorescence and characterize its extremes by comparing lognormal and power law fits. We finally perform year-by-year analyses of the dynamics and extreme statistics, in order to obtain universal behaviour in relation with mean annual abundance.

  18. Upper extremity blood flow in collegiate and high school baseball pitchers A preliminary report.

    PubMed

    Bast, S C; Perry, J R; Poppiti, R; Vangsness, C T; Weaver, F A

    1996-01-01

    The arterial and venous volume blood flow in the dominant and nondominant upper extremities of five male pitchers, ages 16 to 21, was measured using color flow duplex ultrasound. Blood-flow measurements were obtained at baseline, after warm-up, and after each sequence of 20 pitches until 100 pitches were thrown. Blood flow was additionally determined 1 hour after the last pitch. The velocity of each pitch was recorded with a speed gun. Anthropomorphic measurements of the upper extremity were obtained at baseline and immediately after Pitch 100 using a standard measuring tape. The highest average arterial volume flow in the pitching arm occurred after 40 pitches, reaching a peak of 549 ml/min (56% increase from baseline). Thereafter, the average arterial blood flow steadily declined, reaching an average of 402 ml/min after the 100th pitch (14% increase from baseline). In contrast, the arterial blood flow in the nonpitching arm increased only slightly from baseline, reaching a maximal volume flow of 448 ml/min immediately after the warm-up period (10% increase from baseline). The volume flow then persistently fell to a level 30% below baseline after the 100th pitch. Although this small pilot study does not demonstrate causation between a decline in pitching performance and arterial blood flow, it suggests arterial flow in the dominant extremity falls as the pitch count increases.

  19. Implication of eolian delivery and accumulation of highly reactive iron to the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Lee, B. K.; Owens, J. D.; Lyons, T. W.

    2014-12-01

    Iron, although abundant in the Earth's crust, is present at low concentrations in sea water and is a limiting nutrient for phytoplankton. Eolian dust (loess) is a major source of this micronutrient, and its deposition has important implications for the global CO2 budget. In this study, we explore distributions of potentially bioreactive Fe, the soluble fraction required by phytoplankton for photosynthesis and nitrogen assimilation, in deep-sea sediments in the North and South Atlantic Oceans. We used a state-of-the-art Fe speciation technique to characterize Fe inputs from different source regions, specifically North Africa and Patagonia to address the patterns and implications across glacial-interglacial time scales. In many open-ocean regions the input of new iron to the surface waters is dominated by the atmospheric deposition of soluble iron in eolian dusts. Multiple records have shown dust accumulation is correlated with glacial-interglacial cycles - glacial periods are substantially dustier. Furthermore, the delivery of eolian dust to the North and South Atlantic Oceans are from two very different source regions and soil types. We analyzed IODP cores from these two regions and our preliminary data shows similar pattern of iron distribution from both the North and South Atlantic Oceans. To date we have found no simple global pattern of bioavailable iron distribution during glacial and interglacial periods. We have analyzed a range of size distributions to isolate the dust-dominated fraction and the data shows no size effects in bioavailable form of iron distribution. We will explore the role of deep-water dust dissolution and sedimentary redox implications and its role on the bioreactive Fe record in marine cores.

  20. Effect of self-alkalization on nitrite accumulation in a high-rate denitrification system: Performance, microflora and enzymatic activities.

    PubMed

    Li, Wei; Shan, Xiao-Yu; Wang, Zhi-Yao; Lin, Xiao-Yu; Li, Chen-Xu; Cai, Chao-Yang; Abbas, Ghulam; Zhang, Meng; Shen, Li-Dong; Hu, Zhi-Qiang; Zhao, He-Ping; Zheng, Ping

    2016-01-01

    The self-alkalization of denitrifying automatic circulation (DAC) reactor resulted in a large increase of pH up to 9.20 and caused a tremendous accumulation of nitrite up to 451.1 ± 49.0 mgN L(-1) at nitrate loading rate (NLR) from 35 kgN m(-3) d(-1) to 55 kgN m(-3) d(-1). The nitrite accumulation was greatly relieved even at the same NLR once the pH was maintained at 7.6 ± 0.2 in the system. Enzymatic assays indicated that the long-term bacterial exposure to high pH significantly inhibited the activity of copper type nitrite reductase (NirK) rather than the cytochrome cd1 type nitrite reductase (NirS). The terminal restriction fragment length polymorphism (T-RFLP) analysis revealed that the dominant denitrifying bacteria shifted from the NirS-containing Thauear sp. 27 to the NirK-containing Hyphomicrobium nitrativorans strain NL23 during the self-alkalization. The significant nitrite accumulation in the high-rate denitrification system could be therefore, due to the inhibition of Cu-containing NirK by high pH from the self-alkalization. The results suggest that the NirK-containing H. nitrativorans strain NL23 could be an ideal functional bacterium for the conversion of nitrate to nitrite, i.e. denitritation, which could be combined with anaerobic ammonium oxidation (Anammox) to develop a new process for nitrogen removal from wastewater. PMID:26595097

  1. Effect of self-alkalization on nitrite accumulation in a high-rate denitrification system: Performance, microflora and enzymatic activities.

    PubMed

    Li, Wei; Shan, Xiao-Yu; Wang, Zhi-Yao; Lin, Xiao-Yu; Li, Chen-Xu; Cai, Chao-Yang; Abbas, Ghulam; Zhang, Meng; Shen, Li-Dong; Hu, Zhi-Qiang; Zhao, He-Ping; Zheng, Ping

    2016-01-01

    The self-alkalization of denitrifying automatic circulation (DAC) reactor resulted in a large increase of pH up to 9.20 and caused a tremendous accumulation of nitrite up to 451.1 ± 49.0 mgN L(-1) at nitrate loading rate (NLR) from 35 kgN m(-3) d(-1) to 55 kgN m(-3) d(-1). The nitrite accumulation was greatly relieved even at the same NLR once the pH was maintained at 7.6 ± 0.2 in the system. Enzymatic assays indicated that the long-term bacterial exposure to high pH significantly inhibited the activity of copper type nitrite reductase (NirK) rather than the cytochrome cd1 type nitrite reductase (NirS). The terminal restriction fragment length polymorphism (T-RFLP) analysis revealed that the dominant denitrifying bacteria shifted from the NirS-containing Thauear sp. 27 to the NirK-containing Hyphomicrobium nitrativorans strain NL23 during the self-alkalization. The significant nitrite accumulation in the high-rate denitrification system could be therefore, due to the inhibition of Cu-containing NirK by high pH from the self-alkalization. The results suggest that the NirK-containing H. nitrativorans strain NL23 could be an ideal functional bacterium for the conversion of nitrate to nitrite, i.e. denitritation, which could be combined with anaerobic ammonium oxidation (Anammox) to develop a new process for nitrogen removal from wastewater.

  2. [Antitumor effect of low-intensity extremely high-frequency electromagnetic radiation on a model of solid Ehrlich carcinoma].

    PubMed

    Gapeev, A B; Shved, D M; Mikhaĭlik, E N; Korystov, Iu N; Levitman, M Kh; Shaposhnikova, V V; Sadovnikov, V B; Alekhin, A I; Goncharov, N G; Chemeris, N K

    2009-01-01

    The influence of different exposure regimes of low-intensity extremely high-frequency electromagnetic radiation on the growth rate of solid Ehrlich carcinoma in mice has been studied. It was shown that, at an optimum repetition factor of exposure (20 min daily for five consecutive days after the tumor inoculation), there is a clearly pronounced frequency dependence of the antitumor effect. The analysis of experimental data indicates that the mechanisms of antitumor effects of the radiation may be related to the modification of the immune status of the organism. The results obtained show that extremely high-frequency electromagnetic radiation at a proper selection of exposure regimes can result in distinct and stable antitumor effects.

  3. Acidophilic green alga Pseudochlorella sp. YKT1 accumulates high amount of lipid droplets under a nitrogen-depleted condition at a low-pH.

    PubMed

    Hirooka, Shunsuke; Higuchi, Sumio; Uzuka, Akihiro; Nozaki, Hisayoshi; Miyagishima, Shin-ya

    2014-01-01

    Microalgal storage lipids are considered to be a promising source for next-generation biofuel feedstock. However, microalgal biodiesel is not yet economically feasible due to the high cost of production. One of the reasons for this is that the use of a low-cost open pond system is currently limited because of the unavoidable contamination with undesirable organisms. Extremophiles have an advantage in culturing in an open pond system because they grow in extreme environments toxic to other organisms. In this study, we isolated the acidophilic green alga Pseudochlorella sp. YKT1 from sulfuric acid mine drainage in Nagano Prefecture, Japan. The vegetative cells of YKT1 display the morphological characteristics of Trebouxiophyceae and molecular phylogenetic analyses indicated it to be most closely related to Pseudochlorella pringsheimii. The optimal pH and temperature for the growth of YKT1 are pH 3.0-5.0 and a temperature 20-25°C, respectively. Further, YKT1 is able to grow at pH 2.0 and at 32°C, which corresponds to the usual water temperature in the outdoors in summer in many countries. YKT1 accumulates a large amount of storage lipids (∼30% of dry weigh) under a nitrogen-depleted condition at low-pH (pH 3.0). These results show that acidophilic green algae will be useful for industrial applications by acidic open culture systems.

  4. Acidophilic green alga Pseudochlorella sp. YKT1 accumulates high amount of lipid droplets under a nitrogen-depleted condition at a low-pH.

    PubMed

    Hirooka, Shunsuke; Higuchi, Sumio; Uzuka, Akihiro; Nozaki, Hisayoshi; Miyagishima, Shin-ya

    2014-01-01

    Microalgal storage lipids are considered to be a promising source for next-generation biofuel feedstock. However, microalgal biodiesel is not yet economically feasible due to the high cost of production. One of the reasons for this is that the use of a low-cost open pond system is currently limited because of the unavoidable contamination with undesirable organisms. Extremophiles have an advantage in culturing in an open pond system because they grow in extreme environments toxic to other organisms. In this study, we isolated the acidophilic green alga Pseudochlorella sp. YKT1 from sulfuric acid mine drainage in Nagano Prefecture, Japan. The vegetative cells of YKT1 display the morphological characteristics of Trebouxiophyceae and molecular phylogenetic analyses indicated it to be most closely related to Pseudochlorella pringsheimii. The optimal pH and temperature for the growth of YKT1 are pH 3.0-5.0 and a temperature 20-25°C, respectively. Further, YKT1 is able to grow at pH 2.0 and at 32°C, which corresponds to the usual water temperature in the outdoors in summer in many countries. YKT1 accumulates a large amount of storage lipids (∼30% of dry weigh) under a nitrogen-depleted condition at low-pH (pH 3.0). These results show that acidophilic green algae will be useful for industrial applications by acidic open culture systems. PMID:25221913

  5. A new extension of the polarizable continuum model: Toward a quantum chemical description of chemical reactions at extreme high pressure.

    PubMed

    Cammi, Roberto

    2015-11-15

    A quantum chemical method for studying potential energy surfaces of reactive molecular systems at extreme high pressures is presented. The method is an extension of the standard Polarizable Continuum Model that is usually used for Quantum Chemical study of chemical reactions at a standard condition of pressure. The physical basis of the method and the corresponding computational protocol are described in necessary detail, and an application of the method to the dimerization of cyclopentadiene (up to 20 GPa) is reported.

  6. Note: Development of a volume-limited dot target for a high brightness extreme ultraviolet microplasma source

    SciTech Connect

    Dinh, Thanh Hung Suzuki, Yuhei; Hara, Hiroyuki; Higashiguchi, Takeshi; Hirose, Ryoichi; Ohashi, Hayato; Li, Bowen; Dunne, Padraig; O’Sullivan, Gerry; Sunahara, Atsushi

    2014-11-15

    We report on production of volume-limited dot targets based on electron beam lithographic and sputtering technologies for use in efficient high brightness extreme ultraviolet microplasma sources. We successfully produced cylindrical tin (Sn) targets with diameters of 10, 15, and 20 μm and a height of 150 nm. The calculated spectrum around 13.5 nm was in good agreement with that obtained experimentally.

  7. Phytolacca americana inhibits the high glucose-induced mesangial proliferation via suppressing extracellular matrix accumulation and TGF-beta production.

    PubMed

    Jeong, Seung Il; Kim, Kang Ju; Choo, Yong Kug; Keum, Kyung Soo; Choi, Bong Kyu; Jung, Kyu Yong

    2004-02-01

    This study describes a potential of Phytolaccaceae (Phytolacca americana var.) as an inhibitor of high glucose-stimulated production of extracellular matrix (ECM) proteins and TGF-beta in cultured glomerular mesangial cells (GMCs). Raising the ambient glucose concentration for 24 hrs caused a dose-dependent increase in [3H]thymidine incorporation of GMCs, and the maximal response was achieved at 20 mM. Phytolaccaceae extracts (2.5-20 microg/ml) inhibited the high glucose-induced [3H]thymidine incorporation in a dose-dependent manner, and the concentrations tested here did not affect to the cell viability. Exposure of the GMCs to 20 mM glucose caused both ECM (collagen and fibronectin) accumulation and TGF-beta secretion, and these changes were significantly diminished by treatment of GMCs with Phytolaccaceae (10 microg/ml). Taken together, these results indicate that Phytolaccaceae inhibits the high glucose-induced GMCs proliferation partially through suppressing accumulation of ECM components and TGF-beta production, suggesting that Phytolaccaceae may be a promising agent for treating the development and progression of diabetic glomerulopathy.

  8. Survival of high latitude fringing corals in extreme temperatures: Red Sea oceanography

    NASA Astrophysics Data System (ADS)

    Moustafa, M. Z.; Moustafa, M. S.; Moustafa, Z. D.; Moustafa, S. E.

    2014-04-01

    This multi-year study set out to establish a comprehensive knowledgebase for a fringing coral reef in the Gulf of Suez, while also investigating the link between coral reef survivability and the extreme environmental conditions present in the region. The Gulf of Suez is a narrow branch of the northern Red Sea for which all forms of environmental and scientific data are severely lacking. Monitoring oceanographic and meteorological data provides evidence of both seasonal variability and interannual variability in this region, and may reveal correlations between reef health and prevailing climate conditions. Specifically, this research sought to document the environmental conditions under which Zaki's Reef, a small fringing coral reef (29.5°N and 32.4°E) that lies at the northernmost limit of tropical reefs worldwide, is able to survive, in order to determine how extreme the conditions are. Results of observed seawater temperature revealed that coral species at Zaki's Reef regularly experience 2-4 °C and 10-15 °C daily and seasonal temperature variations, respectively. Seawater temperature monthly means reached a minimum of 14 °C in February and a maximum of 33 °C in August. Monthly mean sea surface temperature climatology obtained from satellite measurements was comparable to observed seawater temperatures, while annual air and seawater temperature means were identical at 22 °C. Observed seawater temperatures exceeded established coral bleaching thresholds for extended periods of time, suggesting that coral species at this location may have developed a mechanism to cope with such extreme temperatures. Further scrutiny of these species and the mechanisms by which they are able to thrive is recommended.

  9. High-frequency surface acoustic wave propagation in nanaostructures characterized by coherent extreme ultraviolet beams

    SciTech Connect

    Siemens, M.; Li, Q.; Murnane, M.; Kapteyn, H.; Yang, R.; Anderson, E.; Nelson, K.

    2009-03-02

    We study ultrahigh frequency surface acoustic wave propagation in nickel-on-sapphire nanostructures. The use of ultrafast, coherent, extreme ultraviolet beams allows us to extend optical measurements of propagation dynamics of surface acoustic waves to frequencies of nearly 50 GHz, corresponding to wavelengths as short as 125 nm. We repeat the measurement on a sequence of nanostructured samples to observe surface acoustic wave dispersion in a nanostructure series for the first time. These measurements are critical for accurate characterization of thin films using this technique.

  10. Dynamics of laser-produced Sn microplasma for a high-brightness extreme ultraviolet light source

    SciTech Connect

    Yuspeh, S.; Tao, Y.; Burdt, R. A.; Tillack, M. S.; Ueno, Y.; Najmabadi, F.

    2011-05-16

    The effect of laser focal spot diameters of 26 and 150 {mu}m on 13.5 nm extreme ultraviolet (EUV) radiation is investigated. Simulations show that the smaller spot size has a shorter electron plasma density scale length and deeper and denser laser energy deposition region. This results in additional time required for plasma expansion and radiation transport to efficiently emit EUV light. This is experimentally observed as an increase in the delay between the EUV emission and the laser pulse. The shorter scale length plasma reabsorbs less EUV light, resulting in a higher conversion efficiency, smaller and slightly brighter light source.

  11. Design of a phase-shifting interferometer in the extreme ultraviolet for high-precision metrology.

    PubMed

    Capeluto, María Gabriela; Marconi, Mario Carlos; Iemmi, Claudio Cesar

    2014-03-01

    The design of a phase-shift interferometer in the extreme ultraviolet (EUV) is described. The interferometer is expected to achieve a significantly higher precision as compared with similar instruments that utilize lasers in the visible range. The interferometer's design is specifically adapted for its utilization with a table top pulsed capillary discharge EUV laser. The numerical model evaluates the errors in the interferograms and in the retrieved wavefront induced by the shot-to-shot fluctuations and pointing instabilities of the laser. PMID:24663354

  12. Extremely high Q-factor mechanical modes in quartz bulk acoustic wave resonators at millikelvin temperature

    SciTech Connect

    Goryachev, M.; Creedon, D. L.; Ivanov, E. N.; Tobar, M. E.; Galliou, S.; Bourquin, R.

    2014-12-04

    We demonstrate that Bulk Acoustic Wave (BAW) quartz resonator cooled down to millikelvin temperatures are excellent building blocks for hybrid quantum systems with extremely long coherence times. Two overtones of the longitudinal mode at frequencies of 15.6 and 65.4 MHz demonstrate a maximum f.Q product of 7.8×10{sup 16} Hz. With this result, the Q-factor in such devices near the quantum ground state can be four orders of magnitude better than previously attained in other mechanical systems. Tested quartz resonators possess the ultra low acoustic losses crucial for electromagnetic cooling to the phonon ground state.

  13. Toward Extreme Biophysics: Deciphering the Infrared Response of Biomolecular Solutions at High Pressures.

    PubMed

    Imoto, Sho; Kibies, Patrick; Rosin, Christopher; Winter, Roland; Kast, Stefan M; Marx, Dominik

    2016-08-01

    Biophysics under extreme conditions is the fundamental platform for scrutinizing life in unusual habitats, such as those in the deep sea or continental subsurfaces, but also for putative extraterrestrial organisms. Therefore, an important thermodynamic variable to explore is pressure. It is shown that the combination of infrared spectroscopy with simulation is an exquisite approach for unraveling the intricate pressure response of the solvation pattern of TMAO in water, which is expected to be transferable to biomolecules in their native solvent. Pressure-enhanced hydrogen bonding was found for TMAO in water. TMAO is a molecule known to stabilize proteins against pressure-induced denaturation in deep-sea organisms. PMID:27351995

  14. High-efficiency collector design for extreme-ultraviolet and x-ray applications.

    PubMed

    Zocchi, Fabio E

    2006-12-10

    A design of a two-reflection mirror for nested grazing-incidence optics is proposed in which maximum overall reflectivity is achieved by making the two grazing-incidence angles equal for each ray. The design is proposed mainly for application to nonimaging collector optics for extreme-ultraviolet microlithography where the radiation emitted from a hot plasma source needs to be collected and focused on the illuminator optics. For completeness, the design of a double- reflection mirror with equal reflection angles is also briefly outlined for the case of an object at infinity for possible use in x-ray applications.

  15. High-efficiency collector design for extreme-ultraviolet and x-ray applications

    SciTech Connect

    Zocchi, Fabio E

    2006-12-10

    A design of a two-reflection mirror for nested grazing-incidence optics is proposed in which maximum overall reflectivity is achieved by making the two grazing-incidence angles equal for each ray. The design is proposed mainly for application to nonimaging collector optics for extreme-ultraviolet microlithography where the radiation emitted from a hot plasma source needs to be collected and focused on the illuminator optics. For completeness, the design of a double-reflection mirror with equal reflection angles is also briefly outlined for the case of an object at infinity for possible use in x-ray applications.

  16. High-efficiency collector design for extreme-ultraviolet and x-ray applications.

    PubMed

    Zocchi, Fabio E

    2006-12-10

    A design of a two-reflection mirror for nested grazing-incidence optics is proposed in which maximum overall reflectivity is achieved by making the two grazing-incidence angles equal for each ray. The design is proposed mainly for application to nonimaging collector optics for extreme-ultraviolet microlithography where the radiation emitted from a hot plasma source needs to be collected and focused on the illuminator optics. For completeness, the design of a double- reflection mirror with equal reflection angles is also briefly outlined for the case of an object at infinity for possible use in x-ray applications. PMID:17119587

  17. The impact of extremely high temperatures on mortality and mortality cost.

    PubMed

    Roldán, E; Gómez, M; Pino, M R; Díaz, J

    2015-01-01

    The aim of this study was to determine the temperature threshold that triggers an increase in heat-induced mortality in Zaragoza, Spain to determine the impact of extreme heat on mortality and in-hospital cost. A longitudinal ecological study was conducted according to an autoregressive integrated moving average model of a time series for daily deaths and to determine the relative risk of mortality for each degree that the temperature threshold was exceeded. Mortality showed a statistically significant increase when the daily maximum temperature exceeded 38 °C. A Relative Risk was 1.28 with a 95 % confidence interval (95 %CI:1.08-1.57) This threshold temperature didn't change over time. A total of 107 (95 %CI:42-173) heat-attributable deaths were estimated for the period 2002-2006, and the in-hospital estimated cost of these deaths reach € 426,087(95 %CI.€ 167,249-€ 688,907). The articulation of preventive measures to minimize the impact of extreme heat on human health is necessary because of the mortality-temperature relationship.

  18. So small, so loud: extremely high sound pressure level from a pygmy aquatic insect (Corixidae, Micronectinae).

    PubMed

    Sueur, Jérôme; Mackie, David; Windmill, James F C

    2011-01-01

    To communicate at long range, animals have to produce intense but intelligible signals. This task might be difficult to achieve due to mechanical constraints, in particular relating to body size. Whilst the acoustic behaviour of large marine and terrestrial animals has been thoroughly studied, very little is known about the sound produced by small arthropods living in freshwater habitats. Here we analyse for the first time the calling song produced by the male of a small insect, the water boatman Micronecta scholtzi. The song is made of three distinct parts differing in their temporal and amplitude parameters, but not in their frequency content. Sound is produced at 78.9 (63.6-82.2) SPL rms re 2.10(-5) Pa with a peak at 99.2 (85.7-104.6) SPL re 2.10(-5) Pa estimated at a distance of one metre. This energy output is significant considering the small size of the insect. When scaled to body length and compared to 227 other acoustic species, the acoustic energy produced by M. scholtzi appears as an extreme value, outperforming marine and terrestrial mammal vocalisations. Such an extreme display may be interpreted as an exaggerated secondary sexual trait resulting from a runaway sexual selection without predation pressure.

  19. High-performance soft-tissue imaging in extremity cone-beam CT

    NASA Astrophysics Data System (ADS)

    Zbijewski, W.; Sisniega, A.; Stayman, J. W.; Muhit, A.; Thawait, G.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H.

    2014-03-01

    Purpose: Clinical performance studies of an extremity cone-beam CT (CBCT) system indicate excellent bone visualization, but point to the need for improvement of soft-tissue image quality. To this end, a rapid Monte Carlo (MC) scatter correction is proposed, and Penalized Likelihood (PL) reconstruction is evaluated for noise management. Methods: The accelerated MC scatter correction involved fast MC simulation with low number of photons implemented on a GPU (107 photons/sec), followed by Gaussian kernel smoothing in the detector plane and across projection angles. PL reconstructions were investigated for reduction of imaging dose for projections acquired at ~2 mGy. Results: The rapid scatter estimation yielded root-mean-squared-errors of scatter projections of ~15% of peak scatter intensity for 5ṡ106 photons/projection (runtime ~0.5 sec/projection) and 25% improvement in fat-muscle contrast in reconstructions of a cadaveric knee. PL reconstruction largely restored soft-tissue visualization at 2 mGy dose to that of 10 mGy FBP image. Conclusion: The combination of rapid (5-10 minutes/scan) MC-based, patient-specific scatter correction and PL reconstruction offers an important means to overcome the current limitations of extremity CBCT in soft-tissue imaging.

  20. Constructing the integral concept on the basis of the idea of accumulation: suggestion for a high school curriculum

    NASA Astrophysics Data System (ADS)

    Kouropatov, Anatoli; Dreyfus, Tommy

    2013-07-01

    Students have a tendency to see integral calculus as a series of procedures with associated algorithms and many do not develop a conceptual grasp giving them the desirable versatility of thought. Thus, instead of a proceptual view of the symbols in integration, they have, at best, a process-oriented view. On the other hand, it is not surprising that many students find concepts such as the integral difficult when they are unable to experience these processes directly in the classroom. With a view towards improving this situation, constructing the integral concept on the basis of the idea of accumulation has been proposed (Educ Stud Math. 1994;26:229-274; Integral as accumulation: a didactical perspective for school mathematics; Thessaloniki: PME; 2009. p. 417-424). In this paper, we discuss a curriculum that is based on this idea and a design for curriculum materials that are intended to develop an improved cognitive base for a flexible proceptual understanding of the integral and integration in high school. The main focus is on how we (mathematics teachers and mathematics educators) might teach the integral concept in order to help high school students to construct meaningful knowledge alongside acquiring technical abilities.

  1. High molecular weight complexes of mutant superoxide dismutase 1: age-dependent and tissue-specific accumulation.

    PubMed

    Wang, Jiou; Xu, Guilian; Borchelt, David R

    2002-03-01

    Mutations in the cytosolic enzyme, superoxide dismutase 1, have been identified as the cause of motor neuron disease in a subset of cases of familial amyotrophic lateral sclerosis. It has been postulated that the injurious property of mutant enzyme resides in its propensity to aggregate or its propensity to catalyze deleterious, copper-mediated, chemistries. Aggregates of SOD1 have been identified, histologically, in neurons and astroglia of the spinal cords of SOD1-linked FALS patients and in transgenic mice that express these mutant proteins. In the present study, we have employed a technique used in detecting and quantifying aggregates of mutant huntingtin (cellulose acetate filtration) to examine the molecular characteristics of mutant SOD1 in three previously characterized transgenic mouse models of FALS. We show that the brains and spinal cords of these mice accumulate mutant SOD1 complexes that can be trapped by cellulose acetate filtration. The relative abundance of these structures increases dramatically with age. Although expressed to the same level in nonnervous tissues, mutant SOD1 was not found in high molecular weight structures. We conclude that some aspect of the biology of neural tissues (in a setting of declining motor neuron function) predisposes to the accumulation of high molecular weight complexes of mutant SOD1.

  2. Spin-resolved photoelectron spectroscopy using femtosecond extreme ultraviolet light pulses from high-order harmonic generation.

    PubMed

    Plötzing, M; Adam, R; Weier, C; Plucinski, L; Eich, S; Emmerich, S; Rollinger, M; Aeschlimann, M; Mathias, S; Schneider, C M

    2016-04-01

    The fundamental mechanism responsible for optically induced magnetization dynamics in ferromagnetic thin films has been under intense debate since almost two decades. Currently, numerous competing theoretical models are in strong need for a decisive experimental confirmation such as monitoring the triggered changes in the spin-dependent band structure on ultrashort time scales. Our approach explores the possibility of observing femtosecond band structure dynamics by giving access to extended parts of the Brillouin zone in a simultaneously time-, energy- and spin-resolved photoemission experiment. For this purpose, our setup uses a state-of-the-art, highly efficient spin detector and ultrashort, extreme ultraviolet light pulses created by laser-based high-order harmonic generation. In this paper, we present the setup and first spin-resolved spectra obtained with our experiment within an acquisition time short enough to allow pump-probe studies. Further, we characterize the influence of the excitation with femtosecond extreme ultraviolet pulses by comparing the results with data acquired using a continuous wave light source with similar photon energy. In addition, changes in the spectra induced by vacuum space-charge effects due to both the extreme ultraviolet probe- and near-infrared pump-pulses are studied by analyzing the resulting spectral distortions. The combination of energy resolution and electron count rate achieved in our setup confirms its suitability for spin-resolved studies of the band structure on ultrashort time scales.

  3. Using Extreme Value Theory Approaches to Forecast the Probability of Outbreak of Highly Pathogenic Influenza in Zhejiang, China

    PubMed Central

    Chen, Jiangpeng; Lei, Xun; Zhang, Li; Peng, Bin

    2015-01-01

    Background Influenza is a contagious disease with high transmissibility to spread around the world with considerable morbidity and mortality and presents an enormous burden on worldwide public health. Few mathematical models can be used because influenza incidence data are generally not normally distributed. We developed a mathematical model using Extreme Value Theory (EVT) to forecast the probability of outbreak of highly pathogenic influenza. Methods The incidence data of highly pathogenic influenza in Zhejiang province from April 2009 to November 2013 were retrieved from the website of Health and Family Planning Commission of Zhejiang Province. MATLAB “VIEM” toolbox was used to analyze data and modelling. In the present work, we used the Peak Over Threshold (POT) model, assuming the frequency as a Poisson process and the intensity to be Pareto distributed, to characterize the temporal variability of the long-term extreme incidence of highly pathogenic influenza in Zhejiang, China. Results The skewness and kurtosis of the incidence of highly pathogenic influenza in Zhejiang between April 2009 and November 2013 were 4.49 and 21.12, which indicated a “fat tail” distribution. A QQ plot and a mean excess plot were used to further validate the features of the distribution. After determining the threshold, we modeled the extremes and estimated the shape parameter and scale parameter by the maximum likelihood method. The results showed that months in which the incidence of highly pathogenic influenza is about 4462/2286/1311/487 are predicted to occur once every five/three/two/one year, respectively. Conclusions Despite the simplicity, the present study successfully offers the sound modeling strategy and a methodological avenue to implement forecasting of an epidemic in the midst of its course. PMID:25710503

  4. Shallow gene pools in the high intertidal: extreme loss of genetic diversity in viviparous sea stars (Parvulastra).

    PubMed

    Keever, Carson C; Puritz, Jonathan B; Addison, Jason A; Byrne, Maria; Grosberg, Richard K; Toonen, Robert J; Hart, Michael W

    2013-10-23

    We document an extreme example of reproductive trait evolution that affects population genetic structure in sister species of Parvulastra cushion stars from Australia. Self-fertilization by hermaphroditic adults and brood protection of benthic larvae causes strong inbreeding and range-wide genetic poverty. Most samples were fixed for a single allele at nearly all nuclear loci; heterozygotes were extremely rare (0.18%); mitochondrial DNA sequences were more variable, but few populations shared haplotypes in common. Isolation-with-migration models suggest that these patterns are caused by population bottlenecks (relative to ancestral population size) and low gene flow. Loss of genetic diversity and low potential for dispersal between high-intertidal habitats may have dire consequences for extinction risk and potential for future adaptive evolution in response to climate and other selective agents. PMID:23925835

  5. Shallow gene pools in the high intertidal: extreme loss of genetic diversity in viviparous sea stars (Parvulastra).

    PubMed

    Keever, Carson C; Puritz, Jonathan B; Addison, Jason A; Byrne, Maria; Grosberg, Richard K; Toonen, Robert J; Hart, Michael W

    2013-10-23

    We document an extreme example of reproductive trait evolution that affects population genetic structure in sister species of Parvulastra cushion stars from Australia. Self-fertilization by hermaphroditic adults and brood protection of benthic larvae causes strong inbreeding and range-wide genetic poverty. Most samples were fixed for a single allele at nearly all nuclear loci; heterozygotes were extremely rare (0.18%); mitochondrial DNA sequences were more variable, but few populations shared haplotypes in common. Isolation-with-migration models suggest that these patterns are caused by population bottlenecks (relative to ancestral population size) and low gene flow. Loss of genetic diversity and low potential for dispersal between high-intertidal habitats may have dire consequences for extinction risk and potential for future adaptive evolution in response to climate and other selective agents.

  6. Extreme ultraviolet spectra from highly charged gadolinium and neodymium ions in the Large Helical Device and laser produced plasmas

    NASA Astrophysics Data System (ADS)

    Suzuki, C.; Koike, F.; Murakami, I.; Tamura, N.; Sudo, S.; O'Gorman, C.; Li, B.; Harte, C. S.; Donnelly, T.; O'Sullivan, G.

    2013-09-01

    We have observed extreme ultraviolet spectra from highly charged gadolinium (Gd) and neodymium (Nd) ions produced in two different types of light sources for comparative studies. Only broad quasicontinuum feature arising from unresolved transition array was observed in high-density laser produced plasmas of pure/diluted Gd and Nd targets at the University College Dublin, and the spectral feature largely depends on electron temperature in optically thin plasmas produced in the Large Helical Device at the National Institute for Fusion Science. The difference in spectral feature among a number of spectra can be qualitatively interpreted by considering dominant ion stages and opacity effects in the plasmas.

  7. High Resolution Simulation of a Colorado Rockies Extreme Snow and Rain Event in both a Current and Future Climate

    NASA Astrophysics Data System (ADS)

    Rasmussen, Roy; Ikeda, Kyoko; Liu, Changhai; Gutmann, Ethan; Gochis, David

    2016-04-01

    Modeling of extreme weather events often require very finely resolved treatment of atmospheric circulation structures in order to produce and localize the large moisture fluxes that result in extreme precipitation. This is particularly true for cool season orographic precipitation processes where the representation of the landform can significantly impact vertical velocity profiles and cloud moisture entrainment rates. This study presents results for high resolution regional climate modeling study of the Colorado Headwaters region using an updated version of the Weather Research and Forecasting (WRF) model run at 4 km horizontal resolution and a hydrological extension package called WRF-Hydro. Previous work has shown that the WRF modeling system can produce credible depictions of winter orographic precipitation over the Colorado Rockies if run at horizontal resolutions < 6 km. Here we present results from a detailed study of an extreme springtime snowfall event that occurred along the Colorado Front Range in March 2003. Results from the impact of warming on total precipitation, snow-rain partitioning and surface hydrological fluxes (evapotranspiration and runoff) will be discussed in the context of how potential changes in temperature impact the amount of precipitation, the phase of precipitation (rain vs. snow) and the timing and amplitude of streamflow responses. The results show using the Pseudo Global Warming technique that intense precipitation rates significantly increased during the event and a significant fraction of the snowfall converts to rain which significantly amplifies the runoff response from one where runoff is produced gradually to one in which runoff is rapidly translated into streamflow values that approach significant flooding risks. Results from a new, CONUS scale high resolution climate simulation of extreme events in a current and future climate will be presented as time permits.

  8. Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds.

    PubMed

    Nguyen, Huu Tam; Park, Hyunwoo; Koster, Karen L; Cahoon, Rebecca E; Nguyen, Hanh T M; Shanklin, John; Clemente, Thomas E; Cahoon, Edgar B

    2015-01-01

    Seed oils enriched in omega-7 monounsaturated fatty acids, including palmitoleic acid (16:1∆9) and cis-vaccenic acid (18:1∆11), have nutraceutical and industrial value for polyethylene production and biofuels. Existing oilseed crops accumulate only small amounts (<2%) of these novel fatty acids in their seed oils. We demonstrate a strategy for enhanced production of omega-7 monounsaturated fatty acids in camelina (Camelina sativa) and soybean (Glycine max) that is dependent on redirection of metabolic flux from the typical ∆9 desaturation of stearoyl (18:0)-acyl carrier protein (ACP) to ∆9 desaturation of palmitoyl (16:0)-acyl carrier protein (ACP) and coenzyme A (CoA). This was achieved by seed-specific co-expression of a mutant ∆9-acyl-ACP and an acyl-CoA desaturase with high specificity for 16:0-ACP and CoA substrates, respectively. This strategy was most effective in camelina where seed oils with ~17% omega-7 monounsaturated fatty acids were obtained. Further increases in omega-7 fatty acid accumulation to 60-65% of the total fatty acids in camelina seeds were achieved by inclusion of seed-specific suppression of 3-keto-acyl-ACP synthase II and the FatB 16:0-ACP thioesterase genes to increase substrate pool sizes of 16:0-ACP for the ∆9-acyl-ACP desaturase and by blocking C18 fatty acid elongation. Seeds from these lines also had total saturated fatty acids reduced to ~5% of the seed oil versus ~12% in seeds of nontransformed plants. Consistent with accumulation of triacylglycerol species with shorter fatty acid chain lengths and increased monounsaturation, seed oils from engineered lines had marked shifts in thermotropic properties that may be of value for biofuel applications. PMID:25065607

  9. 1-FFT amino acids involved in high DP inulin accumulation in Viguiera discolor

    PubMed Central

    De Sadeleer, Emerik; Vergauwen, Rudy; Struyf, Tom; Le Roy, Katrien; Van den Ende, Wim

    2015-01-01

    Fructans are important vacuolar reserve carbohydrates with drought, cold, ROS and general abiotic stress mediating properties. They occur in 15% of all flowering plants and are believed to display health benefits as a prebiotic and dietary fiber. Fructans are synthesized by specific fructosyltransferases and classified based on the linkage type between fructosyl units. Inulins, one of these fructan types with β(2-1) linkages, are elongated by fructan:fructan 1-fructosyltransferases (1-FFT) using a fructosyl unit from a donor inulin to elongate the acceptor inulin molecule. The sequence identity of the 1-FFT of Viguiera discolor (Vd) and Helianthus tuberosus (Ht) is 91% although these enzymes produce distinct fructans. The Vd 1-FFT produces high degree of polymerization (DP) inulins by preferring the elongation of long chain inulins, in contrast to the Ht 1-FFT which prefers small molecules (DP3 or 4) as acceptor. Since higher DP inulins have interesting properties for industrial, food and medical applications, we report here on the influence of two amino acids on the high DP inulin production capacity of the Vd 1-FFT. Introducing the M19F and H308T mutations in the active site of the Vd 1-FFT greatly reduces its capacity to produce high DP inulin molecules. Both amino acids can be considered important to this capacity, although the double mutation had a much higher impact than the single mutations. PMID:26322058

  10. Atomic physics and synchrotron radiation: The production and accumulation of highly charged ions

    NASA Astrophysics Data System (ADS)

    Johnson, B. M.; Meron, M.; Agagu, A.; Jones, K. W.

    1987-04-01

    Synchrotron radiation can be used to produce highly-charged ions, and to study photoexcitation and photoionization for ions of virtually any element in the periodic table. To date, with few exceptions, atomic physics studies have been limited to rare gases and a few metal vapors, and to photoexcitation energies in the VUV region of the electromagnetic spectrum. These limitations can now be overcome using photons produced by high-brightness synchrotron storage rings, such as the X-ray ring at the National Synchrotron Light Source (NSLS) at Brookhaven. Furthermore, calculations indicate that irradiation of an ion trap with an intense energetic photon beam will result in a viable source of highly-charged ions that can be given the name PHOBIS: the photon beam ion source. Promising results, which encourage the wider systematic use of synchrotron radiation in atomic physics research, have been obtained in recent experiments on VUV photoemission and the production and storage of multiply-charged ions. An overview of the field, current plans, and future possibilities will be presented.

  11. High intensity vacuum ultraviolet and extreme ultraviolet production by noncollinear mixing in laser vaporized media

    NASA Astrophysics Data System (ADS)

    Todt, Michael A.; Albert, Daniel R.; Davis, H. Floyd

    2016-06-01

    A method is described for generating intense pulsed vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) laser radiation by resonance enhanced four-wave mixing of commercial pulsed nanosecond lasers in laser vaporized mercury under windowless conditions. By employing noncollinear mixing of the input beams, the need of dispersive elements such as gratings for separating the VUV/XUV from the residual UV and visible beams is eliminated. A number of schemes are described, facilitating access to the 9.9-14.6 eV range. A simple and convenient scheme for generating wavelengths of 125 nm, 112 nm, and 104 nm (10 eV, 11 eV, and 12 eV) using two dye lasers without the need for dye changes is described.

  12. [Thermoelastic excitation of acoustic waves in biological models under the effect of the high peak-power pulsed electromagnetic radiation of extremely high frequency].

    PubMed

    Gapeev, A B; Rubanik, A V; Pashovkin, T N; Chemeris, N K

    2007-01-01

    The capability of high peak-power pulsed electromagnetic radiation of extremely high frequency (35,27 GHz, pulse widths of 100 and 600 ns, peak power of 20 kW) to excite acoustic waves in model water-containing objects and muscular tissue of animals has been experimentally shown for the first time. The amplitude and duration of excited acoustic pulses are within the limits of accuracy of theoretical assessments and have a complex nonlinear dependence on the energy input of electromagnetic radiation supplied. The velocity of propagation of acoustic pulses in water-containing models and isolated muscular tissue of animals was close to the reference data. The excitation of acoustic waves in biological systems under the action of high peak-power pulsed electromagnetic radiation of extremely high frequency is the important phenomenon, which essentially contributes to the understanding of the mechanisms of biological effects of these electromagnetic fields.

  13. Fenugreek seed extract inhibit fat accumulation and ameliorates dyslipidemia in high fat diet-induced obese rats.

    PubMed

    Kumar, Parveen; Bhandari, Uma; Jamadagni, Shrirang

    2014-01-01

    This study investigated the inhibitory effect of aqueous extract of Trigonella foenum-graecum seeds (AqE-TFG) on fat accumulation and dyslipidemia in high fat diet- (HFD-) induced obese rats. Female Wistar rats were fed with HFD ad libitum, and the rats on HFD were treated orally with AqE-TFG or orlistat ((HFD for 28 days+AqE-TFG (0.5 and 1.0 g/kg) or orlistat (10 mg/kg) from day 8 to 28), respectively. Treatment with AqE-TFG produced significant reduction in body weight gain, body mass index (BMI), white adipose tissue (WAT) weights, blood glucose, serum insulin, lipids, leptin, lipase, and apolipoprotein-B levels and elevation in adiponectin levels. AqE-TFG improved serum aspartate amino transferase (AST), alanine amino transferase (ALT), and lactate dehydrogenase (LDH) levels. AqE-TFG treatment reduced the hepatic and cardiac thiobarbituric acid reactive substances (TBARS) and elevated the antioxidant enzyme (glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT)) levels. In addition, liver and uterine WAT lipogenic enzyme (fatty acid synthetase (FAS) and glucose-6-phosphate dehydrogenase (G6PD)) activities were restored towards normal levels. These findings demonstrated the preventive effect of AqE-TFG on fat accumulation and dyslipidemia, due to inhibition of impaired lipid digestion and absorption, in addition to improvement in glucose and lipid metabolism, enhancement of insulin sensitivity, increased antioxidant defense, and downregulation of lipogenic enzymes. PMID:24868532

  14. Synthesis and characterization of high-quality PbI2 nanopowders from depleted SLA accumulator anode and cathode

    NASA Astrophysics Data System (ADS)

    Malevu, T. D.; Ocaya, R. O.; Tshabalala, K. G.; Fernandez, C.

    2016-07-01

    High-quality lead iodide (PbI2) nanoparticles were synthesized from both anode and cathode of a discarded sealed lead-acid accumulator as starting materials. The structure, morphology, chemical composition and optical properties of washed PbI2 were investigated using X-ray diffraction, field emission scanning electron microscope, photoluminescence and energy-dispersive X-ray spectrometer. The XRD measurements indicated the presence of pure hexagonal PbI2 nanoparticles. Application of the Scherrer equation indicates crystal sizes between 13.703 and 14.320 nm. SEM indicated the presence of spherical particle agglomerations between 1.5 and 3.5 \\upmum in diameter. The measured band gap using two methods was consistent at 2.75 eV. EDS results suggest the absence of impurities in the synthesized nanoparticles. The overall results suggest that discarded sealed lead-acid accumulators can source pure hexagonal-phase lead iodide nanoparticles with potential applications in perovskite solar cells. The novelty aspect is that this approach has not been previously reported.

  15. Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation

    SciTech Connect

    Nawrath, C.; Poirier, Y.; Somerville, C. )

    1994-12-20

    In the bacterium Alcaligenes eutrophus, three genes encode the enzymes necessary to catalyze the synthesis of poly[(R)-(-)-3-hydroxybutyrate] (PHB) from acetyl-CoA. In order to target these enzymes into the plastids of higher plants, the genes were modified by addition of DNA fragments encoding a pea chloroplast transit peptide, a constitutive plant promoter, and a poly(A) addition sequence. Each of the modified bacterial genes was introduced into Arabidopsis thaliana by Agrobacterium-mediated transformation, and plants containing all three genes were obtained by sexual crosses. These plans accumulated PHB up to 14% of the dry weight as 0.2- to 0.7-[mu]m granules within plastids. In contrast to earlier experiments in which expression of the PHB biosynthetic pathway in the cytoplasm led to a deleterious effect on growth, expression of the PHB biosynthetic pathway in plastids had no obvious effect on the growth or fertility of the transgenic plants and resulted in a 100-fold increase in the amount of PHB in higher plants. The high level of PHB accumulation also suggests that the synthesis of plastid acetyl-CoA is regulated by a mechanism which responds to metabolic demand. 20 refs., 6 figs.

  16. Local impact analysis of climate change on precipitation extremes: are high-resolution climate models needed for realistic simulations?

    NASA Astrophysics Data System (ADS)

    Tabari, Hossein; De Troch, Rozemien; Giot, Olivier; Hamdi, Rafiq; Termonia, Piet; Saeed, Sajjad; Brisson, Erwan; Van Lipzig, Nicole; Willems, Patrick

    2016-09-01

    This study explores whether climate models with higher spatial resolutions provide higher accuracy for precipitation simulations and/or different climate change signals. The outputs from two convection-permitting climate models (ALARO and CCLM) with a spatial resolution of 3-4 km are compared with those from the coarse-scale driving models or reanalysis data for simulating/projecting daily and sub-daily precipitation quantiles. Validation of historical design precipitation statistics derived from intensity-duration-frequency (IDF) curves shows a better match of the convection-permitting model results with the observations-based IDF statistics compared to the driving GCMs and reanalysis data. This is the case for simulation of local sub-daily precipitation extremes during the summer season, while the convection-permitting models do not appear to bring added value to simulation of daily precipitation extremes. Results moreover indicate that one has to be careful in assuming spatial-scale independency of climate change signals for the delta change downscaling method, as high-resolution models may show larger changes in extreme precipitation. These larger changes appear to be dependent on the timescale, since such intensification is not observed for daily timescales for both the ALARO and CCLM models.

  17. Clinical Implications of Diffuse Excessive High Signal Intensity (DEHSI) on Neonatal MRI in School Age Children Born Extremely Preterm

    PubMed Central

    Padilla, Nelly; Skiöld, Béatrice; Eklöf, Eva; Mårtensson, Gustaf; Vollmer, Brigitte; Ådén, Ulrika

    2016-01-01

    Objective Magnetic resonance imaging (MRI) of the brain carried out during the neonatal period shows that 55–80% of extremely preterm infants display white matter diffuse excessive high signal intensity (DEHSI). Our aim was to study differences in developmental outcome at the age of 6.5 years in children born extremely preterm with and without DEHSI. Study Design This was a prospective cohort study of 83 children who were born in Stockholm, Sweden, between 2004 and 2007, born at gestational age of < 27 weeks + 0 days and who underwent an MRI scan of their brain at term equivalent age. The outcome measures at 6.5 years included testing 66 children with the modified Touwen neurology examination, the Movement Assessment Battery for Children 2, the Wechsler Intelligence Scale for Children—Fourth Edition, Beery Visual-motor Integration test—Sixth Edition, and the Strengths and Difficulties Questionnaire. Group-wise comparisons were done between children with and without DEHSI using Student t-test, Mann Whitney U test, Chi square test and regression analysis. Results DEHSI was detected in 39 (59%) of the 66 children who were assessed at 6.5 years. The presence of DEHSI was not associated with mild neurological dysfunction, scores on M-ABC assessment, cognition, visual-motor integration, or behavior at 6.5 years. Conclusion The presence of qualitatively defined DEHSI on neonatal MRI did not prove to be a useful predictor of long-term impairment in children born extremely preterm. PMID:26886451

  18. The high-affinity phosphate-binding protein PstS is accumulated under high fructose concentrations and mutation of the corresponding gene affects differentiation in Streptomyces lividans.

    PubMed

    Díaz, Margarita; Esteban, Ana; Fernández-Abalos, José Manuel; Santamaría, Ramón I

    2005-08-01

    The secreted protein pattern of Streptomyces lividans depends on the carbon source present in the culture media. One protein that shows the most dramatic change is the high-affinity phosphate-binding protein PstS, which is strongly accumulated in the supernatant of liquid cultures containing high concentrations (>3 %) of certain sugars, such as fructose, galactose and mannose. The promoter region of this gene and that of its Streptomyces coelicolor homologue were used to drive the expression of a xylanase in S. lividans that was accumulated in the culture supernatant when grown in the presence of fructose. PstS accumulation was dramatically increased in a S. lividans polyphosphate kinase null mutant (Deltappk) and was impaired in a deletion mutant lacking phoP, the transcriptional regulator gene of the two-component phoR-phoP system that controls the Pho regulon. Deletion of the pstS genes in S. lividans and S. coelicolor impaired phosphate transport and accelerated differentiation and sporulation on solid media. Complementation with a single copy in a S. lividans pstS null mutant returned phosphate transport and sporulation to levels similar to those of the wild-type strain. The present work demonstrates that carbon and phosphate metabolism are linked in the regulation of genes and that this can trigger the genetic switch towards morphogenesis.

  19. Rapid transport and high accumulation of amorphous silica in the Congo deep-sea fan: A preliminary budget

    NASA Astrophysics Data System (ADS)

    Raimonet, Mélanie; Ragueneau, Olivier; Jacques, Vincent; Corvaisier, Rudolph; Moriceau, Brivaëla; Khripounoff, Alexis; Pozzato, Lara; Rabouille, Christophe

    2015-01-01

    Mechanisms controlling the transfer and retention of silicon (Si) along continental margins are poorly understood, but play a major role in the functioning of coastal ecosystems and the oceanic biological pump of carbon. Deep-sea fans are well recognized as carbon sink spots, but we lack knowledge about the importance of the fans in the global Si cycle. Here, we provide a first estimate of the role played by the Congo deep-sea fan, one of the biggest in the world, in the Si cycle. Sediment cores sampled in the deep-sea fan were analyzed to build a Si mass balance. An exceptionally high accumulation rate of amorphous silica aSiO2 (2.29 ± 0.58 mol Si m- 2 y- 1) was found, due to a high sedimentation rate and the presence of aluminum in the sediments. Although favored by bioirrigation, recycling fluxes remained low (0.3 mol Si m- 2 y- 1) and reconstructed input fluxes could only be explained by lateral inputs coming from the canyon. Preliminary calculations show that the rapid transport of aSiO2 through the canyon and the excellent preservation efficiency in the sediments imply that 50% of aSiO2 river inputs from the Congo River accumulate annually in the deep-sea fan. Si:C ratios in deep-sea fan sediments were very low (0.2) and only three times as high as those measured in the river itself, which suggests that material from the river and the continental shelf was delivered directly through the canyon, with very little time for Si and C cycle decoupling to take place.

  20. The Imprint of Extreme Climate Events in Century-Long Time Series of Wood Anatomical Traits in High-Elevation Conifers

    PubMed Central

    Carrer, Marco; Brunetti, Michele; Castagneri, Daniele

    2016-01-01

    Extreme climate events are of key importance for forest ecosystems. However, both the inherent infrequency, stochasticity and multiplicity of extreme climate events, and the array of biological responses, challenges investigations. To cope with the long life cycle of trees and the paucity of the extreme events themselves, our inferences should be based on long-term observations. In this context, tree rings and the related xylem anatomical traits represent promising sources of information, due to the wide time perspective and quality of the information they can provide. Here we test, on two high-elevation conifers (Larix decidua and Picea abies sampled at 2100 m a.s.l. in the Eastern Alps), the associations among temperature extremes during the growing season and xylem anatomical traits, specifically the number of cells per ring (CN), cell wall thickness (CWT), and cell diameter (CD). To better track the effect of extreme events over the growing season, tree rings were partitioned in 10 sectors. Climate variability has been reconstructed, for 1800–2011 at monthly resolution and for 1926–2011 at daily resolution, by exploiting the excellent availability of very long and high quality instrumental records available for the surrounding area, and taking into account the relationship between meteorological variables and site topographical settings. Summer temperature influenced anatomical traits of both species, and tree-ring anatomical profiles resulted as being associated to temperature extremes. Most of the extreme values in anatomical traits occurred with warm (positive extremes) or cold (negative) conditions. However, 0–34% of occurrences did not match a temperature extreme event. Specifically, CWT and CN extremes were more clearly associated to climate than CD, which presented a bias to track cold extremes. Dendroanatomical analysis, coupled to high-quality daily-resolved climate records, seems a promising approach to study the effects of extreme events on

  1. The Imprint of Extreme Climate Events in Century-Long Time Series of Wood Anatomical Traits in High-Elevation Conifers.

    PubMed

    Carrer, Marco; Brunetti, Michele; Castagneri, Daniele

    2016-01-01

    Extreme climate events are of key importance for forest ecosystems. However, both the inherent infrequency, stochasticity and multiplicity of extreme climate events, and the array of biological responses, challenges investigations. To cope with the long life cycle of trees and the paucity of the extreme events themselves, our inferences should be based on long-term observations. In this context, tree rings and the related xylem anatomical traits represent promising sources of information, due to the wide time perspective and quality of the information they can provide. Here we test, on two high-elevation conifers (Larix decidua and Picea abies sampled at 2100 m a.s.l. in the Eastern Alps), the associations among temperature extremes during the growing season and xylem anatomical traits, specifically the number of cells per ring (CN), cell wall thickness (CWT), and cell diameter (CD). To better track the effect of extreme events over the growing season, tree rings were partitioned in 10 sectors. Climate variability has been reconstructed, for 1800-2011 at monthly resolution and for 1926-2011 at daily resolution, by exploiting the excellent availability of very long and high quality instrumental records available for the surrounding area, and taking into account the relationship between meteorological variables and site topographical settings. Summer temperature influenced anatomical traits of both species, and tree-ring anatomical profiles resulted as being associated to temperature extremes. Most of the extreme values in anatomical traits occurred with warm (positive extremes) or cold (negative) conditions. However, 0-34% of occurrences did not match a temperature extreme event. Specifically, CWT and CN extremes were more clearly associated to climate than CD, which presented a bias to track cold extremes. Dendroanatomical analysis, coupled to high-quality daily-resolved climate records, seems a promising approach to study the effects of extreme events on trees

  2. Is there a trend in extremely high river temperature for the next decades? A case study for France

    NASA Astrophysics Data System (ADS)

    Huguet, F.; Parey, S.; Dacunha-Castelle, D.; Malek, F.

    2008-02-01

    After 2003's summer heat wave, Electricité de France created a global plan called "heat wave-dryness". In this context, the present study tries to estimate high river temperatures for the next decades, taking into account climatic and anthropogenic evolutions. To do it, a specific methodology based on Extreme Value Theory (EVT) is applied. In particular, a trend analysis of water temperature data is done and included in EVT used. The studied river temperatures consist of mean daily temperatures for 27 years measured near the French power plants (between 1977 and 2003), with four series for the Rhône river, four for the Loire river and a few for other rivers. There are also three series of mean daily temperatures computed by a numerical model. For each series, we have applied statistical extreme value modelling. Because of thermal inertia, the Generalized Extreme Value (GEV) distribution is corrected by the medium cluster length, which represents thermal inertia of water during extremely hot events. The μ and σ parameters of the GEV distributions are taken as polynomial or continuous piecewise linear functions of time. The best functions for μ and σ parameters are chosen using Akaike criterion based on likelihood and some physical checking. For all series, the trend is positive for μ and not significant for σ, over the last 27 years. However, we cannot assign this evolution only to the climatic change for the Rhône river because the river temperature is the resultant of several causes: hydraulic or atmospheric, natural or related to the human activity. For the other rivers, the trend for μ could be assigned to the climatic change more clearly. Furthermore, the sample is too short to provide reliable return levels estimations for return periods exceeding thirty years. Still, quantitative return levels could be compared with physical models for example.

  3. Aluminosilicate Formation in High Level Waste Evaporators: A Mechanism for Uranium Accumulation

    SciTech Connect

    Wilmarth, W.R.

    2002-02-08

    High level waste Evaporators at the Savannah River Site (SRS) process radioactive waste to concentrate supernate and thus conserve tank space. In June of 1997, difficulty in evaporator operation was initially observed. This operational difficulty evidenced itself as a plugging of the evaporator's gravity drain line (GDL). The material blocking the GDL was determined to be a sodium aluminosilicate. Following a mechanical cleaning of the GDL, the evaporator was returned to service until October 1999. At this time massive deposits were discovered in the evaporator pot. As a result of the changes in evaporator chemistry and the resulting formation of aluminosilicate deposits in the evaporator, a comprehensive research and development program has been undertaken. This program is underway in order to assist in understanding the new evaporator chemistry and gain insight into the deposition phenomena. Key results from testing in FY01 have demonstrated that the chemistry of the evaporator feed favors aluminosilicate formation. Both the reaction kinetics and particle growth of the aluminosilicate material under SRS evaporator conditions has been demonstrated to occur within the residence times utilized in the SRS evaporator operation. Batch and continuous-flow experiments at known levels of supersaturation have shown a significant correlation between the deposition of aluminosilicates and mixing intensity in the vessel. Advances in thermodynamic modeling of the evaporator chemistry have been accomplished. The resulting thermodynamic model has been related to the operational history of the evaporator, is currently assisting in feed selection, and could potentially assist in expanding the operating envelopes technical baselines for evaporator operation.

  4. Identification and differential accumulation of two isoforms of the CF1-beta subunit under high light stress in Brassica rapa.

    PubMed

    Jiao, Shunxing; Hilaire, Emmanuel; Guikema, James A

    2004-12-01

    The chloroplast ATP synthase coupling factor CF1 complex contains five nonidentical subunits, alpha, beta, gamma, delta, and epsilon, with a stoichiometry of 3:3:1:1:1. The beta subunit contains the catalytic site for ATP synthesis during photooxidative phosphorylation in the chloroplast. In this study, we have identified two isoforms of the CF1-beta subunit at 56 and 54 kDa in the chloroplast of Brassica rapa, through isolation/purification, proteolytic digestion and internal peptide sequencing. Examining their accumulation pattern demonstrates that both isoforms coexist during chloroplast biogenesis and in mature thylakoid membranes, but the 54 kDa isoform is more apparently upregulated by light or under light stress. LiDS-PAGE shows that the 56 kDa is a major isoform of the CF1-beta subunit under normal light conditions, and its amount was not influenced during high light or other light stress treatments. The 54 kDa isoform is a minor band at normal conditions; however, it significantly increased under excess light stresses, such as high or low light with drought and/or high temperature. Particularly, a ninefold increase was observed after 8-10 h of high light treatment with drought and high temperature. The results suggest that light stress induction of the 54 kDa CF1-beta isoform may present a positive response during chloroplast photoacclimation.

  5. Extremely Accessible Potassium Nitrate (KNO3) as the Highly Efficient Electrolyte Additive in Lithium Battery.

    PubMed

    Jia, Weishang; Fan, Cong; Wang, Liping; Wang, Qingji; Zhao, Mingjuan; Zhou, Aijun; Li, Jingze

    2016-06-22

    The systematic investigation of RNO3 salts (R = Li, Na, K, and Cs) as electrolyte additives was carried out for lithium-battery systems. For the first time, the abundant and extremely available KNO3 was proved to be an excellent alternative of LiNO3 for suppression of the lithium dendrites. The reason was ascribed to the possible synergetic effect of K(+) and NO3(-) ions: The positively charged K(+) ion could surround the lithium dendrites by electrostatic attraction and then delay their further growth, while simultaneously the oxidative NO3(-) ion could be reduced and subsequently profitable to the reinforcement of the solid-electrolyte interphase (SEI). By adding KNO3 into the practical Li-S battery, the discharging capacity was enhanced to average 687 mAh g(-1) from the case without KNO3 (528 mAh g(-1)) during 100 cycles, which was comparable to the one with the well-known LiNO3 additive (637 mAh g(-1)) under the same conditions. PMID:27237827

  6. Highly repetitive, extreme-ultraviolet radiation source based on a gas-discharge plasma.

    PubMed

    Bergmann, K; Schriever, G; Rosier, O; Müller, M; Neff, W; Lebert, R

    1999-09-01

    An extreme-ultraviolet (EUV) radiation source near the 13-nm wavelength generated in a small (1.1 J) pinch plasma is presented. The ignition of the plasma occurs in a pseudosparklike electrode geometry, which allows for omitting a switch between the storage capacity and the electrode system and for low inductive coupling of the electrically stored energy to the plasma. Thus energies of only a few joules are sufficient to create current pulses in the range of several kiloamperes, which lead to a compression and a heating of the plasmas to electron densities of more than 10(17) cm(-3) and temperatures of several tens of electron volts, which is necessary for emission in the EUV range. As an example, the emission spectrum of an oxygen plasma in the 11-18-nm range is presented. Transitions of beryllium- and lithium-like oxygen ions can be identified. Current waveform and time-resolved measurements of the EUV emission are discussed. In initial experiments a repetitive operation at nearly 0.2 kHz could be demonstrated. Additionally, the broadband emission of a xenon plasma generated in a 2.2-J discharge is presented.

  7. Extremely Accessible Potassium Nitrate (KNO3) as the Highly Efficient Electrolyte Additive in Lithium Battery.

    PubMed

    Jia, Weishang; Fan, Cong; Wang, Liping; Wang, Qingji; Zhao, Mingjuan; Zhou, Aijun; Li, Jingze

    2016-06-22

    The systematic investigation of RNO3 salts (R = Li, Na, K, and Cs) as electrolyte additives was carried out for lithium-battery systems. For the first time, the abundant and extremely available KNO3 was proved to be an excellent alternative of LiNO3 for suppression of the lithium dendrites. The reason was ascribed to the possible synergetic effect of K(+) and NO3(-) ions: The positively charged K(+) ion could surround the lithium dendrites by electrostatic attraction and then delay their further growth, while simultaneously the oxidative NO3(-) ion could be reduced and subsequently profitable to the reinforcement of the solid-electrolyte interphase (SEI). By adding KNO3 into the practical Li-S battery, the discharging capacity was enhanced to average 687 mAh g(-1) from the case without KNO3 (528 mAh g(-1)) during 100 cycles, which was comparable to the one with the well-known LiNO3 additive (637 mAh g(-1)) under the same conditions.

  8. Electro-optical system for scanning microscopy of extreme ultraviolet masks with a high harmonic generation source.

    PubMed

    Naulleau, Patrick P; Anderson, Christopher N; Anderson, Erik H; Andreson, Nord; Chao, Weilun; Choi, Changhoon; Goldberg, Kenneth A; Gullikson, Eric M; Kim, Seong-Sue; Lee, Donggun; Miyakawa, Ryan; Park, Jongju; Rekawa, Seno; Salmassi, Farhad

    2014-08-25

    A self-contained electro-optical module for scanning extreme ultraviolet (EUV) reflection microscopy at 13.5 nm wavelength has been developed. The system has been designed to work with stand-alone commercially available EUV high harmonic generation (HHG) sources through the implementation of narrowband harmonic selecting multilayers and off-axis elliptical short focal length zoneplates. The module has been successfully integrated into an EUV mask scanning microscope achieving diffraction limited imaging performance (84 nm point spread function). PMID:25321224

  9. Extremely miniaturised and highly complex: the thoracic morphology of the first instar larva of Mengenilla chobauti (Insecta, Strepsiptera).

    PubMed

    Osswald, Judith; Pohl, Hans; Beutel, Rolf Georg

    2010-07-01

    Thoracic structures of the extremely small first instar larva of the strepsipteran species Mengenilla chobauti (ca. 200 microm) were examined, described and reconstructed 3-dimensionally. The focus is on the skeletomuscular system. The characters were compared to conditions found in other insect larvae of very small (Ptiliidae) or large (Dytiscus) size (both Coleoptera) and features of "triungulin" larvae, first instar larvae of Rhipiphoridae, Meloidae (both Coleoptera), and Mantispidae (Neuroptera). The specific lifestyle and the extreme degree of miniaturisation result in numerous thoracic modifications. Many sclerites of the exo- and endoskeleton are reduced. Cervical sclerites, pleural ridges, furcae and spinae are absent. Most of the longitudinal muscles are connected within the thorax, and a pair of ventral longitudinal muscles is present in the pleural region of the meso- and metathorax. This results in a high intersegmental flexibility. Due to the size reduction and the correlated shift of the brain to the thorax, with 94 identified muscles the thoracic musculature appears highly compact. Compared to larger larvae the number of both the individual muscles and the muscle bundles are distinctly reduced. The thorax of the first instar larvae displays many additional strepsipteran autapomorphies. At least partly due to the highly specialised condition, potential synapomorphies with other groups were not found.

  10. Extremely miniaturised and highly complex: the thoracic morphology of the first instar larva of Mengenilla chobauti (Insecta, Strepsiptera).

    PubMed

    Osswald, Judith; Pohl, Hans; Beutel, Rolf Georg

    2010-07-01

    Thoracic structures of the extremely small first instar larva of the strepsipteran species Mengenilla chobauti (ca. 200 microm) were examined, described and reconstructed 3-dimensionally. The focus is on the skeletomuscular system. The characters were compared to conditions found in other insect larvae of very small (Ptiliidae) or large (Dytiscus) size (both Coleoptera) and features of "triungulin" larvae, first instar larvae of Rhipiphoridae, Meloidae (both Coleoptera), and Mantispidae (Neuroptera). The specific lifestyle and the extreme degree of miniaturisation result in numerous thoracic modifications. Many sclerites of the exo- and endoskeleton are reduced. Cervical sclerites, pleural ridges, furcae and spinae are absent. Most of the longitudinal muscles are connected within the thorax, and a pair of ventral longitudinal muscles is present in the pleural region of the meso- and metathorax. This results in a high intersegmental flexibility. Due to the size reduction and the correlated shift of the brain to the thorax, with 94 identified muscles the thoracic musculature appears highly compact. Compared to larger larvae the number of both the individual muscles and the muscle bundles are distinctly reduced. The thorax of the first instar larvae displays many additional strepsipteran autapomorphies. At least partly due to the highly specialised condition, potential synapomorphies with other groups were not found. PMID:19874911

  11. Altered carbon turnover processes and microbiomes in soils under long-term extremely high CO2 exposure.

    PubMed

    Beulig, Felix; Urich, Tim; Nowak, Martin; Trumbore, Susan E; Gleixner, Gerd; Gilfillan, Gregor D; Fjelland, Kristine E; Küsel, Kirsten

    2016-01-01

    There is only limited understanding of the impact of high p(CO2) on soil biomes. We have studied a floodplain wetland where long-term emanations of temperate volcanic CO2 (mofettes) are associated with accumulation of carbon from the Earth's mantle. With an integrated approach using isotope geochemistry, soil activity measurements and multi-omics analyses, we demonstrate that high (nearly pure) CO2 concentrations have strongly affected pathways of carbon production and decomposition and therefore carbon turnover. In particular, a promotion of dark CO2 fixation significantly increased the input of geogenic carbon in the mofette when compared to a reference wetland soil exposed to normal levels of CO2. Radiocarbon analysis revealed that high quantities of mofette soil carbon originated from the assimilation of geogenic CO2 (up to 67%) via plant primary production and subsurface CO2 fixation. However, the preservation and accumulation of almost undegraded organic material appeared to be facilitated by the permanent exclusion of meso- to macroscopic eukaryotes and associated physical and/or ecological traits rather than an impaired biochemical potential for soil organic matter decomposition. Our study shows how CO2-induced changes in diversity and functions of the soil community can foster an unusual biogeochemical profile. PMID:27571979

  12. Altered carbon turnover processes and microbiomes in soils under long-term extremely high CO2 exposure.

    PubMed

    Beulig, Felix; Urich, Tim; Nowak, Martin; Trumbore, Susan E; Gleixner, Gerd; Gilfillan, Gregor D; Fjelland, Kristine E; Küsel, Kirsten

    2016-01-01

    There is only limited understanding of the impact of high p(CO2) on soil biomes. We have studied a floodplain wetland where long-term emanations of temperate volcanic CO2 (mofettes) are associated with accumulation of carbon from the Earth's mantle. With an integrated approach using isotope geochemistry, soil activity measurements and multi-omics analyses, we demonstrate that high (nearly pure) CO2 concentrations have strongly affected pathways of carbon production and decomposition and therefore carbon turnover. In particular, a promotion of dark CO2 fixation significantly increased the input of geogenic carbon in the mofette when compared to a reference wetland soil exposed to normal levels of CO2. Radiocarbon analysis revealed that high quantities of mofette soil carbon originated from the assimilation of geogenic CO2 (up to 67%) via plant primary production and subsurface CO2 fixation. However, the preservation and accumulation of almost undegraded organic material appeared to be facilitated by the permanent exclusion of meso- to macroscopic eukaryotes and associated physical and/or ecological traits rather than an impaired biochemical potential for soil organic matter decomposition. Our study shows how CO2-induced changes in diversity and functions of the soil community can foster an unusual biogeochemical profile.

  13. High dose of Garcinia cambogia is effective in suppressing fat accumulation in developing male Zucker obese rats, but highly toxic to the testis.

    PubMed

    Saito, M; Ueno, M; Ogino, S; Kubo, K; Nagata, J; Takeuchi, M

    2005-03-01

    We investigated the ability of Garcinia cambogia extract containing (-)-hydroxycitric acid (HCA) to suppress body fat accumulation in developing male Zucker obese (fa/fa) rats. We also examined histopathologically the safety of its high doses. Diets containing different levels of HCA (0, 10, 51, 102 and 154 mmol/kg diet) were fed to 6-week-old rats for 92 or 93 days. Each diet group was pair-fed to the 154 mmol HCA/kg diet group. Epididymal fat accumulation and histopathological changes in tissues were observed. The highest dose of HCA-containing Garcinia cambogia (154 mmol HCA/kg diet) showed significant suppression of epididymal fat accumulation in developing male Zucker obese rats, compared with the other groups. However, the diets containing 102 mmol HCA/kg diet and higher (778 and 1244 mg HCA/kg BW/d, respectively) caused potent testicular atrophy and toxicity, whereas diets containing 51 mmol HCA/kg diet (389 mg HCA/kg BW/d) or less did not. Accordingly, 51 mmol HCA/kg diet (389 mg HCA/kg BW/d) was deemed to be the no observed adverse effect level (NOAEL). PMID:15680676

  14. Extremely High Thermal Conductivity of Aligned Carbon Nanotube-Polyethylene Composites

    PubMed Central

    Liao, Quanwen; Liu, Zhichun; Liu, Wei; Deng, Chengcheng; Yang, Nuo

    2015-01-01

    The ultra-low thermal conductivity of bulk polymers may be enhanced by combining them with high thermal conductivity materials such as carbon nanotubes. Different from random doping, we find that the aligned carbon nanotube-polyethylene composites has a high thermal conductivity by non-equilibrium molecular dynamics simulations. The analyses indicate that the aligned composite not only take advantage of the high thermal conduction of carbon nanotubes, but enhance thermal conduction of polyethylene chains. PMID:26552843

  15. Fixed-site high-frequency transcutaneous electrical nerve stimulation for treatment of chronic low back and lower extremity pain

    PubMed Central

    Gozani, Shai N

    2016-01-01

    Objective The objective of this study was to determine if fixed-site high-frequency transcutaneous electrical nerve stimulation (FS-TENS) is effective in treating chronic low back and lower extremity pain. Background Transcutaneous electrical nerve stimulation is widely used for treatment of chronic pain. General-purpose transcutaneous electrical nerve stimulation devices are designed for stimulation anywhere on the body and often cannot be used while the user is active or sleeping. FS-TENS devices are designed for placement at a pre-determined location, which enables development of a wearable device for use over extended time periods. Methods Study participants with chronic low back and/or lower extremity pain self-administered an FS-TENS device for 60 days. Baseline, 30-, and 60-day follow-up data were obtained through an online questionnaire. The primary outcome measure was the patient global impression of change. Pain intensity and interference were assessed using the Brief Pain Inventory. Changes in use of concomitant pain medications were evaluated with a single-item global self-rating. Results One hundred and thirty participants were enrolled, with 88 completing the 60-day follow-up questionnaire. Most participants (73.9%) were 50 years of age or older. At baseline, low back pain was identified by 85.3%, lower extremity pain by 71.6%, and upper extremity pain by 62.5%. Participants reported widespread pain, at baseline, with a mean of 3.4 (standard deviation 1.1) pain sites. At the 60-day follow-up, 80.7% of participants reported that their chronic pain had improved and they were classified as responders. Baseline characteristics did not differentiate non-responders from responders. There were numerical trends toward reduced pain interference with walking ability and sleep, and greater pain relief in responders. There was a large difference in use of concomitant pain medications, with 80.3% of responders reporting a reduction compared to 11.8% of non

  16. Cellular cholesterol accumulation modulates high fat high sucrose (HFHS) diet-induced ER stress and hepatic inflammasome activation in the development of non-alcoholic steatohepatitis.

    PubMed

    Bashiri, Amir; Nesan, Dinushan; Tavallaee, Ghazaleh; Sue-Chue-Lam, Ian; Chien, Kevin; Maguire, Graham F; Naples, Mark; Zhang, Jing; Magomedova, Lilia; Adeli, Khosrow; Cummins, Carolyn L; Ng, Dominic S

    2016-07-01

    Non-alcoholic steatohepatitis (NASH), is the form of non-alcoholic fatty liver disease posing risk to progress into serious long term complications. Human and pre-clinical models implicate cellular cholesterol dysregulation playing important role in its development. Mouse model studies suggest synergism between dietary cholesterol and fat in contributing to NASH but the mechanisms remain poorly understood. Our laboratory previously reported the primary importance of hepatic endoplasmic reticulum cholesterol (ER-Chol) in regulating hepatic ER stress by comparing the responses of wild type, Ldlr-/-xLcat+/+ and Ldlr-/-xLcat-/- mice, to a 2% high cholesterol diet (HCD). Here we further investigated the roles of ER-Chol and ER stress in HFHS diet-induced NASH using the same strains. With HFHS diet feeding, both WT and Ldlr-/-xLcat+/+ accumulate ER-Chol in association with ER stress and inflammasome activation but the Ldlr-/-xLcat-/- mice are protected. By contrast, all three strains accumulate cholesterol crystal, in correlation with ER-Chol, albeit less so in Ldlr-/-xLcat-/- mice. By comparison, HCD feeding per se (i) is sufficient to promote steatosis and activate inflammasomes, and (ii) results in dramatic accumulation of cholesterol crystal which is linked to inflammasome activation in Ldlr-/-xLcat-/- mice, independent of ER-Chol. Our data suggest that both dietary fat and cholesterol each independently promote steatosis, cholesterol crystal accumulation and inflammasome activation through distinct but complementary pathways. In vitro studies using palmitate-induced hepatic steatosis in HepG2 cells confirm the key roles by cellular cholesterol in the induction of steatosis and inflammasome activations. These novel findings provide opportunities for exploring a cellular cholesterol-focused strategy for treatment of NASH. PMID:27090939

  17. Extremely deep recreational dives: the risk for carbon dioxide (CO(2)) retention and high pressure neurological syndrome (HPNS).

    PubMed

    Kot, Jacek

    2012-01-01

    Clear differences between professional and recreational deep diving are disappearing, at least when taking into account the types of breathing mixtures (oxygen, nitrox, heliox, and trimix) and range of dive parameters (depth and time). Training of recreational deep divers is conducted at depths of 120-150 metres and some divers dive to 180-200 metres using the same diving techniques. Extremely deep recreational divers go to depths of more than 200 metres, at which depths the physical and chemical properties of breathing gases create some physiological restrictions already known from professional deep diving. One risk is carbon dioxide retention due to limitation of lung ventilation caused by the high density of breathing gas mixture at great depths. This effect can be amplified by the introduction of the additional work of breathing if there is significant external resistance caused by a breathing device. The other risk for deep divers is High Pressure Neurological Syndrome (HPNS) caused by a direct compression effect, presumably on the lipid component of cell membranes of the central nervous system. In deep professional diving, divers use a mixture of helium and oxygen to decrease gas density, and nitrogen is used only in some cases for decreasing the signs and symptoms of HPNS. The same approach with decreasing the nitrogen content in the breathing mixture can also be observed nowadays in deep recreational diving. Moreover, in extremely deep professional diving, hydrogen has been used successfully both for decreasing the density of the breathing gas mixture and amelioration of HPNS signs and symptoms. It is fair to assume that the use of hydrogen will be soon "re-invented" by extremely deep recreational divers. So the scope of modern diving medicine for recreational divers should be expanded also to cover these problems, which previously were assigned exclusively to professional and military divers.

  18. Genetic adaptation to extreme hypoxia: study of high-altitude pulmonary edema in a three-generation Han Chinese family.

    PubMed

    Lorenzo, V Felipe; Yang, Yingzhong; Simonson, Tatum S; Nussenzveig, Roberto; Jorde, Lynn B; Prchal, Josef T; Ge, Ri-Li

    2009-01-01

    Organismal response to hypoxia is essential for critical regulation of erythropoiesis, other physiological functions, and survival. There is evidence of individual variation in response to hypoxia as some but not all of the affected individuals develop polycythemia, and or pulmonary and cerebral edema. A significant population difference in response to hypoxia exist as many highland Tibetan, Ethiopian, and Andean natives developed adaptive mechanisms to extreme hypoxia. A proportion of non-adapted individuals exposed to high altitude develop pulmonary edema (HAPE), pulmonary hypertension, cerebral edema, and extreme polycythemia. The isolation of causative gene(s) responsible for HAPE and other extreme hypoxia complications would provide a rational basis for specific targeted therapy of HAPE, allow its targeted prevention for at-risk populations, and clarify the pathophysiology of other hypoxic maladaptations. The only suggested genetic linkage among unrelated individuals with HAPE has been with endothelial nitric oxide synthase (eNOS) gene. Here we describe a family with multiple members affected with HAPE in three generations. Families with multiple affected members with HAPE have not been described. We first ruled out linkage of HAPE with the eNOS gene. We then performed an analysis of the whole genome using high-density SNP arrays (Affymetrix v5.0) and, assuming a single gene causation of HAPE, ruled out linkage with 34 other candidate genes. Only the HIF2A haplotype was shared by individuals who exhibit the HAPE phenotype, and work on its possible causative role in HAPE is in progress. The small size of our family does not provide sufficient power for a conclusive analysis of linkage. We hope that collaboration with other investigators with access to more HAPE patients will lead to the identification of gene(s) responsible for HAPE and possibly other maladaptive hypoxic complications. PMID:19481479

  19. EXTREMELY RAPID STAR CLUSTER DISRUPTION IN HIGH-SHEAR CIRCUMNUCLEAR STARBURST RINGS: THE UNUSUAL CASE OF NGC 7742

    SciTech Connect

    De Grijs, Richard; Anders, Peter E-mail: anders@pku.edu.cn

    2012-10-10

    All known mass distributions of recently formed star cluster populations resemble a 'universal' power-law function. Here we assess the impact of the extremely disruptive environment in NGC 7742's circumnuclear starburst ring on the early evolution of the galaxy's high-mass ({approx}10{sup 5}-10{sup 7} M{sub Sun }) star cluster population. Surprisingly, and contrary to expectations, at all ages-including the youngest, {approx}< 15 Myr-the cluster mass functions are robustly and verifiably represented by lognormal distributions that resemble those commonly found only for old, evolved globular cluster systems in the local universe. This suggests that the high-shear conditions in the NGC 7742 starburst ring may significantly speed up dynamical star cluster destruction. This enhanced mass-dependent disruption rate at very young ages might be caused by a combination of the starburst ring's high density and the shear caused by the counterrotating gas disk.

  20. Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trap.

    PubMed

    Beiersdorfer, P; Magee, E W; Brown, G V; Hell, N; Träbert, E; Widmann, K

    2014-11-01

    A high-resolution grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for performing very high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Å to above 300 Å. The instrument operates without an entrance slit and focuses the light emitted by highly charged ions located in the roughly 50 μm wide electron beam onto a cryogenically cooled back-illuminated charge-coupled device detector. The measured line widths are below 0.025 Å above 100 Å, and the resolving power appears to be limited by the source size and Doppler broadening of the trapped ions. Comparisons with spectra obtained with existing grating spectrometers show an order of magnitude improvement in spectral resolution.

  1. Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trap

    SciTech Connect

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; Träbert, E.; Widmann, K.; Hell, N.

    2014-11-15

    A high-resolution grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for performing very high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Å to above 300 Å. The instrument operates without an entrance slit and focuses the light emitted by highly charged ions located in the roughly 50 μm wide electron beam onto a cryogenically cooled back-illuminated charge-coupled device detector. The measured line widths are below 0.025 Å above 100 Å, and the resolving power appears to be limited by the source size and Doppler broadening of the trapped ions. Comparisons with spectra obtained with existing grating spectrometers show an order of magnitude improvement in spectral resolution.

  2. High energy density and extreme field physics in the transparent-overdense regime

    SciTech Connect

    Hegelich, Bjorn Manuel; Yin, Kin; Albright, Brian J; Bowers, Kevin J; Gautier, C; Huang, C; Jung, D; Letzring, S; Palaniyappan, S; Shah, R; Wu, H; Fernandez, J. C.; Dromey, B; Henig, A; Horlein, R; Kefer, D.; Tajima, T; Yan, X; Habs, D

    2011-01-31

    Conclusions of this report are: (1) high harmonics generated on solid surfaces are a very versatile source of intense coherent XUV radiation; (2) high harmonics can be used to probe and monitor the interaction of intense femtosecond laser pulses with nm-scale foil targets; (3) direct measurement of target density during relativistic interaction; (4) high harmonics generated with PW-scale short-pulse lasers could serve as unique backlighting sources for a wide range experiments; and (5) Trident can be a test bed to develop such experiments and the required instrumentation.

  3. TFH cells accumulate in mucosal tissues of humanized-DRAG mice and are highly permissive to HIV-1

    PubMed Central

    Allam, Atef; Majji, Sai; Peachman, Kristina; Jagodzinski, Linda; Kim, Jiae; Ratto-Kim, Silvia; Wijayalath, Wathsala; Merbah, Melanie; Kim, Jerome H.; Michael, Nelson L.; Alving, Carl R.; Casares, Sofia; Rao, Mangala

    2015-01-01

    CD4+ T follicular helper cells (TFH) in germinal centers are required for maturation of B-cells. While the role of TFH-cells has been studied in blood and lymph nodes of HIV-1 infected individuals, its role in the mucosal tissues has not been investigated. We show that the gut and female reproductive tract (FRT) of humanized DRAG mice have a high level of human lymphocytes and a high frequency of TFH (CXCR5+PD-1++) and precursor-TFH (CXCR5+PD-1+) cells. The majority of TFH-cells expressed CCR5 and CXCR3 and are the most permissive to HIV-1 infection. A single low-dose intravaginal HIV-1 challenge of humanized DRAG mice results in 100% infectivity with accumulation of TFH-cells mainly in the Peyer’s patches and FRT. The novel finding of TFH-cells in the FRT may contribute to the high susceptibility of DRAG mice to HIV-1 infection. This mouse model thus provides new opportunities to study TFH-cells and to evaluate HIV-1 vaccines. PMID:26034905

  4. Application of high-content image analysis for quantitatively estimating lipid accumulation in oleaginous yeasts with potential for use in biodiesel production.

    PubMed

    Capus, Aurélie; Monnerat, Marianne; Ribeiro, Luiz Carlos; de Souza, Wanderley; Martins, Juliana Lopes; Sant'Anna, Celso

    2016-03-01

    Biodiesel from oleaginous microorganisms is a viable substitute for a fossil fuel. Current methods for microorganism lipid productivity evaluation do not analyze lipid dynamics in single cells. Here, we described a high-content image analysis (HCA) as a promising strategy for screening oleaginous microorganisms for biodiesel production, while generating single-cell lipid dynamics data in large cell density. Rhodotorula slooffiae yeast were grown in standard (CTL) or lipid trigger medium (LTM), and lipid droplet (LD) accumulation was analyzed in deconvolved confocal microscopy images of cells stained with the lipophilic fluorescent Nile red (NR) dye using automated cell and LD segmentation. The 'vesicle segmentation' method yielded valid morphometric results for limited lipid accumulation in smaller LDs (CTL samples) and for high lipid accumulation in larger LDs (LTM samples), and detected LD localization changes. Thus, HCA can be used to analyze the lipid accumulation patterns likely to be encountered in screens for biodiesel production.

  5. Accumulation of soluble sugars in peel at high temperature leads to stay-green ripe banana fruit.

    PubMed

    Yang, Xiaotang; Pang, Xuequn; Xu, Lanying; Fang, Ruiqiu; Huang, Xuemei; Guan, Peijian; Lu, Wangjin; Zhang, Zhaoqi

    2009-01-01

    Bananas (Musa acuminata, AAA group) fail to develop a yellow peel and stay green when ripening at temperatures >24 degrees C. The identification of the mechanisms leading to the development of stay-green ripe bananas has practical value and is helpful in revealing pathways involved in the regulation of chlorophyll (Chl) degradation. In the present study, the Chl degradation pathway was characterized and the progress of ripening and senescence was assessed in banana peel at 30 degrees C versus 20 degrees C, by monitoring relevant gene expression and ripening and senescence parameters. A marked reduction in the expression levels of the genes for Chl b reductase, SGR (Stay-green protein), and pheophorbide a oxygenase was detected for the fruit ripening at 30 degrees C, when compared with fruit at 20 degrees C, indicating that Chl degradation was repressed at 30 degrees C at various steps along the Chl catabolic pathway. The repressed Chl degradation was not due to delayed ripening and senescence, since the fruit at 30 degrees C displayed faster onset of various ripening and senescence symptoms, suggesting that the stay-green ripe bananas are of similar phenotype to type C stay-green mutants. Faster accumulation of high levels of fructose and glucose in the peel at 30 degrees C prompted investigation of the roles of soluble sugars in Chl degradation. In vitro incubation of detached pieces of banana peel showed that the pieces of peel stayed green when incubated with 150 mM glucose or fructose, but turned completely yellow in the absence of sugars or with 150 mM mannitol, at either 20 degrees C or 30 degrees C. The results suggest that accumulation of sugars in the peel induced by a temperature of 30 degrees C may be a major factor regulating Chl degradation independently of fruit senescence. PMID:19700495

  6. Accumulated metal speciation in earthworm populations with multigenerational exposure to metalliferous soils: cell fractionation and high-energy synchrotron analyses.

    PubMed

    Andre, Jane; Charnock, John; Stürzenbaum, Stephen R; Kille, Peter; Morgan, A John; Hodson, Mark E

    2009-09-01

    Predicting metal bioaccumulation and toxicity in soil organisms is complicated by site-specific biotic and abiotic parameters. In this study we exploited tissue fractionation and digestion techniques, combined with X-ray absorption spectroscopy (XAS), to investigate the whole-body and subcellular distributions, ligand affinities, and coordination chemistry of accumulated Pb and Zn in field populations of the epigeic earthworm Lumbricus rubellus inhabiting three contrasting metalliferous and two unpolluted soils. Our main findings were (i) earthworms were resident in soils with concentrations of Pb and Zn ranging from 1200 to 27,000 mg kg(-1) and 200 to 34,000 mg kg(-1), respectively; (ii) Pb and Zn primarily accumulated in the posterior alimentary canal in nonsoluble subcellular fractions of earthworms; (iii) site-specific differences in the tissue and subcellular partitioning profiles of populations were observed, with earthworms from a calcareous site partitioning proportionally more Pb to their anterior body segments and Zn to the chloragosome-rich subcellular fraction than their acidic-soil inhabiting counterparts; (iv) XAS indicated that the interpopulation differences in metal partitioning between organs were not accompanied by qualitative differences in ligand-binding speciation, because crystalline phosphate-containing pyromorphite was a predominant chemical species in the whole-worm tissues of all mine soil residents. Differences in metal (Pb, Zn) partitioning at both organ and cellular levels displayed by field populations with protracted histories of metal exposures may reflect theirinnate ecophysiological responses to essential edaphic variables, such as Ca2+ status. These observations are highly significant in the challenging exercise of interpreting holistic biomarker data delivered by "omic" technologies. PMID:19764255

  7. Millimeter waves or extremely high frequency electromagnetic fields in the environment: what are their effects on bacteria?

    PubMed

    Soghomonyan, Diana; Trchounian, Karen; Trchounian, Armen

    2016-06-01

    Millimeter waves (MMW) or electromagnetic fields of extremely high frequencies at low intensity is a new environmental factor, the level of which is increased as technology advance. It is of interest that bacteria and other cells might communicate with each other by electromagnetic field of sub-extremely high frequency range. These MMW affected Escherichia coli and many other bacteria, mainly depressing their growth and changing properties and activity. These effects were non-thermal and depended on different factors. The significant cellular targets for MMW effects could be water, cell plasma membrane, and genome. The model for the MMW interaction with bacteria is suggested; a role of the membrane-associated proton FOF1-ATPase, key enzyme of bioenergetic relevance, is proposed. The consequences of MMW interaction with bacteria are the changes in their sensitivity to different biologically active chemicals, including antibiotics. Novel data on MMW effects on bacteria and their sensitivity to different antibiotics are presented and discussed; the combined action of MMW and antibiotics resulted with more strong effects. These effects are of significance for understanding changed metabolic pathways and distinguish role of bacteria in environment; they might be leading to antibiotic resistance in bacteria. The effects might have applications in the development of technique, therapeutic practices, and food protection technology. PMID:27087527

  8. Stimulated Raman scattering as an explanation for the extreme high-velocity features of water maser emission

    NASA Astrophysics Data System (ADS)

    Deguchi, Shuji

    1994-01-01

    Extreme high-velocity features in the water maser spectra with velocity shifts of about +/- 900 km/s have recently been detected in the extragalactic water maser source, NGC 4258. We explain these extreme high-velocity features of water masers by stimulated Raman scattering in the plasma of the electron density of about 106-107/cu cm. For the Raman masers to occur, the brightness temperature of the original masers must be greater than about 1016-1019 K (depending on the maser beam solid angles, etc.), and the amplification path length of the maser must be about 3 x 1014 cm. We show that the frequency-downshifted (Stokes) photons are produced by the backward scattering and that upshifted (anti-Stokes) photons are created by interacting intersecting masers in the plasma. The intensity of the upshifted component is slightly lower than the intensity of the downshifted component. Time variations of upshifted and downshifted features must be independent. A crucial test for the Raman maser model is proposed.

  9. Millimeter waves or extremely high frequency electromagnetic fields in the environment: what are their effects on bacteria?

    PubMed

    Soghomonyan, Diana; Trchounian, Karen; Trchounian, Armen

    2016-06-01

    Millimeter waves (MMW) or electromagnetic fields of extremely high frequencies at low intensity is a new environmental factor, the level of which is increased as technology advance. It is of interest that bacteria and other cells might communicate with each other by electromagnetic field of sub-extremely high frequency range. These MMW affected Escherichia coli and many other bacteria, mainly depressing their growth and changing properties and activity. These effects were non-thermal and depended on different factors. The significant cellular targets for MMW effects could be water, cell plasma membrane, and genome. The model for the MMW interaction with bacteria is suggested; a role of the membrane-associated proton FOF1-ATPase, key enzyme of bioenergetic relevance, is proposed. The consequences of MMW interaction with bacteria are the changes in their sensitivity to different biologically active chemicals, including antibiotics. Novel data on MMW effects on bacteria and their sensitivity to different antibiotics are presented and discussed; the combined action of MMW and antibiotics resulted with more strong effects. These effects are of significance for understanding changed metabolic pathways and distinguish role of bacteria in environment; they might be leading to antibiotic resistance in bacteria. The effects might have applications in the development of technique, therapeutic practices, and food protection technology.

  10. Extremely High Brightness from Polymer-Encapsulated Quantum Dots for Two-photon Cellular and Deep-tissue Imaging

    PubMed Central

    Fan, Yanyan; Liu, Helin; Han, Rongcheng; Huang, Lu; Shi, Hao; Sha, Yinlin; Jiang, Yuqiang

    2015-01-01

    Materials possessing high two photon absorption (TPA) are highly desirable for a range of fields, such as three-dimensional data storage, TP microscopy (TPM) and photodynamic therapy (PDT). Specifically, for TPM, high TP excitation (TPE) brightness (σ × ϕ, where σ is TPA cross-sections and ϕ is fluorescence quantum yield), excellent photostability and minimal cytotoxicity are highly desirable. However, when TPA materials are transferred to aqueous media through molecule engineering or nanoparticle formulation, they usually suffer from the severely decrease of quantum yield (QY). Here, we report a convenient and efficient method for preparing polymer-encapsulated quantum dots (P-QD). Interestingly, the QY was considerably enhanced from original 0.33 (QDs in THF) to 0.84 (P-QD in water). This dramatic enhancement in QY is mainly from the efficiently blocking nonradiative decay pathway from the surface trap states, according to the fluorescence decay lifetimes analysis. The P-QD exhibits extremely high brightness (σ × ϕ up to 6.2 × 106 GM), high photostability, excellent colloidal stability and minimal cytotoxicity. High quality cellular TP imaging with high signal-to-background ratio (> 100) and tissue imaging with a penetration depth of 2200 μm have been achieved with P-QD as probe. PMID:25909393

  11. Venus High Temperature Atmospheric Dropsonde and Extreme-Environment Seismometer (HADES)

    NASA Technical Reports Server (NTRS)

    Boll, Nathan J.; Salazar, Denise; Stelter, Christopher J.; Landis, Geoffrey A.; Colozza, Anthony J.

    2014-01-01

    The atmospheric composition and geologic structure of Venus have been identified by the US National Research Council's Decadal Survey for Planetary Science as priority targets for scientific exploration, however the high temperature and pressure at the surface, along with the highly corrosive chemistry of the Venus atmosphere, present significant obstacles to spacecraft design that have severely limited past and proposed landed missions. Following the methodology of the NASA Innovative Advanced Concepts (NIAC) proposal regime and the Collaborative Modeling and Parametric Assessment of Space Systems (COMPASS) design protocol, this paper presents a conceptual study and initial feasibility analysis for a Discovery-class Venus lander capable of an extended-duration mission at ambient temperature and pressure, incorporating emerging technologies within the field of high temperature electronics in combination with novel configurations of proven, high Technology Readiness Level (TRL) systems. Radioisotope Thermal Power (RTG) systems and silicon carbide (SiC) communications and data handling are examined in detail, and various high-temperature instruments are proposed, including a seismometer and an advanced photodiode imager. The study combines this technological analysis with proposals for a descent instrument package and a relay orbiter to demonstrate the viability of an integrated atmospheric and in-situ geologic exploratory mission that differs from previous proposals by greatly reducing the mass, power requirements, and cost, while achieving important scientific goals.

  12. Venus high temperature atmospheric dropsonde and extreme-environment seismometer (HADES)

    NASA Astrophysics Data System (ADS)

    Boll, Nathan J.; Salazar, Denise; Stelter, Christopher J.; Landis, Geoffrey A.; Colozza, Anthony J.

    2015-06-01

    The atmospheric composition and geologic structure of Venus have been identified by the US National Research Council's Decadal Survey for Planetary Science as priority targets for scientific exploration; however, the high temperature and pressure at the surface, along with the highly corrosive chemistry of the Venus atmosphere, present significant obstacles to spacecraft design that have severely limited past and proposed landed missions. Following the methodology of the NASA Innovative Advanced Concepts (NIAC) proposal regime and the Collaborative Modeling and Parametric Assessment of Space Systems (COMPASS) design protocol, this paper presents a conceptual study and initial feasibility analysis for a Discovery-class Venus lander capable of an extended-duration mission at ambient temperature and pressure, incorporating emerging technologies within the field of high temperature electronics in combination with novel configurations of proven, high Technology Readiness Level (TRL) systems. Radioisotope Thermal Power (RTG) systems and silicon carbide (SiC) communications and data handling are examined in detail, and various high-temperature instruments are proposed, including a seismometer and an advanced photodiode imager. The study combines this technological analysis with proposals for a descent instrument package and a relay orbiter to demonstrate the viability of an integrated atmospheric and in-situ geologic exploratory mission that differs from previous proposals by greatly reducing the mass, power requirements, and cost, while achieving important scientific goals.

  13. A two-stage enzymatic process for synthesis of extremely pure high oleic glycerol monooleate.

    PubMed

    Zhu, Qisi; Li, Tie; Wang, Yonghua; Yang, Bo; Ma, Yongjun

    2011-02-01

    This paper presents a research interest concentrating on aims to establish a feasible industrial process for enzymatic production of highly pure glycerol monooleate (GMO). The synthesis of high oleic glycerol monooleate by enzymatic glycerolysis of high oleic sunflower oil, using Novozyme 435 as the biocatalyst, in a binary solvent mixture of tert-butanol and tert-pentanol (80/20, v/v), at a lab scale has been studied. A yield of 75.31% monoacylglycerol has been achieved at the first stage. A yield of 93.3% GMO was finally reached after further purification at the second stage. To evaluate the possibility of the process for industrialization, production of GMO was performed at a pilot-plant scale under the correspondingly adjusted conditions. A yield of 68.17% and 93.4% of GMO was obtained, respectively, at the end of the three stages.

  14. High genetic diversity in a potentially vulnerable tropical tree species despite extreme habitat loss.

    PubMed

    Noreen, Annika M E; Webb, Edward L

    2013-01-01

    Over the last 150 years, Singapore's primary forest has been reduced to less than 0.2% of its previous area, resulting in extinctions of native flora and fauna. Remaining species may be threatened by genetic erosion and inbreeding. We surveyed >95% of the remaining primary forest in Singapore and used eight highly polymorphic microsatellite loci to assess genetic diversity indices of 179 adults (>30 cm stem diameter), 193 saplings (>1 yr), and 1,822 seedlings (<1 yr) of the canopy tree Koompassia malaccensis (Fabaceae). We tested hypotheses relevant to the genetic consequences of habitat loss: (1) that the K. malaccensis population in Singapore experienced a genetic bottleneck and a reduction in effective population size, and (2) K. malaccensis recruits would exhibit genetic erosion and inbreeding compared to adults. Contrary to expectations, we detected neither a population bottleneck nor a reduction in effective population size, and high genetic diversity in all age classes. Genetic diversity indices among age classes were not significantly different: we detected overall high expected heterozygosity (He = 0.843-0.854), high allelic richness (R = 16.7-19.5), low inbreeding co-efficients (FIS = 0.013-0.076), and a large proportion (30.1%) of rare alleles (i.e. frequency <1%). However, spatial genetic structure (SGS) analyses showed significant differences between the adults and the recruits. We detected significantly greater SGS intensity, as well as higher relatedness in the 0-10 m distance class, for seedlings and saplings compared to the adults. Demographic factors for this population (i.e. <200 adult trees) are a cause for concern, as rare alleles could be lost due to stochastic factors. The high outcrossing rate (tm = 0.961), calculated from seedlings, may be instrumental in maintaining genetic diversity and suggests that pollination by highly mobile bee species in the genus Apis may provide resilience to acute habitat loss. PMID:24367531

  15. High genetic diversity in a potentially vulnerable tropical tree species despite extreme habitat loss.

    PubMed

    Noreen, Annika M E; Webb, Edward L

    2013-01-01

    Over the last 150 years, Singapore's primary forest has been reduced to less than 0.2% of its previous area, resulting in extinctions of native flora and fauna. Remaining species may be threatened by genetic erosion and inbreeding. We surveyed >95% of the remaining primary forest in Singapore and used eight highly polymorphic microsatellite loci to assess genetic diversity indices of 179 adults (>30 cm stem diameter), 193 saplings (>1 yr), and 1,822 seedlings (<1 yr) of the canopy tree Koompassia malaccensis (Fabaceae). We tested hypotheses relevant to the genetic consequences of habitat loss: (1) that the K. malaccensis population in Singapore experienced a genetic bottleneck and a reduction in effective population size, and (2) K. malaccensis recruits would exhibit genetic erosion and inbreeding compared to adults. Contrary to expectations, we detected neither a population bottleneck nor a reduction in effective population size, and high genetic diversity in all age classes. Genetic diversity indices among age classes were not significantly different: we detected overall high expected heterozygosity (He = 0.843-0.854), high allelic richness (R = 16.7-19.5), low inbreeding co-efficients (FIS = 0.013-0.076), and a large proportion (30.1%) of rare alleles (i.e. frequency <1%). However, spatial genetic structure (SGS) analyses showed significant differences between the adults and the recruits. We detected significantly greater SGS intensity, as well as higher relatedness in the 0-10 m distance class, for seedlings and saplings compared to the adults. Demographic factors for this population (i.e. <200 adult trees) are a cause for concern, as rare alleles could be lost due to stochastic factors. The high outcrossing rate (tm = 0.961), calculated from seedlings, may be instrumental in maintaining genetic diversity and suggests that pollination by highly mobile bee species in the genus Apis may provide resilience to acute habitat loss.

  16. High-pressure water-gun injection injuries to the extremities. A report of six cases.

    PubMed

    Weltmer, J B; Pack, L L

    1988-09-01

    High-pressure water-gun injection injuries are different from injection injuries that are caused by other agents, in that they are associated with extensive subcutaneous emphysema but only slight soft-tissue inflammation or destruction. The cases of six patients who had such an injury were reviewed. It was found that local irrigation and débridement, together with a short course of penicillin or a broad-spectrum cephalosporin, resulted in complete recovery from this relatively benign variant of high-pressure injection injury. PMID:2901420

  17. High-pressure water-gun injection injuries to the extremities. A report of six cases.

    PubMed

    Weltmer, J B; Pack, L L

    1988-09-01

    High-pressure water-gun injection injuries are different from injection injuries that are caused by other agents, in that they are associated with extensive subcutaneous emphysema but only slight soft-tissue inflammation or destruction. The cases of six patients who had such an injury were reviewed. It was found that local irrigation and débridement, together with a short course of penicillin or a broad-spectrum cephalosporin, resulted in complete recovery from this relatively benign variant of high-pressure injection injury.

  18. Highly selective etching of SnO2 absorber in binary mask structure for extreme ultra-violet lithography.

    PubMed

    Lee, Soo Jin; Jung, Chang Yong; Park, Sung Jin; Hwangbo, Chang Kweun; Seo, Hwan Seok; Kim, Sung Soo; Lee, Nae-Eung

    2012-04-01

    Among the core EUVL (extreme ultra-violet lithography) technologies for nanoscale patterning below the 30 nm node for Si chip manufacturing, new materials and fabrication processes for high-performance EUVL masks are of considerable importance due to the use of new reflective optics. In this work, the selective etching of SnO2 (tin oxide) as a new absorber material, with high EUV absorbance due to its large extinction coefficient, for the binary mask structure of SnO2 (absorber layer)/Ru (capping/etch stop layer)/Mo-Si multilayer (reflective layer)/Si (substrate), was investigated. Because infinitely high selectivity of the SnO2 layer to the Ru ESL is required due to the ultrathin nature of the Ru layer, various etch parameters were assessed in the inductively coupled Cl2/Ar plasmas in order to find the process window required for infinitely high etch selectivity of the SnO2 layer. The results showed that the gas flow ratio and V(dc) value play an important role in determining the process window for the infinitely high etch selectivity of SnO2 to Ru ESL. The high EUV-absorbance SnO2 layer, patternable by a dry process, allows a smaller absorber thickness, which can mitigate the geometric shadowing effects observed for high-performance binary EUVL masks.

  19. Lyman Break Analogs: Constraints on the Formation of Extreme Starbursts at Low and High Redshift

    NASA Technical Reports Server (NTRS)

    Goncalves, Thiago S.; Overzier, Roderik; Basu-Zych, Antara; Martin, D. Christopher

    2011-01-01

    Lyman Break Analogs (LBAs), characterized by high far-UV luminosities and surface brightnesses as detected by GALEX, are intensely star-forming galaxies in the low-redshift universe (z approximately equal to 0.2), with star formation rates reaching up to 50 times that of the Milky Way. These objects present metallicities, morphologies and other physical properties similar to higher redshift Lyman Break Galaxies (LBGs), motivating the detailed study of LBAs as local laboratories of this high-redshift galaxy population. We present results from our recent integral-field spectroscopy survey of LBAs with Keck/OSIRIS, which shows that these galaxies have the same nebular gas kinematic properties as high-redshift LBGs. We argue that such kinematic studies alone are not an appropriate diagnostic to rule out merger events as the trigger for the observed starburst. Comparison between the kinematic analysis and morphological indices from HST imaging illustrates the difficulties of properly identifying (minor or major) merger events, with no clear correlation between the results using either of the two methods. Artificial redshifting of our data indicates that this problem becomes even worse at high redshift due to surface brightness dimming and resolution loss. Whether mergers could generate the observed kinematic properties is strongly dependent on gas fractions in these galaxies. We present preliminary results of a CARMA survey for LBAs and discuss the implications of the inferred molecular gas masses for formation models.

  20. Effect of High Temperature on Extreme Substrate Acidification by Geranium (Pelargonium x hortorum Bailey)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cause of sudden substrate pH decline by geranium is unknown and previous reports suggest it may be due to high temperature. The first of 2 experiments compared plants grown at 4 temperatures (14/10, 18/14, 22/18 and 26/22º C day/night). With increasing increments of temperature, substrate pH de...

  1. STEM High School Teaching Enhancement through Collaborative Engineering Research on Extreme Winds

    ERIC Educational Resources Information Center

    Reynolds, Danielle; Yazdani, Nur; Manzur, Tanvir

    2013-01-01

    The Research Experiences for Teachers (RET) program on Hazard Mitigation at the University of Texas at Arlington (UT Arlington) involved area high school STEM teachers in engineering research with faculty and graduate students. The primary objective of the project was to train participating teachers in inquiry based research learning, research…

  2. Butyrylcholinesterase Deficiency Promotes Adipose Tissue Growth and Hepatic Lipid Accumulation in Male Mice on High-Fat Diet.

    PubMed

    Chen, Vicky Ping; Gao, Yang; Geng, Liyi; Stout, Michael B; Jensen, Michael D; Brimijoin, Stephen

    2016-08-01

    Despite numerous reports of relationships between weight gain and butyrylcholinesterase (BChE), this enzyme's role in the genesis of obesity remains unclear, but recent research points to strong links with ghrelin, the "hunger hormone." The availability of BChE knockout (KO) mice provides an opportunity to clarify the causal relationship between BChE and obesity onset. We now find that young KO mice have abnormally high plasma ghrelin levels that slowly decline during long-term high-fat feeding and ultimately drop below those in wild-type mice. On such a diet, the KO mice gained notably more weight, more white fat, and more hepatic fat than wild-type animals. In addition to a greater burden of hepatic triglycerides, the livers of these KO mice show distinctly higher levels of inflammatory markers. Finally, their energy expenditure proved to be lower than in wild-type mice despite similar activity levels and increased caloric intake. A gene transfer of mouse BChE with adeno-associated virus vector restored nearly all aspects of the normal phenotype. Our results indicate that BChE strongly affects fat metabolism, has an important impact on fat accumulation, and may be a promising tool for combating obesity. PMID:27300766

  3. Accumulation of high-value lipids in single-cell microorganisms: a mechanistic approach and future perspectives.

    PubMed

    Garay, Luis A; Boundy-Mills, Kyria L; German, J Bruce

    2014-04-01

    In recent years attention has been focused on the utilization of microorganisms as alternatives for industrial and nutritional applications. Considerable research has been devoted to techniques for growth, extraction, and purification of high-value lipids for their use as biofuels and biosurfactants as well as high-value metabolites for nutrition and health. These successes argue that the elucidation of the mechanisms underlying the microbial biosynthesis of such molecules, which are far from being completely understood, now will yield spectacular opportunities for industrial scale biomolecular production. There are important additional questions to be solved to optimize the processing strategies to take advantage of the assets of microbial lipids. The present review describes the current state of knowledge regarding lipid biosynthesis, accumulation, and transport mechanisms present in single-cell organisms, specifically yeasts, microalgae, bacteria, and archaea. Similarities and differences in biochemical pathways and strategies of different microorganisms provide a diverse toolset to the expansion of biotechnologies for lipid production. This paper is intended to inspire a generation of lipid scientists to insights that will drive the biotechnologies of microbial production as uniquely enabling players of lipid biotherapeutics, biofuels, biomaterials, and other opportunity areas into the 21st century. PMID:24628496

  4. Accumulation of High-Value Lipids in Single-Cell Microorganisms: A Mechanistic Approach and Future Perspectives

    PubMed Central

    2015-01-01

    In recent years attention has been focused on the utilization of microorganisms as alternatives for industrial and nutritional applications. Considerable research has been devoted to techniques for growth, extraction, and purification of high-value lipids for their use as biofuels and biosurfactants as well as high-value metabolites for nutrition and health. These successes argue that the elucidation of the mechanisms underlying the microbial biosynthesis of such molecules, which are far from being completely understood, now will yield spectacular opportunities for industrial scale biomolecular production. There are important additional questions to be solved to optimize the processing strategies to take advantage of the assets of microbial lipids. The present review describes the current state of knowledge regarding lipid biosynthesis, accumulation, and transport mechanisms present in single-cell organisms, specifically yeasts, microalgae, bacteria, and archaea. Similarities and differences in biochemical pathways and strategies of different microorganisms provide a diverse toolset to the expansion of biotechnologies for lipid production. This paper is intended to inspire a generation of lipid scientists to insights that will drive the biotechnologies of microbial production as uniquely enabling players of lipid biotherapeutics, biofuels, biomaterials, and other opportunity areas into the 21st century. PMID:24628496

  5. High-latitude regions of Siberia and Northeast Russia in the Paleogene: Stratigraphy, flora, climate, coal accumulation

    NASA Astrophysics Data System (ADS)

    Akhmetiev, M. A.

    2015-07-01

    The geological structure and development history of superposed depressions on the Arctic coast of East Siberia and Bering Sea region (Chukotka, Koryakiya, northern Kamchatka) in the Early Paleogene are considered with the analysis of their flora and climatic parameters. The paleofloral analysis revealed thermophilic assemblages that reflect phases of maximum warming at the Paleocene-Eocene transition and in the Early Eocene. The appearance of thermophilic plants (Magnoliaceae, Myrtaceae, Lauraceae, Araliaceae, Loranthaceae, and others) in the Siberian segment of the Arctic region is explained by the stable atmospheric heat transfer from the Tethys to higher latitudes and absence of the latitudinal orographic barrier (Alpine-Himalayan belt). The plants migrated to high latitudes also along the meridional seaway that connected the Tethys with the Arctic Ocean via marine basins of the Eastern Paratethys, Turgai Strait, and West Siberia. The migration from the American continent was realized along the southern coast of Beringia under influence of a warm current flowing from low latitudes along the western coast of North America. The palm genus Sabal migrated to northern Kamchatka and Koryakiya precisely in this way via southern Alaska. In the Oligocene, shallow-water marine sediments in high-latitude regions were replaced by terrestrial facies. The Late Oligocene was marked by maximum cooling. Coal accumulation in Northeast Russia through the Paleogene is reviewed.

  6. The Effects of Wearing High Heels while Pressing a Car Accelerator Pedal on Lower Extremity Muscle Activation.

    PubMed

    Jung, Jaemin; Lee, Sang-Yeol

    2014-11-01

    [Purpose] The purpose of this study was to determine the effects of wearing high heels while driving on lower extremity muscle activation. [Subjects] The subjects of this experimental study were 14 healthy women in their 20s who normally wear shoes with high heels. [Methods] The subjects were asked to place their shoes on an accelerator pedal with the heel touching the floor and then asked to press the pedal with as much pressure as possible for 3 seconds before removing their feet from the pedal. A total of 3 measurements were taken for each heel height (flat, 5 cm, 7 cm), and the heel height was randomly selected. [Results] The levels of muscle activity, indicated as the percentage of reference voluntary contraction, for gastrocnemius muscle in the flat, 5 cm, and 7 cm shoes were 180.8±61.8%, 285.4±122.3%, and 366.2±193.7%, respectively, and there were significant differences between groups. Those for the soleus muscle were 477.3±209.2%, 718.8±380.5%, and 882.4±509.9%, and there were significant differences between groups. [Conclusion] To summarize the results of this study, it was found that female drivers require greater lower extremity muscle activation when wearing high heels than when wearing low heels. Furthermore, instability and muscle fatigue of the ankle joint, which results from wearing high heels on a daily basis, could also occur while driving.

  7. Cyanopyridine Based Bipolar Host Materials for Green Electrophosphorescence with Extremely Low Turn-On Voltages and High Power Efficiencies.

    PubMed

    Li, Wei; Li, Jiuyan; Liu, Di; Li, Deli; Wang, Fang

    2016-08-24

    Low driving voltage and high power efficiency are basic requirements when practical applications of organic light emitting diodes (OLEDs) in displays and lighting are considered. Two novel host materials m-PyCNmCP and 3-PyCNmCP incorporating cyanopyridine moiety as electron-transporting unit are developed for use in fac-tris(2-phenylpyridine)iridium(III) (Ir(ppy)3) based green phosphorescent OLEDs (PhOLEDs). Extremely low turn-on voltages of 2.01 and 2.27 V are realized, which are even lower than the theoretical limit of the emitted photon energy (hv)/electron charge (e) (2.37 V) of Ir(ppy)3. High power efficiency of 101.4 lm/W (corresponding to a maximum external quantum efficiency of 18.4%) and 119.3 lm/W (24.7%) are achieved for m-PyCNmCP and 3-PyCNmCP based green PhOLEDs. The excellent EL performance benefits from the ideal parameters of host materials by combining cyano and pyridine to enhance the n-type feature. The energetic favorable alignment of HOMO/LUMO levels of hosts with adjacent layers and the dopant for easy charge injections and direct charge trapping by dopant, their bipolar feature to balance charge transportations, sufficiently high triplet energy and small singlet/triplet energy difference (0.38 and 0.43 eV) combine to be responsible for the extremely low driving voltages and high power efficiencies of the green PhOLEDs. PMID:27479511

  8. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS FROM SDSS/SEGUE. I. ATMOSPHERIC PARAMETERS AND CHEMICAL COMPOSITIONS

    SciTech Connect

    Aoki, Wako; Suda, Takuma; Beers, Timothy C.; Lee, Young Sun; Honda, Satoshi; Ito, Hiroko; Takada-Hidai, Masahide; Frebel, Anna; Fujimoto, Masayuki Y.; Carollo, Daniela; Sivarani, Thirupathi E-mail: takuma.suda@nao.ac.jp E-mail: lee@pa.msu.edu E-mail: hidai@apus.rh.u-tokai.ac.jp E-mail: fujimoto@astro1.sci.hokudai.ac.jp E-mail: sivarani@iiap.res.in

    2013-01-01

    Chemical compositions are determined based on high-resolution spectroscopy for 137 candidate extremely metal-poor (EMP) stars selected from the Sloan Digital Sky Survey (SDSS) and its first stellar extension, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). High-resolution spectra with moderate signal-to-noise (S/N) ratios were obtained with the High Dispersion Spectrograph of the Subaru Telescope. Most of the sample (approximately 80%) are main-sequence turnoff stars, including dwarfs and subgiants. Four cool main-sequence stars, the most metal-deficient such stars known, are included in the remaining sample. Good agreement is found between effective temperatures estimated by the SEGUE stellar parameter pipeline, based on the SDSS/SEGUE medium-resolution spectra, and those estimated from the broadband (V - K){sub 0} and (g - r){sub 0} colors. Our abundance measurements reveal that 70 stars in our sample have [Fe/H] < -3, adding a significant number of EMP stars to the currently known sample. Our analyses determine the abundances of eight elements (C, Na, Mg, Ca, Ti, Cr, Sr, and Ba) in addition to Fe. The fraction of carbon-enhanced metal-poor stars ([C/Fe] > +0.7) among the 25 giants in our sample is as high as 36%, while only a lower limit on the fraction (9%) is estimated for turnoff stars. This paper is the first of a series of papers based on these observational results. The following papers in this series will discuss the higher-resolution and higher-S/N observations of a subset of this sample, the metallicity distribution function, binarity, and correlations between the chemical composition and kinematics of extremely metal-poor stars.

  9. High Genetic Diversity in a Potentially Vulnerable Tropical Tree Species Despite Extreme Habitat Loss

    PubMed Central

    Noreen, Annika M. E.; Webb, Edward L.

    2013-01-01

    Over the last 150 years, Singapore’s primary forest has been reduced to less than 0.2% of its previous area, resulting in extinctions of native flora and fauna. Remaining species may be threatened by genetic erosion and inbreeding. We surveyed >95% of the remaining primary forest in Singapore and used eight highly polymorphic microsatellite loci to assess genetic diversity indices of 179 adults (>30 cm stem diameter), 193 saplings (>1 yr), and 1,822 seedlings (<1 yr) of the canopy tree Koompassia malaccensis (Fabaceae). We tested hypotheses relevant to the genetic consequences of habitat loss: (1) that the K. malaccensis population in Singapore experienced a genetic bottleneck and a reduction in effective population size, and (2) K. malaccensis recruits would exhibit genetic erosion and inbreeding compared to adults. Contrary to expectations, we detected neither a population bottleneck nor a reduction in effective population size, and high genetic diversity in all age classes. Genetic diversity indices among age classes were not significantly different: we detected overall high expected heterozygosity (He = 0.843–0.854), high allelic richness (R = 16.7–19.5), low inbreeding co-efficients (FIS = 0.013–0.076), and a large proportion (30.1%) of rare alleles (i.e. frequency <1%). However, spatial genetic structure (SGS) analyses showed significant differences between the adults and the recruits. We detected significantly greater SGS intensity, as well as higher relatedness in the 0–10 m distance class, for seedlings and saplings compared to the adults. Demographic factors for this population (i.e. <200 adult trees) are a cause for concern, as rare alleles could be lost due to stochastic factors. The high outcrossing rate (tm = 0.961), calculated from seedlings, may be instrumental in maintaining genetic diversity and suggests that pollination by highly mobile bee species in the genus Apis may provide resilience to acute habitat loss. PMID

  10. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard.

    PubMed

    Semenchuk, Philipp R; Elberling, Bo; Cooper, Elisabeth J

    2013-08-01

    The High Arctic winter is expected to be altered through ongoing and future climate change. Winter precipitation and snow depth are projected to increase and melt out dates change accordingly. Also, snow cover and depth will play an important role in protecting plant canopy from increasingly more frequent extreme winter warming events. Flower production of many Arctic plants is dependent on melt out timing, since season length determines resource availability for flower preformation. We erected snow fences to increase snow depth and shorten growing season, and counted flowers of six species over 5 years, during which we experienced two extreme winter warming events. Most species were resistant to snow cover increase, but two species reduced flower abundance due to shortened growing seasons. Cassiope tetragona responded strongly with fewer flowers in deep snow regimes during years without extreme events, while Stellaria crassipes responded partly. Snow pack thickness determined whether winter warming events had an effect on flower abundance of some species. Warming events clearly reduced flower abundance in shallow but not in deep snow regimes of Cassiope tetragona, but only marginally for Dryas octopetala. However, the affected species were resilient and individuals did not experience any long term effects. In the case of short or cold summers, a subset of species suffered reduced reproductive success, which may affect future plant composition through possible cascading competition effects. Extreme winter warming events were shown to expose the canopy to cold winter air. The following summer most of the overwintering flower buds could not produce flowers. Thus reproductive success is reduced if this occurs in subsequent years. We conclude that snow depth influences flower abundance by altering season length and by protecting or exposing flower buds to cold winter air, but most species studied are resistant to changes. Winter warming events, often occurring

  11. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard

    PubMed Central

    Semenchuk, Philipp R; Elberling, Bo; Cooper, Elisabeth J

    2013-01-01

    Abstract The High Arctic winter is expected to be altered through ongoing and future climate change. Winter precipitation and snow depth are projected to increase and melt out dates change accordingly. Also, snow cover and depth will play an important role in protecting plant canopy from increasingly more frequent extreme winter warming events. Flower production of many Arctic plants is dependent on melt out timing, since season length determines resource availability for flower preformation. We erected snow fences to increase snow depth and shorten growing season, and counted flowers of six species over 5 years, during which we experienced two extreme winter warming events. Most species were resistant to snow cover increase, but two species reduced flower abundance due to shortened growing seasons. Cassiope tetragona responded strongly with fewer flowers in deep snow regimes during years without extreme events, while Stellaria crassipes responded partly. Snow pack thickness determined whether winter warming events had an effect on flower abundance of some species. Warming events clearly reduced flower abundance in shallow but not in deep snow regimes of Cassiope tetragona, but only marginally for Dryas octopetala. However, the affected species were resilient and individuals did not experience any long term effects. In the case of short or cold summers, a subset of species suffered reduced reproductive success, which may affect future plant composition through possible cascading competition effects. Extreme winter warming events were shown to expose the canopy to cold winter air. The following summer most of the overwintering flower buds could not produce flowers. Thus reproductive success is reduced if this occurs in subsequent years. We conclude that snow depth influences flower abundance by altering season length and by protecting or exposing flower buds to cold winter air, but most species studied are resistant to changes. Winter warming events, often

  12. Photochemical activation of extremely weak nucleophiles: highly fluorinated urethanes and polyurethanes from polyfluoro alcohols.

    PubMed

    Soto, Marc; Sebastián, Rosa María; Marquet, Jordi

    2014-06-01

    An efficient and environmentally friendly photoreaction between phenyl isocyanate or pentafluorophenyl isocyanate and polyfluorinated alcohols and diols is described for the first time. New highly fluorinated urethanes and diurethanes, derived from aromatic isocyanates, are produced in good yields in a photoreaction that is apparently governed by the acidic properties of the polyfluoro alcohols and diols. The wettability properties of the new polyfluorinated diurethanes have been tested, some of them showing significantly high values of hydrophobicity and oleophobicity. This new photoreaction has also been tested in the production of a model polyfluorinated polyurethane, establishing the influence of the irradiation power in the outcome of the process, and directly achieving a molecular weight distribution corresponding to a number-average DP(n) = 12 and a highest DP(n) = 20 after 4 h of irradiation (DP(n): "number-average degree of polymerization").

  13. ALMA observation of high-z extreme star-forming environments discovered by Planck/Herschel

    NASA Astrophysics Data System (ADS)

    Kneissl, R.

    2016-05-01

    The Comic Microwave Background satellite Planck with its High Frequency Instrument has surveyed the mm/sub-mm sky in six frequency channels from 100 to 900 GHz. A sample of 228 cold sources of the Cosmic Infrared Background was observed in follow-up with Herschel SPIRE. The majority of sources appear to be over-densities of star-forming galaxies matching the size of high-z proto-cluster regions, while a 3% fraction are individual bright, lensed galaxies. A large observing program is underway with the aim of resolving the regions into the constituent members of the Planck sources. First ALMA data have been received on one Planck/Herschel proto-cluster candidate, showing the expected large over-abundance of bright mm/sub-mm sources within the cluster region. ALMA long baseline data of the brightest lensed galaxy in the sample with > 1 Jy at 350 μm are also forthcoming.

  14. High-pressure matrix isolation of heterogeneous condensed phase chemical reactions under extreme conditions

    NASA Astrophysics Data System (ADS)

    Rice, Jane K.; Russell, T. P.

    1995-03-01

    A new technique which combines high-pressure and thermal-shock conditions with low-temperature matrix isolation in a gem anvil cell is presented. This serves to partially quench or arrest the reaction sequence of an energetic material. New chemical species are observed which indicate that intermediates are trapped in addition to final products. This combination of high pressure and low temperature helps elucidate the complicated reaction pathways in the deflagration to detonation regime. We have applied this technique to hexanitrohexaazaisowurtzitane (HNIW, chemical name: 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.0 5,9.0 3,11]dodecane). Products are identified using infrared spectroscopy and comparisons are made to previously reported data taken under thermal, ambient pressure conditions.

  15. High resolution coherent diffractive imaging with a table-top extreme ultraviolet source

    SciTech Connect

    Vu Le, Hoang Ba Dinh, Khuong; Hannaford, Peter; Van Dao, Lap

    2014-11-07

    We demonstrate a resolution of 45 nm with a sample size down to 3 μm × 3 μm is achieved in a short exposure time of 2 s, from the diffraction pattern generated by a table-top high harmonic source at around 30 nm. By using a narrow-bandwidth focusing mirror, the diffraction pattern's quality is improved and the required exposure time is significantly reduced. In order to obtain a high quality of the reconstructed image, the ratio of the beam size to the sample size and the curvature of the focused beam need to be considered in the reconstruction process. This new experimental scheme is very promising for imaging sub-10 nm scale objects with a table-top source based on a small inexpensive femtosecond laser system.

  16. Biogeochemical sulphur cycle in an extreme environment - Life beneath a high arctic glacier, Nunavut, Canada

    USGS Publications Warehouse

    Grasby, S.E.; Allen, C.C.; Longazo, T.G.; Lisle, J.T.; Griffin, Dale W.; Beauchamp, B.

    2003-01-01

    Unique springs discharge from the surface of a high arctic glacier, releasing H2S, and depositing native sulphur, gypsum, and calcite. A rare CaCO3 polymorph, vaterite, is also observed. Physical and chemical conditions of the spring water and surrounding environment, as well as mineralogical and isotopic signatures, argue for biologically mediated redox reactions controlling sulfur. Cell counts and DNA analyses, confirm bacteria are present in the spring system. ?? 2003 Elsevier Science B.V. All rights reserved.

  17. Enabling Astronomy in the Extremes: Developing the Antarctic High Plateau for Science

    NASA Astrophysics Data System (ADS)

    Burton, Michael

    2015-08-01

    The high plateau of Antarctica provides the driest, coldest and most stable environment on the Earth's surface, facets that facilitate astronomical observations. New windows are opened in the atmosphere in the terahertz bands, low sky backgrounds improve sensitivities across the infrared bands, and the stability enables precision photometry. Of course, the Antarctic high plateau is a challenging environment for humans to work in, logistics is difficult and access only possible for limited periods of the year. Operation is akin to space, albeit at less cost, using robotic facilities installed and serviced over the summer months.This talk will discuss astronomical developments on the Antarctic high plateau, in particular at its highest location, Dome A and the nearby Ridge A. At the former China is building the Kunlun Observatory, with mid-scale facilities for IR and THz astronomy planned. Currently a series of pathfinder optical / IR telescopes are in operation and being developed (the three 50cm AST telescopes). At Ridge A, the 60cm HEAT telescope is in operation, surveying the Galactic plane at 0.5 and 0.8 THz.

  18. Macroscopic birefringence in liquid crystals from novel cyanobacterial polysaccharide with an extremely high molecular weight

    NASA Astrophysics Data System (ADS)

    Okajima-Kaneko, Maiko; Hayasaka-Kaneko, Daisaku; Miyazato, Shinji; Kaneko, Tatsuo

    2007-05-01

    We report an efficient method for extraction of anionic polysaccharides (PS) from cyanobacteria, Aphanothece sacrum; we used a hot alkaline solution (0.01 N NaOH) as an elution solvent in the first step of the extraction and isopropanol as a precipitation solvent in the last step. Thin fibers of PS were obtained at a high yield (50-80 % to the weight of the raw cyanobacterial sample). The spectroscopy and elemental analyses indicated the PS contains fucose, uronic acids (14.2 % by a carbazole-sulfuric acid method), a sugar unit containing amides. The solution of PS with a concentration of 1 wt% showed a very high viscosity (80 000cps) implying a high molecular weight, and a strong macroscopic birefringence with a texture typical of nematic liquid crystals was confirmed by crossed-polarizing microscopy (more than 0.5 wt%). The PS from A. sacrum may form a special structure rigid-rod enough to show LC phase and macroscopic birefringence.

  19. Extreme metasomatism during high-P-T contact metamorphism in southeastern NY, and its tectonic implications

    NASA Astrophysics Data System (ADS)

    Dorfler, K. M.; Tracy, R. J.; Caddick, M. J.

    2011-12-01

    An important goal of high-T metamorphic petrology is to link the micrometer-scale details of mineral assemblages and textures to large-scale tectonic processes, by understanding the evolution of metamorphic conditions such as pressure and temperature. Pelitic schists from contact aureoles around mafic-ultramafic plutons in Westchester County, NY record a high-P (ca. 0.8 GPa) high-T (up to 775°C) contact overprint on a Taconic regional metamorphic assemblage (ca. 0.55 GPa). The contact metamorphic assemblage of a sample in the innermost aureole of the Croton Falls pluton, a small (<10 km2) gabbroic pluton, consists of qz+plg+bt+grt+sil+ilm+gr+Zn-rich Al-spl, with neither kfs nor mu, and with abundant bt, plg, sil, and qz inclusions within euhedral garnet crystals. Unusually low Na and K contents imply depletion of alkalic components and silica through anatexis and melt extraction during contact heating. This can be verified by tracing depleted lithologies in the contact aureole into typical metapelites outside the aureole. Theromobarometry on nearby samples lacking a contact overprint yields 620-640°C and 0.5-0.6 GPa. In the aureole sample, WDS X-ray maps show distinct Ca-enriched rims on both grt and matrix plg and significantly higher Mg content in bt inclusions within grt than in matrix bt. GASP and Grt-Bt Mg-Fe equilibria on the garnet host and inclusions interior to the high-Ca rim zone yield P=0.53 GPa and T=625°C. Pairs in the modified rim zone yield 0.8 GPa and 766°C. THERMOCALC average P-T calculations yield similar results for core (0.52 GPa, 648°C) and rim (0.78 GPa, 763°C) equilibria. These multi-phase equilibria suggest a degree of disequilibrium between phases, presumably reflecting partial resetting after metamorphic peak conditions. Garnet porphyroblasts grown during regional metamorphism at 465 Ma were substantially re-equilibrated during the contact event (~ 435 Ma). Pervasive melting at this stage is associated with development of a high

  20. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS IN THE LEAST EVOLVED GALAXIES: LEO IV

    SciTech Connect

    Simon, Joshua D.; McWilliam, Andrew; Thompson, Ian B.; Frebel, Anna; Kirby, Evan N. E-mail: andy@ociw.ed E-mail: afrebel@cfa.harvard.ed

    2010-06-10

    We present high-resolution Magellan/MIKE spectroscopy of the brightest star in the ultra-faint dwarf galaxy Leo IV. We measure an iron abundance of [Fe/H] = -3.2, adding to the rapidly growing sample of extremely metal-poor (EMP) stars being identified in Milky Way satellite galaxies. The star is enhanced in the {alpha} elements Mg, Ca, and Ti by {approx}0.3 dex, very similar to the typical Milky Way halo abundance pattern. All of the light and iron-peak elements follow the trends established by EMP halo stars, but the neutron-capture elements Ba and Sr are significantly underabundant. These results are quite similar to those found for stars in the ultra-faint dwarfs Ursa Major II, Coma Berenices, Booetes I, and Hercules, suggesting that the chemical evolution of the lowest-luminosity galaxies may be universal. The abundance pattern we observe is consistent with predictions for nucleosynthesis from a Population III supernova explosion. The extremely low metallicity of this star also supports the idea that a significant fraction ({approx}>10%) of the stars in the faintest dwarfs have metallicities below [Fe/H] = -3.0.

  1. Constitutive high-level SOS1 expression and absence of HKT1;1 expression in the salt-accumulating halophyte Salicornia dolichostachya.

    PubMed

    Katschnig, D; Bliek, T; Rozema, J; Schat, H

    2015-05-01

    We investigated the effects of salinity on ion accumulation and expression of candidate salt tolerance genes in the highly tolerant salt accumulating halophyte Salicornia dolichostachya and the taxonomically related glycophytic Spinacia oleracea. S. dolichostachya, in comparison with S. oleracea, constitutively expressed SOS1 at a high level, but did not detectably express HKT1;1. These findings suggest that the constitutive high level of shoot salt accumulation in S. dolichostachya is accomplished through enhancement of SOS1-mediated Na(+) xylem loading, in combination with complete suppression of HKT1;1-mediated Na(+) retrieval from the xylem. Our findings demonstrate the importance of gene expression comparisons between highly tolerant halophytes and taxonomically related glycophytes to improve the understanding of mechanisms of Na(+) movement and salt tolerance in plants. PMID:25804817

  2. Preliminary Results of High Resolution Regional Climate Simulations in EC FP6 Project CECILIA: Impact of High Resolution on Reproducing Extremes

    NASA Astrophysics Data System (ADS)

    Halenka, T.; Belda, M.; Miksovsky, J.

    2007-12-01

    Project EC FP6 CECILIA - Central and Eastern Europe Climate Change Impact and Vulnerability Assessment is studying the impact of climate change in complex topography of the Central and Eastern Europe in high resolution. The impacts on agriculture, forestry, hydrology and air-quality are studied. Resolution of regional climate simulation is an important factor affecting the accuracy of dynamical downscaling of the global changes. Especially the extremes are strongly dependent on the terrain patterns as shape of orography or land use, which can contribute to extreme temperatures or precipitation appearance. Here the preliminary results of ERA40 reanalysis run at 10 km will be compared to previous results at 45 km from the experiment launched in connection to 2002 floods in Czech Republic, where we started to analyze whether RCMs are capable to reproduce extremes that can be quite important feature of changing climate. The experiments are compared in terms of mean temperature and extremes, other characteristics as the days with characteristic temperatures and heatwaves are analized as well. Some precipitation characteristics are compared, too. In the comparison to the real station data for Czech Republic it can be seen there is quite good agreement for 10 km simulation in temperature characteristics, there are still some problems with overestimation of small precipitation and underestimation of high precipitation by the model. The test of double nesting vs. direct forcing by reanalysis will be presented, on the selcted domain of quite big size the benefit of the double nesting can be seen against the results with direct driving of the model by ERA40 data.

  3. Extremely high-pressure generation and compression with laser implosion plasmas

    SciTech Connect

    Shigemori, K.; Hironaka, Y.; Nagatomo, H.; Fujioka, S.; Azechi, H.; Sunahara, A.; Kadono, T.; Shimizu, K.

    2013-05-06

    We have tested a scheme for using laser implosion plasmas to generate pressures in the gigabar (100 TPa) regime. Cone-in-shell targets employed in fast ignition of inertial confinement fusion were irradiated to create a high-pressure source for compression of materials. The imploded plasmas pushed a foil embedded on the tip of a cone. The pressure was estimated from the shock velocity into the material; the shock velocity was obtained from an optical measurement. The measured shock velocity of the foil was above 100 km/s, corresponding to a pressure greater than 1 Gbar.

  4. Theoretical aspects of light-element alloys under extremely high pressure

    NASA Astrophysics Data System (ADS)

    Feng, Ji

    In this Dissertation, we present theoretical studies on the geometric and electronic structure of light-element alloys under high pressure. The first three Chapters are concerned with specific compounds, namely, SiH 4, CaLi2 and BexLi1- x, and associated structural and electronic phenomena, arising in our computational studies. In the fourth Chapter, we attempt to develop a unified view of the relationship between the electronic and geometric structure of light-element alloys under pressure, by focusing on the states near the Fermi level in these metals.

  5. High-resolution analysis of 1 day extreme precipitation in a wet area centred over eastern Liguria

    NASA Astrophysics Data System (ADS)

    Bertolini, Andrea; Brunetti, Michele; Maugeri, Maurizio

    2016-04-01

    The north of Tuscany and eastern Liguria have experienced several exceptional precipitation episodes and floods during the last century, with serious damage to human life and the environment. In recent years, the damage related to these extreme events appears to increase. In this context, we perform a detailed investigation of observed 1-day precipitation extremes and their frequency distribution, based on a dense data set of high-quality, homogenized station records in 1951-2010. Our dataset is composed of about 800 precipitation series coming from the databases of various regional agencies of central and northern Italy (ARPA Emilia Romagna, ARPA Liguria, SIR Toscana and ARPA Piemonte). As well as for any other meteorological measure, physical signals in raw precipitation data series are often hidden behind measuring errors and non-climatic noise caused mainly by station relocation and changes in instruments, in the environment around the station or in the observing conventions. Therefore, we developed specific codes to control the possible outliers, identify periods of failure and malfunction of the weather station, and to control of the values recorded after periods of missing data (suspected cumulative values). Finally, we have subjected the longer series to the Craddock homogeneity test to verify the relative homogeneity of the records and, if necessary, we have homogenized them, to remove all signals of non-climatic origin. After this process of control and homogenization of the data, we have about 400 validated precipitation series available for the study area centred on the eastern Liguria (8.25°E - 43.50 °N to 11.00°E - 45.00 °N, of about 30.000 km2) that we use to estimate very high quantiles (return levels) corresponding to 10-, 50- and 100-year return periods, as predicted by a generalized extreme value distribution. Return level estimates are produced on a regular high-resolution grid (30 arcsec) using a variant of regional frequency analysis

  6. The effect of extremely high glucose concentrations on 21 routine chemistry and thyroid Abbott assays: interference study

    PubMed Central

    Çuhadar, Serap; Köseoğlu, Mehmet; Çinpolat, Yasemin; Buğdaycı, Güler; Usta, Murat; Semerci, Tuna

    2016-01-01

    Introduction Extremely high glucose concentrations have been shown to interfere with creatinine assays especially with Jaffe method in peritoneal dialysate. Because diabetes is the fastest growing chronic disease in the world, laboratories study with varying glucose concentrations. We investigated whether different levels of glucose spiked in serum interfere with 21 routine chemistry and thyroid assays at glucose concentrations between 17-51 mmol/L. Materials and methods Baseline (group I) serum pool with glucose concentration of 5.55 (5.44-5.61) mmol/L was prepared from patient sera. Spiking with 20% dextrose solution, sample groups were obtained with glucose concentrations: 17.09, 34.52, and 50.95 mmol/L (group II, III, IV, respectively). Total of 21 biochemistry analytes and thyroid tests were studied on Abbott c8000 and i2000sr with commercial reagents. Bias from baseline value was checked statistically and clinically. Results Creatinine increased significantly by 8.74%, 31.66%, 55.31% at groups II, III, IV, respectively with P values of < 0.001. At the median glucose concentration of 50.95 mmol/L, calcium, albumin, chloride and FT4 biased significantly clinically (-0.85%, 1.63%, 0.65%, 7.4% with P values 0.138, 0.214, 0.004, < 0.001, respectively). Remaining assays were free of interference. Conclusion Among the numerous biochemical parameters studied, only a few parameters are affected by dramatically increased glucose concentration. The creatinine measurements obtained in human sera with the Jaffe alkaline method at high glucose concentrations should be interpreted with caution. Other tests that were affected with extremely high glucose concentrations were calcium, albumin, chloride and FT4, hence results should be taken into consideration in patients with poor diabetic control. PMID:26981018

  7. Have wing morphology or flight kinematics evolved for extreme high altitude migration in the bar-headed goose?

    PubMed

    Lee, Stella Y; Scott, Graham R; Milsom, William K

    2008-11-01

    Bar-headed geese (Anser indicus) migrate over the Himalayan mountains, at altitudes up to 9000 m above sea level, where air density and oxygen availability are extremely low. This study determined whether alterations in wing morphology or wingbeat frequency during free flight have evolved in this species to facilitate extreme high altitude migration, by comparing it to several closely related goose species. Wingspan and wing loading scaled near isometrically with body mass across all species (with power scaling exponents of 0.22 and 0.47, respectively), and wingbeat frequency scaled negatively to mass (scaling exponent of -0.167). Bar-headed geese had the largest wingspan residual and smallest wing loading residual from these allometric relationships, suggesting that they are at the top end of the wing size distribution. These morphological characters of bar-headed geese were not outside the normal variation exhibited by low altitude species, however, being within the prediction intervals of the regression. This was particularly true after the data were corrected for phylogeny using the independent contrasts method. Wingbeat frequencies of bar-headed geese during steady flight were the same as low altitude geese, both with and without correcting for phylogeny. Without adjusting other kinematic features (e.g., wing motion and generated wake structure) to supplement lift generation in low air densities, the metabolic costs of flight in bar-headed geese at high altitude could exceed the already high costs at sea level. The apparent lack of morphological and kinematic adaptation emphasizes the importance of physiological adaptations for enhancing oxygen transport and utilization in this species.

  8. A high energy Space Station (HESS) array for studying extremely energetic cosmic rays

    NASA Technical Reports Server (NTRS)

    Ormes, J. F.; Streitmatter, R. E.

    1985-01-01

    The scientific aims and design concept of a High-Energy Space Station (HESS) cosmic-ray detector array are discussed. The current state of knowledge on cosmic-ray acceleration and high-energy interactions is briefly reviewed, and the need for observations yielding elemental composition and spectra in the 10-10,000-TeV/nucleon range is demonstrated. It is predicted that 2 yr of observations with a space-borne detector of geometry factor 30 sq m sr would provide adequate data to determine the acceleration mechanism (by comparing the energy level at which the spectra of He nuclei and protons break). A modular HESS array comprising W/scintillator/PM-tube calorimeter modules and Cerenkov charge-sensitive detector modules and weighing about 30 tonnes is described. The array could be assembled on orbit after transport in the Space Shuttle cargo bay, and data could be taken as soon as one or two layers of modules had been attached to the mounting-frame/support-electronics unit.

  9. Reconciling extremely strong barriers with high levels of gene exchange in annual sunflowers.

    PubMed

    Sambatti, Julianno B M; Strasburg, Jared L; Ortiz-Barrientos, Daniel; Baack, Eric J; Rieseberg, Loren H

    2012-05-01

    In several cases, estimates of gene flow between species appear to be higher than we might predict given the strength of interspecific barriers separating these species pairs. However, as far as we are aware, detailed measurements of reproductive isolation have not previously been compared with a coalescent-based assessment of gene flow. Here, we contrast these two measures in two species of sunflower, Helianthus annuus and H. petiolaris. We quantified the total reproductive barrier strength between these species by compounding the contributions of the following prezygotic and postzygotic barriers: ecogeographic isolation, reproductive asynchrony, niche differentiation, pollen competition, hybrid seed formation, hybrid seed germination, hybrid fertility, and extrinsic postzygotic isolation. From this estimate, we calculated the probability that a reproductively successful hybrid is produced: estimates of P(hyb) range from 10(-4) to 10(-6) depending on the direction of the cross and the degree of independence among reproductive barriers. We then compared this probability with population genetic estimates of the per generation migration rate (m). We showed that the relatively high levels of gene flow estimated between these sunflower species (N(e) m= 0.34-0.76) are mainly due to their large effective population sizes (N(e) > 10(6)). The interspecific migration rate (m) is very small (<10(-7)) and an order of magnitude lower than that expected based on our reproductive barrier strength estimates. Thus, even high levels of reproductive isolation (>0.999) may produce genomic mosaics.

  10. A highly efficient multi-core algorithm for clustering extremely large datasets

    PubMed Central

    2010-01-01

    Background In recent years, the demand for computational power in computational biology has increased due to rapidly growing data sets from microarray and other high-throughput technologies. This demand is likely to increase. Standard algorithms for analyzing data, such as cluster algorithms, need to be parallelized for fast processing. Unfortunately, most approaches for parallelizing algorithms largely rely on network communication protocols connecting and requiring multiple computers. One answer to this problem is to utilize the intrinsic capabilities in current multi-core hardware to distribute the tasks among the different cores of one computer. Results We introduce a multi-core parallelization of the k-means and k-modes cluster algorithms based on the design principles of transactional memory for clustering gene expression microarray type data and categorial SNP data. Our new shared memory parallel algorithms show to be highly efficient. We demonstrate their computational power and show their utility in cluster stability and sensitivity analysis employing repeated runs with slightly changed parameters. Computation speed of our Java based algorithm was increased by a factor of 10 for large data sets while preserving computational accuracy compared to single-core implementations and a recently published network based parallelization. Conclusions Most desktop computers and even notebooks provide at least dual-core processors. Our multi-core algorithms show that using modern algorithmic concepts, parallelization makes it possible to perform even such laborious tasks as cluster sensitivity and cluster number estimation on the laboratory computer. PMID:20370922

  11. Compact high-resolution spectrographs for large and extremely large telescopes: using the diffraction limit

    NASA Astrophysics Data System (ADS)

    Robertson, J. Gordon; Bland-Hawthorn, Joss

    2012-09-01

    As telescopes get larger, the size of a seeing-limited spectrograph for a given resolving power becomes larger also, and for ELTs the size will be so great that high resolution instruments of simple design will be infeasible. Solutions include adaptive optics (but not providing full correction for short wavelengths) or image slicers (which give feasible but still large instruments). Here we develop the solution proposed by Bland-Hawthorn and Horton: the use of diffraction-limited spectrographs which are compact even for high resolving power. Their use is made possible by the photonic lantern, which splits a multi-mode optical fiber into a number of single-mode fibers. We describe preliminary designs for such spectrographs, at a resolving power of R ~ 50,000. While they are small and use relatively simple optics, the challenges are to accommodate the longest possible fiber slit (hence maximum number of single-mode fibers in one spectrograph) and to accept the beam from each fiber at a focal ratio considerably faster than for most spectrograph collimators, while maintaining diffraction-limited imaging quality. It is possible to obtain excellent performance despite these challenges. We also briefly consider the number of such spectrographs required, which can be reduced by full or partial adaptive optics correction, and/or moving towards longer wavelengths.

  12. Improvements to high-speed monitoring of events in extreme environments using fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Udd, Eric; Benterou, Jerry

    2012-06-01

    An innovative system that allows the measurement of velocity, position, temperature and pressure during burn, deflagration and detonation of energetic materials has been developed. An initial demonstration of this system has been able to measure pressures up to 1,200,000 psi, and temperature changes of 400° C over a period of 25 microseconds. Both measurements were instrument limited. Improved instrumentation will allow extensions to 4,000,000 psi measurements and enhanced resolution of over and order of magnitude. This is the first time to our knowledge that measurements of velocity, position, temperature and pressure have been made interior to highly energetic materials during burn, deflagration and detonation. The technology is in its very early stages. It has great potential to make important near term measurements with significant further improvements being made as the technology begins to mature. Immediate application areas include assessment of the performance of solid rocket motor propellant materials, insensitive munitions and detailed measurements of high speed, energetic events. Additionally, continuous detonation wave velocities were measured inside of large explosive charges greater than 200 millimeters in length.

  13. Extreme ultraviolet and soft x-ray diagnostics of high-temperature plasmas. Progress report

    SciTech Connect

    Moos, W.

    1986-10-02

    This report describes recent progress and plans for calendar year 1987 in the Johns Hopkins University program to develop and improve spectroscopic diagnostics for the high temperature plasmas used in magnetic fusion research. An EUV spectrograph which provides time resolved spectra along fifteen chords of a plasma device has been completed and evaluation on DIII-D will began in late 1986. Other instrumentation work includes the evaluation of a sensitive detector for ion temperature/velocity distribution determinations and a feasibility study of Zeeman polarimetry for determining magnetic fields. A comprehensive data set taken on the TEXT tokamak is undergoing analysis as a means of improving the ionic parameters used in diagnostic studies and to expand the capabilities of existing instruments. Potential new advanced in spectroscopic technology are being monitored to determine if they provide advantages for fusion research.

  14. Extreme ultraviolet and soft x-ray diagnostics of high-temperature plasmas

    SciTech Connect

    Moos, W.

    1986-10-02

    This report describes recent progress and plans for calendar year 1987 in the Johns Hopkins University program to develop and improve spectroscopic diagnostics for the high temperature plasmas used in magnetic fusion research. An EUV spectrograph which provides time resolved spectra along fifteen chords of a plasma device has been completed and evaluation on DIII-D will began in late 1986. Other instrumentation work includes the evaluation of a sensitive detector for ion temperature/velocity distribution determinations and a feasibility study of Zeeman polarimetry for determining magnetic fields. A comprehensive data set taken on the TEXT tokamak is undergoing analysis as a means of improving the ionic parameters used in diagnostic studies and to expand the capabilities of existing instruments. Potential new advanced in spectroscopic technology are being monitored to determine if they provide advantages for fusion research.

  15. A near-wearless and extremely long lifetime amorphous carbon film under high vacuum

    PubMed Central

    Wang, Liping; Zhang, Renhui; Jansson, Ulf; Nedfors, Nils

    2015-01-01

    Prolonging wear life of amorphous carbon films under vacuum was an enormous challenge. In this work, we firstly reported that amorphous carbon film as a lubricant layer containing hydrogen, oxygen, fluorine and silicon (a-C:H:O:F:Si) exhibited low friction (~0.1), ultra-low wear rate (9.0 × 10–13 mm3 N–1 mm–1) and ultra-long wear life (>2 × 106 cycles) under high vacuum. We systematically examined microstructure and composition of transfer film for understanding of the underlying frictional mechanism, which suggested that the extraordinarily excellent tribological properties were attributed to the thermodynamically and structurally stable FeF2 nanocrystallites corroborated using first-principles calculations, which were induced by the tribochemical reaction. PMID:26059254

  16. Novel cookie-with-chocolate carbon dots displaying extremely acidophilic high luminescence.

    PubMed

    Lu, Siyu; Zhao, Xiaohuan; Zhu, Shoujun; Song, Yubin; Yang, Bai

    2014-11-21

    A fluorescent carbon dot with a cookie-with-chocolate film structure (about 5 × 5 μm(2)) showed a high fluorescence quantum yield (61.12%) at low pH. It was hydrothermally synthesized from l-serine and l-tryptophan. The formation mechanism of the film with carbon dots (CDs) was investigated. The film structure was formed by hydrogen bonding and π-π stacking interactions between aromatic rings. The strong blue fluorescence of the CDs increased under strong acidic conditions owing to the changes in the N-groups. These cookie-like CDs are attractive for their potential use as effective fluorescent probes for the sensitive detection of aqueous H(+) and Fe(3+).

  17. Novel cookie-with-chocolate carbon dots displaying extremely acidophilic high luminescence

    NASA Astrophysics Data System (ADS)

    Lu, Siyu; Zhao, Xiaohuan; Zhu, Shoujun; Song, Yubin; Yang, Bai

    2014-10-01

    A fluorescent carbon dot with a cookie-with-chocolate film structure (about 5 × 5 μm2) showed a high fluorescence quantum yield (61.12%) at low pH. It was hydrothermally synthesized from l-serine and l-tryptophan. The formation mechanism of the film with carbon dots (CDs) was investigated. The film structure was formed by hydrogen bonding and π-π stacking interactions between aromatic rings. The strong blue fluorescence of the CDs increased under strong acidic conditions owing to the changes in the N-groups. These cookie-like CDs are attractive for their potential use as effective fluorescent probes for the sensitive detection of aqueous H+ and Fe3+.A fluorescent carbon dot with a cookie-with-chocolate film structure (about 5 × 5 μm2) showed a high fluorescence quantum yield (61.12%) at low pH. It was hydrothermally synthesized from l-serine and l-tryptophan. The formation mechanism of the film with carbon dots (CDs) was investigated. The film structure was formed by hydrogen bonding and π-π stacking interactions between aromatic rings. The strong blue fluorescence of the CDs increased under strong acidic conditions owing to the changes in the N-groups. These cookie-like CDs are attractive for their potential use as effective fluorescent probes for the sensitive detection of aqueous H+ and Fe3+. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03965c

  18. Development of an Extreme High Temperature n-type Ohmic Contact to Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Evans, Laura J.; Okojie, Robert S.; Lukco, Dorothy

    2011-01-01

    We report on the initial demonstration of a tungsten-nickel (75:25 at. %) ohmic contact to silicon carbide (SiC) that performed for up to fifteen hours of heat treatment in argon at 1000 C. The transfer length method (TLM) test structure was used to evaluate the contacts. Samples showed consistent ohmic behavior with specific contact resistance values averaging 5 x 10-4 -cm2. The development of this contact metallization should allow silicon carbide devices to operate more reliably at the present maximum operating temperature of 600 C while potentially extending operations to 1000 C. Introduction Silicon Carbide (SiC) is widely recognized as one of the materials of choice for high temperature, harsh environment sensors and electronics due to its ability to survive and continue normal operation in such environments [1]. Sensors and electronics in SiC have been developed that are capable of operating at temperatures of 600 oC. However operating these devices at the upper reliability temperature threshold increases the potential for early degradation. Therefore, it is important to raise the reliability temperature ceiling higher, which would assure increased device reliability when operated at nominal temperature. There are also instances that require devices to operate and survive for prolonged periods of time above 600 oC [2, 3]. This is specifically needed in the area of hypersonic flight where robust sensors are needed to monitor vehicle performance at temperature greater than 1000 C, as well as for use in the thermomechanical characterization of high temperature materials (e.g. ceramic matrix composites). While SiC alone can withstand these temperatures, a major challenge is to develop reliable electrical contacts to the device itself in order to facilitate signal extraction

  19. Planococcus halocryophilus sp. nov., an extreme sub-zero species from high Arctic permafrost.

    PubMed

    Mykytczuk, Nadia C S; Wilhelm, Roland C; Whyte, Lyle G

    2012-08-01

    A novel aerobic, Gram-positive, motile, coccoid bacterial strain, designated Or1(T), was isolated from permafrost active-layer soil collected from the Canadian high Arctic. Strain Or1(T) was capable of growth over a broad temperature range, including sub-zero growth (below -10 to 37 °C), and at high salinity (0-19% NaCl), growing optimally at 25 °C, at pH 7.0-8.0 and in the presence of 2% NaCl. Its taxonomic and phylogenetic position was determined by using a polyphasic approach, which indicated that strain Or1(T) was a member of the genus Planococcus. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain Or1(T) belonged to the genus Planococcus, differing by 0.4-3.6% from the type strains of all recognized Planococcus species, and was related most closely to Planococcus antarcticus CMS 26or(T) (98.8% similarity) and Planococcus donghaensis JH1(T) (99.6%). However, DNA-DNA hybridization experiments showed that strain Or1(T) had low genomic relatedness to Planococcus antarcticus CMS 26or(T) (18%) and Planococcus donghaensis JH1(T) (46%). The major menaquinones of strain Or1(T) were MK-7 (55%), MK-8 (36%) and MK-6 (9%) and the major fatty acids were anteiso-C(15:0), C(16:1)ω7c alcohol and anteiso-C(17:0). The DNA G+C content of strain Or1(T) was 40.5 mol%. Differential phenotypic, phylogenetic and genomic data suggest that strain Or1(T) represents a novel species of the genus Planococcus, for which the name Planococcus halocryophilus sp. nov. is proposed. The type strain is Or1(T) ( = DSM 24743(T) = JCM 17719(T)). PMID:22003043

  20. Extremely High Tp53 Mutation Load in Esophageal Squamous Cell Carcinoma in Golestan Province, Iran

    PubMed Central

    Abedi-Ardekani, Behnoush; Kamangar, Farin; Sotoudeh, Masoud; Villar, Stephanie; Islami, Farhad; Aghcheli, Karim; Nasrollahzadeh, Dariush; Taghavi, Noushin; Dawsey, Sanford M.; Abnet, Christian C.; Hewitt, Stephen M.; Fahimi, Saman; Saidi, Farrokh; Brennan, Paul; Boffetta, Paolo; Malekzadeh, Reza; Hainaut, Pierre

    2011-01-01

    Background Golestan Province in northeastern Iran has one of the highest incidences of esophageal squamous cell carcinoma (ESCC) in the world with rates over 50 per 100,000 person-years in both sexes. We have analyzed TP53 mutation patterns in tumors from this high-risk geographic area in search of clues to the mutagenic processes involved in causing ESCC. Methodology/Principal Findings Biopsies of 119 confirmed ESCC tumor tissue from subjects enrolled in a case-control study conducted in Golestan Province were analyzed by direct sequencing of TP53 exons 2 through 11. Immunohistochemical staining for p53 was carried out using two monoclonal antibodies, DO7 and 1801. A total of 120 TP53 mutations were detected in 107/119 cases (89.9%), including 11 patients with double or triple mutations. The mutation pattern was heterogeneous with infrequent mutations at common TP53 “hotspots” but frequent transversions potentially attributable to environmental carcinogens forming bulky DNA adducts, including 40% at bases known as site of mutagenesis by polycyclic aromatic hydrocarbons (PAHs). Mutations showed different patterns according to the reported temperature of tea consumption, but no variation was observed in relation to ethnicity, tobacco or opium use, and alcoholic beverage consumption or urban versus rural residence. Conclusion/Significance ESCC tumors in people from Golestan Province show the highest rate of TP53 mutations ever reported in any cancer anywhere. The heterogeneous mutation pattern is highly suggestive of a causative role for multiple environmental carcinogens, including PAHs. The temperature and composition of tea may also influence mutagenesis. PMID:22216294

  1. Cinnamaldehyde supplementation prevents fasting-induced hyperphagia, lipid accumulation, and inflammation in high-fat diet-fed mice.

    PubMed

    Khare, Pragyanshu; Jagtap, Sneha; Jain, Yachna; Baboota, Ritesh K; Mangal, Priyanka; Boparai, Ravneet K; Bhutani, Kamlesh K; Sharma, Shyam S; Premkumar, Louis S; Kondepudi, Kanthi K; Chopra, Kanwaljit; Bishnoi, Mahendra

    2016-01-01

    Cinnamaldehyde, a bioactive component of cinnamon, is increasingly gaining interest for its preventive and therapeutic effects against metabolic complications like type-2 diabetes. This study is an attempt to understand the effect of cinnamaldehyde in high-fat diet (HFD)-associated increase in fasting-induced hyperphagia and related hormone levels, adipose tissue lipolysis and inflammation, and selected cecal microbial count in mice. Cinnamaldehyde, at 40 µM dose, prevented lipid accumulation and altered gene expression toward lipolytic phenotype in 3T3-L1 preadipocyte cell lines. In vivo, cinnamaldehyde coadministration prevented HFD-induced body weight gain, decreased fasting-induced hyperphagia, as well as circulating leptin and leptin/ghrelin ratio. In addition to that, cinnamaldehyde altered serum biochemical parameters related to lipolysis, that is, glycerol and free fatty acid levels. At transcriptional level, cinnamaldehyde increased anorectic gene expression in hypothalamus and lipolytic gene expression in visceral white adipose tissue. Furthermore, cinnamaldehyde also decreased serum IL-1β and inflammatory gene expression in visceral white adipose tissue. However, cinnamaldehyde did not modulate the population of selected gut microbial (Lactobacillus, Bifidibaceria, and Roseburia) count in cecal content. In conclusion, cinnamaldehyde increased adipose tissue lipolysis, decreased fasting-induced hyperphagia, normalized circulating levels of leptin/ghrelin ratio, and reduced inflammation in HFD-fed mice, which augurs well for its antiobesity role. PMID:26893251

  2. Korean Pine Nut Oil Attenuated Hepatic Triacylglycerol Accumulation in High-Fat Diet-Induced Obese Mice.

    PubMed

    Park, Soyoung; Shin, Sunhye; Lim, Yeseo; Shin, Jae Hoon; Seong, Je Kyung; Han, Sung Nim

    2016-01-21

    Korean pine nut oil (PNO) has been reported to influence weight gain and lipid metabolism. We examined whether PNO replacement in a high-fat diet (HFD) can ameliorate HFD-induced hepatic steatosis. Five-week-old male C57BL mice were fed control diets containing 10% of the energy from fat from PNO or soybean oil (SBO) (PC, SC) or HFDs with 45% of the energy from fat, with 10% from PNO or SBO and 35% from lard (PHFD, SHFD), for 12 weeks. Body weight gain and amount of white adipose tissue were lower in PHFD (10% and 18% lower, respectively) compared with SHFD. Hepatic triacylglycerol (TG) level was significantly lower in PHFD than the SHFD (26% lower). PNO consumption upregulated hepatic ACADL mRNA levels. The hepatic PPARG mRNA level was lower in the PC than in the SC. Expression of the sirtuin (SIRT) 3 protein in white adipose tissue was down-regulated in the SHFD and restored in the PHFD to the level in the lean control mice. SIRT 3 was reported to be upregulated under conditions of caloric restriction (CR) and plays a role in regulating mitochondrial function. PNO consumption resulted in lower body fat and hepatic TG accumulation in HFD-induced obesity, which seemed to be associated with the CR-mimetic response.

  3. Accumulated metabolites of hydroxybutyric acid serve as diagnostic and prognostic biomarkers of ovarian high-grade serous carcinomas

    PubMed Central

    Hilvo, Mika; de Santiago, Ines; Gopalacharyulu, Peddinti; Schmitt, Wolfgang D.; Budczies, Jan; Kuhberg, Marc; Dietel, Manfred; Aittokallio, Tero; Markowetz, Florian; Denkert, Carsten; Sehouli, Jalid; Frezza, Christian

    2016-01-01

    Ovarian cancer is a heterogeneous disease of low prevalence, but poor survival. Early diagnosis is critical for survival, but is often challenging because the symptoms of ovarian cancer are subtle and become apparent only during advanced stages of the disease. Therefore, the identification of robust biomarkers of early disease is a clinical priority. Metabolomic profiling is an emerging diagnostic tool enabling the detection of biomarkers reflecting alterations in tumor metabolism, a hallmark of cancer. In this study, we performed metabolomic profiling of serum and tumor tissue from 158 patients with high-grade serous ovarian cancer (HGSOC) and 100 control patients with benign or non-neoplastic lesions. We report metabolites of hydroxybutyric acid (HBA) as novel diagnostic and prognostic biomarkers associated with tumor burden and patient survival. The accumulation of HBA metabolites caused by HGSOC was also associated with reduced expression of succinic semialdehyde dehydrogenase (encoded by ALDH5A1), and with the presence of an epithelial-to-mesenchymal transition (EMT) gene signature, implying a role for these metabolic alterations in cancer cell migration and invasion. In conclusion, our findings represent the first comprehensive metabolomics analysis in HGSOC and propose a new set of metabolites as biomarkers of disease with diagnostic and prognostic capabilities. PMID:26685161

  4. Paternal High Fat Diet in Rats Leads to Renal Accumulation of Lipid and Tubular Changes in Adult Offspring.

    PubMed

    Chowdhury, Sabiha S; Lecomte, Virginie; Erlich, Jonathan H; Maloney, Christopher A; Morris, Margaret J

    2016-01-01

    Along with diabetes and obesity, chronic kidney disease (CKD) is increasing across the globe. Although some data support an effect of maternal obesity on offspring kidney, the impact of paternal obesity is unknown; thus, we have studied the effect of paternal obesity prior to conception. Male Sprague Dawley rats were fed chow diet or high fat diet (HFD) for 13-14 weeks before mating with chow-fed females. Male offspring were weaned onto chow and killed at 27 weeks for renal gene expression and histology. Fathers on HFD were 30% heavier than Controls at mating. At 27 weeks of age offspring of obese fathers weighed 10% less; kidney triglyceride content was significantly increased (5.35 ± 0.84 vs. 2.99 ± 0.47 μg/mg, p < 0.05, n = 8 litters per group. Histological analysis of the kidney demonstrated signs of tubule damage, with significantly greater loss of brush border, and increased cell sloughing in offspring of obese compared to Control fathers. Acat1, involved in entry of fatty acid for beta-oxidation, was significantly upregulated, possibly to counteract increased triglyceride storage. However other genes involved in lipid metabolism, inflammation and kidney injury showed no changes. Paternal obesity was associated with renal triglyceride accumulation and histological changes in tubules, suggesting a mild renal insult in offspring, who may be at risk of developing CKD. PMID:27563922

  5. D-psicose increases energy expenditure and decreases body fat accumulation in rats fed a high-sucrose diet.

    PubMed

    Ochiai, Masaru; Onishi, Kana; Yamada, Takako; Iida, Tetsuo; Matsuo, Tatsuhiro

    2014-03-01

    We investigated the anti-obesity effects of D-psicose by increasing energy expenditure in rats pair-fed the high-sucrose diet (HSD). Wistar rats were divided into two dietary groups: HSD containing 5% cellulose (C) and 5% d-psicose (P). The C dietary group was further subdivided into two groups: rats fed the C diet ad libitum (C-AD) and pair-fed the C diet along with those in the P group (C-PF). Resting energy expenditure during darkness and lipoprotein lipase activity in the soleus muscle were significantly higher in the P group than in the C-PF group. Serum levels of glucose, leptin and adiponectin; glucose-6-phosphate dehydrogenase activities in the liver and perirenal adipose tissue; and body fat accumulation were all significantly lower in the P group than in the C-PF group. The anti-obesity effects of D-psicose could be induced not only by suppressing lipogenic enzyme activity but also by increasing EE in rats.

  6. Accumulated Metabolites of Hydroxybutyric Acid Serve as Diagnostic and Prognostic Biomarkers of Ovarian High-Grade Serous Carcinomas.

    PubMed

    Hilvo, Mika; de Santiago, Ines; Gopalacharyulu, Peddinti; Schmitt, Wolfgang D; Budczies, Jan; Kuhberg, Marc; Dietel, Manfred; Aittokallio, Tero; Markowetz, Florian; Denkert, Carsten; Sehouli, Jalid; Frezza, Christian; Darb-Esfahani, Silvia; Braicu, Elena Ioana

    2016-02-15

    Ovarian cancer is a heterogeneous disease of low prevalence, but poor survival. Early diagnosis is critical for survival, but it is often challenging because the symptoms of ovarian cancer are subtle and become apparent only during advanced stages of the disease. Therefore, the identification of robust biomarkers of early disease is a clinical priority. Metabolomic profiling is an emerging diagnostic tool enabling the detection of biomarkers reflecting alterations in tumor metabolism, a hallmark of cancer. In this study, we performed metabolomic profiling of serum and tumor tissue from 158 patients with high-grade serous ovarian cancer (HGSOC) and 100 control patients with benign or non-neoplastic lesions. We report metabolites of hydroxybutyric acid (HBA) as novel diagnostic and prognostic biomarkers associated with tumor burden and patient survival. The accumulation of HBA metabolites caused by HGSOC was also associated with reduced expression of succinic semialdehyde dehydrogenase (encoded by ALDH5A1), and with the presence of an epithelial-to-mesenchymal transition gene signature, implying a role for these metabolic alterations in cancer cell migration and invasion. In conclusion, our findings represent the first comprehensive metabolomics analysis in HGSOC and propose a new set of metabolites as biomarkers of disease with diagnostic and prognostic capabilities. PMID:26685161

  7. Paternal High Fat Diet in Rats Leads to Renal Accumulation of Lipid and Tubular Changes in Adult Offspring

    PubMed Central

    Chowdhury, Sabiha S.; Lecomte, Virginie; Erlich, Jonathan H.; Maloney, Christopher A.; Morris, Margaret J.

    2016-01-01

    Along with diabetes and obesity, chronic kidney disease (CKD) is increasing across the globe. Although some data support an effect of maternal obesity on offspring kidney, the impact of paternal obesity is unknown; thus, we have studied the effect of paternal obesity prior to conception. Male Sprague Dawley rats were fed chow diet or high fat diet (HFD) for 13–14 weeks before mating with chow-fed females. Male offspring were weaned onto chow and killed at 27 weeks for renal gene expression and histology. Fathers on HFD were 30% heavier than Controls at mating. At 27 weeks of age offspring of obese fathers weighed 10% less; kidney triglyceride content was significantly increased (5.35 ± 0.84 vs. 2.99 ± 0.47 μg/mg, p < 0.05, n = 8 litters per group. Histological analysis of the kidney demonstrated signs of tubule damage, with significantly greater loss of brush border, and increased cell sloughing in offspring of obese compared to Control fathers. Acat1, involved in entry of fatty acid for beta-oxidation, was significantly upregulated, possibly to counteract increased triglyceride storage. However other genes involved in lipid metabolism, inflammation and kidney injury showed no changes. Paternal obesity was associated with renal triglyceride accumulation and histological changes in tubules, suggesting a mild renal insult in offspring, who may be at risk of developing CKD. PMID:27563922

  8. Engineering microencapsulation of highly catalytic gold nanoclusters for an extreme thermal stability

    NASA Astrophysics Data System (ADS)

    Sousa-Castillo, Ana; Gauthier, Mathilde; Arenal, Raul; Pérez-Lorenzo, Moisés; Correa-Duarte, Miguel A.

    2015-12-01

    A synthetic strategy for the microencapsulation of ultra-small gold nanoparticles toward the development of a novel nanoreactor is reported. In this case, it is shown that the catalytic activity of Au nanoclusters as small as 0.8 nm remains unaffected after a thermal treatment up to 800 °C in air. This is accomplished through the deposition and further coating of the gold nanoparticles in a void/silica/Au/silica configuration where the nature of the alternate shells can be tuned regardless of each other's porosity and the size of the embedded metal nanoparticles. Such spatial confinement suppresses the growth of the gold nanoclusters and thus preserves their catalytic properties. In this way, a remarkable compromise between the immobilization and the accessibility to the metal nanocatalyst can be met. Furthermore, these nanoreactors are found to be colloidally stable in simulated body fluids which also makes them suitable for biomedical applications. The implementation of hollow nanoreactors containing highly dispersed and immobilized but accessible ultra-small metal nanoparticles constitutes a promising alternative in the search for model catalysts stable under realistic technical conditions.A synthetic strategy for the microencapsulation of ultra-small gold nanoparticles toward the development of a novel nanoreactor is reported. In this case, it is shown that the catalytic activity of Au nanoclusters as small as 0.8 nm remains unaffected after a thermal treatment up to 800 °C in air. This is accomplished through the deposition and further coating of the gold nanoparticles in a void/silica/Au/silica configuration where the nature of the alternate shells can be tuned regardless of each other's porosity and the size of the embedded metal nanoparticles. Such spatial confinement suppresses the growth of the gold nanoclusters and thus preserves their catalytic properties. In this way, a remarkable compromise between the immobilization and the accessibility to the

  9. Accessing Extreme Spatiotemporal Localization of High-Power Laser Radiation through Transformation Optics and Scalar Wave Equations.

    PubMed

    Fedorov, V Yu; Chanal, M; Grojo, D; Tzortzakis, S

    2016-07-22

    Although tightly focused intense ultrashort laser pulses are used in many applications from nano-processing to warm dense matter physics, their nonparaxial propagation implies the use of numerical simulations with vectorial wave equations or exact Maxwell solvers that have serious limitations and thus have hindered progress in this important field up to now. Here we present an elegant and robust solution that allows one to map the problem on one that can be addressed by simple scalar wave equations. The solution is based on a transformation optics approach and its validity is demonstrated in both the linear and the nonlinear regime. Our solution allows accessing challenging problems of extreme spatiotemporal localization of high power laser radiation that remain almost unexplored theoretically until now. PMID:27494473

  10. HotSense: a high temperature piezoelectric platform for sensing and monitoring in extreme environments (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Stevenson, Tim; Wines, Thomas; Martin, David; Vickers, William; Laws, Michael

    2016-04-01

    Effective monitoring of asset integrity subject to corrosion and erosion while minimizing the exposure of personnel to difficult and hazardous working environments has always been a major problem in many industries. One solution of this problem is permanently installed ultrasonic monitoring equipment which can continuously provide information on the rate of corrosion or cracking, even in the most severe environments and at extreme temperatures to prevent the need for shutdown. Here, a permanently installed 5 MHz ultrasonic monitoring system based on our HotSense® technology is designed and investigated. The system applicability for wall thickness, crack monitoring and weld inspection in high temperature environments is demonstrated through experimental studies on a range of Schedule 40 pipes at temperatures up to 350 °C continuously. The applicability for this technology to be distributed to Aerospace and Nuclear sectors are also explored and preliminary results discussed.

  11. An extremely rare case of a high-grade pleomorphic cardiac sarcoma and likely cerebral metastasis in a young patient

    PubMed Central

    Wilson, TG; Jenkins, P; Hoschtitzky, A; McCabe, M

    2016-01-01

    To date, there have been less than a 100 confirmed case reports of primary cardiac malignant fibrous histiocytomas, a rare form of sarcoma. In this report, we discuss the case of a 15-year-old girl who initially presented with a histiocytic cerebral sarcoma that was treated with aggressive resection and chemotherapy. Three years later, the same patient developed increasing shortness of breath and was found to have a high-grade pleomorphic undifferentiated cardiac sarcoma that likely represents the primary tumour from which the cerebral lesion metastasised. This represents an extremely unique case; in 2010, a research group in Germany claimed the very first description of a true cardiac sarcoma with brain metastasis [1]. However, even as far back as 1960, there were three case reports [2] and more extensive sarcoma studies recently have revealed further cases [3]. Nevertheless, there have probably been less than 10 cases in the literature up until this point. PMID:27594909

  12. An extremely rare case of a high-grade pleomorphic cardiac sarcoma and likely cerebral metastasis in a young patient.

    PubMed

    Wilson, T G; Jenkins, P; Hoschtitzky, A; McCabe, M

    2016-01-01

    To date, there have been less than a 100 confirmed case reports of primary cardiac malignant fibrous histiocytomas, a rare form of sarcoma. In this report, we discuss the case of a 15-year-old girl who initially presented with a histiocytic cerebral sarcoma that was treated with aggressive resection and chemotherapy. Three years later, the same patient developed increasing shortness of breath and was found to have a high-grade pleomorphic undifferentiated cardiac sarcoma that likely represents the primary tumour from which the cerebral lesion metastasised. This represents an extremely unique case; in 2010, a research group in Germany claimed the very first description of a true cardiac sarcoma with brain metastasis [1]. However, even as far back as 1960, there were three case reports [2] and more extensive sarcoma studies recently have revealed further cases [3]. Nevertheless, there have probably been less than 10 cases in the literature up until this point. PMID:27594909

  13. Application of a solvent-tolerant microbial consortium for biofiltration of extremely high concentration gaseous solvent streams.

    PubMed

    Leethochawalit, M; Goodwin, J A S; Meeyoo, V; Bustard, M T; Wright, P C

    2004-04-01

    The aerobic biological oxidation of 2-propanol (isopropyl alcohol, IPA) at extremely high concentrations in air by an enriched solvent-tolerant microbial consortium operating at ambient temperature was evaluated for six months. Solvent-tolerant microbial cells were immobilised onto porous glass pall rings and fed with either IPA or its metabolic product acetone as sole carbon source. Successful biofiltration of solvent vapour at a concentration of 24 g m(-3) was achieved with oxidation of up to 100% total inlet carbon. The maximum IPA mass loading and IPA elimination capacity (EC) was 1700 g m(-3) h(-1). This performance exceeds all previous values published in the literature for similar processes. A slip feed experiment, using acetone, was also performed in order to assess the substrate specificity performance. The biofilter responded successfully to a switch from acetone to IPA as sole carbon source, displaying little reduction in overall organic carbon removal. PMID:15214454

  14. Accessing Extreme Spatiotemporal Localization of High-Power Laser Radiation through Transformation Optics and Scalar Wave Equations.

    PubMed

    Fedorov, V Yu; Chanal, M; Grojo, D; Tzortzakis, S

    2016-07-22

    Although tightly focused intense ultrashort laser pulses are used in many applications from nano-processing to warm dense matter physics, their nonparaxial propagation implies the use of numerical simulations with vectorial wave equations or exact Maxwell solvers that have serious limitations and thus have hindered progress in this important field up to now. Here we present an elegant and robust solution that allows one to map the problem on one that can be addressed by simple scalar wave equations. The solution is based on a transformation optics approach and its validity is demonstrated in both the linear and the nonlinear regime. Our solution allows accessing challenging problems of extreme spatiotemporal localization of high power laser radiation that remain almost unexplored theoretically until now.

  15. Accessing Extreme Spatiotemporal Localization of High-Power Laser Radiation through Transformation Optics and Scalar Wave Equations

    NASA Astrophysics Data System (ADS)

    Fedorov, V. Yu.; Chanal, M.; Grojo, D.; Tzortzakis, S.

    2016-07-01

    Although tightly focused intense ultrashort laser pulses are used in many applications from nano-processing to warm dense matter physics, their nonparaxial propagation implies the use of numerical simulations with vectorial wave equations or exact Maxwell solvers that have serious limitations and thus have hindered progress in this important field up to now. Here we present an elegant and robust solution that allows one to map the problem on one that can be addressed by simple scalar wave equations. The solution is based on a transformation optics approach and its validity is demonstrated in both the linear and the nonlinear regime. Our solution allows accessing challenging problems of extreme spatiotemporal localization of high power laser radiation that remain almost unexplored theoretically until now.

  16. Conceptualising the agency of highly marginalised women: Intimate partner violence in extreme settings.

    PubMed

    Campbell, Catherine; Mannell, Jenevieve

    2016-01-01

    How is the agency of women best conceptualised in highly coercive settings? We explore this in the context of international efforts to reduce intimate partner violence (IPV) against women in heterosexual relationships. Articles critique the tendency to think of women's agency and programme endpoints in terms of individual actions, such as reporting violent men or leaving violent relationships, whilst neglecting the interlocking social, economic and cultural contexts that make such actions unlikely or impossible. Three themes cut across the articles. (1) Unhelpful understandings of gender and power implicit in commonly used 'men-women' and 'victim-agent' binaries obscure multi-faceted and hidden forms of women's agency, and the complexity of agency-violence intersections. (2) This neglect of complexity results in a poor fit between policy and interventions to reduce IPV, and women's lives. (3) Such neglect also obscures the multiplicities of women's agency, including the competing challenges they juggle alongside IPV, differing levels of response, and the temporality of agency. We outline a notion of 'distributed agency' as a multi-level, incremental and non-linear process distributed across time, space and social networks, and across a continuum of action ranging from survival to resistance. This understanding of agency implies a different approach to those currently underpinning policies and interventions.

  17. Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs

    PubMed Central

    Wu, Guanhao; Takahashi, Mayumi; Arai, Kaoru; Inaba, Hajime; Minoshima, Kaoru

    2013-01-01

    Optical frequency combs have become an essential tool for distance metrology, showing great advantages compared with traditional laser interferometry. However, there is not yet an appropriate method for air refractive index correction to ensure the high performance of such techniques when they are applied in air. In this study, we developed a novel heterodyne interferometry technique based on two-colour frequency combs for air refractive index correction. In continuous 500-second tests, a stability of 1.0 × 10−11 was achieved in the measurement of the difference in the optical distance between two wavelengths. Furthermore, the measurement results and the calculations are in nearly perfect agreement, with a standard deviation of 3.8 × 10−11 throughout the 10-hour period. The final two-colour correction of the refractive index of air over a path length of 61 m was demonstrated to exhibit an uncertainty better than 1.4 × 10−8, which is the best result ever reported without precise knowledge of environmental parameters. PMID:23719387

  18. Toward Improving Predictability of Extreme Hydrometeorological Events: the Use of Multi-scale Climate Modeling in the Northern High Plains

    NASA Astrophysics Data System (ADS)

    Munoz-Arriola, F.; Torres-Alavez, J.; Mohamad Abadi, A.; Walko, R. L.

    2014-12-01

    Our goal is to investigate possible sources of predictability of hydrometeorological extreme events in the Northern High Plains. Hydrometeorological extreme events are considered the most costly natural phenomena. Water deficits and surpluses highlight how the water-climate interdependence becomes crucial in areas where single activities drive economies such as Agriculture in the NHP. Nonetheless we recognize the Water-Climate interdependence and the regulatory role that human activities play, we still grapple to identify what sources of predictability could be added to flood and drought forecasts. To identify the benefit of multi-scale climate modeling and the role of initial conditions on flood and drought predictability on the NHP, we use the Ocean Land Atmospheric Model (OLAM). OLAM is characterized by a dynamic core with a global geodesic grid with hexagonal (and variably refined) mesh cells and a finite volume discretization of the full compressible Navier Stokes equations, a cut-grid cell method for topography (that reduces error in computational gradient computation and anomalous vertical dispersion). Our hypothesis is that wet conditions will drive OLAM's simulations of precipitation to wetter conditions affecting both flood forecast and drought forecast. To test this hypothesis we simulate precipitation during identified historical flood events followed by drought events in the NHP (i.e. 2011-2012 years). We initialized OLAM with CFS-data 1-10 days previous to a flooding event (as initial conditions) to explore (1) short-term and high-resolution and (2) long-term and coarse-resolution simulations of flood and drought events, respectively. While floods are assessed during a maximum of 15-days refined-mesh simulations, drought is evaluated during the following 15 months. Simulated precipitation will be compared with the Sub-continental Observation Dataset, a gridded 1/16th degree resolution data obtained from climatological stations in Canada, US, and

  19. Theaflavin Synthesized in a Selective, Domino-Type, One-Pot Enzymatic Biotransformation Method with Camellia sinensis Cell Culture Inhibits Weight Gain and Fat Accumulation to High-Fat Diet-Induced Obese Mice.

    PubMed

    Takemoto, Masumi; Takemoto, Hiroaki; Saijo, Ryoyasu

    2016-08-01

    The polyphenolic compound theaflavin, which is the main red pigment present in black tea, is reported to elicit various physiological effects. Because of the extremely low concentration of theaflavin present in black tea, its extraction from black tea leaves in quantities sufficient for use in medical studies has been difficult. We have developed a simple, inexpensive, selective, domino-type, one-pot enzymatic biotransformation method for the synthesis of theaflavin that is suitable for use in medical studies. Subsequent administration of this synthetic theaflavin to high-fat diet-induced obese mice inhibited both body weight gain and visceral fat accumulation, with no significant difference in the amount of faeces between the experimental and control mice.

  20. Early science with the Large Millimeter Telescope: observations of extremely luminous high-z sources identified by Planck

    NASA Astrophysics Data System (ADS)

    Harrington, K. C.; Yun, Min S.; Cybulski, R.; Wilson, G. W.; Aretxaga, I.; Chavez, M.; De la Luz, V.; Erickson, N.; Ferrusca, D.; Gallup, A. D.; Hughes, D. H.; Montaña, A.; Narayanan, G.; Sánchez-Argüelles, D.; Schloerb, F. P.; Souccar, K.; Terlevich, E.; Terlevich, R.; Zeballos, M.; Zavala, J. A.

    2016-06-01

    We present 8.5 arcsec resolution 1.1-mm continuum imaging and CO spectroscopic redshift measurements of eight extremely bright submillimetre galaxies identified from the Planck and Herschel surveys, taken with the Large Millimeter Telescope's AzTEC and Redshift Search Receiver instruments. We compiled a candidate list of high-redshift galaxies by cross-correlating the Planck Surveyor mission's highest frequency channel (857 GHz, full width at half-maximum = 4.5 arcmin) with the archival Herschel Spectral and Photometric Imaging Receiver imaging data, and requiring the presence of a unique, single Herschel counterpart within the 150-arcsec search radius of the Planck source positions with 350-μm flux density larger than 100 mJy, excluding known blazars and foreground galaxies. All eight candidate objects observed are detected in 1.1 mm continuum by AzTEC bolometer camera, and at least one CO line is detected in all cases with a spectroscopic redshift between 1.3 < zCO < 3.3. Their infrared (IR) spectral energy distributions (SEDs) mapped using the Herschel and AzTEC photometry are consistent with cold dust emission with characteristic temperature between Td = 43 and 84 K. With apparent IR luminosity of up to LIR = 3 × 1014μ-1 L⊙, they are some of the most luminous galaxies ever found (with yet unknown gravitational magnification factor μ). The analysis of their SEDs suggests that star formation is powering the bulk of their extremely large IR luminosities. Derived molecular gas masses of M_{H_2}=(0.6-7.8)× 10^{11} M_{odot } (for μ ≈ 10) also make them some of the most gas-rich high-redshift galaxies ever detected.

  1. Are high-resolution NASA Unified WRF simulations credible tools for predicting extreme precipitation over the Great Plains?

    NASA Astrophysics Data System (ADS)

    Lee, H.; Waliser, D. E.; Case, J.; Iguchi, T.; Wang, W.

    2015-12-01

    Accurate simulation of extreme weather events remains a challenge in climate models. Previous studies indicate that regional climate models better reproduce extreme precipitation with their higher spatial resolution than coarser resolution global climate models. This study utilized radar-based hourly precipitation data with a resolution of 4 km to evaluate rainfall characteristics simulated with NASA Unified Weather Research and Forecasting (NU-WRF) model at horizontal resolutions of 24, 12 and 4 km. We also examined the impact of spectral nudging on the performance of NU-WRF. The rainfall characteristics in the observations and simulations were defined as a joint probability distribution function (JPDF) between duration and peak intensity of precipitation events over the Great Plains in summer. The Regional Climate Model Evaluation System (RCMES) is an open source software suite developed jointly by NASA's Jet Propulsion Laboratory and the University of California, Los Angeles. RCMES facilitates evaluation of NU-WRF evaluations by providing tools to process a vast amount of observational and model datasets with high resolutions. Using RCMES, we calculated JPDF for each dataset and the overlapping area between observed and simulated JPDFs to measure the similarity between the two JPDFs. The performance of NU-WRF simulations based on the precipitation JPDF is strongly dependent on their resolutions. The simulation with the highest resolution of 4 km shows the best agreement with the observations with the same resolution in simulating short-duration downpour events over the Great Plains. Our analysis indicates that even the regridded high-resolution simulation on low-resolution grids shows better performance than low-resolution simulations. The simulations with lower resolutions of 12 and 24 km show reasonable agreement only with the observational data whose resolutions are similar to the simulations.

  2. Effects of high temperatures on threatened estuarine fishes during periods of extreme drought.

    PubMed

    Jeffries, Ken M; Connon, Richard E; Davis, Brittany E; Komoroske, Lisa M; Britton, Monica T; Sommer, Ted; Todgham, Anne E; Fangue, Nann A

    2016-06-01

    Climate change and associated increases in water temperatures may impact physiological performance in ectotherms and exacerbate endangered species declines. We used an integrative approach to assess the impact of elevated water temperature on two fishes of immediate conservation concern in a large estuary system, the threatened longfin smelt (Spirinchus thaleichthys) and endangered delta smelt (Hypomesus transpacificus). Abundances have reached record lows in California, USA, and these populations are at imminent risk of extirpation. California is currently impacted by a severe drought, resulting in high water temperatures, conditions that will become more common as a result of climate change. We exposed fish to environmentally relevant temperatures (14°C and 20°C) and used RNA sequencing to examine the transcriptome-wide responses to elevated water temperature in both species. Consistent with having a lower temperature tolerance, longfin smelt exhibited a pronounced cellular stress response, with an upregulation of heat shock proteins, after exposure to 20°C that was not observed in delta smelt. We detected an increase in metabolic rate in delta smelt at 20°C and increased expression of genes involved in metabolic processes and protein synthesis, patterns not observed in longfin smelt. Through examination of responses across multiple levels of biological organization, and by linking these responses to habitat distributions in the wild, we demonstrate that longfin smelt may be more susceptible than delta smelt to increases in temperatures, and they have little room to tolerate future warming in California. Understanding the species-specific physiological responses of sensitive species to environmental stressors is crucial for conservation efforts and managing aquatic systems globally.

  3. Effects of high temperatures on threatened estuarine fishes during periods of extreme drought.

    PubMed

    Jeffries, Ken M; Connon, Richard E; Davis, Brittany E; Komoroske, Lisa M; Britton, Monica T; Sommer, Ted; Todgham, Anne E; Fangue, Nann A

    2016-06-01

    Climate change and associated increases in water temperatures may impact physiological performance in ectotherms and exacerbate endangered species declines. We used an integrative approach to assess the impact of elevated water temperature on two fishes of immediate conservation concern in a large estuary system, the threatened longfin smelt (Spirinchus thaleichthys) and endangered delta smelt (Hypomesus transpacificus). Abundances have reached record lows in California, USA, and these populations are at imminent risk of extirpation. California is currently impacted by a severe drought, resulting in high water temperatures, conditions that will become more common as a result of climate change. We exposed fish to environmentally relevant temperatures (14°C and 20°C) and used RNA sequencing to examine the transcriptome-wide responses to elevated water temperature in both species. Consistent with having a lower temperature tolerance, longfin smelt exhibited a pronounced cellular stress response, with an upregulation of heat shock proteins, after exposure to 20°C that was not observed in delta smelt. We detected an increase in metabolic rate in delta smelt at 20°C and increased expression of genes involved in metabolic processes and protein synthesis, patterns not observed in longfin smelt. Through examination of responses across multiple levels of biological organization, and by linking these responses to habitat distributions in the wild, we demonstrate that longfin smelt may be more susceptible than delta smelt to increases in temperatures, and they have little room to tolerate future warming in California. Understanding the species-specific physiological responses of sensitive species to environmental stressors is crucial for conservation efforts and managing aquatic systems globally. PMID:27252456

  4. Putative extremely high rate of proteome innovation in lancelets might be explained by high rate of gene prediction errors.

    PubMed

    Bányai, László; Patthy, László

    2016-08-01

    A recent analysis of the genomes of Chinese and Florida lancelets has concluded that the rate of creation of novel protein domain combinations is orders of magnitude greater in lancelets than in other metazoa and it was suggested that continuous activity of transposable elements in lancelets is responsible for this increased rate of protein innovation. Since morphologically Chinese and Florida lancelets are highly conserved, this finding would contradict the observation that high rates of protein innovation are usually associated with major evolutionary innovations. Here we show that the conclusion that the rate of proteome innovation is exceptionally high in lancelets may be unjustified: the differences observed in domain architectures of orthologous proteins of different amphioxus species probably reflect high rates of gene prediction errors rather than true innovation.

  5. Putative extremely high rate of proteome innovation in lancelets might be explained by high rate of gene prediction errors

    PubMed Central

    Bányai, László; Patthy, László

    2016-01-01

    A recent analysis of the genomes of Chinese and Florida lancelets has concluded that the rate of creation of novel protein domain combinations is orders of magnitude greater in lancelets than in other metazoa and it was suggested that continuous activity of transposable elements in lancelets is responsible for this increased rate of protein innovation. Since morphologically Chinese and Florida lancelets are highly conserved, this finding would contradict the observation that high rates of protein innovation are usually associated with major evolutionary innovations. Here we show that the conclusion that the rate of proteome innovation is exceptionally high in lancelets may be unjustified: the differences observed in domain architectures of orthologous proteins of different amphioxus species probably reflect high rates of gene prediction errors rather than true innovation. PMID:27476717

  6. Putative extremely high rate of proteome innovation in lancelets might be explained by high rate of gene prediction errors.

    PubMed

    Bányai, László; Patthy, László

    2016-01-01

    A recent analysis of the genomes of Chinese and Florida lancelets has concluded that the rate of creation of novel protein domain combinations is orders of magnitude greater in lancelets than in other metazoa and it was suggested that continuous activity of transposable elements in lancelets is responsible for this increased rate of protein innovation. Since morphologically Chinese and Florida lancelets are highly conserved, this finding would contradict the observation that high rates of protein innovation are usually associated with major evolutionary innovations. Here we show that the conclusion that the rate of proteome innovation is exceptionally high in lancelets may be unjustified: the differences observed in domain architectures of orthologous proteins of different amphioxus species probably reflect high rates of gene prediction errors rather than true innovation. PMID:27476717