Science.gov

Sample records for accumulate lipid reserves

  1. Capsinoids suppress fat accumulation via lipid metabolism.

    PubMed

    Hong, Qin; Xia, Chen; Xiangying, Hu; Quan, Yuan

    2015-03-01

    Capsaicin, found in red peppers, has been reported to have anti‑obesity, anti‑hypertension, anti‑diabetes and anti‑inflammatory functions. In the present study, we determined the effect of non‑pungent capsinoids on the metabolism of adipocytes. We demonstrated that capsinoids suppressed fat accumulation in vivo and in vitro in mice. Liver, the main tissue of lipid metabolism, was treated by capsinoids, and HMG‑CoA reductase, CPT‑1, FAT/CD36 and GLUT4 were found to be increased significantly, which demonstrated promotion of the lipid metabolism in liver and adipose tissues. In addition, by adding capsinoids, the induced adipocytes also demonstrated significantly increased levels of HMG‑CoA reductase, CPT‑1, FAT/CD36 and GLUT4. Oil red O staining also demonstrated that capsinoids decreased fat accumulation in the adipocytes. In conclusion, these results indicate that capsinoids may be worth investigating as a potential cure for obesity. PMID:25421144

  2. Bicarbonate trigger for inducing lipid accumulation in algal systems

    SciTech Connect

    Gardner, Robert; Peyton, Brent; Cooksey, Keith E.

    2015-08-04

    The present invention provides bicarbonate containing and/or bicarbonate-producing compositions and methods to induce lipid accumulation in an algae growth system, wherein the algae growth system is under light-dark cycling condition. By adding said compositions at a specific growth stage, said methods lead to much higher lipid accumulation and/or significantly reduced total time required for accumulating lipid in the algae growth system.

  3. Bilirubin Binding to PPARα Inhibits Lipid Accumulation.

    PubMed

    Stec, David E; John, Kezia; Trabbic, Christopher J; Luniwal, Amarjit; Hankins, Michael W; Baum, Justin; Hinds, Terry D

    2016-01-01

    Numerous clinical and population studies have demonstrated that increased serum bilirubin levels protect against cardiovascular and metabolic diseases such as obesity and diabetes. Bilirubin is a potent antioxidant, and the beneficial actions of moderate increases in plasma bilirubin have been thought to be due to the antioxidant effects of this bile pigment. In the present study, we found that bilirubin has a new function as a ligand for PPARα. We show that bilirubin can bind directly to PPARα and increase transcriptional activity. When we compared biliverdin, the precursor to bilirubin, on PPARα transcriptional activation to known PPARα ligands, WY 14,643 and fenofibrate, it showed that fenofibrate and biliverdin have similar activation properties. Treatment of 3T3-L1 adipocytes with biliverdin suppressed lipid accumulation and upregulated PPARα target genes. We treated wild-type and PPARα KO mice on a high fat diet with fenofibrate or bilirubin for seven days and found that both signal through PPARα dependent mechanisms. Furthermore, the effect of bilirubin on lowering glucose and reducing body fat percentage was blunted in PPARα KO mice. These data demonstrate a new function for bilirubin as an agonist of PPARα, which mediates the protection from adiposity afforded by moderate increases in bilirubin. PMID:27071062

  4. Vinpocetine attenuates lipid accumulation and atherosclerosis formation

    SciTech Connect

    Cai, Yujun; Li, Jian-Dong; Yan, Chen

    2013-05-10

    Highlights: •Vinpocetine attenuates hyperlipidemia-induced atherosclerosis in a mouse model. •Vinpocetine antagonizes ox-LDL uptake and accumulation in macrophages. •Vinpocetine blocks the induction of ox-LDL receptor LOX-1 in vitro and in vivo. -- Abstract: Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent anti-inflammatory agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis.

  5. Nonalcoholic Lipid Accumulation and Hepatocyte Malignant Transformation.

    PubMed

    Gu, Juanjuan; Yao, Min; Yao, Dengbing; Wang, Li; Yang, Xuli; Yao, Dengfu

    2016-06-28

    Worldwide incidence of hepatocellular carcinoma (HCC) is steadily increasing, highlighting its status as a public health concern, particularly due to its significant association with other comorbidities, such as diabetes. However, nonalcoholic fatty liver disease (NAFLD) has emerged as a primary risk factor, with its own prevalence increasing in recent years, and it has gradually caught up with the historical primary etiological factors of infection with hepatitis B virus and hepatitis C virus, exposure to aflatoxin, or alcohol liver disease. The deeply worrisome aspects of all of these high risk factors, however, are their remarkable presence within populations. Systemic and genetic mechanisms involved in the malignant transformation of liver cells, as well as useful biomarkers of early stage HCC are being investigated. However, the exact mechanisms underlying the interrelation of NAFLD and HCC remain largely unknown. In this review, some of the recent advances in our understanding of liver lipid accumulation are summarized and discussed to provide insights into the relationship between NAFLD and hepatocyte malignant transformation. PMID:27350942

  6. Bilirubin Binding to PPARα Inhibits Lipid Accumulation

    PubMed Central

    Stec, David E.; John, Kezia; Trabbic, Christopher J.; Luniwal, Amarjit; Hankins, Michael W.; Baum, Justin

    2016-01-01

    Numerous clinical and population studies have demonstrated that increased serum bilirubin levels protect against cardiovascular and metabolic diseases such as obesity and diabetes. Bilirubin is a potent antioxidant, and the beneficial actions of moderate increases in plasma bilirubin have been thought to be due to the antioxidant effects of this bile pigment. In the present study, we found that bilirubin has a new function as a ligand for PPARα. We show that bilirubin can bind directly to PPARα and increase transcriptional activity. When we compared biliverdin, the precursor to bilirubin, on PPARα transcriptional activation to known PPARα ligands, WY 14,643 and fenofibrate, it showed that fenofibrate and biliverdin have similar activation properties. Treatment of 3T3-L1 adipocytes with biliverdin suppressed lipid accumulation and upregulated PPARα target genes. We treated wild-type and PPARα KO mice on a high fat diet with fenofibrate or bilirubin for seven days and found that both signal through PPARα dependent mechanisms. Furthermore, the effect of bilirubin on lowering glucose and reducing body fat percentage was blunted in PPARα KO mice. These data demonstrate a new function for bilirubin as an agonist of PPARα, which mediates the protection from adiposity afforded by moderate increases in bilirubin. PMID:27071062

  7. Nonalcoholic Lipid Accumulation and Hepatocyte Malignant Transformation

    PubMed Central

    Gu, Juanjuan; Yao, Min; Yao, Dengbing; Wang, Li; Yang, Xuli; Yao, Dengfu

    2016-01-01

    Abstract Worldwide incidence of hepatocellular carcinoma (HCC) is steadily increasing, highlighting its status as a public health concern, particularly due to its significant association with other comorbidities, such as diabetes. However, nonalcoholic fatty liver disease (NAFLD) has emerged as a primary risk factor, with its own prevalence increasing in recent years, and it has gradually caught up with the historical primary etiological factors of infection with hepatitis B virus and hepatitis C virus, exposure to aflatoxin, or alcohol liver disease. The deeply worrisome aspects of all of these high risk factors, however, are their remarkable presence within populations. Systemic and genetic mechanisms involved in the malignant transformation of liver cells, as well as useful biomarkers of early stage HCC are being investigated. However, the exact mechanisms underlying the interrelation of NAFLD and HCC remain largely unknown. In this review, some of the recent advances in our understanding of liver lipid accumulation are summarized and discussed to provide insights into the relationship between NAFLD and hepatocyte malignant transformation. PMID:27350942

  8. Compositional shift in lipid fractions during lipid accumulation and turnover in Schizochytrium sp.

    PubMed

    Ren, Lu-Jing; Sun, Guan-Nan; Ji, Xiao-Jun; Hu, Xue-Chao; Huang, He

    2014-04-01

    Single cell oils (SCOs), a complex lipid system, contains neutral lipids (NLs), polar lipids (PLs) and unsaponifiable matters (UMs). To investigate the dynamic changes and the metabolic competition mechanism of different components of SCOs, changes in lipid composition of Schizochytrium sp. were monitored in lipid accumulation and turnover stages. Lipid content could reach 69.98% in biomass during the lipid accumulation stage, while, after the exhaustion of glucose, the content decreased to 45.51% and 20.6g/L non-oil biomass was synthesis. Polyunsaturated fatty acids (PUFAs) were easier to bind with PLs. NLs were preferentially converted to PLs during lipid turnover stage, accompanied by the degradation of saturated fatty acids and the increase of UMs. Meanwhile, a positive correlation between the synthesis of PUFAs and unsaponifiable matters exited in Schizochytrium sp., and increasing the content of UMs from 45 to 100mg/L could increase the PUFA percentage from 64% to 74% effectively. PMID:24534791

  9. Ultrastructural and flow cytometric analyses of lipid accumulation in microalgae

    SciTech Connect

    Solomon, J.A.; Hand, R.E. Jr.; Mann, R.C.

    1986-12-01

    Lipid accumulation in three species of microalgae was investigated with flow cytometry (FCM) and transmission electron microscopy (TEM). Previous studies using batch cultures of a algae have led to the assumption that lipid accumulation in microalgae is a gradual process requiring at least several days for completion. However, FCM reveals, through changes in the chlorophyll:lipid ratio, that the time span required for individual cells to change metabolic state is short. Simultaneous FCM measurements of chlorophyll and nile red (neutral lipid) fluorescence in individual cells of nitrogen-deficient Isochrysis populations revealed a bimodal population distribution as one stage in the lipid accumulation process. The fact that two discrete populations exist, with few cells in an intermediate stage, suggests rapid response to a liqid trigger. Interpretations of light and electron microscopic observations are consistent with this hypothesis. The time required for an entire population to achieve maximum lipid content is considerably longer than that required for a single cell, due to the variation in response time among cells. In this study high lipid cultures were sometimes obtained by using FCM to separate high lipid cells from the remainder of the population. FCM holds much promise for strain enhancement but considerable developmental work, directed at providing more consistent results, remains to be done. 8 refs., 35 figs.

  10. Lipid accumulation in prosthetic vascular grafts. Experimental study.

    PubMed Central

    Chignier, E.; Guidollet, J.; Lhopital, C.; Louisot, P.; Eloy, R.

    1990-01-01

    The present study demonstrates that the endoprosthetic tissue, developed at the contact of Dacron and Gore-Tex vascular prostheses replacing the infrarenal aortae of healthy dogs, presents a particular lipidic pattern as compared with the adjacent intimal arterial layer. The modified lipidic pattern is characterized by a significant increase in the total amounts of cholesterol, phospholipids, and triglycerides, despite a normal lipidic plasma profile. Histochemical studies showed that lipid droplets are accumulated in the cytoplasm of deeply situated cells and in the extracellular matrix. These findings support the idea that lipids may be trapped within the pseudo-intima of synthetic vascular grafts, even in the absence of a major plasma lipid disorder, and contribute to the prosthesis failure. Images Figure 2 Figure 4 Figure 5 Figure 6 PMID:2399933

  11. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes

    SciTech Connect

    Lasrich, Dorothee; Bartelt, Alexander; Grewal, Thomas; Heeren, Joerg

    2015-09-10

    Several studies in mice indicate a role for apolipoprotein E (APOE) in lipid accumulation and adipogenic differentiation in adipose tissue. However, little is yet known if APOE functions in a similar manner in human adipocytes. This prompted us to compare lipid loading and expression of adipocyte differentiation markers in APOE-deficient and control adipocytes using the differentiated human mesenchymal stem cell line hMSC-Tert as well as primary human and mouse adipocytes as model systems. Differentiated hMSC-Tert were stably transduced with or without siRNA targeting APOE while murine adipocytes were isolated from wild type and Apoe knockout mice. Human APOE knockdown hMSC-Tert adipocytes accumulated markedly less triglycerides compared to control cells. This correlated with strongly decreased gene expression levels of adipocyte markers such as adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) as well as the key transcription factor driving adipocyte differentiation, peroxisome proliferator activator receptor gamma (PPARG), in particular the PPARG2 isoform. Similarly, differentiation of murine Apoe-deficient adipocytes was characterized by reduced gene expression of Adipoq, Fabp4 and Pparg. Interestingly, incubation of APOE-deficient hMSC-Tert adipocytes with conditioned media from APOE3-overexpressing adipocytes or APOE-containing Very Low Density Lipoprotein (VLDL) partially restored triglyceride accumulation, but were unable to induce adipocyte differentiation, as judged by expression of adipocyte markers. Taken together, depletion of endogenous APOE in human adipocytes severely impairs lipid accumulation, which is associated with an inability to initiate differentiation. - Highlights: • Immortalized human mesenchymal stem cells were used to study adipocyte development. • Knockdown of endogenous APOE lead to impaired lipid accumulation and adipogenesis. • APOE supplementation partially restored lipid accumulation but not differentiation.

  12. Increased lipid droplet accumulation associated with a peripheral sensory neuropathy.

    PubMed

    Marshall, Lee L; Stimpson, Scott E; Hyland, Ryan; Coorssen, Jens R; Myers, Simon J

    2014-04-01

    Hereditary sensory neuropathy type 1 (HSN-1) is an autosomal dominant neurodegenerative disease caused by missense mutations in the SPTLC1 gene. The SPTLC1 protein is part of the SPT enzyme which is a ubiquitously expressed, critical and thus highly regulated endoplasmic reticulum bound membrane enzyme that maintains sphingolipid concentrations and thus contributes to lipid metabolism, signalling, and membrane structural functions. Lipid droplets are dynamic organelles containing sphingolipids and membrane bound proteins surrounding a core of neutral lipids, and thus mediate the intracellular transport of these specific molecules. Current literature suggests that there are increased numbers of lipid droplets and alterations of lipid metabolism in a variety of other autosomal dominant neurodegenerative diseases, including Alzheimer's and Parkinson's disease. This study establishes for the first time, a significant increase in the presence of lipid droplets in HSN-1 patient-derived lymphoblasts, indicating a potential connection between lipid droplets and the pathomechanism of HSN-1. However, the expression of adipophilin (ADFP), which has been implicated in the regulation of lipid metabolism, was not altered in lipid droplets from the HSN-1 patient-derived lymphoblasts. This appears to be the first report of increased lipid body accumulation in a peripheral neuropathy, suggesting a fundamental molecular linkage between a number of neurodegenerative diseases. PMID:24711860

  13. Saturating Light Induces Sustained Accumulation of Oil in Plastidal Lipid Droplets in Chlamydomonas reinhardtii.

    PubMed

    Goold, Hugh Douglas; Cuiné, Stéphan; Légeret, Bertrand; Liang, Yuanxue; Brugière, Sabine; Auroy, Pascaline; Javot, Hélène; Tardif, Marianne; Jones, Brian; Beisson, Fred; Peltier, Gilles; Li-Beisson, Yonghua

    2016-08-01

    Enriching algal biomass in energy density is an important goal in algal biotechnology. Nitrogen (N) starvation is considered the most potent trigger of oil accumulation in microalgae and has been thoroughly investigated. However, N starvation causes the slow down and eventually the arrest of biomass growth. In this study, we show that exposing a Chlamydomonas reinhardtii culture to saturating light (SL) under a nonlimiting CO2 concentration in turbidostatic photobioreactors induces a sustained accumulation of lipid droplets (LDs) without compromising growth, which results in much higher oil productivity than N starvation. We also show that the polar membrane lipid fraction of SL-induced LDs is rich in plastidial lipids (approximately 70%), in contrast to N starvation-induced LDs, which contain approximately 60% lipids of endoplasmic reticulum origin. Proteomic analysis of LDs isolated from SL-exposed cells identified more than 200 proteins, including known proteins of lipid metabolism, as well as 74 proteins uniquely present in SL-induced LDs. LDs induced by SL and N depletion thus differ in protein and lipid contents. Taken together, lipidomic and proteomic data thus show that a large part of the sustained oil accumulation occurring under SL is likely due to the formation of plastidial LDs. We discuss our data in relation to the different metabolic routes used by microalgae to accumulate oil reserves depending on cultivation conditions. Finally, we propose a model in which oil accumulation is governed by an imbalance between photosynthesis and growth, which can be achieved by impairing growth or by boosting photosynthetic carbon fixation, with the latter resulting in higher oil productivity. PMID:27297678

  14. Vinpocetine attenuates lipid accumulation and atherosclerosis formation.

    PubMed

    Cai, Yujun; Li, Jian-Dong; Yan, Chen

    2013-05-10

    Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent anti-inflammatory agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis. PMID:23583194

  15. Vinpocetine Attenuates Lipid Accumulation and Atherosclerosis Formation

    PubMed Central

    Cai, Yujun; Li, Jian-Dong; Yan, Chen

    2013-01-01

    Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent inflammatory agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis PMID:23583194

  16. JAZF1 can regulate the expression of lipid metabolic genes and inhibit lipid accumulation in adipocytes

    SciTech Connect

    Ming, Guang-feng; Xiao, Di; Gong, Wei-jing; Liu, Hui-xia; Liu, Jun; Zhou, Hong-hao; Liu, Zhao-qian

    2014-03-14

    Highlights: • JAZF1 was significantly upregulated during the differentiation of 3T3-L1 preadipocytes. • JAZF1 overexpression inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes. • JAZF1 overexpression inhibited the expression of SREBP1, ACC, and FAS. • JAZF1 overexpression upregulated the expression of HSL and ATGL. • SREBP1 and JAZF1 could regulate each other in adipocytes. - Abstract: JAZF1 is a newly identified gene with unknown functions. A recent genome-wide association study showed that JAZF1 is associated with type 2 diabetes and is highly expressed in liver and adipose tissue. Studies have demonstrated that JAZF1 is the co-repressor for nuclear orphan receptor TAK1, whereas most nuclear orphan receptor family members are involved in the regulation of lipid metabolism. Therefore, JAZF1 could be closely related to glycolipid metabolism. In this study, JAZF1 was significantly upregulated during the induced differentiation process of 3T3-L1 preadipocytes. The overexpression of JAZF1 inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes and significantly inhibited the expression of SREBPl, ACC, and FAS, which were important in lipid synthesis, while upregulating the expression of key enzyme hormone-sensitive lipase in lipoclasis. Moreover, SREBPl exhibited an inhibitory function on the expression of JAZF1. SREBP1 reversed the inhibitory action on lipid accumulation of JAZF1. SREBP1 and JAZF1 were observed to regulate each other in adipocytes. Therefore, JAZF1 could regulate the expression of particular genes related to lipid metabolism and inhibit lipid accumulation in adipocytes. This result suggests that JAZF1 may be a potential target for the treatment of diseases, such as obesity and lipid metabolism disorders.

  17. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth

    PubMed Central

    Trentacoste, Emily M.; Shrestha, Roshan P.; Smith, Sarah R.; Glé, Corine; Hartmann, Aaron C.; Hildebrand, Mark; Gerwick, William H.

    2013-01-01

    Biologically derived fuels are viable alternatives to traditional fossil fuels, and microalgae are a particularly promising source, but improvements are required throughout the production process to increase productivity and reduce cost. Metabolic engineering to increase yields of biofuel-relevant lipids in these organisms without compromising growth is an important aspect of advancing economic feasibility. We report that the targeted knockdown of a multifunctional lipase/phospholipase/acyltransferase increased lipid yields without affecting growth in the diatom Thalassiosira pseudonana. Antisense-expressing knockdown strains 1A6 and 1B1 exhibited wild-type–like growth and increased lipid content under both continuous light and alternating light/dark conditions. Strains 1A6 and 1B1, respectively, contained 2.4- and 3.3-fold higher lipid content than wild-type during exponential growth, and 4.1- and 3.2-fold higher lipid content than wild-type after 40 h of silicon starvation. Analyses of fatty acids, lipid classes, and membrane stability in the transgenic strains suggest a role for this enzyme in membrane lipid turnover and lipid homeostasis. These results demonstrate that targeted metabolic manipulations can be used to increase lipid accumulation in eukaryotic microalgae without compromising growth. PMID:24248374

  18. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes.

    PubMed

    Lasrich, Dorothee; Bartelt, Alexander; Grewal, Thomas; Heeren, Joerg

    2015-09-10

    Several studies in mice indicate a role for apolipoprotein E (APOE) in lipid accumulation and adipogenic differentiation in adipose tissue. However, little is yet known if APOE functions in a similar manner in human adipocytes. This prompted us to compare lipid loading and expression of adipocyte differentiation markers in APOE-deficient and control adipocytes using the differentiated human mesenchymal stem cell line hMSC-Tert as well as primary human and mouse adipocytes as model systems. Differentiated hMSC-Tert were stably transduced with or without siRNA targeting APOE while murine adipocytes were isolated from wild type and Apoe knockout mice. Human APOE knockdown hMSC-Tert adipocytes accumulated markedly less triglycerides compared to control cells. This correlated with strongly decreased gene expression levels of adipocyte markers such as adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) as well as the key transcription factor driving adipocyte differentiation, peroxisome proliferator activator receptor gamma (PPARG), in particular the PPARG2 isoform. Similarly, differentiation of murine Apoe-deficient adipocytes was characterized by reduced gene expression of Adipoq, Fabp4 and Pparg. Interestingly, incubation of APOE-deficient hMSC-Tert adipocytes with conditioned media from APOE3-overexpressing adipocytes or APOE-containing Very Low Density Lipoprotein (VLDL) partially restored triglyceride accumulation, but were unable to induce adipocyte differentiation, as judged by expression of adipocyte markers. Taken together, depletion of endogenous APOE in human adipocytes severely impairs lipid accumulation, which is associated with an inability to initiate differentiation. PMID:26201081

  19. Lipid Accumulation during the Establishment of Kleptoplasty in Elysia chlorotica

    PubMed Central

    Pelletreau, Karen N.; Weber, Andreas P. M.; Weber, Katrin L.; Rumpho, Mary E.

    2014-01-01

    The establishment of kleptoplasty (retention of “stolen plastids”) in the digestive tissue of the sacoglossan Elysia chlorotica Gould was investigated using transmission electron microscopy. Cellular processes occurring during the initial exposure to plastids were observed in laboratory raised animals ranging from 1–14 days post metamorphosis (dpm). These observations revealed an abundance of lipid droplets (LDs) correlating to plastid abundance. Starvation of animals resulted in LD and plastid decay in animals <5 dpm that had not yet achieved permanent kleptoplasty. Animals allowed to feed on algal prey (Vaucheria litorea C. Agardh) for 7 d or greater retained stable plastids resistant to cellular breakdown. Lipid analysis of algal and animal samples supports that these accumulating LDs may be of plastid origin, as the often algal-derived 20∶5 eicosapentaenoic acid was found in high abundance in the animal tissue. Subsequent culturing of animals in dark conditions revealed a reduced ability to establish permanent kleptoplasty in the absence of photosynthetic processes, coupled with increased mortality. Together, these data support an important role of photosynthetic lipid production in establishing and stabilizing this unique animal kleptoplasty. PMID:24828251

  20. Regulation of starch and lipid accumulation in a microalga Chlorella sorokiniana.

    PubMed

    Li, Tingting; Gargouri, Mahmoud; Feng, Jie; Park, Jeong-Jin; Gao, Difeng; Miao, Chao; Dong, Tao; Gang, David R; Chen, Shulin

    2015-03-01

    Microalgae have attracted growing attention due to their potential in biofuel feedstock production. However, current understanding of the regulatory mechanisms for lipid biosynthesis and storage in microalgae is still limited. This study revealed that the microalga Chlorella sorokiniana showed sequential accumulation of starch and lipids. When nitrogen was replete and/or depleted over a short period, starch was the predominant carbon storage form with basal levels of lipid accumulation. After prolonged nitrogen depletion, lipid accumulation increased considerably, which was partially due to starch degradation, as well as the turnover of primary metabolites. Lipid accumulation is also strongly dependent on the linear electron flow of photosynthesis, peaking at lower light intensities. Collectively, this study reveals a relatively clear regulation pattern of starch and lipid accumulation that is basically controlled by nitrogen levels. The mixotrophic growth of C. sorokiniana shows promise for biofuel production in terms of lipid accumulation in the final biomass. PMID:25616239

  1. Prion Protein Accumulation in Lipid Rafts of Mouse Aging Brain

    PubMed Central

    Agostini, Federica; Dotti, Carlos G.; Pérez-Cañamás, Azucena; Ledesma, Maria Dolores; Benetti, Federico; Legname, Giuseppe

    2013-01-01

    The cellular form of the prion protein (PrPC) is a normal constituent of neuronal cell membranes. The protein misfolding causes rare neurodegenerative disorders known as transmissible spongiform encephalopathies or prion diseases. These maladies can be sporadic, genetic or infectious. Sporadic prion diseases are the most common form mainly affecting aging people. In this work, we investigate the biochemical environment in which sporadic prion diseases may develop, focusing our attention on the cell membrane of neurons in the aging brain. It is well established that with aging the ratio between the most abundant lipid components of rafts undergoes a major change: while cholesterol decreases, sphingomyelin content rises. Our results indicate that the aging process modifies the compartmentalization of PrPC. In old mice, this change favors PrPC accumulation in detergent-resistant membranes, particularly in hippocampi. To confirm the relationship between lipid content changes and PrPC translocation into detergent-resistant membranes (DRMs), we looked at PrPC compartmentalization in hippocampi from acid sphingomyelinase (ASM) knockout (KO) mice and synaptosomes enriched in sphingomyelin. In the presence of high sphingomyelin content, we observed a significant increase of PrPC in DRMS. This process is not due to higher levels of total protein and it could, in turn, favor the onset of sporadic prion diseases during aging as it increases the PrP intermolecular contacts into lipid rafts. We observed that lowering sphingomyelin in scrapie-infected cells by using fumonisin B1 led to a 50% decrease in protease-resistant PrP formation. This may suggest an involvement of PrP lipid environment in prion formation and consequently it may play a role in the onset or development of sporadic forms of prion diseases. PMID:24040215

  2. Linoleic acid stimulates neutral lipid accumulation in lipid droplets of maturing bovine oocytes.

    PubMed

    Carro, M; Buschiazzo, J; Ríos, G L; Oresti, G M; Alberio, R H

    2013-03-01

    Linoleic acid (LA) is a polyunsaturated fatty acid present in high concentrations in bovine follicular fluid; when added to maturation culture media, it affects oocyte competence (depending on the type and concentration of LA used). To date, little is known about the effective level of incorporation of LA and there is apparently no information regarding its esterification into various lipid fractions of the oocyte and its effect on neutral lipid storage. Therefore, the objective was to assess the uptake and subcellular lipid distribution of LA by analyzing incorporation of radiolabeled LA into oocyte polar and neutral lipid classes. The effects of various concentrations of LA on the nuclear status and cytoplasmic lipid content of bovine oocytes matured in vitro was also analyzed, with particular emphasis on intermediate concentrations of LA. Neutral lipids stored in lipid droplets were quantified with a fluorescence approach. Linoleic acid at 9 and 43 μM did not affect the nuclear status of oocytes matured in vitro, and 100 μM LA inhibited germinal vesicle breakdown, resulting in a higher percentage of oocytes arrested at the germinal state (43.5 vs. 3.0 in controls; P < 0.05). Bovine oocytes actively incorporated LA from the maturation medium (83.4 pmol LA per 100 oocytes at 22 hours of incubation; P < 0.05) and metabolized it mainly into major lipid classes, e.g., triacylglycerols and phospholipids (61.1% and 29.3%, respectively). Supplementation of the maturation medium with LA increased triacylglycerol accumulation in cytoplasmic lipid droplets at all concentrations assayed (P < 0.05). In conclusion, LA added to a defined maturation medium at concentrations that did not alter the nuclear status of bovine oocytes matured in vitro (9 and 43 μM) improved their quality by increasing the content of neutral lipids stored in lipid droplets. By directing the free fatty acid (LA) to triacylglycerol synthesis pathways and increasing the degree of unsaturation of

  3. Arrhythmia causes lipid accumulation and reduced glucose uptake.

    PubMed

    Lenski, Matthias; Schleider, Gregor; Kohlhaas, Michael; Adrian, Lucas; Adam, Oliver; Tian, Qinghai; Kaestner, Lars; Lipp, Peter; Lehrke, Michael; Maack, Christoph; Böhm, Michael; Laufs, Ulrich

    2015-01-01

    Atrial fibrillation (AF) is characterized by irregular contractions of atrial cardiomyocytes and increased energy demand. The aim of this study was to characterize the influence of arrhythmia on glucose and fatty acid (FA) metabolism in cardiomyocytes, mice and human left atrial myocardium. Compared to regular pacing, irregular (pseudo-random variation at the same number of contractions/min) pacing of neonatal rat cardiomyocytes induced shorter action potential durations and effective refractory periods and increased diastolic [Ca(2+)]c. This was associated with the activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and AMP-activated protein kinase (AMPK). Membrane expression of fatty acid translocase (FAT/CD36) and (14)C-palmitic acid uptake were augmented while membrane expression of glucose transporter subtype 4 (GLUT-4) as well as (3)H-glucose uptake were reduced. Inhibition of AMPK and CaMKII prevented these arrhythmia-induced metabolic changes. Similar alterations of FA metabolism were observed in a transgenic mouse model (RacET) for spontaneous AF. Consistent with these findings samples of left atrial myocardium of patients with AF compared to matched samples of patients with sinus rhythm showed up-regulation of CaMKII and AMPK and increased membrane expression of FAT/CD36, resulting in lipid accumulation. These changes of FA metabolism were accompanied by decreased membrane expression of GLUT-4, increased glycogen content and increased expression of the pro-apoptotic protein bax. Irregular pacing of cardiomyocytes increases diastolic [Ca(2+)]c and activation of CaMKII and AMPK resulting in lipid accumulation, reduced glucose uptake and increased glycogen synthesis. These metabolic changes are accompanied by an activation of pro-apoptotic signalling pathways. PMID:26018791

  4. SUMO1 depletion prevents lipid droplet accumulation and HCV replication.

    PubMed

    Akil, Abdellah; Wedeh, Ghaith; Zahid Mustafa, Mohammad; Gassama-Diagne, Ama

    2016-01-01

    Infection by hepatitis C virus (HCV) is a major public-health problem. Chronic infection often leads to cirrhosis, steatosis, and hepatocellular carcinoma. The life cycle of HCV depends on the host cell machinery and involves intimate interaction between viral and host proteins. However, the role of host proteins in the life cycle of HCV remains poorly understood. Here, we identify the small ubiquitin-related modifier (SUMO1) as a key host factor required for HCV replication. We performed a series of cell biology and biochemistry experiments using the HCV JFH-1 (Japanese fulminate hepatitis 1) genotype 2a strain, which produces infectious particles and recapitulates all the steps of the HCV life cycle. We observed that SUMO1 is upregulated in Huh7.5 infected cells. Reciprocally, SUMO1 was found to regulate the expression of viral core protein. Moreover, knockdown of SUMO1 using specific siRNA influenced the accumulation of lipid droplets and reduced HCV replication as measured by qRT-PCR. Thus, we identify SUMO1 as a key host factor required for HCV replication. To our knowledge, this is the first report showing that SUMO1 regulates lipid droplets in the context of viral infection. Our report provides a meaningful insight into how HCV replicates and interacts with host proteins and is of significant importance for the field of HCV and RNA viruses. PMID:26449956

  5. Association of Lipid Accumulation Product with Cardio-Metabolic Risk Factors in Postmenopausal Women.

    PubMed

    Namazi Shabestari, Alireza; Asadi, Mojgan; Jouyandeh, Zahra; Qorbani, Mostafa; Kelishadi, Roya

    2016-06-01

    The lipid accumulation product is a novel, safe and inexpensive index of central lipid over accumulation based on waist circumference and fasting concentration of circulating triglycerides. This study was designed to investigate the ability of lipid accumulation product to predict Cardio-metabolic risk factors in postmenopausal women. In this Cross-sectional study, 264 postmenopausal women by using convenience sampling method were selected from menopause clinic in Tehran. Cardio-metabolic risk factors were measured, and lipid accumulation product (waist-58×triglycerides [nmol/L]) was calculated. Optimal cut-off point of lipid accumulation product for predicting metabolic syndrome was estimated by ROC (Receiver-operating characteristic) curve analysis. Metabolic syndrome was diagnosed in 41.2% of subjects. Optimal cut-off point of lipid accumulation product for predicting metabolic syndrome was 47.63 (sensitivity:75%; specificity:77.9%). High lipid accumulation product increases risk of all Cardio-metabolic risk factors except overweight, high Total Cholesterol, high Low Density Lipoprotein Cholesterol and high Fasting Blood Sugar in postmenopausal women. Our findings show that lipid accumulation product is associated with metabolic syndrome and some Cardio-metabolic risk factors Also lipid accumulation product may have been a useful tool for predicting cardiovascular disease and metabolic syndrome risk in postmenopausal women. PMID:27306343

  6. Metabolomic analysis reveals mechanism of antioxidant butylated hydroxyanisole on lipid accumulation in Crypthecodinium cohnii.

    PubMed

    Sui, Xiao; Niu, Xiangfeng; Shi, Mengliang; Pei, Guangsheng; Li, Jinghan; Chen, Lei; Wang, Jiangxin; Zhang, Weiwen

    2014-12-24

    The heterotrophic dinoflagellate alga Crypthecodinium cohnii is known to accumulate lipids with a high fraction of docosahexaenoic acid (DHA). In this study, we first evaluated two antioxidant compounds, butylated hydroxyanisole (BHA) and propyl gallate (PG), for their effects on lipid accumulation in C. cohnii. The results showed that antioxidant BHA could increase lipid accumulation in C. cohnii by 8.80% at a final concentration of 30 μM, while PG had no obvious effect on lipid accumulation at the tested concentrations. To decipher the molecular mechanism responsible for the increased lipid accumulation by BHA, we employed an integrated GC-MS and LC-MS metabolomic approach to determine the time-series metabolic profiles with or without BHA, and then subjected the metabolomic data to a principal component analysis (PCA) and a weighted gene coexpression network analysis (WGCNA) network analyses to identify the key metabolic modules and metabolites possibly relevant to the increased lipid accumulation. LC-MS analysis showed that several metabolites, including NADPH, could be important for the stimulation role of BHA on lipid accumulation. Meanwhile GC-MS and network analyses allowed identification of eight metabolic modules and nine hub metabolites possibly relevant to the stimulation role of BHA in C. cohnii. The study provided a metabolomics view of the BHA mode of action on lipid accumulation in C. cohnii, and the information could be valuable for a better understanding of antioxidant effects on lipid accumulation in other microalgae as well. PMID:25436856

  7. THP-1 macrophage lipid accumulation unaffected by fatty acid double bond geometric or positional configuration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary fatty acid type alters atherosclerotic lesion progression and macrophage lipid accumulation. Incompletely elucidated are the mechanisms by which fatty acids differing in double-bond geometric or positional configuration alter arterial lipid accumulation. The objective of this study was to ev...

  8. Lipid body accumulation alters calcium signaling dynamics in immune cells.

    PubMed

    Greineisen, William E; Speck, Mark; Shimoda, Lori M N; Sung, Carl; Phan, Nolwenn; Maaetoft-Udsen, Kristina; Stokes, Alexander J; Turner, Helen

    2014-09-01

    There is well-established variability in the numbers of lipid bodies (LB) in macrophages, eosinophils, and neutrophils. Similarly to the steatosis observed in adipocytes and hepatocytes during hyperinsulinemia and nutrient overload, immune cell LB hyper-accumulate in response to bacterial and parasitic infection and inflammatory presentations. Recently we described that hyperinsulinemia, both in vitro and in vivo, drives steatosis and phenotypic changes in primary and transformed mast cells and basophils. LB reach high numbers in these steatotic cytosols, and here we propose that they could dramatically impact the transcytoplasmic signaling pathways. We compared calcium release and influx responses at the population and single cell level in normal and steatotic model mast cells. At the population level, all aspects of FcɛRI-dependent calcium mobilization, as well as activation of calcium-dependent downstream signaling targets such as NFATC1 phosphorylation are suppressed. At the single cell level, we demonstrate that LB are both sources and sinks of calcium following FcɛRI cross-linking. Unbiased analysis of the impact of the presence of LB on the rate of trans-cytoplasmic calcium signals suggest that LB enrichment accelerates calcium propagation, which may reflect a Bernoulli effect. LB abundance thus impacts this fundamental signaling pathway and its downstream targets. PMID:25016314

  9. Adipocyte Stiffness Increases with Accumulation of Lipid Droplets

    PubMed Central

    Shoham, Naama; Girshovitz, Pinhas; Katzengold, Rona; Shaked, Natan T.; Benayahu, Dafna; Gefen, Amit

    2014-01-01

    Adipogenesis and increase in fat tissue mass are mechanosensitive processes and hence should be influenced by the mechanical properties of adipocytes. We evaluated subcellular effective stiffnesses of adipocytes using atomic force microscopy (AFM) and interferometric phase microscopy (IPM), and we verified the empirical results using finite element (FE) simulations. In the AFM studies, we found that the mean ratio of stiffnesses of the lipid droplets (LDs) over the nucleus was 0.83 ± 0.14, from which we further evaluated the ratios of LDs over cytoplasm stiffness, as being in the range of 2.5 to 8.3. These stiffness ratios, indicating that LDs are stiffer than cytoplasm, were verified by means of FE modeling, which simulated the AFM experiments, and provided good agreement between empirical and model-predicted structural behavior. In the IPM studies, we found that LDs mechanically distort their intracellular environment, which again indicated that LDs are mechanically stiffer than the surrounding cytoplasm. Combining these empirical and simulation data together, we provide in this study evidence that adipocytes stiffen with differentiation as a result of accumulation of LDs. Our results are relevant to research of adipose-related diseases, particularly overweight and obesity, from a mechanobiology and cellular mechanics perspectives. PMID:24655518

  10. Lipid body accumulation alters calcium signaling dynamics in immune cells

    PubMed Central

    Greineisen, William E.; Speck, Mark; Shimoda, Lori M.N.; Sung, Carl; Phan, Nolwenn; Maaetoft-Udsen, Kristina; Stokes, Alexander J.; Turner, Helen

    2014-01-01

    Summary There is well-established variability in the numbers of lipid bodies (LB) in macrophages, eosinophils, and neutrophils. Similarly to the steatosis observed in adipocytes and hepatocytes during hyperinsulinemia and nutrient overload, immune cell LB hyper-accumulate in response to bacterial and parasitic infection and inflammatory presentations. Recently we described that hyperinsulinemia, both in vitro and in vivo, drives steatosis and phenotypic changes in primary and transformed mast cells and basophils. LB reach high numbers in these steatotic cytosols, and here we propose that they could dramatically impact the transcytoplasmic signaling pathways. We compared calcium release and influx responses at the population and single cell level in normal and steatotic model mast cells. At the population level, all aspects of FcεRI-dependent calcium mobilization, as well as activation of calcium-dependent downstream signalling targets such as NFATC1 phosphorylation are suppressed. At the single cell level, we demonstrate that LB are both sources and sinks of calcium following FcεRI cross-linking. Unbiased analysis of the impact of the presence of LB on the rate of trans-cytoplasmic calcium signals suggest that LB enrichment accelerates calcium propagation, which may reflect a Bernoulli effect. LB abundance thus impacts this fundamental signalling pathway and its downstream targets. PMID:25016314

  11. Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency.

    PubMed

    Shen, Qiao-Hui; Gong, Yu-Peng; Fang, Wen-Zhe; Bi, Zi-Cheng; Cheng, Li-Hua; Xu, Xin-Hua; Chen, Huan-Lin

    2015-10-01

    Chlorella vulgaris, a marine microalgae strain adaptable to 0-50 g L(-1) of salinity, was selected for studying the coupling system of saline wastewater treatment and lipid accumulation. The effect of total nitrogen (T N) concentration was investigated on algal growth, nutrients removal as well as lipid accumulation. The removal efficiencies of TN and total phosphorus (TP) were found to be 92.2-96.6% and over 99%, respectively, after a batch cultivation of 20 days. To illustrate the response of lipid accumulation to nutrients removal, C. vulgaris was further cultivated in the recycling experiment of tidal saline water within the photobioreactor. The lipid accumulation was triggered upon the almost depletion of nitrate (<5 mg L(-1)), till the final highest lipid content of 40%. The nitrogen conversion in the sequence of nitrate, nitrite, and then to ammonium in the effluents was finally integrated with previous discussions on metabolic pathways of algal cell under nitrogen deficiency. PMID:26117237

  12. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism.

    PubMed

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-01-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns. PMID:27502578

  13. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    PubMed Central

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-01-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns. PMID:27502578

  14. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    NASA Astrophysics Data System (ADS)

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-08-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns.

  15. Lipid accumulation, lipid oxidation, and low plasma levels of acquired antibodies against oxidized lipids associate with degeneration and rupture of the intracranial aneurysm wall

    PubMed Central

    2013-01-01

    Background Rupture of a saccular intracranial aneurysm (sIA) causes an often fatal subarachnoid hemorrhage (SAH). Why some sIAs rupture remains unknown. Since sIA walls bear some histological similarities with early atherosclerotic lesions, we hypothesized that accumulation and oxidation of lipids might occur in the sIA wall and might associate with sIA wall degeneration. Tissue samples from sIA fundi (n = 54) were studied with histochemistry and a panel of previously characterized antibodies for epitopes of oxidized LDL (OxLDL). Plasma samples from sIA carriers (n = 125) were studied with ELISA and EIA for IgG and IgM -antibodies against a panel of OxLDL epitopes. Results Lipid accumulation, foam cells, and oxidized lipids were found both in unruptured and ruptured sIA walls. Lipid accumulation associated with wall degeneration (P < 0.001), as did the expression of adipophilin, a marker of lipid ingestion by cells. Lipid accumulation associated also with loss of mural cells (P < 0.001), as did the accumulation of OxLDL (P < 0.001). Plasma IgG antibody titers against OxLDL or malondialdehyde modified LDL were higher in patients with unruptured sIAs than in patients with aneurysmal SAH (P ≤ 0.001). A trend but not statistically significant differences were found in plasma IgM antibodies against oxidized lipids. Conclusions Accumulation of lipids and their oxidation in the sIA wall associates with the degeneration of the sIA wall. Acquired immunity against oxidized lipid epitopes may be protective of lipid associated sIA wall degeneration, but warrants further studies. PMID:24252658

  16. Lkb1 Deletion Promotes Ectopic Lipid Accumulation in Muscle Progenitor Cells and Mature Muscles

    PubMed Central

    SHAN, TIZHONG; ZHANG, PENGPENG; BI, PENGPENG; KUANG, SHIHUAN

    2015-01-01

    Excessive intramyocellular triglycerides (muscle lipids) are associated with reduced contractile function, insulin resistance, and Type 2 diabetes, but what governs lipid accumulation in muscle is unclear. Here we report a role of Lkb1 in regulating lipid metabolism in muscle stem cells and their descendent mature muscles. We used MyodCre and Lkb1flox/flox mice to specifically delete Lkb1 in myogenic cells including stem and differentiated cells, and examined the lipid accumulation and gene expression of myoblasts cultured from muscle stem cells (satellite cells). Genetic deletion of Lkb1 in myogenic progenitors led to elevated expression of lipogenic genes and ectopic lipid accumulation in proliferating myoblasts. Interestingly, the Lkb1-deficient myoblasts differentiated into adipocyte-like cells upon adipogenic induction. However, these adipocyte-like cells maintained myogenic gene expression with reduced ability to form myotubes efficiently. Activation of AMPK by AICAR prevented ectopic lipid formation in the Lkb1-null myoblasts. Notably, Lkb1-deficient muscles accumulated excessive lipids in vivo in response to high-fat diet feeding. These results demonstrate that Lkb1 acts through AMPK to limit lipid deposition in muscle stem cells and their derivative mature muscles, and point to the possibility of controlling muscle lipid content using AMPK activating drugs. PMID:25251157

  17. Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation

    PubMed Central

    2013-01-01

    Background Nitrogen limitation can induce neutral lipid accumulation in microalgae, as well as inhibiting their growth. Therefore, to obtain cultures with both high biomass and high lipid contents, and explore the lipid accumulation mechanisms, we implemented nitrogen deprivation in a model diatom Phaeodactylum tricornutum at late exponential phase. Results Neutral lipid contents per cell subsequently increased 2.4-fold, both the number and total volume of oil bodies increased markedly, and cell density rose slightly. Transcriptional profile analyzed by RNA-Seq showed that expression levels of 1213 genes (including key carbon fixation, TCA cycle, glycerolipid metabolism and nitrogen assimilation genes) increased, with a false discovery rate cut-off of 0.001, under N deprivation. However, most light harvesting complex genes were down-regulated, extensive degradation of chloroplast membranes was observed under an electron microscope, and photosynthetic efficiency declined. Further identification of lipid classes showed that levels of MGDG and DGDG, the main lipid components of chloroplast membranes, dramatically decreased and triacylglycerol (TAG) levels significantly rose, indicating that intracellular membrane remodeling substantially contributed to the neutral lipid accumulation. Conclusions Our findings shed light on the molecular mechanisms of neutral lipid accumulation and the key genes involved in lipid metabolism in diatoms. They also provide indications of possible strategies for improving microalgal biodiesel production. PMID:23642220

  18. EVALUATION OF SOYASAPONIN, ISOFLAVONE, PROTEIN, LIPID, AND FREE SUGAR ACCUMULATION IN DEVELOPING SOYBEAN SEEDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A combination of analytical techniques were used to examine and quantify seed compositional components (protein content, lipid content, carbohydrates, isoflavones, and saponins) during bean development and maturation in two Korean soy cultivars. Protein accumulation was rapid during reproductive st...

  19. Process strategies to maximize lipid accumulations of novel yeast in acid and base treated hydrolyzates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleaginous yeasts can accumulate up to 70% of cell biomass as lipids, predominantly as triacylglycerols. Yeast lipid fatty acid profiles have been reported to be similar to that of vegetable oils and consist primarily of oleic, palmitic, stearic, and linoleic acids. This capability provides the oppo...

  20. Exploration of polar lipid accumulation profiles in Euglena gracilis using LipidBlast, an MS/MS spectral library constructed in silico.

    PubMed

    Ogawa, Takumi; Furuhashi, Takeshi; Okazawa, Atsushi; Nakai, Rai; Nakazawa, Masami; Kind, Tobias; Fiehn, Oliver; Kanaya, Shigehiko; Arita, Masanori; Ohta, Daisaku

    2014-01-01

    A rapid protocol for polar lipid profiling was applied to Euglena gracilis lipid metabolism by LipidBlast, an MS/MS spectral similarity search tool. The similarity search results suggested anoxia-induced polar lipid metabolism in Euglena characterized by the accumulation of differential lipid classes, carbon chain lengths, and unsaturated bond numbers. The informatics-supported MS spectral search provides an alternative option for global lipid profiling studies. PMID:25036478

  1. Evaluation of novel starch-deficient mutants of Chlorella sorokiniana for hyper-accumulation of lipids

    PubMed Central

    Vonlanthen, Sofie; Dauvillée, David; Purton, Saul

    2015-01-01

    When green algae are exposed to physiological stresses such as nutrient deprivation, growth is arrested and the cells channel fixed carbon instead into storage compounds, accumulating first starch granules and then lipid bodies containing triacylglycerides. In recent years there has been significant interest in the commercial exploitation of algal lipids as a sustainable source of biodiesel. Since starch and lipid biosynthesis involves the same C3 precursor pool, it has been proposed that mutations blocking starch accumulation should result in increased lipid yields, and indeed several studies have supported this. The fast-growing, thermotolerant alga Chlorella sorokiniana represents an attractive strain for industrial cultivation. We have therefore generated and characterized starch-deficient mutants of C. sorokiniana and determined whether lipid levels are increased in these strains under stress conditions. One mutant (ST68) is shown to lack isoamylase, whilst two others (ST3 and ST12) are defective in starch phosphorylase. However, we find no significant change in the accumulation or profile of fatty acids in these mutants compared to the wild-type, suggesting that a failure to accumulate starch per se is not sufficient for the hyper-accumulation of lipid, and that more subtle regulatory steps underlie the partitioning of carbon to the two storage products. PMID:26865991

  2. A new cultivation method for microbial oil production: cell pelletization and lipid accumulation by Mucor circinelloides

    PubMed Central

    2011-01-01

    The recent energy crisis has triggered significant attention on the microbial synthesis of lipids, which comprise the raw material for biodiesel production. Microbial oil accumulation with filamentous fungi has great potential because filamentous fungi can form pellets during cell growth, and these pellets are much easier to harvest from cell broth. This paper focuses on the cell pelletization process of the oleaginous Mucor circinelloides. We have studied the effect of various cultural conditions on pelletized cell growth and lipid accumulation. This study is the first to report that pH adjustment during cell growth plays a key role in pellet formation of M. circinelloides and describes a handy method by which to induce cell pelletization in submerged fungal cultivation. Our study reveals that cell growth and lipid production are not significantly affected by pelletization and that lipid accumulation is triggered at stressed conditions, such as a high carbon-to-nitrogen ratio and high temperature. PMID:21635739

  3. Potential biomass yield per phosphorus and lipid accumulation property of seven microalgal species.

    PubMed

    Wu, Yin-Hu; Yu, Yin; Hu, Hong-Ying

    2013-02-01

    The potential biomass yield per phosphorus and lipid/triglyceride (TAG) accumulation properties of seven microalgal species: Scenedesmus sp. LX1, Chlorella ellipsoidea YJ1, Chlorella vuglaris, Chlorella sorokiniana, Chlorella pyrenoidosa, Dunaliella primolecta and Haematococcus pluvialis were investigated. Among the tested species, Scenedesmus sp. LX1 obtained the smallest minimal phosphorus content in cell (Q(0)) and the highest potential biomass yield of 6100kg-biomass/kg-P. After 12-day growth with intracellular phosphorus, Scenedesmus sp. LX1 accumulated about 30% lipid in biomass. Furthermore, the TAGs content per lipid of this strain (58.5%) as well as the lipid and TAGs yield per phosphorus (1800kg-lipid/kg-P and 680kg-TAGs/kg-P, respectively) were all significantly higher than that of any other species investigated in this study. Therefore, the phosphorus consumption to produce 1kg biodiesel using Scenedesmus sp. LX1 as feedstock was lowest among the tested species. PMID:23334016

  4. Wrinkled1 Accelerates Flowering and Regulates Lipid Homeostasis between Oil Accumulation and Membrane Lipid Anabolism in Brassica napus

    PubMed Central

    Li, Qing; Shao, Jianhua; Tang, Shaohua; Shen, Qingwen; Wang, Tiehu; Chen, Wenling; Hong, Yueyun

    2015-01-01

    Wrinkled1 (WRI1) belongs to the APETALA2 transcription factor family; it is unique to plants and is a central regulator of oil synthesis in Arabidopsis. The effects of WRI1 on comprehensive lipid metabolism and plant development were unknown, especially in crop plants. This study found that BnWRI1 in Brassica napus accelerated flowering and enhanced oil accumulation in both seeds and leaves without leading to a visible growth inhibition. BnWRI1 decreased storage carbohydrates and increased soluble sugars to facilitate the carbon flux to lipid anabolism. BnWRI1 is localized to the nucleus and directly binds to the AW-box at proximal upstream regions of genes involved in fatty acid (FA) synthesis and lipid assembly. The overexpression (OE) of BnWRI1 resulted in the up-regulation of genes involved in glycolysis, FA synthesis, lipid assembly, and flowering. Lipid profiling revealed increased galactolipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylcholine (PC) in the leaves of OE plants, whereas it exhibited a reduced level of the galactolipids DGDG and MGDG and increased levels of PC, phosphatidylethanolamide, and oil [triacylglycerol (TAG)] in the siliques of OE plants during the early seed development stage. These results suggest that BnWRI1 is important for homeostasis among TAG, membrane lipids and sugars, and thus facilitates flowering and oil accumulation in B. napus. PMID:26635841

  5. Wrinkled1 Accelerates Flowering and Regulates Lipid Homeostasis between Oil Accumulation and Membrane Lipid Anabolism in Brassica napus.

    PubMed

    Li, Qing; Shao, Jianhua; Tang, Shaohua; Shen, Qingwen; Wang, Tiehu; Chen, Wenling; Hong, Yueyun

    2015-01-01

    Wrinkled1 (WRI1) belongs to the APETALA2 transcription factor family; it is unique to plants and is a central regulator of oil synthesis in Arabidopsis. The effects of WRI1 on comprehensive lipid metabolism and plant development were unknown, especially in crop plants. This study found that BnWRI1 in Brassica napus accelerated flowering and enhanced oil accumulation in both seeds and leaves without leading to a visible growth inhibition. BnWRI1 decreased storage carbohydrates and increased soluble sugars to facilitate the carbon flux to lipid anabolism. BnWRI1 is localized to the nucleus and directly binds to the AW-box at proximal upstream regions of genes involved in fatty acid (FA) synthesis and lipid assembly. The overexpression (OE) of BnWRI1 resulted in the up-regulation of genes involved in glycolysis, FA synthesis, lipid assembly, and flowering. Lipid profiling revealed increased galactolipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylcholine (PC) in the leaves of OE plants, whereas it exhibited a reduced level of the galactolipids DGDG and MGDG and increased levels of PC, phosphatidylethanolamide, and oil [triacylglycerol (TAG)] in the siliques of OE plants during the early seed development stage. These results suggest that BnWRI1 is important for homeostasis among TAG, membrane lipids and sugars, and thus facilitates flowering and oil accumulation in B. napus. PMID:26635841

  6. Airspeed adjustment and lipid reserves in migratory Neotropical butterflies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerodynamic theory predicts that migrant fliers should reduce their speed of flight as endogenous energy reserves are gradually consumed. This prediction was tested for butterfly species that engage in annual rainy season migrations through central Panama. Direct airspeed measurements together wit...

  7. Reversal of intramyocellular lipid accumulation by lipophagy and a p62-mediated pathway

    PubMed Central

    Lam, T; Harmancey, R; Vasquez, H; Gilbert, B; Patel, N; Hariharan, V; Lee, A; Covey, M; Taegtmeyer, H

    2016-01-01

    We have previously observed the reversal of lipid droplet deposition in skeletal muscle of morbidly obese patients following bariatric surgery. We now investigated whether activation of autophagy is the mechanism underlying this observation. For this purpose, we incubated rat L6 myocytes over a period of 6 days with long-chain fatty acids (an equimolar, 1.0 mM, mixture of oleate and palmitate in the incubation medium). At day 6, the autophagic inhibitor (bafilomycin A1, 200 nM) and the autophagic activator (rapamycin, 1 μM) were added separately or in combination for 48 h. Intracellular triglyceride (TG) accumulation was visualized and quantified colorimetrically. Protein markers of autophagic flux (LC3 and p62) and cell death (caspase-3 cleavage) were measured by immunoblotting. Inhibition of autophagy by bafilomycin increased TG accumulation and also increased lipid-mediated cell death. Conversely, activation of autophagy by rapamycin reduced both intracellular lipid accumulation and cell death. Unexpectedly, treatment with both drugs added simultaneously resulted in decreased lipid accumulation. In this treatment group, immunoblotting revealed p62 degradation (autophagic flux), immunofluorescence revealed the colocalization of p62 with lipid droplets, and co-immunoprecipitation confirmed the interaction of p62 with ADRP (adipose differentiation-related protein), a lipid droplet membrane protein. Thus the association of p62 with lipid droplet turnover suggests a novel pathway for the breakdown of lipid droplets in muscle cells. In addition, treatment with rapamycin and bafilomycin together also suggested the export of TG into the extracellular space. We conclude that lipophagy promotes the clearance of lipids from myocytes and switches to an alternative, p62-mediated, lysosomal-independent pathway in the context of chronic lipid overload (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001). PMID:27625792

  8. Reversal of intramyocellular lipid accumulation by lipophagy and a p62-mediated pathway.

    PubMed

    Lam, T; Harmancey, R; Vasquez, H; Gilbert, B; Patel, N; Hariharan, V; Lee, A; Covey, M; Taegtmeyer, H

    2016-01-01

    We have previously observed the reversal of lipid droplet deposition in skeletal muscle of morbidly obese patients following bariatric surgery. We now investigated whether activation of autophagy is the mechanism underlying this observation. For this purpose, we incubated rat L6 myocytes over a period of 6 days with long-chain fatty acids (an equimolar, 1.0 mM, mixture of oleate and palmitate in the incubation medium). At day 6, the autophagic inhibitor (bafilomycin A1, 200 nM) and the autophagic activator (rapamycin, 1 μM) were added separately or in combination for 48 h. Intracellular triglyceride (TG) accumulation was visualized and quantified colorimetrically. Protein markers of autophagic flux (LC3 and p62) and cell death (caspase-3 cleavage) were measured by immunoblotting. Inhibition of autophagy by bafilomycin increased TG accumulation and also increased lipid-mediated cell death. Conversely, activation of autophagy by rapamycin reduced both intracellular lipid accumulation and cell death. Unexpectedly, treatment with both drugs added simultaneously resulted in decreased lipid accumulation. In this treatment group, immunoblotting revealed p62 degradation (autophagic flux), immunofluorescence revealed the colocalization of p62 with lipid droplets, and co-immunoprecipitation confirmed the interaction of p62 with ADRP (adipose differentiation-related protein), a lipid droplet membrane protein. Thus the association of p62 with lipid droplet turnover suggests a novel pathway for the breakdown of lipid droplets in muscle cells. In addition, treatment with rapamycin and bafilomycin together also suggested the export of TG into the extracellular space. We conclude that lipophagy promotes the clearance of lipids from myocytes and switches to an alternative, p62-mediated, lysosomal-independent pathway in the context of chronic lipid overload (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001). PMID:27625792

  9. Enhanced lipid accumulation of photoautotrophic microalgae by high-dose CO2 mimics a heterotrophic characterization.

    PubMed

    Sun, Zhilan; Dou, Xiao; Wu, Jun; He, Bing; Wang, Yuancong; Chen, Yi-Feng

    2016-01-01

    Microalgae possess higher photosynthetic efficiency and accumulate more neutral lipids when supplied with high-dose CO2. However, the nature of lipid accumulation under conditions of elevated CO2 has not been fully elucidated so far. We now revealed that the enhanced lipid accumulation of Chlorella in high-dose CO2 was as efficient as under heterotrophic conditions and this may be attributed to the driving of enlarged carbon source. Both photoautotrophic and heterotrophic cultures were established by using Chlorella sorokiniana CS-1. A series of changes in the carbon fixation, lipid accumulation, energy conversion, and carbon-lipid conversion under high-dose CO2 (1-10%) treatment were characterized subsequently. The daily carbon fixation rate of C. sorokiniana LS-2 in 10% CO2 aeration was significantly increased compared with air CO2. Correspondingly, double oil content (28%) was observed in 10% CO2 aeration, close to 32.3% produced under heterotrophic conditions. In addition, with 10% CO2 aeration, the overall energy yield (Ψ) in Chlorella reached 12.4 from 7.3% (with air aeration) because of the enhanced daily carbon fixation rates. This treatment also improved the energetic lipid yield (Ylipid/Es) with 4.7-fold, tending to the heterotrophic parameters. More significantly, 2.2 times of carbon-lipid conversion efficiency (ηClipid/Ctotal, 42.4%) was observed in 10% CO2 aeration, towards to 53.7% in heterotrophic cultures, suggesting that more fixed carbon might flow into lipid synthesis under both 10% CO2 aeration and heterotrophic conditions. Taken together, all our evidence showed that 10% CO2 may push photoautotrophic Chlorella to display heterotrophic-like efficiency at least in lipid production. It might bring us an efficient model of lipid production based on microalgal cells with high-dose CO2, which is essential to sustain biodiesel production at large scales. PMID:26712624

  10. Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii

    SciTech Connect

    Garcia de Lomana, Adrian Lopez; Schäuble, Sascha; Valenzuela, Jacob; Imam, Saheed; Carter, Warren; Bilgin, Damla D.; Yohn, Christopher B.; Turkarslan, Serdar; Reiss, David J.; Orellana, Monica V.; Price, Nathan D.; Baliga, Nitin S.

    2015-12-02

    Algae accumulate lipids to endure different kinds of environmental stresses including macronutrient starvation. Although this response has been extensively studied, an in depth understanding of the transcriptional regulatory network (TRN) that controls the transition into lipid accumulation remains elusive. In this study, we used a systems biology approach to elucidate the transcriptional program that coordinates the nitrogen starvation-induced metabolic readjustments that drive lipid accumulation in Chlamydomonas reinhardtii. We demonstrate that nitrogen starvation triggered differential regulation of 2147 transcripts, which were co-regulated in 215 distinct modules and temporally ordered as 31 transcriptional waves. An early-stage response was triggered within 12 min that initiated growth arrest through activation of key signaling pathways, while simultaneously preparing the intracellular environment for later stages by modulating transport processes and ubiquitin-mediated protein degradation. Subsequently, central metabolism and carbon fixation were remodeled to trigger the accumulation of triacylglycerols. Further analysis revealed that these waves of genome-wide transcriptional events were coordinated by a regulatory program orchestrated by at least 17 transcriptional regulators, many of which had not been previously implicated in this process. We demonstrate that the TRN coordinates transcriptional downregulation of 57 metabolic enzymes across a period of nearly 4 h to drive an increase in lipid content per unit biomass. Notably, this TRN appears to also drive lipid accumulation during sulfur starvation, while phosphorus starvation induces a different regulatory program. The TRN model described here is available as a community-wide web-resource at http://networks.systemsbiology.net/chlamy-portal. In conclusion, in this work, we have uncovered a comprehensive mechanistic model of the TRN controlling the transition from N starvation to lipid accumulation

  11. Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii

    DOE PAGESBeta

    Garcia de Lomana, Adrian Lopez; Schäuble, Sascha; Valenzuela, Jacob; Imam, Saheed; Carter, Warren; Bilgin, Damla D.; Yohn, Christopher B.; Turkarslan, Serdar; Reiss, David J.; Orellana, Monica V.; et al

    2015-12-02

    Algae accumulate lipids to endure different kinds of environmental stresses including macronutrient starvation. Although this response has been extensively studied, an in depth understanding of the transcriptional regulatory network (TRN) that controls the transition into lipid accumulation remains elusive. In this study, we used a systems biology approach to elucidate the transcriptional program that coordinates the nitrogen starvation-induced metabolic readjustments that drive lipid accumulation in Chlamydomonas reinhardtii. We demonstrate that nitrogen starvation triggered differential regulation of 2147 transcripts, which were co-regulated in 215 distinct modules and temporally ordered as 31 transcriptional waves. An early-stage response was triggered within 12 minmore » that initiated growth arrest through activation of key signaling pathways, while simultaneously preparing the intracellular environment for later stages by modulating transport processes and ubiquitin-mediated protein degradation. Subsequently, central metabolism and carbon fixation were remodeled to trigger the accumulation of triacylglycerols. Further analysis revealed that these waves of genome-wide transcriptional events were coordinated by a regulatory program orchestrated by at least 17 transcriptional regulators, many of which had not been previously implicated in this process. We demonstrate that the TRN coordinates transcriptional downregulation of 57 metabolic enzymes across a period of nearly 4 h to drive an increase in lipid content per unit biomass. Notably, this TRN appears to also drive lipid accumulation during sulfur starvation, while phosphorus starvation induces a different regulatory program. The TRN model described here is available as a community-wide web-resource at http://networks.systemsbiology.net/chlamy-portal. In conclusion, in this work, we have uncovered a comprehensive mechanistic model of the TRN controlling the transition from N starvation to lipid

  12. Abiotic factors influence plant storage lipid accumulation and composition.

    PubMed

    Singer, Stacy D; Zou, Jitao; Weselake, Randall J

    2016-02-01

    The demand for plant-derived oils has increased substantially over the last decade, and is sure to keep growing. While there has been a surge in research efforts to produce plants with improved oil content and quality, in most cases the enhancements have been small. To add further complexity to this situation, substantial differences in seed oil traits among years and field locations have indicated that plant lipid biosynthesis is also influenced to a large extent by multiple environmental factors such as temperature, drought, light availability and soil nutrients. On the molecular and biochemical levels, the expression and/or activities of fatty acid desaturases, as well as diacylglycerol acyltransferase 1, have been found to be affected by abiotic factors, suggesting that they play a role in the lipid content and compositional changes seen under abiotic stress conditions. Unfortunately, while only a very small number of strategies have been developed as of yet to minimize these environmental effects on the production of storage lipids, it is clear that this feat will be of the utmost importance for developing superior oil crops with the capability to perform in a consistent manner in field conditions in the future. PMID:26795146

  13. Bax Inhibitor-1 regulates hepatic lipid accumulation via ApoB secretion

    PubMed Central

    Lee, Hwa Young; Lee, Geum-Hwa; Bhattarai, Kashi Raj; Park, Byung-Hyun; Koo, Seung-Hoi; Kim, Hyung-Ryong; Chae, Han Jung

    2016-01-01

    In this study, we explored the effects of Bax Inhibitor-1 (BI-1) on ApoB aggregation in high-fat diet (HFD)-induced hepatic lipid accumulation. After 1 week on a HFD, triglycerides and cholesterol accumulated more in the liver and were not effectively secreted into the plasma, whereas after 8 weeks, lipids were highly accumulated in both the liver and plasma, with a greater effect in BI-1 KO mice compared with BI-1 WT mice. ApoB, a lipid transfer protein, was accumulated to a greater extent in the livers of HFD-BI-1 KO mice compared with HFD-BI-1 WT mice. Excessive post-translational oxidation of protein disulfide isomerase (PDI), intra-ER ROS accumulation and folding capacitance alteration were also observed in HFD-BI-1 KO mice. Higher levels of endoplasmic reticulum (ER) stress were consistently observed in KO mice compared with the WT mice. Adenovirus-mediated hepatic expression of BI-1 in the BI-1 KO mice rescued the above phenotypes. Our results suggest that BI-1-mediated enhancement of ApoB secretion regulates hepatic lipid accumulation, likely through regulation of ER stress and ROS accumulation. PMID:27297735

  14. Bax Inhibitor-1 regulates hepatic lipid accumulation via ApoB secretion.

    PubMed

    Lee, Hwa Young; Lee, Geum-Hwa; Bhattarai, Kashi Raj; Park, Byung-Hyun; Koo, Seung-Hoi; Kim, Hyung-Ryong; Chae, Han Jung

    2016-01-01

    In this study, we explored the effects of Bax Inhibitor-1 (BI-1) on ApoB aggregation in high-fat diet (HFD)-induced hepatic lipid accumulation. After 1 week on a HFD, triglycerides and cholesterol accumulated more in the liver and were not effectively secreted into the plasma, whereas after 8 weeks, lipids were highly accumulated in both the liver and plasma, with a greater effect in BI-1 KO mice compared with BI-1 WT mice. ApoB, a lipid transfer protein, was accumulated to a greater extent in the livers of HFD-BI-1 KO mice compared with HFD-BI-1 WT mice. Excessive post-translational oxidation of protein disulfide isomerase (PDI), intra-ER ROS accumulation and folding capacitance alteration were also observed in HFD-BI-1 KO mice. Higher levels of endoplasmic reticulum (ER) stress were consistently observed in KO mice compared with the WT mice. Adenovirus-mediated hepatic expression of BI-1 in the BI-1 KO mice rescued the above phenotypes. Our results suggest that BI-1-mediated enhancement of ApoB secretion regulates hepatic lipid accumulation, likely through regulation of ER stress and ROS accumulation. PMID:27297735

  15. Domain 3 of Hepatitis C Core Protein is Sufficient for Intracellular Lipid Accumulation

    PubMed Central

    Jhaveri, Ravi; Qiang, Guan; Diehl, Anna Mae

    2009-01-01

    Background Hepatitis C virus (HCV) is a major cause of liver disease worldwide with steatosis, or “fatty liver”, being a frequent histologic finding. In previous work, we identified sequence polymorphisms within domain 3 (d3) of genotype 3 HCV Core protein that correlated with steatosis and in vitro lipid accumulation. In this study, we investigated the sufficiency of d3 to promote lipid accumulation, the role of HCV genotype in d3 lipid accumulation and the subcellular distribution of d3. Methods Stable cell lines expressing green fluorescent protein (GFP) fusions with HCV Core d3 from genotype 3 steatosis (d3S), non-steatosis (d3NS) and genotype 1 (d3G1) isolates were analyzed by immunofluorescence (IF), Oil Red O (ORO) staining and triglyceride (TG) quantitation Results Cells expressing d3S had significantly more ORO than d3NS or d3G1 cells (p values: 0.02 and <0.0001 respectively) as well as TG (p=0.03 and 0.003 respectively). IF analysis showed domain 3 does not co-localize to lipid droplets but partially co-localizes to the Golgi. Conclusions Our results suggest that HCV Core d3 is sufficient to mediate the accumulation of lipid by a mechanism that is independent of domains 1 and 2. Our results also suggest that altered lipid trafficking may be involved. PMID:19852667

  16. Adipocyte differentiation-related protein promotes lipid accumulation in goat mammary epithelial cells.

    PubMed

    Shi, H B; Yu, K; Luo, J; Li, J; Tian, H B; Zhu, J J; Sun, Y T; Yao, D W; Xu, H F; Shi, H P; Loor, J J

    2015-10-01

    Milk fat originates from the secretion of cytosolic lipid droplets (CLD) synthesized within mammary epithelial cells. Adipocyte differentiation-related protein (ADRP; gene symbol PLIN2) is a CLD-binding protein that is crucial for synthesis of mature CLD. Our hypothesis was that ADRP regulates CLD production and metabolism in goat mammary epithelial cells (GMEC) and thus plays a role in determining milk fat content. To understand the role of ADRP in ruminant milk fat metabolism, ADRP (PLIN2) was overexpressed or knocked down in GMEC using an adenovirus system. Immunocytochemical staining revealed that ADRP localized to the surface of CLD. Supplementation with oleic acid (OA) enhanced its colocalization with CLD surface and enhanced lipid accumulation. Overexpression of ADRP increased lipid accumulation and the concentration of triacylglycerol in GMEC. In contrast, morphological examination revealed that knockdown of ADRP decreased lipid accumulation even when OA was supplemented. This response was confirmed by the reduction in mass of cellular TG when ADRP was knocked down. The fact that knockdown of ADRP did not completely eliminate lipid accumulation at a morphological level in GMEC without OA suggests that some other compensatory factors may also aid in the process of CLD formation. The ADRP reversed the decrease of CLD accumulation induced by adipose triglyceride lipase. This is highly suggestive of ADRP promoting triacylglycerol stability within CLD by preventing access to adipose triglyceride lipase. Collectively, these data provide direct in vitro evidence that ADRP plays a key role in CLD formation and stability in GMEC. PMID:26298750

  17. Identification and metabolomic analysis of chemical modulators for lipid accumulation in Crypthecodinium cohnii.

    PubMed

    Li, Jinghan; Niu, Xiangfeng; Pei, Guangsheng; Sui, Xiao; Zhang, Xiaoqing; Chen, Lei; Zhang, Weiwen

    2015-09-01

    In the study, fourteen chemical modulators from five groups (i.e., auxin, gibberellin, cytokinin, signal transducer and amine) were evaluated for their effects on lipid accumulation in Crypthecodinium cohnii. The results showed that naphthoxyacetic acid (BNOA), 2-chlorodracylicacid, salicylic acid (SA), abscisic acid (ABA) and ethanolamine (ETA), increased lipid accumulation in C. cohnii by 10.00-18.78%. In addition, the combined uses of the above chemicals showed that two combinations, 1.0mg/L SA & 152.7 mg/L ETA and 4.0mg/L BNOA & 152.7 mg/L ETA, increased lipid accumulation by 22.45% and 20.54%, respectively. Moreover, a targeted metabolomic approach was employed to decipher the possible mechanisms responsible for the increased lipid accumulation, and the results showed that the enhanced metabolism in glycolysis and TCA cycle as well as the decreased metabolism in PPP pathway could be important for the stimulatory roles of BNOA & ETA and SA & ETA on lipid accumulation in C. cohnii. PMID:25818259

  18. Specialized Cortex Glial Cells Accumulate Lipid Droplets in Drosophila melanogaster

    PubMed Central

    Kis, Viktor; Barti, Benjámin; Lippai, Mónika; Sass, Miklós

    2015-01-01

    Lipid droplets (LDs) are common organelles of the majority of eukaryotic cell types. Their biological significance has been extensively studied in mammalian liver cells and white adipose tissue. Although the central nervous system contains the highest relative amount and the largest number of different lipid species, neither the spatial nor the temporal distribution of LDs has been described. In this study, we used the brain of the fruitfly, Drosophila melanogaster, to investigate the neuroanatomy of LDs. We demonstrated that LDs are exclusively localised in glial cells but not in neurons in the larval nervous system. We showed that the brain’s LD pool, rather than being constant, changes dynamically during development and reaches its highest value at the beginning of metamorphosis. LDs are particularly enriched in cortex glial cells located close to the brain surface. These specialized superficial cortex glial cells contain the highest amount of LDs among glial cell types and encapsulate neuroblasts and their daughter cells. Superficial cortex glial cells, combined with subperineurial glial cells, express the Drosophila fatty acid binding protein (Dfabp), as we have demonstrated through light- and electron microscopic immunocytochemistry. To the best of our best knowledge this is the first study that describes LD neuroanatomy in the Drosophila larval brain. PMID:26148013

  19. Specialized Cortex Glial Cells Accumulate Lipid Droplets in Drosophila melanogaster.

    PubMed

    Kis, Viktor; Barti, Benjámin; Lippai, Mónika; Sass, Miklós

    2015-01-01

    Lipid droplets (LDs) are common organelles of the majority of eukaryotic cell types. Their biological significance has been extensively studied in mammalian liver cells and white adipose tissue. Although the central nervous system contains the highest relative amount and the largest number of different lipid species, neither the spatial nor the temporal distribution of LDs has been described. In this study, we used the brain of the fruitfly, Drosophila melanogaster, to investigate the neuroanatomy of LDs. We demonstrated that LDs are exclusively localised in glial cells but not in neurons in the larval nervous system. We showed that the brain's LD pool, rather than being constant, changes dynamically during development and reaches its highest value at the beginning of metamorphosis. LDs are particularly enriched in cortex glial cells located close to the brain surface. These specialized superficial cortex glial cells contain the highest amount of LDs among glial cell types and encapsulate neuroblasts and their daughter cells. Superficial cortex glial cells, combined with subperineurial glial cells, express the Drosophila fatty acid binding protein (Dfabp), as we have demonstrated through light- and electron microscopic immunocytochemistry. To the best of our best knowledge this is the first study that describes LD neuroanatomy in the Drosophila larval brain. PMID:26148013

  20. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-κB pathway

    PubMed Central

    2012-01-01

    Background Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS) to imitate inflammatory conditions. Results In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP) as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4) antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-κB (NF-κB), which could markedly up-regulate lipid deposition as pre-treatment with the NF-κB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1), compared with transforming growth factor-β1 (TGF-β1). Conclusions Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-κB in adventitial fibroblasts. Increased levels of MCP-1 released from LPS-activated adventitial fibroblasts and lipid accumulation may accelerate monocytes recruitment and lipid-laden macrophage foam cells formation. Here, our study provides a new explanation as to how bacterial infection contributes to

  1. Evidence for the Accumulation of Peroxidized Lipids in Membranes of Senescing Cotyledons 1

    PubMed Central

    Pauls, K. Peter; Thompson, John E.

    1984-01-01

    Fluorescent products of lipid peroxidation accumulate with age in microsomal membranes from senescing cotyledons of Phaseolus vulgaris. The temporal pattern of accumulation is closely correlated with a rise in the lipid phase transition temperature reflecting the formation of gel phase lipid. Increased levels of fluorescent peroxidation products are also detectable in total lipid extracts of senescent cotyledons. Lipoxygenase activity increases with advancing age by about 3-fold on a fresh weight basis and 4-fold on a dry weight basis indicating that the tissue acquires elevated levels of lipid hydroperoxides. As well, levels of glutathione and superoxide dismutase activity decline on a dry weight basis as the cotyledons age, rendering the tissue more susceptible to oxidative damage. Catalase activity rises initially and then declines during senescence, but peroxidase activity rises steeply. Thus, apart from this increase in peroxidase, which would scavenge H2O2 only if appropriate cosubstrates were available, the defense mechanisms for coping with activated oxygen species (O2−, H2O2, OH) are less effective in the older tissue. The observations support the contention that formation of gel phase lipid in senescing membranes is attributable to lipid peroxidation and suggest that the reactions of lipid peroxidation are utilized by the cotyledons to mediate deteriorative changes accompanying the mobilization and transport of metabolites from the storage tissue to the developing embryo. Images Fig. 10 PMID:16663749

  2. Assessment of storage lipid accumulation patterns in eucalanoid copepods from the eastern tropical Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Cass, Christine J.; Daly, Kendra L.; Wakeham, Stuart G.

    2014-11-01

    Members of the copepod family Eucalanidae are widely distributed throughout the world's oceans and have been noted for their accumulation of storage lipids in high- and low-latitude environments. However, little is known about the lipid composition of eucalanoid copepods in low-latitude environments. The purpose of this study was to examine fatty acid and alcohol profiles in the storage lipids (wax esters and triacylglycerols) of Eucalanus inermis, Rhincalanus rostrifrons, R. nasutus, Pareucalanus attenuatus, and Subeucalanus subtenuis, collected primarily in the eastern tropical north Pacific near the Tehuantepec Bowl and Costa Rica Dome regions, noted for its oxygen minimum zone, during fall 2007 and winter 2008/2009. Adult copepods and particulate material were collected in the upper 50 m and from 200 to 300 m in the upper oxycline. Lipid profiles of particulate matter were generated to help ascertain information on ecological strategies of these species and on differential accumulation of dietary and modified fatty acids in the wax ester and triacylglycerol storage lipid components of these copepods in relation to their vertical distributions around the oxygen minimum zone. Additional data on phospholipid fatty acid and sterol/fatty alcohol fractions were also generated to obtain a comprehensive lipid data set for each sample. Rhincalanus spp. accumulated relatively large amounts of storage lipids (31-80% of dry mass (DM)), while E. inermis had moderate amounts (2-9% DM), and P. attenuatus and S. subtenuis had low quantities of storage lipid (0-1% DM). E. inermis and S. subtenuis primarily accumulated triacylglycerols (>90% of storage lipids), while P. attenuatus and Rhincalanus spp. primarily accumulated wax esters (>84% of storage lipids). Based on previously generated molecular phylogenies of the Eucalanidae family, these results appear to support genetic predisposition as a major factor explaining why a given species accumulates primarily triacylglycerols

  3. Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors

    PubMed Central

    2014-01-01

    Background Microalgae can accumulate considerable amounts of lipids under different nutrient-deficient conditions, making them as one of the most promising sustainable sources for biofuel production. These inducible processes provide a powerful experimental basis for fully understanding the mechanisms of physiological acclimation, lipid hyperaccumulation and gene expression in algae. In this study, three nutrient-deficiency strategies, viz nitrogen-, phosphorus- and iron-deficiency were applied to trigger the lipid hyperaccumulation in an oleaginous Chlorella pyrenoidosa. Regular patterns of growth characteristics, lipid accumulation, physiological parameters, as well as the expression patterns of lipid biosynthesis-related genes were fully analyzed and compared. Results Our results showed that all the nutrient stress conditions could enhance the lipid content considerably compared with the control. The total lipid and neutral lipid contents exhibit the most marked increment under nitrogen deficiency, achieving 50.32% and 34.29% of dry cell weight at the end of cultivation, respectively. Both photosynthesis indicators and reactive oxygen species parameters reveal that physiological stress turned up when exposed to nutrient depletions. Time-course transcript patterns of lipid biosynthesis-related genes showed that diverse expression dynamics probably contributes to the different lipidic phenotypes under stress conditions. By analyzing the correlation between lipid content and gene expression level, we pinpoint several genes viz. rbsL, me g6562, accA, accD, dgat g2354, dgat g3280 and dgat g7063, which encode corresponding enzymes or subunits of malic enzyme, ACCase and diacylglycerol acyltransferase in the de novo TAG biosynthesis pathway, are highly related to lipid accumulation and might be exploited as target genes for genetic modification. Conclusion This study provided us not only a comprehensive picture of adaptive mechanisms from physiological perspective, but

  4. Inhibitor degradation and lipid accumulation potentials of oleaginous yeast Trichosporon cutaneum using lignocellulose feedstock.

    PubMed

    Wang, Juan; Gao, Qiuqiang; Zhang, Huizhan; Bao, Jie

    2016-10-01

    Oleaginous yeast Trichosporon cutaneum is robust to high levels of lignocellulose derived inhibitor compounds with considerable lipid accumulation capacity. The potential of lipid accumulation of T. cutaneum ACCC 20271 was investigated using corn stover hydrolysates with varying sugar and inhibitor concentrations. Biodiesel was synthesized using the extracted lipid and the product satisfied the ASTM standards. Among the typical inhibitors, T. cutaneum ACCC 20271 is relatively sensitive to furfural and 4-hydroxybenzaldehyde, but strongly tolerant to high titers of formic acid, acetic acid, levulinic acid, HMF, vanillin, and syringaldehyde. It is capable of complete degradation of formic acid, acetic acid, vanillin and 4-hydroxybenzaldehyde. Finally, the inhibitor degradation pathways of T. cutaneum ACCC 20271 were constructed based on the newly sequenced whole genome information and the experimental results. The study provided the first insight to the inhibitor degradation of T. cutaneum and demonstrated the potentials of lipid production from lignocellulose. PMID:27441826

  5. Dissolved inorganic carbon enhanced growth, nutrient uptake, and lipid accumulation in wastewater grown microalgal biofilms.

    PubMed

    Kesaano, Maureen; Gardner, Robert D; Moll, Karen; Lauchnor, Ellen; Gerlach, Robin; Peyton, Brent M; Sims, Ronald C

    2015-03-01

    Microalgal biofilms grown to evaluate potential nutrient removal options for wastewaters and feedstock for biofuels production were studied to determine the influence of bicarbonate amendment on their growth, nutrient uptake capacity, and lipid accumulation after nitrogen starvation. No significant differences in growth rates, nutrient removal, or lipid accumulation were observed in the algal biofilms with or without bicarbonate amendment. The biofilms possibly did not experience carbon-limited conditions because of the large reservoir of dissolved inorganic carbon in the medium. However, an increase in photosynthetic rates was observed in algal biofilms amended with bicarbonate. The influence of bicarbonate on photosynthetic and respiration rates was especially noticeable in biofilms that experienced nitrogen stress. Medium nitrogen depletion was not a suitable stimulant for lipid production in the algal biofilms and as such, focus should be directed toward optimizing growth and biomass productivities to compensate for the low lipid yields and increase nutrient uptake. PMID:25585252

  6. Modified Lipoprotein-Derived Lipid Particles Accumulate in Human Stenotic Aortic Valves

    PubMed Central

    Lehti, Satu; Käkelä, Reijo; Hörkkö, Sohvi; Kummu, Outi; Helske-Suihko, Satu; Kupari, Markku; Werkkala, Kalervo; Kovanen, Petri T.; Öörni, Katariina

    2013-01-01

    In aortic stenosis plasma lipoprotein-derived lipids accumulate in aortic valves. Here, we first compared the lipid compositions of stenotic aortic valves and atherosclerotic plaque cores. Both pathological tissues were found to be enriched in cholesteryl linoleate, a marker of extracellularly accumulated lipoproteins. In addition, a large proportion of the phospholipids were found to contain arachidonic acid, the common precursor of a number of proinflammatory lipid mediators. Next, we isolated and characterized extracellular lipid particles from human stenotic and non-stenotic control valves, and compared them to plasma lipoproteins from the same subjects. The extracellular valvular lipid particles were isolated from 15 stenotic and 14 non-stenotic aortic valves. Significantly more apoB-100-containing lipid particles were found in the stenotic than in the non-stenotic valves. The majority of the lipid particles isolated from the non-stenotic valves had sizes (23±6.2 nm in diameter) similar to those of plasma low density lipoprotein (LDL) (22±1.5 nm), while the lipid particles from stenotic valves were not of uniform size, their sizes ranging from 18 to more than 500 nm. The lipid particles showed signs of oxidative modifications, and when compared to isolated plasma LDL particles, the lipid particles isolated from the stenotic valves had a higher sphingomyelin/phosphatidylcholine –ratio, and also higher contents of lysophosphatidylcholine and unesterified cholesterol. The findings of the present study reveal, for the first time, that in stenotic human aortic valves, infiltrated plasma lipoproteins have undergone oxidative and lipolytic modifications, and become fused and aggregated. The generated large lipid particles may contribute to the pathogenesis of human aortic stenosis. PMID:23762432

  7. Mesenchymal Stromal Cells Differentiating to Adipocytes Accumulate Autophagic Vesicles Instead of Functional Lipid Droplets.

    PubMed

    Gruia, Alexandra T; Suciu, Maria; Barbu-Tudoran, Lucian; Azghadi, Seyed Mohammad Reza; Cristea, Mirabela I; Nica, Dragos V; Vaduva, Adrian; Muntean, Danina; Mic, Ani Aurora; Mic, Felix A

    2016-04-01

    Adult bone marrow mesenchymal stromal cells (BMSCs) can easily be differentiated into a variety of cells. In vivo transplantation of BMSCs-differentiated cells has had limited success, suggesting that these cells may not be fully compatible with the cells they are intended to replace in vivo. We investigated the structural and functional features of BMSCs-derived adipocytes as compared with adipocytes from adipose tissue, and the structure and functionality of lipid vesicles formed during BMSCs differentiation to adipocytes. Gas chromatography-mass spectrometry showed fatty acid composition of BMSCs-derived adipocytes and adipocytes from the adipose tissue to be very different, as is the lipid rafts composition, caveolin-1 expression, caveolae distribution in their membranes, and the pattern of expression of fatty acid elongases. Confocal microscopy confirmed the absence from BMSCs-derived adipocytes of markers of lipid droplets. BMSCs-derived adipocytes cannot convert deuterated glucose into deuterated species of fatty acids and cannot uptake the deuterated fatty acid-bovine serum albumin complexes from the culture medium, suggesting that intra-cellular accumulation of lipids does not occur by lipogenesis. We noted that BMSCs differentiation to adipocytes is accompanied by an increase in autophagy. Autophagic vesicles accumulate in the cytoplasm of BMSCs-derived adipocytes and their size and distribution resembles that of Nile Red-stained lipid vesicles. Stimulation of autophagy in BMSCs triggers the intra-cellular accumulation of lipids, while inhibition of autophagy prevents this accumulation. In conclusion, differentiation of BMSCs-derived adipocytes leads to intra-cellular accumulation of autophagic vesicles rather than functional lipid droplets, suggesting that these cells are not authentic adipocytes. J. Cell. Physiol. 231: 863-875, 2016. © 2015 Wiley Periodicals, Inc. PMID:26332160

  8. Soybean GmMYB73 promotes lipid accumulation in transgenic plants

    PubMed Central

    2014-01-01

    Background Soybean is one of the most important oil crops. The regulatory genes involved in oil accumulation are largely unclear. We initiated studies to identify genes that regulate this process. Results One MYB-type gene GmMYB73 was found to display differential expression in soybean seeds of different developing stages by microarray analysis and was further investigated for its functions in lipid accumulation. GmMYB73 is a small protein with single MYB repeat and has similarity to CPC-like MYB proteins from Arabidopsis. GmMYB73 interacted with GL3 and EGL3, and then suppressed GL2, a negative regulator of oil accumulation. GmMYB73 overexpression enhanced lipid contents in both seeds and leaves of transgenic Arabidopsis plants. Seed length and thousand-seed weight were also promoted. GmMYB73 introduction into the Arabidopsis try cpc double mutant rescued the total lipids, seed size and thousand-seed weight. GmMYB73 also elevated lipid levels in seeds and leaves of transgenic Lotus, and in transgenic hairy roots of soybean plants. GmMYB73 promoted PLDα1 expression, whose promoter can be bound and inhibited by GL2. PLDα1 mutation reduced triacylglycerol levels mildly in seeds but significantly in leaves of Arabidopsis plants. Conclusions GmMYB73 may reduce GL2, and then release GL2-inhibited PLDα1 expression for lipid accumulation. Manipulation of GmMYB73 may potentially improve oil production in legume crop plants. PMID:24655684

  9. miRNA-133a attenuates lipid accumulation via TR4-CD36 pathway in macrophages.

    PubMed

    Peng, Xiao-Ping; Huang, Lei; Liu, Zhi-Hong

    2016-08-01

    lipid metabolism is the major causes of atherosclerosis. There is increasing evidence that miR-133a plays an important role in atherosclerosis. However, the regulatory mechanism of miR-133a in macrophages is still unclear. Several lines of evidence indicate that loss of TR4 leads to reduce lipid accumulation in liver and adipose tissues, etc, and lesional macrophages-derived TR4 can greatly increase the foam cell formation through increasing the CD36-mediated the uptake of ox-LDL. Interestingly, computational analysis suggests that TR4 may be a target gene of miR-133a. Here, we examined whether miR-133a regulates TR4 expression in ox-LDL-induced mouse RAW 264.7 macrophages, thereby affecting lipid accumulation. Using ox-LDL-treatment RAW 264.7 macrophages transfected with miR-133a mimics or inhibitors, we have showed that miR-133a can directly regulate the expression of TR4 in RAW 264.7 cells, thereby attenuates CD36-medide lipid accumulation. Furthermore, our studies suggest an additional explanation for the regulatory mechanism of miR-133a regulation to its functional target, TR4 in RAW 264.7 macrophages. Thus, our findings suggest that miR-133a may regulate lipid accumulation in ox-LDL-stimulated RAW 264.7 macrophages via TR4-CD36 pathway. PMID:27109382

  10. Elevated CO2 improves lipid accumulation by increasing carbon metabolism in Chlorella sorokiniana.

    PubMed

    Sun, Zhilan; Chen, Yi-Feng; Du, Jianchang

    2016-02-01

    Supplying microalgae with extra CO2 is a promising means for improving lipid production. The molecular mechanisms involved in lipid accumulation under conditions of elevated CO2, however, remain to be fully elucidated. To understand how elevated CO2 improves lipid production, we performed sequencing of Chlorella sorokiniana LS-2 cellular transcripts during growth and compared transcriptional dynamics of genes involved in carbon flow from CO2 to triacylglycerol. These analyses identified the majority genes of carbohydrate metabolism and lipid biosynthesis pathways in C. sorokiniana LS-2. Under high doses of CO2 , despite down-regulation of most de novo fatty acid biosynthesis genes, genes involved in carbohydrate metabolic pathways including carbon fixation, chloroplastic glycolysis, components of the pyruvate dehydrogenase complex (PDHC) and chloroplastic membrane transporters were upexpressed at the prolonged lipid accumulation phase. The data indicate that lipid production is largely independent of de novo fatty acid synthesis. Elevated CO2 might push cells to channel photosynthetic carbon precursors into fatty acid synthesis pathways, resulting in an increase of overall triacylglycerol generation. In support of this notion, genes involved in triacylglycerol biosynthesis were substantially up-regulated. Thus, elevated CO2 may influence regulatory dynamics and result in increased carbon flow to triacylglycerol, thereby providing a feasible approach to increase lipid production in microalgae. PMID:25973988

  11. Nitrogen-deprivation elevates lipid levels in Symbiodinium spp. by lipid droplet accumulation: morphological and compositional analyses.

    PubMed

    Jiang, Pei-Luen; Pasaribu, Buntora; Chen, Chii-Shiarng

    2014-01-01

    Stable cnidarian-dinoflagellate (genus Symbiodinium) endosymbioses depend on the regulation of nutrient transport between Symbiodinium populations and their hosts. It has been previously shown that the host cytosol is a nitrogen-deficient environment for the intracellular Symbiodinium and may act to limit growth rates of symbionts during the symbiotic association. This study aimed to investigate the cell proliferation, as well as ultrastructural and lipid compositional changes, in free-living Symbiodinium spp. (clade B) upon nitrogen (N)-deprivation. The cell proliferation of the N-deprived cells decreased significantly. Furthermore, staining with a fluorescent probe, boron dipyrromethane 493/503 (BODIPY 493/503), indicated that lipid contents progressively accumulated in the N-deprived cells. Lipid analyses further showed that both triacylglycerol (TAG) and cholesterol ester (CE) were drastically enriched, with polyunsaturated fatty acids (PUFA; i.e., docosahexaenoic acid, heneicosapentaenoic acid, and oleic acid) became more abundant. Ultrastructural examinations showed that the increase in concentration of these lipid species was due to the accumulation of lipid droplets (LDs), a cellular feature that have previously shown to be pivotal in the maintenance of intact endosymbioses. Integrity of these stable LDs was maintained via electronegative repulsion and steric hindrance possibly provided by their surface proteins. Proteomic analyses of these LDs identified proteins putatively involved in lipid metabolism, signaling, stress response and energy metabolism. These results suggest that LDs production may be an adaptive response that enables Symbiodinium to maintain sufficient cellular energy stores for survival under the N-deprived conditions in the host cytoplasm. PMID:24475285

  12. TRANSPARENT TESTA GLABRA1 Regulates the Accumulation of Seed Storage Reserves in Arabidopsis1[OPEN

    PubMed Central

    Chen, Mingxun; Zhang, Bin; Li, Chengxiang; Kulaveerasingam, Harikrishna; Chew, Fook Tim; Yu, Hao

    2015-01-01

    Seed storage reserves mainly consist of starch, triacylglycerols, and storage proteins. They not only provide energy for seed germination and seedling establishment, but also supply essential dietary nutrients for human beings and animals. So far, the regulatory networks that govern the accumulation of seed storage reserves in plants are still largely unknown. Here, we show that TRANSPARENT TESTA GLABRA1 (TTG1), which encodes a WD40 repeat transcription factor involved in many aspects of plant development, plays an important role in mediating the accumulation of seed storage reserves in Arabidopsis (Arabidopsis thaliana). The dry weight of ttg1-1 embryos significantly increases compared with that of wild-type embryos, which is accompanied by an increase in the contents of starch, total protein, and fatty acids in ttg1-1 seeds. FUSCA3 (FUS3), a master regulator of seed maturation, binds directly to the TTG1 genomic region and suppresses TTG1 expression in developing seeds. TTG1 negatively regulates the accumulation of seed storage proteins partially through transcriptional repression of 2S3, a gene encoding a 2S albumin precursor. TTG1 also indirectly suppresses the expression of genes involved in either seed development or synthesis/modification of fatty acids in developing seeds. In addition, we demonstrate that the maternal allele of the TTG1 gene suppresses the accumulation of storage proteins and fatty acids in seeds. Our results suggest that TTG1 is a direct target of FUS3 in the framework of the regulatory hierarchy controlling seed filling and regulates the accumulation of seed storage proteins and fatty acids during the seed maturation process. PMID:26152712

  13. TRANSPARENT TESTA GLABRA1 Regulates the Accumulation of Seed Storage Reserves in Arabidopsis.

    PubMed

    Chen, Mingxun; Zhang, Bin; Li, Chengxiang; Kulaveerasingam, Harikrishna; Chew, Fook Tim; Yu, Hao

    2015-09-01

    Seed storage reserves mainly consist of starch, triacylglycerols, and storage proteins. They not only provide energy for seed germination and seedling establishment, but also supply essential dietary nutrients for human beings and animals. So far, the regulatory networks that govern the accumulation of seed storage reserves in plants are still largely unknown. Here, we show that TRANSPARENT TESTA GLABRA1 (TTG1), which encodes a WD40 repeat transcription factor involved in many aspects of plant development, plays an important role in mediating the accumulation of seed storage reserves in Arabidopsis (Arabidopsis thaliana). The dry weight of ttg1-1 embryos significantly increases compared with that of wild-type embryos, which is accompanied by an increase in the contents of starch, total protein, and fatty acids in ttg1-1 seeds. FUSCA3 (FUS3), a master regulator of seed maturation, binds directly to the TTG1 genomic region and suppresses TTG1 expression in developing seeds. TTG1 negatively regulates the accumulation of seed storage proteins partially through transcriptional repression of 2S3, a gene encoding a 2S albumin precursor. TTG1 also indirectly suppresses the expression of genes involved in either seed development or synthesis/modification of fatty acids in developing seeds. In addition, we demonstrate that the maternal allele of the TTG1 gene suppresses the accumulation of storage proteins and fatty acids in seeds. Our results suggest that TTG1 is a direct target of FUS3 in the framework of the regulatory hierarchy controlling seed filling and regulates the accumulation of seed storage proteins and fatty acids during the seed maturation process. PMID:26152712

  14. The impact of Salmonella Enteritidis on lipid accumulation in chicken hepatocytes.

    PubMed

    Wang, Chia-Lan; Fan, Yang-Chi; Wang, Chinling; Tsai, Hsiang-Jung; Chou, Chung-Hsi

    2016-08-01

    Salmonella enterica serovar Enteritidis (SE) is a public health concern and infected chickens serve as a reservoir that potentially transmits to humans through food. Although SE seldom causes systemic disease in chickens, virulent SE strains can colonize in intestines and lead a persistent infection of the liver. The liver is the primary organ for lipid metabolism in chickens and the site for production and assembly of main components in yolk. We performed a time-course experiment using LMH-2A cells that were infected with SE and co-incubated with β-oestradiol to evaluate if SE infection affected lipid metabolism and subsequently changed lipoprotein formation for egg yolk. The results indicated that lipid accumulation significantly increased in infected LMH-2A cells while the viability of these cells was only slightly decreased. The mRNA expressions of lipid transportation and most lipogenetic genes including sterol regulatory element binding protein 1, acetyl-CoA carboxylase, fatty-acid synthase, long-chain-fatty-acid-CoA ligase 1, peroxisome proliferator-activated receptor-γ, and very-low-density lipoproteins (VLDLs) II were significantly up-regulated while the expression of lipogenetic-related stearoyl-CoA denaturase 1 was down-regulated. Moreover, decline in lipid transportation of hepatocytes was evidenced by the down-regulation of oestrogen receptor α which promotes VLDLy formation, an increase of intra-cellular accumulation of Apoprotein B (ApoB) protein, and a decrease of cellular excretion of VLDL protein. Conclusively, SE infection could elevate lipid synthesis and reduce lipid transportation in the chicken hepatocytes. These changes may lead excessive lipid accumulation in liver and slower lipoprotein deposition in yolk. PMID:26957042

  15. Lipid accumulation by oleaginous and non-oleaginous yeast strains in nitrogen and phosphate limitation.

    PubMed

    Kolouchová, Irena; Maťátková, Olga; Sigler, Karel; Masák, Jan; Řezanka, Tomáš

    2016-09-01

    We investigated the possibility of utilizing both oleaginous yeast species accumulating large amounts of lipids (Yarrowia lipolytica, Rhodotorula glutinis, Trichosporon cutaneum, Candida sp.) and traditional biotechnological non-oleaginous ones characterized by high biomass yield (Kluyveromyces polysporus, Torulaspora delbrueckii, Saccharomyces cerevisiae) as potential producers of biofuel-utilizable and nutritionally valuable lipids. The main objective was to increase lipid accumulation by increasing C/P ratio together with higher C/N ratio, while maintaining high biomass yield. The C/N ratio of 30 was found to lead to higher biomass content and the total lipid content increased significantly with higher C/P ratio. With higher ratios of both C/N and C/P, the content of monounsaturated fatty acids (FAs) in cell lipids increased while polyunsaturated FAs decreased. Oleaginous yeast species had a lower proportion of unsaturated FAs (approx. 80 %) than non-oleaginous strains (approx. 90 %). At a C/N ratio of 30 and C/P ratio 1043, T. cutaneum produced a high amount of ω-6 unsaturated linoleic acid, the precursor of some prostaglandins, leukotrienes, and thromboxanes, while Candida sp. and K. polysporus accumulated a high content of palmitoleic acid. PMID:26931336

  16. Role of malate transporter in lipid accumulation of oleaginous fungus Mucor circinelloides.

    PubMed

    Zhao, Lina; Cánovas-Márquez, José T; Tang, Xin; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Garre, Victoriano; Song, Yuanda; Ratledge, Colin

    2016-02-01

    Fatty acid biosynthesis in oleaginous fungi requires the supply of reducing power, NADPH, and the precursor of fatty acids, acetyl-CoA, which is generated in the cytosol being produced by ATP: citrate lyase which requires citrate to be, transported from the mitochondrion by the citrate/malate/pyruvate transporter. This transporter, which is within the mitochondrial membrane, transports cytosolic malate into the mitochondrion in exchange for mitochondrial citrate moving into the cytosol (Fig. 1). The role of malate transporter in lipid accumulation in oleaginous fungi is not fully understood, however. Therefore, the expression level of the mt gene, coding for a malate transporter, was manipulated in the oleaginous fungus Mucor circinelloides to analyze its effect on lipid accumulation. The results showed that mt overexpression increased the lipid content for about 70 % (from 13 to 22 % dry cell weight, CDW), whereas the lipid content in mt knockout mutant decreased about 27 % (from 13 to 9.5 % CDW) compared with the control strain. Furthermore, the extracellular malate concentration was decreased in the mt overexpressing strain and increased in the mt knockout strain compared with the wild-type strain. This work suggests that the malate transporter plays an important role in regulating lipid accumulation in oleaginous fungus M. circinelloides. PMID:26512004

  17. Regulatory effects of curcumin on lipid accumulation in monocytes/macrophages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent evidence suggests potential benefits from phytochemicals and micronutrients in protecting against oxidative and lipid-mediated damage, but the molecular mechanisms of these actions are still unclear. Here we investigated whether the dietary polyphenol curcumin can modulate the accumulation of...

  18. Cellular uptake and metabolism of curcuminoids in monocytes/macrophages: regulatory effects on lipid accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously showed that curcumin (CUR) may increase lipid accumulation in cultured THP-1 monocytes/macrophages, but tetrahydrocurcumin (THC), an in vivo metabolite of CUR, had no such effect. In the present study, we have hypothesized that different cellular uptake and/or metabolism of CUR and THC...

  19. Sequential accumulation of starch and lipid induced by sulfur deficiency in Chlorella and Parachlorella species.

    PubMed

    Mizuno, Yusuke; Sato, Atsushi; Watanabe, Koichi; Hirata, Aiko; Takeshita, Tsuyoshi; Ota, Shuhei; Sato, Norihiro; Zachleder, Vilém; Tsuzuki, Mikio; Kawano, Shigeyuki

    2013-02-01

    The influence of sulfur deficiency on biomass production was analyzed in the four Chlorellaceae species, Chlorella vulgaris, Chlorella sorokiniana, Chlorella lobophora, and Parachlorella kessleri. Culturing under sulfur-deficient conditions promoted transient accumulation of starch followed by a steady increase in lipid storage. Transmission electron microscopy indicated an increase and decrease in starch granules and subsequent enlargement of lipid droplets under sulfur-deficient conditions. Chlorellaceae spp. accumulated 1.5-2.7-fold higher amounts of starch and 1.5-2.4-fold higher amounts of lipid under sulfur-deficient conditions than under sulfur-sufficient conditions. More than 75% of the fatty acids that accumulated in Chlorellaceae spp. under the sulfur-sufficient condition were unsaturated and culturing under sulfur-deficient conditions increased the saturated fatty acid content from 24.3% to 59.7% only in P. kessleri. These results indicate that the sequential accumulation of starch and lipid is a response to the sulfur depletion that commonly occurs in Chlorellaceae spp. PMID:23238344

  20. Impaired lipid accumulation in the liver of Tsc2-heterozygous mice during liver regeneration

    SciTech Connect

    Obayashi, Yoko; Campbell, Jean S.; Fausto, Nelson; Yeung, Raymond S.

    2013-07-19

    Highlights: •Tuberin phosphorylation correlated with mTOR activation in early liver regeneration. •Liver regeneration in the Tsc2+/− mice was not enhanced. •The Tsc2+/− livers failed to accumulate lipid bodies during liver regeneration. •Mortality rate increased in Tsc2+/− mice after partial hepatectomy. •Tuberin plays a critical role in hepatic lipid accumulation to support regeneration. -- Abstract: Tuberin is a negative regulator of mTOR pathway. To investigate the function of tuberin during liver regeneration, we performed 70% hepatectomy on wild-type and Tsc2+/− mice. We found the tuberin phosphorylation correlated with mTOR activation during early liver regeneration in wild-type mice. However, liver regeneration in the Tsc2+/− mice was not enhanced. Instead, the Tsc2+/− livers failed to accumulate lipid bodies, and this was accompanied by increased mortality. These findings suggest that tuberin plays a critical role in liver energy balance by regulating hepatocellular lipid accumulation during early liver regeneration. These effects may influence the role of mTORC1 on cell growth and proliferation.

  1. Effects of feeding outer bran fraction of rice on lipid accumulation and fecal excretion in rats.

    PubMed

    Ijiri, Daichi; Nojima, Tsutomu; Kawaguchi, Mana; Yamauchi, Yoko; Fujita, Yoshikazu; Ijiri, Satoru; Ohtsuka, Akira

    2015-01-01

    Outer bran fraction of rice (OBFR) contains higher concentrations of crude fiber, γ-oryzanol, and phytic acid compared to whole rice bran (WRB). In this study, we examined the effects of feeding OBFR on lipid accumulation and fecal excretion in rats. Twenty-one male rats at seven-week-old were divided into a control group and two treatment groups. The control group was fed a control diet, and the treatment groups were fed OBFR- or WRB-containing diet for 21 days. There was no significant difference in growth performance. Feeding OBFR diet increased fecal number and weight accompanied by increased fecal lipid content, while it did not affect mRNA expressions encoding lipid metabolism-related protein in liver. In addition, feeding OBFR-diet decreased the abdominal fat tissue weight and improved plasma lipid profiles, while WRB-containing diet did not affect them. These results suggested that feeding OBFR-diet might prevent lipid accumulation via enhancing fecal lipid excretion in rats. PMID:25867004

  2. Overexpression of malic enzyme (ME) of Mucor circinelloides improved lipid accumulation in engineered Rhodotorula glutinis.

    PubMed

    Li, Zhi; Sun, Hanxiao; Mo, Xuemei; Li, Xiuying; Xu, Bo; Tian, Peng

    2013-06-01

    The oleaginous yeast Rhodotorula glutinis has been known to be a potential feedstock for lipid production. In the present study, we investigated the enhancement of expression of malic enzyme (ME; NADP(+) dependent; EC 1.1.1.40) from Mucor circinelloides as a strategy to improve lipid content inside the yeast cells. The 26S rDNA and 5.8S rDNA gene fragments isolated from Rhodotorula glutinis were used for homologous integration of ME gene into R. glutinis chromosome under the control of the constitutively highly expressed gene phosphoglycerate kinase 1 to achieve stable expression. We demonstrated that by increasing the expression of the foreign ME gene in R. glutinis, we successfully improved the lipid content by more than twofold. At the end of lipid accumulation phrase (96 h) in the transformants, activity of ME was increased by twofold and lipid content of the yeast cells was increased from 18.74 % of the biomass to 39.35 %. Simultaneously, there were no significant differences in fatty acid profiles between the wild-type strain and the recombinant strain. Over 94 % of total fatty acids were C16:0, C18:0, C16:1, C18:1, and C18:2. Our results indicated that heterologous expression of NADP(+)-dependent ME involved in fatty acid biosynthesis indeed increased the lipid accumulation in the oleaginous yeast R. glutinis. PMID:23179623

  3. Effects of aldehydes on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans.

    PubMed

    Huang, Chao; Wu, Hong; Liu, Qiu-ping; Li, Yuan-yuan; Zong, Min-hua

    2011-05-11

    The effects of five representative aldehydes in lignocellulosic hydrolysates on the growth and the lipid accumulation of oleaginous yeast Trichosporon fermentans were investigated for the first time. There was no relationship between the hydrophobicity and the toxicity of aldehyde, and 5-hydroxymethylfurfural was less toxic than aromatic aldehydes and furfural. Binary combination of aromatic aldehydes caused a synergistic inhibitory effect, but combination of furan and aromatic aldehydes reduced the inhibition instead. A longer lag phase was found due to the presence of aldehydes and the decrease of sugar consumption rate, but more xylose was utilized by T. fermentans in the presence of aldehydes, especially at their low concentrations. The variation of malic enzyme activity was not related to the delay of lipid accumulation. Furthermore, the inhibition of aldehydes on cell growth was more dependent on inoculum size, temperature, and initial pH than that on lipid content. PMID:21443267

  4. Palmiwon attenuates hepatic lipid accumulation and hyperlipidemia in a menopausal rat model

    PubMed Central

    Go, Hiroe; Ryuk, Jin Ah; Lee, Hye Won; Ko, Byoung Seob

    2015-01-01

    Abstract Objective We examined the phytoestrogenic effects of palmiwon on breast carcinoma, lipid accumulation in methyl-β-cyclodextrin–induced HepG2 cells, and lipid-related diseases in a rat model of menopausal hyperlipidemia. Methods E-Screen assay was used to screen for phytoestrogens, especially those with antiestrogenic activity, in MCF-7 cells. Oil Red O staining and intracellular cholesterol analyses were used to quantify cellular cholesterol levels. 3-Hydroxy-3-methyl glutaryl coenzyme A reductase assay was used to measure enzyme activity. The levels of phosphorylated adenosine monophosphate–activated protein kinases and products of genes involved in cholesterol synthesis were measured by Western blot analysis. Thirty rats were either ovariectomized or sham-operated and randomly assigned to four groups (n = 5)—Sham, OVX, OVX-SV, or OVX-PMW (50, 150, or 450 mg/kg) group—for 8 weeks. A number of targets associated with lipid-related diseases were examined to confirm the estrogenic effects of palmiwon. Results Palmiwon showed antiestrogenic activity in MCF-7 cells. Palmiwon decreased lipid accumulation, total cholesterol levels, and low-density lipoprotein/very-low-density lipoprotein levels in HepG2 cells. Moreover, palmiwon reversed the effects of methyl-β-cyclodextrin on cholesterol synthesis regulators and inhibited the activity of 3-hydroxy-3-methyl glutaryl coenzyme A reductase. Phosphorylation of adenosine monophosphate–activated protein kinase was stimulated by palmiwon. In ovariectomized rats, palmiwon reduced retroperitoneal and perirenal fat accumulation, serum lipids, atherogenic index, cardiac risk factor score, intima-media thickness, and nonalcoholic steatohepatitis scores. Conclusions These results indicate that palmiwon inhibits lipid accumulation without estrogenic activity in the breast. Therefore, palmiwon may have potential as a therapeutic agent for the treatment of hyperlipidemia in postmenopausal women. PMID:25563794

  5. Effects of Fatty Acid Treatments on the Dexamethasone-Induced Intramuscular Lipid Accumulation in Chickens

    PubMed Central

    Wang, Xiao juan; Wei, Dai lin; Song, Zhi gang; Jiao, Hong chao; Lin, Hai

    2012-01-01

    Background Glucocorticoid has an important effect on lipid metabolism in muscles, and the type of fatty acid likely affects mitochondrial utilization. Therefore, we hypothesize that the different fatty acid types treatment may affect the glucocorticoid induction of intramuscular lipid accumulation. Methodology/Principal Findings The effect of dexamethasone (DEX) on fatty acid metabolism and storage in skeletal muscle of broiler chickens (Gallus gallus domesticus) was investigated with and without fatty acid treatments. Male Arbor Acres chickens (31 d old) were treated with either palmitic acid (PA) or oleic acid (OA) for 7 days, followed by DEX administration for 3 days (35–37 d old). The DEX-induced lipid uptake and oxidation imbalance, which was estimated by increased fatty acid transport protein 1 (FATP1) expression and decreased carnitine palmitoyl transferase 1 activity, contributed to skeletal muscle lipid accumulation. More sensitive than glycolytic muscle, the oxidative muscle in DEX-treated chickens showed a decrease in the AMP to ATP ratio, a decrease in AMP-activated protein kinase (AMPK) alpha phosphorylation and its activity, as well as an increase in the phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal p70S6 kinase, without Akt activation. DEX-stimulated lipid deposition was augmented by PA, but alleviated by OA, in response to pathways that were regulated differently, including AMPK, mTOR and FATP1. Conclusions DEX-induced intramuscular lipid accumulation was aggravated by SFA but alleviated by unsaturated fatty acid. The suppressed AMPK and augmented mTOR signaling pathways were involved in glucocortcoid-mediated enhanced intramuscular fat accumulation. PMID:22623960

  6. A digital atlas of hydrocarbon accumulations within and adjacent to the National Petroleum Reserve - Alaska (NPRA)

    USGS Publications Warehouse

    Kumar, Naresh; Bird, Kenneth J.; Nelson, Philip H.; Grow, John A.; Evans, Kevin R.

    2002-01-01

    The United States Geological Survey (USGS) has initiated a project to reassess the hydrocarbon potential of the NPRA. Although exploration for hydrocarbons in the NPRA was initiated in 1944, it has taken fifty years for the first commercial discovery to be made. That discovery, the Alpine field (projected recoverable reserves of 430 million barrels), was made in 1994 along the eastern boundary of the NPRA. This field produces from a formation heretofore considered to be mostly a source rock. The Alpine discovery made such a reassessment necessary. As part of this assessment, we have compiled stratigraphic, structural, petrophysical, and seismic data related to nineteen accumulations within and nearby the NPRA. The goal is to provide basic documentation and a set of analog accumulations for the new assessment. The first two displays of this atlas consist of a location map and a stratigraphic column showing the stratigraphic settings for the primary reservoir and source rocks for these accumulations. The third display is a table listing each accumulation and providing the hydrocarbon fluid type, reservoir, operator, status, and discovery well and date for each. Compilation of basic information for each individual accumulation follows these displays. A typical compilation includes a structurecontour map on or near the reservoir horizon, a log display of the discovery well with reservoir characteristics along with figures for recoverable volumes, and one or two seismic lines across or near the accumulation.

  7. Nutrient removal and lipid accumulation properties of newly isolated microalgal strains.

    PubMed

    Han, Lin; Pei, Haiyan; Hu, Wenrong; Han, Fei; Song, Mingming; Zhang, Shuo

    2014-08-01

    In this work, four microalgae including Chlorella sp. SDEC-10, Chlorella ellipsoidea SDEC-11, Scenedesmus bijuga SDEC-12 and Scenedesmus quadricauda SEDC-13 isolated from a local lake have been investigated for the properties of growth, nutrient removal and lipid accumulation in synthetic sewage. Their biomass ranged between 0.4 and 0.5g/L. The total phosphorus removal efficiency of four strains was nearly 100%, but in the case of total nitrogen and ammonium the removal efficiency was relatively low. Their lipid content, ranging from 25.92% to 27.76% and corresponding to the lipid productivity 7.88-18.08mg/L/d, was higher than that obtained in BG-11. Palmitic acid and oleic acid were the predominant compositions found through fatty acids analysis. S. quadricauda SDEC-13 performed best both in nutrient removal and in lipid production among the four strains. PMID:24731916

  8. Photosynthetic light reactions increase total lipid accumulation in carbon-supplemented batch cultures of Chlorella vulgaris.

    PubMed

    Woodworth, Benjamin D; Mead, Rebecca L; Nichols, Courtney N; Kolling, Derrick R J

    2015-03-01

    Microalgae are an attractive biofuel feedstock because of their high lipid to biomass ratios, lipid compositions that are suitable for biodiesel production, and the ability to grow on varied carbon sources. While algae can grow autotrophically, supplying an exogenous carbon source can increase growth rates and allow heterotrophic growth in the absence of light. Time course analyses of dextrose-supplemented Chlorella vulgaris batch cultures demonstrate that light availability directly influences growth rate, chlorophyll production, and total lipid accumulation. Parallel photomixotrophic and heterotrophic cultures grown to stationary phase reached the same amount of biomass, but total lipid content was higher for algae grown in the presence of light (an average of 1.90 mg/mL vs. 0.77 mg/mL over 5 days of stationary phase growth). PMID:25543540

  9. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration.

    PubMed

    Chiu, Sheng-Yi; Kao, Chien-Ya; Tsai, Ming-Ta; Ong, Seow-Chin; Chen, Chiun-Hsun; Lin, Chih-Sheng

    2009-01-01

    In order to produce microalgal lipids that can be transformed to biodiesel fuel, effects of concentration of CO(2) aeration on the biomass production and lipid accumulation of Nannochloropsis oculata in a semicontinuous culture were investigated in this study. Lipid content of N. oculata cells at different growth phases was also explored. The results showed that the lipid accumulation from logarithmic phase to stationary phase of N. oculata NCTU-3 was significantly increased from 30.8% to 50.4%. In the microalgal cultures aerated with 2%, 5%, 10% and 15% CO(2), the maximal biomass and lipid productivity in the semicontinuous system were 0.480 and 0.142 g L(-1)d(-1) with 2% CO(2) aeration, respectively. Even the N. oculata NCTU-3 cultured in the semicontinuous system aerated with 15% CO(2), the biomass and lipid productivity could reach to 0.372 and 0.084 g L(-1)d(-1), respectively. In the comparison of productive efficiencies, the semicontinuous system was operated with two culture approaches over 12d. The biomass and lipid productivity of N. oculata NCTU-3 were 0.497 and 0.151 g L(-1)d(-1) in one-day replacement (half broth was replaced each day), and were 0.296 and 0.121 g L(-1)d(-1) in three-day replacement (three fifth broth was replaced every 3d), respectively. To optimize the condition for long-term biomass and lipid yield from N. oculata NCTU-3, this microalga was suggested to grow in the semicontinuous system aerated with 2% CO(2) and operated by one-day replacement. PMID:18722767

  10. Specific Polymorphisms in Hepatitis C Virus Genotype 3 Core Protein Associated with Intracellular Lipid Accumulation

    PubMed Central

    Jhaveri, Ravi; McHutchison, John; Patel, Keyur; Qiang, Guan; Diehl, Anna Mae

    2008-01-01

    Background Steatosis is a common histological finding and a poor prognostic indicator in patients with hepatitis C virus (HCV) infection. In HCV genotype 3–infected patients, the etiology of steatosis appears to be closely correlated with unknown viral factors that increase intracellular lipid levels. We hypothesize that specific sequence polymorphisms in HCV genotype 3 core protein may be associated with hepatic intracellular lipid accumulation. Methods Using selected serum samples from 8 HCV genotype 3–infected patients with or without steatosis, we sequenced the HCV core gene to identify candidate polymorphisms associated with increased intracellular lipid levels. Results Two polymorphisms at positions 182 and 186 of the core protein correlated with the presence (P = .03) and absence (P = .005) of intrahepatic steatosis. Transfected liver cell lines expressing core protein with steatosis-associated polymorphisms had increased intracellular lipid levels compared with non–steatosis-associated core isolates, as measured by oil red O staining (P = .02). Site-specific mutagenesis performed at positions 182 and 186 in steatosis-associated core genes yielded proteins that had decreased intracellular lipid levels in transfected cells (P = .03). Conclusions We have identified polymorphisms in HCV core protein genotype 3 that produce increased intracellular lipid levels and thus may play a significant role in lipid metabolism or trafficking, contributing to steatosis. PMID:18177246

  11. The histone deacetylase inhibiting drug Entinostat induces lipid accumulation in differentiated HepaRG cells

    NASA Astrophysics Data System (ADS)

    Nunn, Abigail D. G.; Scopigno, Tullio; Pediconi, Natalia; Levrero, Massimo; Hagman, Henning; Kiskis, Juris; Enejder, Annika

    2016-06-01

    Dietary overload of toxic, free metabolic intermediates leads to disrupted insulin signalling and fatty liver disease. However, it was recently reported that this pathway might not be universal: depletion of histone deacetylase (HDAC) enhances insulin sensitivity alongside hepatic lipid accumulation in mice, but the mechanistic role of microscopic lipid structure in this effect remains unclear. Here we study the effect of Entinostat, a synthetic HDAC inhibitor undergoing clinical trials, on hepatic lipid metabolism in the paradigmatic HepaRG liver cell line. Specifically, we statistically quantify lipid droplet morphology at single cell level utilizing label-free microscopy, coherent anti-Stokes Raman scattering, supported by gene expression. We observe Entinostat efficiently rerouting carbohydrates and free-fatty acids into lipid droplets, upregulating lipid coat protein gene Plin4, and relocating droplets nearer to the nucleus. Our results demonstrate the power of Entinostat to promote lipid synthesis and storage, allowing reduced systemic sugar levels and sequestration of toxic metabolites within protected protein-coated droplets, suggesting a potential therapeutic strategy for diseases such as diabetes and metabolic syndrome.

  12. The histone deacetylase inhibiting drug Entinostat induces lipid accumulation in differentiated HepaRG cells

    PubMed Central

    Nunn, Abigail D. G.; Scopigno, Tullio; Pediconi, Natalia; Levrero, Massimo; Hagman, Henning; Kiskis, Juris; Enejder, Annika

    2016-01-01

    Dietary overload of toxic, free metabolic intermediates leads to disrupted insulin signalling and fatty liver disease. However, it was recently reported that this pathway might not be universal: depletion of histone deacetylase (HDAC) enhances insulin sensitivity alongside hepatic lipid accumulation in mice, but the mechanistic role of microscopic lipid structure in this effect remains unclear. Here we study the effect of Entinostat, a synthetic HDAC inhibitor undergoing clinical trials, on hepatic lipid metabolism in the paradigmatic HepaRG liver cell line. Specifically, we statistically quantify lipid droplet morphology at single cell level utilizing label-free microscopy, coherent anti-Stokes Raman scattering, supported by gene expression. We observe Entinostat efficiently rerouting carbohydrates and free-fatty acids into lipid droplets, upregulating lipid coat protein gene Plin4, and relocating droplets nearer to the nucleus. Our results demonstrate the power of Entinostat to promote lipid synthesis and storage, allowing reduced systemic sugar levels and sequestration of toxic metabolites within protected protein-coated droplets, suggesting a potential therapeutic strategy for diseases such as diabetes and metabolic syndrome. PMID:27320682

  13. The histone deacetylase inhibiting drug Entinostat induces lipid accumulation in differentiated HepaRG cells.

    PubMed

    Nunn, Abigail D G; Scopigno, Tullio; Pediconi, Natalia; Levrero, Massimo; Hagman, Henning; Kiskis, Juris; Enejder, Annika

    2016-01-01

    Dietary overload of toxic, free metabolic intermediates leads to disrupted insulin signalling and fatty liver disease. However, it was recently reported that this pathway might not be universal: depletion of histone deacetylase (HDAC) enhances insulin sensitivity alongside hepatic lipid accumulation in mice, but the mechanistic role of microscopic lipid structure in this effect remains unclear. Here we study the effect of Entinostat, a synthetic HDAC inhibitor undergoing clinical trials, on hepatic lipid metabolism in the paradigmatic HepaRG liver cell line. Specifically, we statistically quantify lipid droplet morphology at single cell level utilizing label-free microscopy, coherent anti-Stokes Raman scattering, supported by gene expression. We observe Entinostat efficiently rerouting carbohydrates and free-fatty acids into lipid droplets, upregulating lipid coat protein gene Plin4, and relocating droplets nearer to the nucleus. Our results demonstrate the power of Entinostat to promote lipid synthesis and storage, allowing reduced systemic sugar levels and sequestration of toxic metabolites within protected protein-coated droplets, suggesting a potential therapeutic strategy for diseases such as diabetes and metabolic syndrome. PMID:27320682

  14. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles

    SciTech Connect

    Vesterdal, Lise K.; Danielsen, Pernille H.; Folkmann, Janne K.; Jespersen, Line F.; Aguilar-Pelaez, Karin; Roursgaard, Martin; Loft, Steffen; Møller, Peter

    2014-01-15

    Exposure to particles has been suggested to generate hepatosteatosis by oxidative stress mechanisms. We investigated lipid accumulation in cultured human hepatocytes (HepG2) and rat liver after exposure to four different carbon-based particles. HepG2 cells were exposed to particles for 3 h and subsequently incubated for another 18 h to manifest lipid accumulation. In an animal model of metabolic syndrome we investigated the association between intake of carbon black (CB, 14 nm) particles and hepatic lipid accumulation, inflammation and gene expression of Srebp-1, Fasn and Scd-1 involved in lipid synthesis. There was a concentration-dependent increase in intracellular lipid content after exposure to CB in HepG2 cells, which was only observed after co-exposure to oleic/palmitic acid. Similar results were observed in HepG2 cells after exposure to diesel exhaust particles, fullerenes C{sub 60} or pristine single-walled carbon nanotubes. All four types of particles also generated oxidatively damaged DNA, assessed as formamidopyrimidine DNA glycosylase (FPG) sensitive sites, in HepG2 cells after 3 h exposure. The animal model of metabolic syndrome showed increased lipid load in the liver after one oral exposure to 6.4 mg/kg of CB in lean Zucker rats. This was not associated with increased iNOS staining in the liver, indicating that the oral CB exposure was associated with hepatic steatosis rather than steatohepatitis. The lipid accumulation did not seem to be related to increased lipogenesis because there were unaltered gene expression levels in both the HepG2 cells and rat livers. Collectively, exposure to particles is associated with oxidative stress and steatosis in hepatocytes. - Highlights: • Oral exposure to nanosized carbon black was associated with hepatosteatosis in rats. • In vitro studies included carbon black, C{sub 60}, diesel exhaust particles and SWCNTs. • Exposure to particles and free fatty acids increased lipid load in HepG2 cells. • Unaltered

  15. Facilitated Diffusion as a Method for Selective Accumulation of Materials from the Primordial Oceans by a Lipid Vesicle Protocell

    NASA Astrophysics Data System (ADS)

    Stillwell, William

    1980-09-01

    A model is proposed for the selective accumulation of amino acids, sugars, nucleotides, cations and protons from the primordial oceans into a lipid vesicle type of protocell. The model is built on facilitated diffusion using simple, primordial, lipid-soluble carriers. The advantages a lipid vesicle protocell would have had over the other potential types of protocells are discussed.

  16. Sources and resources: importance of nutrients, resource allocation, and ecology in microalgal cultivation for lipid accumulation.

    PubMed

    Fields, Matthew W; Hise, Adam; Lohman, Egan J; Bell, Tisza; Gardner, Rob D; Corredor, Luisa; Moll, Karen; Peyton, Brent M; Characklis, Gregory W; Gerlach, Robin

    2014-06-01

    Regardless of current market conditions and availability of conventional petroleum sources, alternatives are needed to circumvent future economic and environmental impacts from continued exploration and harvesting of conventional hydrocarbons. Diatoms and green algae (microalgae) are eukaryotic photoautotrophs that can utilize inorganic carbon (e.g., CO2) as a carbon source and sunlight as an energy source, and many microalgae can store carbon and energy in the form of neutral lipids. In addition to accumulating useful precursors for biofuels and chemical feed stocks, the use of autotrophic microorganisms can further contribute to reduced CO2 emissions through utilization of atmospheric CO2. Because of the inherent connection between carbon, nitrogen, and phosphorus in biological systems, macronutrient deprivation has been proven to significantly enhance lipid accumulation in different diatom and algae species. However, much work is needed to understand the link between carbon, nitrogen, and phosphorus in controlling resource allocation at different levels of biological resolution (cellular versus ecological). An improved understanding of the relationship between the effects of N, P, and micronutrient availability on carbon resource allocation (cell growth versus lipid storage) in microalgae is needed in conjunction with life cycle analysis. This mini-review will briefly discuss the current literature on the use of nutrient deprivation and other conditions to control and optimize microalgal growth in the context of cell and lipid accumulation for scale-up processes. PMID:24695829

  17. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    SciTech Connect

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  18. Nitrogen Substituent Polarity Influences Dithiocarbamate-Mediated Lipid Oxidation, Nerve Copper Accumulation, and Myelin Injury

    PubMed Central

    Valentine, Holly L.; Viquez, Olga M.; Amarnath, Kalyani; Amarnath, Venkataraman; Zyskowski, Justin; Kassa, Endalkachew N.; Valentine, William M.

    2009-01-01

    Dithiocarbamates have a wide spectrum of applications in industry, agriculture, and medicine, with new applications being investigated. Past studies have suggested that the neurotoxicity of some dithiocarbamates may result from copper accumulation, protein oxidative damage, and lipid oxidation. The polarity of a dithiocarbamate’s nitrogen substituents influences the lipophilicity of the copper complexes it generates and thus potentially determines its ability to promote copper accumulation within nerve and induce myelin injury. In the current study, a series of dithiocarbamate-copper complexes differing in their lipophilicity were evaluated for their relative abilities to promote lipid peroxidation determined by malondialdehyde levels generated in an ethyl arachidonate oil-in-water emulsion. In a second component of this study, rats were exposed to either N,N-diethyldithiocarbamate or sarcosine dithiocarbamate; both generate dithiocarbamate-copper complexes that are lipid and water soluble, respectively. Following the exposures, brain, tibial nerve, spinal cord and liver tissue copper levels were measured by inductively coupled mass spectroscopy to assess the relative abilities of these two dithiocarbamates to promote copper accumulation. Peripheral nerve injury was evaluated using grip strengths, nerve conduction velocities and morphologic changes at the light microscope level. Additionally, the protein expression levels of glutathione transferase alpha and heme-oxygenase-1 in nerve were determined and the quantity of protein carbonyls measured to assess levels of oxidative stress and injury. The data provide evidence that dithiocarbamate-copper complexes are redox active; and that the ability of dithiocarbamate complexes to promote lipid peroxidation is correlated to the lipophilicity of the complex. Consistent with neurotoxicity requiring the formation of a lipid soluble copper complex, significant increases in copper accumulation, oxidative stress and myelin

  19. Whole Genome Re-Sequencing Identifies a Quantitative Trait Locus Repressing Carbon Reserve Accumulation during Optimal Growth in Chlamydomonas reinhardtii.

    PubMed

    Goold, Hugh Douglas; Nguyen, Hoa Mai; Kong, Fantao; Beyly-Adriano, Audrey; Légeret, Bertrand; Billon, Emmanuelle; Cuiné, Stéphan; Beisson, Fred; Peltier, Gilles; Li-Beisson, Yonghua

    2016-01-01

    Microalgae have emerged as a promising source for biofuel production. Massive oil and starch accumulation in microalgae is possible, but occurs mostly when biomass growth is impaired. The molecular networks underlying the negative correlation between growth and reserve formation are not known. Thus isolation of strains capable of accumulating carbon reserves during optimal growth would be highly desirable. To this end, we screened an insertional mutant library of Chlamydomonas reinhardtii for alterations in oil content. A mutant accumulating five times more oil and twice more starch than wild-type during optimal growth was isolated and named constitutive oil accumulator 1 (coa1). Growth in photobioreactors under highly controlled conditions revealed that the increase in oil and starch content in coa1 was dependent on light intensity. Genetic analysis and DNA hybridization pointed to a single insertional event responsible for the phenotype. Whole genome re-sequencing identified in coa1 a >200 kb deletion on chromosome 14 containing 41 genes. This study demonstrates that, 1), the generation of algal strains accumulating higher reserve amount without compromising biomass accumulation is feasible; 2), light is an important parameter in phenotypic analysis; and 3), a chromosomal region (Quantitative Trait Locus) acts as suppressor of carbon reserve accumulation during optimal growth. PMID:27141848

  20. Whole Genome Re-Sequencing Identifies a Quantitative Trait Locus Repressing Carbon Reserve Accumulation during Optimal Growth in Chlamydomonas reinhardtii

    PubMed Central

    Goold, Hugh Douglas; Nguyen, Hoa Mai; Kong, Fantao; Beyly-Adriano, Audrey; Légeret, Bertrand; Billon, Emmanuelle; Cuiné, Stéphan; Beisson, Fred; Peltier, Gilles; Li-Beisson, Yonghua

    2016-01-01

    Microalgae have emerged as a promising source for biofuel production. Massive oil and starch accumulation in microalgae is possible, but occurs mostly when biomass growth is impaired. The molecular networks underlying the negative correlation between growth and reserve formation are not known. Thus isolation of strains capable of accumulating carbon reserves during optimal growth would be highly desirable. To this end, we screened an insertional mutant library of Chlamydomonas reinhardtii for alterations in oil content. A mutant accumulating five times more oil and twice more starch than wild-type during optimal growth was isolated and named constitutive oil accumulator 1 (coa1). Growth in photobioreactors under highly controlled conditions revealed that the increase in oil and starch content in coa1 was dependent on light intensity. Genetic analysis and DNA hybridization pointed to a single insertional event responsible for the phenotype. Whole genome re-sequencing identified in coa1 a >200 kb deletion on chromosome 14 containing 41 genes. This study demonstrates that, 1), the generation of algal strains accumulating higher reserve amount without compromising biomass accumulation is feasible; 2), light is an important parameter in phenotypic analysis; and 3), a chromosomal region (Quantitative Trait Locus) acts as suppressor of carbon reserve accumulation during optimal growth. PMID:27141848

  1. Oregonin reduces lipid accumulation and proinflammatory responses in primary human macrophages.

    PubMed

    Lundqvist, Annika; Magnusson, Lisa U; Ullström, Christina; Krasilnikova, Jelena; Telysheva, Galina; Dizhbite, Tatjana; Hultén, Lillemor Mattsson

    2015-03-13

    Inflammation in the vascular wall is important for the development of atherosclerosis. We have previously shown that inflammatory macrophages are more abundant in human atherosclerotic lesions than in healthy arteries. Activated macrophages produce reactive oxygen species (ROS) that promote local inflammation in atherosclerotic lesions. Here, we investigated the role of oregonin, a diarylheptanoid, on proinflammatory responses in primary human macrophages and found that oregonin decreased cellular lipid accumulation and proinflammatory cytokine secretion. We also found that oregonin decreased ROS production in macrophages. Additionally, we observed that treatment of lipopolysaccharide-exposed macrophages with oregonin significantly induced the expression of antioxidant-related genes, including Heme oxygenase-1 and NADPH dehydrogenase quinone 1. In summary, we have shown that oregonin reduces lipid accumulation, inflammation and ROS production in primary human macrophages, indicating that oregonin has anti-inflammatory bioactivities. PMID:25686497

  2. Pyrolytic characteristics of biodiesel prepared from lipids accumulated in diatom cells with growth regulation.

    PubMed

    Cheng, Jun; Feng, Jia; Ge, Tingting; Yang, Weijuan; Zhou, Junhu; Cen, Kefa

    2015-08-01

    Dynamic compositions of lipids accumulated in two diatoms Chaetoceros gracilis and Nitzschia closterium cultured with nitrogen and silicon deprivation were studied. It was found that short-chain fatty acids (C14-C16) content was much higher than long-chain fatty acids (C18-C20) content in lipids of two diatoms. The pyrolytic characteristics of biodiesel made from two diatoms and two plant seeds were compared by thermogravimetric analysis. The highest activation energy of 46.68 kJ mol(-1) and the minimum solid residue of 25.18% were obtained in the pyrolysis of biodiesel made from C. gracilis cells, which were cultured with 0.5 mmol L(-1) of nitrogen (no silicon) and accumulated the minimum polyunsaturated fatty acid (C20:5). The pyrolysis residue percentage of C. gracilis biodiesel was lower than that of N. closterium biodiesel and higher than those of plant (Cormus wilsoniana and Pistacia chinensis) biodiesels. PMID:25782618

  3. Altered lipid accumulation in Nannochloropsis salina CCAP849/3 following EMS and UV induced mutagenesis

    PubMed Central

    Beacham, T.A.; Macia, V. Mora; Rooks, P.; White, D.A.; Ali, S.T.

    2015-01-01

    Microalgae have potential as a chemical feed stock in a range of industrial applications. Nannochloropsis salina was subject to EMS mutagenesis and the highest lipid containing cells selected using fluorescence-activated cell sorting. Assessment of growth, lipid content and fatty acid composition identified mutant strains displaying a range of altered traits including changes in the PUFA content and a total FAME increase of up to 156% that of the wild type strain. Combined with a reduction in growth this demonstrated a productivity increase of up to 76%. Following UV mutagenesis, lipid accumulation of the mutant cultures was elevated to more than 3 fold that of the wild type strain, however reduced growth rates resulted in a reduction in overall productivity. Changes observed are indicative of alterations to the regulation of the omega 6 Kennedy pathway. The importance of these variations in physiology for industrial applications such as biofuel production is discussed. PMID:26753128

  4. Specific Accumulation of Lipid Droplets in Hepatocyte Nuclei of PFOA-exposed BALB/c Mice

    NASA Astrophysics Data System (ADS)

    Wang, Ling; Wang, Yu; Liang, Yong; Li, Jia; Liu, Yuchen; Zhang, Jie; Zhang, Aiqian; Fu, Jianjie; Jiang, Guibin

    2013-07-01

    Lipid droplets (LDs), which are important storage structures for neutral lipids and organelles of diverse functions, participate in various cellular activities. In this study, BALB/c mice, fed a regular or a high-fat diet, were exposed to the synthetic perfluorinated compound, perfluorooctanoic acid (PFOA). PFOA-exposed mice had altered serum lipid and lipoprotein levels, and hydropic degeneration or ballooning degeneration of hepatocytes. Moreover, we report for the first time that LDs accumulate in hepatic nuclei after PFOA exposure. As PFOA resembles fatty acids (FA) in its structure, this chemical may interfere with the transportation and metabolism of FA as well as LDs in the cell. This abnormal localization of LDs in the nucleus may be related to the cause of PFOA toxicity.

  5. Olanzapine promotes the accumulation of lipid droplets and the expression of multiple perilipins in human adipocytes.

    PubMed

    Nimura, Satomi; Yamaguchi, Tomohiro; Ueda, Koki; Kadokura, Karin; Aiuchi, Toshihiro; Kato, Rina; Obama, Takashi; Itabe, Hiroyuki

    2015-11-27

    Second generation antipsychotics are useful for the treatment of schizophrenia, but concerns have been raised about the side effects of diabetes mellitus and obesity. Olanzapine, especially, is associated with more weight gain than the others. It has been reported that olanzapine promotes adipocyte-differentiation in rodents both in vivo and in vitro. In this study the effects of antipsychotics on human adipocytes were investigated by using human mesenchymal stem cells (hMSCs). When hMSCs were differentiated and treated with various antipsychotics, olanzapine and clozapine increased intracellular lipids. Olanzapine induced lipid accumulation in a dose-dependent manner. Proteomic analysis revealed that PLIN4 and several enzymes for lipid metabolism were increased in the hMSCs after olanzapine treatment. During adipocyte differentiation, olanzapine increased the protein expression of PLIN1, PLIN2 and PLIN4. These proteins are known to be associated with the initial stage of lipid droplet formation. Immunocytochemistry showed that olanzapine increased and enlarged the lipid droplets coated with PLIN1 and PLIN2 while PLIN4 was largely distributed in the cytosol. mRNA expression of PLIN2, but not PLIN1 or PLIN4, was increased by olanzapine. On the other hand, olanzapine did not alter the mRNA level of transcription regulators involved in adipocyte-differentiation or adipokines. The present study shows that olanzapine induced transient PLIN2 expression in hMSCs that could result in an accumulation of lipid droplets and overexpression of PLIN1 and PLIN4, providing information of possible interest for olanzapine-induced weight gain. PMID:26471304

  6. Lipid accumulation and growth characteristics of Chlorella zofingiensis under different nitrate and phosphate concentrations.

    PubMed

    Feng, Pingzhong; Deng, Zhongyang; Fan, Lu; Hu, Zhengyu

    2012-10-01

    To evaluate the potential of the green agla Chlorella zofingiensis as a feedstock for biodiesel production, the effects of nitrogen and phosphate on lipid accumulation and growth of C. zofingiensis were studied. The maximum specific growth rate (μ(max)) reached 2.15 day⁻¹ when the concentration of NaNO₃ and K₂HPO₄·3H₂O was 1.0 g L⁻¹ and 0.01 g L⁻¹, respectively. The lipid contents of C. zofingiensis grown in media deficient of nitrogen (65.1%) or phosphate (44.7%) were both higher than that obtained from cells grown in full medium (33.5%). The highest lipid productivity (87.1 mg L⁻¹ day⁻¹) was also obtained from cells grown in nitrogen deficient media, indicating nitrogen deficiency was more effective than phosphate deficiency for inducing lipid accumulation in C. zofingiensis. In addition, the feasibility of cultivating the alga in 60 L flat plate photobioreactors and 10 L bottles outdoors for biodiesel was also tested. It was found that C. zofingiensis could adapt to fluctuating temperatures and irradiance of outdoors and the highest μ(max) and lipid productivity could reach 0.362 day⁻¹ and 26.6 mg L⁻¹ day⁻¹ outdoors, respectively. The lipid production potential of C. zofingiensis is projected to be 31.1 kg ha⁻¹ day⁻¹ in outdoor culture. These results suggested that C. zofingiensis is a promising organism for feedstock production of biofuel and can be used in scaled up culture outdoors. PMID:22698727

  7. Effect of Trichlorfon on Hepatic Lipid Accumulation in Crucian Carp Carassius auratus gibelio

    PubMed Central

    Xu, WeiNa; Liu, WenBin; Shao, XianPing; Jiang, GuangZhen; Li, XianngFei

    2012-01-01

    This study evaluated the toxic effects of the organophosphate pesticide trichlorfon on hepatic lipid accumulation in crucian carp Carassius auratus gibelio. Seventy-five fish were divided into five groups (each group in triplicate), and then exposed to 0, 0.5, 1.0, 2.0, and 4.0 mg/L of trichlorfon and fed with commercial feed for 30 d. At the end of the experiment, plasma and hepatic lipid metabolic biochemical status were analyzed. Triglyceride contents were significantly (P < 0.05) increased in liver but decreased in plasma after 1.0, 2.0, and 4.0 mg/L trichlorfon treatments. Plasma insulin contents were markedly (P < 0.05) increased when trichlorfon concentrations were 0.5, 1.0, and 4.0 mg/L. There were no significant differences in hepatic hormone-sensitive lipase contents between the trichlorfon-treated fish and the controls. Hepatic cyclic adenosine 3′, 5′-monophosphate, very-low-density lipoprotein, and apolipoprotein B100 contents were decreased in the fish when trichlorfon concentration was 2.0 mg/L. Furthermore, electron microscope observations showed rough endoplasmic reticulum dilatation and mitochondrial vacuolization in hepatocytes with trichlorfon exposure. On the basis of morphological and physiological evidence, trichlorfon influenced crucian carp hepatic pathways of lipid metabolism and hepatocellular ultrastructure, which resulted in lipid accumulation in the liver. PMID:22897202

  8. Notch1 deficiency decreases hepatic lipid accumulation by induction of fatty acid oxidation.

    PubMed

    Song, No-Joon; Yun, Ui Jeong; Yang, Sunghee; Wu, Chunyan; Seo, Cho-Rong; Gwon, A-Ryeong; Baik, Sang-Ha; Choi, Yuri; Choi, Bo Youn; Bahn, Gahee; Kim, Suji; Kwon, So-Mi; Park, Jin Su; Baek, Seung Hyun; Park, Tae Joo; Yoon, Keejung; Kim, Byung-Joon; Mattson, Mark P; Lee, Sung-Joon; Jo, Dong-Gyu; Park, Kye Won

    2016-01-01

    Notch signaling pathways modulate various cellular processes, including cell proliferation, differentiation, adhesion, and communication. Recent studies have demonstrated that Notch1 signaling also regulates hepatic glucose production and lipid synthesis. However, the effect of Notch1 signaling on hepatic lipid oxidation has not yet been directly investigated. To define the function of Notch1 signaling in hepatic lipid metabolism, wild type mice and Notch1 deficient antisense transgenic (NAS) mice were fed a high-fat diet. High-fat diet -fed NAS mice exhibited a marked reduction in hepatic triacylglycerol accumulation compared with wild type obese mice. The improved fatty liver was associated with an increased expression of hepatic genes involved in fatty acid oxidation. However, lipogenic genes were not differentially expressed in the NAS liver, suggesting lipolytic-specific regulatory effects by Notch1 signaling. Expression of fatty acid oxidative genes and the rate of fatty acid oxidation were also increased by inhibition of Notch1 signaling in HepG2 cells. In addition, similar regulatory effects on lipid accumulation were observed in adipocytes. Taken together, these data show that inhibition of Notch1 signaling can regulate the expression of fatty acid oxidation genes and may provide therapeutic strategies in obesity-induced hepatic steatosis. PMID:26786165

  9. Notch1 deficiency decreases hepatic lipid accumulation by induction of fatty acid oxidation

    PubMed Central

    Song, No-Joon; Yun, Ui Jeong; Yang, Sunghee; Wu, Chunyan; Seo, Cho-Rong; Gwon, A-Ryeong; Baik, Sang-Ha; Choi, Yuri; Choi, Bo Youn; Bahn, Gahee; Kim, Suji; Kwon, So-Mi; Park, Jin Su; Baek, Seung Hyun; Park, Tae Joo; Yoon, Keejung; Kim, Byung-Joon; Mattson, Mark P.; Lee, Sung-Joon; Jo, Dong-Gyu; Park, Kye Won

    2016-01-01

    Notch signaling pathways modulate various cellular processes, including cell proliferation, differentiation, adhesion, and communication. Recent studies have demonstrated that Notch1 signaling also regulates hepatic glucose production and lipid synthesis. However, the effect of Notch1 signaling on hepatic lipid oxidation has not yet been directly investigated. To define the function of Notch1 signaling in hepatic lipid metabolism, wild type mice and Notch1 deficient antisense transgenic (NAS) mice were fed a high-fat diet. High-fat diet -fed NAS mice exhibited a marked reduction in hepatic triacylglycerol accumulation compared with wild type obese mice. The improved fatty liver was associated with an increased expression of hepatic genes involved in fatty acid oxidation. However, lipogenic genes were not differentially expressed in the NAS liver, suggesting lipolytic-specific regulatory effects by Notch1 signaling. Expression of fatty acid oxidative genes and the rate of fatty acid oxidation were also increased by inhibition of Notch1 signaling in HepG2 cells. In addition, similar regulatory effects on lipid accumulation were observed in adipocytes. Taken together, these data show that inhibition of Notch1 signaling can regulate the expression of fatty acid oxidation genes and may provide therapeutic strategies in obesity-induced hepatic steatosis. PMID:26786165

  10. (13)C-metabolic flux analysis of lipid accumulation in the oleaginous fungus Mucor circinelloides.

    PubMed

    Zhao, Lina; Zhang, Huaiyuan; Wang, Liping; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2015-12-01

    The oleaginous fungus Mucor circinelloides is of industrial interest because it can produce high levels of polyunsaturated fatty acid γ-linolenic acid. M. circinelloides CBS 277.49 is able to accumulate less than 15% of cell dry weight as lipids, while M. circinelloides WJ11 can accumulate lipid up to 36%. In order to better understand the mechanisms behind the differential lipid accumulation in these two strains, tracer experiments with (13)C-glucose were performed with the growth of M. circinelloides and subsequent gas chromatography-mass spectrometric detection of (13)C-patterns in proteinogenic amino acids was carried out to identify the metabolic network topology and estimate intracellular fluxes. Our results showed that the high oleaginous strain WJ11 had higher flux of pentose phosphate pathway and malic enzyme, lower flux in tricarboxylic acid cycle, higher flux in glyoxylate cycle and ATP: citrate lyase, together, it might provide more NADPH and substrate acetyl-CoA for fatty acid synthesis. PMID:26318243

  11. Overexpression of Sirt3 inhibits lipid accumulation in macrophages through mitochondrial IDH2 deacetylation

    PubMed Central

    Sheng, Shangchun; Kang, Yi; Guo, Yongchan; Pu, Qinli; Cai, Miao; Tu, Zhiguang

    2015-01-01

    This study aims to explore the relationship between Sirt3 expression and lipid accumulation in macrophages by inducing mitochondrial IDH2 deacetylation. In this study, Sirt3 interference and overexpression lentiviral vectors were constructed. Macrophages collected from C57BL/6J mice by peritoneal lavage were used to construct Sirt3 gene interference and overexpression models, and cultured in medium containing 1 mg/ml ox-LDL for 72 h to observe the enrichment of ox-LDL. Reverse transcription PCR was used to detect the expression of Sirt3 mRNA, western blot to detect Sirt3 and acetylated IDH2 proteins, and Nile Red staining and flow cytometry to detect intracellular lipids in macrophages. The results indicated that as compared to Sirt3 overexpressed and normal groups, the acetylation of IDH2 and accumulation of ox-LDL were significantly higher in the Sirt3 inhibited group. In conclusion, the expression of Sirt3 can inhibit lipid accumulation in macrophages by inducing mitochondrial IDH2 deacetylation. PMID:26464666

  12. p-Synephrine Suppresses Glucose Production but Not Lipid Accumulation in H4IIE Liver Cells

    PubMed Central

    Cui, Zhigang; Lee, Youngil; Lee, Youngki

    2015-01-01

    Abstract p-Synephrine, the primary protoalkaloid in the extract of bitter orange and other citrus species, has gained interest due to its lipolytic activity in adipose tissues. We previously found that p-synephrine stimulates glucose consumption via AMP-activated protein kinase (AMPK) in L6 skeletal muscle cells. This study investigated the effect of p-synephrine on glucose production and lipid accumulation in H4IIE rat liver cells. Glucose production was increased in H4llE cells that were incubated in glucose-free medium but decreased dose dependently (1–100 μM) with p-synephrine treatment. Protein levels of glucose-6-phosphatase (G6Pase) and phosphoenol pyruvate carboxykinase (PEPCK) were also decreased by treatment (4 h) with p-synephrine. Antagonists against α- and β-adrenergic receptors (phentolamine and propranolol) and other inhibitors against signaling molecules did not interrupt p-synephrine-induced suppression in glucose production. However, H7 (an inhibitor of serine/threonine kinases PKA, PKC, and PKG) significantly blocked p-synephrine-induced suppression of glucose production and further increased basal glucose production. Unlike the suppressive effect on glucose production, p-synephrine failed to affect palmitic acid-induced cytoplasmic lipid accumulation. Protein levels of fatty acid synthase (FAS) and phosphorylation levels of AMPK and ACC were not changed by p-synephrine. Altogether, p-synephrine can suppress glucose production but does not affect lipid accumulation in H4IIE liver cells. PMID:25379695

  13. Oxidative Stress Is a Mediator for Increased Lipid Accumulation in a Newly Isolated Dunaliella salina Strain

    PubMed Central

    Yilancioglu, Kaan; Cokol, Murat; Pastirmaci, Inanc; Erman, Batu; Cetiner, Selim

    2014-01-01

    oxidative stress mediates lipid accumulation. Understanding such relationships may provide guidance for efficient production of algal biodiesels. PMID:24651514

  14. Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain.

    PubMed

    Yilancioglu, Kaan; Cokol, Murat; Pastirmaci, Inanc; Erman, Batu; Cetiner, Selim

    2014-01-01

    oxidative stress mediates lipid accumulation. Understanding such relationships may provide guidance for efficient production of algal biodiesels. PMID:24651514

  15. Dual-5α-Reductase Inhibition Promotes Hepatic Lipid Accumulation in Man

    PubMed Central

    Hazlehurst, Jonathan M.; Oprescu, Andrei I.; Nikolaou, Nikolaos; Di Guida, Riccardo; Grinbergs, Annabel E. K.; Davies, Nigel P.; Flintham, Robert B.; Armstrong, Matthew J.; Taylor, Angela E.; Hughes, Beverly A.; Yu, Jinglei; Hodson, Leanne; Dunn, Warwick B.

    2016-01-01

    Context: 5α-Reductase 1 and 2 (SRD5A1, SRD5A2) inactivate cortisol to 5α-dihydrocortisol in addition to their role in the generation of DHT. Dutasteride (dual SRD5A1 and SRD5A2 inhibitor) and finasteride (selective SRD5A2 inhibitor) are commonly prescribed, but their potential metabolic effects have only recently been identified. Objective: Our objective was to provide a detailed assessment of the metabolic effects of SRD5A inhibition and in particular the impact on hepatic lipid metabolism. Design: We conducted a randomized study in 12 healthy male volunteers with detailed metabolic phenotyping performed before and after a 3-week treatment with finasteride (5 mg od) or dutasteride (0.5 mg od). Hepatic magnetic resonance spectroscopy (MRS) and two-step hyperinsulinemic euglycemic clamps incorporating stable isotopes with concomitant adipose tissue microdialysis were used to evaluate carbohydrate and lipid flux. Analysis of the serum metabolome was performed using ultra-HPLC-mass spectrometry. Setting: The study was performed in the Wellcome Trust Clinical Research Facility, Queen Elizabeth Hospital, Birmingham, United Kingdom. Main Outcome Measure: Incorporation of hepatic lipid was measured with MRS. Results: Dutasteride, not finasteride, increased hepatic insulin resistance. Intrahepatic lipid increased on MRS after dutasteride treatment and was associated with increased rates of de novo lipogenesis. Adipose tissue lipid mobilization was decreased by dutasteride. Analysis of the serum metabolome demonstrated that in the fasted state, dutasteride had a significant effect on lipid metabolism. Conclusions: Dual-SRD5A inhibition with dutasteride is associated with increased intrahepatic lipid accumulation. PMID:26574953

  16. Fourier transform infrared spectroscopy as a method to study lipid accumulation in oleaginous yeasts

    PubMed Central

    2014-01-01

    Background Oleaginous microorganisms, such as different yeast and algal species, can represent a sustainable alternative to plant oil for the production of biodiesel. They can accumulate fatty acids (FA) up to 70% of their dry weight with a predominance of (mono)unsaturated species, similarly to what plants do, but differently from animals. In addition, their growth is not in competition either with food, feed crops, or with agricultural land. Despite these advantages, the exploitation of the single cell oil system is still at an early developmental stage. Cultivation mode and conditions, as well as lipid extraction technologies, represent the main limitations. The monitoring of lipid accumulation in oleaginous microorganisms is consequently crucial to develop and validate new approaches, but at present the majority of the available techniques is time consuming, invasive and, when relying on lipid extraction, can be affected by FA degradation. Results In this work the fatty acid accumulation of the oleaginous yeasts Cryptococcus curvatus and Rhodosporidium toruloides and of the non-oleaginous yeast Saccharomyces cerevisiae (as a negative control) was monitored in situ by Fourier Transform Infrared Spectroscopy (FTIR). Indeed, this spectroscopic tool can provide complementary information to those obtained by classical techniques, such as microscopy, flow cytometry and gas chromatography. As shown in this work, through the analysis of the absorption spectra of intact oleaginous microorganisms it is possible not only to monitor the progression of FA accumulation but also to identify the most represented classes of the produced lipids. Conclusions Here we propose FTIR microspectroscopy - supported by multivariate analysis - as a fast, reliable and non invasive method to monitor and analyze FA accumulation in intact oleaginous yeasts. The results obtained by the FTIR approach were in agreement with those obtained by the other classical methods like flow cytometry and

  17. Kaempferol Isolated from Nelumbo nucifera Inhibits Lipid Accumulation and Increases Fatty Acid Oxidation Signaling in Adipocytes.

    PubMed

    Lee, Bonggi; Kwon, Misung; Choi, Jae Sue; Jeong, Hyoung Oh; Chung, Hae Young; Kim, Hyeung-Rak

    2015-12-01

    Stamens of Nelumbo nucifera Gaertn have been used as a Chinese medicine due to its antioxidant, hypoglycemic, and antiatherogenic activity. However, the effects of kaempferol, a main component of N. nucifera, on obesity are not fully understood. We examined the effect of kaempferol on adipogenesis and fatty acid oxidation signaling pathways in 3T3-L1 adipocytes. Kaempferol reduced cytoplasmic triglyceride (TG) accumulation in dose and time-dependent manners during adipocyte differentiation. Accumulation of TG was rapidly reversed by retrieving kaempferol treatment. Kaempferol broadly decreased mRNA or protein levels of adipogenic transcription factors and their target genes related to lipid accumulation. Kaempferol also suppressed glucose uptake and glucose transporter GLUT4 mRNA expression in adipocytes. Furthermore, protein docking simulation suggests that Kaempferol can directly bind to and activate peroxisome proliferator-activated receptor (PPAR)-α by forming hydrophobic interactions with VAL324, THR279, and LEU321 residues of PPARα. The binding affinity was higher than a well-known PPARα agonist fenofibrate. Consistently, mRNA expression levels of PPARα target genes were increased. Our study indicates while kaempferol inhibits lipogenic transcription factors and lipid accumulation, it may bind to PPARα and stimulate fatty acid oxidation signaling in adipocytes. PMID:26280739

  18. Depletion of Rab32 decreases intracellular lipid accumulation and induces lipolysis through enhancing ATGL expression in hepatocytes.

    PubMed

    Li, Qing; Wang, Jun; Wan, Ying; Chen, Dongfeng

    2016-03-18

    Nonalcoholic fatty liver disease (NAFLD) is a disease caused by the accumulation of lipids in hepatocytes. To date, however, the pathogenesis of NAFLD is still unclear. Recent studies have shown that Rab GTPases, a major protein family in vesicle trafficking, are associated with intracellular lipid accumulation. Here, we show that Rab32, the only Rab GTPase located in mitochondria, participates in hepatic steatosis. Ablation of Rab32 can decrease intracellular lipid accumulation in hepatocytes (HepG2, L02). Further studying the possible mechanism, we found that knockdown of Rab32 can enhance lipolysis instead of lipogenesis via inducing the expression of adipose triglyceride lipase (ATGL), a key enzyme on the surface of lipid droplets which has been proved to be significant in controlling intracellular lipid accumulation. Co-immunoprecipitation shows that Rab32 and ATGL are not directly associated. These findings suggest that knockdown of Rab32 indirectly affects lipolysis through increasing the expression of ATGL. Taken together, our study reveals that Rab32 can participate in regulating intracellular lipid accumulation and that knockdown of Rab32 can decrease intracellular lipid accumulation in hepatocytes. We also demonstrated that ablation of Rab32 can induce intracellular lipolysis by enhancing the expression of ATGL. PMID:26882978

  19. Characterization of oleaginous yeasts accumulating high levels of lipid when cultivated in glycerol and their potential for lipid production from biodiesel-derived crude glycerol.

    PubMed

    Polburee, Pirapan; Yongmanitchai, Wichien; Lertwattanasakul, Noppon; Ohashi, Takao; Fujiyama, Kazuhito; Limtong, Savitree

    2015-12-01

    This study attempted to identify oleaginous yeasts and selected the strain that accumulated the largest quantity of lipid for lipid production from glycerol. Two-step screening of 387 yeast strains revealed 23 oleaginous strains that accumulated quantities of lipid higher than 20 % of their biomass when cultivated in glycerol. These strains were identified to be four ascomycetous yeast species i.e. Candida silvae, Kodamaea ohmeri, Meyerozyma caribbica, and Pichia manshurica, and five basidiomycetous yeast species i.e. Cryptococcus cf. podzolicus, Cryptococcus laurentii, Rhodosporidium fluviale, Rhodotorula taiwanensis, and Sporidiobolus ruineniae. Rhodosporidium fluviale DMKU-RK253 accumulated the highest quantity of lipid equal to 65.2 % of its biomass (3.9 g L(-1) lipid and 6.0 g L(-1) biomass) by shaking flask cultivation in crude glycerol. The main fatty acids in the accumulated lipid of this strain consisted of oleic acid, linoleic acid, and palmitic acid. Therefore, R. fluviale DMKU-RK253 has potential for producing lipid for biodiesel manufacturing using crude glycerol as a feedstock. PMID:26615742

  20. Arabidopsis Plastidial Folylpolyglutamate Synthetase Is Required for Seed Reserve Accumulation and Seedling Establishment in Darkness

    PubMed Central

    Meng, Hongyan; Jiang, Ling; Xu, Bosi; Guo, Wenzhu; Li, Jinglai; Zhu, Xiuqing; Qi, Xiaoquan; Duan, Lixin; Meng, Xianbin; Fan, Yunliu; Zhang, Chunyi

    2014-01-01

    Interactions among metabolic pathways are important in plant biology. At present, not much is known about how folate metabolism affects other metabolic pathways in plants. Here we report a T-DNA insertion mutant (atdfb-3) of the plastidial folylpolyglutamate synthetase gene (AtDFB) was defective in seed reserves and skotomorphogenesis. Lower carbon (C) and higher nitrogen (N) content in the mutant seeds than that of the wild type were indicative of an altered C and N partitioning capacity. Higher levels of organic acids and sugars were detected in the mutant seeds compared with the wild type. Further analysis revealed that atdfb-3 seeds contained less total amino acids and individual Asn and Glu as well as NO3−. These results indicate significant changes in seed storage in the mutant. Defects in hypocotyl elongation were observed in atdfb-3 in darkness under sufficient NO3− conditions, and further enhanced under NO3− limited conditions. The strong expression of AtDFB in cotyledons and hypocotyl during early developmental stage was consistent with the mutant sensitivity to limited NO3− during a narrow developmental window. Exogenous 5-formyl-tetrahydrofolate completely restored the hypocotyl length in atdfb-3 seedlings with NO3− as the sole N source. Further study demonstrated that folate profiling and N metabolism were perturbed in atdfb-3 etiolated seedlings. The activity of enzymes involved in N reduction and assimilation was altered in atdfb-3. Taken together, these results indicate that AtDFB is required for seed reserves, hypocotyl elongation and N metabolism in darkness, providing novel insights into potential associations of folate metabolism with seed reserve accumulation, N metabolism and hypocotyl development in Arabidopsis. PMID:25000295

  1. Comprehensive Metabolomic, Lipidomic and Microscopic Profiling of Yarrowia lipolytica during Lipid Accumulation Identifies Targets for Increased Lipogenesis

    PubMed Central

    Pomraning, Kyle R.; Wei, Siwei; Karagiosis, Sue A.; Kim, Young-Mo; Dohnalkova, Alice C.; Arey, Bruce W.; Bredeweg, Erin L.; Orr, Galya; Metz, Thomas O.; Baker, Scott E.

    2015-01-01

    Yarrowia lipolytica is an oleaginous ascomycete yeast that accumulates large amounts of lipids and has potential as a biofuel producing organism. Despite a growing scientific literature focused on lipid production by Y. lipolytica, there remain significant knowledge gaps regarding the key biological processes involved. We applied a combination of metabolomic and lipidomic profiling approaches as well as microscopic techniques to identify and characterize the key pathways involved in de novo lipid accumulation from glucose in batch cultured, wild-type Y. lipolytica. We found that lipids accumulated rapidly and peaked at 48 hours during the five day experiment, concurrent with a shift in amino acid metabolism. We also report that exhaustion of extracellular sugars coincided with thickening of the cell wall, suggesting that genes involved in cell wall biogenesis may be a useful target for improving the efficiency of lipid producing yeast strains. PMID:25905710

  2. Comprehensive metabolomic, lipidomic and microscopic profiling of Yarrowia lipolytica during lipid accumulation identifies targets for increased lipogenesis

    SciTech Connect

    Pomraning, Kyle R.; Wei, Siwei; Karagiosis, Sue A.; Kim, Young-Mo; Dohnalkova, Alice; Arey, Bruce W.; Bredeweg, Erin L.; Orr, Galya; Metz, Thomas O.; Baker, Scott E.

    2015-04-23

    Yarrowia lipolytica is an oleaginous ascomycete yeast that accumulates large amounts of lipids and has potential as a biofuel producing organism. Despite a growing scientific literature focused on lipid production by Y. lipolytica, there remain significant knowledge gaps regarding the key biological processes involved. We applied a combination of metabolomic and lipidomic profiling approaches as well as microscopic techniques to identify and characterize the key pathways involved in de novo lipid accumulation from glucose in batch cultured, wild-type Y. lipolytica. We found that lipids accumulated rapidly and peaked at 48 hours during the five day experiment, concurrent with a shift in amino acid metabolism. We also report that Y. lipolytica secretes disaccharides early in batch culture and reabsorbs them when extracellular glucose is depleted. Exhaustion of extracellular sugars coincided with thickening of the cell wall, suggesting that genes involved in cell wall biogenesis may be a useful target for improving the efficiency of lipid producing yeast strains.

  3. Inhibitory effects of hydroxylated cinnamoyl esters on lipid absorption and accumulation.

    PubMed

    Imai, Masahiko; Kumaoka, Takaya; Hosaka, Makiko; Sato, Yui; Li, Chuan; Sudoh, Masashi; Tamada, Yoshiko; Yokoe, Hiromasa; Saito, Setsu; Tsubuki, Masayoshi; Takahashi, Noriko

    2015-07-01

    Obesity is a risk factor associated with several lifestyle-related diseases, for example, diabetes, high blood pressure, hyperlipidemia and cancer. Caffeic acid 2-phenylethyl ester (CAPE, 1), a naturally-occurring compound found in various plants and propolis, which exhibits anti-inflammatory, immunomodulatory and cytotoxic activities and inhibits 3T3-L1 differentiation to adipocytes. As part of our efforts to moderate lifestyle-related diseases, we synthesized analogs of 1 and studied their effects on pancreatic lipase activities, lipid absorption, and 3T3-L1 differentiation. We found that catechols 1-4 show inhibitory activities against pancreatic lipase in a dose-dependent manner in vitro. Compounds 1-3 proved to be more potent inhibitors of pancreatic lipase than 5, 6, 8, and 9, which have one hydroxyl group, respectively. Compound 7 has three aromatic hydroxyl groups and restrains greater lipase inhibitory activity than the other compounds. In addition, 7 and 3 significantly suppress a rise in blood triglyceride (TG) levels in mice given corn oil orally. Furthermore, 2 and 3 are more potent at preventing 3T3-L1 differentiation (lipid accumulation) than 1, while 7 is more potent than 3, 8, and 9 in these assays. Compounds 2, 3, and 7 inhibit lipid absorption and accumulation, with new compound 7 being the most potent. These results indicate that 7 may have potential benefits as a health agent with anti-obesity properties. PMID:25910587

  4. Open Field Study of Some Zea mays Hybrids, Lipid Compounds and Fumonisins Accumulation

    PubMed Central

    Giorni, Paola; Dall’Asta, Chiara; Reverberi, Massimo; Scala, Valeria; Ludovici, Matteo; Cirlini, Martina; Galaverna, Gianni; Fanelli, Corrado; Battilani, Paola

    2015-01-01

    Lipid molecules are increasingly recognized as signals exchanged by organisms interacting in pathogenic and/or symbiotic ways. Some classes of lipids actively determine the fate of the interactions. Host cuticle/cell wall/membrane components such as sphingolipids and oxylipins may contribute to determining the fate of host–pathogen interactions. In the present field study, we considered the relationship between specific sphingolipids and oxylipins of different hybrids of Zea mays and fumonisin by F. verticillioides, sampling ears at different growth stages from early dough to fully ripe. The amount of total and free fumonisin differed significantly between hybrids and increased significantly with maize ripening. Oxylipins and phytoceramides changed significantly within the hybrids and decreased with kernel maturation, starting from physiological maturity. Although the correlation between fumonisin accumulation and plant lipid profile is certain, the data collected so far cannot define a cause-effect relationship but open up new perspectives. Therefore, the question—“Does fumonisin alter plant lipidome or does plant lipidome modulate fumonisin accumulation?”—is still open. PMID:26378580

  5. Cell surface heparan sulfate proteoglycans contribute to intracellular lipid accumulation in adipocytes

    PubMed Central

    Wilsie, Larissa C; Chanchani, Shree; Navaratna, Deepti; Orlando, Robert A

    2005-01-01

    Background Transport of fatty acids within the cytosol of adipocytes and their subsequent assimilation into lipid droplets has been thoroughly investigated; however, the mechanism by which fatty acids are transported across the plasma membrane from the extracellular environment remains unclear. Since triacylglycerol-rich lipoproteins represent an abundant source of fatty acids for adipocyte utilization, we have investigated the expression levels of cell surface lipoprotein receptors and their functional contributions toward intracellular lipid accumulation; these include very low density lipoprotein receptor (VLDL-R), low density lipoprotein receptor-related protein (LRP), and heparan sulfate proteoglycans (HSPG). Results We found that expression of these three lipoprotein receptors increased 5-fold, 2-fold, and 2.5-fold, respectively, during adipocyte differentiation. The major proteoglycans expressed by mature adipocytes are of high molecular weight (>500 kD) and contain both heparan and chondroitin sulfate moieties. Using ligand binding antagonists, we observed that HSPG, rather than VLDL-R or LRP, play a primary role in the uptake of DiI-lableled apoE-VLDL by mature adipocytes. In addition, inhibitors of HSPG maturation resulted in a significant reduction (>85%) in intracellular lipid accumulation. Conclusions These results suggest that cell surface HSPG is required for fatty acid transport across the plasma membrane of adipocytes. PMID:15636641

  6. Open Field Study of Some Zea mays Hybrids, Lipid Compounds and Fumonisins Accumulation.

    PubMed

    Giorni, Paola; Dall'Asta, Chiara; Reverberi, Massimo; Scala, Valeria; Ludovici, Matteo; Cirlini, Martina; Galaverna, Gianni; Fanelli, Corrado; Battilani, Paola

    2015-09-01

    Lipid molecules are increasingly recognized as signals exchanged by organisms interacting in pathogenic and/or symbiotic ways. Some classes of lipids actively determine the fate of the interactions. Host cuticle/cell wall/membrane components such as sphingolipids and oxylipins may contribute to determining the fate of host-pathogen interactions. In the present field study, we considered the relationship between specific sphingolipids and oxylipins of different hybrids of Zea mays and fumonisin by F. verticillioides, sampling ears at different growth stages from early dough to fully ripe. The amount of total and free fumonisin differed significantly between hybrids and increased significantly with maize ripening. Oxylipins and phytoceramides changed significantly within the hybrids and decreased with kernel maturation, starting from physiological maturity. Although the correlation between fumonisin accumulation and plant lipid profile is certain, the data collected so far cannot define a cause-effect relationship but open up new perspectives. Therefore, the question-"Does fumonisin alter plant lipidome or does plant lipidome modulate fumonisin accumulation?"-is still open. PMID:26378580

  7. Defect of zinc transporter ZRT1 ameliorates cadmium induced lipid accumulation in Saccharomyces cerevisiae.

    PubMed

    Rajakumar, Selvaraj; Ravi, Chidambaram; Nachiappan, Vasanthi

    2016-04-01

    Cadmium (Cd) is a non-essential divalent heavy metal that enters the cells by utilizing the transport pathways of the essential metals, like zinc (Zn), in Saccharomyces cerevisiae. This work focuses on Cd accumulation and its impact on deletion of Zn transporters Zrt1p and Zrt2p and lipid homeostasis. Cd exposure reduces the Zn levels in the mutant strains, and the effect was higher in zrt2Δ cells. Upon Cd exposure, the wild-type and zrt2Δ cells follow a similar pattern, but an opposite pattern was observed in zrt1Δ cells. The Cd influx and ROS levels were high in both wild-type cells and zrt2Δ cells but significantly reduced in zrt1Δ cells. Cd exposure led to accumulation of triacylglycerol and lipid droplets in wild-type cells and zrt2Δ cells but these levels were decreased in zrt1Δ cells. Hence, these studies suggest that the zrt1Δ cells provide resistance towards Cd and aid in the maintenance of lipid homeostasis in yeast cells. PMID:26999708

  8. Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum

    PubMed Central

    2012-01-01

    Background Phaeodactylum tricornutum is a unicellular diatom in the class Bacillariophyceae. The full genome has been sequenced (<30 Mb), and approximately 20 to 30% triacylglyceride (TAG) accumulation on a dry cell basis has been reported under different growth conditions. To elucidate P. tricornutum gene expression profiles during nutrient-deprivation and lipid-accumulation, cell cultures were grown with a nitrate to phosphate ratio of 20:1 (N:P) and whole-genome transcripts were monitored over time via RNA-sequence determination. Results The specific Nile Red (NR) fluorescence (NR fluorescence per cell) increased over time; however, the increase in NR fluorescence was initiated before external nitrate was completely exhausted. Exogenous phosphate was depleted before nitrate, and these results indicated that the depletion of exogenous phosphate might be an early trigger for lipid accumulation that is magnified upon nitrate depletion. As expected, many of the genes associated with nitrate and phosphate utilization were up-expressed. The diatom-specific cyclins cyc7 and cyc10 were down-expressed during the nutrient-deplete state, and cyclin B1 was up-expressed during lipid-accumulation after growth cessation. While many of the genes associated with the C3 pathway for photosynthetic carbon reduction were not significantly altered, genes involved in a putative C4 pathway for photosynthetic carbon assimilation were up-expressed as the cells depleted nitrate, phosphate, and exogenous dissolved inorganic carbon (DIC) levels. P. tricornutum has multiple, putative carbonic anhydrases, but only two were significantly up-expressed (2-fold and 4-fold) at the last time point when exogenous DIC levels had increased after the cessation of growth. Alternative pathways that could utilize HCO3- were also suggested by the gene expression profiles (e.g., putative propionyl-CoA and methylmalonyl-CoA decarboxylases). Conclusions The results indicate that P. tricornutum continued

  9. Synchronized growth and neutral lipid accumulation in Chlorella sorokiniana FC6 IITG under continuous mode of operation.

    PubMed

    Kumar, Vikram; Muthuraj, Muthusivaramapandian; Palabhanvi, Basavaraj; Das, Debasish

    2016-01-01

    Synchronized growth and neutral lipid accumulation with high lipid productivity under mixotrophic growth of the strain Chlorella sorokiniana FC6 IITG was achieved via manipulation of substrates feeding mode and supplementation of lipid elicitors in the growth medium. Screening and optimization of lipid elicitors resulted in lipid productivity of 110.59mgL(-1)day(-1) under the combined effect of lipid inducers sodium acetate and sodium chloride. Fed-batch cultivation of the strain in bioreactor with intermittent feeding of limiting nutrients and lipid inducer resulted in maximum biomass and lipid productivity of 2.08 and 0.97gL(-1)day(-1) respectively. Further, continuous production of biomass with concomitant lipid accumulation was demonstrated via continuous feeding of BG11 media supplemented with lipid inducers sodium acetate and sodium chloride. The improved biomass and lipid productivity in chemostat was found to be 2.81 and 1.27gL(-1)day(-1) respectively operated at a dilution rate of 0.54day(-1). PMID:26575619

  10. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    SciTech Connect

    Song, Jun; Ren, Pingping; Zhang, Lin; Wang, Xing Li; Chen, Li; Shen, Ying H.

    2010-02-26

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4) which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.

  11. Akt2 is required for hepatic lipid accumulation in models of insulin resistance

    PubMed Central

    Leavens, Karla F.; Easton, Rachael M.; Shulman, Gerald I.; Previs, Stephen F.; Birnbaum, Morris J.

    2009-01-01

    Summary Insulin drives the global anabolic response to nutrient ingestion, regulating both carbohydrate and lipid metabolism. Previous studies have demonstrated that Akt2/protein kinase B is critical to insulin’s control of glucose metabolism, but its role in lipid metabolism has remained controversial. Here we show that Akt2 is required for hepatic lipid accumulation in obese, insulin-resistant states induced by either leptin-deficiency or high fat diet feeding. Lepob/ob mice lacking hepatic Akt2 failed to amass triglycerides in their livers, associated with and most likely due to a decrease in lipogenic gene expression and de novo lipogenesis. However, Akt2 is also required for steatotic pathways unrelated to fatty acid synthesis, as mice fed high fat diet had reduced liver triglycerides in the absence of hepatic Akt2 but did not exhibit changes in lipogenesis. These data demonstrate that Akt2 is a requisite component of the insulin-dependent regulation of lipid metabolism during insulin resistance. PMID:19883618

  12. Identification of oleaginous yeast strains able to accumulate high intracellular lipids when cultivated in alkaline pretreated corn stover

    PubMed Central

    Sitepu, Irnayuli R.; Jin, Mingjie; Fernandez, J. Enrique; da Costa Sousa, Leonardo; Balan, Venkatesh; Boundy-Mills, Kyria L.

    2015-01-01

    Microbial oil is a potential alternative to food/plant-derived biodiesel fuel. Our previous screening studies identified a wide range of oleaginous yeast species, using a defined laboratory medium known to stimulate lipid accumulation. In this study, the ability of these yeasts to grow and accumulate lipids was further investigated in synthetic hydrolysate (SynH) and authentic ammonia fiber expansion (AFEX™)-pretreated corn stover hydrolysate (ACSH). Most yeast strains tested were able to accumulate lipids in SynH, but only a few were able to grow and accumulate lipids in ACSH medium. Cryptococcus humicola UCDFST 10-1004 was able to accumulate as high as 15.5 g/L lipids, out of a total of 36 g/L cellular biomass when grown in ACSH, with a cellular lipid content of 40% of cell dry weight. This lipid production is among the highest reported values for oleaginous yeasts grown in authentic hydrolysate. Pre-culturing in SynH media with xylose as sole carbon source enabled yeasts to assimilate both glucose and xylose more efficiently in the subsequent hydrolysate medium. This study demonstrates that ACSH is a suitable medium for certain oleaginous yeasts to convert lignocellullosic sugars to triacylglycerols for production of biodiesel and other valuable oleochemicals. PMID:25052467

  13. Disruption of the human CGI-58 homologue in Arabidopsis results in lipid droplet accumulation in the cytosol of plant cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CGI-58 has been identified as the causative gene in the human neutral lipid storage disease called Chanarin-Dorfman Syndrome. This disorder results in accumulation of intracellular lipid droplets in non-adipose tissues. Here we show that disruption of the homologous CGI-58 gene in Arabidopsis thal...

  14. Effects of accumulation of lipid droplets on load transfer between and within adipocytes.

    PubMed

    Ben-Or Frank, Mor; Shoham, Naama; Benayahu, Dafna; Gefen, Amit

    2015-01-01

    Adipogenesis, a process of cell proliferation followed by the accumulation of lipid droplets (LDs), is accompanied by morphological changes in adipocytes, leading to a gradual rise in the structural stiffness of these cells. The increase in cellular structural stiffness can potentially influence the localized deformations of adjacent adipocytes in weight-bearing fat tissues, which, based on previous work, may accelerate intracytoplasmatic lipid production to form even larger and more tightly packed intracellular LDs. This process is based on mechanotransduction phenomena which are hypothesized (again, following empirical studies), to play a critical role in "en mass" adipocyte hypertrophy, and hence are important to characterize through computational modeling. Accordingly, we examined here how maturing adipocytes may affect localized loads acting on adjacent immature cells, using a set of finite element models of adipocytes embedded in an extracellular matrix. The peak strain energy density at the plasma membrane (PM) of the adipocytes, when constructs were externally loaded, was found to depend on the levels of lipid accumulation in the neighboring cells if the external compressive and shear deformations were large enough ([Formula: see text] and [Formula: see text], respectively). The mechanosignaling transduces through the PM and could therefore affect intracellular pathways to produce more lipid contents. Our results support the theory of deformation-induced differentiation in adipocytes. The findings are thus relevant in the context of a sedentary lifestyle, in which sustained deformations of weight-bearing adipose tissues may activate a positive feedback loop that promotes the "en mass" differentiation of cells, which subsequently increases the total mass of living fat tissues. PMID:24706071

  15. Expression of Mouse MGAT in Arabidopsis Results in Increased Lipid Accumulation in Seeds

    PubMed Central

    El Tahchy, Anna; Petrie, James R.; Shrestha, Pushkar; Vanhercke, Thomas; Singh, Surinder P.

    2015-01-01

    Worldwide demand for vegetable oil is projected to double within the next 30 years due to increasing food, fuel, and industrial requirements. There is therefore great interest in metabolic engineering strategies that boost oil accumulation in plant tissues, however, efforts to date have only achieved levels of storage lipid accumulation in plant tissues far below the benchmark to meet demand. Monoacylglycerol acyltransferase (MGAT) is predominantly associated with lipid absorption and resynthesis in the animal intestine where it catalyzes monoacylglycerol (MAG) to form diacylglycerol (DAG), and then triacylglycerol (TAG). In contrast plant lipid biosynthesis routes do not include MGAT. Rather, DAG and TAG are either synthesized from glycerol-3-phosphate by a series of three subsequent acylation reactions, or originated from phospholipids via an acyl editing pathway. Mouse MGATs 1 and 2 have been shown to increase oil content transiently in Nicotiana benthamiana leaf tissue by 2.6 fold. Here we explore the feasibility of this approach to increase TAG in Arabidopsis thaliana seed. The stable MGAT2 expression resulted in a significant increase in seed oil content by 1.32 fold. We also report evidence of the MGAT2 activity based on in vitro assays. Up to 3.9 fold increase of radiolabeled DAG were produced in seed lysate which suggest that the transgenic MGAT activity can result in DAG re-synthesis by salvaging the MAG product of lipid breakdown. The expression of MGAT2 therefore creates an independent and complementary TAG biosynthesis route to the endogenous Kennedy pathway and other glycerolipid synthesis routes. PMID:26834753

  16. Inactivation of Plin4 downregulates Plin5 and reduces cardiac lipid accumulation in mice.

    PubMed

    Chen, Weiqin; Chang, Benny; Wu, Xinyu; Li, Lan; Sleeman, Mark; Chan, Lawrence

    2013-04-01

    Plin4 is a lipid droplet protein (LDP) found predominantly in white adipose tissue (WAT). The Plin4 gene is immediately downstream of the Plin5 gene; the two genes exhibit distinct though overlapping tissue expression patterns. Plin4 is absent in brown adipose tissue (BAT) and liver and expressed at low levels in heart and skeletal muscle, whereas Plin5 is highly expressed in these oxidative tissues but at a low level in WAT. The physiological role of Plin4 remains unclear. We have generated Plin4(-/-) mice by gene targeting. Loss of Plin4 has no effect on body weight or composition or on adipose mass or development. However, the triacylglycerol (TAG) content in heart, but not other oxidative tissues such as BAT, soleus muscle, and liver, is markedly reduced in Plin4(-/-) mice. The heart of Plin4(-/-) mice displays reduced Plin5 mRNA and protein levels (by ~38 and 87%, respectively, vs. wild-type) but unchanged mRNA levels of other perilipin family genes (Plin2 and Plin3) or genes involved in glucose and lipid metabolism. Despite reduced cardiac TAG level, both young and aged Plin4(-/-) mice maintain normal heart function as wild-type mice, as measured by echocardiography. Interestingly, Plin4 deficiency prevents the lipid accumulation in the heart that normally occurs after a prolonged (48-h) fast. It also protects the heart from cardiac steatosis induced by high-fat diet or when Plin4(-/-) mice are bred into Lep(-/-) obese background. In conclusion, inactivation of Plin4 downregulates Plin5 and reduces cardiac lipid accumulation in mice. PMID:23423172

  17. Chronic Alcohol Ingestion in Rats Alters Lung Metabolism, Promotes Lipid Accumulation, and Impairs Alveolar Macrophage Functions

    PubMed Central

    Romero, Freddy; Shah, Dilip; Duong, Michelle; Stafstrom, William; Hoek, Jan B.; Kallen, Caleb B.; Lang, Charles H.

    2014-01-01

    Chronic alcoholism impairs pulmonary immune homeostasis and predisposes to inflammatory lung diseases, including infectious pneumonia and acute respiratory distress syndrome. Although alcoholism has been shown to alter hepatic metabolism, leading to lipid accumulation, hepatitis, and, eventually, cirrhosis, the effects of alcohol on pulmonary metabolism remain largely unknown. Because both the lung and the liver actively engage in lipid synthesis, we hypothesized that chronic alcoholism would impair pulmonary metabolic homeostasis in ways similar to its effects in the liver. We reasoned that perturbations in lipid metabolism might contribute to the impaired pulmonary immunity observed in people who chronically consume alcohol. We studied the metabolic consequences of chronic alcohol consumption in rat lungs in vivo and in alveolar epithelial type II cells and alveolar macrophages (AMs) in vitro. We found that chronic alcohol ingestion significantly alters lung metabolic homeostasis, inhibiting AMP-activated protein kinase, increasing lipid synthesis, and suppressing the expression of genes essential to metabolizing fatty acids (FAs). Furthermore, we show that these metabolic alterations promoted a lung phenotype that is reminiscent of alcoholic fatty liver and is characterized by marked accumulation of triglycerides and free FAs within distal airspaces, AMs, and, to a lesser extent, alveolar epithelial type II cells. We provide evidence that the metabolic alterations in alcohol-exposed rats are mechanistically linked to immune impairments in the alcoholic lung: the elevations in FAs alter AM phenotypes and suppress both phagocytic functions and agonist-induced inflammatory responses. In summary, our work demonstrates that chronic alcohol ingestion impairs lung metabolic homeostasis and promotes pulmonary immune dysfunction. These findings suggest that therapies aimed at reversing alcohol-related metabolic alterations might be effective for preventing and

  18. Cholecalciferol inhibits lipid accumulation by regulating early adipogenesis in cultured adipocytes and zebrafish.

    PubMed

    Kim, Joo Hyoun; Kang, Smee; Jung, Yu Na; Choi, Hyeon-Son

    2016-01-15

    Cholecalciferol (CCF) is a common dietary supplement as a precursor of active vitamin D. In the present study, the effect of CCF on lipid accumulation was investigated in adipocyte cells and zebrafish models. CCF effectively inhibited lipid accumulation in both experimental models; this effect was attributed to the CCF-mediated regulation of early adipogenic factors. CCF down-regulated the expressions of CCAAT-enhancer-binding protein-β (C/EBPβ), C/EBPδ, Krueppel-like factor (KLF) 4, and KLF5, while KLF2, a negative adipogenic regulator, was increased by CCF treatment. CCF inhibited cell cycle progression of adipocytes through down-regulation of cyclin A and cyclinD; p-Rb was suppressed by CCF, but p27 was up-regulated with CCF treatment. This CCF-mediated inhibition of cell cycle progression is highly correlated to the inhibitions of extracellular signal-regulated kinase (ERK), serine threonine-specific kinase (AKT), and mammalian target of rapamycin (mTOR). Furthermore, CCF-induced inactivation of acetyl-CoA carboxylase (ACC), a fatty acid synthetic enzyme, with the activation of AMP-activated protein kinase α (AMPKα) was also observed. Consistent with the observations in adipocytes, CCF effectively inhibited lipid accumulation with the down-regulation of adipogenic factors in zebrafish. The present study indicates that CCF showed anti-adipogenic effect in adipocytes and zebrafish, and its inhibitory effect was involved in the regulation of early adipogenic events including cell cycle arrest and activation of AMPKα signaling. PMID:26703207

  19. Transcriptome profiling identifies p53 as a key player during calreticulin deficiency: Implications in lipid accumulation

    PubMed Central

    Vig, Saurabh; Talwar, Puneet; Kaur, Kirandeep; Srivastava, Rohit; Srivastava, Arvind K; Datta, Malabika

    2015-01-01

    Calreticulin (CRT) is an endoplasmic reticulum (ER) resident calcium binding protein that is involved in several cellular activities. Transcriptome analyses in CRT knockdown HepG2 cells revealed 253 altered unique genes and subsequent in silico protein-protein interaction network and MCODE clustering identified 34 significant clusters, of which p53 occupied the central hub node in the highest node-rich cluster. Toward validation, we show that CRT knockdown leads to inhibition of p53 protein levels. Both, CRT and p53 siRNA promote hepatic lipid accumulation and this was accompanied by elevated SREBP-1c and FAS levels. p53 was identified to bind at −219 bp on the SREBP-1c promoter and in the presence of CRT siRNA, there was decreased occupancy of p53 on this binding element. This was associated with increased SREBP-1c promoter activity and both, mutation in this binding site or p53 over-expression antagonised the effects of CRT knockdown. We, therefore, identify a negatively regulating p53 binding site on the SREBP-1c promoter that is critical during hepatic lipid accumulation. These results were validated in mouse primary hepatocytes and toward a physiological relevance, we report that while the levels of CRT and p53 are reduced in the fatty livers of diabetic db/db mice, SREBP-1c levels are significantly elevated. Our results suggest that decreased CRT levels might be involved in the development of a fatty liver by preventing p53 occupancy on the SREBP-1c promoter and thereby facilitating SREBP-1c up-regulation and consequently, lipid accumulation. PMID:25946468

  20. Effects of puerarin on lipid accumulation and metabolism in high-fat diet-fed mice.

    PubMed

    Zheng, Guodong; Lin, Lezhen; Zhong, Shusheng; Zhang, Qingfeng; Li, Dongming

    2015-01-01

    In order to investigate the mechanisms by which puerarin from kudzu root extract regulates lipid metabolism, fifty mice were randomly assigned to five groups: normal diet, high-fat diet (HFD), and HFD containing 0.2%, 0.4% or 0.8% puerarin for 12 weeks. Body weight, intraperitioneal adipose tissue (IPAT) weight, serum biochemical parameters, and hepatic and feces lipids were measured. Activity and mRNA and protein expressions of hepatic lipid metabolism-related enzymes were analyzed. Compared with HFD, 0.4% and 0.8% puerarin significantly decreased body and IPAT weight. There was a significant decrease in the serum and hepatic concentrations of total cholesterol, triglycerides and leptin in mice fed the 0.4% and 0.8% puerarin diets compared with HFD. Fatty acid synthase activity was suppressed in mice fed the 0.4% and 0.8% puerarin diets, while the activities of AMP-activated protein kinase (AMPK), carnitine acyltransferase (CAT) and hormone-sensitive lipase (HSL) were increased. mRNA expression of peroxisome proliferator-activated receptor γ 2 (PPARγ 2) was down-regulated in liver of mice fed the 0.8% diet compared with HFD, while mRNA expression of CAT and HSL was considerably up-regulated by 0.4% and 0.8% puerarin diets. The protein expression of PPARγ2 in liver was decreased and those of p-AMPK, HSL and p-HSL were increased in mice fed 0.4% and 0.8% puerarin diets. These results suggest that > 0.4% puerarin influenced the activity, mRNA and protein levels of hepatic lipid metabolism-related enzymes, decreasing serum and liver lipids, body weight gain and fat accumulation. Puerarin might be beneficial to prevent lifestyle-related diseases. PMID:25822741

  1. A short bout of HFD promotes long-lasting hepatic lipid accumulation

    PubMed Central

    Chiazza, Fausto; Challa, Tenagne D; Lucchini, Fabrizio C; Konrad, Daniel; Wueest, Stephan

    2016-01-01

    abstract A short bout of high fat diet (HFD) impairs glucose tolerance and induces hepatic steatosis in mice. Here, we aimed to elaborate on long-lasting effects of short-term high fat feeding. As expected, one week of HFD significantly impaired glucose tolerance. Intriguingly, recovery feeding with a standard rodent diet for 8 weeks did not fully normalize glucose tolerance. In addition, mice exposed to a short bout of HFD revealed significantly increased liver fat accumulation paralleled by elevated portal free fatty acid levels after 8 weeks of recovery feeding compared to exclusively chow-fed littermates. In conclusion, a short bout of HFD has long-lasting effects on hepatic lipid accumulation and glucose tolerance. PMID:27144100

  2. Adipose differentiation-related protein is not involved in hypoxia inducible factor-1-induced lipid accumulation under hypoxia

    PubMed Central

    SHEN, GUOMIN; NING, NING; ZHAO, XINGSHENG; LIU, XI; WANG, GUANGYU; WANG, TIANZHEN; ZHAO, RAN; YANG, CHAO; WANG, DONGMEI; GONG, PINGYUAN; SHEN, YAN; SUN, YONGJIAN; ZHAO, XIAO; JIN, YINJI; YANG, WEIWEI; HE, YAN; ZHANG, LEI; JIN, XIAOMING; LI, XIAOBO

    2015-01-01

    Increasing evidence has showed that hypoxia inducible factor-1 (HIF1) has an important role in hypoxia-induced lipid accumulation, a common feature of solid tumors; however, its role remains to be fully elucidated. Adipose differentiation-related protein (ADRP), a structural protein of lipid droplets, is found to be upregulated under hypoxic conditions. In the present study, an MCF7 breast cancer cell line was used to study the role of ADRP in hypoxia-induced lipid accumulation. It was demonstrated that hypoxia induced the gene expression of ADRP in a HIF1-dependent manner. Increases in the mRNA and protein levels of ADRP was accompanied by increased HIF1A activity. In addition, a significant decrease in the mRNA and protein levels of ADRP were detected in presence of siRNA targeting HIF1A. Using a dual-luciferase reporting experiment and chromatin immunoprecipitation assay, the present study demonstrated that ADRP is a direct target gene of HIF1, and identified a functional hypoxia response element localized 33 bp upstream of the transcriptional start site of the ADRP gene. Furthermore, the present study demonstrated the role of ADRP in low density liporotein (LDL) and very-LDL uptake-induced lipid accumulation under hypoxia. The knockdown of ADRP did not reduce HIF1-induced lipid accumulation under hypoxia. Together, these results showed that ADRP may be not involved in HIF1-induced lipid accumulation. PMID:26498183

  3. Light attenuates lipid accumulation while enhancing cell proliferation and starch synthesis in the glucose-fed oleaginous microalga Chlorella zofingiensis

    PubMed Central

    Chen, Tianpeng; Liu, Jin; Guo, Bingbing; Ma, Xiaonian; Sun, Peipei; Liu, Bin; Chen, Feng

    2015-01-01

    The objective of this study was to investigate the effect of light on lipid and starch accumulation in the oleaginous green algae Chlorella zofingiensis supplemented with glucose. C. zofingiensis, when fed with 30 g/L glucose, synthesized lipids up to 0.531 g/g dry weight; while in the presence of light, the lipid content dropped down to 0.352 g/g dry weight. Lipid yield on glucose was 0.184 g/g glucose, 14% higher than that cultured with light. The light-mediated lipid reduction was accompanied by the down-regulation of fatty acid biosynthetic genes at the transcriptional level. Furthermore, light promoted cell proliferation, starch accumulation, and the starch yield based on glucose. Taken together, light may attenuate lipid accumulation, possibly through the inhibition of lipid biosynthetic pathway, leading to more carbon flux from glucose to starch. This study reveals the dual effects of light on the sugar-fed C. zofingiensis and provides valuable insights into the possible optimization of algal biomass and lipid production by manipulation of culture conditions. PMID:26442783

  4. Enhanced lipid accumulation and biodiesel production by oleaginous Chlorella protothecoides under a structured heterotrophic-iron (II) induction strategy.

    PubMed

    Li, Yuqin; Mu, Jinxiu; Chen, Di; Xu, Hua; Han, Fangxin

    2015-05-01

    A structured heterotrophic-iron (II) induction (HII) strategy was proposed to enhance lipid accumulation in oleaginous Chlorella protothecoides. C. protothecoides subjected to heterotrophic-iron (II) induction achieved a favorable lipid accumulation up to 62 % and a maximum lipid productivity of 820.17 mg/day, representing 2.78-fold and 3.64-fold increase respectively over heterotrophic cultivation alone. HII-induced cells produced significantly elevated levels of 16:0, 18:1(Δ9), and 18:2(Δ9,12) fatty acids (over 90 %). The lipid contents and plant lipid-like fatty acid compositions exhibit the potential of HII-induced C. protothecoides as biodiesel feedstock. Furthermore, 31 altered proteins in HII-induced algal cells were successfully identified. These differentially expressed proteins were assigned into nine molecular function categories, including carbohydrate metabolism, lipid biosynthesis, Calvin cycle, cellular respiration, photosynthesis, energy and transport, protein biosynthesis, regulate and defense, and unclassified. Analysis using the Kyoto encyclopedia of genes and genomes and gene ontology annotation showed that malic enzyme, acyltransferase, and ACP were key metabolic checkpoints found to modulate lipid accumulation in C. protothecoides. The results provided possible applications of HII cultivation strategy in other microalgal species and new possibilities in developing genetic and metabolic engineering microalgae for desirable lipid productivity. PMID:25724298

  5. Nanoparticle-mediated intracellular lipid accumulation during C2C12 cell differentiation

    SciTech Connect

    Tsukahara, Tamotsu; Haniu, Hisao

    2011-03-25

    Research highlights: {yields} HTT2800 has a significant effect on intracellular lipid accumulation. {yields} HTT2800 reduced muscle-specific genes and led to the emergence of adipocyte-related genes. {yields} HT2800 converts the differentiation pathway of C2C12 myoblasts to that of adipoblast-like cells. -- Abstract: In this report, we sought to elucidate whether multiwall carbon nanotubes are involved in the modulation of the proliferation and differentiation of the skeletal muscle cell line C2C12. Skeletal muscle is a major mass peripheral tissue that accounts for 40% of total body weight and 50% of energy consumption. We focused on the differentiation pathway of myoblasts after exposure to a vapor-grown carbon fiber, HTT2800, which is one of the most highly purified carbon nanotubes. This treatment leads in parallel to the expression of a typical adipose differentiation program. We found that HTT2800 stimulated intracellular lipid accumulation in C2C12 cells. We have also shown by quantified PCR analysis that the expression of adipose-related genes was markedly upregulated during HTT2800 exposure. Taken together, these results suggest that HTT2800 specifically converts the differentiation pathway of C2C12 myoblasts to that of adipoblast-like cells.

  6. Functional UQCRC1 polymorphisms affect promoter activity and body lipid accumulation.

    PubMed

    Kunej, Tanja; Wang, Zeping; Michal, Jennifer J; Daniels, Tyler F; Magnuson, Nancy S; Jiang, Zhihua

    2007-12-01

    Obesity and type 2 diabetes constitute leading public health problems worldwide. Studies have shown that insulin resistance affiliated with these conditions is associated with skeletal muscle lipid accumulation, while the latter is associated with mitochondrial dysfunctions. However, the initiation and regulation of mitochondrial biogenesis rely heavily on approximately 1000 nuclear-encoded mitochondrial regulatory proteins. In this study, we targeted the ubiquinol-cytochrome c reductase core protein I gene, a nuclear-encoded component of mitochondrial complex III, for its association with subcutaneous fat depth (SFD) and skeletal muscle lipid accumulation (SMLA) using cattle as a model. Four promoter polymorphisms were identified and genotyped on approximately 250 Wagyu x Limousin F2 progeny. Statistical analysis revealed that two completely linked polymorphic sites, g.13487C>T and g.13709G>C (r2 = 1), were significantly associated with both SFD (p < 0.01) and SMLA (p < 0.0001). The difference between TTCC and CCGG haplotypes was 0.178 cm for SFD and 0.624 scores for SMLA. Interestingly, the former haplotype produced higher promoter activities than the latter by 43% to 49% in three cell lines (p < 0.05). In addition to Rett syndrome and breast/ovarian cancer observed in other studies, we report evidence for the first time, to our knowledge, that overexpression of ubiquinol-cytochrome c reductase core protein I might affect mitochondrial morphology and/or physiology and lead to development of obesity and related conditions. PMID:18198295

  7. Olive Leaf Extract from Sicilian Cultivar Reduced Lipid Accumulation by Inducing Thermogenic Pathway during Adipogenesis.

    PubMed

    Palmeri, Rosa; Monteleone, Julieta I; Spagna, Giovanni; Restuccia, Cristina; Raffaele, Marco; Vanella, Luca; Li Volti, Giovanni; Barbagallo, Ignazio

    2016-01-01

    Olive leaves contain a wide variety of phenolic compounds belonging to phenolic acids, phenolic alcohols, flavonoids, and secoiridoids, and include also many other pharmacological active compounds. They could play an important role in human diet and health because of their ability to lower blood pressure, increase coronary arteries blood flow and decrease the risk of cardiovascular diseases. The aim of this study was to investigate the effect of olive leaf extract (OLE) from Sicilian cultivar on adipogenic differentiation of human adipose derived mesenchymal stem cells and its impact on lipid metabolism. We showed that OLE treatment during adipogenic differentiation reduces inflammation, lipid accumulation and induces thermogenesis by activation of uncoupling protein uncoupling protein 1, sirtuin 1, peroxisome proliferator-activated receptor alpha, and coactivator 1 alpha. Furthermore, OLE significantly decreases the expression of molecules involved in adipogenesis and upregulates the expression of mediators involved in thermogenesis and lipid metabolism. Taken together, our results suggest that OLE may promote the brown remodeling of white adipose tissue inducing thermogenesis and improving metabolic homeostasis. PMID:27303302

  8. Exogenous rhTRX reduces lipid accumulation under LPS-induced inflammation

    PubMed Central

    Han, Gi-Yeon; Lee, Eun-Kyung; Park, Hey-won; Kim, Hyun-Jung; Kim, Chan-Wha

    2014-01-01

    Redox-regulating molecule, recombinant human thioredoxin (rhTRX) which shows anti-inflammatory, and anti-oxidative effects against lipopolysaccharide (LPS)-stimulated inflammation and regulate protein expression levels. LPS-induced reactive oxygen intermediates (ROI) and NO production were inhibited by exogenous rhTRX. We identified up/downregulated intracellular proteins under the LPS-treated condition in exogenous rhTRX-treated A375 cells compared with non-LPS-treated cells via 2-DE proteomic analysis. Also, we quantitatively measured cytokines of in vivo mouse inflammation models using cytometry bead array. Exogenous rhTRX inhibited LPS-stimulated production of ROI and NO levels. TIP47 and ATP synthase may influence the inflammation-related lipid accumulation by affecting lipid metabolism. The modulation of skin redox environments during inflammation is most likely to prevent alterations in lipid metabolism through upregulation of TIP47 and ATP synthase and downregulation of inflammatory cytokines. Our results demonstrate that exogenous rhTRX has anti-inflammatory properties and intracellular regulatory activity in vivo and in vitro. Monitoring of LPS-stimulated pro-inflammatory conditions treated with rhTRX in A375 cells could be useful for diagnosis and follow-up of inflammation reduction related with candidate proteins. These results have a therapeutic role in skin inflammation therapy. PMID:24406320

  9. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630

    PubMed Central

    Yoneda, Aki; Henson, William R.; Goldner, Nicholas K.; Park, Kun Joo; Forsberg, Kevin J.; Kim, Soo Ji; Pesesky, Mitchell W.; Foston, Marcus; Dantas, Gautam; Moon, Tae Seok

    2016-01-01

    Lignin-derived (e.g. phenolic) compounds can compromise the bioconversion of lignocellulosic biomass to fuels and chemicals due to their toxicity and recalcitrance. The lipid-accumulating bacterium Rhodococcus opacus PD630 has recently emerged as a promising microbial host for lignocellulose conversion to value-added products due to its natural ability to tolerate and utilize phenolics. To gain a better understanding of its phenolic tolerance and utilization mechanisms, we adaptively evolved R. opacus over 40 passages using phenol as its sole carbon source (up to 373% growth improvement over wild-type), and extensively characterized two strains from passages 33 and 40. The two adapted strains showed higher phenol consumption rates (∼20 mg/l/h) and ∼2-fold higher lipid production from phenol than the wild-type strain. Whole-genome sequencing and comparative transcriptomics identified highly-upregulated degradation pathways and putative transporters for phenol in both adapted strains, highlighting the important linkage between mechanisms of regulated phenol uptake, utilization, and evolved tolerance. Our study shows that the R. opacus mutants are likely to use their transporters to import phenol rather than export them, suggesting a new aromatic tolerance mechanism. The identified tolerance genes and pathways are promising candidates for future metabolic engineering in R. opacus for improved lignin conversion to lipid-based products. PMID:26837573

  10. Olive Leaf Extract from Sicilian Cultivar Reduced Lipid Accumulation by Inducing Thermogenic Pathway during Adipogenesis

    PubMed Central

    Palmeri, Rosa; Monteleone, Julieta I.; Spagna, Giovanni; Restuccia, Cristina; Raffaele, Marco; Vanella, Luca; Li Volti, Giovanni; Barbagallo, Ignazio

    2016-01-01

    Olive leaves contain a wide variety of phenolic compounds belonging to phenolic acids, phenolic alcohols, flavonoids, and secoiridoids, and include also many other pharmacological active compounds. They could play an important role in human diet and health because of their ability to lower blood pressure, increase coronary arteries blood flow and decrease the risk of cardiovascular diseases. The aim of this study was to investigate the effect of olive leaf extract (OLE) from Sicilian cultivar on adipogenic differentiation of human adipose derived mesenchymal stem cells and its impact on lipid metabolism. We showed that OLE treatment during adipogenic differentiation reduces inflammation, lipid accumulation and induces thermogenesis by activation of uncoupling protein uncoupling protein 1, sirtuin 1, peroxisome proliferator-activated receptor alpha, and coactivator 1 alpha. Furthermore, OLE significantly decreases the expression of molecules involved in adipogenesis and upregulates the expression of mediators involved in thermogenesis and lipid metabolism. Taken together, our results suggest that OLE may promote the brown remodeling of white adipose tissue inducing thermogenesis and improving metabolic homeostasis. PMID:27303302

  11. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630

    DOE PAGESBeta

    Yoneda, Aki; Henson, William R.; Goldner, Nicholas K.; Park, Kun Joo; Forsberg, Kevin J.; Kim, Soo Ji; Pesesky, Mitchell W.; Foston, Marcus; Dantas, Gautam; Moon, Tae Seok

    2016-02-02

    Lignin-derived (e.g. phenolic) compounds can compromise the bioconversion of lignocellulosic biomass to fuels and chemicals due to their toxicity and recalcitrance. The lipid-accumulating bacterium Rhodococcus opacus PD630 has recently emerged as a promising microbial host for lignocellulose conversion to value-added products due to its natural ability to tolerate and utilize phenolics. To gain a better understanding of its phenolic tolerance and utilization mechanisms, we adaptively evolved R. opacus over 40 passages using phenol as its sole carbon source (up to 373% growth improvement over wild-type), and extensively characterized two strains from passages 33 and 40. The two adapted strains showedmore » higher phenol consumption rates (~20 mg/l/h) and ~2-fold higher lipid production from phenol than the wild-type strain.Whole-genome sequencing and comparative transcriptomics identified highly-upregulated degradation pathways and putative transporters for phenol in both adapted strains, highlighting the important linkage between mechanisms of regulated phenol uptake, utilization, and evolved tolerance. Our study shows that the R. opacus mutants are likely to use their transporters to import phenol rather than export them, suggesting a new aromatic tolerance mechanism. The identified tolerance genes and pathways are promising candidates for future metabolic engineering in R. opacus for improved lignin conversion to lipid-based products.« less

  12. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630.

    PubMed

    Yoneda, Aki; Henson, William R; Goldner, Nicholas K; Park, Kun Joo; Forsberg, Kevin J; Kim, Soo Ji; Pesesky, Mitchell W; Foston, Marcus; Dantas, Gautam; Moon, Tae Seok

    2016-03-18

    Lignin-derived (e.g. phenolic) compounds can compromise the bioconversion of lignocellulosic biomass to fuels and chemicals due to their toxicity and recalcitrance. The lipid-accumulating bacterium Rhodococcus opacus PD630 has recently emerged as a promising microbial host for lignocellulose conversion to value-added products due to its natural ability to tolerate and utilize phenolics. To gain a better understanding of its phenolic tolerance and utilization mechanisms, we adaptively evolved R. opacus over 40 passages using phenol as its sole carbon source (up to 373% growth improvement over wild-type), and extensively characterized two strains from passages 33 and 40. The two adapted strains showed higher phenol consumption rates (∼20 mg/l/h) and ∼2-fold higher lipid production from phenol than the wild-type strain. Whole-genome sequencing and comparative transcriptomics identified highly-upregulated degradation pathways and putative transporters for phenol in both adapted strains, highlighting the important linkage between mechanisms of regulated phenol uptake, utilization, and evolved tolerance. Our study shows that the R. opacus mutants are likely to use their transporters to import phenol rather than export them, suggesting a new aromatic tolerance mechanism. The identified tolerance genes and pathways are promising candidates for future metabolic engineering in R. opacus for improved lignin conversion to lipid-based products. PMID:26837573

  13. Tetrandrine induces lipid accumulation through blockade of autophagy in a hepatic stellate cell line.

    PubMed

    Miyamae, Yusaku; Nishito, Yukina; Nakai, Naomi; Nagumo, Yoko; Usui, Takeo; Masuda, Seiji; Kambe, Taiho; Nagao, Masaya

    2016-08-12

    Macroautophagy, or autophagy, is a cellular response in which unnecessary cytoplasmic components, including lipids and organelles, are self-degraded. Recent studies closely related autophagy to activation of hepatic stellate cells (HSCs), a process critical in the pathogenesis of liver fibrosis. During HSC activation, cytoplasmic lipid droplets (LDs) are degraded as autophagic cargo, and then cells express fibrogenic genes. Thus, inhibition of autophagy in HSCs is a potential therapeutic approach for attenuating liver fibrosis. We found that tetrandrine, a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra, induced lipid accumulation, a phenotype associated with quiescent HSCs, through blockade of autophagy in the rat-derived HSC line HSC-T6. Tetrandrine inhibited autophagic flux without affecting lysosomal function. A phenotypic comparison using siRNA knockdown suggested that tetrandrine may target regulators, involved in fusion between autophagosomes and lysosomes (e.g., syntaxin 17). Moreover, perilipin 1, an LD-coated protein, co-localized specifically with LC3, a marker protein for autophagosomes, in tetrandrine-treated HSC-T6 cells. This suggests a potential role for perilipin 1 in autophagy-mediated LD degradation in HSCs. Our results identified tetrandrine as a potential tool for prevention and treatment of HSC activation. PMID:27270032

  14. Effect of kelp waste extracts on the growth and lipid accumulation of microalgae.

    PubMed

    Zheng, Shiyan; He, Meilin; Jiang, Jie; Zou, Shanmei; Yang, Weinan; Zhang, Yi; Deng, Jie; Wang, Changhai

    2016-02-01

    Kelp waste extracts (KWE) contained massive soluble sugars, amino acids and various mineral elements. To probe the effects of KWE on microalgal physiological and biochemical responses, the cultures were carried out under the different dilutions. The results showed that 8.0% KWE increased the biomass productivities and total lipid contents of Chlorella strains dramatically, which were 1.83-31.86 times and 20.78-25.91% higher than that of the control. Phaeodactylum tricornutum and Spirulina maxima presented a better growth performance in 1.0% and 4.0% treatment respectively, while their lipid accumulation were not enhanced. In Chlorella-Arc, Chlorella sorokiniana and P. tricornutum, the contents of saturated and monounsaturated fatty acids could be increased, and polyunsaturated fatty acids could be decreased under the conditions of high concentration of KWE (6.0-8.0%). Briefly, KWE facilitated to enhance the biomass productivity and lipid content of Chlorella strains, also improved the fatty acid compositions for biodiesel production. PMID:26638137

  15. L-Serine Deficiency Elicits Intracellular Accumulation of Cytotoxic Deoxysphingolipids and Lipid Body Formation.

    PubMed

    Esaki, Kayoko; Sayano, Tomoko; Sonoda, Chiaki; Akagi, Takumi; Suzuki, Takeshi; Ogawa, Takuya; Okamoto, Masahiro; Yoshikawa, Takeo; Hirabayashi, Yoshio; Furuya, Shigeki

    2015-06-01

    L-serine is required to synthesize membrane lipids such as phosphatidylserine and sphingolipids. Nevertheless, it remains largely unknown how a diminished capacity to synthesize L-serine affects lipid homeostasis in cells and tissues. Here, we show that deprivation of external L-serine leads to the generation of 1-deoxysphingolipids (doxSLs), including 1-deoxysphinganine, in mouse embryonic fibroblasts (KO-MEFs) lacking D-3-phosphoglycerate dehydrogenase (Phgdh), which catalyzes the first step in the de novo synthesis of L-serine. A novel mass spectrometry-based lipidomic approach demonstrated that 1-deoxydihydroceramide was the most abundant species of doxSLs accumulated in L-serine-deprived KO-MEFs. Among normal sphingolipid species in KO-MEFs, levels of sphinganine, dihydroceramide, ceramide, and hexosylceramide were significantly reduced after deprivation of external L-serine, whereas those of sphingomyelin, sphingosine, and sphingosine 1-phosphate were retained. The synthesis of doxSLs was suppressed by supplementing the culture medium with L-serine but was potentiated by increasing the ratio of L-alanine to L-serine in the medium. Unlike with L-serine, depriving cells of external L-leucine did not promote the occurrence of doxSLs. Consistent with results obtained from KO-MEFs, brain-specific deletion of Phgdh in mice also resulted in accumulation of doxSLs in the brain. Furthermore, L-serine-deprived KO-MEFs exhibited increased formation of cytosolic lipid bodies containing doxSLs and other sphingolipids. These in vitro and in vivo studies indicate that doxSLs are generated in the presence of a high ratio of L-alanine to L-serine in cells and tissues lacking Phgdh, and de novo synthesis of L-serine is necessary to maintain normal sphingolipid homeostasis when the external supply of this amino acid is limited. PMID:25903138

  16. Accumulation of novel glycolipids and ornithine lipids in Mesorhizobium loti under phosphate deprivation.

    PubMed

    Diercks, Hannah; Semeniuk, Adrian; Gisch, Nicolas; Moll, Hermann; Duda, Katarzyna A; Hölzl, Georg

    2015-02-01

    Glycolipids are found mainly in photosynthetic organisms (plants, algae, and cyanobacteria), Gram-positive bacteria, and a few other bacterial phyla. They serve as membrane lipids and play a role under phosphate deprivation as surrogates for phospholipids. Mesorhizobium loti accumulates different di- and triglycosyl diacylglycerols, synthesized by the processive glycosyltransferase Pgt-Ml, and two so far unknown glycolipids, which were identified in this study by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy as O-methyl-digalactosyl diacylglycerol (Me-DGD) and glucuronosyl diacylglycerol (GlcAD). Me-DGD is a novel glycolipid, whose synthesis depends on Pgt-Ml activity and the involvement of an unknown methyltransferase, while GlcAD is formed by a novel glycosyltransferase encoded by the open reading frame (ORF) mlr2668, using UDP-glucuronic acid as a sugar donor. Deletion mutants lacking GlcAD are not impaired in growth. Our data suggest that the different glycolipids in Mesorhizobium can mutually replace each other. This may be an adaptation mechanism to enhance the competitiveness in natural environments. A further nonphospholipid in Mesorhizobium was identified as a hydroxylated form of an ornithine lipid with the additional hydroxy group linked to the amide-bound fatty acid, introduced by the hydroxylase OlsD. The presence of this lipid has not been reported for rhizobia yet. The hydroxy group is placed on the C-2 position of the acyl chain as determined by NMR spectroscopy. Furthermore, the isolated ornithine lipids contained up to 80 to 90% d-configured ornithine, a stereoform so far undescribed in bacteria. PMID:25404698

  17. β2-Adrenergic receptor ablation modulates hepatic lipid accumulation and glucose tolerance in aging mice.

    PubMed

    Shi, Yun; Shu, Zhen-Ju; Xue, Xiaoling; Yeh, Chih-Ko; Katz, Michael S; Kamat, Amrita

    2016-06-01

    Catecholamines acting through β-adrenergic receptors (β1-, β2-, β3-AR subtypes) modulate important biological responses in various tissues. Our previous studies suggest a role for increased hepatic β-AR-mediated signaling during aging as a mediator of hepatic steatosis, liver glucose output, and insulin resistance in rodents. In the current study, we have utilized β2-AR knockout (KO) and wildtype (WT) control mice to define further the role of β2-AR signaling during aging on lipid and glucose metabolism. Our results demonstrate for the first time that age-related increases in hepatic triglyceride accumulation and body weight are attenuated upon β2-AR ablation. Although no differences in plasma triglyceride, non-esterified fatty acids or insulin levels were detected between old WT and KO animals, an age-associated increase in hepatic expression of lipid homeostasis regulator Cidea was significantly reduced in old KO mice. Interestingly, we also observed a shift from reduced glucose tolerance in young adult KO animals to significantly improved glucose tolerance in old KO when compared to age-matched WT mice. These results provide evidence for an important role played by β2-ARs in the regulation of lipid and glucose metabolism during aging. The effect of β2-AR ablation on caloric intake during aging is currently not known and requires investigation. Future studies are also warranted to delineate the β2-AR-mediated mechanisms involved in the control of lipid and glucose homeostasis, especially in the context of a growing aging population. PMID:26952573

  18. Accumulation of Novel Glycolipids and Ornithine Lipids in Mesorhizobium loti under Phosphate Deprivation

    PubMed Central

    Diercks, Hannah; Semeniuk, Adrian; Gisch, Nicolas; Moll, Hermann; Duda, Katarzyna A.

    2014-01-01

    Glycolipids are found mainly in photosynthetic organisms (plants, algae, and cyanobacteria), Gram-positive bacteria, and a few other bacterial phyla. They serve as membrane lipids and play a role under phosphate deprivation as surrogates for phospholipids. Mesorhizobium loti accumulates different di- and triglycosyl diacylglycerols, synthesized by the processive glycosyltransferase Pgt-Ml, and two so far unknown glycolipids, which were identified in this study by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy as O-methyl-digalactosyl diacylglycerol (Me-DGD) and glucuronosyl diacylglycerol (GlcAD). Me-DGD is a novel glycolipid, whose synthesis depends on Pgt-Ml activity and the involvement of an unknown methyltransferase, while GlcAD is formed by a novel glycosyltransferase encoded by the open reading frame (ORF) mlr2668, using UDP-glucuronic acid as a sugar donor. Deletion mutants lacking GlcAD are not impaired in growth. Our data suggest that the different glycolipids in Mesorhizobium can mutually replace each other. This may be an adaptation mechanism to enhance the competitiveness in natural environments. A further nonphospholipid in Mesorhizobium was identified as a hydroxylated form of an ornithine lipid with the additional hydroxy group linked to the amide-bound fatty acid, introduced by the hydroxylase OlsD. The presence of this lipid has not been reported for rhizobia yet. The hydroxy group is placed on the C-2 position of the acyl chain as determined by NMR spectroscopy. Furthermore, the isolated ornithine lipids contained up to 80 to 90% d-configured ornithine, a stereoform so far undescribed in bacteria. PMID:25404698

  19. Arabidopsis SEIPIN Proteins Modulate Triacylglycerol Accumulation and Influence Lipid Droplet Proliferation[OPEN

    PubMed Central

    2015-01-01

    The lipodystrophy protein SEIPIN is important for lipid droplet (LD) biogenesis in human and yeast cells. In contrast with the single SEIPIN genes in humans and yeast, there are three SEIPIN homologs in Arabidopsis thaliana, designated SEIPIN1, SEIPIN2, and SEIPIN3. Essentially nothing is known about the functions of SEIPIN homologs in plants. Here, a yeast (Saccharomyces cerevisiae) SEIPIN deletion mutant strain and a plant (Nicotiana benthamiana) transient expression system were used to test the ability of Arabidopsis SEIPINs to influence LD morphology. In both species, expression of SEIPIN1 promoted accumulation of large-sized lipid droplets, while expression of SEIPIN2 and especially SEIPIN3 promoted small LDs. Arabidopsis SEIPINs increased triacylglycerol levels and altered composition. In tobacco, endoplasmic reticulum (ER)-localized SEIPINs reorganized the normal, reticulated ER structure into discrete ER domains that colocalized with LDs. N-terminal deletions and swapping experiments of SEIPIN1 and 3 revealed that this region of SEIPIN determines LD size. Ectopic overexpression of SEIPIN1 in Arabidopsis resulted in increased numbers of large LDs in leaves, as well as in seeds, and increased seed oil content by up to 10% over wild-type seeds. By contrast, RNAi suppression of SEIPIN1 resulted in smaller seeds and, as a consequence, a reduction in the amount of oil per seed compared with the wild type. Overall, our results indicate that Arabidopsis SEIPINs are part of a conserved LD biogenesis machinery in eukaryotes and that in plants these proteins may have evolved specialized roles in the storage of neutral lipids by differentially modulating the number and sizes of lipid droplets. PMID:26362606

  20. Very-low and low-density lipoproteins induce neutral lipid accumulation and impair migration in monocyte subsets

    PubMed Central

    Jackson, William D.; Weinrich, Tobias W.; Woollard, Kevin J.

    2016-01-01

    Blood monocytes are heterogeneous effector cells of the innate immune system. In circulation these cells are constantly in contact with lipid-rich lipoproteins, yet this interaction is poorly characterised. Our aim was to examine the functional effect of hyperlipidaemia on blood monocytes. In the Ldlr−/− mouse monocytes rapidly accumulate cytoplasmic neutral lipid vesicles during hyperlipidaemia. Functional analysis in vivo revealed impaired monocyte chemotaxis towards peritonitis following high fat diet due to retention of monocytes in the greater omentum. In vitro assays using human monocytes confirmed neutral lipid vesicle accumulation after exposure to LDL or VLDL. Neutral lipid accumulation did not inhibit phagocytosis, endothelial adhesion, intravascular crawling and transmigration. However, lipid loading led to a migratory defect towards C5a and disruption of cytoskeletal rearrangement, including an inhibition of RHOA signaling. These data demonstrate distinct effects of hyperlipidaemia on the chemotaxis and cytoskeletal regulation of monocyte subpopulations. These data emphasise the functional consequences of blood monocyte lipid accumulation and reveal important implications for treating inflammation, infection and atherosclerosis in the context of dyslipidaemia. PMID:26821597

  1. Very-low and low-density lipoproteins induce neutral lipid accumulation and impair migration in monocyte subsets.

    PubMed

    Jackson, William D; Weinrich, Tobias W; Woollard, Kevin J

    2016-01-01

    Blood monocytes are heterogeneous effector cells of the innate immune system. In circulation these cells are constantly in contact with lipid-rich lipoproteins, yet this interaction is poorly characterised. Our aim was to examine the functional effect of hyperlipidaemia on blood monocytes. In the Ldlr(-/-) mouse monocytes rapidly accumulate cytoplasmic neutral lipid vesicles during hyperlipidaemia. Functional analysis in vivo revealed impaired monocyte chemotaxis towards peritonitis following high fat diet due to retention of monocytes in the greater omentum. In vitro assays using human monocytes confirmed neutral lipid vesicle accumulation after exposure to LDL or VLDL. Neutral lipid accumulation did not inhibit phagocytosis, endothelial adhesion, intravascular crawling and transmigration. However, lipid loading led to a migratory defect towards C5a and disruption of cytoskeletal rearrangement, including an inhibition of RHOA signaling. These data demonstrate distinct effects of hyperlipidaemia on the chemotaxis and cytoskeletal regulation of monocyte subpopulations. These data emphasise the functional consequences of blood monocyte lipid accumulation and reveal important implications for treating inflammation, infection and atherosclerosis in the context of dyslipidaemia. PMID:26821597

  2. Storage Reserve Accumulation in Arabidopsis: Metabolic and Developmental Control of Seed Filling

    PubMed Central

    Baud, Sébastien; Dubreucq, Bertrand; Miquel, Martine; Rochat, Christine; Lepiniec, Loïc

    2008-01-01

    In the life cycle of higher plants, seed development is a key process connecting two distinct sporophytic generations. Seed development can be divided into embryo morphogenesis and seed maturation. An essential metabolic function of maturing seeds is the deposition of storage compounds that are mobilised to fuel post-germinative seedling growth. Given the importance of seeds for food and animal feed and considering the tremendous interest in using seed storage products as sustainable industrial feedstocks to replace diminishing fossil reserves, understanding the metabolic and developmental control of seed filling constitutes a major focus of plant research. Arabidopsis thaliana is an oilseed species closely related to the agronomically important Brassica oilseed crops. The main storage compounds accumulated in seeds of A. thaliana consist of oil stored as triacylglycerols (TAGs) and seed storage proteins (SSPs). Extensive tools developed for the molecular dissection of A. thaliana development and metabolism together with analytical and cytological procedures adapted for very small seeds have led to a good description of the biochemical pathways producing storage compounds. In recent years, studies using these tools have shed new light on the intricate regulatory network controlling the seed maturation process. This network involves sugar and hormone signalling together with a set of developmentally regulated transcription factors. Although much remains to be elucidated, the framework of the regulatory system controlling seed filling is coming into focus. PMID:22303238

  3. Mouse SIRT3 Attenuates Hypertrophy-Related Lipid Accumulation in the Heart through the Deacetylation of LCAD

    PubMed Central

    Chen, Tongshuai; Liu, Junni; Li, Na; Wang, Shujian; Liu, Hui; Li, Jingyuan; Zhang, Yun; Bu, Peili

    2015-01-01

    Cardiac hypertrophy is an adaptive response to pressure, volume stress, and loss of contractile mass from prior infarction. Metabolic changes in cardiac hypertrophy include suppression of fatty acid oxidation and enhancement of glucose utilization, which could result in lipid accumulation in the heart. SIRT3, a mitochondrial NAD+-dependent deacetylase, has been demonstrated to play a crucial role in controlling the acetylation status of many enzymes participating in energy metabolism. However, the role of SIRT3 in the pathogenesis of hypertrophy-related lipid accumulation remains unclear. In this study, hypertrophy-related lipid accumulation was investigated using a mouse cardiac hypertrophy model induced by transverse aortic constriction (TAC). We showed that mice developed heart failure six weeks after TAC. Furthermore, abnormal lipid accumulation and decreased palmitate oxidation rates were observed in the hypertrophic hearts, and these changes were particularly significant in SIRT3-KO mice. We also demonstrated that the short form of SIRT3 was downregulated in wild-type (WT) hypertrophic hearts and that this change was accompanied by a higher acetylation level of long-chain acyl CoA dehydrogenase (LCAD), which is a key enzyme participating in fatty acid oxidation. In addition, SIRT3 may play an essential role in attenuating lipid accumulation in the heart through the deacetylation of LCAD. PMID:25748450

  4. Celastrus Orbiculatus Thunb. Reduces Lipid Accumulation by Promoting Reverse Cholesterol Transport in Hyperlipidemic Mice.

    PubMed

    Zhang, Ying; Si, Yanhong; Zhai, Lei; Guo, Shoudong; Zhao, Jilong; Sang, Hui; Pang, Xiaofei; Zhang, Xue; Chen, Anbin; Qin, Shucun

    2016-06-01

    Previously, we found that Celastrus orbiculatus Thunb. (COT) decreases athero-susceptibility in lipoproteins and the aorta of guinea pigs fed a high-fat diet, and increases high-density lipoprotein (HDL). In the present study, we investigated the effect of COT in reducing lipid accumulation and promoting reverse cholesterol transport (RCT) in vivo and vitro. Healthy male mice were treated with high-fat diet alone, high-fat diet with COT (10.0 g/kg/d), or general fodder for 6 weeks. Serum levels of total cholesterol (TC), triglyceride (TG), HDL-C, non-HDL-C, and (3)H-cholesterol in plasma, liver, bile, and feces were determined. Pathological changes and the levels of TC and TG in liver were examined. The expression of hepatic genes and protein associated with RCT were analyzed. COT administration reduced lipid accumulation in the liver, ameliorated the pathological changes, and lessened liver injury, the levels of TG, TC, and non-HDL-C in plasma were decreased significantly, and COT led to a significant increase in plasma HDL-C and apolipoprotein A (apoA1). (3)H-cholesterol in plasma, liver, bile, and feces was also significantly increased in COT-treated mice compared to controls. Both mRNA and protein expression of SRB1, CYP7A1, LDLR, ATP-binding cassette transporters ABCA1, ABCG5, and LXRα were improved in COT-treated mice. An in vitro isotope tracing experiment showed that COT and its bioactive ingredients, such as celastrol, ursolic acid, oleanolic acid, and quercetin, significantly increased the efflux of (3)H-cholesterol. They also increased the expression of SRB1, ABCA1, and ABCG1 significantly in macrophages. Our findings provided a positive role of COT in reducing lipid accumulation by promoting RCT. These effects may be achieved by activating the SRB1 and ABC transporter pathway and promoting cholesterol metabolism via the CYP7A1 pathway in vivo. The effective ingredients in vitro are celastrol, ursolic acid, oleanolic acid, and quercetin. PMID

  5. HdhQ111 Mice Exhibit Tissue Specific Metabolite Profiles that Include Striatal Lipid Accumulation

    PubMed Central

    Carroll, Jeffrey B.; Deik, Amy; Fossale, Elisa; Weston, Rory M.; Guide, Jolene R.; Arjomand, Jamshid; Kwak, Seung; Clish, Clary B.; MacDonald, Marcy E.

    2015-01-01

    The HTT CAG expansion mutation causes Huntington’s Disease and is associated with a wide range of cellular consequences, including altered metabolism. The mutant allele is expressed widely, in all tissues, but the striatum and cortex are especially vulnerable to its effects. To more fully understand this tissue-specificity, early in the disease process, we asked whether the metabolic impact of the mutant CAG expanded allele in heterozygous B6.HdhQ111/+ mice would be common across tissues, or whether tissues would have tissue-specific responses and whether such changes may be affected by diet. Specifically, we cross-sectionally examined steady state metabolite concentrations from a range of tissues (plasma, brown adipose tissue, cerebellum, striatum, liver, white adipose tissue), using an established liquid chromatography-mass spectrometry pipeline, from cohorts of 8 month old mutant and wild-type littermate mice that were fed one of two different high-fat diets. The differential response to diet highlighted a proportion of metabolites in all tissues, ranging from 3% (7/219) in the striatum to 12% (25/212) in white adipose tissue. By contrast, the mutant CAG-expanded allele primarily affected brain metabolites, with 14% (30/219) of metabolites significantly altered, compared to wild-type, in striatum and 11% (25/224) in the cerebellum. In general, diet and the CAG-expanded allele both elicited metabolite changes that were predominantly tissue-specific and non-overlapping, with evidence for mutation-by-diet interaction in peripheral tissues most affected by diet. Machine-learning approaches highlighted the accumulation of diverse lipid species as the most genotype-predictive metabolite changes in the striatum. Validation experiments in cell culture demonstrated that lipid accumulation was also a defining feature of mutant HdhQ111 striatal progenitor cells. Thus, metabolite-level responses to the CAG expansion mutation in vivo were tissue specific and most evident

  6. Medium-chain fatty acid reduces lipid accumulation by regulating expression of lipid-sensing genes in human liver cells with steatosis.

    PubMed

    Wang, Baogui; Fu, Jing; Li, Lumin; Gong, Deming; Wen, Xuefang; Yu, Ping; Zeng, Zheling

    2016-05-01

    Accumulation of lipids in the liver can lead to cell dysfunction and steatosis, an important factor in pathogenesis causing non-alcoholic fatty liver disease. The mechanisms related to lipid deposition in the liver, however, remain poorly understood. This study was aimed to investigate the effects of medium-chain fatty acid (MCFA) on the lipolysis and expression of lipid-sensing genes in human liver cells with steatosis. A cellular steatosis model, which is suitable to experimentally investigate the impact of fat accumulation in the liver, was established in human normal liver cells (LO2 cells) with a mixture of free fatty acids (oleate/palmitate, 2:1) at 200 μm for 24 h incubation. MCFA was found to down-regulate expression of liver X receptor-α, sterol regulatory element binding protein-1, acetyl-CoA carboxylase, fatty acid synthase, CD 36 and lipoprotein lipase in this cellular model, and have positive effects on adipose triglyceride lipase and hormone-sensitive lipase. These results suggest that MCFA may reduce lipid accumulation by regulating key lipid-sensing genes in human liver cells with steatosis. PMID:26932533

  7. Application of high-content image analysis for quantitatively estimating lipid accumulation in oleaginous yeasts with potential for use in biodiesel production.

    PubMed

    Capus, Aurélie; Monnerat, Marianne; Ribeiro, Luiz Carlos; de Souza, Wanderley; Martins, Juliana Lopes; Sant'Anna, Celso

    2016-03-01

    Biodiesel from oleaginous microorganisms is a viable substitute for a fossil fuel. Current methods for microorganism lipid productivity evaluation do not analyze lipid dynamics in single cells. Here, we described a high-content image analysis (HCA) as a promising strategy for screening oleaginous microorganisms for biodiesel production, while generating single-cell lipid dynamics data in large cell density. Rhodotorula slooffiae yeast were grown in standard (CTL) or lipid trigger medium (LTM), and lipid droplet (LD) accumulation was analyzed in deconvolved confocal microscopy images of cells stained with the lipophilic fluorescent Nile red (NR) dye using automated cell and LD segmentation. The 'vesicle segmentation' method yielded valid morphometric results for limited lipid accumulation in smaller LDs (CTL samples) and for high lipid accumulation in larger LDs (LTM samples), and detected LD localization changes. Thus, HCA can be used to analyze the lipid accumulation patterns likely to be encountered in screens for biodiesel production. PMID:26744805

  8. Vitamin d deficiency attenuates high-fat diet-induced hyperinsulinemia and hepatic lipid accumulation in male mice.

    PubMed

    Liu, Xiao-Jing; Wang, Bi-Wei; Zhang, Cheng; Xia, Mi-Zhen; Chen, Yuan-Hua; Hu, Chun-Qiu; Wang, Hua; Chen, Xi; Xu, De-Xiang

    2015-06-01

    It is increasingly recognized that vitamin D deficiency is associated with increased risks of metabolic disorders among overweight children. A recent study showed that vitamin D deficiency exacerbated inflammation in nonalcoholic fatty liver disease through activating toll-like receptor 4 in a high-fat diet (HFD) rat model. The present study aimed to further investigate the effects of vitamin D deficiency on HFD-induced insulin resistance and hepatic lipid accumulation. Male ICR mice (35 d old) were randomly assigned into 4 groups as follows. In control diet and vitamin D deficiency diet (VDD) groups, mice were fed with purified diets. In HFD and VDD+HFD groups, mice were fed with HFD. In VDD and VDD+HFD groups, vitamin D in feed was depleted. Feeding mice with vitamin D deficiency diet did not induce obesity, insulin resistance, and hepatic lipid accumulation. By contrary, vitamin D deficiency markedly alleviated HFD-induced overweight, hyperinsulinemia, and hepatic lipid accumulation. Moreover, vitamin D deficiency significantly attenuated HFD-induced up-regulation of hepatic peroxisome proliferator-activated receptor γ, which promoted hepatic lipid uptake and lipid droplet formation, and its target gene cluster of differentiation 36. In addition, vitamin D deficiency up-regulated carnitine palmitoyltrans 2, the key enzyme for fatty acid β-oxidation, and uncoupling protein 3, which separated oxidative phosphorylation from ATP production, in adipose tissue. These data suggest that vitamin D deficiency is not a direct risk factor for obesity, insulin resistance, and hepatic lipid accumulation. Vitamin D deficiency alleviates HFD-induced overweight, hyperinsulinemia, and hepatic lipid accumulation through promoting fatty acid β-oxidation and elevating energy expenditure in adipose tissue. PMID:25774554

  9. Proteomic analysis of the inhibitory effect of epigallocatechin gallate on lipid accumulation in human HepG2 cells

    PubMed Central

    2013-01-01

    Background (−)-Epigallocatechin-3-gallate (EGCG), the most abundant catechin found in green tea, effectively reduces body weight and tissue and blood lipid accumulation. To explore the mechanism by which EGCG inhibits cellular lipid accumulation in free fatty acid (FFA) induced HepG2 cell culture, we investigated the proteome change of FFA-induced HepG2 cells exposed to EGCG using two-dimensional gel electrophoresis and mass spectrometry. Results In this study, 36 protein spots showed a significant change in intensity by more than 1.5-fold from the control group to the FFA group and from the FFA group to the FFA + EGCG group. Among them, 24 spots were excised from gels and identified by LC-MS/MS. In total, 18 proteins were successfully identified. All identified proteins were involved in lipid metabolism, glycometabolism, antioxidant defense, respiration, cytoskeleton organization, signal transduction, DNA repair, mRNA processing, iron storage, or were chaperone proteins. This indicated that these physiological processes may play roles in the mechanism of inhibition of lipid accumulation by EGCG in FFA-induced HepG2 cells. Western blotting analysis was used to verify the expression levels of differentially expressed proteins, which agree with the proteomic results. Conclusions From the proteomic analysis, we hypothesized that EGCG reduced cellular lipid accumulation in FFA-induced HepG2 cells through the activation of AMP-activated protein kinase (AMPK) resulting from the generation of reactive oxygen species (ROS). The induction of ROS may be a result of EGCG regulation of the antioxidant defense system. Activation of AMPK shifted some FFA toward oxidation, away from lipid and triglyceride storage, and suppressed hepatic gluconeogenesis. The findings of this study improve our understanding of the molecular mechanisms of inhibition of lipid accumulation by EGCG in HepG2 cells. PMID:23866759

  10. Impact of SCP-2/SCP-x gene ablation and dietary cholesterol on hepatic lipid accumulation

    PubMed Central

    Klipsic, Devon; Landrock, Danilo; Martin, Gregory G.; McIntosh, Avery L.; Landrock, Kerstin K.; Mackie, John T.; Schroeder, Friedhelm

    2015-01-01

    While a high-cholesterol diet induces hepatic steatosis, the role of intracellular sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) proteins is unknown. We hypothesized that ablating SCP-2/SCP-x [double knockout (DKO)] would impact hepatic lipids (cholesterol and cholesteryl ester), especially in high-cholesterol-fed mice. DKO did not alter food consumption, and body weight (BW) gain decreased especially in females, concomitant with hepatic steatosis in females and less so in males. DKO-induced steatosis in control-fed wild-type (WT) mice was associated with 1) loss of SCP-2; 2) upregulation of liver fatty acid binding protein (L-FABP); 3) increased mRNA and/or protein levels of sterol regulatory element binding proteins (SREBP1 and SREBP2) as well as increased expression of target genes of cholesterol synthesis (Hmgcs1 and Hmgcr) and fatty acid synthesis (Acc1 and Fas); and 4) cholesteryl ester accumulation was also associated with increased acyl-CoA cholesterol acyltransferase-2 (ACAT2) in males. DKO exacerbated the high-cholesterol diet-induced hepatic cholesterol and glyceride accumulation, without further increasing SREBP1, SREBP2, or target genes. This exacerbation was associated both with loss of SCP-2 and concomitant downregulation of Ceh/Hsl, apolipoprotein B (ApoB), MTP, and/or L-FABP protein expression. DKO diminished the ability to secrete excess cholesterol into bile and oxidize cholesterol to bile acid for biliary excretion, especially in females. This suggested that SCP-2/SCP-x affects cholesterol transport to particular intracellular compartments, with ablation resulting in less to the endoplasmic reticulum for SREBP regulation, making more available for cholesteryl ester synthesis, for cholesteryl-ester storage in lipid droplets, and for bile salt synthesis and/or secretion. These alterations are significant findings, since they affect key processes in regulation of sterol metabolism. PMID:26113298

  11. Impact of SCP-2/SCP-x gene ablation and dietary cholesterol on hepatic lipid accumulation.

    PubMed

    Klipsic, Devon; Landrock, Danilo; Martin, Gregory G; McIntosh, Avery L; Landrock, Kerstin K; Mackie, John T; Schroeder, Friedhelm; Kier, Ann B

    2015-09-01

    While a high-cholesterol diet induces hepatic steatosis, the role of intracellular sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) proteins is unknown. We hypothesized that ablating SCP-2/SCP-x [double knockout (DKO)] would impact hepatic lipids (cholesterol and cholesteryl ester), especially in high-cholesterol-fed mice. DKO did not alter food consumption, and body weight (BW) gain decreased especially in females, concomitant with hepatic steatosis in females and less so in males. DKO-induced steatosis in control-fed wild-type (WT) mice was associated with 1) loss of SCP-2; 2) upregulation of liver fatty acid binding protein (L-FABP); 3) increased mRNA and/or protein levels of sterol regulatory element binding proteins (SREBP1 and SREBP2) as well as increased expression of target genes of cholesterol synthesis (Hmgcs1 and Hmgcr) and fatty acid synthesis (Acc1 and Fas); and 4) cholesteryl ester accumulation was also associated with increased acyl-CoA cholesterol acyltransferase-2 (ACAT2) in males. DKO exacerbated the high-cholesterol diet-induced hepatic cholesterol and glyceride accumulation, without further increasing SREBP1, SREBP2, or target genes. This exacerbation was associated both with loss of SCP-2 and concomitant downregulation of Ceh/Hsl, apolipoprotein B (ApoB), MTP, and/or L-FABP protein expression. DKO diminished the ability to secrete excess cholesterol into bile and oxidize cholesterol to bile acid for biliary excretion, especially in females. This suggested that SCP-2/SCP-x affects cholesterol transport to particular intracellular compartments, with ablation resulting in less to the endoplasmic reticulum for SREBP regulation, making more available for cholesteryl ester synthesis, for cholesteryl-ester storage in lipid droplets, and for bile salt synthesis and/or secretion. These alterations are significant findings, since they affect key processes in regulation of sterol metabolism. PMID:26113298

  12. TRIM24 suppresses development of spontaneous hepatic lipid accumulation and hepatocellular carcinoma in mice

    PubMed Central

    Jiang, Shiming; Minter, Lindsey Cauthen; Stratton, Sabrina A.; Yang, Peirong; Abbas, Hussein A.; Akdemir, Zeynep Coban; Pant, Vinod; Post, Sean; Gagea, Mihai; Lee, Richard G.; Lozano, Guillermina; Barton, Michelle Craig

    2016-01-01

    Background and Aims Aberrantly high expression of TRIM24 occurs in human cancers, including hepatocellular carcinoma. In contrast, TRIM24 in the mouse is reportedly a liver-specific tumor suppressor. To address this dichotomy and uncover direct regulatory functions of TRIM24 in vivo, we developed a new mouse model that lacks expression of all Trim24 isoforms, as the previous model expresses normal levels of Trim24 lacking only exon 4. Methods To produce germline-deleted Trim24dlE1 mice, deletion of the promoter and exon 1 of Trim24 was induced in Trim24LoxP mice by crossing with a zona pellucida 3-Cre line for global deletion. Liver-specific deletion (Trim24hep) was achieved by crossing with an Albumin-Cre line. Phenotypic analyses were complemented by protein, gene-specific and global RNA expression analyses and quantitative chromatin immunoprecipitation. Results Global loss of Trim24 disrupted hepatic homeostasis in 100% of mice with highly significant, decreased expression of oxidation/reduction, steroid, fatty acid and lipid metabolism genes, as well as increased expression of genes in unfolded protein, endoplasmic reticulum stress and cell cycle pathways. Trim24dlE1/dlE1 mice have markedly depleted visceral fat and, like Trim24hep/hep mice, spontaneously develop hepatic lipid-filled lesions, steatosis, hepatic injury, fibrosis and hepatocellular carcinoma. Conclusions TRIM24, an epigenetic co-regulator of transcription, directly and indirectly represses hepatic lipid accumulation, inflammation, fibrosis and damage in the murine liver. Complete loss of Trim24 offers a model of human nonalcoholic fatty liver disease, steatosis, fibrosis and development of hepatocellular carcinoma in the absence of high-fat diet or obesity. PMID:25281858

  13. Mitochondrial dysfunction and defects in lipid homeostasis as therapeutic targets in neurodegeneration with brain iron accumulation.

    PubMed

    Kinghorn, Kerri J; Castillo-Quan, Jorge Iván

    2016-01-01

    The PLA2G6 gene encodes a group VIA calcium independent phospholipase A2 (iPLA2β), which hydrolyses glycerophospholipids to release fatty acids and lysophospholipids. Mutations in PLA2G6 are associated with a number of neurodegenerative disorders including neurodegeneration with brain iron accumulation (NBIA), infantile neuroaxonal dystrophy (INAD), and dystonia parkinsonism, collectively known as PLA2G6-associated neurodegeneration (PLAN). Recently Kinghorn et al. demonstrated in Drosophila and PLA2G6 mutant fibroblasts that loss of normal PLA2G6 activity is associated with mitochondrial dysfunction and mitochondrial lipid peroxidation. Furthermore, they were able to show the beneficial effects of deuterated polyunsaturated fatty acids (D-PUFAs), which reduce lipid peroxidation. D-PUFAs were able to rescue the locomotor deficits of flies lacking the fly ortholog of PLA2G6 (iPLA2-VIA), as well as the mitochondrial abnormalities in PLA2G6 mutant fibroblasts. This work demonstrated that the iPLA2-VIA knockout fly is a useful organism to dissect the mechanisms of pathogenesis of PLAN, and that further investigation is required to determine the therapeutic potential of D-PUFAs in patients with PLA2G6 mutations. The fruit fly has also been used to study some of the other genetic causes of NBIA, and here we also describe what is known about the mechanisms of pathogenesis of these NBIA variants. Mitochondrial dysfunction, defects in lipid metabolism, as well as defective Coenzyme A (CoA) biosynthesis, have all been implicated in some genetic forms of NBIA, including PANK2, CoASY, C12orf19 and FA2H. PMID:27141409

  14. Mitochondrial dysfunction and defects in lipid homeostasis as therapeutic targets in neurodegeneration with brain iron accumulation

    PubMed Central

    Kinghorn, Kerri J.; Castillo-Quan, Jorge Iván

    2016-01-01

    ABSTRACT The PLA2G6 gene encodes a group VIA calcium independent phospholipase A2 (iPLA2β), which hydrolyses glycerophospholipids to release fatty acids and lysophospholipids. Mutations in PLA2G6 are associated with a number of neurodegenerative disorders including neurodegeneration with brain iron accumulation (NBIA), infantile neuroaxonal dystrophy (INAD), and dystonia parkinsonism, collectively known as PLA2G6-associated neurodegeneration (PLAN). Recently Kinghorn et al. demonstrated in Drosophila and PLA2G6 mutant fibroblasts that loss of normal PLA2G6 activity is associated with mitochondrial dysfunction and mitochondrial lipid peroxidation. Furthermore, they were able to show the beneficial effects of deuterated polyunsaturated fatty acids (D-PUFAs), which reduce lipid peroxidation. D-PUFAs were able to rescue the locomotor deficits of flies lacking the fly ortholog of PLA2G6 (iPLA2-VIA), as well as the mitochondrial abnormalities in PLA2G6 mutant fibroblasts. This work demonstrated that the iPLA2-VIA knockout fly is a useful organism to dissect the mechanisms of pathogenesis of PLAN, and that further investigation is required to determine the therapeutic potential of D-PUFAs in patients with PLA2G6 mutations. The fruit fly has also been used to study some of the other genetic causes of NBIA, and here we also describe what is known about the mechanisms of pathogenesis of these NBIA variants. Mitochondrial dysfunction, defects in lipid metabolism, as well as defective Coenzyme A (CoA) biosynthesis, have all been implicated in some genetic forms of NBIA, including PANK2, CoASY, C12orf19 and FA2H. PMID:27141409

  15. N,N-diethyldithiocarbamate produces copper accumulation, lipid peroxidation, and myelin injury in rat peripheral nerve.

    PubMed

    Tonkin, Elizabeth G; Valentine, Holly L; Milatovic, Dejan M; Valentine, William M

    2004-09-01

    Previous studies have demonstrated the ability of the dithiocarbamate, disulfiram, to produce a peripheral neuropathy in humans and experimental animals and have also provided evidence that N,N-diethyldithiocarbamate (DEDC) is a proximate toxic species of disulfiram. The ability of DEDC to elevate copper levels in the brain suggests that it may also elevate levels of copper in peripheral nerve, possibly leading to oxidative stress and lipid peroxidation from redox cycling of copper. The study presented here investigates the potential of DEDC to promote copper accumulation and lipid peroxidation in peripheral nerve. Rats were administered either DEDC or deionized water by ip osmotic pumps and fed a normal diet or diet containing elevated copper, and the levels of metals, isoprostanes, and the severity of lesions in peripheral nerve and brain were assessed by ICP-AES/AAS, GC/MS, and light microscopy, respectively. Copper was the only metal that demonstrated any significant compound-related elevations relative to controls, and total copper was increased in both brain and peripheral nerve in animals administered DEDC on both diets. In contrast, lesions and elevated F2-isoprostanes were significantly increased only in peripheral nerve for the rats administered DEDC on both diets. Autometallography staining of peripheral nerve was consistent with increased metal content along the myelin sheath, but in brain, focal densities were observed, and a periportal distribution occurred in liver. These data are consistent with the peripheral nervous system being more sensitive to DEDC-mediated demyelination and demonstrate the ability of DEDC to elevate copper levels in peripheral nerve. Additionally lipid peroxidation appears to either be a contributing event in the development of demyelination, possibly through an increase of redox active copper, or a consequence of the myelin injury. PMID:15187237

  16. Induction of DKK1 by ox-LDL negatively regulates intracellular lipid accumulation in macrophages.

    PubMed

    Zhang, Yu; Ge, Cheng; Wang, Lin; Liu, Xinxin; Chen, Yifei; Li, Mengmeng; Zhang, Mei

    2015-01-01

    Dickkopf1 (DKK1), a canonical Wnt/β-catenin pathway antagonist, is closely associated with cardiovascular disease and adipogenesis. We performed an in vitro study to determine whether oxidized low-density lipoprotein (ox-LDL) increased the expression of DKK1 in macrophages and whether β-catenin and liver X receptor α (LXRα) were involved in this regulation. Induction of DKK1 expression by ox-LDL decreased the level of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) via a Wnt/β-catenin pathway and increased ATP-binding cassette transporter A/G1 (ABCA/G1) levels via a signal transducer and activator of transcription 3 (STAT3) pathway. Lower LOX-1 and higher ABCA/G1 levels inhibited cholesterol loading in macrophages. In conclusion, ox-LDL may induce DKK1 expression in macrophages to inhibit the accumulation of lipids through a mechanism that involves downregulation of LOX-1-mediated lipid uptake and upregulation of ABCA/G1-dependent cholesterol efflux. PMID:25436422

  17. Cholesterol accumulation in Niemann Pick type C (NPC) model cells causes a shift in APP localization to lipid rafts

    SciTech Connect

    Kosicek, Marko; Malnar, Martina; Goate, Alison; Hecimovic, Silva

    2010-03-12

    It has been suggested that cholesterol may modulate amyloid-{beta} (A{beta}) formation, a causative factor of Alzheimer's disease (AD), by regulating distribution of the three key proteins in the pathogenesis of AD ({beta}-amyloid precursor protein (APP), {beta}-secretase (BACE1) and/or presenilin 1 (PS1)) within lipid rafts. In this work we tested whether cholesterol accumulation upon NPC1 dysfunction, which causes Niemann Pick type C disease (NPC), causes increased partitioning of APP into lipid rafts leading to increased CTF/A{beta} formation in these cholesterol-rich membrane microdomains. To test this we used CHO NPC1{sup -/-} cells (NPC cells) and parental CHOwt cells. By sucrose density gradient centrifugation we observed a shift in fl-APP/CTF compartmentalization into lipid raft fractions upon cholesterol accumulation in NPC vs. wt cells. Furthermore, {gamma}-secretase inhibitor treatment significantly increased fl-APP/CTF distribution in raft fractions in NPC vs. wt cells, suggesting that upon cholesterol accumulation in NPC1-null cells increased formation of APP-CTF and its increased processing towards A{beta} occurs in lipid rafts. Our results support that cholesterol overload, such as in NPC disease, leads to increased partitioning of APP/CTF into lipid rafts resulting in increased amyloidogenic processing of APP in these cholesterol-rich membranes. This work adds to the mechanism of the cholesterol-effect on APP processing and the pathogenesis of Alzheimer's disease and supports the role of lipid rafts in these processes.

  18. Transcriptomic Analyses during the Transition from Biomass Production to Lipid Accumulation in the Oleaginous Yeast Yarrowia lipolytica

    PubMed Central

    Beopoulos, Athanasios; Lelandais, Gaëlle; Le Berre, Veronique; Uribelarrea, Jean-Louis; Molina-Jouve, Carole; Nicaud, Jean-Marc

    2011-01-01

    We previously developed a fermentation protocol for lipid accumulation in the oleaginous yeast Y. lipolytica. This process was used to perform transcriptomic time-course analyses to explore gene expression in Y. lipolytica during the transition from biomass production to lipid accumulation. In this experiment, a biomass concentration of 54.6 gCDW/l, with 0.18 g/gCDW lipid was obtained in ca. 32 h, with low citric acid production. A transcriptomic profiling was performed on 11 samples throughout the fermentation. Through statistical analyses, 569 genes were highlighted as differentially expressed at one point during the time course of the experiment. These genes were classified into 9 clusters, according to their expression profiles. The combination of macroscopic and transcriptomic profiles highlighted 4 major steps in the culture: (i) a growth phase, (ii) a transition phase, (iii) an early lipid accumulation phase, characterized by an increase in nitrogen metabolism, together with strong repression of protein production and activity; (iv) a late lipid accumulation phase, characterized by the rerouting of carbon fluxes within cells. This study explores the potential of Y. lipolytica as an alternative oil producer, by identifying, at the transcriptomic level, the genes potentially involved in the metabolism of oleaginous species. PMID:22132183

  19. Disruption of the Arabidopsis CGI-58 homologue produces Chanarin-Dorfman-like lipid droplet accumulation in plants.

    PubMed

    James, Christopher N; Horn, Patrick J; Case, Charlene R; Gidda, Satinder K; Zhang, Daiyuan; Mullen, Robert T; Dyer, John M; Anderson, Richard G W; Chapman, Kent D

    2010-10-12

    CGI-58 is the defective gene in the human neutral lipid storage disease called Chanarin-Dorfman syndrome. This disorder causes intracellular lipid droplets to accumulate in nonadipose tissues, such as skin and blood cells. Here, disruption of the homologous CGI-58 gene in Arabidopsis thaliana resulted in the accumulation of neutral lipid droplets in mature leaves. Mass spectroscopy of isolated lipid droplets from cgi-58 loss-of-function mutants showed they contain triacylglycerols with common leaf-specific fatty acids. Leaves of mature cgi-58 plants exhibited a marked increase in absolute triacylglycerol levels, more than 10-fold higher than in wild-type plants. Lipid levels in the oil-storing seeds of cgi-58 loss-of-function plants were unchanged, and unlike mutations in β-oxidation, the cgi-58 seeds germinated and grew normally, requiring no rescue with sucrose. We conclude that the participation of CGI-58 in neutral lipid homeostasis of nonfat-storing tissues is similar, although not identical, between plant and animal species. This unique insight may have implications for designing a new generation of technologies that enhance the neutral lipid content and composition of crop plants. PMID:20876112

  20. 4-hydroxynonenal, a lipid peroxidation product, rapidly accumulates following traumatic spinal cord injury and inhibits glutamate uptake.

    PubMed

    Springer, J E; Azbill, R D; Mark, R J; Begley, J G; Waeg, G; Mattson, M P

    1997-06-01

    Traumatic injury to the spinal cord initiates a host of pathophysiological events that are secondary to the initial insult. One such event is the accumulation of free radicals that damage lipids, proteins, and nucleic acids. A major reactive product formed following lipid peroxidation is the aldehyde, 4-hydroxynonenal (HNE), which cross-links to side chain amino acids and inhibits the function of several key metabolic enzymes. In the present study, we used immunocytochemical and immunoblotting techniques to examine the accumulation of protein-bound HNE, and synaptosomal preparations to study the effects of spinal cord injury and HNE formation on glutamate uptake. Protein-bound HNE increased in content in the damaged spinal cord at early times following injury (1-24 h) and was found to accumulate in myelinated fibers distant to the site of injury. Immunoblots revealed that protein-bound HNE levels increased dramatically over the same postinjury interval. Glutamate uptake in synaptosomal preparations from injured spinal cords was decreased by 65% at 24 h following injury. Treatment of control spinal cord synaptosomes with HNE was found to decrease significantly, in a dose-dependent fashion, glutamate uptake, an effect that was mimicked by inducers of lipid peroxidation. Taken together, these findings demonstrate that the lipid peroxidation product HNE rapidly accumulates in the spinal cord following injury and that a major consequence of HNE accumulation is a decrease in glutamate uptake, which may potentiate neuronal cell dysfunction and death through excitotoxic mechanisms. PMID:9166741

  1. [Dipeptide nootropic agent GVS-111 prevents accumulation of the lipid peroxidation products during immobilization].

    PubMed

    Lysenko, A V; Uskova, N I; Ostrovskaia, R U; Gudasheva, T A; Voronina, T A

    1997-01-01

    Immobilization of rats in a narrow plastic chamber for 24 h caused a sharp increase in the level of diene conjugates and the content of schiff bases in the synaptosomes of the brain cortex as well as accumulation of extraerythrocytic hemoglobin in blood serum. The dipeptide nootropic agent GVS-111 (ethyl ether of phenylacetylprolylglycine), when administered 15 and particularly 60 min before immobilization reduced the accumulation of these products of lipid peroxidation in the brain and blood. GVS-111 demonstrated these signs of its antioxidant effect after a single i.p. injection in doses of 0.12 and 0.5 mg/kg. Pyracetam produced a similar effect on the listed parameters in injection in a dose of 300 mg/kg for three successive days. The protective effect of the new pyracetam dipeptide analog GVS-111 in relation to activation of free-radical processes induced by immobilization is additional proof of the antistress action of this dipeptide. PMID:9483398

  2. Rosiglitazone modulates pigeon atherosclerotic lipid accumulation and gene expression in vitro

    PubMed Central

    Anderson, J. L.; Keeley, M. C.; Smith, S. C.; Smith, E. C.; Taylor, R. L.

    2014-01-01

    Atherosclerosis is a major contributor to the overall United States mortality rate, primarily in the form of heart attacks and stroke. Unlike the human disease, which is believed to be multifactorial, pigeon atherosclerosis is due to a single gene autosomal recessive trait. The White Carneau (WC-As) strain develops atherosclerotic plaques without the presence of known environmental risk factors such as diet and classic predictors such as blood pressure or blood cholesterol levels. With similar parameters, the Show Racer (SR-Ar) is resistant to plaque development. Thiazolidinediones, including rosiglitazone, activate the peroxisome proliferator-activated receptor gamma (PPARγ) raising cellular sensitivity to insulin. The effect of rosiglitazone was evaluated in aortic smooth muscle cells (SMC) from these 2 pigeon breeds. Primary SMC cultures were prepared from WC-As and SR-Ar squabs. Cell monolayers, which achieved confluence in 7 d, were treated with 0 or 4 µM rosiglitazone for 24 h. Cellular lipid accumulation was evaluated by oil red O staining. Control WC-As cells had significantly higher vacuole scores and lipid content than did the SR-Ar control cells. Rosiglitazone treatment decreased WC-As lipid vacuoles significantly compared with the control cells. On the other hand, lipid vacuoles in the treated and untreated SR-Ar cells did not differ significantly. The effect of rosiglitazone on WC-As SMC gene expression was compared with control SMC using representational difference analysis. Significant transcript increases were found for caveolin and RNA binding motif in the control cells compared with the rosiglitazone-treated cells as well as cytochrome p450 family 17 subfamily A polypeptide 1 (CYP171A) in the rosiglitazone-treated cells compared with the control cells. Although rosiglitazone was selected for these experiments because of its role as a PPARγ agonist, it appears that the drug also tempers c-myc expression, as genes related to this second

  3. Rosiglitazone modulates pigeon atherosclerotic lipid accumulation and gene expression in vitro.

    PubMed

    Anderson, J L; Keeley, M C; Smith, S C; Smith, E C; Taylor, R L

    2014-06-01

    Atherosclerosis is a major contributor to the overall United States mortality rate, primarily in the form of heart attacks and stroke. Unlike the human disease, which is believed to be multifactorial, pigeon atherosclerosis is due to a single gene autosomal recessive trait. The White Carneau (WC-As) strain develops atherosclerotic plaques without the presence of known environmental risk factors such as diet and classic predictors such as blood pressure or blood cholesterol levels. With similar parameters, the Show Racer (SR-Ar) is resistant to plaque development. Thiazolidinediones, including rosiglitazone, activate the peroxisome proliferator-activated receptor gamma (PPARγ) raising cellular sensitivity to insulin. The effect of rosiglitazone was evaluated in aortic smooth muscle cells (SMC) from these 2 pigeon breeds. Primary SMC cultures were prepared from WC-As and SR-Ar squabs. Cell monolayers, which achieved confluence in 7 d, were treated with 0 or 4 µM rosiglitazone for 24 h. Cellular lipid accumulation was evaluated by oil red O staining. Control WC-As cells had significantly higher vacuole scores and lipid content than did the SR-Ar control cells. Rosiglitazone treatment decreased WC-As lipid vacuoles significantly compared with the control cells. On the other hand, lipid vacuoles in the treated and untreated SR-Ar cells did not differ significantly. The effect of rosiglitazone on WC-As SMC gene expression was compared with control SMC using representational difference analysis. Significant transcript increases were found for caveolin and RNA binding motif in the control cells compared with the rosiglitazone-treated cells as well as cytochrome p450 family 17 subfamily A polypeptide 1 (CYP171A) in the rosiglitazone-treated cells compared with the control cells. Although rosiglitazone was selected for these experiments because of its role as a PPARγ agonist, it appears that the drug also tempers c-myc expression, as genes related to this second

  4. Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation.

    PubMed

    Benning, C; Huang, Z H; Gage, D A

    1995-02-20

    Cells of the photosynthetic bacterium Rhodobacter sphaeroides grown under phosphate-limiting conditions accumulated nonphosphorous glycolipids and lipids carrying head groups derived from amino acids. Concomitantly, the relative amount of phosphoglycerolipids decreased from 90 to 22 mol% of total polar lipids in the membranes. Two lipids, not detectable in cells grown under standard conditions, were synthesized during phosphate-limited growth. Fast atom bombardment mass spectroscopy, exact mass measurements, 1H NMR spectroscopy, sugar composition analysis, and methylation analysis of the predominant glycolipid led to the identification of the novel compound 1,2-di-O-acyl-3-O-[alpha-D-glucopyranosyl-(1-->4)-O-beta-D-galactopyr anosyl]glycerol. The second lipid was identified as the betaine lipid 1,2-di-O-acyl-[4'-(N,N,N-trimethyl)-homoserine]glycerol by cochromatography employing an authentic standard from Chlamydomonas reinhardtii, fast atom bombardment mass spectroscopy, exact mass measurements, and 1H NMR spectroscopy. Prior to this observation, the occurrence of this lipid was thought to be restricted to lower plants and algae. Apparently, these newly synthesized nonphosphorous lipids, in addition to the sulfo- and the ornithine lipid also found in R. sphaeroides grown under optimal conditions, take over the role of phosphoglycerolipids in phosphate-deprived cells. PMID:7872771

  5. Growth and lipid accumulation of microalgae from fluctuating brackish and sea water locations in South East Queensland-Australia.

    PubMed

    Duong, Van Thang; Thomas-Hall, Skye R; Schenk, Peer M

    2015-01-01

    One challenge constraining the use of microalgae in the food and biofuels industry is growth and lipid accumulation. Microalgae with high growth characteristics are more likely to originate from the local environment. However, to be commercially effective, in addition to high growth microalgae must also have high lipid productivities and contain the desired fatty acids for their intended use. We isolated microalgae from intertidal locations in South East Queensland, Australia with adverse or fluctuating conditions, as these may harbor more opportunistic strains with high lipid accumulation potential. Screening was based on a standard protocol using growth rate and lipid accumulation as well as prioritizing fatty acid profiles suitable for biodiesel or nutraceuticals. Using these criteria, an initial selection of over 50 local microalgae strains from brackish and sea water was reduced to 16 strains considered suitable for further investigation. Among these 16 strains, the ones most likely to be effective for biodiesel feedstock were Nitzschia sp. CP3a, Tetraselmis sp. M8, Cymbella sp. CP2b, and Cylindrotheca closterium SI1c, reaching growth rates of up to 0.53 day(-1) and lipid productivities of 5.62 μg mL(-1)day(-1). Omega-3 fatty acids were found in some strains such as Nitzschia sp. CP2a, Nitzschia sp. CP3a and Cylindrotheca closterium SI1c. These strains have potential for further research as commercial food supplements. PMID:26042142

  6. Growth and lipid accumulation of microalgae from fluctuating brackish and sea water locations in South East Queensland—Australia

    PubMed Central

    Duong, Van Thang; Thomas-Hall, Skye R.; Schenk, Peer M.

    2015-01-01

    One challenge constraining the use of microalgae in the food and biofuels industry is growth and lipid accumulation. Microalgae with high growth characteristics are more likely to originate from the local environment. However, to be commercially effective, in addition to high growth microalgae must also have high lipid productivities and contain the desired fatty acids for their intended use. We isolated microalgae from intertidal locations in South East Queensland, Australia with adverse or fluctuating conditions, as these may harbor more opportunistic strains with high lipid accumulation potential. Screening was based on a standard protocol using growth rate and lipid accumulation as well as prioritizing fatty acid profiles suitable for biodiesel or nutraceuticals. Using these criteria, an initial selection of over 50 local microalgae strains from brackish and sea water was reduced to 16 strains considered suitable for further investigation. Among these 16 strains, the ones most likely to be effective for biodiesel feedstock were Nitzschia sp. CP3a, Tetraselmis sp. M8, Cymbella sp. CP2b, and Cylindrotheca closterium SI1c, reaching growth rates of up to 0.53 day−1 and lipid productivities of 5.62 μg mL−1day−1. Omega-3 fatty acids were found in some strains such as Nitzschia sp. CP2a, Nitzschia sp. CP3a and Cylindrotheca closterium SI1c. These strains have potential for further research as commercial food supplements. PMID:26042142

  7. Comprehensive metabolomic, lipidomic and microscopic profiling of Yarrowia lipolytica during lipid accumulation identifies targets for increased lipogenesis

    DOE PAGESBeta

    Pomraning, Kyle R.; Wei, Siwei; Karagiosis, Sue A.; Kim, Young-Mo; Dohnalkova, Alice; Arey, Bruce W.; Bredeweg, Erin L.; Orr, Galya; Metz, Thomas O.; Baker, Scott E.

    2015-04-23

    Yarrowia lipolytica is an oleaginous ascomycete yeast that accumulates large amounts of lipids and has potential as a biofuel producing organism. Despite a growing scientific literature focused on lipid production by Y. lipolytica, there remain significant knowledge gaps regarding the key biological processes involved. We applied a combination of metabolomic and lipidomic profiling approaches as well as microscopic techniques to identify and characterize the key pathways involved in de novo lipid accumulation from glucose in batch cultured, wild-type Y. lipolytica. We found that lipids accumulated rapidly and peaked at 48 hours during the five day experiment, concurrent with a shiftmore » in amino acid metabolism. We also report that Y. lipolytica secretes disaccharides early in batch culture and reabsorbs them when extracellular glucose is depleted. Exhaustion of extracellular sugars coincided with thickening of the cell wall, suggesting that genes involved in cell wall biogenesis may be a useful target for improving the efficiency of lipid producing yeast strains.« less

  8. Proteomics to reveal metabolic network shifts towards lipid accumulation following nitrogen deprivation in the diatom Phaeodactylum tricornutum.

    PubMed

    Yang, Zhi-Kai; Ma, Yu-Han; Zheng, Jian-Wei; Yang, Wei-Dong; Liu, Jie-Sheng; Li, Hong-Ye

    2014-01-01

    The marine diatom Phaeodactylum tricornutum is attracting considerable interest as a candidate for biofuel production due to its fast growth and high lipid content. Nitrogen deficiency can increase the lipid content in certain microalgae species, including P. tricornutum. However, the molecular basis of such changes remains unclear without analyzing metabolism at the proteomic level. We attempted to systematically analyze protein expression level changes of P. tricornutum upon N deprivation. We observed translational level changes that could overall redirect the metabolic network from carbon flux towards lipid accumulation. N deprivation led to an increase in the expression of genes involved in nitrogen assimilation and fatty acid biosynthesis and a concomitant decrease in photosynthesis and lipid catabolism enzymes. These molecular level changes are consistent with the observed physiological changes, e.g., in photosynthesis rate and saturated lipid content. Our results provide information at the proteomic level of the key enzymes involved in carbon flux towards lipid accumulation in P. tricornutum and suggest candidates for genetic manipulation in microalgae breeding for biodiesel production. PMID:24600163

  9. GLP-1 analogue improves hepatic lipid accumulation by inducing autophagy via AMPK/mTOR pathway.

    PubMed

    He, Qin; Sha, Sha; Sun, Lei; Zhang, Jing; Dong, Ming

    2016-08-01

    The incidence of nonalcoholic fatty liver disease (NAFLD) keeps rising year by year, and NAFLD is rapidly becoming the most common liver disease worldwide. Clinical studies have found that glucagon-like peptide-1 (GLP-1) analogue, liraglutide (LRG), cannot only reduce glucose levels, but also improve hepatic lipase, especially in patients also with type 2 diabetes mellitus (T2DM). In addition, enhancing autophagy decreases lipid accumulation in hepatocytes. The aim of the present study is to explore the effect of LRG on hepatocyte steatosis and the possible role of autophagy. We set up an obesity mouse model with a high-fat diet (HFD) and induced hepatocyte steatosis with free fatty acids (FFA) in human L-O2 cells. LRG and two inhibitors of autophagy, Chloroquine (CQ) and bafilomycin A1 (Baf), were added into each group, respectively. The lipid profiles and morphological modifications of each group were tested. Immunohistochemistry, immunofluorescence staining and transmission electron microscopy (TEM) were used to measure autophagy in this study. The autophagy protein expression of SQSTM1 (P62), and LC3B, along with the signaling pathway proteins of mTOR, phosphorylated mTOR (p-mTOR), AMPK, phosphorylated AMPK (p-AMPK) and Beclin1, were evaluated by western blot. Our results showed that LRG improved hepatocyte steatosis by inducing autophagy, and the AMPK/mTOR pathway is involved. These findings suggest an important mechanism for the positive effects of LRG on hepatic steatosis, and provide new evidence for clinical use of LRG in NAFLD. PMID:27208776

  10. Antiatherogenic activity of fungal beauveriolides, inhibitors of lipid droplet accumulation in macrophages

    PubMed Central

    Namatame, Ichiji; Tomoda, Hiroshi; Ishibashi, Shun; Ōmura, Satoshi

    2004-01-01

    Beauveriolides I and III, isolated from the culture broth of fungal Beauveria sp. FO-6979, showed potent inhibitory activity of lipid droplet accumulation in primary mouse peritoneal macrophages. The cellular molecular target of this inhibitory activity was studied in macrophages. Beauveriolides I and III strongly inhibited the cholesteryl ester (CE) synthesis with IC50 values of 0.78 and 0.41 μM, respectively, without showing significant effects on the triacylglycerol and phospholipid synthesis. Furthermore, lysosomal cholesterol metabolism to CE in macrophages was inhibited by the compounds, indicating that the inhibition site lies within steps between cholesterol departure from the lysosome and CE synthesis in the endoplasmic reticulum. Therefore, acyl-CoA:cholesterol acyltransferase (ACAT) activity in the membrane fractions prepared from mouse macrophages was studied, resulting in a dose-dependent inhibition by beauveriolides I and III with IC50 values of 6.0 and 5.5 μM, respectively. Thus, we showed that the beauveriolides inhibit macrophage ACAT activity specifically, resulting in blockage of the CE synthesis, leading to a reduction of lipid droplets in macrophages. ACAT activity in the membrane fractions prepared from mouse liver and Caco-2 cells was also inhibited, indicating that the beauveriolides block both ACAT-1 and -2. Moreover, beauveriolides I and III exert antiatherogenic activity in both low-density lipoprotein receptor- and apolipoprotein E-knockout mice without any side effects such as diarrhea or cytotoxicity to adrenal tissues as observed for many synthetic ACAT inhibitors. Beauveriolides I and III are the first microbial cyclodepsipeptides having an in vivo antiatherosclerotic effect and show promise as potential lead compounds for antiatherosclerotic agents. PMID:14718664

  11. Antiatherogenic activity of fungal beauveriolides, inhibitors of lipid droplet accumulation in macrophages.

    PubMed

    Namatame, Ichiji; Tomoda, Hiroshi; Ishibashi, Shun; Omura, Satoshi

    2004-01-20

    Beauveriolides I and III, isolated from the culture broth of fungal Beauveria sp. FO-6979, showed potent inhibitory activity of lipid droplet accumulation in primary mouse peritoneal macrophages. The cellular molecular target of this inhibitory activity was studied in macrophages. Beauveriolides I and III strongly inhibited the cholesteryl ester (CE) synthesis with IC(50) values of 0.78 and 0.41 microM, respectively, without showing significant effects on the triacylglycerol and phospholipid synthesis. Furthermore, lysosomal cholesterol metabolism to CE in macrophages was inhibited by the compounds, indicating that the inhibition site lies within steps between cholesterol departure from the lysosome and CE synthesis in the endoplasmic reticulum. Therefore, acyl-CoA:cholesterol acyltransferase (ACAT) activity in the membrane fractions prepared from mouse macrophages was studied, resulting in a dose-dependent inhibition by beauveriolides I and III with IC(50) values of 6.0 and 5.5 microM, respectively. Thus, we showed that the beauveriolides inhibit macrophage ACAT activity specifically, resulting in blockage of the CE synthesis, leading to a reduction of lipid droplets in macrophages. ACAT activity in the membrane fractions prepared from mouse liver and Caco-2 cells was also inhibited, indicating that the beauveriolides block both ACAT-1 and -2. Moreover, beauveriolides I and III exert antiatherogenic activity in both low-density lipoprotein receptor- and apolipoprotein E-knockout mice without any side effects such as diarrhea or cytotoxicity to adrenal tissues as observed for many synthetic ACAT inhibitors. Beauveriolides I and III are the first microbial cyclodepsipeptides having an in vivo antiatherosclerotic effect and show promise as potential lead compounds for antiatherosclerotic agents. PMID:14718664

  12. Angiotensinogen Gene Silencing Reduces Markers of Lipid Accumulation and Inflammation in Cultured Adipocytes

    PubMed Central

    Carroll, Wenting X.; Kalupahana, Nishan S.; Booker, Suzanne L.; Siriwardhana, Nalin; LeMieux, Monique; Saxton, Arnold M.; Moustaid-Moussa, Naima

    2013-01-01

    Inflammatory adipokines secreted from adipose tissue are major contributors to obesity-associated inflammation and other metabolic dysfunctions. We and others have recently documented the contribution of adipose tissue renin-angiotensin system to the pathogenesis of obesity, inflammation, and insulin resistance. We hypothesized that adipocyte-derived angiotensinogen (Agt) plays a critical role in adipogenesis and/or lipogenesis as well as inflammation. This was tested using 3T3-L1 adipocytes, stably transfected with Agt-shRNA or scrambled Sc-shRNA as a control. Transfected preadipocytes were differentiated and used to investigate the role of adipose Agt through microarray and PCR analyses and adipokine profiling. As expected, Agt gene silencing significantly reduced the expression of Agt and its hormone product angiotensin II (Ang II), as well as lipid accumulation in 3T3-L1 adipocytes. Microarray studies identified several genes involved in lipid metabolism and inflammatory pathways which were down-regulated by Agt gene inactivation, such as glycerol-3-phosphate dehydrogenase 1 (Gpd1), serum amyloid A 3 (Saa3), nucleotide-binding oligomerization domain containing 1 (Nod1), and signal transducer and activator of transcription 1 (Stat1). Mouse adipogenesis PCR arrays revealed lower expression levels of adipogenic/lipogenic genes such as peroxisome proliferator activated receptor gamma (PPARγ), sterol regulatory element binding transcription factor 1 (Srebf1), adipogenin (Adig), and fatty acid binding protein 4 (Fabp4). Further, silencing of Agt gene significantly lowered expression of pro-inflammatory adipokines including interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and monocyte chemotactic protein-1 (MCP-1). In conclusion, this study directly demonstrates critical effects of Agt in adipocyte metabolism and inflammation and further support a potential role for adipose Agt in the pathogenesis of obesity-associated metabolic alterations. PMID:23483012

  13. Role of Nrf2 in preventing ethanol-induced oxidative stress and lipid accumulation

    SciTech Connect

    Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D.

    2012-08-01

    Oxidative stress and lipid accumulation play important roles in alcohol-induced liver injury. Previous reports showed that, in livers of nuclear factor erythroid 2-related factor 2 (Nrf2)-activated mice, genes involved in antioxidant defense are induced, whereas genes involved in lipid biosynthesis are suppressed. To investigate the role of Nrf2 in ethanol-induced hepatic alterations, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation, were treated with ethanol (5 g/kg, po). Blood and liver samples were collected 6 h thereafter. Ethanol increased alanine aminotransferase and lactate dehydrogenase activities as well as thiobarbituric acid reactive substances in serum of Nrf2-null and wild-type mice, but not in Nrf2-enhanced mice. After ethanol administration, mitochondrial glutathione concentrations decreased markedly in Nrf2-null mice but not in Nrf2-enhanced mice. H{sub 2}DCFDA staining of primary hepatocytes isolated from the four genotypes of mice indicates that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. Ethanol increased serum triglycerides and hepatic free fatty acids in Nrf2-null mice, and these increases were blunted in Nrf2-enhanced mice. In addition, the basal mRNA and nuclear protein levels of sterol regulatory element-binding protein 1(Srebp-1) were decreased with graded Nrf2 activation. Ethanol further induced Srebp-1 mRNA in Nrf2-null mice but not in Nrf2-enhanced mice. In conclusion, Nrf2 activation prevented alcohol-induced oxidative stress and accumulation of free fatty acids in liver by increasing genes involved in antioxidant defense and decreasing genes involved in lipogenesis. -- Highlights: ► Ethanol depleted mitochondrial GSH in Nrf2-null mice but not in Keap1-KD mice. ► Ethanol increased ROS in hepatocytes isolated from Nrf2-null and wild

  14. Graphic comparison of reserve-growth models for conventional oil and accumulation

    USGS Publications Warehouse

    Klett, T.R.

    2003-01-01

    The U.S. Geological Survey (USGS) periodically assesses crude oil, natural gas, and natural gas liquids resources of the world. The assessment procedure requires estimated recover-able oil and natural gas volumes (field size, cumulative production plus remaining reserves) in discovered fields. Because initial reserves are typically conservative, subsequent estimates increase through time as these fields are developed and produced. The USGS assessment of petroleum resources makes estimates, or forecasts, of the potential additions to reserves in discovered oil and gas fields resulting from field development, and it also estimates the potential fully developed sizes of undiscovered fields. The term ?reserve growth? refers to the commonly observed upward adjustment of reserve estimates. Because such additions are related to increases in the total size of a field, the USGS uses field sizes to model reserve growth. Future reserve growth in existing fields is a major component of remaining U.S. oil and natural gas resources and has therefore become a necessary element of U.S. petroleum resource assessments. Past and currently proposed reserve-growth models compared herein aid in the selection of a suitable set of forecast functions to provide an estimate of potential additions to reserves from reserve growth in the ongoing National Oil and Gas Assessment Project (NOGA). Reserve growth is modeled by construction of a curve that represents annual fractional changes of recoverable oil and natural gas volumes (for fields and reservoirs), which provides growth factors. Growth factors are used to calculate forecast functions, which are sets of field- or reservoir-size multipliers. Comparisons of forecast functions were made based on datasets used to construct the models, field type, modeling method, and length of forecast span. Comparisons were also made between forecast functions based on field-level and reservoir- level growth, and between forecast functions based on older

  15. The HIV matrix protein p17 induces hepatic lipid accumulation via modulation of nuclear receptor transcriptoma

    PubMed Central

    Renga, Barbara; Francisci, Daniela; Carino, Adriana; Marchianò, Silvia; Cipriani, Sabrina; Chiara Monti, Maria; Del Sordo, Rachele; Schiaroli, Elisabetta; Distrutti, Eleonora; Baldelli, Franco; Fiorucci, Stefano

    2015-01-01

    Liver disease is the second most common cause of mortality in HIV-infected persons. Exactly how HIV infection per se affects liver disease progression is unknown. Here we have investigated mRNA expression of 49 nuclear hormone receptors (NRs) and 35 transcriptional coregulators in HepG2 cells upon stimulation with the HIV matrix protein p17. This viral protein regulated mRNA expression of some NRs among which LXRα and its transcriptional co-activator MED1 were highly induced at mRNA level. Dissection of p17 downstream intracellular pathway demonstrated that p17 mediated activation of Jak/STAT signaling is responsible for the promoter dependent activation of LXR. The treatment of both HepG2 as well as primary hepatocytes with HIV p17 results in the transcriptional activation of LXR target genes (SREBP1c and FAS) and lipid accumulation. These effects are lost in HepG2 cells pre-incubated with a serum from HIV positive person who underwent a vaccination with a p17 peptide as well as in HepG2 cells pre-incubated with the natural LXR antagonist gymnestrogenin. These results suggest that HIV p17 affects NRs and their related signal transduction thus contributing to the progression of liver disease in HIV infected patients. PMID:26469385

  16. Small Molecule-Induced Complement Factor D (Adipsin) Promotes Lipid Accumulation and Adipocyte Differentiation.

    PubMed

    Song, No-Joon; Kim, Suji; Jang, Byung-Hyun; Chang, Seo-Hyuk; Yun, Ui Jeong; Park, Ki-Moon; Waki, Hironori; Li, Dean Y; Tontonoz, Peter; Park, Kye Won

    2016-01-01

    Adipocytes are differentiated by various transcriptional cascades integrated on the master regulator, Pparγ. To discover new genes involved in adipocyte differentiation, preadipocytes were treated with three newly identified pro-adipogenic small molecules and GW7845 (a Pparγ agonist) for 24 hours and transcriptional profiling was analyzed. Four genes, Peroxisome proliferator-activated receptor γ (Pparγ), human complement factor D homolog (Cfd), Chemokine (C-C motif) ligand 9 (Ccl9), and GIPC PDZ Domain Containing Family Member 2 (Gipc2) were induced by at least two different small molecules but not by GW7845. Cfd and Ccl9 expressions were specific to adipocytes and they were altered in obese mice. Small hairpin RNA (shRNA) mediated knockdown of Cfd in preadipocytes inhibited lipid accumulation and expression of adipocyte markers during adipocyte differentiation. Overexpression of Cfd promoted adipocyte differentiation, increased C3a production, and led to induction of C3a receptor (C3aR) target gene expression. Similarly, treatments with C3a or C3aR agonist (C4494) also promoted adipogenesis. C3aR knockdown suppressed adipogenesis and impaired the pro-adipogenic effects of Cfd, further suggesting the necessity for C3aR signaling in Cfd-mediated pro-adipogenic axis. Together, these data show the action of Cfd in adipogenesis and underscore the application of small molecules to identify genes in adipocytes. PMID:27611793

  17. Changes in gluconeogenesis and intracellular lipid accumulation characterize uremic human hepatocytes ex vivo.

    PubMed

    Li, Meng; Ellis, Ewa; Johansson, Helene; Nowak, Greg; Isaksson, Bengt; Gnocchi, Davide; Parini, Paolo; Axelsson, Jonas

    2016-06-01

    It is well known that reduced glomerular filtration rate (GFR) leads to an increased risk of dyslipidemia, insulin resistance, and cardiovascular mortality. The liver is a central organ for metabolism, but its function in the uremic setting is still poorly characterized. We used human primary hepatocytes isolated from livers of nine donors with normal renal function to investigate perturbations in key metabolic pathways following exposure to uremic (n = 8) or healthy (n = 8) sera, and to serum-free control medium. Both uremic and healthy elicited consistent responses from hepatocytes from multiple donors and compared with serum-free control. However, at physiological insulin concentrations, uremic cells accumulated 56% more intracellular lipids. Also, when comparing uremic with healthy medium after culture, it contained more very-low-density lipoprotein-triglyceride and glucose. These changes were accompanied by decreased phosphorylation of AktS473 mRNA levels of key regulators of gluconeogenesis in uremic sera-treated hepatocytes such as phosphoenolpyruvate carboxykinase 1 and glucose 6-phosphate were elevated. We also found increased expression of 11β-hydroxysteroid dehydrogenase mRNA in uremic cells, along with high phosphorylation of downstream p53 and phospholipase C-γ1Y783 Thus our ex vivo data suggest that the uremic hepatocytes rapidly develop a glycogenic and lipogenic condition accompanied by perturbations in a large number of signaling networks. PMID:27056725

  18. Empagliflozin Protects against Diet-Induced NLRP-3 Inflammasome Activation and Lipid Accumulation.

    PubMed

    Benetti, Elisa; Mastrocola, Raffaella; Vitarelli, Giovanna; Cutrin, Juan Carlos; Nigro, Debora; Chiazza, Fausto; Mayoux, Eric; Collino, Massimo; Fantozzi, Roberto

    2016-10-01

    The aim of this study was to evaluate the effects of chronic treatment with empagliflozin, a potent and selective sodium glucose cotransporter-2 inhibitor, in a murine model of diet-induced obesity and insulin resistance, focusing on drug effects on body weight reduction and nucleotide-binding domain, leucine-rich repeat containing protein (NLRP)-3 inflammasome activation, which have never been investigated to date. Male C57BL/6 mice were fed control or a high fat-high sugar (HFHS) diet for 4 months. Over the last 2 months, subsets of animals were treated with empagliflozin (1-10 mg/kg) added to the diet. Empagliflozin evoked body weight reduction (P < 0.001 for the highest dose) and positive effects on fasting glycemia and homeostasis model assessment of insulin resistance. In addition, the drug was able to reduce renal tubular damage and liver triglycerides level in a dose-dependent manner. Interestingly, empagliflozin also decreased cardiac lipid accumulation. Moreover, diet-induced activation of NLRP-3 in kidney and liver (not observed in the heart) was dose-dependently attenuated by empagliflozin. Our results clearly demonstrate the ability of empagliflozin to counteract the deleterious effects evoked by chronic exposure to HFHS diet. Most notably, empagliflozin treatment was associated with NLRP-3 inflammasome signaling modulation, suggesting that this inhibition may contribute to the drug therapeutic effects. PMID:27440421

  19. Effects of repeated Chlamydia pneumoniae inoculations on aortic lipid accumulation and inflammatory response in C57BL/6J mice.

    PubMed

    Törmäkangas, Liisa; Erkkilä, Leena; Korhonen, Taina; Tiirola, Terttu; Bloigu, Aini; Saikku, Pekka; Leinonen, Maija

    2005-10-01

    Chlamydia pneumoniae is a common respiratory tract pathogen, and persistent infections have been associated with atherosclerosis. We studied the effects of repeated chlamydial inoculations on the inflammatory response and on aortic lipid accumulation in C57BL/6J mice. Mice fed a diet supplemented with 0.2% cholesterol were infected three or six times with C. pneumoniae every fourth week. Sera and lungs were analyzed for inflammatory responses, lung tissues were tested for the presence of C. pneumoniae DNA and RNA, and intimal lipid accumulation in the aortic sinus was quantified. High levels of chlamydial heat shock protein 60 (Hsp60) immunoglobulin G2c subclass antibodies were detected in all of the infected mice, and a positive and statistically significant correlation was found between these antibodies and autoantibodies against mouse Hsp60. Both Hsp60 antibody levels correlated with the severity of lung tissue inflammation. The cholesterol supplement in the diet had no effect on serum cholesterol levels. Significantly larger intimal lipid lesions were seen in the mouse group infected six times (6,542 mum(2)) than in the control group (1,376 mum(2); P = 0.034). In conclusion, repeated inoculations increased aortic sinus lipid accumulation in normocholesterolemic mice. The correlation between the antibodies to mouse and chlamydial Hsp60 proteins and their association with lung inflammation further support the theory of the development of an autoimmune response against heat shock proteins after repeated chlamydial infections. PMID:16177317

  20. Optimized Rapeseed Oils Rich in Endogenous Micronutrients Protect High Fat Diet Fed Rats from Hepatic Lipid Accumulation and Oxidative Stress

    PubMed Central

    Xu, Jiqu; Liu, Xiaoli; Gao, Hui; Chen, Chang; Deng, Qianchun; Huang, Qingde; Ma, Zhonghua; Huang, Fenghong

    2015-01-01

    Micronutrients in rapeseed exert a potential benefit to hepatoprotection, but most of them are lost during the conventional refining processing. Thus some processing technologies have been optimized to improve micronutrient retention in oil. The aim of this study is to assess whether optimized rapeseed oils (OROs) have positive effects on hepatic lipid accumulation and oxidative stress induced by a high-fat diet. Methods: Rats received experiment diets containing 20% fat and refined rapeseed oil or OROs obtained with various processing technologies as lipid source. After 10 weeks of treatment, liver was assayed for lipid accumulation and oxidative stress. Results: All OROs reduced hepatic triglyceride contents. Microwave pretreatment-cold pressing oil (MPCPO) which had the highest micronutrients contents also reduced hepatic cholesterol level. MPCPO significantly decreased hepatic sterol regulatory element-binding transcription factor 1 (SREBP1) but increased peroxisome proliferator activated receptor α (PPARα) expressions, and as a result, MPCPO significantly suppressed acetyl CoA carboxylase and induced carnitine palmitoyl transferase-1 and acyl CoA oxidase expression. Hepatic catalase (CAT) and glutathione peroxidase (GPx) activities as well as reduced glutathione (GSH) contents remarkably increased and lipid peroxidation levels decreased in parallel with the increase of micronutrients. Conclusion: OROs had the ability to reduce excessive hepatic fat accumulation and oxidative stress, which indicated that OROs might contribute to ameliorating nonalcoholic fatty liver induced by high-fat diet. PMID:26473919

  1. The relative contribution of intramyocellular lipid to whole body fat oxidation is reduced with age, but subsarcolemmal lipid accumulation and insulin resistance are only associated with overweight individuals

    PubMed Central

    Chee, Carolyn; Shannon, Chris E.; Burns, Aisling; Selby, Anna L.; Wilkinson, Daniel; Smith, Kenneth; Greenhaff, Paul L.; Stephens, Francis B.

    2016-01-01

    Insulin resistance is closely related to intramyocellular lipid (IMCL) accumulation, and both are associated with increasing age. It remains to be determined to what extent perturbations in IMCL metabolism are related to the ageing process per se. On two separate occasions whole-body and muscle insulin sensitivity (euglycaemic hyperinsulinaemic clamp with 2-deoxyglucose) and fat utilisation during 1 h of exercise at 50% VO2max ([U-13C]palmitate infusion combined with electron microscopy of IMCL) were determined in young lean (YL), old lean (OL), and old overweight (OO) males. OL displayed comparable IMCL content and insulin sensitivity to YL, whereas OO were markedly insulin resistant and had over 2-fold greater IMCL in the subsarcolemmal (SSL) region. Indeed, whereas the plasma free fatty acid rate of appearance and disappearance was twice that of YL in both OL and OO, SSL only increased during exercise in OO. Thus, skeletal muscle insulin resistance and lipid accumulation often observed in older individuals are likely due to lifestyle factors, rather than inherent ageing of skeletal muscle as usually reported. However, age per se appears to cause exacerbated adipose tissue lipolysis, suggesting that strategies to reduce muscle lipid delivery and improve adipose tissue function may be warranted in older overweight individuals. The global prevalence of type 2 diabetes is most apparent in older people (1), and it is estimated that the number of people over 65 years of age with diabetes will have increased 4.5 fold by 2050 (2). Gaining mechanistic insight of age related insulin resistance and strategies to improve insulin sensitivity with age are clearly warranted. Although ageing is associated with insulin resistance, age per se does not appear to cause insulin resistance (3, 4, 5). Several factors that likely contribute to age related insulin resistance include increased abdominal adiposity and reduced physical activity (3, 4), along with declines in muscle mass (6

  2. Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production.

    PubMed

    Mishra, Pranjul; Park, Gyu-Yeon; Lakshmanan, Meiyappan; Lee, Hee-Seok; Lee, Hongweon; Chang, Matthew Wook; Ching, Chi Bun; Ahn, Jungoh; Lee, Dong-Yup

    2016-09-01

    Recently, the bio-production of α,ω-dicarboxylic acids (DCAs) has gained significant attention, which potentially leads to the replacement of the conventional petroleum-based products. In this regard, the lipid accumulating yeast Candida tropicalis, has been recognized as a promising microbial host for DCA biosynthesis: it possess the unique ω-oxidation pathway where the terminal carbon of α-fatty acids is oxidized to form DCAs with varying chain lengths. However, despite such industrial importance, its cellular physiology and lipid accumulation capability remain largely uncharacterized. Thus, it is imperative to better understand the metabolic behavior of this lipogenic yeast, which could be achieved by a systems biological approach. To this end, herein, we reconstructed the genome-scale metabolic model of C. tropicalis, iCT646, accounting for 646 unique genes, 945 metabolic reactions, and 712 metabolites. Initially, the comparative network analysis of iCT646 with other yeasts revealed several distinctive metabolic reactions, mainly within the amino acid and lipid metabolism including the ω-oxidation pathway. Constraints-based flux analysis was, then, employed to predict the in silico growth rates of C. tropicalis which are highly consistent with the cellular phenotype observed in glucose and xylose minimal media chemostat cultures. Subsequently, the lipid accumulation capability of C. tropicalis was explored in comparison with Saccharomyces cerevisiae, indicating that the formation of "citrate pyruvate cycle" is essential to the lipid accumulation in oleaginous yeasts. The in silico flux analysis also highlighted the enhanced ability of pentose phosphate pathway as NADPH source rather than malic enzyme during lipogenesis. Finally, iCT646 was successfully utilized to highlight the key directions of C. tropicalis strain design for the whole cell biotransformation application to produce long-chain DCAs from alkanes. Biotechnol. Bioeng. 2016;113: 1993-2004.

  3. Temperature induced modulation of lipid oxidation and lipid accumulation in palmitate-mediated 3T3-L1 adipocytes and 3T3-L1 adipocytes.

    PubMed

    Lin, Xiaofen; Li, Yi; Leung, Polly Hangmei; Li, Jiashen; Hu, Junyan; Liu, Xuan; Li, Zhi

    2016-05-01

    Human skin temperature can vary widely depending on anatomical location and ambient temperature. It is also known that local changes in skin and subcutaneous temperature can affect fat metabolism. This study aimed to explore the potential effects of surrounding thermal environment on fat by investigating cell viability, lipid oxidation, and lipid accumulation in 3T3-L1 adipocytes and palmitate-treated adipocytes after 4h incubation. No significant differences of viability in 3T3-L1 adipocytes were detected under different temperature conditions. Despite no significant increase being observed under warm temperature (39°C) conditions, a similarly significant suppression of intracellular reactive oxygen species (ROS) and lipid peroxidation were found in 3T3-L1 adipocytes and palmitate-treated adipocytes under 4h exposure to cooler temperatures of 31-33°C (P<0.01). ROS, chemically reactive molecules containing oxygen, are currently understood to be a major contributor to oxidantive stress in obesity. Additionally, cooler temperatures (31-33°C) could improve the size of lipid droplets in 3T3-L1 adipocytes (P<0.01), but no significant effect was generated by temperature change on lipid droplets in palmitate-treated adipocytes. In the palmitate-induced adiposity model, although excessive ROS and lipid peroxidation has been attenuated by temperature decrease (P<0.01), it still does not positively modulate lipid droplet size (P>0.05) and remedy the palmitate damage induced cell death (P<0.01). These findings provide preliminary support for potential interventions based on temperature manipulation for cell metabolism of adipocytes. PMID:27157327

  4. The effect of myostatin on proliferation and lipid accumulation in 3T3-L1 preadipocytes.

    PubMed

    Zhu, Hui Juan; Pan, Hui; Zhang, Xu Zhe; Li, Nai Shi; Wang, Lin Jie; Yang, Hong Bo; Gong, Feng Ying

    2015-06-01

    Myostatin is a critical negative regulator of skeletal muscle development, and has been reported to be involved in the progression of obesity and diabetes. In the present study, we explored the effects of myostatin on the proliferation and differentiation of 3T3-L1 preadipocytes by using 3-[4,5-dimethylthiazol-2-yl] 2,5-diphenyl tetrazolium bromide spectrophotometry, intracellular triglyceride (TG) assays, and real-time quantitative RT-PCR methods. The results indicated that recombinant myostatin significantly promoted the proliferation of 3T3-L1 preadipocytes and the expression of proliferation-related genes, including Cyclin B2, Cyclin D1, Cyclin E1, Pcna, and c-Myc, and IGF1 levels in the medium of 3T3-L1 were notably upregulated by 35.2, 30.5, 20.5, 33.4, 51.2, and 179% respectively (all P<0.01) in myostatin-treated 3T3-L1 cells. Meanwhile, the intracellular lipid content of myostatin-treated cells was notably reduced as compared with the non-treated cells. Additionally, the mRNA levels of Pparγ, Cebpα, Gpdh, Dgat, Acs1, Atgl, and Hsl were significantly downregulated by 22-76% in fully differentiated myostatin-treated adipocytes. Finally, myostatin regulated the mRNA levels and secretion of adipokines, including Adiponectin, Resistin, Visfatin, and plasminogen activator inhibitor-1 (PAI-1) in 3T3-L1 adipocytes (all P<0.001). Above all, myostatin promoted 3T3-L1 proliferation by increasing the expression of cell-proliferation-related genes and by stimulating IGF1 secretion. Myostatin inhibited 3T3-L1 adipocyte differentiation by suppressing Pparγ and Cebpα expression, which consequently deceased lipid accumulation in 3T3-L1 cells by inhibiting the expression of critical lipogenic enzymes and by promoting the expression of lipolytic enzymes. Finally, myostatin modulated the expression and secretion of adipokines in fully differentiated 3T3-L1 adipocytes. PMID:25878062

  5. Molecular mechanism of age-specific hepatic lipid accumulation in PPARalpha (+/-):LDLR (+/-) mice, an obese mouse model.

    PubMed

    Li, Yufeng; Sugiyama, Eiko; Yokoyama, Shin; Jiang, Lingling; Tanaka, Naoki; Aoyama, Toshifumi

    2008-04-01

    This study aimed to clarify the molecular mechanisms of age-specific hepatic lipid accumulation accompanying hyperinsulinemia in a peroxisome proliferator-activated receptor alpha (PPARalpha) (+/-):low-density lipoprotein receptor (LDLR) (+/-) mouse line. The hepatic fat content, protein amounts, and mRNA levels of genes involved in hepatic lipid metabolism were analyzed in 25-, 50-, 75- and 100-week-old mice. Severe fatty liver was confirmed only in 50- and 75-week-old mice. The hepatic expression of proteins that function in lipid transport and catabolism did not differ among the groups. In contrast, the mRNA levels and protein amounts of lipogenic enzymes, including acetyl-coenzyme A carboxylase-1, fatty acid synthase, and glycerol-3-phosphate acyltransferase, enhanced in the mice with fatty liver. Elevated mRNA and protein levels of lipoprotein lipase and fatty acid translocase, which are involved in hepatic lipid uptake, were also detected in mice with fatty liver. Moreover, both protein and mRNA levels of sterol regulatory element-binding protein-1 (SREBP-1), a transcription factor regulating lipid synthesis, had age-specific patterns similar to those of the proteins described above. Therefore, the age-specific fatty liver found in the PPARalpha (+/-):LDLR (+/-) mouse line is probably caused by age-specific expression of SREBP-1 and its downstream lipogenic genes, coordinated by the increased uptake of lipids. All of these factors might be affected by age-specific changes in serum insulin concentration. PMID:18335269

  6. Accumulation of High-Value Lipids in Single-Cell Microorganisms: A Mechanistic Approach and Future Perspectives

    PubMed Central

    2015-01-01

    In recent years attention has been focused on the utilization of microorganisms as alternatives for industrial and nutritional applications. Considerable research has been devoted to techniques for growth, extraction, and purification of high-value lipids for their use as biofuels and biosurfactants as well as high-value metabolites for nutrition and health. These successes argue that the elucidation of the mechanisms underlying the microbial biosynthesis of such molecules, which are far from being completely understood, now will yield spectacular opportunities for industrial scale biomolecular production. There are important additional questions to be solved to optimize the processing strategies to take advantage of the assets of microbial lipids. The present review describes the current state of knowledge regarding lipid biosynthesis, accumulation, and transport mechanisms present in single-cell organisms, specifically yeasts, microalgae, bacteria, and archaea. Similarities and differences in biochemical pathways and strategies of different microorganisms provide a diverse toolset to the expansion of biotechnologies for lipid production. This paper is intended to inspire a generation of lipid scientists to insights that will drive the biotechnologies of microbial production as uniquely enabling players of lipid biotherapeutics, biofuels, biomaterials, and other opportunity areas into the 21st century. PMID:24628496

  7. Lipid reserves of Lesser Scaup (Aythya Affinis) migrating across a large landscape are consistent with the "Spring Condition" hypothesis

    USGS Publications Warehouse

    Anteau, M.J.; Afton, A.D.

    2009-01-01

    The "spring condition" hypothesis (SCH) states that nutrition during spring migration affects survival, reproductive success, and, ultimately, population size of migratory birds. The North American population of Lesser Scaup (Aythya affinis) has experienced a marked decline, apparently because of poor recruitment. An important prediction of the SCH is that female Lesser Scaup have low lipid reserves during spring migration. We previously reported that lipid reserves and body mass of females collected on migratory stopover areas in northwestern Minnesota in springs 2000-2001 were lower than those on the same areas in the 1980s and markedly lower than those collected at Pool 19 of the Mississippi River in 2000-2001, an important preceding stopover area. However, it was unclear whether these findings represented a site-specific result or a landscape-scale phenomenon. Accordingly, we examined lipid and body mass of 641 female Lesser Scaup migrating across seven eco-physiographic regions of Iowa, Minnesota, and North Dakota during springs 2003-2005. We found that lipids and body mass of females throughout the Upper Midwest were similar to or less than the low values documented in northwestern Minnesota in springs 2000-2001 and markedly lower than those of females at Pool 19 in springs 2000-2001. Accordingly, our results are consistent with a prediction of the SCH, because lipid and body mass of females are low throughout this large landscape, lower than at an important preceding stopover area, and lower than all historical values. Finally, our results suggest the potential for cross-seasonal influences of nutrition on recruitment and that a stronger management focus on spring migration habitats may be necessary for conservation and recovery of declining migratory birds, especially Lesser Scaup. ?? The American Ornithologists' Union, 2009.

  8. Effects of protein, lipid, or carbohydrate supplementation on hepatic lipid accumulation during rapid weight loss in obese cats.

    PubMed

    Biourge, V C; Massat, B; Groff, J M; Morris, J G; Rogers, Q R

    1994-10-01

    Effects of restricted tube-feeding (25% of energy requirements) of protein, lipid, or carbohydrates on body weight loss; hematologic and clinical chemical variables; plasma lipid and amino acid concentrations; nitrogen balance; and hepatic histologic features and lipid concentrations were compared with values in voluntary-fasting cats (control, CON). Twelve obese cats (6.1 +/- 0.1 kg, > 40% above optimal body weight) were randomly assigned to 4 matched treatment groups (n = 3)--protein (PRO), lipid (LIP), carbohydrate (CHO), and CON--and were offered a low-palatability diet for 4 weeks. Cats of the PRO, LIP, and CHO groups were also tube-fed isocaloric amounts (88 kcal of metabolizable energy) of a casein-soybean protein mixture, corn oil, or a dextrin-dextrose mixture, respectively, during the 4 weeks. All cats fasted, rather than eat the low-palatability purified diet. Cats of the PRO group lost weight at a lower rate (P < 0.05) than did cats of other groups. After 4 weeks of fasting, serum alkaline phosphatase activities were higher than reference values in all cats of the CON and LIP groups and in 2 cats of the CHO group. At that time, 1 cat of the LIP group had lethargy, hepatomegaly, and hyperbilirubinemia. Total hepatic lipid and triglyceride concentrations increased in all groups during the study, but the increase was significantly (P < 0.05) less in cats of the PRO group, compared with those of the CON and LIP groups, and those of the CHO group, compared with those of the LIP group.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7998698

  9. Carnosic Acid Inhibits Lipid Accumulation in 3T3-L1 Adipocytes Through Attenuation of Fatty Acid Desaturation

    PubMed Central

    Park, Mi-Young; Sung, Mi-Kyung

    2015-01-01

    Background: Excess body fat accumulation contributes to the development of metabolic disorders that can cause adverse health effects. Carnosic acid (CA), a major bioactive component of rosemary (Rosemarinus officinalis), has been suggested to possess anti-adipogenic properties. The present study was conducted to elucidate the mechanism underlying the anti-adipogenic effects of CA. Methods: 3T3-L1 pre-adipocytes were treated with CA (0.1, 1, and 10 μM) from day 0 to day 8 of differentiation. On day 8, biochemical markers of lipid accumulation and the degree of fatty acid desaturation were measured. Results: Oil Red O staining results, triglyceride (TG) accumulation, and glycerol 3-phosphate dehydrogenase activity suggested that CA significantly inhibited lipid accumulation in 3T3-L1 adipocytes. CA significantly decreased mRNA expression of peroxisome proliferator-activated receptor-γ, sterol regulatory element-binding protein 1, and CCAAT/enhancer binding protein-α in a dose-dependent manner. Moreover, it decreased the ratio of both C16:1/C16:0 and C18:1/C18:0, with reduced expression of stearoyl CoA desaturase 1 mRNA and protein. Conclusions: These results suggest that CA efficiently suppressed adipogenesis in 3T3-L1 adipocytes and its action, at least in part, is associated with the downregulation of adipogenesis-related genes and the fatty acid composition of TG accumulated in adipocytes. PMID:25853102

  10. Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999.

    PubMed

    Takagi, M; Watanabe, K; Yamaberi, K; Yoshida, T

    2000-07-01

    Limited feeding of nitrate during culture of Nannochloris sp. UTEX LB1999 for intracellular lipid and triglyceride accumulation was investigated with the aim of obtaining cells superior for liquefaction into a fuel oil. The intracellular lipid contents and the percentage of triglycerides in the lipids of cells grown in a nitrogen-limited medium (0.9 mM KNO3) were 1.3 times as high as those grown in a modified NORO medium containing 2.0-9.9 mM KNO3. However, the cell concentration was too low for the practical production of fuel oil by high-pressure liquefaction of the cell mass. A single feeding of 0.9 mM nitrate after nitrate depletion during cultivation in a nitrate-limited medium increased the cell concentration to twice that obtained without such feeding, and the lipid content was maintained at a high level. The timing of nitrate feeding, i.e., whether it was given during the log phase (before nitrate depletion), the constant growth phase (just after the depletion), or the stationary phase (after the depletion), had negligible effect on the intracellular lipid content and percentage of triglycerides in the lipids. When 0.9 mM nitrate was intermittently fed ten times during the log phase in addition to the initial nitrate feed (0.9 mM), the cell concentration reached almost the same (2.16 g/l) and the intracellular lipid content and the percentage of triglycerides in the lipids increased from 31.0 to 50.9% and 26.0 to 47.6%, respectively, compared with those of cells cultured in a modified NORO medium containing 9.9 mM KNO3 without additional nitrate feeding. PMID:10952013

  11. Sethoxydim treatment inhibits lipid metabolism and enhances the accumulation of anthocyanins in rape (Brassica napus L.) leaves.

    PubMed

    Belkebir, Aicha; Benhassaine-Kesri, Ghouziel

    2013-09-01

    Cyclohexanediones (e.g., sethoxydim) are known to be inhibitors of plastid acetyl-CoA carboxylase (ACCase) of monocotyledonous plants and provoke plant death. When rape leaves were treated with 10(-3) M sethoxydim, growth rate, chlorophyll and lipid contents were reduced, but plant resisted to herbicide. [1-(14)C] Acetate labelling showed that lipid synthesis was affected by sethoxydim, probably through inhibition of chloroplast homomeric ACCase activity, and the fatty acid synthase activity (FAS) was reduced because of malonyl-CoA deficiency. In contrast, sethoxydim treatment provoked an increase in phenylalanine ammonia lyase (PAL) activity with an accumulation of cinnamic acid, naringenin and anthocyanins. The accumulation of anthocyanins seems to reduce the damaging effect of the herbicide stress. Thus, in plant cell, the flux of carbon seems to be oriented towards protective mechanisms, and the two ACCases could have an important role in this orientation. PMID:25149245

  12. Lipid accumulation inRhodotorula glutinis on sugar cane molasses in single-stage continuous culture.

    PubMed

    Alvarez, R M; Rodríguez, B; Romano, J M; Díaz, A O; Gómez, E; Miró, D; Navarro, L; Saura, G; García, J L

    1992-03-01

    Microbial lipids produced byRhodotorula glutinis grown in continuous culture with molasses under nitrogen-limiting conditions were evaluated and the effects of growth rate on fatty acid composition were studied. As the growth rate decreased, cell biomass, lipid content and lipid yield gradually increased. The maximum lipid content recorded was 39% (w/w) of dry cell biomass at a dilution rate of 0.04 h(-1). The growth rate also affected fatty acid composition: oleic acid decreased with decreasing growth rate while stearic acid increased. PMID:24425415

  13. Effects of nitrogen on the lipid and carotenoid accumulation of oleaginous yeast Sporidiobolus pararoseus.

    PubMed

    Han, Mei; Xu, Zhi-Yuan; Du, Chao; Qian, He; Zhang, Wei-Guo

    2016-09-01

    Nitrogen limited but carbon excess condition was used to obtain high cellular lipid content and production. The maximum lipid production was 51 g/L, the lipid content in the dry cell was 60 %, and the lipid productivity was 0.53 g/L/h. In the fermentation, the content of lipid was raised from 20 % of dry cell weight to 60 %, and the proportion of oleic acid was raised from 66.8 to 72.5 %. Meanwhile, the metabolism of carotenoids switched to torulene, and its proportion was raised from 30 to 58 %. This was according to torulene had the better antioxidant ability than β-carotene to protect the strain from oxidative damage proved by their ABTS* radical scavenging activity and lipid peroxidation inhibition ability. Sporidiobolus pararoseus lipid was a good source of lipid not only because of its high oleic acid composition, but also the antioxidant ability of carotenoids in the lipid. PMID:27145779

  14. Differential Impacts of Soybean and Fish Oils on Hepatocyte Lipid Droplet Accumulation and Endoplasmic Reticulum Stress in Primary Rabbit Hepatocytes

    PubMed Central

    Zhu, Xueping; Xiao, Zhihui; Xu, Yumin; Zhao, Xingli; Cheng, Ping; Cui, Ningxun; Cui, Mingling; Li, Jie; Zhu, Xiaoli

    2016-01-01

    Parenteral nutrition-associated liver disease (PNALD) is a severe ailment associated with long-term parenteral nutrition. Soybean oil-based lipid emulsions (SOLE) are thought to promote PNALD development, whereas fish oil-based lipid emulsions (FOLE) are thought to protect against PNALD. This study aimed to investigate the effects of SOLE and FOLE on primary rabbit hepatocytes. The results reveal that SOLE caused significant endoplasmic reticulum (ER) and mitochondrial damage, ultimately resulting in lipid droplets accumulation and ER stress. While these deleterious events induce hepatocyte injury, FOLE at high doses cause only minor ER and mitochondrial damage, which has no effect on hepatic function. SOLE also significantly upregulated glucose-regulated protein 94 mRNA and protein expression. These data indicate that SOLE, but not FOLE, damage the ER and mitochondria, resulting in lipid droplets accumulation and ER stress and, finally, hepatocyte injury. This likely contributes to the differential impacts of SOLE and FOLE on PNALD development and progression. PMID:27057162

  15. Loss of L-FABP, SCP-2/SCP-x, or both induces hepatic lipid accumulation in female mice.

    PubMed

    Martin, Gregory G; Atshaves, Barbara P; Landrock, Kerstin K; Landrock, Danilo; Schroeder, Friedhelm; Kier, Ann B

    2015-08-15

    Although roles for both sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) and liver fatty acid binding protein (L-FABP) have been proposed in hepatic lipid accumulation, individually ablating these genes has been complicated by concomitant alterations in the other gene product(s). For example, ablating SCP2/SCP-x induces upregulation of L-FABP in female mice. Therefore, the impact of ablating SCP-2/SCP-x (DKO) or L-FABP (LKO) individually or both together (TKO) was examined in female mice. Loss of SCP-2/SCP-x (DKO, TKO) more so than loss of L-FABP alone (LKO) increased hepatic total lipid and total cholesterol content, especially cholesteryl ester. Hepatic accumulation of nonesterified long chain fatty acids (LCFA) and phospholipids occurred only in DKO and TKO mice. Loss of SCP-2/SCP-x (DKO, TKO) increased serum total lipid primarily by increasing triglycerides. Altered hepatic level of proteins involved in cholesterol uptake, efflux, and/or secretion was observed, but did not compensate for the loss of L-FABP, SCP-2/SCP-x or both. However, synergistic responses were not seen with the combinatorial knock out animals-suggesting that inhibiting SCP-2/SCP-x is more correlative with hepatic dysfunction than L-FABP. The DKO- and TKO-induced hepatic accumulation of cholesterol and long chain fatty acids shared significant phenotypic similarities with non-alcoholic fatty liver disease (NAFLD). PMID:26116377

  16. The Relationship of Ectopic Lipid Accumulation to Cardiac and Vascular Function in Obesity and Metabolic Syndrome

    PubMed Central

    Ruberg, Frederick L.; Chen, Zhongjing; Hua, Ning; Bigornia, Sherman; Guo, Zifang; Hallock, Kevin; Jara, Hernan; LaValley, Michael; Phinikaridou, Alkystis; Qiao, Ye; Viereck, Jason; Apovian, Caroline M.; Hamilton, James A.

    2010-01-01

    Storage of lipid in ectopic depots outside of abdominal visceral and subcutaneous stores, including within the pericardium and liver, has been associated with obesity, insulin resistance, and cardiovascular risk. We sought to determine whether anatomically distinct ectopic depots were physiologically correlated and site-specific effects upon cardiovascular function could be identified. Obese subjects (n = 28) with metabolic syndrome but without known atherosclerotic disease and healthy controls (n = 18) underwent magnetic resonance imaging (MRI) and proton MR spectroscopy (MRS) to quantify pericardial and periaortic lipid volumes, cardiac function, aortic compliance, and intrahepatic lipid content. Fasting plasma lipoproteins, glucose, insulin, and free-fatty acids were measured. Pericardial and intrahepatic (P < 0.01) and periaortic (P < 0.05) lipid volumes were increased in obese subjects vs. controls and were strongly and positively correlated (P ≤ 0.01) but independent of BMI (P = NS) among obese subjects. Intrahepatic lipid was associated with insulin resistance (P < 0.01) and triglycerides (P < 0.05), whereas pericardial and periaortic lipid were not (P = NS). Periaortic and pericardial lipid positively correlated to free-fatty acids (P ≤ 0.01) and negatively correlated to high-density lipoprotein (HDL) cholesterol (P < 0.05). Pericardial lipid negatively correlated to cardiac output (P = 0.03) and stroke volume (P = 0.01) but not to left ventricular ejection fraction (P = 0.46). None of the ectopic depots correlated to aortic compliance. In conclusion, ectopic storage of lipid in anatomically distinct depots appeared tightly correlated but independent of body size. Site-specific functional abnormalities were observed for pericardial but not periaortic lipid. These findings underscore the utility of MRI to assess individual differences in ectopic lipid that are not predictable from BMI. PMID:19875992

  17. Effect of exogenous gibberellin on reserve accumulation during the seed filling stage of oilseed rape.

    PubMed

    Huang, X Q; He, R Q; Liao, X Y; Zhou, B; Peng, W S; Lin, J Z; Tang, D Y; Zhu, Y H; Zhao, X Y; Liu, X M

    2014-01-01

    Exogenous gibberellins (GAs) are widely applied to increase crop yields, with knowledge about the physiological functioning and biochemistry mechanisms of these phytohormones improving; however, information remains limited about the effect of GAs on seed filling. In this study, the siliques (containing the seeds) of oilseed rape (Brassica napus L.) were treated with GA3 at 3 stages of seed filling. We confirmed that GA3 regulates the deposition of storage reserves in developing seeds. The percentage of crude fat in the seeds increased during the early stage, but remained stable during the middle and late stages. In comparison, the percentage of total protein decreased during the early and middle stages, but significantly increased during the late stage. In addition, Q-PCR was employed to analyze the expression level of related genes in response to GA3. It was found that the expression of WRI and ABI3 transcription factors corresponded to crude fat content and total protein content, respectively. The expression of storage reserve related genes DGAT, MCAT, SUC2, and GPT was consistent with crude fat content, whereas the expression of Napin corresponded to total protein content. The results of this study indicate that exogenous GA3 has a different effect on storage reserve deposition in seed during different stages of seed filling, and the effect might be achieved via changing the expression of related genes. PMID:24535906

  18. The Arabidopsis ABHD11 Mutant Accumulates Polar Lipids in Leaves as a Consequence of Absent Acylhydrolase Activity1[OPEN

    PubMed Central

    Vijayakumar, Anitha; Vijayaraj, Panneerselvam; Vijayakumar, Arun Kumar; Rajasekharan, Ram

    2016-01-01

    Alpha/beta hydrolase domain (ABHD)-containing proteins are structurally related with diverse catalytic activities. In various species, some ABHD proteins have been characterized and shown to play roles in lipid homeostasis. However, little is known about ABHD proteins in plants. Here, we characterized AT4G10030 (AtABHD11), an Arabidopsis (Arabidopsis thaliana) homolog of a human ABHD11 gene. In silico analyses of AtABHD11 revealed homology with other plant species with a conserved GXSXG lipid motif. Interestingly, Arabidopsis abhd11 mutant plants exhibited an enhanced growth rate compared with wild-type plants. Quantitative analyses of the total lipids showed that the mutant abhd11 has a high amount of phospholipid and galactolipid in Arabidopsis leaves. The overexpression of AtABHD11 in Escherichia coli led to a reduction in phospholipid levels. The bacterially expressed recombinant AtABHD11 hydrolyzed lyso(phospho)lipid and monoacylglycerol. Furthermore, using whole-genome microarray and real-time PCR analyses of abhd11 and wild-type plants, we noted the up-regulation of MGD1, -2, and -3 and DGD1. Together, these findings suggested that AtABHD11 is a lyso(phospho)lipase. The disruption of AtABHD11 caused the accumulation of the polar lipids in leaves, which in turn promoted a higher growth rate compared with wild-type plants. PMID:26589672

  19. The effect of iron on growth, lipid accumulation, and gene expression profile of the freshwater microalga Chlorella sorokiniana.

    PubMed

    Wan, Minxi; Jin, Xuejie; Xia, Jinlan; Rosenberg, Julian N; Yu, Geng; Nie, Zhenyuan; Oyler, George A; Betenbaugh, Michael J

    2014-11-01

    The effects of iron on the growth, lipid accumulation, and gene expression profiles of the limnetic Chlorella sorokiniana CCTCC M209220 under photoautotrophy were investigated. The addition of iron up to 10(-5) mol l(-l) increased final cell densities by nearly 2-fold at 2.3 × 10(7) cells/ml, growth rate by 2-fold, and the length of the exponential phase by 5 days as compared to unsupplemented controls while 10(-3) mol l(-1) iron was toxic. The lipid content increased from 12 % for unsupplemented cultures to 33 % at 10(-4) mol l(-1) iron while the highest overall lipid yield reached 179 mg l(-1). A genefishing and qPCR comparison between the C. sorokiniana at low and high iron levels indicated increases in the expression of several genes, including carbonic anhydrase involved in microalgal cell growth, as well as acc1 and choline transporter related to lipid synthesis. This study provides insights into changes in gene expression and metabolism that accompany iron supplementation to Chlorella as well as potential metabolic engineering targets for improving growth and lipid synthesis in microalgae. PMID:25248441

  20. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

    SciTech Connect

    Malur, Anagha; Huizar, Isham; Wells, Greg; Barna, Barbara P.; Malur, Achut G.; Thomassen, Mary Jane

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Lentivirus-ABCG1 reduces lipid accumulation in lungs of GM-CSF knock-out mice. Black-Right-Pointing-Pointer Up-regulation of ABCG1 improves lung function. Black-Right-Pointing-Pointer Upregulation of ABCG1 improves surfactant metabolism. -- Abstract: We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) and the PPAR{gamma}-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte-macrophage colony stimulating factor (GM-CSF), an upregulator of PPAR{gamma}. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO) mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPAR{gamma} plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p = 0.0005) increase in ABCG1 expression with no change of PPAR{gamma} or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as shown by

  1. Qushi Huayu Decoction Inhibits Hepatic Lipid Accumulation by Activating AMP-Activated Protein Kinase In Vivo and In Vitro

    PubMed Central

    Feng, Qin; Gou, Xiao-jun; Meng, Sheng-xi; Huang, Cheng; Zhang, Yu-quan; Tang, Ya-jun; Wang, Wen-jing; Xu, Lin; Peng, Jing-hua; Hu, Yi-yang

    2013-01-01

    Qushi Huayu Decoction (QHD), a Chinese herbal formula, has been proven effective on alleviating nonalcoholic fatty liver disease (NAFLD) in human and rats. The present study was conducted to investigate whether QHD could inhibit hepatic lipid accumulation by activating AMP-activated protein kinase (AMPK) in vivo and in vitro. Nonalcoholic fatty liver (NAFL) model was duplicated with high-fat diet in rats and with free fatty acid (FFA) in L02 cells. In in vivo experimental condition, QHD significantly decreased the accumulation of fatty droplets in livers, lowered low-density lipoprotein cholesterol (LDL-c), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels in serum. Moreover, QHD supplementation reversed the HFD-induced decrease in the phosphorylation levels of AMPK and acetyl-CoA carboxylase (ACC) and decreased hepatic nuclear protein expression of sterol regulatory element-binding protein-1 (SREBP-1) and carbohydrate-responsive element-binding protein (ChREBP) in the liver. In in vitro, QHD-containing serum decreased the cellular TG content and alleviated the accumulation of fatty droplets in L02 cells. QHD supplementation reversed the FFA-induced decrease in the phosphorylation levels of AMPK and ACC and decreased the hepatic nuclear protein expression of SREBP-1 and ChREBP. Overall results suggest that QHD has significant effect on inhibiting hepatic lipid accumulation via AMPK pathway in vivo and in vitro. PMID:23573117

  2. Fatty acids from VLDL lipolysis products induce lipid droplet accumulation in human monocytes

    PubMed Central

    den Hartigh, Laura J; Connolly-Rohrbach, Jaime E; Fore, Samantha; Huser, Thomas R; Rutledge, John C

    2010-01-01

    One mechanism by which monocytes become activated postprandially is by exposure to triglyceride (TG)-rich lipoproteins such as very low-density lipoproteins (VLDL). VLDL are hydrolyzed by lipoprotein lipase (LpL) at the blood-endothelial cell interface, releasing free fatty acids. In this study, we examined postprandial monocyte activation in more detail, and found that lipolysis products generated from postprandial VLDL induce the formation of lipid-filled droplets within cultured THP-1 monocytes, characterized by coherent anti-stokes Raman spectroscopy. Organelle-specific stains revealed an association of lipid droplets with the endoplasmic reticulum, confirmed by electron microscopy. Lipid droplet formation was reduced when LpL-released fatty acids were bound by bovine serum albumin, which also reduced cellular inflammation. Furthermore, saturated fatty acids induced more lipid droplet formation in monocytes compared to mono- and polyunsaturated fatty acids. Monocytes treated with postprandial VLDL lipolysis products contained lipid droplets with more intense saturated Raman spectroscopic signals than monocytes treated with fasting VLDL lipolysis products. In addition, we found that human monocytes isolated during the peak postprandial period contain more lipid droplets compared to those from the fasting state, signifying that their development is not limited to cultured cells but also occurs in vivo. In summary, circulating free fatty acids can mediate lipid droplet formation in monocytes and potentially be used as a biomarker to assess an individual’s risk of developing atherosclerotic cardiovascular disease. PMID:20208007

  3. Flaxseed oil and alpha-lipoic acid combination ameliorates hepatic oxidative stress and lipid accumulation in comparison to lard

    PubMed Central

    2013-01-01

    Background Intake of high-fat diet is associated with increased non-alcoholic fatty liver disease (NAFLD). Hepatic lipid accumulation and oxidative stress are key pathophysiological mechanisms in NAFLD. Both flaxseed oil (FO) and α-lipoic acid (LA) exert potential benefit to NAFLD. The aim of this study was to determine the effect of the combination of FO and LA on hepatic lipid accumulation and oxidative stress in rats induced by high-fat diet. Methods LA was dissolved in flaxseed oil to a final concentration of 8 g/kg (FO + LA). The rodent diet contained 20% fat. One-fifth of the fat was soybean oil and the others were lard (control group), or 75% lard and 25% FO + LA (L-FO + LA group), or 50% lard and 50% FO + LA (M-FO + LA group), or FO + LA (H-FO + LA group). Male Sprague–Dawley rats were fed for 10 weeks and then killed for liver collection. Results Intake of high-fat lard caused a significant hepatic steatosis. Replacement with FO + LA was effective in reducing steatosis as well as total triglyceride and total cholesterol contents in liver. The combination of FO and LA also significantly elevated hepatic antioxidant defense capacities, as evaluated by the remarkable increase in the activities of SOD, CAT and GPx as well as the level of GSH, and the significant decline in lipid peroxidation. Conclusion The combination of FO and LA may contribute to prevent fatty livers such as NAFLD by ameliorating hepatic lipid accumulation and oxidative stress. PMID:23634883

  4. Water Extract of Dolichos lablab Attenuates Hepatic Lipid Accumulation in a Cellular Nonalcoholic Fatty Liver Disease Model.

    PubMed

    Im, A-Rang; Kim, Yun Hee; Lee, Hye Won; Song, Kwang Hoon

    2016-05-01

    Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that is rising in prevalence worldwide. Therapeutic strategies for patients with NAFLD are limited by a lack of effective drugs. In this report, we show that Dolichos lablab water extract (DLL-Ex) protects against free fatty acid (FFA)-induced lipid accumulation and attenuates expression of genes involved in lipid droplet accumulation in cellular NAFLD models. The hepatoprotective effects and underlying mechanism of DLL-Ex were assessed using an in vitro cellular model in which NAFLD was simulated by inducing excessive FFA influx into hepatocytes. HepG2 cells were treated with DLL-Ex and FFAs for 24 h, after which intracellular lipid content was observed by using Nile Red and Oil Red O staining. Quantitative real-time polymerase chain reaction was used to measure expression levels of genes related to FFA-mediated cellular energy depletion. Western blotting was used to measure protein levels of phosphorylated c-Jun N-terminal kinase, AMP-activated protein kinase alpha (AMPKα), and peroxisome proliferator-activated receptor γ coactivator 1 alpha. In HepG2 cells, DLL-Ex inhibited expression of CD36, which regulates fatty acid uptake, as well as BODIPY-labeled fatty acid uptake. Additionally, DLL-Ex significantly attenuated FFA-mediated cellular energy depletion and mitochondrial membrane depolarization. Furthermore, DLL-Ex enhanced phosphorylation of AMPK, indicating that AMPK is a critical regulator of DLL-Ex-mediated inhibition of hepatic lipid accumulation, possibly through its antioxidative effect. These results demonstrate that DLL-Ex exerts potent anti-NAFLD activity, suggesting that it could be a potential adjuvant treatment for patients with NAFLD. PMID:27152979

  5. A microscale approach for simple and rapid monitoring of cell growth and lipid accumulation in Neochloris oleoabundans.

    PubMed

    Kwak, Ho Seok; Kim, Jaoon Young Hwan; Sim, Sang Jun

    2015-10-01

    Due to the increasing environmental problems caused by the use of fossil fuels, microalgae have been spotlighted as renewable resources to produce biomass and biofuels. Therefore, the investigation of the optimum culture conditions of microalgae in a short time is one of the important factors for improving growth and lipid productivity. Herein, we developed a PDMS-based high-throughput screening system to rapidly and easily determine the optimum conditions for high-density culture and lipid accumulation of Neochloris oleoabundans. Using the microreactor, we were able to find the optimal culture conditions of N. oleoabundans within 5 days by rapid and parallel monitoring growth and lipid induction under diverse conditions of light intensity, pH, CO2 and nitrate concentration. We found that the maximum growth rate (µ max = 2.13 day(-1)) achieved in the microreactor was 1.58-fold higher than that in a flask (µ max = 1.34 day(-1)) at the light intensity of 40 µmol photons m(-2) s(-1), 5 % CO2 (v/v), pH 7.5 and 7 mM nitrate. In addition, we observed that the accumulation of lipid in the microreactor was 1.5-fold faster than in a flask under optimum culture condition. These results show that the microscale approach has the great potential for improving growth and lipid productivity by high-throughput screening of diverse optimum conditions. PMID:26209175

  6. Reserves accumulated in non-photosynthetic organs during the previous growing season drive plant defenses and growth in aspen in the subsequent growing season.

    PubMed

    Najar, Ahmed; Landhäusser, Simon M; Whitehill, Justin G A; Bonello, Pierluigi; Erbilgin, Nadir

    2014-01-01

    Plants store non-structural carbohydrates (NSC), nitrogen (N), as well as other macro and micronutrients, in their stems and roots; the role of these stored reserves in plant growth and defense under herbivory pressure is poorly understood, particularly in trees. Trembling aspen (Populus tremuloides) seedlings with different NSC and N reserves accumulated during the previous growing season were generated in the greenhouse. Based on NSC and N contents, seedlings were assigned to one of three reserve statuses: Low N-Low NSC, High N-Medium NSC, or High N-High NSC. In the subsequent growing season, half of the seedlings in each reserve status was subjected to defoliation by forest tent caterpillar (Malacosoma disstria) while the other half was left untreated. Following defoliation, the effect of reserves was measured on foliar chemistry (N, NSC) and caterpillar performance (larval development). Due to their importance in herbivore feeding, we also quantified concentrations of phenolic glycoside compounds in foliage. Seedlings in Low N-Low NSC reserve status contained higher amounts of induced phenolic glycosides, grew little, and supported fewer caterpillars. In contrast, aspen seedlings in High N-Medium or High NSC reserve statuses contained lower amounts of induced phenolic glycosides, grew faster, and some of the caterpillars which fed on these seedlings developed up to their fourth instar. Furthermore, multiple regression analysis indicated that foliar phenolic glycoside concentration was related to reserve chemistry (NSC, N). Overall, these results demonstrate that reserves accumulated during the previous growing season can influence tree defense and growth in the subsequent growing season. Additionally, our study concluded that the NSC/N ratio of reserves in the previous growing season represents a better measure of resources available for use in defense and growth than the foliar NSC/N ratios. PMID:24363094

  7. Effect of nitrogen source on growth and lipid accumulation in Scenedesmus abundans and Chlorella ellipsoidea.

    PubMed

    González-Garcinuño, Álvaro; Tabernero, Antonio; Sánchez-Álvarez, José Ma; Martin del Valle, Eva M; Galán, Miguel A

    2014-12-01

    Discovering microalgae strains containing a high lipid yield and adequate fatty acid composition is becoming a crucial fact in algae-oil factories. In this study, two unknown strains, named Scenedesmus abundans and Chlorella ellipsoidea, have been tested for their response to different nitrogen sources, in order to determine its influence in the production of lipids. For S. abundans, autotrophic culture with ammonium nitrate offers the maximum lipid yield, obtaining up to 3.55 mg L(-1) d(-1). For C. ellipsoidea, heterotrophic culture with ammonium nitrate has been shown to be the best condition, reaching a lipid production of 9.27 mg L(-1) d(-1). Moreover, fatty acid composition obtained from these cultures meets international biodiesel standards with an important amount of C18:1, achieving 70% of total fatty acids and thus representing a potential use of these two strains at an industrial scale. PMID:25310870

  8. Accumulation of hydroxyl lipids and 4-hydroxy-2-hexenal in live fish infected with fish diseases.

    PubMed

    Tanaka, Ryusuke; Shigeta, Kazuhiro; Sugiura, Yoshimasa; Hatate, Hideo; Matsushita, Teruo

    2014-04-01

    Hydroxy lipids (L-OH) and 4-hydroxy-2-hexenal (HHE) levels as well as other parameters such as lipid level, lipid class, fatty acid composition, and other aldehydes levels in the liver of diseased fish were investigated. Although significant differences in lipid level, lipid class, fatty acid composition, and other aldehyde levels were not always observed between normal and diseased fish, L-OH and HHE levels were significantly higher in the liver of the diseased fish than in that of the normal fish cultured with the same feeds under the same conditions. In the liver of puffer fish (Fugu rubripes) infected with Trichodina, L-OH and HHE levels significantly increased from 25.29±5.04 to 47.70 ± 5.27 nmol/mg lipid and from 299.79±25.25 to 1,184.40±60.27 nmol/g tissue, respectively. When the levels of HHE and other aldehydes in the liver of the normal and diseased puffer fish were plotted, a linear relationship with a high correlation coefficient was observed between HHE and propanal (r2=0.9447). Increased L-OH and HHE levels in the liver of the diseased fish and a high correlation between HHE and propanal in the liver of the normal and diseased fish were also observed in flat fish (Paralichthys olivaceus) infected with streptococcus, yellowtail (Seriola quinqueradiata) infected with jaundice, and amberjack (S. purpurascens) infected with Photobacterium damselae subsp. piscicida. PMID:24390795

  9. The transcription factor PHR1 regulates lipid remodeling and triacylglycerol accumulation in Arabidopsis thaliana during phosphorus starvation.

    PubMed

    Pant, Bikram Datt; Burgos, Asdrubal; Pant, Pooja; Cuadros-Inostroza, Alvaro; Willmitzer, Lothar; Scheible, Wolf-Rüdiger

    2015-04-01

    Lipid remodeling is one of the most dramatic metabolic responses to phosphorus (P) starvation. It consists of the degradation of phospholipids to release the phosphate needed by the cell and the accumulation of glycolipids to replace phospholipids in the membranes. It is shown that PHR1, a well-described transcriptional regulator of P starvation of the MYB family, largely controls this response. Glycerolipid composition and the expression of most lipid-remodeling gene transcripts analysed were altered in the phr1 mutant under phosphate starvation in comparison to wild-type plants. In addition to these results, the lipidomic characterization of wild-type plants showed two novel features of the lipid response to P starvation for Arabidopsis. Triacylglycerol (TAG) accumulates dramatically under P starvation (by as much as ~20-fold in shoots and ~13-fold in roots), a response known to occur in green algae but hardly known in plants. Surprisingly, there was an increase in phosphatidylglycerol (PG) in P-starved roots, a response that may be adaptive as it was suppressed in the phr1 mutant. PMID:25680792

  10. Caffeine attenuates lipid accumulation via activation of AMP-activated protein kinase signaling pathway in HepG2 cells.

    PubMed

    Quan, Hai Yan; Kim, Do Yeon; Chung, Sung Hyun

    2013-04-01

    The main purpose of this study is to examine the effect of caffeine on lipid accumulation in human hepatoma HepG2 cells. Significant decreases in the accumulation of hepatic lipids, such as triglyceride (TG), and cholesterol were observed when HepG2 cells were treated with caffeine as indicated. Caffeine decreased the mRNA level of lipogenesis-associated genes (SREBP1c, SREBP2, FAS, SCD1, HMGR and LDLR). In contrast, mRNA level of CD36, which is responsible for lipid uptake and catabolism, was increased. Next, the effect of caffeine on AMP-activated protein kinase (AMPK) signaling pathway was examined. Phosphorylation of AMPK and acetyl-CoA carboxylase were evidently increased when the cells were treated with caffeine as indicated for 24 h. These effects were all reversed in the presence of compound C, an AMPK inhibitor. In summary, these data indicate that caffeine effectively depleted TG and cholesterol levels by inhibition of lipogenesis and stimulation of lipolysis through modulating AMPK-SREBP signaling pathways. PMID:23615262

  11. β Common Receptor Mediates Erythropoietin-Conferred Protection on OxLDL-Induced Lipid Accumulation and Inflammation in Macrophages

    PubMed Central

    Lu, Kuo-Yun; Yu, Yuan-Bin; Tsai, Feng-Chuan

    2015-01-01

    Erythropoietin (EPO), the key factor for erythropoiesis, also protects macrophage foam cells from lipid accumulation, yet the definitive mechanisms are not fully understood. β common receptor (βCR) plays a crucial role in the nonhematopoietic effects of EPO. In the current study, we investigated the role of βCR in EPO-mediated protection in macrophages against oxidized low-density lipoprotein- (oxLDL-) induced deregulation of lipid metabolism and inflammation. Here, we show that βCR expression was mainly in foamy macrophages of atherosclerotic aortas from apolipoprotein E-deficient mice. Results of confocal microscopy and immunoprecipitation analyses revealed that βCR was colocalized and interacted with EPO receptor (EPOR) in macrophages. Inhibition of βCR activation by neutralizing antibody or small interfering RNA (siRNA) abolished the EPO-conferred protection in oxLDL-induced lipid accumulation. Furthermore, EPO-promoted cholesterol efflux and upregulation of ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 were prevented by pretreatment with βCR neutralizing antibody or βCR siRNA. Additionally, blockage of βCR abrogated the EPO-conferred anti-inflammatory action on oxLDL-induced production of macrophage inflammatory protein-2. Collectively, our findings suggest that βCR may play an important role in the beneficial effects of EPO against oxLDL-elicited dysfunction of macrophage foam cells. PMID:26101463

  12. The breakdown of lipid reserves in the endosperm of germinating castor beans.

    PubMed Central

    Marriott, K M; Northcote, D H

    1975-01-01

    1. Lipid extracts were obtained from castor-bean endosperm tissue at various times during germination and, after purification, the total lipid content was determined. Quantitative measurements of the triglyceride and phospholipid content together with the fatty acid composition were made. 2. The total lipid content of the endosperm rapidly decreased during germination; after 10 days less than 20% of the original weight of lipid remained. In contrast, the phospholipid content (initially less than 0.5% of the total lipid) increased slightly during this time. The fatty acid composition and the relative proportions of the triglyceride species of the total lipid extract remained constant during 10 days of germination. 3. Gibberellic acid (0.3 mM) markedly stimulated the rate of lipid breakdown but did not alter either the fatty acid composition or the relative proportion of triglyceride species. 4. The embryo had little effect on lipid metabolism in the endosperm tissue; only after 6 days of germination were differences observed in the rate of fat utilization in the presence and absence of the embryo. PMID:1156393

  13. Identification of albumin-bound fatty acids as the major factor in serum-induced lipid accumulation by cultured cells.

    PubMed

    Mackenzie, C G; Mackenzie, J B; Reiss, O K; Wisneski, J A

    1970-11-01

    Factors responsible for the high lipogenic activity of rabbit serum were investigated using an assay procedure based on the gravimetric determination of the 24 hr increase in cell lipid. Cellular synthesis of fatty acids was inhibited by the presence of serum in the assay medium. Approximately 90% of the increase in cell lipid produced by serum fractions was due to triglyceride accumulation. Fractionation of rabbit serum by precipitation with ammonium sulfate or by ultracentrifugation in high density medium, both indicated that three-quarters of its lipogenic activity was associated with albumin. The lipoproteins prepared by ultracentrifugation also exhibited about one-half the activity of whole serum. The lipogenic activity of albumin was confirmed by the high potency of the albumin isolated in a nearly pure form from proteins of d>1.21 by precipitation with trichloroacetic acid and extraction with ethanol. As judged from chemical and isotopic analysis, neither the lipid content nor the lipid composition of the albumin was appreciably altered during its isolation. Of the albumin-bound lipids, only the free fatty acids, as determined by DEAE column chromatography, were present in an amount sufficient to account for the observed increase in cell triglycerides. In control experiments with horse serum of low lipogenic activity, the proteins of d>1.21 also possessed low activity in conjunction with a low content of free fatty acid. However, the albumin isolated from the latter preparation exhibited the high lipogenic activity of rabbit serum albumin. Chemical and isotopic analysis of the recovered horse serum albumin revealed that its free fatty acid content was the same as that of rabbit serum albumin. These results indicated that the isolation of horse serum albumin was attended by a substantial increase in its free fatty acid content. When the rabbit serum and horse serum content of media were adjusted to provide equivalent concentrations of albumin-bound fatty

  14. Computations of Accumulated Deformations and Depletion of Plasticity Reserve Held by the Metal in the Surface Layer during Orthogonal Cutting

    NASA Astrophysics Data System (ADS)

    Blumenstein, V. Yu; Ferranti, A.

    2016-04-01

    The problem relating to the mechanics of orthogonal cutting with the deformation site, which is located within the contact area ahead of, below and behind the cutting tool was provided a solution. The above problem is crucial as it involves developing the mechanics of technological inheritance, which emphasizes the need for the operation-by-operation computations of the metal deformed state. The plane deformation (strain) model was adopted for the treatment with a cutter having a rounded cutting edge. Stresses, rates and deformations along the lines of current, which form the strengthened surface layer of the treated part, were computed. The patterns determining deformation accumulation and metal plasticity reserve depletion during orthogonal cutting were exposed.

  15. Fenugreek seed (Trigonella foenum graecum) polyphenols inhibit ethanol-induced collagen and lipid accumulation in rat liver.

    PubMed

    Kaviarasan, S; Viswanathan, P; Anuradha, C V

    2007-11-01

    Chronic alcoholism is associated with fatty liver and fibrosis characterized by collagen accumulation. Seeds of fenugreek, an annual herb, are reported to possess hepatoprotective activity. The study aims to investigate the effects of fenugreek seed polyphenol extract (FPEt) on liver lipids and collagen in experimental hepatotoxic rats. Hepatotoxicity was induced in male albino Wistar rats by administrating ethanol (6 g/kg per day) for 30 days. Control rats were given isocaloric glucose solution. FPEt was co-administered with ethanol at a dose of 200 mg/kg per day for the next 30 days. Silymarin was used as a positive control. Ethanol treatment caused increase in plasma and liver lipids, together with alterations in collagen content and properties. Administration of FPEt to alcohol-fed rats significantly improved lipid profile and reduced collagen content, crosslinking, aldehyde content and peroxidation. The effects were comparable with that of silymarin. FPEt administration had a positive influence on both lipid profile and on the quantitative and qualitative properties of collagen in alcoholic liver disease. The protective effect is presumably due to the bioactive phytochemicals in fenugreek seeds. PMID:17453353

  16. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves

    PubMed Central

    2011-01-01

    Background When cultivated under stress conditions, many microalgae species accumulate both starch and oil (triacylglycerols). The model green microalga Chlamydomonas reinhardtii has recently emerged as a model to test genetic engineering or cultivation strategies aiming at increasing lipid yields for biodiesel production. Blocking starch synthesis has been suggested as a way to boost oil accumulation. Here, we characterize the triacylglycerol (TAG) accumulation process in Chlamydomonas and quantify TAGs in various wild-type and starchless strains. Results In response to nitrogen deficiency, Chlamydomonas reinhardtii produced TAGs enriched in palmitic, oleic and linoleic acids that accumulated in oil-bodies. Oil synthesis was maximal between 2 and 3 days following nitrogen depletion and reached a plateau around day 5. In the first 48 hours of oil deposition, a ~80% reduction in the major plastidial membrane lipids occurred. Upon nitrogen re-supply, mobilization of TAGs started after starch degradation but was completed within 24 hours. Comparison of oil content in five common laboratory strains (CC124, CC125, cw15, CC1690 and 11-32A) revealed a high variability, from 2 μg TAG per million cell in CC124 to 11 μg in 11-32A. Quantification of TAGs on a cell basis in three mutants affected in starch synthesis (cw15sta1-2, cw15sta6 and cw15sta7-1) showed that blocking starch synthesis did not result in TAG over-accumulation compared to their direct progenitor, the arginine auxotroph strain 330. Moreover, no significant correlation was found between cellular oil and starch levels among the twenty wild-type, mutants and complemented strains tested. By contrast, cellular oil content was found to increase steeply with salt concentration in the growth medium. At 100 mM NaCl, oil level similar to nitrogen depletion conditions could be reached in CC124 strain. Conclusion A reference basis for future genetic studies of oil metabolism in Chlamydomonas is provided. Results

  17. Kaempferol suppresses lipid accumulation by inhibiting early adipogenesis in 3T3-L1 cells and zebrafish.

    PubMed

    Lee, Yeon-Joo; Choi, Hyeon-Son; Seo, Min-Jung; Jeon, Hui-Jeon; Kim, Kui-Jin; Lee, Boo-Yong

    2015-08-01

    Kaempferol is a flavonoid present in Kaempferia galanga and Opuntia ficus indica var. saboten. Recent studies have suggested that it has anti-oxidant, anti-inflammatory, anti-cancer, and anti-obesity effects. In this study, we focused on the anti-adipogenic effects of kaempferol during adipocyte differentiation. The results showed that kaempferol inhibits lipid accumulation in adipocytes and zebrafish. Oil Red O and Nile Red staining showed that the number of intracellular lipid droplets decreased in adipocytes and zebrafish treated with kaempferol. LPAATθ (lysophosphatidic acid acyltransferase), lipin1, and DGAT1 (triglyceride synthetic enzymes) and FASN and SREBP-1C (fatty acid synthetic proteins) showed decreased expression levels in the presence of kaempferol. In addition, treatment of kaempferol showed an inhibitory activity on cell cycle progression. Kaempferol delayed cell cycle progression from the S to G2/M phase through the regulation of cyclins in a dose-dependent manner. Kaempferol blocked the phosphorylation of AKT (protein kinase B) and mammalian target of rapamycin (mTOR) signaling pathway during the early stages of adipogenesis. In addition, kaempferol down-regulated pro-early adipogenic factors such as CCAAT-enhancer binding proteins β (C/EBPβ), and Krüppel-like factors (KLFs) 4 and 5, while anti-early adipogenic factors, such as KLF2 and pref-1(preadipocyte factor-1), were upregulated. These kaempferol-mediated regulations of early adipogenic factors resulted in the attenuation of late adipogenic factors such as C/EBPα and peroxisome proliferator-activated receptor γ (PPARγ). These results were supported in zebrafish based on the decrease in lipid accumulation and expression of adipogenic factors. Our results indicated that kaempferol might have an anti-obesity effect by regulating lipid metabolism. PMID:26174858

  18. Lipid accumulation from pinewood pyrolysates by Rhodosporidium diobovatum and Chlorella vulgaris for biodiesel production.

    PubMed

    Luque, Luis; Orr, Valerie C A; Chen, Sean; Westerhof, Roel; Oudenhoven, Stijn; Rossum, Guus van; Kersten, Sascha; Berruti, Franco; Rehmann, Lars

    2016-08-01

    This study evaluated the suitability of pinewood pyrolysates as a carbon source for lipid production and cultivation of the oleaginous yeast Rhodosporidium diobovatum and the microalgae Chlorella vulgaris. Thermal decomposition of pinewood and fractional condensation were used to obtain an oil rich in levoglucosan which was upgraded to glucose by acid hydrolysis. Blending of pyrolytic sugars with pure glucose in both nitrogen rich and nitrogen limited conditions was studied for R. diobovatum, and under nitrogen limited conditions for C. vulgaris. Glucose consumption rate decreased with increasing proportions of pyrolytic sugars increasing cultivation time. While R. diobovatum was capable of growth in 100% (v/v) pyrolytic sugars, C. vulgaris growth declined rapidly in blends greater than 20% (v/v) until no growth was detected in blends >40%. Finally, the effects of pyrolysis sugars on lipid composition was evaluated and biodiesel fuel properties were estimated based on the lipid profiles. PMID:27208736

  19. Enhanced biomass production and lipid accumulation of Picochlorum atomus using light-emitting diodes (LEDs).

    PubMed

    Ra, Chae Hun; Kang, Chang-Han; Jung, Jang-Hyun; Jeong, Gwi-Taek; Kim, Sung-Koo

    2016-10-01

    The effects of light-emitting diode (LED) wavelength, light intensity, nitrate concentration, and time of exposure to different LED wavelength stresses in a two-phase culture on lipid production were evaluated in the microalga, Picochlorum atomus. The biomass produced by red LED light was higher than that produced by purple, blue, green, or yellow LED and fluorescent lights from first phase of two-phase culture. The highest lipid production of P. atomus was 50.3% (w/w) with green LED light at 2days of second phase as light stress. Fatty acid analysis of the microalgae showed that palmitic acid (C16:0) and linolenic acid (C18:3) accounted for 84-88% (w/w) of total fatty acids from P. atomus. The two-phase culture of P. atomus is suitable for biofuel production due to higher lipid productivity and favorable fatty acid composition. PMID:27474341

  20. Diminished anabolic signaling response to insulin induced by intramuscular lipid accumulation is associated with inflammation in aging but not obesity.

    PubMed

    Rivas, Donato A; McDonald, Devin J; Rice, Nicholas P; Haran, Prashanth H; Dolnikowski, Gregory G; Fielding, Roger A

    2016-04-01

    The loss of skeletal muscle mass is observed in many pathophysiological conditions, including aging and obesity. The loss of muscle mass and function with aging is defined as sarcopenia and is characterized by a mismatch between skeletal muscle protein synthesis and breakdown. Characteristic metabolic features of both aging and obesity are increases in intramyocellular lipid (IMCL) content in muscle. IMCL accumulation may play a mechanistic role in the development of anabolic resistance and the progression of muscle atrophy in aging and obesity. In the present study, aged and high-fat fed mice were used to determine mechanisms leading to muscle loss. We hypothesized the accumulation of bioactive lipids in skeletal muscle, such as ceramide or diacylglycerols, leads to insulin resistance with aging and obesity and the inability to activate protein synthesis, contributing to skeletal muscle loss. We report a positive association between bioactive lipid accumulation and the loss of lean mass and muscle strength. Obese and aged animals had significantly higher storage of ceramide and diacylglycerol compared with young. Furthermore, there was an attenuated insulin response in components of the mTOR anabolic signaling pathway. We also observed differential increases in the expression of inflammatory cytokines and the phosphorylation of IκBα with aging and obesity. These data challenge the accepted role of increased inflammation in obesity-induced insulin resistance in skeletal muscle. Furthermore, we have now established IκBα with a novel function in aging-associated muscle loss that may be independent of its previously understood role as an NF-κB inhibitor. PMID:26764052

  1. The zinc cluster transcriptional regulator Asg1 transcriptionally coordinates oleate utilization and lipid accumulation in Saccharomyces cerevisiae.

    PubMed

    Jansuriyakul, Siripat; Somboon, Pichayada; Rodboon, Napachai; Kurylenko, Olena; Sibirny, Andriy; Soontorngun, Nitnipa

    2016-05-01

    In this study, we characterize a new function for activator of stress response genes (Asg1) in fatty acid utilization. Asg1 is required for full activation of genes in several pathways, including β-oxidation (POX1, FOX2, and POT1), gluconeogenesis (PCK1), glyoxylate cycle (ICL1), triacylglycerol breakdown (TGL3), and peroxisomal transport (PXA1). In addition, the transcriptional activator Asg1 is found to be enriched on promoters of genes in β-oxidation and gluconeogenesis pathways, suggesting that Asg1 is directly involved in the control of fatty acid utilizing genes. In agreement, impaired growth on non-fermentable carbons such as fatty acids and oils and increased sensitivity to some oxidative agents are found for the Δasg1 strain. The lipid class profile of the Δasg1 cells grown in oleate displays approximately 3-fold increase in free fatty acid (FFA) content in comparison to glucose-grown cells, which correlates with decreased expression of β-oxidation genes. The ∆asg1 strain grown in glucose also exhibits higher accumulation of triacylglycerols (TAGs) during log phase, reaching levels typically observed in stationary phase cells. Altered TAG accumulation is partly due to the inability of the Δasg1 cells to efficiently break down TAGs, which is consistent with lowered expression of TGL3 gene, encoding triglycerol lipase. Overall, these results highlight a new role of the transcriptional regulator Asg1 in coordinating expression of genes involved in fatty acid utilization and its role in regulating cellular lipid accumulation, thereby providing an attractive approach to increase FFAs and TAGs content for the production of lipid-derived biofuels and chemicals in Saccharomyces cerevisiae. PMID:26875874

  2. Role of pyruvate carboxylase in accumulation of intracellular lipid of the oleaginous yeast Yarrowia lipolytica ACA-DC 50109.

    PubMed

    Wang, Guang-Yuan; Zhang, Yan; Chi, Zhe; Liu, Guang-Lei; Wang, Zhi-Peng; Chi, Zhen-Ming

    2015-02-01

    Yarrowia lipolytica ACA-DC 50109 is an oleaginous yeast. In order to know the function of pyruvate carboxylase (PYC) in lipid biosynthesis, the PYC gene cloned from Pichia guilliermondii Pcla22 was overexpressed in the oleaginous yeast. The lipid contents in the wild-type strain ACA-DC 50109 and the transformants P4, P7, and P103 were 30.2 % (w/w) 36.5 % (w/w), 38.2 % (w/w), and 37.9 % (w/w). However, the amount of the secreted citric acids by strains ACA-DC 50109, P4, P77, and P103 were 0.5, 10.1, 11.5, and 9.4 g/L. In order to reduce the amount of the secreted citric acid, the PYC gene and endogenous ACL1 gene encoding ATP citrate lyase (ACL1) were simultaneously overexpressed in the oleaginous yeast. The lipid contents of the transformants PA19, PA56, PA124 were 44.4 % (w/w), 45.3 % (w/w), and 43.7 % (w/w). At the same time, the amount of the secreted citric acid by the transformants PA19, PA56, and PA124 was reduced to 5.4, 6.2, and 6.3 g/L. The PYC and ACL1 activities and their gene transcriptional levels in all the transformants were greatly enhanced compared to those in their wild-type strain ACA-DC 50109. During 10-L fermentation, lipid content in the transformant PA56 was 49.6 % (w/w) and the amount of secreted citric acid was 2.9 g/L. This meant that PYC and ACL1 can play an important role in accumulation of intracellular lipid of the oleaginous yeast Y. lipolytica ACA-DC 50109. PMID:25427679

  3. Spatial and temporal variations in sediment accumulation and their impacts on coral communities in the Sanya Coral Reef Reserve, Hainan, China

    NASA Astrophysics Data System (ADS)

    Li, Xiu-bao; Huang, Hui; Lian, Jian-sheng; Liu, Sheng; Huang, Liang-min; Yang, Jian-hui

    2013-11-01

    This study investigated the spatial and temporal variations of sediment accumulation and their impacts on coral communities in four sites at two or three depths (3 m, 6 m and 9 m) at the Sanya Coral Reef Reserve by deploying sediment traps on the sea floor during 2007-2009. Rainfall and typhoon events, which appeared to control sediment accumulation in the sea floor of the coral reef, were positively correlated with total sediment and sand-sized (i.e. 63-2000 µm) sediment accumulation. Sediment accumulation rate significantly decreased with the distance far away from the coast in Sanya. The mean sediment accumulation rates in Ximaozhou, Luhuitou and Xiaodonghai during 2007 to 2009 were close to 20 mg cm-2 d-1, and they were significantly higher than that in Yalongwan, probably as a result of terrestrial soil erosion caused by strong coast human activities (e.g. coastal construction, dredging and hillside clearing). Correlation analysis revealed that silt-clay-sized sediment accumulation rate was highly negatively correlated with total live coral cover and coral cover in some taxa, such as Montipora and branching Porites. whereas, Diploastrea heliopora was positively correlated with silt-clay-sized sediment accumulation. Correlation analysis also suggested that silt-clay-sized sediment accumulation had a higher efficiency in predicting the spatial variation of total live coral cover in Sanya than did the total sediment accumulation. Based on this investigation, we conclude that high rates of sediment accumulation pose a severe threat to the Sanya Coral Reef Reserve, highlighting the importance of integrated watershed management practices in the Sanya Coral Reef Reserve.

  4. Exploring nutritional modes of cultivation for enhancing lipid accumulation in microalgae.

    PubMed

    Ratha, Sachitra Kumar; Babu, Santosh; Renuka, Nirmal; Prasanna, Radha; Prasad, Rachapudi Badari Narayana; Saxena, Anil Kumar

    2013-05-01

    The objective of this study was to identify the most promising nutritional mode of growth for enhanced biomass and lipid productivity in a set of twenty microalgal strains, grown under photoautotrophic and mixotrophic/heterotrophic conditions using 2% glucose as carbon source. These included four cyanobacterial strains (Cyanosarcina, Phormidium, Nostoc and Anabaena) and sixteen green algae belonging to six genera (five strains each of Chlorella and Chlorococcum, two of Scenedesmus and one each of Chlamydomonas, Kirchneria, Bracteacoccus and Ulothrix). Lipid productivity ranged from 2-13% under photoautotrophic conditions, 1.7-32% under mixotrophic conditions and 0.9-20% under heterotrophic conditions. MIC-G5 Chlorella sp. followed by MIC-G11 Chlorella sp. exhibited the highest cellular lipid content (355 and 271 μg/ml) and lipid productivity of 32% and 28% respectively in mixotrophic condition. In the glucose supplemented conditions (heterotrophic), a significant reduction in PUFA from 25.1 to 9.4, 29.2 to 12.4 and 44.7 to 10.2 was observed in MIC-G4, MIC-G5 and MIC-G11, respectively. A remarkable enhancement of 33-70% in SFA was recorded under mixotrophic conditions. As the quality of biodiesel is based on high SFA and low PUFA, our results illustrate the significance of glucose supplemented condition as a promising strategy for generating high value biodiesel from algae. PMID:22736510

  5. Arabidopsis SEIPIN proteins modulate triacylglycerol accumulation and influence lipid droplet proliferation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The lipodystrophy protein SEIPIN is important for lipid droplet (LD) biogenesis in human and yeast cells. By contrast to the single SEIPIN genes in humans and yeast, there are three SEIPIN homologues in Arabidopsis thaliana, designated At-SEIPIN1, At-SEIPIN2 and At-SEIPIN3. Here, a yeast (Saccharomy...

  6. Biomonitoring of river pollution by heavy metals in reserves on the basis of studies on metal accumulation in the body of aquatic invertebrates

    SciTech Connect

    Zhulidov, A.V.; Emets, V.M.; Shevtsov, A.S.

    1980-05-01

    In recent years particular importance has been attached to biological monitoring, with biosphere reserves moving into the forefront as background-monitoring stations. However, the biomonitoring of river pollution by heavy metals is poorly developed and is not carried out in reserves. The realization of this type of monitoring is prevented in no small degree by the inadequate extent to which the accumulation of heavy metals in the body of freshwater invertebrates has been studied; some data exist on individual species os bivalve and gastropod mollusks, leeches, crustaceans, mayflies, dragonflies dipterous insects, and caddis flies. A number of groups of large freshwater invertebrates important in the biocenological sense, especially bugs and beetles, have not been investigated at all in respect to heavy-metal accumulation. The present communication demonstrates the possibility of utilizing aquatic gastropod mollusks and insects (bugs and beetles) to characterize river pollution by heavy metals in the reserves.

  7. An engineered lipid remodeling system using a galactolipid synthase promoter during phosphate starvation enhances oil accumulation in plants

    PubMed Central

    Shimojima, Mie; Madoka, Yuka; Fujiwara, Ryota; Murakawa, Masato; Yoshitake, Yushi; Ikeda, Keiko; Koizumi, Ryota; Endo, Keiji; Ozaki, Katsuya; Ohta, Hiroyuki

    2015-01-01

    Inorganic phosphate (Pi) depletion is a serious problem for plant growth. Membrane lipid remodeling is a defense mechanism that plants use to survive Pi-depleted conditions. During Pi starvation, phospholipids are degraded to supply Pi for other essential biological processes, whereas galactolipid synthesis in plastids is up-regulated via the transcriptional activation of monogalactosyldiacylglycerol synthase 3 (MGD3). Thus, the produced galactolipids are transferred to extraplastidial membranes to substitute for phospholipids. We found that, Pi starvation induced oil accumulation in the vegetative tissues of various seed plants without activating the transcription of enzymes involved in the later steps of triacylglycerol (TAG) biosynthesis. Moreover, the Arabidopsis starchless phosphoglucomutase mutant, pgm-1, accumulated higher TAG levels than did wild-type plants under Pi-depleted conditions. We generated transgenic plants that expressed a key gene involved in TAG synthesis using the Pi deficiency–responsive MGD3 promoter in wild-type and pgm-1 backgrounds. During Pi starvation, the transgenic plants accumulated higher TAG amounts compared with the non-transgenic plants, suggesting that the Pi deficiency–responsive promoter of galactolipid synthase in plastids may be useful for producing transgenic plants that accumulate more oil under Pi-depleted conditions. PMID:26379690

  8. Smooth Muscle Cell Foam Cell Formation, Apolipoproteins, and ABCA1 in Intracranial Aneurysms: Implications for Lipid Accumulation as a Promoter of Aneurysm Wall Rupture.

    PubMed

    Ollikainen, Eliisa; Tulamo, Riikka; Lehti, Satu; Lee-Rueckert, Miriam; Hernesniemi, Juha; Niemelä, Mika; Ylä-Herttuala, Seppo; Kovanen, Petri T; Frösen, Juhana

    2016-07-01

    Saccular intracranial aneurysm (sIA) aneurysm causes intracranial hemorrhages that are associated with high mortality. Lipid accumulation and chronic inflammation occur in the sIA wall. A major mechanism for lipid clearance from arteries is adenosine triphosphate-binding cassette A1 (ABCA1)-mediated lipid efflux from foam cells to apolipoprotein A-I (apoA-I). We investigated the association of wall degeneration, inflammation, and lipid-related parameters in tissue samples of 16 unruptured and 20 ruptured sIAs using histology and immunohistochemistry. Intracellular lipid accumulation was associated with wall remodeling (p = 0.005) and rupture (p = 0.020). Foam cell formation was observed in smooth muscle cells, in addition to CD68- and CD163-positive macrophages. Macrophage infiltration correlated with intracellular lipid accumulation and apolipoproteins, including apoA-I. ApoA-I correlated with markers of lipid accumulation and wall degeneration (p = 0.01). ApoA-I-positive staining colocalized with ABCA1-positive cells particularly in sIAs with high number of smooth muscle cells (p = 0.003); absence of such colocalization was associated with wall degeneration (p = 0.017). Known clinical risk factors for sIA rupture correlated inversely with apoA-I. We conclude that lipid accumulation associates with sIA wall degeneration and risk of rupture, possibly via formation of foam cells and subsequent loss of mural cells. Reduced removal of lipids from the sIA wall via ABCA1-apoA-I pathway may contribute to this process. PMID:27283327

  9. GPR40 agonist ameliorates liver X receptor-induced lipid accumulation in liver by activating AMPK pathway

    PubMed Central

    Li, Meng; Meng, Xiangyu; Xu, Jie; Huang, Xiuqing; Li, Hongxia; Li, Guoping; Wang, Shu; Man, Yong; Tang, Weiqing; Li, Jian

    2016-01-01

    Hepatic steatosis is strongly linked to insulin resistance and type 2 diabetes. GPR40 is a G protein-coupled receptor mediating free fatty acid-induced insulin secretion and thus plays a beneficial role in the improvement of diabetes. However, the impact of GPR40 agonist on hepatic steatosis still remains to be elucidated. In the present study, we found that activation of GPR40 by its agonist GW9508 attenuated Liver X receptor (LXR)-induced hepatic lipid accumulation. Activation of LXR in the livers of C57BL/6 mice fed a high-cholesterol diet and in HepG2 cells stimulated by chemical agonist caused increased expression of its target lipogenic genes and subsequent lipid accumulation. All these effects of LXR were dramatically downregulated after GW9508 supplementation. Moreover, GPR40 activation was accompanied by upregulation of AMPK pathway, whereas the inhibitive effect of GPR40 on the lipogenic gene expression was largely abrogated by AMPK knockdown. Taken together, our results demonstrated that GW9508 exerts a beneficial effect to ameliorate LXR-induced hepatic steatosis through regulation of AMPK signaling pathway. PMID:27121981

  10. GPR40 agonist ameliorates liver X receptor-induced lipid accumulation in liver by activating AMPK pathway.

    PubMed

    Li, Meng; Meng, Xiangyu; Xu, Jie; Huang, Xiuqing; Li, Hongxia; Li, Guoping; Wang, Shu; Man, Yong; Tang, Weiqing; Li, Jian

    2016-01-01

    Hepatic steatosis is strongly linked to insulin resistance and type 2 diabetes. GPR40 is a G protein-coupled receptor mediating free fatty acid-induced insulin secretion and thus plays a beneficial role in the improvement of diabetes. However, the impact of GPR40 agonist on hepatic steatosis still remains to be elucidated. In the present study, we found that activation of GPR40 by its agonist GW9508 attenuated Liver X receptor (LXR)-induced hepatic lipid accumulation. Activation of LXR in the livers of C57BL/6 mice fed a high-cholesterol diet and in HepG2 cells stimulated by chemical agonist caused increased expression of its target lipogenic genes and subsequent lipid accumulation. All these effects of LXR were dramatically downregulated after GW9508 supplementation. Moreover, GPR40 activation was accompanied by upregulation of AMPK pathway, whereas the inhibitive effect of GPR40 on the lipogenic gene expression was largely abrogated by AMPK knockdown. Taken together, our results demonstrated that GW9508 exerts a beneficial effect to ameliorate LXR-induced hepatic steatosis through regulation of AMPK signaling pathway. PMID:27121981

  11. Eucommia ulmoides Oliver Extract, Aucubin, and Geniposide Enhance Lysosomal Activity to Regulate ER Stress and Hepatic Lipid Accumulation

    PubMed Central

    Lee, Hwa-Young; Lee, Geum-Hwa; Lee, Mi-Rin; Kim, Hye-Kyung; Kim, Nan-young; Kim, Seung-Hyun; Lee, Yong-Chul; Kim, Hyung-Ryong; Chae, Han-Jung

    2013-01-01

    Eucommia ulmoides Oliver is a natural product widely used as a dietary supplement and medicinal plant. Here, we examined the potential regulatory effects of Eucommia ulmoides Oliver extracts (EUE) on hepatic dyslipidemia and its related mechanisms by in vitro and in vivo studies. EUE and its two active constituents, aucubin and geniposide, inhibited palmitate-induced endoplasmic reticulum (ER) stress, reducing hepatic lipid accumulation through secretion of apolipoprotein B and associated triglycerides and cholesterol in human HepG2 hepatocytes. To determine how EUE diminishes the ER stress response, lysosomal and proteasomal protein degradation activities were analyzed. Although proteasomal activity was not affected, lysosomal enzyme activities including V-ATPase were significantly increased by EUE as well as aucubin and geniposide in HepG2 cells. Treatment with the V-ATPase inhibitor, bafilomycin, reversed the inhibition of ER stress, secretion of apolipoprotein B, and hepatic lipid accumulation induced by EUE or its component, aucubin or geniposide. In addition, EUE was determined to regulate hepatic dyslipidemia by enhancing lysosomal activity and to regulate ER stress in rats fed a high-fat diet. Together, these results suggest that EUE and its active components enhance lysosomal activity, resulting in decreased ER stress and hepatic dyslipidemia. PMID:24349058

  12. Intramitochondrial accumulation of cationic Atto520-biotin proceeds via voltage-dependent slow permeation through lipid membrane.

    PubMed

    Antonenko, Yuri N; Nechaeva, Natalya L; Baksheeva, Victoria E; Rokitskaya, Tatyana I; Plotnikov, Egor Y; Kotova, Elena A; Zorov, Dmitry B

    2015-06-01

    Conjugation to penetrating cations is a general approach for intramitochondrial delivery of physiologically active compounds, supported by a high membrane potential of mitochondria having negative sign on the matrix side. By using fluorescence correlation spectroscopy, we found here that Atto520-biotin, a conjugate of a fluorescent cationic rhodamine-based dye with the membrane-impermeable vitamin biotin, accumulated in energized mitochondria in contrast to biotin-rhodamine 110. The energy-dependent uptake of Atto520-biotin by mitochondria, being slower than that of the conventional mitochondrial dye tetramethyl-rhodamine ethyl ester, was enhanced by the hydrophobic anion tetraphenylborate (TPB). Atto520-biotin also exhibited accumulation in liposomes driven by membrane potential resulting from potassium ion gradient in the presence valinomycin. The induction of electrical current across planar bilayer lipid membrane by Atto520-biotin proved the ability of the compound to permeate through lipid membrane in a cationic form. Atto520-biotin stained mitochondria in a culture of L929 cells, and the staining was enhanced in the presence of TPB. Therefore, the fluorescent Atto520 moiety can serve as a vehicle for intramitochondrial delivery of hydrophilic drugs. Of importance for biotin-streptavidin technology, binding of Atto520-biotin to streptavidin was found to cause quenching of its fluorescence similar to the case of fluorescein-4-biotin. PMID:25753112

  13. Suboptimal maternal nutrition during early fetal kidney development specifically promotes renal lipid accumulation following juvenile obesity in the offspring.

    PubMed

    Fainberg, H P; Sharkey, D; Sebert, S; Wilson, V; Pope, M; Budge, H; Symonds, M E

    2013-01-01

    Reduced maternal food intake between early-to-mid gestation results in tissue-specific adaptations in the offspring following juvenile-onset obesity that are indicative of insulin resistance. The aim of the present study was to establish the extent to which renal ectopic lipid accumulation, as opposed to other markers of renal stress, such as iron deposition and apoptosis, is enhanced in obese offspring born to mothers nutrient restricted (NR) throughout early fetal kidney development. Pregnant sheep were fed either 100% (control) or NR (i.e. fed 50% of their total metabolisable energy requirement from 30-80 days gestation and 100% at all other times). At weaning, offspring were made obese and, at approximately 1 year, kidneys were sampled. Triglyceride content, HIF-1α gene expression and the protein abundance of the outer-membrane transporter voltage-dependent anion-selective channel protein (VDAC)-I on the kidney cortex were increased in obese offspring born to NR mothers compared with those born to controls, which exhibited increased iron accumulation within the tubular epithelial cells and increased gene expression of the death receptor Fas. In conclusion, suboptimal maternal nutrition coincident with early fetal kidney development results in enhanced renal lipid deposition following juvenile obesity and could accelerate the onset of the adverse metabolic, rather than cardiovascular, symptoms accompanying the metabolic syndrome. PMID:22951182

  14. Effects of liposome-encapsulated bisphosphonates on acetylated LDL metabolism, lipid accumulation and viability of phagocyting cells.

    PubMed

    Ylitalo, R; Mönkkönen, J; Ylä-Herttuala, S

    1998-01-01

    Bisphosphonates, the drugs used for the treatment of e.g. osteoporosis, inhibit the development of experimental atherosclerosis. When encapsulated in liposomes, they also inactivate macrophages, which have a key role in atherogenesis. We studied the effects of three clinically used bisphosphonates, i.e. clodronate, etidronate and pamidronate, on 1) the viability of mouse peritoneal macrophages and macrophage-like RAW 264 cells, 2) the degradation of 125I-labeled acetylated LDL by RAW 264 cells, and 3) the formation of LDL-derived foam cells in vitro. Liposome-encapsulated clodronate and pamidronate, but not etidronate, decreased the fraction of viable peritoneal macrophages in a concentration-dependent manner, whereas RAW 264 cells were much more resistant to the cytotoxic effects of bisphosphonates. Preincubation with liposomal clodronate and etidronate inhibited in a concentration-dependent manner the degradation of acetylated LDL in RAW 264 cells, but non-cytotoxic concentrations of liposomal pamidronate had only a weak inhibitory effect. The inhibition was more pronounced by liposomal clodronate than by liposomal etidronate. At high concentrations (500 microg protein/ml) of acetylated and aggregated LDL, RAW 264 cells transformed to foam cells. Preincubation with liposomal clodronate and etidronate reduced the cellular accumulation of acetylated LDL-derived lipids, but the drugs had no effect on the lipid accumulation caused by aggregated LDL. The results suggest that liposomal clodronate and etidronate inhibit the activity of phagocyting cells in internalizing and degrading atherogenic modified LDL. PMID:9449231

  15. Mercury-pollution induction of intracellular lipid accumulation and lysosomal compartment amplification in the benthic foraminifer Ammonia parkinsoniana

    DOE PAGESBeta

    Frontalini, Fabrizio; Curzi, Davide; Cesarini, Erica; Canonico, Barbara; Giordano, Francesco M.; De Matteis, Rita; Bernhard, Joan M.; Pieretti, Nadia; Gu, Baohua; Eskelsen, Jeremy R.; et al

    2016-09-07

    In this study, heavy metals such as mercury (Hg) pose a significant health hazard through bioaccumulation and biomagnification. By penetrating cell membranes, heavy metal ions may lead to pathological conditions. Here we examined the responses of Ammonia parkinsoniana, a benthic foraminiferan, to different concentrations of Hg in the artificial sea water. Confocal images of untreated and treated specimens using fluorescent probes (Nile Red and Acridine Orange) provided an opportunity for visualizing the intracellular lipid accumulation and acidic compartment regulation. With increased Hg over time, we observed an increased number of lipid droplets, which may have acted as a detoxifying organellemore » where Hg is sequestered and biologically inactivated. Further, Hg seems to promote the proliferation of lysosomes both in terms of number and dimension that, at the highest level of Hg, resulted in cell death. We report, for the first time, the presence of Hg within the foraminiferal cell: at the basal part of pores, in the organic linings of the foramen/septa, and as cytoplasmic accumulations.« less

  16. Mercury-Pollution Induction of Intracellular Lipid Accumulation and Lysosomal Compartment Amplification in the Benthic Foraminifer Ammonia parkinsoniana.

    PubMed

    Frontalini, Fabrizio; Curzi, Davide; Cesarini, Erica; Canonico, Barbara; Giordano, Francesco M; De Matteis, Rita; Bernhard, Joan M; Pieretti, Nadia; Gu, Baohua; Eskelsen, Jeremy R; Jubb, Aaron M; Zhao, Linduo; Pierce, Eric M; Gobbi, Pietro; Papa, Stefano; Coccioni, Rodolfo

    2016-01-01

    Heavy metals such as mercury (Hg) pose a significant health hazard through bioaccumulation and biomagnification. By penetrating cell membranes, heavy metal ions may lead to pathological conditions. Here we examined the responses of Ammonia parkinsoniana, a benthic foraminiferan, to different concentrations of Hg in the artificial sea water. Confocal images of untreated and treated specimens using fluorescent probes (Nile Red and Acridine Orange) provided an opportunity for visualizing the intracellular lipid accumulation and acidic compartment regulation. With increased Hg over time, we observed an increased number of lipid droplets, which may have acted as a detoxifying organelle where Hg is sequestered and biologically inactivated. Further, Hg seems to promote the proliferation of lysosomes both in terms of number and dimension that, at the highest level of Hg, resulted in cell death. We report, for the first time, the presence of Hg within the foraminiferal cell: at the basal part of pores, in the organic linings of the foramen/septa, and as cytoplasmic accumulations. PMID:27603511

  17. Integrated Autofluorescence Characterization of a Modified-Diet Liver Model with Accumulation of Lipids and Oxidative Stress

    PubMed Central

    Croce, Anna Cleta; Tarantola, Eleonora

    2014-01-01

    Oxidative stress in fatty livers is mainly generated by impaired mitochondrial β-oxidation, inducing tissue damages and disease progression. Under suitable excitation, light liver endogenous fluorophores can give rise to autofluorescence (AF) emission, the properties of which depend on the organ morphofunctional state. In this work, we characterized the AF properties of a rat liver model of lipid accumulation and oxidative stress, induced by a 1–9-week hypercaloric methionine-choline deficient (MCD) diet administration. The AF analysis (excitation at 366 nm) was performed in vivo, via fiber optic probe, or ex vivo. The contribution of endogenous fluorophores involved in redox reactions and in tissue organization was estimated through spectral curve fitting analysis, and AF results were validated by means of different histochemical and biochemical assays (lipids, collagen, vitamin A, ROS, peroxidised proteins, and lipid peroxidation -TBARS-, GSH, and ATP). In comparison with the control, AF spectra changes found already at 1 week of MCD diet reflect alterations both in tissue composition and organization (proteins, lipopigments, and vitamin A) and in oxidoreductive pathway engagement (NAD(P)H, flavins), with a subsequent attempt to recover redox homeostasis. These data confirm the AF analysis potential to provide a comprehensive diagnostic information on negative effects of oxidative metabolism alteration. PMID:25006587

  18. Obesity-driven prepartal hepatic lipid accumulation in dairy cows is associated with increased CD36 and SREBP-1 expression.

    PubMed

    Prodanović, Radiša; Korićanac, Goran; Vujanac, Ivan; Djordjević, Ana; Pantelić, Marija; Romić, Snježana; Stanimirović, Zoran; Kirovski, Danijela

    2016-08-01

    We investigated the hypothesis that obesity in dairy cows enhanced expression of proteins involved in hepatic fatty acid uptake and metabolism. Sixteen Holstein-Friesian close-up cows were divided into 2 equal groups based on their body condition score (BCS) as optimal (3.25≤BCS≤3.5) and high (4.0≤BCS≤4.25). Intravenous glucose tolerance test (GTT) and liver biopsies were carried out at day 10 before calving. Blood samples were collected before (basal) and after glucose infusion, and glucose, insulin and non-esterified fatty acid (NEFA) levels were determined at each sample point. In addition, β-hydroxybutyrate and triglycerides levels were measured in the basal samples. The liver biopsies were analyzed for total lipid content and protein expression of insulin receptor beta (IRβ), fatty acid translocase (FAT/CD36) and sterol regulatory element-binding protein-1 (SREBP-1). Basal glucose and insulin were higher in high-BCS cows, which coincided with higher circulating triglycerides and hepatic lipid content. Clearance rate and AUC for NEFA during GTT were higher in optimal-BCS cows. The development of insulin resistance and fatty liver in obese cows was paralleled by increased hepatic expression of the IRβ, CD36 and SREBP-1. These results suggest that increased expression of hepatic CD36 and SREBP-1 is relevant in the obesity-driven lipid accumulation in the liver of dairy cows during late gestation. PMID:27473969

  19. SIRT1 Disruption in Human Fetal Hepatocytes Leads to Increased Accumulation of Glucose and Lipids

    PubMed Central

    Tobita, Takamasa; Guzman-Lepe, Jorge; Takeishi, Kazuki; Nakao, Toshimasa; Wang, Yang; Meng, Fanying; Deng, Chu-Xia; Collin de l’Hortet, Alexandra; Soto-Gutierrez, Alejandro

    2016-01-01

    There are unprecedented epidemics of obesity, such as type II diabetes and non-alcoholic fatty liver diseases (NAFLD) in developed countries. A concerning percentage of American children are being affected by obesity and NAFLD. Studies have suggested that the maternal environment in utero might play a role in the development of these diseases later in life. In this study, we documented that inhibiting SIRT1 signaling in human fetal hepatocytes rapidly led to an increase in intracellular glucose and lipids levels. More importantly, both de novo lipogenesis and gluconeogenesis related genes were upregulated upon SIRT1 inhibition. The AKT/FOXO1 pathway, a major negative regulator of gluconeogenesis, was decreased in the human fetal hepatocytes inhibited for SIRT1, consistent with the higher level of gluconeogenesis. These results indicate that SIRT1 is an important regulator of lipid and carbohydrate metabolisms within human fetal hepatocytes, acting as an adaptive transcriptional response to environmental changes. PMID:26890260

  20. SIRT1 Disruption in Human Fetal Hepatocytes Leads to Increased Accumulation of Glucose and Lipids.

    PubMed

    Tobita, Takamasa; Guzman-Lepe, Jorge; Takeishi, Kazuki; Nakao, Toshimasa; Wang, Yang; Meng, Fanying; Deng, Chu-Xia; Collin de l'Hortet, Alexandra; Soto-Gutierrez, Alejandro

    2016-01-01

    There are unprecedented epidemics of obesity, such as type II diabetes and non-alcoholic fatty liver diseases (NAFLD) in developed countries. A concerning percentage of American children are being affected by obesity and NAFLD. Studies have suggested that the maternal environment in utero might play a role in the development of these diseases later in life. In this study, we documented that inhibiting SIRT1 signaling in human fetal hepatocytes rapidly led to an increase in intracellular glucose and lipids levels. More importantly, both de novo lipogenesis and gluconeogenesis related genes were upregulated upon SIRT1 inhibition. The AKT/FOXO1 pathway, a major negative regulator of gluconeogenesis, was decreased in the human fetal hepatocytes inhibited for SIRT1, consistent with the higher level of gluconeogenesis. These results indicate that SIRT1 is an important regulator of lipid and carbohydrate metabolisms within human fetal hepatocytes, acting as an adaptive transcriptional response to environmental changes. PMID:26890260

  1. Uncoupling protein 3 expression and intramyocellular lipid accumulation by NMR following local burn trauma.

    PubMed

    Zhang, Qunhao; Cao, Haihui; Astrakas, Loukas G; Mintzopoulos, Dionyssios; Mindrinos, Michael N; Schulz, John; Tompkins, Ronald G; Rahme, Laurence G; Tzika, A Aria

    2006-12-01

    Burn trauma is a clinical condition accompanied by muscle wasting that severely impedes rehabilitation in burn survivors. Mitochondrial uncoupling protein 3 (UCP3) is uniformly expressed in myoskeletal mitochondria and its expression has been found to increase in other clinical syndromes that, like burn trauma, are associated with muscle wasting (e.g., starvation, fasting, cancer, sepsis). The aim of this study was to explore the effects of burn trauma on UCP3 expression, intramyocellular lipids, and plasma-free fatty acids. Mice were studied at 6 h, 1 d and 3 d after nonlethal hindlimb burn trauma. Intramyocellular lipids in hindlimb skeletal muscle samples collected from burned and normal mice were measured using 1H NMR spectroscopy on a Bruker 14.1 Tesla spectrometer at 4 degrees C. UCP3 mRNA and protein levels were also measured in these samples. Plasma-free fatty acids were measured in burned and normal mice. Local burn trauma was found to result in: 1) upregulation of UCP3 mRNA and protein expression in hindlimb myoskeletal mitochondria by 6 h postburn; 2) increased intramyocellular lipids; and 3) increased plasma-free fatty acids. Our findings show that the increase in UCP3 after burn trauma may be linked to burn-induced alterations in lipid metabolism. Such a link could reveal novel insights into how processes related to energy metabolism are controlled in burn and suggest that induction of UCP3 by burn in skeletal muscle is protective by either activating cellular redox signaling and/or mitochondrial uncoupling. PMID:17089030

  2. Monitoring lipid accumulation in the green microalga Botryococcus braunii with frequency-modulated stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Chin; Chandrappa, Dayananda; Smirnoff, Nicholas; Moger, Julian

    2015-03-01

    The potential of microalgae as a source of renewable energy has received considerable interest because they can produce lipids (fatty acids and isoprenoids) that can be readily converted into biofuels. However, significant research in this area is required to increase yields to make this a viable renewable source of energy. An analytical tool that could provide quantitative in situ spectroscopic analysis of lipids synthesis in individual microalgae would significantly enhance our capability to understand the synthesis process at the cellular level and lead to the development of strategies for increasing yield. Stimulated Raman scattering (SRS) microscopy has great potential in this area however, the pump-probe signal from two-color two-photon absorption of pigments (chlorophyll and carotenoids) overwhelm the SRS signal and prevent its application. Clearly, the development of a background suppression technique is of significant value for this important research area. To overcome the limitation of SRS in pigmented specimens, we establish a frequency-modulated stimulated Raman scattering (FM-SRS) microscopy that eliminates the non-Raman background by rapidly toggling on-and-off the targeted Raman resonance. Moreover, we perform the background-free imaging and analysis of intracellular lipid droplets and extracellular hydrocarbons in a green microalga with FM-SRS microscopy. We believe that FM-SRS microscopy demonstrates the potential for many applications in pigmented cells and provides the opportunity for improved selective visualization of the chemical composition of algae and plants

  3. Cationic amphipathic peptides accumulate sialylated proteins and lipids in the plasma membrane of eukaryotic host cells

    PubMed Central

    Weghuber, Julian; Aichinger, Michael C.; Brameshuber, Mario; Wieser, Stefan; Ruprecht, Verena; Plochberger, Birgit; Madl, Josef; Horner, Andreas; Reipert, Siegfried; Lohner, Karl; Henics, Tamás; Schütz, Gerhard J.

    2011-01-01

    Cationic antimicrobial peptides (CAMPs) selectively target bacterial membranes by electrostatic interactions with negatively charged lipids. It turned out that for inhibition of microbial growth a high CAMP membrane concentration is required, which can be realized by the incorporation of hydrophobic groups within the peptide. Increasing hydrophobicity, however, reduces the CAMP selectivity for bacterial over eukaryotic host membranes, thereby causing the risk of detrimental side-effects. In this study we addressed how cationic amphipathic peptides—in particular a CAMP with Lysine–Leucine–Lysine repeats (termed KLK)—affect the localization and dynamics of molecules in eukaryotic membranes. We found KLK to selectively inhibit the endocytosis of a subgroup of membrane proteins and lipids by electrostatically interacting with negatively charged sialic acid moieties. Ultrastructural characterization revealed the formation of membrane invaginations representing fission or fusion intermediates, in which the sialylated proteins and lipids were immobilized. Experiments on structurally different cationic amphipathic peptides (KLK, 6-MO-LF11-322 and NK14-2) indicated a cooperation of electrostatic and hydrophobic forces that selectively arrest sialylated membrane constituents. PMID:21718688

  4. Cultivation of Chlorella vulgaris in Column Photobioreactor for Biomass Production and Lipid Accumulation.

    PubMed

    Wong, Y K; Ho, K C; Tsang, Y F; Wang, L; Yung, K K L

    2016-01-01

    Microalgae have been used as energy resources in recent decades to mitigate the global energy crisis. As the demand for pure microalgae strains for commercial use increases, designing an effective photobioreactor (PBR) for mass cultivation is important. Chlorella vulgaris, a local freshwater microalga, was used to study the algal biomass cultivation and lipid production using various PBR configurations (bubbling, air-lift, porous air-lift). The results show that a bubbling column design is a better choice for the cultivation of Chlorella vulgaris than an air-lift one. The highest biomass concentration in the bubbling PBR was 0.78 g/L while the air-lift PBR had a value of 0.09 g/L. Key operating parameters, including draft-tube length and bubbling flowrate, were then optimized based on biomass production and lipid yield. The highest lipid content was in the porous air-lift PBR and the air-lift PBR with shorter draft tube (35 cm) was also better than a longer one (50 cm) for algal cultivation, but the microalgae attachment on the inner tube of PBR always occurred. The highest biomass concentration could be produced under the highest gas flowrate of 2.7 L/min, whereas the lowest dry cell mass was under the lowest gas flowrate of 0.2 L/min. PMID:26803025

  5. Smoke Exposure Causes Endoplasmic Reticulum Stress and Lipid Accumulation in Retinal Pigment Epithelium through Oxidative Stress and Complement Activation*

    PubMed Central

    Kunchithapautham, Kannan; Atkinson, Carl; Rohrer, Bärbel

    2014-01-01

    Age-related macular degeneration (AMD) is a complex disease caused by genetic and environmental factors, including genetic variants in complement components and smoking. Smoke exposure leads to oxidative stress, complement activation, endoplasmic reticulum (ER) stress, and lipid dysregulation, which have all been proposed to be associated with AMD pathogenesis. Here we examine the effects of smoke exposure on the retinal pigment epithelium (RPE). Mice were exposed to cigarette smoke or filtered air for 6 months. RPE cells grown as stable monolayers were exposed to 5% cigarette smoke extract (CSE). Effects of smoke were determined by biochemical, molecular, and histological measures. Effects of the alternative pathway (AP) of complement and complement C3a anaphylatoxin receptor signaling were analyzed using knock-out mice or specific inhibitors. ER stress markers were elevated after smoke exposure in RPE of intact mice, which was eliminated in AP-deficient mice. To examine this relationship further, RPE monolayers were exposed to CSE. Short term smoke exposure resulted in production and release of complement C3, the generation of C3a, oxidative stress, complement activation on the cell membrane, and ER stress. Long term exposure to CSE resulted in lipid accumulation, and secretion. All measures were reversed by blocking C3a complement receptor (C3aR), alternative complement pathway signaling, and antioxidant therapy. Taken together, our results provide clear evidence that smoke exposure results in oxidative stress and complement activation via the AP, resulting in ER stress-mediated lipid accumulation, and further suggesting that oxidative stress and complement act synergistically in the pathogenesis of AMD. PMID:24711457

  6. Copper accumulation and lipid oxidation precede inflammation and myelin lesions in N,N-diethyldithiocarbamate peripheral myelinopathy

    SciTech Connect

    Viquez, Olga M.; Valentine, Holly L.; Amarnath, Kalyani; Milatovic, Dejan; Valentine, William M.

    2008-05-15

    Dithiocarbamates have a wide spectrum of applications in industry, agriculture and medicine with new applications being actively investigated. One adverse effect of dithiocarbamates is the neurotoxicity observed in humans and experimental animals. Results from previous studies have suggested that dithiocarbamates elevate copper and promote lipid oxidation within myelin membranes. In the current study, copper levels, lipid oxidation, protein oxidative damage and markers of inflammation were monitored as a function of N,N-diethyldithiocarbamate (DEDC) exposure duration in an established model for DEDC-mediated myelinopathy in the rat. Intra-abdominal administration of DEDC was performed using osmotic pumps for periods of 2, 4, and 8 weeks. Metals in brain, liver and tibial nerve were measured using ICP-MS and lipid oxidation assessed through HPLC measurement of malondialdehyde in tibial nerve, and GC/MS measurement of F{sub 2} isoprostanes in sciatic nerve. Protein oxidative injury of sciatic nerve proteins was evaluated through quantification of 4-hydroxynonenal protein adducts using immunoassay, and inflammation monitored by quantifying levels of IgGs and activated macrophages using immunoassay and immunohistochemistry methods, respectively. Changes in these parameters were then correlated to the onset of structural lesions, determined by light and electron microscopy, to delineate the temporal relationship of copper accumulation and oxidative stress in peripheral nerve to the onset of myelin lesions. The data provide evidence that DEDC mediates lipid oxidation and elevation of total copper in peripheral nerve well before myelin lesions or activated macrophages are evident. This relationship is consistent with copper-mediated oxidative stress contributing to the myelinopathy.

  7. Metabolomics analysis reveals 6‐benzylaminopurine as a stimulator for improving lipid and DHA accumulation of Aurantiochytriumsp.

    PubMed Central

    Yu, Xin‐Jun; Sun, Jie; Zheng, Jian‐Yong; Sun, Ya‐Qi

    2016-01-01

    Abstract BACKGROUND Phytohormones are chemical messengers that have a positive effect on biodiesel production of microalgae at low concentrations. However, the effect of phytohormone 6‐benzylaminopurine on lipid and docosahexaenoic acid (DHA) production in marine DHA‐producer Aurantiochytrium has never been reported. In this study, a GC‐MS‐based metabolomics method combined with a multivariate analysis is applied to reveal the metabolic mechanism of 6‐benzylaminopurine enhancing production of lipid and DHA in Aurantiochytrium sp.YLH70. RESULTS In total, 71 metabolites were identified by GC‐MS. The PCA model revealed that 76.9% of metabolite variation was related to 6‐benzylaminopurine treatment, and overall metabolomics profiles between the 6‐benzylaminopurine and control groups were clearly discriminated. Forty‐six metabolites identified by the PLS‐DA model were responsible for responding to 6‐benzylaminopurine. Metabolic analysis showed that 6‐benzylaminopurine could accelerate the rate of utilization of glucose in Aurantiochytrium sp. YLH70, and the metabolic flux from glycolysis, TCA cycle and mevalonate pathway to fatty acids biosynthesis was promoted. Moreover, the anti‐stress mechanism in Aurantiochytrium sp.YLH70 might be induced by 6‐benzylaminopurine. CONCLUSION Metabolomics is a suitable tool to discover the metabolic mechanism for improving lipid and DHA accumulation in a microorganism. 6‐benzylaminopurine has the potential to stimulate lipid and DHA production of Aurantiochytrium sp.YLH70 for industrial purposes. © 2015 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:27065509

  8. Emodin ameliorates high-fat-diet induced insulin resistance in rats by reducing lipid accumulation in skeletal muscle.

    PubMed

    Cao, Yanni; Chang, Shufang; Dong, Jie; Zhu, Shenyin; Zheng, Xiaoying; Li, Juan; Long, Rui; Zhou, Yuanda; Cui, Jianyu; Zhang, Ye

    2016-06-01

    Emodin, an anthraquinone derivative isolated from root and rhizome of Rheum palmatum, has been reported to have promising anti-diabetic activity. The present study was to explore the possible mechanism of emodin to ameliorate insulin resistance. Insulin resistance was induced by feeding a high fat diet to Sprague-Dawley rats. The blood glucose and lipid profiles in serum were measured by an enzymatic method, and a hyperinsulinaemic-euglycaemic clamp was used to evaluate insulin resistance. L6 cells were cultured and treated with palmitic acid and emodin. The lipid content was assayed in the soleus muscle and L6 cells by Oil Red O staining. Western blot, qRT-PCR, and immunohistochemical staining were used to detect the following in the rat soleus muscle and L6 cells: protein levels, mRNA levels of FATP1, FATP4, transporter fatty acid translocase (FAT/CD36), and plasma membrane-associated fatty acid protein (FABPpm). We found that blood glucose, triglyceride (TG), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were significantly decreased in the emodin group. Oil Red O staining and the level of TG in skeletal muscle and L6 cells confirmed that lipid deposition decreased after treatment with emodin. Furthermore, the protein levels and mRNA levels of FATP1 in skeletal muscle and in L6 cells of rats were significantly decreased, yet the protein levels and mRNA levels of FATP4, FAT/CD36 and FABPpm did not drop off significantly. The study suggest that emodin ameliorates insulin resistance by reducing FATP1-mediated skeletal muscle lipid accumulation in rats fed a high fat diet. PMID:27020550

  9. δ-Tocopherol reduces lipid accumulation in Niemann-Pick type C1 and Wolman cholesterol storage disorders.

    PubMed

    Xu, Miao; Liu, Ke; Swaroop, Manju; Porter, Forbes D; Sidhu, Rohini; Firnkes, Sally; Finkes, Sally; Ory, Daniel S; Marugan, Juan J; Xiao, Jingbo; Southall, Noel; Pavan, William J; Davidson, Cristin; Walkley, Steven U; Remaley, Alan T; Baxa, Ulrich; Sun, Wei; McKew, John C; Austin, Christopher P; Zheng, Wei

    2012-11-16

    Niemann-Pick disease type C (NPC) and Wolman disease are two members of a family of storage disorders caused by mutations of genes encoding lysosomal proteins. Deficiency in function of either the NPC1 or NPC2 protein in NPC disease or lysosomal acid lipase in Wolman disease results in defective cellular cholesterol trafficking. Lysosomal accumulation of cholesterol and enlarged lysosomes are shared phenotypic characteristics of both NPC and Wolman cells. Utilizing a phenotypic screen of an approved drug collection, we found that δ-tocopherol effectively reduced lysosomal cholesterol accumulation, decreased lysosomal volume, increased cholesterol efflux, and alleviated pathological phenotypes in both NPC1 and Wolman fibroblasts. Reduction of these abnormalities may be mediated by a δ-tocopherol-induced intracellular Ca(2+) response and subsequent enhancement of lysosomal exocytosis. Consistent with a general mechanism for reduction of lysosomal lipid accumulation, we also found that δ-tocopherol reduces pathological phenotypes in patient fibroblasts from other lysosomal storage diseases, including NPC2, Batten (ceroid lipofuscinosis, neuronal 2, CLN2), Fabry, Farber, Niemann-Pick disease type A, Sanfilippo type B (mucopolysaccharidosis type IIIB, MPSIIIB), and Tay-Sachs. Our data suggest that regulated exocytosis may represent a potential therapeutic target for reduction of lysosomal storage in this class of diseases. PMID:23035117

  10. Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation.

    PubMed

    Xue, Jiao; Niu, Ying-Fang; Huang, Tan; Yang, Wei-Dong; Liu, Jie-Sheng; Li, Hong-Ye

    2015-01-01

    To obtain fast growing oil-rich microalgal strains has been urgently demanded for microalgal biofuel. Malic enzyme (ME), which is involved in pyruvate metabolism and carbon fixation, was first characterized in microalgae here. Overexpression of Phaeodactylum tricornutum ME (PtME) significantly enhanced the expression of PtME and its enzymatic activity in transgenic P. tricornutum. The total lipid content in transgenic cells markedly increased by 2.5-fold and reached a record 57.8% of dry cell weight with a similar growth rate to wild type, thus keeping a high biomass. The neutral lipid content was further increased by 31% under nitrogen-deprivation treatment, still 66% higher than that of wild type. Transgenic microalgae cells exhibited obvious morphological changes, as the cells were shorter and thicker and contained larger oil bodies. Immuno-electron microscopy targeted PtME to the mitochondrion. This study markedly increased the oil content in microalgae, suggesting a new route for developing ideal microalgal strains for industrial biodiesel production. PMID:25447640

  11. Pomegranate peel polyphenols inhibit lipid accumulation and enhance cholesterol efflux in raw264.7 macrophages.

    PubMed

    Zhao, Shengjuan; Li, Jianke; Wang, Lifang; Wu, Xiaoxia

    2016-07-13

    Macrophage cholesterol accumulation and foam cell formation are the hallmarks of early atherogenesis. Many plant polyphenols have been shown to inhibit macrophage foam cell formation and the development of atherosclerotic lesions. However, the effect of pomegranate peel polyphenols on foam cells remains unclear. In this study, the potential atheroprotective actions of pomegranate peel polyphenols on cholesterol accumulation and outflow in raw264.7 macrophages, and the mechanisms, were investigated. The results showed that the pomegranate peel polyphenols reduced ox-LDL internalization to diminish foam cell formation, as measured by oil-red O staining in raw264.7 macrophages, which may be due to decreasing the macrophage CD36 protein expression and not SR-A. In addition, pomegranate peel polyphenols promoted apoA-1-mediated macrophage cholesterol efflux by up-regulating ABCA1 and LXRα at the mRNA and protein levels, independently of ABCG1 and PPARγ. PMID:27334099

  12. Effect of hypercholesterolemia on transendothelial EBD-albumin permeability and lipid accumulation in porcine iliac arteries.

    PubMed

    Lamack, Jeffrey A; Himburg, Heather A; Friedman, Morton H

    2006-02-01

    Hypercholesterolemia is associated with increased cardiovascular mortality and is known to promote the advancement of atherosclerotic lesions in experimental animal models. Juvenile swine were fed a normal or high-cholesterol diet, and the transendothelial macromolecular permeability of the external iliac arteries of these animals was assessed by measuring the uptake rate of circulating Evans blue dye (EBD). The extent and patterns of lipid-containing lesions were also determined using en face staining with Oil Red O (ORO). Sites of ORO staining often excluded EBD, possibly via the fragmentation of the internal elastic lamina, to which EBD binds. By spatially averaging the EBD uptake in arterial segments relatively free of ORO-positive lesions, it was found that endothelial permeability to albumin was greater in hypercholesterolemic pigs than in those on a normal diet (p=0.056). PMID:15935354

  13. Kibizu concentrated liquid suppresses the accumulation of lipid droplets in 3T3-L1 cells.

    PubMed

    Inoue, Chisato; Kozaki, Tomomi; Morita, Yukiko; Shirouchi, Bungo; Fukami, Katsuya; Shimizu, Kuniyoshi; Sato, Masao; Katakura, Yoshinori

    2015-08-01

    Adipocyte size is closely related to the occurrence of diabetes, metabolic syndrome, and insulin resistance. Thus, researchers are searching for active substances that function to reduce adipocyte size. In the present study, we focused on sugar cane vinegar, Kibizu, and evaluated the function of Kibizu to reduce adipocyte size by using an in vitro model system, because people in Amami Oshima famous for longevity regularly consume Kibizu. Results showed that Kibizu treatment significantly reduced the size and number of lipid droplets in 3T3-L1 cells, relative to treatment with Kurozu, another traditional vinegar. Results of an extraction experiment suggest that the active components in Kibizu are lipophilic and hydrophobic. In addition, an in vivo experiment on rats treated with Kibizu showed that the active components were contained in large vein blood. Results of an additional in vivo experiment suggest that metabolites generated by Kibizu-treated rats are primarily contained or modified specifically in the large vein blood. PMID:25672941

  14. Life style-related diseases of the digestive system: endocrine disruptors stimulate lipid accumulation in target cells related to metabolic syndrome.

    PubMed

    Wada, Koichiro; Sakamoto, Hirotada; Nishikawa, Kenji; Sakuma, Satoru; Nakajima, Atsushi; Fujimoto, Yohko; Kamisaki, Yoshinori

    2007-10-01

    Many reports indicated that endocrine disruptors (EDs) affect several hormonal functions in various living things. Here, we show the effect of EDs on lipid accumulation in target cells involved in the onset of metabolic syndrome. Treatment with nonylphenol and bisphenol A, typical EDs, stimulated the accumulation of triacylglycerol in differentiated adipocytes from 3T3-L1, preadipocytes, in time- and concentration-dependent manners. Up-regulation of gene expressions involved in lipid metabolism and metabolic syndrome were observed in adipocytes treated with EDs. Similarly, stimulatory effects of EDs were also observed on the human hepatoma cell line HuH-7. These observations indicate that exposure to EDs stimulates the lipid accumulation in target cells involved in the metabolic syndrome and may cause the dysfunction of those cells, resulting in induction of metabolic syndrome. PMID:17928741

  15. Impacts of CO2 concentration on growth, lipid accumulation, and carbon-concentrating-mechanism-related gene expression in oleaginous Chlorella.

    PubMed

    Fan, Jianhua; Xu, Hui; Luo, Yuanchan; Wan, Minxi; Huang, Jianke; Wang, Weiliang; Li, Yuanguang

    2015-03-01

    Biodiesel production by microalgae with photosynthetic CO2 biofixation is thought to be a feasible way in the field of bioenergy and carbon emission reduction. Knowledge of the carbon-concentrating mechanism plays an important role in improving microalgae carbon fixation efficiency. However, little information is available regarding the dramatic changes of cells suffered upon different environmental factors, such as CO2 concentration. The aim of this study was to investigate the growth, lipid accumulation, carbon fixation rate, and carbon metabolism gene expression under different CO2 concentrations in oleaginous Chlorella. It was found that Chlorella pyrenoidosa grew well under CO2 concentrations ranging from 1 to 20 %. The highest biomass and lipid productivity were 4.3 g/L and 107 mg/L/day under 5 % CO2 condition. Switch from high (5 %) to low (0.03 %, air) CO2 concentration showed significant inhibitory effect on growth and CO2 fixation rate. The amount of the saturated fatty acids was increased obviously along with the transition. Low CO2 concentration (0.03 %) was suitable for the accumulation of saturated fatty acids. Reducing the CO2 concentration could significantly decrease the polyunsaturated degree in fatty acids. Moreover, the carbon-concentrating mechanism-related gene expression revealed that most of them, especially CAH2, LCIB, and HLA3, had remarkable change after 1, 4, and 24 h of the transition, which suggests that Chlorella has similar carbon-concentrating mechanism with Chlamydomonas reinhardtii. The findings of the present study revealed that C. pyrenoidosa is an ideal candidate for mitigating CO2 and biodiesel production and is appropriate as a model for mechanism research of carbon sequestration. PMID:25620370

  16. Ginger Essential Oil Ameliorates Hepatic Injury and Lipid Accumulation in High Fat Diet-Induced Nonalcoholic Fatty Liver Disease.

    PubMed

    Lai, Yi-Syuan; Lee, Wan-Ching; Lin, Yu-En; Ho, Chi-Tang; Lu, Kuan-Hung; Lin, Shih-Hang; Panyod, Suraphan; Chu, Yung-Lin; Sheen, Lee-Yan

    2016-03-16

    The objective of this study was to investigate the hepatoprotective efficacy and mechanism of action of ginger essential oil (GEO) against the development of nonalcoholic fatty liver disease (NAFLD). Mice were maintained on either a control diet or high-fat diet (HFD) supplemented with GEO (12.5, 62.5, and 125 mg/kg) or citral (2.5 and 25 mg/kg) for 12 weeks. We demonstrated that GEO and its major component (citral) lowered HFD-induced obesity in a dose-dependent manner, accompanied by anti-hyperlipidemic effects by reducing serum free fatty acid, triglyceride, and total cholesterol levels. Moreover, liver histological results showed that administration of 62.5 and 125 mg/kg GEO and 25 mg/kg citral significantly reduced hepatic lipid accumulation. Further assessment by Western blotting and investigation of the lipid metabolism revealed that hepatic protein expression of sterol regulatory element-binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and cytochrome P450 2E1 (CYP2E1) were down-regulated by GEO and citral, indicating that GEO and citral suppressed HFD-stimulated lipid biosynthesis and oxidative stress. Furthermore, GEO and citral effectively enhanced the antioxidant capacities and reduced inflammatory response in mouse liver, which exerted protective effects against steatohepatitis. Collectively, GEO and citral exhibited potent hepatoprotective effects against NAFLD induced by HFD in obese mice. Thus, GEO might be an effective dietary supplement to ameliorate NAFLD-related metabolic diseases, and citral could play a vital role in its management. PMID:26900108

  17. SIRT1-metabolite binding histone macroH2A1.1 protects hepatocytes against lipid accumulation

    PubMed Central

    Pazienza, Valerio; Borghesan, Michela; Mazza, Tommaso; Sheedfar, Fareeba; Panebianco, Concetta; Williams, Roger; Mazzoccoli, Gianluigi; Andriulli, Angelo; Nakanishi, Tomoko; Vinciguerra, Manlio

    2014-01-01

    Non-alcoholic-fatty-liver-disease (NAFLD) encompasses conditions associated to fat deposition in the liver, which are generally deteriorated during the aging process. MacroH2A1, a variant of histone H2A, is a key transcriptional regulator involved in tumorigenic processes and cell senescence, and featuring two alternatively splicing isoforms, macroH2A1.1 and macroH2A1.2. MacroH2A1.1 binds with high affinity O-acetyl ADP ribose, a small metabolite produced by the reaction catalysed by NAD+-dependent deacetylase SIRT1, whereas macroH2A1.2 is unable to do so. The functional significance of this binding is unknown. We previously reported that the hepatic levels of macroH2A1.1 and macroH2A1.2 are differentially expressed in mice models of NAFLD. Here we show that over-expression of macroH2A1.1, but not of macroH2A1.2, is able to protect hepatocytes against lipid accumulation. MacroH2A1.1 over-expressing cells display ameliorated glucose metabolism, reduced expression of lipidogenic genes and fatty acids content. SIRT1/macroH2A1.1-dependent epigenetic regulation of lipid metabolism may be relevant to NAFLD development. PMID:24473773

  18. Transcript level coordination of carbon pathways during silicon starvation-induced lipid accumulation in the diatom Thalassiosira pseudonana.

    PubMed

    Smith, Sarah R; Glé, Corine; Abbriano, Raffaela M; Traller, Jesse C; Davis, Aubrey; Trentacoste, Emily; Vernet, Maria; Allen, Andrew E; Hildebrand, Mark

    2016-05-01

    Diatoms are one of the most productive and successful photosynthetic taxa on Earth and possess attributes such as rapid growth rates and production of lipids, making them candidate sources of renewable fuels. Despite their significance, few details of the mechanisms used to regulate growth and carbon metabolism are currently known, hindering metabolic engineering approaches to enhance productivity. To characterize the transcript level component of metabolic regulation, genome-wide changes in transcript abundance were documented in the model diatom Thalassiosira pseudonana on a time-course of silicon starvation. Growth, cell cycle progression, chloroplast replication, fatty acid composition, pigmentation, and photosynthetic parameters were characterized alongside lipid accumulation. Extensive coordination of large suites of genes was observed, highlighting the existence of clusters of coregulated genes as a key feature of global gene regulation in T. pseudonana. The identity of key enzymes for carbon metabolic pathway inputs (photosynthesis) and outputs (growth and storage) reveals these clusters are organized to synchronize these processes. Coordinated transcript level responses to silicon starvation are probably driven by signals linked to cell cycle progression and shifts in photophysiology. A mechanistic understanding of how this is accomplished will aid efforts to engineer metabolism for development of algal-derived biofuels. PMID:26844818

  19. Diets enriched in trans-11 vaccenic acid alleviate ectopic lipid accumulation in a rat model of NAFLD and metabolic syndrome.

    PubMed

    Jacome-Sosa, M Miriam; Borthwick, Faye; Mangat, Rabban; Uwiera, Richard; Reaney, Martin J; Shen, Jianheng; Quiroga, Ariel D; Jacobs, René L; Lehner, Richard; Proctor, Spencer D; Nelson, Randal C

    2014-07-01

    Trans11-18:1 (vaccenic acid, VA) is one of the most predominant naturally occurring trans fats in our food chain and has recently been shown to exert hypolipidemic effects in animal models. In this study, we reveal new mechanism(s) by which VA can alter body fat distribution, energy utilization and dysfunctional lipid metabolism in an animal model of obesity displaying features of the metabolic syndrome (MetS). Obese JCR:LA-cp rats were assigned to a control diet that included dairy-derived fat or the control diet supplemented with 1% VA. VA reduced total body fat (-6%), stimulated adipose tissue redistribution [reduced mesenteric fat (-17%) while increasing inguinal fat mass (29%)] and decreased adipocyte size (-44%) versus control rats. VA supplementation also increased metabolic rate (7%) concomitantly with an increased preference for whole-body glucose utilization for oxidation and increased insulin sensitivity [lower HOMA-IR (-59%)]. Further, VA decreased nonalcoholic fatty liver disease activity scores (-34%) and reduced hepatic (-27%) and intestinal (-39%) triglyceride secretion relative to control diet, while exerting differential transcriptional regulation of SREBP1 and FAS amongst other key genes in the liver and the intestine. Adding VA to dairy fat alleviates features of MetS potentially by remodeling adipose tissue and attenuating ectopic lipid accumulation in a rat model of obesity and MetS. Increasing VA content in the diet (naturally or by fortification) may be a useful approach to maximize the health value of dairy-derived fats. PMID:24775093

  20. Triiodothyronine enhances accumulation of intracellular lipids in adipocytes through thyroid hormone receptor α via direct and indirect mechanisms.

    PubMed

    Gambo, Yurina; Matsumura, Miki; Fujimori, Ko

    2016-08-15

    Triiodothyronine (T3) enhanced the expression of adipogenic and lipogenic genes with elevation of the intracellular lipids through thyroid hormone receptor (TR) α in mouse 3T3-L1 cells. However, the transcription of the SREBP-1c and HSL genes was decreased by T3. Such T3-mediated alterations were negated by TRα siRNA. Chromatin immunoprecipitation assay showed that the binding of TRα to the TR-responsive element (TRE) of the FAS promoter was elevated by T3. In contrast, the ability of TRα to bind to the TRE of the SREBP-1c promoter was decreased by T3. In addition, the binding of SREBP-1c to the SRE of the HSL promoter was lowered by T3. These results indicate that T3 increased the accumulation of intracellular lipids by enhancing the expression of the FAS gene through direct binding of TRα to the FAS promoter and simultaneously lowered the amount of lipolysis via reduced binding of T3-decreased SREBP-1c to the HSL promoter. PMID:27132806

  1. Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides.

    PubMed

    Wei, Aili; Zhang, Xuewu; Wei, Dong; Chen, Gu; Wu, Qingyu; Yang, Shang-Tian

    2009-11-01

    Heterotrophic fermentation of microalgae has been shown to accumulate high amounts of microalgal lipids, which are regarded as one of the most promising feedstocks for sustainable biodiesel production. To increase the biomass and reduce the cost of microalgal culture, the purpose of this study was to evaluate the possibility of using cassava starch hydrolysate (CSH) instead of glucose as carbon source for heterotrophic culture of Chlorella protothecoides in flasks. First, the two-step enzymatic process of hydrolysis of cassava starch by alpha-amylase and glucoamylase was optimized; the conversion efficiency for cassava starch was up to 97.7%, and over 80% of CSH was glucose. Subsequently, we compared heterotrophic cultures of C. protothecoiedes using glucose or CSH as carbon source. The results demonstrated that when using CSH as the organic carbon source, the highest biomass and the maximum total lipid yield obtained were 15.8 and 4.19 g/L, representing increases of 42.3 and 27.7%, respectively, compared to using glucose as the organic carbon source. This suggests that CSH is a better carbon source than glucose for heterotrophic Chlorella protothecoides. PMID:19633877

  2. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae).

    PubMed

    Chia, Mathias Ahii; Lombardi, Ana Teresa; da Graça Gama Melão, Maria; Parrish, Christopher C

    2015-03-01

    Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10(-7) and 2.0×10(-8)molL(-1) Cd) under varying nitrogen (2.9×10(-6), 1.1×10(-5) and 1.1×10(-3)molL(-1)N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production. PMID:25625522

  3. Selection of microalgae for high CO2 fixation efficiency and lipid accumulation from ten Chlorella strains using municipal wastewater.

    PubMed

    Hu, Xia; Zhou, Jiti; Liu, Guangfei; Gui, Bing

    2016-08-01

    As significant differences in cellular physiology, metabolic potential and genetics occur among strains with morphological similarity, the screening of appropriate microalgae species for effective CO2 fixation and biodiesel production is extremely critical. In this study, ten strains of Chlorella were cultivated in municipal wastewater influent (MWI) and their tolerance for MWI, CO2 fixation efficiency and lipid productivity were assessed. The results showed that the biomass concentrations of four strains (Chlorella vulgaris, Chlorella 64.01, Chlorella regularis var. minima and Chlorella sp.) were significantly higher than other strains. When the cultivation systems were aerated with 10% CO2, Chlorella sp. showed the highest CO2 fixation efficiency (35.51%), while the highest lipid accumulation (58.48%) was observed with C. vulgaris. Scanning electron microscopy images revealed that the cells of both Chlorella sp. and C. vulgaris kept their normal morphologies after 15day batch culture. These findings indicated that Chlorella sp. and C. vulgaris have fairly good tolerance for MWI, and moreover, Chlorella sp. was appropriate for CO2 fixation while C. vulgaris represented the highest potential for producing biodiesel. PMID:27521939

  4. Sitamaquine-resistance in Leishmania donovani affects drug accumulation and lipid metabolism.

    PubMed

    Imbert, L; Cojean, S; Libong, D; Chaminade, P; Loiseau, P M

    2014-09-01

    This study focuses on the mechanism of sitamaquine-resistance in Leishmania donovani. Sitamaquine accumulated 10 and 1.4 fold more in cytosol than in membranes of wild-type (WT) and of sitamaquine-resistant (Sita-R160) L. donovani promastigotes, respectively. The sitamaquine accumulation was a concentration-dependent process in WT whereas a saturation occurred in Sita-R160 suggesting a reduced uptake or an increase of the sitamaquine efflux. Membrane negative phospholipids being the main target for sitamaquine uptake, a lipidomic analysis showed that sitamaquine-resistance did not rely on a decrease of membrane negative phospholipid rate in Sita-R160, discarding the hypothesis of reduced uptake. However, sterol and phospholipid metabolisms were strongly affected in Sita-R160 suggesting that sitamaquine-resistance could be related to an alteration of phosphatidylethanolamine-N-methyl-transferase and choline kinase activities and to a decrease in cholesterol uptake and of ergosterol biosynthesis. Preliminary data of proteomics analysis exhibited different protein profiles between WT and Sita-160R remaining to be characterized. PMID:25201056

  5. Bioavailability of Fullerene under Environmentally Relevant Conditions: Effects of Humic Acid and Fetal Bovine Serum on Accumulation in Lipid Bilayers and Cellular Uptake.

    PubMed

    Ha, Yeonjeong; Wang, Xianzhe; Liljestrand, Howard M; Maynard, Jennifer A; Katz, Lynn E

    2016-07-01

    Carbon fullerene (C60) has emerged at the forefront of nanoscale research and application due to its unique properties. As the production of this nanoparticle rapidly increases, it can be released into natural aquatic environments and can accumulate in biological systems. This research examined the effects of humic acid and fetal bovine serum (FBS), which are ubiquitous in aquatic environments and representative of blood plasma in living organisms, respectively, on bioavailability of fullerene. Bioavailability was investigated using in vitro methods for lipid membrane accumulation and cellular uptake studies. Humic acid and FBS significantly changed the characteristics of fullerene including its particle size and surface charge. The effects of humic acid on lipid accumulation of fullerene depended on the lipid head charge. FBS also significantly decreased the lipid accumulation when positively charged and zwitterionic head groups were present on the lipids, possibly due to the higher steric repulsion of the protein coated nanoparticles. In addition, both humic acid and FBS protein effectively lowered the amounts of fullerene taken up by Caco-2 cells, which are derived from a human colorectal adenocarcinoma and have similar functions to the small intestinal epithelium. Results of this study suggest that surface modification of fullerene by environmentally relevant matrices can significantly affect the biological transport, as well as the possible toxicity of this nanomaterial. PMID:26943027

  6. ChREBP Regulates Itself and Metabolic Genes Implicated in Lipid Accumulation in β–Cell Line

    PubMed Central

    Sae-Lee, Chanachai; Moolsuwan, Kanya; Chan, Lawrence; Poungvarin, Naravat

    2016-01-01

    Carbohydrate response element binding protein (ChREBP) is an important transcription factor that regulates a variety of glucose-responsive genes in hepatocytes. To date, only two natural isoforms, Chrebpα and Chrebpβ, have been identified. Although ChREBP is known to be expressed in pancreatic β cells, most of the glucose-responsive genes have never been verified as ChREBP targets in this organ. We aimed to explore the impact of ChREBP expression on regulating genes linked to accumulation of lipid droplets, a typical feature of β-cell glucotoxicity. We assessed gene expression in 832/13 cells overexpressing constitutively active ChREBP (caChREBP), truncated ChREBP with nearly identical amino acid sequence to Chrebpβ, or dominant negative ChREBP (dnChREBP). Among multiple ChREBP-controlled genes, ChREBP was sufficient and necessary for regulation of Eno1, Pklr, Mdh1, Me1, Pdha1, Acly, Acaca, Fasn, Elovl6, Gpd1, Cpt1a, Rgs16, Mid1ip1,Txnip, and Chrebpβ. Expression of Chrebpα and Srebp1c were not changed by caChREBP or dnChREBP. We identified functional ChREBP binding sequences that were located on the promoters of Chrebpβ and Rgs16. We also showed that Rgs16 overexpression lead to increased considerable amounts of lipids in 832/13 cells. This phenotype was accompanied by reduction of Cpt1a expression and slight induction of Fasn and Pklr gene in these cells. In summary, we conclude that Chrebpβ modulates its own expression, not that of Chrebpα; it also regulates the expression of several metabolic genes in β-cells without affecting SREBP-1c dependent regulation. We also demonstrate that Rgs16 is one of the ChREBP-controlled genes that potentiate accumulation of lipid droplets in β-cells. PMID:26808438

  7. HCV core protein induces hepatic lipid accumulation by activating SREBP1 and PPAR{gamma}

    SciTech Connect

    Kim, Kook Hwan; Hong, Sung Pyo; Kim, KyeongJin; Park, Min Jung; Kim, Kwang Jin; Cheong, JaeHun . E-mail: molecule85@pusan.ac.kr

    2007-04-20

    Hepatic steatosis is a common feature in patients with chronic hepatitis C virus (HCV) infection. HCV core protein plays an important role in the development of hepatic steatosis in HCV infection. Because SREBP1 (sterol regulatory element binding protein 1) and PPAR{gamma} (peroxisome proliferators-activated receptor {gamma}) are involved in the regulation of lipid metabolism of hepatocyte, we sought to determine whether HCV core protein may impair the expression and activity of SREBP1 and PPAR{gamma}. In this study, it was demonstrated that HCV core protein increases the gene expression of SREBP1 not only in Chang liver, Huh7, and HepG2 cells transiently transfected with HCV core protein expression plasmid, but also in Chang liver-core stable cells. Furthermore, HCV core protein enhanced the transcriptional activity of SREBP1. In addition, HCV core protein elevated PPAR{gamma} transcriptional activity. However, HCV core protein had no effect on PPAR{gamma} gene expression. Finally, we showed that HCV core protein stimulates the genes expression of lipogenic enzyme and fatty acid uptake associated protein. Therefore, our finding provides a new insight into the mechanism of hepatic steatosis by HCV infection.

  8. Achene Structure, Development and Lipid Accumulation in Sunflower Cultivars Differing in Oil Content at Maturity

    PubMed Central

    MANTESE, ANITA I.; MEDAN, DIEGO; HALL, ANTONIO J.

    2006-01-01

    • Background and Aims Sunflower cultivars exhibit a wide range of oil content in the mature achene, but the relationship between this and the dynamics of oil deposition in the achene during grain filling is not known. Information on the progress, during the whole achene growth period, of the formation of oil bodies in the components of the achene and its relationship with variations in final oil content is also lacking. • Methods The biomass dynamics of achene components (pericarp, embryo, oil) in three cultivars of very different final oil concentration (30–56 % oil) were studied. In parallel, anatomical sections were used to follow the formation of oil and protein bodies in the embryo, and to observe pericarp anatomy. • Key Results In all cultivars, oil bodies were first observed in the embryo 6–7 daa after anthesis (daa). The per-cell number of oil bodies increased rapidly from 10–12 daa until 25–30 daa. Oil bodies were absent from the outer cell layers of young fruit and from mature pericarps. In mature embryos, the proportion of cell cross-sectional area occupied by protein bodies increased with decreasing embryo oil concentration. The sclerenchymatic layer of the mature pericarp decreased in thickness and number of cell layers from the low-oil cultivar to the high-oil cultivar. Different patterns of oil accumulation in the embryo across cultivars were also found, leading to variations in ripe embryo oil concentration. In the high-oil cultivar, the end of oil deposition coincided with cessation of embryo growth, while in the other two cultivars oil ceased to accumulate before the embryo achieved maximum weight. • Conclusions Cultivar differences in mature achene oil concentration reflect variations in pericarp proportion and thickness and mature embryo oil concentration. Cultivar differences in protein body proportion and embryo and oil mass dynamics during achene growth underlie variations in embryo oil concentration. PMID:16675608

  9. Aloe vera gel extract attenuates ethanol-induced hepatic lipid accumulation by suppressing the expression of lipogenic genes in mice.

    PubMed

    Saito, Marie; Tanaka, Miyuki; Misawa, Eriko; Yamada, Muneo; Yamauchi, Kouji; Iwatsuki, Keiji

    2012-01-01

    We have previously reported that Aloe vera gel had hypoglycemic activity and anti-obesity effects, although the effect on alcoholic fatty liver was unclear. We examined in this present study the effect of an Aloe vera gel extract (AVGE) on hepatic lipid metabolism by using an ethanol-induced transient fatty liver mouse model. Ethanol (3 g/kg of mouse weight) was orally administered to induce an accumulation of triglyceride (TG) and increase the mRNA expression of such lipogenic genes as sterol regulatory element-binding protein-1 (SREBP-1) and fatty acid synthase (FASN) in the liver. Although ethanol ingestion caused a 5.4-fold increase in liver TG, pre-treating with AVGE (1 mg/kg/d) for 1 week significantly suppressed this elevation of the ethanol-induced liver TG level. The expression of lipogenic genes was also lower in the AVGE pre-treatment group than in the control group. This inhibitory effect on the ethanol-induced accumulation of TG was attributed to a reduction in the expression of lipogenic genes that were increased by ethanol. PMID:23132591

  10. A lipid-accumulating alga maintains growth in outdoor, alkaliphilic raceway pond with mixed microbial communities

    DOE PAGESBeta

    Bell, Tisza A.S.; Prithiviraj, Bharath; Wahlen, Brad D.; Fields, Matthew W.; Peyton, Brent M.

    2016-01-07

    Algal biofuels and valuable co-products are being produced in both open and closed cultivation systems. Growing algae in open pond systems may be a more economical alternative, but this approach allows environmental microorganisms to colonize the pond and potentially infect or outcompete the algal “crop.” In this study, we monitored the microbial community of an outdoor, open raceway pond inoculated with a high lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgaris BA050 was previously isolated from Soap Lake, Washington, a system characterized by a high pH (~9.8). An outdoor raceway pond (200 L) was inoculated with C. vulgarismore » and monitored for 10 days and then the culture was transferred to a 2,000 L raceway pond and cultivated for an additional 6 days. Community DNA samples were collected over the 16-day period in conjunction with water chemistry analyses and cell counts. Universal primers for the SSU rRNA gene sequences for Eukarya, Bacteria, and Archaea were used for barcoded pyrosequence determination. The environmental parameters that most closely correlated with C. vulgaris abundance were pH and phosphate. Community analyses indicated that the pond system remained dominated by the Chlorella population (93% of eukaryotic sequences), but was also colonized by other microorganisms. Bacterial sequence diversity increased over time while archaeal sequence diversity declined over the same time period. Using SparCC co-occurrence network analysis, a positive correlation was observed between C. vulgaris and Pseudomonas sp. throughout the experiment, which may suggest a symbiotic relationship between the two organisms. The putative relationship coupled with high pH may have contributed to the success of C. vulgaris. As a result, the characterization of the microbial community dynamics of an alkaliphilic open pond system provides significant insight into open pond systems that could be used to control photoautotrophic biomass

  11. A Lipid-Accumulating Alga Maintains Growth in Outdoor, Alkaliphilic Raceway Pond with Mixed Microbial Communities

    PubMed Central

    Bell, Tisza A. S.; Prithiviraj, Bharath; Wahlen, Brad D.; Fields, Matthew W.; Peyton, Brent M.

    2016-01-01

    Algal biofuels and valuable co-products are being produced in both open and closed cultivation systems. Growing algae in open pond systems may be a more economical alternative, but this approach allows environmental microorganisms to colonize the pond and potentially infect or outcompete the algal “crop.” In this study, we monitored the microbial community of an outdoor, open raceway pond inoculated with a high lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgaris BA050 was previously isolated from Soap Lake, Washington, a system characterized by a high pH (∼9.8). An outdoor raceway pond (200 L) was inoculated with C. vulgaris and monitored for 10 days and then the culture was transferred to a 2,000 L raceway pond and cultivated for an additional 6 days. Community DNA samples were collected over the 16-day period in conjunction with water chemistry analyses and cell counts. Universal primers for the SSU rRNA gene sequences for Eukarya, Bacteria, and Archaea were used for barcoded pyrosequence determination. The environmental parameters that most closely correlated with C. vulgaris abundance were pH and phosphate. Community analyses indicated that the pond system remained dominated by the Chlorella population (93% of eukaryotic sequences), but was also colonized by other microorganisms. Bacterial sequence diversity increased over time while archaeal sequence diversity declined over the same time period. Using SparCC co-occurrence network analysis, a positive correlation was observed between C. vulgaris and Pseudomonas sp. throughout the experiment, which may suggest a symbiotic relationship between the two organisms. The putative relationship coupled with high pH may have contributed to the success of C. vulgaris. The characterization of the microbial community dynamics of an alkaliphilic open pond system provides significant insight into open pond systems that could be used to control photoautotrophic biomass productivity in an

  12. A Lipid-Accumulating Alga Maintains Growth in Outdoor, Alkaliphilic Raceway Pond with Mixed Microbial Communities.

    PubMed

    Bell, Tisza A S; Prithiviraj, Bharath; Wahlen, Brad D; Fields, Matthew W; Peyton, Brent M

    2015-01-01

    Algal biofuels and valuable co-products are being produced in both open and closed cultivation systems. Growing algae in open pond systems may be a more economical alternative, but this approach allows environmental microorganisms to colonize the pond and potentially infect or outcompete the algal "crop." In this study, we monitored the microbial community of an outdoor, open raceway pond inoculated with a high lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgaris BA050 was previously isolated from Soap Lake, Washington, a system characterized by a high pH (∼9.8). An outdoor raceway pond (200 L) was inoculated with C. vulgaris and monitored for 10 days and then the culture was transferred to a 2,000 L raceway pond and cultivated for an additional 6 days. Community DNA samples were collected over the 16-day period in conjunction with water chemistry analyses and cell counts. Universal primers for the SSU rRNA gene sequences for Eukarya, Bacteria, and Archaea were used for barcoded pyrosequence determination. The environmental parameters that most closely correlated with C. vulgaris abundance were pH and phosphate. Community analyses indicated that the pond system remained dominated by the Chlorella population (93% of eukaryotic sequences), but was also colonized by other microorganisms. Bacterial sequence diversity increased over time while archaeal sequence diversity declined over the same time period. Using SparCC co-occurrence network analysis, a positive correlation was observed between C. vulgaris and Pseudomonas sp. throughout the experiment, which may suggest a symbiotic relationship between the two organisms. The putative relationship coupled with high pH may have contributed to the success of C. vulgaris. The characterization of the microbial community dynamics of an alkaliphilic open pond system provides significant insight into open pond systems that could be used to control photoautotrophic biomass productivity in an open

  13. Characterization of the growth, chlorophyll content and lipid accumulation in a marine microalgae Dunaliella tertiolecta under different nitrogen to phosphorus ratios

    NASA Astrophysics Data System (ADS)

    Song, Donghui; Xi, Bo; Sun, Jing

    2016-02-01

    Microalgal lipids are regarded as main future feedstock of biofuels for its higher efficiency of accumulation and sustainable production. In order to investigate the effect of various nitrogen to phosphorus ratios on cells growth, chlorophyll content and accumulation of lipids in Dunaliella tertiolecta, experiments were carried out in modified microalgal medium with inorganic nitrogen (nitrate-nitrogen) or organic nitrogen (urea-nitrogen) as the sole nitrogen source at initial N:P ratios ranging from 1:1 to 32:1. The favorable N:P of 16:1 in the nitrate-N or urea-N medium yielded the maximum cell density and specific growth rate. Decrease in chlorophyll content were observed at the N:P of 4:1 in both nitrate-N and urea-N cultures. It was also observed that the maximum lipids concentration was obtained at the N:P of 4:1 in both nitrate and urea nutrient medium. The lipid productivity and lipid content of cultures in the urea-N medium at the N:P of 4:1were markedly higher than those from cultures with other N:P ratios ( p < 0.05). The results of this work illustrate the possibility that higher ratios of nitrogen to phosphorus have enhancing effect on cells growth of D. tertiolecta. Conversely, higher lipid accumulation is associated with a decrease in chlorophyll content under lower ratios of nitrogen to phosphorus. The results confirm the hypothesis of this study that a larger metabolic flux has been channeled to lipid accumulation in D. tertiolecta cells when the ratios of nitrogen to phosphorus drop below a critical level.

  14. Pycnogenol® inhibits lipid accumulation in 3T3-L1 adipocytes with the modulation of reactive oxygen species (ROS) production associated with antioxidant enzyme responses.

    PubMed

    Lee, Ok-Hwan; Seo, Min-Jung; Choi, Hyeon-Son; Lee, Boo-Yong

    2012-03-01

    Pycnogenol® is a group of flavonoids with antioxidant effects. Adipogenesis is the process of adipocyte differentiation. It causes the increase of lipids as well as ROS (reactive oxygen species). Lipid accumulation and ROS production were determined in 3 T3-L1 adipocyte, and the effect of Pycnogenol® was evaluated. Lipid accumulation was elevated in adipocyte treated with hydrogen peroxide, one of the ROS. Pycnogenol® showed an inhibitory effect on the lipid accumulation and ROS production during the adipogenesis. We also investigated the molecular events associated with ROS production and lipid accumulation. Our results showed that Pycnogenol® inhibited the mRNA expression of pro-oxidant enzymes, such as NOX4 (NADPH (nicotinamide adenine dinucleotide phosphate hydrogen) oxidase 4), and the NADPH-producing G6PDH (glucose-6-phosphate dehydrogenase) enzyme. In addition, Pycnogenol® suppressed the mRNA abundance of adipogenic transcription factors, PPAR-γ (peroxisome proliferator-activated receptor γ) and C/EBP-α (CCAAT/enhancer binding protein α), and their target gene, aP2 (adipocyte protein 2) responsible for fatty acid transportation. On the other hand, Pycnogenol® increased the abundance of antioxidant proteins such as Cu/Zn-SOD (copper-zinc superoxide dismutase), Mn-SOD (manganese superoxide dismutase), GPx (glutathione peroxidase) and GR (glutathione reductase). Our results suggest that Pycnogenol® inhibits lipid accumulation and ROS production by regulating adipogenic gene expression and pro-/antioxidant enzyme responses in adipocytes. PMID:21796705

  15. Nitrogen and sulfur deprivation differentiate lipid accumulation targets of Chlamydomonas reinhardtii.

    PubMed

    Cakmak, Turgay; Angun, Pinar; Ozkan, Alper D; Cakmak, Zeynep; Olmez, Tolga T; Tekinay, Turgay

    2012-01-01

    Nitrogen (N) and sulfur (S) have inter-related and distinct impacts on microalgal metabolism; with N starvation having previously been reported to induce elevated levels of the biodiesel feedstock material triacylglycerol (TAG), while S deprivation is extensively studied for its effects on biohydrogen production in microalgae. ( 1) (,) ( 2) We have previously demonstrated that N- and S-starved cells of Chlamydomonas reinhardtii display different metabolic trends, suggesting that different response mechanisms exist to compensate for the absence of those two elements. ( 3) We used C. reinhardtii CC-124 mt(-) and CC-125 mt(+) strains to test possible metabolic changes related to TAG accumulation in response to N and S deprivation, considering that gamete differentiation in this organism is mainly regulated by N. ( 4) Our findings contribute to the understanding of microalgal response to element deprivation and potential use of element deprivation for biodiesel feedstock production using microalgae, but much remains to be elucidated on the precise contribution of both N and S starvation on microalgal metabolism. PMID:22892589

  16. Nitrogen and sulfur deprivation differentiate lipid accumulation targets of Chlamydomonas reinhardtii

    PubMed Central

    Cakmak, Turgay; Angun, Pinar; Ozkan, Alper D.; Cakmak, Zeynep; Olmez, Tolga T.; Tekinay, Turgay

    2012-01-01

    Nitrogen (N) and sulfur (S) have inter-related and distinct impacts on microalgal metabolism; with N starvation having previously been reported to induce elevated levels of the biodiesel feedstock material triacylglycerol (TAG), while S deprivation is extensively studied for its effects on biohydrogen production in microalgae.1,2 We have previously demonstrated that N- and S-starved cells of Chlamydomonas reinhardtii display different metabolic trends, suggesting that different response mechanisms exist to compensate for the absence of those two elements.3 We used C. reinhardtii CC-124 mt(-) and CC-125 mt(+) strains to test possible metabolic changes related to TAG accumulation in response to N and S deprivation, considering that gamete differentiation in this organism is mainly regulated by N.4 Our findings contribute to the understanding of microalgal response to element deprivation and potential use of element deprivation for biodiesel feedstock production using microalgae, but much remains to be elucidated on the precise contribution of both N and S starvation on microalgal metabolism. PMID:22892589

  17. Microstructures and functional groups of Nannochloropsis sp. cells with arsenic adsorption and lipid accumulation.

    PubMed

    Sun, Jing; Cheng, Jun; Yang, Zongbo; Li, Ke; Zhou, Junhu; Cen, Kefa

    2015-10-01

    The pore structures and surface morphological characteristics of Nannochloropsis sp. cells with arsenic adsorption were initially investigated by N2-adsorption analysis and scanning electronic microscopy. Functional groups of cells were analysed by Fourier-transform infrared spectrometry and X-ray photoelectron spectroscopy. Total surface area of microalgal cells increased from 0.54 m(2)/g to 1.80 m(2)/g upon arsenic adsorption. The external cell surface area increased. More wrinkles and measles-like granules formed on the surfaces as a result of arsenic toxicity. Arsenic ions blocked cell pores and decreased the average pore diameter and total pore volume. Ether cross-linked structures in the algaenan layer of cell walls were disrupted as the percentage of C-O functional groups decreased. These functional groups underwent complexation reactions with arsenic ions. Accumulation of polyunsaturated fatty acids decreased because of oxidative stresses induced by arsenic. The increase in generation of short-chain saturated fatty acids was favourable for the production of quality biodiesel. PMID:26210144

  18. A20 Attenuates FFAs-induced Lipid Accumulation in Nonalcoholic Steatohepatitis

    PubMed Central

    Ai, Luoyan; Xu, Qingqing; Wu, Changwei; Wang, Xiaohan; Chen, Zhiwei; Su, Dazhi; Jiang, Xiaoke; Xu, Antao; Lin, Qing; Fan, Zhuping

    2015-01-01

    A20 is a ubiquitin-editing enzyme that attenuates the activity of proximal signaling complexes at pro-inflammatory receptors. It has been well documented that A20 protein plays an important role in response to liver injury and hepatocytes apoptosis in pro-inflammatory pathways. However, there was little evidence showing that A20 protein was involving in fatty-acid homeostasis except the up-regulation of two fatty acid metabolism regulatory genes at mRNA level (PPARa and CPT1a) by adenovirus-mediated A20 protein overexpression. In this study we found that: 1) the expression level of A20 protein was significantly higher in the steatotic liver from MCD-fed mice than the controls; 2) Overexpression of A20 protein suppressed FFAs-stimulated triglyceride deposition in HepG2 cells while under expression of A20 protein increased FFAs-stimulated triglyceride deposition; 3) Overexpression of A20 protein in HepG2 cells upregulated genes that promote β-oxidation and decreased the mRNA levels of key lipogenic genes such as fatty acid synthase (FAS), indicating A20 function as anti-steatotic factor by the activation of mitochondrial β-oxidation and attenuation of de novo lipogenesis; 4) Nonalcoholic steatohepatitis (NASH) patients showed significantly higher A20 expression level in liver compared with control individuals. Our results demonstrated that A20 protein plays an important role in fatty-acid homeostasis in human as well as animals. In addition, our data suggested that the pathological function of A20 protein in hepatocyte from lipotoxicity to NASH is by the alleviation of triglyceride accumulation in hepatocytes. Elevated expression of A20 protein could be a potential therapeutic strategy for preventing the progression of nonalcoholic steatohepatitis. PMID:26681923

  19. Decreased ovarian reserve, dysregulation of mitochondrial biogenesis, and increased lipid peroxidation in female mouse offspring exposed to an obesogenic maternal diet

    PubMed Central

    Aiken, Catherine E.; Tarry-Adkins, Jane L.; Penfold, Naomi C.; Dearden, Laura; Ozanne, Susan E.

    2016-01-01

    Maternal diet during pregnancy influences the later life reproductive potential of female offspring. We investigate the molecular mechanisms underlying the depletion of ovarian follicular reserve in young adult females following exposure to obesogenic diet in early life. Furthermore, we explore the interaction between adverse maternal diet and postweaning diet in generating reduced ovarian reserve. Female mice were exposed to either maternal obesogenic (high fat/high sugar) or maternal control diet in utero and during lactation, then weaned onto either obesogenic or control diet. At 12 wk of age, the offspring ovarian reserve was depleted following exposure to maternal obesogenic diet (P < 0.05), but not postweaning obesogenic diet. Maternal obesogenic diet was associated with increased mitochondrial DNA biogenesis (copy number P < 0.05; transcription factor A, mitochondrial expression P < 0.05), increased mitochondrial antioxidant defenses [manganese superoxide dismutase (MnSOD) P < 0.05; copper/zinc superoxide dismutase P < 0.05; glutathione peroxidase 4 P < 0.01] and increased lipoxygenase expression (arachidonate 12-lipoxygenase P < 0.05; arachidonate 15-lipoxygenase P < 0.05) in the ovary. There was also significantly increased expression of the transcriptional regulator NF-κB (P < 0.05). There was no effect of postweaning diet on any measured ovarian parameters. Maternal diet thus plays a central role in determining follicular reserve in adult female offspring. Our observations suggest that lipid peroxidation and mitochondrial biogenesis are the key intracellular pathways involved in programming of ovarian reserve.—Aiken, C. E., Tarry-Adkins, J. L., Penfold, N. C., Dearden, L., Ozanne, S. E. Decreased ovarian reserve, dysregulation of mitochondrial biogenesis, and increased lipid peroxidation in female mouse offspring exposed to an obesogenic maternal diet. PMID:26700734

  20. Decreased ovarian reserve, dysregulation of mitochondrial biogenesis, and increased lipid peroxidation in female mouse offspring exposed to an obesogenic maternal diet.

    PubMed

    Aiken, Catherine E; Tarry-Adkins, Jane L; Penfold, Naomi C; Dearden, Laura; Ozanne, Susan E

    2016-04-01

    Maternal diet during pregnancy influences the later life reproductive potential of female offspring. We investigate the molecular mechanisms underlying the depletion of ovarian follicular reserve in young adult females following exposure to obesogenic diet in early life. Furthermore, we explore the interaction between adverse maternal diet and postweaning diet in generating reduced ovarian reserve. Female mice were exposed to either maternal obesogenic (high fat/high sugar) or maternal control dietin uteroand during lactation, then weaned onto either obesogenic or control diet. At 12 wk of age, the offspring ovarian reserve was depleted following exposure to maternal obesogenic diet (P< 0.05), but not postweaning obesogenic diet. Maternal obesogenic diet was associated with increased mitochondrial DNA biogenesis (copy numberP< 0.05; transcription factor A, mitochondrial expressionP< 0.05), increased mitochondrial antioxidant defenses [manganese superoxide dismutase (MnSOD)P< 0.05; copper/zinc superoxide dismutaseP< 0.05; glutathione peroxidase 4P< 0.01] and increased lipoxygenase expression (arachidonate 12-lipoxygenaseP< 0.05; arachidonate 15-lipoxygenaseP< 0.05) in the ovary. There was also significantly increased expression of the transcriptional regulator NF-κB (P< 0.05). There was no effect of postweaning diet on any measured ovarian parameters. Maternal diet thus plays a central role in determining follicular reserve in adult female offspring. Our observations suggest that lipid peroxidation and mitochondrial biogenesis are the key intracellular pathways involved in programming of ovarian reserve.-Aiken, C. E., Tarry-Adkins, J. L., Penfold, N. C., Dearden, L., Ozanne, S. E. Decreased ovarian reserve, dysregulation of mitochondrial biogenesis, and increased lipid peroxidation in female mouse offspring exposed to an obesogenic maternal diet. PMID:26700734

  1. Chloroplast lipid droplet type II NAD(P)H quinone oxidoreductase is essential for prenylquinone metabolism and vitamin K1 accumulation

    PubMed Central

    Eugeni Piller, Lucia; Besagni, Céline; Ksas, Brigitte; Rumeau, Dominique; Bréhélin, Claire; Glauser, Gaétan; Kessler, Felix; Havaux, Michel

    2011-01-01

    Lipid droplets are ubiquitous cellular structures in eukaryotes and are required for lipid metabolism. Little is currently known about plant lipid droplets other than oil bodies. Here, we define dual roles for chloroplast lipid droplets (plastoglobules) in energy and prenylquinone metabolism. The prenylquinones—plastoquinone, plastochromanol-8, phylloquinone (vitamin K1), and tocopherol (vitamin E)—are partly stored in plastoglobules. This work shows that NAD(P)H dehydrogenase C1 (NDC1) (At5g08740), a type II NAD(P)H quinone oxidoreductase, associates with plastoglobules. NDC1 reduces a plastoquinone analog in vitro and affects the overall redox state of the total plastoquinone pool in vivo by reducing the plastoquinone reservoir of plastoglobules. Finally, NDC1 is required for normal plastochromanol-8 accumulation and is essential for vitamin K1 production. PMID:21844348

  2. Pharmacokinetics and tissue distribution study in mice of triptolide-loaded lipid emulsion and accumulation effect on pancreas.

    PubMed

    Li, Xue; Mao, Yuling; Li, Kai; Shi, Tianyu; Yao, Huimin; Yao, Jianhua; Wang, Shujun

    2016-05-01

    Triptolide (TP) shows strong anti-tumor activities on various cancer cells, especially on pancreatic cancer. TP inhibits HSP70 expression leading to cell death in pancreatic cancer cells and induces cell death by apoptotic and autophagic pathways. In order to increase the therapeutic index of TP, a novel intravenous TP-loaded delivery system, TP-loaded lipid emulsion (TP-LE), has been developed to treat solid tumor. In the present study, the preparation and characterization of TP-LE were described. The pharmacokinetics and tissue distribution study of TP-LE in mice were also evaluated. Results demonstrated that TP-LE had an average particle size of 154.6 nm, entrapment efficiency (EE%) of 87%, zeta potential of -0.903 mV and autoclaved stability. The pharmacokinetic study showed that blood concentrations of both TP-LE and TP reached a maximum at the end of intravenous administration (1.25 mg/kg) and declined rapidly within the first 10 min with a mean residence time (MRT) of about 10 min. In the tissue distribution study, a preferential accumulation and longer residence time of drug in pancreas were found in TP-LE. The AUC0-60min of TP-LE in pancreas was 2.19 times in comparison to free TP, suggesting that the use of TP-LE conferred improvements in biodistribution, accumulation and therapeutic efficacy in pancreas. Moreover, the concentrations of TP-LE in heart, lung and kidney were lower than that of the TP group, indicating the potential for reduced toxicity of TP-LE. Together, all the results show that TP-LE appears to be a promising formulation for using TP in treating cancer, and more specifically pancreatic cancer. PMID:25853479

  3. Cinnamaldehyde supplementation prevents fasting-induced hyperphagia, lipid accumulation, and inflammation in high-fat diet-fed mice.

    PubMed

    Khare, Pragyanshu; Jagtap, Sneha; Jain, Yachna; Baboota, Ritesh K; Mangal, Priyanka; Boparai, Ravneet K; Bhutani, Kamlesh K; Sharma, Shyam S; Premkumar, Louis S; Kondepudi, Kanthi K; Chopra, Kanwaljit; Bishnoi, Mahendra

    2016-01-01

    Cinnamaldehyde, a bioactive component of cinnamon, is increasingly gaining interest for its preventive and therapeutic effects against metabolic complications like type-2 diabetes. This study is an attempt to understand the effect of cinnamaldehyde in high-fat diet (HFD)-associated increase in fasting-induced hyperphagia and related hormone levels, adipose tissue lipolysis and inflammation, and selected cecal microbial count in mice. Cinnamaldehyde, at 40 µm dose, prevented lipid accumulation and altered gene expression toward lipolytic phenotype in 3T3-L1 preadipocyte cell lines. In vivo, cinnamaldehyde coadministration prevented HFD-induced body weight gain, decreased fasting-induced hyperphagia, as well as circulating leptin and leptin/ghrelin ratio. In addition to that, cinnamaldehyde altered serum biochemical parameters related to lipolysis, that is, glycerol and free fatty acid levels. At transcriptional level, cinnamaldehyde increased anorectic gene expression in hypothalamus and lipolytic gene expression in visceral white adipose tissue. Furthermore, cinnamaldehyde also decreased serum IL-1β and inflammatory gene expression in visceral white adipose tissue. However, cinnamaldehyde did not modulate the population of selected gut microbial (Lactobacillus, Bifidibaceria, and Roseburia) count in cecal content. In conclusion, cinnamaldehyde increased adipose tissue lipolysis, decreased fasting-induced hyperphagia, normalized circulating levels of leptin/ghrelin ratio, and reduced inflammation in HFD-fed mice, which augurs well for its antiobesity role. © 2016 BioFactors, 42(2):201-211, 2016. PMID:26893251

  4. Paternal High Fat Diet in Rats Leads to Renal Accumulation of Lipid and Tubular Changes in Adult Offspring.

    PubMed

    Chowdhury, Sabiha S; Lecomte, Virginie; Erlich, Jonathan H; Maloney, Christopher A; Morris, Margaret J

    2016-01-01

    Along with diabetes and obesity, chronic kidney disease (CKD) is increasing across the globe. Although some data support an effect of maternal obesity on offspring kidney, the impact of paternal obesity is unknown; thus, we have studied the effect of paternal obesity prior to conception. Male Sprague Dawley rats were fed chow diet or high fat diet (HFD) for 13-14 weeks before mating with chow-fed females. Male offspring were weaned onto chow and killed at 27 weeks for renal gene expression and histology. Fathers on HFD were 30% heavier than Controls at mating. At 27 weeks of age offspring of obese fathers weighed 10% less; kidney triglyceride content was significantly increased (5.35 ± 0.84 vs. 2.99 ± 0.47 μg/mg, p < 0.05, n = 8 litters per group. Histological analysis of the kidney demonstrated signs of tubule damage, with significantly greater loss of brush border, and increased cell sloughing in offspring of obese compared to Control fathers. Acat1, involved in entry of fatty acid for beta-oxidation, was significantly upregulated, possibly to counteract increased triglyceride storage. However other genes involved in lipid metabolism, inflammation and kidney injury showed no changes. Paternal obesity was associated with renal triglyceride accumulation and histological changes in tubules, suggesting a mild renal insult in offspring, who may be at risk of developing CKD. PMID:27563922

  5. Dietary Betaine Supplementation Increases Fgf21 Levels to Improve Glucose Homeostasis and Reduce Hepatic Lipid Accumulation in Mice.

    PubMed

    Ejaz, Asma; Martinez-Guino, Laura; Goldfine, Allison B; Ribas-Aulinas, Francesc; De Nigris, Valeria; Ribó, Sílvia; Gonzalez-Franquesa, Alba; Garcia-Roves, Pablo M; Li, Elizabeth; Dreyfuss, Jonathan M; Gall, Walt; Kim, Jason K; Bottiglieri, Teodoro; Villarroya, Francesc; Gerszten, Robert E; Patti, Mary-Elizabeth; Lerin, Carles

    2016-04-01

    Identifying markers of human insulin resistance may permit development of new approaches for treatment and prevention of type 2 diabetes. To this end, we analyzed the fasting plasma metabolome in metabolically characterized human volunteers across a spectrum of insulin resistance. We demonstrate that plasma betaine levels are reduced in insulin-resistant humans and correlate closely with insulin sensitivity. Moreover, betaine administration to mice with diet-induced obesity prevents the development of impaired glucose homeostasis, reduces hepatic lipid accumulation, increases white adipose oxidative capacity, and enhances whole-body energy expenditure. In parallel with these beneficial metabolic effects, betaine supplementation robustly increased hepatic and circulating fibroblast growth factor (Fgf)21 levels. Betaine administration failed to improve glucose homeostasis and liver fat content in Fgf21(-/-) mice, demonstrating that Fgf21 is necessary for betaine's beneficial effects. Together, these data indicate that dietary betaine increases Fgf21 levels to improve metabolic health in mice and suggest that betaine supplementation merits further investigation as a supplement for treatment or prevention of type 2 diabetes in humans. PMID:26858359

  6. Honokiol activates the LKB1–AMPK signaling pathway and attenuates the lipid accumulation in hepatocytes

    SciTech Connect

    Seo, Min Suk; Kim, Jung Hwan; Kim, Hye Jung; Chang, Ki Churl; Park, Sang Won

    2015-04-15

    Honokiol is a bioactive neolignan compound isolated from the species of Magnolia. This study was designed to elucidate the cellular mechanism by which honokiol alleviates the development of non-alcoholic steatosis. HepG2 cells were treated with honokiol for 1 h, and then exposed to 1 mM free fatty acid (FFA) for 24 h to simulate non-alcoholic steatosis in vitro. C57BL/6 mice were fed with a high-fat diet for 28 days, and honokiol (10 mg/kg/day) was daily treated. Honokiol concentration-dependently attenuated intracellular fat overloading and triglyceride (TG) accumulation in FFA-exposed HepG2 cells. These effects were blocked by pretreatment with an AMP-activated protein kinase (AMPK) inhibitor. Honokiol significantly inhibited sterol regulatory element-binding protein-1c (SREBP-1c) maturation and the induction of lipogenic proteins, stearoyl-CoA desaturase-1 (SCD-1) and fatty acid synthase (FAS) in FFA-exposed HepG2 cells, but these effects were blocked by pretreatment of an AMPK inhibitor. Honokiol induced AMPK phosphorylation and subsequent acetyl-CoA carboxylase (ACC) phosphorylation, which were inhibited by genetic deletion of liver kinase B1 (LKB1). Honokiol stimulated LKB1 phosphorylation, and genetic deletion of LKB1 blocked the effect of honokiol on SREBP-1c maturation and the induction of SCD-1 and FAS proteins in FFA-exposed HepG2 cells. Honokiol attenuated the increases in hepatic TG and lipogenic protein levels and fat accumulation in the mice fed with high-fat diet, while significantly induced LKB1 and AMPK phosphorylation. Taken together, our findings suggest that honokiol has an anti-lipogenic effect in hepatocytes, and this effect may be mediated by the LKB1–AMPK signaling pathway, which induces ACC phosphorylation and inhibits SREBP-1c maturation in hepatocytes. - Highlights: • Honokiol attenuates lipid accumulation induced by free fatty acid in hepatocyte. • Honokiol inhibits the increase in lipogenic enzyme levels induced by free fatty

  7. Evidence of Cholesterol Accumulated in High Curvature Regions: Implication to the Curvature Elastic Energy for Lipid Mixtures

    PubMed Central

    Wang, Wangchen; Yang, Lin; Huang, Huey W.

    2007-01-01

    Recent experiments suggested that cholesterol and other lipid components of high negative spontaneous curvature facilitate membrane fusion. This is taken as evidence supporting the stalk-pore model of membrane fusion in which the lipid bilayers go through intermediate structures of high curvature. How do the high-curvature lipid components lower the free energy of the curved structure? Do the high-curvature lipid components modify the average spontaneous curvature of the relevant monolayer, thereby facilitate its bending, or do the lipid components redistribute in the curved structure so as to lower the free energy? This question is fundamental to the curvature elastic energy for lipid mixtures. Here we investigate the lipid distribution in a monolayer of a binary lipid mixture before and after bending, or more precisely in the lamellar, hexagonal, and distorted hexagonal phases. The lipid mixture is composed of 2:1 ratio of brominated di18:0PC and cholesterol. Using a newly developed procedure for the multiwavelength anomalous diffraction method, we are able to isolate the bromine distribution and reconstruct the electron density distribution of the lipid mixture in the three phases. We found that the lipid distribution is homogenous and uniform in the lamellar and hexagonal phases. But in the distorted hexagonal phase, the lipid monolayer has nonuniform curvature, and cholesterol almost entirely concentrates in the high curvature region. This finding demonstrates that the association energies between lipid molecules vary with the curvature of membrane. Thus, lipid components in a mixture may redistribute under conditions of nonuniform curvature, such as in the stalk structure. In such cases, the spontaneous curvature depends on the local lipid composition and the free energy minimum is determined by lipid distribution as well as curvature. PMID:17259270

  8. The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils.

    PubMed

    Wen, Bei; Wu, Yali; Zhang, Hongna; Liu, Yu; Hu, Xiaoyu; Huang, Honglin; Zhang, Shuzhen

    2016-09-01

    The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in seven species of plants from biosolids-amended soils were investigated. The PFOS and PFOA root concentration factors (Croot/Csoil) ranged from 1.37 to 4.68 and 1.69 to 10.3 (ng/groot)/(ng/gsoil), respectively, while the translocation factors (Cshoot/Croot) ranged from 0.055 to 0.16 and 0.093 to 1.8 (ng/gshoot)/(ng/groot), respectively. The PFOS and PFOA accumulations in roots correlated positively with root protein contents (P < 0.05), while negatively with root lipid contents (P < 0.05). These suggested the promotion effects of protein and inhibition effects of lipid on root uptake. The translocation factors correlated positively with the ratios between protein contents in shoots to those in roots (P < 0.05), showing the importance of protein on PFOS and PFOA translocation. This study is the first to reveal the different roles of protein and lipid in the accumulation and distribution of PFOS and PFOA in plants. PMID:27381874

  9. Myotubes from Severely Obese Type 2 Diabetic Subjects Accumulate Less Lipids and Show Higher Lipolytic Rate than Myotubes from Severely Obese Non-Diabetic Subjects

    PubMed Central

    Bakke, Siril S.; Kase, Eili T.; Moro, Cedric; Stensrud, Camilla; Damlien, Lisbeth; Ludahl, Marianne O.; Sandbu, Rune; Solheim, Brita Marie; Rustan, Arild C.; Hjelmesæth, Jøran; Thoresen, G. Hege; Aas, Vigdis

    2015-01-01

    About 80% of patients with type 2 diabetes are classified as overweight. However, only about 1/3 of severely obese subjects have type 2 diabetes. This indicates that several severely obese individuals may possess certain characteristics that protect them against type 2 diabetes. We therefore hypothesized that this apparent paradox could be related to fundamental differences in skeletal muscle lipid handling. Energy metabolism and metabolic flexibility were examined in human myotubes derived from severely obese subjects without (BMI 44±7 kg/m2) and with type 2 diabetes (BMI 43±6 kg/m2). Lower insulin sensitivity was observed in myotubes from severely obese subjects with type 2 diabetes. Lipolysis rate was higher, and oleic acid accumulation, triacylglycerol content, and fatty acid adaptability were lower in myotubes from severely obese subjects with type 2 diabetes compared to severely obese non-diabetic subjects. There were no differences in lipid distribution and mRNA and protein expression of the lipases HSL and ATGL, the lipase cofactor CGI-58, or the lipid droplet proteins PLIN2 and PLIN3. Glucose and oleic acid oxidation were also similar in cells from the two groups. In conclusion, myotubes established from severely obese donors with established type 2 diabetes had lower ability for lipid accumulation and higher lipolysis rate than myotubes from severely obese donors without diabetes. This indicates that a difference in intramyocellular lipid turnover might be fundamental in evolving type 2 diabetes. PMID:25790476

  10. Rapid Accumulation of Total Lipid in Rhizoclonium africanum Kutzing as Biodiesel Feedstock under Nutrient Limitations and the Associated Changes at Cellular Level

    PubMed Central

    Satpati, Gour Gopal; Kanjilal, Sanjit; Narayana Prasad, Rachapudi Badari; Pal, Ruma

    2015-01-01

    Increase of total lipid and the proportion of the favorable fatty acids in marine green filamentous macroalga Rhizoclonium africanum (Chlorophyceae) was studied under nitrate and phosphate limitations. These stresses were given by both eliminating and doubling the required amounts of nitrate and phosphate salts in the growth media. A significant twofold increase in total lipid (193.03 mg/g) was achieved in cells in absence of nitrate in the culture medium, followed by phosphate limitation (142.65 mg/g). The intracellular accumulation of neutral lipids was observed by fluorescence microscopy. The scanning electron microscopic study showed the major structural changes under nutrient starvation. Fourier transform infrared spectroscopy (FTIR) revealed the presence of ester (C-O-C stretching), ketone (C-C stretching), carboxylic acid (O-H bending), phosphine (P-H stretching), aromatic (C-H stretching and bending), and alcohol (O-H stretching and bending) groups in the treated cells indicating the high accumulation of lipid hydrocarbons in the treated cells. Elevated levels of fatty acids favorable for biodiesel production, that is, C16:0, C16:1, C18:1, and C20:1, were identified under nitrate- and phosphate-deficient conditions. This study shows that the manipulation of cultural conditions could affect the biosynthetic pathways leading to increased lipid production while increasing the proportion of fatty acids suitable for biodiesel production. PMID:26880924

  11. Accumulation of lipid in rat liver was induced by vitamin B₆ deficiency and was ameliorated by supplemental phosphatidylcholine in the diet.

    PubMed

    Kitagawa, Erina; Yamamoto, Tatsuya; Yamamoto, Kohei; Nakagawa, Tomoyuki; Hayakawa, Takashi

    2015-01-01

    We investigated the efficacy of supplementing the diet with pteroylmonoglutamic acid (PGA), choline, or phosphatidylcholine (PC) in ameliorating the lipid accumulation in rat liver that is induced by vitamin B6 (B6) deficiency. In Experiment 1, male Wistar rats were fed a control, B6-deficient, or PGA-, choline-, or PC-supplemented (10 mg, 4 g, and 6.3 g/kg of diet, respectively) B6-deficient diet containing l-methionine at 9 g/kg of diet for 35 days. In Experiment 2, rats were fed a control, B6-deficient, or PC-supplemented (at 3.15, 6.3, or 12.6 g PC/kg of diet) B6-deficient diet for 35 days. Choline or PC supplementation ameliorated liver lipid deposition and returned plasma lipids to normal. Judging from these results, it appeared that B6 deficiency decreased the synthesis of PC in the liver, thereby decreasing the secretion of very low-density lipoproteins, and in consequence producing lipid accumulation in the liver and reductions of plasma lipids. PMID:25775923

  12. Increased placental fatty acid transporter 6 and binding protein 3 expression and fetal liver lipid accumulation in a mouse model of obesity in pregnancy.

    PubMed

    Díaz, Paula; Harris, Jessica; Rosario, Fredrick J; Powell, Theresa L; Jansson, Thomas

    2015-12-15

    Obesity in pregnancy is associated with increased fetal growth and adiposity, which, in part, is determined by transplacental nutrient supply. Trophoblast uptake and intracellular trafficking of lipids are dependent on placental fatty acid transport proteins (FATP), translocase (FAT/CD36), and fatty acid binding proteins (FABP). We hypothesized that maternal obesity in mice leads to increased placental expression of FAT/CD36, FATPs, and FABPs, and lipid accumulation in the fetal liver. C57/BL6J female mice were fed either a control (C; n = 10) or an obesogenic (OB; n = 10) high-fat, high-sugar diet before mating and throughout pregnancy. At E18.5, placentas and fetal livers were collected. Trophoblast plasma membranes (TPM) were isolated from placental homogenates. Expression of FAT/CD36 and FATP (TPM) and FABP (homogenates) was determined by immunoblotting. Gene expression was assessed by RT-quantitative PCR. Sections of fetal livers were stained for Oil Red O, and lipid droplets were quantified. TPM protein expression of FAT/CD36, FATP 2, and FATP 4 was comparable between C and OB groups. Conversely, TPM FATP 6 expression was increased by 35% in OB compared with C placentas without changes in mRNA expression. FABPs 1, 3-5 and PPARγ were expressed in homogenates, and FABP 3 expression increased 27% in OB compared with C placentas; however, no changes were observed in mRNA expression. Lipid droplet accumulation was 10-fold higher in the livers of fetuses from OB compared with C group. We propose that increased lipid transport capacity in obese mice promotes transplacental fatty acid transport and contributes to excess lipid accumulation in the fetal liver. PMID:26491104

  13. Effect of pentoxifylline on arachidonic acid metabolism, neutral lipid synthesis and accumulation during induction of the lipocyte phenotype by retinol in murine hepatic stellate cell.

    PubMed

    Cardoso, Carla C A; Paviani, Ernani R; Cruz, Lavínia A; Guma, Fátima C R; Borojevic, Radovan; Guaragna, Regina M

    2003-12-01

    In liver fibrosis, the quiescent hepatic stellate cells (HSC) are activated to proliferate and express the activated myofibroblast phenotype, losing fat droplets and the stored vitamin A, and depositing more extracellular matrix. Therapeutic strategies for liver fibrosis are focused on HSC. Pentoxifylline (PTF), an analog of the methylxanthine, prevents the biochemical and histological changes associated with animal liver fibrosis. The aim of the present study was to investigate the phenotypic change of myofibroblasts into quiescent lipocytes by PTF and/or retinol, using a permanent cell line GRX that represents murine HSC. We studied the action of both drugs on the synthesis of neutral lipids, activity of phospholipase A2 (PLA2), release of arachidonic acid (AA) and prostaglandins synthesis. Accumulation and synthesis of neutral lipids was dependent upon association of retinol with PTF. PTF (0.5 mg/mL) alone did not induce lipid accumulation and synthesis, but in cells induced by physiologic concentration of retinol (1-2.5 microM), it increased the quantity of stored lipids. Retinol and PTF (5 microM and 0.1 mg/mL, respectively) had a synergistic effect on neutral lipid synthesis and accumulation. In higher PTF concentrations (0.5 and 0.7 mg/ml), the synthesis was stimulated but accumulation decreased. Membrane-associated PLA2 activity decreased after PTF treatment, which increased the AA release 8 fold, and significantly increased the production of PGE2, but not of PGF2. However, when in presence of retinol, we observed a slightly higher increase in PGE2 and PGF2a production. In conclusion, PTF treatment generated an excess of free AA. We propose that retinol counteracts the action of PTF on the AA release and PGs production, even though both drugs stimulated the lipocyte induction in the HSC. PMID:14674680

  14. Chronic Insulin Exposure Induces ER Stress and Lipid Body Accumulation in Mast Cells at the Expense of Their Secretory Degranulation Response.

    PubMed

    Greineisen, William E; Maaetoft-Udsen, Kristina; Speck, Mark; Balajadia, Januaria; Shimoda, Lori M N; Sung, Carl; Turner, Helen

    2015-01-01

    Lipid bodies (LB) are reservoirs of precursors to inflammatory lipid mediators in immunocytes, including mast cells. LB numbers are dynamic, increasing dramatically under conditions of immunological challenge. We have previously shown in vitro that insulin-influenced lipogenic pathways induce LB biogenesis in mast cells, with their numbers attaining steatosis-like levels. Here, we demonstrate that in vivo hyperinsulinemia resulting from high fat diet is associated with LB accumulation in murine mast cells and basophils. We characterize the lipidome of purified insulin-induced LB, and the shifts in the whole cell lipid landscape in LB that are associated with their accumulation, in both model (RBL2H3) and primary mast cells. Lipidomic analysis suggests a gain of function associated with LB accumulation, in terms of elevated levels of eicosanoid precursors that translate to enhanced antigen-induced LTC4 release. Loss-of-function in terms of a suppressed degranulation response was also associated with LB accumulation, as were ER reprogramming and ER stress, analogous to observations in the obese hepatocyte and adipocyte. Taken together, these data suggest that chronic insulin elevation drives mast cell LB enrichment in vitro and in vivo, with associated effects on the cellular lipidome, ER status and pro-inflammatory responses. PMID:26263026

  15. Chronic Insulin Exposure Induces ER Stress and Lipid Body Accumulation in Mast Cells at the Expense of Their Secretory Degranulation Response

    PubMed Central

    Balajadia, Januaria; Shimoda, Lori M. N.; Sung, Carl; Turner, Helen

    2015-01-01

    Lipid bodies (LB) are reservoirs of precursors to inflammatory lipid mediators in immunocytes, including mast cells. LB numbers are dynamic, increasing dramatically under conditions of immunological challenge. We have previously shown in vitro that insulin-influenced lipogenic pathways induce LB biogenesis in mast cells, with their numbers attaining steatosis-like levels. Here, we demonstrate that in vivo hyperinsulinemia resulting from high fat diet is associated with LB accumulation in murine mast cells and basophils. We characterize the lipidome of purified insulin-induced LB, and the shifts in the whole cell lipid landscape in LB that are associated with their accumulation, in both model (RBL2H3) and primary mast cells. Lipidomic analysis suggests a gain of function associated with LB accumulation, in terms of elevated levels of eicosanoid precursors that translate to enhanced antigen-induced LTC4 release. Loss-of-function in terms of a suppressed degranulation response was also associated with LB accumulation, as were ER reprogramming and ER stress, analogous to observations in the obese hepatocyte and adipocyte. Taken together, these data suggest that chronic insulin elevation drives mast cell LB enrichment in vitro and in vivo, with associated effects on the cellular lipidome, ER status and pro-inflammatory responses. PMID:26263026

  16. Free Fatty Acids Increase Intracellular Lipid Accumulation and Oxidative Stress by Modulating PPARα and SREBP-1c in L-02 Cells.

    PubMed

    Qin, Shumin; Yin, Jinjin; Huang, Keer

    2016-07-01

    Excessive fat accumulation and increased oxidative stress contribute to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). However, the mechanisms underlying the development of steatosis are not entirely understood. The present study was undertaken to establish an experimental model of hepatocellular steatosis with a fat overaccumulation profile in which the effects of oxidative stress could be studied in L-02 cells. We investigated the effects of free fatty acids (FFA) (palmitate:oleate, 1:2) on lipid accumulation and oxidative stress and their possible mechanisms in L-02 cells. High concentrations of fatty acids significantly induced excessive lipid accumulation and oxidative stress in L-02 cells, which could only be reversed with 50 μΜ WY14643 (the PPARα agonist). Immunoblotting and qPCR analyses revealed that FFA downregulated the expression of proliferator-activated receptor alpha (PPARα), which contributed to the increased activation of sterol regulatory element binding protein-1c (SREBP-1c). These results suggest that FFA induce lipid accumulation and oxidative stress in L-02 cells by upregulating SREBP-1c expression through the suppression of PPARα. PMID:27270405

  17. Comparative Analyses of Three Chlorella Species in Response to Light and Sugar Reveal Distinctive Lipid Accumulation Patterns in the Microalga C. sorokiniana

    PubMed Central

    Barnes, Austin; Noel, Eric A.; Betenbaugh, Michael J.; Oyler, George A.

    2014-01-01

    While photosynthetic microalgae, such as Chlorella, serve as feedstocks for nutritional oils and biofuels, heterotrophic cultivation can augment growth rates, support high cell densities, and increase triacylglycerol (TAG) lipid content. However, these species differ significantly in their photoautotrophic and heterotrophic characteristics. In this study, the phylogeny of thirty Chlorella strains was determined in order to inform bioprospecting efforts and detailed physiological assessment of three species. The growth kinetics and lipid biochemistry of C. protothecoides UTEX 411, C. vulgaris UTEX 265, and C. sorokiniana UTEX 1230 were quantified during photoautotrophy in Bold's basal medium (BBM) and heterotrophy in BBM supplemented with glucose (10 g L−1). Heterotrophic growth rates of UTEX 411, 265, and 1230 were found to be 1.5-, 3.7-, and 5-fold higher than their respective autotrophic rates. With a rapid nine-hour heterotrophic doubling time, Chlorella sorokiniana UTEX 1230 maximally accumulated 39% total lipids by dry weight during heterotrophy compared to 18% autotrophically. Furthermore, the discrete fatty acid composition of each strain was examined in order to elucidate lipid accumulation patterns under the two trophic conditions. In both modes of growth, UTEX 411 and 265 produced 18∶1 as the principal fatty acid while UTEX 1230 exhibited a 2.5-fold enrichment in 18∶2 relative to 18∶1. Although the total lipid content was highest in UTEX 411 during heterotrophy, UTEX 1230 demonstrated a two-fold increase in its heterotrophic TAG fraction at a rate of 28.9 mg L−1 d−1 to reach 22% of the biomass, corresponding to as much as 90% of its total lipids. Interestingly, UTEX 1230 growth was restricted during mixotrophy and its TAG production rate was suppressed to 18.2 mg L−1 d−1. This constraint on carbon flow raises intriguing questions about the impact of sugar and light on the metabolic regulation of microalgal lipid biosynthesis. PMID:24699196

  18. Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the Microalga C. sorokiniana.

    PubMed

    Rosenberg, Julian N; Kobayashi, Naoko; Barnes, Austin; Noel, Eric A; Betenbaugh, Michael J; Oyler, George A

    2014-01-01

    While photosynthetic microalgae, such as Chlorella, serve as feedstocks for nutritional oils and biofuels, heterotrophic cultivation can augment growth rates, support high cell densities, and increase triacylglycerol (TAG) lipid content. However, these species differ significantly in their photoautotrophic and heterotrophic characteristics. In this study, the phylogeny of thirty Chlorella strains was determined in order to inform bioprospecting efforts and detailed physiological assessment of three species. The growth kinetics and lipid biochemistry of C. protothecoides UTEX 411, C. vulgaris UTEX 265, and C. sorokiniana UTEX 1230 were quantified during photoautotrophy in Bold's basal medium (BBM) and heterotrophy in BBM supplemented with glucose (10 g L-1). Heterotrophic growth rates of UTEX 411, 265, and 1230 were found to be 1.5-, 3.7-, and 5-fold higher than their respective autotrophic rates. With a rapid nine-hour heterotrophic doubling time, Chlorella sorokiniana UTEX 1230 maximally accumulated 39% total lipids by dry weight during heterotrophy compared to 18% autotrophically. Furthermore, the discrete fatty acid composition of each strain was examined in order to elucidate lipid accumulation patterns under the two trophic conditions. In both modes of growth, UTEX 411 and 265 produced 18:1 as the principal fatty acid while UTEX 1230 exhibited a 2.5-fold enrichment in 18:2 relative to 18:1. Although the total lipid content was highest in UTEX 411 during heterotrophy, UTEX 1230 demonstrated a two-fold increase in its heterotrophic TAG fraction at a rate of 28.9 mg L(-1) d(-1) to reach 22% of the biomass, corresponding to as much as 90% of its total lipids. Interestingly, UTEX 1230 growth was restricted during mixotrophy and its TAG production rate was suppressed to 18.2 mg L-1 d-1. This constraint on carbon flow raises intriguing questions about the impact of sugar and light on the metabolic regulation of microalgal lipid biosynthesis. PMID:24699196

  19. Assessment of persistent organic pollutants accumulation and lipid peroxidation in two reproductive stages of wild silverside (Odontesthes bonariensis).

    PubMed

    Barni, María Florencia Silva; Gonzalez, Mariana; Miglioranza, Karina S B

    2014-01-01

    Persistent organic pollutants (POPs) in streamwater can sometimes exceed the guidelines values reported for biota and human protection in watersheds with intensive agriculture. Oxidative stress and cytotoxicity are some of the markers of exposure to POPs in fish. Accumulation of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) as well as lipid peroxidation (LPO) was assessed in wild silverside (Odontesthes bonariensis) from maturation and pre-spawning stages sampled in a typical soybean growing area. Pollutants were quantified by gas chromatography with electron capture detection and LPO by the method of thiobarbituric acid reactive substances. Concentrations of POPs were in the following order: OCPs>PCBs>PBDEs in all organs and stages. Liver, gills and gonads had the highest OCP concentrations in both sexes and stages with a predominance of endosulfan in all samples. Matured individuals, sampled after endosulfan application period, showed higher endosulfan concentrations than pre-spawning individuals. The predominance of endosulfan sulfate could be due to direct uptake from diet and water column, as well as to the metabolism of the parent compounds in fish. The prevalence of p,p'-DDE in liver would also reflect both the direct uptake and the metabolic transformation of p,p'-DDT to p,p'-DDE by fish. The highest levels of PBDEs and PCBs were found in gills and brain of both stages of growth. The pattern BDE-47>BDE-100 in all samples corresponds to pentaBDE exposure. In the case of PCBs, penta (#101 and 110) and hexa-CB congeners (#153 and 138) dominated in the maturation stages and tri (#18) and tetra-CB (#44 and 52) in pre-spawning stages, suggesting biotransformation or preferential accumulation of heavier congeners during gonadal development. Differences in LPO levels in ovaries were associated with growth dilution and reproductive stage. Differences in LPO levels in gills were related with pesticide

  20. Lipid accumulation product (LAP) as a criterion for the identification of the healthy obesity phenotype in postmenopausal women.

    PubMed

    Lwow, Felicja; Jedrzejuk, Diana; Milewicz, Andrzej; Szmigiero, Leszek

    2016-09-01

    Obesity and its complications constitute a major health problem in postmenopausal women. The identification of the obesity phenotype, especially that of metabolically healthy obese (MHO) patients, is a necessary part of obesity treatment protocols. There are several methods to define MHO, but unfortunately, all of them are arbitrary and inconsistent. The aim of this work was to determine whether lipid accumulation product (LAP) could be used as a marker of the MHO phenotype in postmenopausal women. A sample of 345 Polish postmenopausal women aged 50-60years old participated in the study. Participants were classified as obese when their BMI was >27. Receiver operating characteristic curve analysis was performed to estimate the best cutoff for the LAP index value to identify postmenopausal women without metabolic syndrome components. We found that the best cutoff value was LAP ≤29.9, and this value was used to define MHO individuals. With this definition, the identification of MHO individuals could be made when both of the following criteria were met: LAP index ≤29.9 and no arterial hypertension (SBP<130mmHg, DBP<85mmHg). The anthropometric and body fat distribution measurements, as well as the metabolic characteristics of MHO women identified according to the above definition, were compared with those of MHO women identified by two other methods in the literature. These methods and our definition identified similar proportions of MHO women ranging from 11.6% to 16.9%. We found that MHO women identified by all of the definitions used in this study possessed a similar metabolic status, and they did not differ in anthropometric indices or body fat distribution measurements. We concluded that the combination of LAP estimation and arterial blood pressure measurement appear to constitute a useful method for identifying the MHO phenotype in postmenopausal women. PMID:27329927

  1. Fatty acid transport protein-2 inhibitor Grassofermata/CB5 protects cells against lipid accumulation and toxicity

    SciTech Connect

    Saini, Nipun; Black, Paul N.; Montefusco, David; DiRusso, Concetta C.

    2015-09-25

    The inhibition of the fatty acid uptake into non-adipose tissues provides an attractive target for prevention of lipotoxicity leading to obesity-associated non-alcoholic fatty liver disease and type 2 diabetes. Fatty acid transport proteins (FATPs) are bifunctional proteins involved in the uptake and activation of fatty acids by esterification with coenzyme A. Here we characterize Grassofermata/CB5, previously identified as a fatty acid uptake inhibitor directed against HsFATP2. The compound was effective in inhibiting the uptake of fatty acids in the low micro-molar range (IC{sub 50} 8–11 μM) and prevented palmitate-mediated lipid accumulation and cell death in cell lines that are models for intestines, liver, muscle and pancreas. In adipocytes, uptake inhibition was less effective (IC{sub 50} 58 μM). Inhibition was specific for long chain fatty acids and was ineffective toward medium chain fatty acids, which are transported by diffusion. Kinetic analysis of Grassofermata-dependent FA transport inhibition verified a non-competitive mechanism. By comparison with Grassofermata, several atypical antipsychotic drugs previously implicated as inhibitors of FA uptake were ineffectual. In mice Grassofermata decreased absorption of {sup 13}C-oleate demonstrating its potential as a therapeutic agent. - Highlights: • Grassofermata is a small compound inhibitor of FATP2. • Uptake inhibition is specific for long chain fatty acids. • Uptake kinetics shows low specificity for adipocytes compared to other cell types. • Inhibition is by a non-competitive mechanism. • Atypical antipsychotics do not inhibit FA uptake by comparison with Grassofermata.

  2. Aortic lipid and /sup 125/I-albumin accumulation in streptozotocin-diabetic guinea pigs: prevention by insulin treatment

    SciTech Connect

    Schlosser, M.J.; Bannon, A.W.; Verlangieri, A.J.

    1986-03-01

    Diabetes mellitus, a major risk factor of atherosclerosis, is associated with the aortic accumulation of macromolecules. The authors have examined this relationship in the streptozotocin (STZ)-diabetic guinea pig, a species (like man) unable to synthesize ascorbic acid and susceptible to atherosclerosis. Male Dunkin-Hartley guinea pigs received STZ (150 mg/kg, i.c.) or vehicle (control). After 5 days, insulin (10 U/kg/day) was given to half the STZ animals (STZ-INS0 while the remaining half (STZ-SAL) and controls received saline. 25 days later, animals were given /sup 125/I-albumin (100 ..mu..Ci/kg, i.a.). Activity was determined in plasma at 5 (C/sub p5), 15 and 30 minutes, and in the upper thoracic aorta after 30 minutes. Histopathological changes were evaluated in the lower aorta. Aortic albumin permeability defined as cpm/cm/sup 2//sec, cpm/cm/sup 2//sec/C/sub p5/, or cpm/C/sub p5//g tissue was significantly elevated in the STZ-SAL group compared to both STZ-INS and control groups; these latter two groups were not significantly different from each other. Oil-Red-O positive material (lipid) occurred at multifocal areas within the intima of the STZ-SAL animals only. This study demonstrates (1) an abnormal increase in aortic permeability to albumin, (2) histological evidence of early atherosclerotic lesions, and (3) that insulin treatment can prevent these angiopathies in this STZ-diabetic animal model.

  3. VLDL from Metabolic Syndrome Individuals Enhanced Lipid Accumulation in Atria with Association of Susceptibility to Atrial Fibrillation

    PubMed Central

    Lee, Hsiang-Chun; Lin, Hsin-Ting; Ke, Liang-Yin; Wei, Chi; Hsiao, Yi-Lin; Chu, Chih-Sheng; Lai, Wen-Ter; Shin, Shyi-Jang; Chen, Chu-Huang; Sheu, Sheng-Hsiung; Wu, Bin-Nan

    2016-01-01

    Metabolic syndrome (MetS) represents a cluster of metabolic derangements. Dyslipidemia is an important factor in MetS and is related to atrial fibrillation (AF). We hypothesized that very low density lipoproteins (VLDL) in MetS (MetS-VLDL) may induce atrial dilatation and vulnerability to AF. VLDL was therefore separated from normal (normal-VLDL) and MetS individuals. Wild type C57BL/6 male mice were divided into control, normal-VLDL (nVLDL), and MetS-VLDL (msVLDL) groups. VLDL (15 µg/g) and equivalent volumes of saline were injected via tail vein three times a week for six consecutive weeks. Cardiac chamber size and function were measured by echocardiography. MetS-VLDL significantly caused left atrial dilation (control, n = 10, 1.64 ± 0.23 mm; nVLDL, n = 7, 1.84 ± 0.13 mm; msVLDL, n = 10, 2.18 ± 0.24 mm; p < 0.0001) at week 6, associated with decreased ejection fraction (control, n = 10, 62.5% ± 7.7%, vs. msVLDL, n = 10, 52.9% ± 9.6%; p < 0.05). Isoproterenol-challenge experiment resulted in AF in young msVLDL mice. Unprovoked AF occurred only in elderly msVLDL mice. Immunohistochemistry showed excess lipid accumulation and apoptosis in msVLDL mice atria. These findings suggest a pivotal role of VLDL in AF pathogenesis for MetS individuals. PMID:26805814

  4. Long-term therapeutic silencing of miR-33 increases circulating triglyceride levels and hepatic lipid accumulation in mice

    PubMed Central

    Goedeke, Leigh; Salerno, Alessandro; Ramírez, Cristina M; Guo, Liang; Allen, Ryan M; Yin, Xiaoke; Langley, Sarah R; Esau, Christine; Wanschel, Amarylis; Fisher, Edward A; Suárez, Yajaira; Baldán, Angel; Mayr, Manuel; Fernández-Hernando, Carlos

    2014-01-01

    Plasma high-density lipoprotein (HDL) levels show a strong inverse correlation with atherosclerotic vascular disease. Previous studies have demonstrated that antagonism of miR-33 in vivo increases circulating HDL and reverse cholesterol transport (RCT), thereby reducing the progression and enhancing the regression of atherosclerosis. While the efficacy of short-term anti-miR-33 treatment has been previously studied, the long-term effect of miR-33 antagonism in vivo remains to be elucidated. Here, we show that long-term therapeutic silencing of miR-33 increases circulating triglyceride (TG) levels and lipid accumulation in the liver. These adverse effects were only found when mice were fed a high-fat diet (HFD). Mechanistically, we demonstrate that chronic inhibition of miR-33 increases the expression of genes involved in fatty acid synthesis such as acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) in the livers of mice treated with miR-33 antisense oligonucleotides. We also report that anti-miR-33 therapy enhances the expression of nuclear transcription Y subunit gamma (NFYC), a transcriptional regulator required for DNA binding and full transcriptional activation of SREBP-responsive genes, including ACC and FAS. Taken together, these results suggest that persistent inhibition of miR-33 when mice are fed a high-fat diet (HFD) might cause deleterious effects such as moderate hepatic steatosis and hypertriglyceridemia. These unexpected findings highlight the importance of assessing the effect of chronic inhibition of miR-33 in non-human primates before we can translate this therapy to humans. PMID:25038053

  5. Milk fat globule membrane coating of large lipid droplets in the diet of young mice prevents body fat accumulation in adulthood.

    PubMed

    Baars, Annemarie; Oosting, Annemarie; Engels, Eefje; Kegler, Diane; Kodde, Andrea; Schipper, Lidewij; Verkade, Henkjan J; van der Beek, Eline M

    2016-06-01

    Epidemiological studies have demonstrated protective effects of breast-feeding on childhood obesity. Differences between human milk and infant milk formula (IMF) in dietary lipid structure may contribute to this effect. In our mouse model, feeding a diet containing large lipid droplets coated with phospholipids (PL) (Nuturis®; PL of milk fat globule membrane (MFGM) fraction origin) in early life protected against excessive body fat accumulation following a diet challenge in adult life. We now set out to determine the relevance of increased droplet size and/or MFGM lipid droplet coating to the observed anti-obesogenic effects in adult life. From day 16 to 42, male mouse pups were exposed to diets with small (S) or large (L) lipid droplets (0·3 v. 2·9 µm average mode diameter, respectively), either without MFGM or with MFGM coating around the lipid droplet, resulting in four groups: S (control diet), L, Scoating and Lcoating (Nuturis® IMF diet). Mice were subsequently challenged with a Western-style diet until dissection at postnatal day 98. A non-challenged group served as reference (REF). We repeatedly determined body composition between postnatal day 42 and 98. At day 98 plasma and gene expression measurements were performed. Only the Nuturis® IMF diet (Lcoating) in early life containing MFGM-coated large lipid droplets reduced body fat mass to a level comparable with the REF group. These data support the notion that the structural aspects of lipids in human milk, for example, both lipid droplet size as well as the MFGM coating, may contribute to its reported protective effect against obesity in later life. PMID:27040581

  6. The synergistic effects for the co-cultivation of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus on the biomass and total lipids accumulation.

    PubMed

    Yen, Hong-Wei; Chen, Pin-Wen; Chen, Li-Juan

    2015-05-01

    In this co-culture of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus, microalgae potentially acts as an oxygen generator for the growth of aerobic yeast while the yeast mutually provides CO2 to the microalgae as both carry out the production of lipids. To explore the synergistic effects of co-cultivation on the cells growth and total lipids accumulation, several co-culture process parameters including the carbon source concentration, temperature and dissolved oxygen level would be firstly investigated in the flask trials. The results of co-culture in a 5L photobioreactor revealed that about 40-50% of biomass increased and 60-70% of total lipid increased was observed as compared to the single culture batches. Besides the synergistic effects of gas utilization, the providing of trace elements to each other after the natural cells lysis was believed to be another benefit to the growth of the overall co-culture system. PMID:25311189

  7. Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp. strain T66: effects of N and P starvation and O2 limitation.

    PubMed

    Jakobsen, Anita N; Aasen, Inga M; Josefsen, Kjell D; Strøm, Arne R

    2008-08-01

    Aurantiochytrium sp. strain T66 was grown in batch bioreactor cultures in a defined glutamate- and glycerol-containing growth medium. Exponentially growing cells had a lipid content of 13% (w/w) of dry weight. A fattening of cells fed excess glycerol occurred in the post-exponential growth phase, after the medium was depleted of N or P. Lipid accumulation was also initiated by O2 limitation (below 1% of saturation). N starvation per se, or in combination with O2 limitation, gave the highest lipid content, i.e., 54% to 63% (w/w) of dry weight. The corresponding maximum culture density was 90 to 100 g/l dry biomass. The content of docosahexaenoic acid (22:6n-3) in N starved, well-oxygenated cells reached 29% (w/w) of total fatty acids but increased to 36% to 52% in O2-limited cells, depending on the time span of the limitation. O2-limited cells did not accumulate the monounsaturated fatty acids that were normally present. We inferred that the biological explanation is that O2 limitation hindered the O2-dependent desaturase(s) and favored the O2-independent polyunsaturated fatty acid synthase. The highest overall volumetric productivity of docosahexaenoic acid observed was 93 mg/l/h. Additionally, we present a protocol for quantitative lipid extraction, involving heat and protease treatment of freeze-dried thraustochytrids. PMID:18560831

  8. The Mammalian “Obesogen” Tributyltin Targets Hepatic Triglyceride Accumulation and the Transcriptional Regulation of Lipid Metabolism in the Liver and Brain of Zebrafish

    PubMed Central

    Lyssimachou, Angeliki; Santos, Joana G.; André, Ana; Soares, Joana; Lima, Daniela; Guimarães, Laura; Almeida, C. Marisa R.; Teixeira, Catarina; Castro, L. Filipe C.; Santos, Miguel M.

    2015-01-01

    Recent findings indicate that different Endocrine Disrupting Chemicals (EDCs) interfere with lipid metabolic pathways in mammals and promote fat accumulation, a previously unknown site of action for these compounds. The antifoulant and environmental pollutant tributyltin (TBT), which causes imposex in gastropod snails, induces an “obesogenic” phenotype in mammals, through the activation of the nuclear receptors retinoid X receptor (RXR) and peroxisome proliferator-activated receptor gamma (PPARγ). In teleosts, the effects of TBT on the lipid metabolism are poorly understood, particularly following exposure to low, environmental concentrations. In this context, the present work shows that exposure of zebrafish to 10 and 50 ng/L of TBT (as Sn) from pre-hatch to 9 months of age alters the body weight, condition factor, hepatosomatic index and hepatic triglycerides in a gender and dose related manner. Furthermore, TBT modulated the transcription of key lipid regulating factors and enzymes involved in adipogenesis, lipogenesis, glucocorticoid metabolism, growth and development in the brain and liver of exposed fish, revealing sexual dimorphic effects in the latter. Overall, the present study shows that the model mammalian obesogen TBT interferes with triglyceride accumulation and the transcriptional regulation of lipid metabolism in zebrafish and indentifies the brain lipogenic transcription profile of fish as a new target of this compound. PMID:26633012

  9. Quercetin and Allopurinol Ameliorate Kidney Injury in STZ-Treated Rats with Regulation of Renal NLRP3 Inflammasome Activation and Lipid Accumulation

    PubMed Central

    Zhang, Qing-Yu; Wang, Fu-Meng; Kong, Ling-Dong

    2012-01-01

    Hyperuricemia, hyperlipidemia and inflammation are associated with diabetic nephropathy. The NLRP3 inflammasome-mediated inflammation is recently recognized in the development of kidney injury. Urate and lipid are considered as danger signals in the NLRP3 inflammasome activation. Although dietary flavonoid quercetin and allopurinol alleviate hyperuricemia, dyslipidmia and inflammation, their nephroprotective effects are currently unknown. In this study, we used streptozotocin (STZ)-induced diabetic nephropathy model with hyperuricemia and dyslipidemia in rats, and found over-expression of renal inflammasome components NLRP3, apoptosis-associated speck-like protein and Caspase-1, resulting in elevation of IL-1β and IL-18, with subsequently deteriorated renal injury. These findings demonstrated the possible association between renal NLRP3 inflammasome activation and lipid accumulation to superimpose causes of nephrotoxicity in STZ-treated rats. The treatment of quercetin and allopurinol regulated renal urate transport-related proteins to reduce hyperuricemia, and lipid metabolism-related genes to alleviate kidney lipid accumulation in STZ-treated rats. Furthermore, quercetin and allopurinol were found to suppress renal NLRP3 inflammasome activation, at least partly, via their anti-hyperuricemic and anti-dyslipidemic effects, resulting in the amelioration of STZ-induced the superimposed nephrotoxicity in rats. These results may provide a basis for the prevention of diabetes-associated nephrotoxicity with urate-lowering agents such as quercetin and allopurinol. PMID:22701621

  10. How did nature engineer the highest surface lipid accumulation among plants? Exceptional expression of acyl-lipid-associated genes for the assembly of extracellular triacylglycerol by Bayberry (Myrica pensylvanica) fruits.

    PubMed

    Simpson, Jeffrey P; Thrower, Nicholas; Ohlrogge, John B

    2016-09-01

    Bayberry (Myrica pensylvanica) fruits are covered with a remarkably thick layer of crystalline wax consisting of triacylglycerol (TAG) and diacylglycerol (DAG) esterified exclusively with saturated fatty acids. As the only plant known to accumulate soluble glycerolipids as a major component of surface waxes, Bayberry represents a novel system to investigate neutral lipid biosynthesis and lipid secretion by vegetative plant cells. The assembly of Bayberry wax is distinct from conventional TAG and other surface waxes, and instead proceeds through a pathway related to cutin synthesis (Simpson and Ohlrogge, 2016). In this study, microscopic examination revealed that the fruit tissue that produces and secretes wax (Bayberry knobs) is fully developed before wax accumulates and that wax is secreted to the surface without cell disruption. Comparison of transcript expression to genetically related tissues (Bayberry leaves, M. rubra fruits), cutin-rich tomato and cherry fruit epidermis, and to oil-rich mesocarp and seeds, revealed exceptionally high expression of 13 transcripts for acyl-lipid metabolism together with down-regulation of fatty acid oxidases and desaturases. The predicted protein sequences of the most highly expressed lipid-related enzyme-encoding transcripts in Bayberry knobs are 100% identical to the sequences from Bayberry leaves, which do not produce surface DAG or TAG. Together, these results indicate that TAG biosynthesis and secretion in Bayberry is achieved by both up and down-regulation of a small subset of genes related to the biosynthesis of cutin and saturated fatty acids, and also implies that modifications in gene expression, rather than evolution of new gene functions, was the major mechanism by which Bayberry evolved its specialized lipid metabolism. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. PMID:26869450

  11. Paeonol suppresses lipid accumulation in macrophages via upregulation of the ATP‑binding cassette transporter A1 and downregulation of the cluster of differentiation 36.

    PubMed

    Li, Xiuying; Zhou, Yuanda; Yu, Chao; Yang, Hui; Zhang, Chengzhi; Ye, Yun; Xiao, Shunlin

    2015-02-01

    Paeonol, a potent antioxidant isolated from cortex moutan, possesses athero‑protective activity, yet the detailed mechanisms are not fully investigated. This study was conducted to explore the role of paeonol and its underlying mechanisms in RAW264.7 macrophages and apolipoprotein E‑deficient (ApoE(‑/‑)) mice. Paeonol treatment significantly attenuated intracellular lipid accumulation in macrophages, which may be the result of decreased oxidized low‑density lipoprotein (ox‑LDL) uptake and increased cholesterol efflux. Additionally, paeonol markedly inhibited the mRNA and protein expression of the cluster of differentiation 36 (CD36) by decreasing nuclear translocation of c‑Jun [a subunit of activator protein‑1 (AP‑1)]. Moreover, paeonol upregulated the protein stability of ATP‑binding cassette transporter A1 (ABCA1) by inhibiting calpain activity, while ABCA1 mRNA expression was not altered. Furthermore, small hairpin RNA (shRNA) targeting haem oxygenase‑1 (HO‑1) inhibited the paeonol‑mediated beneficial effects on the expression of c‑Jun, CD36, ABCA1, calpain activity and lipid accumulation in macrophages. Accordingly, paeonol retarded the progress of atherosclerosis in ApoE(‑/‑) mice and modulated the expression of CD36 and ABCA1 in aortas similarly to that observed in macrophages. These results indicate that paeonol provides protective effects on foam cell formation by a novel HO‑1‑dependent mediation of cholesterol efflux and lipid accumulation in macrophages. PMID:25405950

  12. Magnolia extract (BL153) protection of heart from lipid accumulation caused cardiac oxidative damage, inflammation, and cell death in high-fat diet fed mice.

    PubMed

    Sun, Weixia; Zhang, Zhiguo; Chen, Qiang; Yin, Xia; Fu, Yaowen; Zheng, Yang; Cai, Lu; Kim, Ki-Soo; Kim, Ki Ho; Tan, Yi; Kim, Young Heui

    2014-01-01

    Magnolia as an herbal material obtained from Magnolia officinalis has been found to play an important role in anti-inflammation, antioxidative stress, and antiapoptosis. This study was designed to investigate the effect of Magnolia extract (BL153) on obesity-associated lipid accumulation, inflammation, oxidative stress, and apoptosis in the heart. C57BL/6 mice were fed a low- (10 kcal% fat) or high-fat (60 kcal% fat) diet for 24 weeks to induce obesity. These mice fed with high-fat diet (HFD) were given a gavage of vehicle, 2.5, 5, or 10 mg/kg body weight BL153 daily. The three doses of BL153 treatment slightly ameliorated insulin resistance without decrease of body weight gain induced by HFD feeding. BL153 at 10 mg/kg slightly attenuated a mild cardiac hypertrophy and dysfunction induced by HFD feeding. Both 5 mg/kg and 10 mg/kg of BL153 treatment significantly inhibited cardiac lipid accumulation measured by Oil Red O staining and improved cardiac inflammation and oxidative stress by downregulating ICAM-1, TNF-α, PAI-1, 3-NT, and 4-HNE. TUNEL staining showed that BL153 treatment also ameliorated apoptosis induced by mitochondrial caspase-3 independent cell death pathway. This study demonstrates that BL153 attenuates HFD-associated cardiac damage through prevention of HFD-induced cardiac lipid accumulation, inflammation, oxidative stress, and apoptosis. PMID:24693333

  13. Subsurface Analysis of the Mesaverde Group on and near the Jicarilla Apache Indian Reservation, New Mexico-its implication on Sites of Oil and Gas Accumulation

    SciTech Connect

    Ridgley, Jennie

    2001-08-21

    The purpose of the phase 2 Mesaverde study part of the Department of Energy funded project ''Analysis of oil-bearing Cretaceous Sandstone Hydrocarbon Reservoirs, exclusive of the Dakota Sandstone, on the Jicarilla Apache Indian Reservation, New Mexico'' was to define the facies of the oil-producing units within the subsurface units of the Mesaverde Group and integrate these results with outcrop studies that defined the depositional environments of these facies within a sequence stratigraphic context. The focus of this report will center on (1) integration of subsurface correlations with outcrop correlations of components of the Mesaverde, (2) application of the sequence stratigraphic model determined in the phase one study to these correlations, (3) determination of the facies distribution of the Mesaverde Group and their relationship to sites of oil and gas accumulation, (4) evaluation of the thermal maturity and potential source rocks for oil and gas in the Mesaverde Group, and (5) evaluation of the structural features on the Reservation as they may control sites of oil accumulation.

  14. Reversible Lipid Accumulation and Associated Division Arrest of Mycobacterium avium in Lipoprotein-Induced Foamy Macrophages May Resemble Key Events during Latency and Reactivation of Tuberculosis

    PubMed Central

    Caire-Brändli, Irène; Papadopoulos, Alexia; Malaga, Wladimir; Marais, David; Canaan, Stéphane; Thilo, Lutz

    2014-01-01

    During the dormant phase of tuberculosis, Mycobacterium tuberculosis persists in lung granulomas by residing in foamy macrophages (FM) that contain abundant lipid bodies (LB) in their cytoplasm, allowing bacilli to accumulate lipids as intracytoplasmic lipid inclusions (ILI). An experimental model of FM is presented where bone marrow-derived mouse macrophages are infected with M. avium and exposed to very-low-density lipoprotein (VLDL) as a lipid source. Quantitative analysis of detailed electron microscope observations showed the following results. (i) Macrophages became foamy, and mycobacteria formed ILI, for which host triacylglycerides, rather than cholesterol, was essential. (ii) Lipid transfer occurred via mycobacterium-induced fusion between LB and phagosomes. (iii) Mycobacteria showed a thinned cell wall and became elongated but did not divide. (iv) Upon removal of VLDL, LB and ILI declined within hours, and simultaneous resumption of mycobacterial division restored the number of mycobacteria to the same level as that found in untreated control macrophages. This showed that the presence of ILI resulted in a reversible block of division without causing a change in the mycobacterial replication rate. Fluctuation between ILI either partially or fully extending throughout the mycobacterial cytoplasm was suggestive of bacterial cell cycle events. We propose that VLDL-driven FM constitute a well-defined cellular system in which to study changed metabolic states of intracellular mycobacteria that may relate to persistence and reactivation of tuberculosis. PMID:24478064

  15. MicroRNA-27 Prevents Atherosclerosis by Suppressing Lipoprotein Lipase-Induced Lipid Accumulation and Inflammatory Response in Apolipoprotein E Knockout Mice

    PubMed Central

    Cheng, Hai-Peng; Gong, Duo; Lv, Yun-Cheng; Yao, Feng; He, Ping-Ping; Ouyang, Xin-Ping; Lan, Gang; Liu, Dan; Zhao, Zhen-Wang; Tan, Yu-Lin; Zheng, Xi-Long; Yin, Wei-Dong; Tang, Chao-Ke

    2016-01-01

    Atherosclerotic lesions are lipometabolic disorder characterized by chronic progressive inflammation in arterial walls. Previous studies have shown that macrophage-derived lipoprotein lipase (LPL) might be a key factor that promotes atherosclerosis by accelerating lipid accumulation and proinflammatory cytokine secretion. Increasing evidence indicates that microRNA-27 (miR-27) has beneficial effects on lipid metabolism and inflammatory response. However, it has not been fully understood whether miR-27 affects the expression of LPL and subsequent development of atherosclerosis in apolipoprotein E knockout (apoE KO) mice. To address these questions and its potential mechanisms, oxidized low-density lipoprotein (ox-LDL)-treated THP-1 macrophages were transfected with the miR-27 mimics/inhibitors and apoE KO mice fed high-fat diet were given a tail vein injection with miR-27 agomir/antagomir, followed by exploring the potential roles of miR-27. MiR-27 agomir significantly down-regulated LPL expression in aorta and peritoneal macrophages by western blot and real-time PCR analyses. We performed LPL activity assay in the culture media and found that miR-27 reduced LPL activity. ELISA showed that miR-27 reduced inflammatory response as analyzed in vitro and in vivo experiments. Our results showed that miR-27 had an inhibitory effect on the levels of lipid both in plasma and in peritoneal macrophages of apoE KO mice as examined by HPLC. Consistently, miR-27 suppressed the expression of scavenger receptors associated with lipid uptake in ox-LDL-treated THP-1 macrophages. In addition, transfection with LPL siRNA inhibited the miR-27 inhibitor-induced lipid accumulation and proinflammatory cytokines secretion in ox-LDL-treated THP-1 macrophages. Finally, systemic treatment revealed that miR-27 decreased aortic plaque size and lipid content in apoE KO mice. The present results provide evidence that a novel antiatherogenic role of miR-27 was closely related to reducing lipid

  16. MicroRNA-27 Prevents Atherosclerosis by Suppressing Lipoprotein Lipase-Induced Lipid Accumulation and Inflammatory Response in Apolipoprotein E Knockout Mice.

    PubMed

    Xie, Wei; Li, Liang; Zhang, Min; Cheng, Hai-Peng; Gong, Duo; Lv, Yun-Cheng; Yao, Feng; He, Ping-Ping; Ouyang, Xin-Ping; Lan, Gang; Liu, Dan; Zhao, Zhen-Wang; Tan, Yu-Lin; Zheng, Xi-Long; Yin, Wei-Dong; Tang, Chao-Ke

    2016-01-01

    Atherosclerotic lesions are lipometabolic disorder characterized by chronic progressive inflammation in arterial walls. Previous studies have shown that macrophage-derived lipoprotein lipase (LPL) might be a key factor that promotes atherosclerosis by accelerating lipid accumulation and proinflammatory cytokine secretion. Increasing evidence indicates that microRNA-27 (miR-27) has beneficial effects on lipid metabolism and inflammatory response. However, it has not been fully understood whether miR-27 affects the expression of LPL and subsequent development of atherosclerosis in apolipoprotein E knockout (apoE KO) mice. To address these questions and its potential mechanisms, oxidized low-density lipoprotein (ox-LDL)-treated THP-1 macrophages were transfected with the miR-27 mimics/inhibitors and apoE KO mice fed high-fat diet were given a tail vein injection with miR-27 agomir/antagomir, followed by exploring the potential roles of miR-27. MiR-27 agomir significantly down-regulated LPL expression in aorta and peritoneal macrophages by western blot and real-time PCR analyses. We performed LPL activity assay in the culture media and found that miR-27 reduced LPL activity. ELISA showed that miR-27 reduced inflammatory response as analyzed in vitro and in vivo experiments. Our results showed that miR-27 had an inhibitory effect on the levels of lipid both in plasma and in peritoneal macrophages of apoE KO mice as examined by HPLC. Consistently, miR-27 suppressed the expression of scavenger receptors associated with lipid uptake in ox-LDL-treated THP-1 macrophages. In addition, transfection with LPL siRNA inhibited the miR-27 inhibitor-induced lipid accumulation and proinflammatory cytokines secretion in ox-LDL-treated THP-1 macrophages. Finally, systemic treatment revealed that miR-27 decreased aortic plaque size and lipid content in apoE KO mice. The present results provide evidence that a novel antiatherogenic role of miR-27 was closely related to reducing lipid

  17. Accumulation of Dechlorane Plus flame retardant in terrestrial passerines from a nature reserve in South China: the influences of biological and chemical variables.

    PubMed

    Peng, Ying; Wu, Jiang-Ping; Tao, Lin; Mo, Ling; Zheng, Xiao-Bo; Tang, Bin; Luo, Xiao-Jun; Mai, Bi-Xian

    2015-05-01

    Although a number of studies have addressed the bioaccumulation of Dechlorane Plus (DP) flame retardant in wildlife, few data are available on terrestrial organisms. This study examined the presence of DP isomers in the muscle tissue of seven terrestrial resident passerine species, i.e., the great tit (Parus major), the oriental magpie-robin (Copsychus saularis), the red-whiskered bulbul (Pycnonotus jocosus), the light-vented bulbul (Pycnonotus sinensis), the streak-breasted scimitar babbler (Pomatorhinus ruficollis), the long-tailed shrike (Lanius schach), and the orange-headed thrush (Zoothera citrina), from a national nature reserve located in South China. The ∑DP (sum of syn-DP and anti-DP) concentrations ranged from 1.2 to 104 ng/g lipid weight, with significantly higher levels in insectivorous birds than in omnivorous birds. The overall exposure to DP isomers of the current passerines may be attributed to the intensive release of this pollutant from electronic waste recycling sites and industrial zones in the vicinity of the nature reserve. Species-specific DP isomeric profiles were also found, with significantly greater fanti values (the isomer fractions of anti-DP) in the red-whiskered bulbul and the oriental magpie-robin. Additionally, the fanti values were significantly negatively correlated to ∑DP concentrations for the individual bird samples, suggesting the influence of DP concentrations on the isomeric profiles. PMID:25666277

  18. Induction of a reversible cardiac lipidosis by a dietary long-chain fatty acid (erucic acid). Relationship to lipid accumulation in border zones of myocardial infarcts.

    PubMed Central

    Chien, K. R.; Bellary, A.; Nicar, M.; Mukherjee, A.; Buja, L. M.

    1983-01-01

    Previous studies have demonstrated that cardiac myocytes in the border zone of acute myocardial infarction become markedly overloaded with neutral lipid during the transition from reversible to irreversible injury. To examine directly the role of these changes in neutral lipid metabolism in the development of irreversible cellular injury and associated increases in tissue Ca2+ content, the authors fed rats large amounts of a fatty acid (erucic acid) that is poorly oxidized by the heart and that subsequently accumulates as neutral lipid. Rats fed a high erucic acid (C22:1) diet in the form of 20% rapeseed oil for 3-5 days had a fourfold increase in triglyceride (49.5 +/- 3.8 SEM mg/g wet wt versus 13.6 +/- 13, n = 4) and a 60% increase in long-chain acyl CoA content (166.0 +/- 21.9 versus 91.5 +/- 9.0 nM/g wet wt, n = 4), compared with controls. However, there was no change in long-chain acyl carnitine or total phospholipid content. Histochemical studies showed accumulation of numerous lipid droplets in the myocytes, and electron microscopy revealed localization of lipid vesicles in direct contact with mitochondria, thus mimicking the lipid-laden cells in the border zone regions of acute myocardial infarcts. The acute lipidosis was reversible with either continued feeding of erucic acid for several weeks or conversion to a normal diet. It was not associated with an increased tissue Ca2+ content, nor with cell necrosis. However, continued erucic acid intake for 3 months was associated with focal myocardial degeneration and loss of myocytes. These results suggest that acute increases in neutral lipids, as found in the border zone of acute myocardial infarction, may not be the cause of progression to irreversible damage during acute myocardial injury, but that the persistent presence of similar lipid material over months may result in focal myocardial degeneration. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:6859230

  19. Combined nitrogen limitation and hydrogen peroxide treatment enhances neutral lipid accumulation in the marine diatom Phaeodactylum tricornutum.

    PubMed

    Burch, Andrew R; Franz, Annaliese K

    2016-11-01

    Exogenous application of dilute hydrogen peroxide (H2O2) increases neutral lipid production in Phaeodactylum tricornutum. Exposing early stationary phase cultures of P. tricornutum to 0.25-2mM H2O2 increases the amount of neutral lipids per biomass (mg/mg) by >100% at 24h post H2O2 treatment as determined upon lipid extraction and analysis using a neutral lipid assay. H2O2 treatment increased the total levels of neutral lipids harvested up to 50%, from 64mg/L to 96mg/L, demonstrating its possible effectiveness as a pre-harvest strategy to enhance the biofuel feedstock potential of P. tricornutum. The effects of H2O2 on biomass are concentration dependent; increasing concentrations of H2O2 reduce the levels of isolated biomass. Analysis of combined stressors demonstrates that H2O2 treatment exhibits synergistic effects to enhance neutral lipid production under nitrogen-depleted, but not phosphorus-depleted conditions, suggesting that the effects of hydrogen peroxide on lipid production are influenced by environmental nitrogen levels. PMID:27529521

  20. Insulin resistance after a 72-h fast is associated with impaired AS160 phosphorylation and accumulation of lipid and glycogen in human skeletal muscle

    PubMed Central

    Vendelbo, M. H.; Clasen, B. F. F.; Treebak, J. T.; Møller, L.; Krusenstjerna-Hafstrøm, T.; Madsen, M.; Nielsen, T. S.; Stødkilde-Jørgensen, H.; Pedersen, S. B.; Jørgensen, J. O. L.; Goodyear, L. J.; Wojtaszewski, J. F. P.; Møller, N.

    2012-01-01

    During fasting, human skeletal muscle depends on lipid oxidation for its energy substrate metabolism. This is associated with the development of insulin resistance and a subsequent reduction of insulin-stimulated glucose uptake. The underlying mechanisms controlling insulin action on skeletal muscle under these conditions are unresolved. In a randomized design, we investigated eight healthy subjects after a 72-h fast compared with a 10-h overnight fast. Insulin action on skeletal muscle was assessed by a hyperinsulinemic euglycemic clamp and by determining insulin signaling to glucose transport. In addition, substrate oxidation, skeletal muscle lipid content, regulation of glycogen synthesis, and AMPK signaling were assessed. Skeletal muscle insulin sensitivity was reduced profoundly in response to a 72-h fast and substrate oxidation shifted to predominantly lipid oxidation. This was associated with accumulation of both lipid and glycogen in skeletal muscle. Intracellular insulin signaling to glucose transport was impaired by regulation of phosphorylation at specific sites on AS160 but not TBC1D1, both key regulators of glucose uptake. In contrast, fasting did not impact phosphorylation of AMPK or insulin regulation of Akt, both of which are established upstream kinases of AS160. These findings show that insulin resistance in muscles from healthy individuals is associated with suppression of site-specific phosphorylation of AS160, without Akt or AMPK being affected. This impairment of AS160 phosphorylation, in combination with glycogen accumulation and increased intramuscular lipid content, may provide the underlying mechanisms for resistance to insulin in skeletal muscle after a prolonged fast. PMID:22028408

  1. Granulation, control of bacterial contamination, and enhanced lipid accumulation by driving nutrient starvation in coupled wastewater treatment and Chlorella regularis cultivation.

    PubMed

    Zhou, Dandan; Li, Yunbao; Yang, Yang; Wang, Yao; Zhang, Chaofan; Wang, Di

    2015-02-01

    Bacterial contamination and biomass harvesting are still challenges associated with coupling of microalgae and wastewater treatment technology. This study investigated aggregation, bacterial growth, lipid production, and pollutant removal during bacteria contaminated Chlorella regularis cultivation under nutrient starvation stress, by supposing the C/N/P ratios of the medium to 14/1.4/1 (MB₂.₅) and 44/1.4/1 (MB₄.₀), respectively. Granules of 500-650 μm were formed in the bacteria contaminated inoculum; however, purified C. regularis were generally suspended freely in the medium, indicating that bacterial presence was a prerequisite for granulation. Extracellular polymeric substance (EPS) analysis showed that polysaccharides were dominant in granules, while protein mainly distributed in the outer layer. Denaturing gradient gel electrophoresis (DGGE) results revealed Sphingobacteriales bacterium and Sphingobacterium sp. are vital organisms involved in the flocculation of microalgae, and nitrifiers (Stenotrophomonas maltophilia) could co-exist in the granular. Both EPS and DGGE results further supported that bacteria played key roles in granulation. C. regularis was always dominant and determined the total biomass concentration during co-cultivation, but bacterial growth was limited owing to nutrient deficiency. Starvation strategy also contributed to enhancement of lipid accumulation, as lipid content in MB₄.₀ with a greater C/N/P led to the greatest increase in the starvation period, and the maximum lipid productivity reached 0.057 g/(L·day). Chemical oxygen demand and nitrogen removal in MB₄.₀ reached 92 and 96%, respectively, after 3 days of cultivation. Thus, cultivation of microalgae in high C/N/P wastewater enabled simultaneous realization of biomass granulation, bacterial overgrowth limitation, enhanced lipid accumulation, and wastewater purification. PMID:25520170

  2. Monoacylglycerol O-acyltransferase 1 is regulated by peroxisome proliferator-activated receptor γ in human hepatocytes and increases lipid accumulation

    SciTech Connect

    Yu, Jung Hwan; Lee, Yoo Jeong; Kim, Hyo Jung; Choi, Hyeonjin; Choi, Yoonjeong; Seok, Jo Woon; Kim, Jae-woo

    2015-05-08

    Monoacylglycerol O-acyltransferase (MGAT) is an enzyme that is involved in triglyceride synthesis by catalyzing the formation of diacylglycerol from monoacylglycerol and fatty acyl CoAs. Recently, we reported that MGAT1 has a critical role in hepatic TG accumulation and that its suppression ameliorates hepatic steatosis in a mouse model. However, the function of MGAT enzymes in hepatic lipid accumulation has not been investigated in humans. Unlike in rodents, MGAT3 as well as MGAT1 and MGAT2 are present in humans. In this study, we evaluated the differences between MGAT subtypes and their association with peroxisome proliferator-activated receptor γ (PPARγ), a regulator of mouse MGAT1 expression. In human primary hepatocytes, basal expression of MGAT1 was lower than that of MGAT2 or MGAT3, but was strongly induced by PPARγ overexpression. A luciferase assay as well as an electromobility shift assay revealed that human MGAT1 promoter activity is driven by PPARγ by direct binding to at least two regions of the promoter in 293T and HepG2 cells. Moreover, siRNA-mediated suppression of MGAT1 expression significantly attenuated lipid accumulation by PPARγ overexpression in HepG2 cells, as evidenced by oil-red-O staining. These results suggest that human MGAT1 has an important role in fatty liver formation as a target gene of PPARγ, and blocking MGAT1 activity could be an efficient therapeutic way to reduce nonalcoholic fatty liver diseases in humans. - Highlights: • PPARγ promotes MGAT1 expression in human primary hepatocytes. • PPARγ directly regulates MGAT1 promoter activity. • Human MGAT1 promoter has at least two PPARγ-binding elements. • Inhibition of MGAT1 expression attenuates hepatic lipid accumulation in humans.

  3. Profiling of lipid and glycogen accumulations under different growth conditions in the sulfothermophilic red alga Galdieria sulphuraria.

    PubMed

    Sakurai, Toshihiro; Aoki, Motohide; Ju, Xiaohui; Ueda, Tatsuya; Nakamura, Yasunori; Fujiwara, Shoko; Umemura, Tomonari; Tsuzuki, Mikio; Minoda, Ayumi

    2016-01-01

    The unicellular red alga Galdieria sulphuraria grows efficiently and produces a large amount of biomass in acidic conditions at high temperatures. It has great potential to produce biofuels and other beneficial compounds without becoming contaminated with other organisms. In G. sulphuraria, biomass measurements and glycogen and lipid analyses demonstrated that the amounts and compositions of glycogen and lipids differed when cells were grown under autotrophic, mixotrophic, and heterotrophic conditions. Maximum biomass production was obtained in the mixotrophic culture. High amounts of glycogen were obtained in the mixotrophic cultures, while the amounts of neutral lipids were similar between mixotrophic and heterotrophic cultures. The amounts of neutral lipids were highest in red algae, including thermophiles. Glycogen structure and fatty acids compositions largely depended on the growth conditions. PMID:26595665

  4. Long-term ketogenic diet contributes to glycemic control but promotes lipid accumulation and hepatic steatosis in type 2 diabetic mice.

    PubMed

    Zhang, Xiaoyu; Qin, Juliang; Zhao, Yihan; Shi, Jueping; Lan, Rong; Gan, Yunqiu; Ren, Hua; Zhu, Bing; Qian, Min; Du, Bing

    2016-04-01

    The ketogenic diet (KD) has been widely used in weight and glycemic control, although potential side effects of long-term KD treatment have caused persistent concern. In this study, we hypothesized that the KD would ameliorate the progression of diabetes but lead to disruptions in lipid metabolism and hepatic steatosis in a mouse model of diabetes. In type 2 diabetic mouse model, mice were fed a high-fat diet and administered streptozotocin treatment before given the test diets for 8 weeks. Subsequently, ameliorated glucose and insulin tolerance in KD-fed diabetic mice was found, although the body weight of high-fat diet- and KD-fed mice was similar. Interestingly, the weight of adipose tissue in KD mice was greater than in the other groups. The KD diet resulted in higher serum triacylglycerol and cholesterol levels in diabetic mice. Moreover, the KD-fed mice showed greater hepatic lipid accumulation. Mice fed the KD showed significant changes in several key genes such as sterol regulatory element-binding protein, fibroblast growth factor 21, and peroxisome proliferator-activated receptor α, which are all important in metabolism. In summary, KD ameliorates glucose and insulin tolerance in a mouse model of diabetes, but severe hepatic lipid accumulation and hepatic steatosis were observed, which should be considered carefully in the long-term application of KD. PMID:27001280

  5. Effects of the Polysaccharide from the Sporophyll of Brown Alga Undaria Pinnatifida on Serum Lipid Profile and Fat Tissue Accumulation in Rats Fed a High-Fat Diet.

    PubMed

    Kim, Byoung-Mok; Park, Jae-Ho; Kim, Dong-Soo; Kim, Young-Myung; Jun, Joon-Young; Jeong, In-Hak; Chi, Young-Min

    2016-07-01

    We investigated the effects of the polysaccharide from the sporophyll of a selected brown alga Undaria pinnatifida on serum lipid profile, fat tissue accumulation, and gastrointestinal transit time in rats fed a high-fat diet. The algal polysaccharide (AP) was prepared by the treatment of multiple cellulase-producing fungi Trichoderma reesei and obtained from the sporophyll with a yield of 38.7% (dry basis). The AP was mostly composed of alginate and fucoidan (up to 89%) in a ratio of 3.75:1. The AP was added to the high-fat diet in concentrations of 0.6% and 1.7% and was given to male Sprague-Dawley rats (5-wk-old) for 5 wk. The 1.7% AP addition notably reduced body weight gain and fat tissue accumulation, and it improved the serum lipid profile, including triglycerides, total cholesterol, and very low-density lipoprotein-cholesterol. The effects were associated with increased feces weight and shortened gastrointestinal transit time. In addition, the lipid peroxidation of the liver was decreased in both groups. PMID:27384013

  6. Malfunction in Mitochondrial β-Oxidation Contributes to Lipid Accumulation in Hepatocyte-Like Cells Derived from Citrin Deficiency-Induced Pluripotent Stem Cells.

    PubMed

    Kim, Yeji; Choi, Jung-Yun; Lee, Sang-Hee; Lee, Beom-Hee; Yoo, Han-Wook; Han, Yong-Mahn

    2016-04-15

    Citrin deficiency (CD) is a recessive genetic disorder caused by mutations in the citrin gene SLC25A13. CD causes various symptoms related to nutrient metabolism such as urea cycle failure, abnormal amino acid levels, and fatty liver. To understand the pathophysiology of CD, the molecular phenotypes were investigated using induced pluripotent stem cells derived from fibroblasts of CD patient (CD-iPSCs). In this study, we demonstrate that aberrant mitochondrial β-oxidation may lead to fatty liver in CD patients. CD-iPSCs normally differentiated into hepatocytes, similar to wild-type iPSCs (WT-iPSCs). However, hepatocytes derived from CD-iPSCs (CD-HLCs) did not exhibit ureogenesis. Cellular triglyceride and lipid granule levels were significantly increased in CD-HLCs compared with WT-HLCs. Peroxisome proliferator-activated receptor-α (PPAR-α) and its target genes which are involved in mitochondrial β-oxidation were downregulated in CD-HLCs, and treatment with a PPAR-α agonist partially reduced the lipid accumulation in CD-HLCs. In addition, the mitochondria in CD-HLCs exhibited abnormal morphologies. Based on these observations, we conclude that the lipid accumulation in CD-HLCs results from dysfunctional mitochondrial β-oxidation and abnormal mitochondrial structure. PMID:26914390

  7. Overexpression of ACC gene from oleaginous yeast Lipomyces starkeyi enhanced the lipid accumulation in Saccharomyces cerevisiae with increased levels of glycerol 3-phosphate substrates.

    PubMed

    Wang, Jiancai; Xu, Ronghua; Wang, Ruling; Haque, Mohammad Enamul; Liu, Aizhong

    2016-06-01

    The conversion of acetyl-CoA to malonyl-CoA by acetyl-CoA carboxylase (ACC) is the rate-limiting step in fatty acid biosynthesis. In this study, a gene coding for ACC was isolated and characterized from an oleaginous yeast, Lipomyces starkeyi. Real-time quantitative PCR (qPCR) analysis of L. starkeyi acetyl-CoA carboxylase gene (LsACC1) showed that the expression levels were upregulated with the fast accumulation of lipids. The LsACC1 was co-overexpressed with the glycerol 3-phosphate dehydrogenase gene (GPD1), which regulates lipids biosynthesis by supplying another substrates glycerol 3-phosphate for storage lipid assembly, in the non-oleaginous yeast Saccharomyces cerevisiae. Further, the S. cerevisiae acetyl-CoA carboxylase (ScACC1) was transferred with GPD1 and its function was analyzed in comparison with LsACC1. The results showed that overexpressed LsACC1 and GPD1 resulted in a 63% increase in S. cerevisiae. This study gives new data in understanding of the molecular mechanisms underlying the regulation of fatty acids and lipid biosynthesis in yeasts. PMID:26865376

  8. High light exposure on seed coat increases lipid accumulation in seeds of castor bean (Ricinus communis L.), a nongreen oilseed crop.

    PubMed

    Zhang, Yang; Mulpuri, Sujatha; Liu, Aizhong

    2016-05-01

    Little was known on how sunlight affects the seed metabolism in nongreen seeds. Castor bean (Ricinus communis L.) is a typical nongreen oilseed crop and its seed oil is an important feedstock in industry. In this study, photosynthetic activity of seed coat tissues of castor bean in natural conditions was evaluated in comparison to shaded conditions. Our results indicate that exposure to high light enhances photosynthetic activity in seed coats and consequently increases oil accumulation. Consistent results were also reached using cultured seeds. High-throughput RNA-Seq analyses further revealed that genes involved in photosynthesis and carbon conversion in both the Calvin-Benson cycle and malate transport were differentially expressed between seeds cultured under light and dark conditions, implying several venues potentially contributing to light-enhanced lipid accumulation such as increased reducing power and CO2 refixation which underlie the overall lipid biosynthesis. This study demonstrated the effects of light exposure on oil accumulation in nongreen oilseeds and greatly expands our understanding of the physiological roles that light may play during seed development in nongreen oilseeds. Essentially, our studies suggest that potential exists to enhance castor oil yield through increasing exposure of the inflorescences to sunlight either by genetically changing the plant architecture (smart canopy) or its growing environment. PMID:26589321

  9. Mechanism of the Inhibitory Effects of Eucommia ulmoides Oliv. Cortex Extracts (EUCE) in the CCl4-Induced Acute Liver Lipid Accumulation in Rats

    PubMed Central

    Jin, Chang-Feng; Li, Bo; Lin, Shun-Mei; Yadav, Raj-Kumar; Kim, Hyung-Ryong; Chae, Han-Jung

    2013-01-01

    Eucommia ulmoides Oliv. (EU) has been used for treatment of liver diseases. The protective effects of Eucommia Ulmoides Oliv. cortex extracts (EUCE) on the carbon tetrachloride- (CCl4-) induced hepatic lipid accumulation were examined in this study. Rats were orally treated with EUCE in different doses prior to an intraperitoneal injection of 1 mg/kg CCl4. Acute injection of CCl4 decreased plasma triglyceride but increased hepatic triglyceride and cholesterol as compared to control rats. On the other hand, the pretreatment with EUCE diminished these effects at a dose-dependent manner. CCl4 treatment decreased glutathione (GSH) and increased malondialdehyde (MDA) accompanied by activated P450 2E1. The pretreatment with EUCE significantly improved these deleterious effects of CCl4. CCl4 treatment increased P450 2E1 activation and ApoB accumulation. Pretreatment with EUCE reversed these effects. ER stress response was significantly increased by CCl4, which was inhibited by EUCE. One of the possible ER stress regulatory mechanisms, lysosomal activity, was examined. CCl4 reduced lysosomal enzymes that were reversed with the EUCE. The results indicate that oral pretreatment with EUCE may protect liver against CCl4-induced hepatic lipid accumulation. ER stress and its related ROS regulation are suggested as a possible mechanism in the antidyslipidemic effect of EUCE. PMID:24027582

  10. Reduction of adipogenesis and lipid accumulation by Taraxacum officinale (Dandelion) extracts in 3T3L1 adipocytes: an in vitro study.

    PubMed

    González-Castejón, Marta; García-Carrasco, Belén; Fernández-Dacosta, Raquel; Dávalos, Alberto; Rodriguez-Casado, Arantxa

    2014-05-01

    In this in vitro study, we have investigated the ability of Taraxacum officinale (dandelion) to inhibit adipocyte differentiation and lipogenesis in 3T3-L1 preadipocytes. HPLC analysis of the three plant extracts used in this study-leaf and root extracts and a commercial root powder-identified caffeic and chlorogenic acids as the main phenolic constituents. Oil Red O staining and triglyceride levels analysis showed decreased lipid and triglyceride accumulation, respectively. Cytotoxicity was assessed with the MTT assay showing non-toxic effect among the concentrations tested. DNA microarray analysis showed that the extracts regulated the expression of a number of genes and long non-coding RNAs that play a major role in the control of adipogenesis. Taken together, our results indicate that the dandelion extracts used in this study may play a significant role during adipogenesis and lipid metabolism, and thus, supporting their therapeutic interest as potential candidates for the treatment of obesity. PMID:23956107

  11. Dietary freshwater clam (Corbicula fluminea) extract suppresses accumulation of hepatic lipids and increases in serum cholesterol and aminotransferase activities induced by dietary chloretone in rats.

    PubMed

    Chijimatsu, Takeshi; Umeki, Miki; Kobayashi, Satoru; Kataoka, Yutaro; Yamada, Koji; Oda, Hiroaki; Mochizuki, Satoshi

    2015-01-01

    We investigated the ameliorative effect of freshwater clam extract (FCE) on fatty liver, hypercholesterolemia, and liver injury in rats exposed to chloretone. Furthermore, we examined the effects of major FCE components (fat and protein fractions) to determine the active components in FCE. Chloretone increased serum aminotransferase activities and led to hepatic lipid accumulation. Serum aminotransferase activities and hepatic lipid content were lower in rats fed total FCE or fat/protein fractions of FCE. Expression of fatty acid synthase and fatty acid desaturase genes was upregulated by chloretone. Total FCE and fat/protein fractions of FCE suppressed the increase in gene expression involved in fatty acid synthesis. Serum cholesterol levels increased twofold upon chloretone exposure. Total FCE or fat/protein fractions of FCE showed hypocholesterolemic effects in rats with hypercholesterolemia induced by chloretone. These suggest that FCE contains at least two active components against fatty liver, hypercholesterolemia, and liver injury in rats exposed to chloretone. PMID:25704646

  12. Cultivation of Candida sp. LEB-M3 in glycerol: lipid accumulation and prediction of biodiesel quality parameters.

    PubMed

    Duarte, Susan Hartwig; Ansolin, Marina; Maugeri, Francisco

    2014-06-01

    The quality of biodiesel from lipids produced by the yeast Candida sp. LEB-M3 was predicted, by the use of mathematical models for parameters that specify quality as a function of the fatty acid profile. The lipid production was studied according to the experimental design methodology, for different cultivation conditions for agitation and aeration. Lipid compositions were affected by the cultivation conditions, and the agitation presented a positive effect for the formation of monounsaturated fatty acids and negative effect for saturated fatty acids. Aeration had a positive effect on the formation of polyunsaturated fatty acids. According to the predictions by the mathematical models, the cetane number varied from 61 to 67, the oxidative stability from 11 to 17h, the iodine index from 55 to 75gI2/100g, density from 852 to 868kg/m(3). All cultivation conditions led to lipid compositions, whose predicted bioparameter values indicate that biodiesel from this lipid source should present current standard quality. PMID:24732707

  13. Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition.

    PubMed

    Lin, Tse-Shih; Wu, Jane-Yii

    2015-05-01

    In order to produce microalgal lipids that can be transformed to biodiesel fuel, one isolate with high lipid content was identified as Chlorella sp. Y8-1. The growth and lipid productivity of an isolated microalga Chlorella sp. Y8-1 were investigated under different cultivation conditions, including autotrophic growth (CO2, with light), heterotrophic growth (sucrose, without light) and mixotrophic growth (organic carbon sources and CO2, with light). Mixotrophic Chlorella sp. Y8-1 showed higher lipid content (35.5±4.2%) and higher lipid productivity (0.01 g/L/d) than Chlorella sp. Y8-1 cultivated under autotrophic and heterotrophic conditions on modified Walne medium. Fatty acid analysis of Chlorella sp. Y8-1 showed the major presence of palmitic acid (C16:0), oleic acid (C18:1), linoleic acid (C18:2) and linolenic acids (C18:3). The main fatty acid compositions of the Chlorella sp. Y8-1 are appropriate for biodiesel production. PMID:25443671

  14. Deciphering the relationship among phosphate dynamics, electron-dense body and lipid accumulation in the green alga Parachlorella kessleri

    PubMed Central

    Ota, Shuhei; Yoshihara, Mai; Yamazaki, Tomokazu; Takeshita, Tsuyoshi; Hirata, Aiko; Konomi, Mami; Oshima, Kenshiro; Hattori, Masahira; Bišová, Kateřina; Zachleder, Vilém; Kawano, Shigeyuki

    2016-01-01

    Phosphorus is an essential element for life on earth and is also important for modern agriculture, which is dependent on inorganic fertilizers from phosphate rock. Polyphosphate is a biological polymer of phosphate residues, which is accumulated in organisms during the biological wastewater treatment process to enhance biological phosphorus removal. Here, we investigated the relationship between polyphosphate accumulation and electron-dense bodies in the green alga Parachlorella kessleri. Under sulfur-depleted conditions, in which some symporter genes were upregulated, while others were downregulated, total phosphate accumulation increased in the early stage of culture compared to that under sulfur-replete conditions. The P signal was detected only in dense bodies by energy dispersive X-ray analysis. Transmission electron microscopy revealed marked ultrastructural variations in dense bodies with and without polyphosphate. Our findings suggest that the dense body is a site of polyphosphate accumulation, and P. kessleri has potential as a phosphate-accumulating organism. PMID:27180903

  15. Deciphering the relationship among phosphate dynamics, electron-dense body and lipid accumulation in the green alga Parachlorella kessleri.

    PubMed

    Ota, Shuhei; Yoshihara, Mai; Yamazaki, Tomokazu; Takeshita, Tsuyoshi; Hirata, Aiko; Konomi, Mami; Oshima, Kenshiro; Hattori, Masahira; Bišová, Kateřina; Zachleder, Vilém; Kawano, Shigeyuki

    2016-01-01

    Phosphorus is an essential element for life on earth and is also important for modern agriculture, which is dependent on inorganic fertilizers from phosphate rock. Polyphosphate is a biological polymer of phosphate residues, which is accumulated in organisms during the biological wastewater treatment process to enhance biological phosphorus removal. Here, we investigated the relationship between polyphosphate accumulation and electron-dense bodies in the green alga Parachlorella kessleri. Under sulfur-depleted conditions, in which some symporter genes were upregulated, while others were downregulated, total phosphate accumulation increased in the early stage of culture compared to that under sulfur-replete conditions. The P signal was detected only in dense bodies by energy dispersive X-ray analysis. Transmission electron microscopy revealed marked ultrastructural variations in dense bodies with and without polyphosphate. Our findings suggest that the dense body is a site of polyphosphate accumulation, and P. kessleri has potential as a phosphate-accumulating organism. PMID:27180903

  16. Luxury uptake of phosphorus changes the accumulation of starch and lipid in Chlorella sp. under nitrogen depletion.

    PubMed

    Zhu, Shunni; Wang, Yajie; Xu, Jin; Shang, Changhua; Wang, Zhongming; Xu, Jingliang; Yuan, Zhenhong

    2015-12-01

    The aim of this research was to study the effect of phosphorus supply on starch and lipid production under nitrogen starvation using Chlorella sp. as a model. High phosphate level had marginal effect on cell density but increased biomass growth. Massive phosphorus was assimilated quickly and mainly stored in the form of polyphosphate. The algal cells ceased phosphorus uptake when intracellular phosphorus reached a certain level. 5mM phosphate in the culture rendered a 16.7% decrease of starch synthesis and a 22.4% increase of lipid synthesis relative to low phosphate (0.17 mM). It is plausible that phosphate can regulate carbon partitioning between starch and lipid synthesis pathway by influencing ADP-glucose pyrophosphorylase activity. Moreover, high phosphate concentration enhanced the abundance of oleic acid, improving oil quality for biodiesel production. It is a promising cultivation strategy by integration of phosphorus removal from wastewater with biodiesel production for this alga. PMID:26386419

  17. Accumulated lipids rather than the rigid cell walls impede the extraction of genetic materials for effective colony PCRs in Chlorella vulgaris

    PubMed Central

    2013-01-01

    Background Failure of colony PCRs in green microalga Chlorella vulgaris is typically attributed to the difficulty in disrupting its notoriously rigid cell walls for releasing the genetic materials and therefore the development of an effective colony PCR procedure in C. vulgaris presents a challenge. Results Here we identified that colony PCR results were significantly affected by the accumulated lipids rather than the rigid cell walls of C. vulgaris. The higher lipids accumulated in C. vulgaris negatively affects the effective amplification by DNA polymerase. Based on these findings, we established a simple and extremely effective colony PCR procedure in C. vulgaris. By simply pipetting/votexing the pellets of C. vulgaris in 10 ul of either TE (10 mM Tris/1 mM EDTA) or 0.2% SDS buffer at room temperature, followed by the addition of 10 ul of either hexane or Phenol:Chloroform:Isoamyl Alcohol in the same PCR tube for extraction. The resulting aqueous phase was readily PCR-amplified as genomic DNA templates as demonstrated by successful amplification of the nuclear 18S rRNA and the chloroplast rbcL gene. This colony PCR protocol is effective and robust in C. vulgaris and also demonstrates its effectiveness in other Chlorella species. Conclusions The accumulated lipids rather than the rigid cell walls of C. vulgaris significantly impede the extraction of genetic materials and subsequently the effective colony PCRs. The finding has the potential to aid the isolation of high-quality total RNAs and mRNAs for transcriptomic studies in addition to the genomic DNA isolation in Chlorella. PMID:24219401

  18. Inhibition of acetyl-CoA carboxylases by soraphen A prevents lipid accumulation and adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Cordonier, Elizabeth L; Jarecke, Sarah K; Hollinger, Frances E; Zempleni, Janos

    2016-06-01

    Acetyl-CoA carboxylases (ACC) 1 and 2 catalyze the carboxylation of acetyl-CoA to malonyl-CoA and depend on biotin as a coenzyme. ACC1 localizes in the cytoplasm and produces malonyl-CoA for fatty acid (FA) synthesis. ACC2 localizes in the outer mitochondrial membrane and produces malonyl-CoA that inhibits FA import into mitochondria for subsequent oxidation. We hypothesized that ACCs are checkpoints in adipocyte differentiation and tested this hypothesis using the ACC1 and ACC2 inhibitor soraphen A (SA) in murine 3T3-L1 preadipocytes. When 3T3-L1 cells were treated with 100nM SA for 8 days after induction of differentiation, the expression of PPARγ mRNA and FABP4 mRNA decreased by 40% and 50%, respectively, compared with solvent controls; the decrease in gene expression was accompanied by a decrease in FABP4 protein expression and associated with a decrease in lipid droplet accumulation. The rate of FA oxidation was 300% greater in SA-treated cells compared with vehicle controls. Treatment with exogenous palmitate restored PPARγ and FABP4 mRNA expression and FABP4 protein expression in SA-treated cells. In contrast, SA did not alter lipid accumulation if treatment was initiated on day eight after induction of differentiation. We conclude that loss of ACC1-dependent FA synthesis and loss of ACC2-dependent inhibition of FA oxidation prevent lipid accumulation in adipocytes and inhibit early stages of adipocyte differentiation. PMID:27041646

  19. Fenretinide mediated retinoic acid receptor signalling and inhibition of ceramide biosynthesis regulates adipogenesis, lipid accumulation, mitochondrial function and nutrient stress signalling in adipocytes and adipose tissue

    PubMed Central

    Mcilroy, George D.; Tammireddy, Seshu R.; Maskrey, Benjamin H.; Grant, Louise; Doherty, Mary K.; Watson, David G.; Delibegović, Mirela; Whitfield, Phillip D.; Mody, Nimesh

    2016-01-01

    Fenretinide (FEN) is a synthetic retinoid that inhibits obesity and insulin resistance in high-fat diet (HFD)-fed mice and completely prevents 3T3-L1 pre-adipocyte differentiation. The aim of this study was to determine the mechanism(s) of FEN action in 3T3-L1 adipocytes and in mice. We used the 3T3-L1 model of adipogenesis, fully differentiated 3T3-L1 adipocytes and adipose tissue from HFD-induced obese mice to investigate the mechanisms of FEN action. We measured expression of adipogenic and retinoid genes by qPCR and activation of nutrient-signalling pathways by western blotting. Global lipid and metabolite analysis was performed and specific ceramide lipid species measured by liquid chromatography-mass spectrometry. We provide direct evidence that FEN inhibits 3T3-L1 adipogenesis via RA-receptor (RAR)-dependent signaling. However, RARα antagonism did not prevent FEN-induced decreases in lipid levels in mature 3T3-L1 adipocytes, suggesting an RAR-independent mechanism. Lipidomics analysis revealed that FEN increased dihydroceramide lipid species 5- to 16-fold in adipocytes, indicating an inhibition of the final step of ceramide biosynthesis. A similar blockade in adipose tissue from FEN-treated obese mice was associated with a complete normalisation of impaired mitochondrial β-oxidation and tricarboxylic acid cycle flux. The FEN catabolite, 4-oxo-N-(4-hydroxyphenyl)retinamide (4-OXO), also decreased lipid accumulation without affecting adipogenesis. FEN and 4-OXO (but not RA) treatment additionally led to the activation of p38-MAPK, peIF2α and autophagy markers in adipocytes. Overall our data reveals FEN utilises both RAR-dependent and -independent pathways to regulate adipocyte biology, both of which may be required for FEN to prevent obesity and insulin resistance in vivo. PMID:26592777

  20. Accumulation of co-localised unesterified cholesterol and neutral lipids within vacuolised elastin fibres in athero-prone areas of the human aorta.

    PubMed

    Bobryshev, Y V; Lord, R S

    1999-01-01

    To investigate whether there are alterations of elastin fibres in the arterial intima at the pre-atherosclerotic stage, grossly normal areas of human thoracic aorta were taken soon after death from 13 healthy trauma victims whose ages ranged from 16 to 40 years. Two areas were compared: atherosclerosis-prone (AP) areas localised to the dorsal aspect of the aorta along the rows of intercostal branch origins, and atherosclerosis-resistant (AR) areas from the ventral aorta. Electron microscopic analysis combined with cytochemical staining was applied. Unesterified cholesterol was identified using the filipin-staining technique while neutral lipids were visualised by the OTO-technique. Intimal features were studied by combining the filipin-staining and the OTO-technique. Electron microscopical examination showed that in both AR and AP areas, some elastin fibres in the intima were vacuolised. Unesterified cholesterol was found to be predominantly localised in the musculoelastic layer, in particular, inside the vacuolised elastin fibres. This localisation was seen in all 13 AP areas studied in contrast to the AR areas where it was observed in only four of 13 aortas studied (P < 0.0005, chi2-test). Accumulation of neutral lipids inside vacuolised elastin fibres was found in five out of 13 AP areas but was not observed in any of the AR areas (P=0.01, chi2). A combination of the filipin-staining and OTO-techniques showed that some deposits of neutral lipids and unesterified cholesterol within vacuolised elastin fibres were independently located from each other, but more frequently, neutral lipids were co-located with unesterified cholesterol. The present observations indicate a difference between AP and AR intimal areas which, in particular, relates to the structure of elastin fibres in the musculoelastic layer. The observations suggest that alterations of the extracellular matrix are involved in the trapping and retention of cholesterol and neutral lipids within the intima

  1. Ciliary neurotrophic factor prevents acute lipid-induced insulin resistance by attenuating ceramide accumulation and phosphorylation of c-Jun N-terminal kinase in peripheral tissues.

    PubMed

    Watt, Matthew J; Hevener, Andrea; Lancaster, Graeme I; Febbraio, Mark A

    2006-05-01

    Ciliary neurotrophic factor (CNTF) is a member of the gp130 receptor cytokine family recently identified as an antiobesity agent in rodents and humans by mechanisms that remain unclear. We investigated the impact of acute CNTF treatment on insulin action in the presence of lipid oversupply. To avoid confounding effects of long-term high-fat feeding or genetic manipulation on whole-body insulin sensitivity, we performed a 2-h Intralipid infusion (20% heparinized Intralipid) with or without recombinant CNTF pretreatment (Axokine 0.3 mg/kg), followed by a 2-h hyperinsulinemic-euglycemic clamp (12 mU/kg.min) in fasted, male Wistar rats. Acute Intralipid infusion increased plasma free fatty acid levels from 1.0 +/- 0.1 to 2.5 +/- 0.3 mM, which subsequently caused reductions in skeletal muscle (insulin-stimulated glucose disposal rate) and liver (hepatic glucose production) insulin sensitivity by 30 and 45%, respectively. CNTF pretreatment completely prevented the lipid-mediated reduction in insulin-stimulated glucose disposal rate and the blunted suppression of hepatic glucose production by insulin. Although lipid infusion increased triacylglycerol and ceramide accumulation and phosphorylation of mixed linage kinase 3 and c-Jun N-terminal kinase 1 in skeletal muscle, CNTF pretreatment prevented these lipid-induced effects. Alterations in hepatic and muscle insulin signal transduction as well as phosphorylation of c-Jun N-terminal kinase 1/2 paralleled alterations in insulin sensitivity. These data support the use of CNTF as a potential therapeutic means to combat lipid-induced insulin resistance. PMID:16396984

  2. Fenretinide mediated retinoic acid receptor signalling and inhibition of ceramide biosynthesis regulates adipogenesis, lipid accumulation, mitochondrial function and nutrient stress signalling in adipocytes and adipose tissue.

    PubMed

    Mcilroy, George D; Tammireddy, Seshu R; Maskrey, Benjamin H; Grant, Louise; Doherty, Mary K; Watson, David G; Delibegović, Mirela; Whitfield, Phillip D; Mody, Nimesh

    2016-01-15

    Fenretinide (FEN) is a synthetic retinoid that inhibits obesity and insulin resistance in high-fat diet (HFD)-fed mice and completely prevents 3T3-L1 pre-adipocyte differentiation. The aim of this study was to determine the mechanism(s) of FEN action in 3T3-L1 adipocytes and in mice. We used the 3T3-L1 model of adipogenesis, fully differentiated 3T3-L1 adipocytes and adipose tissue from HFD-induced obese mice to investigate the mechanisms of FEN action. We measured expression of adipogenic and retinoid genes by qPCR and activation of nutrient-signalling pathways by western blotting. Global lipid and metabolite analysis was performed and specific ceramide lipid species measured by liquid chromatography-mass spectrometry. We provide direct evidence that FEN inhibits 3T3-L1 adipogenesis via RA-receptor (RAR)-dependent signaling. However, RARα antagonism did not prevent FEN-induced decreases in lipid levels in mature 3T3-L1 adipocytes, suggesting an RAR-independent mechanism. Lipidomics analysis revealed that FEN increased dihydroceramide lipid species 5- to 16-fold in adipocytes, indicating an inhibition of the final step of ceramide biosynthesis. A similar blockade in adipose tissue from FEN-treated obese mice was associated with a complete normalisation of impaired mitochondrial β-oxidation and tricarboxylic acid cycle flux. The FEN catabolite, 4-oxo-N-(4-hydroxyphenyl)retinamide (4-OXO), also decreased lipid accumulation without affecting adipogenesis. FEN and 4-OXO (but not RA) treatment additionally led to the activation of p38-MAPK, peIF2α and autophagy markers in adipocytes. Overall our data reveals FEN utilises both RAR-dependent and -independent pathways to regulate adipocyte biology, both of which may be required for FEN to prevent obesity and insulin resistance in vivo. PMID:26592777

  3. Short-term fasting induces intra-hepatic lipid accumulation and decreases intestinal mass without reduced brush-border enzyme activity in mink (Mustela vison) small intestine.

    PubMed

    Bjornvad, C R; Elnif, J; Sangild, P T

    2004-11-01

    For many mammalian species short-term fasting is associated with intestinal atrophy and decreased digestive capacity. Under natural conditions, strictly carnivorous animals often experience prey scarcity during winter, and they may therefore be particularly well adapted to short-term food deprivation. To examine how the carnivorous gastrointestinal tract is affected by fasting, small-intestinal structure, brush-border enzyme activities and hepatic structure and function were examined in fed mink (controls) and mink that had been fasted for 1-10 days. During the first 1-2 days of fasting, intestinal mass decreased more rapidly than total body mass and villus heights were reduced 25-40%. In contrast, tissue-specific activity of the brush-border enzymes sucrase, maltase, lactase, aminopeptidase A and dipeptidylpeptidase IV increased 0.5- to 1.5-fold at this time, but returned to prefasting levels after 6 days of fasting. After 6-10 days of fasting there was a marked increase in the activity of hepatic enzymes and accumulation of intra-hepatic lipid vacuoles. Thus, mink may be a useful model for studying fasting-induced intestinal atrophy and adaptation as well as mechanisms involved in accumulation of intra-hepatic lipids following food deprivation in strictly carnivorous domestic mammals, such as cats and ferrets. PMID:15503054

  4. Soy Leaf Extract Containing Kaempferol Glycosides and Pheophorbides Improves Glucose Homeostasis by Enhancing Pancreatic β-Cell Function and Suppressing Hepatic Lipid Accumulation in db/db Mice.

    PubMed

    Li, Hua; Ji, Hyeon-Seon; Kang, Ji-Hyun; Shin, Dong-Ha; Park, Ho-Yong; Choi, Myung-Sook; Lee, Chul-Ho; Lee, In-Kyung; Yun, Bong-Sik; Jeong, Tae-Sook

    2015-08-19

    This study investigated the molecular mechanisms underlying the antidiabetic effect of an ethanol extract of soy leaves (ESL) in db/db mice. Control groups (db/+ and db/db) were fed a normal diet (ND), whereas the db/db-ESL group was fed ND with 1% ESL for 8 weeks. Dietary ESL improved glucose tolerance and lowered plasma glucose, glycated hemoglobin, HOMA-IR, and triglyceride levels. The pancreatic insulin content of the db/db-ESL group was significantly greater than that of the db/db group. ESL supplementation altered pancreatic IRS1, IRS2, Pdx1, Ngn3, Pax4, Ins1, Ins2, and FoxO1 expression. Furthermore, ESL suppressed lipid accumulation and increased glucokinase activity in the liver. ESL primarily contained kaempferol glycosides and pheophorbides. Kaempferol, an aglycone of kaempferol glycosides, improved β-cell proliferation through IRS2-related FoxO1 signaling, whereas pheophorbide a, a product of chlorophyll breakdown, improved insulin secretion and β-cell proliferation through IRS1-related signaling with protein kinase A in MIN6 cells. ESL effectively regulates glucose homeostasis by enhancing IRS-mediated β-cell insulin signaling and suppressing SREBP-1-mediated hepatic lipid accumulation in db/db mice. PMID:26211813

  5. Deep Sequencing of the Fruit Transcriptome and Lipid Accumulation in a Non-Seed Tissue of Chinese Tallow, a Potential Biofuel Crop.

    PubMed

    Divi, Uday K; Zhou, Xue-Rong; Wang, Penghao; Butlin, Jamie; Zhang, Dong-Mei; Liu, Qing; Vanhercke, Thomas; Petrie, James R; Talbot, Mark; White, Rosemary G; Taylor, Jennifer M; Larkin, Philip; Singh, Surinder P

    2016-01-01

    Chinese tallow (Triadica sebifera) is a valuable oilseed-producing tree that can grow in a variety of conditions without competing for food production, and is a promising biofuel feedstock candidate. The fruits are unique in that they contain both saturated and unsaturated fat present in the tallow and seed layer, respectively. The tallow layer is poorly studied and is considered only as an external fatty deposition secreted from the seed. In this study we show that tallow is in fact a non-seed cellular tissue capable of triglyceride synthesis. Knowledge of lipid synthesis and storage mechanisms in tissues other than seed is limited but essential to generate oil-rich biomass crops. Here, we describe the annotated transcriptome assembly generated from the fruit coat, tallow and seed tissues of Chinese tallow. The final assembly was functionally annotated, allowing for the identification of candidate genes and reconstruction of lipid pathways. A tallow tissue-specific paralog for the transcription factor gene WRINKLED1 (WRI1) and lipid droplet-associated protein genes, distinct from those expressed in seed tissue, were found to be active in tallow, underpinning the mode of oil synthesis and packaging in this tissue. Our data have established an excellent knowledge base that can provide genetic and biochemical insights for engineering non-seed tissues to accumulate large amounts of oil. In addition to the large data set of annotated transcripts, the study also provides gene-based simple sequence repeat and single nucleotide polymorphism markers. PMID:26589268

  6. Relationships of cadmium, mercury, and selenium with nutrient reserves of female lesser scaup (Aythya affinis) during winter and spring migration.

    PubMed

    Anteau, Michael J; Afton, Alan D; Custer, Christine M; Custer, Thomas W

    2007-03-01

    Trace elements may have important effects on body condition of ducks during spring migration, because individuals are experiencing energetically costly events (e.g., migration, nutrient reserve accumulation, pair formation, feather molt, and ovarian follicle development). We examined relationships among hepatic cadmium, mercury, and selenium concentrations (microg/g dry wt) and nutrient reserves (lipid, protein, and mineral) of female lesser scaup (Aythya affinis) during winter and spring migration at four locations within the Mississippi Flyway (LA, IL, and MN, USA, and MB, Canada). Selenium concentrations (range, 3.73-52.29 microg/g dry wt) were positively correlated with lipid reserves (F1,73 = 22.69, p < 0.001, type III partial r2 = 0.24), whereas cadmium was negatively correlated with lipid reserves (F1,73 = 6.92, p = 0.010, type III partial r2 = 0.09). The observed relationship between cadmium and lipid reserves may be cause for concern, because lipid reserves of females declined by 55 g (47%), on average, within the range of observed cadmium concentrations (0.23-7.24 microg/g dry wt), despite the relatively low cadmium concentrations detected. Mean cadmium concentrations were higher in Minnesota (1.23 microg/g dry wt) and Manitoba (1.11 microg/g dry wt) than in Louisiana (0.80 microg/g dry wt) and Illinois (0.69 microg/g dry wt). However, mean cadmium concentrations predict lipid reserves of females to be only 11 g lower, on average, in Minnesota than in Illinois. Previous research documented that lipid reserves were 100 g lower in Minnesota than in Illinois; consequently, cadmium is unlikely to be the sole cause for decreases in lipid reserves of females during late-spring migration. PMID:17373516

  7. Accumulation of lipid production in Chlorella minutissima by triacylglycerol biosynthesis-related genes cloned from Saccharomyces cerevisiae and Yarrowia lipolytica.

    PubMed

    Hsieh, Hsin-Ju; Su, Chia-Hung; Chien, Liang-Jung

    2012-06-01

    Discovery of an alternative fuel is now an urgent matter because of the impending issue of oil depletion. Lipids synthesized in algal cells called triacylglycerols (TAGs) are thought to be of the most value as a potential biofuel source because they can use transesterification to manufacture biodiesel. Biodiesel is deemed as a good solution to overcoming the problem of oil depletion since it is capable of providing good performance similar to that of petroleum. Expression of several genomic sequences, including glycerol-3-phosphate dehydrogenase, glycerol-3-phosphate acyltransferase, lysophosphatidic acid acyltransferase, phosphatidic acid phosphatase, diacylglycerol acyltransferase, and phospholipid:diacylglycerol acyltransferase, can be useful for manipulating metabolic pathways for biofuel production. In this study, we found this approach indeed increased the storage lipid content of C. minutissima UTEX 2219 up to 2-fold over that of wild type. Thus, we conclude this approach can be used with the biodiesel production platform of C. minutissima UTEX 2219 for high lipid production that will, in turn, enhance productivity. PMID:22752918

  8. Nitrogen deprivation induces lipid droplet accumulation and alters fatty acid metabolism in symbiotic dinoflagellates isolated from Aiptasia pulchella.

    PubMed

    Weng, Li-Chi; Pasaribu, Buntora; Lin, I-Ping; Tsai, Ching-Hsiu; Chen, Chii-Shiarng; Jiang, Pei-Luen

    2014-01-01

    The stability of cnidarian-dinoflagellate (genus Symbiodinium spp.) endosymbioses depends on the regulation of nutrient transport between Symbiodinium populations and their hosts. Previously, we successfully induced the production of lipid droplets in the free-living cultured Symbiodinium (clade B) under the nitrogen-deprivation condition for 5 days. Therefore, the present study aimed at understanding the disruption of the endosymbiotic relationship between the cnidarians and dinoflagellates by nitrogen deprivation using Aiptasia pulchella as an example. Transmission electron micrographs revealed the formation of lipid droplets induced by nitrogen deprivation, and the lipid analyses further showed that polyunsaturated fatty acids were drastically enriched in Symbiodinium after 30 days of nitrogen deprivation, although these were unaffected after 5 days of nitrogen starvation. The present study also suggested that the host provided nitrogen to the symbiotic cells during short-term environmental stress. However, the relationship started to deteriorate after 30 days. These findings provide a more detailed understanding of the mechanisms of the symbiotic relationship between the symbiotic dinoflagellates in terms of the nitrogen source, which might provide more information for the explanation of the regulatory mechanism underlying endosymbiotic associations. PMID:25047647

  9. Depletion of mitochondrial DNA, destruction of mitochondria, and accumulation of lipid droplets result from fialuridine treatment in woodchucks (Marmota monax).

    PubMed

    Lewis, W; Griniuviene, B; Tankersley, K O; Levine, E S; Montione, R; Engelman, L; de Courten-Myers, G; Ascenzi, M A; Hornbuckle, W E; Gerin, J L; Tennant, B C

    1997-01-01

    Fialuridine (FIAU, 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-5-iodouracil) is toxic to liver, heart, muscle, and nerve in clinical trials for chronic viral hepatitis (CH). Mitochondrial toxicity was hypothesized. To address pathophysiologic mechanisms, we examined mitochondrial changes in FIAU-treated woodchucks (WC) with CH from woodchuck hepatitis virus infection. WC (with and without CH from woodchuck hepatitis virus infection) were treated with FIAU (1.5 mg/kg/day) for 12 weeks. WC were killed. Liver, heart, skeletal muscle, and kidney samples underwent DNA extraction and were analyzed ultrastructurally (transmission electron microscopy). Myocardium, skeletal muscles, and liver samples were analyzed histologically. Abundance of hepatic, myocardial, muscle, and kidney mtDNA decreased in FIAU-treated WC, but the magnitude varied. mtDNA decreased 55% in heart, 65% in kidney, 74% in liver, and 87% in muscle (p < 0.02 for each tissue: FIAU-treated versus FIAU-untreated). Cellular damage was characterized ultrastructurally by mitochondrial enlargement, cristae dissolution, and lipid droplets. Lipid droplets found in the heart, diaphragm, biceps, and liver were sufficient to identify FIAU-treated WC (p < 0.05 each). Widespread mitochondrial damage to many tissues resulted from chronic FIAU treatment and occurred irrespective of CH. It manifested with mtDNA depletion, intracytoplasmic lipid droplets, and destroyed mitochondrial cristae. Defective mtDNA replication with mtDNA depletion seems central to the subcellular pathophysiology of altered energy metabolism and multiorgan failure in FIAU toxicity. PMID:9010451

  10. Nitrogen Deprivation Induces Lipid Droplet Accumulation and Alters Fatty Acid Metabolism in Symbiotic Dinoflagellates Isolated from Aiptasia pulchella

    NASA Astrophysics Data System (ADS)

    Weng, Li-Chi; Pasaribu, Buntora; -Ping Lin, I.; Tsai, Ching-Hsiu; Chen, Chii-Shiarng; Jiang, Pei-Luen

    2014-07-01

    The stability of cnidarian-dinoflagellate (genus Symbiodinium spp.) endosymbioses depends on the regulation of nutrient transport between Symbiodinium populations and their hosts. Previously, we successfully induced the production of lipid droplets in the free-living cultured Symbiodinium (clade B) under the nitrogen-deprivation condition for 5 days. Therefore, the present study aimed at understanding the disruption of the endosymbiotic relationship between the cnidarians and dinoflagellates by nitrogen deprivation using Aiptasia pulchella as an example. Transmission electron micrographs revealed the formation of lipid droplets induced by nitrogen deprivation, and the lipid analyses further showed that polyunsaturated fatty acids were drastically enriched in Symbiodinium after 30 days of nitrogen deprivation, although these were unaffected after 5 days of nitrogen starvation. The present study also suggested that the host provided nitrogen to the symbiotic cells during short-term environmental stress. However, the relationship started to deteriorate after 30 days. These findings provide a more detailed understanding of the mechanisms of the symbiotic relationship between the symbiotic dinoflagellates in terms of the nitrogen source, which might provide more information for the explanation of the regulatory mechanism underlying endosymbiotic associations.

  11. Co-regulation of SREBP-1 and mTOR ameliorates lipid accumulation in kidney of diabetic mice.

    PubMed

    Wang, Hui; Zhu, Lin; Hao, Jun; Duan, Huijun; Liu, Shuxia; Zhao, Song; Liu, Qingjuan; Liu, Wei

    2015-08-01

    SREBP-1 and mTOR have been proved to involve in renal lipid metabolism of diabetes mellitus. In the present study, we investigated the effect of co-regulation of SREBP-1 and mTOR on renal lipid metabolism using diabetic mice and cultured renal tubular cells. The results showed that compared with those in high glucose-stimulated HKC cells single transfected with shRNA-SREBP-1 vector, the level of SREBP-1 protein were significantly reduced by 64.1% followed by decreased FASN mRNA, ACC mRNA, ADRP protein and lipid droplets in HKC cells co-transfected with shRNA-SREBP-1 vector and kinase-dead mTOR vector. Furthermore, diabetic mice co-injected with shRNA-SREBP-1 vector and kinase-dead mTOR vector showed that renal SREBP-1 protein, FASN mRNA and ACC mRNA were respectively decreased by 34.6%, 45.9%, 22.0% in comparison with those in diabetic mice single injected with shRNA-SREBP-1 vector accompanied by reduced ADRP protein and triglyceride content. In the end our study suggests that co-regulation of SREBP-1 and mTOR in kidney of diabetic mice is more effective in lowering renal lipogenesis than only regulation of SREBP-1. PMID:26112216

  12. Nitrogen Deprivation Induces Lipid Droplet Accumulation and Alters Fatty Acid Metabolism in Symbiotic Dinoflagellates Isolated from Aiptasia pulchella

    PubMed Central

    Weng, Li-Chi; Pasaribu, Buntora; -Ping Lin, I.; Tsai, Ching-Hsiu; Chen, Chii-Shiarng; Jiang, Pei-Luen

    2014-01-01

    The stability of cnidarian-dinoflagellate (genus Symbiodinium spp.) endosymbioses depends on the regulation of nutrient transport between Symbiodinium populations and their hosts. Previously, we successfully induced the production of lipid droplets in the free-living cultured Symbiodinium (clade B) under the nitrogen-deprivation condition for 5 days. Therefore, the present study aimed at understanding the disruption of the endosymbiotic relationship between the cnidarians and dinoflagellates by nitrogen deprivation using Aiptasia pulchella as an example. Transmission electron micrographs revealed the formation of lipid droplets induced by nitrogen deprivation, and the lipid analyses further showed that polyunsaturated fatty acids were drastically enriched in Symbiodinium after 30 days of nitrogen deprivation, although these were unaffected after 5 days of nitrogen starvation. The present study also suggested that the host provided nitrogen to the symbiotic cells during short-term environmental stress. However, the relationship started to deteriorate after 30 days. These findings provide a more detailed understanding of the mechanisms of the symbiotic relationship between the symbiotic dinoflagellates in terms of the nitrogen source, which might provide more information for the explanation of the regulatory mechanism underlying endosymbiotic associations. PMID:25047647

  13. Houttuynia cordata attenuates lipid accumulation via activation of AMP-activated protein kinase signaling pathway in HepG2 cells.

    PubMed

    Kang, Hyun; Koppula, Sushruta

    2014-01-01

    Houttuynia cordata (H. cordata) from the family Saururaceae is a perennial herb native to Southeast Asia. It possesses a range of medicinal properties to treat several disease symptoms including allergic inflammation and anaphylaxis. In the present investigation, we provided the molecular mechanisms underlying the role of H. cordata extract (HCE) in the prevention of high glucose-induced lipid accumulation in human HepG2 hepatocytes. HepG2 cells were pre-treated with various concentrations of HCE (0, 10, 20, 40, and 80 μg/mL) and treated with serum-free medium with normal glucose (5 mM) for 1 h, followed by exposure to high glucose (25 mM D-glucose) for 24 h. HCE significantly and dose-dependently attenuated lipid accumulation in human HepG2 hepatocytes when exposed to high glucose (25 mM D-glucose) (p < 0.05, p < 0.01 and p < 0.001 at 20, 40, and 80 μg/mL concentrations, respectively). Further, HCE attenuated the expression of fatty acid synthase (FAS), sterol regulatory element-binding protein-1 and glycerol 3-phosphate acyltransferases (GPATs). The adenosine monophosphate-activated protein kinase (AMPK) was also activated by HCE treatment when exposed to high glucose (25 mM D-glucose) in human HepG2 hepatocytes. This study suggests the hypolipidemic effects of HCE by the inhibition of lipid biosynthesis mediated through AMPK signaling, which may play an active role and can be developed as an anti-obesity agent. PMID:24871657

  14. Salt stress induced lipid accumulation in heterotrophic culture cells of Chlorella protothecoides: Mechanisms based on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration.

    PubMed

    Wang, Tao; Ge, Haiyan; Liu, Tingting; Tian, Xiwei; Wang, Zejian; Guo, Meijin; Chu, Ju; Zhuang, Yingping

    2016-06-20

    Salt stress as an effective stress factor that could improve the lipid content and lipid yield of glucose in the heterotrophic culture cells of Chlorella protothecoides was demonstrated in this study. The highest lipid content of 41.2% and lipid yield of 185.8mg/g were obtained when C. protothecoides was stressed under 30g/L NaCl condition at its late logarithmic growth phase. Moreover, the effects of salt and osmotic stress on lipid accumulation were comparatively analyzed, and it was found that the effects of NaCl and KCl stress had no significant differences at the same osmolarity level of 1150mOsm/kg with lipid contents of 41.7 and 40.8% as well as lipid yields of 192.9 and 186.8mg/g, respectively, whereas these results were obviously higher than those obtained under the iso-osmotic glycerol and sorbitol stresses. Furthermore, basing on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration, the superior performance of salt stress driving lipid over-synthesis was probably ascribed to the more ROS production as a result of additional ion effect besides the osmotic effect, subsequently mediating the alteration from carbohydrate storage to lipid accumulation in signal transduction process of C. protothecoides. PMID:27085889

  15. Decreased energetic reserves, morphological changes and accumulation of metals in carabid beetles (Poecilus cupreus L.) exposed to zinc- or cadmium-contaminated food.

    PubMed

    Maryański, Maciej; Kramarz, Paulina; Laskowski, Ryszard; Niklińska, Maria

    2002-04-01

    The prime objective of the study was to find out whether contamination of food with metals affects body size, energetic reserves and developmental instability in ground beetles (Poecilus cupreus L.: Carabidae). The transfer of Cadmium (Cd) and Zinc (Zn) from medium (nominal concentrations in the medium: 0, 40, 160, 640 or 800 mg kg(-1) for Cd and 0, 400, 1600 or 6400 mg kg(-1) for Zn) to housefly larvae to beetles was also studied. Feeding the beetles throughout their entire lifetime with Cd-contaminated housefly pupae resulted in a significant decrease in body caloric value and the size of the elytrae, tibiae and rear femora. Although body mass also decreased with increasing Cd concentration, this effect was non-significant due to large variance in all treatments. Similar trends were also found in beetles fed pupae contaminated with Zn, but the effect on body mass and caloric value was non-significant. Zn exerted significant effects only on the size of the elytrae, middle and rear tibiae, and front and rear femora. No effect on fluctuating asymmetry (FA) was found in Cd- or Zn-treated beetles. The results indicate that ground beetles exposed to metal-contaminated food have lower amounts of energy available, which may be reflected in lower energetic reserves and changed body growth. However, the metals do not cause developmental instability in the carabids studied, at least not in the first generation. The concentrations of Zn were efficiently regulated in carabids, resulting in only minor differences between the beetles exposed to different Zn treatments. In contrast, Cd accumulated both in the housefly and the beetles, and the concentrations increased significantly with increasing medium contamination level. PMID:11990769

  16. N(ϵ) -Carboxymethyllysine Increases the Expression of miR-103/143 and Enhances Lipid Accumulation in 3T3-L1 Cells.

    PubMed

    Holik, Ann-Katrin; Lieder, Barbara; Kretschy, Nicole; Somoza, Mark M; Held, Sandra; Somoza, Veronika

    2016-10-01

    Advanced glycation endproducts, formed in vivo, but also by the Maillard reaction upon thermal treatment of foods, have been associated with the progression of pathological conditions such as diabetes mellitus. In addition to the accumulation with age, exogenous AGEs are introduced into the circulation from dietary sources. In this study, we investigated the effects of addition of free N(ϵ) -carboxymethyllysine (CML), a well-characterized product of the Maillard reaction, on adipogenesis in 3T3-L1 preadipocytes. Treatment with 5, 50, or 500 μM CML resulted in increased lipid accumulation to similar extents, by 11.5 ± 12.6%, 12.9 ± 8.6%, and 12.8 ± 8.5%, respectively. Long-term treatment with 500 μM CML during adipogenesis resulted in increases in miR-103 and miR-143 levels, two miRNAs described to be involved in impaired glucose homeostasis and increased lipid accumulation. Furthermore, the expression of genes associated with these miRNAs, consisting of Akt1, PI3k, and Cav1 was regulated by CML. Short-term treatment of mature 3T3-L1 adipocytes with CML resulted in decreased basal glucose uptake. These results, indicate that the addition of protein-free CML to 3T3-L1 cells influence parameters associated with adipogenesis and glucose homeostasis at transcriptional, and functional level; this indicates that free CML derived from exogenous sources, in addition to protein-bound CML may be relevant in this context. J. Cell. Biochem. 117: 2413-2422, 2016. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. PMID:27137869

  17. Nϵ‐Carboxymethyllysine Increases the Expression of miR‐103/143 and Enhances Lipid Accumulation in 3T3‐L1 Cells

    PubMed Central

    Holik, Ann‐Katrin; Lieder, Barbara; Kretschy, Nicole; Somoza, Mark M.; Held, Sandra

    2016-01-01

    ABSTRACT Advanced glycation endproducts, formed in vivo, but also by the Maillard reaction upon thermal treatment of foods, have been associated with the progression of pathological conditions such as diabetes mellitus. In addition to the accumulation with age, exogenous AGEs are introduced into the circulation from dietary sources. In this study, we investigated the effects of addition of free Nϵ‐carboxymethyllysine (CML), a well‐characterized product of the Maillard reaction, on adipogenesis in 3T3‐L1 preadipocytes. Treatment with 5, 50, or 500 μM CML resulted in increased lipid accumulation to similar extents, by 11.5 ± 12.6%, 12.9 ± 8.6%, and 12.8 ± 8.5%, respectively. Long‐term treatment with 500 μM CML during adipogenesis resulted in increases in miR‐103 and miR‐143 levels, two miRNAs described to be involved in impaired glucose homeostasis and increased lipid accumulation. Furthermore, the expression of genes associated with these miRNAs, consisting of Akt1, PI3k, and Cav1 was regulated by CML. Short‐term treatment of mature 3T3‐L1 adipocytes with CML resulted in decreased basal glucose uptake. These results, indicate that the addition of protein‐free CML to 3T3‐L1 cells influence parameters associated with adipogenesis and glucose homeostasis at transcriptional, and functional level; this indicates that free CML derived from exogenous sources, in addition to protein‐bound CML may be relevant in this context. J. Cell. Biochem. 117: 2413–2422, 2016. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. PMID:27137869

  18. Beta-conglycinin embeds active peptides that inhibit lipid accumulation in 3T3-L1 adipocytes in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity is a worldwide health concern because it is a well recognized predictor of premature mortality. The objective was to identify soybean varieties that have improved potential to inhibit fat accumulation in adipocytes by testing the effects of soy hydrolysates having a range of protein subunit...

  19. Renal ApoA-1 amyloidosis with Glu34Lys mutation and intra-amyloid lipid accumulation.

    PubMed

    Andeen, Nicole K; Lam, Daniel Y; de Boer, Ian H; Nicosia, Roberto F

    2014-12-01

    Apolipoprotein A-1 (ApoA-1) amyloidosis occurs as a nonhereditary condition in atherosclerotic plaques, but it can also manifest as a hereditary disorder caused by mutations of the APOA1 gene. Hereditary ApoA-1 amyloidosis presents with diverse organ involvement based on the position of the mutation. We describe a case of ApoA-1 amyloidosis with a Glu34Lys mutation; testicular, conjunctival, and renal involvement; and the notable finding of lipid deposition within the amyloid deposits. PMID:24925720

  20. Synchrotron-FTIR microspectroscopy enables the distinction of lipid accumulation in thraustochytrid strains through analysis of individual live cells.

    PubMed

    Vongsvivut, Jitraporn; Heraud, Philip; Gupta, Adarsha; Thyagarajan, Tamilselvi; Puri, Munish; McNaughton, Don; Barrow, Colin J

    2015-02-01

    The superior characteristics of high photon flux and diffraction-limited spatial resolution achieved by synchrotron-FTIR microspectroscopy allowed molecular characterization of individual live thraustochytrids. Principal component analysis revealed distinct separation of the single live cell spectra into their corresponding strains, comprised of new Australasian thraustochytrids (AMCQS5-5 and S7) and standard cultures (AH-2 and S31). Unsupervised hierarchical cluster analysis (UHCA) indicated close similarities between S7 and AH-7 strains, with AMCQS5-5 being distinctly different. UHCA correlation conformed well to the fatty acid profiles, indicating the type of fatty acids as a critical factor in chemotaxonomic discrimination of these thraustochytrids and also revealing the distinctively high polyunsaturated fatty acid content as key identity of AMCQS5-5. Partial least squares discriminant analysis using cross-validation approach between two replicate datasets was demonstrated to be a powerful classification method leading to models of high robustness and 100% predictive accuracy for strain identification. The results emphasized the exceptional S-FTIR capability to perform real-time in vivo measurement of single live cells directly within their original medium, providing unique information on cell variability among the population of each isolate and evidence of spontaneous lipid peroxidation that could lead to deeper understanding of lipid production and oxidation in thraustochytrids for single-cell oil development. PMID:25594491

  1. Accumulation of cellobiose lipids under nitrogen-limiting conditions by two ustilaginomycetous yeasts, Pseudozyma aphidis and Pseudozyma hubeiensis.

    PubMed

    Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2013-02-01

    Some basidiomycetous yeast strains extracellularly produce cellobiose lipids (CLs), glycolipid biosurfactants which have strong fungicidal activity. The representative CL producer Ustilago maydis produces CLs together with the other glycolipids, mannosylerythritol lipids (MELs); the preference of the two glycolipids is affected considerably by the nitrogen source. To develop new CL producers, 12 MEL producers were cultured under the nitrogen-limited conditions. Pseudozyma aphidis and Pseudozyma. hubeiensis were characterized as new CL producers. CL production was induced on three strains, P. aphidis, Pseudozyma graminicola, and P. hubeiensis under these conditions. The putative homologous genes of U. maydis cyp1, which encodes a P450 monooxygenase, essential for CL biosynthesis, were partially amplified from their genomic DNA. The nucleotide sequences of the gene fragments from P. hubeiensis and P. aphidis shared identities with U. maydis cyp1 of 99% and 78%, respectively. Furthermore, all of the deduced translation products are tightly clustered in the phylogenic tree of the monooxygenase. These results suggest that the genes involved with CL biosynthesis must be widely distributed in the basidiomycetous fungi as well as the MEL biosynthesis genes, and thus, the genus Pseudozyma has great potential as a biosurfactant producer. PMID:22985214

  2. Synchrotron FTIR shows evidence of DNA damage and lipid accumulation in prostate adenocarcinoma PC-3 cells following proton irradiation

    NASA Astrophysics Data System (ADS)

    Lipiec, Ewelina; Bambery, Keith R.; Heraud, Phil; Hirschmugl, Carol; Lekki, Janusz; Kwiatek, Wojciech M.; Tobin, Mark J.; Vogel, Christian; Whelan, Donna; Wood, Bayden R.

    2014-09-01

    Synchrotron Radiation Fourier Transform Infrared (SR-FTIR) spectra of single human prostate adenocarcinoma PC-3 cells, irradiated with a defined number of 2 MeV protons generated by a proton microbeam along with non-irradiated control cells, were analysed using multivariate methods. A number of different Principal Component Analysis (PCA) models were tested and the spectral ranges associated with nucleic acids, proteins and lipids were analysed separately. The results show a dose dependent shift of the Osbnd Psbnd O asymmetric stretching mode from 1234 cm-1 to 1237 cm-1, consistent with local disorder in the B-DNA conformation along with a change in intensity of the Osbnd Psbnd O symmetric stretching band at 1083 cm-1 indicative of chromatin fragmentation - the natural consequence of a high number of DNA Double Strand Breaks (DSBs). 2D mapping of characteristic functional groups at the diffraction limit shows evidence of lipid deposition and chromatin condensation in cells exposed to protons indicative of cell apoptosis following irradiation. These studies lay the foundation for understanding the macromolecular changes that occur to cells in response to radiation therapy, which has important implications in the treatment of tumours.

  3. Correlation of trimethoprim and brodimoprim physicochemical and lipid membrane interaction properties with their accumulation in human neutrophils.

    PubMed Central

    Fresta, M; Furneri, P M; Mezzasalma, E; Nicolosi, V M; Puglisi, G

    1996-01-01

    Dipalmitoylphosphatidylcholine vesicles were used as a biological membrane model to investigate the interaction and the permeation properties of trimethoprim and brodimoprim as a function of drug protonation. The drug-membrane interaction was studied by differential scanning calorimetry. Both drugs interacted with the hydrophilic phospholipid head groups when in a protonated form. An experiment on the permeation of the two drugs through dipalmitoylphosphatidylcholine biomembranes showed higher diffusion rate constants when the two drugs were in the uncharged form; lowering of the pH (formation of protonated species) caused a reduction of permeation. Drug uptake by human neutrophil cells was also investigated. Both drugs may accumulate within neutrophils; however, brodimoprim does so to a greater extent. This accumulation is probably due to a pH gradient driving force, which allows the two drugs to move easily from the extracellular medium (pH approximately 7.3) into the internal cell compartments (acid pH). Once protonated, both drugs are less able to permeate and can be trapped by the neutrophils. This investigation showed the importance of the physicochemical properties of brodimoprim and trimethoprim in determining drug accumulation and membrane permeation pathways. PMID:9124856

  4. Measurement of Lipid Accumulation in Chlorella vulgaris via Flow Cytometry and Liquid-State ¹H NMR Spectroscopy for Development of an NMR-Traceable Flow Cytometry Protocol

    PubMed Central

    Bono Jr., Michael S.; Garcia, Ravi D.; Sri-Jayantha, Dylan V.; Ahner, Beth A.; Kirby, Brian J.

    2015-01-01

    In this study, we cultured Chlorella vulgaris cells with a range of lipid contents, induced via nitrogen starvation, and characterized them via flow cytometry, with BODIPY 505/515 as a fluorescent lipid label, and liquid-state 1H NMR spectroscopy. In doing so, we demonstrate the utility of calibrating flow cytometric measurements of algal lipid content using triacylglyceride (TAG, also known as triacylglycerol or triglyceride) content per cell as measured via quantitative 1H NMR. Ensemble-averaged fluorescence of BODIPY-labeled cells was highly correlated with average TAG content per cell measured by bulk NMR, with a linear regression yielding a linear fit with r2 = 0.9974. This correlation compares favorably to previous calibrations of flow cytometry protocols to lipid content measured via extraction, and calibration by NMR avoids the time and complexity that is generally required for lipid quantitation via extraction. Flow cytometry calibrated to a direct measurement of TAG content can be used to investigate the distribution of lipid contents for cells within a culture. Our flow cytometry measurements showed that Chlorella vulgaris cells subjected to nitrogen limitation exhibited higher mean lipid content but a wider distribution of lipid content that overlapped the relatively narrow distribution of lipid content for replete cells, suggesting that nitrogen limitation induces lipid accumulation in only a subset of cells. Calibration of flow cytometry protocols using direct in situ measurement of TAG content via NMR will facilitate rapid development of more precise flow cytometry protocols, enabling investigation of algal lipid accumulation for development of more productive algal biofuel feedstocks and cultivation protocols. PMID:26267664

  5. Exercise training in ovariectomized rats stimulates estrogenic-like effects on expression of genes involved in lipid accumulation and subclinical inflammation in liver.

    PubMed

    Pighon, Abdolnaser; Gutkowska, Jolanta; Jankowski, Marek; Rabasa-Lhoret, Remi; Lavoie, Jean-Marc

    2011-05-01

    We hypothesized that the reduction in liver fat accumulation known to occur with exercise training in ovariectomized (Ovx) rats is associated with reduced expression of genes involved in lipogenesis while favoring the expression of transcription factors regulating lipid oxidation. We also tested the hypothesis that liver fat accumulation in Ovx rats is associated with an increased gene expression of several inflammatory biomarkers and that exercise training would attenuate this response. Sprague-Dawley female rats (14 weeks of age) were randomly divided into 4 groups of sedentary sham-operated (Sham), Ovx, Ovx with 17β-estradiol (E2) supplementation using a pellet (0.72 mg; 0.012 mg/d) with a biodegradable carrier binder, and Ovx trained with endurance exercise. Endurance exercise training consisted of continuous running on a motor-driven rodent treadmill 5 times per week for 5 weeks. Fat accumulation in liver as well as in adipose fat depots was higher (P < .01) in Ovx than in Sham rats. This response was prevented in Ovx animals with 17β-estradiol supplementation and with endurance exercise training. Liver gene expressions of sterol regulatory element-binding protein 1-c, stearoyl coenzyme A desaturase 1 (and its protein content), carbohydrate response element binding protein, and acetyl-coenzyme A carboxylase were increased with estrogen withdrawal (P < .01). These responses were corrected with E2 supplementation alone as well as with training alone. Conversely, hepatic peroxisome proliferator-activated receptor α messenger RNA levels were lower (P < .01) after estrogen removal compared with Sham rats. The lower hepatic peroxisome proliferator-activated receptor α messenger RNA levels in Ovx rats were reincreased by E2 replacement or by exercise training. Gene expression of proinflammatory cytokines including inhibitor-κB kinase β and interleukin-6, as well as protein content of nuclear factor-κB, was higher (P < .01) in Ovx than in Sham animals. E2

  6. Isoflavonoids from Crotalaria albida Inhibit Adipocyte Differentiation and Lipid Accumulation in 3T3-L1 Cells via Suppression of PPAR-γ Pathway

    PubMed Central

    Sun, Qinhu; Chou, Guixin

    2015-01-01

    Two 2″-isopropenyl dihydrofuran isoflavonoids (1 and 3), one 2″-isopropenyl dihydrofuran chromone (2), as well as 13 known compounds were isolated from the herbs of Crotalaria albida. Their structures and relative configurations were elucidated via NMR and HRESIMS analyses. The 2″ S absolute configuration of 1 and 2 were deduced by comparing their NOESY spectra with that of 3, which was determined via single crystal X-ray diffraction (CuKα). The 3R absolute configuration of 1 was determined by CD. Compounds 1, 2, and 3 inhibit the adipocyte differentiation and lipid accumulation of 3T3-L1 through down-regulation of PPAR-γ activity. PMID:26285147

  7. Increased coronary lipid accumulation in heart transplant recipients with prior high-grade cellular rejection: novel insights from near-infrared spectroscopy.

    PubMed

    Zheng, Bo; Maehara, Akiko; Mintz, Gary S; Nazif, Tamim M; Waksman, Yarden; Qiu, Fuyu; Jaquez, Luz; Rabbani, LeRoy E; Apfelbaum, Mark A; Ali, Ziad A; Dalton, Kate; Song, Lei; Xu, Ke; Marboe, Charles C; Mancini, Donna M; Weisz, Giora

    2016-02-01

    Cardiac allograft vasculopathy is a major cause of morbidity and mortality among patients after heart transplantation. We sought to assess the amount of lipid accumulation in the coronary arteries of transplant patients according to rejection grade. Overall, 39 consecutive heart transplant recipients undergoing annual routine surveillance coronary angiography underwent near-infrared spectroscopy and intravascular ultrasound imaging of 1 coronary artery. Rejection history was graded according to the International Society of Heart and Lung Transplantation (ISHLT) classification as none/mild/moderate-grade rejection (ISHLT 0, 1A/1B, or 2) compared to high-grade rejection (≥3A). Patients with prior history of high-grade rejection had larger plaque burden in the distal coronary segments [45.7 % (25.5-63.7) vs 25.1 % (19.9-37.8), p = 0.02] and a higher maximum lipid core burden index in any 4-mm long segment (maxLCBI(4mm)) [243 (91-400) vs 41 (1-170), p = 0.016] as compared with patients with prior history of none/mild/moderate-grade rejection. By multivariable linear regression analysis, prior history of high-grade rejection was an independent predictor for maxLCBI(4mm). A maxLCBI(4mm) >200 distinguished prior history of high-grade from none/mild/moderate rejection with a sensitivity of 61.5 % and specificity of 84.6 %. The current study demonstrates that the coronary arteries of post heart-transplant patients with a prior history of high-grade cellular rejection have increasing amounts of lipid-rich plaque. MaxLCBI(4mm) >200 might differentiate patients with previous high-grade cellular rejection from heart transplant recipients with none/mild/moderate-grade rejection. PMID:26408106

  8. Arylhydrocarbon receptor-dependent mIndy (Slc13a5) induction as possible contributor to benzo[a]pyrene-induced lipid accumulation in hepatocytes.

    PubMed

    Neuschäfer-Rube, Frank; Schraplau, Anne; Schewe, Bettina; Lieske, Stefanie; Krützfeldt, Julia-Mignon; Ringel, Sebastian; Henkel, Janin; Birkenfeld, Andreas L; Püschel, Gerhard P

    2015-11-01

    Non-alcoholic fatty liver disease is a growing problem in industrialized and developing countries. Hepatic lipid accumulation is the result of an imbalance between fatty acid uptake, fatty acid de novo synthesis, β-oxidation and secretion of triglyceride-rich lipoproteins from the hepatocyte. A central regulator of hepatic lipid metabolism is cytosolic citrate that can either be derived from the mitochondrium or be taken up from the blood via the plasma membrane sodium citrate transporter NaCT, the product of the mammalian INDY gene (SLC13A5). mINDY ablation protects against diet-induced steatosis whereas mINDY expression is increased in patients with hepatic steatosis. Diet-induced hepatic steatosis is also enhanced by activation of the arylhyrocarbon receptor (AhR) both in humans and animal models. Therefore, the hypothesis was tested whether the mINDY gene might be a target of the AhR. In accordance with such a hypothesis, the AhR activator benzo[a]pyrene induced the mINDY expression in primary cultures of rat hepatocytes in an AhR-dependent manner. This induction resulted in an increased citrate uptake and citrate incorporation into lipids which probably was further enhanced by the benzo[a]pyrene-dependent induction of key enzymes of fatty acid synthesis. A potential AhR binding site was identified in the mINDY promoter that appears to be conserved in the human promoter. Elimination or mutation of this site largely abolished the activation of the mINDY promoter by benzo[a]pyrene. This study thus identified the mINDY as an AhR target gene. AhR-dependent induction of the mINDY gene might contribute to the development of hepatic steatosis. PMID:26303333

  9. Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay Mice with genetic type 2 diabetes

    PubMed Central

    2011-01-01

    Background Studies have demonstrated the beneficial effect of palmitoleic acid (C16:1 n-7) on reducing muscle insulin resistance and preventing beta-cell apoptosis. However, the effect of palmitoleic acid on diabetes remains to be elucidated. The aim of this study was to examine the antidiabetic effect of palmitoleic acid in KK-Ay mice, a spontaneous model for studies of obese type 2 diabetes with low insulin sensitivity. Methods KK-Ay mice were orally administered vehicle, 300 mg/kg of palmitoleic acid, or 300 mg/kg of palmitic acid (C16:0) on a daily basis for 4 weeks. Results Palmitoleic acid reduced body weight increase, ameliorated the development of hyperglycemia and hypertriglyceridemia, and improved insulin sensitivity. In addition, hepatic characteristics were significantly affected, as weight of the liver and hepatic triglyceride levels were lower in the palmitoleic acid group when compared to the control (vehicle and palmitic acid groups). Oil red O staining clearly indicated reduced hepatic lipid accumulation in response to palmitoleic acid. Furthermore, palmitoleic acid down-regulated mRNA expressions of proinflammatory adipocytokine genes (TNFα and resistin) in white adipose tissue and lipogenic genes (SREBP-1, FAS, and SCD-1) in liver. Conclusions These results suggest that palmitoleic acid improves hyperglycemia and hypertriglyceridemia by increasing insulin sensitivity, in part owing to suppressing proinflammatory gene expressions and improving hepatic lipid metabolism in diabetic mice. PMID:21774832

  10. Bidens pilosa and its active compound inhibit adipogenesis and lipid accumulation via down-modulation of the C/EBP and PPARγ pathways

    PubMed Central

    Liang, Yu-Chuan; Yang, Meng-Ting; Lin, Chuan-Ju; Chang, Cicero Lee-Tian; Yang, Wen-Chin

    2016-01-01

    Obesity and its complications are a major global health problem. In this study, we investigated the anti-obesity effect and mechanism of an edible plant, Bidens pilosa, and its active constituent. We first assessed the long-term effect of B. pilosa on body composition, body weight, blood parameters in ICR mice. We observed that it significantly decreased fat content and increased protein content in ICR mice. Next, we verified the anti-obesity effect of B. pilosa in ob/ob mice. It effectively and dose-dependently reduced fat content, adipocyte size and/or body weight in mice. Moreover, mechanistic studies showed that B. pilosa inhibited the expression of peroxisome proliferator activated receptor γ (PPARγ), CCAAT/enhancer binding proteins (C/EBPs) and Egr2 in adipose tissue. Finally, we examined the effect of 2-β-D-glucopyranosyloxy-1-hydroxytrideca-5,7,9,11-tetrayne (GHT) on adipogenesis in adipocytes. We found that B. pilosa significantly decreased the adipogenesis and lipid accumulation. This decrease was associated with the down-regulation of expression of Egr2, C/EBPs, PPARγ, adipocyte Protein 2 (aP2) and adiponectin. In summary, this work demonstrated that B. pilosa and GHT suppressed adipogenesis and lipid content in adipocytes and/or animals via the down-regulation of the Egr2, C/EBPs and PPARγ pathways, suggesting a novel application of B. pilosa and GHT against obesity. PMID:27063434

  11. Electron microscopic study on the lipid content of intramitochondrial granules in proximal convoluted tubule of guinea pig kidney and their ability to accumulate calcium ions.

    PubMed

    Erkoçak, A

    1977-01-01

    The intramitochondrial dense granules of the kidney proximal tubule fixed with OsO4 are osmiophilic since they are bleached by H2O2 treatment and they disappear after glutaraldehyde fixation alone. Following ethanol extraction and subsequent osmification these granules become invisible but pure aceton treatment does not greatly alter their osmiophilia. The findings suggests that the osmiophilic intramitochondrial granules are rich in phospholipids. When the kidney cortex is incubated in the presence of calcium of acetate, calcium accumulates on the intramitochondrial granules increasing their size and number. The intramitochondrial granules are found more frequently in tissues where the transport of water or ions is big. They contribute to the sodium transport (RIEDEL, BUCHER and ERKOCAK 1968). They are composed mainly of neutral lipids (SANZONE, SWARTZENDRUBER and SNYDER 1970) and phospholipids (WENDEL and BARNARD 1974). They are formed by the precipitation of calcium and other ions (GREENAWALT, ROSSI and LEHNINGER 1964; Peachey 1964). in this present work the structure of dense intramitochondrial granules has been studied regarding electron opaque materials. This way on one hand the lipids and the nucleic acids have been investigated, on the other hand the intramitochondrial granules have been loaded with calcium, a cation showing density in precipitated form and found in great amount into the cell. PMID:409048

  12. RKIP phosphorylation-dependent ERK1 activation stimulates adipogenic lipid accumulation in 3T3-L1 preadipocytes overexpressing LC3.

    PubMed

    Hahm, Jong Ryeal; Ahmed, Mahmoud; Kim, Deok Ryong

    2016-09-01

    3T3-L1 preadipocytes undergo adipogenesis in response to treatment with dexamethaxone, 1-methyl-3-isobutylxanthine, and insulin (DMI) through activation of several adipogenic transcription factors. Many autophagy-related proteins are also highly activated in the earlier stages of adipogenesis, and the LC3 conjugation system is required for formation of lipid droplets. Here, we investigated the effect of overexpression of green fluorescent protein (GFP)-LC3 fusion protein on adipogenesis. Overexpression of GFP-LC3 in 3T3-L1 preadipocytes using poly-l-lysine-assisted adenoviral GFP-LC3 transduction was sufficient to produce intracellular lipid droplets. Indeed, GFP-LC3 overexpression stimulated expression of some adipogenic transcription factors (e.g., C/EBPα or β, PPARγ, SREBP2). In particular, SREBP2 was highly activated in preadipocytes transfected with adenoviral GFP-LC3. Also, phosphorylation of Raf kinase inhibitory protein (RKIP) at serine 153, consequently stimulating extracellular-signal regulated kinase (ERK)1 activity, was significantly increased during adipogenesis induced by either poly-l-lysine-assisted adenoviral GFP-LC3 transduction or culture in the presence of dexamethasone, 1-methyl-3-isobutylxanthine, and insulin. Furthermore, RKIP knockdown promoted ERK1 and PPARγ activation, and significantly increased the intracellular accumulation of triacylglycerides in DMI-induced adipogenesis. In conclusion, GFP-LC3 overexpression in 3T3-L1 preadipocytes stimulates adipocyte differentiation via direct modulation of RKIP-dependent ERK1 activity. PMID:27470585

  13. Bidens pilosa and its active compound inhibit adipogenesis and lipid accumulation via down-modulation of the C/EBP and PPARγ pathways.

    PubMed

    Liang, Yu-Chuan; Yang, Meng-Ting; Lin, Chuan-Ju; Chang, Cicero Lee-Tian; Yang, Wen-Chin

    2016-01-01

    Obesity and its complications are a major global health problem. In this study, we investigated the anti-obesity effect and mechanism of an edible plant, Bidens pilosa, and its active constituent. We first assessed the long-term effect of B. pilosa on body composition, body weight, blood parameters in ICR mice. We observed that it significantly decreased fat content and increased protein content in ICR mice. Next, we verified the anti-obesity effect of B. pilosa in ob/ob mice. It effectively and dose-dependently reduced fat content, adipocyte size and/or body weight in mice. Moreover, mechanistic studies showed that B. pilosa inhibited the expression of peroxisome proliferator activated receptor γ (PPARγ), CCAAT/enhancer binding proteins (C/EBPs) and Egr2 in adipose tissue. Finally, we examined the effect of 2-β-D-glucopyranosyloxy-1-hydroxytrideca-5,7,9,11-tetrayne (GHT) on adipogenesis in adipocytes. We found that B. pilosa significantly decreased the adipogenesis and lipid accumulation. This decrease was associated with the down-regulation of expression of Egr2, C/EBPs, PPARγ, adipocyte Protein 2 (aP2) and adiponectin. In summary, this work demonstrated that B. pilosa and GHT suppressed adipogenesis and lipid content in adipocytes and/or animals via the down-regulation of the Egr2, C/EBPs and PPARγ pathways, suggesting a novel application of B. pilosa and GHT against obesity. PMID:27063434

  14. Acidophilic green alga Pseudochlorella sp. YKT1 accumulates high amount of lipid droplets under a nitrogen-depleted condition at a low-pH.

    PubMed

    Hirooka, Shunsuke; Higuchi, Sumio; Uzuka, Akihiro; Nozaki, Hisayoshi; Miyagishima, Shin-ya

    2014-01-01

    Microalgal storage lipids are considered to be a promising source for next-generation biofuel feedstock. However, microalgal biodiesel is not yet economically feasible due to the high cost of production. One of the reasons for this is that the use of a low-cost open pond system is currently limited because of the unavoidable contamination with undesirable organisms. Extremophiles have an advantage in culturing in an open pond system because they grow in extreme environments toxic to other organisms. In this study, we isolated the acidophilic green alga Pseudochlorella sp. YKT1 from sulfuric acid mine drainage in Nagano Prefecture, Japan. The vegetative cells of YKT1 display the morphological characteristics of Trebouxiophyceae and molecular phylogenetic analyses indicated it to be most closely related to Pseudochlorella pringsheimii. The optimal pH and temperature for the growth of YKT1 are pH 3.0-5.0 and a temperature 20-25°C, respectively. Further, YKT1 is able to grow at pH 2.0 and at 32°C, which corresponds to the usual water temperature in the outdoors in summer in many countries. YKT1 accumulates a large amount of storage lipids (∼30% of dry weigh) under a nitrogen-depleted condition at low-pH (pH 3.0). These results show that acidophilic green algae will be useful for industrial applications by acidic open culture systems. PMID:25221913

  15. Associação entre lipid accumulation product (LAP) e hirsutismo na síndrome do ovário policístico.

    PubMed

    Oliveira, Flávia Ribeiro de; Rezende, Mariana Bicalho; Faria, Nícolas Figueiredo; Dias, Tomás Ribeiro Gonçalves; Oliveira, Walter Carlos Santos de; Rocha, Ana Luiza Lunardi; Cândido, Ana Lúcia

    2016-02-01

    Objective Polycystic ovary syndrome (PCOS) is the most common endocrine metabolic disorder in women between menarche and menopause. Clinical hyperandrogenism is the most important diagnostic criterion of the syndrome, which manifests as hirsutism in 70% of cases. Hirsute carriers of PCOS have high cardiovascular risk. Lipid accumulation product (LAP) is an index for the evaluation of lipid accumulation in adults and the prediction of cardiovascular risk. The aim of this study was to evaluate the association between LAP and hirsutism in women with PCOS. Methods This was a cross-sectional observational study of a secondary database, which included 263 patients who had visited the Hyperandrogenism Outpatient Clinic from November 2009 to July 2014. The exclusion criteria were patients without Ferriman-Gallwey index (FGI) and/or LAP data. We used the Rotterdam criteria for the diagnosis of PCOS. All patients underwent medical assessment followed by measurement and recording of anthropometric data and the laboratory tests for measurement of the following: thyroid-stimulating hormone, follicle-stimulating hormone, prolactin, total testosterone, sex hormone binding globulin, 17-α-hydroxyprogesterone (follicular phase), glycohemoglobin A1c, and basal insulin. In addition, the subjects underwent lipid profiling and oral glucose tolerance tests. Other laboratory measurements were determined according to clinical criteria. LAP and the homeostatic model assessment index (HOMA-IR) were calculated using the data obtained. We divided patients into two groups: the PCOS group with normal LAP (< 34.5) and the PCOS group with altered LAP (> 34.5) to compare the occurrence of hirsutism. For statistical analysis, we used SPSS Statistics for Windows® and Microsoft Excel programs, with descriptive (frequencies, percentages, means, and standard deviations) and comparative analyses (Student's t-test and Chi-square test). We considered relations significant when the p-value was

  16. Enhanced energy conversion efficiency from high strength synthetic organic wastewater by sequential dark fermentative hydrogen production and algal lipid accumulation.

    PubMed

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xing, Defeng; Ren, Nan-Qi

    2014-04-01

    A two-stage process of sequential dark fermentative hydrogen production and microalgal cultivation was applied to enhance the energy conversion efficiency from high strength synthetic organic wastewater. Ethanol fermentation bacterium Ethanoligenens harbinense B49 was used as hydrogen producer, and the energy conversion efficiency and chemical oxygen demand (COD) removal efficiency reached 18.6% and 28.3% in dark fermentation. Acetate was the main soluble product in dark fermentative effluent, which was further utilized by microalga Scenedesmus sp. R-16. The final algal biomass concentration reached 1.98gL(-1), and the algal biomass was rich in lipid (40.9%) and low in protein (23.3%) and carbohydrate (11.9%). Compared with single dark fermentation stage, the energy conversion efficiency and COD removal efficiency of two-stage system remarkably increased 101% and 131%, respectively. This research provides a new approach for efficient energy production and wastewater treatment using a two-stage process combining dark fermentation and algal cultivation. PMID:24582427

  17. Acetylshikonin from Zicao Prevents Obesity in Rats on a High-Fat Diet by Inhibiting Lipid Accumulation and Inducing Lipolysis

    PubMed Central

    Zhu, Banghao

    2016-01-01

    Various drugs have been developed to treat obesity, but these have undesirable secondary effects, and an efficient but non-toxic anti-obesity drug from natural sources is desired. This study investigated the anti-obesity effects and mechanisms of action of acetylshikonin (AS)—which is used in traditional Chinese medicine—in rats on a high-fat diet (HFD). Rats were fed a normal diet or an HFD; the latter group was received no treatment or were treated with 100, 300, or 900 mg/kg AS extract by intragastric administration for 6 weeks. In addition, 3T3-L1 adipocytes were treated with AS and the effects on adipogenesis and lipolysis were evaluated by western blot analysis of adipogenic transcription factors and lipid-metabolizing enzyme levels and the phosphorylation status of protein kinase (PK) A and hormone-sensitive lipase (HSL). AS prevented HFD-induced obesity including reduction in body weight, white adipose tissue content, liver mass, and serum triglyceride and free fatty acid levels in rats. It also suppressed the expression of adipogenic differentiation transcription factors and decreased the expression of the adipocyte-specific proteins HSL and adipose triglyceride lipase (ATGL). Furthermore, AS treatment induced lipolysis, leading to the release of glycerol and increased in PKA and HSL phosphorylation. These findings demonstrate that AS has anti-obesity effects in a rat model and may be a safe treatment for obesity in humans. PMID:26771185

  18. A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation.

    PubMed

    Zhou, Wenguang; Min, Min; Li, Yecong; Hu, Bing; Ma, Xiaochen; Cheng, Yanling; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2012-04-01

    A hetero-photoautotrophic algal growth model was studied for improved wastewater treatment and low cost algal biofuel feedstock production. The microalga, Auxenochlorella protothecoides UMN280, was grown heterotrophically on concentrated municipal wastewater and then autotrophically with CO(2) supplementation (air, 1% and 5%, respectively). Strain UMN280 was harvested by self-sedimentation after the heterotrophic stage and the supernatant was aerated with different levels of CO(2) to facilitate autotrophic growth in the second stage. The maximal biomass concentration and lipid content at the first and second stages reached 1.12g/L and 28.90%, and 1.16g/L and 33.22%, respectively. The nutrient removal efficiencies for total phosphorus, ammonia, nitrogen and chemical oxygen demand at the end of the two-stage cultivation were 98.48%, 100%, 90.60% and 79.10%, respectively. The above process can be used to treat organic-rich wastewaters (e.g. industrial and animal manure wastewaters) to achieve the dual purpose of low-cost wastewater treatment and biofuel feedstock production. PMID:22326332

  19. Light intensity and N/P nutrient affect the accumulation of lipid and unsaturated fatty acids by Chlorella sp.

    PubMed

    Guo, Xiaoyi; Su, Gaomin; Li, Zheng; Chang, Jingyu; Zeng, Xianhai; Sun, Yong; Lu, Yinghua; Lin, Lu

    2015-09-01

    In this study, different light intensities (80, 160, 240 and 320 μmol/m(2) s) and various mediums including control medium (CM), N/P rich medium (NPM), N rich medium (NM), and P rich medium (PM) were applied for cultivation of Chlorella sp. It was revealed that cultivation of Chlorella sp. in CM under the light intensity of 320 μmol/m(2) s led to a lipid content up to 30% enhancement, which was higher than the results of other cases. A rather high unsaturated fatty acid (UFA) content of 7.5% and unsaturated fatty acid/total fatty acid (UFA/TFA) ratio of 0.73 were obtained under 320 μmol/m(2) s in CM, indicating that the CM-320 system was applicable for the generation of UFA. Moreover, Chlorella sp. cultivated in PM under 320 μmol/m(2) s provided higher TFA content (7.3%), which was appropriate for biofuel production. PMID:25899143

  20. Lipid catabolism of invertebrate predator indicates widespread wetland ecosystem degradation.

    PubMed

    Anteau, Michael J; Afton, Alan D

    2011-01-01

    Animals frequently undergo periods when they accumulate lipid reserves for subsequent energetically expensive activities, such as migration or breeding. During such periods, daily lipid-reserve dynamics (DLD) of sentinel species can quantify how landscape modifications affect function, health, and resilience of ecosystems. Aythya affinis (Eyton 1838; lesser scaup; diving duck) are macroinvertebrate predators; they migrate through an agriculturally dominated landscape in spring where they select wetlands with the greatest food density to refuel and accumulate lipid reserves for subsequent reproduction. We index DLD by measuring plasma-lipid metabolites of female scaup (n = 459) that were refueling at 75 spring migration stopover areas distributed across the upper Midwest, USA. We also indexed DLD for females (n = 44) refueling on a riverine site (Pool 19) south of our upper Midwest study area. We found that mean DLD estimates were significantly (P<0.05) less than zero in all ecophysiographic regions of the upper Midwest, and the greatest negative value was in the Iowa Prairie Pothole region (-31.6). Mean DLD was 16.8 at Pool 19 and was markedly greater than in any region of the upper Midwest. Our results indicate that females catabolized rather than stored lipid reserves throughout the upper Midwest. Moreover, levels of lipid catabolism are alarming, because scaup use the best quality wetlands available within a given stopover area. Accordingly, these results provide evidence of wetland ecosystem degradation across this large agricultural landscape and document affects that are carried-up through several trophic levels. Interestingly, storing of lipids by scaup at Pool 19 likely reflects similar ecosystem perturbations as observed in the upper Midwest because wetland drainage and agricultural runoff nutrifies the riverine habitat that scaup use at Pool 19. Finally, our results underscore how using this novel technique to monitor DLD, of a carefully selected sentinel

  1. Lipid catabolism of invertebrate predator indicates widespread wetland ecosystem degradation

    USGS Publications Warehouse

    Anteau, Michael J.; Afton, Alan D.

    2011-01-01

    Animals frequently undergo periods when they accumulate lipid reserves for subsequent energetically expensive activities, such as migration or breeding. During such periods, daily lipid-reserve dynamics (DLD) of sentinel species can quantify how landscape modifications affect function, health, and resilience of ecosystems. Aythya affinis (Eyton 1838; lesser scaup; diving duck) are macroinvertebrate predators; they migrate through an agriculturally dominated landscape in spring where they select wetlands with the greatest food density to refuel and accumulate lipid reserves for subsequent reproduction. We index DLD by measuring plasma-lipid metabolites of female scaup (n = 459) that were refueling at 75 spring migration stopover areas distributed across the upper Midwest, USA. We also indexed DLD for females (n = 44) refueling on a riverine site (Pool 19) south of our upper Midwest study area. We found that mean DLD estimates were significantly (P<0.05) less than zero in all ecophysiographic regions of the upper Midwest, and the greatest negative value was in the Iowa Prairie Pothole region (-31.6). Mean DLD was 16.8 at Pool 19 and was markedly greater than in any region of the upper Midwest. Our results indicate that females catabolized rather than stored lipid reserves throughout the upper Midwest. Moreover, levels of lipid catabolism are alarming, because scaup use the best quality wetlands available within a given stopover area. Accordingly, these results provide evidence of wetland ecosystem degradation across this large agricultural landscape and document affects that are carried-up through several trophic levels. Interestingly, storing of lipids by scaup at Pool 19 likely reflects similar ecosystem perturbations as observed in the upper Midwest because wetland drainage and agricultural runoff nutrifies the riverine habitat that scaup use at Pool 19. Finally, our results underscore how using this novel technique to monitor DLD, of a carefully selected sentinel

  2. Development and disintegration of tapetum-specific lipid-accumulating organelles, elaioplasts and tapetosomes, in Arabidopsis thaliana and Brassica napus.

    PubMed

    Suzuki, Toshiya; Tsunekawa, Sonomi; Koizuka, Chie; Yamamoto, Kanta; Imamura, Jun; Nakamura, Kenzo; Ishiguro, Sumie

    2013-06-01

    The pollen coat covering the surface of pollen grains has many important roles for pollination. In Brassicaceae plants, the pollen coat components are synthesized and temporarily accumulated in two tapetum-specific organelles, the elaioplast and the tapetosome. Although many biochemical and electron microscopic analyses have been attempted, the structure and biogenesis of these organelles have not been fully elucidated. To resolve this problem, we performed live imaging of these organelles using two markers, FIB1a-GFP and GRP17-GFP. FIB1a is an Arabidopsis fibrillin, a structural protein of elaioplast plastoglobules. In transgenic Arabidopsis, fluorescence of FIB1a-GFP appeared in young elaioplasts, in which small plastoglobules were developing. However, the fluorescence disappeared in later stages, while enlargement of plastoglobules continued. GRP17 is an Arabidopsis oleopollenin, an oleosin-like protein in tapetosomes. Fluorescence microscopy of GRP17-GFP expressed in Arabidopsis and Brassica napus revealed that tapetosomes do not contain oleopollenin-coated vesicles but have an outer envelope, indicating that the tapetosome structure is distinct from seed oil bodies. Visualization of GRP17-GFP also demonstrated that the tapetal cells become protoplasts and migrate into locules before pollen coat formation, and provided live imaging of the foot formation between pollen grains and stigmatic papilla cells. PMID:23602096

  3. Butyrylcholinesterase Deficiency Promotes Adipose Tissue Growth and Hepatic Lipid Accumulation in Male Mice on High-Fat Diet.

    PubMed

    Chen, Vicky Ping; Gao, Yang; Geng, Liyi; Stout, Michael B; Jensen, Michael D; Brimijoin, Stephen

    2016-08-01

    Despite numerous reports of relationships between weight gain and butyrylcholinesterase (BChE), this enzyme's role in the genesis of obesity remains unclear, but recent research points to strong links with ghrelin, the "hunger hormone." The availability of BChE knockout (KO) mice provides an opportunity to clarify the causal relationship between BChE and obesity onset. We now find that young KO mice have abnormally high plasma ghrelin levels that slowly decline during long-term high-fat feeding and ultimately drop below those in wild-type mice. On such a diet, the KO mice gained notably more weight, more white fat, and more hepatic fat than wild-type animals. In addition to a greater burden of hepatic triglycerides, the livers of these KO mice show distinctly higher levels of inflammatory markers. Finally, their energy expenditure proved to be lower than in wild-type mice despite similar activity levels and increased caloric intake. A gene transfer of mouse BChE with adeno-associated virus vector restored nearly all aspects of the normal phenotype. Our results indicate that BChE strongly affects fat metabolism, has an important impact on fat accumulation, and may be a promising tool for combating obesity. PMID:27300766

  4. Intake of Farmed Atlantic Salmon Fed Soybean Oil Increases Insulin Resistance and Hepatic Lipid Accumulation in Mice

    PubMed Central

    Myrmel, Lene Secher; Aune, Ulrike Liisberg; Alvheim, Anita Røyneberg; Liland, Nina S.; Torstensen, Bente E.; Rosenlund, Grethe; Liaset, Bjørn; Brattelid, Trond; Kristiansen, Karsten; Madsen, Lise

    2013-01-01

    Background To ensure sustainable aquaculture, fish derived raw materials are replaced by vegetable ingredients. Fatty acid composition and contaminant status of farmed Atlantic salmon (Salmo salar L.) are affected by the use of plant ingredients and a spillover effect on consumers is thus expected. Here we aimed to compare the effects of intake of Atlantic salmon fed fish oil (FO) with intake of Atlantic salmon fed a high proportion of vegetable oils (VOs) on development of insulin resistance and obesity in mice. Methodology/principal findings Atlantic salmon were fed diets where FO was partly (80%) replaced with three different VOs; rapeseed oil (RO), olive oil (OO) or soy bean oil (SO). Fillets from Atlantic salmon were subsequently used to prepare Western diets (WD) for a mouse feeding trial. Partial replacement of FO with VOs reduced the levels of polychlorinated biphenyls (PCB) and dichloro-diphenyl-tricloroethanes (DDT) with more than 50% in salmon fillets, in WDs containing the fillets, and in white adipose tissue from mice consuming the WDs. Replacement with VOs, SO in particular, lowered the n−3 polyunsaturated fatty acid (PUFA) content and increased n−6 PUFA levels in the salmon fillets, in the prepared WDs, and in red blood cells collected from mice consuming the WDs. Replacing FO with VO did not influence obesity development in the mice, but replacement of FO with RO improved glucose tolerance. Compared with WD-FO fed mice, feeding mice WD-SO containing lower PCB and DDT levels but high levels of linoleic acid (LA), exaggerated insulin resistance and increased accumulation of fat in the liver. Conclusion/Significance Replacement of FO with VOs in aqua feed for farmed salmon had markedly different spillover effects on metabolism in mice. Our results suggest that the content of LA in VOs may be a matter of concern that warrants further investigation. PMID:23301026

  5. 6-gingerol prevents adipogenesis and the accumulation of cytoplasmic lipid droplets in 3T3-L1 cells.

    PubMed

    Tzeng, Thing-Fong; Liu, I-Min

    2013-04-15

    6-Gingerol ((S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone) is one of the pungent constituents of Zingiber zerumbet (L) Smith (Zingiberaceae family). In this study, we investigated the effects of 6-gingerol on the inhibition of adipogenesis in 3T3-L1 cells. After treatment with 6-gingerol in differentiation medium for 4 or 8 days, the 3T3-L1 cells were lysed for experimental analysis. Cells were stained with Oil-Red-O to detect oil droplets in adipocytes. The 3T3-L1 cells were lysed and measured for triglyceride contents. The protein expression of adipogenesis-related transcription factor was evaluated by Western blot analysis. 6-Gingerol suppressed oil droplet accumulation and reduced the droplet size in a concentration (5-15 μg/ml)- and time-dependent manner. Treatment of 3T3-L1 cells with 6-gingerol reduced the protein levels of peroxisome proliferator-activated receptor (PPAR)γ and CCAAT/enhancer-binding protein (C/EBP)α. Additionally, the protein levels of fatty acid synthase (FAS) and adipocyte-specific fatty acid binding protein (aP2) decreased upon treatment with 6-gingerol. Meanwhile, 6-gingerol diminished the insulin-stimulated serine phosphorylation of Akt (Ser473) and GSK3β (Ser9). These results suggest that 6-gingerol effectively suppresses adipogenesis and that it exerts its role mainly through the significant down-regulation of PPARγ and C/EBPα and subsequently inhibits FAS and aP2 expression. 6-Gingerol also inhibited differentiation in 3T3-L1 cells by attenuating the Akt/GSK3β pathway. Our findings provide important insights into the mechanisms underlying the anti-adipogenic activity of 6-gingerol. PMID:23369342

  6. Aluminum resistance in wheat involves maintenance of leaf Ca(2+) and Mg(2+) content, decreased lipid peroxidation and Al accumulation, and low photosystem II excitation pressure.

    PubMed

    Moustaka, Julietta; Ouzounidou, Georgia; Bayçu, Gülriz; Moustakas, Michael

    2016-08-01

    The phytotoxic aluminum species (Al(3+)) is considered as the primary factor limiting crop productivity in over 40 % of world's arable land that is acidic. We evaluated the responses of two wheat cultivars (Triticum aestivum L.) with differential Al resistance, cv. Yecora E (Al-resistant) and cv. Dio (Al-sensitive), exposed to 0, 37, 74 and 148 μM Al for 14 days in hydroponic culture at pH 4.5. With increasing Al concentration, leaf Ca(2+) and Mg(2+) content decreased, as well as the effective quantum yield of photosystem II (PSII) photochemistry (Φ PSII ), while a gradual increase in leaf membrane lipid peroxidation, Al accumulation, photoinhibition (estimated as F v /F m ), and PSII excitation pressure (1 - q p ) occurred. However, the Al-resistant cultivar with lower Al accumulation, retained larger concentrations of Ca(2+) and Mg(2+) in the leaves and kept a larger fraction of the PSII reaction centres (RCs) in an open configuration, i.e. a higher ratio of oxidized to reduced quinone A (QA), than plants of the Al-sensitive cultivar. Four times higher Al concentration in the nutrient solution was required for Al-resistant plants (148 μM Al) than for Al-sensitive (37 μM Al), in order to establish the same closed RCs. Yet, the decline in photosynthetic efficiency in the cultivar Dio was not only due to closure of PSII RCs but also to a decrease in the quantum yield of the open RCs. We suggest that Al(3+) toxicity may be mediated by nutrient deficiency and oxidative stress, and that Al-resistance of the wheat cultivar Yecora E, may be due at least partially, from the decreased Al accumulation that resulted to decreased reactive oxygen species (ROS) formation. However, under equal internal Al accumulation (exposure Al concentration: Dio 74 μM, Yecora E 148 μM) that resulted to the same oxidative stress, the reduced PSII excitation pressure and the better PSII functioning of the Al-resistant cultivar was probably due to the larger concentrations of Ca

  7. Effects of microalgal polyunsaturated fatty acid oil on body weight and lipid accumulation in the liver of C57BL/6 mice fed a high fat diet.

    PubMed

    Go, Ryeo-Eun; Hwang, Kyung-A; Park, Geon-Tae; Lee, Hae-Miru; Lee, Geum-A; Kim, Cho-Won; Jeon, So-Ye; Seo, Jeong-Woo; Hong, Won-Kyung; Choi, Kyung-Chul

    2016-05-01

    Dietary polyunsaturated fatty acids (PUFAs), which are abundant in marine fish oils, have recently received global attention for their prominent anti-obesogenic effects. Among PUFAs, eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), which are n-3 long-chain PUFAs widely referred to as omega-3 oils, were reported to prevent the development of obesity in rodents and humans. In the present study, we evaluated the anti-obesity effects of microalgal oil on high-fat induced obese C57BL/6 mice, compared with commercial omega-3 fish oil and vegetable corn oil. Microalgal oil is an inherent mixture of several PUFAs, including EPA, DHA and other fatty acids produced from a marine microalgal strain of Thraustochytriidae sp. derived mutant. It was found to contain more PUFAs (>80%) and more omega-3 oils than commercial omega-3 fish oil (PUFAs >31%) and corn oil (PUFAs 59%). All three types of oils induced weight loss in high-fat-induced obese mice, with the loss induced by microalgal oil being most significant at 9 weeks (10% reduction). However, the oils tested did not improve blood lipid levels, although microalgal oil showed an apparent inhibitory effect on lipid accumulation in the liver. These findings may be attributed to the higher PUFA content, including omega-3 oils of microalgal oil than other oils. Collectively, these findings suggest that microalgal oil, derived from Thraustochytriidae sp. derived mutant, is a prominent candidate for replacement of omega-3 fish oils based on its apparent anti-obesity effect in vivo. PMID:27533934

  8. Selection for low erucic acid and genetic mapping of loci affecting the accumulation of very long-chain fatty acids in meadowfoam seed storage lipids.

    PubMed

    Gandhi, S D; Kishore, V K; Crane, J M; Slabaugh, M B; Knapp, S J

    2009-06-01

    Erucic acid (22:1(13)) has been identified as an anti-nutritional compound in meadowfoam (Limnanthes alba) and other oilseeds in the Brassicales, a classification which has necessitated the development of low erucic acid cultivars for human consumption. The erucic acid concentrations of meadowfoam wild types (8%-24%) surpass industry standards for human consumption (accumulation of 22:1(13) and other very long-chain fatty acids (VLCFAs) in meadowfoam seed storage lipids. LE76, a low erucic acid line, was developed by 3 cycles of selection in an ethyl methanesulfonate-treated wildtype population. LE76 produced 3% 22:1(13), threefold less than the M0 population. Wildtype x LE76 F2 populations produced continuous, approximately normal erucic and dienoic acid distributions. Loss-of-function mutations apparently did not segregate and individuals with low 22:1(13) concentrations (lipids by genotyping and phenotyping wildtype x low erucic acid F2 progeny. Composite interval mapping identified 3 moderately large-effect erucic acid QTL. The low erucic acid parent transmitted favorable alleles for 2 of 3 QTL, suggesting low erucic acid cultivars can be developed by combining favorable alleles transmitted by wildtype and low erucic acid parents. PMID:19483773

  9. Effects of microalgal polyunsaturated fatty acid oil on body weight and lipid accumulation in the liver of C57BL/6 mice fed a high fat diet

    PubMed Central

    Go, Ryeo-Eun; Hwang, Kyung-A; Park, Geon-Tae; Lee, Hae-Miru; Lee, Geum-A; Kim, Cho-Won; Jeon, So-Ye; Seo, Jeong-Woo; Hong, Won-Kyung; Choi, Kyung-Chul

    2016-01-01

    Abstract Dietary polyunsaturated fatty acids (PUFAs), which are abundant in marine fish oils, have recently received global attention for their prominent anti-obesogenic effects. Among PUFAs, eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), which are n-3 long-chain PUFAs widely referred to as omega-3 oils, were reported to prevent the development of obesity in rodents and humans. In the present study, we evaluated the anti-obesity effects of microalgal oil on high-fat induced obese C57BL/6 mice, compared with commercial omega-3 fish oil and vegetable corn oil. Microalgal oil is an inherent mixture of several PUFAs, including EPA, DHA and other fatty acids produced from a marine microalgal strain of Thraustochytriidae sp. derived mutant. It was found to contain more PUFAs (>80%) and more omega-3 oils than commercial omega-3 fish oil (PUFAs >31%) and corn oil (PUFAs 59%). All three types of oils induced weight loss in high-fat-induced obese mice, with the loss induced by microalgal oil being most significant at 9 weeks (10% reduction). However, the oils tested did not improve blood lipid levels, although microalgal oil showed an apparent inhibitory effect on lipid accumulation in the liver. These findings may be attributed to the higher PUFA content, including omega-3 oils of microalgal oil than other oils. Collectively, these findings suggest that microalgal oil, derived from Thraustochytriidae sp. derived mutant, is a prominent candidate for replacement of omega-3 fish oils based on its apparent anti-obesity effect in vivo. PMID:27533934

  10. Intake of a Western diet containing cod instead of pork alters fatty acid composition in tissue phospholipids and attenuates obesity and hepatic lipid accumulation in mice.

    PubMed

    Liisberg, Ulrike; Fauske, Kristin Røen; Kuda, Ondrej; Fjære, Even; Myrmel, Lene Secher; Norberg, Nina; Frøyland, Livar; Graff, Ingvild Eide; Liaset, Bjørn; Kristiansen, Karsten; Kopecky, Jan; Madsen, Lise

    2016-07-01

    The content of the marine n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is far lower in lean than in fatty seafood. Cod filets contain less than 2g fat per kg, whereof approximately 50% is EPA and DHA. However, a large fraction of these n-3 PUFAs is present in the phospholipid (PL) fraction and may have high bioavailability and capacity to change the endocannabinoid profile. Here we investigated whether exchanging meat from a lean terrestrial animal with cod in a background Western diet would alter the endocannabinoid tone in mice and thereby attenuate obesity development and hepatic lipid accumulation. Accordingly, we prepared iso-caloric diets with 15.1 energy (e) % protein, 39.1 e% fat and 45.8 e% carbohydrates using freeze-dried meat from cod filets or pork sirloins, and using a combination of soybean oil, corn oil, margarine, milk fat, and lard as the fat source. Compared with mice receiving diets containing pork, mice fed cod gained less adipose tissue mass and had a lower content of hepatic lipids. This was accompanied by a lower n-6 to n-3 ratio in liver PLs and in red blood cells (RBCs) in the mice. Furthermore, mice receiving the cod-containing diet had lower circulating levels of the two major endocannabinoids, N-arachidonoylethanolamine and 2-arachidonoylglycerol. Together, our data demonstrate that despite the relatively low content of n-3 PUFAs in cod fillets, the cod-containing diet could exert beneficial metabolic effects. PMID:27155918

  11. Dietary saturated fatty acids reduce hepatic lipid accumulation but induce fibrotic change in alcohol-fed rats

    PubMed Central

    Chen, Ya-Ling; Peng, Hsiang-Chi; Wang, Xiang-Dong

    2015-01-01

    EHS groups, while at the same time, hepatic CYP2E1 in EHS group was the highest among all groups. The hepatic tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10 concentrations in the E group were significantly higher than those in C group, whereas the hepatic IL-6 and IL-10 concentrations in ES group were significantly lower than those of E group. Conclusions These results suggested that dietary saturated fats may inhibit hepatic fat accumulation and induce hepatic fibrosis in rats under chronic alcohol intake. PMID:26151057

  12. Seasonal variation of Sarpa salpa fish toxicity, as related to phytoplankton consumption, accumulation of heavy metals, lipids peroxidation level in fish tissues and toxicity upon mice.

    PubMed

    Bellassoued, Khaled; Hamza, Asma; van Pelt, Jos; Elfeki, Abdelfatteh

    2013-02-01

    The aim of this work was to investigate for Sarpa salpa the seasonal trend in the food sources, heavy metals bioaccumulation and the oxidative stress in the organs. In addition, the toxicity was assessed by mouse bioassay of extract of the fish's organs collected in autumn, the peak of occurrence of hallucinatory syndrome. The toxicity was further studied for compounds present in epiphyte collected from the sea at the end of spring and in summer that are digested by the S. salpa in these seasons. We observed a higher lipid peroxydation in different tissues of S. salpa compared to the control fish Diplodus annularis. Furthermore, heavy metals accumulation in organs of these fish showed a significant variation between the two species (P < 0.05). The lethal dose (LD50%) determined for crude ciguatoxin (neurotoxins) extracts of viscera, liver, brain and muscle of S. salpa were as follows: 1.217, 2.195, 14.395, 18.645 g/kg mouse, respectively. We noticed a significant correlation (P < 0.05) between the total amount of toxic dinoflagellates and the level of TBARS in the liver, the brain and the muscle, this for all seasons and all sizes. Moreover, the cytotoxic effect observed for epiphytes extract confirms the transfer of toxins originating from toxic dinoflagellates, which live as epiphytes on P. oceanica leaves, to the fish by grazing. Our work indicates that, toxic phytoplanktons and heavy metals accumulation are responsible for the increase of oxidative stress in the organs of S. salpa. Hence, the edible part of S. salpa, especially the viscera and liver, can cause a threat to human health, and consumption should, for this reason, be dissuaded. PMID:22535366

  13. Distribution of plankton lipids and their role in the biological transformation of Antarctic primary production

    NASA Astrophysics Data System (ADS)

    Mayzaud, P.; Errhif, A.; Bedo, A.

    1998-11-01

    Production and transfer of lipid through the Antarctic food web is reviewed for the Indian Ocean sector. The slow settling fine particles showed a marked inter-annual variability in biochemical composition with an increase in lipid content as % organic carbon. Comparison of the fatty acid spectra of different size categories of organic particles indicated that fine particles are dominated by saturated, monoenoic and branched acids, while larger material (50-100 μm, 200-500 μm net collected fractions) displayed a signature dominated by polyunsaturated acids. Zooplankton taxa displayed different strategies of lipid accumulation. Lipid content was highest in Thysanoessa macrura females and copepodite stages of Calanus propinquus. Relatively low levels were recorded for juveniles and male stages of euphausiids. Reserve lipids varied with species: C. propinquus showed equal content of triglycerides and wax esters, T. macrura showed a dominance of wax esters and Euphausia superba and Themisto gaudichaudii accumulated only triglycerides. Computed as carbon equivalent and integrated over 200 m, lipids in slow settling particles represented 22.6% of annual primary production. Similar computation with mesozooplankton and E. superba data on biomass and population structure from several summer cruises indicated values of carbon accumulation as lipid reserves and egg production of 4.2 and 0.1% of annual primary production for copepods and 4.4 and 3.8% for E. superba. When all trophic levels are considered, the overall mean exceeded 30% of annual primary production.

  14. Seasonal trends in the condition of nesting females of a solitary bee: wing wear, lipid content, and oocyte size

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the nesting season, adult females of the solitary bee Megachile rotundata (F.) face considerable physical and energy demands that could include increasing wear and tear on their bodies and loss of lipid reserves accumulated during larval stages. Consequently, their reproductive performance m...

  15. The "lipid accumulation product" is associated with 2-hour postload glucose outcomes in overweight/obese subjects with nondiabetic fasting glucose.

    PubMed

    Malavazos, Alexis Elias; Cereda, Emanuele; Ermetici, Federica; Caccialanza, Riccardo; Briganti, Silvia; Rondanelli, Mariangela; Morricone, Lelio

    2015-01-01

    "Lipid accumulation product" (LAP) is a continuous variable based on waist circumference and triglyceride concentration previously associated with insulin resistance. We investigated the accuracy of LAP in identifying oral glucose tolerance test (OGTT) abnormalities and compared it to the homeostasis model assessment of insulin resistance (HOMA-IR) in a population of overweight/obese outpatients presenting with nondiabetic fasting glucose. We studied 381 (male: 23%) adult (age: 18-70 years) overweight/obese Caucasians (body mass index: 36.9 ± 5.4 Kg/m(2)) having fasting plasma glucose < 7.0 mmol/L. OGTT was used to diagnose unknown glucose tolerance abnormalities: impaired glucose tolerance (IGT) and type-2 diabetes mellitus (T2-DM). According to OGTT 92, subjects had an IGT and 33 were diagnosed T2-DM. Logistic regression analysis detected a significant association for both LAP and HOMA-IR with single (IGT and T2-DM) and composite (IGT + T2-DM) abnormal glucose tolerance conditions. However, while the association with diabetes was similar between LAP and HOMA-IR, the relationship with IGT and composite outcomes by models including LAP was significantly superior to those including HOMA-IR (P = 0.006 and P = 0.007, resp.). LAP seems to be an accurate index, performing better than HOMA-IR, for identifying 2-hour postload OGTT outcomes in overweight/obese patients with nondiabetic fasting glucose. PMID:25792981

  16. The “Lipid Accumulation Product” Is Associated with 2-Hour Postload Glucose Outcomes in Overweight/Obese Subjects with Nondiabetic Fasting Glucose

    PubMed Central

    Malavazos, Alexis Elias; Cereda, Emanuele; Ermetici, Federica; Caccialanza, Riccardo; Briganti, Silvia; Rondanelli, Mariangela; Morricone, Lelio

    2015-01-01

    Lipid accumulation product” (LAP) is a continuous variable based on waist circumference and triglyceride concentration previously associated with insulin resistance. We investigated the accuracy of LAP in identifying oral glucose tolerance test (OGTT) abnormalities and compared it to the homeostasis model assessment of insulin resistance (HOMA-IR) in a population of overweight/obese outpatients presenting with nondiabetic fasting glucose. We studied 381 (male: 23%) adult (age: 18–70 years) overweight/obese Caucasians (body mass index: 36.9 ± 5.4 Kg/m2) having fasting plasma glucose < 7.0 mmol/L. OGTT was used to diagnose unknown glucose tolerance abnormalities: impaired glucose tolerance (IGT) and type-2 diabetes mellitus (T2-DM). According to OGTT 92, subjects had an IGT and 33 were diagnosed T2-DM. Logistic regression analysis detected a significant association for both LAP and HOMA-IR with single (IGT and T2-DM) and composite (IGT + T2-DM) abnormal glucose tolerance conditions. However, while the association with diabetes was similar between LAP and HOMA-IR, the relationship with IGT and composite outcomes by models including LAP was significantly superior to those including HOMA-IR (P = 0.006 and P = 0.007, resp.). LAP seems to be an accurate index, performing better than HOMA-IR, for identifying 2-hour postload OGTT outcomes in overweight/obese patients with nondiabetic fasting glucose. PMID:25792981

  17. Hitting the jackpot twice: identifying and patenting gene tests related to muscle lipid accumulation for meat quality in animals and type 2 diabetes/obesity in humans.

    PubMed

    Jiang, Zhihua; Pappu, Sita S; Rothschild, Max F

    2007-01-01

    Marbling and intramuscular fat (IMF) content are commonly used to describe or measure intramuscular fat deposition in meat, which contributes to taste, texture and flavor. Four types of genetic markers, i.e., microsatellite, random amplification of polymorphic DNA (RAPD), amplified fragment length polymorphisms (AFLP) and single nucleotide polymorphisms (SNPs) have been used in genome scans or association studies to detect quantitative trait loci (QTL) for these traits in cattle and swine. For the most part microsatellite markers help define QTL regions but have been used in limited ways to patent gene tests because of the uncertainties associated with the microsatellite marker scans. However, SNPs in candidate genes selected based on physiological, positional or comparative information often lead to patent applications once strong associations have been determined. To date, at least 22 patents have been awarded or under review for genes/markers affecting marbling or IMF in cattle and swine. Unfortunately, similar muscle lipid accumulation in humans has significant negative impacts on health, causing obesity/type 2 diabetes and their associated conditions. Many studies have also been performed on human subjects or on the mouse as a model organism to understand the genetic complexity of these conditions. A collection of over 2,000 reports on genes/markers affecting fat phenotypes in humans, mice, cattle and swine have led to construction of a mammalian concordant QTL map for lipogenesis. The concordant QTL map provides power for fine mapping and narrowing each of these QTL regions to a few genes. PMID:19075922

  18. Activation of GPR55 Receptors Exacerbates oxLDL-Induced Lipid Accumulation and Inflammatory Responses, while Reducing Cholesterol Efflux from Human Macrophages

    PubMed Central

    Lanuti, Mirko; Talamonti, Emanuela; Maccarrone, Mauro; Chiurchiù, Valerio

    2015-01-01

    The G protein-coupled receptor GPR55 has been proposed as a new cannabinoid receptor associated with bone remodelling, nervous system excitability, vascular homeostasis as well as in several pathophysiological conditions including obesity and cancer. However, its physiological role and underlying mechanism remain unclear. In the present work, we demonstrate for the first time its presence in human macrophages and its increased expression in ox-LDL-induced foam cells. In addition, pharmacological activation of GPR55 by its selective agonist O-1602 increased CD36- and SRB-I-mediated lipid accumulation and blocked cholesterol efflux by downregulating ATP-binding cassette (ABC) transporters ABCA1 and ABCG1, as well as enhanced cytokine- and pro-metalloprotease-9 (pro-MMP-9)-induced proinflammatory responses in foam cells. Treatment with cannabidiol, a selective antagonist of GPR55, counteracted these pro-atherogenic and proinflammatory O-1602-mediated effects. Our data suggest that GPR55 could play deleterious role in ox-LDL-induced foam cells and could be a novel pharmacological target to manage atherosclerosis and other related cardiovascular diseases. PMID:25970609

  19. Effects of waterborne Cu and Cd on anti-oxidative response, lipid peroxidation and heavy metals accumulation in abalone Haliotis discus hannai ino

    NASA Astrophysics Data System (ADS)

    Lei, Yanju; Zhang, Wenbing; Xu, Wei; Zhang, Yanjiao; Zhou, Huihui; Mai, Kangsen

    2015-06-01

    The aim of this study was to compare the effects of waterborne copper (Cu) and cadmium (Cd) on survival, anti-oxidative response, lipid peroxidation and metal accumulation in abalone Haliotis discus hannai. Experimental animals (initial weight: 7.49 g ± 0.01 g) were exposed to graded concentrations of waterborne Cu (0.02, 0.04, 0.06, 0.08 mg L-1) or Cd (0.025, 0.05, 0.25, 0.5 mg L-1) for 28 days, respectively. Activities of the anti-oxidative enzymes (catalase, CAT; superoxide dismutase, SOD; glutathione peroxidases, GPx; glutathione S-transferase, GST), contents of the reduced glutathione (GSH) and malondiadehyde (MDA) in the hepatopancreas, and metal accumulation in hepatopancreas and muscles were analyzed after 0, 1, 3, 6, 10, 15, 21, 28 days of metal exposure, respectively. Results showed that 0.04 mg L-1, 0.06 mg L--1 and 0.08 mg L-1 Cu caused 100% death of abalone on the 21st, 10th and 6th day, respectively. However, no dead abalone was found during the 28-day waterborne Cd exposure at all experimental concentrations. Generally, activities of SOD and GST in hepatopancreas under all Cu concentrations followed a decrease trend as the exposure time prolonged. However, these activities were firstly increased and then decreased to the control level and increased again during Cd exposure. Activities of CAT in all Cu exposure treatments were higher than those in the control. These activities were firstly increased and then decreased to the control level and increased again during Cd exposure. Contents of MDA in hepatopancreas in all Cu treatments significantly increased first and then decreased to the control level. However, the MDA contents in hepatopancreas were not significantly changed during the 28-day Cd exposure. The metals accumulation in both hepatopancreas and muscles of abalone significantly increased with the increase of waterborne metals concentration and exposure time. These results indicated that H. discus hannai has a positive anti-oxidative defense

  20. Sequence Stratigraphic Analysis and Facies Architecture of the Cretaceous Mancos Shale on and Near the Jicarilla Apache Indian Reservation, New Mexico-their relation to Sites of Oil Accumulation

    SciTech Connect

    Ridgley, Jennie

    2001-08-21

    The purpose of phase 1 and phase 2 of the Department of Energy funded project Analysis of oil- bearing Cretaceous Sandstone Hydrocarbon Reservoirs, exclusive of the Dakota Sandstone, on the Jicarilla Apache Indian Reservation, New Mexico was to define the facies of the oil producing units within the Mancos Shale and interpret the depositional environments of these facies within a sequence stratigraphic context. The focus of this report will center on (1) redefinition of the area and vertical extent of the ''Gallup sandstone'' or El Vado Sandstone Member of the Mancos Shale, (2) determination of the facies distribution within the ''Gallup sandstone'' and other oil-producing sandstones within the lower Mancos, placing these facies within the overall depositional history of the San Juan Basin, (3) application of the principals of sequence stratigraphy to the depositional units that comprise the Mancos Shale, and (4) evaluation of the structural features on the Reservation as they may control sites of oil accumulation.

  1. LC-PUFA-Enriched Oil Production by Microalgae: Accumulation of Lipid and Triacylglycerols Containing n-3 LC-PUFA Is Triggered by Nitrogen Limitation and Inorganic Carbon Availability in the Marine Haptophyte Pavlova lutheri

    PubMed Central

    Guihéneuf, Freddy; Stengel, Dagmar B.

    2013-01-01

    In most microalgal species, triacyglycerols (TAG) contain mostly saturated and monounsaturated fatty acids, rather than PUFA, while PUFA-enriched oil is the form most desirable for dietary intake. The ability of some species to produce LC-PUFA-enriched oil is currently of specific interest. In this work, we investigated the role of sodium bicarbonate availability on lipid accumulation and n-3 LC-PUFA partitioning into TAG during batch cultivation of Pavlova lutheri. Maximum growth and nitrate uptake exhibit an optimum concentration and threshold tolerance to bicarbonate addition (~9 mM) above which both parameters decreased. Nonetheless, the transient highest cellular lipid and TAG contents were obtained at 18 mM bicarbonate, immediately after combined alkaline pH stress and nitrate depletion (day nine), while oil body and TAG accumulation were highly repressed with low carbon supply (2 mM). Despite decreases in the proportions of EPA and DHA, maximum volumetric and cellular EPA and DHA contents were obtained at this stage due to accumulation of TAG containing EPA/DHA. TAG accounted for 74% of the total fatty acid per cell, containing 55% and 67% of the overall cellular EPA and DHA contents, respectively. These results clearly demonstrate that inorganic carbon availability and elevated pH represent two limiting factors for lipid and TAG accumulation, as well as n-3 LC-PUFA partitioning into TAG, under nutrient-depleted P. lutheri cultures. PMID:24177672

  2. Saturated- and n-6 polyunsaturated-fat diets each induce ceramide accumulation in mouse skeletal muscle: reversal and improvement of glucose tolerance by lipid metabolism inhibitors.

    PubMed

    Frangioudakis, G; Garrard, J; Raddatz, K; Nadler, J L; Mitchell, T W; Schmitz-Peiffer, C

    2010-09-01

    Lipid-induced insulin resistance is associated with intracellular accumulation of inhibitory intermediates depending on the prevalent fatty acid (FA) species. In cultured myotubes, ceramide and phosphatidic acid (PA) mediate the effects of the saturated FA palmitate and the unsaturated FA linoleate, respectively. We hypothesized that myriocin (MYR), an inhibitor of de novo ceramide synthesis, would protect against glucose intolerance in saturated fat-fed mice, while lisofylline (LSF), a functional inhibitor of PA synthesis, would protect unsaturated fat-fed mice. Mice were fed diets enriched in saturated fat, n-6 polyunsaturated fat, or chow for 6 wk. Saline, LSF (25 mg/kg x d), or MYR (0.3 mg/kg x d) were administered by mini-pumps in the final 4 wk. Glucose homeostasis was examined by glucose tolerance test. Muscle ceramide and PA were analyzed by mass spectrometry. Expression of LASS isoforms (ceramide synthases) was evaluated by immunoblotting. Both saturated and polyunsaturated fat diets increased muscle ceramide and induced glucose intolerance. MYR and LSF reduced ceramide levels in saturated and unsaturated fat-fed mice. Both inhibitors also improved glucose tolerance in unsaturated fat-fed mice, but only LSF was effective in saturated fat-fed mice. The discrepancy between ceramide and glucose tolerance suggests these improvements may not be related directly to changes in muscle ceramide and may involve other insulin-responsive tissues. Changes in the expression of LASS1 were, however, inversely correlated with alterations in glucose tolerance. The demonstration that LSF can ameliorate glucose intolerance in vivo independent of the dietary FA type indicates it may be a novel intervention for the treatment of insulin resistance. PMID:20660065

  3. Apolipoprotein E receptor-2 deficiency enhances macrophage susceptibility to lipid accumulation and cell death to augment atherosclerotic plaque progression and necrosis

    PubMed Central

    Waltmann, Meaghan D.; Basford, Joshua E.; Konaniah, Eddy S.; Weintraub, Neal L.; Hui, David Y.

    2014-01-01

    Genome-wide association studies have linked LRP8 polymorphisms to premature coronary artery disease and myocardial infarction in humans. However, the mechanisms by which dysfunctions of apolipoprotein E receptor-2 (apoER2), the protein encoded by LRP8 gene, influence atherosclerosis have not been elucidated completely. The current study focused on the role of apoER2 in macrophages, a cell type that plays an important role in atherosclerosis. Results showed that apoER2-deficient mouse macrophages accumulated more lipids and were more susceptible to oxidized LDL (oxLDL)-induced death compared to control cells. Consistent with these findings, apoER2 deficient macrophages also displayed defective serum-induced Akt activation and higher levels of the pro-apoptotic protein phosphorylated p53. Furthermore, the expression and activation of peroxisome proliferator-activated receptor γ (PPARγ) was increased in apoER2-deficient macrophages. Deficiency of apoER2 in hypercholesterolemic LDL receptor-null mice (Lrp8−/−Ldlr−/− mice) also resulted in accelerated atherosclerosis with more complex lesions and extensive lesion necrosis compared to Lrp8+/+Ldlr−/− mice. The atherosclerotic plaques of Lrp8−/−Ldlr−/− mice displayed significantly higher levels of p53-positive macrophages, indicating that the apoER2-deficient macrophages contribute to the accelerated atherosclerotic lesion necrosis observed in these animals. Taken together, this study indicates that apoER2 in macrophages limits PPARγ expression and protects against oxLDL-induced cell death. Thus, abnormal apoER2 functions in macrophages may at least in part contribute to the premature coronary artery disease and myocardial infarction in humans with LRP8 polymorphisms. Moreover, the elevated PPARγ expression in apoER2-deficient macrophages suggests that LRP8 polymorphism may be a genetic modifier of cardiovascular risk with PPARγ therapy. PMID:24840660

  4. The rs340874 PROX1 type 2 diabetes mellitus risk variant is associated with visceral fat accumulation and alterations in postprandial glucose and lipid metabolism.

    PubMed

    Kretowski, Adam; Adamska, Edyta; Maliszewska, Katarzyna; Wawrusiewicz-Kurylonek, Natalia; Citko, Anna; Goscik, Joanna; Bauer, Witold; Wilk, Juliusz; Golonko, Anna; Waszczeniuk, Magdalena; Lipinska, Danuta; Hryniewicka, Justyna; Niemira, Magdalena; Paczkowska, Magdalena; Ciborowski, Michal; Gorska, Maria

    2015-03-01

    Large-scale meta-analyses of genome-wide association studies have recently confirmed that the rs340874 single-nucleotide polymorphism in PROX1 gene is associated with fasting glycemia and type 2 diabetes mellitus; however, the mechanism of this link was not well established. The aim of our study was to evaluate the functional/phenotypic differences related to rs340874 PROX1 variants. The study group comprised 945 subjects of Polish origin (including 634 with BMI > 25) without previously known dysglycemia. We analyzed behavioral patterns (diet, physical activity), body fat distribution and glucose/fat metabolism after standardized meals and during the oral glucose tolerance test. We found that the carriers of the rs340874 PROX1 CC genotype had higher nonesterified fatty acids levels after high-fat meal (p = 0.035) and lower glucose oxidation (p = 0.014) after high-carbohydrate meal in comparison with subjects with other PROX1 genotypes. Moreover, in subjects with CC variant, we found higher accumulation of visceral fat (p < 0.02), but surprisingly lower daily food consumption (p < 0.001). We hypothesize that lipid metabolism alterations in subjects with the PROX1 CC genotype may be a primary cause of higher glucose levels after glucose load, since the fatty acids can inhibit insulin-stimulated glucose uptake by decreasing carbohydrate oxidation. Our observations suggest that the PROX1 variants have pleiotropic effect on disease pathways and it seem to be a very interesting goal of research on prevention of obesity and type 2 diabetes mellitus. The study may help to understand the mechanisms of visceral obesity and type 2 diabetes mellitus risk development. PMID:25601634

  5. Lipid accumulation stimulates the cap-independent translation of SREBP-1a mRNA by promoting hnRNP A1 binding to its 5'-UTR in a cellular model of hepatic steatosis.

    PubMed

    Siculella, Luisa; Tocci, Romina; Rochira, Alessio; Testini, Mariangela; Gnoni, Antonio; Damiano, Fabrizio

    2016-05-01

    Non-alcoholic fatty liver disease (NAFLD) is a chronic disease characterized by accumulation of lipid droplets in hepatocytes. Enhanced release of non-esterified fatty acids from adipose tissue accounts for a remarkable fraction of accumulated lipids. However, the de novo lipogenesis (DNL) is also implicated in the etiology of the NAFLD. Sterol Regulatory Element-Binding Protein-1 (SREBP-1) is a transcription factor modulating the expression of several lipogenic enzymes. In the present study, in order to investigate the effect of lipid droplet accumulation on DNL, we used a cellular model of steatosis represented by HepG2 cells cultured in a medium supplemented with free oleic and palmitic fatty acids (FFAs). We report that FFA supplementation induces the expression of genes coding for enzymes involved in the DNL as well as for the transcription factor SREBP-1a. The SREBP-1a mRNA translation, dependent on an internal ribosome entry site (IRES), and the SREBP-1a proteolytic cleavage are activated by FFAs. Furthermore, FFA treatment enhances the expression and the nucleus-cytosolic shuttling of hnRNP A1, a trans-activating factor of SREBP-1a IRES. The binding of hnRNP A1 to the SREBP-1a IRES is also increased upon FFA supplementation. The relocation of hnRNP A1 and the consequent increase of SREBP-1a translation are dependent on the p38 MAPK signal pathway, which is activated by FFAs. By RNA interference approach, we demonstrate that hnRNP A1 is implicated in the FFA-induced expression of SREBP-1a and of its target genes as well as in the lipid accumulation in cells. PMID:26869449

  6. Protective effect of panax notoginseng saponins on acute ethanol-induced liver injury is associated with ameliorating hepatic lipid accumulation and reducing ethanol-mediated oxidative stress.

    PubMed

    Ding, Ren-Bo; Tian, Ke; Cao, Yi-Wei; Bao, Jiao-Lin; Wang, Meng; He, Chengwei; Hu, Yuanjia; Su, Huanxing; Wan, Jian-Bo

    2015-03-11

    The aim of present study was to evaluate the effects of Panax notoginseng saponins (PNS) against acute ethanol-induced liver injury and further to elucidate its probable mechanisms. Mice were treated with PNS (100 or 300 mg/kg) once daily for seven consecutive days priors to ethanol gavage (4.7 g/kg) every 12 h for a total of three doses. Acute alcohol gavage dramatically significantly increased serum activities of alanine aminotransferase (ALT) (23.4 ± 5.0 IU/L vs 11.7 ± 4.1 IU/L) and aspartate aminotransferase (AST) (52.6 ± 14.9 IU/L vs 31.1 ± 12.9 IU/L), and hepatic triglyceride level (4.04 ± 0.64 mg/g vs 1.92 ± 0.34 mg/g), these elevations were significantly diminished by pretreatment with PNS at dose of 100 mg/kg or 300 mg/kg. Alcohol exposure markedly induced the lipolysis of white adipose tissue (WAT), up-regulated protein expression of the phosphorylated hormone-sensitive lipase (p-HSL, p < 0.01), and total HSL (p < 0.01), and enhanced fatty acid uptake capacity in liver as indicated by increasing hepatic CD36 expression (p < 0.01), these effects were attenuated by PNS treatment. Additionally, PNS suppressed the elevation of reactive oxygen species (ROS) production and malondialdehyde (MDA) content, reduced TNF-α and IL-6 levels, restored glutathione (GSH) level, enhanced the superoxide dismutase (SOD) activity in liver, and abrogated cytochrome P450 2E1 (CYP2E1) induction. These data demonstrated that pretreatment with PNS protected against acute ethanol-induced liver injury, possibly through ameliorating hepatic lipid accumulation and reducing CYP2E1-mediated oxidative stress. Our findings also suggested that PNS may be potential to be developed as an effective agent for acute ethanol-induced liver injury. PMID:25665731

  7. Rice bran oil and oryzanol reduce plasma lipid and lipoprotein cholesterol concentrations and aortic cholesterol ester accumulation to a greater extent than ferulic acid in hypercholesterolemic hamsters.

    PubMed

    Wilson, Thomas A; Nicolosi, Robert J; Woolfrey, Benjamin; Kritchevsky, David

    2007-02-01

    plasma triglyceride concentrations compared to the control (-53% and -65%, respectively) and ferulic acid (-47% and -60%, respectively) diets. Hamsters fed the control and ferulic acid diets had significantly higher plasma vitamin E concentrations compared to the RBO (201% and 161%, respectively) and oryzanol (548% and 462%, respectively) diets; the ferulic acid and oryzanol diets had significantly lower plasma lipid hydroperoxide levels than the control (-57% and -46%, respectively) diet. The oryzanol-fed hamsters excreted significantly more coprostenol and cholesterol in their feces than the ferulic acid (127% and 120%, respectively) diet. The control diet had significantly greater aortic TC and FC accumulation compared to the RBO (115% and 89%, respectively), ferulic acid (48% and 58%, respectively) and the oryzanol (74% and 70%, respectively) diets. However, only the RBO and oryzanol diets had significantly lower aortic cholesterol ester accumulation compared to the control (-73% and -46%, respectively) diet. The present study suggests that at equal dietary levels, oryzanol has a greater effect on lowering plasma non-HDL-C levels and raising plasma HDL-C than ferulic acid, possibly through a greater extent to increase fecal excretion of cholesterol and its metabolites. However, ferulic acid may have a greater antioxidant capacity via its ability to maintain serum vitamin E levels compared to RBO and oryzanol. Thus, both oryzanol and ferulic acid may exert similar antiatherogenic properties, but through different mechanisms. PMID:16713234

  8. SEQUENCE STRATIGRAPHIC ANALYSIS AND FACIES ARCHITECTURE OF THE CRETACEOUS MANCOS SHALE ON AND NEAR THE JICARILLA APACHE INDIAN RESERVATION, NEW MEXICO-THEIR RELATION TO SITES OF OIL ACCUMULATION

    SciTech Connect

    Jennie Ridgley

    2000-03-31

    the oil (except for the Tocito Sandstone) from the lower Mancos. In the central and southern part of the Reservation, large areas, currently not productive or not tested, have the potential to contain oil in the El Vado simply based on the trend of the facies and structure. There has been little oil or gas production from the overlying regressive-transgressive wedge of rock and much of this interval is untested. Thus, large areas of the Reservation could contain hydrocarbon resources in these strata. Most of the Reservation lies within the oil generation window based on new Rock-Eval data from the Mancos Shale just south of the southern part of the Reservation. If these observations are valid then oil could have been generated locally and would only have needed to migrate short distances in to sandy reservoirs and fractures. This does not rule out long distance migration of oil from the deeper, more thermally mature part of the basin to the north. However, low porosity and permeability characterize sandier rocks in the Mancos, with the exception of Tocito-like sandstones. These factors could retard long distance oil migration through the sediment package, except through fracture or fault conduits. Thus, it is suggested that future oil and gas explorations in the Mancos treat the accumulations and reservoirs as unconventional and consider whether the source and reservoir are in closer proximity than has previously been assumed.

  9. aP2-Cre-mediated inactivation of acetyl-CoA carboxylase 1 causes growth retardation and reduced lipid accumulation in adipose tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adipose tissue is one of the major sites for fatty acid synthesis and lipid storage. We generated adipose (fat)-specific ACC1 knockout (FACC1KO) mice using the aP2-Cre/loxP system. FACC1KO mice showed prenatal growth retardation; after weaning, however, their weight gain was comparable to that of wi...

  10. Trans-10,cis-12 conjugated linoleic acid (CLA) interferes with lipid droplet accumulation during 3T3-L1 preadipocyte differentiation.

    PubMed

    Yeganeh, Azadeh; Taylor, Carla G; Tworek, Leslee; Poole, Jenna; Zahradka, Peter

    2016-07-01

    In this study, we hypothesize that the biologically active isomers of conjugated linoleic acid (CLA), cis-9,trans-11 (c9,t11) and trans-10,cis-12 (t10,c12) CLA, have different effects on early and late stages 3T3-L1 preadipocyte differentiation. Both c9-t11 and t10-c12CLA stimulated early stage pre-adipocyte differentiation (day 2), while t10-c12CLA inhibited late differentiation (day 8) as determined by lipid droplet numbers and both perilipin-1 levels and phosphorylation state. At day 8, the adipokines adiponectin, chemerin and adipsin were all reduced in t10-c12CLA treated cells versus control cells. Immunofluorescence microscopy showed perilipin-1 was present solely on lipid droplets on day 8 in t10-c12 treated 3T3-L1 cells, whereas preilipin-1 was also located in the perinuclear region in control and c9-t11 treated cells. The t10-c12CLA isomer also decreased levels of hormone-sensitive lipase and inhibited lipolysis. These findings indicate that the decrease in lipid droplets caused by t10-c12CLA is the result of an inhibition of lipid droplet production during adipogenesis rather than a stimulation of lipolysis. Additionally, treatment with Gö6976 blocked the effect of t10-c12CLA on perilipin-1 phosphorylation, implicating PKCα in perilipin-1 phosphorylation, and thus a regulator of triglyceride catabolism. These data are supported by evidence that t10-c12CLA activated PKCα. These are the first data to show that CLA isomers can affect lipid droplet dynamics in adipocytes through PKCα. PMID:27131602

  11. Nutrient reserves of Lesser Scaup (Aythya affinis) during spring migration in the Mississippi Flyway: A test of the spring condition hypothesis

    USGS Publications Warehouse

    Anteau, M.J.; Afton, A.D.

    2004-01-01

    The continental scaup population (Lesser [Aythya affinis] and Greater [A. marila] combined) has declined markedly since 1978. One hypothesis for the population decline states that reproductive success has decreased because female scaup are arriving on breeding areas in poorer body condition than they did historically (i.e. spring condition hypothesis). We tested one aspect of that hypothesis by comparing body mass and nutrient reserves (lipid, protein, and mineral) of Lesser Scaup at four locations (Louisiana, Illinois, Minnesota, and Manitoba) between the 1980s and 2000s. We found that mean body mass and lipid and mineral reserves of females were 80.0, 52.5, and 3.0 g higher, respectively, in the 2000s than in the 1980s in Louisiana; similarly, body mass and lipid and mineral reserves of males were 108.8, 72.5, and 2.5 g higher, respectively. In Illinois, mean body mass and lipid reserves of females were 88.6 and 56.5 g higher, respectively, in the 2000s than in the 1980s; similarly, body mass and lipid and mineral reserves of males were 80.6, 76.0, and 2.7 g higher, respectively. Mean body mass of females were 58.5 and 58.9 g lower in the 2000s than in the 1980s in Minnesota and Manitoba, respectively; mean body mass of males, similarly, were 40.7 g lower in Minnesota. Mean lipid reserves of females in the 2000s were 28.8 and 27.8 g lower than those in the 1980s in Minnesota and Manitoba, respectively. Mean mineral reserves of females in the 2000s were 3.2 g lower than those in the 1980s in Manitoba. Consequently, females arriving to breed in Manitoba in the 2000s had accumulated lipid reserves for 4.1 fewer eggs and mineral reserves for 0.8 fewer eggs than those arriving to breed there in the 1980s. Accordingly, our results are consistent with the spring condition hypothesis and suggest that female body condition has declined, as reflected by decreases in body mass, lipids, and mineral reserves that could cause reductions in reproductive success and ultimately a

  12. Expression of type I and type II bovine scavenger receptors in Chinese hamster ovary cells: Lipid droplet accumulation and nonreciprocal cross competition by acetylated and oxidized low density lipoprotein

    SciTech Connect

    Freeman, M. Massachusetts General Hospital, Boston ); Ekkel, Y.; Rohrer, L.; Penman, M.; Freedman, N.J.; Krieger, M. ); Chisolm, G.M. )

    1991-06-01

    Type I and type II scavenger receptors, which have been implicated in the development of atherosclerosis and other macrophage-associated functions, differ only by the presence in the type I receptor of an extracellular cysteine-rich C-terminal domain. Stable Chinese hamster ovary (CHO) cell transfectants expressing high levels of either the type I or type II bovine scavenger receptors have been generated. Type I and type II receptors in these cells mediated high-affinity saturable endocytosis of both {sup 125}I-labeled acetylated low density lipoprotein (LDL) and {sup 125}I-labeled oxidized LDL with the distinctive broad ligand specificity characteristic of scavenger receptors. After incubation for 2 days with acetylated LDL, the transfected cells accumulated oil red O-staining lipid droplets reminiscent of those in macrophage foam cells, whereas untransfected CHO cells did not. Thus, macrophage-specific gene products other than the scavenger receptor are not required for modified-LDL-induced intracellular lipid accumulation. In transfected cells, acetylated LDL efficiently competed for both its own endocytosis and that of oxidized LDL. This nonreciprocal cross competition suggests that these ligands may bind to nonidentical but interacting sites on a single receptor. Results were similar for transfectants expressing either type I or type II scavenger receptors. The nonreciprocal cross competition seen in the transfected CHO cells differs from that previously observed with cultured macrophages.

  13. Polyphenol-rich extract of Nelumbo nucifera leaves inhibits alcohol-induced steatohepatitis via reducing hepatic lipid accumulation and anti-inflammation in C57BL/6J mice.

    PubMed

    Tang, Chang-Chieh; Lin, Wea-Lung; Lee, Yi-Ju; Tang, Yu-Chi; Wang, Chau-Jong

    2014-04-01

    The present study was undertaken to evaluate the hepatoprotective effect mechanisms of Nelumbo nucifera leaves extract (NLE) in experimental alcoholic steatohepatitis animal models. We found that the NLE contained polyphenols (phenolic acids and flavonoids), and more than 70% of the main functional components in NLE could potentially provide benefits for alcoholic liver disease. The parameters of histopathology, immunohistochemistry, antioxidant defense, proinflammatory mediator and lipid synthesis-related proteins demonstrated the inhibitory effect of NLE on alcoholic steatohepatitis. Plasma and hepatic content analysis showed that NLE inhibited lipid accumulation by altering the levels of triglycerides (TG) and cholesterol (TC). Treatment with NLE increased the expression of the p-AMPK/AMPK ratio and PPAR-α. Furthermore, fatty acid oxidation and transport via carnitine palmitoyltransferase-1 (CPT1) and microsomal triglyceride transfer protein (MTP) were through the activation of the AMPK and PPAR-α signal. These results revealed that the polyphenol-rich component of NLE prevents alcoholic steatohepatitis by multiple pathways, including reduced lipid synthesis, enhanced fatty acid oxidation and transport responses, inhibited oxidative stress and facilitated anti-inflammation. Suggesting that NLE might be regarded as a beneficial food that has the potential to be developed as a natural agent for preventing alcoholic steatohepatitis. PMID:24513924

  14. Evaluation of the Influence of thiosemicarbazone-triazole hybrids on genes implicated in lipid oxidation and accumulation as potential anti-obesity agents.

    PubMed

    Kinfe, Henok H; Belay, Yonas H; Joseph, Jitcy S; Mukwevho, Emmanuel

    2013-10-01

    A series of thiosemicarbazone-triazole hybrids 1a-h are efficiently synthesised and evaluated for their influence on the expression of genes, cpt-1, acc-1 and pgc-1, which are essential in lipid metabolism. The test results show that hybrids 1c and 1g exhibited relatively high influence on the expression of cpt-1 and pgc-1 and suppression of acc-1 as desired. PMID:23988353

  15. Morphology and total lipids in Thysanoessa macura from the southern part of the Indian Ocean during summer. Spatial and sex differences

    NASA Astrophysics Data System (ADS)

    Färber-Lorda, Jaime; Mayzaud, Patrick

    2010-04-01

    Samples obtained during austral summer (February) were utilized to study the morphological differences of Thysanoessa macrura and the total lipid content, in relation to sex and geographic location. This species shows an evolution in morphometry, its carapace length increases slightly with sexual maturation, and its second thoracic leg becomes bigger and stronger, as well as its dactylus and especially the setae in the dactylus, which are stronger in a bigger animal allowing them to feed on other lipid-rich zooplankton. All these characteristics seem to support the hypothesis that animals change their diet during this period, allowing them to grow faster during summer, and accumulate lipids as a reserve material. This hypothesis is supported by a steeper slope in the length-weight regression during summer and an even steeper slope of the regression between carapace length and total lipids, especially adults. Great differences in lipid content were found between subadults and adults during this season, being higher in adults and, especially females. Lipids were higher in the northern stations in frontal area. A significant difference in lipid content was found among the stations sampled. Also a significant difference in lipid content was found between subadults, males and females. The species has a longer reproductive season than previously thought, which could depend on local conditions. Its development is accelerated during the summer bloom. Life history strategies of subadults and adults are apparently quite different, according to our lipid results and morphometrics data. Lipids reserves in subadults are not accumulated during summer, thus, T. macrura must accumulate massive amounts of lipids during autumn or late summer as a survival strategy of the species, as proposed for other species.

  16. Effect of short-chain fatty acids on triacylglycerol accumulation, lipid droplet formation and lipogenic gene expression in goat mammary epithelial cells.

    PubMed

    Sun, Yuting; Luo, Jun; Zhu, Jiangjiang; Shi, Hengbo; Li, Jun; Qiu, Siyuan; Wang, Ping; Loor, Juan J

    2016-02-01

    Short-chain fatty acids (SCFAs) are the major energy sources for ruminants and are known to regulate various physiological functions in other species. However, their roles in ruminant milk fat metabolism are still unclear. In this study, goat mammary gland epithelial cells (GMECs) were treated with 3 mmol/L acetate, propionate or butyrate for 24 h to assess their effects on lipogenesis. Data revealed that the content of triacylglycerol (TAG) and lipid droplet formation were significantly stimulated by propionate and butyrate. The expression of FABP3, SCD1, PPARG, SREBP1, DGAT1, AGPAT6 and ADRP were upregulated by propionate and butyrate treatment. In contrast, the messenger RNA (mRNA) expression of FASN and LXRα was not affected by propionate, but reduced by butyrate. Acetate had no obvious effect on the content of TAG and lipid droplets but increased the mRNA expression of SCD1 and FABP3 in GMECs. Additionally, it was observed that propionate significantly increased the relative content of mono-unsaturated fatty acids (C18:1 and C16:1) at the expense of decreased saturated fatty acids (C16:0 and C18:0). Butyrate and acetate had no significant effect on fatty acid composition. Overall, the results from this work help enhance our understanding of the regulatory role of SCFAs on goat mammary cell lipid metabolism. PMID:26304676

  17. Astaxanthin reduces hepatic lipid accumulations in high-fat-fed C57BL/6J mice via activation of peroxisome proliferator-activated receptor (PPAR) alpha and inhibition of PPAR gamma and Akt.

    PubMed

    Jia, Yaoyao; Wu, Chunyan; Kim, Jiyoung; Kim, Bobae; Lee, Sung-Joon

    2016-02-01

    We have previously reported that astaxanthin (AX), a dietary carotenoid, directly interacts with peroxisome proliferator-activated receptors PPARα and PPARγ, activating PPARα while inhibiting PPARγ, and thus reduces lipid accumulation in hepatocytes in vitro. To investigate the effects of AX in vivo, high-fat diet (HFD)-fed C57BL/6J mice were orally administered AX (6 or 30mg/kg body weight) or vehicle for 8weeks. AX significantly reduced the levels of triglyceride both in plasma and in liver compared with the control HFD mice. AX significantly improved liver histology and thus reduced both steatosis and inflammation scores of livers with hematoxylin and eosin staining. The number of inflammatory macrophages and Kupffer cells were reduced in livers by AX administration assessed with F4/80 staining. Hepatic PPARα-responsive genes involved in fatty acid uptake and β-oxidation were upregulated, whereas inflammatory genes were downregulated by AX administration. In vitro radiolabeled assays revealed that hepatic fatty acid oxidation was induced by AX administration, whereas fatty acid synthesis was not changed in hepatocytes. In mechanism studies, AX inhibited Akt activity and thus decreased SREBP1 phosphorylation and induced Insig-2a expression, both of which delayed nuclear translocation of SREBP1 and subsequent hepatic lipogenesis. Additionally, inhibition of the Akt-mTORC1 signaling axis by AX stimulated hepatic autophagy that could promote degradation of lipid droplets. These suggest that AX lowers hepatic lipid accumulation in HFD-fed mice via multiple mechanisms. In addition to the previously reported differential regulation of PPARα and PPARγ, inhibition of Akt activity and activation of hepatic autophagy reduced hepatic steatosis in mouse livers. PMID:26878778

  18. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  19. Lysosomal Lipid Storage Diseases

    PubMed Central

    Schulze, Heike; Sandhoff, Konrad

    2011-01-01

    Lysosomal lipid storage diseases, or lipidoses, are inherited metabolic disorders in which typically lipids accumulate in cells and tissues. Complex lipids, such as glycosphingolipids, are constitutively degraded within the endolysosomal system by soluble hydrolytic enzymes with the help of lipid binding proteins in a sequential manner. Because of a functionally impaired hydrolase or auxiliary protein, their lipid substrates cannot be degraded, accumulate in the lysosome, and slowly spread to other intracellular membranes. In Niemann-Pick type C disease, cholesterol transport is impaired and unesterified cholesterol accumulates in the late endosome. In most lysosomal lipid storage diseases, the accumulation of one or few lipids leads to the coprecipitation of other hydrophobic substances in the endolysosomal system, such as lipids and proteins, causing a “traffic jam.” This can impair lysosomal function, such as delivery of nutrients through the endolysosomal system, leading to a state of cellular starvation. Therapeutic approaches are currently restricted to mild forms of diseases with significant residual catabolic activities and without brain involvement. PMID:21502308

  20. Lipid content in hepatic and gonadal adipose tissue parallel aortic cholesterol accumulation in mice fed diets with different omega-6 PUFA to EPA plus DHA ratios

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diets with low omega (u)-6 polyunsaturated fatty acids (PUFA) to eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) ratios have been shown to decrease aortic cholesterol accumulation and have been suggested to promote weight loss. The involvement of the liver and gonadal adipose tissue (GAT...

  1. Chinese medicine Jinlida (JLD) ameliorates high-fat-diet induced insulin resistance in rats by reducing lipid accumulation in skeletal muscle.

    PubMed

    Zang, Sha-Sha; Song, An; Liu, Yi-Xuan; Wang, Chao; Song, Guang-Yao; Li, Xiao-Ling; Zhu, Ya-Jun; Yu, Xian; Li, Ling; Liu, Chen-Xi; Kang, Jun-Cong; Ren, Lu-Ping

    2015-01-01

    The present paper reports the effects of Jinlida (JLD), a traditional Chinese medicine which has been given as a treatment for high-fat-diet (HFD)-induced insulin resistance. A randomized controlled experiment was conducted to provide evidence in support of the affects of JLD on insulin resistance induced by HFD. The affect of JLD on blood glucose, lipid, insulin, adiponectin, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBIL) in serum and lipid content in skeletal muscle was measured. Genes and proteins of the AMPK signaling pathway were analyzed by real time RT-PCR and Western blot. Adiponectin receptor 1 and 2 (ADIPOR1, ADIPOR2) and other genes involved in mitochondrial function and fat oxidation were analyzed by real time RT-PCR. Histological staining was also performed. JLD or pioglitazone administration ameliorated fasting plasma levels of glucose, insulin, triglyceride (TG), total cholesterol (TC), ALT, AST and non-esterified fatty acid (NEFA) (P < 0.05). Treatment with JLD or pioglitazone significantly reverted muscle lipid content (P < 0.05). JLD (1.5 g/kg) significantly increased plasma adiponectin concentration by 60.17% and increased AMPK and acetyl-CoA carboxylase (ACC) phosphorylation in skeletal muscle (P < 0.05). JLD administration increased levels of ADIPOR1 and ADIPOR2 by 1.48 and 1.29 respectively. Levels of genes involved in mitochondrial function and fat oxidation were increased. This study provides the molecular mechanism by which JLD ameliorates HFD-induced insulin resistance in rats. PMID:26064395