Sample records for accumulate trace metals

  1. Accumulation and trace-metal variability of estuarine sediments, St. Bernard delta geomorphic region, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landrum, K.E.

    1995-10-01

    Prior to government regulation, little monitoring of metal discharges into the canals, bayous, and rivers that drain estuarine systems occured. Discharges of trace-metals by industries and municipalities into surface water bodies are presently regulated through the use of Federal and State mandated permit programs. Resource management of economically important estuarine systems has fostered increasing concern over the accumulation of trace-metal pollutants in water, sediments, and biota from these dynamic areas. The acid-leachable concentrations of fourteen trace-metals were determined for 125 bottom sediment samples and 50 core interval samples by plasma emission analysis. Bottom sediments of the St. Bernard estuarom complexmore » consist predominantly of silty clays and clayey silts derived from the erosion of the St. Bernard lobe of the Mississippi River delta and sediments associated with historic crevasses along the Mississippi River. Within the 2 cm core intervals, trace-metal concentrations of Ba, Cr, Cd, Pb, and Zn increased by 10% to 18% in sediments accumulated within the last 75 years. Trace-metal concentrations from sediments for the study area tend to have greater mean concentrations than Florida estuarine sediments, basinwide and Gulf Coast trace-metal comparisons, sediment geochronology. Rates varied from 0.12 to 0.21 cm/yr. Within the 2 cm core intervals, trace-metal concentrations of Ba, Cr, Cd, Pb, and Zn increased by 10% to 18% in sediments accumulated within the last 75 years. Natural trace-metal variability was examined through the use of an aluminum normalization model based on Florida and Louisiana estuarine sediments, basinwide and Gulf Coast trace-metal comparisons, sediment geochronology, and grain-size corrected data. Elevated concentrations of As, Ba, Cd, Pb, V and Zn were noted from sediments associated with oil and gas drilling and production, sandblasting and shipbuilding, dredging, and stormwater, municipal, and industrial

  2. Trace metal accumulation in soil and their phytoavailability as affected by greenhouse types in north China.

    PubMed

    Yang, Lanqin; Huang, Biao; Mao, Mingcui; Yao, Lipeng; Hickethier, Martina; Hu, Wenyou

    2015-05-01

    Long-term heavy organic fertilizer application has linked greenhouse vegetable production (GVP) with trace metal contamination in north China. Given that trace metals release from fertilizers and their availability may be affected by discrepant environmental conditions, especially temperature under different greenhouses, this study investigated Cd, Cu, Pb, and Zn accumulation and contamination extent in soil as well as their phytoavailability under two major greenhouses in Tongshan, north China, namely solar greenhouse (SG) and round-arched plastic greenhouse (RAPG), to evaluate their presumed difference. The results showed significant Cd, Cu, Pb, and Zn accumulation in GVP soil by comparing with those in open-field soil, but their accumulation extent and rates were generally greater in SG than those in RAPG. This may be related to more release of trace metals to soil due to the acceleration of decomposition and humification process of organic fertilizers under higher soil temperature in SG relative to that in RAPG. Overall, soil in both greenhouses was generally less polluted or moderately polluted by the study metals. Similarly, decreased soil pH and elevated soil available metals in SG caused higher trace metals in leaf vegetables in SG than those in RAPG, although there was no obvious risk via vegetable consumption under both greenhouses. Lower soil pH may be predominantly ascribed to more intensive farming practices in SG while elevated soil available metals may be attributed to more release of dissolved organic matter-metal complexes from soil under higher temperature in SG. The data provided in this study may assist in developing reasonable and sustainable fertilization strategies to abate trace metal contamination in both greenhouses.

  3. Accumulation, sources and health risks of trace metals in elevated geochemical background soils used for greenhouse vegetable production in southwestern China.

    PubMed

    Zhang, Haidong; Huang, Biao; Dong, Linlin; Hu, Wenyou; Akhtar, Mohammad Saleem; Qu, Mingkai

    2017-03-01

    Greenhouse vegetable cultivation with substantive manure and fertilizer input on soils with an elevated geochemical background can accumulate trace metals in soils and plants leading to human health risks. Studies on trace metal accumulation over a land use shift duration in an elevated geochemical background scenario are lacking. Accumulation characteristics of seven trace metals in greenhouse soil and edible plants were evaluated along with an assessment of the health risk to the consumers. A total of 118 greenhouse surface soils (0-20cm) and 30 vegetables were collected from Kunming City, Yunnan Province, southwestern China, and analyzed for total Cd, Pb, Cu, Zn, As, Hg, and Cr content by ICP-MS and AFS. The trace metals were ordered Cu>Cd>Hg>Zn>Pb>As>Cr in greenhouse soils accumulation level, and the geo-accumulation index suggested the soil more severely polluted with Cd, Cu, Hg and Zn. The greenhouse and open-field soils had significant difference in Cd, Cr and Zn. The duration of shift from paddy to greenhouse land-use significantly influenced trace metal accumulation with a dramatic change during five to ten year greenhouse land-use, and continuous increase of Cd and Hg. A spatial pattern from north to south for Cd and Hg and a zonal pattern for Cu and Zn were found. An anthropogenic source primarily caused trace metal accumulation, where the principal component analysis/multiple linear regression indicated a contribution 61.2%. While the assessment showed no potential risk for children and adults, the hazard health risks index was greater than one for adolescents. The extended duration of land use as greenhouses caused the trace metal accumulation, rotation in land use should be promoted to reduce the health risks. Copyright © 2016. Published by Elsevier Inc.

  4. Ecological risk assessment of trace metal accumulation in sediments of Veraval Harbor, Gujarat, Arabian Sea.

    PubMed

    Sundararajan, S; Khadanga, Mukunda Kesari; Kumar, J Prince Prakash Jeba; Raghumaran, S; Vijaya, R; Jena, Basanta Kumar

    2017-01-15

    In this study, different types of indices were used to assess the ecological risk of trace metal contamination in sediments on the basis of sediment quality guidelines at Veraval Fishery Harbor. Sediment samples were collected from three sectors in pre-, post-, and monsoon seasons in 2006. Trace metal concentrations were higher in the inner sector during post-monsoon, and it showed the highest statistical significance (p<0.01) among the stations. Pollution load index was higher than unity, indicating alternation by effluent discharge from industries. Enrichment factor and geo-accumulation index showed that Cd, Pb, and Zn were enriched in the northern part of the harbor and Pb had accumulated in the harbor sediment. The ecological risk assessment index revealed that Ni, Zn, and Pb were higher than the effect range median values, indicating their potential toxicity to the aquatic environment in the Veraval Harbor. Hence, the harbor is dominated by anthropogenic activities rather than natural process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Trace metals accumulation in Bacopa monnieri and their bioaccessibility.

    PubMed

    Srikanth Lavu, Rama Venkata; Prasad, Majeti Narasimha Vara; Pratti, Varalakshmi Lalithya; Meißner, Ralph; Rinklebe, Jörg; Van De Wiele, Tom; Tack, Filip; Du Laing, Gijs

    2013-08-01

    Bacopa monnieri is commonly known as "Brahmi" or "Water hyssop" and is a source of nootropic drugs. Aboveground parts of plant samples collected from peri-urban Indian areas were analysed for total trace metal concentrations. Subsequently, three samples with high concentrations of Cd and Pb were subjected to in vitro gastrointestinal digestion to assess the bioaccessibility of the trace metals in these plants. The total concentrations of trace metals on a dry weight basis were 1.3 to 6.7 mg·kg⁻¹ Cd, 1.5 to 22 mg·kg⁻¹ Pb, 36 to 237 mg·kg⁻¹ Cu, and 78 to 186 mg·kg⁻¹ Zn. The majority of Bacopa monnieri samples exceeded threshold limits of Cd, Pb, Cu, and Zn for use as raw medicinal plant material or direct consumption. Therefore, it is necessary to evaluate Bacopa monnieri collected in nature for their trace metal content prior to human consumption and preparation of herbal formulations. Georg Thieme Verlag KG Stuttgart · New York.

  6. Trace Metal Accumulation in Sediments and Benthic Macroinvertebrates before and after Maintenance of a Constructed Wetland

    EPA Science Inventory

    Periodic maintenance of stormwater best management practices (BMP) includes the removal of accumulated sediment. The resulting impact on trace metal concentrations of copper (Cu), lead (Pb), and zinc (Zn) in a constructed stormwater wetland BMP on Staten Island, NY was investiga...

  7. Accumulation of Trace Metals in Anadara granosa and Anadara inaequivalvis from Pattani Bay and the Setiu Wetlands.

    PubMed

    Pradit, Siriporn; Shazili, Noor Azhar Mohamed; Towatana, Prawit; Saengmanee, Wuttipong

    2016-04-01

    This study was undertaken to assess the levels of trace metals (As, Cd, Cu, Pb, and Zn) in two common species of cockles (Anadara granosa and Anadara inaequivalvis) from two coastal areas in Thailand (Pattani Bay) and Malaysia (the Setiu Wetlands). A total of 350 cockles were collected in February and September 2014. Trace metals were determined by Inductively Coupled Plasma Mass Spectrometry. We observed that cockles in both areas had a higher accumulation of metals in September. Notably, the biota-sediment accumulation (BSAF) of Cd was highest in both areas. A strong positive correlation of Cd with the length of the cockles at Pattani Bay (r(2) = 0.597) and the Setiu Wetlands (r(2) = 0.675) was noted. It was suggested that As could be a limiting element (BSAF < 1) of cockles obtained from Pattani Bay. In comparison with the permissible limits set by the Thailand Ministry of Public Health and the Malaysia Food Regulations, mean values of As, Cd, Cu, Pb, and Zn were within acceptable limits, but the maximum values of Cd and Pb exceeded the limits for both areas. Regular monitoring of trace metals in cockles from both areas is suggested for more definitive contamination determination.

  8. BIOLOGICAL MONITORING OF TOXIC TRACE METALS. VOLUME 2. TOXIC TRACE METALS IN PLANTS AND ANIMALS OF THE WORLD. PART II

    EPA Science Inventory

    The needs and priorities in using biological accumulator organisms for monitoring toxic trace metals in plants and animals are analyzed. The toxic trace metals selected for study are antimony, arsenic, beryllium, boron, cadmium, chromium, cobalt, copper, lead, mercury, nickel, se...

  9. BIOLOGICAL MONITORING OF TOXIC TRACE METALS. VOLUME 2. TOXIC TRACE METALS IN PLANTS AND ANIMALS OF THE WORLD. PART I

    EPA Science Inventory

    The needs and priorities in using biological accumulator organisms for monitoring toxic trace metals in plants and animals are analyzed. The toxic trace metals selected for study are antimony, arsenic, beryllium, boron, cadmium, chromium, cobalt, copper, lead, mercury, nickel, se...

  10. TOXIC TRACE METALS IN MAMMALIAN HAIR AND NAILS

    EPA Science Inventory

    Data have been compiled from the available world literature on the accumulation and bioconcentration of selected toxic trace metals in human hair and nails and other mammalian hair, fur, nails, claws, and hoofs. The toxic trace metals and metalloids include antimony, arsenic, bor...

  11. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries

    PubMed Central

    Hsu, Liang-Ching; Huang, Ching-Yi; Chuang, Yen-Hsun; Chen, Ho-Wen; Chan, Ya-Ting; Teah, Heng Yi; Chen, Tsan-Yao; Chang, Chiung-Fen; Liu, Yu-Ting; Tzou, Yu-Min

    2016-01-01

    Metal accumulation in sediments threatens adjacent ecosystems due to the potential of metal mobilization and the subsequent uptake into food webs. Here, contents of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and trace elements (Ga, In, Mo, and Se) were determined for river waters and bed sediments that received sewage discharged from traditional and semiconductor industries. We used principal component analysis (PCA) to determine the metal distribution in relation to environmental factors such as pH, EC, and organic matter (OM) contents in the river basin. While water PCA categorized discharged metals into three groups that implied potential origins of contamination, sediment PCA only indicated a correlation between metal accumulation and OM contents. Such discrepancy in metal distribution between river water and bed sediment highlighted the significance of physical-chemical properties of sediment, especially OM, in metal retention. Moreover, we used Se XANES as an example to test the species transformation during metal transportation from effluent outlets to bed sediments and found a portion of Se inventory shifted from less soluble elemental Se to the high soluble and toxic selenite and selenate. The consideration of environmental factors is required to develop pollution managements and assess environmental risks for bed sediments. PMID:27681994

  12. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries.

    PubMed

    Hsu, Liang-Ching; Huang, Ching-Yi; Chuang, Yen-Hsun; Chen, Ho-Wen; Chan, Ya-Ting; Teah, Heng Yi; Chen, Tsan-Yao; Chang, Chiung-Fen; Liu, Yu-Ting; Tzou, Yu-Min

    2016-09-29

    Metal accumulation in sediments threatens adjacent ecosystems due to the potential of metal mobilization and the subsequent uptake into food webs. Here, contents of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and trace elements (Ga, In, Mo, and Se) were determined for river waters and bed sediments that received sewage discharged from traditional and semiconductor industries. We used principal component analysis (PCA) to determine the metal distribution in relation to environmental factors such as pH, EC, and organic matter (OM) contents in the river basin. While water PCA categorized discharged metals into three groups that implied potential origins of contamination, sediment PCA only indicated a correlation between metal accumulation and OM contents. Such discrepancy in metal distribution between river water and bed sediment highlighted the significance of physical-chemical properties of sediment, especially OM, in metal retention. Moreover, we used Se XANES as an example to test the species transformation during metal transportation from effluent outlets to bed sediments and found a portion of Se inventory shifted from less soluble elemental Se to the high soluble and toxic selenite and selenate. The consideration of environmental factors is required to develop pollution managements and assess environmental risks for bed sediments.

  13. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries

    NASA Astrophysics Data System (ADS)

    Hsu, Liang-Ching; Huang, Ching-Yi; Chuang, Yen-Hsun; Chen, Ho-Wen; Chan, Ya-Ting; Teah, Heng Yi; Chen, Tsan-Yao; Chang, Chiung-Fen; Liu, Yu-Ting; Tzou, Yu-Min

    2016-09-01

    Metal accumulation in sediments threatens adjacent ecosystems due to the potential of metal mobilization and the subsequent uptake into food webs. Here, contents of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and trace elements (Ga, In, Mo, and Se) were determined for river waters and bed sediments that received sewage discharged from traditional and semiconductor industries. We used principal component analysis (PCA) to determine the metal distribution in relation to environmental factors such as pH, EC, and organic matter (OM) contents in the river basin. While water PCA categorized discharged metals into three groups that implied potential origins of contamination, sediment PCA only indicated a correlation between metal accumulation and OM contents. Such discrepancy in metal distribution between river water and bed sediment highlighted the significance of physical-chemical properties of sediment, especially OM, in metal retention. Moreover, we used Se XANES as an example to test the species transformation during metal transportation from effluent outlets to bed sediments and found a portion of Se inventory shifted from less soluble elemental Se to the high soluble and toxic selenite and selenate. The consideration of environmental factors is required to develop pollution managements and assess environmental risks for bed sediments.

  14. Bioaccumulation of trace metals in octocorals depends on age and tissue compartmentalization

    PubMed Central

    Hwang, Jiang-Shiou; Huang, Ke Li; Huang, Mu-Yeh; Liu, Xue-Jun; Khim, Jong Seong; Wong, Chong Kim

    2018-01-01

    Trace metal dynamics have not been studied with respect to growth increments in octocorals. It is particularly unknown whether ontogenetic compartmentalization of trace metal accumulation is species-specific. We studied here for the first time the intracolonial distribution and concentrations of 18 trace metals in the octocorals Subergorgia suberosa, Echinogorgia complexa and E. reticulata that were retrieved from the northern coast of Taiwan. Levels of trace metals were considerably elevated in corals collected at these particular coral habitats as a result of diverse anthropogenic inputs. There was a significant difference in the concentration of metals among octocorals except for Sn. Both species of Echinogorgia contained significantly higher concentrations of Cu, Zn and Al than Subergorgia suberosa. We used for the first time exponential growth curves that describe an age-specific relationship of octocoral trace metal concentrations of Cu, Zn, Cd, Cr and Pb where the distance from the grip point was reflecting younger age as linear regressions. The larger colony (C7) had a lower accumulation rate constant than the smaller one (C6) for Cu, Zn, Cd, Cr and Pb, while other trace metals showed an opposite trend. The Cu concentration declined exponentially from the grip point, whereas the concentrations of Zn, Cd, Cr and Pb increased exponentially. In S. suberosa and E. reticulata, Zn occurred primarily in coenosarc tissues and Zn concentrations increased with distance from the grip point in both skeletal and coenosarc tissues. Metals which appeared at high concentrations (e.g. Ca, Zn and Fe) generally tended to accumulate in the outer coenosarc tissues, while metals with low concentrations (e.g. V) tended to accumulate in the soft tissues of the inner skeleton. PMID:29684058

  15. Historical trace metal accumulation in the sediments of an urbanized region of the Lake Champlain watershed, Burlington, Vermont

    USGS Publications Warehouse

    Mecray, E.L.; King, J.W.; Appleby, P.G.; Hunt, A.S.

    2001-01-01

    This study documents the history of pollution inputs in the Burlington region of Lake Champlain, Vermont using measurements of anthropogenic metals (Cu, Zn, Cr, Pb, Cd, and Ag) in four age-dated sediment cores. Sediments record a history of contamination in a region and can be used to assess the changing threat to biota over time and to evaluate the effectiveness of discharge regulations on anthropogenic inputs. Grain size, magnetic susceptibility, radiometric dating and pollen stratigraphy were combined with trace metal data to provide an assessment of the history of contamination over the last 350 yr in the Burlington region of Lake Champlain. Magnetic susceptibility was initially used to identify land-use history for each site because it is a proxy indicator of soil erosion. Historical trends in metal inputs in the Burlington region from the seventeenth through the twentieth centuries are reflected in downcore variations in metal concentrations and accumulation rates. Metal concentrations increase above background values in the early to mid nineteenth century. The metal input rate to the sediments increases around 1920 and maximum concentrations and accumulation rates are observed in the late 1960s. Decreases in concentration and accumulation rate between 1970 and the present are observed, for most metals. The observed trends are primarily a function of variations in anthropogenic inputs and not variations in sediment grain size. Grain size data were used to remove texture variations from the metal profiles and results show trends in the anthropogenic metal signals remain. Radiometric dating and pollen stratigraphy provide well-constrained dates for the sediments thereby allowing the metal profiles to be interpreted in terms of land-use history.This study documents the history of pollution inputs in the Burlington region of Lake Champlain, Vermont using measurements of anthropogenic metals (Cu, Zn, Cr, Pb, Cd, and Ag) in four age-dated sediment cores. Sediments

  16. Evaluation of the Accumulation of Trace Metals (as, U, CR, CU, PB, Zn) on Iron-Manganese Coatings on in Situ Stream Pebbles and Emplaced Substrates

    NASA Astrophysics Data System (ADS)

    Turpin, M. M.; Blake, J.; Crossey, L. J.; Ali, A.; Hansson, L.

    2015-12-01

    Exposure to trace metals (As, U, Cr, Cu, Pb, Zn) has potential negative health effects on human populations and wildlife. Geothermal waters often have elevated concentrations of trace elements and understanding the geochemical cycling of these elements can be challenging. Previous studies have utilized in situ stream pebbles and glass or ceramic substrates with iron-manganese oxide coatings to understand contamination and or chemical cycling. This project's main focus is to develop an ideal tracing method using adsorption onto substrate surfaces and to define key parameters that are necessary for the phenomenon of adsorption between trace metals and these surface coatings to occur. Sampling locations include the Jemez River and Rio San Antonio in the Jemez mountains, northern New Mexico. Both streams have significant geothermal inputs. Pebbles and cobbles were gathered from the active stream channel and 6mm glass beads and 2 X1 in. ceramic plates were placed in streams for three weeks to allow for coating accumulation. Factors such as leachate type, water pH, substrate type, coating accumulation period and leach time were all considered in this experiment. It was found that of the three leachates (aqua regia, 10% aqua regia and hydroxylamine), hydroxylamine was the most effective at leaching coatings without dissolving substrates. Samples leached with aqua regia and 10% aqua regia were found to lose weight and mass over the following 5, 7, and 10 day measurements. Glass beads were determined to be more effective than in stream pebbles as an accumulation substrate: coatings were more easily controlled and monitored. Samples leached with hydroxylamine for 5 hours and 72 hours showed little difference in their leachate concentrations, suggesting that leach time has little impact on the concentration of leachate samples. This research aims to find the best method for trace metal accumulation in streams to aid in understanding geochemical cycling.

  17. Implications of metal accumulation mechanisms to phytoremediation.

    PubMed

    Memon, Abdul R; Schröder, Peter

    2009-03-01

    Trace elements (heavy metals and metalloids) are important environmental pollutants, and many of them are toxic even at very low concentrations. Pollution of the biosphere with trace elements has accelerated dramatically since the Industrial Revolution. Primary sources are the burning of fossil fuels, mining and smelting of metalliferous ores, municipal wastes, agrochemicals, and sewage. In addition, natural mineral deposits containing particularly large quantities of heavy metals are found in many regions. These areas often support characteristic plant species thriving in metal-enriched environments. Whereas many species avoid the uptake of heavy metals from these soils, some of them can accumulate significantly high concentrations of toxic metals, to levels which by far exceed the soil levels. The natural phenomenon of heavy metal tolerance has enhanced the interest of plant ecologists, plant physiologists, and plant biologists to investigate the physiology and genetics of metal tolerance in specialized hyperaccumulator plants such as Arabidopsis halleri and Thlaspi caerulescens. In this review, we describe recent advances in understanding the genetic and molecular basis of metal tolerance in plants with special reference to transcriptomics of heavy metal accumulator plants and the identification of functional genes implied in tolerance and detoxification. Plants are susceptible to heavy metal toxicity and respond to avoid detrimental effects in a variety of different ways. The toxic dose depends on the type of ion, ion concentration, plant species, and stage of plant growth. Tolerance to metals is based on multiple mechanisms such as cell wall binding, active transport of ions into the vacuole, and formation of complexes with organic acids or peptides. One of the most important mechanisms for metal detoxification in plants appears to be chelation of metals by low-molecular-weight proteins such as metallothioneins and peptide ligands, the phytochelatins. For

  18. Landslide-induced iron mobilisation shapes benthic accumulation of nutrients, trace metals and REE fractionation in an oligotrophic alpine stream

    NASA Astrophysics Data System (ADS)

    Johnston, Scott G.; Rose, Andrew L.; Burton, Edward D.; Webster-Brown, Jenny

    2015-01-01

    Large alpine landslides that entrain substantial organic material below the water table and create suspended floodplains may have long-term consequences for the mobilisation of redox sensitive elements, such as Fe, into streamwaters. In turn, the cycling of iron in aquatic systems can influence the fate of nutrients, alter primary productivity, enhance accumulation of trace metals and induce fractionation of rare earth elements (REE). In this study we examine a reach of a pristine oligotrophic alpine stream bracketing a 30 year-old landslide and explore the consequences of landslide-induced Fe mobilisation for aqueous geochemistry and the composition of benthic stream cobble biofilm. Elevated Fe2+ and Mn in landslide zone stream waters reflect inputs of circumneutral groundwater from the landslide debris-zone floodplain. Geochemical characteristics are consistent with reductive dissolution being a primary mechanism of Fe2+ and Mn mobilisation. Stream cobble biofilm in the landslide zone is significantly (P < 0.01) enriched in poorly crystalline Fe(III) (∼10-400 times background) and Mn (∼15-150 times background) (1 M HCl extractable; Fe(III)Ab). While the landslide zone accounts for less than ∼9% of the total stream length, we estimate it is responsible for approximately 60-80% of the stream's benthic biofilm load of poorly crystalline Fe(III) and Mn. Biofilm Fe(III) precipitates are comprised mainly of ferrihydrite, lepidocrocite and an organic-Fe species, while precipitate samples collected proximal to hyporheic seeps contain abundant sheath structures characteristic of the neutrophilic Fe(II)-oxidising bacteria Leptothrix spp. Stream-cobble Fe(III)-rich biofilm is accumulating PO43- (∼3-30 times background) and behaving as a preferential substrate for photosynthetic periphyton, with benthic PO43-, chlorophyll a, organic carbonHCl and total N all significantly positively correlated with Fe(III)Ab and significantly elevated within the landslide zone (P < 0

  19. Bioremoval of trace metals from rhizosediment by mangrove plants in Indian Sundarban Wetland.

    PubMed

    Chowdhury, Ranju; Favas, Paulo J C; Jonathan, M P; Venkatachalam, Perumal; Raja, P; Sarkar, Santosh Kumar

    2017-11-30

    The study accentuated the trace metal accumulation and distribution pattern in individual organs of 13 native mangrove plants along with rhizosediments in the Indian Sundarban Wetland. Enrichment of the essential micronutrients (Mn, Fe, Zn, Cu, Co, Ni) was recorded in all plant organs in comparison to non-essential ones, such as Cr, As, Pb, Cd, Hg. Trunk bark and root/pneumatophore showed maximum metal accumulation efficiency. Rhizosediment recorded manifold increase for most of the trace metals than plant tissue, with the following descending order: Fe>Mn>Zn>Cu>Pb>Ni>Cr>Co>As>Cd>Hg. Concentrations of Cu, Ni, Pb and Hg were found to exceed prescribed sediment quality guidelines (SQGs) indicating adverse effect on adjacent biota. Both index of geoaccumulation (I geo ) and enrichment factor (EF) also indicated anthropogenic contamination. Based on high (>1) translocation factor (TF) and bioconcentration factor (BCF) values Sonneratiaapetala and Avicenniaofficinalis could be considered as potential accumulators, of trace metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Trace metals in the living and nonliving components of scleractinian corals.

    PubMed

    Reichelt-Brushett, A J; McOrist, G

    2003-12-01

    Trace metals in coral tissue and skeleton have been investigated in various ways since the early seventies. More recently it has been suggested that the symbiotic zooxanthellae may play an important role in the accumulation and regulation of trace metals. Furthermore gamete development and mucus production may influence the metal accumulation and loss in corals. Many studies have attempted to use the annual growth bands in coral skeletons to investigate historical pollution events. However the relationship between the metal concentrations in the surrounding environment and the incorporation of this into coral skeleton is not well understood. This paper explains a method for investigating metal loads in coral tissue, zooxanthellae and skeleton. Furthermore, it presents new information suggesting that zooxanthellae accumulate most metals (Al, Fe, As, Mn, Ni, Cu, Zn, Cd, Pb) in greater concentrations than the coral tissue. Coral skeletons had consistently lower metal concentration than the zooxanthellae, tissue and gametes. The loss of zooxanthellae during stress events may have a significant contribution to the total metal loads in corals. The use of corals as biomonitors should carefully factor in zooxanthellae densities and gamete development before conclusions are drawn.

  1. Trace metal accumulation in sediments and benthic macroinvertebrates before and after maintenance of a constructed wetland.

    PubMed

    O'Connor, Thomas P; Muthukrishnan, Swarna; Barshatzky, Kristen; Wallace, William

    2012-04-01

    Stormwater best management practices (BMPs) require regular maintenance. The impact on trace metal concentrations in a constructed stormwater wetland BMP on Staten Island, New York, was investigated by analyzing sediment concentrations and tissue residues of the dominant macroinvertebrates (Tubifex tubifex) prior and subsequent to maintenance. Trace metal concentrations were assessed using standard serial extraction (for sediment) and acid digestion (for tissue burdens) techniques, followed by quantitative determination using graphite furnace atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry, respectively. The results suggest that disturbance of sediment during maintenance of the BMP resulted in an increase in the most mobile fraction of trace metals, especially those associated with finer grained sediments (< 63 tm), and as a consequence, measured metal concentrations in macroinvertebrates increased. Regressions of a subset of metal concentrations (copper, lead, and zinc) in sediment and the macroinvertebrate tissue burden samples generally increased as a result of maintenance. A follow-up sampling event 9 months after maintenance demonstrated that the most readily available form of trace metal in the BMP was reduced, which supports (1) long-term sequestration of metals in the BMP and (2) that elevated bioavailability following maintenance was potentially a transient feature of the disturbance. This study suggests that in the long-term, performing sediment removal might help reduce bioavailability of trace metal concentrations in both the BMP and the receiving water to which a BMP discharges. However, alternative practices might need to be implemented to reduce trace metal bioavailability in the short-term.

  2. Trophic transfer of trace metals from the polychaete worm Nereis diversicolor to the polychaete N. virens and the decapod crustacean Palaemonetes varians

    USGS Publications Warehouse

    Rainbow, P.S.; Poirier, L.; Smith, B.D.; Brix, K.V.; Luoma, S.N.

    2006-01-01

    Diet is an important exposure route for the uptake of trace metals by aquatic invertebrates, with trace metal trophic transfer depending on 2 stages - assimilation and subsequent accumulation by the predator. This study investigated the trophic transfer of trace metals from the sediment-dwelling polychaete worm Nereis diversicolor from metal-rich estuarine sediments in southwestern UK to 2 predators - another polychaete N. virens (Cu, Zn, Pb, Cd, Fe) and the decapod crustacean Palaemonetes varians (Cu, Zn, Pb, Cd, Fe, Ag, As, Mn). N. virens showed net accumulation of Cu, Zn, Pb and Cd from the prey; accumulation increased with increasing prey concentration, but a coefficient of trophic transfer decreased with increasing prey concentration, probably because a higher proportion of accumulated metal in the prey is bound in less trophically available (insoluble) detoxified forms. The trace metal accumulation patterns of P. varians apparently restricted significant net accumulation of metals from the diet of N. diversicolor to just Cd. There was significant mortality of the decapods fed on the diets of metal-rich worms. Metal-rich invertebrates that have accumulated metals from the rich historical store in the sediments of particular SW England estuaries can potentially pass these metals along food chains, with accumulation and total food chain transfer depending on the metal assimilation efficiencies and accumulation patterns of the animal at each trophic level. This trophic transfer may be significant enough to have ecotoxicological effects. ?? Inter-Research 2006.

  3. Assessment and source identification of trace metals in the soils of greenhouse vegetable production in eastern China.

    PubMed

    Yang, Lanqin; Huang, Biao; Hu, Wenyou; Chen, Yong; Mao, Mingcui

    2013-11-01

    Worldwide concern about the occurrence of trace metals in greenhouse vegetable production soils (GVPS) is growing. In this study, a total of 385 surface GVPS samples were collected in Shouguang and four vegetable production bases in Nanjing, Eastern China, for the determination of As and Hg using atomic fluorescence spectrometry and Pb, Cu, Cd, and Zn using inductively coupled plasma-mass spectrometry. Geo-accumulation indices and factor analysis were used to investigate the accumulation and sources of the trace metals in soils in Eastern China. The results revealed that greenhouse production practices increased accumulation of the trace metals, particularly Cd, Zn, and Cu in soils and their accumulation became significant with increasing years of cultivation. Accumulation of Cd and Zn was also found in soils from organic greenhouses. The GVPS was generally less polluted or moderately polluted by As, Cu, Zn, and Pb but heavily polluted by Cd and Hg in some locations. Overall, accumulation of Cd, Zn, and Cu in GVPS was primarily associated with anthropogenic activities, particularly, application of manure. The high level of Hg found in some sites was related to historical heavy application of Hg containing pesticides. However, further identification of Hg sources is needed. To reduce accumulation of the trace metals in GVPS, organic fertilizer application should be suggested through development and implementation of reasonable and sustainable strategies. © 2013 Elsevier Inc. All rights reserved.

  4. Trace-metal accumulation, distribution, and fluxes in forests of the northeastern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedland, A.J.

    1985-01-01

    Forest floor was sampled at 78 sites in nine northeastern states in the USA and analyzed for Cu, Zn, Ni, and Cd. Higher levels of trace metals occurred in the southern half of the study region. Earlier work identified that Pb accumulated in the forest floor of the high-elevation regions of New England. The distribution of Pb, Cu, Zn, Ni, and Cd within the forest floor was studied at three different forested states in New England. The greatest concentration of Pb, Cu, Zn, Ni, and Cd occurred in the Oe horizon of the forest floor in all three forests. Thismore » is the zone of greatest biological activity in the forest floor. Because it receives relatively high rates of atmospheric deposition, Camels Hump in northern Vermont was studied in greater detail. Lead concentration and amount in the forest floor increased between 550 and 1160 m elevation. Comparisons with 1966 and 1977 samples from the same stands showed that Pb, Cu, and Zn concentrations increased by as much as 148% in the intervening 14 years. Estimated deposition rates of Pb, Cu, and Zn based on accumulation rates agreed with regional deposition rates reported in the literature. Lead concentrations were an order of magnitude lower in mineral soil and vegetation than in forest floor. Thus the most likely source of forest floor Pb is the atmosphere. Lead was strongly retained by the forest floor and approximately 3% of the current Pb content of the forest floor is added each year by atmospheric deposition. At the current accumulation rates, the amount of Pb in the forest floor will double in three to four decades.« less

  5. Accumulation and depuration of trace metals in Southern Toads, Bufo Terrestris, exposed to coal combustion waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, C.; Hassan, S.; Mendonca, M.

    2009-02-15

    Accumulation and depuration of metals by an organism are underrepresented in the literature. We collected southern toads (Bufo terrestris) from coal by-product (ash)-contaminated and uncontaminated sites to examine metal concentrations over time. Toads were placed in four exposure regimes, then sacrificed periodically over a 5-month period, and whole-body metal levels were measured. Toads exposed to ash accumulated significant concentrations of metals. Metal concentrations changed throughout the experiment, and profiles of accumulation and depuration differed depending on the metal and exposure regime. Ash-exposed toads exhibited elevated levels of 11 of 18 metals measured. Increases ranged from 47.5% for Pb to moremore » than 5000% for As. Eight of 18 metals did not change in control toads, while 10 of 18 metals decreased in toads removed from ash, ranging from -25% for Co to -96% for Tl. Seven metals that decreased in toads removed from ash did not change in control toads.« less

  6. Influence of life history and sex on metal accumulation in two beetle species (insecta: Coleoptera)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindqvist, L.; Block, M.

    1997-04-01

    Insects are important components of most terrestrial environments owing to their great abundance, biomass and diversity. They also make up an important food resource for other animals. Consequently, in many food webs insects constitute important links in metal-transport chains between trophic levels. Therefore trace-metal concentrations in insects have an important influence on the trace-metal distribution in the biosphere. In various insects, Cd, Cu and Zn are usually accumulated to the extent that they reach levels above those of the food, whereas Fe is not. In response to metal pollution, accumulation of nonessential metals was found to increase markedly, whereas essentialmore » metals accumulated less owing to regulating mechanisms in the insects. In polluted environments, metal concentrations were found to be higher in predatory invertebrates than in phytophagous ones in studies where insects were analysed in broad categories such as families. However, no such trend was observed when species were treated separately. The pattern of metal accumulation can differ between species. This is true even for species utilizing the same food resource. For instance, concentrations of Cd, Cu and Fe differed between four species of sawflies feeding on pine needles from the same locality. It is therefore likely that insects with different food sources accumulate metals differently depending on the concentration and chemical form of the metals in the food. There have been few studies aimed at determining whether patterns of metal accumulation differ between males and females of the same species. In one such study on the sawfly Neodiprion sertifer concentrations of Cd, Cu and Fe tended to be higher in males than in females. However, this pattern was not found in two other sawfly species. Target organs for Cd were found to differ between males and females in the grasshopper Aiolopus thalassinus. The testis accumulated Cd to a higher degree than the ovaries.« less

  7. Short-term acute hypercapnia affects cellular responses to trace metals in the hard clams Mercenaria mercenaria.

    PubMed

    Ivanina, Anna V; Beniash, Elia; Etzkorn, Markus; Meyers, Tiffany B; Ringwood, Amy H; Sokolova, Inna M

    2013-09-15

    Estuarine and coastal habitats experience large fluctuations of environmental factors such as temperature, salinity, partial pressure of CO2 ( [Formula: see text] ) and pH; they also serve as the natural sinks for trace metals. Benthic filter-feeding organisms such as bivalves are exposed to the elevated concentrations of metals in estuarine water and sediments that can strongly affect their physiology. The effects of metals on estuarine organisms may be exacerbated by other environmental factors. Thus, a decrease in pH caused by high [Formula: see text] (hypercapnia) can modulate the effects of trace metals by affecting metal bioavailability, accumulation or binding. To better understand the cellular mechanisms of interactions between [Formula: see text] and trace metals in marine bivalves, we exposed isolated mantle cells of the hard clams (Mercenaria mercenaria) to different levels of [Formula: see text] (0.05, 1.52 and 3.01 kPa) and two major trace metal pollutants - cadmium (Cd) and copper (Cu). Elevated [Formula: see text] resulted in a decrease in intracellular pH (pHi) of the isolated mantle cells from 7.8 to 7.4. Elevated [Formula: see text] significantly but differently affected the trace metal accumulation by the cells. Cd uptake was suppressed at elevated [Formula: see text] levels while Cu accumulation has greatly accelerated under hypercapnic conditions. Interestingly, at higher extracellular Cd levels, labile intracellular Cd(2+) concentration remained the same, while intracellular levels of free Zn(2+) increased suggesting that Cd(2+) substitutes bound Zn(2+) in these cells. In contrast, Cu exposure did not affect intracellular Zn(2+) but led to a profound increase in the intracellular levels of labile Cu(2+) and Fe(2+). An increase in the extracellular concentrations of Cd and Cu led to the elevated production of reactive oxygen species under the normocapnic conditions (0.05 kPa [Formula: see text] ); surprisingly, this effect was mitigated in

  8. Accumulation of trace metals in sediments in a Mediterranean Lagoon: Usefulness of metal sediment fractionation and elutriate toxicity assessment.

    PubMed

    Zaaboub, Noureddine; Martins, Maria Virgínia Alves; Dhib, Amel; Béjaoui, Béchir; Galgani, François; El Bour, Monia; Aleya, Lotfi

    2015-12-01

    The authors investigated sediment quality in Bizerte Lagoon (Tunisia) focusing on geochemical characteristics, metal sediment fractionation and elutriate toxicity assessment. Nickel, Cu, Zn, Pb, Cr and Cd partitioning in sediments was studied; accumulation and bioavailability were elucidated using enrichment factors, sequential extractions, redox potential, acid volatile sulfide and biotest procedures in toxicity evaluation. Results revealed an accumulation for Pb and Zn, reaching 99 and 460 mg kg(-1) respectively. In addition, the acid volatile sulfide values were high in both eastern and western lagoon areas, thus affecting metal availability. Mean enrichment factor values for Pb and Zn were 4.8 and 4.9, respectively, with these elements as the main contributors to the lagoon's moderate enrichment level. Toxicity levels were influenced by accumulation of Zn in different surface sediment areas. Core sediments were investigated in areas with the highest metal concentrations; metal fractionation and biotest confirmed that Zn contributes to sediment toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Estuaries as Filters: The Role of Tidal Marshes in Trace Metal Removal

    PubMed Central

    Teuchies, Johannes; Vandenbruwaene, Wouter; Carpentier, Roos; Bervoets, Lieven; Temmerman, Stijn; Wang, Chen; Maris, Tom; Cox, Tom J. S.; Van Braeckel, Alexander; Meire, Patrick

    2013-01-01

    Flux calculations demonstrate that many estuaries are natural filters for trace metals. Yet, the underlying processes are poorly investigated. In the present study, it was hypothesized that intertidal marshes contribute significantly to the contaminant filter function of estuaries. Trace metal concentrations and sediment characteristics were measured along a transect from the subtidal, over an intertidal flat and marsh to a restored marsh with controlled reduced tide. Metal concentrations in the intertidal and restored marsh were found to be a factor two to five higher than values in the subtidal and intertidal flat sediments. High metal concentrations and high accretion rates indicate a high metal accumulation capacity of the intertidal marshes. Overbank sedimentation in the tidal marshes of the entire estuary was calculated to remove 25% to 50% of the riverine metal influx, even though marshes comprise less than 8% of the total surface of the estuary. In addition, the large-scale implementation of planned tidal marsh restoration projects was estimated to almost double the trace metal storage capacity of the present natural tidal marshes in the estuary. PMID:23950927

  10. Translocation and accumulation of trace metals from the rhizosphere to the tomato and topinambur plants in a contaminated area of South Italy

    NASA Astrophysics Data System (ADS)

    Papa, Stefania; Bartoli, Giovanni; Álvarez-Romero, Marta; Zornoza, Raúl; Carillo, Petronia; Fioretto, Antonietta

    2017-04-01

    According to a survey of the Italian Environmental Monitoring Agency (ARPA), there are different critical sites in Campania region (South Italy) (e.i. legal or illegal landfills, countryside lands, abandoned farms, parking lots and regular streets). Literature data show that about half of the lead, cadmium and mercury contents, ingested through food, is due to the plant products (fruit, vegetables and grains) (Kachenko and Singh 2006; Liu et al 2012; Chang et al 2014; Wong et al 2002). In the health protection programs, the knowledge of heavy metals translocation from soils to plants used as food are very important with research on metal uptake by plants of food interest cultivated in contaminated soils. The goal of this work was to evaluate the translocation and accumulation of trace metals from the rhizosphere to the different parts of the plant (roots, stems, leaves, fruit) of Topinambur (Helianthus tuberosus) and tomato (Solanum lycopersicum) sampled in the coast area of Castel Volturno (Campania region, South Italy). This area is one of the critical sites according to a survey of the Environmental Monitoring Agency ARPA. In addition to these measures, malondialdehyde (MDA) activity was assayed to evaluate the stress state of the plant. The results showed that the trace metals concentration determinated in different organs of each species studied were more present in the roots than the other plant's parts, suggesting a probable block at root level. The only exception were Cu and Hg in tomato and topinambur plants respectively, that were mainly present in the leaves. The metals block at the root induced no alteration of MDA. However, the correlation between this activity and Cd, Pb, V and Hg seemed to attest to a possible synergy. Keywords: "Helianthus tuberosus", "Solanum lycopersicum", trace metal, traslocation Reference -Kachenko AG, Singh B, 2006 Heavy Metals Contamination in Vegetables Grown in Urban and Metal Smelter Contaminated Sites in Australia. Water

  11. Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Samek, O.; Beddows, D. C. S.; Telle, H. H.; Morris, G. W.; Liska, M.; Kaiser, J.

    The technique of laser ablation is receiving increasing attention for applications in dentistry, specifically for the treatment of teeth (e.g. drilling of micro-holes and plaque removal). In the process of ablation a luminous micro-plasma is normally generated which may be exploited for elemental analysis. Here we report on quantitative Laser-Induced Breakdown Spectroscopy (LIBS) analysis to study the presence of trace minerals in teeth. A selection of teeth of different age groups has been investigated, ranging from the first teeth of infants, through the second teeth of children, to adults to trace the influence of environmental factors on the accumulation of a number of elements in teeth. We found a close link between elements detected in tooth fillings and toothpastes with those present in teeth.

  12. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation.

    PubMed

    Klink, Agnieszka

    2017-02-01

    The aims of the present investigation were to reveal various trace metal accumulation abilities of two common helophytes Typha latifolia and Phragmites australis and to investigate their potential use in the phytoremediation of environmental metal pollution. The concentrations of Fe, Mn, Zn, Cu, Cd, Pb and Ni were determined in roots, rhizomes, stems and leaves of both species studied as well as in corresponding water and bottom sediments from 19 sites selected within seven lakes in western Poland (Leszczyńskie Lakeland). The principal component and classification analysis showed that P. australis leaves were correlated with the highest Mn, Fe and Cd concentrations, but T. latifolia leaves with the highest Pb, Zn and Cu concentrations. However, roots of the P. australis were correlated with the highest Mn, Fe and Cu concentrations, while T. latifolia roots had the highest Pb, Zn and Cd concentrations. Despite the differences in trace metal accumulation ability between the species studied, Fe, Cu, Zn, Pb and Ni concentrations in the P. australis and T. latifolia exhibited the following accumulation scheme: roots > rhizomes > leaves > stems, while Mn decreased in the following order: root > leaf > rhizome > stem. The high values of bioaccumulation factors and low values of translocation factors for Zn, Mn, Pb and Cu indicated the potential application of T. latifolia and P. australis in the phytostabilisation of contaminated aquatic ecosystems. Due to high biomass of aboveground organs of both species, the amount of trace metals stored in these organs during the vegetation period was considerably high, despite of the small trace metals transport.

  13. Assessment of trace metal pollution in sediments and intertidal fauna at the coast of Cameroon.

    PubMed

    Ngeve, Magdalene N; Leermakers, Martine; Elskens, Marc; Kochzius, Marc

    2015-06-01

    Coastal systems act as a boundary between land and sea. Therefore, assessing pollutant concentrations at the coast will provide information on the impact that land-based anthropogenic activities have on marine ecosystems. Sediment and fauna samples from 13 stations along the whole coast of Cameroon were analyzed to assess the level of trace metal pollution in sediments and intertidal fauna. Sediments showed enrichment of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn. However, pollution of greater concern was observed for Cd, Cr, Cu, Ni, and Zn at the northern stations. Some sites recorded trace metal levels higher than recommended in sediment quality guidelines. Species diversity was low, and high bioaccumulation of trace metals was observed in biological samples. Some edible gastropod species accumulated trace metals above the safety limits of the World Health Organization, European Medicine Agency, and the US Environment Protection Agency. Although industrial pollution is significant along Cameroon's coast, natural pollution from the volcano Mount Cameroon is also of concern.

  14. Trace metal anomalies in bleached Porites coral at Meiji Reef, tropical South China Sea

    NASA Astrophysics Data System (ADS)

    Li, Shu; Yu, Kefu; Zhao, Jianxin; Feng, Yuexing; Chen, Tianran

    2017-01-01

    Coral bleaching has generally been recognized as the main reason for tropical coral reef degradation, but there are few long-term records of coral bleaching events. In this study, trace metals including chromium (Cr), copper (Cu), molybdenum (Mo), manganese (Mn), lead (Pb), tin (Sn), titanium (Ti), vanadium (V), and yttrium (Y), were analyzed in two Porites corals collected from Meiji Reef in the tropical South China Sea (SCS) to assess differences in trace metal concentrations in bleached compared with unbleached coral growth bands. Ti, V, Cr, and Mo generally showed irregular fluctuations in both corals. Bleached layers contained high concentrations of Mn, Cu, Sn, and Pb. Unbleached layers showed moderately high concentrations of Mn and Cu only. The different distribution of trace metals in Porites may be attributable to different selectivity on the basis of vital utility or toxicity. Ti, V, Cr, and Mo are discriminated against by both coral polyps and zooxanthellae, but Mn, Cu, Sn, and Pb are accumulated by zooxanthellae and only Mn and Cu are accumulated by polyps as essential elements. The marked increase in Cu, Mn, Pb, and Sn are associated with bleaching processes, including mucus secretion, tissue retraction, and zooxanthellae expulsion and occlusion. Variation in these trace elements within the coral skeleton can be used as potential tracers of short-lived bleaching events.

  15. The impact of urban expansion and agricultural legacies on trace metal accumulation in fluvial and lacustrine sediments of the lower Chesapeake Bay basin, USA.

    PubMed

    Coxon, T M; Odhiambo, B K; Giancarlo, L C

    2016-10-15

    The progressively declining ecological condition of the Chesapeake Bay is attributed to the influx of contaminants associated with sediment loads supplied by its largest tributaries. The continued urban expansion in the suburbs of Virginia cities, modern agricultural activities in the Shenandoah Valley, the anthropogenic and climate driven changes in fluvial system hydrodynamics and their potential associated impacts on trace metals enrichment in the bay's tributaries necessitate constant environmental monitoring of these important water bodies. Eight (210)Pb and (137)Cs dated sediment cores and seventy two sediment grab samples were used to analyze the spatial and temporal distributions of Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, and Fe in the waterways of the Virginia portion of the Chesapeake Bay basin. The sediment cores for trace metal historical fluctuation analysis were obtained in lower fluvial-estuarine environments and reservoirs in the upper reaches of the basin. The trace metal profiles revealed high basal enrichment factors (EF) of between 0.05 and 40.24, which are interpreted to represent early nineteenth century agricultural activity and primary resource extraction. Surficial enrichment factors on both cores and surface grab samples ranged from 0.01 (Cu) to 1421 (Cd), with Pb, Cu, Zn, and Cd enrichments a plausible consequence of modern urban expansion and industrial development along major transportation corridors. Contemporary surficial enrichments of As, Se, and Cr also ranged between 0 and 137, with the higher values likely influenced by lithological and atmospheric sources. Pearson correlation analyses suggest mining and agricultural legacies, coupled with aerosol deposition, are responsible for high metal concentrations in western lakes and headwater reaches of fluvial systems, while metal accumulation in estuarine reaches of the major rivers can be attributed to urban effluence and the remobilization of legacy sediments. Copyright © 2016

  16. Trace metals accumulation in soil irrigated with polluted water and assessment of human health risk from vegetable consumption in Bangladesh.

    PubMed

    Islam, Md Atikul; Romić, Davor; Akber, Md Ali; Romić, Marija

    2018-02-01

    Trace metals accumulation in soil irrigated with polluted water and human health risk from vegetable consumption was assessed based on the data available in the literature on metals pollution of water, soil, sediment and vegetables from the cites of Bangladesh. The quantitative data on metal concentrations, their contamination levels and their pollution sources have not been systematically gathered and studied so far. The data on metal concentrations, sources, contamination levels, sample collection and analytical tools used were collected, compared and discussed. The USEPA-recommended method for health risk assessment was used to estimate human risk from vegetable consumption. Concentrations of metals in water were highly variable, and the mean concentrations of Cd, Cr, Cu and As in water were found to be higher than the FAO irrigation water quality standard. In most cases, mean concentrations of metals in soil were higher than the Bangladesh background value. Based on geoaccumulation index (I geo ) values, soils of Dhaka city are considered as highly contaminated. The I geo shows Cd, As, Cu, Ni, Pb and Cr contamination of agricultural soils and sediments of the cities all over the Bangladesh. Polluted water irrigation and agrochemicals are identified as dominant sources of metals in agricultural soils. Vegetable contamination by metals poses both non-carcinogenic and carcinogenic risks to the public. Based on the results of the pollution and health risk assessments, Cd, As, Cr, Cu, Pb and Ni are identified as the priority control metals and the Dhaka city is recommended as the priority control city. This study provides quantitative evidence demonstrating the critical need for strengthened wastewater discharge regulations in order to protect residents from heavy metal discharges into the environment.

  17. Wash effect of atmospheric trace metals wet deposition and its source characteristic in subtropical watershed in China.

    PubMed

    Gao, Yang; Hao, Zhuo; Yang, Tiantian; He, Nianpeng; Tian, Jing; Wen, Xuefa

    2016-10-01

    In order to better understand air pollution in deve-loping regions, such as China, it is important to investigate the wet deposition behavior of atmospheric trace metals and its sources in the subtropical watershed. This paper studies the seasonal change of trace metal concentrations in precipitation and other potential sources in a typical subtropical watershed (Jiazhuhe watershed) located in the downstream of the Yangtze River of China. The results show that typical crustal elements (Al, Fe) and trace element (Zn) have high seasonal variation patterns and these elements have higher contents in precipitation as compared to other metals in Jiazhuhe watershed. In addition, there is no observed Pb in base flow in this study, and the concentration magnitudes of Al, Ba, Fe, Mn, Sr, and Zn in base flow are significantly higher than that of other metals. During different rainfall events, the dynamic export processes are also different for trace metals. The various trace metals dynamic export processes lead to an inconsistent mass first flush and a significant accumulative variance throughout the rainfall events. It is found that in this region, most of the trace metals in precipitation are from anthropogenic emission and marine aerosols brought by typhoon and monsoon.

  18. Extraction of trace metals from fly ash

    DOEpatents

    Blander, M.; Wai, C.M.; Nagy, Z.

    1983-08-15

    A process is described for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous. The fly ash has a silicate base and contains surface deposits of the trace metals as oxides, chlorides or the like. The process is carried out by contacting the fly ash with AlCl/sub 3/ in an alkali halide melt to react the trace metals with the AlCl/sub 3/ to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  19. Extraction of trace metals from fly ash

    DOEpatents

    Blander, Milton; Wai, Chien M.; Nagy, Zoltan

    1984-01-01

    A process for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous, the fly ash having a silicate base and containing surface deposits of the trace metals as oxides, chlorides or the like, with the process being carried out by contacting the fly ash with AlCl.sub.3 in an alkali halide melt to react the trace metals with the AlCl.sub.3 to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  20. Temporal variability in trace metal solubility in a paddy soil not reflected in uptake by rice (Oryza sativa L.).

    PubMed

    Pan, Yunyu; Koopmans, Gerwin F; Bonten, Luc T C; Song, Jing; Luo, Yongming; Temminghoff, Erwin J M; Comans, Rob N J

    2016-12-01

    Alternating flooding and drainage conditions have a strong influence on redox chemistry and the solubility of trace metals in paddy soils. However, current knowledge of how the effects of water management on trace metal solubility are linked to trace metal uptake by rice plants over time is still limited. Here, a field-contaminated paddy soil was subjected to two flooding and drainage cycles in a pot experiment with two rice plant cultivars, exhibiting either high or low Cd accumulation characteristics. Flooding led to a strong vertical gradient in the redox potential (Eh). The pH and Mn, Fe, and dissolved organic carbon concentrations increased with decreasing Eh and vice versa. During flooding, trace metal solubility decreased markedly, probably due to sulfide mineral precipitation. Despite its low solubility, the Cd content in rice grains exceeded the food quality standards for both cultivars. Trace metal contents in different rice plant tissues (roots, stem, and leaves) increased at a constant rate during the first flooding and drainage cycle but decreased after reaching a maximum during the second cycle. As such, the high temporal variability in trace metal solubility was not reflected in trace metal uptake by rice plants over time. This might be due to the presence of aerobic conditions and a consequent higher trace metal solubility near the root surface, even during flooding. Trace metal solubility in the rhizosphere should be considered when linking water management to trace metal uptake by rice over time.

  1. Fate of Trace Metals in Anaerobic Digestion.

    PubMed

    Fermoso, F G; van Hullebusch, E D; Guibaud, G; Collins, G; Svensson, B H; Carliell-Marquet, C; Vink, J P M; Esposito, G; Frunzo, L

    2015-01-01

    A challenging, and largely uncharted, area of research in the field of anaerobic digestion science and technology is in understanding the roles of trace metals in enabling biogas production. This is a major knowledge gap and a multifaceted problem involving metal chemistry; physical interactions of metal and solids; microbiology; and technology optimization. Moreover, the fate of trace metals, and the chemical speciation and transport of trace metals in environments--often agricultural lands receiving discharge waters from anaerobic digestion processes--simultaneously represents challenges for environmental protection and opportunities to close process loops in anaerobic digestion.

  2. Microbial Influences on Trace Metal Cycling in a Meromictic Lake, Fayetteville Green Lake, NY

    NASA Astrophysics Data System (ADS)

    Zerkle, A. L.; House, C.; Kump, L.

    2002-12-01

    Microorganisms can exist in aquatic environments at very high cell densities of up to 1011 cells/L, and can accumulate significant quantities of trace metals. Bacteria actively take up bioactive trace metals, including Fe, Zn, Mn, Co, Ni, Cu, and Mo, which function as catalytic centers in metalloproteins and metal-activated enzymes involved in virtually all cellular functions. In addition, bacteria may catalyze the release of trace metals from inorganic substrates by processes such as the reduction of iron and manganese oxides, suggesting that trace metal distributions within a natural environment dominated by microbial processes may be controlled primarily by microbial ecology. Fayetteville Green Lake (FGL), NY, is a permanently stratified meromictic lake that has a well-oxygenated surface water mass (mixolimnion) overlying a relatively stagnant, anoxic deep water mass (monimolimnion). A chemocline separates the water masses at around 20m depth, where oxygen concentrations decrease and sulfate and methane concentrations increase. In addition, previous studies have indicated that trace metals such as V, Cr, Co, Mn, and Fe reach elevated concentrations at the chemocline. Using fluorescent in situ hybridization (FISH) of FGL samples from depths of up to 40m with bacterial and archaeal probes, we have shown that fluctuating redox conditions within the FGL water column correlate with significant variations in the composition and distribution of microbial populations with depth. The mixolimnion is dominated by Eubacteria, with increasing concentrations of Archaea in the lower anoxic zone. Increases in microbial cell densities coincide with increases in trace metals at the chemocline, suggesting microbial activity may be responsible for trace metal release at this boundary. 16S rRNA PCR cloning techniques are currently being used to identify dominant microbial populations at various levels within the FGL water column. Future studies will focus on the potential for these

  3. Accumulation degree and source apportionment of trace metals in smaller than 63 μm road dust from the areas with different land uses: A case study of Xi'an, China.

    PubMed

    Shi, Dongqi; Lu, Xinwei

    2018-09-15

    Finer urban dusts have more serious environmental detriment and health risk than coarser urban dusts. The trace metals Pb, Cu, Zn, Cr, Co, Ba, Mn, Ni, V, Y, Rb, Ga, Hf, and Zr were analyzed using X-ray fluorescence spectrometry in smaller than 63 μm road dust collected from the areas with different land use types and human activities in Xi'an city. The purposes of this study were to reveal the impact of human activities on the environment through element enrichment factor, and to determine the sources of trace metals measured by multivariate statistical analysis and multiple liner regression of absolute principal component scores. The results indicated that the smaller than 63 μm road dust in Xi'an, in comparison to the element background value of local soil, had higher Cu, Pb, Zn, Cr, Y, Hf and Zr concentrations. Trace metals had different variations in the dusts, while the anthropogenic trace metals had no significant difference in the four areas owing to the wide existing of human activities. The accumulation level of Pb was the highest, followed by Cr, Cu and Zn, and then was Hf and Zr, while the other trace metals were deficient or deficient to minimal enrichment in the finer road dust. Source analysis results indicated that Co, Ga, Mn, Ni, V, Rb and Y mainly originated from natural source, which accounted about 57%-87% for these metals' concentration. Ba, Cr, Pb, Cu and Zn primarily derived from traffic source, which contributed approximately 59%-79% to these metals' content. Hf and Zr were mainly from construction source, which contributed 74.6% to Hf concentration and 78.2% to Zr concentration. The study indicated that traffic and construction activities had a predominant influence on local environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Trophic transfer of trace metals: Subcellular compartmentalization in a polychaete and assimilation by a decapod crustacean

    USGS Publications Warehouse

    Rainbow, P.S.; Poirier, L.; Smith, B.D.; Brix, K.V.; Luoma, S.N.

    2006-01-01

    The chemical form of accumulated trace metal in prey is important in controlling the bioavailataility of dietary metal to a predator. This study investigated the trophic transfer of radiolabelled Ag, Cd and Zn from the polychaete worm Nereis diversicolor to the decapod crustacean Palaemonetes varians. We used 2 populations of worms with different proportions of accumulated metals in different subcellular fractions as prey, and loaded the worms with radiolabelled metals either from sediment or from solution. Accumulated radiolabelled metals were fractionated into 5 components : metal-rich granules (MRG), cellular debris, organelles, metallothionein-like proteins (MTLP), and other (heat-sensitive) proteins (HSP). Assimilation efficiencies (AE) of the metals by P. varians were measured from the 4 categories of prey (i.e. 2 populations, radiolabelled from sediment or solution). There were significant differences for each metal between the AEs from the different prey categories, confirming that origin of prey and route of uptake of accumulated trace metal will cause intraspecific differences in subsequent metal assimilation. Correlations were sought between AEs and selected fractions or combinations of fractions of metals in the prey-MRG, Trophically Available Metal (TAM = MTLP + HSP + organelles) and total protein (MTLP + HSP). TAM explained 28% of the variance in AEs for Ag, but no consistent relationships emerged between AEs and TAM or total protein when the metals were considered separately. AEs did, however, show significant positive regressions with both TAM and total protein when the 3 metals were considered together, explaining only about 21 % of the variance in each case. A significant negative relationship was observed between MRG and AE for all metals combined. The predator (P. varians) can assimilate dietary metal from a range of the fractions binding metals in the prey (N. diversicolor), with different assimilation efficiencies summated across these

  5. Trace metal pollution and carbon and nitrogen isotope tracing through the Yongdingxin River estuary in Bohai Bay, Northern China.

    PubMed

    Sun, Conghui; Wei, Qi; Ma, Lixia; Li, Li; Wu, Guanghong; Pan, Ling

    2017-02-15

    A tide gate was built in 2010 to prevent seawater from moving upstream into the Yongdingxin River estuary in Bohai Bay, Northern China. We analysed the concentrations of Hg, Cd, Pb, TOC, TN, δ 13 C and δ 15 N and studied their variations in the surface layer and vertical profiles of sediment cores collected from the Yongdingxin River estuary. Contamination factors and geo-accumulation indices were calculated for each metal, which revealed high levels of contamination for Hg and Cd in the sediments, likely from anthropogenic sources. δ 13 C and δ 15 N were used as natural tracers to determine the sources of TOC and TN. The results revealed that sewage was the main source of TOC, while TN may have more than one source in the Yongdingxin River estuary. Sewage dominated trace metal pollution in the Yongdingxin River estuary. Our results provide a baseline for trace metal contamination in an estuary facing a large water project. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Trace metals in sediments and benthic animals from aquaculture ponds near a mangrove wetland in Southern China.

    PubMed

    Wu, Hao; Liu, Jinling; Bi, Xiangyang; Lin, Guanghui; Feng, Christopher C; Li, Zhengjie; Qi, Fei; Zheng, Tianling; Xie, Liqi

    2017-04-15

    In this study, we measured the concentrations of trace metals (Cr, Cu, Zn, As, Cd, Pb and Hg) in typical cultured animals (crabs, clams, and shrimps) and sediments from aquaculture ponds nearby mangrove wetlands in Zhangjiang estuary, China. The contents of Cr, Cu, Cd, and Pb in mangrove sediments were significantly higher than those in pond sediments, while an inverse distribution was observed for Zn, As, and Hg. Significantly higher concentrations of trace metals were found in clams from the mangrove mudflats compared to those from the aquaculture ponds. The sources of trace metals in the clams were primarily from organic fertilizer, whereas those in the shrimp were from contaminated sediment. The results of geo-accumulation index and the ecological risk assessment indicated that the aquaculture ponds near the mangrove wetlands in this subtropical estuary posed a special risk of endogenous and exogenous trace metal pollution to nearby systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Distribution of trace metals in anchialine caves of Adriatic Sea, Croatia

    NASA Astrophysics Data System (ADS)

    Cuculić, Vlado; Cukrov, Neven; Kwokal, Željko; Mlakar, Marina

    2011-11-01

    This study presents results of the first comprehensive research on ecotoxic trace metals (Cd, Pb, Cu and Zn) in aquatic anchialine ecosystems. Data show the influence of hydrological and geological characteristics on trace metals in highly stratified anchialine water columns. Distribution of Cd, Pb, Cu and Zn in two anchialine water bodies, Bjejajka Cave and Lenga Pit in the Mljet National park, Croatia were investigated seasonally from 2006 to 2010. Behaviour and concentrations of dissolved and total trace metals in stratified water columns and metal contents in sediment, carbonate rocks and soil of the anchialine environment were evaluated. Trace metals and dissolved organic carbon (DOC) concentrations in both anchialine water columns were significantly elevated compared to adjacent seawater. Zn and Cu concentrations were the highest in the Lenga Pit water column and sediment. Elevated concentrations of Zn, Pb and Cu in Bjejajka Cave were mainly terrigenous. Significantly elevated concentrations of cadmium (up to 0.3 μg L -1) were found in the water column of Bjejajka cave, almost two orders of magnitude higher compared to nearby surface seawater. Laboratory analysis revealed that bat guano was the major source of cadmium in Bjejajka Cave. Cadmium levels in Lenga Pit, which lacks accumulations of bat guano, were 20-fold lower. Moreover, low metal amounts in carbonate rocks in both caves, combined with mineral leaching experiments, revealed that carbonates play a minor role as a source of metals in both water columns. We observed two types of vertical distribution pattern of cadmium in the stratified anchialine Bjejajka Cave water column. At lower salinities, non-conservative behaviour was characterized by strong desorption and enrichment of dissolved phase while, at salinities above 20, Cd behaved conservatively and its dissolved concentration decreased. Conservative behaviour of Cu, Pb, Zn and DOC was observed throughout the water column. After heavy rains, Cd

  8. A primer on trace metal-sediment chemistry

    USGS Publications Warehouse

    Horowitz, Arthur J.

    1985-01-01

    In most aquatic systems, concentrations of trace metals in suspended sediment and the top few centimeters of bottom sediment are far greater than concentrations of trace metals dissolved in the water column. Consequently, the distribution, transport, and availability of these constituents can not be intelligently evaluated, nor can their environmental impact be determined or predicted solely through the sampling and analysis of dissolved phases. This Primer is designed to acquaint the reader with the basic principles that govern the concentration and distribution of trace metals associated with bottom and suspended sediments. The sampling and analysis of suspended and bottom sediments are very important for monitoring studies, not only because trace metal concentrations associated with them are orders of magnitude higher than in the dissolved phase, but also because of several other factors. Riverine transport of trace metals is dominated by sediment. In addition, bottom sediments serve as a source for suspended sediment and can provide a historical record of chemical conditions. This record will help establish area baseline metal levels against which existing conditions can be compared. Many physical and chemical factors affect a sediment's capacity to collect and concentrate trace metals. The physical factors include grain size, surface area, surface charge, cation exchange capacity, composition, and so forth. Increases in metal concentrations are strongly correlated with decreasing grain size and increasing surface area, surface charge, cation exchange capacity, and increasing concentrations of iron and manganese oxides, organic matter, and clay minerals. Chemical factors are equally important, especially for differentiating between samples having similar bulk chemistries and for inferring or predicting environmental availability. Chemical factors entail phase associations (with such sedimentary components as interstitial water, sulfides, carbonates, and organic

  9. TRACE METAL TRANSFORMATION MECHANISMS DURING COAL COMBUSTION

    EPA Science Inventory

    The article reviews mechanisms governing the fate of trace metals during coal combustion and presents new theoretical results that interpret existing data. Emphasis is on predicting the size-segregated speciation of trace metals in pulverized-coal-fired power plant effluents. Thi...

  10. Trace metal dynamics in zooplankton from the Bay of Bengal during summer monsoon.

    PubMed

    Rejomon, G; Kumar, P K Dinesh; Nair, M; Muraleedharan, K R

    2010-12-01

    Trace metal (Fe, Co, Ni, Cu, Zn, Cd, and Pb) concentrations in zooplankton from the mixed layer were investigated at 8 coastal and 20 offshore stations in the western Bay of Bengal during the summer monsoon of 2003. The ecotoxicological importance of trace metal uptake was apparent within the Bay of Bengal zooplankton. There was a distinct spatial heterogeneity of metals, with highest concentrations in the upwelling zones of the southeast coast, moderate concentrations in the cyclonic eddy of the northeast coast, and lowest concentrations in the open ocean warm gyre regions. The average trace metal concentrations (μg g⁻¹) in coastal zooplankton (Fe, 44894.1 ± 12198.2; Co, 46.2 ± 4.6; Ni, 62.8 ± 6.5; Cu, 84.9 ± 6.7; Zn, 7546.8 ± 1051.7; Cd, 46.2 ± 5.6; Pb, 19.2 ± 2.6) were higher than in offshore zooplankton (Fe, 3423.4 ± 681.6; Co, 19.5 ± 3.81; Ni, 25.3 ± 7.3; Cu, 29.4 ± 4.2; Zn, 502.3 ± 124.3; Cd, 14.3 ± 2.9; Pb, 3.2 ± 2.0). A comparison of average trace metal concentrations in zooplankton from the Bay of Bengal showed enrichment of Fe, Co, Ni, Cu, Zn, Cd, and Pb in coastal zooplankton may be related to metal absorption from primary producers, and differences in metal concentrations in phytoplankton from coastal waters (upwelling zone and cyclonic eddy) compared with offshore waters (warm gyre). Zooplankton showed a great capacity for accumulations of trace metals, with average concentration factors of 4 867 929 ± 569 971, 246 757 ± 51 321, 337 180 ± 125 725, 43 480 ± 11 212, 1 046 371 ± 110 286, 601 679 ± 213 949, and 15 420 ± 9201 for Fe, Co, Ni, Cu, Zn, Cd, and Pb with respect to dissolved concentrations in coastal and offshore waters of the Bay of Bengal. © 2009 Wiley Periodicals, Inc. Environ Toxicol, 2009. Copyright © 2009 Wiley Periodicals, Inc.

  11. Heavy Metals and Related Trace Elements.

    ERIC Educational Resources Information Center

    Leland, Harry V.; And Others

    1978-01-01

    Presents a literature review of heavy metals and related trace elements in the environment, covering publications of 1976-77. This review includes: (1) trace treatment in natural water and in sediments; and (2) bioaccumulation and toxicity of trace elements. A list of 466 references is presented. (HM)

  12. Determination of metallic traces in kidneys, livers, lungs and spleens of rats with metallic implants after a long implantation time.

    PubMed

    Rubio, Juan Carlos; Garcia-Alonso, Maria Cristina; Alonso, Concepcion; Alobera, Miguel Angel; Clemente, Celia; Munuera, Luis; Escudero, Maria Lorenza

    2008-01-01

    Metallic transfer from implants does not stop at surrounding tissues, and metallic elements may be transferred by proteins to become lodged in organs far from the implant. This work presents an in vivo study of metallic implant corrosion to measure metallic element accumulation in organs located far from the implant, such as kidneys, livers, lungs and spleens. The studied metallic implant materials were CoCr alloy, Ti, and the experimental alloy MA956 coated with alpha-alumina. The implants were inserted in the hind legs of Wistar rats. Analysis for Co, Cr, Ti and Al metallic traces was performed after a long exposure time of 12 months by Inductively Coupled Plasma (ICP) with Mass Spectrometry (MS). According to the results, the highest Cr and Ti concentrations were detected in spleens. Co is mainly found in kidneys, since this element is eliminated via urine. Cr and Ti traces increased significantly in rat organs after the long implantation time. The organs of rats implanted with the alpha-alumina coated experimental MA956 did not present any variation in Al content after 12 months, which means there was no degradation of the alumina layer surface.

  13. Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens: comparing non-metallicolous populations to the metallicolous 'Ganges' in field trials.

    PubMed

    Jacobs, Arnaud; Drouet, Thomas; Sterckeman, Thibault; Noret, Nausicaa

    2017-03-01

    Urban soil contamination with trace metals is a major obstacle to the development of urban agriculture as crops grown in urban gardens are prone to accumulate trace metals up to toxic levels for human consumption. Phytoextraction is considered as a potentially cost-effective alternative to conventional methods such as excavation. Field trials of phytoextraction with Noccaea caerulescens were conducted on urban soils contaminated with Cd, Cu, Pb, and Zn (respectively around 2, 150-200, 400-500, and 400-700 μg g -1 of dry soil). Metallicolous (Ganges population) and non-metallicolous (NMET) populations were compared for biomass production and trace metal uptake. Moreover, we tested the effect of compost and fertilizer addition. Maximal biomass of 5 t ha -1 was obtained with NMET populations on some plots. Compared to Ganges- the high Cd-accumulating ecotype from South of France often used in phytoextraction trials- NMET populations have an advantage for biomass production and for Zn accumulation, with an average Zn uptake of 2.5 times higher. The addition of compost seems detrimental due to metal immobilization in the soil with little or no effect on plant growth. In addition to differences between populations, variations of growth and metal accumulation were mostly explained by soil Cd and Zn concentrations and texture. Our field trials confirm the potential of using N. caerulescens for both Cd and Zn remediation of moderately contaminated soils-with uptake values of up to 200 g Cd ha -1 and 47 kg Zn ha -1 -and show the interest of selecting the adequate population according to the targeted metal.

  14. Bioavailability of trace metals in sediments of a recovering freshwater coastal wetland in China's Yellow River Delta, and risk assessment for the macrobenthic community.

    PubMed

    Yang, Wei; Li, Xiaoxiao; Pei, Jun; Sun, Tao; Shao, Dongdong; Bai, Junhong; Li, Yanxia

    2017-12-01

    We investigated the speciation of trace metals and their ecological risks to macrobenthic communities in a recovering coastal wetland of China's Yellow River Delta during the freshwater release project. We established 16 sampling sites in three restoration areas and one intertidal reference area, and collected sediments and macrobenthos four times from 2014 to 2015. The instability index for the trace metals showed a moderate risk for Mn and a high risk for Cd. For both Mn and Cd, the carbonate and FeMn-bound fractions appear to contribute mostly to the instability and bioavailability indexes, but for Cd, the exchangeable fraction also have a much higher contribution. The bioavailability index indicated higher bioavailability of trace metals in freshwater restoration areas than that in the intertidal area. The single-factor contamination index indicated that most trace metal concentrations in the macrobenthos were in excess of the national standard. The biota-sediment accumulation factor suggested that the macrobenthos accumulated most As, Cd, and Cu. Redundancy analysis showed clear relationships between the macrobenthos and sediment metal concentrations. Our results will help wetland managers to assess the bioaccumulation risks based on metal speciation, and to improve management of these recovering freshwater wetland ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Analytical Methods for Trace Metals. Training Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This training manual presents material on the theoretical concepts involved in the methods listed in the Federal Register as approved for determination of trace metals. Emphasis is on laboratory operations. This course is intended for chemists and technicians with little or no experience in analytical methods for trace metals. Students should have…

  16. Caddisflies Hydropsyche spp. as biomonitors of trace metal bioavailability thresholds causing disturbance in freshwater stream benthic communities.

    PubMed

    Awrahman, Zmnako A; Rainbow, Philip S; Smith, Brian D; Khan, Farhan R; Fialkowski, Wojciech

    2016-09-01

    Demonstration of an ecotoxicological effect of raised toxic metal bioavailabilities on benthic macroinvertebrate communities in contaminated freshwater streams typically requires the labour-intensive identification and quantification of such communities before the application of multivariate statistical analysis. A simpler approach is the use of accumulated trace metal concentrations in a metal-resistant biomonitor to define thresholds that indicate the presence of raised trace metal bioavailabilities causing ecotoxicological responses in populations of more metal-sensitive members of the community. We explore further the hypothesis that concentrations of toxic metals in larvae of species of the caddisfly genus Hydropsyche can be used to predict metal-driven ecotoxicological responses in more metal-sensitive mayflies, especially ephemerellid and heptageniid mayflies, in metal-contaminated rivers. Comparative investigation of two caddisflies, Hydropsyche siltalai and Hydropsyche angustipennis, from metal-contaminated rivers in Cornwall and Upper Silesia, Poland respectively, has provided preliminary evidence that this hypothesis is applicable across caddisfly species and contaminated river systems. Use of a combined toxic unit approach, relying on independent data sets, suggested that copper and probably also arsenic are the drivers of mayfly ecotoxicity in the River Hayle and the Red River in Cornwall, while cadmium, lead and zinc are the toxic agents in the Biala Przemsza River in Poland. This approach has great potential as a simple tool to detect the more subtle effects of mixed trace metal contamination in freshwater systems. An informed choice of suitable biomonitor extends the principle to different freshwater habitats over different ranges of severity of trace metal contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Trace metals in upland headwater lakes in Ireland.

    PubMed

    Burton, Andrew; Aherne, Julian; Hassan, Nouri

    2013-10-01

    Trace elements (n = 23) in Irish headwater lakes (n = 126) were investigated to determine their ambient concentrations, fractionation (total, dissolved, and non-labile), and geochemical controls. Lakes were generally located in remote upland, acid-sensitive regions along the coastal margins of the country. Total trace metal concentrations were low, within the range of natural pristine surface waters; however, some lakes (~20 %) had inorganic labile aluminum and manganese at levels potentially harmful to aquatic organisms. Redundancy analysis indicated that geochemical weathering was the dominant controlling factor for total metals, compared with acidity for dissolved metals. In addition, many metals were positively correlated with dissolved organic carbon indicating their affinity (or complexation) with humic substances (e.g., aluminum, iron, mercury, lead). However, a number of trace metals (e.g., aluminum, mercury, zinc) were correlated with anthropogenic acidic deposition (i.e., non-marine sulfate), suggesting atmospheric sources or elevated leaching owing to acidic deposition. As transboundary air pollution continues to decline, significant changes in the cycling of trace metals is anticipated.

  18. Anthropogenic accumulation of metals and metalloids in carbonate-rich sediments: Insights from the ancient harbor setting of Tyre (Lebanon)

    NASA Astrophysics Data System (ADS)

    Elmaleh, A.; Galy, A.; Allard, T.; Dairon, R.; Day, J. A.; Michel, F.; Marriner, N.; Morhange, C.; Couffignal, F.

    2012-04-01

    The Antique and Byzantine sediments of the northern harbor of Tyre (Lebanon) store high amounts of metals and metalloids as the result of a millennial anthropogenic contamination as well as of efficient trapping and immobilization processes. Geochemical and mineralogical analyses reveal the contrasted patterns for the accumulation of trace metal(loid)s in the sedimentary sequence recovered by coring the inner part, now emerged, of the ancient harbor. Lead, Sn, Cu and Ag concentrations can be as high as 3000, 150, 1000, and 1.2 μg/g, respectively. Enrichment factors were calculated with respect to (1) Th and (2) the chemistry of the substratum and appear to be driven by anthropogenic inputs. Indeed, a drastic change in both excess concentrations and concentration ratios is observed through Roman and Byzantine times, pointing to major intensification of the trade and use of metals in Tyre, coherent with historical data. Good preservation of the archeological signal, despite (1) sediment disturbances that have caused age depth inversions, and (2) the large time lapse since the time of deposition of anthropogenic trace metal(loid)s is probably due to the reducing character of the sediments. Tyre's sedimentary sequence provides an interesting analog for modern carbonate-rich harbor environments, in which a millenary accumulation of trace metal(loid)s has been overall well preserved and suggests a restricted mobility of anthropogenic contamination for a period of time in excess of 1500 years.

  19. The deposition and fate of trace metals in our environment.

    Treesearch

    Elon S. Verry; Stephen J. Vermette

    1992-01-01

    This proceedings contains 14 invited papers from Canada and the United States on trace metal emissions, trace metal measurement in precipitation and dry fall, regional deposition, and the fate of trace metals in soils, plants, waters, and fish. A summary paper integrates the major findings of each paper.

  20. Trace metal concentrations in tropical mangrove sediments, NE Brazil.

    PubMed

    Miola, Brígida; Morais, Jáder Onofre de; Pinheiro, Lidriana de Souza

    2016-01-15

    Sediment cores were taken from the mangroves of the Coreaú River estuary off the northeast coast of Brazil. They were analyzed for grain size, CaCO3, organic matter, and trace metal (Cd, Pb, Zn, Cu, Al, and Fe) contents. Mud texture was the predominant texture. Levels of trace metals in surface sediments indicated strong influence of anthropogenic processes, and diagenetic processes controlled the trace metal enrichment of core sediments of this estuary. The positive relationships between trace metals and Al and Fe indicate that Cu, Zn, Pb, and Cd concentrations are associated mainly with Al and Fe oxy-hydroxides and have natural sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Trace metals and oxidative status in soft tissues of caged mussels (Aulacomya atra) on the North Patagonian coastline.

    PubMed

    Ruiz, M D; Iriel, A; Yusseppone, M S; Ortiz, N; Di Salvatore, P; Fernández Cirelli, A; Ríos de Molina, M C; Calcagno, J A; Sabatini, S E

    2018-07-15

    This study investigated metal accumulation and oxidative effects in mantle, gill and digestive gland of the ribbed mussel Aulacomya atra from the Argentinean North Patagonian coastline. Mussels were transplanted over an 18-month period from a site with low anthropogenic impact to a harbor site with higher seawater concentration of aluminum, chromium, copper, manganese, nickel and zinc. Total trace metal concentration in seawater did not change throughout the 18-month transplant in either site. A. atra bioaccumulated metals in digestive gland, gills and mantle at different levels. Digestive gland had the highest concentration of metals, especially towards the end of the transplant experiment in the harbor area. Mussels transplanted to the harbor site experienced an upregulation in their antioxidant system, which likely explains the lack of oxidative damage to lipids despite higher metal accumulation. These results demonstrate that A. atra selectively accumulates metals from the water column and their prooxidant effects depend on the tissue antioxidant defenses and the exposure time. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Trace elements and heavy metals in the Grand Bay National Estuarine Reserve in the northern Gulf of Mexico

    USDA-ARS?s Scientific Manuscript database

    The Grand Bay National Estuarine Research Reserve has the highest biotic diversity of habitats and offer a reserve of food resources and commercially significant species. Rapid human civilization has led to accumulation of heavy metals and trace elements in estuaries. The Grand Bay National Estuarin...

  3. Trace metals adhered to urban sediments. Results from fieldwork in Poços de Caldas, Brazil

    NASA Astrophysics Data System (ADS)

    Isidoro, Jorge; Silveira, Alexandre; Júnior, José; Poleto, Cristiano; de Lima, João; Gonçalves, Flávio; Alvarenga, Lívia

    2016-04-01

    The urbanization process has consequences such as the introduction of new sources of pollution and changes in the natural environment, like increase of impervious areas that accumulate pollutants between rainfall events. The pollution caused by the washing of accumulated sediment on the gutters, ultimately carried to water bodies through the stormwater drainage system, stands out in this process. This study aimed to quantify and characterize the sediments accumulated in the gutters of roads in an urban area of Poços de Caldas (MG), Brazil. Fieldwork took place during the period of 21.05.2013 to 27.08.2013. Main goal was to investigate the process of accumulation of dry sediments on impervious surfaces and find how this process relates with the urban occupation. More specific goals were to quantify the average mass and characterize the granulometric distribution of accumulated sediments, and identify the occurrence of trace metals Zn, Cu, Ni, Cd, Cu and Pb in the fraction of sediments with diameter smaller or equal to 63μm. The samples were weighed to find the aggregate mass and then sieved through meshes of 63μm, 125μm, 250μm, 600μm, 1180μm, and 2000μm for the granulometric analysis. Samples of the sediment fraction smaller than 63μm of diameter were subjected to analysis by Energy Dispersive X-Ray Fluorescence (EDXRF) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) for the identification of trace metals. We found that the aggregate mass of accumulated sediments varies in time and space and is particularly influenced by the land use of the sampling areas. Areas under construction produced more sediments than built areas or areas without construction. This study may serve as an input for creating diffuse pollution control and mitigation strategies towards the reduction of accumulated pollutants in the urban environment of Poços de Caldas. Pb and Zn shown the highest concentrations. The heavy metal concentration decreases after wet

  4. Baseline concentrations of trace metals in macroalgae from the Strait of Magellan, Chile.

    PubMed

    Astorga-España, Maria Soledad; Calisto-Ulloa, Nancy Cristina; Guerrero, Sandra

    2008-02-01

    Samples of four different species of seaweed were collected monthly between October 2000 and March 2001 from the coast of the Strait of Magellan, Chile to establish baseline levels of trace metals (silver, total mercury, nickel, lead, antimony, vanadium and zinc) and to compare the accumulation capacity among species. The algae included in the study were Adenocystis utricularis (n=15); Enteromorpha sp. (n=11), Mazzaella laminarioides (n=12) and Porphyra columbina (n=6). The concentration range of each metal in microg g(-1) dry weight varied as follows: Ag=ND-0.3, Hg=ND-0.02, Ni=ND-12.6, Pb = ND-11.2, Sb=ND-1.97, V=ND-11.34 and Zn=14.10-79. Results showed that levels of Ag, Hg, Ni, Pb, Sb, V and Zn for all species were similar to those found in other studies for non-contaminated areas with very little influence from anthropogenic activity. Also among the four species studied macroalgae Enteromorpha sp. had the highest capacity for metal accumulation and could therefore be considered as a biomonitor for future studies in the area.

  5. Vegetation and Cold Trapping Modulating Elevation-dependent Distribution of Trace Metals in Soils of a High Mountain in Eastern Tibetan Plateau

    PubMed Central

    Bing, Haijian; Wu, Yanhong; Zhou, Jun; Li, Rui; Luo, Ji; Yu, Dong

    2016-01-01

    Trace metals adsorbed onto fine particles can be transported long distances and ultimately deposited in Polar Regions via the cold condensation effect. This study indicated the possible sources of silver (Ag), cadmium (Cd), copper (Cu), lead (Pb), antimony (Sb) and zinc (Zn) in soils on the eastern slope of Mt. Gongga, eastern Tibetan Plateau, and deciphered the effects of vegetation and mountain cold condensation on their distributions with elevation. The metal concentrations in the soils were comparable to other mountains worldwide except the remarkably high concentrations of Cd. Trace metals with high enrichment in the soils were influenced from anthropogenic contributions. Spatially, the concentrations of Cu and Zn in the surface horizons decreased from 2000 to 3700 m a.s.l., and then increased with elevation, whereas other metals were notably enriched in the mid-elevation area (approximately 3000 m a.s.l.). After normalization for soil organic carbon, high concentrations of Cd, Pb, Sb and Zn were observed above the timberline. Our results indicated the importance of vegetation in trace metal accumulation in an alpine ecosystem and highlighted the mountain cold trapping effect on trace metal deposition sourced from long-range atmospheric transport. PMID:27052807

  6. Vegetation and Cold Trapping Modulating Elevation-dependent Distribution of Trace Metals in Soils of a High Mountain in Eastern Tibetan Plateau.

    PubMed

    Bing, Haijian; Wu, Yanhong; Zhou, Jun; Li, Rui; Luo, Ji; Yu, Dong

    2016-04-07

    Trace metals adsorbed onto fine particles can be transported long distances and ultimately deposited in Polar Regions via the cold condensation effect. This study indicated the possible sources of silver (Ag), cadmium (Cd), copper (Cu), lead (Pb), antimony (Sb) and zinc (Zn) in soils on the eastern slope of Mt. Gongga, eastern Tibetan Plateau, and deciphered the effects of vegetation and mountain cold condensation on their distributions with elevation. The metal concentrations in the soils were comparable to other mountains worldwide except the remarkably high concentrations of Cd. Trace metals with high enrichment in the soils were influenced from anthropogenic contributions. Spatially, the concentrations of Cu and Zn in the surface horizons decreased from 2000 to 3700 m a.s.l., and then increased with elevation, whereas other metals were notably enriched in the mid-elevation area (approximately 3000 m a.s.l.). After normalization for soil organic carbon, high concentrations of Cd, Pb, Sb and Zn were observed above the timberline. Our results indicated the importance of vegetation in trace metal accumulation in an alpine ecosystem and highlighted the mountain cold trapping effect on trace metal deposition sourced from long-range atmospheric transport.

  7. Facilitation of trace metal uptake in cells by inulin coating of metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Santillán-Urquiza, Esmeralda; Arteaga-Cardona, Fernando; Torres-Duarte, Cristina; Cole, Bryan; Wu, Bing; Méndez-Rojas, Miguel A.; Cherr, Gary N.

    2017-09-01

    Trace elements such as zinc and iron are essential for the proper function of biochemical processes, and their uptake and bioavailability are dependent on their chemical form. Supplementation of trace metals through nanostructured materials is a new field, but its application raises concerns regarding their toxicity. Here, we compared the intracellular zinc uptake of different sources of zinc: zinc sulfate, and ZnO and core-shell α-Fe2O3@ZnO nanoparticles, coated or uncoated with inulin, an edible and biocompatible polysaccharide. Using mussel haemocytes, a well-known model system to assess nanomaterial toxicity, we simultaneously assessed zinc accumulation and multiple cellular response endpoints. We found that intracellular zinc uptake was strongly enhanced by inulin coating, in comparison to the uncoated nanoparticles, while no significant effects on cell death, cell viability, mitochondrial membrane integrity, production of reactive oxygen species or lysosome abundance were observed at concentrations up to 20 ppm. Since no significant increments in toxicity were observed, the coated nanomaterials may be useful to increase in vivo zinc uptake for nutritional applications.

  8. Effects of zinc and copper on growth and metal accumulation in duckweed, Lemna minor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirilgen, N.; Inel, Y.

    1994-09-01

    Heavy metal pollutants are known to be quite toxic to a wide variety of aquatic plants. Lemna (duckweed), due to its special feature, is sought as a test organism for aquatic pollutant studies and for wastewater treatment. Lemna grows rapidly and reproduces vegetatively; its biomass is measured easily. It is adaptable to various aquatic conditions; it extacts and also accumulates metals in its frond bodies. Among the metals, Cu is classified as extremely toxic and Zn is classified as moderately toxic to Lemna. It is reported that both Cu and Zn concentrations in the medium have a great impact onmore » the growth responses and the physiological processes in Lemna. Deficiencies in Cu and Zn resulted in chlorosis of L.minor fronds and low concentrations of CU interfered with the floral induction in L.minor and L.gibba. Excess Cu inhibited both frond growth and frond multiplication of L. paucicostata and it decreased the content of chlorophyll [alpha] and photosynthetic CO[sub 2] uptake in L.minor. In water bodies, metals always are present in combination. Consequently, metal pair interaction is a factor to be considered. However, there are few studies on the effects of metal pair interactions on duckweed growth and metal accumulation. The purpose of this study was to investigate the effects of increased concentrations of Zn and Cu in combination on growth and metal accumulation by Lemna minor L. under controlled laboratory conditions. Zn and Cu were chosen since they are known as essential trace elements for duckweed up to a certain concentration; above that growth inhibition might occur. 16 refs., 3 figs., 6 tabs.« less

  9. Trace element accumulation in bivalve mussels Anodonta woodiana from Taihu Lake, China.

    PubMed

    Liu, Hongbo; Yang, Jian; Gan, Juli

    2010-11-01

    Data are presented for 13 trace metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, and Pb) in 38 bivalve mussels Anodonta woodiana from four separate sites (Huzhou, Dapu, Sansandao, and Manshan) around the Taihu Lake of China. All elemental concentrations generally ranked in decreasing order, Mn > Fe > Zn > As ≈ Cu ≈ Cd ≈ Se > Pb > Mo ≈ Ag, except that Cr, Co, and Ni were not detected. Anodonta woodiana was able to bioaccumulate essential Mn and toxic Cd to the extremely high level of 19,240 and 53 mg/kg dry weight, respectively. Geographical differences in the concentrations of trace elements were usually significant between sampling sites except for As and Pb, and the mussels from Sanshandao site had mostly accumulated or were contaminated with essential and toxic elements. The residue level of Cd in A. woodiana from the Sanshandao and Manshan sites appeared to be even higher than those of the essential elements Cu and Se, and exceeded the corresponding maximum residue limits of China. The present study provides the most recent information on trace element bioaccumulation or contamination in Taihu Lake and, further, suggests that A. woodiana can be used as a suitable bioindicator for inland water environmental monitoring.

  10. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil.

    PubMed

    Gu, Hai-Hong; Qiu, Hao; Tian, Tian; Zhan, Shu-Shun; Deng, Teng-Hao-Bo; Chaney, Rufus L; Wang, Shi-Zhong; Tang, Ye-Tao; Morel, Jean-Louis; Qiu, Rong-Liang

    2011-05-01

    The mechanisms of stabilization by silicon-rich amendments of cadmium, zinc, copper and lead in a multi-metal contaminated acidic soil and the mitigation of metal accumulation in rice were investigated in this study. The results from a pot experiment indicated that the application of fly ash (20 and 40gkg(-1)) and steel slag (3 and 6gkg(-1)) increased soil pH from 4.0 to 5.0-6.4, decreased the phytoavailability of heavy metals by at least 60%, and further suppressed metal uptake by rice. Diffusion gradient in thin-film measurement showed the heavy metal diffusion fluxes from soil to solution decreased by greater than 84% after remediation. X-ray diffraction analysis indicated the mobile metals were mainly deposited as their silicates, phosphates and hydroxides in amended treatments. Moreover, it was found metal translocation from stem to leaf was dramatically restrained by adding amendments, which might be due to the increase of silicon concentration and co-precipitation with heavy metals in stem. Finally, a field experiment showed the trace element concentrations in polished rice treated with amendments complied with the food safety standards of China. These results demonstrated fly ash and steel slag could be effective in mitigating heavy metal accumulation in rice grown on multi-metal contaminated acidic soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Biomonitor of Environmental Stress: Coral Trace Metal Analysis

    NASA Astrophysics Data System (ADS)

    Grumet, N.; Hughen, K.

    2006-12-01

    Tropical reef corals are extremely sensitive to changes in environmental conditions and, as a result of environmental degradation and global climate change, coral reefs around the globe are severely threatened. Increased human population and development in tropical regions is leading to higher turbidity and silt loading from terrestrial runoff, increased pesticides and nutrients from agricultural land-use and sewage, and the release of toxic trace metals to coastal waters from industrial pollution. The uptake of these metals and nutrients within the coral skeletal aragonite is a sensitive biomonitor of environmental stresses on coral health. We analyzed 18 trace metals from the surface of coral skeletons collected in Bermuda, Indonesia and Belize to assess a range of threats to coral reef health - including climate change, agricultural runoff and pesticides, and coastal development and tourism. This surface sample network also includes samples representing 4 different coral species. Trace metal analysis was performed on an inductively coupled plasma mass spectrometer (ICP-MS) to a high degree of accuracy and precision at extremely low (ppb) concentrations using a protocol we developed for samples less than 2 mg. Proper cleaning techniques were employed to minimize blank level concentrations for ultra-trace metal ICP-MS solution analysis. However, Zn/Ca and Ni/Ca concentrations remain below analytical detection limits. Initial results indicate that sea surface temperature proxies (e.g., Sr/Ca, B/Ca and Mg/Ca) display similar ratios between the different sites, whereas those metals associated with anthropogenic activities, such as Co, Pb and Cu, are site-specific and are linked to individual environmental stressors. Results from this study will be applied to down core trace metal records in the future. In doing so, we aim to understand the impacts of compounding environmental stresses on coral health, and to identify regional threshold values beyond which corals

  12. Bioavailability and toxicity of trace metals to the cladoceran Daphnia magna in relation to cadmium exposure history

    NASA Astrophysics Data System (ADS)

    Guan, Rui

    The cladoceran Daphnia magna is widely used in freshwater bioassessments and ecological risk assessments. This study designed a series of experiments employing radiotracer methodology to quantify the trace metals (mainly Cd and Zn) biokinetics in D. magna under different environmental and biological conditions and to investigate the influences of different Cd exposure histories on the bioavailability and toxicity of trace metals to D. magna. A bioenergetic-based kinetic model was finally applied in predicting the Cd accumulation dynamics in D. magna and the model validity under non-steady state was assessed. Cd assimilation was found in this study to be influenced by the food characteristics (e.g., metal concentration in food particles), the metal exposure history of the animals, and the genetic characteristics. Some of these influences could be interpreted by the capacity and/or competition of those metal binding sites within the digestive tract and/or the detoxifying proteins metallothionein (MT). My study demonstrated a significant induction of MT in response to Cd exposure and it was the dominant fraction in sequestering the internal nonessential trace metals in D. magna. The ratio of Cd body burden to MT might better predict the Cd toxicity on the digestion systems of D. magna than the Cd tissue burden alone within one-generational exposure to Cd. It was found that metal elimination (rate constant and contribution of different release routes) was independent of the food concentration and the dietary metal concentration, implying that the elimination may not be metabolically controlled. The incorporation of the bioenergetic-based kinetic model, especially under non-steady state, is invaluable in helping to understand the fate of trace metals in aquatic systems and potential environmental risks. The dependence of biokinetic parameters on environmental factors rather than on genotypes implies a great potential of using biokinetics in inter-laboratory comparisons.

  13. Alleviation of environmental risks associated with severely contaminated mine tailings using amendments: Modeling of trace element speciation, solubility, and plant accumulation.

    PubMed

    Pardo, Tania; Bes, Cleménce; Bernal, Maria Pilar; Clemente, Rafael

    2016-11-01

    Tailings are considered one of the most relevant sources of contamination associated with mining activities. Phytostabilization of mine spoils may need the application of the adequate combination of amendments to facilitate plant establishment and reduce their environmental impact. Two pot experiments were set up to assess the capability of 2 inorganic materials (calcium carbonate and a red mud derivate, ViroBind TM ), alone or in combination with organic amendments, for the stabilization of highly acidic trace element-contaminated mine tailings using Atriplex halimus. The effects of the treatments on tailings and porewater physico-chemical properties and trace-element accumulation by the plants, as well as the processes governing trace elements speciation and solubility in soil solution and their bioavailability were modeled. The application of the amendments increased tailings pH and decreased (>99%) trace elements solubility in porewater, but also changed the speciation of soluble Cd, Cu, and Pb. All the treatments made A. halimus growth in the tailings possible; organic amendments increased plant biomass and nutritional status, and reduced trace-element accumulation in the plants. Tailings amendments modified trace-element speciation in porewater (favoring the formation of chlorides and/or organo-metallic forms) and their solubility and plant uptake, which were found to be mainly governed by tailing/porewater pH, electrical conductivity, and organic carbon content, as well as soluble/available trace-element concentrations. Environ Toxicol Chem 2016;35:2874-2884. © 2016 SETAC. © 2016 SETAC.

  14. The role of Spartina maritima and Sarcocornia fruticosa on trace metals retention in Ria Formosa, Portugal

    NASA Astrophysics Data System (ADS)

    Moreira da Silva, Manuela; Duarte, Duarte; Isidoro, Jorge; Chícharo, Luís

    2013-04-01

    Over the last years, phytoremediation has become an increasingly recognized pathway for contaminant removal from water and shallow soils. Assessing the phytoremediation potential of wetlands is complex due to variable conditions of hydrology, soil/sediment types, plant species diversity, growing season and water chemistry. Physico-chemical properties of wetlands provide many positive attributes for remediating contaminants. Saltmarsh plants can sequestrate and inherently tolerate high metal concentrations found in saltmarsh sediments. An increasing number of studies have been carried out to understand the role of halophyte vegetation on retention, biovailability and remediation of the pollutants in coastal areas (estuaries and lagoons). It is already known that the accumulation capacity and the pattern of metal distribution in the plant tissues vary among plant species, namely monocotyledonous and dicotyledonous, and with sediment characteristics. During the last decades, there has been a large increase in urbanization and industrialization of the area surrounding Ria Formosa. Due to this reality, anthropogenic contaminants, including trace metals, are transported via untreated sewage and agricultural effluents to several parts of the lagoon. The dominant producers are Spartina maritima (Poales: Poaceae) and Sarcocornia fruticosa (Caryophyllales: Chenopodiaceae), appearing in pure stands respectively in the lower and in the upper saltmarshes. The aim of this work was to survey, comparatively, the role of S. maritima and S. fruticosa on minor and trace element (Ag, Cd, Cu, Cr, Mo, Ni, Pb and Zn), contents and distribution amongst sediment and plant tissues. Both S. maritima and S. fruticosa could fix metals from the surrounding belowground environment and accumulate metals, mainly in roots (also in rhizomes in the case of the former). Metal translocation to aerial parts of the plants was, in general, residual.

  15. Dredging-related mobilisation of trace metals: a case study in The Netherlands.

    PubMed

    van den Berg, G A; Meijers, G G; van der Heijdt, L M; Zwolsman, J J

    2001-06-01

    Mobilisation of contaminants is an important issue in environmental risk assessment of dredging projects. This study has aimed at identifying the effects of dredging on mobilisation of trace metals (Zn, Cu, Cd and Pb). The intensities and time scales of trace metal mobilisation were investigated during an experimental dredging project conducted under field conditions. The loss of contaminated dredge spoil is mainly reflected by increasing levels of trace metals in the suspended matter, dissolved trace metal concentrations in the water column are not significantly influenced by the dredging activities. This indicates a strong binding mechanism of trace metals to the solid phase or a fast redistribution over sorptive phases in response to oxidation of e.g. trace metal sulphides. Given the differences in levels of reactive phases (Mn, Fe, sulphides and organic matter) between the riverine suspended matter and the sediments, changes in the levels of these parameters in the suspended matter upon dredging may give information on the processes influencing the behaviour of trace metals and on the potential loss of sediment during dredging operations. Therefore, we recommend to routinely measure these parameters in studies on contaminant behaviour related to dredging activities.

  16. Laser-Induced Breakdown Spectroscopy of Trace Metals

    NASA Technical Reports Server (NTRS)

    Simons, Stephen (Technical Monitor); VanderWal, Randall L.; Ticich, Thomas M.; West, Joseph R., Jr.

    2004-01-01

    An alternative approach for laser-induced breakdown spectroscopy (LIBS) determination of trace metal determination in liquids is demonstrated. The limits of detection (LOD) for the technique ranged from 10 ppb to 10 ppm for 15 metals metals (Mg, Al, Si, Ca, Ti, Cr, Fe, Co, Ni, Cu, Zn, As, Cd, Hg, Pb) tested.

  17. Trace metal enrichments in nearshore sediments and accumulation in mussels (Modiolus capax) along the eastern coast of Baja California, Mexico: environmental status in 1995.

    PubMed

    Muñoz-Barbosa, Albino; Huerta-Diaz, Miguel Angel

    2013-12-15

    The biogeochemistry of trace metals in nearshore sediments and mussel was studied at 15 stations along a 1000 km long transect paralleling the west coast of the Gulf of California (GOC). Total trace metal (Me) and enrichment factor (EF(Me)) values in sediments were low due to negligible anthropogenic influence in the region. Past copper mining, however, near Santa Rosalia caused concentrations of Pb, Mn, Co, Zn and Cu which were 10-3.3×10(3) times greater than the average for the rest of the transect. Mussels also showed relatively high trace metal concentrations at the Santa Rosalia stations, but the variability in the spatial distribution was low and had undefined trends. Our results show that, with the exception of Co and Cu, the contamination caused by the copper mine affected sediments to a greater extent than mussels. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for phytoremediation of dredging sludge contaminated by trace metals.

    PubMed

    Arbaoui, Sarra; Evlard, Aricia; Mhamdi, Mohamed El Wafi; Campanella, Bruno; Paul, Roger; Bettaieb, Taoufik

    2013-07-01

    The potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for accumulation of cadmium and zinc was investigated. Plants have been grown in lysimetres containing dredging sludge, a substratum naturally rich in trace metals. Biomass production was determined. Sludge and water percolating from lysimeters were analyzed by atomic absorption spectrometry. No visible symptoms of toxicity were observed during the three- month culture. Kenaf and corn tolerate trace metals content in sludge. Results showed that Zn and Cd were found in corn and kenaf shoots at different levels, 2.49 mg/kg of Cd and 82.5 mg/kg of Zn in kenaf shoots and 2.1 mg/kg of Cd and 10.19 mg/kg in corn shoots. Quantities of extracted trace metals showed that decontamination of Zn and Cd polluted substrates is possible by corn and kenaf crops. Tolerance and bioaccumulation factors indicated that both species could be used in phytoremediation.

  19. PRESERVATION OF TRACE METALS IN WATER SAMPLES

    EPA Science Inventory

    Questions about trace metal preservation are resurfacing because the health effect risks associated with certain metals continue to drive the required reporting limits lower. Inductively coupled plasma-mass spectrometry was used in this study to analyze preservation of samples co...

  20. Study of the Accumulation of Toxic and Essential Ultra-Trace Elements in Fruits of Sorbus domestica L.

    PubMed Central

    Zeiner, Michaela; Juranović Cindrić, Iva; Majić, Boris; Stingeder, Gerhard

    2017-01-01

    In the present work, the accumulation of selected toxic and essential ultra-trace elements in fruits of service tree (Sorbus domestica L.) were determined depending on harvest time. Samples were collected from the same sampling area in two different years and within one year in September and October (maturity state). Harvesting the fruits in the same area excludes the influence of metals taken up via roots, thus the impact of airborne contamination by heavy metal translocation can be studied. All samples were dried and digested using an acidic microwave assisted digestion system prior to quantification by inductively coupled plasma—sector field mass spectrometry (ICP–SFMS). The elements chosen were Arsenic and Cadmium as well as Lithium, Molybdenum, and Selenium. The Arsenic content rose with maturity in mesocarp. Cadmium found in the mesocarp was unaffected by ripeness. For Selenium and Molybdenum, no statistically significant effect of ripeness could be found on their content in mesocarp. Lithium could not be detected in the majority of fruit samples. Differences between the metal concentrations based on the year of harvest were found for Arsenic, Molybdenum, and Selenium, depending on precipitation. The drier the season, the more Arsenic was accumulated. For Molybdenum and Selenium, the opposite effect was observed. PMID:28338629

  1. Study of the Accumulation of Toxic and Essential Ultra-Trace Elements in Fruits of Sorbus domestica L.

    PubMed

    Zeiner, Michaela; Juranović Cindrić, Iva; Majić, Boris; Stingeder, Gerhard

    2017-03-24

    In the present work, the accumulation of selected toxic and essential ultra-trace elements in fruits of service tree ( Sorbus domestica L.) were determined depending on harvest time. Samples were collected from the same sampling area in two different years and within one year in September and October (maturity state). Harvesting the fruits in the same area excludes the influence of metals taken up via roots, thus the impact of airborne contamination by heavy metal translocation can be studied. All samples were dried and digested using an acidic microwave assisted digestion system prior to quantification by inductively coupled plasma-sector field mass spectrometry (ICP-SFMS). The elements chosen were Arsenic and Cadmium as well as Lithium, Molybdenum, and Selenium. The Arsenic content rose with maturity in mesocarp. Cadmium found in the mesocarp was unaffected by ripeness. For Selenium and Molybdenum, no statistically significant effect of ripeness could be found on their content in mesocarp. Lithium could not be detected in the majority of fruit samples. Differences between the metal concentrations based on the year of harvest were found for Arsenic, Molybdenum, and Selenium, depending on precipitation. The drier the season, the more Arsenic was accumulated. For Molybdenum and Selenium, the opposite effect was observed.

  2. Reconstructing Early Industrial Contributions to Legacy Trace Metal Contamination in Southwestern Pennsylvania.

    PubMed

    Rossi, Robert J; Bain, Daniel J; Hillman, Aubrey L; Pompeani, David P; Finkenbinder, Matthew S; Abbott, Mark B

    2017-04-18

    Early industrial trace metal loadings are poorly characterized but potentially substantial sources of trace metals to the landscape. The magnitude of legacy contamination in southwestern Pennsylvania, the cradle of North American fossil fuel industrialization, is reconstructed from trace metal concentrations in a sediment core with proxies including major and trace metal chemistry, bulk density, and magnetic susceptibility. Trace metal chemistry in this sediment record reflects 19th and 20th century land use and industry. In particular, early 19th century arsenic loadings to the lake are elevated from pesticides used by early European settlers at a lakeside tannery. Later, sediment barium concentrations rise, likely reflecting the onset of acidic mine drainage from coal operations. Twentieth century zinc, cadmium, and lead concentrations are dominated by emissions from the nearby, infamous Donora Zinc Works yet record both the opening of a nearby coal-fired power plant and amendments to the Clean Air Act. The impact of early industry is substantial and rivals more recent metal fluxes, resulting in a significant potential source of contaminated sediments. Thus, modern assessments of trace metal contamination cannot ignore early industrial inputs, as the potential remobilization of legacy contamination would impact ecosystem and human health.

  3. Trace metal contents of selected seeds and vegetables from oil producing areas of Nigeria.

    PubMed

    Wegwu, Matthew O; Omeodu, Stephen I

    2010-07-01

    The concentrations of accumulated trace metals in selected seeds and vegetables collected in the oil producing Rivers State of Nigeria were investigated. The values were compared with those of seeds and vegetables cultivated in Owerri, a less industrialized area in Nigeria. The lead (Pb) and cadmium (Cd) contents of the seeds obtained from Rivers State ranged between 0.10 and 0.23 microg/g dry weight, while those of the seeds cultivated in Owerri fell below the detection limit of 0.01 microg/g dry weight. The highest manganese (Mn) level (902 microg/g dry weight) was found in Irvingia garbonesis seeds cultivated in Rivers State. Similarly, the highest nickel (Ni) value (199 microg/g dry weight) was also obtained in I. garbonesis, however, in the seeds sampled in Owerri. The highest copper (Cu), zinc (Zn), and iron (Fe) levels (16.8, 5.27, and 26.2 microg/g dry weight, resp.) were detected in seeds collected in Rivers State. With the exception of Talinum triangulae, Ocinum gratissimum, and Piper guineese, with Pb levels of 0.09, 0.10, and 0.11 microg/g dry weight, respectively, the Pb and Cd levels in the vegetables grown in Owerri fell below the detection limit of 0.01 microg/g dry weight. The trace metal with the highest levels in all the vegetables studied was Mn, followed by Fe. The highest concentrations of Ni and Cu occurred in vegetables collected from Rivers State, while the highest level of Zn was observed in Piper guineese collected in Owerri, with a value of 21.4 microg/g dry weight. Although the trace metal concentrations of the seeds and vegetables collected in Rivers State tended to be higher than those of the seeds and vegetables grown in Owerri, the average levels of trace metals obtained in this study fell far below the WHO specifications for metals in foods.

  4. Consumer-producer relationships for trace metals in Chorthippus brunneus (Thunberg. )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, M.S.

    1986-08-01

    The behavior of trace metals in terrestrial food chains is a subject of ecological interest, particularly in polluted environments where the potential exists for bioconcentration of metals known to be essential in trace amounts for normal plant and animal metabolism, as well as those with no known metabolic function but recognized toxicological properties. Laboratory studies of food chain relationships afford a means by which direct comparisons can be made between trace metals as a basis for interpretation of data collected from wild plant and animal populations. This study compares the behavior of three trace elements, copper, zinc and cadmium, inmore » terms of their assimilation under experimental conditions by the herbivorous common field grasshopper, Chorthippus brunneus (Thunberg.). This voracious orthopteran is widely distributed in Britain and is particularly prominent in the restricted invertebrate community of some metal smelter-affected grasslands where it forms important seasonal prey for insectivorous small mammals.« less

  5. Determination of trace metals in drinking water in Irbid City-Northern Jordan.

    PubMed

    Alomary, Ahmed

    2013-02-01

    Drinking water samples from Irbid, the second populated city in Jordan were analyzed for trace metals (As, Ba, Cd, Pb, Cr, Cu, Fe, Zn, Mn, Ni, and Se) content. The study was undertaken to determine if the metal concentrations were within the national and international guidelines. A total of 90 drinking water samples were collected from Al-Yarmouk University area. The samples were collected from three different water types: tap water (TW), home-purified water (HPW), and plant-purified water (PPW). All the samples were analyzed for trace metals using an inductively coupled plasma-optical emission spectrometry. All the samples analyzed were within the United States Environmental Protection Agency admissible pH limit (6.5-8.5). The results showed that concentrations of the trace metals vary significantly between the three drinking water types. The results showed that HPW samples have the lowest level of trace metals and the concentrations of some essential trace metals in these samples are less than the recommended amounts. Slight differences in the metal contents were found between HPW samples, little differences between PPW samples; however, significant differences were found between TW samples. Although some TW samples showed high levels of trace metals, however, the mean level of most elements determined in the samples were well within the Jordanian standards as well as the World Health Organization standards for drinking water.

  6. Biomonitoring of trace metal bioavailabilities to the barnacle Amphibalanus amphitrite along the Iranian coast of the Persian Gulf.

    PubMed

    Nasrolahi, A; Smith, B D; Ehsanpour, M; Afkhami, M; Rainbow, P S

    2014-10-01

    The fouling barnacle Amphibalanus amphitrite is a cosmopolitan biomonitor of trace metal bioavailabilities, with an international comparative data set of body metal concentrations. Bioavailabilities of As, Cd, Cr, Cu, Fe, Mn, Pb, V and Zn to A. amphitrite were investigated at 19 sites along the Iranian coast of the understudied Persian Gulf. Commercial and fishing ports showed extremely high Cu bioavailabilities, associated with high Zn bioavailabilities, possibly from antifouling paints and procedures. V availability was raised at one port, perhaps associated with fuel leakage. Cd bioavailabilities were raised at sites near the Strait of Hormuz, perhaps affected by adjacent upwelling off Oman. The As data allow a reinterpretation of the typical range of accumulated As concentrations in A. amphitrite. The Persian Gulf data add a new region to the A. amphitrite database, confirming its importance in assessing the ecotoxicologically significant trace metal contamination of coastal waters across the world. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Manganese As a Metal Accumulator

    EPA Science Inventory

    Manganese deposits in water distribution systems accumulate metals, radionuclides and oxyanions by a combination of surface complexation, adsorption and solid substitution, as well as a combination of oxidation followed by manganese reduction and sorption of the oxidized constitu...

  8. The influence of sedimentation on metal accumulation and cellular oxidative stress markers in the Antarctic bivalve Laternula elliptica

    NASA Astrophysics Data System (ADS)

    Husmann, G.; Abele, D.; Monien, D.; Monien, P.; Kriews, M.; Philipp, E. E. R.

    2012-10-01

    Recent rapid climate warming at the western Antarctic Peninsula (WAP) results in elevated glacial melting, enhanced sedimentary run-off, increased turbidity and impact of ice-scouring in shallow coastal areas. Discharge of mineral suspension from volcanic bedrock ablation and chronic physical disturbance is expected to influence sessile filter feeders such as the Antarctic soft shell clam Laternula elliptica (King and Broderip, 1832). We investigated effects of sedimentary run-off on the accumulation of trace metals, and together with physical disturbance, the cumulative effect on oxidative stress parameters in younger and older L. elliptica from two stations in Potter Cove (King George Island, Antarctica) which are distinctly impacted by turbidity and ice-scouring. Fe, Mn, Sr, V and Zn concentrations were slightly higher in sediments of the station receiving more sediment run-off, but not enriched in bivalves of this station. The only element that increased in bivalves experimentally exposed to sediment suspension for 28 days was Mn. Concentration of the waste accumulation biomarker lipofuscin in nervous tissue was higher in L. elliptica from the “exposed” compared to the “less exposed” site, whereas protein carbonyl levels in bivalve mantle tissue were higher at the less sediment impacted site. Tissue metal content and lipofuscin in nervous tissue were generally higher in older compared to younger individuals from both field stations. We conclude that elevated sediment ablation does not per se result in higher metal accumulation in L. elliptica. Instead of direct absorbance from sediment particles, metal accumulation in gills seems to indicate uptake of compounds dissolved in the water column, whereas metals in digestive gland appear to originate from enriched planktonic or detritic food. Accumulation of cellular waste products and potentially reactive metals over lifetime presumably alters L. elliptica physiological performance with age and may

  9. Effects of low-level dams on the distribution of sediment, trace metals, and organic substances in the lower Schuylkill River basin, Pennsylvania

    USGS Publications Warehouse

    Yorke, Thomas H.; Stamer, John K.; Pederson, Gary L.

    1985-01-01

    Heavy use of the Schuylkill River for municipal water supplies and a history of accidental spills and discharges of trace metals and organic substances have been a concern of State and local officials for many years. The U.S. Geological Survey, as part of their River Quality Assessment Program, developed a study to assess the occurrence and distribution of trace substances that pose a threat to human health and aquatic life. This report presents the results of the part of the study that evaluates the effects of low-level dams in the lower basin on the distribution and transport of sediment and trace substances. A combination of historical and current data were used in the assessment. Suspended-sediment data collected at several mainstem and tributary sites from 1954 to 1979 and sedimentation surveys of the six pools in the lower basin were used to define the sediment-transport characteristics of the river. These data provided a base for assessing the transport of trace substances, which are associated closely with riverbed sediments and suspended particles. Water and riverbed samples were collected for analyses of trace substances at numerous sites in the lower basin from 1978 to 1980. The six dams on the river between Pottstown and Philadelphia have had a significant effect on the transport of sediment and trace substances. Between 1954 and 1970, more than 4.7 million cubic yards of sediment accumulated in the pools formed by the dams. The quantity of sediment deposited in the pools ranged from 150,000 cubic yards in Plymouth Pool to 1.6 million cubic yards in Fairmount Pool. The rate of accumulation in the pools was a function of pool size and geometry and the frequency of storms. About 35 percent of the total sediment discharged by the river was stored in the six pools from 1954 to 1970. Since 1970, the net change in sediment accumulation has been minimal. More than 24 percent of the sediment in Fairmount Pool in 1970 was scoured from the pool during Hurricane

  10. Using portable X-ray fluorescence spectrometry and GIS to assess environmental risk and identify sources of trace metals in soils of peri-urban areas in the Yangtze Delta region, China.

    PubMed

    Ran, Jing; Wang, Dejian; Wang, Can; Zhang, Gang; Yao, Lipeng

    2014-08-01

    Portable X-ray fluorescence (PXRF) spectrometry may be very suitable for a fast and effective environmental assessment and source identification of trace metals in soils. In this study, topsoils (0-10 cm) at 139 sites were in situ scanned for total trace metals (Cr, Cu, Ni, Pb and Zn) and arsenic concentrations by PXRF in a typical town in Yangtze Delta region of Jiangsu province, China. To validate the utility of PXRF, 53 samples were collected from the scanning sites for the determination of selected trace metals using conventional methods. Based on trace metal concentrations detected by in situ PXRF, the contamination extent and sources of trace metals were studied via geo-accumulation index, multivariate analysis and geostatistics. The trace metal concentrations determined by PXRF were similar to those obtained via conventional chemical analysis. The median concentration of As, Cr, Cu, Ni, Pb and Zn in soils were 10.8, 56.4, 41.5, 43.5, 33.5, and 77.7 mg kg(-1), respectively. The distribution patterns of Cr, Cu, Ni, Pb, and Zn were mostly affected by anthropogenic sources, while As was mainly derived from lithogenic sources. Overall, PXRF has been successfully applied to contamination assessment and source identification of trace metals in soils.

  11. Enrichment and sources of trace metals in roadside soils in Shanghai, China: A case study of two urban/rural roads.

    PubMed

    Yan, Geng; Mao, Lingchen; Liu, Shuoxun; Mao, Yu; Ye, Hua; Huang, Tianshu; Li, Feipeng; Chen, Ling

    2018-08-01

    The road traffic has become one of the main sources of urban pollution and could directly affect roadside soils. To understand the level of contamination and potential sources of trace metals in roadside soils of Shanghai, 10 trace metals (Sb, Cr, Co, Ni, Cu, Cd, Pb, Hg, Mn and Zn) from two urban/rural roads (Hutai Road and Wunign-Caoan Road) were analyzed in this study. Antimony, Ni, Cu, Cd, Pb, Hg and Zn concentrations were higher than that of soil background values of Shanghai, whereas accumulation of Cr, Co and Mn were minimal. Significantly higher Sb, Cd, Pb contents were found in samples from urban areas than those from suburban area, suggesting the impact from urbanization. The concentrations of Sb and Cd in older road (Hutai) were higher than that in younger road (Wunign-Caoan). Multivariate statistical analysis revealed that Sb, Cu, Cd, Pb and Zn were mainly controlled by traffic activities (e.g. brake wear, tire wear, automobile exhaust) with high contamination levels found near traffic-intensive areas; Cr, Co, Ni and Mn derived primarily from soil parent materials; Hg was related to industrial activities. Besides, the enrichment of Sb, Cd, Cu, Pb and Zn showed a decreasing trend with distance to the road edges. According to the enrichment factors (EF s ), 78.5% of Sb, Cu, Cd, Pb and Zn were in moderate or significant pollution, indicating considerable traffic contribution. In particular, recently introduced in automotive technology, accumulation of Sb has been recognized in 42.9% samples of both roads. The accumulation of these traffic-derived metals causes potential negative impact to human health and ecological environment and should be concerned, especially the emerging trace elements like Sb. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Influence of organic matter on trace metal flux in coastal sediments. [Sequim Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, R.L.; Gibson, C.I.

    1978-05-15

    These studies indicate that organic matter in coastal sediment constitutes a primary sink for trace metals, both at natural and amended levels. Organic substances are also involved in controlling the mobility and flux of trace metals from sediments. Further, organically-bound trace metals in sediments appear to be an important source to deposit-feeding organisms.

  13. Marine Bioinorganic Chemistry: The Role of Trace Metals in the Oceanic Cycles of Major Nutrients

    NASA Astrophysics Data System (ADS)

    Morel, F. M. M.; Milligan, A. J.; Saito, M. A.

    2003-12-01

    The bulk of living biomass is chiefly made up of only a dozen "major" elements - carbon, hydrogen, oxygen, nitrogen, phosphorus, sodium, potassium, chlorine, calcium, magnesium, sulfur (and silicon in diatoms) - whose proportions vary within a relatively narrow range in most organisms. A number of trace elements, particularly first row transition metals - manganese, iron, nickel, cobalt, copper, and zinc - are also "essential" for the growth of organisms. At the molecular level, the chemical mechanisms by which such elements function as active centers or structural factors in enzymes and by which they are accumulated and stored by organisms is the central topic of bioinorganic chemistry. At the scale of ocean basins, the interplay of physical, chemical, and biological processes that govern the cycling of biologically essential elements in seawater is the subject of marine biogeochemistry. For those interested in the growth of marine organisms, particularly in the one-half of the Earth's primary production contributed by marine phytoplankton, bioinorganic chemistry and marine biogeochemistry are critically linked by the extraordinary paucity of essential trace elements in surface seawater, which results from their biological utilization and incorporation in sinking organic matter. How marine organisms acquire elements that are present at nano- or picomolar concentrations in surface seawater; how they perform critical enzymatic functions when necessary metal cofactors are almost unavailable are the central topics of "marine bioinorganic chemistry." The central aim of this field is to elucidate at the molecular level the metal-dependent biological processes involved in the major biogeochemical cycles.By examining the solutions that emerged from the problems posed by the scarcity of essential trace elements, marine bioinorganic chemists bring to light hitherto unknown ways to take up or utilize trace elements, new molecules, and newer "essential" elements. Focusing on

  14. Accumulation and effects of metal mixtures in two seaweed species.

    PubMed

    Jarvis, Tayler A; Bielmyer-Fraser, Gretchen K

    2015-05-01

    Metal pollution, due to various anthropogenic sources, may pose a threat to marine ecosystems. Metals can be introduced into food chains via bioaccumulation in primary producers, and may potentially lead to toxic effects. Macroalgae are used as food by a wide variety of organisms, and are therefore extremely important in aquatic systems. This study investigated the accumulation and effects of metals in two macroalgae species. The green seaweed, Ulva lactuca and the red seaweed, Agardhiella subulata were each concurrently exposed to five metals (Cu, Ni, Pb, Cd, and Zn) and U. lactuca was also exposed to each metal individually for 48 h. Metal accumulation in the seaweed was measured, and various photosynthetic parameters were assessed, using imaging pulse amplitude modulated (PAM) fluorometry. Increased metal accumulation occurred in both seaweed species after 48 h exposure to metal mixtures and each metal individually. The distribution of metals in both seaweed species changed with increasing metal exposure concentrations, resulting in higher proportions of Cu and Zn in the metal-exposed groups, as compared to respective controls. Further, U. lactuca accumulated higher concentrations of metals when exposed to each metal individually rather than in metal mixtures, suggesting interactions among metals for uptake and/or bioaccumulation. Significant impairment of photosynthetic parameters in U. lactuca was observed after exposure to 100 and 1000 μg/L metal mixtures, as well as 100 μg/L of either Cd or Cu. These results demonstrate metal bioaccumulation and toxic effects in important primary producers, and may have implications for higher trophic levels. Published by Elsevier Inc.

  15. Atmospheric trace metals measured at a regional background site (Welgegund) in South Africa

    NASA Astrophysics Data System (ADS)

    Venter, Andrew D.; van Zyl, Pieter G.; Beukes, Johan P.; Josipovic, Micky; Hendriks, Johan; Vakkari, Ville; Laakso, Lauri

    2017-03-01

    Atmospheric trace metals can cause a variety of health-related and environmental problems. Only a few studies on atmospheric trace metal concentrations have been conducted in South Africa. Therefore the aim of this study was to determine trace metal concentrations in aerosols collected at a regional background site, i.e. Welgegund, South Africa. PM1, PM1-2. 5 and PM2. 5-10 samples were collected for 13 months, and 31 atmospheric trace metal species were detected. Atmospheric iron (Fe) had the highest concentrations in all three size fractions, while calcium (Ca) was the second-most-abundant species. Chromium (Cr) and sodium (Na) concentrations were the third- and fourth-most-abundant species, respectively. The concentrations of the trace metal species in all three size ranges were similar, with the exception of Fe, which had higher concentrations in the PM1 size fraction. With the exception of titanium (Ti), aluminium (Al) and manganese (Mg), 70 % or more of the trace metal species detected were in the smaller size fractions, which indicated the influence of industrial activities. However, the large influence of wind-blown dust was reflected by 30 % or more of trace metals being present in the PM2. 5-10 size fraction. Comparison of trace metals determined at Welgegund to those in the western Bushveld Igneous Complex indicated that at both locations similar species were observed, with Fe being the most abundant. However, concentrations of these trace metal species were significantly higher in the western Bushveld Igneous Complex. Fe concentrations at the Vaal Triangle were similar to levels thereof at Welgegund, while concentrations of species associated with pyrometallurgical smelting were lower. Annual average Ni was 4 times higher, and annual average As was marginally higher than their respective European standard values, which could be attributed to regional influence of pyrometallurgical industries in the western Bushveld Igneous Complex. All three size

  16. Accumulation of Metals in Liver Tissues of Sympatric Golden Jackal (Canis aureus) and Red Fox (Vulpes vulpes) in the Southern Part of Romania.

    PubMed

    Farkas, Attila; Bidló, András; Bolodár-Varga, Bernadett; Jánoska, Ferenc

    2017-04-01

    Several previous study results have already demonstrated that golden jackal and red fox may serve as biological indicators of trace elements and heavy metal concentrations in the various regions they inhabit. The aim of this study was to evaluate accumulation patterns of targeted elements (Al, Ca, Cr, Cu, Fe, Mg, Mn, Ni and Pb) in liver samples of red foxes and golden jackals collected during the same period in the southern part of Romania. The accumulation patterns of trace elements in the livers of sympatric golden jackal and red fox were practically the same. To date, separate studies of the species individually in different habitats have shown that either of the species can be used for ecotoxicological and biomonitoring studies. Moreover, in general gender related studies, no significant differences in the concentrations of the investigated elements were found in either jackals or foxes. Also, average metal concentrations in liver samples do not show significant differences between groups under and above 12 months of age.

  17. Altitudinal patterns and controls of trace metal distribution in soils of a remote high mountain, Southwest China.

    PubMed

    Li, Rui; Bing, Haijian; Wu, Yanhong; Zhou, Jun; Xiang, Zhongxiang

    2018-02-01

    The aim of this study is to reveal the effects of regional human activity on trace metal accumulation in remote alpine ecosystems under long-distance atmospheric transport. Trace metals (Cd, Pb, and Zn) in soils of the Mt. Luoji, Southwest China, were investigated along a large altitudinal gradient [2200-3850 m above sea level (a.s.l.)] to elaborate the key factors controlling their distribution by Pb isotopic composition and statistical models. The concentrations of Cd, Pb, and Zn in the surface soils (O and A horizons) were relatively low at the altitudes of 3500-3700 m a.s.l. The enrichment factors of trace metals in the surface soils increased with altitude. After normalization for soil organic matter, the concentrations of Cd still increased with altitude, whereas those of Pb and Zn did not show a clear altitudinal trend. The effects of vegetation and cold trapping (CTE) (pollutant enrichment by decreasing temperature with increasing altitude) mainly determined the distribution of Cd and Pb in the O horizon, whereas CTE and bedrock weathering (BW) controlled that of Zn. In the A horizon, the distribution of Cd and Pb depended on the vegetation regulation, whereas that of Zn was mainly related to BW. Human activity, including ores mining and fossil fuels combustion, increased the trace metal deposition in the surface soils. The anthropogenic percentage of Cd, Pb, and Zn quantified 92.4, 67.8, and 42.9% in the O horizon, and 74.5, 33.9, and 24.9% in the A horizon, respectively. The anthropogenic metals deposited at the high altitudes of Mt. Luoji reflected the impact of long-range atmospheric transport on this remote alpine ecosystem from southern and southwestern regions.

  18. National Trends in Trace Metals Concentrations in Ambient Particulate Matter

    NASA Astrophysics Data System (ADS)

    McCarthy, M. C.; Hafner, H. R.; Charrier, J. G.

    2007-12-01

    Ambient measurements of trace metals identified as hazardous air pollutants (HAPs, air toxics) collected in the United States from 1990 to 2006 were analyzed for long-term trends. Trace metals analyzed include lead, manganese, arsenic, chromium, nickel, cadmium, and selenium. Visual and statistical analyses were used to identify and quantify temporal variations in air toxics at national and regional levels. Trend periods were required to be at least five years. Lead particles decreased in concentration at most monitoring sites, but trends in other metals were not consistent over time or spatially. In addition, routine ambient monitoring methods had method detection limits (MDLs) too high to adequately measure concentrations for trends analysis. Differences between measurement methods at urban and rural sites also confound trends analyses. Improvements in MDLs, and a better understanding of comparability between networks, are needed to better quantify trends in trace metal concentrations in the future.

  19. Accumulation of heavy metals by vegetables grown in mine wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cobb, G.P.; Sands, K.; Waters, M.

    2000-03-01

    Lead, cadmium, arsenic, and zinc were quantified in mine wastes and in soils mixed with mine wastes. Metal concentrations were found to be heterogeneous in the wastes. Iceberg lettuce, Cherry Belle radishes, Roma bush beans, and Better Boy tomatoes were cultivated in mine wastes and in waste-amended soils. Lettuce and radishes had 100% survival in the 100% mine waste treatments compared to 0% and 25% survival for tomatoes and beans, respectively. Metal concentrations were determined in plant tissues to determine uptake and distribution of metals in the edible plant parts. Individual soil samples were collected beneath each plant to assessmore » metal content in the immediate plant environment. This analysis verified heterogeneous metal content of the mine wastes. The four plant species effectively accumulated and translocated lead, cadmium, arsenic, and zinc. Tomato and bean plants contained the four metals mainly in the roots and little was translocated to the fruits. Radish roots accumulated less metals compared to the leaves, whereas lettuce roots and leaves accumulated similar concentrations of the four metals. Lettuce leaves and radish roots accumulated significantly more metals than bean and tomato fruits. This accumulation pattern suggests that consumption of lettuce leaves or radish roots from plants grown in mine wastes would pose greater risks to humans and wildlife than would consumption of beans or tomatoes grown in the same area. The potential risk may be mitigated somewhat in humans, as vegetables grown in mine wastes exhibited stunted growth and chlorosis.« less

  20. [Evaluation of soil heavy metals accumulation in the fast economy development region].

    PubMed

    Zhong, Xian-Lan; Zhou, Sheng-Lu; Li, Jiang-Tao; Zhao, Qi-Guo

    2010-06-01

    Evaluation of soil heavy metals accumulation was studied in Kunshan City, a typical region of the fast economy development region in China. 126 soil samples were collected and analyzed, and evaluation indexes of soil heavy metal accumulation, which including total concentration of soil heavy metal index (THMI), soil available heavy metal index (AHMI) and fractionation of soil heavy metal index (FHMI), were established, and the heavy metal accumulation conditions of soil in this region were also discussed. Results showed as follows: the spatial variability of THMI was relative lower, with a mean value of 42.57%, whereas strong variability was found in AHMI and FHMI (especially active fraction of soil heavy metals), with the average value of 82.75% and 77.83%, respectively. Judging by each index reference standard of C Horizon, THMI was low-grade with a mean value of 1.01, while the AHMI and FHMI reached to medium accumulation and serious accumulation, with the average values of 2.46 and 4.32, respectively. The synthetic accumulation index of soil heavy metals (SHMI) was 2.56, reaching to medium grade level and with strong variability. 21.54% land area was in low-grade accumulation and 54.70% land area was in medium grade accumulation, while 23.76% land area was in serious accumulation under SHMI evaluation system. All the accumulation evaluation indexes in livestock breeding zone were the lowest, while the indexes in the smelting and plating zone were the highest, but the indexes difference between two zones were unobvious. There were markedly differences in soil types, which the accumulation indexes in Wushan soil were significantly higher than those in Huangni soil and Qingni soil.

  1. Accumulation of metals by microorganisms — processes and importance for soil systems

    NASA Astrophysics Data System (ADS)

    Ledin, Maria

    2000-08-01

    Metal accumulation by solid substances can counteract metal mobilization in the environment if the solid substance is immobile. Microorganisms have a high surface area-to-volume ratio because of their small size and therefore provide a large contact area that can interact with metals in the surrounding environment. Microbial metal accumulation has received much attention in the last years due to the potential use of microorganisms for cleaning metal-polluted water. However, considerably less attention has been paid to the role of microorganisms for metal mobility in soil even though the same processes may occur there. Therefore, this paper highlights this area. The different accumulation processes that microorganisms perform are analyzed and their potential significance in soil systems is discussed. Different kinds of mechanisms can be involved in the accumulation of metals by microorganisms, e.g. adsorption, precipitation, complexation and active transport into the cell. Physicochemical parameters like pH and ionic composition, as well as biological factors are of importance for the magnitude of accumulation. Often large amounts of metals can be accumulated with varying specificity, and microorganisms may provide nucleation sites for mineral formation. Several studies of microbial metal accumulation have been made with different methods and aims. Most of these studies concern single-component systems with one organism at a time. Data from accumulation experiments with pure cultures of microorganisms have been used to model the overall metal retention in soil. A further development is experimental model systems using various solid soil components in salt medium. Microbial metal accumulation is difficult to study in situ, but some experimental methods have been applied as tools for studying real soil systems, e.g. litter bags buried in soil containing microorganisms, a method where discs with microorganisms have been put onto agar plates with soil extracts, and

  2. Nutrient and Antinutrient Compositions and Heavy Metal Uptake and Accumulation in S. nigrum Cultivated on Different Soil Types

    PubMed Central

    Ogundola, Adijat Funke; Bvenura, Callistus

    2018-01-01

    Solanum nigrum cultivated on different soil texture types, sandy clay loam, silty clay loam, clay loam, loam, and control soils, were evaluated for proximate compositions, antinutrients, vitamins, and mineral composition with plant age using standard analytical methods. Accumulation of trace elements using translocation factor was studied to determine their toxic levels in plant tissues. Data were analysed by ANOVA and results expressed as means and standard deviation. Ash content, crude fibre, protein, alkaloid, phytate, and saponin ranged between 11.4 and 12%, 19.24 and 19.95%, 34.23 and 38.98, 42.08 and 45.76 mg/ml, 0.84 and 1.17%, and 94.10 and 97.00%, respectively. Vitamins A, C, and B were present in high quantity. Macro- and micronutrients recorded showed that S. nigrum is a potential reservoir of minerals. Accumulation of micronutrients was observed to be the highest at the flowering stage between the 4th and 5th weeks after transplanting. Plants cultivated on clay loam, silty clay loam, and loam soils accumulated elevated nutritional compositions and abundant antinutrients. However, the accumulated trace metals in the plants are within the recommended safe levels. All nutrient values are in the recommended requirements for daily consumption. PMID:29576752

  3. Trace metal characterization of aerosol particles and cloud water during HCCT 2010

    NASA Astrophysics Data System (ADS)

    Fomba, K. W.; van Pinxteren, D.; Müller, K.; Iinuma, Y.; Lee, T.; Collett, J. L., Jr.; Herrmann, H.

    2015-08-01

    Trace metal characterization of bulk and size-resolved aerosol and cloud water samples were performed during the Hill Cap Cloud Thuringia (HCCT) campaign. Cloud water was collected at the top of Mt. Schmücke while aerosol samples were collected at two stations upwind and downwind of Mt. Schmücke. Fourteen trace metals including Ti, V, Fe, Mn, Co, Zn, Ni, Cu, As, Sr, Rb, Pb, Cr, and Se were investigated during four full cloud events (FCEs) that fulfilled the conditions of a continuous air mass flow through the three stations. Aerosol particle trace metal concentrations were found to be lower than those observed in the same region during previous field experiments but were within a similar range to those observed in other rural regions in Europe. Fe and Zn were the most abundant elements with concentration ranges of 0.2-111.6 and 1.1-32.1 ng m-3, respectively. Fe, Mn, and Ti were mainly found in coarse mode aerosols while Zn, Pb, and As were mostly found in the fine mode. Correlation and enrichment factor analysis of trace metals revealed that trace metals such as Ti and Rb were mostly of crustal origin while trace metals such as Zn, Pb, As, Cr, Ni, V, and Cu were of anthropogenic origin. Trace metals such as Fe and Mn were of mixed origins including crustal and combustion sources. Trace metal cloud water concentration decreased from Ti, Mn, Cr, to Co with average concentrations of 9.18, 5.59, 5.54, and 0.46 μg L-1, respectively. A non-uniform distribution of soluble Fe, Cu, and Mn was observed across the cloud drop sizes. Soluble Fe and Cu were found mainly in cloud droplets with diameters between 16 and 22 μm, while Mn was found mostly in larger drops greater than 22 μm. Fe(III) was the main form of soluble Fe especially in the small and larger drops with concentrations ranging from 2.2 to 37.1 μg L-1. In contrast to other studies, Fe(II) was observed mainly in the evening hours, implying its presence was not directly related to photochemical processes

  4. Trace metal characterization of aerosol particles and cloud water during HCCT 2010

    NASA Astrophysics Data System (ADS)

    Fomba, K. W.; van Pinxteren, D.; Müller, K.; Iinuma, Y.; Lee, T.; Collet, J., Jr.; Herrmann, H.

    2015-04-01

    Trace metal characterization of bulk and size resolved aerosol and cloud water samples were performed during the Hill Cap Cloud Thuringia (HCCT) campaign. Cloud water was collected at the top of Mt. Schmücke while aerosol samples were collected at two stations upwind and downwind of Mt. Schmücke. Fourteen trace metals including Ti, V, Fe, Mn, Co, Zn, Ni, Cu, As, Sr, Rb, Pb, Cr, and Se were investigated during four full cloud events (FCE) that fulfilled the conditions of a continuous air mass flow through the three stations. Aerosol particle trace metal concentrations were found to be lower than those observed in the same region during previous field experiments but were within a similar range to those observed in other rural regions in Europe. Fe and Zn were the most abundant elements with concentration ranges of 0.2-111.6 and 1.1-32.1 ng m-3, respectively. Fe, Mn and Ti were mainly found in coarse mode aerosols while Zn, Pb and As were mostly found in the fine mode. Correlation and enrichment factor analysis of trace metals revealed that trace metals such as Ti and Rb were mostly of crustal origin while trace metals such as Zn, Pb, As, Cr, Ni, V, and Cu were of anthropogenic origin. Trace metals such as Fe, Mn, were of mixed origins including crustal and combustion sources. Trace metal cloud water concentration decreased from Ti, Mn, Cr, to Co with average concentrations of 9.18, 5.59, 5.54, and 0.46 μg L-1, respectively. A non-uniform distribution of soluble Fe, Cu and Mn was observed across the cloud drop sizes. Soluble Fe and Cu were found mainly in cloud droplets with diameters between 16 and 22 μm while Mn was found mostly in larger drops greater than 22 μm. Fe (III) was the main form of soluble Fe especially in the small and larger drops with concentrations ranging from 2.2 to 37.1 μg L-1. In contrast to other studies, Fe (II) was observed mainly in the evening hours, implying its presence was not directly related to photochemical processes. Aerosol

  5. Source and Cycling of Trace Metals and Nutrients in a Microbial Coalbed Methane System

    NASA Astrophysics Data System (ADS)

    Earll, M. M.; Barnhart, E. P.; Ritter, D.; Vinson, D. S.; Orem, W. H.; Vengosh, A.; McIntosh, J. C.

    2015-12-01

    The source and cycling of trace metals and nutrients in coalbed methane (CBM) systems are controlled by both geochemical processes, such as dissolution or precipitation, and biological mediation by microbial communities. CBM production by the microbes is influenced by trace metals and macronutrients such as nitrogen (N) and phosphate (P). Previous studies have shown the importance of these nutrients to both enhance and inhibit methane production; however, it's not clear whether they are sourced from coal via in-situ biodegradation of organic matter or transported into the seams with groundwater recharge. To address this knowledge gap, trace metal and nutrient geochemistry and the organic content of solid coal and associated groundwater will be investigated across a hydrologic gradient in CBM wells in the Powder River Basin, MT. Sequential dissolution experiments (chemical extraction of organic and inorganic constituents) using 8 core samples of coal and sandstone will provide insight into the presence of trace metals and nutrients in coalbeds, the associated minerals present, and their mobilization. If significant concentrations of N, P, and trace metals are present in core samples, in-situ sourcing of nutrients by microbes is highly probable. The biogeochemical evolution of groundwater, as it relates to trace metal and nutrient cycling by microbial consortia, will be investigated by targeting core-associated coal seams from shallow wells in recharge areas to depths of at least 165 m and across a 28 m vertical profile that include overburden, coal, and underburden. If microbial-limiting trace metals and nutrients are transported into coal seams with groundwater recharge, we would expect to see higher concentrations of trace metals and nutrients in recharge areas compared to deeper coalbeds. The results of this study will provide novel understanding of where trace metals and nutrients are sourced and how they are cycled in CBM systems.

  6. Distribution and accumulation of metals in tadpoles inhabiting the metalliferous streams of eastern Chalkidiki, northeast Greece.

    PubMed

    Kelepertzis, Efstratios; Argyraki, Ariadne; Valakos, Efstratios; Daftsis, Emmanouil

    2012-10-01

    The present study investigates the accumulation of heavy metals [copper (Cu), lead (Pb), zinc (Zn), magnesium (Mn), cadmium (Cd), nickel (Ni), and chromium (Cr)] in tadpoles inhabiting the metalliferous streams flowing within the Asprolakkas River basin (northeast Chalkidiki peninsula, Greece) and the effect of potentially harmful elements in stream water and sediment on the corresponding levels in their tissue. Animals were collected from six sampling sites influenced by a wide range of surface water and stream sediment trace element concentrations. The results of the chemical analyses showed that tadpoles accumulated significant levels of all of the examined metals. The range of whole-body mean measured concentrations were (in dry mass) as follows: Cu (46-182 mg/kg), Pb (103-4,490 mg/kg), Zn (494-11,460 mg/kg), Mn (1,620-13,310 mg/kg), Cd (1.2-82 mg/kg), Ni (57-163 mg/kg), and Cr (38-272 mg/kg). The mean concentrations of Pb, Zn, Mn, Ni, Cr, and Cd in Kokkinolakkas stream, which drains a currently active mining area, were the highest ever reported in tadpoles. Our results indicate that whole-body levels of Pb, Zn, Cu, and Cd increase with stream sediment concentrations and that these organisms tend to accumulate metals bound to Fe and Mn oxides. In addition, high dissolved concentrations and significant concentrations associated with more labile geochemical phases of sediments for specific metals were contributing factors determining whole-body levels. Given the observed bioconcentration factors, as well as the correlation with sediment concentrations, it is proposed that these organisms could be considered as bioindicators of environmental contamination and may be used for monitoring purposes within this metal-rich zone and, perhaps, within other rivers affected by metal mining.

  7. The influence of biosolids treatment files on the mobility of metal trace elements.

    PubMed

    Maisonnave, V; Montrejaud-Vignoles, M; Bonnin, C; Revel, J C; Vignoles, C

    2001-01-01

    The production of sludge in France is estimated to be about 900,000 metric tons dry matter per year and 60% of this is recycled onto agricultural land. At present, the long term future of this procedure is open to question and among the different arguments being put forward are the levels of metallic trace elements and the risk of accumulation in soils. This study presents the behaviour of metallic trace elements in sludges from three different treatment procedures: thickened liquid sludges, dewatered sludges and dried sludges. These biosolids are mixed with a clay soil and then placed in a temperature and humidity controlled glasshouse. Several containers are seeded with ryegrass and compared with controls. For the three harvests, covering all the amendments studied (including non-amended soil), the differences are not really representative. Absorption by the ryegrass is low in all cases. For the cadmium, the chromium, the nickel and the lead, the roots are 5 to 10 times more concentrated than the leaves. The majority of these elements stay absorbed in the roots, regardless of the amendment used. The addition of the sludges has considerably reduced the uptake of water in ryegrass throughout its growth cycle. Quite apart from their fertilizing qualities, wastewater treatment plant sludges could offer important implications for irrigation.

  8. Predicting the toxicity of sediment-associated trace metals with simultaneously extracted trace metal: Acid-volatile sulfide concentrations and dry weight-normalized concentrations: A critical comparison

    USGS Publications Warehouse

    Long, E.R.; MacDonald, D.D.; Cubbage, J.C.; Ingersoll, C.G.

    1998-01-01

    The relative abilities of sediment concentrations of simultaneously extracted trace metal: acid-volatile sulfide (SEM: AVS) and dry weight-normalized trace metals to correctly predict both toxicity and nontoxicity were compared by analysis of 77 field-collected samples. Relative to the SEM:AVS concentrations, sediment guidelines based upon dry weight-normalized concentrations were equally or slightly more accurate in predicting both nontoxic and toxic results in laboratory tests.

  9. Enhanced anaerobic digestion of food waste by trace metal elements supplementation and reduced metals dosage by green chelating agent [S, S]-EDDS via improving metals bioavailability.

    PubMed

    Zhang, Wanli; Zhang, Lei; Li, Aimin

    2015-11-01

    This study aimed at investigating the effects of trace metals on methane production from food waste and examining the feasibility of reducing metals dosage by ethylenediamine-N,N'-disuccinic acid (EDDS) via improving metals bioavailability. The results indicated that the effects of metal elements highly depended on the supplemental concentrations. Trace metals supplemented under moderate concentrations greatly enhanced the methane yield. However, the excessive supplementation of Fe (1000 mg/L) and Ni (50 mg/L) exhibited the obvious toxicity to methanogens. The combinations of trace metals exhibited remarkable synergistic effects. The supplementation of Fe (100 mg/L) + Co (1 mg/L) + Mo (5 mg/L) + Ni (5 mg/L) obtained the greatest methane yield of 504 mL/g VSadded and the highest increment of 35.5% compared to the reactor without metals supplementation (372 mL/g VSadded). The changes of metals speciation showed the reduction of metals bioavailability during anaerobic digestion, which might weaken the stimulative effects of trace metals. However, the addition of EDDS improved metals bioavailability for microbial uptake and stimulated the activity of methanogens, and therefore, strengthened the stimulative effects of metals on anaerobic digestion of food waste. The batch and semi-continuous experiments confirmed that the addition of EDDS (20 mg/L) bonded to trace metals prior to their supplementation could obtain a 50% reduction of optimal metals dosage. This study provided a feasible method to reduce trace metals dosage without the degeneration of process performance of anaerobic digestion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Sorbent control of trace metals in sewage sludge combustion and incineration

    NASA Astrophysics Data System (ADS)

    Naruse, I.; Yao, H.; Mkilaha, I. S. N.

    2003-05-01

    Coal and wastes combustion have become an important issue not only in terms of energy generation but also environmental conservation. The need for alternative fuels and wastes management has made the two energy sources of importance. However, the utilization of the two is faced with problems of impurity trace metals in the fuel. These metals usually speciate during combustion or incineration leading to generation of fumes and subsequently particles. This paper reports on the study aimed at understanding the speciation of trace metals and their emission from combustion systems as particulates. Experiments carried out using a down-flow furnace and theoretical study carried out using lead, chromium and cadmium as basic metals had shown that their speciation and subsequent emission is controlled by both chemical composition and physical properties of the fuel. The physical and chemical and physical properties of the fuel and their respective compounds and the operating conditions of the incineration and combustion system control the enrichment of the particles with trace metals.

  11. Modified batch anaerobic digestion assay for testing efficiencies of trace metal additives to enhance methane production of energy crops.

    PubMed

    Brulé, Mathieu; Bolduan, Rainer; Seidelt, Stephan; Schlagermann, Pascal; Bott, Armin

    2013-01-01

    Batch biochemical methane potential (BMP) assays to evaluate the methane yield of biogas substrates such as energy crops are usually carried out with undiluted inoculum. A BMP assay was performed on two energy crops (green cuttings and grass silage). Anaerobic digestion was performed both with and without supplementation of three commercial additives containing trace metals in liquid, solid or adsorbed form (on clay particles). In order to reveal positive effects of trace metal supplementation on the methane yield, besides undiluted inoculum, 3-fold and 10-fold dilutions of the inoculum were applied for substrate digestion. Diluted inoculum variants were supplemented with both mineral nutrients and pH-buffering substances to prevent a collapse of the digestion process. As expected, commercial additives had no effect on the digestion process performed with undiluted inoculum, while significant increases of methane production through trace element supplementation could be observed on the diluted variants. The effect of inoculum dilution may be twofold: (1) decrease in trace metal supplementation from the inoculum and (2) reduction in the initial number of bacterial cells. Bacteria require higher growth rates for substrate degradation and hence have higher trace element consumption. According to common knowledge of the biogas process, periods with volatile fatty acids accumulation and decreased pH may have occurred in the course ofanaerobic digestion. These effects may have led to inhibition, not only ofmethanogenes and acetogenes involved in the final phases of methane production, but also offibre-degrading bacterial strains involved in polymer hydrolysis. Further research is required to confirm this hypothesis.

  12. Reconstructing Early Industrial Contributions to Legacy Trace Metal Contamination in Southwestern Pennsylvania

    NASA Astrophysics Data System (ADS)

    Rossi, R.; Bain, D.; Hillman, A. L.; Pompeani, D. P.; Abbott, M. B.

    2015-12-01

    The remobilization of legacy contamination stored in floodplain sediments remains a threat to ecosystem and human health, particularly with potential changes in global precipitation patterns and flooding regimes. Vehicular and industrial emissions are often the dominant, recognized source of anthropogenic trace metal loadings to ecosystems today. However, loadings from early industrial activities are poorly characterized and potential sources of trace metal inputs. While potential trace metal contamination from these activities is recognized (e.g., the historical use of lead arsenate as a pesticide), the magnitude and distribution of legacy contamination is often unknown. This presentation reconstructs a lake sediment record of trace metal inputs from an oxbow lake in Southwestern Pennsylvania. Sediment cores were analyzed for major and trace metal chemistry, carbon to nitrogen ratios, bulk density, and magnetic susceptibility. Sediment trace metal chemistry in this approximately 250 year record (180 cm) record changes in land use and industry both in the 19th century and the 20th century. Of particular interest is early 19th century loadings of arsenic and calcium to the lake, likely attributable to pesticides and lime used in tanning processes near the lake. After this period of tanning dominated inputs, sediment barium concentrations rise, likely reflecting the onset of coal mining operations and resulting discharge of acid mine drainage to surface waters. In the 20th century portion of our record (70 -20 cm), patterns in sediment zinc, cadmium, and lead concentrations are dominated by the opening and closing of the nearby Donora Zinc Works and the American Steel & Wire Works, infamous facilities in the history of air quality regulation. The most recent sediment chemistry records periods include the enactment of air pollution legislation (~ 35 cm), and the phase out of tetraethyl leaded gasoline (~30 cm). Our study documents the impact of early industry in the

  13. Association between body levels of trace metals and glaucoma prevalence.

    PubMed

    Lin, Shuai-Chun; Singh, Kuldev; Lin, Shan C

    2015-10-01

    Abnormal body levels of essential elements and exposure to toxic trace metals have been postulated to contribute to the pathogenesis of diseases affecting many organ systems, including the eye. To investigate associations between body levels of trace metals and the prevalence of glaucoma in a cross-sectional population-based study. Blood or urine metallic element levels and information pertaining to ocular disease were available for 2680 individuals 19 years and older participating in the fourth Korea National Health and Nutrition Examination Survey between January 1, 2008, and December 31, 2009, the second and the third years of the survey (2007-2009). Glaucoma diagnosis was based on criteria established by the International Society of Geographic and Epidemiologic Ophthalmology. Demographic, comorbidity, and health-related behavior information was obtained via interview. Multivariable logistic regression analyses were performed to determine associations between blood and urine trace element levels and the odds of glaucoma diagnosis. All analyses were performed between September 2014 and December 2014. The presence or absence of glaucoma. After adjustment for potential confounders, blood manganese level was negatively associated with the odds of glaucoma diagnosis (odds ratio [OR], 0.44; 95% CI, 0.21-0.92). Blood mercury level was positively associated with glaucoma prevalence (OR, 1.01; 95% CI, 1.00-1.03). No definitive association was identified between blood cadmium or lead levels or urine arsenic level and a diagnosis of glaucoma. These findings in a cross-sectional study of the South Korean population suggest that a lower blood manganese level and a higher blood mercury level are associated with greater odds of glaucoma. For more confidence that trace metals may have a role in the pathogenesis of glaucoma, prospective studies would need to confirm that the presence of such trace metals increases the chance of developing glaucoma.

  14. Heavy metals accumulation affects bone microarchitecture in osteoporotic patients.

    PubMed

    Scimeca, Manuel; Feola, Maurizio; Romano, Lorenzo; Rao, Cecilia; Gasbarra, Elena; Bonanno, Elena; Brandi, Maria Luisa; Tarantino, Umberto

    2017-04-01

    Bone metabolism is affected by mechanical, genetic, and environmental factors and plays a major role in osteoporosis. Nevertheless, the influence of environmental pollution on the occurrence of osteoporosis is still unclear and controversial. In this context, heavy metals are the most important pollutants capable to affect bone mass. The aim of this study was to investigate whether heavy metals accumulation in bone tissues could be related to the altered bone metabolism and architecture of osteoporotic patients. To this end, we analyzed 25 bone head biopsies osteoporotic patients and 25 bone head biopsies of osteoarthritic patients. Moreover we enrolled 15 patients underwent hip arthroplasty for high-energy hip fracture or osteonecrosis of the femoral head as a control group. Bone head biopsies were studied by BioQuant-osteo software, scanning electron microscopy and Energy Dispersive X-ray microanalysis. We found a prevalence of lead, cadmium and chromium accumulation in osteoporotic patients. Noteworthy, high levels of sclerostin, detected by immunohistochemistry, correlate with the accumulation of heavy metal found in the bone of osteoporotic patients, suggesting a molecular link between heavy metal accumulation and bone metabolism impairment. In conclusion, the presence of heavy metals into bone shed new light on the comprehension of the pathogenesis of osteoporosis since these elements could play a non redundant role in the development of osteoporosis at cellular/molecular and epigenetic level. Nevertheless, in vivo and in vitro studies need to better elucidate the molecular mechanism in which heavy metals can participate to osteoporosis. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1333-1342, 2017. © 2016 Wiley Periodicals, Inc.

  15. Trace metal speciation in natural waters: Computational vs. analytical

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    1996-01-01

    Improvements in the field sampling, preservation, and determination of trace metals in natural waters have made many analyses more reliable and less affected by contamination. The speciation of trace metals, however, remains controversial. Chemical model speciation calculations do not necessarily agree with voltammetric, ion exchange, potentiometric, or other analytical speciation techniques. When metal-organic complexes are important, model calculations are not usually helpful and on-site analytical separations are essential. Many analytical speciation techniques have serious interferences and only work well for a limited subset of water types and compositions. A combined approach to the evaluation of speciation could greatly reduce these uncertainties. The approach proposed would be to (1) compare and contrast different analytical techniques with each other and with computed speciation, (2) compare computed trace metal speciation with reliable measurements of solubility, potentiometry, and mean activity coefficients, and (3) compare different model calculations with each other for the same set of water analyses, especially where supplementary data on speciation already exist. A comparison and critique of analytical with chemical model speciation for a range of water samples would delineate the useful range and limitations of these different approaches to speciation. Both model calculations and analytical determinations have useful and different constraints on the range of possible speciation such that they can provide much better insight into speciation when used together. Major discrepancies in the thermodynamic databases of speciation models can be evaluated with the aid of analytical speciation, and when the thermodynamic models are highly consistent and reliable, the sources of error in the analytical speciation can be evaluated. Major thermodynamic discrepancies also can be evaluated by simulating solubility and activity coefficient data and testing various

  16. Watershed and land use-based sources of trace metals in urban storm water.

    PubMed

    Tiefenthaler, Liesl L; Stein, Eric D; Schiff, Kenneth C

    2008-02-01

    Trace metal contributions in urban storm water are of concern to environmental managers because of their potential impacts on ambient receiving waters. The mechanisms and processes that influence temporal and spatial patterns of trace metal loading in urban storm water, however, are not well understood. The goals of the present study were to quantify trace metal event mean concentration (EMC), flux, and mass loading associated with storm water runoff from representative land uses; to compare EMC, flux, and mass loading associated with storm water runoff from urban (developed) and nonurban (undeveloped) watersheds; and to investigate within-storm and within-season factors that affect trace metal concentration and flux. To achieve these goals, trace metal concentrations were measured in 315 samples over 11 storm events in five southern California, USA, watersheds representing eight different land use types during the 2000 through 2005 storm seasons. In addition, 377 runoff samples were collected from 12 mass emission sites (end of watershed) during 15 different storm events. Mean flux at land use sites ranged from 24 to 1,238, 0.1 to 1,272, and 6 to 33,189 g/km(2) for total copper, total lead, and total zinc, respectively. Storm water runoff from industrial land use sites contained higher EMCs and generated greater flux of trace metals than other land use types. For all storms sampled, the highest metal concentrations occurred during the early phases of storm water runoff, with peak concentrations usually preceding peak flow. Early season storms produced significantly higher metal flux compared with late season storms at both mass emission and land use sites.

  17. The trace metal composition of marine phytoplankton.

    PubMed

    Twining, Benjamin S; Baines, Stephen B

    2013-01-01

    Trace metals are required for numerous processes in phytoplankton and can influence the growth and structure of natural phytoplankton communities. The metal contents of phytoplankton reflect biochemical demands as well as environmental availability and influence the distribution of metals in the ocean. Metal quotas of natural populations can be assessed from analyses of individual cells or bulk particle assemblages or inferred from ratios of dissolved metals and macronutrients in the water column. Here, we review the available data from these approaches for temperate, equatorial, and Antarctic waters in the Pacific and Atlantic Oceans. The data show a generalized metal abundance ranking of Fe≈Zn>Mn≈Ni≈Cu≫Co≈Cd; however, there are notable differences between taxa and regions that inform our understanding of ocean metal biogeochemistry. Differences in the quotas estimated by the various techniques also provide information on metal behavior. Therefore, valuable information is lost when a single metal stoichiometry is assumed for all phytoplankton.

  18. Interactions of trace metals with hydrogels and filter membranes used in DET and DGT techniques.

    PubMed

    Garmo, Oyvind A; Davison, William; Zhang, Hao

    2008-08-01

    Equilibrium partitioning of trace metals between bulk solution and hydrogels/filter was studied. Under some conditions, trace metal concentrations were higher in the hydrogels or filter membranes compared to bulk solution (enrichment). In synthetic soft water, enrichment of cationic trace metals in polyacrylamide hydrogels decreased with increasing trace metal concentration. Enrichment was little affected by Ca and Mg in the concentration range typically encountered in natural freshwaters, indicating high affinity but low capacity binding of trace metals to solid structure in polyacrylamide gels. The apparent binding strength decreased in the sequence: Cu > Pb > Ni approximately to Cd approximately to Co and a low concentration of cationic Cu eliminated enrichment of weakly binding trace metal cations. The polyacrylamide gels also had an affinity for fulvic acid and/or its trace metal complexes. Enrichment of cationic Cd in agarose gel and hydrophilic polyethersulfone filter was independent of concentration (10 nM to 5 microM) but decreased with increasing Ca/ Mg concentration and ionic strength, suggesting that it is mainly due to electrostatic interactions. However, Cu and Pb were enriched even after equilibration in seawater, indicating that these metals additionally bind to sites within the agarose gel and filter. Compared to the polyacrylamide gels, agarose gel had a lower affinity for metal-fulvic complexes. Potential biases in measurements made with the diffusive equilibration in thin-films (DET) technique, identified by this work, are discussed.

  19. Molecular Speciation of Trace Metal Organic Complexes in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Repeta, D.; Boiteau, R. M.; Bundy, R. M.; Babcock-Adams, L.

    2017-12-01

    Microbial production across approximately one third of the surface ocean is limited by extraordinarily low (picomolar) concentrations of dissolved iron, essentially all of which is complexed to strong organic ligands of unknown composition. Other biologically important trace metals (cobalt, copper, zinc, nickel) are also complexed to strong organic ligands, which again have not been extensively characterized. Nevertheless, organic ligands exert a strong influence on metal bioavailability and toxicity. For example, amendment experiments using commercially available siderophores, organic compounds synthesized by microbes to facilitate iron uptake, show these ligands can both facilitate or impede iron uptake depending on the siderophore composition and available uptake pathways. Over the past few years we have developed analytical techniques using high pressure liquid chromatography interfaced with inductively coupled plasma and electrospray ionization mass spectrometry to identify and quantify trace metal organic complexes in laboratory cultures of marine microbes and in seawater. We found siderophores to be widely distributed in the ocean, particularly in regions characterized by low iron concentrations. We also find chemically distinct complexes of copper, zinc, colbalt and nickel that we have yet to fully characterize. We will discuss some of our recent work on trace metal organic speciation in seawater and laboratory cultures, and outline future efforts to better understand the microbial cycling of trace metal organic complexes in the sea.

  20. Determination of trace and heavy metals in some commonly used medicinal herbs in Ayurveda.

    PubMed

    Nema, Neelesh K; Maity, Niladri; Sarkar, Birendra K; Mukherjee, Pulok K

    2014-11-01

    Traditionally, the herbal drugs are well established for their therapeutic benefits. Depending upon their geographical sources sometimes the trace and heavy metals' content may differ, which may lead to severe toxicity. So, the toxicological and safety assessment of these herbal drugs are one of the major issues in recent days. Eight different plant species including Aloe vera, Centella asiatica, Calendula officinalis, Cucumis sativus, Camellia sinensis, Clitoria ternatea, Piper betel and Tagetes erecta were selected to determine their heavy and trace metals content and thereby to assure their safer therapeutic application. The trace and heavy metals were detected through atomic absorption spectrometry analysis. The selected medicinal plant materials were collected from the local cultivated regions of West Bengal, India, and were digested with nitric acid and hydrochloric acid as specified. Absorbance was measured through atomic absorption spectrometer (AA 303) and the concentration of different trace and heavy metals in the plant samples were calculated. The quantitative determinations were carried out using standard calibration curve obtained by the standard solutions of different metals. The contents of heavy metals were found to be within the prescribed limit. Other trace metals were found to be present in significant amount. Thus, on the basis of experimental outcome, it can be concluded that the plant materials collected from the specific region are safe and may not produce any harmful effect of metal toxicity during their therapeutic application. The investigated medicinal plants contain trace metals such as copper (Cu), chromium (Cr), manganese (Mn), iron (Fe) and nickel (Ni) as well as heavy metals such as arsenic (As), lead (Pb) and mercury (Hg), which were present within the permissible limit. © The Author(s) 2012.

  1. Trace metal concentrations in Posidonia oceanica of North Corsica (northwestern Mediterranean Sea): use as a biological monitor?

    PubMed Central

    Gosselin, Marc; Bouquegneau, Jean-Marie; Lefèbvre, Frédéric; Lepoint, Gilles; Pergent, Gerard; Pergent-Martini, Christine; Gobert, Sylvie

    2006-01-01

    Background Within semi-closed areas like the Mediterranean Sea, anthropic wastes tend to concentrate in the environment. Metals, in particular, are known to persist in the environment and can affect human health due to accumulation in the food chain. The seagrass Posidonia oceanica, widely found in Mediterranean coastal waters, has been chosen as a "sentinel" to quantify the distribution of such pollutants within the marine environment. Using a technique similar to dendrochronology in trees, it can act as an indicator of pollutant levels over a timeframe of several months to years. In the present study, we measured and compared the levels of eight trace metals (Cr, Ni, Cu, Zn, As, Se, Cd, and Pb) in sheaths dated by lepidochronology and in leaves of shoots sampled from P. oceanica meadows collected from six offshore sites in northern Corsica between 1988 and 2004; in the aim to determine 1) the spatial and 2) temporal variations of these metals in these areas and 3) to compared these two types of tissues. Results We found low trace metal concentrations with no increase over the last decade, confirming the potential use of Corsican seagrass beds as reference sites for the Mediterranean Sea. Temporal trends of trace metal concentrations in sheaths were not significant for Cr, Ni, Cu, As or Se, but Zn, Cd, and Pb levels decreased, probably due to the reduced anthropic use of these metals. Similar temporal trends between Cu levels in leaves (living tissue) and in sheaths (dead tissue) demonstrated that lepidochronology linked with Cu monitoring is effective for surveying the temporal variability of this metal. Conclusion Leaves of P. oceanica can give an indication of the metal concentration in the environment over a short time period (months) with good accuracy. On the contrary, sheaths, which gave an indication of changes over long time periods (decades), seem to be less sensitive to variations in the metal concentration in the environment. Changes in human

  2. [Beijing common green tree leaves' accumulation capacity for heavy metals].

    PubMed

    Li, Shao-Ning; Kong, Ling-Wei; Lu, Shao-Wei; Chen, Bo; Gao, Chen; Shi, Yuan

    2014-05-01

    Seasonal variation of heavy metal contents in leaves and their relationships with soil heavy metal pollution levels were studied through measuring and analyzing the leaves of the common tree species in Beijing and soil heavy metal contents, to detect heavy metal accumulation ability of plant leaves. The results showed that: (1) the contents of Cu, Pb, Zn in plant leaves first decreased and then increased, again declined with changing the seasons (from spring to winter). Cr concentration showed the trend of first increase and then decrease from spring to winter, and the highest in the autumn; the accumulation capacities of Cu for Babylonica and Japonica were higher in the spring, summer and autumn, while Tabuliformis was in winter; the higher accumulation capacities for Cr, Pb were Japonica and Platycladus, and in winter were Platycladus and Bungeana; the higher accumulation capacities for Zn were Babylonica and Bungeana, while Platycladus in winter; (2) the pollution degree of four kinds of heavy metals (Cu, Cr, Pb, Zn) from downtown to suburbs showed that: Jingshan (C =2.48, C is contamination factor) > Olympic (C = 1.27) > Songshan (C = 1.20) > Shuiguan (C = 1. 18); (3) the heavy metals concentration of same plant leaves in the water of the Great Wall changed larger, but those in the other three areas showed that: Jingshan > Olympic > Songshan; the ability of same species leaf to absorb different sorts of heavy metals showed that: Zn >Cu >Pb >Cr; the difference between Zn content and Cr content was significant (P <0.01); (4) the relationship between heavy metal content in plant leaves and soil heavy metal pollution levels presented a quadratic polynomial relation; the significant correlation was found between other three heavy metal contents of plant samples and soil samples, but they were not the case for the Cu, and the correlation coefficients were above 0. 9.

  3. Accumulation rates of airborne heavy metals in wetlands

    USGS Publications Warehouse

    Souch, C.J.; Filippelli, G.M.; Dollar, N.; Perkins, S.; Mastalerz, Maria

    2002-01-01

    Accumulation rates of heavy metals (Cd, Cr, Cu, Mn, Pb, and Zn) retained in wetland sediments in northwest Indiana-downwind of the Chicago-Gary-Hammond industrial area-are quantified to assess anthropogenic influences on atmospheric fluxes. Metal concentrations for 22 sediment cores are determined by ICP-AES after ashing and strong acid extraction. Relations between organic content and metal concentrations at depth are used to separate natural and anthropogenic sources. Accumulation rates over the lifetime of the wetlands (???4500 years) have averaged 0.2 (Cd), 1.4 (Cu), 1.7 (Cr), 13.4 (Mn), 4.8 (Pb), and 18.7 (Zn) mg m-2 y-1. Rates for the last 100 years have increased on average by factors of 6 (Cd), 8 (Cu), 10 (Mn), 15 (Pb), and 30 (Zn), remaining effectively constant for Cr. Where the wetlands have been drained, metals have been lost from the sediments, owing to changes in organic content and local hydrochemistry (exposure to acidic rainfall). Sediment-based accumulation rates at the undrained sites are higher, though generally consistent, with measured and modeled atmospheric fluxes documented by short-term studies conducted over the last three decades. The fraction of the total metals in the wetlands estimated to be of anthropogenic origin ranges from approximately 3% for Cr, up to approximately 35% for Pb, and 70% for Zn. This historic legacy of contamination must be considered in land management decisions, particularly when wetlands are drained.

  4. Petroleum coke and soft tailings sediment in constructed wetlands may contribute to the uptake of trace metals by algae and aquatic invertebrates.

    PubMed

    Baker, Leanne F; Ciborowski, Jan J H; MacKinnon, Michael D

    2012-01-01

    The fate of trace metals in pore water collected from wetland sediments and organisms exposed to petroleum coke were evaluated within in situ aquatic microcosms. Oil sands operators of Fort McMurray, Alberta, Canada produced 60 million tonnes of petroleum coke by 2008, containing elevated concentrations of sulphur and several trace metals commonly seen in oil sands materials. This material may be included in the construction of reclaimed wetlands. Microcosms were filled with a surface layer of petroleum coke over mine-waste sediments and embedded in a constructed wetland for three years to determine how these materials would affect the metal concentrations in the sediment pore water, colonizing wetland plants and benthic invertebrates. Petroleum coke treatments produced significantly elevated levels of Ni. We also found unexpectedly higher concentrations of metals in "consolidated tailings" waste materials, potentially due to the use of oil sands-produced gypsum, and higher background concentration of elements in the sediment used in the controls. A trend of higher concentrations of V, Ni, La, and Y was present in the tissues of the colonizing macrophytic alga Chara spp. Aeshnid dragonflies may also be accumulating V. These results indicate that the trace metals present in some oil sands waste materials could be taken up by aquatic macro-algae and some wetland invertebrates if these materials are included in reclaimed wetlands. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Reconnaissance for trace metals in bed sediment, Wright Patman Lake, near Texarkana, Texas

    USGS Publications Warehouse

    McKee, Paul W.

    2001-01-01

    Many contaminants can be introduced into the environment by urban and industrial activities. The drainage area of Wright Patman Lake is influenced by these activities. Among the contaminants associated with urban and industrial activities are trace metals such as arsenic, lead, mercury, and zinc. These contaminants are relatively insoluble in water and commonly are found in stream, lake, and reservoir bottom sediment, especially the clays and silts within the sediment.Wright Patman Lake serves as the major potable water supply for the city of Texarkana and surrounding communities. Texarkana, located in the northeastern corner of Texas and the southwestern corner of Arkansas, had a population of about 56,000 in 1998, which reflects an increase of about 3.4 percent from the 1990 census (Ramos, 1999). Texarkana Water Utilities, which manages the water-treatment facilities for Texarkana, proposes to dredge the lake bed near the water intake in the Elliot Creek arm of Wright Patman Lake. It is possible that arsenic, lead, mercury, and other trace metals might be released into the water if the bed sediment is disturbed. Bed sediment in the Elliot Creek arm of the lake, in particular, could contain trace metals because of its proximity to Red River Army Depot and because industrial land use is prevalent in the headwaters of Elliot Creek.The U.S. Geological Survey (USGS), in cooperation with Reconnaissance for Trace Metals in Bed Sediment, Wright Patman Lake, Near Texarkana, Texas In cooperation with the Texarkana Water Utilities conducted a reconnaissance of Wright Patman Lake to collect bed-sediment samples for analysis of trace metals. This report presents trace metal concentrations in bed-sediment samples collected at six sites along the Elliot Creek arm of the lake, one site each in two adjacent arms, and one site near the dam on June 16, 1999 (fig. 1). One bed-sediment sample was collected at each of the nine sites, and one sediment core was collected at each of two

  6. Detection of trace metallic elements in oral lichenoid contact lesions using SR-XRF, PIXE, and XAFS

    PubMed Central

    Sugiyama, Tomoko; Uo, Motohiro; Wada, Takahiro; Omagari, Daisuke; Komiyama, Kazuo; Miyazaki, Serika; Numako, Chiya; Noguchi, Tadahide; Jinbu, Yoshinori; Kusama, Mikio; Mori, Yoshiyuki

    2015-01-01

    Oral lichen planus (OLP) and oral lichenoid contact lesions (OLCL) are chronic inflammatory mucocutaneous reactions with a risk of malignant transformation that alter the epithelium. OLP and OLCL have similar clinical and histopathological features and it is difficult to distinguish one from the other. Metallic restorations are suspected to generate OLCLs. Trace metal analysis of OLCL specimens may facilitate the discrimination of symptoms and identification of causative metallic restorations. The purpose of this study was to assess OLCL tissue samples for the prevalence of metallic elements derived from dental restorations, and to discriminate OLCL from OLP by using synchrotron radiation-excited X-ray fluorescence analysis (SR-XRF), particle-induced X-ray emission (PIXE), and X-ray absorption fine structure (XAFS). Typical elements of dental materials were detected in the OLCL, whereas no obvious element accumulation was detected in OLP and negative control specimens. The origin of the detected metallic elements was presumed to be dental alloys through erosion. Therefore, our findings support the feasibility of providing supporting information to distinguish OLCL from OLP by using elemental analysis. PMID:26085368

  7. Impact of trace metal concentrations on coccolithophore growth and morphology: laboratory simulations of Cretaceous stress

    NASA Astrophysics Data System (ADS)

    Faucher, Giulia; Hoffmann, Linn; Bach, Lennart T.; Bottini, Cinzia; Erba, Elisabetta; Riebesell, Ulf

    2017-07-01

    The Cretaceous ocean witnessed intervals of profound perturbations such as volcanic input of large amounts of CO2, anoxia, eutrophication and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a few calcareous nannofossil species. The correspondence between intervals of high trace metal concentrations and coccolith dwarfism suggests a negative effect of these elements on nannoplankton biocalcification processes in past oceans. In order to test this hypothesis, we explored the potential effect of a mixture of trace metals on growth and morphology of four living coccolithophore species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. The phylogenetic history of coccolithophores shows that the selected living species are linked to Mesozoic species showing dwarfism under excess metal concentrations. The trace metals tested were chosen to simulate the environmental stress identified in the geological record and upon known trace metal interactions with living coccolithophore algae.Our laboratory experiments demonstrated that elevated trace metal concentrations, similarly to the fossil record, affect coccolithophore algae size and/or weight. Smaller coccoliths were detected in E. huxleyi and C. pelagicus, while coccoliths of G. oceanica showed a decrease in size only at the highest trace metal concentrations. P. carterae coccolith size was unresponsive to changing trace metal concentrations. These differences among species allow discriminating the most- (P. carterae), intermediate- (E. huxleyi and G. oceanica) and least-tolerant (C. pelagicus) taxa. The fossil record and the experimental results converge on a selective response of coccolithophores to metal availability.These species-specific differences must be considered before morphological features of coccoliths are used to reconstruct paleo-chemical conditions.

  8. Correlation between some selected trace metal concentrations in six species of fish from the Arabian Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashraf, M.; Jaffar, M.

    1988-07-01

    The role of trace metals in marine ecosystems has been keenly investigated during recent years. It is known that abundance of essential trace metals regulates the metal content in the organisms by homeostatic control mechanisms, which when cease to function cause essential trace metals to act in an either acutely or chronically toxic manner. Therefore, a correlation study based on essential and non-essential trace metal concentrations is imperative for extending the existing knowledge of bioaccumulation of trace metals in marine organisms. An attempt has been made in the present investigation to bring out quantitative correlations between the concentrations of iron,more » copper, lead and zinc in the edible muscle tissue of six species of marine fish: Salmon (salmon sole); tuna (thunnus thynnus); pomfret silver (pampus argenteus); Pomfret black (formioniger); long tail tuna (thynnus tonggel) and Indian oil sardine (sardinella longiceps). These fish are abundantly available in Pakistan along the coastal line of the Arabian Sea and have great commercial value. The computational analysis on the trace metal correlation was conducted using an MSTAT statistical package.« less

  9. Evaluating three trace metal contaminated sites: a field and laboratory investigation.

    PubMed

    Murray, P; Ge, Y; Hendershot, W H

    2000-01-01

    Selecting guidelines to evaluate elevated metals in urban brownfields is hindered by the lack of information for these sites on ecosystem structure and function. A study was performed to compare three trace metal-contaminated sites in the metropolitan Montreal area. The goal was to obtain an idea of the organisms that may be present on urban brownfields and to measure if elevated metals alter the presence and activity of the indigenous biota. Field and laboratory studies were conducted using simple methodologies to determine the extent to which microbial activity affected by trace metal content, to assess diversity of plant and soil invertebrate communities and to measure phytoaccumulation of trace metals. It was found that microbial activity, as measured by substrate-induced respiration (SIR) and nitrification, was not affected by the levels of soil Cd, Cu, Ni, Pb and Zn recorded on the sites. Seven of the 12 invertebrate groups collected were sampled on soils with similar Cd, Cu, Ni, Pb and Zn concentrations. Diversity of plant species increased as a function of the length of time the sites had been inactive. Levels of metals in plant tissue were influenced by soil characteristics and not by total soil Cd, Cu, Ni, Pb and Zn.

  10. Trace metal dynamics in floodplain soils of the river Elbe: a review.

    PubMed

    Schulz-Zunkel, Christiane; Krueger, Frank

    2009-01-01

    This paper reviews trace metal dynamics in floodplain soils using the Elbe floodplains in Germany as an example of extraordinary importance because of the pollution level of its sediments and soils. Trace metal dynamics are determined by processes of retention and release, which are influenced by a number of soil properties including pH value, redox potential, organic matter, type and amount of clay minerals, iron-, manganese- and aluminum-oxides. Today floodplains act as important sinks for contaminants but under changing hydraulic and geochemical conditions they may also act as sources for pollutants. In floodplains such changes may be extremes in flooding or dry periods that particularly lead to altered redox potentials and that in turn influence the pH value, the mineralization of organic matter as well as the charge of the pedogenic oxides. Such reactions may affect the bioavailability of trace metals in soils and it can be clearly seen that the bioavailability of metals is an important factor for estimating trace metal remobilization in floodplain soils. However as bioavailability is not a constant factor, there is still a lack of quantification of metal mobilization particularly on the basis of changing geochemical conditions. Moreover, mobile amounts of metals in the soil solution do not indicate to which extent remobilized metals will be transported to water bodies or plants and therefore potentially have toxicological effects. Consequently, floodplain areas still need to be taken into consideration when studying the role and behavior of sediments and soils for transporting pollutants within river systems, particularly concerning the Water Framework Directive.

  11. Trace metals and macroelements in mussels from Chinese coastal waters: National spatial patterns and normalization.

    PubMed

    Lu, Guang-Yuan; Wang, Wen-Xiong

    2018-06-01

    Metal contamination is one of the most ubiquitous and complex problems in the Chinese coastal environment. To explore the large-scale spatial patterns of bioavailable metals, we sampled three major mussels, including 784 blue mussels (Mytilus edulis Linnaeus, 1758) of 14 sites, 224 hard-shelled mussels (Mytilus unguiculatus Valenciennes, 1858) of 4 sites, and 392 green mussels (Perna viridis (Linnaeus, 1758)) of 7 sites, ranging from temperate to tropical coastlines of China, during August and September 2015. The concentrations of macroelements (Na, K, Ca, Mg, and P) and toxic trace metals (Ag, Cd, Cr, Cu, Ni, Pb, Ti, and Zn) in the mussel's whole soft tissues were determined. Among the four Chinese coastal basins, Cd, Ti and Cr in the mussel tissues were the highest at Bohai Sea (BS) and Yellow Sea (YS), and Cu, Ni, Pb and Ag in the mussel tissues were the highest at East China Sea (ECS) and South China Sea (SCS). Zinc concentrations in mussels from YS were significantly higher than those from the other regions. Given the variability of environmental conditions such as salinity and nutrients, we further normalized the measured tissue metal concentrations with tissue Na and P levels. After Na normalization as the salinity proxy, the variability of Cd, Cu, Zn, Ag, and Ni was reduced. Trace elements accumulation in the mussel tissues was significantly related to both macroelements (Na or P) and body dry weight. The present study demonstrated that nonlinear optimization of different elements was necessary in assessing metal bioaccumulation patterns in marine mussels at a large spatial scale. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Trace metal levels, sources, and ecological risk assessment in a densely agricultural area from Saudi Arabia.

    PubMed

    Al-Wabel, Mohammad I; Sallam, Abd El-Azeem S; Usman, Adel R A; Ahmad, Mahtab; El-Naggar, Ahmed Hamdy; El-Saeid, Mohammed Hamza; Al-Faraj, Abdulelah; El-Enazi, Khaled; Al-Romian, Fahad A

    2017-06-01

    The present study was conducted in one of the most densely cultivated area of Al-Qassim region in Kingdom of Saudi Arabia to (i) monitor trace metal (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) contents in surface and subsurface soils, (ii) assess the pollution and potential ecological risk levels of trace metals, and (iii) identify trace metal sources using enrichment factor (EF), correlation matrix, and principal component analysis (PCA). The pollution levels of the analyzed trace metals calculated by the geoaccumulation index (I geo ) and contamination factor (C f ) suggested that the soils were highly contaminated with Cd and moderately contaminated with Pb. Based on the average values of EF, soil samples were found to present extremely high enrichment for Cd, significant enrichment for Pb, moderate enrichment for Zn, and deficient to minimal enrichment for other trace metals. Among the analyzed trace metals, a very high ecological risk was observed only in the case of Cd at some sampling sites. Meanwhile, other investigated trace metals had a low ecological risk. The results of PCA combined with correlation matrix suggested that Fe, Mn, Zn, Cu, Cr Ni, Cu, and Co represent natural abundance in soil, but Cd, Pb, and Cu are of anthropogenic inputs, mainly due to agrochemical and fertilizer applications. It could be generally concluded that the obtained results can be useful for assessing and conducting a future program for trace metal monitoring in agricultural areas of Saudi Arabia.

  13. Some features of the trace metal biogeochemistry in the deep-sea hydrothermal vent fields (Menez Gwen, Rainbow, Broken Spur at the MAR and 9°50‧N at the EPR): A synthesis

    NASA Astrophysics Data System (ADS)

    Demina, Ludmila L.; Holm, Nils G.; Galkin, Sergey V.; Lein, Alla Yu.

    2013-10-01

    Along with summarizing the published literature and our own data some new results on properties of the trace metal biogeochemistry in the deep-sea hydrothermal ecosystems at the Mid-Atlantic Ridge (MAR) and East Pacific Rise (EPR) are shown. Differences in mean concentrations of big group of trace metals (Fe, Mn, Zn, Cu, Ni, Cr, Co, As, Pb, Cd, Ag, Hg) between the biotope water of the low- and high-temperature hydrothermal vent fields were firstly revealed. The same trace metals were studied in different groups of organisms within different temperature zones at one and the same vent field (9°50‧N EPR), as well as in fauna inhabiting geochemically different vent sites. Distribution patterns of Fe, Mn, Zn, Cu, Cd, Pb, Ag, Ni, Cr, Co, As, Se, Sb, and Hg in different taxa gave an evidence of the influence of environmental and biological parameters on their bioaccumulation in organisms. Among the animals a particular “champion” with respect to the trace metal content was found to be a polychaeta Alvinella pompejana that inhabits the hottest places of the vent sulfide chimneys of the 9°50‧N field, EPR. New data on the trace metal distribution between soft tissues and carbonate shell let us estimate a role of biomineralization in the accumulation of metals in the Bathimodiolus mussels. Contrasting geochemical behavior was revealed for Cu that is enriched in soft tissues of mussels and depleted in shells, on the one hand, and Mn that is accumulated almost totally in mussel shells, on the other hand. Deep-sea hydrothermal biological communities demonstrate a strong concentration function, and bioconcentration factors (BCF) of trace metals estimated for Bathimodiolus mussels collected at the four hydrothermal fields vary within the limits of n102-n105 and are similar to that of the littoral mussels. Due to this and to the high values of biomasses per square meter, the hydrothermal fauna may be considered as a newly discovered biological filter of the oceans.

  14. Biomonitoring of Urban Pollution Using Silicon-Accumulating Species, Phyllostachys aureosulcata 'Aureocaulis'.

    PubMed

    Morina, Filis; Vidović, Marija; Srećković, Tatjana; Radović, Vesela; Veljović-Jovanović, Sonja

    2017-12-01

    We investigated metal accumulation in bamboo leaves during three seasons at three urban locations differing in pollution levels. The higher content of Cu, Pb, and Zn in the leaves was in correlation with the highest bioavailable content of these elements in the soil at the most polluted location. The content of leaf trace elements was higher in summer and autumn compared to spring. Scanning electron microscopy with energy dispersive X-ray spectroscopy showed that Si accumulation in bamboo leaves was the highest in epidermis and vascular tissue, and was co-localized with trace metals. Analysis of phytoliths showed co-deposition of Al, C, and Si, implying the involvement of Si in metal detoxification. Compared to a common urban tree, linden, bamboo showed better capacity to maintain cellular redox homeostasis under deteriorated environmental conditions. The results suggest that bamboo can be efficiently used for biomonitoring of air and soil metal pollution and remediation in urban areas.

  15. Geomycology. [fungal biosolubilization and accumulation of metals

    NASA Technical Reports Server (NTRS)

    Puerner, N. J.; Siegel, S. M.

    1976-01-01

    Fungi have long been known to have capabilities for reduction and alkylation of arsenate and selenate but their general capabilities for solubilizing and accumulating metallic substances have been given serious attention only in recent years. Common members of the Aspergillaceae cultured on boron, copper, lead and other metals or oxides can solubilize and concentrate the elements or their compounds. To account for biosolubilization of the metals, we have set up a model study, incubating selected metals, e.g., mercury, in solutions of various metabolites including L-lysine and citric acid. Results of 100-300 days incubation showed that many metals can in fact be readily solubilized, and in some cases more effectively at pH 6-7 than at pH 1.5-2.

  16. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects.

    PubMed

    Etesami, Hassan

    2018-01-01

    Heavy metal pollution of agricultural soils is one of main concerns causing some of the different ecological and environmental problems. Excess accumulation of these metals in soil has changed microbial community (e.g., structure, function, and diversity), deteriorated soil, decreased the growth and yield of plant, and entered into the food chain. Plants' tolerance to heavy metal stress needs to be improved in order to allow growth of crops with minimum or no accumulation of heavy metals in edible parts of plant that satisfy safe food demands for the world's rapidly increasing population. It is well known that PGPRs (plant growth-promoting rhizobacteria) enhance crop productivity and plant resistance to heavy metal stress. Many recent reports describe the application of heavy metal resistant-PGPRs to enhance agricultural yields without accumulation of metal in plant tissues. This review provides information about the mechanisms possessed by heavy metal resistant-PGPRs that ameliorate heavy metal stress to plants and decrease the accumulation of these metals in plant, and finally gives some perspectives for research on these bacteria in agriculture in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Serum trace metal levels in Alzheimer's disease and normal control groups.

    PubMed

    Park, Jun-Hyun; Lee, Dong-Woo; Park, Kyung Su; Joung, Hyojee

    2014-02-01

    To determine whether serum trace metals are related to abnormal cognition in Alzheimer's disease (AD). We studied serum lead (Pb), cadmium (Cd), mercury (Hg), and arsenic(As) in 89 patients with AD and in 118 cognitively normal individuals. We analyzed the results of the blood tests and the food intake. Serum Pb levels correlated with word list recall (P = .039) and word list recognition (P = .037). Without age adjustment, serum Cd levels (P = .044) were significantly higher in the AD group. After stratified age adjustment, the levels of selected trace metals did not differ significantly between AD and normal individuals. Food intakes regarding selected trace metals were not significantly different between the 2 groups. In this study, serum Pb, Cd, Hg, and As levels were not directly related to abnormal cognition in AD. Serum Pb levels were significantly negatively correlated with verbal memory scores.

  18. Application of catalytic adsorptive stripping voltammetry of the cobalt-alpha-benzil dioxime complex to analysis of cobalt traces in metallic zinc.

    PubMed

    Bobrowski, A

    1994-05-01

    The catalytic adsorptive stripping voltammetric method with alpha-benzil dioxime and nitrite affords numerous advantages in cobalt determination. The detailed conditions of the determination of the cobalt traces in metallic zinc by catalytic adsorptive stripping voltammetry have been investigated. Both the linear sweep and the differential pulse stripping modes can be used with similar sensitivity. Possible interferences by Mn, Pb, Cu, Ni and Fe are evaluated. In the presence of 5 x 10(5) fold excess of Zn the linear dependence of the cobalt CASV peak current on concentration ranged from 0.05 mug/l to 3 mug/l. Optimal conditions include the accumulation potential of -0.65 V and the accumulation time of 10 sec. The results of the determination of 10(-5)% level of Co in the metallic zinc showed good reproducibility (relative standard deviation, RSD = 0.07) and reliability.

  19. Trace Metal-Humic Complexes in Natural Waters: Insights From Speciation Experiments

    NASA Astrophysics Data System (ADS)

    Stern, J. C.; Salters, V.; Sonke, J.

    2006-12-01

    The DOM cycle is intimately linked to the cycling and bioavailability of trace metals in aqueous environments. The presence or absence of DOM in the water column can determined whether trace elements will be present in limited quantities as a nutrient, or in surplus quantities as a toxicant. Humic substances (HS), which represent the refractory products of DOM degradation, strongly affect the speciation of trace metals in natural waters. To simulate metal-HS interactions in nature, experiments must be carried out using trace metal concentrations. Sensitive detection systems such as ICP-MS make working with small (nanomolar) concentrations possible. Capillary electrophoresis coupled with ICP-MS (CE-ICP-MS) has recently been identified as a rapid and accurate method to separate metal species and calculate conditional binding constants (log K_c) of metal-humic complexes. CE-ICP-MS was used to measure partitioning of metals between humic substances and a competing ligand (EDTA) and calculate binding constants of rare earth element (REE) and Th, Hf, and Zr-humic complexes at pH 3.5-8 and ionic strength of 0.1. Equilibrium dialysis ligand exchange (EDLE) experiments to validate the CE-ICP-MS method were performed to separate the metal-HS and metal-EDTA species by partitioning due to size exclusion via diffusion through a 1000 Da membrane. CE-ICP-MS experiments were also conducted to compare binding constants of REE with humic substances of various origin, including soil, peat, and aquatic DOM. Results of our experiments show an increase in log K_c with decrease in ionic radius for REE-humic complexes (the lanthanide contraction effect). Conditional binding constants of tetravalent metal-humic complexes were found to be several orders of magnitude higher than REE-humic complexes, indicating that tetravalent metals have a very strong affinity for humic substances. Because thorium is often used as a proxy for the tetravalent actinides, Th-HS binding constants can allow us

  20. Accumulation of metal ions by pectinates

    NASA Astrophysics Data System (ADS)

    Deiana, S.; Deiana, L.; Palma, A.; Premoli, A.; Senette, C.

    2009-04-01

    The knowledge of the mechanisms which regulate the interactions of metal ions with partially methyl esterified linear polymers of α-1,4 linked D-galacturonic acid units (pectinates), well represented in the root inner and outer apoplasm, is of great relevance to understand the processes which control their accumulation at the soil-root interface as well as their mobilization by plant metabolites. Accumulation of a metal by pectinates can be affected by the presence of other metals so that competition or distribution could be expected depending on the similar or different affinity of the metal ions towards the binding sites, mainly represented by the carboxylate groups. In order to better understand the mechanism of accumulation in the apoplasm of several metal ions, the sorption of Cd(II), Zn(II), Cu(II), Pb(II) and Cr(III) by a Ca-polygalacturonate gel, used as model of the soil-root interface, with a degree of esterification of 18% (PGAE1) and 65% (PGAE2) was studied at pH 3.0, 4.0, 5.0 and 6.0 in the presence of CaCl2 2.5 mM.. The results show that sorption increases with increasing both the initial metal concentration and pH. A similar sorption trend was evidenced for Cu(II) and Pb(II) and for Zn(II) and Cd(II), indicating that the mechanism of sorption for these two ionic couples is quite different. As an example, at pH 6.0 and an initial metal concentration equal to 2.0 mM, the amount of Cu(II) and Pb(II) sorbed was about 1.98 mg-1 of PGAE1 while that of Cd(II) and Zn(II) was about 1.2 mg-1. Cr(III) showed a rather different sorption trend and a much higher amount (2.8 mg-1of PGAE1 at pH 6.0) was recorded. The higher affinity of Cr(III) for the polysaccharidic matrix is attributable to the formation of Cr(III) polynuclear species in solution, as shown by the distribution diagrams obtained through the MEDUSA software. On the basis of these findings, the following affinity towards the PGAE1 can be assessed: Cr(III) > Cu(II) ? Pb(II) > Zn (II) ? Cd

  1. An historical assessment of trace metal accumulation in Lake Champlain, Vermont

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mecray, E.L.; King, J.W.

    1993-03-01

    The Lake Champlain watershed, with its increased land use, shoreline development, and population, is being threatened by pollutants in the water column and bottom sediments. A comprehensive study is currently being conducted to characterize the bottom sediments of the lake for toxicity and to reconstruct the history of pollutant inputs. Surface sediment samples were collected from 30 stations and analyzed for metal (Cu, Zn, Cr, Pb, Ni, Mn, Fe, Cd, Al, and Ag) concentrations to determine the contaminated regions of the lake. Once the contaminated regions were determined, a Nemesis corer was used to retrieve sediments cores averaging 1 metermore » in length from 10 sites within Lake Champlain. Grain size and metal analyses were conducted at one and two cm intervals down the cores. Grain size data, in combination with metal and radiometric stratigraphy, can serve as an indicator of changing land use in the watershed. The grain size in some cores has a fining upward trend indicating increased land use and soil erosion. Downcore variations in metal concentrations reveal two different regimes. The concentration at depth remain consistently low and are inferred to correspond with the natural background levels. In contrast, the upper section of the cores show abrupt increases in metal concentrations which are attributed to increased anthropogenic inputs. Radiometric ([sup 210] and [sup 137]Cs) and pollen chronostratigraphy of these cores indicates that the increased metal concentrations and the changes in grain size recorded in the upper most sediments is related to increased human disturbance beginning in the late 18th and early 19th centuries. This study demonstrates that the historical record of pollution inputs to Lake Champlain can be reconstructed from the sediment sequences.« less

  2. The influence of bioavailable heavy metals and microbial parameters of soil on the metal accumulation in rice grain.

    PubMed

    Xiao, Ling; Guan, Dongsheng; Peart, M R; Chen, Yujuan; Li, Qiqi; Dai, Jun

    2017-10-01

    A field-based study was undertaken to analyze the effects of soil bioavailable heavy metals determined by a sequential extraction procedure, and soil microbial parameters on the heavy metal accumulation in rice grain. The results showed that Cd, Cr, Cu, Ni, Pb and Zn concentrations in rice grain decreases by 65.9%, 78.9%, 32.6%, 80.5%, 61.0% and 15.7%, respectively in the sites 3 (far-away), compared with those in sites 1 (close-to). Redundancy analysis (RDA) indicated that soil catalase activity, the MBC/MBN ratio, along with bioavailable Cd, Cr and Ni could explain 68.9% of the total eigenvalue, indicating that these parameters have a great impact on the heavy metal accumulation in rice grain. The soil bioavailable heavy metals have a dominant impact on their accumulation in rice grain, with a variance contribution of 60.1%, while the MBC/MBN has a regulatory effect, with a variance contribution of 4.1%. Stepwise regression analysis showed that the MBC/MBN, urease and catalase activities are the key microbial parameters that affect the heavy metal accumulation in rice by influencing the soil bioavailable heavy metals or the translocation of heavy metals in rice. RDA showed an interactive effect between Cu, Pb and Zn in rice grain and the soil bioavailable Cd, Cr and Ni. The heavy metals in rice grain, with the exception of Pb, could be predicted by their respective soil bioavailable heavy metals. The results suggested that Pb accumulation in rice grain was mainly influenced by the multi-metal interactive effects, and less affected by soil bioavailable Pb. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Early diagenesis and trace element accumulation in North American Arctic margin sediments

    NASA Astrophysics Data System (ADS)

    Kuzyk, Zou Zou A.; Gobeil, Charles; Goñi, Miguel A.; Macdonald, Robie W.

    2017-04-01

    combined with a shallow water column (average 64 m) leads to high rates of authigenic trace element accumulation in sediments from the Bering-Chukchi shelves. High to moderate primary production combined with deep water (average 610 m) leads to moderate rates of authigenic trace element accumulation in sediments from Lancaster Sound. Low to very low primary production combined with moderate water depths (average 380 m) leads to low rates of authigenic trace element accumulation in sediments in the Beaufort Shelf, Davis Strait and Canadian Archipelago. Authigenic Mo accumulation rates show a significant relationship with vascular plant input to the sediments, implying that terrestrial organic matter contributes significantly to metabolism in Arctic margin sediments. Our results suggest that the broad and shallow shelf of the Chukchi Sea, which has high productivity sustained by imported nutrients, contributes disproportionately to global biogeochemical cycles.

  4. Macronutrients and trace metals in soil and food crops of Isfahan Province, Iran.

    PubMed

    Keshavarzi, Behnam; Moore, Farid; Ansari, Maryam; Rastegari Mehr, Meisam; Kaabi, Helena; Kermani, Maryam

    2015-01-01

    The distribution of 10 macronutrients and trace metals in the arable soils of Isfahan Province, their phytoavailability, and associated health risks were investigated; 134 plant and 114 soil samples (from 114 crop fields) were collected and analyzed at harvesting time. Calculation of the soil pollution index (SPI) revealed that arable soil polluted by metals was more severe in the north and southwest of the study area. The results of cluster analysis indicated that Pb, Zn, and Cu share a similar origin from industries and traffic. The concentrations of macronutrients and trace metals in the sampled crops were found in the order of K > Ca > S > Mg > P and Fe > Mn > Zn > Cu > Pb, respectively, whereas calculation of the bioconcentration factor (BCF) indicated that the accumulation of the investigated elements in crops was generally in the order of S ≈ K > P > Mg > Ca and Zn > Cu > Mn > Pb > Fe, respectively. Thus, various parameters including crop species and the physical, chemical, and biological properties of soil also affected the bioavailability of the elements besides the total element contents in soil. Daily intake (DI) values of elements were lower than the recommended daily intake (RDI) levels in rice grains except for Fe and Mn, but for wheat grains, all elements displayed DI values higher than the RDI. Moreover, based on the hazard index (HI) values, inhabitants are experiencing a significant potential health risk solely due to the consumption of wheat and rice grains (particularly wheat grains). Mn health quotient (HQ) also indicated a high risk of Mn absorption for crop consumer inhabitants.

  5. Impact of trace metal concentrations on coccolithophore growth and morphology: species-specific responses in past and present ocean

    NASA Astrophysics Data System (ADS)

    Faucher, Giulia; Hoffmann, Linn; Bach, Lennart Thomas; Bottini, Cinzia; Erba, Elisabetta; Riebesell, Ulf

    2017-04-01

    The Cretaceous witnessed intervals of profound perturbation named "Oceanic Anoxic Events (OAEs)" characterized by volcanic injection of large amounts of CO2, ocean anoxia, eutrophication, and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a number of nannofossil species. To detect the cause/s of such changes in the fossil record is challenging. Evidence of a correspondence between intervals of high trace metals concentrations and nannofossil dwarfism may be suggestive for a negative effect of these elements on nannoplankton biocalcification process. In order to verify the hypothesis that anomalously high quantities of essential and/or toxic metals were the cause of coccolith dwarfism, we explored the toxicities of a mixture of trace metals on four living coccolithophores species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. The trace metals tested were chosen based upon concentration peaks identified in the geological record and upon known trace metal interaction with living coccolithophores algae. Our results demonstrate a species-specific response to trace metal enrichment in living coccolithophores: E. huxleyi, G. oceanica and C. pelagicus showed a decrease in their growth rate with progressively and exponentially increased trace metal concentrations, while P. carterae is unresponsive to trace metal content. Furthermore, E. huxleyi, G. oceanica and C. pelagicus evidenced a decrease in the cell diameter. Smaller coccoliths were detected in E. huxleyi and C. pelagicus, while coccolith of G. oceanica showed a decrease in size only at the highest trace metal concentrations tested. P. carterae size was unresponsive for changing trace metal concentration. Our results on living coccolithophore algae, demonstrate that elevated trace metal concentrations not only affect growth but also coccolith size and/or weight and that

  6. Regulating cellular trace metal economy in algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaby-Haas, Crysten E.; Merchant, Sabeeha S.

    As indispensable protein cofactors, Fe, Mn, Cu and Zn are at the center of multifaceted acclimation mechanisms that have evolved to ensure extracellular supply meets intracellular demand. In starting with selective transport at the plasma membrane and ending in protein metalation, metal homeostasis in algae involves regulated trafficking of metal ions across membranes, intracellular compartmentalization by proteins and organelles, and metal-sparing/recycling mechanisms to optimize metal-use efficiency. Overlaid on these processes are additional circuits that respond to the metabolic state as well as to the prior metal status of the cell. Here, we focus on recent progress made toward understanding themore » pathways by which the single-celled, green alga Chlamydomonas reinhardtii controls its cellular trace metal economy. We also compare these mechanisms to characterized and putative processes in other algal lineages. Photosynthetic microbes continue to provide insight into cellular regulation and handling of Cu, Fe, Zn and Mn as a function of the nutritional supply and cellular demand for metal cofactors. We found that new experimental tools such as RNA-Seq and subcellular metal imaging are bringing us closer to a molecular understanding of acclimation to supply dynamics in algae and beyond.« less

  7. Regulating cellular trace metal economy in algae

    DOE PAGES

    Blaby-Haas, Crysten E.; Merchant, Sabeeha S.

    2017-06-30

    As indispensable protein cofactors, Fe, Mn, Cu and Zn are at the center of multifaceted acclimation mechanisms that have evolved to ensure extracellular supply meets intracellular demand. In starting with selective transport at the plasma membrane and ending in protein metalation, metal homeostasis in algae involves regulated trafficking of metal ions across membranes, intracellular compartmentalization by proteins and organelles, and metal-sparing/recycling mechanisms to optimize metal-use efficiency. Overlaid on these processes are additional circuits that respond to the metabolic state as well as to the prior metal status of the cell. Here, we focus on recent progress made toward understanding themore » pathways by which the single-celled, green alga Chlamydomonas reinhardtii controls its cellular trace metal economy. We also compare these mechanisms to characterized and putative processes in other algal lineages. Photosynthetic microbes continue to provide insight into cellular regulation and handling of Cu, Fe, Zn and Mn as a function of the nutritional supply and cellular demand for metal cofactors. We found that new experimental tools such as RNA-Seq and subcellular metal imaging are bringing us closer to a molecular understanding of acclimation to supply dynamics in algae and beyond.« less

  8. Nanomolar Trace Metal Analysis of Copper at Gold Microband Arrays

    NASA Astrophysics Data System (ADS)

    Wahl, A.; Dawson, K.; Sassiat, N.; Quinn, A. J.; O'Riordan, A.

    2011-08-01

    This paper describes the fabrication and electrochemical characterization of gold microband electrode arrays designated as a highly sensitive sensor for trace metal detection of copper in drinking water samples. Gold microband electrodes have been routinely fabricated by standard photolithographic methods. Electrochemical characterization were conducted in 0.1 M H2SO4 and found to display characteristic gold oxide formation and reduction peaks. The advantages of gold microband electrodes as trace metal sensors over currently used methods have been investigated by employing under potential deposition anodic stripping voltammetry (UPD-ASV) in Cu2+ nanomolar concentrations. Linear correlations were observed for increasing Cu2+ concentrations from which the concentration of an unknown sample of drinking water was estimated. The results obtained for the estimation of the unknown trace copper concentration in drinking was in good agreement with expected values.

  9. Blood-collection device for trace and ultra-trace metal specimens evaluated.

    PubMed

    Moyer, T P; Mussmann, G V; Nixon, D E

    1991-05-01

    We evaluated the evacuated phlebotomy tube designed specifically for trace metal analysis by Sherwood Medical Co. Pools of human serum containing known concentrations of aluminum, arsenic, calcium, cadmium, copper, chromium, iron, lead, magnesium, manganese, mercury, selenium, and zinc were exposed to the tube and rubber stopper for defined periods ranging from 5 min to 24 h. Analysis for each element was performed in a randomized fashion under rigidly controlled conditions by use of standard electrothermal atomization atomic absorption spectroscopy, inductively coupled plasma atomic emission spectroscopy, and cold vapor atomic absorption spectrometry. In addition, for comparative purposes, we collected blood samples from normal volunteers by use of ultra-clean polystyrene phlebotomy syringes as well as standard evacuated phlebotomy tubes. We conclude that, except for lead, there was no significant contribution of any trace element studied from the evaluated tube and stopper to the serum. Because whole blood is the usual specimen for lead testing, the observation of a trace amount of lead in this tube designed for serum collection is trivial.

  10. Trace element accumulation in hawksbill turtles (Eretmochelys imbricata) and green turtles (Chelonia mydas) from Yaeyama Islands, Japan.

    PubMed

    Anan, Y; Kunito, T; Watanabe, I; Sakai, H; Tanabe, S

    2001-12-01

    Concentrations of 18 trace elements (V, Cr, Mn, Co, Cu, Zn, Se, Rb, Sr, Zr, Mo, Ag, Cd, Sb, Ba, Hg, Tl, and Pb) were determined in the liver, kidney, and muscle of green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Yaeyama Islands, Okinawa, Japan. Accumulation features of trace elements in the three tissues were similar between green and hawksbill turtles. No gender differences in trace element accumulation in liver and kidney were found for most of the elements. Significant growth-dependent variations were found in concentrations of some elements in tissues of green and hawksbill turtles. Significant negative correlations (p < 0.05) were found between standard carapace length (SCL) and the concentrations of Cu, Zn, and Se in the kidney and V in muscle of green turtles and Mn in the liver, Rb and Ag in kidney, and Hg in muscle of hawksbill turtles. Concentrations of Sr, Mo, Ag, Sb, and Tl in the liver, Sb in kidney, and Sb and Ba in muscle of green turtles and Se and Hg in the liver and Co, Se, and Hg in kidney of hawksbill turtles increased with an increase in SCL (p < 0.05). Green and hawksbill turtles accumulated extremely high concentrations of Cu in the liver and Cd in kidney, whereas the levels of Hg in liver were low in comparison with those of other higher-trophic-level marine animals. High accumulation of Ag in the liver of green turtles was also observed. To evaluate the trophic transfer of trace elements, concentrations of trace elements were determined in stomach contents of green and hawksbill turtles. A remarkably high trophic transfer coefficient was found for Ag and Cd in green turtles and for Cd and Hg in hawksbill turtles.

  11. Long-term impact of primary domestic sewage on metal/loid accumulation in drainage ditch sediments, plants and water: Implications for phytoremediation and restoration.

    PubMed

    Kumwimba, Mathieu Nsenga; Zhu, Bo; Suanon, Fidèle; Muyembe, Diana Kavidia; Dzakpasu, Mawuli

    2017-03-01

    We evaluate the long-term performance of a vegetated drainage ditch (VDD) treating domestic sewage with respect to heavy metal/metalloid (HM/M) accumulation in sediments, plants and water. VDD sediment contained significantly higher macro and trace elements compared to an agricultural ditch (AD) sediment. However, concentrations of HM/Ms in VDD sediment were below the ranges considered toxic to plants. Most HM/Ms were efficiently removed in the VDD, whereby removal efficiencies varied between 11% for Al and 89% for K. Accumulation of HM/Ms varied among species and plant parts, although sequestration by plants represents only a small proportion (<1%) of the inflow load. Accumulation of Al, As, Cd, Pb, Cr, Fe and Ni in VDD plants were mostly distributed in the roots, indicating an exclusive strategy for metal tolerance. The opposite was found for Zn, Cu, K, Ca, P, K, Na, N and Mg, which were accumulated either in the stems or leaves. Overall, concentrations of metals in sediment showed significant positive correlations with those in ditch plants. None of the studied species were identified as metal hyper-accumulators (i.e. >10,000mgkg -1 of Zn or Mn). Nevertheless, the high translocation factor (TF) values for Mn, Ni, Cu, Zn, Na, Mg, P, K and Ca in the ditch plants make them suitable for phytoextraction from water/soil, while the low TF values for Pb, Cd, As, Fe, Cr and Al make them suitable for their phytostabilization. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Accumulation of Heavy Metals in Crayfish and Fish from Selected Czech Reservoirs

    PubMed Central

    Kuklina, Iryna; Kouba, Antonín; Buřič, Miloš; Horká, Ivona; Ďuriš, Zdeněk; Kozák, Pavel

    2014-01-01

    To evaluate the accumulation of aluminium, cadmium, chromium, copper, lead, mercury, nickel, and zinc in crayfish and fish organ tissues, specimens from three drinking water reservoirs (Boskovice, Landštejn, and Nová Říše) and one contaminated site (Darkovské moře) in the Czech Republic were examined. Crayfish hepatopancreas was confirmed to be the primary accumulating site for the majority of metals (Cu > Zn > Ni > Cd > Cr), while Hg and Cr were concentrated in abdominal muscle, and Al and Pb were concentrated in gill. Metals found in Nová Říše specimens included Cu > Zn > Ni and those found in Boskovice included Zn > Hg > Cr. Cd concentrations were observed only in Landštejn specimens, while contaminated Darkovské moře specimens showed the highest levels of accumulation (Cu > Al > Zn > Pb). The majority of evaluated metals were found in higher concentrations in crayfish: Cu > Al > Zn > Ni > Cr > Cd > Pb, with Hg being the only metal accumulating higher in fish. Due to accumulation similarities of Al in crayfish and fish gill, differences of Hg in muscle, and features noted for the remaining metals in examined tissues, biomonitoring should incorporate both crayfish and fish to produce more relevant water quality surveys. PMID:24738051

  13. Proline accumulation in lemongrass (Cymbopogon flexuosus Stapf.) due to heavy metal stress.

    PubMed

    Handique, G K; Handique, A K

    2009-03-01

    Toxic heavy metals viz. lead, mercury and cadmium induced differential accumulation of proline in lemongrass (Cymbopogon flexuosus Stapf.) grown in soil amended with 50, 100, 200, 350 and 500 mg kg(-1) of the metals have been studied. Proline accumulation was found to be metal specific, organ specific and linear dose dependant. Further, proline accumulation following short term exposure (two months after transplantation) was higher than long term exposure (nine months after transplantation). Proline accumulation following short term exposure was 2.032 to 3.839 micro moles g(-1) for cadmium (50-200 mg kg(-1)); the corresponding range for mercury was 1.968 to 5.670 micro moles g(-1) and 0.830 to 4.567 micro moles g(-1) for lead (50-500 mg kg(-1) for mercury and lead). Proline accumulation was consistently higher in young tender leaf than old leaf, irrespective of the metal or duration of exposure. For cadmium treatment proline level was 2.032 to 3.839 micro moles g(-1) for young leaves while the corresponding value for old leaf was 1.728 to 2.396 micro moles g(-1) following short term exposure. The same trend was observed for the other two metals and duration of exposure. For control set proline accumulation in root was 0.425 micro moles g(-1) as against 0.805 and 0.533 micro moles g(-1) in young and old leaves respectively indicating that proline accumulation in root are lower than leaves, under both normal and stressed condition.

  14. Distribution and Potential Toxicity of Trace Metals in the Surface Sediments of Sundarban Mangrove Ecosystem, Bangladesh

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Ramanathan, A.; Mathukumalli, B. K. P.; Datta, D. K.

    2014-12-01

    The distribution, enrichment and ecotoxocity potential of Bangladesh part of Sundarban mangrove was investigated for eight trace metals (As, Cd, Cr, Cu, Fe, Mn, Pb and Zn) using sediment quality assessment indices. The average concentration of trace metals in the sediments exceeded the crustal abundance suggesting sources other than natural in origin. Additionally, the trace metals profile may be a reflection of socio-economic development in the vicinity of Sundarban which further attributes trace metals abundance to the anthropogenic inputs. Geoaccumulation index suggests moderately polluted sediment quality w.r.t. Ni and As and background concentrations for Al, Fe, Mn, Cu, Zn, Pb, Co, As and Cd. Contamination factor analysis suggested low contamination by Zn, Cr, Co and Cd, moderate by Fe, Mn, Cu and Pb while Ni and As show considerable and high contamination, respectively. Enrichment factors for Ni, Pb and As suggests high contamination from either biota or anthropogenic inputs besides natural enrichment. As per the three sediment quality guidelines, Fe, Mn, Cu, Ni, Co and As would be more of a concern with respect to ecotoxicological risk in the Sundarban mangroves. The correlation between various physiochemical variables and trace metals suggested significant role of fine grained particles (clay) in trace metal distribution whereas owing to low organic carbon content in the region the organic complexation may not be playing significant role in trace metal distribution in the Sundarban mangroves.

  15. Effects of urbanization on heavy metal accumulation in surface soils, Beijing.

    PubMed

    Wang, Meie; Liu, Rui; Chen, Weiping; Peng, Chi; Markert, Bernd

    2018-02-01

    Urbanization processes affect the accumulation of heavy metals in urban soils. Effects of urbanization on heavy metal accumulation in soils were studied using Beijing as an example. It has been suggested that the ecological function of vegetation covers shifting from natural to agricultural settings and then to urban greenbelts could increase the zinc (Zn) concentrations of soils successively. The Zn concentration of urban soils was significantly correlated to the percentage of the impervious land surface at the 500m×500m spatial scale. For urban parks, the age or years since the development accounted for 80% of the variances of cadmium (Cd) and Zn in soils. The population density, however, did not affect the heavy metal distributions in urban soils. To conclude, the urban age turned out to be a notable factor in quantifying heavy metal accumulation in urban soils. Copyright © 2017. Published by Elsevier B.V.

  16. The mechanism of metal nanoparticle formation in plants: limits on accumulation

    NASA Astrophysics Data System (ADS)

    Haverkamp, R. G.; Marshall, A. T.

    2009-08-01

    Metal nanoparticles have many potential technological applications. Biological routes to the synthesis of these particles have been proposed including production by vascular plants, known as phytoextraction. While many studies have looked at metal uptake by plants, particularly with regard to phytoremediation and hyperaccumulation, few have distinguished between metal deposition and metal salt accumulation. This work describes the uptake of AgNO3, Na3Ag(S2O3)2, and Ag(NH3)2NO3 solutions by hydroponically grown Brassica juncea and the quantitative measurement of the conversion of these salts to silver metal nanoparticles. Using X-ray absorption near edge spectroscopy (XANES) to determine the metal speciation within the plants, combined with atomic absorption spectroscopy (AAS) for total Ag, the quantity of reduction of AgI to Ag0 is reported. Transmission electron microscopy (TEM) showed Ag particles of 2-35 nm. The factors controlling the amount of silver accumulated are revealed. It is found that there is a limit on the amount of metal nanoparticles that may be deposited, of about 0.35 wt.% Ag on a dry plant basis, and that higher levels of silver are obtained only by the concentration of metal salts within the plant, not by deposition of metal. The limit on metal nanoparticle accumulation, across a range of metals, is proposed to be controlled by the total reducing capacity of the plant for the reduction potential of the metal species and limited to reactions occurring at an electrochemical potential greater than 0 V (verses the standard hydrogen electrode).

  17. Trace metal concentrations in single specimens of the intestinal broad flatworm ( Diphyllobothrium latum), compared to their fish host ( Oncorhynchus mykiss) measured by total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Woelfl, Stefan; Mages, Margarete; Torres, Patricio

    2008-12-01

    The aim of this study was to investigate (1) whether intestine endoparasites ( Diphyllobothrium latum) accumulate trace elements related to its body size and (2) whether parasites bioconcentrate more trace elements than their host. Freshwater fish (rainbow trout Oncorhynchus mykiss) were sampled in the deep, oligotrophic and uncontaminated Lake Riñihue in Southern Chile. The element concentration of different organs (intestine, muscle, liver) and of the intestine endoparasites were analyzed using total reflection X-ray fluorescence spectrometry. The results showed that the mass fraction for Mn, Fe, Ni, Cu, and Pb decreased significantly with the body size (dry weight) of the endoparasite. Only Zn did not reveal such a relationship. Small parasites accumulated up to 80 times more Fe, Ni, Mn, Pb, and Cu than large parasites. Compared to the fish organs, small parasites accumulated in maximum 35 to 307 times more Mn, 5 to 255 times more Fe, 98 to 220 times more Ni, 3 to 175 times more Cu, and 0.4 to 12 times more Zn than the fish. Lead was only found in the endoparasite, but not in the fish organs. We conclude that (1) D. latum is a good indicator for trace element accumulation in fishes and that (2) small endoparasites are more sensitive as bioindicators because they showed higher bioconcentrations of trace metals than larger parasites.

  18. Bioaccumulation of trace metals in farmed pacific oysters Crassostrea gigas from SW Gulf of California coast, Mexico.

    PubMed

    Jonathan, M P; Muñoz-Sevilla, N P; Góngora-Gómez, Andrés Martin; Luna Varela, Raquel Gabriela; Sujitha, S B; Escobedo-Urías, D C; Rodríguez-Espinosa, P F; Campos Villegas, Lorena Elizabeth

    2017-11-01

    The aim of the study was to evaluate the bioavailability of trace metals (Chromium, Copper, Nickel, Lead, Zinc, Cadmium, Arsenic, and Mercury) in the commercially consumed Crassostrea gigas oysters collected over a 12-month growth period (2011-12) from an experimental cultivation farm in La Pitahaya, Sinaloa State, Mexico. Sediment and water samples were also collected from four different zones adjacent to the cultivation area to identify the concentration patterns of metals. The results revealed that sewage disposals, fertilizers used for agricultural practices and shrimp culture are the major sources for the enrichment of certain toxic metals. The metal concentrations in oysters presented a decreasing order of abundance (all values in mg Kg -1 ): Zn (278.91 ± 93.03) > Cu (63.13 ± 31.72) > Cr (22.29 ± 30.23) > Cd (14.54 ± 4.28) > Ni (9.41 ± 11.33) > Pb (2.22 ± 1.33) > As (0.58 ± 0.91) > Hg (0.04 ± 0.06). Bioconcentration Factor (BCF) and Biota Sediment Accumulation Factor (BSAF) exhibited that C. gigas in the region are strong accumulators for Zn and Cd respectively. Thus, the present study proves to fulfill the gap in understanding the rate of bioaccumulation of metals in C. gigas which is regarded as the most sought after oyster species globally. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Risk assessment of dissolved trace metals in drinking water of Karachi, Pakistan.

    PubMed

    Karim, Zahida

    2011-06-01

    Health risk caused by the exposure to trace metals in water through different exposure pathways was investigated. Graphite furnace atomic absorption spectrometry was used for the determination of trace metals (nickel, copper, chromium, lead, cobalt, manganese and iron) in drinking water samples. The concentration of metals was compared with the world health organization (WHO) drinking water quality guideline values. Risk of metals on human health was evaluated using Hazard Quotient (HQ). Hazard quotients of all metals through oral ingestion and dermal absorption are found in the range of 1.11 × 10⁻² to 1.35 × 10⁻¹ and 8.52 × 10⁻⁵ to 9.75 × 10⁻², respectively. The results of the present study reflect the unlikely potential for adverse health effects to the inhabitants of Karachi due to the oral ingestion and dermal absorption of water containing these metals.

  20. Differential patterns of accumulation and retention of dietary trace elements associated with coal ash during larval development and metamorphosis of an amphibian.

    PubMed

    Heyes, Andrew; Rowe, Christopher L; Conrad, Phillip

    2014-01-01

    We performed an experiment in which larval gray tree frogs (Hyla chrysoscelis) were raised through metamorphosis on diets increased with a suite of elements associated with coal combustion residues (silver [Ag], arsenic [As], cadmium [Cd], chromium [Cr], copper [Cu], mercury [Hg], lead [Pb], selenium [Se], vanadium [V], and zinc [Zn]) at "low" and "high" concentrations. We quantified accumulation of metals at three life stages (mid-larval development, initiation of metamorphosis, and completion of metamorphosis) as well as effects on survival, metabolic rate, size at metamorphosis, and duration and loss of weight during metamorphosis. Most elements were accumulated in a dose-dependent pattern by some or all life stages, although this was not the case for Hg. For most elements, larval body burdens exceeded those of later life stages in some or all treatments (control, low, or high). However for Se, As, and Hg, body burdens in control and low concentrations were increased in later compared with earlier life stages. A lack of dose-dependent accumulation of Hg suggests that the presence of high concentrations of other elements (possibly Se) either inhibited accumulation or increased depuration of Hg. The duration of metamorphosis (forelimb emergence through tail resorption) was lengthened in individuals exposed to the highest concentrations of elements, but there were no other statistically significant biological effects. This study shows that patterns of accumulation and possibly depuration of metals and trace elements are complex in animals possessing complex life cycles. Further study is required to determine specific interactions affecting these patterns, in particular which elements may be responsible for affecting accumulation or retention of Hg when organisms are exposed to complex mixtures of elements.

  1. Trace metal release after minimally-invasive repair of pectus excavatum.

    PubMed

    Fortmann, Caroline; Göen, Thomas; Krüger, Marcus; Ure, Benno M; Petersen, Claus; Kübler, Joachim F

    2017-01-01

    Several studies have shown a high incidence of metal allergy after minimally-invasive repair of pectus excavatum (MIRPE). We postulated that MIRPE is associated with a significant release of trace metal ions, possibly causing the allergic symptoms. We evaluated the concentration with chromium, cobalt and nickel in blood, urine and tissue in patients prior to MIRPE and in patients who underwent an explantation of the stainless-steel bar(s) after three years. Our study group consisted of 20 patients (mean age 19 years) who had bar explantation and our control group included 20 patients (mean age 16 years) prior to MIRPE. At the time of bar removal we detected significantly elevated concentrations of chromium and nickel in the tissue compared to patients prior to the procedure (p<0,001). We also found a significant increase in the levels of chromium in urine and nickel in blood in patients three years post MIRPE (p<0,001). Four patients temporarily developed symptoms of metal allergy, all had elevated metal values in blood and urine at explantation. Minimally-invasive repair of pectus excavatum can lead to a significant trace metal exposure.

  2. Trace metal release after minimally-invasive repair of pectus excavatum

    PubMed Central

    Göen, Thomas; Krüger, Marcus; Ure, Benno M.; Petersen, Claus; Kübler, Joachim F.

    2017-01-01

    Background Several studies have shown a high incidence of metal allergy after minimally-invasive repair of pectus excavatum (MIRPE). We postulated that MIRPE is associated with a significant release of trace metal ions, possibly causing the allergic symptoms. Methods We evaluated the concentration with chromium, cobalt and nickel in blood, urine and tissue in patients prior to MIRPE and in patients who underwent an explantation of the stainless-steel bar(s) after three years. Results Our study group consisted of 20 patients (mean age 19 years) who had bar explantation and our control group included 20 patients (mean age 16 years) prior to MIRPE. At the time of bar removal we detected significantly elevated concentrations of chromium and nickel in the tissue compared to patients prior to the procedure (p<0,001). We also found a significant increase in the levels of chromium in urine and nickel in blood in patients three years post MIRPE (p<0,001). Four patients temporarily developed symptoms of metal allergy, all had elevated metal values in blood and urine at explantation. Conclusions Minimally-invasive repair of pectus excavatum can lead to a significant trace metal exposure. PMID:29023602

  3. Strontium and Trace Metals in the Mississippi River Mixing Zone

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Marcantonio, F.

    2001-12-01

    Strontium is generally believed to be a conservative element, i.e., it is assumed that dissolved Sr moves directly from rivers through estuaries to the ocean. More recently, however, detailed sampling of rivers suggests a weak non-conservative behavior for Sr. Here, we present dissolved and suspended load Sr and trace metal data for samples retrieved along salinity transects in the estuarine mixing zone of the Mississippi River. Our cruises took place during times representing high, falling, and low Mississippi River discharge. Sr concentration and isotopic composition were analyzed for both dissolved particulate loads. Selected particle-reactive or redox-sensitive trace metals (Mn, Fe, U, V, Mo, Ti, and Pb) were analyzed simultaneously. In the dissolved load, Sr showed conservative behavior in both high- and low- discharge periods. Non-conservative behavior of Sr predominated during falling discharge in the summer. Significant positive correlations were found between Sr, Mo and Ti. U and V distributions were found to be essentially controlled by mixing of river water and seawater, but with significantly lower riverine concentrations during high-flow stage. Particulate element concentrations can be quite variable and heterogeneous. In this study, strong correlations were found between particulate Mn (and Fe) concentrations and particulate concentrations of Ti, U, V, and Pb. No such correlations with Mn (or Fe) were found for particulate Sr and Mo. There is a vast hypoxic zone along the coast of Louisiana in the Gulf of Mexico that exists during the summer months. Based on the Sr isotope systematics and the relationships between Sr and trace metals, we believe that this eutrophication may contribute to the non-conservative behaviors of Sr and other trace metals. We discuss the potential implications of this hypothesis on the Sr mass balance of present-day and past seawater.

  4. Chemical speciation of trace metals in the industrial sludge of Dhaka City, Bangladesh.

    PubMed

    Islam, Md Saiful; Al-Mamun, Md Habibullah; Feng, Ye; Tokumura, Masahiro; Masunaga, Shigeki

    2017-07-01

    The objective of this study was to assess total concentration and chemical fractionation of trace metals in the industrial wastewater and sludge collected from seven different types of industries in Dhaka City, Bangladesh. The sludge from industries is either dumped on landfills or reused as secondary resources in order to preserve natural resources. Metals were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The ranges of Cr, Ni, Cu, As, Cd, and Pb in the sludges were 1.4-9,470, 4.8-994, 12.8-444, 2.2-224, 1.9-46.0 and 1.3-87.0 mg/kg, respectively. As a whole, the average concentrations of trace metals in samples were in the decreasing order of Cr > Ni > Cu > As > Pb > Cd. The results of the Community Bureau of Reference (BCR) sequential extraction showed that the studied metals were predominantly associated with the residual fraction followed by the oxidizable fraction. The study revealed that the mobile fractions of trace metals are poorly predictable from the total content, and bioavailability of all fractions of elements tends to decrease.

  5. Geographic and Oceanographic Information within Trace Metals in Moray Eel Otoliths

    NASA Astrophysics Data System (ADS)

    Savidge, W.; Windom, H.; Buck, C.

    2016-02-01

    Adult moray eels exhibit high site fidelity to particular reefs. We hypothesized that the trace metal composition of otoliths of eels could potentially provide insight into gradients in oceanographic processes on the South Atlantic Bight continental shelf where eels are resident on patchy hardbottom reefs throughout the entire region. Otoliths of moray eels collected from the mid-shelf of South Carolina were examined for their trace metal composition (Ba, Sr, Pb, Cu, Li, Mg, V, Mn, Zn). Samples were broadly lumped into four regions: "North," "North Cape Romain," "South Cape Romain," and "South". Trace metal composition within otoliths showed no latitudinal trends. However, factor analysis of the trace metals revealed that otoliths from the South Cape Romain region appeared as a compositionally distinct subgroup, based primarily on their Li and Mg content. Recent work on corals (Montagna et al. 2014) has shown the Li/Mg ratio within coral skeletons is sensitive to calcification temperature and can be used as a paleothermometer. If analogous processes influence Li/Mg ratios within otoliths, the data suggest that the bottom water at the South Cape Romain site is colder than other locations along the South Carolina shelf, perhaps as a result of locally enhanced upwelling. Additional samples from NC, SC, GA, and FL are being examined to see if other sites within the South Atlantic Bight show similar patterns. Montagna, P., McCulloch, M., Douville, E., et al. 2014. Li/Mg systematics in scleratinian corals: Calibration of the thermometer. Geochim Cosmochim Acta 132: 288-310.

  6. Trace metal mapping by laser-induced breakdown spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaiser, Jozef; Novotny, Dr. Karel; Hrdlicka, A

    2012-01-01

    Abstract: Laser-Induced Breakdown Spectroscopy (LIBS) is a sensitive optical technique capable of fast multi-elemental analysis of solid, gaseous and liquid samples. The potential applications of lasers for spectrochemical analysis were developed shortly after its invention; however the massive development of LIBS is connected with the availability of powerful pulsed laser sources. Since the late 80s of 20th century LIBS dominated the analytical atomic spectroscopy scene and its application are developed continuously. Here we review the utilization of LIBS for trace elements mapping in different matrices. The main emphasis is on trace metal mapping in biological samples.

  7. Biogeochemical Gradients in Wetland Sediments and their Effect on the Fate Trace Metals

    NASA Astrophysics Data System (ADS)

    Jaffe, P. R.; Choi, J.; Xu, S.

    2005-12-01

    The interactions between sediment biogeochemistry processes and higher plants play a major role on trace metal mobility in wetlands. Most wetland sediments are characterized by steep redox gradients, resulting from the sequential utilization of different electron acceptors during the degradation of organic matter provided by leaf litter and root turnover. Metals in wetland sediments may be immobilized due to precipitation or adsorption to different organic and inorganic sediment constituents. Adsorption onto iron, and manganese oxides, are important in the rhizosphere where iron oxyhydroxide plaques may form on the surface of roots. As the sediments becomes more reduced, bioavailable iron and manganese oxides are used as electron acceptor and are gradually depleted, resulting in the mobilization of some adsorbed species (i.e., As(V), phosphate, etc.), the reduction of some trace metals such as Cr(VI) (which is then immobilized as Cr(III)), and for more reduced conditions the immobilization of trace metals (i.e., Cd, Pb, Zn) as sulfides. Results from numerical simulations, laboratory experiments, and field measurements will be presented, showing how redox gradients and hence, trace-metal immobilization, in wetlands respond to external forcing functions such as changes in nutrient loading, plant distribution, seasonal and diurnal plant activity (specifically evapotranspiration and oxygen release), and temporal or spatial changes in the profile of iron and manganese oxides.

  8. Trace metals in Bermuda rainwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jickells, T.D.; Knap, A.H.; Church, T.M.

    1984-02-20

    The concentration of Cd, Cu, Fe, Mn, Ni, Pb, and Zn have been measured in Bermuda rainwater. Factor analysis indicates that Fe, Mn, and Pb have similar to acidic components derived from North America. The other metals all behave simiarly but differently to the acides. Sea salt, even after allowances for fractionation, apparently contributes minor amounts of Cu, Pb, and Zn and uncertain amounts of Fe, Mn, and Cd to Atlantic Ocean precipitation. Wash out ratios, calculated from this data along with earlier measurements of atmospheric trace metal concentration on Bermuda, are of the same order as those reported frommore » other remote ocean areas. The wet depositional fluxes of Cu, Ni, Pb, and Zn to the western Atlantic Ocean are significant compared to measured oceanic flux rates. However, the wet depositional fluxes of Fe and Mn to this area are relatively small, suggesting additional inputs, while an excess wet depositional flux of Cd suggests large-scale atmospheric recycling of this element.« less

  9. Interactions between accumulation of trace elements and major nutrients in Salix caprea after inoculation with rhizosphere microorganisms

    PubMed Central

    De Maria, Susanna; Rivelli, Anna Rita; Kuffner, Melanie; Sessitsch, Angela; Wenzel, Walter W.; Gorfer, Markus; Strauss, Joseph; Puschenreiter, Markus

    2015-01-01

    Although the beneficial effects on growth and trace element accumulation in Salix inoculated with microbes are well known, little information is available on the interactions among trace elements and major nutrients. The main purpose of this study was to assess the effect of inoculation with rhizobacteria Agromyces sp. AR33, Streptomyces sp. AR17, and the combination of each of them with the fungus Cadophora finlandica PRF15 on biomass production and the accumulation of selected trace elements and major nutrients (Cd, Zn, Fe, Ca, K and Mg) in Salix caprea grown on a moderately polluted soil. Dry matter production was significantly enhanced only upon inoculation with Agromyces AR33. Microbial treatments differently affected the accumulation of Zn and Cd in plants. Both the inoculation with Streptomyces AR17 and the co-inoculation of C. finlandica with Agromyces AR33 were most efficient in enhancing the accumulation of Zn and Cd in leaves. These two treatments showed also a higher translocation factor from roots to the leaves for both Cd and Zn. Concentrations of major nutrients in shoots were generally increased in the treatments with the fungus compared to those without, except for K in plants inoculated with bacterial strain Streptomyces AR17. Co-inoculation of C. finlandica plus Agromyces AR33 resulted in a better accumulation of both Zn and Cd and Ca, K and Mg in shoots. This study suggests that the phytoextraction of Zn and Cd can be improved by inoculation with selected microbial strains. PMID:21612812

  10. In situ investigation of heavy metals at trace concentrations in greenhouse soils via portable X-ray fluorescence spectroscopy.

    PubMed

    Tian, Kang; Huang, Biao; Xing, Zhe; Hu, Wenyou

    2018-04-01

    Soil pollution by heavy metals (HMs) has rapidly become a major threat to vegetable security. Nearly all cultivated soils are at risk of metal accumulation, and greenhouse soils are among the most heavily impacted soils. In this study, a rapid assessment of HMs at trace concentrations was conducted via portable X-ray fluorescence (PXRF) spectroscopy in Shouguang, China. Measurements were made via PXRF under in situ, ex situ and sieved conditions and by inductively coupled plasma mass spectrometry (ICP-MS) after acid digestion. The performance of each PXRF measure relative to the ICP-MS method was assessed by linear regression. Redundancy analysis was performed to quantify the proportion of explained variability between the PXRF and ICP-MS data. Evaluation of the possible sources of HMs and their potential risks was then conducted by multivariate analysis. The results showed that the PXRF data were closely correlated with ICP-MS quantification for Cu, Mn and Zn, whereas no significant correlations were found for As, Ni and Pb. The uncertainties of PXRF measurement derived from soil heterogeneity accounted for 20.02% of total variability and those from moisture and particle size accounted for 20.15%. The geo-accumulation index (I geo ) indicated that the greenhouse soils were potentially contaminated by Cu and Zn (I geo  > 0), which can be attributed to anthropogenic activities. Overall, PXRF spectroscopy is promising as a rapid and nondestructive in situ technique for assessing the potential risks of HMs at trace concentrations in greenhouse soils.

  11. Enhanced Toxic Metal Accumulation in Engineered Bacterial Cells Expressing Arabidopsis thaliana Phytochelatin Synthase

    PubMed Central

    Sauge-Merle, Sandrine; Cuiné, Stéphan; Carrier, Patrick; Lecomte-Pradines, Catherine; Luu, Doan-Trung; Peltier, Gilles

    2003-01-01

    Phytochelatins (PCs) are metal-binding cysteine-rich peptides, enzymatically synthesized in plants and yeasts from glutathione in response to heavy metal stress by PC synthase (EC 2.3.2.15). In an attempt to increase the ability of bacterial cells to accumulate heavy metals, the Arabidopsis thaliana gene encoding PC synthase (AtPCS) was expressed in Escherichia coli. A marked accumulation of PCs was observed in vivo together with a decrease in the glutathione cellular content. When bacterial cells expressing AtPCS were placed in the presence of heavy metals such as cadmium or the metalloid arsenic, cellular metal contents were increased 20- and 50-fold, respectively. We discuss the possibility of using genes of the PC biosynthetic pathway to design bacterial strains or higher plants with increased abilities to accumulate toxic metals, and also arsenic, for use in bioremediation and/or phytoremediation processes. PMID:12514032

  12. Trace metal accumulation and fish pathologies in areas affected by mining and metallurgical enterprises in the Kola Region, Russia.

    PubMed

    Moiseenko, T I; Kudryavtseva, L P

    2001-01-01

    Throughout the Kola region of Russia there has been a substantial increase of metal concentrations in water, which are related to local discharges from metallurgical and mining industry, transboundary transmissions as well as indirect leaching of elements by acid precipitation. This study presents data on the levels of Ni, Cu, Sr, Al, Zn, Co, Mn, Pb, Cd, Hg in the organs and tissues of fish, and evaluates relationships with water chemistry. Special attention is paid to fish pathologies, whose aetiology is related to the accumulation of metals and the associated changes of the elementary ratios within the organism. Ecotoxicological assessment of the copper nickel, strontium and acidification regimes also is considered in this article. In general we observed a large number of lakes that are heavily contaminated by Ni and Cu. Fish in these lakes contain high concentrations of Ni and Cu and display frequent pathologies, mostly associated with the kidneys. In lakes contaminated with Sr, there also are high Sr levels in fish and pathologies associated with skeletal tissues. Exposure to acidified water appears to increase the transport of metals (including Al, Ni and Cu) into fish and hence the toxic effects.

  13. Impact of long-term organic residue recycling in agriculture on soil solution composition and trace metal leaching in soils.

    PubMed

    Cambier, Philippe; Pot, Valérie; Mercier, Vincent; Michaud, Aurélia; Benoit, Pierre; Revallier, Agathe; Houot, Sabine

    2014-11-15

    Recycling composted organic residues in agriculture can reduce the need of mineral fertilizers and improve the physicochemical and biological properties of cultivated soils. However, some trace elements may accumulate in soils following repeated applications and impact other compartments of the agrosystems. This study aims at evaluating the long-term impact of such practices on the composition of soil leaching water, especially on trace metal concentrations. The field experiment QualiAgro started in 1998 on typical loess Luvisol of the Paris Basin, with a maize-wheat crop succession and five modalities: spreading of three different urban waste composts, farmyard manure (FYM), and no organic amendment (CTR). Inputs of trace metals have been close to regulatory limits, but supplies of organic matter and nitrogen overpassed common practices. Soil solutions were collected from wick lysimeters at 45 and 100 cm in one plot for each modality, during two drainage periods after the last spreading. Despite wide temporal variations, a significant effect of treatments on major solutes appears at 45 cm: DOC, Ca, K, Mg, Na, nitrate, sulphate and chloride concentrations were higher in most amended plots compared to CTR. Cu concentrations were also significantly higher in leachates of amended plots compared to CTR, whereas no clear effect emerged for Zn. The influence of amendments on solute concentrations appeared weaker at 1 m than at 45 cm, but still significant and positive for major anions and DOC. Average concentrations of Cu and Zn at 1m depth lied in the ranges [2.5; 3.8] and [2.5; 10.5 μg/L], respectively, with values slightly higher for plots amended with sewage sludge compost or FYM than for CTR. However, leaching of both metals was less than 1% of their respective inputs through organic amendments. For Cd, most values were <0.05 μg/L. So, metals added through spreading of compost or manure during 14 years may have increased metal concentrations in leachates of

  14. Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning.

    PubMed

    Caiazzo, Fabrizia; Caggiano, Alessandra

    2018-03-19

    Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace.

  15. Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning

    PubMed Central

    2018-01-01

    Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace. PMID:29562682

  16. Trace metals in Antarctica related to climate change and increasing human impact.

    PubMed

    Bargagli, R

    2000-01-01

    Metals are natural constituents of the abiotic and biotic components of all ecosystems, and under natural conditions they are cycled within and between the geochemical spheres--the atmosphere, lithosphere, hydrosphere, and biosphere--at quite steady fluxes. In the second half of the twentieth century, the huge increase in energy and mineral consumption determined anthropogenic emissions of several metals exceeding those from natural sources, e.g., volcanoes and windborne soil particles. In the Northern Hemisphere, the biogeochemical cycles of Pb, Cd, Zn, Cu, and other metals were significantly altered, even in Arctic regions. On the contrary, available data on trace metal concentrations in abiotic matrices from continental Antarctica, summarized in this review, suggest that the biogeochemical cycle of Pb is probably the only one that has been significantly altered by anthropogenic emissions in Antarctica and elsewhere in the Southern Hemisphere, especially in the period 1950-1975. Environmental contamination by other metals from anthropogenic sources in Antarctica itself can generally only be detected in snow samples taken within a range of a few kilometers or several hundred meters from scientific stations. Local metal pollution from human activities in Antarctica may compromise studies aimed at assessing the biogeochemical cycle of trace elements and the effects of global climate change. Thus, this review focuses on concentrations of metals in atmospheric particulate, snow, surface soils, and freshwater from the Antarctic continent and surface sediments and seawater from the Southern Ocean, which can plausibly be regarded as global background values of trace elements. These baselines are also necessary in view of the construction of new stations, the expansion of existing facilities to support research, and the growth of tourism and fisheries. Despite difficulties in making comparisons with data from other remote areas of the world, concentrations of trace metals

  17. Spatial distribution of trace metals in the Krka River, Croatia: an example of the self-purification.

    PubMed

    Cukrov, Neven; Cmuk, Petra; Mlakar, Marina; Omanović, Dario

    2008-08-01

    The spatial distribution of dissolved and total trace metals (Zn, Cd, Pb and Cu) in the Krka River (partly located in the Krka National Park) has been studied using a "clean" sampling, handling and analysis technique. Differential pulse anodic stripping voltammetry (DPASV) with a hanging mercury drop electrode (HMDE) has been used for trace metal analysis. The Krka River has been divided into the upper and lower flow region with respect to the metals concentration and main physico-chemical parameters. A significant increase in trace metal concentration as the result of the untreated waste water discharge downstream of Knin Town has been registered in the upper flow region. Due to a specific characteristic of the Krka, the so-called self-purification process, a decrease in the elevated trace metals concentration from the water column takes place at numerous small lakes formed by tufa barriers (at the end of the upper flow region). The clean groundwater input at the beginning of the lower flow region additionally contributes to the observed decrease in trace metals concentration in the Krka, maintaining them at a very low level in the remaining region of fresh-water flow. The determined median total concentrations were zinc 120-7400 ng l(-1), cadmium 3-8 ng l(-1), lead 11-250 ng l(-1) and copper 110-440 ng l(-1). Karst rivers, such as the Krka River, with extremely low natural concentrations of trace metals are highly sensitive to the anthropogenic influence. Therefore, such aquatic systems require implementation of strict protection regimes in the entire catchments area.

  18. Humic acids decrease uptake and distribution of trace metals, but not the growth of radish exposed to cadmium toxicity.

    PubMed

    Ondrasek, Gabrijel; Rengel, Zed; Romic, Davor

    2018-04-30

    Naturally-occurring highly-complexed and polymerised organics such as humic acids (HA), due to their large negative charge, play a crucial role in biogeochemistry of trace metals (TM). Toxic (Cd) as well as essential (Zn, Cu, Mn) TM bind strongly to HA, but how these organo-metalic forms influence metal uptake by plants is poorly understood. A solution culture study was conducted to characterize the effects of different concentrations of HA (0-225mg/L) on the growth and element uptake/distribution in roots, shoots and hypocotyls of radish (Raphanus sativus L.) exposed to Cd (0.5mg/L) contamination. After 10-d-exposure to applied treatments, Cd induced phytotoxicity; in contrast, different concentrations of HA had no influence on biomass, but decreased concentration of most TM in examined tissues (Cu by 4.2-fold, Zn by 2.2-fold, Cd by 1.6-fold and Mn by 34%) and their total plant accumulation (Cu by 73%, Cd by 39%, Zn by 29% and Mn by 22%). HA influenced the transport/distribution of TM, decreasing accumulation in roots and increasing their translocation/deposition in shoots, with no effect on TM content in edible hypocotyls. Chemical speciation modelling of the rooting medium confirmed predominance of free metallic forms in the control (no HA) and the pronounced organo-metal complexation in the HA treatments. The results provide evidence of strong capacity of HA to decrease phytoavailability and uptake of Cd, Zn, Cu and Mn while being non-toxic even at relatively high concentration (225mg/L). Thus, HA, as naturally present soil components, control mobility and phyto-extraction of most TM as well as their phyto-accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Removal of trace metal contaminants from potable water by electrocoagulation.

    PubMed

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K

    2016-06-21

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.

  20. Removal of trace metal contaminants from potable water by electrocoagulation

    PubMed Central

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-01-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency. PMID:27324564

  1. Removal of trace metal contaminants from potable water by electrocoagulation

    NASA Astrophysics Data System (ADS)

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-06-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.

  2. Trace metal occurrence and distribution in sediments and mangroves, Pumicestone region, southeast Queensland, Australia.

    PubMed

    Preda, Micaela; Cox, Malcolm E

    2002-11-01

    The Pumicestone region is a unique catchment in northern Moreton Bay, southeast Queensland. The region supports a wide range of land-use activities as well as attractions such as nature conservation areas. One environmental aspect that has not previously been addressed in this area is the occurrence of minor and trace metals in estuarine sediments associated with the main estuaries of the region. The trace metals included in this investigation are: vanadium, chromium, molybdenum, cobalt, nickel, copper, zinc, cadmium, lead and arsenic. To determine and evaluate the occurrence and distribution of metals in the area, several components have been analysed: bedrock material, pre-industrial settings, recent estuarine sediments, soils of estuarine origin and mangrove pneumatophores. The 40 sites chosen for sediment and soil samples cover a variety of estuarine settings and represent a range of natural conditions in terms of channel and bank morphology, tidal energy, vegetation cover, relationship to bedrock, water salinity and land disturbance. The chemical, mineralogical and statistical analyses employed in this study enabled (a) establishment of background values for the area, (b) determination of relationships between metals and (c) identification of sites with anomalous metal concentrations. All the metals found in the sediments of the area are sourced from the geological bedrock. The dominant trace elements identified in sediments are Zn, V and Cr. The remaining metals are highly variable spatially. All trace metals are controlled by the presence of Fe and Mn oxides, and by the grainsize of the sediment. Typically, fine-grained Fe-rich materials tend to adsorb more trace metals than sandy sediments. In soils that have developed from estuarine muds, some metals such as Cr, Mo, Pb and As tend to be in larger quantities than in the estuarine counterparts. Some of the elements, which occur in significant amounts in the sediment, have been detected in mangrove tissue

  3. Feedback Interactions between Trace Metal Nutrients and Phytoplankton in the Ocean

    PubMed Central

    Sunda, William G.

    2012-01-01

    In addition to control by major nutrient elements (nitrogen, phosphorus, and silicon) the productivity and species composition of marine phytoplankton communities are also regulated by a number of trace metal nutrients (iron, zinc, cobalt, manganese, copper, and cadmium). Of these, iron is most limiting to phytoplankton growth and has the greatest effect on algal species diversity. It also plays an important role in limiting di-nitrogen (N2) fixation rates, and thus is important in controlling ocean inventories of fixed nitrogen. Because of these effects, iron is thought to play a key role in regulating biological cycles of carbon and nitrogen in the ocean, including the biological transfer of carbon to the deep sea, the so-called biological CO2 pump, which helps regulate atmospheric CO2 and CO2-linked global warming. Other trace metal nutrients (zinc, cobalt, copper, and manganese) have lesser effects on productivity; but may exert an important influence on the species composition of algal communities because of large differences in metal requirements among species. The interactions between trace metals and ocean plankton are reciprocal: not only do the metals control the plankton, but the plankton regulate the distributions, chemical speciation, and cycling of these metals through cellular uptake and recycling processes, downward flux of biogenic particles, biological release of organic chelators, and mediation of redox reactions. This two way interaction has influenced not only the biology and chemistry of the modern ocean, but has had a profound influence on biogeochemistry of the ocean and earth system as a whole, and on the evolution of marine and terrestrial biology over geologic history. PMID:22701115

  4. Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes.

    PubMed

    Machado, W; Borrelli, N L; Ferreira, T O; Marques, A G B; Osterrieth, M; Guizan, C

    2014-02-15

    The degree of iron pyritization (DOP) and degree of trace metal pyritization (DTMP) were evaluated in mangrove soil profiles from an estuarine area located in Rio de Janeiro (SE Brazil). The soil pH was negatively correlated with redox potential (Eh) and positively correlated with DOP and DTMP of some elements (Mn, Cu and Pb), suggesting that pyrite oxidation generated acidity and can affect the importance of pyrite as a trace metal-binding phase, mainly in response to spatial variability in tidal flooding. Besides these aerobic oxidation effects, results from a sequential extraction analyses of reactive phases evidenced that Mn oxidized phase consumption in reaction with pyrite can be also important to determine the pyritization of trace elements. Cumulative effects of these aerobic and anaerobic oxidation processes were evidenced as factors affecting the capacity of mangrove soils to act as a sink for trace metals through pyritization processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Ionic liquid-based extraction followed by graphite-furnace atomic absorption spectrometry for the determination of trace heavy metals in high-purity iron metal.

    PubMed

    Matsumiya, Hiroaki; Kato, Tatsuya; Hiraide, Masataka

    2014-02-01

    The analysis of high-purity materials for trace impurities is an important and challenging task. The present paper describes a facile and sensitive method for the determination of trace heavy metals in high-purity iron metal. Trace heavy metals in an iron sample solution were rapidly and selectively preconcentrated by the extraction into a tiny volume of an ionic liquid [1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide] for the determination by graphite-furnace atomic absorption spectrometry (GFAAS). A nitrogen-donating neutral ligand, 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ), was found to be effective in the ionic liquid-based selective extraction, allowing the nearly complete (~99.8%) elimination of the iron matrix. The combination with the optimized GFAAS was successful. The detectability reached sub-μg g(-1) levels in iron metal. The novel use of TPTZ in ionic liquid-based extraction followed by GFAAS was successfully applied to the determination of traces of Co, Ni, Cu, Cd, and Pb in certified reference materials for high-purity iron metal. © 2013 Published by Elsevier B.V.

  6. Contamination characteristics and source apportionment of trace metals in soils around Miyun Reservoir.

    PubMed

    Chen, Haiyang; Teng, Yanguo; Chen, Ruihui; Li, Jiao; Wang, Jinsheng

    2016-08-01

    Due to their toxicity and bioaccumulation, trace metals in soils can result in a wide range of toxic effects on animals, plants, microbes, and even humans. Recognizing the contamination characteristics of soil metals and especially apportioning their potential sources are the necessary preconditions for pollution prevention and control. Over the past decades, several receptor models have been developed for source apportionment. Among them, positive matrix factorization (PMF) has gained popularity and was recommended by the US Environmental Protection Agency as a general modeling tool. In this study, an extended chemometrics model, multivariate curve resolution-alternating least squares based on maximum likelihood principal component analysis (MCR-ALS/MLPCA), was proposed for source apportionment of soil metals and applied to identify the potential sources of trace metals in soils around Miyun Reservoir. Similar to PMF, the MCR-ALS/MLPCA model can incorporate measurement error information and non-negativity constraints in its calculation procedures. Model validation with synthetic dataset suggested that the MCR-ALS/MLPCA could extract acceptable recovered source profiles even considering relatively larger error levels. When applying to identify the sources of trace metals in soils around Miyun Reservoir, the MCR-ALS/MLPCA model obtained the highly similar profiles with PMF. On the other hand, the assessment results of contamination status showed that the soils around reservoir were polluted by trace metals in slightly moderate degree but potentially posed acceptable risks to the public. Mining activities, fertilizers and agrochemicals, and atmospheric deposition were identified as the potential anthropogenic sources with contributions of 24.8, 14.6, and 13.3 %, respectively. In order to protect the drinking water source of Beijing, special attention should be paid to the metal inputs to soils from mining and agricultural activities.

  7. The Little Penguin (Eudyptula minor) as an indicator of coastal trace metal pollution.

    PubMed

    Finger, Annett; Lavers, Jennifer L; Dann, Peter; Nugegoda, Dayanthi; Orbell, John D; Robertson, Bruce; Scarpaci, Carol

    2015-10-01

    Monitoring trace metal and metalloid concentrations in marine animals is important for their conservation and could also reliably reflect pollution levels in their marine ecosystems. Concentrations vary across tissue types, with implications for reliable monitoring. We sampled blood and moulted feathers of the Little Penguin (Eudyptula minor) from three distinct colonies, which are subject to varying levels of anthropogenic impact. Non-essential trace metal and metalloid concentrations in Little Penguins were clearly linked to the level of industrialisation adjacent to the respective foraging zones. This trend was more distinct in blood than in moulted feathers, although we found a clear correlation between blood and feathers for mercury, lead and iron. This study represents the first reported examination of trace metals and metalloids in the blood of any penguin species and demonstrates that this high trophic feeder is an effective bioindicator of coastal pollution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Fungal accumulation of metals from building materials during brown rot wood decay.

    PubMed

    Hastrup, Anne Christine Steenkjær; Jensen, Bo; Jellison, Jody

    2014-08-01

    This study analyzes the accumulation and translocation of metal ions in wood during the degradation performed by one strain of each of the three brown rot fungi; Serpula lacrymans, Meruliporia incrassata and Coniophora puteana. These fungi species are inhabitants of the built environment where the prevention and understanding of fungal decay is of high priority. This study focuses on the influence of various building materials in relation to fungal growth and metal uptake. Changes in the concentration of iron, manganese, calcium and copper ions in the decayed wood were analyzed by induced coupled plasma spectroscopy and related to wood weight loss and oxalic acid accumulation. Metal transport into the fungal inoculated wood was found to be dependent on the individual strain/species. The S. lacrymans strain caused a significant increase in total iron whereas the concentration of copper ions in the wood appeared decreased after 10 weeks of decay. Wood inoculated with the M. incrassata isolate showed the contrary tendency with high copper accumulation and low iron increase despite similar weight losses for the two strains. However, significantly lower oxalic acid accumulation was recorded in M. incrassata degraded wood. The addition of a building material resulted in increased weight loss in wood degraded by C. puteana in the soil-block test; however, this could not be directly linked specifically to the accumulation of any of the four metals recorded. The accumulation of oxalic acid seemed to influence the iron uptake. The study assessing the influence of the presence of soil and glass in the soil-block test revealed that soil contributed the majority of the metals for uptake by the fungi and contributed to increased weight loss. The varying uptake observed among the three brown rot fungi strains toward the four metals analyzed may be related to the specific non-enzymatic and enzymatic properties including bio-chelators employed by each of the species during wood

  9. Source apportionment of trace metals in river sediments: A comparison of three methods.

    PubMed

    Chen, Haiyang; Teng, Yanguo; Li, Jiao; Wu, Jin; Wang, Jinsheng

    2016-04-01

    Increasing trace metal pollution in river sediment poses a significant threat to watershed ecosystem health. Identifying potential sources of sediment metals and apportioning their contributions are of key importance for proposing prevention and control strategies of river pollution. In this study, three advanced multivariate receptor models, factor analysis with nonnegative constraints (FA-NNC), positive matrix factorization (PMF), and multivariate curve resolution weighted-alternating least-squares (MCR-WALS), were comparatively employed for source apportionment of trace metals in river sediments and applied to the Le'an River, a main tributary of Poyang Lake which is the largest freshwater lake in China. The pollution assessment with contamination factor and geoaccumulation index suggested that the river sediments in Le'an River were contaminated severely by trace metals due to human activities. With the three apportionment tools, similar source profiles of trace metals in sediments were extracted. Especially, the MCR-WALS and PMF models produced essentially the same results. Comparatively speaking, the weighted schemes might give better solutions than the unweighted FA-NNC because the uncertainty information of environmental data was considered by PMF and MCR-WALS. Anthropogenic sources were apportioned as the most important pollution sources influencing the sediment metals in Le'an River with contributions of about 90%. Among them, copper tailings occupied the largest contribution (38.4-42.2%), followed by mining wastewater (29.0-33.5%), and agricultural activities (18.2-18.7%). To protect the ecosystem of Le'an River and Poyang Lake, special attention should be paid to the discharges of mining wastewater and the leachates of copper tailing ponds in that region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Assessment of trace metal levels in size-resolved particulate matter in the area of Leipzig

    NASA Astrophysics Data System (ADS)

    Fomba, Khanneh Wadinga; van Pinxteren, Dominik; Müller, Konrad; Spindler, Gerald; Herrmann, Hartmut

    2018-03-01

    Size-resolved trace metal concentrations at four sites in Leipzig (Germany) and its surrounding were assessed between the winter of 2013 and the summer of 2015. The measurements were performed in parallel at; traffic dominated (Leipzig - Mitte, LMI), traffic and residential dominated (Eisenbahnstrasse, EIB), urban background (TROPOS, TRO) and regional background (Melpitz, MEL) sites. In total, 19 trace metals, i.e. K, Ca, Ti, Mn, Fe, Cu, Zn, As, Se, Ba, V, Pb, Ni, Cr, Sr, Sn, Sb, Co and Rb were analysed using total reflection x-ray fluorescence (TXRF). The major metals were Fe, K and Ca with concentrations ranging between; 31-440 ng/m3, 42-153 ng/m3 and 24-322 ng/m3, respectively, while the trace metals with the lowest concentrations were Co, Rb and Se with concentrations of; < 0.3 ng/m3, <0.5 ng/m3 and 0.5-0.7 ng/m3, respectively. PM10 trace metal concentrations during easterly air mass inflow especially at the background sites were in average 70% higher in the winter and 30% higher in the summer in comparison to westerly air mass inflow. Traffic at LMI contributed to about 75% of Cr, Ba, Cu, Sb, Sn, Ca, Co, Mn, Fe and Ti concentrations while regional activities contributed to more than 70% of K, Rb, Pb, Se, As and V concentrations. Traffic dominated trace metals were often observed in the coarse mode while the regional background dominated trace metals were often observed in the fine mode. Trace metal sources were related to crustal matter and road dust re-suspension for metals such as Ca, Fe, Co, Sr, and Ti, brake and tire wear (Cu, Sb, Ba, Fe, Zn, Pb), biomass burning (K, Rb), oil and coal combustion (V, Zn, As, Pb). Crustal matter contributed 5-12% in winter and 8-19% in summer of the PM10 mass. Using Cu and Zn as markers for brake and tire wear, respectively, the estimated brake and tire wear contributions to the PM10 mass were 0.1-0.8% and 1.7-2.9%, respectively. The higher contributions were observed at the traffic sites while the lower contributions were

  11. Seasonal variation and sources of dissolved trace metals in Maó Harbour, Minorca Island.

    PubMed

    Martínez-Soto, Marly C; Tovar-Sánchez, Antonio; Sánchez-Quiles, David; Rodellas, Valentí; Garcia-Orellana, Jordi; Basterretxea, Gotzon

    2016-09-15

    The environmental conditions of semi-enclosed coastal water-bodies are directly related to the catchment, human activities, and oceanographic setting in which they are located. As a result of low tidal forcing, and generally weak currents, waters in Mediterranean harbours are poorly renewed, leading to quality deterioration. Here, we characterise the seasonal variation of trace metals (i.e. Co, Cd, Cu, Fe, Mo, Ni, Pb, and Zn) in surface waters, and trace metal content in sediments from Maó Harbour, a semi-enclosed coastal ecosystem in the NW Mediterranean Sea. Our results show that most of the dissolved trace metals in the waters of Maó Harbour exhibit a marked inner-outer concentration gradient, suggesting a permanent input into the inner part of the harbour. In general, metal concentrations in the waters of Maó Harbour are higher than those in offshore waters. Concentration of Cu (21±8nM), Fe (9.2±3.2nM) and Pb (1.3±0.4nM) are particularly high when compared with other coastal areas of the Mediterranean Sea. The concentration of some metals such as Cu and Zn increases during summertime, when the human population and boat traffic increase during the tourism season, and when resuspension from the metal enriched sediments is higher. The evaluation of the metal sources in the harbour reveals that, compared with other putative sources such as runoff, aerosol deposition and fresh groundwater discharges, contaminated sediments are the main source of the metals found in the water column, most likely through vessel-driven resuspension events. This study contributes to the understanding of the processes that control the occurrence and distribution of trace metals in Maó Harbour, thus aiding in the effective management of the harbour, and enhancing the overall quality of the seawater ecosystem. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Content and distribution of trace metals in pristine permafrost environments of Northeastern Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Antcibor, I.; Eschenbach, A.; Kutzbach, L.; Bolshiyanov, D.; Pfeiffer, E.-M.

    2012-04-01

    Arctic regions are one of the most sensitive areas with respect to climatic changes and human impacts. Research is required to discover how the function of permafrost soils as a buffering system for metal pollutants could change in response to the predicted changes. The goal of this work is to determine the background levels of trace metals in the pristine arctic ecosystems of the Lena River Delta in Northeastern Siberia and to evaluate the possible effect of human impacts on this arctic region. The Lena River Delta represents areas with different dominating geomorphologic processes that can generally be divided between accumulation and erosion sites. Frequent changes of the river water level create different periods of sedimentation and result in the formation of stratified soils and sediment layers which are dominated either by mineral substrates with allochthonous organic matter or pure autochthonous peat. The deposited sediments that have formed the delta islands are mostly composed of sand fractions; therefore the buffering effects of clay materials can be neglected. Samoylov Island is representative of the south-central and eastern modern delta surfaces of the Lena River Delta and is selected as a pilot study site. We determined total element contents of Fe, Mn, Zn, Cd, Ni, Cu, As, Pb, Co and Hg in soil horizons from different polygonal elevated rims, polygonal depressed centers and the middle floodplain. High gravimetric concentrations (related to dry mass of soil material) of Mn and Fe are found within all soil profiles and vary from 0.14 to 1.39 g kg-1 and from 10.7 to 41.2 g kg-1, respectively. While the trace element concentrations do not exceed typical crustal abundances, the maximum values of most of the metals are observed within the soil profile situated at the middle floodplain. This finding suggests that apart from the parent material the second potential source of trace metals is due to allochthonous substance input during annual flooding of the

  13. Bioactive trace metal time series during Austral summer in Ryder Bay, Western Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Bown, Johann; Laan, Patrick; Ossebaar, Sharyn; Bakker, Karel; Rozema, Patrick; de Baar, Hein J. W.

    2017-05-01

    The Western Antarctic Peninsula, one of the most productive regions of the Southern Ocean, is currently affected by the increasing of atmospheric and oceanic temperatures. For several decades, the Rothera Time Series (RaTS) site located in Ryder Bay has been monitored by the British Antarctic Survey and has shown long lasting phytoplankton summer blooms (over a month) that are likely driven by the length of the sea ice season. The dynamics of phytoplankton blooms in Ryder Bay may just as well be influenced by natural fertilization of iron and other bioactive trace metals due to the proximity of land, islands and glaciers. For the first time, temporal distributions in the surface layer (0-75 m depth) of six bioactive trace metals (dissolved: Fe, Mn, Zn, Cd, Cu and dissolved labile Co) have been investigated with high temporal and spatial resolution at the RaTS site during a total of 2 and 3.5 months respectively, over two consecutive summers. Most of the studied trace elements showed wide ranges of concentrations and this dynamics appears to be driven by phytoplankton uptake, remineralization and occasional vertical mixing associated with storm episodes. The biological uptake of DMn, DZn, DCd, DCoL and DCu was proportional to uptake of phosphate and silicate, which was associated with weak to strong linear relationships depending on which phytoplankton bloom events was considered. This further suggests that the surface water distributions of these studied bio-active trace metals were mainly driven by biological uptake and remineralization during austral spring and summer in Ryder Bay. Even though DFe did not show any strong relationship with phosphate, DFe decreasing concentrations during each bloom event suggest that Fe is a key essential element for phytoplankton in the area of study. The consistency of trace metals/nutrient ratios during two consecutive summers indicates that over-winter scavenging removal was slow relative to mixing. The increase of DCd/P and

  14. Representativeness of laboratory sampling procedures for the analysis of trace metals in soil.

    PubMed

    Dubé, Jean-Sébastien; Boudreault, Jean-Philippe; Bost, Régis; Sona, Mirela; Duhaime, François; Éthier, Yannic

    2015-08-01

    This study was conducted to assess the representativeness of laboratory sampling protocols for purposes of trace metal analysis in soil. Five laboratory protocols were compared, including conventional grab sampling, to assess the influence of sectorial splitting, sieving, and grinding on measured trace metal concentrations and their variability. It was concluded that grinding was the most important factor in controlling the variability of trace metal concentrations. Grinding increased the reproducibility of sample mass reduction by rotary sectorial splitting by up to two orders of magnitude. Combined with rotary sectorial splitting, grinding increased the reproducibility of trace metal concentrations by almost three orders of magnitude compared to grab sampling. Moreover, results showed that if grinding is used as part of a mass reduction protocol by sectorial splitting, the effect of sieving on reproducibility became insignificant. Gy's sampling theory and practice was also used to analyze the aforementioned sampling protocols. While the theoretical relative variances calculated for each sampling protocol qualitatively agreed with the experimental variances, their quantitative agreement was very poor. It was assumed that the parameters used in the calculation of theoretical sampling variances may not correctly estimate the constitutional heterogeneity of soils or soil-like materials. Finally, the results have highlighted the pitfalls of grab sampling, namely, the fact that it does not exert control over incorrect sampling errors and that it is strongly affected by distribution heterogeneity.

  15. Biogeochemical and hydrological controls on fate and distribution of trace metals in oiled Gulf salt marshes

    NASA Astrophysics Data System (ADS)

    Keevan, J.; Natter, M.; Lee, M.; Keimowitz, A.; Okeke, B.; Savrda, C.; Saunders, J.

    2011-12-01

    On April 20, 2010, the drilling rig Deepwater Horizon exploded in the Gulf of Mexico, resulting in the release of approximately 5 million barrels of crude oil into the environment. Oil and its associated trace metals have been demonstrated to have a detrimental effect on coastal wetland ecosystems. Wetlands are particularly susceptible to oil contamination because they are composed largely of fine-grained sediments, which have a high capacity to adsorb organic matter and metals. The biogeochemical cycling of trace metals can be strongly influenced by microbial activity, specifically those of sulfate- and iron-reducing bacteria. Microbial activity may be enhanced by an increase in amounts of organic matter such as oil. This research incorporates an assessment of levels of trace metals and associated biogeochemical changes from ten coastal marshes in Alabama, Mississippi, and Louisiana. These sampling sites range in their pollution levels from pristine to highly contaminated. A total digestion analysis of wetland sediments shows higher concentrations of certain trace metals (e.g., Ni, Cu, Pb, Zn, Sr, Co, V, Ba, Hg, As) in heavily-oiled areas compared to less-affected and pristine sites. Due to chemical complexation among organic compounds and metals, crude oils often contain elevated levels (up to hundreds of mg/kg) of trace metals At the heavily-oiled Louisiana sites (e.g., Bay Jimmy, Bayou Dulac, Bay Batiste), elevated levels of metals and total organic carbon have been found in sediments down to depths of 30 cm. Clearly the contamination is not limited to shallow sediments and oil, along with various associated metals, may be invading into deeper (pre-industrial) portions of the marsh sediments. Pore-waters extracted from contaminated sediments are characterized by very high levels of reduced sulfur (up to 80 mg/kg), in contrast to fairly low ferrous iron concentrations (<0.02 mg/kg). The influx of oil into the wetlands might provide the initial substrate and

  16. Speciations of trace metals in the Danube alluvial sediments within an oil refinery.

    PubMed

    Relić, Dubravka; Dordević, Dragana; Popović, Aleksandar; Blagojević, Tamara

    2005-07-01

    A sequential extraction procedure was applied to identify forms of Ni, Zn, Pb and Cu with Fe- and Mn-oxides associated in alluvial sediments of the River Danube within Pancevo Oil Refinery (Serbia). The five steps of the sequential extraction procedure partitioned metals into: CH(3)COONH(4) extractable (S1); NH(2)OH.HCl carbonate extractable and easily reducible (S2); (NH(4))(2)C(2)O(2)/H(2)C(2)O(2) moderately reducible (S3); H(2)O(2)-HNO(3) organic extractable (S4); and HCl acid soluble residue (S5). Extracted concentrations of trace metals, analyzed after all five steps, were found to be (mg kg(-1)) for Mn: 656, Fe: 26734, Ni: 32.3, Zn: 72.8, Pb: 13.4 and Cu: 27.0. Most of the elements were found in acid soluble residue, characterizing stable compounds in sediments. Non-residual fractions of trace metals (sum of the first four fractions) were analyzed because they are more bioavailable than the residual amount. Correlation analysis and two multivariate analysis methods (principal component and cluster analysis) were used to understand and visualize the associations between the non-residual fractions of trace metals and certain forms, more or less crystalline of Fe- and Mn-oxides within the analyzed sediments, since Fe- and Mn-oxides play an important role in trace metal sorption within aquatic systems, especially within the Danube alluvium where the fluctuations of groundwater are very frequent and the level of groundwater could come close to surface.

  17. Mercury and trace metal partitioning and fluxes in suburban Southwest Ohio watersheds.

    PubMed

    Naik, Avani P; Hammerschmidt, Chad R

    2011-10-15

    Many natural watersheds are increasingly affected by changes in land use associated with suburban sprawl and such alterations may influence concentrations, partitioning, and fluxes of toxic trace metals in fluvial ecosystems. We investigated the cycling of mercury (Hg), monomethylmercury, cadmium, copper, lead, nickel, and zinc in three watersheds at the urban fringe of Dayton, Ohio, over a 13-month period. Metal concentrations were related positively to discharge in each stream, with each metal having a high affinity for suspended particles and Hg also having a noticeable association with dissolved organic carbon. Although not observed for the other metals, levels of Hg in river water varied seasonally and among streams. Yields of Hg from two of the catchments were comparable to that predicted for runoff of atmospherically deposited Hg (∼25% of wet atmospheric flux), whereas the third watershed had a significantly greater annual flux associated with greater particle-specific and filtered water Hg concentrations, presumably from a point source. Fluxes of metals other than Hg were similar among each watershed and suggestive of a ubiquitous source, which could be either atmospheric deposition or weathering. Results of this study indicate that, with the exception of Hg being increased in one watershed, processes affecting metal partitioning and loadings are similar among southwest Ohio streams and comparable to other North American rivers that are equally or less impacted by urban development. Relative differences in land use, catchment area, and presence or absence of waste water treatment facilities had little or no detectable effect on most trace metal concentrations and fluxes. This suggests that suburban encroachment on agricultural and undeveloped lands has either similarly or not substantially impacted trace metal cycling in streams at the urban fringe of Dayton and, by extension, other comparable metropolitan areas. Copyright © 2011 Elsevier Ltd. All rights

  18. Accumulation of heavy metals in soil-crop systems: a review for wheat and corn.

    PubMed

    Wang, Shiyu; Wu, Wenyong; Liu, Fei; Liao, Renkuan; Hu, Yaqi

    2017-06-01

    The health risks arising from heavy metal pollution (HMP) in agricultural soils have attracted global attention, and research on the accumulation of heavy metals in soil-plant systems is the basis for human health risk assessments. This review studied the accumulation of seven typical heavy metals-Cd, Cr, As, Pb, Hg, Cu, and Zn-in soil-corn and soil-wheat systems. The findings indicated that, in general, wheat was more likely to accumulate heavy metals than corn. Bioconcentration factor (BCF) of the seven heavy metals in wheat and corn grains decreased exponentially with their average concentrations in soil. The seven heavy metals were ranked as follows, in ascending order of accumulation in corn grains: Pb < Cr < Zn < As < Cu < Cd accumulation in wheat grains, their ranking was as follows: Zn < Pb < Cr < Cu < As < Hg

  19. Lead isotopes and trace metals in dust at Yucca Mountain

    USGS Publications Warehouse

    Kwak, Loretta; Neymark, Leonid A.; Peterman, Zell E.

    2008-01-01

    Lead (Pb)-isotope compositions and trace-metal concentrations were determined for samples of dust collected from underground and surface locations at and near the proposed radioactive waste repository at Yucca Mountain, Nevada. Rare earth element concentrations in the dust samples from the underground tunnels are similar to those in wholerock samples of the repository host rocks (Miocene Tiva Canyon Tuff and Topopah Spring Tuff), supporting interpretation that the subsurface dust is mainly composed of rock comminuted during tunnel construction. Other trace metals (arsenic, cadmium, cobalt, chromium, copper, manganese, nickel, lead, antimony, thallium, and zinc) are variably enriched in the subsurface dust samples relative to the average concentrations in the host rocks. Average concentrations of arsenic and lead in dust samples, high concentrations of which can cause corrosion of waste canisters, have enrichment factors from 1.2 to 1.6 and are insignificant relative to the range of concentrations for these metals observed in the host rock samples. Most dust samples from surface sites also are enriched in many of these trace metals relative to average repository host rocks. At least some of these enrichments may be artifacts of sampling. Plotted on a 208Pb/206Pb-207Pb/206Pb graph, Pb-isotope compositions of dust samples from underground sites form a mixing line extending from host-rock Pb-isotope compositions towards compositions of many of the dust samples from surface sites; however, combined Pb concentration and isotope data indicate the presence of a Pbenriched component in the subsurface dust that is not derived from host rock or surface dust and may derive from anthropogenic materials introduced into the underground environment.

  20. Recovery of Trace and Heavy Metals from Coal Combustion Residues for Reuse and Safe Disposal: A Review

    NASA Astrophysics Data System (ADS)

    Kumar, Ashvani; Samadder, Sukha Ranjan; Elumalai, Suresh Pandian

    2016-09-01

    The safe disposal of coal combustion residues (CCRs) will remain a major public issue as long as coal is used as a fuel for energy production. Both dry and wet disposal methods of CCRs create serious environmental problems. The dry disposal method creates air pollution initially, and the wet disposal method creates water pollution as a result of the presence of trace and heavy metals. These leached heavy metals from fly ash may become more hazardous when they form toxic compounds such as arsenic sulfite (As2S3) and lead nitrate (N2O6Pb). The available studies on trace and heavy metals present in CCRs cannot ensure environmentally safe utilization. In this work, a novel approach has been offered for the retrieval of trace and heavy metals from CCRs. If the proposed method becomes successful, then the recovered trace and heavy metals may become a resource and environmentally safe use of CCRs may be possible.

  1. Speciation and leaching of trace metal contaminants from e-waste contaminated soils.

    PubMed

    Cui, Jin-Li; Luo, Chun-Ling; Tang, Chloe Wing-Yee; Chan, Ting-Shan; Li, Xiang-Dong

    2017-05-05

    Primitive electrical and electronic waste (e-waste) recycling activities have caused serious environmental problems. However, little is known about the speciation and leaching behaviors of metal contaminants at e-waste contaminated sites. This study investigated trace metal speciation/mobilization from e-waste polluted soil through column leaching experiments involving irrigation with rainwater for almost 2.5 years. Over the experimental period, Cu and Zn levels in the porewater were 0.14±0.08mg/L, and 0.16±0.08mg/L, respectively, increasing to 0.33±0.16mg/L, and 0.69±0.28mg/L with plant growth. The amounts of Cu, Zn, and Pb released in surface soil (0-2cm) contributed 43.8%, 22.5%, and 13.8%, respectively, to the original levels. The released Cu and Zn were primarily caused by the mobilization of the carbonate species of metals, including Cu(OH) 2 , CuCO 3 , and Zn 5 (CO 3 ) 2 (OH) 6 , and amorphous Fe/Mn oxides associated fractions characterized by sequential extraction coupling with X-ray absorption spectroscopy. During the experiments, trace metals were not detected in the effluent, and the re-sequestration of trace metals was mainly attributed to the adsorption on the abundant Fe/Mn oxides in the sub-layer soil. This study quantitatively elucidated the molecular speciation of Cu and Zn in e-waste contaminated soil during the column leaching process. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Trace Metals in Urban Stormwater Runoff and their Management

    NASA Astrophysics Data System (ADS)

    Li, T.; Hall, K.; Li, L. Y.; Schreier, H.

    2009-04-01

    In past decades, due to the rapid urbanization, land development has replaced forests, fields and meadows with impervious surfaces such as roofs, parking lots and roads, significantly affecting watershed quality and having an impact on aquatic systems. In this study, non-point source pollution from a diesel bus loop was assessed for the extent of trace metal contamination of Cu, Mn, Fe, and Zn in the storm water runoff. The study was carried out at the University of British Columbia (UBC) in the Greater Vancouver Regional District (GVRD) of British Columbia, Canada. Fifteen storm events were monitored at 3 sites from the diesel bus loop to determine spatial and temporal variations of dissolved and total metal concentrations in the storm water runoff. The dissolved metal concentrations were compared with the provincial government discharge criteria and the bus loop storm water quality was also compared with previous studies conducted across the GVRD urban area. To prevent storm water with hazardous levels of contaminants from being discharged into the urban drainage system, a storm water catch basin filter was installed and evaluated for its efficiency of contaminants removal. The perlite filter media adsorption capacities for the trace metals, oil and grease were studied for better maintenance of the catch basin filter. Dissolved copper exceeded the discharge criteria limit in 2 out of 15 cases, whereas dissolved zinc exceeded the criteria in 4 out of 15 cases, and dissolved manganese was below the criteria in all of the events sampled. Dissolved Cu and Zn accounted for 36 and 45% of the total concentration, whereas Mn and Fe only accounted for 20 and 4% of their total concentration, respectively. Since they are more mobile and have higher bioaccumulation potentials, Zn and Cu are considered to be more hazardous to the aquatic environment than Fe and Mn. With high imperviousness (100%) and intensive traffic at the UBC diesel bus loop, trace metal concentrations

  3. Trophic ecology influence on metal bioaccumulation in marine fish: Inference from stable isotope and fatty acid analyses.

    PubMed

    Le Croizier, Gaël; Schaal, Gauthier; Gallon, Régis; Fall, Massal; Le Grand, Fabienne; Munaron, Jean-Marie; Rouget, Marie-Laure; Machu, Eric; Le Loc'h, François; Laë, Raymond; De Morais, Luis Tito

    2016-12-15

    The link between trophic ecology and metal accumulation in marine fish species was investigated through a multi-tracers approach combining fatty acid (FA) and stable isotope (SI) analyses on fish from two contrasted sites on the coast of Senegal, one subjected to anthropogenic metal effluents and another one less impacted. The concentrations of thirteen trace metal elements (As, Cd, Co, Cr, Cu, Fe, Li, Mn, Ni, Pb, Sn, U, and Zn) were measured in fish liver. Individuals from each site were classified into three distinct groups according to their liver FA and muscle SI compositions. Trace element concentrations were tested between groups revealing that bioaccumulation of several metals was clearly dependent on the trophic guild of fish. Furthermore, correlations between individual trophic markers and trace metals gave new insights into the determination of their origin. Fatty acids revealed relationships between the dietary regimes and metal accumulation that were not detected with stable isotopes, possibly due to the trace metal elements analysed in this study. In the region exposed to metallic inputs, the consumption of benthic preys was the main pathway for metal transfer to the fish community while in the unaffected one, pelagic preys represented the main source of metals. Within pelagic sources, metallic transfer to fish depended on phytoplankton taxa on which the food web was based, suggesting that microphytoplankton (i.e., diatoms and dinoflagellates) were a more important source of exposition than nano- and picoplankton. This study confirmed the influence of diet in the metal accumulation of marine fish communities, and proved that FAs are very useful and complementary tools to SIs to link metal accumulation in fish with their trophic ecology. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Do trace metals (chromium, copper, and nickel) influence toxicity of diesel fuel for free-living marine nematodes?

    PubMed

    Hedfi, Amor; Boufahja, Fehmi; Ben Ali, Manel; Aïssa, Patricia; Mahmoudi, Ezzeddine; Beyrem, Hamouda

    2013-06-01

    The objective of this study was to test the hypotheses that (1) free-living marine nematodes respond in a differential way to diesel fuel if it is combined with three trace metals (chromium, copper, and nickel) used as smoke suppressants and that (2) the magnitude of toxicity of diesel fuel differs according to the level of trace metal mixture added. Nematodes from Sidi Salem beach (Tunisia) were subjected separately for 30 days to three doses of diesel fuel and three others of a trace metals mixture. Simultaneously, low-dose diesel was combined with three amounts of a trace metal mixture. Results from univariate and multivariate methods of data evaluation generally support our initial hypothesis that nematode assemblages exhibit various characteristic changes when exposed to different types of disturbances; the low dose of diesel fuel, discernibly non-toxic alone, became toxic when trace metals were added. For all types of treatments, biological disturbance caused severe specific changes in assemblage structure. For diesel fuel-treated microcosms, Marylynnia bellula and Chromaspirinia pontica were the best positive indicative species; their remarkable presence in given ecosystem may predict unsafe seafood. The powerful toxicity of the combination between diesel fuel and trace metals was expressed with only negative bioindicators, namely Trichotheristus mirabilis, Pomponema multipapillatum, Ditlevsenella murmanica, Desmodora longiseta, and Bathylaimus capacosus. Assemblages with high abundances of these species should be an index of healthy seafood. When nematodes were exposed to only trace metals, their response looks special with a distinction of a different list of indicative species; the high presence of seven species (T. mirabilis, P. multipapillatum, Leptonemella aphanothecae, D. murmanica, Viscosia cobbi, Gammanema conicauda, and Viscosia glabra) could indicate a good quality of seafood and that of another species (Oncholaimellus mediterraneus) appeared an

  5. Dispersion model on PM₂.₅ fugitive dust and trace metals levels in Kuwait Governorates.

    PubMed

    Bu-Olayan, A H; Thomas, B V

    2012-03-01

    Frequent dust storms and recent environmental changes were found to affect the human health especially in residents of arid countries. Investigations on the PM(2.5) fugitive dust in six Kuwait Governorate areas using dispersion Gaussian plume modeling revealed significant relationship between low rate of pollutant emission, low wind velocity, and stable weather conditions' matrix causing high rate of dust deposition in summer than in winter. The rate of dust deposition and trace metals levels in PM(2.5) were in the sequence of G-VI > G-I > G-II > G-V > G-III > G-IV. Trace metals were observed in the sequence of Al > Fe > Zn > Ni > Pb > Cd irrespective of the Governorate areas and the two seasons. The high rate of dust deposition and trace metals in PM(2.5) was reflected by the vast open area, wind velocity, and rapid industrialization besides natural and anthropogenic sources. A combination of air dispersion modeling and nephalometric and gravimetric studies of this kind not only determines the seasonal qualitative and quantitative analyses on the PM(2.5) dust deposition besides trace metals apportionment in six Kuwait Governorate areas, but also characterizes air pollution factors that could be used by environmentalist to deduce preventive measures.

  6. Direct identification of trace metals in fine and ultrafine particles in the Detroit urban atmosphere.

    PubMed

    Utsunomiya, Satoshi; Jensen, Keld A; Keeler, Gerald J; Ewing, Rodney C

    2004-04-15

    Exposure to airborne particulates containing low concentrations of heavy metals, such as Pb, As, and Se, may have serious health effects. However, little is known about the speciation and particle size of these airborne metals. Fine- and ultrafine particles with heavy metals in aerosol samples from the Detroit urban area, Michigan, were examined in detail to investigate metal concentrations and speciation. The characterization of individual particles was completed using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) combined with conventional high-resolution TEM techniques. The trace elements, Pb, As, La, Ce, Sr, Zn, Cr, Se, Sn, Y, Zr, Au, and Ag, were detected, and the elemental distributions were mapped in situ atthe nanoscale. The crystal structures of the particles containing Pb, Sr, Zn, and Au were determined from their electron diffraction patterns. Based on the characterization of the representative trace element particles, the potential health effects are discussed. Most of the trace element particles detected in this study were within a range of 0.01-1.0 microm in size, which has the longest atmospheric residence time (approximately 100 days). Increased chemical reactivity owing to the size of nanoparticles may be expected for most of the trace metal particles observed.

  7. Heavy metal accumulation and source analysis in greenhouse soils of Wuwei District, Gansu Province, China.

    PubMed

    Bai, L Y; Zeng, X B; Su, S M; Duan, R; Wang, Y N; Gao, X

    2015-04-01

    Greenhouse soils and arable (wheat field) soil samples were collected to identify the effects of greenhouse cultivation on the accumulation of six heavy metals (Cd, Cu, Zn, Pb, Cr, and Ni) and to evaluate the likely sources responsible for heavy metal accumulation in the irrigated desert soils of Wuwei District, China. The results indicated that the mean concentrations of Cd, Cu, Zn, Pb, Cr, and Ni were 0.421, 33.85, 85.31, 20.76, 53.12, and 28.59 mg kg(-1), respectively. The concentrations of Cd, Cu, and Zn in greenhouse soils were 60, 23, and 14% higher than those in arable soils and 263, 40, and 25% higher than background concentrations of natural soils in the study area, respectively. These results indicated that Cd, Cu, and Zn accumulation occurred in the greenhouse soils, and Cd was the most problematically accumulated heavy metal, followed by Cu and Zn. There was a significant positive correlation between the concentrations of Cd, Cu, and Zn in greenhouse soils and the number of years under cultivation (P < 0.05). Greenhouse cultivation had little impact on the accumulation of Cr, Ni, or Pb. Correlation analysis and principal component analysis suggested that the accumulation of Cd, Cu, and Zn in greenhouse soils resulted mainly from fertilizer applications. Our results indicated that the excessive and long-term use of fertilizers and livestock manures with high heavy metal levels leads to the accumulation of heavy metals in soils. Therefore, rational fertilization programs and reductions in the concentrations of heavy metals in both fertilizers and manure must be recommended to maintain a safe concentration of heavy metals in greenhouse soils.

  8. Climate change enhances the mobilisation of naturally occurring metals in high altitude environments.

    PubMed

    Zaharescu, Dragos G; Hooda, Peter S; Burghelea, Carmen I; Polyakov, Viktor; Palanca-Soler, Antonio

    2016-08-01

    Manmade climate change has expressed a plethora of complex effects on Earth's biogeochemical compartments. Climate change may also affect the mobilisation of natural metal sources, with potential ecological consequences beyond mountains' geographical limits; however, this question has remained largely unexplored. We investigated this by analysing a number of key climatic factors in relationship with trace metal accumulation in the sediment core of a Pyrenean lake. The sediment metal contents showed increasing accumulation trend over time, and their levels varied in step with recent climate change. The findings further revealed that a rise in the elevation of freezing level, a general increase in the frequency of drier periods, changes in the frequency of winter freezing days and a reducing snow cover since the early 1980s, together are responsible for the observed variability and augmented accumulation of trace metals. Our results provide clear evidence of increased mobilisation of natural metal sources - an overlooked effect of climate change on the environment. With further alterations in climate equilibrium predicted over the ensuing decades, it is likely that mountain catchments in metamorphic areas may become significant sources of trace metals, with potentially harmful consequences for the wider environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Distribution and risk assessment of trace metals in sediments from Yangtze River estuary and Hangzhou Bay, China.

    PubMed

    Li, Feipeng; Mao, Lingchen; Jia, Yubao; Gu, Zhujun; Shi, Weiling; Chen, Ling; Ye, Hua

    2018-01-01

    The Yangtze River estuary (YRE) and Hangzhou Bay (HZB) is of environmental significance because of the negative impact from industrial activities and rapid development of aquaculture on the south bank of HZB (SHZB) in recent years. This study investigated the distribution and risk assessments of trace metals (Cr, Cu, Zn, Hg, Pb, and Cd) accumulated in surface sediments by sampling in YRE, outer and south HZB. Copper and Zn concentration (avg. 35.4 and 98.7 mg kg -1 , respectively) in surface sediments were generally higher than the background suggesting a widespread of Cu and Zn in the coastal area of Yangtze River Delta. High concentrations of Cu (~ 42 mg kg -1 ), Zn (~ 111 mg kg -1 ), Cd (~ 0.27 mg kg -1 ), and Hg (~ 0.047 mg kg -1 ) were found in inner estuary of YRE and decreased offshore as a result of terrestrial input and dilution effect of total metal contents by "cleaner" sediments from the adjacent sea. In outer HZB, accumulation of terrestrial derived metal has taken place near the Zhoushan Islands. Increase in sediment metal concentration from the west (inner) to the east (outer) of SHZB gave rise to the input of fine-grained sediments contaminated with metals from outer bay. According the results from geoaccumulation index, nearly 75% of samples from YRE were moderately polluted (1.0 < I geo  < 2.0) by Cd. Cadmium and Hg contributed for 80~90% to the potential ecological risk index in the YRE and HZB, with ~ 72% sites in HZB under moderate risk (150 ≤ RI < 300) especially near Zhoushan Islands.

  10. Adsorption of trace metals to plastic resin pellets in the marine environment.

    PubMed

    Holmes, Luke A; Turner, Andrew; Thompson, Richard C

    2012-01-01

    Plastic production pellets collected from beaches of south west England contain variable concentrations of trace metals (Cr, Co, Ni, Cu, Zn, Cd and Pb) that, in some cases, exceed concentrations reported for local estuarine sediments. The rates and mechanisms by which metals associate with virgin and beached polyethylene pellets were studied by adding a cocktail of 5 μg L(-1) of trace metals to 10 g L(-1) pellet suspensions in filtered seawater. Kinetic profiles were modelled using a pseudo-first-order equation and yielded response times of less than about 100 h and equilibrium partition coefficients of up to about 225 ml g(-1) that were consistently higher for beached pellets than virgin pellets. Adsorption isotherms conformed to both the Langmuir and Freundlich equations and adsorption capacities were greater for beached pellets than for virgin pellets. Results suggest that plastics may represent an important vehicle for the transport of metals in the marine environment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Morpho-tectonic depression and early holocene land-ocean interaction vis-à-vis trace metals adsorption in sediment and groundwater contamination a case study from the Bengal delta, Bangladesh

    NASA Astrophysics Data System (ADS)

    Khan, A. A.; Hoque, M. A.; Ali, M.; Hasan, M. A.

    2003-05-01

    The query mires the geoenvironmental status of the Bengal delta, especially the physico-chemical status of the Holocene sedimentation. Fluvio-deltaic Holocene sediments have developed potential groundwater aquifer system in the Bengal delta. Groundwater contamination by arsenic bas emerged as one of the most serious health hazard. The occurrence and distribution of high arsenic as well as other trace metals viz., Co, Cu, Cr, Ti, Mo, Ni, Zn etc are restricted within the morphotectonic depressions and occur in the shallow aquifer (~70m) of transgressive system tract. Moreover, arsenic hot spots are found to be related with the Holocene land-ocean interface lobes. These interface lobes are also susceptible to other trace metals enrichment and subsequent sediment-water contamination. The sedimentary structures and types of deposition bear the signatures of transgressive phase those are intrinsically associated with the trace metals enrichment. The Bengal delta, the mighty gateway to the sea in the world carries the largest load of the suspended matters those adsorbed and/or redeposited in the land-ocean interface through flocculation and accumulation processes. The adsorbed elements are released from the sediments in reducing environment through iron and manganese desolution.

  12. Trace metals partitioning between particulate and dissolved phases along a tropical mangrove estuary (Can Gio, Vietnam).

    PubMed

    Thanh-Nho, Nguyen; Strady, Emilie; Nhu-Trang, Tran-Thi; David, Frank; Marchand, Cyril

    2018-04-01

    Mangroves can be considered as biogeochemical reactors along (sub)tropical coastlines, acting both as sinks or sources for trace metals depending on environmental factors. In this study, we characterized the role of a mangrove estuary, developing downstream a densely populated megacity (Ho Chi Minh City, Vietnam), on the fate and partitioning of trace metals. Surface water and suspended particulate matter were collected at four sites along the estuarine salinity gradient during 24 h cycling in dry and rainy seasons. Salinity, pH, DO, TSS, POC, DOC, dissolved and particulate Fe, Mn, Cr, As, Cu, Ni, Co and Pb were measured. TSS was the main trace metals carrier during their transit in the estuary. However, TSS variations did not explain the whole variability of metals distribution. Mn, Cr and As were highly reactive metals while the other metals (Fe, Ni, Cu, Co and Pb) presented stable log K D values along the estuary. Organic matter dynamic appeared to play a key role in metals fractioning. Its decomposition during water transit in the estuary induced metal desorption, especially for Cr and As. Conversely, dissolved Mn concentrations decreased along the estuary, which was suggested to result from Mn oxidative precipitation onto solid phase due to oxidation and pH changes. Extra sources as pore-water release, runoff from adjacent soils, or aquaculture effluents were suggested to be involved in trace metal dynamic in this estuary. In addition, the monsoon increased metal loads, notably dissolved and particulate Fe, Cr, Ni and Pb. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Phytoaccumulation of trace elements by wetland plants: 3. Uptake and accumulation of ten trace elements by twelve plant species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, J.H.; Zayed, A.; Zhu, Y.L.

    1999-10-01

    Interest is increasing in using wetland plants in constructed wetlands to remove toxic elements from polluted wastewater. To identify those wetland plants that hyperaccumulate trace elements, 12 plant species were tested for their efficiency to bioconcentrate 10 potentially toxic trace elements including As, b, Cd, Cr, Cu, Pb, Mn, Hg, Ni, and Se. Individual plants were grown under carefully controlled conditions and supplied with 1 mg L{sup {minus}1} of each trace element individually for 10 d. Except B, all elements accumulated to much higher concentrations in roots than in shoots. Highest shoot tissue concentrations (mg kg{sup {minus}1} DW) of themore » various trace elements were attained by the following species: umbrella plant (Cyperus alternifolius L.) for Mn (198) and Cr (44); water zinnia (Wedelia trilobata Hitchc.) for Cd (148) and Ni (80); smartweed (Polygonum hydropiperoides Michx.) for Cu (95) and Pb (64); water lettuce (Pistia stratiotes L.) for Hg (92), As (34), and Se (39); and mare's tail (hippuris vulgaris L.) for B (1132). Whereas, the following species attained the highest root tissue concentrations (mg kg{sup {minus}1} DW); stripped rush (Baumia rubiginosa) for Mn (1683); parrot's feather (Myriophyllum brasiliense Camb.) for Cd (1426) and Ni (1077); water lettuce for Cu (1038), Hg (1217), and As (177); smartweed for Cr (2980) and Pb (1882); mare's tail for B (1277); and monkey flower (Mimulus guttatus Fisch.) for Se (384). From a phytoremediation perspective, smartweed was probably the best plant species for trace element removal from wastewater due to its faster growth and higher plant density.« less

  14. Metal accumulation strategies in plants spontaneously inhabiting Zn-Pb waste deposits.

    PubMed

    Wójcik, Małgorzata; Sugier, Piotr; Siebielec, Grzegorz

    2014-07-15

    Metal (Zn, Pb, Cd, Cu, Ni, Cr) accumulation in shoots of 38 plant species spontaneously colonizing three Zn-Pb waste deposits in southern Poland was studied in order to find out if the age of the waste (30-130 years) or its type (slag or flotation residues) influence metal content in plants and to identify species potentially suitable for biomonitoring and phytoremediation. The total metal concentrations in the waste upper layers ranged from 7300 to 171,790 mg kg(-1) for Zn, from 1390 to 22,265 mg kg(-1) for Pb, and from 66 to 1,464 mg kg(-1) for Cd, whereas CaCl2-extracted fractions accounted for 0.034-0.11 %, 0.005-0.03 %, and 0.28-0.62 % of total Zn, Pb and Cd concentrations, respectively. The concentrations of Cu, Ni, and Cr in substrates and in plants were low and ranged within the background values. Metal accumulation in plant shoots was poorly correlated with both total and CaCl2-extracted forms of metals in the substrate and was highly variable among species and also specimens of the same species. The highest mean concentrations of Zn, Pb and Cd were found in Anthyllis vulneraria L. (901.5 mg kg(-1)), Echium vulgare L. (116.92 mg kg(-1)), and Hieracium piloselloides Vill. (26.86 mg kg(-1)), respectively. Besides Reseda lutea L., no species appeared to be a good indicator of polymetallic environment pollution based on chemical analysis of shoots; however, metal accumulation in the whole plant communities of a particular contaminated area might be an accurate tool for assessment of metal transfer to vegetation irrespective of the type or age of the waste. All the species studied developed a metal exclusion strategy, thus exhibiting potential for phytostabilization of metalliferous wastelands. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Assessment of acid leachable trace metals in sediment cores from River Uppanar, Cuddalore, Southeast coast of India.

    PubMed

    Ayyamperumal, T; Jonathan, M P; Srinivasalu, S; Armstrong-Altrin, J S; Ram-Mohan, V

    2006-09-01

    An acid leachable technique is employed in core samples (C1, C2 and C3) to develop a baseline data on the sediment quality for trace metals of River Uppanar, Cuddalore, southeast coast of India. Acid leachable metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd) indicate peak values at the sulphidic phase and enrichment of metals in the surface layers are due to the anthropogenic activities. Association of trace metals with Fe, Mn indicates their adsorption onto Fe-Mn oxyhydroxides and their correlation with S indicate that they are precipitated as metal sulphides. Factor analysis identified three possible types of geochemical associations and the supremacy of trace metals along with Fe, Mn, S and mud supports their geochemical associations. Factor analysis also signifies that anthropogenic activities have affected both the estuarine and fresh water regions of River Uppanar.

  16. [Biochemical protective mechanisms in the accumulation of heavy metals in organisms].

    PubMed

    Petukhov, A S; Petukhova, G A

    At present due to the environmental contamination by heavy metals there is a great interest to investigate the processes of their both accumulation in plants and toxic effect on biochemical indices. Therefore the objective of this research was the analysis of the alteration of the system of antioxidant protection ofplants in conditions of soil contamination by copper and zinc. Research object were germinants of oat in amount of300 plants in each variant of the experiment. For the performance of the experiment, the sand was equally contaminated by sulfates of Cu and Zn in concentration of 2 MPC on its gross content in soil. The experiment lastedfor 2 weeks. For the implementation of the objective of research there was analyzed the contentof both Cu and Zn in plants exposed to soil contamination. Additionally there was performed an analysis of as the content of lipids peroxidation products, phenols and flavonoids; as well the activity ofperoxidase, catalase and photosynthetic system. Under the soil contamination by copper and zinc corresponding to 2 MPC the accumulation of heavy metals was established to be happening in plants. If compared copper accumulation was higher than zinc accumulation that can be explained by the high migration capability of zinc. Under combined impact of two metals there was revealed their antagonistic interaction. There was established an elevated content of lipids peroxidation products in cells as a sequence of the accumulation of heavy metals in plants. As a result of the elevation of the content of lipids peroxidation products there was revealed a raised activity ofphotosynthetic apparatus and antioxidant system (carotenoids, catalase and peroxidase) in the cell. The decrease of the content ofphenols and flavonoids is related with the usage of this system of antioxidant protection for the neutralization of lipids peroxidation processes.

  17. Trace metal partitioning in Thalassia testudinum and sediments in the Lower Laguna Madre, Texas.

    PubMed

    Whelan, Thomas; Espinoza, Jorge; Villarreal, Xiomara; Cottagoma, Maria

    2005-01-01

    Seagrass communities dominate the Laguna Madre, which accounts for 25% of the coastal region of Texas. Seagrasses are essential to the health of the Laguna Madre (LM) and have experienced an overall decline in coverage in the Lower Laguna Madre (LLM) since 1967. Little is known on the existing environmental status of the LLM. This study focuses on the trace metal chemistry of four micronutrient metals, Fe, Mn, Cu, and Zn, and two non-essential metals, Pb and As, in the globally important seagrass Thalassia testudinum. Seasonal trends show that concentrations of most essential trace metals increase in the tissue during the summer months. With the exception of (1) Cu in the vertical shoot and root, and (2) Mn in the roots, no significant positive correlation exists between the rhizosphere sediment and T. testudinum tissue. Iron indicates a negative correlation between the morphological units and the rhizosphere sediments. No other significant relationship was found between the sediments and the T. testudinum tissue. Mn was enriched up to 10-fold in the leaf tissue relative to the other morphological units and also enriched relative to the rhizosphere sediments. Both Cu and Mn appear to be enriched in leaf tissue compared to other morphological units and also enriched relative to the Cu and Mn in the rhizoshpere sediments. Sediments cores taken in barren areas were slightly elevated in Zn relative to the rhizosphere sediments, whereas no other metals showed statistical differences between barren sediment cores and rhizosphere sediments. However, no correlation was measured in T. testudinum tissue and Zn in rhizosphere sediments. Previous studies suggested that Fe/Mn ratios could indicate differences between seagrass environments. Our results indicate that there is an influence from the Rio Grande in the Fe/Mn signature in sediments, and that ratio is not reflected in the T. testudinum tissue. The results from this study show that the LLM contains trace metal

  18. Impact of diatom growth on trace metal dynamics (Mn, Mo, V, U)

    NASA Astrophysics Data System (ADS)

    Osterholz, Helena; Simon, Heike; Beck, Melanie; Maerz, Joeran; Rackebrandt, Siri; Brumsack, Hans-Jürgen; Feudel, Ulrike; Simon, Meinhard

    2014-03-01

    In order to examine the specific role of diatoms in cycling of the trace metals manganese (Mn), molybdenum (Mo), vanadium (V), and uranium (U) Thalassiosira rotula, Skeletonema marinoi, Chaetoceros decipiens, and Rhizosolenia setigera were grown in batch cultures axenically and inoculated with three different bacterial strains isolated from the North Sea. Algal and bacterial growth, concentrations of trace metals and dissolved organic carbon (DOC) were monitored over time and showed that Mn and V were removed from the dissolved phase whereas Mo and U were not. R. setigera and T. rotula exhibited lowest growth and lowest removal whereas S. marinoi grew best and removed highest fractions of Mn and V. The high potential of Mn removal by S. marinoi was also evident from its 7 × higher Mn/P elemental ratio relative to T. rotula. The presence of bacteria modified the timing of the growth of S. marinoi but not directly trace metal removal whereas bacteria enhanced trace metal removal in the cultures of T. rotula and C. decipiens. Modeling of phytoplankton growth, concentrations of Mn and DOC fraction in axenic T. rotula cultures indicated that processes of binding and desorption of Mn to excreted organic components are important to explain the varying proportions of dissolved Mn and thus must be considered as an active component in Mn cycling. The results show distinct differences in the potential of the diatoms in the removal of Mn and V and that bacteria can play an active role in this context. S. marinoi presumably is an important player in Mn and V dynamics in coastal marine systems.

  19. Red sea corals as biomonitors of trace metal pollution.

    PubMed

    Hanna, R G; Muir, G L

    1990-05-01

    Red Sea corals have been found to be biomonitors of trace metal pollution. A comparative study was undertaken on three species from a polluted area near a desalination plant at Jeddah (Saudi Arabia) and from an unpolluted area. The results show that corals take-up trace elements from their aquatic environment and thereby act to record changes in the composition of that environment. Variations in the composition of skeletons and soft tissues of corals have been correlated with changes in sea water composition. Three coral species, Porites lutea, Goniastrea retiformis and Pocillopora verrucosa have been analysed for Hg, Cu, Zn, Pb, Mn, Fe, Ni, Cd, V, Al, Cr, Mg, B, Ca, and Sr in both skeletal and soft tissues. Results show that corals in the polluted areas have significantly higher concentrations of trace elements compared to that of corals from unpolluted areas.

  20. High levels of heavy metal accumulation in dental calculus of smokers: a pilot inductively coupled plasma mass spectrometry study.

    PubMed

    Yaprak, E; Yolcubal, I; Sinanoğlu, A; Doğrul-Demiray, A; Guzeldemir-Akcakanat, E; Marakoğlu, I

    2017-02-01

    Various trace elements, including toxic heavy metals, may exist in dental calculus. However, the effect of environmental factors on heavy metal composition of dental calculus is unknown. Smoking is a major environmental source for chronic toxic heavy metal exposition. The aim of this study is to compare toxic heavy metal accumulation levels in supragingival dental calculus of smokers and non-smokers. A total of 29 supragingival dental calculus samples were obtained from non-smoker (n = 14) and smoker (n = 15) individuals. Subjects with a probability of occupational exposure were excluded from the study. Samples were analyzed by inductively coupled plasma mass spectrometry in terms of 26 metals and metalloids, including toxic heavy metals. Toxic heavy metals, arsenic (p < 0.05), cadmium (p < 0.05), lead (p < 0.01), manganese (p < 0.01) and vanadium (p < 0.01) levels were significantly higher in smokers than non-smokers. The levels of other examined elements were similar in both groups (p > 0.05). Within the limitations of this study, it can be concluded that the elementary composition of dental calculus may be affected by environmental factors such as tobacco smoke. Therefore, dental calculus may be utilized as a non-invasive diagnostic biological material for monitoring chronic oral heavy metal exposition. However, further studies are required to evaluate its diagnostic potential. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Metal accumulation and detoxification mechanisms in mycorrhizal Betula pubescens.

    PubMed

    Fernández-Fuego, D; Bertrand, A; González, A

    2017-12-01

    Metal detoxification in plants is a complex process that involves different mechanisms, such as the retention of metals to the cell wall and their chelation and subsequent compartmentalization in plant vacuoles. In order to identify the mechanisms involved in metal accumulation and tolerance in Betula pubescens, as well as the role of mycorrhization in these processes, mycorrhizal and non-mycorrhizal plants were grown in two industrial soils with contrasting concentrations of heavy metals. Mycorrhization increased metal uptake at low metal concentrations in the soil and reduced it at high metal concentrations, which led to an enhanced growth and biomass production of the host when growing in the most polluted soil. Our results suggest that the sequestration on the cell wall is the main detoxification mechanism in white birch exposed to acute chronic metal-stress, while phytochelatins play a role mitigating metal toxicity inside the cells. Given its high Mn and Zn root-to-shoot translocation rate, Betula pubescens is a very promising species for the phytoremediation of soils polluted with these metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Metal accumulation and evaluation of effects in a freshwater turtle.

    PubMed

    Yu, Shuangying; Halbrook, Richard S; Sparling, Donald W; Colombo, Robert

    2011-11-01

    A variety of contaminants have been detected in aquatic and terrestrial environments around the Paducah Gaseous Diffusion Plant (PGDP), Kentucky. The presence of these contaminants at the PGDP may pose a risk to biota, yet little is known about the bioaccumulation of contaminants and associated effects in wildlife, especially in aquatic turtles. The current study was initiated to evaluate: (1) the accumulation of heavy metals (Cd, Cr, Cu, Pb, and Hg) in aquatic ecosystems associated with the PGDP using red-eared slider turtle (Trachemys scripta elegans) as biomonitors; (2) maternal transfer of heavy metals; and (3) potential hematological and immunological effects resulting from metal accumulation. A total of 26 turtles were collected from 7 ponds located south, adjacent, and north of the PGDP. Liver Cu concentrations were significantly different among ponds and Cu concentrations in eggs were positively correlated with female Cu concentrations in kidney. The concentrations of heavy metals measured in turtle tissues and eggs were low and, based on previous studies of reptiles and established avian threshold levels of heavy metals, did not appear to have adverse effects on aquatic turtles inhabiting ponds near the PGDP. However, total white blood cell counts, heterophil to lymphocyte ratio, and phytohemagglutinin stimulation index were correlated with metal concentrations. Because other factors may affect the hematological and immunological indices, further investigation is needed to determine if these effects are associated with metal exposure, other contaminants, or disease.

  3. Humic substances and trace metals associated with Fe and Al oxides deposited in an acidic mountain stream

    USGS Publications Warehouse

    McKnight, Diane M.; Wershaw, R. L.; Bencala, K.E.; Zellweger, G.W.; Feder, G.L.

    1992-01-01

    Hydrous iron and aluminum oxides are deposited on the streambed in the confluence of the Snake River and Deer Creek, two streams in the Colorado Rocky Mountains. The Snake River is acidic and has high concentrations of dissolved Fe and Al. These metals precipitate at the confluence with the pristine, neutral pH, Deer Creek because of the greater pH (4.5-6.0) in the confluence. The composition of the deposited oxides changes consistently with distance downstream, with the most upstream oxide samples having the greatest Fe and organic carbon content. Fulvic acid accounts for most of the organic content of the oxides. Results indicate that streambed oxides in the confluence are not saturated with respect to their capacity to sorb dissolved humic substances from streamwater. The contents of several trace metals (Mn, Zn, Cu, Pb, Ni and Co) also decrease with distance downstream and are correlated with both the Fe and organic carbon contents. Strong metal-binding sites associated with the sorbed fulvic acid are more than sufficient to account for the trace metal content of the oxides. Complexation of trace metals by sorbed fulvic acid may explain the observed downstream decrease in trace metal content.

  4. Modelling of trace metal uptake by roots taking into account complexation by exogenous organic ligands

    NASA Astrophysics Data System (ADS)

    Jean-Marc, Custos; Christian, Moyne; Sterckeman, Thibault

    2010-05-01

    The context of this study is phytoextraction of soil trace metals such as Cd, Pb or Zn. Trace metal transfer from soil to plant depends on physical and chemical processes such as minerals alteration, transport, adsorption/desorption, reactions in solution and biological processes including the action of plant roots and of associated micro-flora. Complexation of metal ions by organic ligands is considered to play a role on the availability of trace metals for roots in particular in the event that synthetic ligands (EDTA, NTA, etc.) are added to the soil to increase the solubility of the contaminants. As this role is not clearly understood, we wanted to simulate it in order to quantify the effect of organic ligands on root uptake of trace metals and produce a tool which could help in optimizing the conditions of phytoextraction.We studied the effect of an aminocarboxilate ligand on the absorption of the metal ion by roots, both in hydroponic solution and in soil solution, for which we had to formalize the buffer power for the metal. We assumed that the hydrated metal ion is the only form which can be absorbed by the plants. Transport and reaction processes were modelled for a system made up of the metal M, a ligand L and the metal complex ML. The Tinker-Nye-Barber model was adapted to describe the transport of solutes M, L and ML in the soil and absorption of M by the roots. This allowed to represent the interactions between transport, chelating reactions, absorption of the solutes at the root surface, root growth with time, in order to simulate metal uptake by a whole root system.Several assumptions were tested such as i) absorption of the metal by an infinite sink and according to a Michaelis-Menten kinetics, solutes transport by diffusion with and without ii) mass flow and iii) soil buffer power for the ligand L. In hydroponic solution (without soil buffer power), ligands decreased the trace metal flux towards roots, as they reduced the concentration of hydrated

  5. Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data

    USGS Publications Warehouse

    Veltman, K.; Huijbregts, M.A.J.; Vijver, M.G.; Peijnenburg, W.J.G.M.; Hobbelen, P.H.F.; Koolhaas, J.E.; van Gestel, C.A.M.; van Vliet, P.C.J.; Jan, Hendriks A.

    2007-01-01

    The mechanistic bioaccumulation model OMEGA (Optimal Modeling for Ecotoxicological Applications) is used to estimate accumulation of zinc (Zn), copper (Cu), cadmium (Cd) and lead (Pb) in the earthworm Lumbricus rubellus. Our validation to field accumulation data shows that the model accurately predicts internal cadmium concentrations. In addition, our results show that internal metal concentrations in the earthworm are less than linearly (slope < 1) related to the total concentration in soil, while risk assessment procedures often assume the biota-soil accumulation factor (BSAF) to be constant. Although predicted internal concentrations of all metals are generally within a factor 5 compared to field data, incorporation of regulation in the model is necessary to improve predictability of the essential metals such as zinc and copper. ?? 2006 Elsevier Ltd. All rights reserved.

  6. Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland, Bangalore.

    PubMed

    Ramachandra, T V; Sudarshan, P B; Mahesh, M K; Vinay, S

    2018-01-15

    Heavy metals are one among the toxic chemicals and accumulation in sediments and plants has been posing serious health impacts. Wetlands aid as kidneys of the landscape and help in remediation through uptake of nutrients, heavy metals and other contaminants. The analyses of macrophytes and sediment samples help in evaluating pollution status in aquatic environment. In this study concentration of six heavy metals (Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), Lead (Pb) and Zinc (Zn)) were assessed in sediment and dominant macrophyte samples collected from Bellandur Lake, largest Lake of Bangalore, India. Sediment samples reveal of heavy metals in the inlet regions and shore samples. The accumulation of metals in sediments were in the order of Zn > Cu > Cr > Pb > Ni > Cd. All metals exceeded the critical limits of metals in the sediment. Concentration of different metals in the macrophyte samples ranked as: Cr > Cu > Zn > Pb > Ni > Cd. Chromium and Copper were found to be more than critical range. Typha angustata had the higher accumulation of all metals except chromium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Atmospheric trace metal inputs in the Misten bog (East Belgium): Special attention to sampling techniques and site-spatial variability.

    NASA Astrophysics Data System (ADS)

    Allan, Mohammed; Fagel, Nathalie; de Vleeschouwer, François; Mattielli, Nadine; Piotrowska, Natalia; Sikorski, Jarek; Sonke, Jeroen E.; Le Roux, Gaël.

    2010-05-01

    Peat bogs have a great potential to record anthropogenic inputs via their constituting mosses, because they draw their nutrients only from the atmosphere. These atmospheric inputs can be studied thanks to geochemical characteristics such as trace metal concentrations. Coupling lead isotopes to elemental geochemistry allows one to decipher between natural (erosion of rocks) and anthropogenic (pollution due to industrial development, vehicles...) inputs. The purpose of our work was to study the pollution history of trace metals in the region of Misten (Belgium) at a local and a regional level, and to place modern industrial pollution in this region in a wider historical perspective. Four peat cores (01W, 04W, 05W and 06W) were collected in 2008 in the Misten bog (Hautes-Fagnes plateau, E-Belgium) and studied for their trace metal and lead isotopic signatures. Analyses were accompanied by coupled 210Pb-14C age models in order to estimate the mercury and lead accumulation rates in each core and compare them to other European records. The Hg record was compared to the various anthropogenic sources as determined by Pb isotopes. The Hg concentration profiles resemble those of Pb, an element known to be immobile in peatlands. The correlation between these two metals suggests a predominant anthropogenic source of Hg (and Pb). In the W06 core, low and stable Hg accumulation rates (0.9-3.1 μg m-2 yr-1) are found in the lower layers (503-1823AD). High Hg accumulation rates are found in the surface and sub-surface layers (post-1823AD) and peak at 123.3 μg m-2 yr-1 (1969AD). In 01W, the lead enrichment factor (Pb E.F.) coupled with the continuous drop in 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb isotopic ratios since 539 AD until 1973AD indicates the growing importance of the non-radiogenic Pb released from anthropogenic activities. The highest concentrations of Pb (613-662 µg g-1) have been found near the surface of the bog dated between 1902 and 1954AD. The Pb E.F. also

  8. Octanol-solubility of dissolved and particulate trace metals in contaminated rivers: implications for metal reactivity and availability.

    PubMed

    Turner, Andrew; Mawji, Edward

    2005-05-01

    The lipid-like, amphiphilic solvent, n-octanol, has been used to determine a hydrophobic fraction of dissolved and particulate trace metals (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) in contaminated rivers. In a sample from the River Clyde, southwest Scotland, octanol-solubility was detected for all dissolved metals except Co, with conditional octanol-water partition coefficients, D(ow), ranging from about 0.2 (Al and Cu) to 1.25 (Pb). In a sample taken from the River Mersey, northwest England, octanol-solubility was detected for dissolved Al and Pb, but only after sample aliquots had been spiked with individual ionic metal standards and equilibrated. Spiking of the River Clyde sample revealed competition among different metals for hydrophobic ligands. Metal displacement from hydrophobic complexes was generally most significant following the addition of ionic Al or Pb, although the addition of either of these metals had little effect on the octanol-solubility of the other. In both river water samples hydrophobic metals were detected on the suspended particles retained by filtration following their extraction in n-octanol. In general, particulate Cu and Zn (up to 40%) were most available, and Al, Co and Pb most resistant (<1%) to octanol extraction. Distribution coefficients defining the concentration ratio of octanol-soluble particle-bound metal to octanol-soluble dissolved metal were in the range 10(3.3)-10(5.3)mlg(-1). The presence of hydrophobic dissolved and particulate metal species has implications for our understanding of the biogeochemical behaviour of metals in aquatic environments. Specifically, such species are predicted to exhibit characteristics of non-polar organic contaminants, including the potential to penetrate the lipid bilayer. Current strategies for assessing the bioavailability and toxicity of dissolved and particulate trace metals in natural waters may, therefore, require revision.

  9. Age-dependent accumulation of heavy metals in a pod of killer whales (Orcinus orca) stranded in the northern area of Japan.

    PubMed

    Endo, Tetsuya; Kimura, Osamu; Hisamichi, Yohsuke; Minoshima, Yasuhiko; Haraguchi, Koichi

    2007-02-01

    Mercury (Hg), cadmium (Cd), iron (Fe) manganese (Mn), zinc (Zn) and copper (Cu) concentrations in the liver, kidney and muscle of nine killer whales (including three calves) that stranded together in the northern area of Japan were determined. The Hg and Cd concentrations were found at trace levels in the calf organs, and increased with age. The Fe concentration in the muscle was significantly lower in the calves than in the mature whales and also increased with age. In contrast, Mn and Cu concentrations in the muscle were significantly higher in the calves than in the mature whales, and changes in the Zn concentration relative to age were unclear. These results suggest minimal mother-to-calf transfer of the toxic metals Hg and Cd and accumulation of these metals in the organs with age, while the essential metals Mn and Cu were found at higher concentrations in the muscle of calves than in mature whales.

  10. Long-term biomonitoring of soil contamination using poplar trees: accumulation of trace elements in leaves and fruits.

    PubMed

    Madejón, P; Ciadamidaro, L; Marañón, T; Murillo, J M

    2013-01-01

    Phytostabilization aims to immobilize soil contaminants using higher plants. The accumulation of trace elements in Populus alba leaves was monitored for 12 years after a mine spill. Concentrations of As and Pb significantly decreased, while concentrations of Cd and Zn did not significantly over time. Soil concentrations extracted by CaCl2 were measured by ICP-OES and results of As and Pb were below the detection limit. Long-term biomonitoring of soil contamination using poplar leaves was proven to be better suited for the study of trace elements. Plants suitable for phytostabilization must also be able to survive and reproduce in contaminated soils. Concentrations of trace elements were also measured in P. alba fruiting catkins to determine the effect on its reproduction potential. Cadmium and Zn were found to accumulate in fruiting catkins, with the transfer coefficient for Cd significantly greater than Zn. It is possible for trace elements to translocate to seed, which presents a concern for seed germination, establishment and colonization. We conclude that white poplar is a suitable tree for long-term monitoring of soil contaminated with Cd and Zn, and for phytostabilization in riparian habitats, although some caution should be taken with the possible effects on the food web. Supplemental materials are available for this article. Go to the publisher's online edition of International Journal of Phytoremediation to view the supplemental file.

  11. Distribution and partitioning of trace metals in sediments of the lower reaches of the New Calabar River, Port Harcourt, Nigeria.

    PubMed

    Horsfall, M; Spiff, A I

    2002-09-01

    The distribution of trace metals in sediments of the lower reaches of the New Calabar River, Nigeria was evaluated together with the partitioning of their chemical species between five geochemical phases. Samplings were made in five zones at the lower reaches of the New Calaber River. All the trace metals were determined by AAS after selective chemical extractions and concentrations given in microg gm(-1) (dry weight basis). The average total concentrations found for trace metals in the sediment were ( mean +/- rsd.) Pb: 41.6 +/- 0.29, Zn: 31.60 +/- 0.42, Cd: 12.80 +/- 0.92, Co: 92 +/- 0.25, Cu: 25.5 +/- 0.65 and Ni: 3.2 +/- 0.25. Maxima and minima concentrations are inconsistent with previous studies in other rivers of this region. Spatial distribution revealed that the sources of trace metals into the river appeared to be of non-point. Five contamination indices were applied in studying the partitioning of the trace metals in the sediment. These indices provided bases for ascertaining the potential environmental risk of trace metals in the river system. The results denote high partition levels in the more mobile and more dangerous phases.

  12. Airborne mineral components and trace metals in Paris region: spatial and temporal variability.

    PubMed

    Poulakis, E; Theodosi, C; Bressi, M; Sciare, J; Ghersi, V; Mihalopoulos, N

    2015-10-01

    A variety of mineral components (Al, Fe) and trace metals (V, Cr, Mn, Ni, Cu, Zn, Cd, Pb) were simultaneously measured in PM2.5 and PM10 fractions at three different locations (traffic, urban, and suburban) in the Greater Paris Area (GPA) on a daily basis throughout a year. Mineral species and trace metal levels measured in both fractions are in agreement with those reported in the literature and below the thresholds defined by the European guidelines for toxic metals (Cd, Ni, Pb). Size distribution between PM2.5 and PM10 fractions revealed that mineral components prevail in the coarse mode, while trace metals are mainly confined in the fine one. Enrichment factor analysis, statistical analysis, and seasonal variability suggest that elements such as Mn, Cr, Zn, Fe, and Cu are attributed to traffic, V and Ni to oil combustion while Cd and Pb to industrial activities with regional origin. Meteorological parameters such as rain, boundary layer height (BLH), and air mass origin were found to significantly influence element concentrations. Periods with high frequency of northern and eastern air masses (from high populated and industrialized areas) are characterized by high metal concentrations. Finally, inner city and traffic emissions were also evaluated in PM2.5 fraction. Significant contributions (>50 %) were measured in the traffic site for Mn, Fe, Cr, Zn, and Cu, confirming that vehicle emissions contribute significantly to their levels, while in the urban site, the lower contributions (18 to 33 %) for all measured metals highlight the influence of regional sources on their levels.

  13. Origin of enormous trace metal enrichments in weathering mantles of Jurassic carbonates: evidence from Sr, Nd and Pb isotopes

    NASA Astrophysics Data System (ADS)

    Hissler, C.; Stille, P.; Juilleret, J.; Iffly, J.; Perrone, T.; Morvan, G.

    2013-12-01

    ) and Cd (2.4ppm). The underlying limestone and marl show, compared to average world carbonates, enrichments in the same elements and trace element distribution patterns similar to the soil suggesting their close genetic relationship. Pb, Sr and Nd isotope data allow to identify three principal components in the soil: a silicate-rich phase at close to the surface, a strongly trace metal enriched component at the bottom of the soil profile and an anthropogenic, atmosphere- derived component detected in the soil leachates. The isotopic mixing curves defined by the soil samples point to the close genetic connection between upper and lowermost soil horizons. The Nd isotopic composition of the leachates of all soil horizons are in contrast to the untreated soil and residual soil samples very homogeneous suggesting that the leachable phases of the upper and lower soil horizons are genetically connected. The downward migration of the trace metals is stopped at this soil level due to the presence of important secondary calcite precipitations, smectite and Fe-oxide accumulations. Mass balance calculations indicate that the enrichment process goes along with a volume increase relative to the bottom soil horizons.

  14. Trace Metal Accumulation In The Thau Coastal Lagoon and Its Possible Impact On The Waters of The Gulf of Lion In The Mediterranean

    NASA Astrophysics Data System (ADS)

    Abdullah, M. I.; Elbaz-Poulichet, Francoise

    Coastal lagoons are important marine environments for fisheries resources, wild life sanctuaries as well as many other economic activities. The Thau lagoon (at Sette, south coast of france) a major shell fisheries development in the region, receives inputs from a variety of sources namely seasonal run-off, river discharge, manmade waterways, karstic and thermal underground waters. A wide variety of material is thus added to the lagoon particularly trace metals such as Cu, Zn, Pb, Fe, Mn etc. . Metals added through karstic and thermal waters are particularly significant. Althought the lagoon covers some 75 km2, it is shallow with a maximum depth of only 9 m and with exchange with the Mediterranean being restricted along the narrow canal de Sette. Consequently, metal level can build up to quite high concentration upto x30 of that for normal seawater par- ticularly for metals such as Pb and Cu. While water exchange is severely limited, ma- jor water replacement do occur particularly during prolonged turbulent weather con- ditions with sustained onshore/offshore winds. Such episode occurred during March 2000 when it was observed that a significant proportion of the Thau lagoon was re- place by Mediterranean water. This water was characterized by it lower metal content and REE distribution. Such episodes are known to occur several times annually caus- ing significant amounts of metal-rich Thau water to discharge into the Gulf of Lion. It is concluded that such episodic exchanges constitute an important source of metals to the coastal zone and the Gulf of Lion which has been previously reported to have elevated metal levels.

  15. Effect of Ocean Acidification on Organic and Inorganic Speciation of Trace Metals.

    PubMed

    Stockdale, Anthony; Tipping, Edward; Lofts, Stephen; Mortimer, Robert J G

    2016-02-16

    Rising concentrations of atmospheric carbon dioxide are causing acidification of the oceans. This results in changes to the concentrations of key chemical species such as hydroxide, carbonate and bicarbonate ions. These changes will affect the distribution of different forms of trace metals. Using IPCC data for pCO2 and pH under four future emissions scenarios (to the year 2100) we use a chemical speciation model to predict changes in the distribution of organic and inorganic forms of trace metals. Under a scenario where emissions peak after the year 2100, predicted free ion Al, Fe, Cu, and Pb concentrations increase by factors of up to approximately 21, 2.4, 1.5, and 2.0 respectively. Concentrations of organically complexed metal typically have a lower sensitivity to ocean acidification induced changes. Concentrations of organically complexed Mn, Cu, Zn, and Cd fall by up to 10%, while those of organically complexed Fe, Co, and Ni rise by up to 14%. Although modest, these changes may have significance for the biological availability of metals given the close adaptation of marine microorganisms to their environment.

  16. Mobilization of Trace Metals in an Experimental Carbon Sequestration Scenario

    NASA Astrophysics Data System (ADS)

    Marcon, V.; Kaszuba, J. P.

    2012-12-01

    Mobilizing trace metals with injection of supercritical CO2 into deep saline aquifers is a concern for geologic carbon sequestration. The potential for leakage from these systems requires an understanding of how injection reservoirs interact with the overlying potable aquifers. Hydrothermal experiments were performed to evaluate metal mobilization and mechanisms of release in a carbonate storage reservoir and at the caprock-reservoir boundary. Experiments react synthetic Desert Creek limestone and/or Gothic Shale, formations in the Paradox Basin, Utah, with brine that is close to equilibrium with these rocks. A reaction temperature of 1600C accelerates the reaction kinetics without changing in-situ water-rock reactions. The experiments were allowed to reach steady state before injecting CO2. Changes in major and trace element water chemistry, dissolved carbon and sulfide, and pH were tracked throughout the experiments. CO2 injection decreases the pH by 1 to 2 units; concomitant mineral dissolution produces elevated Ba, Cu, Fe, Pb, and Zn concentrations in the brine. Concentrations subsequently decrease to approximately steady state values after 120-330 hours, likely due to mineral precipitation as seen in SEM images and predicted by geochemical modeling. In experiments that emulate the caprock-reservoir boundary, final Fe (0.7ppb), an element of secondary concern for the EPA, and Pb (0.05ppb) concentrations exceed EPA limits, whereas Ba (0.140ppb), Cu (48ppb), and Zn (433ppb) values remain below EPA limits. In experiments that simulate deeper reservoir conditions, away from the caprock boundary, final Fe (3.5ppb) and Pb (0.017ppb) values indicate less mobilization than seen at the caprock-reservoir boundary, but values still exceed EPA limits. Barium concentrations always remain below the EPA limit of 2ppb, but are more readily mobilized in experiments replicating deeper reservoir conditions. In both systems, transition elements Cd, Cr, Cu, Pb and Zn behave in a

  17. Trace metals, melanin-based pigmentation and their interaction influence immune parameters in feral pigeons (Columba livia).

    PubMed

    Chatelain, M; Gasparini, J; Frantz, A

    2016-04-01

    Understanding the effects of trace metals emitted by anthropogenic activities on wildlife is of great concern in urban ecology; yet, information on how they affect individuals, populations, communities and ecosystems remains scarce. In particular, trace metals may impact survival by altering the immune system response to parasites. Plumage melanin is assumed to influence the effects of trace metals on immunity owing to its ability to bind metal ions in feathers and its synthesis being coded by a pleiotropic gene. We thus hypothesized that trace metal exposure would interact with plumage colouration in shaping immune response. We experimentally investigated the interactive effect between exposure to an environmentally relevant range of zinc and/or lead and melanin-based plumage colouration on components of the immune system in feral pigeons (Columba livia). We found that zinc increased anti-keyhole limpet hemocyanin (KLH) IgY primary response maintenance, buffered the negative effect of lead on anti-KLH IgY secondary response maintenance and tended to increase T-cell mediated phytohaemagglutinin (PHA) skin response. Lead decreased the peak of the anti-KLH IgY secondary response. In addition, pheomelanic pigeons exhibited a higher secondary anti-KLH IgY response than did eumelanic ones. Finally, T-cell mediated PHA skin response decreased with increasing plumage eumelanin level of birds exposed to lead. Neither treatments nor plumage colouration correlated with endoparasite intensity. Overall, our study points out the effects of trace metals on some parameters of birds' immunity, independently from other confounding urbanization factors, and underlines the need to investigate their impacts on other life history traits and their consequences in the ecology and evolution of host-parasite interactions.

  18. The relation between Acid Volatile Sulfides (AVS) and metal accumulation in aquatic invertebrates: implications of feeding behavior and ecology.

    PubMed

    De Jonge, Maarten; Blust, Ronny; Bervoets, Lieven

    2010-05-01

    The present study evaluates the relationship between Acid Volatile Sulfides (AVS) and metal accumulation in invertebrates with different feeding behavior and ecological preferences. Natural sediments, pore water and surface water, together with benthic and epibenthic invertebrates were sampled at 28 Flemish lowland rivers. Different metals as well as metal binding sediment characteristics including AVS were measured and multiple regression was used to study their relationship with accumulated metals in the invertebrates taxa. Bioaccumulation in the benthic taxa was primarily influenced by total metal concentrations in the sediment. Regarding the epibenthic taxa metal accumulation was mostly explained by the more bioavailable metal fractions in both the sediment and the water. AVS concentrations were generally better correlated with metal accumulation in the epibenthic invertebrates, rather than with the benthic taxa. Our results indicated that the relation between AVS and metal accumulation in aquatic invertebrates is highly dependent on feeding behavior and ecology. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Adsorption of humic acids and trace metals in natural waters

    NASA Technical Reports Server (NTRS)

    Leung, W. H.

    1982-01-01

    Studies concerning the interactions between suspended hydrous iron oxide and dissolved humic acids and trace metals are reported. As a major component of dissolved organic matters and its readiness for adsorption at the solid/water interface, humic acids may play a very important role in the organometallic geochemistry of suspended sediments and in determining the fate and distribution of trace metals, pesticides and anions in natural water systems. Most of the solid phases in natural waters contain oxides and hydroxides. The most simple promising theory to describe the interactions of hydrous iron oxide interface is the surface complex formation model. In this model, the adsorptions of humic acids on hydrous iron oxide may be interpreted as complex formation of the organic bases (humic acid oxyanions) with surface Fe ions. Measurements on adsorptions were made in both fresh water and seawater. Attempts have been made to fit our data to Langmuir adsorption isotherm. Adsorption equilibrium constants were determined.

  20. Diverse stoichiometry of dissolved trace metals in the Indian Ocean

    PubMed Central

    Thi Dieu Vu, Huong; Sohrin, Yoshiki

    2013-01-01

    Trace metals in seawater are essential to organisms and important as tracers of various processes in the ocean. However, we do not have a good understanding of the global distribution and cycling of trace metals, especially in the Indian Ocean. Here we report the first simultaneous, full-depth, and basin-scale section-distribution of dissolved (D) Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in the Indian Ocean. Our data reveal widespread co-limitation for phytoplankton production by DFe and occurrence of redox-related processes. The stoichiometry of the DM/phosphorus ratio agrees within a factor of 5 between deep waters in the Indian and Pacific, whereas it shows variability up to a factor of 300 among water masses within the Indian Ocean. This indicates that a consistent mechanism controls the stoichiometry in the deep waters, which are significantly depleted in Mn, Fe, and Co compared to requirements for phytoplankton.

  1. Are acid volatile sulfides (AVS) important trace metals sinks in semi-arid mangroves?

    PubMed

    Queiroz, Hermano Melo; Nóbrega, Gabriel Nuto; Otero, Xose L; Ferreira, Tiago Osório

    2018-01-01

    Acid-volatile sulfides (AVS) formation and its role on trace metals bioavailability were studied in semi-arid mangroves. The semi-arid climatic conditions at the studied sites, marked by low rainfall and high evapotranspiration rates, clearly limited the AVS formation (AVS contents varied from 0.10 to 2.34μmolg -1 ) by favoring oxic conditions (Eh>+350mV). The AVS contents were strongly correlated with reactive iron and organic carbon (r=0.84; r=0.83 respectively), evidencing their dominant role for AVS formation under semi-arid conditions. On the other hand, the recorded ΣSEM/AVS values remained >1 evidencing a little control of AVS over the bioavailability of trace metals and, thus, its minor role as a sink for toxic metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Spatial variability and temporal changes in the trace metal content of soils: implications for mine restoration plan.

    PubMed

    Chandra, Rachna; Prusty, B Anjan Kumar; Azeez, P A

    2014-06-01

    Trace metals in soils may be inherited from the parent materials or added to the system due to anthropogenic activities. In proposed mining areas, trace metals become an integral part of the soil system. Usually, researchers undertake experiments on plant species selection (for the restoration plan) only after the termination of mining activities, i.e. without any pre-mining information about the soil-plant interactions. Though not shown in studies, it is clear that several recovery plans remain unsuccessful while carrying out restoration experiments. Therefore, we hypothesize that to restore the area effectively, it is imperative to consider the pre-mining scenario of metal levels in parent material as well as the vegetation ecology of the region. With these specifics, we examined the concentrations of trace metals in parent soils at three proposed bauxite locations in the Eastern Ghats, India, and compared them at a spatio-temporal scale. Vegetation quantification and other basic soil parameters accounted for establishing the connection between soil and plants. The study recorded significant spatial heterogeneity in trace metal concentrations and the role of vegetation on metal availability. Oxidation reduction potential (ORP), pH and cation exchange capacity (CEC) directly influenced metal content, and Cu and Ni were lithogenic in origin. It implies that for effective restoration plant species varies for each geological location.

  3. Trace metal geochemistry in mangrove sediments and their transfer to mangrove plants (New Caledonia).

    PubMed

    Marchand, C; Fernandez, J-M; Moreton, B

    2016-08-15

    Because of their physico-chemical inherent properties, mangrove sediments may act as a sink for pollutants coming from catchments. The main objective of this study was to assess the distribution of some trace metals in the tissues of various mangrove plants developing downstream highly weathered ferralsols, taking into account metals partitioning in the sediment. In New Caledonia, mangroves act as a buffer between open-cast mines and the world's largest lagoon. As a result of the erosion of lateritic soils, Ni and Fe concentrations in the sediment were substantially higher than the world average. Whatever the mangrove stand and despite low bioaccumulation and translocations factors, Fe and Ni were also the most abundant metals in the different plant tissues. This low bioaccumulation may be explained by: i) the low availability of metals, which were mainly present in the form of oxides or sulfur minerals, and ii) the root systems acting as barriers towards the transfer of metals to the plant. Conversely, Cu and Zn metals had a greater mobility in the plant, and were characterized by high bioconcentration and translocation factors compared to the other metals. Cu and Zn were also more mobile in the sediment as a result of their association with organic matter. Whatever the metal, a strong decrease of trace metal stock was observed from the landside to the seaside of the mangrove, probably as a result of the increased reactivity of the sediment due to OM enrichment. This reactivity lead to higher dissolution of bearing phases, and thus to the export of dissolved trace metals trough the tidal action. Cu and Zn were the less concerned by the phenomenon probably as a result of higher plant uptake and their restitution to the sediment with litter fall in stands where tidal flushing is limited. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. [Determination of trace heavy metal elements in cortex Phellodendron chinense by ICP-MS after microwave-assisted digestion].

    PubMed

    Kou, Xing-Ming; Xu, Min; Gu, Yong-Zuo

    2007-06-01

    An inductively coupled plasma mass spectrometry (ICP-MS) for determination of the contents of 8 trace heavy metal elements in cortex Phellodendron chinense after microwave-assisted digestion of the sample has been developed. The accuracy of the method was evaluated by the analysis of corresponding trace heavy metal elements in standard reference materials (GBW 07604 and GBW 07605). By applying the proposed method, the contents of 8 trace heavy metal elements in cortex Phellodendron chinense cultivated in different areas (in Bazhong, Yibin and Yingjing, respectively) of Sichuan and different growth period (6, 8 and 10 years of samples from Yingjing) were determined. The relative standard deviation (RSD) is in the range of 3.2%-17.8% and the recoveries of standard addition are in the range of 70%-120%. The results of the study indicate that the proposed method has the advantages of simplicity, speediness and sensitivity. It is suitable for the determination of the contents of 8 trace heavy metal elements in cortex Phellodendron chinense. The results also show that the concentrations of 4 harmful trace heavy metal elements As, Cd, Hg and Pb in cortex Phellodendron chinense are all lower than the limits of Chinese Pharmacopoeia and Green Trade Standard for Importing and Exporting Medicinal Plant and Preparation. Therefore, the cortex Phellodendron chinense is fit for use as medicine and export.

  5. Assessment of trace element accumulation by earthworms in an orchard soil remediation study using soil amendments

    USGS Publications Warehouse

    Centofantia, Tiziana; Chaney, Rufus L.; Beyer, W. Nelson; McConnell, Laura L.; Davis, A. P.; Jackson, Dana

    2016-01-01

    This study assessed potential bioaccumulation of various trace elements in grasses and earthworms as a consequence of soil incorporation of organic amendments for in situ remediation of an orchard field soil contaminated with organochlorine and Pb pesticide residues. In this experiment, four organic amendments of differing total organic carbon content and quality (two types of composted manure, composted biosolids, and biochar) were added to a contaminated orchard field soil, planted with two types of grasses, and tested for their ability to reduce bioaccumulation of organochlorine pesticides and metals in earthworms. The experiment was carried out in 4-L soil microcosms in a controlled environment for 90 days. After 45 days of orchardgrass or perennial ryegrass growth, Lumbricus terrestris L. were introduced to the microcosms and exposed to the experimental soils for 45 days before the experiment was ended. Total trace element concentrations in the added organic amendments were below recommended safe levels and their phytoavailablity and earthworm availability remained low during a 90-day bioremediation study. At the end of the experiment, total tissue concentrations of Cu, Cd, Mn, Pb, and Zn in earthworms and grasses were below recommended safe levels. Total concentrations of Pb in test soil were similar to maximum background levels of Pb recorded in soils in the Eastern USA (100 mg kg−1 d.w.) because of previous application of orchard pesticides. Addition of aged dairy manure compost and presence of grasses was effective in reducing the accumulation of soil-derived Pb in earthworms, thus reducing the risk of soil Pb entry into wildlife food chains.

  6. Baseline sediment trace metals investigation: Steinhatchee River estuary, Florida, Northeast Gulf of Mexico

    USGS Publications Warehouse

    Trimble, C.A.; Hoenstine, R.W.; Highley, A.B.; Donoghue, J.F.; Ragland, P.C.

    1999-01-01

    This Florida Geological Survey/U.S. Department of the Interior, Minerals Management Service Cooperative Study provides baseline data for major and trace metal concentrations in the sediments of the Steinhatchee River estuary. These data are intended to provide a benchmark for comparison with future metal concentration data measurements. The Steinhatchee River estuary is a relatively pristine bay located within the Big Bend Wildlife Management Area on the North Central Florida Gulf of Mexico coastline. The river flows 55 km through woodlands and planted pines before emptying into the Gulf at Deadman Harbor. Water quality in the estuary is excellent at present. There is minimal development within the watershed. The estuary is part of an extensive system of marshes that formed along the Florida Gulf coast during the Holocene marine transgression. Sediment accretion rate measurements range from 1.4 to 4.1 mm/yr on the basis of lead-210 measurements. Seventy-nine short cores were collected from 66 sample locations, representing four lithofacies: clay- and organic-rich sands, organic-rich sands, clean quartz sands, and oyster bioherms. Samples were analyzed for texture, total organic matter, total carbon, total nitrogen, clay mineralogy, and major and trace-metal content. Following these analyses, metal concentrations were normalized against geochemical reference elements (aluminum and iron) and against total weight percent organic matter. Metals were also normalized granulometrically against total weight percent fines (<0.062 mm). Concentrations were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES) for all metals except mercury. Mercury concentrations were determined by cold-flameless atomic absorption spectrometry (AAS). Granulometric measurements were made by sieve and pipette analyses. Organic matter was determined by two methods: weight loss upon ignition and elemental analysis (by Carlo-Erba Furnace) of carbon and nitrogen. X

  7. Distribution and relationships of trace metals in the isopod Saduria entomon and adjacent bottom sediments in the southern Baltic.

    PubMed

    Góral, Marta; Szefer, Piotr; Ciesielski, Tomasz; Warzocha, Jan

    2009-10-01

    The concentrations of Ag, Cd, Co, Cr, Cu, Fe, Ni, Pb, Mn and Zn in Saduria entomon and adjacent bottom sediments from the southern Baltic were determined by FAAS. In order to estimate the strength of correlations between accumulated elements in these crustaceans and surficial sediment, bioaccumulation factors (BAFs) were calculated. The results of factor analysis (FA) and the Kruskal-Wallis analysis of variance (ANOVA) clearly indicate geographical differences between the concentrations of these elements. Cd, Co, Fe, Ni, Pb and Zn levels were higher in S. entomon from the Gulf of Gdańsk, whereas Cr and Mn levels were higher in the crustaceans inhabiting open Baltic waters. The concentrations of Ag and Cu were comparable in both regions. There was a tendency for metal concentrations to distinguish organisms inhabiting the muddy bottom from those living in sandy sediments. The granulometric composition of the sediment appears to influence trace metal bioavailability. The results show that S. entomon could be a valuable sentinel organism for biomonitoring heavy metal contamination in the southern Baltic.

  8. Effect of silicon on trace element partitioning in iron-bearing metallic melts

    NASA Astrophysics Data System (ADS)

    Chabot, Nancy L.; Safko, Trevor M.; McDonough, William F.

    2010-08-01

    Despite the fact that Si is considered a potentially important metalloid in planetary systems, little is known about the effect of Si in metallic melts on trace element partitioning behavior. Previous studies have established the effects of S, C, and P, nonmetals, through solid metal/liquid metal experiments in the corresponding Fe binary systems, but the Fe-Si system is not appropriate for similar experiments because of the high solubility of Si in solid metal. In this work, we present the results from 0.1MPa experiments with two coexisting immiscible metallic liquids in the Fe-S-Si system. By leveraging the extensive available knowledge about the effect of S on trace element partitioning behavior, we explore the effect of Si. Results for 22 trace elements are presented. Strong Si avoidance behavior is demonstrated by As, Au, Ga, Ge, Sb, Sn, and Zn. Iridium, Os, Pt, Re, Ru, and W exhibit weak Si avoidance tendencies. Silicon appears to have no significant effect on the partitioning behaviors of Ag, Co, Cu, Cr, Ni, Pd, and V, all of which had similar partition coefficients over a wide range of Si liquid concentrations from Si-free to 13 wt%. The only elements in our experiments to show evidence of a potentially weak attraction to Si were Mo and Rh. Applications of the newly determined effects of Si to problems in planetary science indicate that (1) The elements Ni, Co, Mo, and W, which are commonly used in planetary differentiation models, are minimally affected by the presence of Si in the metal, especially in comparison to other effects such as from oxygen fugacity. 2) Reduced enstatite-rich meteorites may record a chemical signature due to Si in the metallic melts during partial melting, and if so, elements identified by this study as having strong Si avoidance may offer unique insight into unraveling the history of these meteorites.

  9. Potential release of in vivo trace metals from metallic medical implants in the human body: from ions to nanoparticles--a systematic analytical review.

    PubMed

    Matusiewicz, Henryk

    2014-06-01

    Metal ion release from metallic materials, e.g. metallic alloys and pure metals, implanted into the human body in dental and orthopedic surgery is becoming a major cause for concern. This review briefly provides an overview of both metallic alloys and pure metals used in implant materials in dental and orthopedic surgery. Additionally, a short section is dedicated to important biomaterials and their corrosive behavior in both real solutions and various types of media that model human biological fluids and tissues. The present review gives an overview of analytical methods, techniques and different approaches applied to the measurement of in vivo trace metals released into body fluids and tissues from patients carrying metal-on-metal prostheses and metal dental implants. Reference levels of ion concentrations in body fluids and tissues that have been determined by a host of studies are compiled, reviewed and presented in this paper. Finally, a collection of published clinical data on in vivo released trace metals from metallic medical implants is included. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Risks of using EDTA as an agent for trace metals dosing in anaerobic digestion of olive mill solid waste.

    PubMed

    Serrano, A; Pinto-Ibieta, F; Braga, A F M; Jeison, D; Borja, R; Fermoso, F G

    2017-12-01

    Low concentrations of trace elements in many organic wastes recommend their supplementation in order to avoid potential limitations. Different chelating agents have been used to ensure an adequate trace metal pool in the soluble fraction, by forming dissolved complexes. Ethylenediaminetetraacetic acid (EDTA) is probably the most common, although several negative effects could be associated with its usage. Biomethane potential tests were performed using Olive Mill Solid Waste as the substrate, supplementing different combinations of Fe, Co, Ni, Ba, always under the presence of EDTA. Results show that Ni and Co slightly recovered biodegradability. However, Ba supplementation resulted in worsening the methane yield coefficient in all cases. High concentration of EDTA led to decrease in the activity of anaerobic digestion. High availability of EDTA induces the capture of trace metals like Co or Ni, key trace metals for anaerobic biomass activity. While supplementing trace metals, the addition of Ba and/or EDTA must be carefully considered.

  11. Trace metals health risk appraisal in fish species of Arabian Sea.

    PubMed

    Yasmeen, Kousar; Mirza, Muhammad Aslam; Khan, Namra A; Kausar, Nazish; Rehman, Atta-Ur; Hanif, Muddasir

    2016-01-01

    Fish is a vital food for humans and many animals. We report an environmental monitoring study to assess the trace metals in fish species caught from Arabian Sea and commercially available in the coastal city Karachi, Pakistan. Heavy metals such as copper, iron, lead and cadmium were determined in the skin, fillet and heart of the fish species Pampus argenteus, Epinephelus chlorostigma, Rachycentron canadum, Scomberomorus commerson, Johnius belangerii, Labeo rohita, Lutjanus argentimaculatus, Trachinotus blochii, Pomadsys olivaceum and Acanthopagrus berda by the atomic absorption spectrophotometer. The concentration (mg kg(-1), dry weight) range was: Cd (0.00-0.041), Cu (0.006-0.189), Fe (0.413-4.952) and Pb (0.00-0.569). Cadmium, copper and iron levels were below the tolerable limits whereas concentration of lead in the skins of S. commerson, E. chlorostigma, J. belangerii, A. berda; L. argentimaculatus, fillets of J. belangerii, E. chlorostigma and in the heart of J. belangerii exceeded the recommended limits. Therefore fish skin should be discouraged as food for humans or animals. The results indicate that a number of fish species have higher concentration of heavy metals dangerous for human health. Since the fish P. olivaceum (Dhotar) has the lowest level of trace metals therefore we recommend it for breeding and human consumption.

  12. Trace metal fractionation as a mean to improve on the management of contaminated sediments from runoff water in infiltration basins.

    PubMed

    Al Husseini, Amelène El-Mufleh; Béchet, Béatrice; Gaudin, Anne; Ruban, Véronique

    2013-01-01

    The management of stormwater sediment is a key issue for local authorities due to the pollution load and significant tonnages. In view of reuse, for example for civil engineering, the environmental evaluation of these highly aggregated sediments requires the study of the fractionation and mobility of trace metals. The distribution of trace metals (Cd, Cr, Cu, Ni, Pb, Zn) and their level of lability in three French stormwater sediments was determined using sequential and kinetic extractions (EDTA reagent) associated with mineralogical analysis and scanning electron microscopy observations. Using microanalysis, new data were acquired on the evolution of aggregate state during extractions, and on its significant role in the retention of trace metals. Trace metals were, in particular, observed to be very stable in small aggregates (10-50 microm). Comparison of the two extraction methods revealed that EDTA extraction was not convenient for evaluating the stable fraction of Cr, Ni and Zn. Moreover, the results were relevant for basins presenting similar sources of trace metals, whatever the physicochemical conditions in basins. The results suggest that the management of stormwater sediments could be improved by a better knowledge of metal mobility, as chemical extractions could highlight the localization of the mobile fraction of trace metals. Treatment could be therefore avoided, or specific treatment could be applied to a reduced volume of sediments.

  13. What influences heavy metals accumulation in arctic lichen Cetrariella delisei in Svalbard?

    NASA Astrophysics Data System (ADS)

    Węgrzyn, Michał; Wietrzyk, Paulina; Lisowska, Maja; Klimek, Beata; Nicia, Paweł

    2016-12-01

    The main aim of this study was to identify variations in heavy metal concentrations in Cetrariella delisei along a transect from a High Arctic glacier forehead to the shoreline as well as determine the main environmental factors influencing the deposition of heavy metals in arctic lichens. The macrolichen Cetrariella delisei appears to be an interesting alternative to those lichen species used in the past (e.g. Flavocetraria nivalis, Cladonia sp.) for heavy metal biomonitoring purposes in the Arctic: it is widely distributed, easy to identify and reluctantly grazed by reindeer. Fieldwork was conducted in the summer of 2012 in the Kaffiøyra Plain, Oskar II Land, NW Spitsbergen. C. delisei and soil samples were collected from 5 localities. Concentrations of Cr, Mn, Ni, Cu, Zn, Pb, and Cd were measured in each sample. A bioaccumulation factor (BAF) was calculated for all the analyzed elements. The BAFs for Cu, Mn, and Ni showed a relatively low accumulation level in lichen thalli. On the other hand, the BAFs for Cr, Pb, and Zn, revealed an increased accumulation level in C. delisei. The Cd content in lichen is almost equal to its level in the soil. The statistical analyses covered three environmental factors: soil pH, substrate type and distance from the shoreline. The data were examined using the Kruskal-Wallis test, canonical correspondence analysis and a permutation test. The results show that distance from the shoreline had the greatest influence on the majority of the heavy metal concentrations in the lichen thalli and the soil. However, the level of Mn accumulated in the soil is determined by its source in the glacier. Moreover, the soil pH had the greatest effect on the Cd accumulated in the soil and the Mn accumulated in the lichen thalli.

  14. Metal accumulation and differentially expressed proteins in gill of oyster (Crassostrea hongkongensis) exposed to long-term heavy metal-contaminated estuary.

    PubMed

    Luo, Lianzhong; Ke, Caihuan; Guo, Xiaoyu; Shi, Bo; Huang, Miaoqin

    2014-06-01

    Bio-accumulation and bio-transmission of toxic metals and the toxicological responses of organisms exposed to toxic metals have been focused, due to heavy metal contaminations have critically threatened the ecosystem and food security. However, still few investigations focused on the responses of certain organisms exposed to the long term and severe heavy metal contamination in specific environments. In present investigation, the Hong Kong oyster, Crassostrea hongkongensis were obtained from 3 sites which were contaminated by different concentrations of heavy metals (such as zinc, copper, manganese and lead etc.), respectively. Heavy metal concentrations in the sea water samples collected from the 3 sites and the dissected tissues of the oysters with blue visceral mass were determinated to estimate the metal contamination levels in environments and the bio-accumulation ratios of the heavy metals in the different tissues of oysters. Moreover, Proteomic methods were employed to analyze the differentially expressed proteins in the gills of oysters exposed to long-term heavy metal contaminations. Results indicated that the Jiulong River estuary has been severely contaminated by Cu, Zn and slightly with Cr, Ni, Mn, etc, moreover, Zn and Cu were the major metals accumulated by oysters to phenomenally high concentrations (more than 3.0% of Zn and about 2.0% of Cu against what the dry weight of tissues were accumulated), and Cr, Ni, Mn, etc were also significantly accumulated. The differentially expressed proteins in the gills of oysters exposed to heavy metals participate in several cell processes, such as metal binding, transporting and saving, oxidative-reduction balance maintaining, stress response, signal transduction, etc. Significantly up-regulated expression (about 10 folds) of an important metal binding protein, metallothionein (MT) and granular cells was observed in the gills of oysters exposed to long-term and severely heavy-metal-contaminated estuary, it

  15. Trends in trace organic and metal concentrations in the Pechora and Kara Seas and adjacent rivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, J.M.; Champ, M.A.; Wade, T.L.

    1995-12-31

    Trace organic (pesticides, PCBs, PAHs and dioxin/furan) and trace metal concentrations have been measured in surficial sediment and tissue (i.e., clam, fish liver and flesh) samples from the Pechora and Kara Seas and their adjacent rivers -- Pechora, Ob and Yenisey Rivers. Total PAH, PCB and total DDT and chlordane concentrations ranged in surficial sediments from n.d. to 810 ppb, n.d.--8.7 ppb, n.d.--1.2 ppb, and n.d.--1.2 ppb, respectively, in a suite of 40 samples from the Kara Sea and its adjacent rivers. The highest concentrations of many of the trace organic and metal contaminants were found in the lower partmore » of the Yenisey River below the salt wedge. Some trace metals (As for example) were elevated in the Pechora River dispositional plume region. Dioxin ranged from 1.36 to 413 ppt in a subset of 20 sediment samples. Higher trace organic contaminant concentrations compared to sediments were found in tissue samples from the region, especially fish liver samples. Concentrations as high as 1,114 ppb total PAHs, 89 ppb chlordane, 1,011 ppb for total DDT and 663 ppb PCBs were found in some fish liver samples. Dioxin concentrations in tissue samples ranged from 11.7 to 61 ppt. Concentrations of many trace organic and metal contaminants in these Russian marginal seas are influenced by inputs from these large Arctic rivers. Many organic contaminant concentrations in sediments are low, however detecting these compounds in tissue show they are bioavailable.« less

  16. Application of Heavy Metal Rich Tannery Sludge on Sustainable Growth, Yield and Metal Accumulation by Clarysage (Salvia sclarea L.).

    PubMed

    Chand, Sukhmal; Yaseen, M; Rajkumari; Patra, D D

    2015-01-01

    A field experiment was conducted to evaluate the effective utilization of tannery sludge for cultivation of clarysage (Salvia sclarea) at CIMAP research farm, Lucknow, India during the year 2012-2013. Six doses (0, 20, 40, 60, 80, 100 tha(-1)) of processed tannery sludge were tested in randomised block design with four replications. Results revealed that maximum shoot, root, dry matter and oil yield were obtained with application of 80 tha(-1)of tannery sludge and these were 94, 113 and 61% higher respectively, over control. Accumulation of heavy metals (Cr, Ni, Fe, Pb) were relatively high in shoot portion of the plant than root. Among heavy metals, magnitude of chromium accumulation was higher than nickel, iron and lead in shoot as well as in root. Linalool, linalyl acetate and sclareol content in oil increased by 13,8 and 27% respectively over control, with tannery sludge application at 80 tha(-1). Heavy metals such as chromium, cadmium and lead content reduced in postharvest soil when compared to initial status. Results indicated that clarysage (Salvia sclarea) can be grown in soil amended with 80 tha(-1)sludge and this can be a suitable accumulator of heavy metals for phytoremediation of metal polluted soils.

  17. Reactive solute transport in streams: A surface complexation approach for trace metal sorption

    USGS Publications Warehouse

    Runkel, Robert L.; Kimball, Briant A.; McKnight, Diane M.; Bencala, Kenneth E.

    1999-01-01

    A model for trace metals that considers in-stream transport, metal oxide precipitation-dissolution, and pH-dependent sorption is presented. Linkage between a surface complexation submodel and the stream transport equations provides a framework for modeling sorption onto static and/or dynamic surfaces. A static surface (e.g., an iron- oxide-coated streambed) is defined as a surface with a temporally constant solid concentration. Limited contact between solutes in the water column and the static surface is considered using a pseudokinetic approach. A dynamic surface (e.g., freshly precipitated metal oxides) has a temporally variable solid concentration and is in equilibrium with the water column. Transport and deposition of solute mass sorbed to the dynamic surface is represented in the stream transport equations that include precipitate settling. The model is applied to a pH-modification experiment in an acid mine drainage stream. Dissolved copper concentrations were depressed for a 3 hour period in response to the experimentally elevated pH. After passage of the pH front, copper was desorbed, and dissolved concentrations returned to ambient levels. Copper sorption is modeled by considering sorption to aged hydrous ferric oxide (HFO) on the streambed (static surface) and freshly precipitated HFO in the water column (dynamic surface). Comparison of parameter estimates with reported values suggests that naturally formed iron oxides may be more effective in removing trace metals than synthetic oxides used in laboratory studies. The model's ability to simulate pH, metal oxide precipitation-dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between trace metal chemistry and hydrologic transport at the field scale.

  18. Rates of zinc and trace metal release from dissolving sphalerite at pH 2.0-4.0

    USGS Publications Warehouse

    Stanton, M.R.; Gemery-Hill, P. A.; Shanks, Wayne C.; Taylor, C.D.

    2008-01-01

    High-Fe and low-Fe sphalerite samples were reacted under controlled pH conditions to determine nonoxidative rates of release of Zn and trace metals from the solid-phase. The release (solubilization) of trace metals from dissolving sphalerite to the aqueous phase can be characterized by a kinetic distribution coefficient, (Dtr), which is defined as [(Rtr/X(tr)Sph)/(RZn/X(Zn) Sph)], where R is the trace metal or Zn release rate, and X is the mole fraction of the trace metal or Zn in sphalerite. This coefficient describes the relationship of the sphalerite dissolution rate to the trace metal mole fraction in the solid and its aqueous concentration. The distribution was used to determine some controls on metal release during the dissolution of sphalerite. Departures from the ideal Dtr of 1.0 suggest that some trace metals may be released via different pathways or that other processes (e.g., adsorption, solubility of trace minerals such as galena) affect the observed concentration of metals. Nonoxidative sphalerite dissolution (mediated by H+) is characterized by a "fast" stage in the first 24-30 h, followed by a "slow" stage for the remainder of the reaction. Over the pH range 2.0-4.0, and for similar extent of reaction (reaction time), sphalerite composition, and surface area, the rates of release of Zn, Fe, Cd, Cu, Mn and Pb from sphalerite generally increase with lower pH. Zinc and Fe exhibit the fastest rates of release, Mn and Pb have intermediate rates of release, and Cd and Cu show the slowest rates of release. The largest variations in metal release rates occur at pH 2.0. At pH 3.0 and 4.0, release rates show less variation and appear less dependent on the metal abundance in the solid. For the same extent of reaction (100 h), rates of Zn release range from 1.53 ?? 10-11 to 5.72 ?? 10-10 mol/m2/s; for Fe, the range is from 4.59 ?? 10-13 to 1.99 ?? 10-10 mol/m2/s. Trace metal release rates are generally 1-5 orders of magnitude slower than the Zn or Fe rates

  19. Distribution of trace metals in the vicinity of a wastewater treatment plant on the Potomac River, Washington, DC, USA

    NASA Astrophysics Data System (ADS)

    Smith, J. P.; Muller, A. C.

    2013-05-01

    Predicting the fate and distribution of anthropogenic-sourced trace metals in riverine and estuarine systems is challenging due to multiple and varying source functions and dynamic physiochemical conditions. Between July 2011 and November 2012, sediment and water column samples were collected from over 20 sites in the tidal-fresh Potomac River estuary, Washington, DC near the outfall of the Blue Plains Advanced Wastewater Treatment Plant (BPWTP) for measurement of select trace metals. Field observations of water column parameters (conductivity, temperature, pH, turbidity) were also made at each sampling site. Trace metal concentrations were normalized to the "background" composition of the river determined from control sites in order to investigate the distribution BPWTP-sourced in local Potomac River receiving waters. Temporal differences in the observed distribution of trace metals were attributed to changes in the relative contribution of metals from different sources (wastewater, riverine, other) coupled with differences in the physiochemical conditions of the water column. Results show that normalizing near-source concentrations to the background composition of the water body and also to key environmental parameters can aid in predicting the fate and distribution of anthropogenic-sourced trace metals in dynamic riverine and estuarine systems like the tidal-fresh Potomac River.

  20. Trace-metal concentrations, waters from selected sky lakes, streams and springs, northern Shawangunk Mountains, New York: geologic and ecologic implications

    USGS Publications Warehouse

    Friedman, J.D.; Huth, P.C.; Smiley, D.

    1990-01-01

    Reconnaissance sampling and chemical analysis of water from selected lakes, streams and springs of the northern Shawangunk Mountains in 1987 to 1988 to determine the influence of lithology on trace-metal concentrations in surface water, and to establish a base level of concentration of 27 selected metals by ICP-AES and Hg by cold-vapor AAS methods, for geochemical exploration, ecologic, acid-rain, and climatic-change studies, have yielded trace-metal concentrations greater than detection limits for 10 metallic elements. Eighteen additional metallic elements were also present in trace quantities below the quantitative detection limit. Two distinct geochemical populations are related to source lithology and pH. -from Authors

  1. Benthic foraminiferal trace metal uptake: a field calibration from the Arabia Sea Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Koho, K. A.; Reichart, G.-J.

    2012-04-01

    The Arabian Sea Oxygen Minimum Zone (OMZ) is sustained by high surface water productivity and relatively weak mid-depth water column ventilation. High primary productivity drives high respiration rates in the water column, causing severe oxygen depletion between ±150-1400 m water depths, with the oxygen concentrations falling below 2 μM in the core of the OMZ. Living (rose Bengal stained) benthic foraminifera were collected at 10-stations, covering a large bottom water oxygen concentration gradient from the Murray Ridge. This sub-marine ridge is located in the open marine environment of the Arabian Sea and thus not affected by large gradients in surface water productivity such as encountered at the continental margins. Since these sites thus receive similar organic fluxes, but are bathed in bottom waters with contrasting oxygen concentrations, pore water profiles mainly reflect bottom water oxygenation. The study sites represent a natural laboratory to investigate the impact of bottom water chemistry on trace metal incorporation in benthic foraminifera. Trace metal analyses by laser ablation ICP-MS allows detailed single chamber measurements of trace metal content, which can be related to in situ pore water geochemistry. Focus of this study is on redox sensitive trace metal (e.g. Mn, U) incorporation into foraminiferal test calcite in relation to pore water oxygen and carbonate chemistry.

  2. Mechanisms for trace metal enrichment at the surface microlayer in an estuarine salt marsh

    USGS Publications Warehouse

    Lion, Leonard W.

    1982-01-01

    The relative contributions of adsorption to particulate surfaces, complexation with surface-active organic ligands and uptake by micro-organisms were evaluated with respect to their importance in the surface microlayer enrichment (‘partitioning’) of Cd, Pb and Cu. The contributions of each process were inferred from field data in which partitioning of the dissolved and particulate forms of Cd, Pb and Cu, total and dissolved organic carbon, particles and total bacteria were observed. In the South San Francisco Bay estuary, particle enrichment appears to control trace metal partitioning. Trace metal association with the particulate phase and the levels of partitioning observed were in the order Pb > Cu > Cd and reflect the calculated equilibrium chemical speciation of these metals in computer-simulated seawater matrices.

  3. Microwave assisted digestion followed by ICP-MS for determination of trace metals in atmospheric and lake ecosystem.

    PubMed

    Ahmed, Manan; Chin, Ying Hui; Guo, Xinxin; Zhao, Xing-Min

    2017-05-01

    The study of trace metals in the atmosphere and lake water is important due to their critical effects on humans, aquatic animals and the geochemical balance of ecosystems. The objective of this study was to investigate the concentration of trace metals in atmospheric and lake water samples during the rainy season (before and after precipitation) between November and December 2015. Typical methods of sample preparation for trace metal determination such as cloud point extraction, solid phase extraction and dispersive liquid-liquid micro-extraction are time-consuming and difficult to perform; therefore, there is a crucial need for development of more effective sample preparation procedure. A convection microwave assisted digestion procedure for extraction of trace metals was developed for use prior to inductively couple plasma-mass spectrometric determination. The result showed that metals like zinc (133.50-419.30μg/m 3 ) and aluminum (53.58-378.93μg/m 3 ) had higher concentrations in atmospheric samples as compared to lake samples before precipitation. On the other hand, the concentrations of zinc, aluminum, chromium and arsenic were significantly higher in lake samples after precipitation and lower in atmospheric samples. The relationship between physicochemical parameters (pH and turbidity) and heavy metal concentrations was investigated as well. Furthermore, enrichment factor analysis indicated that anthropogenic sources such as soil dust, biomass burning and fuel combustion influenced the metal concentrations in the atmosphere. Copyright © 2016. Published by Elsevier B.V.

  4. Trace metals in the Ob and Yenisei Rivers' Estuaries (the Kara Sea).

    NASA Astrophysics Data System (ADS)

    Demina, L. L.

    2014-12-01

    Behavior of some trace metals (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni and Pb) in water column (soluble <0.45 µm and particulate fractions) and bottom sediments (surface and cores) along the two transects from the Ob River and Yenisei River Estuaries to the Kara Sea was studied. The length of both transects was about 700 km. Water depth was 12-63 m, O2 dissolved :5.36-9.55 ml l-1. Along the transects salinity increased from 0.07 to 34.2 psu, while the SPM' concentration decreased from 10.31 to 0.31 mg/l. Total suspended particulate matter load is more than one order of magnitude higher in the Ob River Estuary comparing to that of the Yenisei River. It has led to a significant difference between the suspended trace metals' concentrations (µg/l) in water of the two estuaries. With salinity increase along transects Fe susp., Mn susp. and Zn susp. decreased by a factor of 100-500, that has led to a growth of a relative portion of dissolved trace metals followed by their bioaccumulation (Demina et al., 2010). A strong direct correlation between suspended Cu, Fe and SPM mass concentration was found. For the first time along the Yenisei River' Estuary -the Kara Sea transect a direct positive correlation between Cu suspended and volume concentration of SPM (mg/ml3) was found, that was attributed to contribution of phytoplankton aggregates in the SPM composition. A trend of relationship between content of suspended As and pelitic fraction (2-10 µm) of SPM was firstly found in theses basins also. Study of trace metal speciation in the bottom sediments (adsorbed, associated with Fe-Mn (oxyhydr)oxides, organic matter and fixed in the mineral lattice or refractory) has revealed the refractory fraction to be prevailing (70-95% total content) for Fe, Zn, Cu, Co, Ni, Cr, Cd and Pb. That means that toxic heavy metals were not available for bottom fauna. Mn was predominantly found in the adsorbed and (oxyhydr)oxides geochemically labile forms, reflecting the redox condition change

  5. Microplate technique for determining accumulation of metals by algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassett, J.M.; Jennett, J.C.; Smith, J.E.

    1981-05-01

    A microplate technique was developed to determine the conditions under which pure cultures of algae removed heavy metals from aqueous solutions. Variables investigated included algal species and strain, culture age (11 and 44 days), metal (mercury, lead, cadmium, and zinc), pH, effects of different buffer solutions, and time of exposure. Plastic, U-bottomed microtiter plates were used in conjunction with heavy metal radionuclides to determine concentration factors for metal-alga combinations. The technique developed was rapid, statistically reliable, and economical of materials and cells. All species of algae studied removed mercury from solution. Green algae proved better at accumulating cadmium than didmore » blue-green algae. No alga studied removed zinc, perhaps because cells were maintained in the dark during the labeling period. Chlamydomonas sp. proved superior in ability to remove lead from solution.« less

  6. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment

    PubMed Central

    Zhou, Hang; Yang, Wen-Tao; Zhou, Xin; Liu, Li; Gu, Jiao-Feng; Wang, Wen-Lei; Zou, Jia-Ling; Tian, Tao; Peng, Pei-Qin; Liao, Bo-Han

    2016-01-01

    The objectives of the present study were to investigate heavy metal accumulation in 22 vegetable species and to assess the human health risks of vegetable consumption. Six vegetable types were cultivated on farmland contaminated with heavy metals (Pb, Cd, Cu, Zn, and As). The target hazard quotient (THQ) method was used to assess the human health risks posed by heavy metals through vegetable consumption. Clear differences were found in the concentrations of heavy metals in edible parts of the different vegetables. The concentrations of heavy metals decreased in the sequence as leafy vegetables > stalk vegetables/root vegetables/solanaceous vegetables > legume vegetables/melon vegetables. The ability of leafy vegetables to uptake and accumulate heavy metals was the highest, and that of melon vegetables was the lowest. This indicated that the low accumulators (melon vegetables) were suitable for being planted on contaminated soil, while the high accumulators (leafy vegetables) were unsuitable. In Shizhuyuan area, China, the total THQ values of adults and children through consumption of vegetables were 4.12 and 5.41, respectively, suggesting that the residents may be facing health risks due to vegetable consumption, and that children were vulnerable to the adverse effects of heavy metal ingestion. PMID:26959043

  7. Accumulation of polycyclic aromatic hydrocarbons and trace elements in the bioindicator plants Tillandsia capillaris and Lolium multiflorum exposed at PM10 monitoring stations in Stuttgart (Germany).

    PubMed

    Rodriguez, J H; Pignata, M L; Fangmeier, A; Klumpp, A

    2010-06-01

    The accumulation of polycyclic aromatic hydrocarbons (PAHs) in Tillandsia capillaris Ruiz and Pav. form capillaris and trace elements in T. capillaris and Lolium multiflorum (LAM) cv. Lema was assessed and evaluated in the city of Stuttgart, Germany. Several sites (urban, suburban and rural) categorized according to type and intensity of vehicular traffic were investigated. At these sites, plants of T. capillaris and standardized cultures of L. multiflorum were exposed to ambient air. Foliar concentrations of PAHs (16 priority pollutants according to US-EPA) and of the trace elements Br, Co, Cu, Fe, Mn, Ni, Pb and Zn were determined. A high level of vehicular traffic was associated with the largest concentrations of PM(10) in ambient air and with the highest contents of PAHs and heavy metals in the bioindicator plants. The results showed a similar pattern between T. capillaris and the standardized biomonitor L. multiflorum. Therefore, these results allow us to propose T. capillaris as a suitable bioindicator to assess the distribution of pollution impacts caused by PAHs and trace elements in different subtropical and tropical regions. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  8. Trace metal uptake by garden herbs and vegetables.

    PubMed

    Shariatpanahi, M; Anderson, A C; Mather, F

    1986-12-01

    In many regions of Iran, crops are irrigated with municipal and industrial wastewater that contain a variety of metals. The purpose of this study was to simulate the level of metals that may be presented to plants over a growing season in a controlled laboratory setting. Cadmium, lead, arsenic, chromium, mercury, nickel, copper, zinc, and selenium were applied to plants at the high rate of 200 g metal/ha/wk. The following plants were examined for metal accumulation and effects on yield: garden cress (Lipidium sativum), leek (Allium porrum L.), basil (Ocimum basilicum L.), mint (Mentha arvensis L.), onion (Allium capa L.), radish (Raphanus sativus L.), and tarragon (Artemisia draculus L.). All plants showed significant uptake of all metals when compared to control (p=0.05), and growth was significantly reduced (p=0.05). Cadmium and chromium levels of 85±7.4 and 47.6±8.9 μg/g); selenium levels were highest in tarragon (16.5±5.8 μg/g). Zinc levels were similar (p=0.05) in all species tested, as were mercury and lead. The remaining metals (nickel and copper) showed significant differences in uptake, depending on plant species.

  9. Differential accumulation of heavy metals by web spiders and ground spiders in an old-field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, K.J.; Brewer, S.R.; Taylor, D.H.

    1994-03-01

    Accumulation of the heavy metals Cd, Cu, Pb, and Zn by web spiders (orb weavers: Araneidae) and ground spiders was examined in an old-field that had been subjected to 11 years of nutrient enrichment. The study area consistent of six 0.1-ha plots treated from 1978 to 1988 with municipal sewage sludge containing heavy-metal contaminants, urea-phosphate fertilizer, or left as untreated controls. In 1991 and 1992, heavy-metal concentrations in the soil, ground spiders, and web spiders were measured with a flame AA spectrophotometer. Spiders accumulated Cd, Cu, and Zn to concentrations greater than those present in the soil but did notmore » accumulate Pb. Ground spiders contained significantly higher levels of Cd and Cu than web spiders, whereas web spiders contained slightly greater levels of Pb than ground spiders. No trend between spider guilds was apparent for Zn accumulation. To understand the impact of the application of metal-contaminated municipal sludge on ecosystem, the toxicological effects on the biology and behavior of major biotic components in terrestrial food webs must be known.« less

  10. The interactions of metal concentrations and soil properties on toxic metal accumulation of native plants in vanadium mining area.

    PubMed

    Aihemaiti, Aikelaimu; Jiang, Jianguo; Li, De'an; Liu, Nuo; Yang, Meng; Meng, Yuan; Zou, Quan

    2018-05-29

    High demand of Vanadium (V) in high-strength steel and battery manufacturing industry led to extensive V mining activity in China, and caused multi-metal pollution of soil around V mining area. To understand the phytoremediation potentials of native plants grown in V mining area, and the effect of soil properties and soil metal concentrations on toxic metal accumulations of native plants. Setaria viridis, Kochia scoparia and Chenopodium album were sampled from different sites in V mining area, soil properties, soil metal concentrations and metal accumulation amount of investigated plants were measured, bioaccumulation (BAF) and translocation (TF) efficiencies were calculated. Soil pH, cation exchange capacity (CEC) and available phosphorous (P) can significantly affect V and copper (Cu) uptake in the shoots of Setaria viridis while soil metal contents were lower than the permissible limits. Soil pH can significantly affect V accumulations in the roots and shoots of Kochia scoparia grown in slightly V polluted soils. Setaria viridis exhibited TF > 1 for moderately V and slightly chromium (Cr) polluted soils, and BAF>1 for slightly Cu contaminated soils respectively. Kochia scoparia and Chenopodium album showed TF > 1 and BAF>1 for slightly V polluted soils, respectively. Setaria viridis was practical for in situ phytoextractions of moderately V and slightly Cr polluted soils, and phytostabilization of slightly Cu contaminated soils. Kochia scoparia and Chenopodium album could be used as phytoextractor and phytostablizer in slightly V polluted soils in V mining area. Metal uptake of native plants grown in slightly multi-metal contaminated sites in V mining area can be manipulated by altering soil properties. Copyright © 2018. Published by Elsevier Ltd.

  11. Use of Synchrotron X-ray Fluorescence to Measure Trace Metal Distribution in the Brain

    NASA Astrophysics Data System (ADS)

    Linkous, D.; Flinn, J. M.; Lanzirotti, A.; Frederickson, C.; Jones, B. F.; Bertsch, P. M.

    2002-12-01

    X26A, National Synchrotron Light Source, was used to quantitatively evaluate the spatial distribution of trace metals, such as Zn and Cu, in brain tissue. X-ray microprobe techniques offer distinct advantages over other analytical methods by allowing analyses to be done in-situ with little or no chemical pretreatment and low detection limits (about 1 ppm). In the context of neuroscience, SXRF can provide non-destructive measurements of specific metal concentrations and distribution within nerve (brain) tissue. Neuronal tissue from organisms having undergone different normal or experimental conditions may be compared, with analytical capacities not limited by binding states of the metal (i.e., vesicular or enzymatic), as is the case with staining techniques.. Whole regions of tissue may be scanned for detectable trace metals at spatial resolutions of 10um or less using focused monochromatic x-ray beams. Here special attention has been given to zinc because it is the most common trace metal in the brain, and levels have been increasing in the environment. In this investigation, zinc concentrations present within the hilus of a rat hippocampus, and to a lesser extent in the cortex, have been shown to increase following long-term ingestion of zinc-enhanced drinking water that was associated with deficits in spatial memory. Concomitantly, copper concentrations in the internal capsule were comparatively lower. Other first order transition metals, Cr, V, Mn, and Co were not detected. In contrast, elevated levels of Zn, Cu, and Fe have been seen in amyloid plaques associated with Alzheimer's disease.

  12. Evaluating blood and excrement as bioindicators for metal accumulation in birds.

    PubMed

    Berglund, Åsa M M

    2018-02-01

    Birds are widely used to assess metal contamination in the environment and there are different approaches to determine the exposure level in individuals, some being destructive (collection of soft tissues) and some non-destructive (blood, feathers and excrement). The use of blood to detect internal concentrations of metals is an acknowledged method, but to what extent blood can predict the concentrations in soft tissues has been less well evaluated in wild terrestrial birds. The same is true for excrements. This study compares the non-destructive methods using blood and excrement with liver sampling, with respect to exposure and accumulation of the elements arsenic, cadmium, copper, lead and zinc in nestling pied flycatchers (Ficedula hypoleuca). Blood, liver and excrement reflected the environmental exposure of non-essential elements and were independent of nestling sex. There were asymptotic relationships between the concentration of arsenic, cadmium and lead in liver and blood, excrement and liver, and excrement and blood, but none for copper or zinc. Those relationships were generally stronger between liver and blood than between excrements and internal concentrations. Lead had the strongest associations for all matrixes. The conclusion is that blood is an appropriate tool to assess accumulation of arsenic, cadmium and especially lead, but that blood can underestimate the accumulation at highly contaminated sites. Excrement can also give an indication of metal accumulation, but may overestimate internal concentrations at high exposure, and individual variability makes direct comparisons between these matrices less appropriate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Metal accumulation by an epigean and a hypogean freshwater amphipod: Considerations for water quality assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pienet, S.

    1999-12-01

    To evaluate their potential as biomonitors of surface and underground water quality, the accumulation of essential metals, zinc and copper, by two species of amphipod crustaceans, Gammarus fossarum (an epigean amphipod) and Niphargus rhenorhodanensis (a similar but blind and hypogean form) was investigated. These two species were exposed, under controlled laboratory conditions, to different metal concentrations for 12 days. Several concentrations of each of the two metals separately and one concentration of a mixture of both were tested. Percent mortality revealed that the hypogean species was more resistant than the epigean. During the 12 days of experiment, accumulation patterns differedmore » between species and between metals. G. fossarum, but not N. rhenorhodanensis, accumulated zinc at exposures of up to 12 days and concentrations as great as 1,000 {micro}g/L. Zinc levels in tissue of G. fossarum were greater than in those of N. rhenorhodanensis. Epigean and hypogean amphipods did not clearly accumulate copper in exposures as great at 65 {micro}g/L. Possible reasons for the differences in zinc and copper accumulation between the two species are discussed. Finally, the suitability of the two species as biomonitors for surface and underground water is discussed.« less

  14. Investigating Planetesimal Evolution by Experiments with Fe-Ni Metallic Melts: Light Element Composition Effects on Trace Element Partitioning Behavior

    NASA Astrophysics Data System (ADS)

    Chabot, N. L.

    2017-12-01

    As planetesimals were heated up in the early Solar System, the formation of Fe-Ni metallic melts was a common occurrence. During planetesimal differentiation, the denser Fe-Ni metallic melts separated from the less dense silicate components, though some meteorites suggest that their parent bodies only experienced partial differentiation. If the Fe-Ni metallic melts did form a central metallic core, the core eventually crystallized to a solid, some of which we sample as iron meteorites. In all of these planetesimal evolution processes, the composition of the Fe-Ni metallic melt influenced the process and the resulting trace element chemical signatures. In particular, the metallic melt's "light element" composition, those elements present in the metallic melt in a significant concentration but with lower atomic masses than Fe, can strongly affect trace element partitioning. Experimental studies have provided critical data to determine the effects of light elements in Fe-Ni metallic melts on trace element partitioning behavior. Here I focus on combining numerous experimental results to identify trace elements that provide unique insight into constraining the light element composition of early Solar System Fe-Ni metallic melts. Experimental studies have been conducted at 1 atm in a variety of Fe-Ni systems to investigate the effects of light elements on trace element partitioning behavior. A frequent experimental examination of the effects of light elements in metallic systems involves producing run products with coexisting solid metal and liquid metal phases. Such solid-metal-liquid-metal experiments have been conducted in the Fe-Ni binary system as well as Fe-Ni systems with S, P, and C. Experiments with O-bearing or Si-bearing Fe-Ni metallic melts do not lend themselves to experiments with coexisting solid metal and liquid metal phases, due to the phase diagrams of these elements, but experiments with two immiscible Fe-Ni metallic melts have provided insight into

  15. Effective removal of hazardous trace metals from recovery boiler fly ashes.

    PubMed

    Kinnarinen, Teemu; Golmaei, Mohammad; Jernström, Eeva; Häkkinen, Antti

    2018-02-15

    The objective of this study is to introduce a treatment sequence enabling straightforward and effective recovery of hazardous trace elements from recovery boiler fly ash (RBFA) by a novel method, and to demonstrate the subsequent removal of Cl and K with the existing crystallization technology. The treatment sequence comprises two stages: dissolution of most other RBFA components than the hazardous trace elements in water in Step 1 of the treatment, and crystallization of the process chemicals in Step 2. Solid-liquid separation has an important role in the treatment, due to the need to separate first the small solid residue containing the trace elements, and to separate the valuable crystals, containing Na and S, from the liquid rich in Cl and K. According to the results, nearly complete recovery of cadmium, lead and zinc can be reached even without pH adjustment. Some other metals, such as Mg and Mn, are removed together with the hazardous metals. Regarding the removal of Cl and K from the process, in this non-optimized case the removal efficiency was satisfactory: 60-70% for K when 80% of sodium was recovered, and close to 70% for Cl when 80% of sulfate was recovered. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Soil microbial communities as suitable bioindicators of trace metal pollution in agricultural volcanic soils

    NASA Astrophysics Data System (ADS)

    Parelho, Carolina; dos Santos Rodrigues, Armindo; do Carmo Barreto, Maria; Gonçalo Ferreira, Nuno; Garcia, Patrícia

    2015-04-01

    Summary: The biological, chemical and physical properties of soil confer unique characteristics that enhance or influence its overall biodiversity. The adaptive character of soil microbial communities (SMCs) to metal pollution allows discriminating soil health, since changes in microbial populations and activities may function as excellent indicators of soil pollutants. Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals (TM). In our previous works, we identified priority TM affecting agricultural Andosols under different agricultural land uses. Within this particular context, the objectives of this study were to (i) assess the effect of soil TM pollution in different agricultural systems (conventional, traditional and organic) on the following soil properties: microbial biomass carbon, basal soil respiration, metabolic quotient, enzymatic activities (β-glucosidase, acid phosphatase and dehydrogenase) and RNA to DNA ratio; and (ii) evaluate the impact of TM in the soil ecosystem using the integrated biomarker response (IBR) based on a set of biochemical responses of SMCs. This multi-biomarker approach will support the development of the "Trace Metal Footprint" for different agricultural land uses in volcanic soils. Methods: The study was conducted in S. Miguel Island (Azores, Portugal). Microbial biomass carbon was measured by chloroform-fumigation-incubation-assay (Vance et al., 1987). Basal respiration was determined by the Jenkinson & Powlson (1976) technique. Metabolic quotient was calculated as the ratio of basal respiration to microbial biomass C (Sparkling & West, 1988). The enzymatic activities of β-glucosidase and acid phosphatase were determined by the Dick et al. (1996) method and dehydrogenase activity by the Rossel et al. (1997) method. The RNA and DNA were co-extracted from the same

  17. The effect of technogenic emissions on the heavy metals accumulation by herbaceous plants.

    PubMed

    Chaplygin, Victor; Minkina, Tatiana; Mandzhieva, Saglara; Burachevskaya, Marina; Sushkova, Svetlana; Poluektov, Evgeniy; Antonenko, Elena; Kumacheva, Valentina

    2018-02-07

    The effect of technogenic emissions on the input of Pb, Zn, Cd, Cu, Mn, Cr, and Ni into plants from the Poaceae and Asteraceae families has been studied. Soil and plant contamination by anthropogenic emissions from industrial enterprises leads the decreasing of crop quality; therefore, the monitoring investigation of plants and soils acquires special importance. The herbaceous plants may be used as bioindicators for main environmental changes. It was found that the high level of anthropogenic load related to atmospheric emissions from the power plant favors the heavy metal (HM) accumulation in herbaceous plants. Contamination with Pb, Cd, Cr, and Ni was revealed in plants growing near the power plant. Heavy metals arrive to plants from the soil in the form of mobile compounds. Plant family is one of the main factors affecting the HM distribution in the above- and underground parts of plants. Plants from the Poaceae family accumulate less chemical elements in their aboveground parts than the Asteraceae plants. Ambrosia artemisiifolia and Artemisia austriaca are HM accumulators. For assessing the stability of plants under contamination with HMs, metal accumulation by plants from soil (the bioconcentration factor) and metal phytoavailability from plants above- and underground parts (the acropetal coefficient) were calculated. According to the bioconcentration factor and translocation factor values, Poaceae species are most resistant to technogenic contamination with HMs. The translocation factor highest values were found for Tanacetum vulgare; the lowest bioconcentration factor values were typical for Poa pratensis.

  18. Influence of quantizing magnetic field and Rashba effect on indium arsenide metal-oxide-semiconductor structure accumulation capacitance

    NASA Astrophysics Data System (ADS)

    Kovchavtsev, A. P.; Aksenov, M. S.; Tsarenko, A. V.; Nastovjak, A. E.; Pogosov, A. G.; Pokhabov, D. A.; Tereshchenko, O. E.; Valisheva, N. A.

    2018-05-01

    The accumulation capacitance oscillations behavior in the n-InAs metal-oxide-semiconductor structures with different densities of the built-in charge (Dbc) and the interface traps (Dit) at temperature 4.2 K in the magnetic field (B) 2-10 T, directed perpendicular to the semiconductor-dielectric interface, is studied. A decrease in the oscillation frequency and an increase in the capacitance oscillation amplitude are observed with the increase in B. At the same time, for a certain surface accumulation band bending, the influence of the Rashba effect, which is expressed in the oscillations decay and breakdown, is traced. The experimental capacitance-voltage curves are in a good agreement with the numeric simulation results of the self-consistent solution of Schrödinger and Poisson equations in the magnetic field, taking into account the quantization, nonparabolicity of dispersion law, and Fermi-Dirac electron statistics, with the allowance for the Rashba effect. The Landau quantum level broadening in a two-dimensional electron gas (Lorentzian-shaped density of states), due to the electron scattering mechanism, linearly depends on the magnetic field. The correlation between the interface electronic properties and the characteristic scattering times was established.

  19. Do acid volatile sulfides (AVS) influence the accumulation of sediment-bound metals to benthic invertebrates under natural field conditions?

    PubMed

    De Jonge, Maarten; Dreesen, Freja; De Paepe, Josefina; Blust, Ronny; Bervoets, Lieven

    2009-06-15

    The present study evaluates the influence of acid volatile sulfides (AVS) on accumulation of sediment-bound metals in benthic invertebrates under natural field conditions. Natural sediments, pore water, surface water, and two species of widespread benthic invertebrates (Chironomus gr. thummi and Tubifex tubifex) were collected from 17 historical polluted Flemish lowland rivers and measured for metal concentrations. Different sediment characteristics were determined (AVS, organic matter, clay content) and multiple regression was used to study their relationship with accumulated metals in the invertebrates. Physical and chemical analysis of the field samples indicated low metal concentrations in the water and pore water, but very high metal concentrations in the sediment and the invertebrates, especially for Pb (5.99 micromol/ g). In general, metal accumulation in chironomids and tubificid worms was most strongly correlated with total metal concentrations in the sediment and sediment metal concentrations normalized for organic matter and clay content. Following the results of the linear regression model, AVS did not turn out to be a significant variable in describing variation in metal accumulation. Our study clearly demonstrates that, in addition to the results gained from experiments under lab conditions, benthic invertebrates can accumulate metals from unspiked field sediments even when there's an excess of AVS.

  20. TRACE ELEMENT CHEMISTRY IN RESIDUAL-TREATED SOIL: KEY CONCEPTS AND METAL BIOAVAILABILITY

    EPA Science Inventory

    Trace element solubility and availability in land-applied residuals is governed by fundamental chemical reactions between metal constituents, soil, and residual components. Iron, aluminum, and manganese oxides; organic matter; and phosphates, carbonates, and sulfides are importan...

  1. Accumulation of Heavy Metals in Roadside Soil in Urban Area and the Related Impacting Factors.

    PubMed

    Wang, Meie; Zhang, Haizhen

    2018-05-24

    Heavy metal contamination in roadside soil due to traffic emission has been recognized for a long time. However, seldom has been reported regarding identification of critical factors influencing the accumulation of heavy metals in urban roadside soils due to the frequent disturbances such as the repair of damaged roads and green belt maintanance. Heavy metals in the roadside soils of 45 roads in Xihu district, Hangzhou city were investigated. Results suggested the accumulation of Cu, Pb, Cd, Cr, and Zn in roadside soil was affected by human activity. However, only two sites had Pb and Zn excessing the standards for residential areas, respectively, according to Chinese Environmental Quality Standards for soils. The concentrations of Cu, Pb, Cd, and Zn were significantly and positively correlated to soil pH and organic matter. An insignificant correlation between the age of the roads or vegetation cover types and the concentration of heavy metals was found although they were reported closely relating to the accumulation of heavy metals in roadside soils of highways. The highest Pb, Cd, and Cr taking place in sites with heavy traffic and significant differences in the concentrations of Cu, Pb, Cd, and Zn among the different categories of roads suggested the contribution of traffic intensity. However, it was difficult to establish a quantitative relationship between traffic intensity and the concentrations of heavy metals in the roadside soil. It could be concluded that impaction of traffic emission on the accumulation of heavy metals in roadside soils in urban area was slight and soil properties such as pH and organic matters were critical factors influencing the retention of heavy metals in soils.

  2. Effects of surrounding land use on metal accumulation in environments and submerged plants in subtropical ponds.

    PubMed

    Liu, Hui; Bu, Hongmei; Liu, Guihua; Wang, Zhixiu; Liu, Wenzhi

    2015-12-01

    Ponds are widely used as stormwater treatment facilities to retain contaminants, including metals, and to improve water quality throughout the world. However, there is still a limited understanding of the effects of surrounding land use on metal accumulation in pond environments and organisms. To address this gap, we measured the concentrations of nine metals (i.e., Al, Ba, Ca, K, Li, Mg, Na, Se, and Sr) in water, sediments, and submerged plants collected from 37 ponds with different surrounding land uses in southwestern China and assessed the metal accumulation capacity of four dominant submerged plant species. Our results showed that Al, Ca, and K concentrations in the water were above drinking water standards. In the sediments, the average concentrations of Ca and Sr were higher than the corresponding soil background values. Ceratophyllum demersum L. could accumulate more K in aboveground biomass than Myriophyllum spicatum L. and Potamogeton maackianus A. Benn. The K concentration in submerged plants was positively influenced by the corresponding metal concentration in the water and negatively influenced by water temperature. Among the nine studied metals, only the water K concentration in ponds receiving agricultural runoff was significantly higher than that for ponds receiving urban and forested runoff. This result suggests that surrounding land use types have no significant effect on metal accumulation in sediments and submerged plants in the studied ponds. A large percentage of the metals in these ponds may be derived from natural sources such as the weathering of rocks.

  3. Microscopic evaluation of trace metals in cloud droplets in an acid precipitation region.

    PubMed

    Li, Weijun; Wang, Yan; Collett, Jeffrey L; Chen, Jianmin; Zhang, Xiaoye; Wang, Zifa; Wang, Wenxing

    2013-05-07

    Mass concentrations of soluble trace metals and size, number, and mixing properties of nanometal particles in clouds determine their toxicity to ecosystems. Cloud water was found to be acidic, with a pH of 3.52, at Mt. Lu (elevation 1,165 m) in an acid precipitation region in South China. A combination of Inductively Coupled Plasma Mass Spectrometry (ICPMS) and Transmission Electron Microscopy (TEM) for the first time demonstrates that the soluble metal concentrations and solid metal particle number are surprisingly high in acid clouds at Mt. Lu, where daily concentrations of SO2, NO2, and PM10 are 18 μg m(-3), 7 μg m(-3), and 22 μg m(-3). The soluble metals in cloudwater with the highest concentrations were zinc (Zn, 200 μg L(-1)), iron (Fe, 88 μg L(-1)), and lead (Pb, 77 μg L(-1)). TEM reveals that 76% of cloud residues include metal particles that range from 50 nm to 1 μm diameter with a median diameter of 250 nm. Four major metal-associated particle types are Pb-rich (35%), fly ash (27%), Fe-rich (23%), and Zn-rich (15%). Elemental mapping shows that minor soluble metals are distributed within sulfates of cloud residues. Emissions of fine metal particles from large, nonferrous industries and coal-fired power plants with tall stacks were transported upward to this high elevation. Our results suggest that the abundant trace metals in clouds aggravate the impacts of acid clouds or associated precipitation on the ecosystem and human health.

  4. Investigation of the Matrix Effect on the Accuracy of Quantitative Analysis of Trace Metals in Liquids Using Laser-Induced Breakdown Spectroscopy with Solid Substrates.

    PubMed

    Xiu, Junshan; Dong, Lili; Qin, Hua; Liu, Yunyan; Yu, Jin

    2016-12-01

    The detection limit of trace metals in liquids has been improved greatly by laser-induced breakdown spectroscopy (LIBS) using solid substrate. A paper substrate and a metallic substrate were used as a solid substrate for the detection of trace metals in aqueous solutions and viscous liquids (lubricating oils) respectively. The matrix effect on quantitative analysis of trace metals in two types of liquids was investigated. For trace metals in aqueous solutions using paper substrate, the calibration curves established for pure solutions and mixed solutions samples presented large variation on both the slope and the intercept for the Cu, Cd, and Cr. The matrix effects among the different elements in mixed solutions were observed. However, good agreement was obtained between the measured and known values in real wastewater. For trace metals in lubricating oils, the matrix effect between the different oils is relatively small and reasonably negligible under the conditions of our experiment. A universal calibration curve can be established for trace metals in different types of oils. The two approaches are verified that it is possible to develop a feasible and sensitive method with accuracy results for rapid detection of trace metals in industrial wastewater and viscous liquids by laser-induced breakdown spectroscopy. © The Author(s) 2016.

  5. HAIR HEAVY METAL AND ESSENTIAL TRACE ELEMENT CONCENTRATION IN CHILDREN WITH AUTISM SPECTRUM DISORDER.

    PubMed

    Tabatadze, T; Zhorzholiani, L; Kherkheulidze, M; Kandelaki, E; Ivanashvili, T

    2015-11-01

    Our study aims evaluation of level of essential trace elements and heavy metals in the hair samples of children with autistic spectrum disorder (ASD) and identification of changes that are associated with autistic spectrum disorders. Case-control study was conducted at Child Development Center of Iashvili Children's Central Hospital (LD).We studied 60 children aged from 4 to 5 years old. The concentrations of 28 elements among (Ca,Zn, K, Fe, Cu, Se, Mn, Cr, S, Br, Cl, Co, Ag, V, Ni, Rb, Mo, Sr, Ti, Ba, Pb, As, Hg, Cd, Sb, Zr, Sn, Bi) them trace elements and toxic metals) were determined in scalp hair samples of children (n=30) with autistic spectrum disorder (ASD) and from control group of healthy children (n=30) with matched sex and age. Micro-elemental status was detected in the hair, with roentgen-fluorescence spectrometer method (Method MBИ 081/12-4502-000, Apparatus ALVAX- CIP, USA - UKRAIN) .To achieve the similarity of study and control groups, pre and postnatal as well as family and social history were assessed and similar groups were selected. Children with genetic problems, malnourished children, children from families with social problems were excluded from the study. The diagnosis of ASD were performed by pediatrician and psychologist (using M-CHAT and ADOS) according to DSM IV (Diagnostic and Statistical Manual of Mental Disorders from the American Psychiatric association) criteria. The study was statistically analyzed using computer program SPSS 19. Deficiencies of essential trace microelements revealed in both group, but there was significant difference between control and studied groups. The most deficient element was zinc (92% in target and 20% in control), then - manganese (55% and 8%) and selenium (38% and 4%). In case of cooper study revealed excess concentration of this element only in target group in 50% of cases. The contaminations to heavy metals were detected in case of lead (78% and 16), mercury (43% and 10%) and cadmium (38% and 8%). The

  6. Phytoremediation using microbially mediated metal accumulation in Sorghum bicolor.

    PubMed

    Phieler, René; Merten, Dirk; Roth, Martin; Büchel, Georg; Kothe, Erika

    2015-12-01

    Reclaiming land that has been anthropogenically contaminated with multiple heavy metal elements, e.g., during mining operations, is a growing challenge worldwide. The use of phytoremediation has been discussed with varying success. Here, we show that a careful examination of options of microbial determination of plant performance is a key element in providing a multielement remediation option for such landscapes. We used both (a) mycorrhiza with Rhizophagus irregularis and (b) bacterial amendments with Streptomyces acidiscabies E13 and Streptomyces tendae F4 to mediate plant-promoting and metal-accumulating properties to Sorghum bicolor. In pot experiments, the effects on plant growth and metal uptake were scored, and in a field trial at a former uranium leaching heap site near Ronneburg, Germany, we could show the efficacy under field conditions. Different metals could be extracted at the same time, with varying microbial inoculation and soil amendment scenarios possible when a certain metal is the focus of interest. Especially, manganese was extracted at very high levels which might be useful even for phytomining approaches.

  7. Determination of trace metals in spirits by total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Siviero, G.; Cinosi, A.; Monticelli, D.; Seralessandri, L.

    2018-06-01

    Eight spirituous samples were analyzed for trace metal content with Horizon Total Reflection X-Ray Fluorescence (TXRF) Spectrometer. The expected single metal amount is at the ng/g level in a mixed aqueous/organic matrix, thus requiring a sample preparation method capable of achieving suitable limits of detection. On-site enrichment and Atmospheric Pressure-Vapor Phase Decomposition allowed to detect Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Sr and Pb with detection limits ranging from 0.1 ng/g to 4.6 ng/g. These results highlight how the synergy between instrument and sample preparation strategy may foster the use of TXRF as a fast and reliable technique for the determination of trace elements in spirituous samples, either for quality control or risk assessment purposes.

  8. Metal accumulation in soils derived from volcano-sedimentary rocks, Rio Itapicuru Greenstone Belt, northeastern Brazil.

    PubMed

    Dos Santos, Laíse Milena Ribeiro; Gloaguen, Thomas Vincent; Fadigas, Francisco de Souza; Chaves, Joselisa Maria; Martins, Tamires Moraes Oliveira

    2017-12-01

    Many countries and some Brazilian regions have defined the guideline values for metals in soils. However, the local geological features may be so heterogeneous that global or even regional guideline values cannot be applied. The Greenstone Belts are worldwide geological formations of vast extension, containing mineralization of various metals (e.g., Au, Cr, Ni, and Ag). Natural concentrations of soils must be known to correctly assess the impact of mining. We studied the soils of the Rio Itapicuru Greenstone Belt (RIGB), of Paleoproterozoic age, sampling at 24 sites (0-0.20m) in the areas not or minimally human impacted, equally distributed in the three units of the RIGB: Volcanic Mafic Unit (VMU), Volcanic Felsic Unit (VFU), and Volcano-clastic Sedimentary Unit (SU). The natural pseudo-total concentrations of Cr, Ni, Cu, Zn, Pb, Fe, and Mn were obtained by acid digestion (EPA3050b) both in the soil and the particle-size fractions (sand and clay+silt). The concentrations of metals in RIGB soils, especially Cr and Ni, are generally higher than those reported for other regions of Brazil or other countries. Even the sedimentary soils have relatively high metal values, naturally contaminated by the VMU of the RIGB; a potential impact on Mesozoic and Cenozoic sedimentary rocks located near the study region is highly expected. Metals are concentrated (80%) in the fine particle-size fraction, implying an easy availability through surface transport (wind and runoff). We introduced a new index, called the Fe-independent accumulation factor - AF -Fe , which reveals that 90-98% of the dynamics of the trace metals is associated with the iron geochemical cycle. We primarily conclude that determining the guideline values for different soil classes in variable geological/geochemical environment and under semiarid climate is meaningless: the concentration of metals in soils is clearly more related to the source material than to the pedogenesis processes. Copyright © 2017 Elsevier

  9. Historical accumulation and ecological risk assessment of heavy metals in sediments of a drinking water lake.

    PubMed

    Wang, Guoqiang; Hu, Xinqi; Zhu, Yi; Jiang, Hong; Wang, Hongqi

    2018-06-21

    Heavy metal contamination in sediments is progressively being recognized as a challenging problem in large parts of the developing world, particularly in Asian countries. A drinking water lake in Yunnan-Guizhou plateau, China named Hongfeng Lake was selected as the research target. Forty surface sediment samples and 4 sediment cores were collected to reveal the accumulation of heavy metals in the sediments of the lake. The mean concentrations of Cr, Cu, Pb, Cd, As, and Hg in surface sediments were 81.67, 45.61, 29.78, 0.53, 22.71, and 0.25 mg/kg, respectively, which exceeded the background levels of sediment 1.1~3.3 times. The calculation of geoaccumulation (I geo ) and potential ecological risk (PER) index analysis were preformed, and the results showed a considerable risk for Cd and Hg on the whole. Spatially, the northern part showed a higher risk than the southern part and tributaries of the lake, and a moderate risk in the overall sediment of the lake. The historical level of heavy metals in Hongfeng Lake was traced by vertical sediments study and it was dated back approximately 35 years. The EF trends of a feature sampling site HF8 showed strong temporal variations, and peaked in the year 1995. After that, the EFs exhibited a declining trend, which reflects productive environmental protection and management by the local government. For the Hongfeng Lake, a typical lake with heavy metal-contaminated sediments, the in-situ remediation technique could be a suitable method for its remediation.

  10. Trace element supplementation in the biogas production from wheat stillage--optimization of metal dosing.

    PubMed

    Schmidt, Thomas; Nelles, Michael; Scholwin, Frank; Pröter, Jürgen

    2014-09-01

    A trace element dosing strategy for the anaerobic digestion of wheat stillage was developed in this study. Mesophilic CSTR reactors were operated with the sulfuric substrate wheat stillage in some cases under trace element deficiency. After supplementing trace elements during the start-up, one of the elements of Fe, Ni, Co, Mo, and W were depleted in one digester while still augmenting the other elements to determine minimum requirements for each element. The depletion of Fe and Ni resulted in a rapid accumulation of volatile fatty acids while Co and W seem to have a long-term effect. Based on the results it was possible to reduce the dosing of trace elements, which is positive with reference to economic and environmental aspects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Heavy metal accumulation by poplar in calcareous soil with various degrees of multi-metal contamination: implications for phytoextraction and phytostabilization.

    PubMed

    Hu, Yahu; Nan, Zhongren; Su, Jieqiong; Wang, Ning

    2013-10-01

    The object of this study was to assess the capacity of Populus alba L. var. pyramidalis Bunge for phytoremediation of heavy metals on calcareous soils contaminated with multiple metals. In a pot culture experiment, a multi-metal-contaminated calcareous soil was mixed at different ratios with an uncontaminated, but otherwise similar soil, to establish a gradient of soil metal contamination levels. In a field experiment, poplars with different stand ages (3, 5, and 7 years) were sampled randomly in a wastewater-irrigated field. The concentrations of cadmium (Cd), Cu, lead (Pb), and zinc (Zn) in the poplar tissues and soil were determined. The accumulation of Cd and Zn was greatest in the leaves of P. pyramidalis, while Cu and Pb mainly accumulated in the roots. In the pot experiment, the highest tissue concentrations of Cd (40.76 mg kg(-1)), Cu (8.21 mg kg(-1)), Pb (41.62 mg kg(-1)), and Zn (696 mg kg(-1)) were all noted in the multi-metal-contaminated soil. Although extremely high levels of Cd and Zn accumulated in the leaves, phytoextraction using P. pyramidalis may take at least 24 and 16 years for Cd and Zn, respectively. The foliar concentrations of Cu and Pb were always within the normal ranges and were never higher than 8 and 5 mg kg(-1), respectively. The field experiment also revealed that the concentrations of all four metals in the bark were significantly higher than that in the wood. In addition, the tissue metal concentrations, together with the NH4NO3-extractable concentrations of metals in the root zone, decreased as the stand age increased. P. pyramidalis is suitable for phytostabilization of calcareous soils contaminated with multiple metals, but collection of the litter fall would be necessary due to the relatively high foliar concentrations of Cd and Zn.

  12. Factors affecting the toxicity of trace metals to fertilization success in broadcast spawning marine invertebrates: A review.

    PubMed

    Hudspith, M; Reichelt-Brushett, Amanda; Harrison, Peter L

    2017-03-01

    Significant amounts of trace metals have been released into both nearshore and deep sea environments in recent years, resulting in increased concentrations that can be toxic to marine organisms. Trace metals can negatively affect external fertilization processes in marine broadcast spawners and may cause a reduction in fertilization success at elevated concentrations. Due to its sensitivity and ecological importance, fertilization success has been widely used as a toxicity endpoint in ecotoxicological testing, which is an important method of evaluating the toxicity of contaminants for management planning. Ecotoxicological data regarding fertilization success are available across the major marine phyla, but there remain uncertainties that impair our ability to confidently interpret and analyse these data. At present, the cellular and biochemical events underlying trace metal toxicity in external fertilization are not known. Metal behavior and speciation play an important role in bioavailability and toxicity but are often overlooked, and disparities in experimental designs between studies limit the degree to which results can be synthesised and compared to those of other relevant species. We reviewed all available literature covering cellular toxicity mechanisms, metal toxicities and speciation, and differences in methodologies between studies. We conclude that the concept of metal toxicity should be approached in a more holistic manner that involves elucidating toxicity mechanisms, improving the understanding of metal behavior and speciation on bioavailability and toxicity, and standardizing the fertilization assay methods among different groups of organisms. We identify opportunities to improve the fertilization assay that will allow robust critical and comparative analysis between species and their sensitivities to trace metals during external fertilization, and enable data to be more readily extrapolated to field conditions. Copyright © 2017 Elsevier B.V. All

  13. [Analysis and assessment of atmospheric pollution based on accumulation characterization of heavy metals in Platanus acerifolia leaves].

    PubMed

    Liu, Ling; Fang, Yan-Ming; Wang, Shun-Chang; Xie, Ying; Wang, Cheng-Run

    2014-03-01

    The present work was aimed to evaluate the heavy metal pollution in the atmosphere of Huainan City. We measured and clustered the accumulation of six heavy metals in Platanus acerifolia leaves in 20 sampling fields with six types of environmental conditions, and analyzed the EF value of heavy metal enrichment in the leaves. The results showed that the accumulations in Platanus acerifolia leaves varied according to different types of metals, following the order of Zn > Cu > Cr > Ni > Pb > Cd. Environmental conditions also had great influence on the accumulation of heavy metals. Cd and Cu were mostly found in cement plant and mine, respectively, and Cr, Ni, Pb and Zn were significant higher in main road, compared with other environmental conditions. The average values of EF for all the metals expect Cr in scenic and village area were over 1. The average values of EF for all the metals in mine, power plant, main road and cement plant were above 3. The overall pollution condition of heavy metals in Huainan City followed the order of Cd > Cu > Zn > Ni > Pb > Cr.

  14. CO2 and vitamin B12 interactions determine bioactive trace metal requirements of a subarctic Pacific diatom.

    PubMed

    King, Andrew L; Sañudo-Wilhelmy, Sergio A; Leblanc, Karine; Hutchins, David A; Fu, Feixue

    2011-08-01

    Phytoplankton growth can be limited by numerous inorganic nutrients and organic growth factors. Using the subarctic diatom Attheya sp. in culture studies, we examined how the availability of vitamin B(12) and carbon dioxide partial pressure (pCO(2)) influences growth rate, primary productivity, cellular iron (Fe), cobalt (Co), zinc (Zn) and cadmium (Cd) quotas, and the net use efficiencies (NUEs) of these bioactive trace metals (mol C fixed per mol cellular trace metal per day). Under B(12)-replete conditions, cells grown at high pCO(2) had lower Fe, Zn and Cd quotas, and used those trace metals more efficiently in comparison with cells grown at low pCO(2). At high pCO(2), B(12)-limited cells had ~50% lower specific growth and carbon fixation rates, and used Fe ~15-fold less efficiently, and Zn and Cd ~3-fold less efficiently, in comparison with B(12)-replete cells. The observed higher Fe, Zn and Cd NUE under high pCO(2)/B(12)-replete conditions are consistent with predicted downregulation of carbon-concentrating mechanisms. Co quotas of B(12)-replete cells were ∼5- to 14-fold higher in comparison with B(12)-limited cells, suggesting that >80% of cellular Co of B(12)-limited cells was likely from B(12). Our results demonstrate that CO(2) and vitamin B(12) interactively influence growth, carbon fixation, trace metal requirements and trace metal NUE of this diatom. This suggests the need to consider complex feedback interactions between multiple environmental factors for this biogeochemically critical group of phytoplankton in the last glacial maximum as well as the current and future changing ocean.

  15. LA-ICP-MS Study of Trace Elements in the Chanuskij Metal

    NASA Technical Reports Server (NTRS)

    Petaev, Michail I.

    2005-01-01

    This progress report covers work done during the second year of the 3-year proposal. During this year we resolved many issues relevant to the analytical technique developed by us for measuring trace elements in meteoritic metals. This technique was used to measure concentrations of Fe, Ni, Co, Cr, Cu, Ga, Ge, As, Mo, Ru, Rh, Pd, Sb, W, Re, Os, Ir, Pt, and Au in eight large (120 - 160 microns) metal grains from both "igneous" and "metamorphic" lithologies of the Chanuskij silicate inclusions. The first application of OUT technique to metal grains from thin sections showed some limitations. Small thickness of metal grains in the thin section limited the signal to 3-4 time-slices instead of 10- 1 1 ones in polished sections of iron meteorites studied before.

  16. Assessment of health risk of trace metal pollution in surface soil and road dust from e-waste recycling area in China

    PubMed Central

    Yekeen, Taofeek Akangbe; Xu, Xijin; Zhang, Yuling; Wu, Yousheng; Kim, Stephani; Reponen, Tiina; Dietrich, Kim N.; Ho, Shuk-mei; Chen, Aimin; Huo, Xia

    2017-01-01

    Informal recycling of e-waste and the resulting heavy metal pollution has become a serious burden on the ecosystem in Guiyu, China. In this investigation, we evaluated the trace metals concentration of community soil and road dust samples from 11 locations in Guiyu and 5 locations (consists of residential areas, kindergarten/school and farm field) in a reference area using graphite furnace atomic absorption spectrophotometer. The study spanned four seasons, 2012–2013, with a view to assess the risk associated with e-waste recycling in the study area. The concentration of Pb, Cd, Cr and Mn were 448.73, 0.71, 63.90 and 806.54 mg/kg in Guiyu soil and 589.74, 1.94, 69.71 and 693.74 mg/kg, in the dust, respectively. Pb and Cd values were significantly higher (P≤ 0.05) than the reference area and the mixed model analysis with repeated seasonal measurements revealed soil Pb and Cd levels that were 2.32 and 4.34 times, while the ratios for dust sample were 4.10 and 3.18 times higher than the reference area. Contamination factor, degree of contamination and pollution load index indicated that all sampling points had high level of metal contamination except farm land and kindergarten compound. The cumulative hazard index of Pb, Cd, Cr and Mn for children in exposed area was 0.99 and 1.62 for soil and dust respectively, suggesting non-cancer health risk potential. The significant accumulation of trace metals in the e-waste recycling area predisposes human life, especially children, to a potentially serious health risk. PMID:27230155

  17. Assessment of health risk of trace metal pollution in surface soil and road dust from e-waste recycling area in China.

    PubMed

    Yekeen, Taofeek Akangbe; Xu, Xijin; Zhang, Yuling; Wu, Yousheng; Kim, Stephani; Reponen, Tiina; Dietrich, Kim N; Ho, Shuk-Mei; Chen, Aimin; Huo, Xia

    2016-09-01

    Informal recycling of e-waste and the resulting heavy metal pollution has become a serious burden on the ecosystem in Guiyu, China. In this investigation, we evaluated the trace metal concentration of community soil and road dust samples from 11 locations in Guiyu and 5 locations (consisting of residential areas, kindergarten/school, and farm field) in a reference area using graphite furnace atomic absorption spectrophotometer. The study spanned four seasons, 2012-2013, with a view to assess the risk associated with e-waste recycling in the study area. The concentrations of Pb, Cd, Cr, and Mn were 448.73, 0.71, 63.90, and 806.54 mg/kg in Guiyu soil and 589.74, 1.94, 69.71, and 693.74 mg/kg, in the dust, respectively. Pb and Cd values were significantly higher (P ≤ 0.05) than the reference area, and the mixed model analysis with repeated seasonal measurements revealed soil Pb and Cd levels that were 2.32 and 4.34 times, while the ratios for dust sample were 4.10 and 3.18 times higher than the reference area. Contamination factor, degree of contamination, and pollution load index indicated that all sampling points had a high level of metal contamination except farm land and kindergarten compound. The cumulative hazard index of Pb, Cd, Cr, and Mn for children in exposed area was 0.99 and 1.62 for soil and dust, respectively, suggesting non-cancer health risk potential. The significant accumulation of trace metals in the e-waste recycling area predisposes human life, especially children, to a potentially serious health risk.

  18. Trace metal contamination in surface sediments of intertidal zone from Qinhuangdao, China, revealed by geochemical and magnetic approaches: Distribution, sources, and health risk assessment.

    PubMed

    Zhu, Zongmin; Xue, Junhui; Deng, Yuzhen; Chen, Lin; Liu, Jiangfeng

    2016-04-15

    Based on geochemical and magnetic approaches, the distribution, sources, and health risk of trace metals in surface sediments from a seashore tourist city were investigated. A significant correlation was found between magnetic susceptibility (χ) and trace metals, which suggested that levels of trace metals in the sediments can be effectively depicted by the magnetic approach. The spatial distribution of χ and trace metals matched well with the city layout with relatively higher values being found in the port and busy tourist areas. This result, together with enrichment factors (EFs) and Tomlinson pollution load index (PLI) of metals, suggested that the influence of human activities on the coastal environment was noticeable. Principal component analysis (PCA) indicated that trace metals in the sediments were derived from both anthropogenic and natural sources. Noncarcinogenic risk assessment showed that there was no potential health risk of exposure to metals by means of ingestion or inhalation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Toxic and trace metal concentrations in liver and kidney of dogs: influence of diet, sex, age, and pathological lesions.

    PubMed

    Löpez-Alonso, Marta; Miranda, Marta; García-Partida, Paulino; Mendez, Adriana; Castillo, Cristina; Benedito, José Luis

    2007-05-01

    The aim of this study was to provide data on the main toxic and trace metals in the liver and kidney of domestic dogs in Galicia, NW Spain and to evaluate the influence of diet, sex, age, and pathological lesions on metal accumulation. Samples of the liver and kidney from 77 male and female dogs, aged between 6 mo and 18 yr, were collected during ordinary necropsy. Samples were acid-digested and metal concentrations determined by inductively coupled plasma (ICP)-mass spectrometry and ICP-atomic emission spectrometry. Mean toxic metal concentrations (geometric means for liver and kidney respectively) were 11.5 and 15.8 microg/kg wet weight for As, 56.3 and 166 microg/kg for Cd, 32.7 and 51.9 microg/kg for Hg, and 60.1 and 23.6 microg/kg for Pb. For the trace metals, these concentrations were respectively 16.3 and 21.0 microg/kg for Co, 57.6 and 43.9 microg/kg for Cr, 42.1 and 5.95 mg/kg for Cu, 394 mg/kg and 95.7 mg/kg for Fe, 2.39 and 0.956 mg/kg for Mn, 0.522 and 0.357 mg/kg for Mo, 23.8 and 26.8 microg/kg for Ni, 0.686 and 1.39 mg/kg for Se, and 46.7 and 26.0 mg/kg for Zn. Cd concentrations in the kidney significantly increased with age, and Co concentrations in the liver and kidney significantly decreased with age. Hepatic Pb concentrations were significantly higher in growing (<1 yr) and old (>10 yr) dogs. Animals with pathological lesions showed significantly higher Co and lower Mn and Zn concentrations in liver than animals without macroscopic abnormalities. Dogs that received commercial diets in general showed low variability in hepatic mineral status compared to animals that receive homemade feeds or a mixture of commercial and homemade feeds.

  20. Metal-Polycyclic Aromatic Hydrocarbon Mixture Toxicity in Hyalella azteca. 2. Metal Accumulation and Oxidative Stress as Interactive Co-toxic Mechanisms.

    PubMed

    Gauthier, Patrick T; Norwood, Warren P; Prepas, Ellie E; Pyle, Greg G

    2015-10-06

    Mixtures of metals and polycyclic aromatic hydrocarbons (PAHs) are commonly found in aquatic environments. Emerging reports have identified that more-than-additive mortality is common in metal-PAH mixtures. Individual aspects of PAH toxicity suggest they may alter the accumulation of metals and enhance metal-derived reactive oxygen species (ROS). Redox-active metals (e.g., Cu and Ni) are also capable of enhancing the redox cycling of PAHs. Accordingly, we explored the mutual effects redox-active metals and PAHs have on oxidative stress, and the potential for PAHs to alter the accumulation and/or homeostasis of metals in juvenile Hyalella azteca. Amphipods were exposed to binary mixtures of Cu, Cd, Ni, or V, with either phenanthrene (PHE) or phenanthrenequinone (PHQ). Mixture of Cu with either PAH produced striking more-than-additive mortality, whereas all other mixtures amounted to strictly additive mortality following 18-h exposures. We found no evidence to suggest that interactive effects on ROS production were involved in the more-than-additive mortality of Cu-PHE and Cu-PHQ mixtures. However, PHQ increased the tissue concentration of Cu in juvenile H. azteca, providing a potential mechanism for the observed more-than-additive mortality.

  1. Barnacles as biomonitors of trace metal availabilities in Hong Kong coastal waters: changes in space and time.

    PubMed

    Rainbow, P S; Blackmore, G

    2001-06-01

    The use of selected organisms as biomonitors of trace metal bioavailabilities allows comparisons to be made over space and time. The concentrations of 11 trace metals (arsenic, cadmium, chromium, cobalt, copper, iron, lead, manganese, nickel, silver, zinc) were measured in the bodies of two barnacle species, Balanus amphitrite and Tetraclita squamosa, from up to 18 littoral sites from Hong Kong coastal waters in April 1998. These data provide evidence on the geographical variation in metal bioavailabilities at this time, and are compared selectively against historical data sets for 1986 and 1989. Geographical variation in bioavailabilities is clear for several metals, with hotspots for arsenic, copper, nickel and silver at Chai Wan Kok, and for lead in Junk Bay. Victoria Harbour sites head the rankings for silver and arsenic, and Tolo Harbour sites exhibit relatively elevated cobalt, manganese and zinc. Many bioavailabilities of trace metals to barnacles are lower in Hong Kong coastal waters in 1998 than in 1986. The two barnacle species are widespread and the extensive data set presented is a benchmark which can be compared to the results of similar biomonitoring programmes elsewhere in the Indo-Pacific and beyond.

  2. Influence of size-fractioning techniques on concentrations of selected trace metals in bottom materials from two streams in northeastern Ohio

    USGS Publications Warehouse

    Koltun, G.F.; Helsel, Dennis R.

    1986-01-01

    Identical stream-bottom material samples, when fractioned to the same size by different techniques, may contain significantly different trace-metal concentrations. Precision of techniques also may differ, which could affect the ability to discriminate between size-fractioned bottom-material samples having different metal concentrations. Bottom-material samples fractioned to less than 0.020 millimeters by means of three common techniques (air elutriation, sieving, and settling) were analyzed for six trace metals to determine whether the technique used to obtain the desired particle-size fraction affects the ability to discriminate between bottom materials having different trace-metal concentrations. In addition, this study attempts to assess whether median trace-metal concentrations in size-fractioned bottom materials of identical origin differ depending on the size-fractioning technique used. Finally, this study evaluates the efficiency of the three size-fractioning techniques in terms of time, expense, and effort involved. Bottom-material samples were collected at two sites in northeastern Ohio: One is located in an undeveloped forested basin, and the other is located in a basin having a mixture of industrial and surface-mining land uses. The sites were selected for their close physical proximity, similar contributing drainage areas, and the likelihood that trace-metal concentrations in the bottom materials would be significantly different. Statistically significant differences in the concentrations of trace metals were detected between bottom-material samples collected at the two sites when the samples had been size-fractioned by means of air elutriation or sieving. Statistical analyses of samples that had been size fractioned by settling in native water were not measurably different in any of the six trace metals analyzed. Results of multiple comparison tests suggest that differences related to size-fractioning technique were evident in median copper, lead, and

  3. Trace metals solubility in rainwater: evaluation of rainwater quality at a watershed area, Istanbul.

    PubMed

    Başak, Bertan; Alagha, Omar

    2010-08-01

    In this study, 79 bulk precipitation samples were collected at two sampling sites near Büyükçekmece Lake, one of the important drinking water sources of Istanbul, for the period of October 2001 to July 2002. The study comprised the determination of trace and toxic metals concentrations in rain water. The concentrations of the metals in this study were found to be higher than those reported by other researchers around the world. The solubility of toxic metals was found in the order of Cd>Cu>V>Zn>Ni>Pb>Cr. Solubility of metals under acidic conditions (pH<5.5) was approximately five times higher than those under neutral conditions with Cd as the most soluble metal (50% soluble). Statistical evaluations including seasonal variations, crustal enrichment factors, and correlation matrix were discussed to identify the possible sources of these pollutants. The study revealed that anthropogenic elements were highly enriched especially for Cd>Cu>Pb which were found to be highly enriched. Significant portion of Cu and Pb could be increased by the effect of local sources like cement industry in the area; however, the rest of the investigated trace metals could be brought to the sampling site by long-range transport to the Büyükçekmece Lake watershed area.

  4. Heavy metals effects on forage crops yields and estimation of elements accumulation in plants as affected by soil.

    PubMed

    Grytsyuk, N; Arapis, G; Perepelyatnikova, L; Ivanova, T; Vynograds'ka, V

    2006-02-01

    Heavy metals (Cu, Cd, Pb, Zn) effect on the productivity of forage crops (clover and perennial cereal grasses) and their accumulation in plants, depending on the concentration of these elements in a soil, has been studied in micro-field experiments on three types of soil. The principle objective was to determine regularities of heavy metals migration in a soil-plant system aiming the estimation of permissible levels of heavy metals content in soils with the following elaboration of methods, which regulate the toxicants transfer to plants. Methods of field experiments, agrochemical and atomic absorption analysis were used. Results were statistically treated by Statistica 6.0, S-Plus 6. Experimental results have shown that the intensity of heavy metals accumulation in plants depends on the type of the soil, the species of plants, the physicochemical properties of heavy metals and their content in the soil. Logarithmic interdependency of heavy metals concentration in soils and their accumulation in plants is suggested. However, the strong correlation between the different heavy metals concentrations in the various soils and the yield of crops was not observed. Toxicants accumulation in crops decreased in time.

  5. Contamination characteristics, ecological risk and source identification of trace metals in sediments of the Le'an River (China).

    PubMed

    Chen, Haiyang; Chen, Ruihui; Teng, Yanguo; Wu, Jin

    2016-03-01

    Recognizing the pollution characteristics of trace metals in river sediments and targeting their potential sources are of key importance for proposing effective strategies to protect watershed ecosystem health. In this study, a comprehensive investigation was conducted to identify the contamination and risk characteristics of trace metals in sediments of Le'an River which is a main tributary of the largest freshwater lake in China, Poyang Lake. To attain this objective, several tools and models were considered. Geoaccumulation index and enrichment factor were used to understand the general pollution characteristic of trace metals in sediments. Discriminant analysis was applied to identify the spatial variability of sediment metals. Sediment quality guidelines and potential ecological risk index were employed for ecological risk evaluation. Multivariate curve resolution-alternating least square was proposed to extract potential pollution sources, as well as the application of Monte-Carlo simulation for uncertainty analysis of source identification. Results suggested that the sediments in Le'an River were considerably polluted by the investigated trace metals (Cd, Cr, As, Hg, Pb, Cu, Zn and Ni). Sediment concentrations of these metals showed significant spatial variations. The potential ecological risk lay in high level. Comparatively speaking, the metals of Cd, Cu and Hg were likely to result in more harmful effects. Mining activities and the application of fertilizers and agrochemicals were identified as the main anthropogenic sources. To protect the ecological system of Le'an River and Poyang Lake watershed, industrial mining and agricultural activities in this area should to be strictly regulated. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Effects of elevated CO2 concentrations and fly ash amended soils on trace element accumulation and translocation among roots, stems and seeds of Glycine max (L.) Merr.

    PubMed

    Rodriguez, J H; Klumpp, A; Fangmeier, A; Pignata, M L

    2011-03-15

    The carbon dioxide (CO(2)) levels of the global atmosphere and the emissions of heavy metals have risen in recent decades, and these increases are expected to produce an impact on crops and thereby affect yield and food safety. In this study, the effects of elevated CO(2) and fly ash amended soils on trace element accumulation and translocation in the root, stem and seed compartments in soybean [Glycine max (L.) Merr.] were evaluated. Soybean plants grown in fly ash (FA) amended soil (0, 1, 10, 15, and 25% FA) at two CO(2) regimes (400 and 600 ppm) in controlled environmental chambers were analyzed at the maturity stage for their trace element contents. The concentrations of Br, Co, Cu, Fe, Mn, Ni, Pb and Zn in roots, stems and seeds in soybeans were investigated and their potential risk to the health of consumers was estimated. The results showed that high levels of CO(2) and lower concentrations of FA in soils were associated with an increase in biomass. For all the elements analyzed except Pb, their accumulation in soybean plants was higher at elevated CO(2) than at ambient concentrations. In most treatments, the highest concentrations of Br, Co, Cu, Fe, Mn, and Pb were found in the roots, with a strong combined effect of elevated CO(2) and 1% of FA amended soils on Pb accumulation (above maximum permitted levels) and translocation to seeds being observed. In relation to non-carcinogenic risks, target hazard quotients (TQHs) were significant in a Chinese individual for Mn, Fe and Pb. Also, the increased health risk due to the added effects of the trace elements studied was significant for Chinese consumers. According to these results, soybean plants grown for human consumption under future conditions of elevated CO(2) and FA amended soils may represent a toxicological hazard. Therefore, more research should be carried out with respect to food consumption (plants and animals) under these conditions and their consequences for human health. Copyright © 2010

  7. Three-dimensional flow and trace metal mobility in shallow Chalk groundwater, Dorset, United Kingdom

    NASA Astrophysics Data System (ADS)

    Schürch, Marc; Edmunds, W. Michael; Buckley, David

    2004-06-01

    The three-dimensional groundwater flow and the hydrogeochemical regime have been determined in the Bere Stream valley, North Dorset Downs, southern England. The dual porosity characteristics of the Portsdown Chalk have been established using geophysical and hydrochemical borehole logging. Chemical properties have been established using major and trace element analyses of depth samples and groundwaters. The study site is located at the unconfined-confined boundary of the Chalk aquifer, where it is overflowing in the observation boreholes. The Chalk dips locally at about 5 m/km to the south-east under Palaeogene confining beds and three distinctive flow horizons may be recognised. The Chalk groundwater is of Ca-HCO 3 type and three separate geochemical groundwater zones were also determined with depth, having different oxygen levels and trace element characteristics. (1) A shallow O 2-rich zone with around 80% dissolved O 2 and low trace element concentrations. (2) A mixing and transition zone with significant concentrations of trace elements and high trace metal concentrations at its base: manganese 29 μg/l, nickel 55 μg/l, cadmium 146 μg/l, and zinc 214 μg/l. (3) A deeper zone with depleted oxygen (5-20% dissolved O 2) and with longer water residence times shown by higher Mg/Ca and K/Na ratios as well as higher Sr and F. The groundwater geochemistry in the Chalk aquifer is dominated by incongruent reactions with the fine-grained carbonate sediments, which release trace element impurities to the water. Some of the metals are co-precipitated with Mn- and Fe-oxide phases on fissure surfaces, whilst producing a purer calcite. During subsequent recrystallisation to purer iron- and manganese-oxides on fissure surfaces under specific geochemical and hydrodynamic conditions, trace metals are released into the fissure water. The results demonstrate the need to monitor quality stratification and the changes in the groundwater baseline chemistry in areas close to the

  8. Risk assessment of trace metal-polluted coastal sediments on Hainan Island: A full-scale set of 474 geographical locations covering the entire island.

    PubMed

    Li, Feng; Lin, Ze-Feng; Wen, Jia-Sheng; Wei, Yan-Sha; Gan, Hua-Yang; He, Hai-Jun; Lin, Jin-Qin; Xia, Zhen; Chen, Bi-Shuang; Guo, Wen-Jie; Tan, Cha-Sheng; Cai, Hua-Yang

    2017-12-15

    Hainan Island is the second largest island and one of the most famous tourist destinations in China, but sediment contamination by trace metals in coastal areas is a major issue. However, full-scale risk assessments of trace metal-polluted coastal sediments are lacking. In this study, coastal surface sediments from 474 geographical locations covering almost the entire island were collected to identify risk-related variables. Controlling factors and possible sources of trace metals were identified, and the toxicity effects were carefully evaluated. Our results suggest that trace-metal pollution in coastal sediments, which was mainly caused by Pb, Zn and Cu emissions, has primarily resulted from industrial sewage and shipping activities and has threatened the offshore ecosystem of Hainan Island and warrants extensive consideration. This is the first study that has systematically investigated trace metal-polluted coastal sediments throughout the entirety of Hainan Island and provides solid evidence for sustainable marine management in the region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Assessing pollution in a Mediterranean lagoon using acid volatile sulfides and estimations of simultaneously extracted metals.

    PubMed

    Zaaboub, Noureddine; Helali, Mohamed Amine; Martins, Maria Virgínia Alves; Ennouri, Rym; Béjaoui, Béchir; da Silva, Eduardo Ferreira; El Bour, Monia; Aleya, Lotfi

    2016-11-01

    Bizerte Lagoon is a southern Mediterranean semi-enclosed lagoon with a maximum depth of 12 m. After assessing sediment quality, the authors report on the physicochemical characteristics of the lagoon's surface sediment using SEM (simultaneously extracted metals) and AVS (acid volatile sulfides) as proxies. Biogeochemical tools are used to investigate the environmental disturbance at the water-sediment interface by means of SEM and AVS to seek conclusions concerning the study area's pollution status. Results confirm accumulation of trace elements in sediment. The use of the SEM-AVS model with organic matter in sediment (ƒOC) confirms possible bioavailability of accumulated trace elements, especially Zn, in the southern part of the lagoon, with organic matter playing an important role in SEM excess correction to affirm a nontoxic total metal sediment state. Individual trace element toxicity is dependent on the bioavailable fraction of SEM Metal on sediment, as is the influence of lagoon inflow from southern water sources on element bioavailability. Appropriate management strategies are highly recommended to mitigate any potential harmful effects on health from this heavy-metal-based pollution.

  10. Trace metals in fugitive dust from unsurfaced roads in the Viburnum Trend resource mining District of Missouri--implementation of a direct-suspension sampling methodology.

    PubMed

    Witt, Emitt C; Wronkiewicz, David J; Pavlowsky, Robert T; Shi, Honglan

    2013-09-01

    Fugitive dust from 18 unsurfaced roadways in Missouri were sampled using a novel cyclonic fugitive dust collector that was designed to obtain suspended bulk samples for analysis. The samples were analyzed for trace metals, Fe and Al, particle sizes, and mineralogy to characterize the similarities and differences between roadways. Thirteen roads were located in the Viburnum Trend (VT) mining district, where there has been a history of contaminant metal loading of local soils; while the remaining five roads were located southwest of the VT district in a similar rural setting, but without any mining or industrial process that might contribute to trace metal enrichment. Comparison of these two groups shows that trace metal concentration is higher for dusts collected in the VT district. Lead is the dominant trace metal found in VT district dusts representing on average 79% of the total trace metal concentration, and was found moderately to strongly enriched relative to unsurfaced roads in the non-VT area. Fugitive road dust concentrations calculated for the VT area substantially exceed the 2008 Federal ambient air standard of 0.15μgm(-3) for Pb. The pattern of trace metal contamination in fugitive dust from VT district roads is similar to trace metal concentrations patterns observed for soils measured more than 40years ago indicating that Pb contamination in the region is persistent as a long-term soil contaminant. Published by Elsevier Ltd.

  11. Total and water-soluble trace metal content of urban background PM 10, PM 2.5 and black smoke in Edinburgh, UK

    NASA Astrophysics Data System (ADS)

    Heal, Mathew R.; Hibbs, Leon R.; Agius, Raymond M.; Beverland, Iain J.

    Toxicological studies have implicated trace metals in airborne particles as possible contributors to respiratory and/or cardiovascular inflammation. As part of an epidemiological study, co-located 24 h samples of PM 10, PM 2.5 and black smoke (BS) were collected for 1 year at an urban background site in Edinburgh, and each sample sequentially extracted with ultra-pure water, then concentrated HNO 3/HCl, and analysed for Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd and Pb. This yields a comprehensive data set for UK urban airborne trace metal. The median ( n>349) daily water-soluble metal concentration in PM 2.5 ranged from 0.05 ng m -3 for Ti to 5.1 ng m -3 for Pb; and in PM 10 from 0.18 ng m -3 for Ti to 11.7 ng m -3 for Fe. Median daily total (i.e. water+acid-extractable) metal concentration in PM 2.5 ranged from 0.3 ng m -3 for As to 27.6 ng m -3 for Fe; and in PM 10 from 0.37 ng m -3 for As to 183 ng m -3 for Fe. The PM 2.5:PM 10 ratio varied considerably with metal, from <17%, on average, for Ti and Fe, to >70% for V, As, Cd and Pb. The 11 trace metals constituted proportionally more of the PM 10-2.5 fraction than of the PM 2.5 fraction (0.9%). The proportion of water-soluble metal in each size-fraction varied considerably, from <10% water-soluble Fe and Ti in PM 10-2.5, to >50% water-soluble V, Zn, As and Cd in PM 2.5. Although Fe generally dominated the trace metal, water-soluble metal also contained significant Zn, Pb and Cu, and for all size and solubility fractions >90% of trace metal was comprised of Fe, Zn, Pb and Cu. Statistical analyses suggested three main sources: traffic; static combustion; and crustal. The association of metals with traffic (Cu, Fe, Mn, Pb, Zn) was consistent with traffic-induced non-exhaust "resuspension" rather than direct exhaust emission. Meteorology contributed to the wide variation in daily trace metal concentration. The proportion of trace metal in particles varied significantly with the air mass source and was highest on days for

  12. Evaluating Insects as Bioindicators of Heavy Metal Contamination and Accumulation near Industrial Area of Gujrat, Pakistan

    PubMed Central

    Azam, Iqra; Afsheen, Sumera; Zia, Ahmed; Javed, Muqaddas; Saeed, Rashid; Sarwar, Muhammad Kaleem; Munir, Bushra

    2015-01-01

    To study the accumulation and contamination of heavy metals (i.e., Cd, Cr, Cu, Ni, and Zn) in soil, air, and water, few insect species were assayed as ecological indicators. Study area comes under industrial zone of district Gujrat of Punjab, Pakistan. Insects used as bioindicators included a libellulid dragonfly (Crocothemis servilia), an acridid grasshopper (Oxya hyla hyla), and a nymphalid butterfly (Danaus chrysippus) near industrial zone of Gujrat. Accumulation of Cd was highest in insect species followed by Cu, Cr, Zn, and Ni at p < 0.05. Hierarchical cluster analysis (HACA) was carried out to study metal accumulation level in all insects. Correlation and regression analysis confirmed HACA observations and declared concentration of heavy metals above permissible limits. Metal concentrations in insects were significantly higher near industries and nallahs in Gujrat and relatively higher concentrations of metals were found in Orthoptera than Odonata and Lepidoptera. The total metal concentrations in insects were pointed significantly higher at sites S3 (Mid of HalsiNala), S9 (End of HalsiNala), and S1 (Start of HalsiNala), whereas lowest value was detected at site S6 (Kalra Khasa) located far from industrial area. HACA indicates that these insect groups are potential indicators of metal contamination and can be used in biomonitoring. PMID:26167507

  13. Evaluating Insects as Bioindicators of Heavy Metal Contamination and Accumulation near Industrial Area of Gujrat, Pakistan.

    PubMed

    Azam, Iqra; Afsheen, Sumera; Zia, Ahmed; Javed, Muqaddas; Saeed, Rashid; Sarwar, Muhammad Kaleem; Munir, Bushra

    2015-01-01

    To study the accumulation and contamination of heavy metals (i.e., Cd, Cr, Cu, Ni, and Zn) in soil, air, and water, few insect species were assayed as ecological indicators. Study area comes under industrial zone of district Gujrat of Punjab, Pakistan. Insects used as bioindicators included a libellulid dragonfly (Crocothemis servilia), an acridid grasshopper (Oxya hyla hyla), and a nymphalid butterfly (Danaus chrysippus) near industrial zone of Gujrat. Accumulation of Cd was highest in insect species followed by Cu, Cr, Zn, and Ni at p < 0.05. Hierarchical cluster analysis (HACA) was carried out to study metal accumulation level in all insects. Correlation and regression analysis confirmed HACA observations and declared concentration of heavy metals above permissible limits. Metal concentrations in insects were significantly higher near industries and nallahs in Gujrat and relatively higher concentrations of metals were found in Orthoptera than Odonata and Lepidoptera. The total metal concentrations in insects were pointed significantly higher at sites S3 (Mid of HalsiNala), S9 (End of HalsiNala), and S1 (Start of HalsiNala), whereas lowest value was detected at site S6 (Kalra Khasa) located far from industrial area. HACA indicates that these insect groups are potential indicators of metal contamination and can be used in biomonitoring.

  14. Rapid amperometric detection of trace metals by inhibition of an ultrathin polypyrrole-based glucose biosensor.

    PubMed

    Ayenimo, Joseph G; Adeloju, Samuel B

    2016-02-01

    A sensitive and reliable inhibitive amperometric glucose biosensor is described for rapid trace metal determination. The biosensor utilises a conductive ultrathin (55 nm thick) polypyrrole (PPy) film for entrapment of glucose oxidase (GOx) to permit rapid inhibition of GOx activity in the ultrathin film upon exposure to trace metals, resulting in reduced glucose amperometric response. The biosensor demonstrates a relatively fast response time of 20s and does not require incubation. Furthermore, a complete recovery of GOx activity in the ultrathin PPy-GOx biosensor is quickly achieved by washing in 2mM EDTA for only 10s. The minimum detectable concentrations achieved with the biosensor for Hg(2+), Cu(2+), Pb(2+) and Cd(2+) by inhibitive amperometric detection are 0.48, 1.5, 1.6 and 4.0 µM, respectively. Also, suitable linear concentration ranges were achieved from 0.48-3.3 µM for Hg(2+), 1.5-10 µM for Cu(2+), 1.6-7.7 µM for Pb(2+) and 4-26 µM for Cd(2+). The use of Dixon and Cornish-Bowden plots revealed that the suppressive effects observed with Hg(2+) and Cu(2+) were via non-competitive inhibition, while those of Pb(2+) and Cd(2+) were due to mixed and competitive inhibition. The stronger inhibition exhibited by the trace metals on GOx activity in the ultrathin PPy-GOx film was also confirmed by the low inhibition constant obtained from this analysis. The biosensor was successfully applied to the determination of trace metals in tap water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Macroalgal biomonitors of trace metal contamination in acid sulfate soil aquaculture ponds.

    PubMed

    Gosavi, K; Sammut, J; Gifford, S; Jankowski, J

    2004-05-25

    Earthen shrimp aquaculture ponds are often impacted by acid sulfate soils (ASS), typically resulting in increased disease and mortality of cultured organisms. Production losses have been attributed to either low pH or to elevated concentrations of toxic metals, both direct products of pyrite oxidation in ASS. The standard farm management practice to minimise effects of pyrite oxidation is to maintain pH of pond waters above 5, based on the assumption that dissolved metal bioavailability is negligible at this pH. This study aimed to test the validity of this assumption, and therefore elucidate a possible role of toxic heavy metals in observed decreases in farm productivity. Metal bioaccumulation in four genera of macroalgae, Ulva sp., Enteromorpha sp., Cladophora sp. and Chaetomorpha sp., sampled from ASS-affected shrimp aquaculture ponds were measured using inductively coupled plasma-optical emission spectroscopy (ICP-OES) to assess the relative bioavailability of dissolved metals within the system. Results showed that all four genera of macroalgae accumulated appreciable quantities of Fe, Al, Zn, Cd, Cu, As and Pb. Iron and Al, the most common metals mobilised from ASS, were both accumulated in all algal genera to concentrations three orders of magnitude greater than all other metals analysed. These findings indicate that dissolved heavy metals are indeed bioavailable within the aquaculture pond system. A literature search of heavy metal bioaccumulation by these algal genera revealed concentrations recorded in this study are comparable to highly contaminated environments, such as those exposed to urban, industrial and mining pollution. The results of this study indicate that dissolved metal bioavailability in many earthen shrimp aquaculture ponds may be higher than previously thought.

  16. Probing the distribution and contamination levels of 10 trace metal/metalloids in soils near a Pb/Zn smelter in Middle China.

    PubMed

    Li, Zhonggen; Feng, Xinbin; Bi, Xiangyang; Li, Guanghui; Lin, Yan; Sun, Guangyi

    2014-03-01

    The horizontal and vertical distribution patterns and contamination status of ten trace metal/metalloids (Ag, Bi, Co, Cr, Ge, In, Ni, Sb, Sn, Tl) in soils around one of the largest Chinese Pb-Zn smelter in Zhuzhou City, Central China, were revealed. Different soil samples were collected from 11 areas, including ten agricultural areas and one city park area, with a total of 83 surface soil samples and six soil cores obtained. Trace metal/metalloids were determined by inductively coupled plasma-mass spectrometry after digestion by an acid mixture of HF and HNO3. The results showed that Ag, Bi, In, Sb, Sn, and Tl contents decreased both with the distance to the Pb-Zn smelter as well as the soil depth, hinting that these elements were mainly originated from the Pb-Zn smelting operations and were introduced into soils through atmospheric deposition. Soil Ge was influenced by the smelter at a less extent, while the distributions of Co, Cr, and Ni were roughly even among most sampling sites and soil depths, suggesting that they were primarily derived from natural sources. The contamination status, as revealed by the geo-accumulation index (I geo), indicated that In and Ag were the most enriched elements, followed by Sb, Bi, and Sn. In general, Cr, Tl, Co, Ni, and Ge were of an uncontaminated status.

  17. First assessment of trace metal concentration in mangrove crab eggs and other tissues, SE Brazil.

    PubMed

    de Almeida, Eduardo Vianna; Kütter, Vinicius Tavares; Marques, Eduardo Duarte; da Silva-Filho, Emmanoel Vieira

    2016-07-01

    The mangrove crab Ucides cordatus is widespread in the Brazilian coast, which has an important role in nutrient cycling. This species reproduces in summer and females carry eggs about a month, when they maintain contact with water and sediments. It remains unclear if trace metals can be absorbed or adsorbed by the eggs during development. The present study aims to investigate, for the first time, trace metal concentrations in ovigerous female tissues and eggs of U. cordatus in two areas with different metal pollution levels in the Southeastern Brazil. Samples were collected in two different mangroves, Guanabara Bay (GB) highly polluted environment and Paraíba do Sul River (PSR). In both populations, we observed significant increase of V, Cr, and Mn concentrations along eggs maturation. The higher metals averages were found in PSR population. This trend was reported since the 1990s and lower concentrations in GB marine organisms were attributed to reducing conditions, high organic load, and the presence of sulfide ions. These conditions restrict the bioavailability of metals in the bay, with exception of Mn. No significant differences were observed in gills and muscles. In both populations of the present study, V, Zn, As, and Pb were higher in eggs of initial stage, whereas Mn, Ni, Cu, and Cd were higher in hepatopancreas. Beside this, V, Cr, Mn, As, and Pb showed an increase concerning egg development. Thus, V, As, and Pb in eggs come from two sources previous discussed: females and environment. Zinc came mainly from females due to essential function. Those new information should be considered as one of the mechanisms of trace metal transfer to the trophic chain, between benthonic and pelagic environment.

  18. Trace metals in the brain: allosteric modulators of ligand-gated receptor channels, the case of ATP-gated P2X receptors.

    PubMed

    Huidobro-Toro, J Pablo; Lorca, Ramón A; Coddou, Claudio

    2008-03-01

    Zinc and copper are indispensable trace metals for life with a recognized role as catalysts in enzyme actions. We now review evidence supporting the role of trace metals as novel allosteric modulators of ionotropic receptors: a new and fundamental physiological role for zinc and copper in neuronal and brain excitability. The review is focussed on ionotropic receptor channels including nucleotide receptors, in particular the P2X receptor family. Since zinc and copper are stored within synaptic vesicles in selected brain regions, and released to the synaptic cleft upon electrical nerve ending depolarization, it is plausible that zinc and copper reach concentrations in the synapse that profoundly affect ligand-gated ionic channels, including the ATP-gated currents of P2X receptors. The identification of key P2X receptor amino acids that act as ligands for trace metal coordination, carves the structural determinants underlying the allosteric nature of the trace metal modulation. The recognition that the identified key residues such as histidines, aspartic and glutamic acids or cysteines in the extracellular domain are different for each P2X receptor subtype and may be different for each metal, highlights the notion that each P2X receptor subtype evolved independent strategies for metal coordination, which form upon the proper three-dimensional folding of the receptor channels. The understanding of the molecular mechanism of allosteric modulation of ligand-operated ionic channels by trace metals is a new contribution to metallo-neurobiology.

  19. Assessment of Heavy Metals Contamination in Reclaimed Mine Soil and their Accumulation and Distribution in Eucalyptus Hybrid.

    PubMed

    Maiti, Subodh Kumar; Rana, Vivek

    2017-01-01

    The metal contamination in reclaimed mine soil (RMS) of Jharia coal field, Dhanbad (India) using various contamination indices and their accumulation in tissues of Eucalyptus hybrid were assessed. In RMS, metal concentrations were found higher (202%-533%) than control soil (CS) with major contribution of Co and Mn followed by Zn, Cu and Pb. Principal component analysis (PCA) of metals present in RMS was carried out to assess their origin in RMS. The contamination factor (CF) values in RMS indicated moderate to very high level of pollution (ranged between 2.02 and 5.33). Higher accumulation of Pb in barks (three times), Zn in leaves (4.5 times), Mn in leaves (19 times), and Cu in roots (1.4 times) was found in trees growing on RMS than CS. The study concluded that different tree tissues accumulate varied concentration of heavy metals in RMS and thus for biomonitoring of metals, specific tissues has to be selected.

  20. Trace metals in occupationally and nonoccupationally exposed individuals.

    PubMed Central

    Johnson, D E; Tillery, J B; Prevost, R J

    1975-01-01

    An epidemiological survey was conducted in Houston, Texas on five trace metals in policemen, parking garage attendants, women living near freeways and three control groups of subjects. The controls were matched with the exposed groups for covariate information such as age, sex, smoking habits, ethnic background, socioeconomic status, hair color, and education. Each subject was sampled four times for blood, urine, hair, and feces, and these samples were analyzed for lead, cadmium, zinc, manganese, and copper. Lead and cadmium were correlated with airborne exposures but zinc, manganese and copper were not. The second part of this paper deals with a market study of platinum and palladium markets and a design of an epidemiology survey of individuals occupationally and nonoccupationally exposed to these two metals. The market survey shows that although the catalytic muffler will have a major impact on the market, it is predicted that producers can meet these demands. PMID:1157784

  1. Distribution of PAHs and trace metals in urban stormwater sediments: combination of density fractionation, mineralogy and microanalysis.

    PubMed

    El-Mufleh, Amelène; Béchet, Béatrice; Basile-Doelsch, Isabelle; Geffroy-Rodier, Claude; Gaudin, Anne; Ruban, Véronique

    2014-01-01

    Sediment management from stormwater infiltration basins represents a real environmental and economic issue for stakeholders due to the pollution load and important tonnages of these by-products. To reduce the sediment volumes to treat, organic and metal micropollutant-bearing phases should be identified. A combination of density fractionation procedure and microanalysis techniques was used to evaluate the distribution of polycyclic aromatic hydrocarbons (PAHs) and trace metals (Cd, Cr, Cu, Ni, Pb, and Zn) within variable density fractions for three urban stormwater basin sediments. The results confirm that PAHs are found in the lightest fractions (d < 1.9, 1.9 < d < 2.3 g cm(-3)) whereas trace metals are equally distributed within the light, intermediary, and highest fractions (d < 1.9, 1.9 < d < 2.3, 2.3 < d < 2.6, and d > 2.8 g cm(-3)) and are mostly in the 2.3 < d < 2.6 g cm(-3) fraction. The characterization of the five fractions by global analyses and microanalysis techniques (XRD and MEB-EDX) allowed us to identify pollutant-bearing phases. PAHs are bound to the organic matter (OM) and trace metals to OM, clays, carbonates and dense particles. Moreover, the microanalysis study underlines that OM is the main constituent responsible for the aggregation, particularly for microaggregation. In terms of sediment management, it was shown that density fractionation is not suitable for trace metals but could be adapted to separate PAH-enriched phases.

  2. Tracing metal sources in core sediments of the artificial lake An-Dong, Korea: Concentration and metal association.

    PubMed

    Choi, Mansik; Park, Jongkyu; Cho, Dongjin; Jang, Dongjun; Kim, Miseon; Choi, Jongwoo

    2015-09-15

    The concentration and source of trace metals in the artificial lake An-Dong, which has widespread abandoned mines and a Zn smelter upstream of the drainage basin, were investigated. Soils (18ea), stream waters (15ea) and sediments (15ea) in the main channel and five tributaries downstream of the Zn smelter towards the lake (~ 50 km downstream) were collected. And two core sediments were also taken from the middle of the lake. All samples were analyzed for trace metals in bulk and in a 1N HCl-leached fraction. Although the soil and stream sediments consisted mostly of sand-sized grains, concentrations of metals (Cu, Zn, Cd and Pb) were very high in all samples, including soils, stream waters and sediments at sites near the Zn smelter. However the metal concentrations decreased rapidly downstream, suggesting that the area of impact of the smelter lies within 5 km. Highly enriched metal concentrations were also found in dated core sediments from the lake; while the highest concentrations of Co, Ni, As, Cu, Zn, Cd and Pb were detected in the bottom of the sediment core (dated 1980) they decreased towards 2000, and only Cu, Zn and Cd concentrations increased again in present-day samples. Since the temporal variation in metal concentrations appeared consistent with historical variation in ore mining and Zn smelter production rates, a model combining the production rates of each was developed, which estimated 3%, 12% and 7% contributions from Zn smelter compared to ore mining production rate to levels of Cu, Cd and Zn, respectively, suggesting the different pathways by different sources. In addition, analysis of Cd/Zn and Cu/Zn ratios showed that contamination from ore mining decreased from 1980 to 2000, and smelting processes were most likely responsible for metal enrichment (Cu, Cd and Zn) from 2000 to the present. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Preservation of NOM-metal complexes in a modern hyperalkaline stalagmite: Implications for speleothem trace element geochemistry

    NASA Astrophysics Data System (ADS)

    Hartland, Adam; Fairchild, Ian J.; Müller, Wolfgang; Dominguez-Villar, David

    2014-03-01

    We report the first quantitative study of the capture of colloidal natural organic matter (NOM) and NOM-complexed trace metals (V, Co, Cu, Ni) in speleothems. This study combines published NOM-metal dripwater speciation measurements with high-resolution laser ablation ICPMS (LA-ICPMS) and sub-annual stable isotope ratio (δ18O and δ13C), fluorescence and total organic carbon (TOC) analyses of a fast-growing hyperalkaline stalagmite (pH ˜11) from Poole’s Cavern, Derbyshire UK, which formed between 1997 and 2008 AD. We suggest that the findings reported here elucidate trace element variations arising from colloidal transport and calcite precipitation rate changes observed in multiple, natural speleothems deposited at ca. pH 7-8. We find that NOM-metal(aq) complexes on the boundary between colloidal and dissolved (˜1 nm diameter) show an annual cyclicity which is inversely correlated with the alkaline earth metals and is explained by calcite precipitation rate changes (as recorded by kinetically-fractionated stable isotopes). This relates to the strength of the NOM-metal complexation reaction, resulting in very strongly bound metals (Co in this system) essentially recording NOM co-precipitation (ternary complexation). More specifically, empirical partition coefficient (Kd) values between surface-reactive metals (V, Co, Cu, Ni) [expressed as ratio of trace element to Ca ratios in calcite and in solution] arise from variations in the ‘free’ fraction of total metal in aqueous solution (fm). Hence, differences in the preservation of each metal in calcite can be explained quantitatively by their complexation behaviour with aqueous NOM. Differences between inorganic Kd values and field measurements for metal partitioning into calcite occur where [free metal] ≪ [total metal] due to complexation reactions between metals and organic ligands (and potentially inorganic colloids). It follows that where fm ≈ 0, apparent inorganic Kd app values are also ≈0, but the

  4. Accumulation and health risk of heavy metals in vegetables from harmless and organic vegetable production systems of China.

    PubMed

    Chen, Yong; Hu, Wenyou; Huang, Biao; Weindorf, David C; Rajan, Nithya; Liu, Xiaoxiao; Niedermann, Silvana

    2013-12-01

    Heavy metal accumulation in vegetables is a growing concern for public health. Limited studies have elucidated the heavy metal accumulation characteristics and health risk of different vegetables produced in different facilities such as greenhouses and open-air fields and under different management modes such as harmless and organic. Given the concern over the aforementioned factors related to heavy metal accumulation, this study selected four typical greenhouse vegetable production bases, short-term harmless greenhouse vegetable base (SHGVB), middle-term harmless greenhouse vegetable base (MHGVB), long-term harmless greenhouse vegetable base (LHGVB), and organic greenhouse vegetable base (OGVB), in Nanjing City, China to study heavy metal accumulation in different vegetables and their associated health risks. Results showed that soils and vegetables from SHGVB and OGVB apparently accumulated fewer certain heavy metals than those from other bases, probably due to fewer planting years and special management, respectively. Greenhouse conditions significantly increased certain soil heavy metal concentrations relative to open-air conditions. However, greenhouse conditions did not significantly increase concentrations of As, Cd, Cu, Hg, and Zn in leaf vegetables. In fact, under greenhouse conditions, Pb accumulation was effectively reduced. The main source of soil heavy metals was the application of large amounts of low-grade fertilizer. There was larger health risk for producers' children to consume vegetables from the three harmless vegetable bases than those of residents' children. The hazard index (HI) over a large area exceeded 1 for these two kinds of children in the MHGVB and LHGVB. There was also a slight risk in the SHGVB for producers' children solely. However, the HI of the whole area of the OGVB for two kinds of children was below 1, suggesting low risk of heavy metal exposure through the food chain. Notably, the contribution rate of Cu and Zn to the HI were

  5. Concentrations and chemical forms of trace metals in coastal seawater on coral reef and their seasonal variation

    NASA Astrophysics Data System (ADS)

    Ganaha, S.; ITOH, A.

    2011-12-01

    Coastal seawater on coral reef near Okinawa island in Japan, which is in oligotrophic condition, has a diverse and unique ecosystem. It is possible that nutritive sals and trace metals, classified into nutrient type, are effectively supplied to marine phytoplankton and zooxanthellae from seawater. However, the concentrations and chemical forms of trace metals in coastal seawater on coral reef have been scarcely reported so far. In the present study, the characteristics of the concentrations and chemical forms of trace metals in such a seawater were investigated with seasonal variation by analyzing the coastal seawater at every month, after an analytical method for a simple chemical speciation including on-site treatment was established. The analytical method using a chelating resin and a disposable syringe was employed for de-salt and preconcentration of trace metals in costal seawater. After that, trace metals in the concentrated solution were measured by ICP-MS. Three types of chemical forms of an ionic, a dissolved, and an acid-soluble were separated without any treatment, by filtering with membrane filter of 0.45 μm, and by filtering after adding nitric acid, respectively. Then, a monitoring investigation of the coastal seawater on coral reef, located at Sesoko island near the northern part of Okinawa island, was carried out once at every month from Sep. 2010 to Aug. 2011. As a result, 10 elements in the dissolved form in each sample could be determined. The average concentrations for all samples from Sep. 2010 to Apr. 2011 were as follows: Mo:10.7 ppb, U:3.2 ppb, V:1.5 ppb, Mn:0.17 ppb, Ni:0.16 ppb, Zn:0.13 ppb, Cu:0.070 ppb, Pb:0.024 ppb, Co:0.0022 ppb, Cd:0.0016ppb. The concentrations for most trace metals were almost close to ones in open surface seawater of the Pacific ocean. For the acid-soluble form, the concentrations of V, Mo, and U were almost same with those of the dissolved form, and ones of Mn, Co, Ni, Cu, and Cd were slightly larger than ones in

  6. Variations in time and space of trace metal aerosol concentrations in urban areas and their surroundings

    NASA Astrophysics Data System (ADS)

    Moreno, T.; Querol, X.; Alastuey, A.; Reche, C.; Cusack, M.; Amato, F.; Pandolfi, M.; Pey, J.; Richard, A.; Prévôt, A. S. H.; Furger, M.; Gibbons, W.

    2011-05-01

    Using an unprecedentedly large geochemical database, we compare temporal and spatial variations in inhalable trace metal background concentrations in a major city (Barcelona, Spain) and at a nearby mountainous site (Montseny) affected by the urban plume. Both sites are contaminated by technogenic metals, with V, Pb, Cu, Zn, Mn, Sn, Bi, Sb and Cd all showing upper continental crust (UCC) normalised values >1 in broadly increasing order. The highest metal concentrations usually occur during winter at Barcelona and summer in Montseny. This seasonal difference was especially marked at the remote mountain site in several elements such as Ti and Rare Earth Elements, which recorded campaign maxima, exceeding PM10 concentrations seen in Barcelona. The most common metals were Zn, Ti, Cu, Mn, Pb and V. Both V and Ni show highest concentrations in summer, and preferentially fractionate into the finest PM sizes (PM1/PM10 > 0.5) especially in Barcelona, this being attributed to regionally dispersed contamination from fuel oil combustion point sources. Within the city, hourly metal concentrations are controlled either by traffic (rush hour double peak for Cu, Sb, Sn, Ba) or industrial plumes (morning peak of Ni, Mn, Cr generated outside the city overnight), whereas at Montseny metal concentrations rise during the morning to a single, prolonged afternoon peak as contaminated air transported by the sea breeze moves into the mountains. Our exceptional database, which includes hourly measurements of chemical concentrations, demonstrates in more detail than previous studies the spatial and temporal variability of urban pollution by trace metals in a given city. Technogenic metalliferous aerosols are commonly fine in size and therefore potentially bioavailable, emphasising the case for basing urban background PM characterisation not only on physical parameters such as mass but also on sample chemistry and with special emphasis on trace metal content.

  7. Variations in time and space of trace metal aerosol concentrations in urban areas and their surroundings

    NASA Astrophysics Data System (ADS)

    Moreno, T.; Querol, X.; Alastuey, A.; Reche, C.; Cusack, M.; Amato, F.; Pandolfi, M.; Pey, J.; Richard, A.; Prévôt, A. S. H.; Furger, M.; Gibbons, W.

    2011-09-01

    Using an unprecedentedly large geochemical database, we compare temporal and spatial variations in inhalable trace metal background concentrations in a major city (Barcelona, Spain) and at a nearby mountainous site (Montseny) affected by the urban plume. Both sites are contaminated by technogenic metals, with V, Pb, Cu, Zn, Mn, Sn, Bi, Sb and Cd all showing upper continental crust (UCC) normalised values >1 in broadly increasing order. The highest metal concentrations usually occur during winter at Barcelona and summer in Montseny. This seasonal difference was especially marked at the remote mountain site in several elements such as Ti and Rare Earth Elements, which recorded campaign maxima, exceeding PM10 concentrations seen in Barcelona. The most common metals were Zn, Ti, Cu, Mn, Pb and V. Both V and Ni show highest concentrations in summer, and preferentially fractionate into the finest PM sizes (PM1/PM10 > 0.5) especially in Barcelona, this being attributed to regionally dispersed contamination from fuel oil combustion point sources. Within the city, hourly metal concentrations are controlled either by traffic (rush hour double peak for Cu, Sb, Sn, Ba) or industrial plumes (morning peak of Ni, Mn, Cr generated outside the city overnight), whereas at Montseny metal concentrations rise during the morning to a single, prolonged afternoon peak as contaminated air transported by the sea breeze moves into the mountains. Our exceptional database, which includes hourly measurements of chemical concentrations, demonstrates in more detail than previous studies the spatial and temporal variability of urban pollution by trace metals in a given city. Technogenic metalliferous aerosols are commonly fine in size and therefore potentially bioavailable, emphasising the case for basing urban background PM characterisation not only on physical parameters such as mass but also on sample chemistry and with special emphasis on trace metal content.

  8. Seasonal trends in growth and biomass accumulation of selected nutrients and metals in six species of emergent aquatic macrophytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrends, L.L.; Bailey, E.; Bulls, M.J.

    1996-05-01

    Growth and biomass accumulation of selected nutrients and trace metals were monitored for six species of aquatic macrophytes during June, August and November, 1993. Plant species were cultivated in two polyculture treatments, each replicated three times. Polyculture I consisted of Scirpus acutus (hardstem bullrush), Phragmites communes (common reed), and Phalaris arundinacea (canary grass). Polyculture H consisted of Typha spp. (cattail), Scirpus atrovirens (green bullrush), and Scirpus cyperinus (wool grass). Each of the six cells (6 x 9 x 0.6 m), was operated as a gravel-substrate, subsurface-flow wetlands in a continuous recirculating mode. At six week intervals, macro, micro and tracemore » elements were dissolved and added to the sump of the recirculating system. On each of three sampling dates, replicate shoot and root samples were collected, segregated by species and tissue type (roots, rhizomes, stems and leaves), and prepared for gravimetric biomass estimates and chemical analysis. Tissue specific concentrations of N, P, K, Ca, Mg, Fe, Mn, Zn and Cu, were determined on each date for each species and tissue type. Results will be discussed with respect to species specific growth rates, biomass accumulation, and seasonal uptake and translocation of plant nutrients.« less

  9. FATE AND TRANSPORT OF EMISSIONS FOR SEVERAL TRACE METALS OVER THE UNITED STATES

    EPA Science Inventory

    A regional model for atmospheric photochemistry and particulate matter is used to predict the fate and transport of five trace metals: lead, manganese, total chromium, nickel, and cadmium over the continental United States during January and July 2001. Predicted concentrations of...

  10. Response of Southern Ocean Phytoplankton Communities to Trace Metal (including Iron) and Light Availability

    NASA Astrophysics Data System (ADS)

    Fietz, S.; Roychoudhury, A. N.; Thomalla, S.; Mtshali, T. N.; Philibert, R.; Van Horsten, N.; Loock, J. C.; Cloete, R.

    2016-02-01

    Phytoplankton primary productivity depends on macro- and micronutrient availability and in turn plays a key role in the marine biogeochemical cycles. The role of iron in regulating phytoplankton primary production and thus biogeochemical cycles in the Southern Ocean has been widely recognized; however, it also became obvious that iron is not the sole factor limiting primary production in the Southern Ocean and that light, for instance, might aggravate or relief trace nutrient limitation. We conducted a suite of ship-board incubation experiments in austral summer 2013/14, 2014/15 and winter 2015 to shed light on the complex interplay between trace metal and light limitation. We observed a strong difference in acclimation and photophysiological response depending on the environmental conditions of the in-situ communities prior to the experiment. The differences in acclimation and photophysiological responses resulted in different growth and macronutrient uptake rates. Revisited stations did, however, not always show the same responses. At at least one station we will link the incubation experiments to the in-situ vertical profiles of trace metals, macronutrients and primary productivity.

  11. Trace element carriers in combined sewer during dry and wet weather: an electron microscope investigation.

    PubMed

    El Samrani, A G; Lartiges, B S; Ghanbaja, J; Yvon, J; Kohler, A

    2004-04-01

    The nature of trace element carriers contained in sewage and combined sewer overflow (CSO) was investigated by TEM-EDX-Electron diffraction and SEM-EDX. During dry weather, chalcophile elements were found to accumulate in sewer sediments as early diagenetic sulfide phases. The sulfurization of some metal alloys was also evidenced. Other heavy metal carriers detected in sewage include metal alloys, some iron oxihydroxide phases and neoformed phosphate minerals such as anapaite. During rain events, the detailed characterization of individual mineral species allowed to differentiate the contributions from various specific sources. Metal plating particles, barite from automobile brake, or rare earth oxides from catalytic exhaust pipes, originate from road runoff, whereas PbSn alloys and lead carbonates are attributed to zinc-works from roofs and paint from building siding. Soil contribution can be traced by the presence of clay minerals, iron oxihydroxides, zircons and rare earth phosphates. However, the most abundant heavy metal carriers in CSO samples were the sulfide particles eroded from sewer sediments. The evolution of relative abundances of trace element carriers during a single storm event, suggests that the pollution due to the "first flush" effect principally results from the sewer stock of sulfides and previously deposited metal alloys, rather than from urban surface runoff.

  12. Historical trace element accumulation in marine sediments from the Tamaulipas shelf, Gulf of Mexico: An assessment of natural vs anthropogenic inputs.

    PubMed

    Celis-Hernandez, Omar; Rosales-Hoz, Leticia; Cundy, Andrew B; Carranza-Edwards, Arturo; Croudace, Ian W; Hernandez-Hernandez, Hector

    2018-05-01

    The Gulf of Mexico is considered one of the world's major marine ecosystems, supporting important fisheries and habitats such as barrier islands, mangrove forests, seagrass beds, coral reefs etc. It also hosts a range of complex offshore petroleum exploration, extraction, and refining industries, which may have chronic or acute impacts on ecosystem functioning. Previous work on the marine effects of this activity is geographically incomplete, and has tended to focus on direct hydrocarbon impacts, while impacts from other related contaminants (e.g. heavy metals, salt-rich drilling muds) which may be discharged from oil facilities have not been widely assessed. Here, we examine historical trace element accumulation in marine sediments collected from four sites in the Tamaulipas shelf, Gulf of Mexico, in the area of the Arenque oil field. Dated sediment cores were used to examine the sources, and historical and contemporary inputs, of trace metals (including those typically present in oil industry discharges) and their potential biological impact in the Tamaulipas aquatic environment over the last 100years. CaO (i.e. biogenic component) normalized data showed increasing V, Cr, Zn, Cu, Pb, Zr and Ba towards the sediment surface in three of the four cores, with Ba and V (based on an adverse effect index) possibly associated with adverse effects on organisms. Dated Ba/CaO profiles show an increase of 30-137% after opening of oil installations in the study area, and can be broadly correlated with increasing oil industry activities across the wider Gulf of Mexico. Data do not record however a clear enhancement of Ba concentration in sediment cores collected near to oil platforms over more distal cores, indicating that any Ba released from drilling platforms is incorporated quickly into the sediments around the drilling sites, and once this element has been deposited its rate of resuspension and mobility is low. Sediment core data from the Tamaulipas shelf show the

  13. Assessment of potable water quality including organic, inorganic, and trace metal concentrations.

    PubMed

    Nahar, Mst Shamsun; Zhang, Jing

    2012-02-01

    The quality of drinking water (tap, ground, and spring) in Toyama Prefecture, Japan was assessed by studying quality indicators including major ions, total carbon, and trace metal levels. The physicochemical properties of the water tested were different depending on the water source. Major ion concentrations (Ca(2+), K(+), Si(4+), Mg(2+), Na(+), SO(4)(2-), HCO(3)(-), NO(3)(-), and Cl(-)) were determined by ion chromatography, and the results were used to generate Stiff diagrams in order to visually identify different water masses. Major ion concentrations were higher in ground water than in spring and tap water. The relationship between alkaline metals (Na(+) and K(+)), alkaline-earth metals (Ca(2+) and Mg(2+)), and HCO(3)(-) showed little difference between deep and shallow ground water. Toyama ground, spring, and tap water were all the same type of water mass, called Ca-HCO(3). The calculated total dissolved solid values were below 300 mg/L for all water sources and met World Health Organization (WHO) water quality guidelines. Trace levels of As, Cd, Cr, Co, Cu, Fe, Pb, Mn, Mo, Ni, V, Zn, Sr, and Hg were detected in ground, spring, and tap water sources using inductively coupled plasma atomic emission spectrometry, and their levels were below WHO and Japanese water quality standard limits. Volatile organic carbon compounds were quantified by headspace gas chromatography-mass spectrometry, and the measured concentrations met WHO and Japanese water quality guidelines. Total trihalomethanes (THMs) were the major contaminant detected in all natural drinking water sources, but the concentration was highest in tap water (37.27 ± 0.05 μg/L). Notably, THMs concentrations reached up to 1.1 ± 0.05 μg/L in deep ground water. The proposed model gives an accurate description of the organic, inorganic, and trace heavy metal indicators studied here and may be used in natural clean water quality management. © Springer Science+Business Media B.V. 2011

  14. Carbon, nutrient and trace metal cycling in sandy sediments: A comparison of high-energy beaches and backbarrier tidal flats

    NASA Astrophysics Data System (ADS)

    Reckhardt, Anja; Beck, Melanie; Seidel, Michael; Riedel, Thomas; Wehrmann, Achim; Bartholomä, Alexander; Schnetger, Bernhard; Dittmar, Thorsten; Brumsack, Hans-Jürgen

    2015-06-01

    In order to evaluate the importance of coastal sandy sediments and their contribution to carbon, nutrient and metal cycling we investigated two beach sites on Spiekeroog Island, southern North Sea, Germany, and a tidal flat margin, located in Spiekeroog's backbarrier area. We also analyzed seawater and fresh groundwater on Spiekeroog Island, to better define endmember concentrations, which influence our study sites. Intertidal sandy flats and beaches are characterized by pore water advection. Seawater enters the sediment during flood and pore water drains out during ebb and at low tide. This pore water circulation leads to continuous supply of fresh organic substrate to the sediments. Remineralization products of microbial degradation processes, i.e. nutrients, and dissolved trace metals from the reduction of particulate metal oxides, are enriched in the pore water compared to open seawater concentrations. The spatial distribution of dissolved organic carbon (DOC), nutrients (PO43-, NO3-, NO2-, NH4+, Si(OH)4 and total alkalinity), trace metals (dissolved Fe and Mn) as well as sulfate suggests that the exposed beach sites are subject to relatively fast pore water advection, which leads to organic matter and oxygen replenishment. Frequent pore water exchange further leads to comparatively low nutrient concentrations. Sulfate reduction does not appear to play a major role during organic matter degradation. High nitrate concentrations indicate that redox conditions are oxic within the duneward freshwater influenced section, while ammonification, denitrification, manganese and iron reduction seem to prevail in the ammonium-dominated seawater circulation zone. In contrast, the sheltered tidal flat margin site exhibits a different sedimentology (coarser beach sands versus finer tidal flat sands) and nutrients, dissolved manganese and DOC accumulate in the pore water. Ammonium is the dominant pore water nitrogen species and intense sulfate reduction leads to the formation

  15. Heavy Metal Accumulation by Periphyton Is Related to Eutrophication in the Hai River Basin, Northern China

    PubMed Central

    Tang, Wenzhong; Cui, Jingguo; Shan, Baoqing; Wang, Chao; Zhang, Wenqiang

    2014-01-01

    The Hai River Basin (HRB) is one of the most polluted river basins in China. The basin suffers from various types of pollutants including heavy metals and nutrients due to a high population density and rapid economic development in this area. We assessed the relationship between heavy metal accumulation by periphyton playing an important role in fluvial food webs and eutrophication in the HRB. The concentrations of the unicellular diatoms (type A), filamentous algae with diatoms (type B), and filamentous algae (type C) varied along the river, with type A dominating upstream, and types B then C increasing in concentration further downstream, and this was consistent with changes in the trophic status of the river. The mean heavy metal concentrations in the type A, B and C organisms were Cr: 18, 18 and 24 mg/kg, respectively, Ni: 9.2, 10 and 12 mg/kg, respectively, Cu: 8.4, 19 and 29 mg/kg, respectively, and Pb: 11, 9.8 and 7.1 mg/kg respectively. The bioconcentration factors showed that the abilities of the organisms to accumulate Cr, Ni and Pb decreased in the order type A, type B, then type C, but their abilities to accumulate Cu increased in that order. The Ni concentration was a good predictor of Cr, Cu and Pb accumulation by all three periphyton types. Our study shows that heavy metal accumulation by periphyton is associated with eutrophication in the rivers in the HRB. PMID:24482681

  16. In situ trace metal analysis of Neoarchaean--Ordovician shallow-marine microbial-carbonate-hosted pyrites.

    PubMed

    Gallagher, M; Turner, E C; Kamber, B S

    2015-07-01

    Pre-Cambrian atmospheric and oceanic redox evolutions are expressed in the inventory of redox-sensitive trace metals in marine sedimentary rocks. Most of the currently available information was derived from deep-water sedimentary rocks (black shale/banded iron formation). Many of the studied trace metals (e.g. Mo, U, Ni and Co) are sensitive to the composition of the exposed land surface and prevailing weathering style, and their oceanic inventory ultimately depends on the terrestrial flux. The validity of claims for increased/decreased terrestrial fluxes has remained untested as far as the shallow-marine environment is concerned. Here, the first systematic study of trace metal inventories of the shallow-marine environment by analysis of microbial carbonate-hosted pyrite, from ca. 2.65-0.52 Ga, is presented. A petrographic survey revealed a first-order difference in preservation of early diagenetic pyrite. Microbial carbonates formed before the 2.4 Ga great oxygenation event (GOE) are much richer in pyrite and contain pyrite grains of greater morphological variability but lesser chemical substitution than samples deposited after the GOE. This disparity in pyrite abundance and morphology is mirrored by the qualitative degree of preservation of organic matter (largely as kerogen). Thus, it seems that in microbial carbonates, pyrite formation and preservation were related to presence and preservation of organic C. Several redox-sensitive trace metals show interpretable temporal trends supporting earlier proposals derived from deep-water sedimentary rocks. Most notably, the shallow-water pyrite confirms a rise in the oceanic Mo inventory across the pre-Cambrian-Cambrian boundary, implying the establishment of efficient deep-ocean ventilation. The carbonate-hosted pyrite also confirms the Neoarchaean and early Palaeoproterozoic ocean had higher Ni concentration, which can now more firmly be attributed to a greater proportion of magnesian volcanic rock on land rather

  17. Factors to consider for trace element deposition biomonitoring surveys with lichen transplants

    USGS Publications Warehouse

    Ayrault, S.; Clochiatti, R.; Carrot, F.; Daudin, L.; Bennett, J.P.

    2007-01-01

    A trace element deposition biomonitoring experiment with transplants of the fruticose lichen Evernia prunastri was developed, aimed at monitoring the effects of different exposure parameters (exposure orientation and direct rain) and to the elements Ti, V, Cr, Co, Cu, Zn, Rb, Cd, Sb and Pb. Accumulations were observed for most of the elements, confirming the ability of Evernia transplants for atmospheric metal deposition monitoring. The accumulation trends were mainly affected by the exposure orientation and slightly less so by the protection from rain. The zonation of the trace elements inside the thallus was also studied. It was concluded that trace element concentrations were not homogeneous in Evernia, thus imposing some cautions on the sampling approach. A nuclear microprobe analysis of an E. prunastri transplanted thallus in thin cross-sections concluded that the trace elements were mainly concentrated on the cortex of the thallus, except Zn, Ca and K which were also present in the internal layers. The size of the particles deposited or entrapped on the cortex surface averaged 7????m. A list of key parameters to ensure the comparability of surveys aiming at observing temporal or spatial deposition variation is presented. ?? 2006 Elsevier B.V. All rights reserved.

  18. [Response Mechanism of Trace Metals in the Bishuiyan Subterranean River to the Rainfall and Their Source Analysis].

    PubMed

    Zou, Yan-e; Jiang, Ping-ping; Zhang, Qiang; Tang, Qing-jia; Kang, Zhi-qiang; Gong, Xiao- ping; Chen, Chang-jie; Yu, Jian-guo

    2015-12-01

    High-frequency sampling was conducted at the outlet of Guangxi Bishuiyan karst subterranean river using an automatic sampler during the rainfall events. The hydrochemical drymanic variation characteristics of trace metals (Cu, Pb, Zn, Cd) at the outlet of Guangxi Bishuiyan karst subterranean river were analyzed, and the sources of the trace metals in the subterranean river as well as their response to rainfall were explored. The results showed that the rainfall provoked a sharp decrease in the major elements (Ca²⁺, Mg²⁺, HCO₃⁻, etc.) due to dilution and precipitation, while it also caused an increase in the concentrations of dissolved metals including Al, Mn, Cu, Zn and Cd, due to water-rock reaction, sediment remobilization, and soil erosion. The water-rock reaction was more sensitive to rainfall than the others, while the sediment remobilization and soil erosion took the main responsibility for the chemical change of the heavy metals. The curves of the heavy metal concentrations presented multiple peaks, of which the maximum was reached at 9 hours later after the largest precipitation. Different metal sources and the double-inlet structure of the subterranean river were supposed to be the reasons for the formation of multiple peaks. During the monitoring period, the average speed of the solute in the river reached about 0.47 km · h⁻¹, indicating fast migration of the pollutants. Therefore, monitoring the chemical dynamics of the karst subterranean river, mastering the sources and migration characteristics of trace metal components have great significance for the subterranean river environment pollution treatment.

  19. Different Heavy Metal Accumulation Strategies of Epilithic Lichens Colonising Artificial Post-Smelting Wastes.

    PubMed

    Rola, Kaja; Osyczka, Piotr; Kafel, Alina

    2016-02-01

    Lichens appear to be essential and effective colonisers of bare substrates including the extremely contaminated wastes of slag dumps. This study examines the metal accumulation capacity of epilithic lichens growing directly on the surface of artificial slag sinters. Four species representing different growth forms, i.e., crustose Candelariella aurella, Lecanora muralis, and Lecidea fuscoatra and fruticose Stereocaulon nanodes, were selected to evaluate the relationships between zinc, lead, cadmium, and nickel contents in their thalli and host substrates. Bioaccumulation factors of examined crustose lichens showed their propensity to hyperaccumulate heavy metals. Contrarily, concentrations of metals in fruticose thalli of S. nanodes were, as a rule, lower than in the corresponding substrates. This indicates that the growth form of thalli and degree of thallus adhesion to the substrate has a significant impact on metal concentrations in lichens colonising post-smelting wastes. Nonlinear regression models described by power functions show that at greater levels of Pb concentration in the substrate, the ability of C. aurella, L. muralis and L. fuscoatra to accumulate the metal experiences a relative decrease, whereas hyperbolic function describes a similar trend in relation to Ni content in S. nanodes. This phenomenon may be an important attribute of lichens that facilitates their colonisation of the surface of slag wastes.

  20. Assessment of heavy metal accumulation in macrophyte, agricultural soil, and crop plants adjacent to discharge zone of sponge iron factory

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Nayek, S.; Saha, R. N.; Satpati, S.

    2008-08-01

    The present study deals with the characterization of effluent released from sponge iron industries and distribution of heavy metals in soil and macrophytes near to effluent discharge channel. Apart from this, accumulation of heavy metals in nearby soil and vegetation system irrigated with effluent-contaminated water is also the subject of this study. Physico-chemical analysis of effluent reveals that the concentration of total suspended solids (TSS), total hardness (TH), iron (Fe2+), and oil and grease are greater than the IS (1981) norms for discharge of water into inland water body. The soil along the sides of the effluent channel also shows higher concentration of heavy metals than the background soil. The enrichment of the heavy metals are in the order of Chromium (Cr) > Iron (Fe) > Manganese (Mn) > Zinc (Zn) > Copper (Cu) > Cadmium (Cd). Macrophytes growing along the sides of the effluent channel also show significant accumulation of heavy metals almost in the same order as accumulated in soil. Higher uptake of heavy metals by these varieties reveals that these species can be used for future phytoremediation. The effluent as well as contaminated water is extensively used for irrigation for growing vegetables like tomato ( Lycopersicon esculatum) in the surrounding areas. Heavy metal accumulation in this agricultural soil are in the sequence of Cr > Fe > Mn > Zn > Cu > Cd. More or less similar type of accumulation pattern are also found in tomato plants except Fe and Zn exceeding Cr and Mn. Transfer Factor of heavy metals from soil to tomato plants (TFS) shows average value of <1, suggesting less uptake of heavy metals from soil. Among the plant parts studied, fruit shows least accumulation. Although tomato plants show some phenotypic changes, the survival of tomato plants as well as least accumulation of metals in fruit reveals their tolerance to heavy metals. Therefore it may be suggested that this plant can be grown successfully in the heavy metal

  1. Reconstruction of atmospheric trace metals pollution in Southwest China using sediments from a large and deep alpine lake: Historical trends, sources and sediment focusing.

    PubMed

    Lin, Qi; Liu, Enfeng; Zhang, Enlou; Nath, Bibhash; Shen, Ji; Yuan, Hezhong; Wang, Rong

    2018-02-01

    Atmospheric pollution, one of the leading environmental problems in South and East Asia, and its impact on the terrestrial environmental quality remain poorly understood particularly in alpine areas where both historical and present-day mining and smelting operations might leave an imprint. Here, we reconstructed atmospheric trace metals pollution during the past century using core sediments from a large and deep alpine lake in Southwest China. The implication of in lake and/or in watershed sediment focusing in pollution quantification is discussed by analyzing 15 sediment cores. Factor analysis and enrichment factor indicated Cd, Pb and Sb as the typical pollutants. Distinct peaks of Pb and Sb pollution were observed around the 1920s, but little Pb pollution was detected in recent decades, different from other studies in similar regions. Cadmium pollution was observed until the mid-1980s synchronized with Sb. The distinctive variations in atmospheric trace metal pollution process in Southwest China highlight the regional and sub-regional sources of metal pollutants, which should be primarily attributed to non-ferrous metal smelting emissions. Both natural and anthropogenic metals showed wide concentration ranges though exhibited similar temporal trends in the 15 cores. Spatial variations of anthropogenic metals were influenced by the in-watershed pollutants remobilization, whereas, natural metals were regulated by the detrital materials in the sub-basin. In-lake sediment focusing had little influence on the spatial distributions of all metals, different from the traditional sediment focusing pattern observed in small lakes. Anthropogenic Cd accumulation in sediments ranged from 1.5 to 10.1mgm -2 in a specific core with an average of 6.5mgm -2 for the entire lake, highlighting that a reliable whole-lake pollutant budget requires an analysis of multiple cores. Our study suggests that the management of aquatic ecosystem health should take the remobilization of in

  2. Monitoring of trace element atmospheric deposition using dry and wet moss bags: accumulation capacity versus exposure time.

    PubMed

    Anicić, M; Tomasević, M; Tasić, M; Rajsić, S; Popović, A; Frontasyeva, M V; Lierhagen, S; Steinnes, E

    2009-11-15

    To clarify the peculiarities of trace element accumulation in moss bags technique (active biomonitoring), samples of the moss Sphagnum girgensohnii Rusow were exposed in bags with and without irrigation for 15 days up to 5 months consequently in the semi-urban area of Belgrade (Serbia) starting from July 2007. The accumulation capacity for 49 elements determined by ICP-MS in wet and dry moss bags was compared. The concentration of some elements, i.e. Al, V, Cr, Fe, Zn, As, Se, Sr, Pb, and Sm increased continuously with exposure time in both dry and wet moss bags, whereas concentration of Na, Cl, K, Mn, Rb, Cs, and Ta decreased. Irrigation of moss resulted in a higher accumulation capacity for most of the elements, especially for Cr, Zn, As, Se, Br, and Sr. Principal component analysis was performed on the datasets of element concentrations in wet and dry moss bags for source identification. Results of the factor analysis were similar but not identical in the two cases due to possible differences in element accumulation mechanisms.

  3. Environmental and Ecological Risk Assessment of Trace Metal Contamination in Mangrove Ecosystems: A Case from Zhangjiangkou Mangrove National Nature Reserve, China

    PubMed Central

    Wang, Jun; Du, Huihong; Xu, Ye; Chen, Kai; Liang, Junhua; Ke, Hongwei; Cheng, Sha-Yen; Liu, Mengyang; Deng, Hengxiang; He, Tong; Wang, Wenqing

    2016-01-01

    Zhangjiangkou Mangrove National Nature Reserve is a subtropical wetland ecosystem in southeast coast of China, which is of dense population and rapid development. The concentrations, sources, and pollution assessment of trace metals (Cu, Cd, Pb, Cr, Zn, As, and Hg) in surface sediment from 29 sites and the biota specimen were investigated for better ecological risk assessment and environmental management. The ranges of trace metals in mg/kg sediment were as follows: Cu (10.79–26.66), Cd (0.03–0.19), Pb (36.71–59.86), Cr (9.67–134.51), Zn (119.69–157.84), As (15.65–31.60), and Hg (0.00–0.08). The sequences of the bioaccumulation of studied metals are Zn > Cu > As > Cr > Pb > Cd > Hg with few exceptions. Cluster analysis and principal component analysis revealed that the trace metals in the studied area mainly derived from anthropogenic activities, such as industrial effluents, agricultural waste, and domestic sewage. Pollution load index and geoaccumulation index were calculated for trace metals in surface sediments, which indicated unpolluted status in general except Pb, Cr, and As. PMID:27795956

  4. Trace Metals' abnormalities in hemodialysis patients: relationship with medications.

    PubMed

    Lee, S H; Huang, J W; Hung, K Y; Leu, L J; Kan, Y T; Yang, C S; Chung Wu, D; Huang, C L; Chen, P Y; Chen, J S; Chen, W Y

    2000-11-01

    A multicenter collaborative study was performed to investigate the prevalence of abnormal blood contents of 6 trace metals, copper (Cu), zinc (Zn), aluminum (Al), lead (Pb), cadmium (Cd), and mercury (Hg), in hemodialysis (HD) patients and to analyze their relationship with the medications, such as CaCO3, Ca acetate, Al containing phosphate-binding agents, 1,25-dihydroxy vitD3, 1-hydroxy vitD3, and erythropoietin (EPO), as well as hematocrit level, by chi-square statistics. From 6 medical centers in Taiwan, we included 456 patients in maintenance HD for more than 4 months for this study, and they had continued the previously mentioned medications for at least 3 months. Blood samples were collected before initiating HD, and atomic absorption spectrophotometry was used to measure plasma levels of Cu, Zn, and Al as well as whole blood levels of Pb, Cd, and Hg. Three hundred seventy-five (78%) of the HD patients had low plasma Zn levels, that is, <800 microg/L, and the mean (+/-SD) concentration was 705.8 (+/-128.23) microg/L in all subjects. One hundred forty-one (31%) of the HD patients had high plasma Al, that is, >50 microg/L, and the mean (+/-SD) was 44.30 (+/-28.28) microg/L in all subjects. Three hundred thirty-three (73%) of the dialysis patients had high Cd levels, that is, >2.5 microg/L, and the mean (+/-SD) was 3.32 (+/-1.49) microg/L in all subjects. The majority of HD patients had normal blood levels of Cu, PB, and Hg. Only 21 (4. 6%), 5 (1.1%), and 3 (0.06%) patients had elevated blood levels of Cu, Pb, and Hg, respectively. Their mean (+/-SD) blood concentration of Cu, Pb, and Hg were 1,049.78 (+/-233.25) microg/L, 7.45 (+/-3.95) microg/dL, and 3.17 (+/-25.56) microg/L, respectively. Three patients had elevated plasma Hg concentrations, that is, 546, 12.6, and 24.0 microg/L, respectively. In the 152 normal healthy age and sex matched control group, the blood levels of Al, Cd, and Pb were all significantly lower than the HD patients. However, the levels

  5. Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas

    DOE PAGES

    Hong-Hermesdorf, Anne; Miethke, Marcus; Gallaher, Sean D.; ...

    2014-10-26

    Here we identified a Cu-accumulating structure with a dynamic role in intracellular Cu homeostasis. During Zn limitation, Chlamydomonas reinhardtii hyperaccumulates Cu, a process dependent on the nutritional Cu sensor CRR1, but it is functionally Cu deficient. Visualization of intracellular Cu revealed major Cu accumulation sites coincident with electron-dense structures that stained positive for low pH and polyphosphate, suggesting that they are lysosome-related organelles. Nano-secondary ion MS showed colocalization of Ca and Cu, and X-ray absorption spectroscopy was consistent with Cu + accumulation in an ordered structure. Zn resupply restored Cu homeostasis concomitant with reduced abundance of these structures. Cu isotopemore » labeling demonstrated that sequestered Cu + became bioavailable for the synthesis of plastocyanin, and transcriptome profiling indicated that mobilized Cu became visible to CRR1. Cu trafficking to intracellular accumulation sites may be a strategy for preventing protein mismetallation during Zn deficiency and enabling efficient cuproprotein metallation or remetallation upon Zn resupply.« less

  6. Enhanced lipid accumulation of green microalga Scenedesmus sp. by metal ions and EDTA addition.

    PubMed

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xie, Guo-Jun; Ren, Nan-Qi

    2014-10-01

    Effects of Fe(3+) (0-0.12 g/L), Mg(2+) (0-0.73 g/L) and Ca(2+) (0-0.98 g/L) on the biomass and lipid accumulation of heterotrophic microalgae were investigated in dark environment. The biomass and lipid production exhibited an increasing trend with increasing the concentrations of metal ions. In cultures with 1.2 × 10(-3) g/L Fe(3+), 7.3 × 10(-3) g/L Mg(2+) and 9.8 × 10(-4) g/L Ca(2+), the maximum biomass, total lipid content and lipid productivity reached 3.49 g/L, 47.4% and 275.7 mg/L/d, respectively. More importantly, EDTA addition (1.0 × 10(-3) g/L) could enhance the solubility of metal ions (iron and calcium) and increase their availability by microalgae, which evidently promote the lipid accumulation. Compared with the control, the total lipid content and lipid productivity increased 28.2% and 29.7%, respectively. These show that appropriate concentrations of metal ions and EDTA in the culture medium were beneficial to lipid accumulation of heterotrophic Scenedesmus sp. cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Trace-metal sources and their release from mine wastes: examples from humidity cell tests of hardrock mine waste and from Warrior Basin coal

    USGS Publications Warehouse

    Diehl, S.F.; Smith, Kathleen S.; Desborough, G.A.; White, W.W.; Lapakko, K.A.; Goldhaber, Martin B.; Fey, David L.

    2003-01-01

    To assess the potential impact of metal and acid contamination from mine-waste piles, it is important to identify the mineralogic source of trace metals and their mode of occurrence. Microscopic analysis of mine-waste samples from both hard-rock and coalmine waste samples demonstrate a microstructural control, as well as mineralogic control, on the source and release of trace metals into local water systems. The samples discussed herein show multiple periods of sulfide mineralization with varying concentrations of trace metals. In the first case study, two proprietary hard-rock mine-waste samples exposed to a series of humidity cell tests (which simulate intense chemical weathering conditions) generated acid and released trace metals. Some trace elements of interest were: arsenic (45-120 ppm), copper (60-320 ppm), and zinc (30-2,500 ppm). Untested and humidity cell-exposed samples were studied by X-ray diffraction, scanning electron microscope with energy dispersive X-ray (SEM/EDX), and electron microprobe analysis. Studies of one sample set revealed arsenic-bearing pyrite in early iron- and magnesium-rich carbonate-filled microveins, and iron-, copper-, arsenic-, antimony-bearing sulfides in later crosscutting silica-filled microveins. Post humidity cell tests indicated that the carbonate minerals were removed by leaching in the humidity cells, exposing pyrite to oxidative conditions. However, sulfides in the silica-filled veins were more protected. Therefore, the trace metals contained in the sulfides within the silica-filled microveins may be released to the surface and (or) ground water system more slowly over a greater time period. In the second case study, trace metal-rich pyrite-bearing coals from the Warrior Basin, Alabama were analyzed. Arsenic-bearing pyrite was observed in a late-stage pyrite phase in microfaults and microveins that crosscut earlier arsenic.

  8. Health risk assessment of heavy metals in fish and accumulation patterns in food web in the upper Yangtze River, China.

    PubMed

    Yi, Yujun; Tang, Caihong; Yi, Tieci; Yang, Zhifeng; Zhang, Shanghong

    2017-11-01

    This study aims to concern the distribution of As, Cr, Cd, Hg, Cu, Zn, Pb and Fe in surface sediment, zoobenthos and fishes, and quantify the accumulative ecological risk and human health risk of metals in river ecological system based on the field investigation in the upper Yangtze River. The results revealed high ecological risk of As, Cd, Cu, Hg, Zn and Pb in sediment. As and Cd in fish presented potential human health risk of metals by assessing integrated target hazard quotient results based on average and maximum concentrations, respectively. No detrimental health effects of heavy metals on humans were found by daily fish consumption. While, the total target hazard quotient (1.659) exceeding 1, it meant that the exposed population might experience noncarcinogenic health risks from the accumulative effect of metals. Ecological network analysis model was established to identify the transfer routes and quantify accumulative effects of metals on river ecosystem. Control analysis between compartments showed large predator fish firstly depended on the omnivorous fish. Accumulative ecological risk of metals indicated that zoobenthos had the largest metal propagation risk and compartments located at higher trophic levels were not easier affected by the external environment pollution. A potential accumulative ecological risk of heavy metal in the food web was quantified, and the noncarcinogenic health risk of fish consumption was revealed for the upper reach of the Yangtze River. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Trace elements and heavy metals in the Grand Bay National Estuarine Reserve in the northern Gulf of Mexico

    PubMed Central

    McComb, Jacqueline Q.; Han, Fengxiang X.; Rogers, Christian; Thomas, Catherine; Arslan, Zikri; Ardeshir, Adeli; Tchounwou, Paul B.

    2015-01-01

    The objectives of this study are to investigate distribution of trace elements and heavy metals in the salt marsh and wetland soil and biogeochemical processes in the Grand Bay National Estuarine Research Reserve of the northern Gulf of Mexico. The results show that Hg, Cd and to some extent, As and Pb have been significantly accumulated in soils. The strongest correlations were found between concentrations of Ni and total organic matter contents. The correlations decreased in the order: Ni > Cr > Sr > Co > Zn, Cd > Cu > Cs. Strong correlations were also observed between total P and concentrations of Ni, Co, Cr, Sr, Zn, Cu, and Cd. This may be related to the P spilling accident in 2005 in the Bangs Lake site. Lead isotopic ratios in soils matched well those of North American coals, indicating the contribution of Pb through atmospheric fallout from coal power plants. PMID:26238403

  10. Geochemistry of Dissolved Trace Metals in the Waters of Bahia Magdalena, Baja California Sur, Pacific Coast, Mexico

    NASA Astrophysics Data System (ADS)

    Suresh Babu, S.

    2016-12-01

    Forty two samples were acquired from the surface and bottom water profiles along 5 transects spread over Bahia Magdalena lagoon, Baja California Sur to assess the behavior of trace metals in a high influenced upwelling region on the Pacific coast. To elaborate the fate of metals, also the physico-chemical parameters (pH, temperature, salinity, conductivity, dissolved oxygen). Determination of the concentrations of trace metals (Fe, Mn, Cr, Cu, Co, Pb, Ni, Zn, Cd As, Hg) were measured using Atomic absorption spectrometry. The results demonstrated high values of As, Ni and Co which is attributed to the local geology and phosphate deposits. Low values of Fe and Mn are attested to the oxic conditions of the lagoon which are responsible for the oxidation of Fe and Mn. The region witnesses raised temperatures (28.92ºC) and salinities of 35.2 PSU for its arid climatic conditions and high rates of evaporation. In general, the region presented minor quantities of dissolved trace metals due to dispersion and high intense interaction with the open sea. The results were also compared with other studies to understand the enrichment pattern in this side of the pacific coast which experiences various geothermal activities and upwelling phenomenon.

  11. Adsorption and Detection of Hazardous Trace Gases by Metal-Organic Frameworks.

    PubMed

    Woellner, Michelle; Hausdorf, Steffen; Klein, Nicole; Mueller, Philipp; Smith, Martin W; Kaskel, Stefan

    2018-06-19

    The quest for advanced designer adsorbents for air filtration and monitoring hazardous trace gases has recently been more and more driven by the need to ensure clean air in indoor, outdoor, and industrial environments. How to increase safety with regard to personal protection in the event of hazardous gas exposure is a critical question for an ever-growing population spending most of their lifetime indoors, but is also crucial for the chemical industry in order to protect future generations of employees from potential hazards. Metal-organic frameworks (MOFs) are already quite advanced and promising in terms of capacity and specific affinity to overcome limitations of current adsorbent materials for trace and toxic gas adsorption. Due to their advantageous features (e.g., high specific surface area, catalytic activity, tailorable pore sizes, structural diversity, and range of chemical and physical properties), MOFs offer a high potential as adsorbents for air filtration and monitoring of hazardous trace gases. Three advanced topics are considered here, in applying MOFs for selective adsorption: (i) toxic gas adsorption toward filtration for respiratory protection as well as indoor and cabin air, (ii) enrichment of hazardous gases using MOFs, and (iii) MOFs as sensors for toxic trace gases and explosives. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Changes in metallothionein concentrations in response to variation in natural factors (salinity, sex, weight) and metal contamination in crabs from a metal-rich estuary.

    PubMed

    Legras; Mouneyrac; Amiard; Amiard-Triquet; Rainbow

    2000-04-05

    Intermoult male and female crabs Pachygrapsus marmoratus and Carcinus maenas were sampled from three sites between the mouth and 25 km upstream in the Gironde, the most Cd-contaminated estuary in France, in order to study the relative importance of natural factors (salinity, sex, weight) and accumulated metal concentrations on metallothionein (MT) concentrations. In the two species studied, higher metal, total protein and MT concentrations were observed in the hepatopancreas than in the gills. In P. marmoratus, MT concentrations were mainly related to changes in the natural factors even if MT and Zn concentrations were positively correlated in the hepatopancreas whereas in C. maenas, the main relationships were with accumulated metal levels. In the case of the natural factors, the most important ones were weight in gills of both crab species, and salinity changes in both hepatopancreas and gills of P. marmoratus. Cd and Cu concentrations in both organs of the two species were inversely related to salinity. The same observation was found for Zn concentrations in C. maenas but not in P. marmoratus. In the hepatopancreas of both species, the highest total protein concentrations were found in crabs from the site with the highest salinity, whereas there were no such differences in the gills. It seems that changes in MT concentrations are linked more to changes in general protein metabolism than to changes in metal accumulation. Thus it was important to examine the storage of metals in other tissue compartments, particularly the insoluble fraction which includes mineral granules which is known to also contribute to trace metal detoxification in invertebrates. In the gills of the crabs, Zn was present mainly in the insoluble fraction, whereas Cd was nearly equally distributed between soluble and insoluble fractions. In contrast, Cu in the gills and all three metals in the hepatopancreas of both species were mainly cytosolic, but this does not necessarily imply a

  13. Trace Metals Derived from Electronic Cigarette (ECIG) Generated Aerosol: Potential Problem of ECIG Devices That Contain Nickel

    PubMed Central

    Palazzolo, Dominic L.; Crow, Andrew P.; Nelson, John M.; Johnson, Robert A.

    2017-01-01

    Introduction: ECIGs are currently under scrutiny concerning their safety, particularly in reference to the impact ECIG liquids (E-liquids) have on human health. One concern is that aerosolized E-liquids contain trace metals that could become trapped in respiratory tissues and induce pathology. Methods: To mimic this trapping, peristaltic pumps were used to generate and transport aerosol onto mixed cellulose ester (MCE) membranes where aluminum (Al), arsenic (As), cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) were subsequently captured and quantified. The presence of trace metals on unexposed MCE membranes and on MCE membranes exposed to mainstream smoke served as control and comparison, respectively. The presence of these metals was also determined from the E-liquid before aerosolization and untouched by the ECIG device. All metals were quantified using ICP-MS. The ECIG core assembly was analyzed using scanning electron microscopy with elemental analysis capability. Results: The contents (μg) of Al, As, Cd, Cu, Fe, Mn, Ni, Pb, and Zn on control MCE membranes were 1.2 ± 0.2, 0.050 ± 0.002, 0.047 ± 0.003, 0.05 ± 0.01, 0.001 ± 0.001, 0.16 ± 0.04, 0.005 ± 0.003, 0.014 ± 0.006, and 0.09 ± 0.02, respectively. The contents of all trace metals on MCE membranes exposed to aerosol were similar to controls, except Ni which was significantly (p < 0.01) higher (0.024 ± 0.004 μg). In contrast, contents of Al, As, Fe, Mn, and Zn on MCE membranes exposed to smoke were significantly higher (p < 0.05) than controls. The contents of Al, As, Cu, Fe, and Mn on smoke-exposed MCE membranes were also significantly higher (p < 0.05) than their content on aerosol-exposed membranes. The contents per cigarette equivalent of metals in E-liquid before aerosolization were negligible compared to amounts of aerosolized E-liquid, except for Fe (0.002 μg before and 0.001 μg after). Elemental analysis of the core assembly reveals the

  14. Daily intake of trace metals through coffee consumption in India.

    PubMed

    Suseela, B; Bhalke, S; Kumar, A V; Tripathi, R M; Sastry, V N

    2001-02-01

    The trace element contents of five varieties of instant coffee powder available in the Indian market have been analysed. Ca, Cr, Fe, K, Mg, Mn, Ni, Sr, Zn and Pb, Cd, Cu have been determined using atomic absorption spectrophotometry and differential pulse anodic stripping voltammetry, respectively. The metal levels in the coffee powders observed in this study are comparable with those reported for green coffe beans (Arabica and Robusta variety) reported worldwide with the exception of Sr and Zn, which were on the lower side of the reported values. Concentrations of these metals have been converted into intake figures based on coffee consumption. The daily intakes of the above metals through ingestion of coffee are 1.4 mg, 1.58 microg, 124 microg, 41.5 mg, 4.9 mg, 17.9 microg, 2.9 microg, 3.8 microg, 12.5 microg, 0.2 microg, 0.03 microg and 15.5 microg, respectively. The values, which were compared with the total dietary, intake of metals through ingestion by the Mumbai population, indicate that the contribution from coffee is less than or around 1% for most of the elements except for Cr and Ni which are around 3%.

  15. Distinctive accumulation patterns of heavy metals in Sardinella aurita (Clupeidae) and Mugil cephalus (Mugilidae) tissues.

    PubMed

    Annabi, Ali; El Mouadeb, Rahma; Herrel, Anthony

    2018-01-01

    The present study assessed the impact of metal pollution on two widely consumed types of wild fish Sardinella aurita and Mugil cephalus captured from the Gulf of Gabes (Tunisia) which is currently experiencing acute environmental problems. A study of the Cd, Cu, Zn, and Pb levels present in the studied site and vital in fish tissues (gills, liver, gonad, and muscle) was undertaken. As expected, muscle, liver, and gonad tissues contained the highest concentrations of all metals except for Zn. The metal levels showed a significant variation of accumulation between species with overall effects of the tested tissues. In addition, the results address the significant effects of the species/tissue interaction. Liver sections showed structural alterations consisting mainly of a significant desquamation of the tissue, a fibroblast proliferation, and a lipid droplet accumulation in both species. Additionally, the presence of skeletal abnormalities affecting the vertebral column was observed in the M. cephalus specimens. As a whole, our data provide the first evidence of distinctive metal accumulation patterns in vital fish tissues as well as the interspecific difference that can be correlated with the biological habits of the two selected models, S. aurita and M. cephalus, known respectively as pelagic and benthopelagic species.

  16. Metal accumulation, growth, antioxidants and oil yield of Brassica juncea L. exposed to different metals.

    PubMed

    Sinha, Sarita; Sinam, Geetgovind; Mishra, Rohit Kumar; Mallick, Shekhar

    2010-09-01

    In agricultural fields, heavy metal contamination is responsible for limiting the crop productivity and quality. This study reports that the plants of Brassica juncea L. cv. Pusa bold grown on contaminated substrates [Cu, Cr(VI), As(III), As(V)] under simulated field conditions have shown translocation of metals to the upper part and its sequestration in the leaves without significantly affecting on oil yield, except for Cr and higher concentration of As(V), compared to control. Decrease in the oil content in As(V) treated plants was observed in a dose dependent manner; however, maximum decrease was recorded in Cr treated plants. Among all the metal treatments, Cr was the most toxic as evident from the decrease in oil content, growth parameters and antioxidants. The accumulation of metals was below the detection limit in the seeds grown on 10 and 30 mg kg(-1) As(III) and Cr(VI); 10 mg kg(-1) As(V)) and thus can be recommended only for oil cultivation. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  17. Trace elements in fish from Taihu Lake, China: levels, associated risks, and trophic transfer.

    PubMed

    Hao, Ying; Chen, Liang; Zhang, Xiaolan; Zhang, Dongping; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo

    2013-04-01

    Concentrations of eight trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr), mercury (Hg), cadmium (Cd), lead (Pb), and arsenic (As)] were measured in a total of 198 samples covering 24 fish species collected from Taihu Lake, China, in September 2009. The trace elements were detected in all samples, and the total mean concentrations ranged from 18.2 to 215.8 μg/g dw (dry weight). The concentrations of the trace elements followed the sequence of Zn>Fe>Mn>Cr>As>Hg>Pb>Cd. The measured trace element concentrations in fish from Taihu Lake were similar to or lower than the reported values in fish around the world. The metal pollution index was used to compare the total trace element accumulation levels among various species. Toxabramis swinhonis (1.606) accumulated the highest level of the total trace elements, and Saurogobio dabryi (0.315) contained the lowest. The concentrations of human non-essential trace elements (Hg, Cd, Pb, and As) were lower than the allowable maximum levels in fish in China and the European Union. The relationships between the trace element concentrations and the δ(15)N values of fish species were used to investigate the trophic transfer potential of the trace elements. Of the trace elements, Hg might be biomagnified through the food chain in Taihu Lake if the significant level of p-value was set at 0.1. No biomagnification and biodilution were observed for other trace elements. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Lichens as bioindicators of aerial fallout of heavy metals in Zaria, Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapu, M.M.; Ipaye, M.M.; Ega, R.A.I.

    1991-09-01

    Lichens and other epiphytic cryptogams possess efficient ion-exchange mechanisms which enable many species to accumulate airborne metals and which probably contribute to their tolerating metals at concentrations high enough to cause death to other plant species. A direct relationship between the distribution pattern of lichens and the trace metal content of the surrounding air has been demonstrated. The present study used lichens to assess the aerial fallout of heavy metals from traffic in Zaria, northern Nigeria.

  19. a Baseline Study of Physico-Chemical Parameters and Trace Metals in Waters of Manakudy, South-West Coast of India

    NASA Astrophysics Data System (ADS)

    Subramanian, M.; Muthumanikkam, J.

    2013-05-01

    The transport of trace metals from the land to ocean has a number of different routes and efficiencies. The sources of toxic elements into the rivers to be debouched into the sea through estuaries are either weathered naturally from the soils and rocks or introduced anthropogenically from point or non-point sources, in labile form or in particulate form. However, recent studies indicate that the transport of trace elements to the aquatic environment is much more complex than what has been thought. The chemistry and ecology of an estuarine system are entirely different from the fluvial as well as the marine system. Estuarine environment is characterized by a constantly changing mixture of salt and freshwater. In the present study area Manakudy estuary is situated about 8 kilometres north west of Kanyakumari (Latitude N 08 05 21.8 and Longitude E 077 29 03.7). To gain a better understanding of the geochemical behavior of physico-chemical parameters and trace elements in the estuary and to examine variations in associated chemical changes, 20 water samples were collected throughout the Manakudy estuary, a minor river in south-western India. These samples, collected in typical dry season during 2012, were analyzed for physico-chemical parameters, dissolved major and trace elements. Our results show that dissolved Na, Mg, Ca and Cl behave conservatively along the salinity gradient. The concentration of nutrients is normal and they are due to the higher organic activity in soils as well as faster rates of chemical weathering reaction in the source region. The concentration of major ions is due to tidal influence and it increases with salinity and the nutrients do behave non-conservatively due to biogenic removal. The conservative behaviour of the trace metals with salinity has been strongly affected by the introduction of these metals by external sources. Even though the trace metals in the contaminated water have been removed and incorporated in sediments due to

  20. Quantitative Ultrasound-Assisted Extraction for Trace-Metal Determination: An Experiment for Analytical Chemistry

    ERIC Educational Resources Information Center

    Lavilla, Isela; Costas, Marta; Pena-Pereira, Francisco; Gil, Sandra; Bendicho, Carlos

    2011-01-01

    Ultrasound-assisted extraction (UAE) is introduced to upper-level analytical chemistry students as a simple strategy focused on sample preparation for trace-metal determination in biological tissues. Nickel extraction in seafood samples and quantification by electrothermal atomic absorption spectrometry (ETAAS) are carried out by a team of four…

  1. Micro-PIXE studies of elemental distribution in Cd-accumulating Brassica juncea L.

    NASA Astrophysics Data System (ADS)

    Schneider, Thorsten; Haag-Kerwer, Angela; Maetz, Mischa; Niecke, Manfred; Povh, Bogdan; Rausch, Thomas; Schüßler, Arthur

    1999-10-01

    Brassica juncea L. is a high biomass producing crop plant, being able to accumulate Cd and other heavy metals in their roots and shoots. It is a good candidate for efficient phytoextraction of heavy metals - such as Cd - from polluted soils. PIXE and STIM analyses were applied to investigate Cd-uptake in roots and the resulting effects on the elemental distribution of Cd stressed plants. The axial distribution of trace elements as a function of distance from the root tip as well as the radial distribution within cross-sections were analysed. The results are compared with the elemental distribution in control plants.

  2. TRACE METAL CONTENT (Cu, Zn, Mn AND Fe) IN URTICA DIOICA L. AND PLANTAGO MAJOR L.

    PubMed

    Krolak, Elzbieta; Raczuk, Jolanta; Borkowska, Lidia

    2016-11-01

    The aim of the study was to compare the contents of Cu, Zn, Mn and Fe in the washed and unwashed leaves and roots of two plant species: Urica dioica L. and Plantago major L., used in herbal medicine. These two herb species occur in the same environmental habitats, yet their morphological structure is different. The soil and plant samples for analyses were collected from an uncontaminated area in Eastern Poland. In each habitat location, the samples were taken from sandy soils with slightly acidic and neutral pH values. The obtained results showed that U. dioica and P. major accumulated similar amounts of trace metals, such as: Cu, Zn and Fe, in leaves, despite the differences in the morphological structure of their overground parts. The content of Mn in leaves U. dioica was about twice as much as in P. major. Also, no differences in the metal content were observed between washed and unwashed leaves of both species. However, in the same habitat conditions, a significantly higher content of Cu, Zn and Mn was found in the roots of P. major than U. dioica. The content of Fe in the roots was similar in both species. P. major and U. dioica may be a valuable source of microelements, if they are obtained from unpolluted habitats.

  3. Surface water characteristics and trace metals level of the Bonny/New Calabar River Estuary, Niger Delta, Nigeria

    NASA Astrophysics Data System (ADS)

    Onojake, M. C.; Sikoki, F. D.; Omokheyeke, O.; Akpiri, R. U.

    2017-05-01

    Surface water samples from three stations in the Bonny/New Calabar River Estuary were analyzed for the physicochemical characteristics and trace metal level in 2011 and 2012, respectively. Results show pH ranged from 7.56 to 7.88 mg/L; conductivity, 33,489.00 to 33,592.00 µScm-1; salinity, 15.33 to 15.50 ‰; turbidity, 4.35 to 6.65 NTU; total dissolved solids, 22111.00 to 23263.00 gm-3; dissolved oxygen, 4.53 to 6.65 mg/L; and biochemical oxygen demand, 1.72 mg/L. The level of some trace metals (Ca, Mg, K, Zn, Pb, Cd, Co, Cr, Cu, Fe, Ni, and Na) were also analyzed by Atomic absorption spectrometry with K, Zn, and Co being statistically significant ( P < 0.05). The results were compared with USEPA and WHO Permissible Limits for water quality standards. It was observed that the water quality parameters in the Bonny Estuary show seasonal variation with higher values for pH, DO, BOD, temperature, and salinity during the dry season than wet season. Concentrations of trace metals such as Pb, Cd, Zn, Ni, and Cr were higher than stipulated limits by WHO (2006). The result of the Metal Pollution Index suggests that the river was slightly affected and therefore continuous monitoring is necessary to avert possible public health implications of these metals on consumers of water and seafood from the study area.

  4. Mapping human health risks from exposure to trace metal contamination of drinking water sources in Pakistan.

    PubMed

    Bhowmik, Avit Kumar; Alamdar, Ambreen; Katsoyiannis, Ioannis; Shen, Heqing; Ali, Nadeem; Ali, Syeda Maria; Bokhari, Habib; Schäfer, Ralf B; Eqani, Syed Ali Musstjab Akber Shah

    2015-12-15

    The consumption of contaminated drinking water is one of the major causes of mortality and many severe diseases in developing countries. The principal drinking water sources in Pakistan, i.e. ground and surface water, are subject to geogenic and anthropogenic trace metal contamination. However, water quality monitoring activities have been limited to a few administrative areas and a nationwide human health risk assessment from trace metal exposure is lacking. Using geographically weighted regression (GWR) and eight relevant spatial predictors, we calculated nationwide human health risk maps by predicting the concentration of 10 trace metals in the drinking water sources of Pakistan and comparing them to guideline values. GWR incorporated local variations of trace metal concentrations into prediction models and hence mitigated effects of large distances between sampled districts due to data scarcity. Predicted concentrations mostly exhibited high accuracy and low uncertainty, and were in good agreement with observed concentrations. Concentrations for Central Pakistan were predicted with higher accuracy than for the North and South. A maximum 150-200 fold exceedance of guideline values was observed for predicted cadmium concentrations in ground water and arsenic concentrations in surface water. In more than 53% (4 and 100% for the lower and upper boundaries of 95% confidence interval (CI)) of the total area of Pakistan, the drinking water was predicted to be at risk of contamination from arsenic, chromium, iron, nickel and lead. The area with elevated risks is inhabited by more than 74 million (8 and 172 million for the lower and upper boundaries of 95% CI) people. Although these predictions require further validation by field monitoring, the results can inform disease mitigation and water resources management regarding potential hot spots. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The respective effects of soil heavy metal fractions by sequential extraction procedure and soil properties on the accumulation of heavy metals in rice grains and brassicas.

    PubMed

    Xiao, Ling; Guan, Dongsheng; Peart, M R; Chen, Yujuan; Li, Qiqi

    2017-01-01

    This study was carried out to examine heavy metal accumulation in rice grains and brassicas and to identify the different controls, such as soil properties and soil heavy metal fractions obtained by the Community Bureau of Reference (BCR) sequential extraction, in their accumulation. In Guangdong Province, South China, rice grain and brassica samples, along with their rhizospheric soil, were collected from fields on the basis of distance downstream from electroplating factories, whose wastewater was used for irrigation. The results showed that long-term irrigation using the electroplating effluent has not only enriched the rhizospheric soil with Cd, Cr, Cu, and Zn but has also increased their mobility and bioavailability. The average concentrations of Cd and Cr in rice grains and brassicas from closest to the electroplating factories were significantly higher than those from the control areas. Results from hybrid redundancy analysis (hRDA) and redundancy analysis (RDA) showed that the BCR fractions of soil heavy metals could explain 29.0 and 46.5 % of total eigenvalue for heavy metal concentrations in rice grains and brassicas, respectively, while soil properties could only explain 11.1 and 33.4 %, respectively. This indicated that heavy metal fractions exerted more control upon their concentrations in rice grains and brassicas than soil properties. In terms of metal interaction, an increase of residual Zn in paddy soil or a decrease of acid soluble Cd in the brassica soil could enhance the accumulation of Cd, Cu, Cr, and Pb in both rice grains and brassicas, respectively, while the reducible or oxidizable Cd in soil could enhance the plants' accumulation of Cr and Pb. The RDA showed an inhibition effect of sand content and CFO on the accumulation of heavy metals in rice grains and brassicas. Moreover, multiple stepwise linear regression could offer prediction for Cd, Cu, Cr, and Zn concentrations in the two crops by soil heavy metal fractions and soil properties.

  6. Evaluation of heavy metal and polycyclic aromatic hydrocarbons accumulation in plants from typical industrial sites: potential candidate in phytoremediation for co-contamination.

    PubMed

    Sun, Lu; Liao, Xiaoyong; Yan, Xiulan; Zhu, Ganghui; Ma, Dong

    2014-11-01

    The heavy metal and polycyclic aromatic hydrocarbons (PAHs) contents were evaluated in surface soil and plant samples of 18 wild species collected from 3 typical industrial sites in South Central China. The accumulative characteristics of the plant species for both heavy metal and PAHs were discussed. The simultaneous accumulation of heavy metal and PAHs in plant and soil was observed at all the investigated sites, although disparities in spatial distributions among sites occurred. Both plant and soil samples were characterized by high accumulation for heavy metal at smelting site, moderate enrichment at coke power and coal mining sites, whereas high level of PAHs (16 priority pollutants according to US Environmental Protection Agency) at coke power site, followed sequentially by coal mining and smelting sites. Based on the differences of heavy metal and PAH accumulation behaviors of the studied plant species, heavy metal and PAH accumulation strategies were suggested: Pteris vittata L. and Pteris cretica L. for As and PAHs, Boehmeria nivea (L.) Gaud for Pb, As, and PAHs, and Miscanthus floridulu (Labnll.) Warb for Cu and PAHs. These native plant species could be proposed as promising materials for heavy metal and PAHs combined pollution remediation.

  7. Source Evaluation and Trace Metal Contamination in Benthic Sediments from Equatorial Ecosystems Using Multivariate Statistical Techniques

    PubMed Central

    Benson, Nsikak U.; Asuquo, Francis E.; Williams, Akan B.; Essien, Joseph P.; Ekong, Cyril I.; Akpabio, Otobong; Olajire, Abaas A.

    2016-01-01

    Trace metals (Cd, Cr, Cu, Ni and Pb) concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria). The degree of contamination was assessed using the individual contamination factors (ICF) and global contamination factor (GCF). Multivariate statistical approaches including principal component analysis (PCA), cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources. PMID:27257934

  8. Relationship between heavy metal accumulation and morphometric parameters in European hare (Lepus europaeus) inhabiting various types of landscapes in southern Poland.

    PubMed

    Wajdzik, Marek; Halecki, Wiktor; Kalarus, Konrad; Gąsiorek, Michał; Pająk, Marek

    2017-11-01

    To evaluate the influence of hazardous substances in the environment, studies of pollutant accumulation in wild living animals are needed. Studies dealing with heavy metal contamination in mammals usually focus on a single organ. We investigated accumulation of heavy metals as well as iron in European hare (Lepus europaeus) living in southern Poland, Małopolska Province. Hares were captured during the hunting season. We tested metal accumulation in 14 organs and tissues using 35 individuals with known body weight and sex inhabiting agricultural, industrial and other types of landscapes. To obtain deeper insight into contamination patterns, we used accumulation data from the liver since it is the most frequently investigated organ and prone to pollution accumulation. Based on the data obtained for the liver, we tested the impact of metal pollution on hare morphology, including body length and several skull cranimetric parameters. Metals content differed between organs. Moreover, individuals from industrial areas had higher Cd content in their body. We distinguished two groups of elements: the first group, Cd, Fe and Zn, revealed the highest toxic effect in the liver and kidneys; the second group, Cr, Ni, and Pb, accumulated primarily in the brain. Hares inhabiting industrial areas had higher concentration of Cd and Pb, and lower levels of Cr and Fe in their liver in comparison with those from agricultural and forest habitats. Heavy metals had an effect on body length that was negatively associated with Cr levels. Skull diastema length was associated positively with accumulation of Cd and Pb. We showed that hare organs and tissues could be used as bioindicators of environmental pollution by heavy metals. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. A True Eddy Accumulation - Eddy Covariance hybrid for measurements of turbulent trace gas fluxes

    NASA Astrophysics Data System (ADS)

    Siebicke, Lukas

    2016-04-01

    sampling system closely reproduced dynamics of simulated TEA-TM fluxes. In conclusion this study introduces a new approach to trace gas flux measurements using transient-mode true eddy accumulation. First TEA-TM CO2 fluxes compared favorably with side-by-side EC fluxes, in agreement with our previous experiments comparing discrete TEA to EC. True eddy accumulation has thus potential for measuring turbulent fluxes of a range of atmospheric tracers using slow response analyzers.

  10. A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air.

    PubMed

    Alahabadi, Ahmad; Ehrampoush, Mohammad Hassan; Miri, Mohammad; Ebrahimi Aval, Hamideh; Yousefzadeh, Samira; Ghaffari, Hamid Reza; Ahmadi, Ehsan; Talebi, Parvaneh; Abaszadeh Fathabadi, Zeynab; Babai, Fatemeh; Nikoonahad, Ali; Sharafi, Kiomars; Hosseini-Bandegharaei, Ahmad

    2017-04-01

    Heavy metals (HMs) in the urban environment can be bio-accumulated by plant tissues. The aim of this study was to compare fourteen different tree species in terms of their capability to accumulate four airborne and soilborne HMs including; zinc (Zn), copper (Cu), lead (Pb), and cadmium (Cd). Samplings were performed during spring, summer, and fall seasons. To compare bioaccumulation ability, bio-concentration factor (BCF), comprehensive bio-concentration index (CBCI), and metal accumulation index (MAI) were applied. Species with the highest accumulation for single metal which shown using BCF did not have the highest CBCI and MAI. Based on CBCI and MAI, Pinus eldarica (7.74), Wistaria sinensis (8.82), Morus alba (8.7), and Nigral morus (27.15) had the highest bioaccumulation capacity of HMs, respectively. Therefore, these species can be used for phytoextraction of HMs pollution and green and buffer zone in the urban. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil

    USDA-ARS?s Scientific Manuscript database

    The mechanisms of stabilization by silicon-rich amendments of cadmium, zinc, copper and lead in a multi-metal contaminated acidic soil and the mitigation of metal accumulation in rice were investigated in this study. The results from a pot experiment indicated that the application of fly ash (20 and...

  12. Seasonal investigation of trace element contents in commercially valuable fish species from the Black sea, Turkey.

    PubMed

    Mendil, Durali; Demirci, Zafer; Tuzen, Mustafa; Soylak, Mustafa

    2010-03-01

    Fish species (Sarda sarda, Mulus barbatus ponticus, Trachurus trachurus and Merlangius merlangus) were collected from the Black sea, Turkey between 2008 and 2009 (spring, summer, autumn and winter). The samples were analyzed using flame and graphite furnace atomic absorption spectrometry after microwave digestion. The maximum metal concentrations were found to be as 25.5-41.4 microg/g (Fe), 17.8-25.7 microg/g (Zn), 0.28-0.64 microg/g (Pb), 0.64-0.99 microg/g (Cr), 1.3-3.6 microg/g (Mn), 1.4-1.9 microg/g (Cu), 0.18-0.35 microg/g (Cd) and 0.25-0.42 microg/g (Co) for fish species. The concentration of trace metals in samples is depended on fish species. Some species is accumulated trace metals at high ratio. Trace element levels in analyzed fish species were acceptable to human consumption at nutritional and toxic levels. The levels of lead and cadmium in fish samples were higher than the recommended legal limits. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  13. Changes in trace metals in Thalassia testudinum after hurricane impacts.

    PubMed

    Whelan, T; Van Tussenbroek, B I; Santos, M G Barba

    2011-12-01

    Major hurricanes Emily and Wilma hit the Mexican Caribbean in 2005. Changes in trace metals in the seagrass Thalassia testudinum prior to (May 2004, 2005) and following passage of these hurricanes (May, June 2006) were determined at four locations along a ≈ 130 km long stretch of coast. Before the hurricanes, essential metals were likely limiting and concentrations of potentially toxic Pb were high in a contaminated lagoon (27.5 μg g(-1)) and near submarine springs (6.10 μg g(-1)); the likely sources were inland sewage disposal or excessive boat traffic. After the hurricanes, Pb decreased to 2.0 μg g(-1) in the contaminated lagoon probably through flushing. At the northern sites, essential Fe increased >2-fold (from 26.8 to 68.3 μg g(-1) on average), possibly from remobilization of anoxic sediments or upwelling of deep seawater during Wilma. Thus, hurricanes can be beneficial to seagrass beds in flushing toxic metals and replenishing essential elements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Soluble Nutrient and Trace Metal Fluxes from Aerosol Dry Deposition to Elkhorn Slough, CA

    NASA Astrophysics Data System (ADS)

    Gray, E. T.; Paytan, A.; Haskins, J.

    2009-12-01

    Atmospheric deposition has been widely recognized as a source of pollutants and nutrients to coastal ecosystems. Specifically, deposition includes nitrogen compounds, sulfur compounds, mercury, pesticides, phosphate, trace metals and other toxic compounds that can travel great distances in aerosols. These components can come from both natural (volcanoes, mineral dust, forest fires) and anthropogenic (fossil fuels, chemical byproducts, incineration of waste) sources. These pollutants may affect ecosystem health and water quality with environmental impacts such as eutrophication, contaminated fish and harmful algal blooms. In this study we focus on dry deposition to Elkhorn Slough, California. Size fractionated aerosol samples (PM 2.5 and PM 10) collected continuously over a seven day period using a cascade impactor are used along with a deposition model to determine the soluble nutrient and trace metal fluxes on the Elkhorn Slough ecosystem. Atmospheric deposition inputs will be compared to other sources and their potential impact evaluated.

  15. Using stable isotope systematics and trace metals to constrain the dispersion of fish farm pollution

    NASA Astrophysics Data System (ADS)

    Torchinsky, A.; Shiel, A. E.; Price, M.; Weis, D. A.

    2010-12-01

    Fish farming is a growing industry of great economic importance to coastal communities. Unfortunately, open-net fish farming is associated with the release of organic and metal pollution, which has the potential to adversely affect the coastal marine environment. The dispersion of fish farm pollution and its environmental impact are not well understood/quantified. Pollutants released by fish farms include organic products such as uneaten feed pellets and fish feces, as well as chemicals and pharmaceuticals, all of which may enter marine ecosystems. In this study, we took advantage of bioaccumulation in passive suspension feeding Manila Clams collected at varying distances from an open-net salmon farm located in the Discovery Islands of British Columbia. Measurements of stable C and N isotopes, as well as trace metal concentrations, in the clams were used to investigate the spread of pollutants by detecting the presence of fish farm waste in the clams’ diet. Lead isotopic measurements were used to identify other significant anthropogenic pollution sources, which may impact the study area. Clams located within the areal extent of waste discharged by a fish farm are expected to exhibit anomalous light stable isotope ratios and metal concentrations, reflecting the presence of pollutants accumulated directly from seawater and from their diet. Clams were collected in the Discovery Islands from three sites in the Octopus Islands, located 850 m, 2100 m and 3000 m north of the Cyrus Rocks salmon farm (near Quadra Island) and from a reference site on Penn Island. Light stable isotope ratios (δN = ~10‰, with little variation between sites, and δC from -14.5 to -17.3‰) of the clams suggest that the most distal site (i.e., 3000 m away) is most impacted by organic fish farm waste (i.e., food pellets and feces) and that contributions of organic waste actually decrease closer to the farm. Not surprisingly, the smallest contribution of organic waste was detected in clams

  16. Distribution of trace metals in surface seawater and zooplankton of the Bay of Bengal, off Rushikulya estuary, East Coast of India.

    PubMed

    Srichandan, Suchismita; Panigrahy, R C; Baliarsingh, S K; Rao B, Srinivasa; Pati, Premalata; Sahu, Biraja K; Sahu, K C

    2016-10-15

    Concentrations of trace metals such as iron (Fe), copper (Cu), zinc (Zn), cobalt (Co), nickel (Ni), manganese (Mn), lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), vanadium (V), and selenium (Se) were determined in seawater and zooplankton from the surface waters off Rushikulya estuary, north-western Bay of Bengal. During the study period, the concentration of trace metals in seawater and zooplankton showed significant spatio-temporal variation. Cu and Co levels in seawater mostly remained non-detectable. Other elements were found at higher concentrations and exhibited marked variations. The rank order distribution of trace metals in terms of their average concentration in seawater was observed as Fe>Ni>Mn>Pb>As>Zn>Cr>V>Se>Cd while in zooplankton it was Fe>Mn>Cd>As>Pb>Ni>Cr>Zn>V>Se. The bioaccumulation factor (BAF) of Fe was highest followed by Zn and the lowest value was observed with Ni. Results of correlation analysis discerned positive affinity and good relationship among the majority of the trace metals, both in seawater and zooplankton suggesting their strong affinity and coexistence. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Seasonal changes of metal accumulation and distribution in common club rush (Schoenoplectus lacustris) and common reed (Phragmites australis).

    PubMed

    Duman, Fatih; Cicek, Mehmet; Sezen, Goksal

    2007-08-01

    In this study, two aquatic macrophytes Phragmites australis and Schoenoplectus lacustris and corresponding sediment samples were collected every three months from Lake Sapanca (Turkey) and analysed for their heavy-metal contents (Pb, Cr, Cu, Mn, Ni, Zn and Cd). Accumulation factor ratios of plant parts were calculated for all metals, and the two species were compared in terms of accumulation properties. The highest concentrations were measured in the root systems while relatively low concentrations were found in the rhizome and above-ground parts of the plants. The accumulation ratios of root for P. australis were usually higher than the ratios for S. lacustris. While the accumulation ratios of root were higher in winter than in the other seasons for P. australis, for S. lacustris the highest accumulation ratios were found in the autumn. Both plant species were found to be root accumulators of Pb, Cu, Mn, Ni, Zn and Cd.

  18. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India.

    PubMed

    Singh, N K; Raghubanshi, A S; Upadhyay, A K; Rai, U N

    2016-08-01

    The present study was conducted to quantify the arsenic (As) and other heavy metal concentrations in the plants and algae growing naturally in As contaminated blocks of North-24-Pargana and Nandia district, West Bengal, India to assess their bioaccumulation potential. The plant species included five macrophytes and five algae were collected from the nine selected sites for estimation of As and other heavy metals accumulated therein by using Inductively Coupled Plasma Mass Spectrophotometer (ICP-MS). Results revealed that maximum As concentration (117mgkg(-1)) was recorded in the agricultural soil at the Barasat followed by Beliaghat (111mgkg(-1)) sites of North-24-Pargana. Similarly, concentration of selenium (Si, 249mgkg(-1)), lead (Pb, 79.4mgkg(-1)), chromium (Cr, 138mgkg(-1)) was also found maximum in the soil at Barasat and cadmium (Cd, 163mgkg(-1)) nickel (Ni, 36.5mgkg(-1)) at Vijaynagar site. Among the macrophytes, Eichhornia crassipes found more dominating species in As contaminated area and accumulate As (597mgkg(-1)) in the shoot at kanchrapara site. The Lemna minor found to accumulate maximum As (735mgkg(-1)) in the leaves at Sonadanga and Pistia stratiotes accumulated minimum As (24.5mgkg(-1)) in the fronds from Ranaghat site. In case of diatoms, maximum As (760mgkg(-1)) was accumulated at Kanchrapara site followed by Hydrodictiyon reticulatum (403mgkg(-1)) at the Ranaghat site. High concentration of As and other heavy metal in soil indicates long term effects of irrigation with contaminated ground water, however, high concentration of heavy metals in naturally growing plants and algae revealed their mobilization through leaching and possible food chain contamination. Therefore, efficient heavy metal accumulator macrophytes Eichhornia crassipes, Lemna minor, Spirodela polyrhiza may be exploited in removing metals from contaminated water by developing a plant based treatment system. However, As accumulator algal species may be used as a bioresource for

  19. Trace metal content in inhalable particulate matter (PM2.5-10 and PM2.5) collected from historical mine waste deposits using a laboratory-based approach.

    PubMed

    Martin, Rachael; Dowling, Kim; Pearce, Dora C; Florentine, Singarayer; McKnight, Stafford; Stelcer, Eduard; Cohen, David D; Stopic, Attila; Bennett, John W

    2017-06-01

    Mine wastes and tailings are considered hazardous to human health because of their potential to generate large quantities of highly toxic emissions of particulate matter (PM). Human exposure to As and other trace metals in PM may occur via inhalation of airborne particulates or through ingestion of contaminated dust. This study describes a laboratory-based method for extracting PM 2.5-10 (coarse) and PM 2.5 (fine) particles from As-rich mine waste samples collected from an historical gold mining region in regional, Victoria, Australia. We also report on the trace metal and metalloid content of the coarse and fine fraction, with an emphasis on As as an element of potential concern. Laser diffraction analysis showed that the proportions of coarse and fine particles in the bulk samples ranged between 3.4-26.6 and 0.6-7.6 %, respectively. Arsenic concentrations were greater in the fine fraction (1680-26,100 mg kg -1 ) compared with the coarse fraction (1210-22,000 mg kg -1 ), and Co, Fe, Mn, Ni, Sb and Zn were found to be present in the fine fraction at levels around twice those occurring in the coarse. These results are of particular concern given that fine particles can accumulate in the human respiratory system. Our study demonstrates that mine wastes may be an important source of metal-enriched PM for mining communities.

  20. Differential Effects of Low-Molecular-Weight Organic Acids on the Mobilization of Soil-Borne Arsenic and Trace Metals.

    PubMed

    Nworie, Obinna Elijah; Qin, Junhao; Lin, Chuxia

    2017-08-21

    A batch experiment was conducted to examine the effects of six low-molecular-weight organic acids on the mobilization of arsenic and trace metals from a range of contaminated soils. The results showed that the organic acids behaved differently when reacting with soil-borne As and trace metals. Oxalic acid and acetic acid had the strongest and weakest capacity to mobilize the investigated elements, respectively. The solubilisation of iron oxides by the organic acids appears to play a critical role in mobilizing other trace metals and As. Apart from acidification and complexation, reductive dissolution played a dominant role in the dissolution of iron oxides in the presence of oxalic acid, while acidification tended to be more important for dissolving iron oxides in the presence of other organic acids. The unique capacity of oxalic acid to solubilize iron oxides tended to affect the mobilization of other elements in different ways. For Cu, Mn, and Zn, acidification-driven mobilization was likely to be dominant while complexation might play a major role in Pb mobilization. The formation of soluble Fe and Pb oxalate complexes could effectively prevent arsenate or arsenite from combining with these metals to form solid phases of Fe or Pb arsenate or arsenite.

  1. Heavy metals accumulation in wood tissues of the forest-forming species growed in the Steppe technogenic landscapes in Ukraine

    NASA Astrophysics Data System (ADS)

    Lovinska, Viktoriia; Wiche, Oliver

    2016-04-01

    Territory of Steppe in Ukraine is affected by significant anthropogenic impact caused with mining, metallurgical, chemicalplants and heat power stations. The priority pollutants of the region emissions of these enterprises are presented such heavy metals as Cd, Pb, Cu, Zn, Ni, Mn. The regional forest ecosystems can be considered as potential concentrators of pollutants borned with different technogenic impact. It is necessary to study an ability of forests wood to accumulate heavy metals because accumulated toxins are eliminated from biogeochemical cycle in forest ecosystem for a long time. This study goal is to determine the accumulation properties of forest-forming species - Pinus sylvestris (Scots pine) and Robinia pseudoacacia (black locust) difference age group in relation to heavy metals. It was considerable also to assess the heavy metal distribution in the wood tissue of referred species.Heavy metals content were determined with atomic absorption spectrophotometer using. Scots pine and black locust are the main forest-forming species of natural and artificial forests within Northern Steppe.They can be seen as transformers of the heavy metals cycle and selective concentrators of toxic elements, under the conditions of their excessive concentrations in the environment.It was established that wood tissue of Scots pine and black locust accumulated cadmium in high concentrations according to the age in both species. Indexes of zinc accumulation in the wood of Scots pine exceeded the maximal value in the wood tissue of black locust. The results of our research demonstrated antagonistic interaction of cadmium and zinc. The highest copper concentrations was found for the trees at the age of 45 years. Lead has been identified in wood sample of all ages. Accumulation maximum was fixed in the oldest samples. The trend of concentration increasing of metal didn't find for both species. As for nickel there was established the opposite tendention for both studied species

  2. Vertical distribution of trace-element concentrations and occurrence of metallurgical slag particles in accumulated bed sediments of Lake Roosevelt, Washington, September 2002

    USGS Publications Warehouse

    Cox, S.E.; Bell, P.R.; Lowther, J.S.; Van Metre, P.C.

    2005-01-01

    Sediment cores were collected from six locations in Lake Roosevelt to determine the vertical distributions of trace-element concentrations in the accumulated sediments of Lake Roosevelt. Elevated concentrations of arsenic, cadmium, copper, lead, mercury, and zinc occurred throughout much of the accumulated sediments. Concentrations varied greatly within the sediment core profiles, often covering a range of 5 to 10 fold. Trace-element concentrations typically were largest below the surficial sediments in the lower one-half of each profile, with generally decreasing concentrations from the 1964 horizon to the surface of the core. The trace-element profiles reflect changes in historical discharges of trace elements to the Columbia River by an upstream smelter. All samples analyzed exceeded clean-up guidelines adopted by the Confederated Tribes of the Colville Reservation for cadmium, lead, and zinc and more than 70 percent of the samples exceeded cleanup guidelines for mercury, arsenic, and copper. Although 100 percent of the samples exceeded sediment guidelines for cadmium, lead, and zinc, surficial concentrations of arsenic, copper, and mercury in some cores were less than the sediment-quality guidelines. With the exception of copper, the trace-element profiles of the five cores collected along the pre-reservoir Columbia River channel typically showed trends of decreasing concentrations in sediments deposited after the 1964 time horizon. The decreasing concentrations of trace elements in the upper half of cores from along the pre-reservoir Columbia River showed a pattern of decreasing concentrations similar to reductions in trace-element loading in liquid effluent from an upstream smelter. Except for arsenic, trace-element concentrations typically were smaller at downstream reservoir locations along the pre-reservoir Columbia River. Trace-element concentration in sediments from the Spokane Arm of the reservoir showed distinct differences compared to the similarities

  3. Research of trace metals as markers of entry pathways in combined sewers.

    PubMed

    Gounou, C; Varrault, G; Amedzro, K; Gasperi, J; Moilleron, R; Garnaud, S; Chebbo, G

    2011-01-01

    Combined sewers receive high toxic trace metal loads emitted by various sources, such as traffic, industry, urban heating and building materials. During heavy rain events, Combined Sewer Overflows (CSO) can occur and, if so, are discharged directly into the aquatic system and therefore could have an acute impact on receiving waters. In this study, the concentrations of 18 metals have been measured in 89 samples drawn from the three pollutant Entry Pathways in Combined Sewers (EPCS): i) roof runoff, ii) street runoff, and iii) industrial and domestic effluents and also drawn from sewer deposits (SD). The aim of this research is to identify metallic markers for each EPCS; the data matrix was submitted to principal component analysis in order to determine metallic markers for the three EPCS and SD. This study highlights the fact that metallic content variability across samples from different EPCS and SD exceeds the spatio-temporal variability of samples from the same EPCS. In the catchment studied here, the most valuable EPCS and SD markers are lead, sodium, boron, antimony and zinc; these markers could be used in future studies to identify the contributions of each EPCS to CSO metallic loads.

  4. Concentrations of trace elements in tissues of red fox (Vulpes vulpes) and stone marten (Martes foina) from suburban and rural areas in Croatia.

    PubMed

    Bilandžić, Nina; Dežđek, Danko; Sedak, Marija; Dokić, Maja; Solomun, Božica; Varenina, Ivana; Knežević, Zorka; Slavica, Alen

    2010-11-01

    Trace elements concentrations (As, Cd, Cu, Pb and Hg) were determined in the liver, kidney and muscle of 28 red fox (Vulpes vulpes) and 16 stone marten (Martes foina) from suburban and rural habitats from Croatia. Rural and suburban habitats affected Cd and Hg levels in the muscle, liver and kidney of red fox. Significant differences in metal concentrations in the muscle, liver and kidney were detected among species. Suburban stone marten accumulated the highest levels of trace elements (mg/kg w.w.): in muscle 0.019 for Hg; in liver 0.161 for Cd, 36.1 for Cu and 0.349 for Pb; in kidney 1.34 for Cd and 0.318 for Pb. Values observed were higher than those found in suburban red fox and therefore, may represent an important bioindicator for the accumulation of toxic metals in urbanized habitats.

  5. Trace metal contamination in commercial fish and crustaceans collected from coastal area of Bangladesh and health risk assessment.

    PubMed

    Raknuzzaman, Mohammad; Ahmed, Md Kawser; Islam, Md Saiful; Habibullah-Al-Mamun, Md; Tokumura, Masahiro; Sekine, Makoto; Masunaga, Shigeki

    2016-09-01

    Trace metals contamination in commercial fish and crustaceans have become a great problem in Bangladesh. This study was conducted to determine seven trace metals concentration (Cr, Ni, Cu, Zn, As, Cd, and Pb) in some commercial fishes and crustaceans collected from coastal areas of Bangladesh. Trace metals in fish samples were in the range of Cr (0.15 - 2.2), Ni (0.1 - 0.56), Cu (1.3 - 1.4), Zn (31 - 138), As (0.76 - 13), Cd (0.033 - 0.075), and Pb (0.07 - 0.63 mg/kg wet weight (ww)), respectively. Arsenic (13 mg/kg ww) and Zn (138 mg/kg ww) concentrations were remarkably high in fish of Cox's Bazar due to the interference of uncontrolled huge hatcheries and industrial activities. The elevated concentrations of Cu (400), Zn (1480), and As (53 mg/kg ww) were also observed in crabs of Cox's Bazar which was considered as an absolutely discrepant aquatic species with totally different bioaccumulation pattern. Some metals in fish and crustaceans exceeded the international quality guidelines. Estimated daily intake (EDI) and target cancer risk (TR) revealed high dietary intake of As and Pb, which was obviously a matter of severe public health issue of Bangladeshi coastal people which should not be ignored and concentrate our views to solve this problem with an integrated approaches. Thus, continuous monitoring of these toxic trace elements in seafood and immediate control measure is recommended.

  6. Which Factors Determine Metal Accumulation in Agricultural Soils in the Severely Human-Coupled Ecosystem?

    PubMed Central

    Xu, Li; Cao, Shanshan; Wang, Jihua; Lu, Anxiang

    2016-01-01

    Agricultural soil is typically an important component of urban ecosystems, contributing directly or indirectly to the general quality of human life. To understand which factors influence metal accumulation in agricultural soils in urban ecosystems is becoming increasingly important. Land use, soil type and urbanization indicators all account for considerable differences in metal accumulation in agricultural soils, and the interactions between these factors on metal concentrations were also examined. Results showed that Zn, Cu, and Cd concentrations varied significantly among different land use types. Concentrations of all metals, except for Cd, were higher in calcareous cinnamon soil than in fluvo-aquic soil. Expansion distance and road density were adopted as urbanization indicators, and distance from the urban center was significantly negatively correlated with concentrations of Hg, and negatively correlated with concentrations of Zn, and road density was positively correlated with Cd concentrations. Multivariate analysis of variance indicated that Hg concentration was significantly influenced by the four-way interaction among all factors. The results in this study provide basic data to support the management of agricultural soils and to help policy makers to plan ahead in Beijing. PMID:27196922

  7. Which Factors Determine Metal Accumulation in Agricultural Soils in the Severely Human-Coupled Ecosystem?

    PubMed

    Xu, Li; Cao, Shanshan; Wang, Jihua; Lu, Anxiang

    2016-05-17

    Agricultural soil is typically an important component of urban ecosystems, contributing directly or indirectly to the general quality of human life. To understand which factors influence metal accumulation in agricultural soils in urban ecosystems is becoming increasingly important. Land use, soil type and urbanization indicators all account for considerable differences in metal accumulation in agricultural soils, and the interactions between these factors on metal concentrations were also examined. Results showed that Zn, Cu, and Cd concentrations varied significantly among different land use types. Concentrations of all metals, except for Cd, were higher in calcareous cinnamon soil than in fluvo-aquic soil. Expansion distance and road density were adopted as urbanization indicators, and distance from the urban center was significantly negatively correlated with concentrations of Hg, and negatively correlated with concentrations of Zn, and road density was positively correlated with Cd concentrations. Multivariate analysis of variance indicated that Hg concentration was significantly influenced by the four-way interaction among all factors. The results in this study provide basic data to support the management of agricultural soils and to help policy makers to plan ahead in Beijing.

  8. Red mud (RM)-Induced enhancement of iron plaque formation reduces arsenic and metal accumulation in two wetland plant species.

    PubMed

    Yang, J X; Guo, Q J; Yang, J; Zhou, X Y; Ren, H Y; Zhang, H Z; Xu, R X; Wang, X D; Peters, M; Zhu, G X; Wei, R F; Tian, L Y; Han, X K

    2016-01-01

    Human activities have resulted in arsenic (As) and heavy metals accumulation in paddy soils in China. Phytoremediation has been suggested as an effective and low-cost method to clean up contaminated soils. A combined soil-sand pot experiment was conducted to investigate the influence of red mud (RM) supply on iron plaque formation and As and heavy metal accumulation in two wetland plant species (Cyperus alternifolius Rottb., Echinodorus amazonicus Rataj), using As and heavy metals polluted paddy soil combined with three rates of RM application (0, 2%, 5%). The results showed that RM supply significantly decreased As and heavy metals accumulation in shoots of the two plants due to the decrease of As and heavy metal availability and the enhancement of the formation of iron plaque on the root surface and in the rhizosphere. Both wetland plants supplied with RM tended to have more Fe plaque, higher As and heavy metals on roots and in their rhizospheres, and were more tolerant of As and heavy metal toxicity. The results suggest that RM-induced enhancement of the formation of iron plaque on the root surface and in the rhizosphere of wetland plants may be significant for remediation of soils contaminated with As and heavy metals.

  9. Defining appropriate methods for studying toxicities of trace metals in nutrient solutions.

    PubMed

    Li, Zhigen; Wang, Peng; Menzies, Neal W; Kopittke, Peter M

    2018-01-01

    The use of inappropriate experimental conditions for examining trace metal phytotoxicity results in data of questionable value. The present study aimed to identify suitable parameters for study of phytotoxic metals in nutrient solutions. First, the literature was reviewed to determine the concentration of six metals (Cd, Cu, Hg, Ni, Pb, and Zn) from solution of contaminated soils. Next, the effects of pH, P, Cl, NO 3 , and four Fe-chelators were investigated by using thermodynamic modelling and by examining changes in root elongation rate of soybean (Glycine max cv. Bunya). The literature review identified that the solution concentrations of metals in soils were low, ranging from (µM) 0.069-11Cd, 0.19-15.8 Cu, 0.000027-0.000079 Hg, 1.0-8.7 Ni, 0.004-0.55 Pb, and 0.4-36.3 Zn. For studies in nutrient solution, pH should generally be low given its effects on solubility and speciation, as should the P concentration due to the formation of insoluble phosphate salts. The concentrations of Cl, NO 3 , and various chelators also influence metal toxicity through alteration of metal speciation. The nutrient solutions used to study metal toxicity should consider environmentally-relevant conditions especially for metal concentrations, with concentrations of other components added at levels that do not substantially alter metal toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Phytotoxicity of trace metals in spiked and field-contaminated soils: Linking soil-extractable metals with toxicity.

    PubMed

    Hamels, Fanny; Malevé, Jasmina; Sonnet, Philippe; Kleja, Dan Berggren; Smolders, Erik

    2014-11-01

    Soil tests have been widely developed to predict trace metal uptake by plants. The prediction of metal toxicity, however, has rarely been tested. The present study was set up to compare 8 established soil tests for diagnosing phytotoxicity in contaminated soils. Nine soils contaminated with Zn or Cu by metal mining, smelting, or processing were collected. Uncontaminated reference soils with similar soil properties were sampled, and series of increasing contamination were created by mixing each with the corresponding soil. In addition, each reference soil was spiked with either ZnCl2 or CuCl2 at several concentrations. Total metal toxicity to barley seedling growth in the field-contaminated soils was up to 30 times lower than that in corresponding spiked soils. Total metal (aqua regia-soluble) toxicity thresholds of 50% effective concentrations (EC50) varied by factors up to 260 (Zn) or 6 (Cu) among soils. For Zn, variations in EC50 thresholds decreased as aqua regia > 0.43 M HNO3  > 0.05 M ethylenediamine tetraacetic acid (EDTA) > 1 M NH4 NO3  > cobaltihexamine > diffusive gradients in thin films (DGT) > 0.001 M CaCl2 , suggesting that the last extraction is the most robust phytotoxicity index for Zn. The EDTA extraction was the most robust for Cu-contaminated soils. The isotopically exchangeable fraction of the total soil metal in the field-contaminated soils markedly explained the lower toxicity compared with spiked soils. The isotope exchange method can be used to translate soil metal limits derived from soils spiked with metal salts to site-specific soil metal limits. © 2014 SETAC.

  11. Role of the Ca-pectates on the accumulation of heavy metals in the root apoplasm.

    PubMed

    Castaldi, Paola; Lauro, Giampaolo; Senette, Caterina; Deiana, Salvatore

    2010-12-01

    In order to better understand the processes that regulate the accumulation in the apoplasm of heavy metals and their mobilization by the plant metabolites it is essential to study the mechanisms that regulate the interactions between metal ions and pectins. In such a context, the sorption of Cd(II), Zn(II), Cu(II) and Pb(II) from single and multi-metal solutions, by a Ca-polygalacturonate gel with a degree of esterification of 18.0 (PGAM(1)) and 65.5% (PGAM(2)) was studied in the 3.0-6.0 pH range in the presence of CaCl(2) 2.5mM. The sorption of Cr(III) from single metal solution was also considered. The results show that the amount of each metal ion sorbed increases with increasing the initial metal ion concentration and pH. The data from the single metal solution tests show that at pH 6.0 the affinity of the metal ions towards the PGAM(1) matrix follows the order: Cr(III)>Cu(II)≅Pb(II)≫Zn(II)≅Cd(II). The simultaneous sorption of the bivalent metal ions by the PGAM(1) gels indicates that Pb(II) is selectively sorbed. The FT-IR spectra show that the carboxylate groups are mainly responsible for the metal ion coordination. The ability of PGAM(2) to accumulate Cr(III), Cu(II), and Pb(II) was lower than that found in the PGAM(1) systems whereas the sorption of Zn(II) and Cd(II) was negligible. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  12. Insights into the chemical partitioning of trace metals in roadside and off-road agricultural soils along two major highways in Attica's region, Greece.

    PubMed

    Botsou, Fotini; Sungur, Ali; Kelepertzis, Efstratios; Soylak, Mustafa

    2016-10-01

    We report in this study the magnetic properties and partitioning patterns of selected trace metals (Pb, Zn, Cu, Cd, Ni) in roadside and off-road (>200m distance from the road edge) agricultural soils collected along two major highways in Greece. Sequential extractions revealed that the examined trace metals for the entire data set were predominantly found in the residual fraction, averaging 37% for Cd up to 80% for Cu. Due to the strong influence of lithogenic factors, trace metal pseudototal contents of the roadside soils did not differ significantly to those of the off-road soils. Magnetic susceptibility and frequency dependent magnetic susceptibility determinations showed a magnetic enhancement of soils; however, it was primarily related to geogenic factors and not to traffic-derived magnetic particles. These results highlight that in areas characterized by strong geogenic backgrounds, neither pseudototal trace metal contents nor magnetic properties determinations effectively capture traffic-related contamination of topsoils. The vehicular emission signal was traced by the increased acid-soluble and reducible trace metal contents of the roadside soils compared to their off-road counterparts. In the case of Cu and Zn, changes in the partitioning patterns were also observed between the roadside and off-road soils. Environmental risks associated with agricultural lands extending at the margins of the studied highways may arise from the elevated Ni contents (both pseudototal and potentially mobile), and future studies should investigate Ni levels in the edible parts of plants grown on these agricultural soils. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Sedimentation and associated trace metal enrichment in the riparian zone of the Three Gorges Reservoir, China.

    PubMed

    Tang, Qiang; Bao, Yuhai; He, Xiubin; Zhou, Huaidong; Cao, Zhijing; Gao, Peng; Zhong, Ronghua; Hu, Yunhua; Zhang, Xinbao

    2014-05-01

    Impoundment of the Three Gorges Reservoir has created an artificial riparian zone with a vertical height of 30 m and a total area of 349 km(2), which has been subjected to seasonal inundation and exposure due to regular reservoir impoundment and the occurrence of natural floods. The significant alteration of hydrologic regime has caused numerous environmental changes. The present study investigated the magnitude and spatial pattern of sedimentation and metal enrichment in a typical section of the riparian zone, composed of bench terraces with previous agricultural land uses, and explored their links to the changed hydrologic regime. In particular, we measured the total sediment depths and collected surface riparian sediments and down-profile sectioned riparian soils (at 5 cm intervals) for trace metal determination. Our analysis showed that the annual average sedimentation rates varied from 0.5 to 10 cm·yr(-1) and they decreased significantly with increasing elevation. This lateral distribution was principally attributed to seasonal variations in water levels and suspended sediment concentrations. Enriched concentrations of trace metals were found both in the riparian sediments and soils, but they were generally higher in the riparian sediments than in riparian soils and followed a similar lateral decreasing trend. Metal contamination assessment showed that the riparian sediments were slightly contaminated by Ni, Zn, and Pb, moderately contaminated by Cu, and moderately to strongly contaminated by Cd; while riparian soils were slightly contaminated by As, and moderately contaminated by Cd. Trace metal enrichment in the riparian sediments may be attributed to external input of contaminated sediments produced from upstream anthropogenic sources and chemical adsorption from dissolved fractions during pure sediment mobilization and after sink for a prolonged flooding period due to reservoir impoundment. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany.

    PubMed

    Säumel, Ina; Kotsyuk, Iryna; Hölscher, Marie; Lenkereit, Claudia; Weber, Frauke; Kowarik, Ingo

    2012-06-01

    Food production by urban dwellers is of growing importance in developing and developed countries. Urban horticulture is associated with health risks as crops in urban settings are generally exposed to higher levels of pollutants than those in rural areas. We determined the concentration of trace metals in the biomass of different horticultural crops grown in the inner city of Berlin, Germany, and analysed how the local setting shaped the concentration patterns. We revealed significant differences in trace metal concentrations depending on local traffic, crop species, planting style and building structures, but not on vegetable type. Higher overall traffic burden increased trace metal content in the biomass. The presence of buildings and large masses of vegetation as barriers between crops and roads reduced trace metal content in the biomass. Based on this we discuss consequences for urban horticulture, risk assessment, and planting and monitoring guidelines for cultivation and consumption of crops. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM PROJECT NUMBER 87016 CO-PRECIPITATION OF TRACE METALS IN GROUNDWATER AND VADOSE ZONE CALCITE: IN SITU CONTAINMENT AND STABILIZATION OF STRONTIUM-90 AND OTHER DIVALENT METALS AND RADIONUCLIDES AT ARID WESTERN DOE SITES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferris, F. Grant; Fujita, Yoshiko; Smith, Robert W.

    2004-06-15

    Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) weapons complex. In situ containment and stabilization of these contaminants in vadose zones or groundwater is a cost-effective treatment strategy. Our facilitated approach relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal coprecipitation) by increasing groundwater pH and alkalinity (Fujita et al., 2000; Warren et al., 2001). Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface ureamore » hydrolyzing microorganisms. Because the precipitation processes are irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from groundwater. The rate at which trace metals are incorporated into calcite is a function of calcite precipitation kinetics, adsorption interactions between the calcite surface and the trace metal in solution (Zachara et al., 1991), solid solution properties of the trace metal in calcite (Tesoriero and Pankow, 1996), and also the surfaces upon which the calcite is precipitating. A fundamental understanding of the coupling of calcite precipitation and trace metal partitioning, and how this occurs in aquifers and vadose environments is lacking. This report summarizes work undertaken during the second year of this project.« less

  16. Resistance to and Accumulation of Heavy Metals by Actinobacteria Isolated from Abandoned Mining Areas

    PubMed Central

    El Baz, Soraia; Baz, Mohamed; El Gharmali, Abdelhay; Imziln, Boujamâa

    2015-01-01

    Accumulation of high concentrations of heavy metals in environments can cause many human health risks and serious ecological problems. Nowadays, bioremediation using microorganisms is receiving much attention due to their good performance. The aim of this work is to investigate heavy metals resistance and bioaccumulation potential of actinobacteria strains isolated from some abandoned mining areas. Analysis of mining residues revealed that high concentration of zinc “Zn” was recorded in Sidi Bouatman, Arbar, and Bir Nhass mining residues. The highest concentration of lead “Pb” was found in Sidi Bouatman. Copper “Cu,” cadmium “Cd,” and chromium “Cr” were found with moderate and low concentrations. The resistance of 59 isolated actinobacteria to the five heavy metals was also determined. Using molecular identification 16S rRNA, these 27 isolates were found to belong to Streptomyces and Amycolatopsis genera. The results showed different levels of heavy metal resistance; the minimum inhibitory concentration (MIC) recorded was 0.55 for Pb, 0.15 for Cr, and 0.10 mg·mL−1 for both Zn and Cu. Chemical precipitation assay of heavy metals using hydrogen sulfide technic (H2S) revealed that only 27 isolates have a strong ability to accumulate Pb (up to 600 mg of Pb per g of biomass for Streptomyces sp. BN3). PMID:25763383

  17. Metal accumulation screening of the Río Tinto flora (Huelva, Spain).

    PubMed

    de la Fuente, Vicenta; Rufo, Lourdes; Rodríguez, Nuria; Amils, Ricardo; Zuluaga, Javier

    2010-06-01

    Río Tinto (Huelva, Spain) is located in one of the most important mining regions in the world. Its soils are characterized by their extreme acidity and elevated concentrations of heavy metals. Due to these characteristics, the Tinto ecosystem is considered unique and an ideal location to study biological adaptations to this type of habitat. Plant species that present these adaptations might be useful to mining and other metal pollution restoration programs. This study reports the results for the screening of Ca, Mg, Na, Mn, Fe, Ni, Cu, Zn, As, and Pb in aerial tissues of 97 plant species from the Tinto basin flora. In addition, plant-soil relationships were analyzed using the biological absorption coefficient (BAC) to detect the main plant adaptations in the Tinto flora. The species selected are representative of the biomass of the main dominant edaphophile and climatophile vegetation communities of the three river sections, forest, and subseral stages. Plant and soil elemental analyses were performed using inductively coupled plasma-mass spectrometry technique (ICP-MS). The results indicate that in general, Tinto flora shows a pattern of accumulation of the analyzed elements in aerial tissues which agrees with the nutritional requirements of vascular plants (macronutrients > micronutrients > indifferent or toxic elements). Among macronutrients, Ca seems to be an essential element in this habitat. This element accumulates in the aerial plant tissues. Basically, the Río Tinto flora is made of Fe, Cu, Zn, Ni, As, and Pb excluders, although some analyzed species of Erica, Quercus, Lavandula, Cistus, Genista, and Cytisus genera can be considered Mn accumulators. The results of this study make up a body of fundamental knowledge of the strategies used by plants to thrive in habitats with high concentrations of toxic heavy metals. This information is vital when it comes to planning a restoration program. Plants must be selected and used according to the requirements

  18. Reoxidation of estuarine sediments during simulated resuspension events: Effects on nutrient and trace metal mobilisation

    NASA Astrophysics Data System (ADS)

    Vidal-Durà, Andrea; Burke, Ian T.; Stewart, Douglas I.; Mortimer, Robert J. G.

    2018-07-01

    Estuarine environments are considered to be nutrient buffer systems as they regulate the delivery of nutrients from rivers to the ocean. In the Humber Estuary (UK) seawater and freshwater mixing during tidal cycles leads to the mobilisation of oxic surface sediments (0-1 cm). However, less frequent seasonal events can also mobilise anoxic subsurface (5-10 cm) sediments, which may have further implications for the estuarine geochemistry. A series of batch experiments were carried out on surface and subsurface sediments taken from along the salinity gradient of the Humber Estuary. The aim was to investigate the geochemical processes driving major element (N, Fe, S, and Mn) redox cycling and trace metal behaviour during simulated resuspension events. The magnitude of major nutrient and metal release was significantly greater during the resuspension of outer estuarine sediments rather than from inner estuarine sediments. When comparing resuspension of surface versus subsurface sediment, only the outer estuary experiments showed significant differences in major nutrient behaviour with sediment depth. In general, any ammonium, manganese and trace metals (Cu and Zn) released during the resuspension experiments were rapidly removed from solution as new sorption sites (i.e. Fe/Mn oxyhydroxides) formed. Therefore Humber estuary sediments showed a scavenging capacity for these dissolved species and hence may act as an ultimate sink for these elements. Due to the larger aerial extent of the outer estuary intertidal mudflats in comparison with the inner estuary area, the mobilisation of the outer estuary sediments (more reducing and richer in sulphides and iron) may have a greater impact on the transport and cycling of nutrients and trace metals. Climate change-associated sea level rise combined with an increasing frequency of major storm events in temperate zones, which are more likely to mobilise deeper sediment regions, will impact the nutrient and metal inputs to the

  19. Bioaccumulation and public health implications of trace metals in edible tissues of the crustaceans Scylla serrata and Penaeus monodon from the Tanzanian coast.

    PubMed

    Rumisha, Cyrus; Leermakers, Martine; Mdegela, Robinson H; Kochzius, Marc; Elskens, Marc

    2017-09-30

    The coastal population in East Africa is growing rapidly but sewage treatment and recycling facilities in major cities and towns are poorly developed. Since estuarine mangroves are the main hotspots for pollutants, there is a potential for contaminants to accumulate in edible fauna and threaten public health. This study analysed trace metals in muscle tissues of the giant mud crabs (Scylla serrata) and the giant tiger prawns (Penaeus monodon) from the Tanzanian coast, in order to determine the extent of bioaccumulation and public health risks. A total of 180 samples of muscle tissues of S. serrata and 80 of P. monodon were collected from nine sites along the coast. Both species showed high levels of trace metals in the wet season and significant bioaccumulation of As, Cu and Zn. Due to their burrowing and feeding habits, mud crabs were more contaminated compared to tiger prawns sampled from the same sites. Apart from that, the measured levels of Cd, Cr and Pb did not exceed maximum limits for human consumption. Based on the current trend of fish consumption in Tanzania (7.7 kg/person/year), the measured elements (As, Cd, Co, Cu, Mn, Pb and Zn) are not likely to present health risks to shellfish consumers. Nevertheless, potential risks of As and Cu cannot be ruled out if the average per capita consumption is exceeded. This calls for strengthened waste management systems and pollution control measures.

  20. The geochemistry of redox sensitive trace metals in sediments

    NASA Astrophysics Data System (ADS)

    Morford, Jennifer L.; Emerson, Steven

    1999-06-01

    We analyzed the redox sensitive elements V, Mo, U, Re and Cd in surface sediments from the Northwest African margin, the U.S. Northwest margin and the Arabian Sea to determine their response under a range of redox conditions. Where oxygen penetrates 1 cm or less into the sediments, Mo and V diffuse to the overlying water as Mn is reduced and remobilized. Authigenic enrichments of U, Re and Cd are evident under these redox conditions. With the onset of sulfate reduction, all of the metals accumulate authigenically with Re being by far the most enriched. General trends in authigenic metal accumulation are described by calculating authigenic fluxes for the 3 main redox regimes: oxic, reducing where oxygen penetrates ≤1 cm, and anoxic conditions. Using a simple diagenesis model and global estimates of organic carbon rain rate and bottom water oxygen concentrations, we calculate the area of sediments below 1000 m water depth in which oxygen penetration is ≤1 cm to be 4% of the ocean floor. We conclude that sediments where oxygen penetrates ≤1 cm release Mn, V and Mo to seawater at rates of 140%-260%, 60%-150% and 5%-10% of their respective riverine fluxes, using the authigenic metal concentrations and accumulation rates from this work and other literature. These sediments are sinks for Re, Cd and U, with burial fluxes of 70%-140%, 30%-80% and 20%-40%, respectively, of their dissolved riverine inputs. We modeled the sensitivity of the response of seawater Re, Cd and V concentrations to changes in the area of reducing sediments where oxygen penetrates ≤1 cm. Our analysis suggests a negligible change in seawater Re concentration, whereas seawater concentrations of Cd and V could have decreased and increased, respectively, by 5%-10% over 20 kyr if the area of reducing sediments increased by a factor of 2 and by 10%-20% if the area increased by a factor of 3. The concentration variations for a factor of 2 increase in the area of reducing sediments are at about the

  1. Heavy metal accumulation by Corchorus olitorius L. irrigated with wastewater.

    PubMed

    Ahmed, Dalia A; Slima, Dalia F

    2018-05-01

    Many agricultural soils in Egypt irrigated with untreated wastewater. Herein, we investigated the effect of untreated industrial wastewater irrigation on the soil and fodder plant Corchorus olittorius (Jew mallow). It also aimed to assess its effect on the growth measurements as well as analyses of soils, irrigation waters, and plants for heavy metal and nutrient concentrations. Significant differences between irrigation waters and soil irrigated with fresh and wastewater were recognized. Wastewater irrigation leads to remarkable reduction in the growth parameters and reduced its vegetative biomass. The concentration of Pb, Cd, Cr, Cu, Fe, and Zn were high significant and above phytotoxic concentrations in leaves (edible part) and roots of wastewater-irrigated plant. The present study indicated that Jew mallow plant tends to phytostabilize (Cd, Ni, and Mn) in its root and had the ability to translocate (Pb, Cu, Cr, Fe, and Zn) to its leaves. Higher concentrations of Cd, Cu, Cr, Pb, Fe, Mn, Ni, and Zn in the roots than leaves indicate that the roots are hyper-accumulators for Pb, Cr, Cu, Fe, and Zn more than the leaves. The research study recommended that there is a need to protect the soil from contamination through regular monitoring and not to cultivate Jew mallow in wastewater-irrigated soil and that it had a high capacity to accumulate heavy metals in its edible part and causes several harmful health effects for consumers.

  2. Impact of Phosphate, Potassium, Yeast Extract, and Trace Metals on Chitosan and Metabolite Production by Mucor indicus.

    PubMed

    Safaei, Zahra; Karimi, Keikhosro; Zamani, Akram

    2016-08-30

    In this study the effects of phosphate, potassium, yeast extract, and trace metals on the growth of Mucor indicus and chitosan, chitin, and metabolite production by the fungus were investigated. Maximum yield of chitosan (0.32 g/g cell wall) was obtained in a phosphate-free medium. Reversely, cell growth and ethanol formation by the fungus were positively affected in the presence of phosphate. In a phosphate-free medium, the highest chitosan content (0.42 g/g cell wall) and cell growth (0.66 g/g sugar) were obtained at 2.5 g/L of KOH. Potassium concentration had no significant effect on ethanol and glycerol yields. The presence of trace metals significantly increased the chitosan yield at an optimal phosphate and potassium concentration (0.50 g/g cell wall). By contrast, production of ethanol by the fungus was negatively affected (0.33 g/g sugars). A remarkable increase in chitin and decrease in chitosan were observed in the absence of yeast extract and concentrations lower than 2 g/L. The maximum chitosan yield of 51% cell wall was obtained at 5 g/L of yeast extract when the medium contained no phosphate, 2.5 g/L KOH, and 1 mL/L trace metal solution.

  3. Accumulation of trace elements, pesticides, and polychlorinated biphenyls in sediments and the clam Corbicula manilensis of the Apalachicola River, Florida

    USGS Publications Warehouse

    Elder, J.F.; Mattraw, H.C.

    1984-01-01

    A survey of trace element and synthetic organic compound concentrations in botton materials was conducted on the Apalachichola River in northwest Florida in 1979-80 as part of the Apalachicola River Quality Assessment. Substances analyzed included trace elements (predominantly heavy metals), organochlorine insecticides, organophosphorus insecticides, chlorinated phenoxy-acid herbicides, and polychlorinated biphenyls (PCBs). Three kinds of materials were surveyed: fine-grained sediments, whole-body tissue of the Asiatic clam Corbicula manilensis, and bottom-load organic detritus. No hazardous levels of any of the substances were found. Concentrations in the fine-grained sediments and clams were generally at least ten times lower than maximum limits considered safe for biota of aquatic systems. A comparison of trace-substance data from the Apalachicola River with data from Lake Seminole (upstream) and Apalachicola Bay (downstream) showed lower concentrations in riverine clams. Sediment concentrations in all parts of the system were comparable. Most trace substances in the Apalachicola River enter the river from the upstream part of the basin (the Chattahoochee and Flint Rivers in Georgia and Alabama) and from nonpoint sources throughout the basin. There are no major point discharges along the Apalachicola. Trend analysis was limited by the scope of the study, but did not reveal any spatial or temporal trends in concentrations of any of the substances analyzed. Concentrations of organic compounds and most metals in Corbicula manilensis did not correlate with those in sediments.

  4. The spatial distribution, accumulation and potential source of seldom monitored trace elements in sediments of Three Gorges Reservoir, China

    PubMed Central

    Han, Lanfang; Gao, Bo; Zhou, Huaidong; Xu, Dongyu; Wei, Xin; Gao, Li

    2015-01-01

    The alteration of hydrologic condition of Three Gorges Reservoir (TGR) after impoundment has caused numerous environmental changes. This study investigated the distribution, accumulation and potential sources of the seldom monitored trace elements (SMTEs) in sediments from three tributaries (ZY, MX and CT) and one mainstream (CJ) in TGR during different seasons. The average contents of most SMTEs excluding Sb in the winter were similar to that in the summer. For Sb, its average concentrations in the summer and winter were roughly six and three times higher than its background value, respectively. Contamination factor (CF) and geoaccumulation index (Igeo) demonstrated that most of the sediments were obviously contaminated by Sb. The enrichment factors (EF) of Ga and Sb were higher than 2.0, revealing the possible anthropogenic inputs; However, the EFs of other SMTEs were lower than 1.5, indicating the natural inputs. Correlation and principal component analysis suggested the most SMTEs were positively correlated with major elements (Cr, Mn, Cu, Zn, As, Cd and Pb) and clay contents, which implies that SMTEs had the same sources with these major metals, and the fine particles might be a major carrier for transporting SMTEs from the rivers to the TGR. PMID:26538153

  5. Trace-metal contamination in the glacierized Rio Santa watershed, Peru.

    PubMed

    Guittard, Alexandre; Baraer, Michel; McKenzie, Jeffrey M; Mark, Bryan G; Wigmore, Oliver; Fernandez, Alfonso; Rapre, Alejo C; Walsh, Elizabeth; Bury, Jeffrey; Carey, Mark; French, Adam; Young, Kenneth R

    2017-11-25

    The objective of this research is to characterize the variability of trace metals in the Rio Santa watershed based on synoptic sampling applied at a large scale. To that end, we propose a combination of methods based on the collection of water, suspended sediments, and riverbed sediments at different points of the watershed within a very limited period. Forty points within the Rio Santa watershed were sampled between June 21 and July 8, 2013. Forty water samples, 36 suspended sediments, and 34 riverbed sediments were analyzed for seven trace metals. The results, which were normalized using the USEPA guideline for water and sediments, show that the Rio Santa water exhibits Mn concentrations higher than the guideline at more than 50% of the sampling points. As is the second highest contaminating element in the water, with approximately 10% of the samples containing concentrations above the guideline. Sediments collected in the Rio Santa riverbed were heavily contaminated by at least four of the tested elements at nearly 85% of the sample points, with As presenting the highest normalized concentration, at more than ten times the guideline. As, Cd, Fe, Pb, and Zn present similar concentration trends in the sediment all along the Rio Santa.The findings indicate that care should be taken in using the Rio Santa water and sediments for purposes that could affect the health of humans or the ecosystem. The situation is worse in some tributaries in the southern part of the watershed that host both active and abandoned mines and ore-processing plants.

  6. Trace metal distribution and control in the pilot-scale bubbling fluidized bed combustor equipped with the pulse-jet fabric filter, limestone injection, and the humidification reactor.

    PubMed

    Kouvo, Petri

    2003-04-01

    This work focused on trace metal behavior and removal in a fabric filter or in a humidification reactor during the cofiring of sawdust and refuse-derived fuels (RDFs) in a pilot-scale bubbling fluidized bed (BFB) boiler. Trace metal emissions measurements before and after the fabric filter revealed that removal efficiency in the fabric filter was in the range of 80-100%, and that the European Union (EU) Directive on Incineration of Waste restrictions for trace metal emissions are easily achieved even if addition of RDFs substantially increases the concentration of trace metals in fuel blends. Limestone injection enhanced the removal of As and Se but had no noticeable effect on the removal of other trace metals. Extensive formation of HgCl2 and condensation on fly ash particles during sawdust plus 40% RDF cofiring resulted in a 92% Hg removal efficiency in the fabric filter. Limestone injection had no effect on the Hg removal in the fabric filter but decreased the Hg removal in a humidification reactor from 40 to 28%. Results of the bed material and fly ash analysis suggested capture of Cu, Pb, Mn, Ni, and Zn in the bed material but also suggested that these metals may be released from the bed if the fuel characteristics or process conditions are changed.

  7. Effects of metal-contaminated soils on the accumulation of heavy metals in gotu kola (Centella asiatica) and the potential health risks: a study in Peninsular Malaysia.

    PubMed

    Ong, Ghim Hock; Wong, Ling Shing; Tan, Ai Li; Yap, Chee Kong

    2016-01-01

    Centella asiatica is a commonly used medicinal plant in Malaysia. As heavy metal accumulation in medicinal plants which are highly consumed by human is a serious issue, thus the assessment of heavy metals in C. asiatica is important for the safety of consumers. In this study, the heavy metal accumulation in C. asiatica and the potential health risks were investigated. Samples of C. asiatica and surface soils were collected from nine different sites around Peninsular Malaysia. The concentration of six heavy metals namely Cd, Cu, Ni, Fe, Pb and Zn were determined by air-acetylene flame atomic absorption spectrophotometer (AAS). The degree of anthropogenic influence was assessed by calculating the enrichment factor (EF) and index of geoaccumulation (Igeo). The heavy metal uptake into the plant was estimated through the calculation of translocation factor (TF), bioconcentration factor (BCF) and correlation study. Estimated daily intakes (EDI) and target hazard quotients (THQ) were used to determine the potential health risk of consuming C. asiatica. The results showed that the overall surface soil was polluted by Cd, Cu and Pb, while the uptake of Zn and Ni by the plants was high. The value of EDI and THQ showed that the potential of Pb toxicity in C. asiatica was high as well. As heavy metal accumulation was confirmed in C. asiatica, daily consumption of the plant derived from polluted sites in Malaysia was not recommended.

  8. Trends in hazardous trace metal concentrations in aerosols collected in Beijing, China from 2001 to 2006.

    PubMed

    Okuda, Tomoaki; Katsuno, Masayuki; Naoi, Daisuke; Nakao, Shunsuke; Tanaka, Shigeru; He, Kebin; Ma, Yongliang; Lei, Yu; Jia, Yingtao

    2008-06-01

    Daily observations of hazardous trace metal concentrations in aerosols in Beijing, China were made in the period from 2001 to 2006. We considered coal combustion as a major source of some anthropogenic metals by achieving a correlation analysis and by investigating enrichment factors and relative composition of metals. A possible extra source of some specific metals, such as Cu and Sb, was brake abrasion particles, however, we did not think the transport-related particle was a major source for the hazardous anthropogenic metals even though they could originate from vehicle exhaust and brake/tire abrasion particles. A time-trend model was used to describe temporal variations of chemical constituent concentrations during the five-year period. Several crustal elements, such as Al, Ti, V, Cr, Mn, Fe, and Co, did not show clear increases, with annual rates of change of -15.2% to 3.6%. On the other hand, serious increasing trends were noted from several hazardous trace metals. Cu, Zn, As, Cd, and Pb, which are derived mainly from anthropogenic sources, such as coal combustion, showed higher annual rate of change (4.9-19.8%, p<0.001) according to the regression model. In particular, the Cd and Pb concentrations increased remarkably. We hypothesize that the trend towards increasing concentrations of metals in the air reflects a change that has occurred in the process of burning coal, whereby the use of higher temperatures for coal combustion has resulted in increased emissions of these metals. The increasing use of low-rank coal may also explain the observed trends. In addition, nonferrous metal smelters are considered as a potential, albeit minor, reason for the increasing atmospheric concentrations of anthropogenic hazardous metals in Beijing city.

  9. Laser-induced breakdown spectroscopic detection of trace level heavy metal in solutions on a laser-pretreated metallic target.

    PubMed

    Niu, Sheng; Zheng, Lijuan; Khan, Abdul Qayyum; Feng, Guang; Zeng, Heping

    2018-03-01

    A fast and sensitive analysis for trace level heavy metals in aqueous solution was realized by using an improved laser induced breakdown spectroscopy (LIBS) methodology. Solutions containing heavy metal elements, Ni, Cr, and Cd, were concentrated in a laser-pretreated area (25 × 20mm 2 ) of a polished aluminum target surface, wherein pretreated grooves enabled homogeneous distribution of the metallic solutions in the well-defined area, and laser ablation of the aluminum target produced unique plasma excitation of various metallic ions. For 1-mL solutions deposited, we obtained an analytical precision of about 7% relative standard deviation (RSD), and limits of detection (LODs) of 22, 19, and 184μg/L for Ni, Cr, and Cd, respectively. Moreover, the laser-pretreated metallic microstructure allowed more solution deposited with the help of a hot plate, which supported improvement of LODs to sub-μg/L level for Cr and Ni and μg/L level for Cd with about 20-mL solution engaged in the enrichment processes. The applicability of the proposed methodology was validated on certified reference materials and real river water. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Trace metals from historical mining sites and past metallurgical activity remain bioavailable to wildlife today.

    PubMed

    Camizuli, Estelle; Scheifler, Renaud; Garnier, Stéphane; Monna, Fabrice; Losno, Rémi; Gourault, Claude; Hamm, Gilles; Lachiche, Caroline; Delivet, Guillaume; Chateau, Carmela; Alibert, Paul

    2018-02-21

    Throughout history, ancient human societies exploited mineral resources all over the world, even in areas that are now protected and considered to be relatively pristine. Here, we show that past mining still has an impact on wildlife in some French protected areas. We measured cadmium, copper, lead, and zinc concentrations in topsoils and wood mouse kidneys from sites located in the Cévennes and the Morvan. The maximum levels of metals in these topsoils are one or two orders of magnitude greater than their commonly reported mean values in European topsoils. The transfer to biota was effective, as the lead concentration (and to a lesser extent, cadmium) in wood mouse kidneys increased with soil concentration, unlike copper and zinc, providing direct evidence that lead emitted in the environment several centuries ago is still bioavailable to free-ranging mammals. The negative correlation between kidney lead concentration and animal body condition suggests that historical mining activity may continue to play a role in the complex relationships between trace metal pollution and body indices. Ancient mining sites could therefore be used to assess the long-term fate of trace metals in soils and the subsequent risks to human health and the environment.

  11. Evaluation of Trace Metal Profile in Cymbopogon validus and Hyparrhenia hirta Used as Traditional Herbs from Environmentally Diverse Region of Komga, South Africa

    PubMed Central

    Tembeni, Babalwa; Oyedeji, Adebola O.

    2016-01-01

    FAAS was used for the analysis of trace metals in fresh and dry plant parts of Cymbopogon validus and Hyparrhenia hirta species with the aim of determining the trace metals concentrations in selected traditional plants consumed in Eastern Cape, South Africa. The trace metal concentration (mg/kg) in the samples of dry Cymbopogon validus leaves (DCVL) showed Cu of 12.40 ± 1.000; Zn of 2.42 ± 0.401; Fe of 2.50 ± 0.410; Mn of 1.31 ± 0.210; Pb of 3.36 ± 0.401 mg/kg, while the samples of fresh Hyparrhenia hirta flowers (FHHF) gave Cu of 9.77 ± 0.610; Zn of 0.70 ± 0.200; Fe of 2.11 ± 0.200; Mn of 1.15 ± 0.080; Pb of 3.15 ± 0.100 mg/kg. Abundance of metal concentrations follows the order: Cu > Fe > Pb > Mn > Zn in the flower samples of Cymbopogon validus and Hyparrhenia hirta species. The concentrations of trace metals in both plant parts were below the permissible limits (PL) set by WHO. It is suggested that pharmacovigilance be carried out periodically to improve the quality, safety, and efficiency of various herbal products. PMID:27795868

  12. Analysis of heavy metal accumulation in fish from the coastal waters of Terengganu, Malaysia

    NASA Astrophysics Data System (ADS)

    Rosli, M. N. R.; Samat, S. B.; Yasir, M. S.

    2018-04-01

    Bioaccumulation of toxic metals in fish causes serious threats to the human when they are consumed. Thus, the detection of toxic element concentration levels in fish is important. The accumulation of four heavy metal concentration of Cd, Cu, Mn and Zn in fish was determined. Five fish species namely Epinephelus lanceolatus, Rastrelliger, Megalaspis cordyla, Bramidae and Siganus canaliculatus were collected from the coastal waters of Terengganu, Malaysia. The analysis was done using inductive coupled plasma-mass spectrometer (ICP-MS) technique. The accumulation of the four heavy metals in muscle tissues of the fish are lower compared to liver and gill tissues. Cd concentration was higher in liver tissues except in Megalaspis cordyla. Meanwhile Cu concentration was higher in liver for all selected fishes. Mn concentration was higher in gill tissues of all fish studied while Zn concentration was higher in gill tissues except in Epinephelus lanceolatus and Rastrelliger. The highest average level of heavy metal recorded in fish is Zn (11.05 × 10-2 ± 1.44 × 10-2 mg kg-1) followed by Mn (1.81 × 10-2 ± 0.58 × 10-2 mg kg-1), Cu (0.70 × 10-2 ± 0.10 × 10-2 mg kg-1) and Cd (0.52×10-2 ± 0.27 × 10-2 mg kg-1). The metal concentration found in this study was lower than the national and international Recommended Dietary Allowance (RDA) for human consumption. Long term monitoring system of metal bioaccumulation in fishes need to be done to provide useful information for the assessment of the potential health risks of metals in Malaysia.

  13. The importance of biomass net uptake for a trace metal budget in a forest stand in north-eastern France.

    PubMed

    Gandois, L; Nicolas, M; VanderHeijden, G; Probst, A

    2010-11-01

    The trace metal (TM: Cd, Cu, Ni, Pb and Zn) budget (stocks and annual fluxes) was evaluated in a forest stand (silver fir, Abies alba Miller) in north-eastern France. Trace metal concentrations were measured in different tree compartments in order to assess TM partitioning and dynamics in the trees. Inputs included bulk deposition, estimated dry deposition and weathering. Outputs were leaching and biomass exportation. Atmospheric deposition was the main input flux. The estimated dry deposition accounted for about 40% of the total trace metal deposition. The relative importance of leaching (estimated by a lumped parameter water balance model, BILJOU) and net biomass uptake (harvesting) for ecosystem exportation depended on the element. Trace metal distribution between tree compartments (stem wood and bark, branches and needles) indicated that Pb was mainly stored in the stem, whereas Zn and Ni, and to a lesser extent Cd and Cu, were translocated to aerial parts of the trees and cycled in the ecosystem. For Zn and Ni, leaching was the main output flux (>95% of the total output) and the plot budget (input-output) was negative, whereas for Pb the biomass net exportation represented 60% of the outputs and the budget was balanced. Cadmium and Cu had intermediate behaviours, with 18% and 30% of the total output relative to biomass exportation, respectively, and the budgets were negative. The net uptake by biomass was particularly important for Pb budgets, less so for Cd and Cu and not very important for Zn and Ni in such forest stands. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Spatial distribution of dust-bound trace elements in Pakistan and their implications for human exposure.

    PubMed

    Eqani, Syed Ali Musstjab Akber Shah; Kanwal, Ayesha; Bhowmik, Avit Kumar; Sohail, Mohammad; Ullah, Rizwan; Ali, Syeda Maria; Alamdar, Ambreen; Ali, Nadeem; Fasola, Mauro; Shen, Heqing

    2016-06-01

    This study aims to assess the spatial patterns of selected dust-borne trace elements alongside the river Indus Pakistan, their relation with anthropogenic and natural sources, and the potential risk posed to human health. The studied elements were found in descending concentrations: Mn, Zn, Pb, Cu, Ni, Cr, Co, and Cd. The Index of Geo-accumulation indicated that pollution of trace metals were higher in lower Indus plains than on mountain areas. In general, the toxic elements Cr, Mn, Co and Ni exhibited altitudinal trends (P < 0.05). The few exceptions to this trend were the higher values for all studied elements from the northern wet mountainous zone (low lying Himalaya). Spatial PCA/FA highlighted that the sources of different trace elements were zone specific, thus pointing to both geological influences and anthropogenic activities. The Hazard Index for Co and for Mn in children exceeded the value of 1 only in the riverine delta zone and in the southern low lying zone, whereas the Hazard Index for Pb was above the bench mark for both children and adults (with few exceptions) in all regions, thus indicating potential non-carcinogenic health risks. These results will contribute towards the environmental management of trace metal(s) with potential risk for human health throughout Pakistan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Accumulation and sub-cellular partitioning of metals and As in the clam Venerupis corrugata: Different strategies towards different elements.

    PubMed

    Velez, Cátia; Figueira, Etelvina; Soares, Amadeu M V M; Freitas, Rosa

    2016-08-01

    The main goal of the present study was to assess accumulation, tolerance and sub-cellular partitioning of As, Hg, Cd and Pb in Venerupis corrugata. Results showed an increase of elements accumulation in V. corrugata with the increase of exposure. However, organisms presented higher capacity to accumulate Hg, Cd and Pb (BCF ≥ 12.8) than As (BCF ≤ 2.1) and higher accumulation rate for Cd and Pb than for Hg and As. With the increase of Hg exposure concentrations clams tended to increase the amount of metal bound to metal-sensitive fractions, which may explain the mortality recorded at the highest exposure concentration. Cd sub-cellular partitioning showed that with the increase of exposure concentrations V. corrugata increased the amount of metal in the cellular debris fraction, probably bound to the cellular membranes which explain the mortality recorded at the highest concentration. Results on As partitioning demonstrated that most of the metalloid was associated with fractions in the biologically detoxified metal compartment (BDM). Since high mortality was observed in clams exposed to As our results may indicate that this strategy was not enough to prevent clams from toxic effects and mortality occurred. When exposed to Pb most of the metal was in the BDM compartment, but in this case the metal was mostly in the metal-rich granules fraction which seemed to be efficient in preventing clams from toxicity, and no mortality was recorded. Our study further revealed that As and Hg were the most available elements to be biomagnified through the food chain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Assessment of metals bioaccumulation and bioavailability in mussels Mytilus galloprovincialis exposed to outfalls pollution in coastal areas of Casablanca.

    PubMed

    Mejdoub, Zineb; Zaid, Younes; Hmimid, Fouzia; Kabine, Mostafa

    2018-07-01

    The present work aims to study the metallic contamination of four sampling sites located nearby major sewage outfalls of the Casablanca coast (Morocco), using indigenous mussels Mytilus galloprovincialis as bioindicators of pollution. This research offered the opportunity to study trace metals bioaccumulation mechanisms, which represent a major factor in assessment processes of the pollution effects in coastal ecosystem health. The bioavailability and the bioaccumulation of trace metals (Cu, Zn, Ni, Pb) were evaluated in order to compare the metallic contamination in mussels' tissues and find a possible correlation with physiological parameters of this filter feeding species. Our results showed a significant spatiotemporal variation of bioaccumulation, compared to control. A significant correlation coefficient between metals (Zn and Pb) bioavailability and physiological index (CI) was revealed in mussels from the most polluted location. The seasonal variation of trace metal accumulation was also raised; the highest values recorded during the dry period. Copyright © 2018 Elsevier GmbH. All rights reserved.

  17. Comparative Study of Raw and Boiled Silver Pomfret Fish from Coastal Area and Retail Market in Relation to Trace Metals and Proximate Composition

    PubMed Central

    Huque, Roksana; Munshi, M. Kamruzzaman; Khatun, Afifa; Islam, Mahfuza; Hossain, Afzal; Hossain, Arzina; Akter, Shirin; Kabir, Jamiul; Nahar Jolly, Yeasmin; Islam, Ashraful

    2014-01-01

    Trace metals concentration and proximate composition of raw and boiled silver pomfret (Pampus argenteus) from coastal area and retail market were determined to gain the knowledge of the risk and benefits associated with indiscriminate consumption of marine fishes. The effects of cooking (boiling) on trace metal and proximate composition of silver pomfret fish were also investigated. Trace element results were determined by the Energy Dispersive X-ray Fluorescence (EDXRF) Spectrometer wherein fish samples from both areas exceeded the standard limits set by FAO/WHO for manganese, lead, cadmiumm and chromium and boiling has no significant effects on these three metal concentrations. Long-term intake of these contaminated fish samples can pose a health risk to humans who consume them. PMID:26904650

  18. Metal accumulation in eggs of the red-eared slider (Trachemys scripta elegans) in the Lower Illinois River.

    PubMed

    Tryfonas, Anna E; Tucker, John K; Brunkow, Paul E; Johnson, Kevin A; Hussein, Hussein S; Lin, Zhi-Qing

    2006-03-01

    The Illinois River is a highly utilized navigable waterway in the US Midwest, and has historically been contaminated with metal toxicants from various industrial and municipal pollution sources. Little information on metal contamination is available in the Lower Illinois River, and in particular, in the habitat of the red-eared slider (Trachemys scripta elegans) at the southern end of the river near Grafton, IL. This study was conducted to determine current levels of metal contamination in water, sediment, soil, and plants in the habitat, as well as to reveal temporal and spatial variations of metal accumulation in eggs of the red-eared slider. Aluminum, Cd, Cr, Cu, Mn, Ni, Pb, V, Sn, and Zn were analyzed by inductively-coupled plasma spectroscopy. High concentrations of metals were observed in lake sediment, compared with the concentrations in water, soil, and plant tissues. Sediment Ni concentrations (mg kg(-1)) varied from 66 to 95 and Sn from 1100 to 1600. Five detectable metals in egg content were Zn (24.2 +/- 13), Al (2.2 +/- 1.2), Sn (1.8 +/- 1.1), Mn (1.1 +/- 0.6), and Cu (0.9 +/- 0.5); nine detectable metals in egg shell were Zn (6.8 +/- 3.9), Sn (3.7 +/- 3.1), Cu (1.9 +/- 1.3), Cr (1.6 +/- 1.5), V (1.6 +/- 1.4), Pb (1.3 +/- 0.7), Ni (1.3 +/- 0.9), Mn (1.0 +/- 0.8), and Cd (0.16 +/- 0.11). Zinc accumulation in egg content was significantly correlated with Zn in egg shell (r = 0.445, P < 0.002, n = 42). While significant spatial variation was observed in egg shell, metal accumulation in eggs (content and shell) collected from the same ground of turtles consecutively for 4 years did not show a significant temporal change.

  19. Heavy metal accumulations in cacao (Theobroma cacao L.) leaves and cocoa beans grown at three main cacao growing regions of Peru

    USDA-ARS?s Scientific Manuscript database

    Peru is one of the leading exporters of organic cocoa beans in the world. However, the accumulation of heavy metals in cacao beans represents a considerable quality problem. The aim of this study was to investigate the distribution and accumulation of heavy metals in cacao plants grown at three dif...

  20. Current status of trace metal pollution in soils affected by industrial activities.

    PubMed

    Kabir, Ehsanul; Ray, Sharmila; Kim, Ki-Hyun; Yoon, Hye-On; Jeon, Eui-Chan; Kim, Yoon Shin; Cho, Yong-Sung; Yun, Seong-Taek; Brown, Richard J C

    2012-01-01

    There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (I(geo)), calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution.

  1. Current Status of Trace Metal Pollution in Soils Affected by Industrial Activities

    PubMed Central

    Kabir, Ehsanul; Ray, Sharmila; Kim, Ki-Hyun; Yoon, Hye-On; Jeon, Eui-Chan; Kim, Yoon Shin; Cho, Yong-Sung; Yun, Seong-Taek; Brown, Richard J. C.

    2012-01-01

    There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (I geo), calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution. PMID:22645468

  2. Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals.

    PubMed

    Schmidt, Ulrich

    2003-01-01

    For heavy metal-contaminated agricultural land, low-cost, plant-based phytoextraction measures can be a key element for a new land management strategy. When agents are applied into the soil, the solubility of heavy metals and their subsequent accumulation by plants can be increased, and, therefore, phytoextraction enhanced. An overview is given of the state of the art of enhancing heavy metal solubility in soils, increasing the heavy metal accumulation of several high-biomass-yielding and metal-tolerant plants, and the effect of these measures on the risk of heavy metal leaching. Several organic as well as inorganic agents can effectively and specifically increase solubility and, therefore, accumulation of heavy metals by several plant species. Crops like willow (Salix viminalis L.), Indian mustard [Brassica juncea (L.) Czern.], corn (Zea mays L.), and sunflower (Helianthus annuus L.) show high tolerance to heavy metals and are, therefore, to a certain extent able to use the surpluses that originate from soil manipulation. More than 100-fold increases of lead concentrations in the biomass of crops were reported, when ethylenediaminetetraacetic acid (EDTA) was applied to contaminated soils. Uranium concentrations could be strongly increased when citric acid was applied. Cadmium and zinc concentrations could be enhanced by inorganic agents like elemental sulfur or ammonium sulfate. However, leaching of heavy metals due to increased mobility in soils cannot be excluded. Thus, implementation on the field scale must consider measures to minimize leaching. So, the application of more than 1 g EDTA kg(-1) becomes inefficient as lead concentration in crops is not enhanced and leaching rate increases. Moreover, for large-scale applications, agricultural measures as placement of agents, dosage splitting, the kind and amount of agents applied, and the soil properties are important factors governing plant growth, heavy metal concentrations, and leaching rates. Effective

  3. Evaluation of Trace Metal Levels in Tissues of Two Commercial Fish Species in Kapar and Mersing Coastal Waters, Peninsular Malaysia

    PubMed Central

    Bashir, Fathi Alhashmi; Shuhaimi-Othman, Mohammad; Mazlan, A. G.

    2012-01-01

    This study is focused on evaluating the trace metal levels in water and tissues of two commercial fish species Arius thalassinus and Pennahia anea that were collected from Kapar and Mersing coastal waters. The concentrations of Fe, Zn, Al, As, Cd and Pb in these coastal waters and muscle, liver and gills tissues of the fishes were quantified. The relationship among the metal concentrations and the height and weight of the two species were also examined. Generally, the iron has the highest concentrations in both water and the fish species. However, Cd in both coastal waters showed high levels exceeding the international standards. The metal level concentration in the sample fishes are in the descending order livers > gills > muscles. A positive association between the trace metal concentrations and weight and length of the sample fishes was investigated. Fortunately the level of these metal concentrations in fish has not exceeded the permitted level of Malaysian and international standards. PMID:22046193

  4. The distribution and extent of heavy metal accumulation in song sparrows along Arizona's upper Santa Cruz River

    USGS Publications Warehouse

    Lester, Michael B.; van Riper, Charles

    2014-01-01

    Heavy metals are persistent environmental contaminants, and transport of metals into the environment poses a threat to ecosystems, as plants and wildlife are susceptible to long-term exposure, bioaccumulation, and potential toxicity. We investigated the distribution and cascading extent of heavy metal accumulation in southwestern song sparrows (Melospiza melodia fallax), a resident riparian bird species that occurs along the US/Mexico border in Arizona’s upper Santa Cruz River watershed. This study had three goals: (1) quantify the degree of heavy metal accumulation in sparrows and determine the distributional patterns among study sites, (2) compare concentrations of metals found in this study to those found in studies performed prior to a 2009 international wastewater facility upgrade, and (3) assess the condition of song sparrows among sites with differing potential levels of exposure. We examined five study sites along with a reference site that reflect different potential sources of contamination. Body mass residuals and leukocyte counts were used to assess sparrow condition. Birds at our study sites typically had higher metal concentrations than birds at the reference site. Copper, mercury, nickel, and selenium in song sparrows did exceed background levels, although most metals were below background concentrations determined from previous studies. Song sparrows generally showed lower heavy metal concentrations compared to studies conducted prior to the 2009 wastewater facility upgrade. We found no cascading effects as a result of metal exposure.

  5. Assessment of trace metals contamination level, bioavailability and toxicity in sediments from Dakar coast and Saint Louis estuary in Senegal, West Africa.

    PubMed

    Diop, Cheikh; Dewaelé, Dorothée; Cazier, Fabrice; Diouf, Amadou; Ouddane, Baghdad

    2015-11-01

    Trace metals have the potential to associate with sediments that have been recognised as significant source of contamination for the benthic environment. The current study aims assessing the trace metals contamination level in sediments from Dakar coast and Saint Louis estuary, and to examine their bioavailability to predict potential toxicity of sediments. Surface sediment samples were collected between June 2012 and January 2013 in three sampling periods from eight stations. Trace metals were analysed using inductively coupled plasma-optical emission spectrometer. Geoaccumulation indexes (Igeo) showed strong pollution by Cd, Cr, Cu and Pb confirmed by enrichment factor (EF) suggesting that these metals derived from anthropogenic sources. Toxicity indexes exceeded one in several sites suggesting the potential effects on sediment-dwelling organisms, which may constitute a risk to populations' health. However, seasonal variability of metal bioavailability was noted, revealing the best period to monitor metal contamination. From an ecotoxicological point of view, concentrations of Cd, Cr, Cu and Pb were above the effects range low threshold limit of the sediment quality guidelines for adverse biological effects. In addition, with Pb concentrations above the effect range medium values in some sites, biological effects may occur. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Major-ion and selected trace-metal chemistry of the Biscayne Aquifer, Southeast Florida

    USGS Publications Warehouse

    Radell, M.J.; Katz, B.G.

    1991-01-01

    The major-ion and selected trace-metal chemistry of the Biscayne aquifer was characterized as part of the Florida Ground-Water Quality Monitoring Network Program, a multiagency cooperative effort concerned with delineating baseline water quality for major aquifer systems in the State. The Biscayne aquifer is unconfined and serves as the sole source of drinking water for more than 3 million people in southeast Florida. The Biscayne aquifer consists of highly permeable interbedded limestone and sandstone of Pleistocene and Pliocene age underlying most of Dade and Broward Counties and parts of Palm Beach and Monroe Counties. The high permeability is largely caused by extensive carbonate dissolution. Water sampled from 189 wells tapping the Biscayne aquifer was predominantly a calcium bicarbonate type with some mixed types occurring in coastal areas and near major canals. Major - ion is areally uniform throughout the aquifer. According to nonparametric statistical tests of major ions and dissolved solids, the concentrations of calcium, sodium, bicarbonate, and dissolved solids increased significantly with well depth ( 0.05 significance level ), probably a result of less circulation at depth. Potassium and nitrate concentrations decreased significantly with depth. Although the source of recharge to the aquifer varies seasonally, there was no statistical difference in the concentration of major ions in pared water samples from 27 shallow wells collected during wet and dry seasons. Median concentrations for barium, chromium, copper, lead, and manganese were below maximum or secondary maximum contaminant levels set by the US Environmental Protection Agency. The median iron concentration only slightly exceeded the secondary maximum contaminant level. The concentration of barium was significantly related (0.05 significance level) to calcium and bicarbonate concentration. No distinct areal pattern or vertical distribution of the selected trace metals was evident in water from

  7. Trace metal inventories and lead isotopic composition chronicle a forest fire's remobilization of industrial contaminants deposited in the angeles national forest.

    PubMed

    Odigie, Kingsley O; Flegal, A Russell

    2014-01-01

    The amounts of labile trace metals: [Co] (3 to 11 µg g-1), [Cu] (15 to 69 µg g-1), [Ni] (6 to 15 µg g-1), [Pb] (7 to 42 µg g-1), and [Zn] (65 to 500 µg g-1) in ash collected from the 2012 Williams Fire in Los Angeles, California attest to the role of fires in remobilizing industrial metals deposited in forests. These remobilized trace metals may be dispersed by winds, increasing human exposures, and they may be deposited in water bodies, increasing exposures in aquatic ecosystems. Correlations between the concentrations of these trace metals, normalized to Fe, in ash from the fire suggest that Co, Cu, and Ni in most of those samples were predominantly from natural sources, whereas Pb and Zn were enriched in some ash samples. The predominantly anthropogenic source of excess Pb in the ash was further demonstrated by its isotopic ratios (208Pb/207Pb: 206Pb/207Pb) that fell between those of natural Pb and leaded gasoline sold in California during the previous century. These analyses substantiate current human and environmental health concerns with the pyrogenic remobilization of toxic metals, which are compounded by projections of increases in the intensity and frequency of wildfires associated with climate change.

  8. Evaluation of urban environment pollution based on the accumulation of macro- and trace elements in epiphytic lichens.

    PubMed

    Parzych, Agnieszka; Astel, Aleksander; Zduńczyk, Anna; Surowiec, Tomasz

    2016-01-01

    Nitrogen, phosphorus, potassium, magnesium, zinc, nickel, copper, manganese, iron and lead accumulation properties of three epiphytic lichen species (Hypogymnia physodes (L.) Nyl., Parmelia sulcata Taylor and Xanthoria parietina (L.) Th. Fr.) were compared. An assessment of pollution of the municipal environment in Słupsk (Poland) according to macro- and trace elements was also done. Lichen samples were taken in Autumn 2013 from Betula pendula, Fraxinus excelsior, Acer platanoides, A. pseudoplatanus and Populus sp. trees. Sampling stations comprised of house development areas, green urban parks, vicinity of streets with heavy traffic and industrial enterprises. It was found that lichens represent diverse accumulation properties to pollutants according to the species. X. parietina indicated the highest bioaccumulation in relation to N, K, Mg, Zn and Fe, the thalli of H. physodes accumulated the largest amounts of Ni and Pb, while P. sulcata P and Cu. Manganese was accumulated in similar quantities by all species. Evidences acquired by the use of factor analysis proved that pollution in Słupsk municipal environment is a serious issue with three major sources domination: street dust, marine factor and residual oil combustion. The high-risk areas were detected and visualized using surface maps based on Kriging algorithm. It was seen that the highest pollution occurs in the town centre, while the smallest happened on its outskirts and in urban parks.

  9. Monitoring of trace metals and pharmaceuticals as anthropogenic and socio-economic indicators of urban and industrial impact on surface waters

    NASA Astrophysics Data System (ADS)

    Vystavna, Yuliya

    2014-05-01

    The research focuses on the monitoring of trace metals and pharmaceuticals as potential anthropogenic indicators of industrial and urban influences on surface water in poorly gauged transboundary Ukraine/Russia region. This study includes analysis of tracers use for the indication of water pollution events, including controlled and emerging discharges, and discussion of the detection method of these chemicals. The following criteria were proposed for the evaluation of indicators: specificity (physical chemical properties), variability (spatial and temporal) and practicality (capacity of the sampling and analytical techniques). The combination of grab and passive water sampling (i.e. DGT and POCIS) procedure was applied for the determination of dissolved and labile trace metals (Ag, Cd, Cr, Cu, Ni, Pb and Zn) and pharmaceuticals (carbamazepine, diazepam, paracetamol, caffeine, diclofenac and ketoprofen). Samples were analysed using ICP - MS (trace metals) and LC-MS/MS ESI +/- (pharmaceuticals). Our results demonstrate the distinctive spatial and temporal patterns of trace elements distribution along an urban watercourse. Accordingly, two general groups of trace metals have been discriminated: 'stable' (Cd and Cr) and 'time-varying' (Cu, Zn, Ni and Pb). The relationship Cd >> Cu > Ag > Cr ≥ Zn was proposed as an anthropogenic signature of the industrial and urban activities pressuring the environment from point sources (municipal wastewaters) and the group Pb - Ni was discussed as a relevant fingerprint of the economic activity (industry and transport) mainly from non-point sources (run-off, atmospheric depositions, etc.). Pharmaceuticals with contrasting hydro-chemical properties of molecules (water solubility, bioaccumulation, persistence during wastewater treatment processes) were discriminated on conservative, labile and with combined properties in order to provide information on wastewater treatment plant efficiency, punctual events (e.g. accidents on sewage

  10. Oxidative damage of 18S and 5S ribosomal RNA in digestive gland of mussels exposed to trace metals.

    PubMed

    Kournoutou, Georgia G; Giannopoulou, Panagiota C; Sazakli, Eleni; Leotsinidis, Michel; Kalpaxis, Dimitrios L

    2017-11-01

    Numerous studies have shown the ability of trace metals to accumulate in marine organisms and cause oxidative stress that leads to perturbations in many important intracellular processes, including protein synthesis. This study is mainly focused on the exploration of structural changes, like base modifications, scissions, and conformational changes, caused in 18S and 5S ribosomal RNA (rRNA) isolated from the mussel Mytilus galloprovincialis exposed to 40μg/L Cu, 30μg/L Hg, or 100μg/L Cd, for 5 or 15days. 18S rRNA and 5S rRNA are components of the small and large ribosomal subunit, respectively, found in complex with ribosomal proteins, translation factors and other auxiliary components (metal ions, toxins etc). 18S rRNA plays crucial roles in all stages of protein synthesis, while 5S rRNA serves as a master signal transducer between several functional regions of 28S rRNA. Therefore, structural changes in these ribosomal constituents could affect the basic functions of ribosomes and hence the normal metabolism of cells. Especially, 18S rRNA along with ribosomal proteins forms the decoding centre that ensures the correct codon-anticodon pairing. As exemplified by ELISA, primer extension analysis and DMS footprinting analysis, each metal caused oxidative damage to rRNA, depending on the nature of metal ion and the duration of exposure. Interestingly, exposure of mussels to Cu or Hg caused structural alterations in 5S rRNA, localized in paired regions and within loops A, B, C, and E, leading to a continuous progressive loss of the 5S RNA structural integrity. In contrast, structural impairments of 5S rRNA in mussels exposed to Cd were accumulating for the initial 5days, and then progressively decreased to almost the normal level by day 15, probably due to the parallel elevation of metallothionein content that depletes the pools of free Cd. Regions of interest in 18S rRNA, such as the decoding centre, sites implicated in the binding of tRNAs (A- and P-sites) or

  11. Distribution of Major and Trace Elements in a Tropical Hydroelectric Reservoir in Sarawak, Malaysia.

    PubMed

    Sim, Siong Fong; Ling, Teck Yee; Nyanti, Lee; Ean Lee, Terri Zhuan; Mohd Irwan Lu, Nurul Aida Lu; Bakeh, Tomy

    2014-01-01

    This paper reports the metals content in water, sediment, macroalgae, aquatic plant, and fish of Batang Ai Hydroelectric Reservoir in Sarawak, Malaysia. The samples were acid digested and subjected to atomic absorption spectrometry analysis for Na, K, Mn, Cr, Ni, Zn, Mg, Fe, Sn, Al, Ca, As, Se, and Hg. The total Hg content was analysed on the mercury analyser. Results showed that metals in water, sediment, macroalgae, aquatic plant, and fish are distinguishable, with sediment and biota samples more susceptible to metal accumulation. The distributions of heavy metals in water specifically Se, Sn, and As could have associated with the input of fish feed, boating, and construction activities. The accumulation of heavy metals in sediment, macroalgae, and aquatic plant on the other hand might be largely influenced by the redox conditions in the aquatic environment. According to the contamination factor and the geoaccumulation index, sediment in Batang Ai Reservoir possesses low risk of contamination. The average metal contents in sediment and river water are consistently lower than the literature values reported and well below the limit of various guidelines. For fishes, trace element Hg was detected; however, the concentration was below the permissible level suggested by the Food and Agriculture Organization.

  12. Distribution of Major and Trace Elements in a Tropical Hydroelectric Reservoir in Sarawak, Malaysia

    PubMed Central

    Nyanti, Lee; Ean Lee, Terri Zhuan; Mohd Irwan Lu, Nurul Aida Lu

    2014-01-01

    This paper reports the metals content in water, sediment, macroalgae, aquatic plant, and fish of Batang Ai Hydroelectric Reservoir in Sarawak, Malaysia. The samples were acid digested and subjected to atomic absorption spectrometry analysis for Na, K, Mn, Cr, Ni, Zn, Mg, Fe, Sn, Al, Ca, As, Se, and Hg. The total Hg content was analysed on the mercury analyser. Results showed that metals in water, sediment, macroalgae, aquatic plant, and fish are distinguishable, with sediment and biota samples more susceptible to metal accumulation. The distributions of heavy metals in water specifically Se, Sn, and As could have associated with the input of fish feed, boating, and construction activities. The accumulation of heavy metals in sediment, macroalgae, and aquatic plant on the other hand might be largely influenced by the redox conditions in the aquatic environment. According to the contamination factor and the geoaccumulation index, sediment in Batang Ai Reservoir possesses low risk of contamination. The average metal contents in sediment and river water are consistently lower than the literature values reported and well below the limit of various guidelines. For fishes, trace element Hg was detected; however, the concentration was below the permissible level suggested by the Food and Agriculture Organization. PMID:27437493

  13. Heavy metal and trace elements in riparian vegetation and macrophytes associated with lacustrine systems in Northern Patagonia Andean Range.

    PubMed

    Juárez, Andrea; Arribére, María A; Arcagni, Marina; Williams, Natalia; Rizzo, Andrea; Ribeiro Guevara, Sergio

    2016-09-01

    Vegetation associated with lacustrine systems in Northern Patagonia was studied for heavy metal and trace element contents, regarding their elemental contribution to these aquatic ecosystems. The research focused on native species and exotic vascular plant Salix spp. potential for absorbing heavy metals and trace elements. The native species studied were riparian Amomyrtus luma, Austrocedrus chilensis, Chusquea culeou, Desfontainia fulgens, Escallonia rubra, Gaultheria mucronata, Lomatia hirsuta, Luma apiculata, Maytenus boaria, Myrceugenia exsucca, Nothofagus antarctica, Nothofagus dombeyi, Schinus patagonicus, and Weinmannia trichosperma, and macrophytes Hydrocotyle chamaemorus, Isöetes chubutiana, Galium sp., Myriophyllum quitense, Nitella sp. (algae), Potamogeton linguatus, Ranunculus sp., and Schoenoplectus californicus. Fresh leaves were analyzed as well as leaves decomposing within the aquatic bodies, collected from lakes Futalaufquen and Rivadavia (Los Alerces National Park), and lakes Moreno and Nahuel Huapi (Nahuel Huapi National Park). The elements studied were heavy metals Ag, As, Cd, Hg, and U, major elements Ca, K, and Fe, and trace elements Ba, Br, Co, Cr, Cs, Hf, Na, Rb, Se, Sr, and Zn. Geochemical tracers La and Sm were also determined to evaluate contamination of the biological tissues by geological particulate (sediment, soil, dust) and to implement concentration corrections.

  14. Spatial distribution and potential sources of trace metals in insoluble particles of snow from Urumqi, China.

    PubMed

    Li, Xiaolan; Jiang, Fengqing; Wang, Shaoping; Turdi, Muyesser; Zhang, Zhaoyong

    2015-01-01

    The purpose of this work is to characterize trace elements in snow in urban-suburb gradient over Urumqi city, China. The spatial distribution patterns of 11 trace metals in insoluble particulate matters of snow were revealed by using 102 snow samples collected in and around urban areas of Urumqi, a city suffering from severe wintertime air pollution in China. Similar spatial distribution for Mn, Cu, Zn, Ni, and Pb was found and their two significant high-value areas located in the west and east, respectively, and a high-value area in the south, which were correlated with factory emissions, traffic activities, and construction fugitive dust. The high-value areas of Cr, Ni, and V occurred in the northeast corner and along main traffic paths, which were linked to oil refinery and vehicular emissions. High value of Be presented in the west of the city. The high-value area of Co in the northeast could be related to local soil. Cd and U displayed relatively even spatial patterns in the urban area. In view of distance from the urban center, e.g., from the first circular belt to the fourth circular belt, except Be, V, Cd, and U, the contents of other metals generally decreased from the first circular belt to the forth circular belt, implying the effect of human activity clearly. Additionally, prevailing northwesterly winds and occasionally southeasterly winds in winter were associated with decreased, generally, concentrations of trace metal in snow from the urban center to the southern suburb along a northwest and southeast transect. The information on concentrations and spatial distributions of these metals in insoluble particles of snow in winter will be valuable for further environmental protection and planning.

  15. Accumulation of six metals in the mangrove crab Ucides cordatus (Crustacea: Ucididae) and its food source, the red mangrove Rhizophora mangle (Angiosperma: Rhizophoraceae).

    PubMed

    Pinheiro, Marcelo Antonio Amaro; Silva, Pablo Pena Gandara E; Duarte, Luis Felipe de Almeida; Almeida, Alaor Aparecido; Zanotto, Flavia Pinheiro

    2012-07-01

    The crab Ucides cordatus and the red mangrove Rhizophora mangle are endemic mangrove species and potential bio-accumulators of metals. This study quantified the accumulation of six metals (Cd, Cr, Cu, Hg, Mn and Pb) in different organs (claw muscle, hepatopancreas and gills) of U. cordatus, as well as in different maturation stages of the leaves (buds, green mature, and pre-abscission senescent) of R. mangle. Samples were collected from mangrove areas in Cubatão, state of São Paulo, a heavily polluted region in Brazil. Data for metal contents in leaves were evaluated by one-way ANOVA; while for crabs a factorial ANOVA was used to investigate the effect of different tissues, animal size and the interactions between them. Means were compared by Tukey test at five percent, and the association between the metal concentrations in each crab organ, depending on the size, was evaluated by Pearson's linear correlation coefficient (r). Concentrations of Pb and Hg were undetectable for the different leaf stages and crab tissues, while Cd concentrations were undetectable in the leaf stages. In general, the highest accumulation of metals in R. mangle leaves occurred in pre-abscission senescent and green mature leaves, except for Cu, which was found in the highest concentrations in buds and green mature leaves. For the crab, Cd, Cu, Cr and Mn were present in concentrations above the detection limit, with the highest accumulation in the hepatopancreas, followed by the gills. Cu was accumulated mostly in the gills. Patterns of bioaccumulation between the crab and the mangrove tree differed for each metal, probably due to the specific requirements of each organism for essential metals. However, there was a close and direct relationship between metal accumulation in the mangrove trees and in the crabs feeding on them. Tissues of R. mangle leaves and U. cordatus proved effective for monitoring metals, acting as important bioindicators of mangrove areas contaminated by various

  16. The changes in trace metal contamination over the last decade in surface sediments of the Pearl River Estuary, South China.

    PubMed

    Chen, Baowei; Liang, Ximei; Xu, Weihai; Huang, Xiaoping; Li, Xiangdong

    2012-11-15

    Surface sediments can provide useful information on the recent pollution status of an estuary. One recent field survey was carried out in the Pearl River Estuary (PRE), South China in 2011. The comparisons with previous surveys demonstrated that the concentrations of Ni and Pb in the PRE declined over the last decade, but the concentration of Cu increased in the same time frame. The significant decreases in the concentrations of Ni and Pb were probably due to a reduction of anthropogenic inputs, such as industrial wastewater, into the PRE environment, and the ban imposed on leaded gasoline. Statistical analyses have consistently demonstrated that the process of the sedimentation of fine particles was the dominant factor in controlling the transport and distribution of trace metals in the PRE. The riverine trace metals generally displayed a pattern of diffusion from the northwest to the southeast in the estuary. However, the riparian industrial activities at the east bank of the inner PRE caused significant metal contamination in sediments. In general, effective pollution control measures in the PRD region have decreased the levels of some trace metals in the entire PRE over the last decade with the exception of Cu. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Tidal river sediments in the Washington, D.C. area. 1. Distribution and sources of trace metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velinsky, D.J.; Wade, T.L.; Schlekat, C.E.

    1994-06-01

    Thirty-three bottom sediments were collected from the Potomac and Anacostia rivers, Tidal Basin, and Washington Ship Channel in June 1991 to define the extent of trace metal contamination and to elucidate source areas of sediment contaminants. In addition, twenty-three sediment samples were collected directly in front of and within major storm and combined sewers that discharge directly to these areas. Trace metals (e.g., Cu, Crk Cd, Hg, Pb, and Zn) exhibited a wide range in values in the study area. Sediment concentrations of Pb ranged from 32.0{mu}g Pb g {sup -1} to 3,630 {mu}g Pb g{sup -1}, Cd from 0.24more » {mu}g Cd g{sup -1} to 4.1 {mu}g Cd g{sup -1}, and Hg from 0.13 {mu}g g{sup -1} to 9.2 {mu}g Hg g{sup -1}, with generally higher concentrations in either outfall or sewer sediments compared to river bottom-sediments. In the Anacostia River measurements indicate that numerous storm and combined sewers are major sources of trace metals. Similar results were observed in both the Tidal Basin and Washington Ship Channel. Cadmium and Pb concentrations are higher in specific sewers and outfalls, whereas the distribution of other metals suggests a more diffuse source to the rivers and basins of the area. Cadmium and Pb also exhibited the greatest enrichment throughout the study area, with peak values in the Anacostia River, near the Washington Navy Yard. Enrichment factors decrease in the order: Cd>Pb>Zn>Hg>Cu>Cr. Between 70% and 96% of sediment-bound Pb and Cd was released from a N{sub 2}-purged 1N HCI leach. On average, {le}40% of total sedimentary Cu was liberated, possibly due to the partial attack of organic components of the sediment. Sediments of the tidal freshwater portion of the Potomac estuary reflect moderate to highly contaminated area with substantial enrichments of sedimentary Pb, Cd, and Zn. The sediment phase containing these metals indicates potential mobility of the sediment-bound metals during either storm events or dredging. 39 refs., 5 figs

  18. Sources, transport, and trends for selected trace metals and nutrients in the Coeur d'Alene and Spokane River Basins, Idaho, 1990-2013

    USGS Publications Warehouse

    Clark, Gregory M.; Mebane, Christopher A.

    2014-01-01

    Results from this study indicate that remedial activities conducted since the 1990s have been successful in reducing the concentrations and loads of trace metals in streams and rivers in the Coeur d’Alene and Spokane River Basins. Soils, sediment, surface water, and groundwater in areas of the Coeur d’Alene and Spokane River Basins are contaminated, and the hydrological relations between these media are complex and difficult to characterize. Trace metals have variable source areas, are transported differently depending on hydrologic conditions, and behave differently in response to remedial activities in upstream basins. Based on these findings, no single remedial action would be completely effective in reducing all trace metals to nontoxic concentrations throughout the Coeur d’Alene and Spokane River Basins. Instead, unique cleanup activities targeted at specific media and specific source areas may be necessary to achieve long-term water-quality goals.

  19. Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru.

    PubMed

    Arévalo-Gardini, Enrique; Arévalo-Hernández, Cesar O; Baligar, Virupax C; He, Zhenli L

    2017-12-15

    Peru is one of the leading exporters of organic cacao beans in the world. However, the accumulation of heavy metals in cacao beans represents a problem for cocoa bean export and chocolate quality. The aim of this study was to investigate the distribution and accumulation of heavy metals in cacao leaves and cocoa beans in three major cacao growing regions of Peru. The study was conducted in cacao plantations of 10 to 15years old in three regions of Peru: North (Regions of Tumbes, Piura, Cajamarca, and Amazonas); Center (Regions of Huánuco and San Martin) and South (Junin and Cuzco). Samples of leaf and cacao beans were collected from 70 cacao plantations, and the nature of cacao clone or genotype sampled was recorded. The concentrations of heavy metals such as Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in leaves and beans were determined using atomic absorption spectrophotometer. Overall, concentrations of heavy metals were below the critical limits; however, the presence of high levels of Cd in cacao grown in Amazonas, Piura, and Tumbes regions is of primary concern. Plantations of cacao with different cacao clones show differences in Cd accumulation both in leaves and cocoa beans. Therefore, it is promising to screen low Cd accumulator cacao genotypes for safe production of cacao on lightly to moderately Cd contaminated soils. Also, synergism between Zn and Cd present both in plant and soil suggests that Zn has a direct effect on Cd accumulation in cacao. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses.

    PubMed

    Pekey, Hakan; Karakaş, Duran; Bakoğlu, Mithat

    2004-11-01

    Surface water samples were collected from ten previously selected sites of the polluted Dil Deresi stream, during two field surveys, December 2001 and April 2002. All samples were analyzed using ICP-AES, and the concentrations of trace metals (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Pb, Sn and Zn) were determined. The results were compared with national and international water quality guidelines, as well as literature values reported for similar rivers. Factor analysis (FA) and a factor analysis-multiple regression (FA-MR) model were used for source apportionment and estimation of contributions from identified sources to the concentration of each parameter. By a varimax rotated factor analysis, four source types were identified as the paint industry; sewage, crustal and road traffic runoff for trace metals, explaining about 83% of the total variance. FA-MR results showed that predicted concentrations were calculated with uncertainties lower than 15%.

  1. Soil concentrations of polybrominated diphenyl ethers and trace metals from an electronic waste dump site in the Greater Accra Region, Ghana: Implications for human exposure.

    PubMed

    Akortia, Eric; Olukunle, Olubiyi I; Daso, Adegbenro P; Okonkwo, Jonathan O

    2017-03-01

    Unregulated electronic waste (e-waste) recycling operations have become a significant environmental issue as well as human health risk in developing countries across the world. The present study evaluated the extent of pollution in Agbogbloshie e-waste recycling site in Accra, Ghana. The concentrations of polybrominated diphenyl ethers (PBDEs) and some selected trace metals were determined using gas chromatography electron impact ionization mass spectrometry and flame atomic absorption spectrophotometry, respectively. The concentrations of ∑ PBDEs ranged from 15.6 to 96.8ngg -1 dry weight, with an overall mean of 54.8ngg -1 dw. BDE-28 was the dominant congener followed by BDE-209 and BDE-47. The order of mean concentrations of the abundant trace metals was Fe>Cu>Pb≫Mn, with a mean range of .531-289mgkg -1 . Geoaccumulation index suggested that the surface soils deteriorated from moderate to high metal pollution, particularly for Cu, Pb and Fe. Of the trace metals analysed, Fe exhibited the highest concentration ranging from 3.97 to 918mgkg -1 . Correlation and principal component analyses suggested possible interactions between PBDEs and the trace metals analysed, while source assessment suggested that PBDEs and trace metals were mostly derived from inputs from the e-waste recycling activities. Average daily dose (ADD) was estimated using concentrations corresponding to 5th percentile, median and 95th percentile. Hazard quotients of 380 and 862 were obtained for adults and children respectively, for Cu and Pb which is a cause for concern especially for local children. Copyright © 2016. Published by Elsevier Inc.

  2. Assessment on the occupational exposure of urban public bus drivers to bioaccessible trace metals through resuspended fraction of settled bus dust.

    PubMed

    Gao, Peng; Liu, Sa; Ye, Wenyuan; Lin, Nan; Meng, Ping; Feng, Yujie; Zhang, Zhaohan; Cui, Fuyi; Lu, Binyu; Xing, Baoshan

    2015-03-01

    Limited information is available on the bioaccessible fraction of trace metals in the resuspended fraction of settled bus dust in order to estimate bus drivers' occupational exposure. In this study, 45 resuspended fraction of settled dust samples were collected from gasoline and compressed natural gas (CNG) powered buses and analyzed for trace metals and their fraction concentrations using a three-step sequential extraction procedure. Experimental results showed that zinc (Zn) had the greatest bioaccessible fraction, recorded as an average of 608.53 mg/kg, followed in order of decreasing concentration by 129.80 mg/kg lead (Pb), 56.77 mg/kg copper (Cu), 34.03 mg/kg chromium (Cr), 22.05 mg/kg nickel (Ni), 13.17 mg/kg arsenic (As) and 2.77 mg/kg cadmium (Cd). Among the three settled bus dust exposure pathways, ingestion was the main route. Total exposure hazard index (HIt) for non-carcinogenic effect trace metals was lower than the safety level of 1. The incremental lifetime cancer risk (ILCR) for drivers was estimated for trace metal exposure. Pb and Ni presented relatively high potential risks in the non-carcinogenic and potentially carcinogenic health assessment for all drivers. ILCR was in the range of 1.84E-05 to 7.37E-05 and 1.74E-05 to 6.95E-05 for gasoline and CNG buses, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Measurement of Trace Metals in Tobacco and Cigarette Ash by Inductively Coupled Plasma-Atomic Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, W.; Finlayson-Pitts, B. J.

    2003-01-01

    The ICP AES experiment reported here is suitable for use in a junior- or senior-level undergraduate instrumental analysis laboratory. The objective of this experiment is to analyze trace metals present in cigarette tobacco, the cigarette filter, and the ash obtained when the cigarette is burned. Two different brands of cigarettes, one with and one without a filter, were used. The filter was analyzed before and after smoke was drawn through it. The trace metals were extracted using concentrated nitric acid at room temperature and at 100 °C respectively, to test the extraction efficiency. Some tobacco samples were spiked with ZnCl2 and FeCl3 to assess the efficiency of the recovery. Zinc and iron are shown to be present in tobacco, filter, and ash, while chromium was above the detection limit only in the ash. These metals are concentrated in the ash compared to the tobacco by factors of ˜4 (Zn), 12 17 (Fe), and ≥ 2 (Cr). If sufficient laboratory time is available, this experiment could be paired with one using atomic absorption (AA) to demonstrate the advantages and disadvantages of ICP when compared to AA.

  4. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, DR. Jennifer; Yu, DR. Hang; Steele, Joshua

    2013-01-01

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyse important biogeochemical reactions. In anoxic methane- and sulphiderich environments, microbes may have unique adaptations for metal acquisition and utilization because of decreased bioavailability as a result of metal sulphide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulphidic (> 1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5 270 nM), cobalt (0.5 6 nM), molybdenum (10 5600 nM) and tungsten (0.3 8more » nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalysing anaerobic oxidation of methane (AOM) utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulphate-reducing bacteria. Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrophilic microorganisms. Overall, our data suggest that AOM consortia use specialized biochemical strategies to overcome the challenges of metal availability in sulphidic environments.« less

  5. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulfidic marine sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, DR. Jennifer; Yu, DR. Hang; Steele, Joshua

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyze important biogeochemical reactions. In anoxic methane- and sulfide-rich environments, microbes may have unique adaptations for metal acquisition and utilization due to decreased bioavailability as a result of metal sulfide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulfidic (>1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5-270 nM), cobalt (0.5-6 nM), molybdenum (10-5,600 nM) and tungsten (0.3-8 nM) in Hydrate Ridge sedimentmore » porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalyzing anaerobic oxidation of methane utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrotolerant microorganisms. Finally, our data suggest that chemical speciation of metals in highly sulfidic porewaters may exert a stronger influence on microbial bioavailability than total concentration« less

  6. Trace elements and heavy metals in hair of stage III breast cancer patients.

    PubMed

    Benderli Cihan, Yasemin; Sözen, Selim; Oztürk Yıldırım, Sema

    2011-12-01

    This prospective study was designed to compare the hair levels of 36 elements in 52 patients with stage III breast cancer to those of an equal number of healthy individuals. Principal component and cluster analysis were used for source of identification and apportionment of heavy metals and trace elements in these two groups. A higher average level of iron was found in samples from patients while controls had higher levels of calcium. Both patients and controls had elevated levels of tin, magnesium, zinc, and sodium. Almost all element values in cancer patients showed higher dispersion and asymmetry than in healthy controls. Between the two groups, there were statistically significant differences in the concentrations of silver, arsenic, gold, boron, barium, beryllium, calcium, cadmium, cerium, cobalt, cesium, gadolinium, manganese, nickel, lead, antimony, scandium, selenium, and zinc (p < 0.05). Strong positive correlations were found between lead and gold (r = 0.785) in the cancer group and between palladium and cobalt (r = 0.945) in the healthy individuals. Our results show that there are distinct patterns of heavy metals and trace elements in the hair of breast cancer patients in comparison to healthy controls. These results could be of significance in the diagnosis of breast cancer.

  7. Selected trace metals and organic compounds and bioavailability of selected organic compounds in soils, Hackberry Flat, Tillman County, Oklahoma, 1994-95

    USGS Publications Warehouse

    Becker, M.F.

    1997-01-01

    In 1995 the Oklahoma Department of Wildlife Conservation acquired a drained wetland in southwest Oklahoma known as Hackberry Flat. Following restoration by Wildlife Conservation the wetland will be used by migratory birds and waterfowl. If naturally occurring trace metals and residual organic compounds from agriculture and industry were present, they may have posed a potential biohazard and were a concern for Wildlife Conservation. The U. S. Geological Survey, in cooperation with Wildlife Conservation and the Oklahoma Geological Survey, examined the soils of Hackberry Flat to determine trace metal concentrations, presence of selected organic compounds, and the bioavailability of selected organic compounds in the soils. The purpose of this report is to present the data that establish the baseline concentrations of selected trace metals and organic compounds in the soils of Hackberry Flat prior to wetland restoration. Sampling and analysis were performed using two approaches. One was to collect soil samples and analyze the composition with standard laboratory practices. The second exposed composite soils samples to organic-free water and a semipermeable membrane device that mimics an organism and then analyzed the device. Ten soil samples were collected in 1994 to be analyzed for trace metals, organochlorine pesticides, and polychlorinated biphenyls. Soil samples tested for bioavailability of selected organic compounds were collected in 1995. Most of the 182 soil samples collected were from the center of every 40-acre quarter-quarter section owned by the Wildlife Conservation. The samples were grouped by geographical area with a maximum of 16 sample sites per group. Concentrations of most selected trace metals measured from soils in Hackberry Flat are within the range of mean concentrations measured in cultivated soils within the United States. Organochlorine pesticides, polychlorinated biphenyls, and polyaromatic hydrocarbons were not found at concentrations above

  8. A survey of trace metals in vegetation, soil and lower animal along some selected major roads in metropolitan city of Lagos.

    PubMed

    Awofolu, O R

    2005-06-01

    The concentration of trace metals (Cd, Cu, Pb and Zn) in a total of 144 samples of grass, soil and lower animal (earthworm, Lybrodrilus violaceous) were collected and analysed for their metallic content. Levels of cadmium ranged from 0.01-0.07 microg g(-1); 0.01-0.12 microg g(-1) and from trace-0.05 microg g(-1) dry weight for plant, soil and animal samples respectively. Mean concentration of copper ranged 0.10-1.48 microg g(-1); 0.10-2.90 microg g(-1) and 0.01-0.08 microg g(-1) for samples in similar order as above. The levels of Pb varied from 0.01-0.14 microg g(-1); 0.02-0.23 microg g(-1) and from trace-0.07 microg (g-1) while that of Zn ranged from 0.19-1.80 microg g(-1); 0.51-3.35 microg g(-1) and 0.01-0.08 microg g(-1) also in the same order of samples as mentioned above. Levels of metals in soil samples were higher than the background levels with the exception of Zn but lower than European Union (EU) limits. The results generally revealed the presence of metals in plant and animal samples and metal dynamics up the food chain is highly possible. Acceptable recoveries of the spiking experiment validate the experimental protocol.

  9. Trace Metal Inventories and Lead Isotopic Composition Chronicle a Forest Fire’s Remobilization of Industrial Contaminants Deposited in the Angeles National Forest

    PubMed Central

    Odigie, Kingsley O.; Flegal, A. Russell

    2014-01-01

    The amounts of labile trace metals: [Co] (3 to 11 µg g−1), [Cu] (15 to 69 µg g−1), [Ni] (6 to 15 µg g−1), [Pb] (7 to 42 µg g−1), and [Zn] (65 to 500 µg g−1) in ash collected from the 2012 Williams Fire in Los Angeles, California attest to the role of fires in remobilizing industrial metals deposited in forests. These remobilized trace metals may be dispersed by winds, increasing human exposures, and they may be deposited in water bodies, increasing exposures in aquatic ecosystems. Correlations between the concentrations of these trace metals, normalized to Fe, in ash from the fire suggest that Co, Cu, and Ni in most of those samples were predominantly from natural sources, whereas Pb and Zn were enriched in some ash samples. The predominantly anthropogenic source of excess Pb in the ash was further demonstrated by its isotopic ratios (208Pb/207Pb: 206Pb/207Pb) that fell between those of natural Pb and leaded gasoline sold in California during the previous century. These analyses substantiate current human and environmental health concerns with the pyrogenic remobilization of toxic metals, which are compounded by projections of increases in the intensity and frequency of wildfires associated with climate change. PMID:25259524

  10. Trace-metal concentrations in African dust: effects of long-distance transport and implications for human health

    USGS Publications Warehouse

    Garrison, Virginia; Lamothe, Paul; Morman, Suzette; Plumlee, Geoffrey S.; Gilkes, Robert; Prakongkep, Nattaporn

    2010-01-01

    The Sahara and Sahel lose billions of tons of eroded mineral soils annually to the Americas and Caribbean, Europe and Asia via atmospheric transport. African dust was collected from a dust source region (Mali, West Africa) and from downwind sites in the Caribbean [Trinidad-Tobago (TT) and U.S. Virgin Islands (VI)] and analysed for 32 trace-elements. Elemental composition of African dust samples was similar to that of average upper continental crust (UCC), with some enrichment or depletion of specific trace-elements. Pb enrichment was observed only in dust and dry deposition samples from the source region and was most likely from local use of leaded gasoline. Dust particles transported long-distances (VI and TT) exhibited increased enrichment of Mo and minor depletion of other elements relative to source region samples. This suggests that processes occurring during long-distance transport of dust produce enrichment/depletion of specific elements. Bioaccessibility of trace-metals in samples was tested in simulated human fluids (gastric and lung) and was found to be greater in downwind than source region samples, for some metals (e.g., As). The large surface to volume ratio of the dust particles (<2.5 µm) at downwind sites may be a factor.

  11. Metal Accumulation and Vanadium-Induced Multidrug Resistance by Environmental Isolates of Escherichia hermannii and Enterobacter cloacae

    PubMed Central

    Hernández, Alicia; Mellado, Rafael P.; Martínez, José L.

    1998-01-01

    Contaminated soils from an oil refinery were screened for the presence of microorganisms capable of accumulating either nickel, vanadium, or both metals. Three strains of bacteria that belonged to the family Enterobacteriaceae were selected. Two of them were Escherichia hermannii strains, and outer membrane profile (OMP) analysis showed that they were similar to a strain of clinical origin; the other one was an Enterobacter cloacae strain that differed from clinical isolates. The selected bacteria accumulated both nickel and vanadium. Growth in the presence of vanadium induced multidrug resistance phenotypes in E. hermannii and E. cloacae. Incubation with this metal changed the OMP profile of E. hermannii but did not produce variations in the expression of the major OMPs of E. cloacae. PMID:9797283

  12. Accumulation, availability, and uptake of heavy metals in a red soil after 22-year fertilization and cropping.

    PubMed

    Zhou, Shiwei; Liu, Jing; Xu, Minggang; Lv, Jialong; Sun, Nan

    2015-10-01

    Fertilization is important to increase crop yields, but long-term application of fertilizers probably aggravated the risk of heavy metals in acidic soils. In this study, the effect of 22-year fertilization and cropping on accumulation, availability, and uptake of heavy metals in red soil was investigated. The results showed that pig manure promoted significantly cadmium (Cd) accumulation (average 1.1 mg kg(-1)), nearly three times higher than national soil standards and, thus, increased metal availability. But the enrichment of heavy metals decreased remarkably by 50.5 % under manure fertilization, compared with CK (control without fertilization). On the contrary, chemical fertilizers increased greatly lead (Pb) availability and Cd activity; in particular, exceeding 85 % of soil Cd became available to plant under N (nitrogen) treatment during 9-16 years of fertilization, which correspondingly increased their enrichment by 29.5 %. Long-term application of chemical fertilizers caused soil acidification and manure fertilization led to the increase in soil pH, soil organic matter (SOM), and available phosphorus (Olsen P), which influenced strongly metal behavior in red soil, and their effect had extended to deeper soil layer (20∼40 cm). It is advisable to increase application of manure alone with low content of heavy metals or in combination with chemical fertilizers to acidic soils in order to reduce toxic metal risk.

  13. Characterization of trace metal removal products in vertical flow bioreactor substrates at the Mayer Ranch Passive Treatment System in the Tar Creek Superfund Site.

    PubMed

    LaBar, Julie A; Nairn, Robert W

    2018-05-01

    A passive treatment system (PTS), including two parallel vertical flow bioreactors (VFBR), was constructed in 2008 for the treatment of unabated net-alkaline ferruginous mine drainage in the Tar Creek Superfund Site in northeastern Oklahoma. Water quality data collected since the PTS began operation indicate significant removal of trace metals in the VFBR. Results of a sequential extraction procedure (SEP) performed on substrate samples showed that the majority of Cd, Co, Fe, Ni, Pb, and Zn were retained in the refractory organic/sulfide fraction. Subsequent acid volatile sulfide/simultaneously extracted metals (AVS/SEM) analyses confirmed the retention of Cd, Fe, Pb, and Zn as sulfides, but Co and Ni results were less certain. The majority of trace metals were retained as insoluble products in the VFBR, while up to 20% of most of the trace metals were retained in soluble, bioavailable fractions. Nearly 70% of Mn was retained in the soluble and bioavailable exchangeable, carbonate, and labile organic fractions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer

    DOE PAGES

    Bacon, Diana H.; Dai, Zhenxue; Zheng, Liange

    2014-12-31

    An important risk at CO2 storage sites is the potential for groundwater quality impacts. As part of a system to assess the potential for these impacts a geochemical scaling function has been developed, based on a detailed reactive transport model of CO2 and brine leakage into an unconfined, oxidizing carbonate aquifer. Stochastic simulations varying a number of geochemical parameters were used to generate a response surface predicting the volume of aquifer that would be impacted with respect to regulated contaminants. The brine was assumed to contain several trace metals and organic contaminants. Aquifer pH and TDS were influenced by CO2more » leakage, while trace metal concentrations were most influenced by the brine concentrations rather than adsorption or desorption on calcite. Organic plume sizes were found to be strongly influenced by biodegradation.« less

  15. Distribution of uranium and some selected trace metals in human scalp hair from Balkans.

    PubMed

    Zunic, Z S; Tokonami, S; Mishra, S; Arae, H; Kritsananuwat, R; Sahoo, S K

    2012-11-01

    The possible consequences of the use of depleted uranium (DU) used in Balkan conflicts in 1995 and 1999 for the people and the environment of this reason need attention. The heavy metal content in human hair may serve as a good indicator of dietary, environmental and occupational exposures to the metal compounds. The present work summarises the distribution of uranium and some selected trace metals such as Mn, Ni, Cu, Zn, Sr, Cd and Cs in the scalp hair of inhabitants from Balkans exposed to DU directly and indirectly, i.e. Han Pijesak, Bratoselce and Gornja Stubla areas. Except U and Cs, all other metals were compared with the worldwide reported values of occupationally unexposed persons. Uranium concentrations show a wide variation ranging from 0.9 ± 0.05 to 449 ± 12 µg kg(-1). Although hair samples were collected from Balkan conflict zones, uranium isotopic measurement ((235)U/(238)U) shows a natural origin rather than DU.

  16. Status of trace metals in surface seawater of the Gulf of Aqaba, Saudi Arabia.

    PubMed

    Al-Taani, Ahmed A; Batayneh, Awni; Nazzal, Yousef; Ghrefat, Habes; Elawadi, Eslam; Zaman, Haider

    2014-09-15

    The Gulf of Aqaba (GoA) is of significant ecological value with unique ecosystems that host one of the most diverse coral communities in the world. However, these marine environments and biodiversity have been threatened by growing human activities. We investigated the levels and distributions of trace metals in surface seawater across the eastern coast of the Saudi GoA. Zn, Cu, Fe, B and Se in addition to total dissolved solids and seawater temperature exhibited decreasing trends northwards. While Mn, Cd, As and Pb showed higher average levels in the northern GoA. Metal input in waters is dependent on the adjacent geologic materials. The spatial variability of metals in water is also related to wave action, prevailing wind direction, and atmospheric dry deposition from adjacent arid lands. Also, water discharged from thermal desalination plants, mineral dust from fertilizer and cement factories are potential contributors of metals to seawater water, particularly, in the northern GoA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Risk assessment of trace metals in an extreme environment sediment: shallow, hypersaline, alkaline, and industrial Lake Acıgöl, Denizli, Turkey.

    PubMed

    Budakoglu, Murat; Karaman, Muhittin; Kumral, Mustafa; Zeytuncu, Bihter; Doner, Zeynep; Yildirim, Demet Kiran; Taşdelen, Suat; Bülbül, Ali; Gumus, Lokman

    2018-02-23

    The major and trace element component of 48 recent sediment samples in three distinct intervals (0-10, 10-20, and 20-30 cm) from Lake Acıgöl is described to present the current contamination levels and grift structure of detrital and evaporate mineral patterns of these sediments in this extreme saline environment. The spatial and vertical concentrations of major oxides were not uniform in the each subsurface interval. However, similar spatial distribution patterns were observed for some major element couples, due mainly to the detrital and evaporate origin of these elements. A sequential extraction procedure including five distinct steps was also performed to determine the different bonds of trace elements in the < 60-μ particulate size of recent sediments. Eleven trace elements (Ni, Fe, Cd, Pb, Cu, Zn, As, Co, Cr, Al and Mn) in nine surface and subsurface sediment samples were analyzed with chemical partitioning procedures to determine the trace element percentage loads in these different sequential extraction phases. The obtained accuracy values via comparison of the bulk trace metal loads with the total loads of five extraction steps were satisfying for the Ni, Fe, Cd, Zn, and Co. While, bulk analysis results of the Cu, Ni, and V elements have good correlation with total organic matter, organic fraction of sequential extraction characterized by Cu, As, Cd, and Pb. Shallow Lake Acıgöl sediment is characteristic with two different redox layer a) oxic upper level sediments, where trace metals are mobilized, b) reduced subsurface level, where the trace metals are precipitated.

  18. TRACE METAL AVAILABILITY TO PERIPHYTON COLONIZED BELOW NEAR-COASTAL WASTEWATER DISCHARGES IN THE GULF OF MEXICO

    EPA Science Inventory

    The significance of the many wastewater discharges in the Gulf of Mexico region as sources of trace metal contamination to indigenous biota in nearby coastal areas is relatively unknown. The primary objective of this baseline survey was to provide some insight on this issue by d...

  19. Impact of trace metals from past mining on the aquatic ecosystem: a multi-proxy approach in the Morvan (France).

    PubMed

    Camizuli, E; Monna, F; Scheifler, R; Amiotte-Suchet, P; Losno, R; Beis, P; Bohard, B; Chateau, C; Alibert, P

    2014-10-01

    This study seeks to determine to what extent trace metals resulting from past mining activities are transferred to the aquatic ecosystem, and whether such trace metals still exert deleterious effects on biota. Concentrations of Cd, Cu, Pb and Zn were measured in streambed sediments, transplanted bryophytes and wild brown trout. This study was conducted at two scales: (i) the entire Morvan Regional Nature Park and (ii) three small watersheds selected for their degree of contamination, based on the presence or absence of past mining sites. The overall quality of streambed sediments was assessed using Sediment Quality Indices (SQIs). According to these standard guidelines, more than 96% of the sediments sampled should not represent a threat to biota. Nonetheless, in watersheds where past mining occurred, SQIs are significantly lower. Transplanted bryophytes at these sites consistently present higher trace metal concentrations. For wild brown trout, the scaled mass and liver indices appear to be negatively correlated with liver Pb concentrations, but there are no obvious relationships between past mining and liver metal concentrations or the developmental instability of specimens. Although the impact of past mining and metallurgical works is apparently not as strong as that usually observed in modern mining sites, it is still traceable. For this reason, past mining sites should be monitored, particularly in protected areas erroneously thought to be free of anthropogenic contamination. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Dry deposition fluxes and deposition velocities of trace metals in the Tokyo metropolitan area measured with a water surface sampler.

    PubMed

    Sakata, Masahiro; Marumoto, Kohji

    2004-04-01

    Dry deposition fluxes and deposition velocities (=deposition flux/atmospheric concentration) for trace metals including Hg, Cd, Cu, Mn, Pb, and Zn in the Tokyo metropolitan area were measured using an improved water surface sampler. Mercury is deposited on the water surface in both gaseous (reactive gaseous mercury, RGM) and particulate (particulate mercury, Hg(p)) forms. The results based on 1 yr observations found that dry deposition plays a significant if not dominant role in trace metal deposition in this urban area, contributing fluxes ranging from 0.46 (Cd) to 3.0 (Zn) times those of concurrent wet deposition fluxes. The deposition velocities were found to be dependent on the deposition of coarse particles larger than approximately 5 microm in diameter on the basis of model calculations. Our analysis suggests that the 84.13% diameter is a more appropriate index for each deposited metal than the 50% diameter in the assumed undersize log-normal distribution, because larger particles are responsible for the flux. The deposition velocities for trace metals other than mercury increased exponentially with an increase in their 84.13% diameters. Using this regression equation, the deposition velocities for Hg(p) were estimated from its 84.13% diameter. The deposition fluxes for Hg(p) calculated from the estimated velocities tended to be close to the mercury fluxes measured with the water surface sampler during the study periods except during summer.

  1. Effect of paper mill effluents on accumulation of heavy metals in coconut trees near Nanjangud, mysore district, Karnataka, India

    NASA Astrophysics Data System (ADS)

    Fazeli, M. Sharif; Sathyanarayan, S.; Satish, P. N.; Muthanna, Lata

    1991-01-01

    Physicochemical characteristics of wastewater from one of the paper mills near Nanjangud and the differential accumulation of heavy metals in parts of coconut trees growing in the area irrigated directly by the wastewaters of a paper mill were investigated. The total dissolved and suspended solids of wastewater were 1,136.9 mg/l and 2,185.4 mg/l, respectively. Biological oxygen demand (BOD) expands and COD is beyond the tolerance limit proposed by Indian standards. The concentrations of heavy metals like Cu, Pb, Zn, Ni, Co, and Cd in coconut water, root, and leaf are higher than the limits suggested by World Health Organization. Survival of coconut trees irrigated by polluted waters indicates tolerance to toxic heavy metals. Since coconut forms part of human food chain, accumulation of toxic heavy metals may lead to organic disorders.

  2. Hormesis effect of trace metals on cultured normal and immortal human mammary cells.

    PubMed

    Schmidt, Craig M; Cheng, Chun N; Marino, Angelo; Konsoula, Roula; Barile, Frank A

    2004-06-01

    An in vitro study was conducted to determine the effects of variable concentrations of trace metals on human cultured mammary cells. Monolayers of human mortal (MCF-12A) and immortal (MDA-MB231) mammary epithelial cells were incubated in the absence or presence of increasing concentrations of arsenic (As), mercury (Hg) and copper (Cu) for 24-h, 72-h, 4-d, and 7-d. The MTT assay was used to assess viability for all time periods and cell proliferation was monitored for 4-d and 7-d studies. Monolayers were also labeled with rhodamine-110 (R-6501), Sytox green, and Celltiter blue fluorescent dyes as indicators for intracellular esterase activity, nucleic acid staining, and cell reduction/viability, respectively. Total incubation time with chemical plus dyes was 24 h. For 24-h and 72-h studies, cells were seeded in 96-well plates, after which confluent monolayers were exposed to increasing concentrations of chemicals. For 4-d and 7-d studies, cells were seeded in 12-well plates at 1/3 confluent density (day 0) and exposed to increasing concentrations of metals on day 1. All cells were counted on days 4 and 7. In addition, test medium was removed from select groups of cultures on day 4, replaced with fresh medium in the absence of chemical (recovery studies), and assays were performed on day 7 as above. The data suggest that there is a consistent protective and/or stimulating effect of metals at the lowest concentrations in MCF-12A cells that is not observed in immortal MDA-MB231 cells. In fact, cell viability of MCF-12A cells is stimulated by otherwise equivalent inhibitory concentrations of As, Cu, and Hg on MDA-MB231 cells at 24-h. Whereas As and Hg suppress proliferation and viability in both cell lines after 4-d and 7-d of exposure, Cu enhances cell proliferation and viability of MCF-12A cells. MDA-MB231, however, recover better after 4-days of toxic insult. In addition, nutritional manipulation of media between the cell lines, or pretreatment with penicillamine

  3. Trace metal excretion in patients with homozygous hypercholesterolaemia.

    PubMed

    Jackson, G E; Blewet, R; Rodgers, A L; Wood, L; Jacobs, P

    1999-07-01

    In patients with familial hypercholesterolaemia regular therapeutic apheresis is acknowledged to have long-term benefit. A previously unrecognised complication of such intervention is the development of anaemia that reflects a sub-optimal dietary iron intake coupled with accelerated loss of this trace metal in the fluid discarded after each procedure. Additional contributions result from enhanced urinary excretion as a result of chelation to citrate used as an anticoagulant and frequent blood sampling. The underlying pathophysiologic process appears to be reduced deformability. We now document similar and significant losses of zinc, copper and chromium in these circumstances. In the case of the latter three elements, no associated clinical syndromes have thus far been identified, probably because deficiency states are less well-recognised than that due to iron loss and, additionally, because critical reductions are avoided by their replenishment during a normal food intake. These studies are, nevertheless, relevant since they are the basis for recommending prophylactic supplementation during this form of management.

  4. Heavy metal accumulation in hot water tanks in a region experiencing coal waste pollution and comparison between regional water systems.

    PubMed

    Wigginton, Andrew; McSpirit, Stephanie; Sims, C Dewayne

    2007-10-01

    In 2000, a coal slurry impoundment failure in Martin County, Kentucky, caused concerns about contaminants entering municipal water supplies. Water samples taken from impacted and reference area hot water tanks often exceeded US EPA drinking water guidelines. Concentrations of As, Cd, Cr, Cu, Fe, Mn, and Pb had maxima of 119; 51.9; 154; 170,000; 976,000; 8,710; and 12,700 microg/L, respectively. Significantly different metal accumulation between counties indicated this procedure's utility for assessing long-term municipal water quality. Correlations between metal concentrations were strong and consistent for As, Ba, Cd, Cr, Co, and Fe indicating that some metals accumulate proportionally with others.

  5. Assessment of Trace Metals in Soil, Vegetation and Rodents in Relation to Metal Mining Activities in an Arid Environment.

    PubMed

    Méndez-Rodríguez, Lia C; Alvarez-Castañeda, Sergio Ticul

    2016-07-01

    Areas where abandoned metal-extraction mines are located contain large quantities of mineral wastes derived from environmentally unsafe mining practices. These wastes contain many pollutants, such as heavy metals, which could be released to the environment through weathering and leaching, hence becoming an important source of environmental metal pollution. This study evaluates differences in the levels of lead, iron, nickel, manganese, copper and cadmium in rodents sharing the same type of diet under different microhabitat use in arid areas with past mining activities. Samples of soil, roots, branches and seeds of Palo Adán (Fouquieria diguetii) and specimens of two rodent species (Chaetodipus arenarius and C. spinatus) were collected in areas with impact from past metal mining activities as well as from areas with no mining impact. Both rodent species mirrored nickel and iron levels in soil and seeds, as well as lead levels in soil; however, C. arenarius accumulated higher levels of manganese, copper and cadmium.

  6. Trace Metal Content of Sediments Close to Mine Sites in the Andean Region

    PubMed Central

    Yacoub, Cristina; Pérez-Foguet, Agustí; Miralles, Nuria

    2012-01-01

    This study is a preliminary examination of heavy metal pollution in sediments close to two mine sites in the upper part of the Jequetepeque River Basin, Peru. Sediment concentrations of Al, As, Cd, Cu, Cr, Fe, Hg, Ni, Pb, Sb, Sn, and Zn were analyzed. A comparative study of the trace metal content of sediments shows that the highest concentrations are found at the closest points to the mine sites in both cases. The sediment quality analysis was performed using the threshold effect level of the Canadian guidelines (TEL). The sediment samples analyzed show that potential ecological risk is caused frequently at both sites by As, Cd, Cu, Hg, Pb, and Zn. The long-term influence of sediment metals in the environment is also assessed by sequential extraction scheme analysis (SES). The availability of metals in sediments is assessed, and it is considered a significant threat to the environment for As, Cd, and Sb close to one mine site and Cr and Hg close to the other mine site. Statistical analysis of sediment samples provides a characterization of both subbasins, showing low concentrations of a specific set of metals and identifies the main characteristics of the different pollution sources. A tentative relationship between pollution sources and possible ecological risk is established. PMID:22606058

  7. Assessment of trace metals using lichen transplant from automobile mechanic workshop in Ile-Ife metropolis, Nigeria.

    PubMed

    Odiwe, Anthony I; Adesanwo, Adeyemi T J; Olowoyo, Joshua O; Raimi, Idris O

    2014-04-01

    The level of air pollution around the automobile mechanic workshops has been generally overlooked. This study, examined the level of trace metals in automobile mechanic workshops and the suitability of using transplanted lichen thalli of Lepraria incana for measuring air pollution in such areas. Samples of the lichen thalli were transplanted into seven different sites and were attached to the bark of trees at each site. The samples were harvested from the sites after 3-month exposure. Concentrations of Pb, Cu, Cd, Fe, Zn, and S content were determined using an atomic absorption spectrophotometer. Results showed that there was a significant difference in the trace metals concentrations across the sites (p < 0.05). The analyzed lichen samples showed a range of 91.26-119.35 ppm for Fe, 30.23-61.32 ppm for Zn, 1.25-2.45 ppm for Cu, 0.017-0.043 ppm for Cd, 0.018-0.051 ppm, and 0.37-0.42 ppm for S. From the study, sites 6 and 7 presented higher concentrations of Cd, Pb, and Zn than other sites. The enrichment factor calculated showed that Zn, Cd, and Pb were greatly enriched from the workshops. The trend in the concentration of these heavy metals suggests that activities in these workshops might become a major source of certain heavy metals in the environment and if the pollution activities persist, it might become worrisome over time.

  8. Trace-metal concentrations in sediment and water and health of aquatic macroinvertebrate communities of streams near Park City, Summit County, Utah

    USGS Publications Warehouse

    Giddings, Elis M.P.; Hornberger, Michelle I.; Hadley, Heidi K.

    2001-01-01

    The spatial distribution of metals in streambed sediment and surface water of Silver Creek, McLeod Creek, Kimball Creek, Spring Creek, and part of the Weber River, near Park City, Utah, was examined. From the mid-1800s through the 1970s, this region was extensively mined for silver and lead ores. Although some remediation has occurred, residual deposits of tailing wastes remain in place along large sections of Silver Creek. These tailings are the most likely source of metals to this system. Bed sediment samples were collected in 1998, 1999, and 2000 and analyzed using two extraction techniques: a total extraction that completely dissolves all forms of metals in minerals and trace elements associated with the sediment; and a weak-acid extraction that extracts the metals and trace elements that are only weakly adsorbed onto the sediment surface. This latter method is used to determine the more biologically relevant fraction of metal complexed onto the sediment. Water samples were collected in March and August 2000 and were analyzed for total and dissolved trace metals.Concentrations of silver, cadmium, copper, lead, mercury, and zinc in the streambed sediment of Silver Creek greatly exceeded background concentrations. These metals also exceeded established aquatic life criteria at most sites. In the Weber River, downstream of the confluence with Silver Creek, concentrations of cadmium, lead, zinc, and total mercury in streambed sediment also exceeded aquatic life guidelines, however, concentrations of metals in streambed sediment of McLeod and Kimball Creeks were lower than Silver Creek. Water-column concentrations of zinc, total mercury, and methylmercury in Silver Creek were high relative to unimpacted sites, and exceeded water quality criteria for the protection of aquatic organisms. Qualitative measurements of the macroinvertebrate community in Silver Creek were compared to the spatial distribution of metals in streambed sediment. The data indicate that

  9. Biodegradable polymer based ternary blends for removal of trace metals from simulated industrial wastewater.

    PubMed

    Prakash, N; Arungalai Vendan, S

    2016-02-01

    The ternary blends consisting of Chitosan (CS), Nylon 6 (Ny 6) and Montmorillonite clay (MM clay) were prepared by the solution blending method with glutaraldehyde. The prepared ternary blends were characterization by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Thermo gravimetric analysis (TGA), Differential scanning calorimetry (DSC) and Scanning electron microscope (SEM). The FTIR results showed that the strong intermolecular hydrogen bondings were established between chitosan, nylon 6 and montmorillonite clay. TGA showed the thermal stability of the blend is enhanced by glutaraldehyde as Crosslink agent. Results of XRD indicated that the relative crystalline of the pure chitosan film was reduced when the polymeric network was reticulated by glutaraldehyde. Finally, the results of scanning electron microscopy (SEM) indicated that the morphology of the blend was rough and heterogenous. Further, it confirms the interaction between the functional groups of the blend components. The extent of removal of the trace metals was found to be almost the same. The removal of these metals at different pH was also done and the maximum removal of the metals was observed at pH 4.5 for both trace metals. Adsorption studies and kinetic analysis have also been made. Moreover, the protonation of amine groups is induced an electrostatic repulsion of cations. When the pH of the solution was more than 5.5, the sorption rate began to decrease. Besides, the quantity of adsorbate on absorbent was fitted as a function in Langmuir and Freundlich isotherm. The sorption kinetics was tested for pseudo first order and pseudo second order reaction. The kinetic experimental data correlated with the second order kinetic model and rate constants of sorption for kinetic models were calculated and accordingly, the correlation coefficients were obtained. Copyright © 2016. Published by Elsevier B.V.

  10. Sedimentary records of metal contamination and eutrophication in Jinhae-Masan Bay, Korea.

    PubMed

    Lim, Dhong-il; Jung, Hoi Soo; Kim, Kyung Tae; Shin, Hyeon Ho; Jung, Seung Won

    2012-11-01

    Historical environmental pollution in a semi-enclosed coastal bay was investigated using high-resolution sedimentary records for C(org), N(tot), CaCO(3,) δ(13)C, and δ(15)N signatures, and trace metals. A temporal increase in organic matter might have been attributable to enhanced primary marine productivity, presumably caused by increased anthropogenic nutrient inputs in the semi-enclosed, eutrophic system. Metal accumulation occurred in three stages: a preindustrial stage before the 1930s with natural concentrations of metals, an industrialization stage (1940s-1970s) with the highest concentrations, and a postindustrial stage (post 1970s) with stable or decreasing concentrations. However, Hg exhibited a different accumulation history, with concentrations increasing in the early 1900s and accelerating after the 1920s, probably in response to coal burning. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Heavy - metal biomonitoring by using moss bags in Florence urban area, Italy

    NASA Astrophysics Data System (ADS)

    Pellizzaro, Grazia; Canu, Annalisa; Arca, Angelo; Duce, Pierpaolo

    2013-04-01

    In the last century, pollution has become one of the most important risks for environment. In particular, heavy metal presence in air, water and soil induces toxic effects on ecosystems and human health. Monitoring airborne trace element over large areas is a task not easy to reach since the concentrations of pollutants are variable in space and time. Data from automatic devices are site-specific and very limited in number to describe spatial-temporal trends of pollutants. In addition, especially in Italy, trace elements concentrations are not often recorded by most of the automated monitoring stations. In the last decades, development of alternative and complementary methods as bio-monitoring techniques, allowed to map deposition patterns not only near single pollution sources, but also over relatively large areas at municipal or even regional scale. Bio-monitoring includes a wide array of methodologies finalised to study relationships between pollution and living organisms. Mosses and lichens have been widely used as bio-accumulators for assessing the atmospheric deposition of heavy metals in natural ecosystems and urban areas. In this study bio-monitoring of airborne trace metals was made using moss bags technique. The moss Hypnum cupressiforme was used as bio-indicator for estimating atmospheric traces metal deposition in the urban area of Florence. Moss carpets were collected in a forested area of central Sardinia (municipality of Bolotana - Nuoro), which is characterised by absence of air pollution. Moss bags were located in the urban area of Florence close to three monitoring air quality stations managed by ARPAT (Agenzia Regionale Protezione Ambiente Toscana). Two stations were located in high-traffic roads whereas the other one was located in a road with less traffic density. In each site moss bags were exposed during three campaigns of measurement conducted during the periods March-April, May-July, and August-October 2010. Two moss bags, used as control

  12. Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China.

    PubMed

    Liu, Zhouping; Zhang, Qiaofen; Han, Tiqian; Ding, Yanfei; Sun, Junwei; Wang, Feijuan; Zhu, Cheng

    2015-12-22

    Heavy metals are regarded as toxic trace elements in the environment. Heavy metal pollution in soil or rice grains is of increasing concern. In this study, 101 pairs of soil and rice samples were collected from the major rice-producing areas along the Yangtze River in China. The soil properties and heavy metal (i.e., Cd, Hg, Pb and Cr) concentrations in the soil and rice grains were analyzed to evaluate the heavy metal accumulation characteristics of the soil-rice systems. The results showed that the Cd, Hg, Pb and Cr concentrations in the soil ranged from 0.10 to 4.64, 0.01 to 1.46, 7.64 to 127.56, and 13.52 to 231.02 mg·kg(-)¹, respectively. Approximately 37%, 16%, 60% and 70% of the rice grain samples were polluted by Cd, Hg, Pb, and Cr, respectively. The degree of heavy metal contamination in the soil-rice systems exhibited a regional variation. The interactions among the heavy metal elements may also influence the migration and accumulation of heavy metals in soil or paddy rice. The accumulation of heavy metals in soil and rice grains is related to a certain extent to the pH and soil organic matter (SOM). This study provides useful information regarding heavy metal accumulation in soil to support the safe production of rice in China. The findings from this study also provide a robust scientific basis for risk assessments regarding ecological protection and food safety.

  13. Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China

    PubMed Central

    Liu, Zhouping; Zhang, Qiaofen; Han, Tiqian; Ding, Yanfei; Sun, Junwei; Wang, Feijuan; Zhu, Cheng

    2015-01-01

    Heavy metals are regarded as toxic trace elements in the environment. Heavy metal pollution in soil or rice grains is of increasing concern. In this study, 101 pairs of soil and rice samples were collected from the major rice-producing areas along the Yangtze River in China. The soil properties and heavy metal (i.e., Cd, Hg, Pb and Cr) concentrations in the soil and rice grains were analyzed to evaluate the heavy metal accumulation characteristics of the soil-rice systems. The results showed that the Cd, Hg, Pb and Cr concentrations in the soil ranged from 0.10 to 4.64, 0.01 to 1.46, 7.64 to 127.56, and 13.52 to 231.02 mg·kg−1, respectively. Approximately 37%, 16%, 60% and 70% of the rice grain samples were polluted by Cd, Hg, Pb, and Cr, respectively. The degree of heavy metal contamination in the soil-rice systems exhibited a regional variation. The interactions among the heavy metal elements may also influence the migration and accumulation of heavy metals in soil or paddy rice. The accumulation of heavy metals in soil and rice grains is related to a certain extent to the pH and soil organic matter (SOM). This study provides useful information regarding heavy metal accumulation in soil to support the safe production of rice in China. The findings from this study also provide a robust scientific basis for risk assessments regarding ecological protection and food safety. PMID:26703698

  14. Development of magnesium-based biodegradable metals with dietary trace element germanium as orthopaedic implant applications.

    PubMed

    Bian, Dong; Zhou, Weirui; Deng, Jiuxu; Liu, Yang; Li, Wenting; Chu, Xiao; Xiu, Peng; Cai, Hong; Kou, Yuhui; Jiang, Baoguo; Zheng, Yufeng

    2017-12-01

    From the perspective of element biosafety and dietetics, the ideal alloying elements for magnesium should be those which are essential to or naturally presented in human body. Element germanium is a unique metalloid in the carbon group, chemically similar to its group neighbors, Si and Sn. It is a dietary trace element that naturally presents in human body. Physiological role of Ge is still unanswered, but it might be necessary to ensure normal functioning of the body. In present study, novel magnesium alloys with dietary trace element Ge were developed. Feasibility of those alloys to be used as orthopaedic implant applications was systematically evaluated. Mg-Ge alloys consisted of α-Mg matrix and eutectic phases (α-Mg + Mg 2 Ge). Mechanical properties of Mg-Ge alloys were comparable to current Mg-Ca, Mg-Zn and Mg-Sr biodegradable metals. As-rolled Mg-3Ge alloy exhibited outstanding corrosion resistance in vitro (0.02 mm/y, electrochemical) with decent corrosion rate in vivo (0.6 mm/y, in rabbit tibia). New bone could directly lay down onto the implant and grew along its surface. After 3 months, bone and implant were closely integrated, indicating well osseointegration being obtained. Generally, this is a pioneering study on the in vitro and in vivo performances of novel Mg-Ge based biodegradable metals, and will benefit the future development of this alloy system. The ideal alloying elements for magnesium-based biodegradable metals should be those which are essential to or naturally presented in human body. Element germanium is a unique metalloid in the carbon group. It is a dietary trace element that naturally presents in human body. In present study, feasibility of Mg-Ge alloys to be utilized as orthopedic applications was systematically investigated, mainly focusing on the microstructure, mechanical property, corrosion behavior and biocompatibility. Our findings showed that Mg-3Ge alloy exhibited superior corrosion resistance to current Mg-Ca, Mg

  15. Trace metal depositional patterns from an open pit mining activity as revealed by archived avian gizzard contents.

    PubMed

    Bendell, L I

    2011-02-15

    Archived samples of blue grouse (Dendragapus obscurus) gizzard contents, inclusive of grit, collected yearly between 1959 and 1970 were analyzed for cadmium, lead, zinc, and copper content. Approximately halfway through the 12-year sampling period, an open-pit copper mine began activities, then ceased operations 2 years later. Thus the archived samples provided a unique opportunity to determine if avian gizzard contents, inclusive of grit, could reveal patterns in the anthropogenic deposition of trace metals associated with mining activities. Gizzard concentrations of cadmium and copper strongly coincided with the onset of opening and the closing of the pit mining activity. Gizzard zinc and lead demonstrated significant among year variation; however, maximum concentrations did not correlate to mining activity. The archived gizzard contents did provide a useful tool for documenting trends in metal depositional patterns related to an anthropogenic activity. Further, blue grouse ingesting grit particles during the time of active mining activity would have been exposed to toxicologically significant levels of cadmium. Gizzard lead concentrations were also of toxicological significance but not related to mining activity. This type of "pulse" toxic metal exposure as a consequence of open-pit mining activity would not necessarily have been revealed through a "snap-shot" of soil, plant or avian tissue trace metal analysis post-mining activity. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Accumulation of heavy metal in scalp hair of people exposed in Beijing sewage discharge channel sewage irrigation area in Tianjin, China.

    PubMed

    Wang, Zuwei; Yu, Xiaoman; Geng, Mingshuo; Wang, Zilu; Wang, Qianqian; Zeng, Xiangfeng

    2017-05-01

    Heavy metal concentrations in soil, wheat, and scalp hair exposed to Beijing sewage discharge channel sewage irrigation area (BSIA) in Tianjin were studied to evaluate the influence of sewage irrigation. Results showed that the continuous application of wastewater has led to an accumulation of heavy metals in the soil, with 55.2 and 8.62% of soil samples accumulating Cd and Zn, respectively, at concentrations exceeding the permissible limits in China. Concentrations of heavy metals in wheat grain from BSIA were higher than these from the clean water irrigation area by 63.2% for Cd, 3.8% for Cu, 100% for Pb, 6.6% for Zn, and 326.7% for Cr. The heavy metal bioaccumulation factor (BAF) of wheat/soil in BSIA showed the following order: Zn > Cd > Cu > Pb > Cr. Interestingly, these accumulation of heavy metals in soil after sewage irrigation could increase the migration ability of heavy metals (particularly Zn and Cd) from soil to wheat. Mean concentrations of heavy metals in the hair of residents followed the decreasing trend of Zn > Cu > Pb > Cr > Cd, which were higher than the control area by 110.0% for Cd, 20.0% for Cu, 55.9% for Zn, 36.6% for Pb, and 64.6% for Cr. Concentrations of heavy metals in male human hair in BSIA were higher than those of females. And the concentrations of heavy metals except for Pb in human hair increased with their increasing ages. The heavy metal BAF values of wheat/soil in BSIA showed the trend of Zn (98.0057) > Pb (7.0162) > Cr (5.5788) > Cu (5.4853) > Cd (3.5584); heavy metals had obvious biological amplification from wheat to human hair. These results indicated that local population health was potentially exposed to the heavy metal risk via wheat consumption.

  17. Evaluation of Trace Metal Content by ICP-MS Using Closed Vessel Microwave Digestion in Fresh Water Fish

    PubMed Central

    Jarapala, Sreenivasa Rao; Kandlakunta, Bhaskarachary; Thingnganing, Longvah

    2014-01-01

    The objective of the present study was to investigate trace metal levels of different varieties of fresh water fish using Inductively Coupled Plasma Mass Spectrophotometer after microwave digestion (MD-ICPMS). Fish samples were collected from the outlets of twin cities of Hyderabad and Secunderabad. The trace metal content in different varieties of analyzed fish were ranged from 0.24 to 1.68 mg/kg for Chromium in Cyprinus carpio and Masto symbollon, 0.20 to 7.52 mg/kg for Manganese in Labeo rohita and Masto symbollon, 0.006 to 0.07 mg/kg for Cobalt in Rastrelliger kanagurta and Pampus argenteus, 0.31 to 2.24 mg/kg for Copper in Labeo rohita and Penaeus monodon, 3.25 to 14.56 mg/kg for Zinc in Cyprinus carpio and Macrobrachium rosenbergii, and 0.01 to 2.05 mg/kg for Selenium in Rastrelliger kanagurta and Pampus argenteus, respectively. Proximate composition data for the different fishes were also tabulated. Since the available data for different trace elements for fish is scanty, here an effort is made to present a precise data for the same as estimated on ICP-MS. Results were in accordance with recommended daily intake allowance by WHO/FAO. PMID:24744789

  18. Alert to users of calcium supplements as antihypertensive agents due to trace metal contaminants.

    PubMed

    Boulos, F M; von Smolinski, A

    1988-07-01

    Although there are controversies in the role of calcium as an antihypertensive agent, the use of "health food" supplements, such as dolomite and bone meal, is on the rise especially among the older population. One brand of commercial dolomite tablets were investigated for metallic contents such as aluminum (Al), arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), manganese (Mn), sclemium (Se), and zinc (Zn). Ten randomly selected tablets were weighted, dried, pulverized and low-temperature plasma ashed. An ash aliquot of each tablet was dissolved in 35% Ultrex nitric acid, and after dilution analyzed using a Perkin-Elmer Model 5000 atomic absorption spectrophotometer equipped with an HGA-500 graphite furnace, As-1 autosampler, and PRS-10 printer sequencer. The results (presented as mean wt/g of powder +/- 95% confidence limits) are: Al 900 +/- 300 micrograms/g; As 1.3 +/- 0.3 micrograms/g; Cd 0.16 +/- 0.04 micrograms/g; Cr 5.9 +/- 1.4 micrograms/g; Cu 3.0 +/- 0.6 micrograms/g; Pb 1.9 +/- 0.5 micrograms/g; Mn 66 +/- 7.0 micrograms/g; Se 1.6 +/- 0.4 micrograms/g; and Zn 147 +/- 88 micrograms/g. These trace metals could pose health hazards to the public such as lead poisoning, dementia, and hypertension due to cadmium. Also, zinc can potentiate cadmium-hypertensive effects. The need exists to initiate some regulations to limit maximal content of trace metals in "health food" supplements to protect high-risk groups and that sector of the population who use megadoses of such products.

  19. Chemical Speciation and Health Risk Assessment of Fine Particulate Bound Trace Metals Emitted from Ota Industrial Estate, Nigeria

    NASA Astrophysics Data System (ADS)

    Anake, Winifred U.; Ana, Godson R. E. E.; Williams, Akan B.; Fred-Ahmadu, Omowunmi H.; Benson, Nsikak U.

    2017-05-01

    In this study carcinogenic and non-carcinogenic health risk due to exposure to PM2.5-bound trace metals from an industrial area in Southwestern Nigeria was estimated. A four-step chemical sequential extraction procedure was employed for the chemical extraction of arsenic (As), cadmium (Cd), chromium (Cr) copper (Cu), manganese (Mn), nickel (Ni), and zinc (Zn). Samples were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). Results reveal Cr and Cu as the most dominant exchangeable fraction metals, indicating possibility of their being readily soluble once PM2.5 is inhaled. Cd and Cr record the highest bioavailability index of 0.7. The cumulative lifetime cancer risks due to inhalation exposure for adults (4.25×10-2), children 1-6 years old (4.87×10-3), and children 6-18 years old (1.46×10-2) were found above Environmental Protection Agency’s acceptable range of 1×10-6 to 1×10-4. The hazard index values for all studied trace metals suggest significant potential for non-carcinogenic health risks to adults and children. The choice of chemical speciation as an essential tool in facilitating a better predictive insight on metal bioavailability and toxicity for immediate remediation action has been highlighted.

  20. Nuclear microanalysis of platinum and trace elements in cisplatin-resistant human ovarian adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Moretto, P.; Ortega, R.; Llabador, Y.; Simonoff, M.; Bénard, J.; Moretto, Ph.

    1995-09-01

    Macro-and Micro-PIXE analysis were applied to study the mechanisms of cellular resistance to cisplatin, a chemotherapeutic agent, widely used nowadays for the treatment of ovarian cancer. Two cultured cell lines, a cisplatin-sensitive and a resistant one, were compared for their trace elements content and platinum accumulation following in vitro exposure to the drug. Bulk analysis revealed significant differences in copper and iron content between the two lines. Subsequent individual cell microanalysis permitted us to characterize the response of the different morphological cell types of the resistant line. This study showed that the metabolism of some trace metals in cisplatin-resistant cells could be affected but the exact relationship with the resistant phenotype remains to be determined. From a technical point of view, this experiment demonstrated that an accurate measurement of trace elements could be derived from nuclear microprobe analysis of individual cell.

  1. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; preparation procedure for aquatic biological material determined for trace metals

    USGS Publications Warehouse

    Hoffman, Gerald L.

    1996-01-01

    A method for the chemical preparation of tissue samples that are subsequently analyzed for 22 trace metals is described. The tissue-preparation procedure was tested with three National Institute of Standards and Technology biological standard reference materials and two National Water Quality Laboratory homogenized biological materials. A low-temperature (85 degrees Celsius) nitric acid digestion followed by the careful addition of hydrogen peroxide (30-percent solution) is used to decompose the biological material. The solutions are evaporated to incipient dryness, reconstituted with 5 percent nitric acid, and filtered. After filtration the solutions were diluted to a known volume and analyzed by inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-atomic emission spectrometry (ICP-AES), and cold vapor-atomic absorption spectrophotometry (CV-AAS). Many of the metals were determined by both ICP-MS and ICP-AES. This report does not provide a detailed description of the instrumental procedures and conditions used with the three types of instrumentation for the quantitation of trace metals determined in this study. Statistical data regarding recovery, accuracy, and precision for individual trace metals determined in the biological material tested are summarized.

  2. The biogeochemical distribution of trace elements in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Saager, Paul M.

    1994-06-01

    The present review deals with the distributions of dissolved trace metals in the Indian Ocean in relation with biological, chemical and hydrographic processes. The literature data-base is extremely limited and almost no information is available on particle processes and input and output processes of trace metals in the Indian Ocean basin and therefore much research is needed to expand our understanding of the marine chemistries of most trace metals. An area of special interest for future research is the Arabian Sea. The local conditions (upwelling induced productivity, restricted bottom water circulation and suboxic intermediate waters) create a natural laboratory for studying trace metal chemistry.

  3. Review of heavy metal accumulation on aquatic environment in Northern East Mediterrenean Sea part I: some essential metals.

    PubMed

    Yılmaz, Ayşe Bahar; Yanar, Alper; Alkan, Ela Nur

    2017-03-01

    All pollutants can reach the aquatic environments and the levels of heavy metals in upper members of the food web like fish can reach values many times higher than those found in aquatic environment or in sediments. Although heavy metals are essential or non-essential, all heavy metals are potentially harmful to humans and most organisms at some level of exposure and absorption. Marine organisms are good indicators for long-term monitoring of metal accumulation. The present review study is for evaluation of the data from previous studies about the toxic effects of selected heavy metals, like essential metals (copper, zinc, iron, chromium, and manganese), on seawater, sediment, and in different tissues of aquatic animals (demersal and bentic fish, invertabres) collected from different areas in Northern East Mediterrenean Sea since the 1990s. Some concern arose from previous studies, particularly in terms of safety for human consumption. For this purpose, 86 articles and 4 theses were examined and information was collected on the table to open a forward-looking view of the pollution of studied area. In previous studies, the variations in feeding habits, habitats, and the level of copper found in edible muscles of the demersal fish species (deep water fish species, carnivore) such as Mullus barbatus barbatus, Solea lascaris, Sparus aurata were always higher than those found in pelagic (omnivore) Mugil cephalus, Liza aurata. Results show discrepancies caused by many factors; thus, more work must be done carefully.

  4. Anchoring plant metallothioneins to the inner face of the plasma membrane of Saccharomyces cerevisiae cells leads to heavy metal accumulation.

    PubMed

    Ruta, Lavinia Liliana; Lin, Ya-Fen; Kissen, Ralph; Nicolau, Ioana; Neagoe, Aurora Daniela; Ghenea, Simona; Bones, Atle M; Farcasanu, Ileana Cornelia

    2017-01-01

    In this study we engineered yeast cells armed for heavy metal accumulation by targeting plant metallothioneins to the inner face of the yeast plasma membrane. Metallothioneins (MTs) are cysteine-rich proteins involved in the buffering of excess metal ions, especially Cu(I), Zn(II) or Cd(II). The cDNAs of seven Arabidopsis thaliana MTs (AtMT1a, AtMT1c, AtMT2a, AtMT2b, AtMT3, AtMT4a and AtMT4b) and four Noccaea caerulescens MTs (NcMT1, NcMT2a, NcMT2b and NcMT3) were each translationally fused to the C-terminus of a myristoylation green fluorescent protein variant (myrGFP) and expressed in Saccharomyces cerevisiae cells. The myrGFP cassette introduced a yeast myristoylation sequence which allowed directional targeting to the cytosolic face of the plasma membrane along with direct monitoring of the intracellular localization of the recombinant protein by fluorescence microscopy. The yeast strains expressing plant MTs were investigated against an array of heavy metals in order to identify strains which exhibit the (hyper)accumulation phenotype without developing toxicity symptoms. Among the transgenic strains which could accumulate Cu(II), Zn(II) or Cd(II), but also non-canonical metal ions, such as Co(II), Mn(II) or Ni(II), myrGFP-NcMT3 qualified as the best candidate for bioremediation applications, thanks to the robust growth accompanied by significant accumulative capacity.

  5. Assessment of trace metals pollution in estuarine sediments using SEM-AVS and ERM-ERL predictions.

    PubMed

    Garcia, Carlos Alexandre Borges; Passos, Elisangela de Andrade; Alves, José do Patrocínio Hora

    2011-10-01

    This paper presents the distributions of the investigation of trace metals geochemistry in surface sediments of the Sergipe river estuary, northeast Brazil. Analyses were carried out by Flame or electrothermal atomic absorption spectrometry (FAAS or ETAAS). Principal component analysis was applied to results to identify any groupings among the different sampling sites. In order to determine the extent of contamination, taking into account natural variability within the region, metal concentrations were normalized relative to aluminium. Cr, Cu, Ni and Zn contamination was observed in sediments from the area receiving highest inputs of domestic wastes, while cadmium contamination occurred in sediments from the region affected by highest inflows of industrial effluents. Possible toxicity related to these metals was examined using the relationship simultaneously extracted metals/acid volatile sulfide and by comparing sediment chemical data with sediment quality guidelines ERL-ERM values. Results obtained using the two methods were in agreement and indicated that adverse effects on aquatic biota should rarely occur.

  6. [Accumulation Characteristics and Evaluation of Heavy Metals in Soil-Crop System Affected by Wastewater Irrigation Around a Chemical Factory in Shenmu County].

    PubMed

    Qi, Yan-bing; Chu, Wan-lin; Pu, Jie; Liu, Meng-yun; Chang, Qing-rui

    2015-04-01

    Soil heavy metals Cu, Pb, Zn, and Cd, are regarded as "chemical time bombs" because of their propensity for accumulation in the soil and uptake by crops. This ultimately causes human toxicity in both the short and long-term, making farmland ecosystems dangerous to health. In this paper, accumulation and spatial variability of Cu, Zn, Pb and Cd in soil-crop system affected by wastewater irrigation around a chemical factor in northern Shaanxi province were analyzed. Results showed that wastewater irrigation around the chemical factory induced significant accumulation in soils compared with control areas. The average concentrations of available Cu and total Cu were 4.32 mg x kg(-1) and 38.4 mg x kg(-1), which were twice and 1.35 times higher than those of the control area, respectively. Soil Zn and Pb were slightly accumulated. Whereas soil Cd was significantly accumulated and was higher than the critical level of soil environmental quality (II), the available and total Cd concentrations were 0.248 mg x kg(-1) and 1.21 mg x kg(-1), which were 10 and 6.1 times higher than those of the control areas. No significant correlations were found between available and total heavy metals except between available Cd and total Cd. All the heavy metals were mainly accumulated in the top layer (0-10 cm). Spatially, soils and plants high in heavy metal concentration were distributed within the radius of about 100 m from the waste water outlet for Cu, Zn and Cd and about 200 m for Pb, and decreased exponentially with the distance from the factory. Affected by wastewater irrigation, contents of Cu, Pb and Cd in maize were 4.74, 0.129 and 0.036 mg x kg(-1) which were slightly higher than those in the control area. The content of Zn was similar to that in the control area. Affected by the vehicle exhaust, the over standard rate of Pb was 5.7% in maize. All the heavy metals did not show significant correlation between soil and crop, except Cd. The square correlation coefficients were 0

  7. Water-quality assessment of the Kentucky River Basin, Kentucky; distribution of metals and other trace elements in sediment and water, 1987-90

    USGS Publications Warehouse

    Porter, Stephen D.; White, Kevin D.; Clark, J.R.

    1995-01-01

    The U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program is designed to provide a nationally consistent description of the current status of water quality, to define water-quality trends, and to relate past and present water-quality conditions to natural features, uses of land and water, and other water-quality effects from human activities. The Kentucky River Basin is one of four NAWQA pilot projects that focused primarily on the quality of surface water. Water, sediment, and bedrock samples were collected in the Kentucky River Basin during 1987-90 for the purpose of (1) describing the spatial distribution, transport, and temporal variability of metals and other trace elements in streams of the basin; (2) estimating mean annual loads, yields, and trends of constituent concentrations and identifying potential causes (or sources) of spatial patterns; (3) providing baseline information for concentrations of metals in streambed and suspended sediments; (4) identifying stream reaches in the Kentucky River Basin with chronic water-quality problems; and (5) evaluating the merits of the NAWQA pilot study-approach for the assessment of metals and other trace elements in a river system. The spatial distribution of metals and other trace elements in streambed sediments of the Kentucky River Basin is associated with regional differences of geology, land use and cover, and the results of human activities. Median concentrations of constituents differed significantly among physiographic regions of the basin because of relations to bedrock geochemistry and land disturbance. Concentrations of potentially toxic metals were large in urban and industrial areas of the basin. Elevated concentrations of certain metals were also found in streambed sediments of the Knobs Region because of the presence of Devonian shale bedrock. Elevated concentrations of lead and zinc found in streambed sediments of the Bluegrass Region are likely associated with urban

  8. Trace Metals and Nutrients at the Soil-Root Interface of Forest Soils

    NASA Astrophysics Data System (ADS)

    Courchesne, F.; Seguin, V.; Legrand, P.; Cloutier-Hurteau, B.

    2004-05-01

    The activity of roots creates a microenvironment, known as the rhizosphere, where soil properties, processes and feedback mechanisms differ substantially from those observed in the soil matrix. Due to its proximity to the site of elemental uptake by plants, the rhizosphere is viewed as a biogeochemical hotspot characterized by massive fluxes of matter and energy. In this context, the acquisition of new knowledge on the rhizosphere is crucial to increase our capacity to understand, manage and model soil-plants systems. Of particular interest to scientists is the response of the rhizosphere to perturbations of natural (e.g. climatic fluctuations) or anthropogenic (e.g. soil contamination) origin. Moreover, results from rhizosphere research help define new approaches designed either to restrict the entrance of potentially toxic elements in crops and, hence, in the food chain or, contrarily, to increase the uptake of trace elements by plants in contaminated environments to be bioremediated. Our recent studies in forested environments have clearly established that the rhizosphere (Abies, Acer, Betula, Picea, Pinus or Populus roots) is more acidic than the soil matrix and that it is enriched in organic substances (dissolved and solid), nutrient cations (Ca, Mg) and trace metals. Indeed, the rhizosphere systematically acts as a sink for Cd, Cu, Ni, Pb and Zn, notably under bioavailable (water-soluble and salt-extractable) forms. Yet, the relative activity of free metal ions is lower in the rhizosphere, as shown for Cu++, probably as a consequence of the higher DOC content. The corrosive environment forming in the rhizosphere, as controlled by the release of H+ ions and of organic acids, also impacts on mineral assemblages through an increase in the weathering of primary minerals (amphiboles, plagioclases) and the formation of secondary solid phases such as Fe and Al oxides. Some of the research avenues currently investigated by our research group include the

  9. Diminished Metal Accumulation in Riverine Fishes Exposed to Acid Mine Drainage over Five Decades

    PubMed Central

    Jeffree, Ross A.; Markich, Scott J.; Twining, John R.

    2014-01-01

    Bony bream (Nematalosa erebi) and black catfish (Neosilurus ater) were sampled from the fresh surface waters of the Finniss River in tropical northern Australia, along a metal pollution gradient draining the Rum Jungle copper/uranium mine, a contaminant source for over five decades. Paradoxically, populations of both fish species exposed to the highest concentrations of mine-related metals (cobalt, copper, lead, manganese, nickel, uranium and zinc) in surface water and sediment had the lowest tissue (bone, liver and muscle) concentrations of these metals. The degree of reduction in tissue concentrations of exposed populations was also specific to each metal and inversely related to its degree of environmental increase above background. Several explanations for diminished metal bioaccumulation in fishes from the contaminated region were evaluated. Geochemical speciation modeling of metal bioavailability in surface water showed no differences between the contaminated region and the control sites. Also, the macro-nutrient (calcium, magnesium and sodium) water concentrations, that may competitively inhibit metal uptake, were not elevated with trace metal contamination. Reduced exposure to contaminants due to avoidance behavior was unlikely due to the absence of refugial water bodies with the requisite metal concentrations lower than the control sites and very reduced connectivity at time of sampling. The most plausible interpretation of these results is that populations of both fish species have modified kinetics within their metal bioaccumulation physiology, via adaptation or tolerance responses, to reduce their body burdens of metals. This hypothesis is consistent with (i) reduced tissue concentrations of calcium, magnesium and sodium (macro-nutrients), in exposed populations of both species, (ii) experimental findings for other fish species from the Finniss River and other contaminated regions, and (iii) the number of generations exposed to likely selection pressure

  10. Intake of Trace Metals and the Risk of Incident Kidney Stones.

    PubMed

    Ferraro, Pietro Manuel; Gambaro, Giovanni; Curhan, Gary C; Taylor, Eric N

    2018-06-01

    The association between the intake of trace metals and the risk of incident stones has not been longitudinally investigated. We performed a prospective analysis of 193,551 participants in the Health Professionals Follow-up Study, and the Nurses' Health Study I and II. During a followup of 3,316,580 person-years there was a total of 6,576 incident stones. We used multivariate regression models to identify associations of the intake of zinc, iron, copper and manganese with the risk of stones. In a subset of participants with 24-hour urine collections we examined the association between the intake of trace metals and urine composition. After multivariate adjustment total and dietary intakes of zinc and iron were not significantly associated with incident stones. A higher intake of manganese was associated with a lower risk of stones. The pooled HR of the highest quintile of total manganese intake compared with the lowest intake was 0.82 (95% CI 0.68-0.98, p = 0.02). Total but not dietary copper intake was marginally associated with a higher risk of stones (pooled HR 1.14, 95% CI 1.02-1.28, p = 0.01). There were no statistically significant associations of the total intake of manganese and copper with urinary supersaturation. Zinc and iron intake was not associated with a risk of stones. Copper intake may be associated with a higher risk in some individuals. Higher total manganese intake was associated with a lower risk of stones but not with traditional 24-hour urinary composite markers of stone risk. Further research is needed to elucidate the mechanisms by which manganese may reduce kidney stone formation. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. Portable detection of trace metals in airborne particulates and sediments via μPADs and smartphone.

    PubMed

    Jia, Yuan; Dong, Hui; Zheng, Jianping; Sun, Hao

    2017-11-01

    Particulate matter (PM), a key indicator of air pollution by natural and anthropogenic activities, contributes to a wide spectrum of diseases that lead to a shortening of life expectancy. It has been recognized that trace metals in airborne PM are highly toxic and can be correlated with lesion in respiratory, gastrointestinal, immunological, and hematological systems. Traditional methods for trace metal assay require sophisticated instrumentations and highly trained operators in centralized laboratories. In this work, by integrating the technologies of microfluidic paper-based analytical devices, additive manufacturing, smartphone, and colorimetric sensing, we developed the first smartphone based paper microfluidic platform for portable, disposable, and quantitative measurements of cobalt (Co), copper (Cu), and iron (Fe) in ambient air and street sediments. On a single A4-sized paper, 48 devices were fabricated in under 30 s with a total cost of ∼$1.9. On each device, 12 reaction units were patterned and used for colorimetric tests. Particulate samples from urban ambient air and street sediments were collected, processed, and analyzed. Signals of the on-chip complexation product were recorded using a smartphone camera and processed by a self-developed app on an iOS system. For precisely controlling the object distance, chip position, and luminance, a hand-held 3D cellphone housing was designed and printed. The detection limits of Co, Cu, and Fe were determined to be 8.2, 45.8, and 186.0 ng, while the linear dynamic ranges were calculated to be 8.2-81.6, 45.8-4.58 × 10 2 , and 1.86 × 10 2 -1.86 × 10 3  ng, representing a practically relevant device performance with a significant reduction in the detection cost and time consumption. Trace metals in ambient air and sediments of two cities in China have been quantified portably, thus demonstrating the utility of our system in improving strategies for air pollution control in low-resource settings.

  12. Observation of Accumulated Metal Cation Distribution in Fish by Novel Stigmatic Imaging Time-of-Flight Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Aoki, Jun; Ikeda, Shinichiro; Toyoda, Michisato

    2014-02-01

    The accumulation of radioactive substances in biological organisms is a matter of great concern since the incident at the nuclear power plant in Fukushima, Japan. We have developed a novel technique for observing the distribution of accumulated metal cations in fish that employs a new imaging mass spectrometer, MULTUM-IMG2. Distributions of 133Cs and 88Sr in a sliced section of medaka (Oryzias latipes) are obtained with spatial resolution of µm-scale.

  13. Calcium EDTA toxicity: renal excretion of endogenous trace metals and the effect of repletion on collagen degradation in the rat.

    PubMed

    Braide, V B

    1984-01-01

    Studies on total hydroxyproline concentrations in urine of rats infused with toxic doses of CaEDTA at 6 mmol/kg per 24 hr for 48 hr or injected i.p. with the chelate at 4.8 mmol/kg/day for 10 days, indicate a two- to six-fold increase in urine excretion of the imino acid. This is due to increased degradation of collagen induced by CaEDTA. CaEDTA infusion was also shown to enhance urine excretion of some trace metals (Zn, Mn, Cu and Fe). Rats infused with CaEDTA for 36 hr showed a gradual fall in concentration of hydroxyproline in the urine, following cessation of chelate infusion. The decline in hydroxyproline concentrations was faster in rats receiving trace metal (Zn, Co, Mn or Ni) treatment during the post-CaEDTA infusion period; suggesting that the metals may affect collage, making the protein less susceptible to degradation in the body.

  14. The occurrence and distribution of trace metals in the Mississippi River and its tributaries

    USGS Publications Warehouse

    Taylor, Howard E.; Garbarino, J.R.; Brinton, T.I.

    1990-01-01

    Quantitative and semiquantitative analyses of dissolved trace metals are reported for designated sampling sites on the Mississippi River and its main tributaries utilizing depth-integrated and width-integrated sampling technology to collect statistically representative samples. Data are reported for three sampling periods, including: July-August 1987, November-December 1987, and May-June 1988. Concentrations of Al, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Pb, Sr, Tl, U, V, and Zn are reported quantitatively, with the remainder of the stable metals in the periodic table reported semiquantitatively. Correlations between As and V, Ba and U, Cu and Zn, Li and Ba, and Li and U are significant at the 99% confidence level for each of the sampling trips. Comparison of the results of this study for selected metals with other published data show generally good agreement for Cr, Cu, Fe, and Zn, moderate agreement for Mo, and poor agreement for Cd and V.

  15. Soil and plant factors influencing the accumulation of heavy metals by plants.

    PubMed Central

    Cataldo, D A; Wildung, R E

    1978-01-01

    The use of plants to monitor heavy metal pollution in the terrestrial environment must be based on a cognizance of the complicated, integrated effects of pollutant source and soil-plant variables. To be detectable in plants, pollutant sources must significantly increase the plant available metal concentration in soil. The major factor governing metal availability to plants in soils is the solubility of the metal associated with the solid phase, since in order for root uptake to occur, a soluble species must exist adjacent to the root membrane for some finite period. The rate of release and form of this soluble species will have a strong influence on the rate and extent of uptake and, perhaps, mobility and toxicity in the plant and consuming animals. The factors influencing solubility and form of available metal species in soil vary widely geographically and include the concentration and chemical form of the element entering soil, soil properties (endogenous metal concentration, mineralogy, particle size distribution), and soil processes (e.g., mineral weathering, microbial activity), as these influence the kinetics of sorption reactions, metal concentration in solution and the form of soluble and insoluble chemical species. The plant root represents the first barrier to the selective accumulation of ions present in soil solution. Uptake and kinetic data for nutrient ions and chemically related nonnutrient analogs suggest that metabolic processes associated with root absorption of nutrients regulate both the affinity and rate of absorption of specific nonnutrient ions. Detailed kinetic studies of Ni, Cd, and Tl uptake by intact plants demonstrate multiphasic root absorption processes over a broad concentration range, and the use of transport mechanisms in place for the nutrient ions Cu, Zn, and K. Advantages and limitations of higher plants as indicators of increased levels of metal pollution are discussed in terms of these soil and plant phenomena. PMID:367766

  16. Heavy metal accumulation during the last 30 years in the Karnaphuli River estuary, Chittagong, Bangladesh.

    PubMed

    Wang, Ai-Jun; Kawser, Ahmed; Xu, Yong-Hang; Ye, Xiang; Rani, Seema; Chen, Ke-Liang

    2016-01-01

    Heavy metal contamination of aquatic environment has attracted global attention owing to its abundance, persistence, and environmental toxicity, especially in developing countries like Bangladesh. Five heavy metals, namely chromium (Cr), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) were investigated in surface and core sediments of the Karnaphuli River (KR) estuary in Chittagong, Bangladesh, in order to reveal the heavy metal contamination history in estuarine sediments and its response to catastrophic events and human activities. The surface sediment was predominantly composed of silt and sand, and the surface sediment was contaminated with Cr and Pb. Based on the 210 Pb chronology, the sedimentation rate in the inter-tidal zone of KR estuary was 1.02 cm/a before 2007, and 1.14 cm/a after 2008. The core sediment collected from 8 to 20 cm below the surface mainly originated from terrestrial materials induced by catastrophic events such as cyclone, heavy rainfall and landslides in 2007 and 2008. The values of contamination factor ( CF ) showed that the sediment became moderately contaminated with Cr and Pb in the last 30 years. The variation and accumulation of heavy metals in core sediment before 2000 was mainly related to natural variations in sediment sources; however, in subsequent years, the anthropogenic inputs of heavy metals have increased due to rapid physical growth of urban and industrial areas in the Chittagong city. In general, the accumulation pattern of heavy metals after normalization to Aluminum in sediments of KR estuary indicated an accelerated rate of urbanization and industrialization in the last 30 years, and also suggested the influence of natural catastrophic event on estuarine environment.

  17. Efficiency of single extraction schemes in highlighting the impact of changes in land use of contaminated agricultural soils on their trace metal availability

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad; Lamy, Isabelle; Bermond, Alain

    2014-05-01

    Presently changes in the land use of contaminated and marginal agricultural lands from conventional annual food crops to perennial non-food bionergy crops are being encouraged globally. This is being done to avoid food chain contamination with metal and organic contaminants and to meet world energy needs without disturbing normal fertile agricultural lands. Changes in land use from the annual cropping systems to the perennial cropping systems are known to modify organic matter quality and quantity in case of non contaminated soils. In the case of contaminated soils such changes are susceptible to alter trace metal availabilities but studies reporting such changes are scarce. Different single extraction protocols are used to assess the trace element availability in soils. The efficiency of these extractants depends upon soil conditions and may vary case to case. The objective of the present work was to assess the changes in trace metal availability of contaminated soils when annual crops system is replaced by a perennial crop system using different single extraction protocols. A strategy of studying Cd and Zn availabilities of two sites differing in the soil texture and origin of pollution was adopted i.e. the site of Metaleurop (North of France) and the site of Pierrelaye (Paris Region). They differed in the degree of metal pollution (for Cu, Pb, Cd and Zn) and in the quantity and nature of organic matter (different C/N values). The samples used for this study involved the soils under annual crops and the perennial crop i.e. miscanthus. We investigated the trace metal availabilities of the soils using different single extraction protocols involving chemical metal extractions with EDTA, DTPA and NH4NO3 at equilibrium and kinetic EDTA extractions. The results for the soil under miscanthus compared to annual crop soil showed that single extraction schemes using chelating agents like EDTA and DTPA, however, failed to show if the metal availability can be impacted by

  18. Trace elements in agroecosystems and impacts on the environment.

    PubMed

    He, Zhenli L; Yang, Xiaoe E; Stoffella, Peter J

    2005-01-01

    Trace elements mean elements present at low concentrations (mg kg-1 or less) in agroecosystems. Some trace elements, including copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), molybdenum (Mo), and boron (B) are essential to plant growth and are called micronutrients. Except for B, these elements are also heavy metals, and are toxic to plants at high concentrations. Some trace elements, such as cobalt (Co) and selenium (Se), are not essential to plant growth but are required by animals and human beings. Other trace elements such as cadmium (Cd), lead (Pb), chromium (Cr), nickel (Ni), mercury (Hg), and arsenic (As) have toxic effects on living organisms and are often considered as contaminants. Trace elements in an agroecosystem are either inherited from soil parent materials or inputs through human activities. Soil contamination with heavy metals and toxic elements due to parent materials or point sources often occurs in a limited area and is easy to identify. Repeated use of metal-enriched chemicals, fertilizers, and organic amendments such as sewage sludge as well as wastewater may cause contamination at a large scale. A good example is the increased concentration of Cu and Zn in soils under long-term production of citrus and other fruit crops. Many chemical processes are involved in the transformation of trace elements in soils, but precipitation-dissolution, adsorption-desorption, and complexation are the most important processes controlling bioavailability and mobility of trace elements in soils. Both deficiency and toxicity of trace elements occur in agroecosystems. Application of trace elements in fertilizers is effective in correcting micronutrient deficiencies for crop production, whereas remediation of soils contaminated with metals is still costly and difficult although phytoremediation appears promising as a cost-effective approach. Soil microorganisms are the first living organisms subjected to the impacts of metal contamination. Being responsive and

  19. Removal of trace metals and improvement of dredged sediment dewaterability by bioleaching combined with Fenton-like reaction.

    PubMed

    Zeng, Xiangfeng; Twardowska, Irena; Wei, Shuhe; Sun, Lina; Wang, Jun; Zhu, Jianyu; Cai, Jianchao

    2015-05-15

    Bioleaching by Aspergillus niger strain SY1 combined with Fenton-like reaction was optimized to improve trace metal removal and dewaterability of dredged sediments. The major optimized parameters were the duration of bioleaching and H₂O₂ dose in Fenton-like process (5 days and 2g H₂O₂/L, respectively). Bioleaching resulted in the removal of ≈90% of Cd, ≈60% of Zn and Cu, ≈20% of Pb, and in decrease of sediment pH from 6.6 to 2.5 due to organic acids produced by A. niger. After addition of H₂O₂, Fenton-like reaction was initiated and further metal removal occurred. Overall efficiency of the combined process comprised: (i) reduction of Cd content in sediment by 99.5%, Cu and Zn by >70% and Pb by 39% as a result of metal release bound in all mobilizable fractions; (ii) decrease of sediment capillary suction time (CST) from 98.2s to 10.1s (by 89.8%) and specific resistance to filtration (SRF) from 37.4×10(12)m/kg to 6.2×10(12)m/kg (by 83.8%), due to reducing amount of extracellular polymeric substances (EPS) by 68.7% and bound water content by 79.1%. The combined process was found to be an efficient method to remove trace metals and improve dewaterability of contaminated dredged sediments. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Combined effects of cadmium and zinc on growth, tolerance, and metal accumulation in Chara australis and enhanced phytoextraction using EDTA.

    PubMed

    Clabeaux, Bernadette L; Navarro, Divina A; Aga, Diana S; Bisson, Mary A

    2013-12-01

    Chara australis (R. Br.) is a macrophytic alga that can grow in and accumulate Cd from artificially contaminated sediments. We investigated the effects of Zn independently and in combination with Cd on C. australis growth, metal tolerance, and uptake. Plant growth was reduced at concentrations ≥ 75 mg Zn (kg soil)⁻¹. Zn also increased the concentration of glutathione in the plant, suggesting alleviation of stress. Phytotoxic effects were observed at ≥ 250 mg added Zn (kg soil)⁻¹. At 1.5mg Zn (kg soil)⁻¹, the rhizoid bioconcentration factor (BCF) was >1.0 for both Cd and Zn. This is a criterion for hyperaccumulator status, a commonly used benchmark for utility in remediation of contaminated soils by phytoextraction. There was no significant interaction between Cd and Zn on accumulation, indicating that Chara should be effective at phytoextraction of mixed heavy metal contamination in sediments. The effects of the chelator, ethylenediaminetetraacetic acid (EDTA), were also tested. Moderate levels of EDTA increased Cd and Zn accumulation in rhizoids and Cd BCF of shoots, enhancing Chara's potential in phytoremediation. This study demonstrates for the first time the potential of macroalgae to remove metals from sediments in aquatic systems that are contaminated with a mixture of metals. © 2013 Published by Elsevier Inc.