Science.gov

Sample records for accumulate trace metals

  1. Trace metal accumulation in carbonate biominerals of the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Demina, L. L.; Oskina, N. S.; Galkin, S. V.

    2016-01-01

    New data on trace metal (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb) distribution in carbonate biominerals formed in geochemically different oceanic environments are discussed. Calcite shells of shelf and deepwater hydrothermal vent mussels as well as planktic foraminifers and pteropods from the central Atlantic Ocean have been studied. The variability in concentrations of most trace elements between different groups of calcifying organisms are usually within one order of magnitude, except for Fe and Mn, the elevated contents of which in microfossils are caused by post-sedimentation interaction. Different groups of calcifying organisms demonstrate a biogeochemical uniformity in trace metal accumulation during the biomineralization processes.

  2. Abnormal accumulation of trace metals by plants

    SciTech Connect

    Reeves, R.D.; Brooks, R.R.; Baker, A.J.M.

    1996-12-31

    The article describes the hyperaccumulation of metals by plants. Ranges for low, normal, high, and hyperaccumulating uptake are established. A partial list of hyperaccumulator species and their localities is included. Studies are reviewed and summarized for zinc, cadmium and lead, nickel, cobalt and copper, selenium, and cadmium and manganese hyperaccumulation.

  3. Transcranial sonography in brain disorders with trace metal accumulation.

    PubMed

    Walter, Uwe

    2010-01-01

    Transcranial sonography (TCS) can detect trace metal accumulation in deep brain structures with higher sensitivity than conventional MRI. Especially, increased iron content in the substantia nigra in Parkinson's disease, increased copper content in the lenticular nucleus (LN) in Wilson's disease and idiopathic dystonia, and increased manganese content in the LN in manganese-induced Parkinsonism were detected with TCS, even in subjects with normal MRI. TCS, therefore, might be useful to detect an increased risk of developing neurological symptoms in relatives of patients with Parkinson's or Wilson's disease. The exact mechanism of how an elevated trace metal content leads to an increased echogenicity needs to be further elucidated.

  4. Trace metals accumulation in Bacopa monnieri and their bioaccessibility.

    PubMed

    Srikanth Lavu, Rama Venkata; Prasad, Majeti Narasimha Vara; Pratti, Varalakshmi Lalithya; Meißner, Ralph; Rinklebe, Jörg; Van De Wiele, Tom; Tack, Filip; Du Laing, Gijs

    2013-08-01

    Bacopa monnieri is commonly known as "Brahmi" or "Water hyssop" and is a source of nootropic drugs. Aboveground parts of plant samples collected from peri-urban Indian areas were analysed for total trace metal concentrations. Subsequently, three samples with high concentrations of Cd and Pb were subjected to in vitro gastrointestinal digestion to assess the bioaccessibility of the trace metals in these plants. The total concentrations of trace metals on a dry weight basis were 1.3 to 6.7 mg·kg⁻¹ Cd, 1.5 to 22 mg·kg⁻¹ Pb, 36 to 237 mg·kg⁻¹ Cu, and 78 to 186 mg·kg⁻¹ Zn. The majority of Bacopa monnieri samples exceeded threshold limits of Cd, Pb, Cu, and Zn for use as raw medicinal plant material or direct consumption. Therefore, it is necessary to evaluate Bacopa monnieri collected in nature for their trace metal content prior to human consumption and preparation of herbal formulations.

  5. Record of the accumulation of sediment and trace metals in a Connecticut salt marsh

    SciTech Connect

    McCaffrey, R.J.; Thomson, J.

    1980-12-01

    The possibility that a useful, historical record of deposition might be found in a salt marsh is investigated by considering a record of the accumulation of sediment and trace metals in a Connecticut salt marsh. Evidence of salt-marsh deposition dominated by riverine runoff is presented.

  6. Trace Metal Accumulation in Sediments and Benthic Macroinvertebrates before and after Maintenance of a Constructed Wetland

    EPA Science Inventory

    Periodic maintenance of stormwater best management practices (BMP) includes the removal of accumulated sediment. The resulting impact on trace metal concentrations of copper (Cu), lead (Pb), and zinc (Zn) in a constructed stormwater wetland BMP on Staten Island, NY was investiga...

  7. Trace metal accumulation in soil and their phytoavailability as affected by greenhouse types in north China.

    PubMed

    Yang, Lanqin; Huang, Biao; Mao, Mingcui; Yao, Lipeng; Hickethier, Martina; Hu, Wenyou

    2015-05-01

    Long-term heavy organic fertilizer application has linked greenhouse vegetable production (GVP) with trace metal contamination in north China. Given that trace metals release from fertilizers and their availability may be affected by discrepant environmental conditions, especially temperature under different greenhouses, this study investigated Cd, Cu, Pb, and Zn accumulation and contamination extent in soil as well as their phytoavailability under two major greenhouses in Tongshan, north China, namely solar greenhouse (SG) and round-arched plastic greenhouse (RAPG), to evaluate their presumed difference. The results showed significant Cd, Cu, Pb, and Zn accumulation in GVP soil by comparing with those in open-field soil, but their accumulation extent and rates were generally greater in SG than those in RAPG. This may be related to more release of trace metals to soil due to the acceleration of decomposition and humification process of organic fertilizers under higher soil temperature in SG relative to that in RAPG. Overall, soil in both greenhouses was generally less polluted or moderately polluted by the study metals. Similarly, decreased soil pH and elevated soil available metals in SG caused higher trace metals in leaf vegetables in SG than those in RAPG, although there was no obvious risk via vegetable consumption under both greenhouses. Lower soil pH may be predominantly ascribed to more intensive farming practices in SG while elevated soil available metals may be attributed to more release of dissolved organic matter-metal complexes from soil under higher temperature in SG. The data provided in this study may assist in developing reasonable and sustainable fertilization strategies to abate trace metal contamination in both greenhouses.

  8. Accumulation of trace metals in the embryos and hatchlings of Chelonia mydas from Peninsular Malaysia incubated at different temperatures.

    PubMed

    Ikonomopoulou, Maria P; Olszowy, Henry; Francis, Rod; Ibrahim, Kamarruddin; Whittier, Joan

    2013-04-15

    A variety of trace metals were measured in the egg contents of three clutches of Chelonia mydas collected from Kuala Terengganu state in Peninsular Malaysia. We quantified Mn, Cu, Zn, Se (essential trace metals) and As (anthropogenic pollutant) at several developmental stages obtained by incubating eggs at two different temperatures (27 °C and 31 °C). The incubation temperatures were chosen because they produce predominantly male or predominantly female hatchlings, respectively. The eggs were removed from the sand and washed before being placed in incubators, to ensure that the only possible source of the detected metals was maternal transfer. Other metals: Mo, Co, Ni, Cd, Sn, Sb, Hg, Tl and Pb (all non-essential metals) were detected at concentrations below the lower limit of quantitation (LLOQ). Trace metal concentrations, particularly [Zn], increased during development, other metals (Cu, As, Se and Cr) accumulated to a lesser degree than zinc but no significant differences were observed between the incubation temperatures at any stage of incubation. To date, only a few studies on trace metals in turtle embryos and hatchlings have been reported; this study will provide basic knowledge on the accumulation of trace metals during development at two different incubation temperatures.

  9. Trace metal accumulation in sediments and benthic macroinvertebrates before and after maintenance of a constructed wetland.

    PubMed

    O'Connor, Thomas P; Muthukrishnan, Swarna; Barshatzky, Kristen; Wallace, William

    2012-04-01

    Stormwater best management practices (BMPs) require regular maintenance. The impact on trace metal concentrations in a constructed stormwater wetland BMP on Staten Island, New York, was investigated by analyzing sediment concentrations and tissue residues of the dominant macroinvertebrates (Tubifex tubifex) prior and subsequent to maintenance. Trace metal concentrations were assessed using standard serial extraction (for sediment) and acid digestion (for tissue burdens) techniques, followed by quantitative determination using graphite furnace atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry, respectively. The results suggest that disturbance of sediment during maintenance of the BMP resulted in an increase in the most mobile fraction of trace metals, especially those associated with finer grained sediments (< 63 tm), and as a consequence, measured metal concentrations in macroinvertebrates increased. Regressions of a subset of metal concentrations (copper, lead, and zinc) in sediment and the macroinvertebrate tissue burden samples generally increased as a result of maintenance. A follow-up sampling event 9 months after maintenance demonstrated that the most readily available form of trace metal in the BMP was reduced, which supports (1) long-term sequestration of metals in the BMP and (2) that elevated bioavailability following maintenance was potentially a transient feature of the disturbance. This study suggests that in the long-term, performing sediment removal might help reduce bioavailability of trace metal concentrations in both the BMP and the receiving water to which a BMP discharges. However, alternative practices might need to be implemented to reduce trace metal bioavailability in the short-term.

  10. Trace metal accumulation in sediments and benthic macroinvertebrates before and after maintenance of a constructed wetland.

    PubMed

    O'Connor, Thomas P; Muthukrishnan, Swarna; Barshatzky, Kristen; Wallace, William

    2012-04-01

    Stormwater best management practices (BMPs) require regular maintenance. The impact on trace metal concentrations in a constructed stormwater wetland BMP on Staten Island, New York, was investigated by analyzing sediment concentrations and tissue residues of the dominant macroinvertebrates (Tubifex tubifex) prior and subsequent to maintenance. Trace metal concentrations were assessed using standard serial extraction (for sediment) and acid digestion (for tissue burdens) techniques, followed by quantitative determination using graphite furnace atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry, respectively. The results suggest that disturbance of sediment during maintenance of the BMP resulted in an increase in the most mobile fraction of trace metals, especially those associated with finer grained sediments (< 63 tm), and as a consequence, measured metal concentrations in macroinvertebrates increased. Regressions of a subset of metal concentrations (copper, lead, and zinc) in sediment and the macroinvertebrate tissue burden samples generally increased as a result of maintenance. A follow-up sampling event 9 months after maintenance demonstrated that the most readily available form of trace metal in the BMP was reduced, which supports (1) long-term sequestration of metals in the BMP and (2) that elevated bioavailability following maintenance was potentially a transient feature of the disturbance. This study suggests that in the long-term, performing sediment removal might help reduce bioavailability of trace metal concentrations in both the BMP and the receiving water to which a BMP discharges. However, alternative practices might need to be implemented to reduce trace metal bioavailability in the short-term. PMID:22834226

  11. Accumulation and depuration of trace metals in Southern Toads, Bufo Terrestris, exposed to coal combustion waste

    SciTech Connect

    Ward, C.; Hassan, S.; Mendonca, M.

    2009-02-15

    Accumulation and depuration of metals by an organism are underrepresented in the literature. We collected southern toads (Bufo terrestris) from coal by-product (ash)-contaminated and uncontaminated sites to examine metal concentrations over time. Toads were placed in four exposure regimes, then sacrificed periodically over a 5-month period, and whole-body metal levels were measured. Toads exposed to ash accumulated significant concentrations of metals. Metal concentrations changed throughout the experiment, and profiles of accumulation and depuration differed depending on the metal and exposure regime. Ash-exposed toads exhibited elevated levels of 11 of 18 metals measured. Increases ranged from 47.5% for Pb to more than 5000% for As. Eight of 18 metals did not change in control toads, while 10 of 18 metals decreased in toads removed from ash, ranging from -25% for Co to -96% for Tl. Seven metals that decreased in toads removed from ash did not change in control toads.

  12. Accumulation and distribution of trace metals within soils and the austral cordgrass Spartina densiflora in a Patagonian salt marsh.

    PubMed

    Idaszkin, Yanina L; Lancelotti, Julio L; Bouza, Pablo J; Marcovecchio, Jorge E

    2015-12-15

    Concentrations of Cd, Cu, Fe, Pb, and Zn were determined in soils and in below- and above-ground structures of Spartina densiflora in a Patagonian salt marsh (San Antonio, Río Negro, Argentina). Also, the relationship between trace metal concentrations in soils and plants was investigated to improve our knowledge regarding the ability of this plant species to take up and accumulate trace metals from the soil. Our results indicate that, within the studied salt marsh, soil trace metal concentrations follow a decreasing concentration gradient toward the sea. They show moderate pollution and a potentially negative biological effect in one site of the salt marsh. While below-ground structures reflect the soil metal concentration pattern, this is not so evident in above-ground concentrations. Also, S. densiflora is able to absorb a limited amount of metals present in the soil, the soil bioaccumulation factor being lower in sites where soil metal concentration is higher.

  13. Accumulation and distribution of trace metals within soils and the austral cordgrass Spartina densiflora in a Patagonian salt marsh.

    PubMed

    Idaszkin, Yanina L; Lancelotti, Julio L; Bouza, Pablo J; Marcovecchio, Jorge E

    2015-12-15

    Concentrations of Cd, Cu, Fe, Pb, and Zn were determined in soils and in below- and above-ground structures of Spartina densiflora in a Patagonian salt marsh (San Antonio, Río Negro, Argentina). Also, the relationship between trace metal concentrations in soils and plants was investigated to improve our knowledge regarding the ability of this plant species to take up and accumulate trace metals from the soil. Our results indicate that, within the studied salt marsh, soil trace metal concentrations follow a decreasing concentration gradient toward the sea. They show moderate pollution and a potentially negative biological effect in one site of the salt marsh. While below-ground structures reflect the soil metal concentration pattern, this is not so evident in above-ground concentrations. Also, S. densiflora is able to absorb a limited amount of metals present in the soil, the soil bioaccumulation factor being lower in sites where soil metal concentration is higher. PMID:26481413

  14. Effects of environmental and physiological variables on the accumulated concentrations of trace metals in the New Zealand cockle Austrovenus stutchburyi.

    PubMed

    Marsden, Islay D; Smith, Brian D; Rainbow, Phillip S

    2014-02-01

    We examined potential causes of variation in trace element accumulation in an estuarine bivalve Austrovenus stutchburyi from two estuarine systems in South Island, New Zealand which differed in their metal contamination and salinity regimes. Concentrations of Ag, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Ti, V and Zn were measured (ICP-OES) in whole body tissues of bivalves collected from 10 sites, seston collected at high tide (a potential food resource) and in the sediment at the sites. All 13 elements showed a relationship between log bioaccumulated trace element concentration (mgkg(-1) dry weight tissue) and log shell length (mm), either in the whole data set or at least one site (ANCOVA). Growth rates of cockles varied significantly amongst sites. Accumulated soft tissue concentrations of Ag, As, Co and Cr increased with age of cockle, those of Pb and Zn decreased, with no clear age-related trend for the remaining metals (ANCOVA). Shell length was generally a good proxy for age when allowing for any size effect in metal accumulation by the cockle. There was no consistent pattern between the estuarine systems, probably reflecting unidentified contaminant inputs. Following depuration, tissue concentrations decreased significantly for some elements (Fe, Mn, Ti and V), indicating high concentrations of these metals in the gut contents. Trace element concentrations in the seston generally did not correlate with the bivalve tissue concentrations. There were few (Spearman's Rank) correlations between environmental variables at the time of sampling and cockle tissue trace element concentrations. The main sources of variation in bioaccumulated trace metal concentrations in the whole tissues of the cockle are location, shell length and age.

  15. Effects of environmental and physiological variables on the accumulated concentrations of trace metals in the New Zealand cockle Austrovenus stutchburyi.

    PubMed

    Marsden, Islay D; Smith, Brian D; Rainbow, Phillip S

    2014-02-01

    We examined potential causes of variation in trace element accumulation in an estuarine bivalve Austrovenus stutchburyi from two estuarine systems in South Island, New Zealand which differed in their metal contamination and salinity regimes. Concentrations of Ag, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Ti, V and Zn were measured (ICP-OES) in whole body tissues of bivalves collected from 10 sites, seston collected at high tide (a potential food resource) and in the sediment at the sites. All 13 elements showed a relationship between log bioaccumulated trace element concentration (mgkg(-1) dry weight tissue) and log shell length (mm), either in the whole data set or at least one site (ANCOVA). Growth rates of cockles varied significantly amongst sites. Accumulated soft tissue concentrations of Ag, As, Co and Cr increased with age of cockle, those of Pb and Zn decreased, with no clear age-related trend for the remaining metals (ANCOVA). Shell length was generally a good proxy for age when allowing for any size effect in metal accumulation by the cockle. There was no consistent pattern between the estuarine systems, probably reflecting unidentified contaminant inputs. Following depuration, tissue concentrations decreased significantly for some elements (Fe, Mn, Ti and V), indicating high concentrations of these metals in the gut contents. Trace element concentrations in the seston generally did not correlate with the bivalve tissue concentrations. There were few (Spearman's Rank) correlations between environmental variables at the time of sampling and cockle tissue trace element concentrations. The main sources of variation in bioaccumulated trace metal concentrations in the whole tissues of the cockle are location, shell length and age. PMID:24144937

  16. Spatial and interspecific variation of accumulated trace metals between remote and urbane dwelling birds of Pakistan.

    PubMed

    Abbasi, Naeem Akhtar; Khan, Muhammad Usman; Jaspers, Veerle Leontina Bernard; Chaudhry, Muhammad Jamshed Iqbal; Malik, Riffat Naseem

    2015-03-01

    The current study was designed to evaluate the hypothesis that birds of urbanized and/or industrialized origin depict higher metal accumulation as compared to remote dwellers. We selected seven representative species from three families (Anatidae, Motacillidae and Sturnidae) at two different locations; Baroghil valley (remote location) and Soan valley (urbanized location) of Pakistan and analyzed the concentrations of 8 metals Pb, Cd, Cr, Ni, Cu, Mn, Fe and Zn in feathers of these species. Feathers from Soan valley which is under higher anthropogenic influence exhibited significantly (P<0.001) higher metal concentrations when compared with the feathers of the same species at Baroghil valley which has negligible anthropogenic input. Terrestrial birds of the Baroghil valley revealed greater metal loads than aquatic birds while at Soan valley it was vice versa. In general, elevated concentrations of metals were recorded in insectivorous species as compared to omnivorous species. Within each location, species belonging to Anatidae and Motacillidae revealed similar metal contamination patterns. Principal component Analysis (PCA) based on correlation matrices depicted a clear tendency of metals towards the species originating from areas with greater pollution load (Soan valley) than relatively undisturbed sites (Baroghil valley) and hence corroborated our hypothesis. The pattern of metal accumulation in feathers of both the locations suggested that there may be a flux of migration between the two regions and/or trans-boundary movement of pollutants/metals, which either singly or synergistically influence the overall metal profile in the studied bird species.

  17. Anthropogenic impact on diffuse trace metal accumulation in river sediments from agricultural reclamation areas with geochemical and isotopic approaches.

    PubMed

    Jiao, Wei; Ouyang, Wei; Hao, Fanghua; Lin, Chunye

    2015-12-01

    A better understanding of anthropogenic impact can help assess the diffuse trace metal accumulation in the agricultural environment. In this study, both river sediments and background soils were collected from a case study area in Northeast China and analyzed for total concentrations of six trace metals, four major elements and three lead isotopes. Results showed that Pb, Cd, Cu, Zn, Cr and Ni have accumulated in the river sediments after about 40 years of agricultural development, with average concentrations 1.23-1.71 times higher than local soil background values. Among them Ni, Cr and Cu were of special concern and they may pose adverse biological effects. By calculating enrichment factor (EF), it was found that the trace metal accumulation was still mainly ascribed to natural weathering processes, but anthropogenic contribution could represent up to 40.09% of total sediment content. For Pb, geochemical and isotopic approaches gave very similar anthropogenic contributions. Principal component analysis (PCA) further suggested that the anthropogenic Pb, Cu, Cr and Ni inputs were mostly related to the regional atmospheric deposition of industrial emissions and gasoline combustion, which had a strong affinity for iron oxides in the sediments. Concerning Cd, however, it mainly originated from local fertilizer applications and was controlled by sediment carbonates.

  18. Relating metal exposure and chemical speciation to trace metal accumulation in aquatic insects under natural field conditions.

    PubMed

    De Jonge, Maarten; Lofts, Stephen; Bervoets, Lieven; Blust, Ronny

    2014-10-15

    The present study investigated to what extent measured dissolved metal concentrations, WHAM-predicted free metal ion activity and modulating water chemistry factors can predict Ni, Cu, Zn, Cd and Pb accumulation in various aquatic insects under natural field conditions. Total dissolved concentrations and accumulated metal levels in four taxa (Leuctra sp., Simuliidae, Rhithrogena sp. and Perlodidae) were determined and free metal ion activities were calculated in 36 headwater streams located in the north-west part of England. Observed invertebrate body burdens were strongly related to free metal ion activities and competition among cations for uptake in the biota. Taking into account competitive effects generally provided better fits than considering uptake as a function of total dissolved metal levels or the free ion alone. Due to the critical importance and large range in pH (4.09 to 8.33), the H(+) ion activity was the most dominant factor influencing metal accumulation. Adding the influence of Na(+) on Cu(2+) accumulation improved the model goodness of fit for both Rhithrogena sp. and Perlodidae. Effects of hardness ions on metal accumulation were limited, indicating the minor influence of Ca(2+) and Mg(2+) on metal accumulation in soft-water streams (0.01 to 0.94 mM Ca; 0.02 to 0.39 mM Mg). DOC levels (ranging from 0.6 to 8.9 mg L(-1)) significantly affected Cu body burdens, however not the accumulation of the other metals. Our results suggest that 1) uptake and accumulation of free metal ions are most dominantly influenced by competition of free H(+) ions in low-hardness headwaters and 2) invertebrate body burdens in natural waters can be predicted based on the free metal ion activity using speciation modelling and effects of H(+) competition.

  19. Relating metal exposure and chemical speciation to trace metal accumulation in aquatic insects under natural field conditions.

    PubMed

    De Jonge, Maarten; Lofts, Stephen; Bervoets, Lieven; Blust, Ronny

    2014-10-15

    The present study investigated to what extent measured dissolved metal concentrations, WHAM-predicted free metal ion activity and modulating water chemistry factors can predict Ni, Cu, Zn, Cd and Pb accumulation in various aquatic insects under natural field conditions. Total dissolved concentrations and accumulated metal levels in four taxa (Leuctra sp., Simuliidae, Rhithrogena sp. and Perlodidae) were determined and free metal ion activities were calculated in 36 headwater streams located in the north-west part of England. Observed invertebrate body burdens were strongly related to free metal ion activities and competition among cations for uptake in the biota. Taking into account competitive effects generally provided better fits than considering uptake as a function of total dissolved metal levels or the free ion alone. Due to the critical importance and large range in pH (4.09 to 8.33), the H(+) ion activity was the most dominant factor influencing metal accumulation. Adding the influence of Na(+) on Cu(2+) accumulation improved the model goodness of fit for both Rhithrogena sp. and Perlodidae. Effects of hardness ions on metal accumulation were limited, indicating the minor influence of Ca(2+) and Mg(2+) on metal accumulation in soft-water streams (0.01 to 0.94 mM Ca; 0.02 to 0.39 mM Mg). DOC levels (ranging from 0.6 to 8.9 mg L(-1)) significantly affected Cu body burdens, however not the accumulation of the other metals. Our results suggest that 1) uptake and accumulation of free metal ions are most dominantly influenced by competition of free H(+) ions in low-hardness headwaters and 2) invertebrate body burdens in natural waters can be predicted based on the free metal ion activity using speciation modelling and effects of H(+) competition. PMID:25051425

  20. Accumulation of Trace Metals in Anadara granosa and Anadara inaequivalvis from Pattani Bay and the Setiu Wetlands.

    PubMed

    Pradit, Siriporn; Shazili, Noor Azhar Mohamed; Towatana, Prawit; Saengmanee, Wuttipong

    2016-04-01

    This study was undertaken to assess the levels of trace metals (As, Cd, Cu, Pb, and Zn) in two common species of cockles (Anadara granosa and Anadara inaequivalvis) from two coastal areas in Thailand (Pattani Bay) and Malaysia (the Setiu Wetlands). A total of 350 cockles were collected in February and September 2014. Trace metals were determined by Inductively Coupled Plasma Mass Spectrometry. We observed that cockles in both areas had a higher accumulation of metals in September. Notably, the biota-sediment accumulation (BSAF) of Cd was highest in both areas. A strong positive correlation of Cd with the length of the cockles at Pattani Bay (r(2) = 0.597) and the Setiu Wetlands (r(2) = 0.675) was noted. It was suggested that As could be a limiting element (BSAF < 1) of cockles obtained from Pattani Bay. In comparison with the permissible limits set by the Thailand Ministry of Public Health and the Malaysia Food Regulations, mean values of As, Cd, Cu, Pb, and Zn were within acceptable limits, but the maximum values of Cd and Pb exceeded the limits for both areas. Regular monitoring of trace metals in cockles from both areas is suggested for more definitive contamination determination. PMID:26725081

  1. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries

    PubMed Central

    Hsu, Liang-Ching; Huang, Ching-Yi; Chuang, Yen-Hsun; Chen, Ho-Wen; Chan, Ya-Ting; Teah, Heng Yi; Chen, Tsan-Yao; Chang, Chiung-Fen; Liu, Yu-Ting; Tzou, Yu-Min

    2016-01-01

    Metal accumulation in sediments threatens adjacent ecosystems due to the potential of metal mobilization and the subsequent uptake into food webs. Here, contents of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and trace elements (Ga, In, Mo, and Se) were determined for river waters and bed sediments that received sewage discharged from traditional and semiconductor industries. We used principal component analysis (PCA) to determine the metal distribution in relation to environmental factors such as pH, EC, and organic matter (OM) contents in the river basin. While water PCA categorized discharged metals into three groups that implied potential origins of contamination, sediment PCA only indicated a correlation between metal accumulation and OM contents. Such discrepancy in metal distribution between river water and bed sediment highlighted the significance of physical-chemical properties of sediment, especially OM, in metal retention. Moreover, we used Se XANES as an example to test the species transformation during metal transportation from effluent outlets to bed sediments and found a portion of Se inventory shifted from less soluble elemental Se to the high soluble and toxic selenite and selenate. The consideration of environmental factors is required to develop pollution managements and assess environmental risks for bed sediments. PMID:27681994

  2. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries

    NASA Astrophysics Data System (ADS)

    Hsu, Liang-Ching; Huang, Ching-Yi; Chuang, Yen-Hsun; Chen, Ho-Wen; Chan, Ya-Ting; Teah, Heng Yi; Chen, Tsan-Yao; Chang, Chiung-Fen; Liu, Yu-Ting; Tzou, Yu-Min

    2016-09-01

    Metal accumulation in sediments threatens adjacent ecosystems due to the potential of metal mobilization and the subsequent uptake into food webs. Here, contents of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and trace elements (Ga, In, Mo, and Se) were determined for river waters and bed sediments that received sewage discharged from traditional and semiconductor industries. We used principal component analysis (PCA) to determine the metal distribution in relation to environmental factors such as pH, EC, and organic matter (OM) contents in the river basin. While water PCA categorized discharged metals into three groups that implied potential origins of contamination, sediment PCA only indicated a correlation between metal accumulation and OM contents. Such discrepancy in metal distribution between river water and bed sediment highlighted the significance of physical-chemical properties of sediment, especially OM, in metal retention. Moreover, we used Se XANES as an example to test the species transformation during metal transportation from effluent outlets to bed sediments and found a portion of Se inventory shifted from less soluble elemental Se to the high soluble and toxic selenite and selenate. The consideration of environmental factors is required to develop pollution managements and assess environmental risks for bed sediments.

  3. Accumulation and risks of polycyclic aromatic hydrocarbons and trace metals in tropical urban soils.

    PubMed

    Khillare, P S; Hasan, Amreen; Sarkar, Sayantan

    2014-05-01

    The study deals with the combined contribution of polycyclic aromatic hydrocarbons (PAHs) and metals to health risk in Delhi soils. Surface soils (0-5 cm) collected from three different land-use regions (industrial, flood-plain and a reference site) in Delhi, India over a period of 1 year were characterized with respect to 16 US Environmental Protection Agency priority PAHs and five trace metals (Zn, Fe, Ni, Cr and Cd). Mean annual ∑16PAH concentrations at the industrial and flood-plain sites (10,893.2 ± 2826.4 and 3075.4 ± 948.7 μg/kg, respectively) were ~15 and ~4 times, respectively, higher than reference levels. Significant spatial and seasonal variations were observed for PAHs. Toxicity potentials of industrial and flood-plain soils were ~88 and ~8 times higher than reference levels. Trace metal concentrations in soils also showed marked dependencies on nearness to sources and seasonal effects. Correlation analysis, PAH diagnostic ratios and principal component analysis (PCA) led to the identification of sources such as coal and wood combustion, vehicular and industrial emissions, and atmospheric transport. Metal enrichment in soil and the degree of soil contamination were investigated using enrichment factors and index of geoaccumulation, respectively. Health risk assessment (incremental lifetime cancer risk and hazard index) showed that floodplain soils have potential high risk due to PAHs while industrial soils have potential risks due to both PAHs and Cr.

  4. Historical trace metal accumulation in the sediments of an urbanized region of the Lake Champlain watershed, Burlington, Vermont

    USGS Publications Warehouse

    Mecray, E.L.; King, J.W.; Appleby, P.G.; Hunt, A.S.

    2001-01-01

    This study documents the history of pollution inputs in the Burlington region of Lake Champlain, Vermont using measurements of anthropogenic metals (Cu, Zn, Cr, Pb, Cd, and Ag) in four age-dated sediment cores. Sediments record a history of contamination in a region and can be used to assess the changing threat to biota over time and to evaluate the effectiveness of discharge regulations on anthropogenic inputs. Grain size, magnetic susceptibility, radiometric dating and pollen stratigraphy were combined with trace metal data to provide an assessment of the history of contamination over the last 350 yr in the Burlington region of Lake Champlain. Magnetic susceptibility was initially used to identify land-use history for each site because it is a proxy indicator of soil erosion. Historical trends in metal inputs in the Burlington region from the seventeenth through the twentieth centuries are reflected in downcore variations in metal concentrations and accumulation rates. Metal concentrations increase above background values in the early to mid nineteenth century. The metal input rate to the sediments increases around 1920 and maximum concentrations and accumulation rates are observed in the late 1960s. Decreases in concentration and accumulation rate between 1970 and the present are observed, for most metals. The observed trends are primarily a function of variations in anthropogenic inputs and not variations in sediment grain size. Grain size data were used to remove texture variations from the metal profiles and results show trends in the anthropogenic metal signals remain. Radiometric dating and pollen stratigraphy provide well-constrained dates for the sediments thereby allowing the metal profiles to be interpreted in terms of land-use history.This study documents the history of pollution inputs in the Burlington region of Lake Champlain, Vermont using measurements of anthropogenic metals (Cu, Zn, Cr, Pb, Cd, and Ag) in four age-dated sediment cores. Sediments

  5. Profile of trace metals accumulation in core sediment from Seine river estuary (docks basin).

    PubMed

    Hamzeh, Mariam; Ouddane, Baghdad; El-Daye, Mirna; Halwani, Jalal

    2013-01-01

    The Seine is one of the most polluted rivers in Europe with respect to potentially harmful elements. It receives effluents from the upstream Paris urban and industrial area, and also local inputs from the heavily industrialized Rouen and Le Havre regions. The present study deals with this environmental topic and the concentrations of Cd, Ni, Pb, Hg, Zn and Cu were determined in sediment cores collected in the docks basin of Rouen harbour in 2008. The intensity of metal pollution during recent decades was evaluated using an enrichment factor (EF) and a geoaccumulation index (Igeo). The results of vertical distribution showed that the metal pollution in the past is much higher than in the surface sediment. Mercury was found to be the heaviest pollutant (with Igeo and EF exceeding 4 and 20, respectively), and Cd and Pb were the second most important pollutants. A slight contamination in Ni was observed with very low Igeo values. To estimate the sediment toxicity, simultaneously extracted metals/acid volatile sulfides ratio (SEM/AVS) was calculated. Low values of the toxicity index SEM/AVS were observed in the core sediments indicating the inexistence of metal potential toxicity. Also the concentrations of these trace metals were lower than the probable effect concentration values reported as consensus-based sediment quality guidelines for fresh water ecosystems. PMID:24191442

  6. Accumulation of trace metals in sediments in a Mediterranean Lagoon: Usefulness of metal sediment fractionation and elutriate toxicity assessment.

    PubMed

    Zaaboub, Noureddine; Martins, Maria Virgínia Alves; Dhib, Amel; Béjaoui, Béchir; Galgani, François; El Bour, Monia; Aleya, Lotfi

    2015-12-01

    The authors investigated sediment quality in Bizerte Lagoon (Tunisia) focusing on geochemical characteristics, metal sediment fractionation and elutriate toxicity assessment. Nickel, Cu, Zn, Pb, Cr and Cd partitioning in sediments was studied; accumulation and bioavailability were elucidated using enrichment factors, sequential extractions, redox potential, acid volatile sulfide and biotest procedures in toxicity evaluation. Results revealed an accumulation for Pb and Zn, reaching 99 and 460 mg kg(-1) respectively. In addition, the acid volatile sulfide values were high in both eastern and western lagoon areas, thus affecting metal availability. Mean enrichment factor values for Pb and Zn were 4.8 and 4.9, respectively, with these elements as the main contributors to the lagoon's moderate enrichment level. Toxicity levels were influenced by accumulation of Zn in different surface sediment areas. Core sediments were investigated in areas with the highest metal concentrations; metal fractionation and biotest confirmed that Zn contributes to sediment toxicity. PMID:26412262

  7. Accumulation of trace metals in sediments in a Mediterranean Lagoon: Usefulness of metal sediment fractionation and elutriate toxicity assessment.

    PubMed

    Zaaboub, Noureddine; Martins, Maria Virgínia Alves; Dhib, Amel; Béjaoui, Béchir; Galgani, François; El Bour, Monia; Aleya, Lotfi

    2015-12-01

    The authors investigated sediment quality in Bizerte Lagoon (Tunisia) focusing on geochemical characteristics, metal sediment fractionation and elutriate toxicity assessment. Nickel, Cu, Zn, Pb, Cr and Cd partitioning in sediments was studied; accumulation and bioavailability were elucidated using enrichment factors, sequential extractions, redox potential, acid volatile sulfide and biotest procedures in toxicity evaluation. Results revealed an accumulation for Pb and Zn, reaching 99 and 460 mg kg(-1) respectively. In addition, the acid volatile sulfide values were high in both eastern and western lagoon areas, thus affecting metal availability. Mean enrichment factor values for Pb and Zn were 4.8 and 4.9, respectively, with these elements as the main contributors to the lagoon's moderate enrichment level. Toxicity levels were influenced by accumulation of Zn in different surface sediment areas. Core sediments were investigated in areas with the highest metal concentrations; metal fractionation and biotest confirmed that Zn contributes to sediment toxicity.

  8. Relative importance of burrow sediment and porewater to the accumulation of trace metals in the clam Amiantis umbonella.

    PubMed

    Tarique, Qaiser; Burger, Joanna; Reinfelder, John R

    2013-07-01

    The objectives of this study were to evaluate the infaunal, facultative deposit-feeding clam Amiantis umbonella as a bioindicator of trace-metal contamination and the relative importance of clam burrow sediment and porewater to total accumulation in an urban/industrial coastal environment. Concentrations of eight trace metals (cadmium [Cd], chromium, copper, mercury [Hg], nickel, lead [Pb], vanadium, and zinc) were measured in the soft tissues of clams and in sediment and porewater from clam burrows along a 5-km transect from desalination/power plant discharges in inner Kuwait Bay. All metals had significantly greater concentrations in clams collected near the desalination/power plant discharges than from the reference site and exhibited decreasing trends with distance from the point source in clam soft tissues and burrow sediment and porewater. Concentrations of Hg (1-9 ppm [dry weight]) and the highest concentrations of Pb (3 ppm) and Cd (7 ppm) in clams from contaminated sites in Kuwait Bay were greater than human consumption limits. Metal concentrations in clams were correlated with those in burrow sediment and porewater across all sites and at sites closest to the point source but not within the reference site. The concentrations of all metals, except Pb, in clams from the contaminated sites were more highly correlated with those in clam burrow sediment than porewater. Concentrations of Pb in clam soft tissues were more strongly correlated with those in burrow porewater than sediment. These results indicate that A. umbonella is an excellent bioindicator of trace metal contamination and that sediment is an important source of contaminant metals to this infaunal clam; however, the source of each metal must be evaluated separately.

  9. Accumulation and partitioning of seven trace metals in mangroves and sediment cores from three estuarine wetlands of Hainan Island, China.

    PubMed

    Qiu, Yao-Wen; Yu, Ke-Fu; Zhang, Gan; Wang, Wen-Xiong

    2011-06-15

    Trace metals in mangrove tissues (leaf, branch, root and fruit) of nine species and sediments of ten cores collected in 2008 from Dongzhai Harbor, Sanya Bay and Yalong Bay, Hainan Island, were analyzed. The average concentrations of Cu, Pb, Zn, Cd, Cr, Hg and As in surface sediments were 14.8, 24.1, 57.9, 0.17, 29.6, 0.08 and 9.7 μg g(-1), whereas those in mangrove tissues were 2.8, 1.4, 8.7, 0.03, 1.1, 0.03, and 0.2 μg g(-1), respectively. Compared to those from other typical mangrove wetlands of the world, the metal levels in Hainan were at low- to median-levels, which is consistent with the fact that Hainan Island is still in low exploitation and its mangroves suffer little impact from human activities. Metal concentrations among different tissues of mangroves were different. In general, Zn and Cu were enriched in fruit, Hg was enriched in leaf, Pb, Cd and Cr were enriched in branch, and As was enriched in root. The cycle of trace metals in mangrove species were estimated. The biota-sediment accumulation factors (BSAFs) followed the sequence of Hg (0.43)>Cu (0.27)>Cd (0.22)>Zn (0.17)>Pb (0.07)>Cr (0.06)>As (0.02).

  10. Shallow Sediment Trace Metal Concentrations and Short-Term Accumulation Rates in the Neponset River Estuary, Massachusetts, USA

    NASA Astrophysics Data System (ADS)

    Spencer, J. R.; Zhu, J.; Olsen, C. R.

    2010-12-01

    The Neponset River estuary is a small estuary that drains into the Boston Harbor on the east coast of the United States. It is also a highly urbanized estuary and has a long history of urban development over 450 years. In July 2006, six sediment cores were collected in the Neponset River estuary to examine particle dynamics and sediment accumulation via radionuclide (Beryllium-7) dating, and to determine sediment metal concentrations (As, Cu, Pb, and Zn) via ED-XRF measurements. Measured sediment Be-7 profiles indicate various sedimentation environments, where sediment accumulation, resuspension or redeposition is likely to occur. High metal concentrations were often corresponding to high Be-7 inventories in sediment cores. Possible sources of trace metal contaminants in the water column include: storm water run-off, Combined Sewer Overflows (CSOs), a well-documented industrial pollution event that occurred upstream in the early to mid twentieth century, and the resuspension of sediment. Existing and future data will provide baseline information for quantifying the effects of the proposed and pending environmental restoration project, which includes the removal of the Baker Dam. The combined pre- and post-Dam removal data may then be used in cost-benefit analyses for other similar estuarine restoration projects.

  11. Landslide-induced iron mobilisation shapes benthic accumulation of nutrients, trace metals and REE fractionation in an oligotrophic alpine stream

    NASA Astrophysics Data System (ADS)

    Johnston, Scott G.; Rose, Andrew L.; Burton, Edward D.; Webster-Brown, Jenny

    2015-01-01

    Large alpine landslides that entrain substantial organic material below the water table and create suspended floodplains may have long-term consequences for the mobilisation of redox sensitive elements, such as Fe, into streamwaters. In turn, the cycling of iron in aquatic systems can influence the fate of nutrients, alter primary productivity, enhance accumulation of trace metals and induce fractionation of rare earth elements (REE). In this study we examine a reach of a pristine oligotrophic alpine stream bracketing a 30 year-old landslide and explore the consequences of landslide-induced Fe mobilisation for aqueous geochemistry and the composition of benthic stream cobble biofilm. Elevated Fe2+ and Mn in landslide zone stream waters reflect inputs of circumneutral groundwater from the landslide debris-zone floodplain. Geochemical characteristics are consistent with reductive dissolution being a primary mechanism of Fe2+ and Mn mobilisation. Stream cobble biofilm in the landslide zone is significantly (P < 0.01) enriched in poorly crystalline Fe(III) (∼10-400 times background) and Mn (∼15-150 times background) (1 M HCl extractable; Fe(III)Ab). While the landslide zone accounts for less than ∼9% of the total stream length, we estimate it is responsible for approximately 60-80% of the stream's benthic biofilm load of poorly crystalline Fe(III) and Mn. Biofilm Fe(III) precipitates are comprised mainly of ferrihydrite, lepidocrocite and an organic-Fe species, while precipitate samples collected proximal to hyporheic seeps contain abundant sheath structures characteristic of the neutrophilic Fe(II)-oxidising bacteria Leptothrix spp. Stream-cobble Fe(III)-rich biofilm is accumulating PO43- (∼3-30 times background) and behaving as a preferential substrate for photosynthetic periphyton, with benthic PO43-, chlorophyll a, organic carbonHCl and total N all significantly positively correlated with Fe(III)Ab and significantly elevated within the landslide zone (P < 0

  12. Sources and accumulation of trace metals in sediments and the asiatic clam, corbicula fluminea in two South Carolina watersheds. Final report

    SciTech Connect

    Pickett, J.R.

    1992-01-01

    A survey of trace element concentrations in the benthic bivalve, Corbicula fluminea, was conducted on the Santee-Cooper River Basin, S.C. from 1989-1991 as part of a nonpoint source water quality assessment. Trace metal concentrations in clam tissues were examined in relation to temporal and spatial variations in river water and sediment. It was found that C. fluminea was a suitable bio-indicator for monitoring trace metal inputs within the basin. Solute concentrations of Cd, Cu and Zn underwent appreciable accumulation as demonstrated by strong solute vs. tissue correlations and high bioconcentration factors. Conversely, the bioavailability of trace elements to C. fluminea was not necessarily related to sediment concentrations, as correlations were not observed between trace elements in sediment and clam tissue. The differences in the bioavailability of metals observed between the watersheds was likely a function of physicochemical factors affecting the partitioning of metals between the water and sediment compartments.

  13. Evaluation of the Accumulation of Trace Metals (as, U, CR, CU, PB, Zn) on Iron-Manganese Coatings on in Situ Stream Pebbles and Emplaced Substrates

    NASA Astrophysics Data System (ADS)

    Turpin, M. M.; Blake, J.; Crossey, L. J.; Ali, A.; Hansson, L.

    2015-12-01

    Exposure to trace metals (As, U, Cr, Cu, Pb, Zn) has potential negative health effects on human populations and wildlife. Geothermal waters often have elevated concentrations of trace elements and understanding the geochemical cycling of these elements can be challenging. Previous studies have utilized in situ stream pebbles and glass or ceramic substrates with iron-manganese oxide coatings to understand contamination and or chemical cycling. This project's main focus is to develop an ideal tracing method using adsorption onto substrate surfaces and to define key parameters that are necessary for the phenomenon of adsorption between trace metals and these surface coatings to occur. Sampling locations include the Jemez River and Rio San Antonio in the Jemez mountains, northern New Mexico. Both streams have significant geothermal inputs. Pebbles and cobbles were gathered from the active stream channel and 6mm glass beads and 2 X1 in. ceramic plates were placed in streams for three weeks to allow for coating accumulation. Factors such as leachate type, water pH, substrate type, coating accumulation period and leach time were all considered in this experiment. It was found that of the three leachates (aqua regia, 10% aqua regia and hydroxylamine), hydroxylamine was the most effective at leaching coatings without dissolving substrates. Samples leached with aqua regia and 10% aqua regia were found to lose weight and mass over the following 5, 7, and 10 day measurements. Glass beads were determined to be more effective than in stream pebbles as an accumulation substrate: coatings were more easily controlled and monitored. Samples leached with hydroxylamine for 5 hours and 72 hours showed little difference in their leachate concentrations, suggesting that leach time has little impact on the concentration of leachate samples. This research aims to find the best method for trace metal accumulation in streams to aid in understanding geochemical cycling.

  14. Accumulation of Trace Metal Elements (Cu, Zn, Cd, and Pb) in Surface Sediment via Decomposed Seagrass Leaves: A Mesocosm Experiment Using Zostera marina L.

    PubMed Central

    Konuma, Susumu; Nakamura, Yoshiyuki

    2016-01-01

    Accumulation of Cu, Zn, Cd, and Pb in the sediment of seagrass ecosystems was examined using mesocosm experiments containing Zostera marina (eelgrass) and reference pools. Lead was approximately 20-fold higher in the surface sediment in the eelgrass pool than in eelgrass leaves and epiphytes on the eelgrass leaves, whereas zinc and cadmium were significantly lower in the surface sediment than in the leaves, with intermediate concentrations in epiphytes. Copper concentrations were similar in both the surface sediment and leaves but significantly lower in epiphytes. Carbon and nitrogen contents increased significantly with increasing δ13C in surface sediments of both the eelgrass and reference pools. Copper, Zn, Cd, and Pb also increased significantly with increasing δ13C in the surface sediment in the eelgrass pool but not in the reference pool. By decomposition of eelgrass leaves with epiphytes, which was examined in the eelgrass pool, copper and lead concentrations increased more than 2-fold and approximately a 10-fold, whereas zinc and cadmium concentrations decreased. The high copper and lead concentrations in the surface sediment result from accumulation in decomposed, shed leaves, whereas zinc and cadmium remobilized from decomposed shed leaves but may remain at higher concentrations in the leaves than in the original sediments. The results of our mesocosm study demonstrate that whether the accumulation or remobilization of trace metals during the decomposition of seagrass leaves is trace metal dependent, and that the decomposed seagrass leaves can cause copper and lead accumulation in sediments in seagrass ecosystems. PMID:27336306

  15. Accumulation of Trace Metal Elements (Cu, Zn, Cd, and Pb) in Surface Sediment via Decomposed Seagrass Leaves: A Mesocosm Experiment Using Zostera marina L.

    PubMed

    Hosokawa, Shinya; Konuma, Susumu; Nakamura, Yoshiyuki

    2016-01-01

    Accumulation of Cu, Zn, Cd, and Pb in the sediment of seagrass ecosystems was examined using mesocosm experiments containing Zostera marina (eelgrass) and reference pools. Lead was approximately 20-fold higher in the surface sediment in the eelgrass pool than in eelgrass leaves and epiphytes on the eelgrass leaves, whereas zinc and cadmium were significantly lower in the surface sediment than in the leaves, with intermediate concentrations in epiphytes. Copper concentrations were similar in both the surface sediment and leaves but significantly lower in epiphytes. Carbon and nitrogen contents increased significantly with increasing δ13C in surface sediments of both the eelgrass and reference pools. Copper, Zn, Cd, and Pb also increased significantly with increasing δ13C in the surface sediment in the eelgrass pool but not in the reference pool. By decomposition of eelgrass leaves with epiphytes, which was examined in the eelgrass pool, copper and lead concentrations increased more than 2-fold and approximately a 10-fold, whereas zinc and cadmium concentrations decreased. The high copper and lead concentrations in the surface sediment result from accumulation in decomposed, shed leaves, whereas zinc and cadmium remobilized from decomposed shed leaves but may remain at higher concentrations in the leaves than in the original sediments. The results of our mesocosm study demonstrate that whether the accumulation or remobilization of trace metals during the decomposition of seagrass leaves is trace metal dependent, and that the decomposed seagrass leaves can cause copper and lead accumulation in sediments in seagrass ecosystems.

  16. The impact of urban expansion and agricultural legacies on trace metal accumulation in fluvial and lacustrine sediments of the lower Chesapeake Bay basin, USA.

    PubMed

    Coxon, T M; Odhiambo, B K; Giancarlo, L C

    2016-10-15

    The progressively declining ecological condition of the Chesapeake Bay is attributed to the influx of contaminants associated with sediment loads supplied by its largest tributaries. The continued urban expansion in the suburbs of Virginia cities, modern agricultural activities in the Shenandoah Valley, the anthropogenic and climate driven changes in fluvial system hydrodynamics and their potential associated impacts on trace metals enrichment in the bay's tributaries necessitate constant environmental monitoring of these important water bodies. Eight (210)Pb and (137)Cs dated sediment cores and seventy two sediment grab samples were used to analyze the spatial and temporal distributions of Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, and Fe in the waterways of the Virginia portion of the Chesapeake Bay basin. The sediment cores for trace metal historical fluctuation analysis were obtained in lower fluvial-estuarine environments and reservoirs in the upper reaches of the basin. The trace metal profiles revealed high basal enrichment factors (EF) of between 0.05 and 40.24, which are interpreted to represent early nineteenth century agricultural activity and primary resource extraction. Surficial enrichment factors on both cores and surface grab samples ranged from 0.01 (Cu) to 1421 (Cd), with Pb, Cu, Zn, and Cd enrichments a plausible consequence of modern urban expansion and industrial development along major transportation corridors. Contemporary surficial enrichments of As, Se, and Cr also ranged between 0 and 137, with the higher values likely influenced by lithological and atmospheric sources. Pearson correlation analyses suggest mining and agricultural legacies, coupled with aerosol deposition, are responsible for high metal concentrations in western lakes and headwater reaches of fluvial systems, while metal accumulation in estuarine reaches of the major rivers can be attributed to urban effluence and the remobilization of legacy sediments. PMID:27310532

  17. The impact of urban expansion and agricultural legacies on trace metal accumulation in fluvial and lacustrine sediments of the lower Chesapeake Bay basin, USA.

    PubMed

    Coxon, T M; Odhiambo, B K; Giancarlo, L C

    2016-10-15

    The progressively declining ecological condition of the Chesapeake Bay is attributed to the influx of contaminants associated with sediment loads supplied by its largest tributaries. The continued urban expansion in the suburbs of Virginia cities, modern agricultural activities in the Shenandoah Valley, the anthropogenic and climate driven changes in fluvial system hydrodynamics and their potential associated impacts on trace metals enrichment in the bay's tributaries necessitate constant environmental monitoring of these important water bodies. Eight (210)Pb and (137)Cs dated sediment cores and seventy two sediment grab samples were used to analyze the spatial and temporal distributions of Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, and Fe in the waterways of the Virginia portion of the Chesapeake Bay basin. The sediment cores for trace metal historical fluctuation analysis were obtained in lower fluvial-estuarine environments and reservoirs in the upper reaches of the basin. The trace metal profiles revealed high basal enrichment factors (EF) of between 0.05 and 40.24, which are interpreted to represent early nineteenth century agricultural activity and primary resource extraction. Surficial enrichment factors on both cores and surface grab samples ranged from 0.01 (Cu) to 1421 (Cd), with Pb, Cu, Zn, and Cd enrichments a plausible consequence of modern urban expansion and industrial development along major transportation corridors. Contemporary surficial enrichments of As, Se, and Cr also ranged between 0 and 137, with the higher values likely influenced by lithological and atmospheric sources. Pearson correlation analyses suggest mining and agricultural legacies, coupled with aerosol deposition, are responsible for high metal concentrations in western lakes and headwater reaches of fluvial systems, while metal accumulation in estuarine reaches of the major rivers can be attributed to urban effluence and the remobilization of legacy sediments.

  18. Accumulation of trace elements by Pistia stratiotes: implications for phytoremediation.

    PubMed

    Odjegba, V J; Fasidi, I O

    2004-10-01

    The toxicity of eight potentially toxic trace elements (Ag, Cd, Cr, Cu, Hg, Ni, Pb and Zn) to Pistia stratiotes was examined to determine if this plant showed sufficient tolerance and metal accumulation to be used to phytoremediate waste water and/or natural water bodies polluted with these heavy metals. Young plants of equal size were grown hydroponically and amended with 0, 0.1, 0.3, 0.5, 1.0, 3.0 and 5.0 mM of each heavy metal individually for 21 days. Root elongation as well as emergence of new roots decreased significantly with increase in metal concentrations. The plant had the lowest and the highest tolerance indices for Hg and Zn respectively. The study indicated reduction in the rate of leaf expansion relative to metal type, their concentrations and the duration of exposure. A significant reduction in biomass production was observed in metal treated plants compared with the control plants. The relative growth rate of P. stratiotes was retarded by heavy metals under study. All trace elements accumulated to higher concentrations in root tissue rather than in shoot. Trace element accumulation in tissues and the bioconcentration factors were proportional to the initial concentration of individual metals in the growth medium and the duration of exposure. In terms of trace element removal, P. stratiotes presented differential accumulation and tolerance levels for different metals at similar treatment conditions. The implications of these results for phytoremediation are discussed. PMID:15673213

  19. Partitioning of trace elements and metals between quasi-ultrafine, accumulation and coarse aerosols in indoor and outdoor air in schools

    NASA Astrophysics Data System (ADS)

    Viana, M.; Rivas, I.; Querol, X.; Alastuey, A.; Álvarez-Pedrerol, M.; Bouso, L.; Sioutas, C.; Sunyer, J.

    2015-04-01

    Particle size distribution patterns of trace elements and metals across three size fractions (<0.25 μm, quasi-ultrafine particles, q-UF; 0.25-2.5 μm, accumulation particles; 2.5-10 μm, coarse particles) were analysed in indoor and outdoor air at 39 primary schools across Barcelona (Spain). Special attention was paid to emission sources in each particle size range. Results evidenced the presence in q-UF particles of high proportions of elements typically found in coarse PM (Ca, Al, Fe, Mn or Na), as well as several potentially health-hazardous metals (Mn, Cu, Sn, V, Pb). Modal shifts (e.g., from accumulation to coarse or q-UF particles) were detected when particles infiltrated indoors, mainly for secondary inorganic aerosols. Our results indicate that the location of schools in heavily trafficked areas increases the abundance of q-UF particles, which infiltrate indoors quite effectively, and thus may impact children exposure to these health-hazardous particles.

  20. Trace metals in barnacles: the significance of trophic transfer.

    PubMed

    Rainbow, Philip S; Wang, Wen-Xiong

    2005-05-01

    Barnacles have very high accumulated trace metal body concentrations that vary with local trace metal bioavailabilities and represent integrated measures of the supply of bioavailable metals. Pioneering work in Chinese waters in Hong Kong highlighted the potential value of barnacles (particularly Balanus amphitrite) as trace metal biomonitors in coastal waters, identifying differences in local trace metal bioavailabilities over space and time. Work in Hong Kong has also shown that although barnacles have very high rates of trace metal uptake from solution, they also have very high trace metal assimilation efficiencies from the diet. High assimilation efficiencies coupled with high ingestion rates ensure that trophic uptake is by far the dominant trace metal uptake route in barnacles, as verified for cadmium and zinc. Kinetic modelling has shown that low efflux rate constants and high uptake rates from the diet combine to bring about accumulated trace metal concentrations in barnacles that are amongst the highest known in marine invertebrates.

  1. Effects of aqueous stable fullerene nanocrystal (nC60) on copper (trace necessary nutrient metal): Enhanced toxicity and accumulation of copper in Daphnia magna.

    PubMed

    Tao, Xianji; He, Yiliang; Fortner, John D; Chen, Yongsheng; Hughes, Joseph B

    2013-08-01

    Our focus herein is to evaluate the potential interaction between nC60 and copper, a trace necessary metal, in light of the impact on toxicity. The non-observable effects concentration (NOEC) of nC60 was confirmed as 100μgL(-1) before. When Daphnia magna was exposed to the mixture of copper solution and nC60 suspension (100μgL(-1)), LC50 of 48h was lower than that when they were exposed to copper solution alone. This result clearly showed the decrease in NOEC of copper at the presence of nC60. Cu(2+)-ATPase activity was enhanced at the presence of nC60, indicating that copper transport involved with the uptake, distribution and depuration in body was increased. We further conducted experiments on accumulation of copper in D. magna. The observed equilibrium copper concentration in D. magna in the mixture of 100μgL(-1) nC60 and 1μgL(-1) copper solution reached 131μg (kg wet weight)(-1), which was more than twice that in copper solution only: 60μg (kg wet weight)(-1). This result demonstrated that the accumulation of copper in D. magna was significantly enhanced at the presence of even low nC60 concentration. Experiments also showed that copper was quickly adsorbed onto nC60. The absorption of copper onto D. magna was statistically correlated to the absorption of nC60 onto D. magna; this might be caused by nC60 facilitating the transfer of copper into D. magna. The absorption and desorption of copper to nC60 (pH=5.0) reached equilibrium quickly, which may be involved with the co-bioaccumulation and decrease in NOEC of Cu(2+) and nC60.

  2. Trace metal enrichments in nearshore sediments and accumulation in mussels (Modiolus capax) along the eastern coast of Baja California, Mexico: environmental status in 1995.

    PubMed

    Muñoz-Barbosa, Albino; Huerta-Diaz, Miguel Angel

    2013-12-15

    The biogeochemistry of trace metals in nearshore sediments and mussel was studied at 15 stations along a 1000 km long transect paralleling the west coast of the Gulf of California (GOC). Total trace metal (Me) and enrichment factor (EF(Me)) values in sediments were low due to negligible anthropogenic influence in the region. Past copper mining, however, near Santa Rosalia caused concentrations of Pb, Mn, Co, Zn and Cu which were 10-3.3×10(3) times greater than the average for the rest of the transect. Mussels also showed relatively high trace metal concentrations at the Santa Rosalia stations, but the variability in the spatial distribution was low and had undefined trends. Our results show that, with the exception of Co and Cu, the contamination caused by the copper mine affected sediments to a greater extent than mussels.

  3. Toxicity and the fractional distribution of trace metals accumulated from contaminated sediments by the clam Scrobicularia plana exposed in the laboratory and the field.

    PubMed

    Kalman, J; Bonnail-Miguel, E; Smith, B D; Bury, N R; Rainbow, P S

    2015-02-15

    The relationship between the subcellular distribution of accumulated toxic metals into five operational fractions (subsequently combined into presumed detoxified and non-detoxified components) and toxicity in the clam Scrobicularia plana was investigated under different laboratory exposures. Clams were exposed to metal contaminated media (water and diet) and analysed for the partitioning of accumulated As, Cu and Zn into subcellular fractions. In general, metallothionein-like proteins, metal-rich granules and cellular debris in different proportions acted as main storage sites of accumulated metals in the clam soft tissues for these three metals. No significant differences were noted in the accumulation rates of As, Cu and Zn of groups of individuals with or without apparent signs of toxicity after up to 30 days of exposure to naturally contaminated sediment mixtures. There was, however, an increased proportional accumulation of Cu in the non-detoxified fraction with increased Cu accumulation rate in the clams, suggesting that the Cu uptake rate from contaminated sediments exceeded the combined rates of elimination and detoxification of Cu, with the subsequent likelihood for toxic effects in the clams.

  4. Manganese As a Metal Accumulator

    EPA Science Inventory

    Manganese deposits in water distribution systems accumulate metals, radionuclides and oxyanions by a combination of surface complexation, adsorption and solid substitution, as well as a combination of oxidation followed by manganese reduction and sorption of the oxidized constitu...

  5. The influence of diet on comparative trace metal cadmium, copper and zinc accumulation in Thais clavigera (Gastropoda: Muricidae) preying on intertidal barnacles or mussels.

    PubMed

    Blackmore, Graham; Morton, Brian

    2002-09-01

    The influence of diet on comparative metal accumulation was investigated using a predatory muricid gastropod Thais clavigera. Individuals were fed for up to 56 days on either barnacles, i.e., Tetraclita squamosa, or mussels, i.e., Perna viridis, collected from metal-contaminated and clean sites. Barnacles and mussels have contrasting metal handling strategies and, therefore, different body concentrations, intracellular distributions and detoxification systems. Field collection of prey items that accumulated body metal concentrations over a lifetime of exposure allowed bioavailability to the predator, T. clavigera, to be assessed naturally, which may not be the case for prey exposed to metals for a short time in the laboratory. T. clavigera that was fed cadmium- and copper-contaminated barnacles or mussels ingested significantly greater amounts compared to those fed conspecifics collected from clean locations. T. clavigera body cadmium and copper concentrations were not, however, significantly different between individuals fed either contaminated or clean prey. Amount of zinc ingested was similar in mussels collected from clean and contaminated environments but much less when compared to the barnacle prey. The body concentrations of zinc in T. clavigera fed mussels collected from both sites fell. In contrast, the amount of zinc ingested from barnacle prey was significantly greater from those collected from the metal-contaminated site as compared to the clean one. This was reflected as significantly greater body zinc concentrations in T. clavigera fed contaminated barnacles compared to those fed clean individuals. Copper and zinc accumulation from prey was, therefore, complex. It varied between metal and between prey type, but appeared to be related to the amount ingested and the metal handling strategy of the prey.

  6. Trace Metal Accumulation In The Thau Coastal Lagoon and Its Possible Impact On The Waters of The Gulf of Lion In The Mediterranean

    NASA Astrophysics Data System (ADS)

    Abdullah, M. I.; Elbaz-Poulichet, Francoise

    Coastal lagoons are important marine environments for fisheries resources, wild life sanctuaries as well as many other economic activities. The Thau lagoon (at Sette, south coast of france) a major shell fisheries development in the region, receives inputs from a variety of sources namely seasonal run-off, river discharge, manmade waterways, karstic and thermal underground waters. A wide variety of material is thus added to the lagoon particularly trace metals such as Cu, Zn, Pb, Fe, Mn etc. . Metals added through karstic and thermal waters are particularly significant. Althought the lagoon covers some 75 km2, it is shallow with a maximum depth of only 9 m and with exchange with the Mediterranean being restricted along the narrow canal de Sette. Consequently, metal level can build up to quite high concentration upto x30 of that for normal seawater par- ticularly for metals such as Pb and Cu. While water exchange is severely limited, ma- jor water replacement do occur particularly during prolonged turbulent weather con- ditions with sustained onshore/offshore winds. Such episode occurred during March 2000 when it was observed that a significant proportion of the Thau lagoon was re- place by Mediterranean water. This water was characterized by it lower metal content and REE distribution. Such episodes are known to occur several times annually caus- ing significant amounts of metal-rich Thau water to discharge into the Gulf of Lion. It is concluded that such episodic exchanges constitute an important source of metals to the coastal zone and the Gulf of Lion which has been previously reported to have elevated metal levels.

  7. Trace element accumulation in aquatic plants: a literature review

    SciTech Connect

    Ganje, T.J.; Elseewi, A.A.; Page, A.L.

    1988-01-01

    Trace elements in sediments and its overlying waters are important constituents of an aquatic plant ecosystem. This review was undertaken to evaluate trace element accumulation in aquatic plants and ascertain to what extent sediment and its overlying waters play in trace element accumulation by aquatic plant species. Aquatic vascular plants tend to accumulate trace elements in relation to the trace element concentration of the water body and sediment in which they are grown and the extent of exposure to the water body. Trace element composition of bryophytes and algae is also closely related to composition of their aquatic environment. It is increasingly apparent that sediments and overlying waters alter the bioavailability of trace elements to aquatic plants in both natural and artificial water bodies, particularly where industrial and agricultural waters are discharged into waterways.

  8. Fate of Trace Metals in Anaerobic Digestion.

    PubMed

    Fermoso, F G; van Hullebusch, E D; Guibaud, G; Collins, G; Svensson, B H; Carliell-Marquet, C; Vink, J P M; Esposito, G; Frunzo, L

    2015-01-01

    A challenging, and largely uncharted, area of research in the field of anaerobic digestion science and technology is in understanding the roles of trace metals in enabling biogas production. This is a major knowledge gap and a multifaceted problem involving metal chemistry; physical interactions of metal and solids; microbiology; and technology optimization. Moreover, the fate of trace metals, and the chemical speciation and transport of trace metals in environments--often agricultural lands receiving discharge waters from anaerobic digestion processes--simultaneously represents challenges for environmental protection and opportunities to close process loops in anaerobic digestion.

  9. Heavy Metals and Related Trace Elements.

    ERIC Educational Resources Information Center

    Leland, Harry V.; And Others

    1978-01-01

    Presents a literature review of heavy metals and related trace elements in the environment, covering publications of 1976-77. This review includes: (1) trace treatment in natural water and in sediments; and (2) bioaccumulation and toxicity of trace elements. A list of 466 references is presented. (HM)

  10. Analytical Methods for Trace Metals. Training Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This training manual presents material on the theoretical concepts involved in the methods listed in the Federal Register as approved for determination of trace metals. Emphasis is on laboratory operations. This course is intended for chemists and technicians with little or no experience in analytical methods for trace metals. Students should have…

  11. TRACE METAL TRANSFORMATION MECHANISMS DURING COAL COMBUSTION

    EPA Science Inventory

    The article reviews mechanisms governing the fate of trace metals during coal combustion and presents new theoretical results that interpret existing data. Emphasis is on predicting the size-segregated speciation of trace metals in pulverized-coal-fired power plant effluents. Thi...

  12. Extraction of trace metals from fly ash

    DOEpatents

    Blander, Milton; Wai, Chien M.; Nagy, Zoltan

    1984-01-01

    A process for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous, the fly ash having a silicate base and containing surface deposits of the trace metals as oxides, chlorides or the like, with the process being carried out by contacting the fly ash with AlCl.sub.3 in an alkali halide melt to react the trace metals with the AlCl.sub.3 to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  13. Extraction of trace metals from fly ash

    DOEpatents

    Blander, M.; Wai, C.M.; Nagy, Z.

    1983-08-15

    A process is described for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous. The fly ash has a silicate base and contains surface deposits of the trace metals as oxides, chlorides or the like. The process is carried out by contacting the fly ash with AlCl/sub 3/ in an alkali halide melt to react the trace metals with the AlCl/sub 3/ to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  14. Mechanisms of trace metal transport in rivers.

    PubMed

    Gibbs, R J

    1973-04-01

    Trace metals transported by the Amazon (and Yukon rivers were analytically partitioned among the transport phases: in solutions, ion exchange, organic materials, metallic coatings, and crystalline solids. The distribution for both rivers is similarly proportioned, with copper and chromium transported mainly in the crystalline solids, manganese in coatings, and iron, nickel, and cobalt distributed equally between precipitated metallic coatings and crystalline solids.

  15. Trace metal transformations in gasification

    SciTech Connect

    Erickson, T.A.; Zygarlicke, C.J.; O`Keefe, C.A.

    1995-08-01

    The Energy & Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to (1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems, (2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions, and (3) identify methods to control trace element emissions.

  16. Controls of Trace Metals in Seawater

    NASA Astrophysics Data System (ADS)

    Bruland, K. W.; Lohan, M. C.

    2003-12-01

    Since the early 1970s, marine chemists have gained a first-order understanding of the concentrations, distributions, and chemical behaviors of trace metals in seawater. Important factors initiating this quantum leap in knowledge were major advances in modern analytical chemistry and instrumentation, along with the development and adoption of clean techniques. An instrumental development in the mid-1970s that spurred the early research on trace metals was the availability of the sensitive graphite furnace as the sample introduction system to an atomic absorption spectrometer. More recently, the appearance of inductively coupled plasma (ICP) mass spectrometers has provided an even more sensitive and powerful instrumental capability to the arsenal of marine chemists. In addition to these instruments back in shore-based laboratories, there has been the development of sensitive shipboard methods such as stripping voltammetry and flow injection analysis (FIA) systems with either chemiluminescence or catalytically enhanced spectrophotometric detection. Along with the development of these highly sensitive analytical techniques came a recognition and appreciation of the importance of handling contamination issues by using clean techniques during all phases of sampling and analysis. This is necessary due to low concentrations of trace metals in seawater relative to the ubiquitousness of metals on a ship or in a laboratory (e.g., dust, steel hydrowire, rust, paint with copper and zinc antifouling agents, brass fittings, galvanized material, sacrificial zinc anodes, etc.). As a result, seawater concentrations of most trace metals have now been accurately determined in at least some parts of the oceans, and their oceanic distributions have been found to be consistent with oceanographic processes.The concentrations and distributions of trace metals in seawater are controlled by a combination of processes. These processes include external sources of trace metals delivered by

  17. Trace metal concentrations in oxidation ponds

    SciTech Connect

    Suffern, J.S.; Fitzgerald, C.M.; Szluha, A.T.

    1981-11-01

    Heavy metal concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the wastewater, sludge, and biotic components of the Oak Ridge National Laboratory oxidation ponds were examined to determine whether metals accumulated in tilapia. Results indicated that metal levels in the wastewater and biotic components are generally low and that the major metal reservoir is the sludge. Metals did not accumulate beyond established standards in the muscle or liver of tilapia grown in the oxidation ponds. This result may be partially due to the rapid growth rates of these fish (1-2 g fish/sup -1//day/sup -1/), with new tissue developing more rapidly than metals can accumulate. Another factor may be that the high concentrations of organic complexes in the ponds lower the availability of metals to the biota.

  18. Metal accumulation by stream bryophytes, related to chemical speciation.

    PubMed

    Tipping, E; Vincent, C D; Lawlor, A J; Lofts, S

    2008-12-01

    Metal accumulation by aquatic bryophytes was investigated using data for headwater streams of differing chemistry. The Windermere Humic Aqueous Model (WHAM) was applied to calculate chemical speciation, including competitive proton and metal interactions with external binding sites on the plants. The speciation modelling approach gives smaller deviations between observed and predicted bryophyte contents of Cu, Zn, Cd and Pb than regressions based on total filtered metal concentrations. If all four metals, and Ni, are considered together, the WHAM predictions are superior at the 1% level. Optimised constants for bryophyte binding by the trace metals are similar to those for humic substances and simple carboxylate ligands. Bryophyte contents of Na, Mg and Ca are approximately explained by binding at external sites, while most of the K is intracellular. Oxide phases account for some of the Al, and most of the Mn, Fe and Co.

  19. Metal accumulation by wood-decaying fungi

    SciTech Connect

    Tyler, G.

    1982-01-01

    Metal concentrations (Na, K, Rb, Mg, Ca, Sr, Mn, Fe, Cu, Zn, Cd, Al, and Pb) in the sporophores of ten wood-decaying macromycete species were related to concentrations in the wood substrates. Manganese, Sr, Ca, and Pb were usually excluded by the fungi; K, Rb, and to a lower degree, Cd, Fe, Zn, Cu, Mg and Na were accumulated. Accumulation ratios are compared with similar ratios for soil and litter inhabiting species previously studied.

  20. Accumulation of heavy metals using Sorghum sp.

    PubMed

    Soudek, Petr; Petrová, Šarka; Vaňková, Radomíra; Song, Jing; Vaněk, Tomaš

    2014-06-01

    The essential requirement for the effective phytoremediation is selection of a plant species which should be metal tolerant, with high biomass production and known agronomic techniques. The above mentioned criteria are met by crop plant sorghum (Sorghum bicolor). The response of hydroponically grown S. bicolor plants to cadmium and zinc stress was followed. The impact of metal application on physiological parameters, including changes in chlorophylls contents and antioxidative enzymes activities, was followed during the stress progression. Cadmium and zinc were accumulated primarily in the roots of sorghum plants. However, elevation of metal concentrations in the media promoted their transfer to the shoots. Toxic effects of metals applied at lower concentrations were less serious in the shoots in comparison with their influence to the roots. When applied at higher concentrations, transfer of the metals into the leaves increased, causing growth reduction and leading to Chl loss and metal-induced chlorosis. Moreover, higher metal levels in the roots overcame the quenching capacity of peroxidase and glutathione transferase, which was associated with reduction of their activities. Fortification of antioxidant system by addition of glutathione significantly increased the accumulation of cadmium in the roots as well as in the shoots at the highest cadmium concentration applied.

  1. Plasma trace metals during total parenteral alimentation.

    PubMed

    Solomons, N W; Layden, T J; Rosenberg, I H; Vo-Khactu, K; Sandstead, H H

    1976-06-01

    The plasma concentrations of the trace metals zinc and copper were studied prospectively in 13 patients with gastrointestinal diseases treated with parenteral alimentation (TPA) for periods of from 8 days to 7 1/2 weeks. Plasma copper levels fell rapidly and consistently in all patients, with an overall rate of - 11 mug per 100 ml per week. Zinc concentrations declined in 10 of 13 patients at a more gradual rate. Analysis of the standard parenteral alimentation fluids revealed zinc content equivalent to 50% of the daily requirement and a negligible content of copper. From combined analysis of plasma zinc, hair zinc, and taste acuity, there is evidence that increased utilization or redistribution within the body may effect plasma concentrations in some patients. Neither an increase in urinary excretion nor a primary decrease in plasma binding proteins appeared to be a major factor in lowering plasma trace metal concentrations. These findings indicate that a marked decrease in plasma copper is regular and a decline in plasma zinc is common during TPA using fluids unsupplemented with trace metals. Supplementation of parenteral alimentation fluids with the trace metals zinc and copper is recommended.

  2. Geomycology. [fungal biosolubilization and accumulation of metals

    NASA Technical Reports Server (NTRS)

    Puerner, N. J.; Siegel, S. M.

    1976-01-01

    Fungi have long been known to have capabilities for reduction and alkylation of arsenate and selenate but their general capabilities for solubilizing and accumulating metallic substances have been given serious attention only in recent years. Common members of the Aspergillaceae cultured on boron, copper, lead and other metals or oxides can solubilize and concentrate the elements or their compounds. To account for biosolubilization of the metals, we have set up a model study, incubating selected metals, e.g., mercury, in solutions of various metabolites including L-lysine and citric acid. Results of 100-300 days incubation showed that many metals can in fact be readily solubilized, and in some cases more effectively at pH 6-7 than at pH 1.5-2.

  3. Hydroponic screening of poplar for trace element tolerance and accumulation.

    PubMed

    Migeon, Aude; Richaud, Pierre; Guinet, Frédéric; Blaudez, Damien; Chalot, Michel

    2012-04-01

    Using the nutrient film technique, we screened 21 clones of poplar for growth in the presence of a mix of trace elements (TE) and for TE accumulation capacities. Poplar cuttings were exposed for four weeks to a multipollution solution consisting in 10 microM Cd, Cu, Ni, and Pb, and 200 microM Zn. Plant biomass and TE accumulation patterns in leaves varied greatly between clones. The highest Cd and Zn concentrations in leaves were detected in P. trichocarpa and P. trichocarpa hybrids, with the clone Skado (P. trichocarpa x P. maximowiczii) accumulating up to 108 mg Cd kg(-1) DW and 1510 mg Zn kg(-1) DW when exposed to a multipollution context. Our data also confirm the importance of pH and multipollution, as these factors greatly affect TE accumulation in above ground biomass. The NFT technique applied here to a large range of poplar clones also revealed the potential of the Rochester, AFO662 and AFO678 poplar clones for use in phytostabilization programs and bioenergy production, where production of less contaminated above ground biomass is suitable.

  4. Trace metal export in urban runoff and its biological significance

    SciTech Connect

    Liston, P.; Maher, W.

    1986-06-01

    The purpose of this study was to measure the levels of selected trace metals present in sediments of a stream draining an urban catchment and to determine the relationship of the trace metal concentrations in the sediment fractions to the trace metal concentrations available for uptake by the resident detritovores. Trace metal concentrations in detritus feeders are of interest as detritovores occupy a key position in stream food chains where the major source of fixed carbon is in the form of organic detritus.

  5. Metal accumulation in wild-caught opossum.

    PubMed

    Lockhart, J Mitchell; Siddiqui, Samreen; Loughry, W J; Bielmyer-Fraser, Gretchen K

    2016-06-01

    The Virginia opossum (Didelphis virginiana) is widespread in the USA, ranging south through Latin America. The ecology of opossums is such that they are in frequent contact with soils, suggesting that they may function as a valuable bioindicator for chemical contamination in terrestrial environments. Surprisingly, there have been virtually no toxicology studies on opossums. Here, we provide the first analysis of metal contaminants in opossum liver tissues. Liver samples were obtained from 471 opossums, collected from 2003 to 2006, at four sites in North Florida and South Georgia, USA, and concentrations of copper, lead, nickel, selenium, and zinc were measured. We found little evidence of age differences in the concentration of any of the metals. However, there were at least some significant differences between years, males and females, and between sites for each metal, although the pattern of these differences was not always consistent across metals. Concentrations of metals in liver tissue were positively correlated with one another, primarily of each metal (except Pb) with zinc. Reference levels of metal contaminants are not available for opossums, but concentrations of Cu, Ni, Pb, and Zn in our samples were for the most part significantly higher than those reported from liver tissues of nine-banded armadillos (Dasypus novemcinctus) collected at the same sites and in the same years. Data from other small mammals studied elsewhere further indicate that metal concentrations in opossums were high, but at this time, it is not possible to determine if these elevated levels generated toxicity. The substantial temporal and spatial variation we found in metal concentrations suggests that determination of baseline levels for opossums may not be straightforward. Nonetheless, this is the first study quantifying metal accumulation in the livers of Didelphis virginiana and, as such, provides an important starting point for future research. PMID:27138002

  6. Metal accumulation in wild-caught opossum.

    PubMed

    Lockhart, J Mitchell; Siddiqui, Samreen; Loughry, W J; Bielmyer-Fraser, Gretchen K

    2016-06-01

    The Virginia opossum (Didelphis virginiana) is widespread in the USA, ranging south through Latin America. The ecology of opossums is such that they are in frequent contact with soils, suggesting that they may function as a valuable bioindicator for chemical contamination in terrestrial environments. Surprisingly, there have been virtually no toxicology studies on opossums. Here, we provide the first analysis of metal contaminants in opossum liver tissues. Liver samples were obtained from 471 opossums, collected from 2003 to 2006, at four sites in North Florida and South Georgia, USA, and concentrations of copper, lead, nickel, selenium, and zinc were measured. We found little evidence of age differences in the concentration of any of the metals. However, there were at least some significant differences between years, males and females, and between sites for each metal, although the pattern of these differences was not always consistent across metals. Concentrations of metals in liver tissue were positively correlated with one another, primarily of each metal (except Pb) with zinc. Reference levels of metal contaminants are not available for opossums, but concentrations of Cu, Ni, Pb, and Zn in our samples were for the most part significantly higher than those reported from liver tissues of nine-banded armadillos (Dasypus novemcinctus) collected at the same sites and in the same years. Data from other small mammals studied elsewhere further indicate that metal concentrations in opossums were high, but at this time, it is not possible to determine if these elevated levels generated toxicity. The substantial temporal and spatial variation we found in metal concentrations suggests that determination of baseline levels for opossums may not be straightforward. Nonetheless, this is the first study quantifying metal accumulation in the livers of Didelphis virginiana and, as such, provides an important starting point for future research.

  7. Trace metal transport by marine microorganisms: implications of metal coordination kinetics

    NASA Astrophysics Data System (ADS)

    Hudson, Robert J. M.; Morel, François M. M.

    1993-01-01

    Marine microorganisms have transport systems capable of accumulating essential trace metals present at low oceanic concentrations—1 pM to 1 nM. In marine phytoplankton, Fe, Mn, Zn and Ni transport has been shown to involve complexation by membrane carriers. By analysing the kinetics of the transport process and accounting for the inherently slow coordination reactions of some of these metals, we predict optimum properties and minimum numbers of sites for the transport systems. Limits to trace metal uptake, and thereby to growth rates, may arise from finite space for these transport sites in the membrane, competition from other metals and the rate of diffusion to the cell. These types of nutrient limitation should exhibit different size dependencies and therefore be important in determining ecosystem structure. The concentrations of inorganically complexed species of nutrient metals remaining in the surface ocean appear to be correlated with predicted rates of metal complexation by trace metal transport sites, suggesting that kinetic liability controls the bioavailability of these metals and their rate of removal from the surface ocean.

  8. Trace metal retention in mangrove ecosystems in Guanabara Bay, SE Brazil.

    PubMed

    Machado, W; Silva-Filho, E V; Oliveira, R R; Lacerda, L D

    2002-11-01

    Along contrasting environmental conditions (e.g., degree of trace metal contamination and mangrove forest structural development), sediments of Laguncularia racemosa-dominated mangrove stands in Guanabara Bay (SE Brazil) presented a trend of trace metal accumulation in forms with low potential of remobilization and biotic uptake. Concurrently, a relatively low transfer of sediment-bound metals to L. racemosa leaves was observed, which may moderate the metal export from the forests via leaf litter transport and the metal availability to enter in food chains based on leaf consumption.

  9. [Effect of arbuscular mycorrhizae on growth, heavy metal uptake and accumulation of Zenia insignis Chun seedlings].

    PubMed

    Li, Xia; Peng, Xia-Wei; Wu, Song-Lin; Li, Zhi-Ru; Feng, Hong-Mei; Jiang, Ze-Ping

    2014-08-01

    To solve the trace metal pollution of a Pd/Zn mine in Hunan province, a greenhouse pot experiment was conducted to investigate the effect of two arbuscular mycorrhizal fungi, Glomus mosseae (Gm) and Glomus intraradices (Gi), on the growth, heavy metal uptake and accumulation of Zenia insignis Chun, the pioneer plant there. The results showed that symbiotic associations were successfully established between the two isolates and Z. insignis in heavy metal contaminated soil. AM fungi improved P absorption, biomass and changed heavy metal uptake and distribution of Z. insignis. AM fungi-inoculated plants had significantly lower Fe, Cu, Zn, Pd concentrations and higher Fe, Cu, Zn, Pd accumulation than non-inoculated plants. However, Gm and Gi showed different mycorrhizal effects on the distribution of heavy metal in hosts, depending on the species of heavy metal. Gi-inoculated Z. insignis showed significantly lower TF values of Fe, Zn, Pd than Gm and non-inoculated plants, while both strains had no effect on TF value of Cu, which indicated that Gi enhanced trace metal accumulation in root system, playing a filtering/sequestering role in the presence of trace metals. The overall results demonstrated that AM fungi had positive effect on Z. insignis in enhancing the ability to adapt the heavy metal contaminated soil and played potential role in the revegetation of heavy metal contaminated soil. But in practical application, the combination of AM, hosts and heavy metal should be considered. PMID:25338391

  10. [Effect of arbuscular mycorrhizae on growth, heavy metal uptake and accumulation of Zenia insignis Chun seedlings].

    PubMed

    Li, Xia; Peng, Xia-Wei; Wu, Song-Lin; Li, Zhi-Ru; Feng, Hong-Mei; Jiang, Ze-Ping

    2014-08-01

    To solve the trace metal pollution of a Pd/Zn mine in Hunan province, a greenhouse pot experiment was conducted to investigate the effect of two arbuscular mycorrhizal fungi, Glomus mosseae (Gm) and Glomus intraradices (Gi), on the growth, heavy metal uptake and accumulation of Zenia insignis Chun, the pioneer plant there. The results showed that symbiotic associations were successfully established between the two isolates and Z. insignis in heavy metal contaminated soil. AM fungi improved P absorption, biomass and changed heavy metal uptake and distribution of Z. insignis. AM fungi-inoculated plants had significantly lower Fe, Cu, Zn, Pd concentrations and higher Fe, Cu, Zn, Pd accumulation than non-inoculated plants. However, Gm and Gi showed different mycorrhizal effects on the distribution of heavy metal in hosts, depending on the species of heavy metal. Gi-inoculated Z. insignis showed significantly lower TF values of Fe, Zn, Pd than Gm and non-inoculated plants, while both strains had no effect on TF value of Cu, which indicated that Gi enhanced trace metal accumulation in root system, playing a filtering/sequestering role in the presence of trace metals. The overall results demonstrated that AM fungi had positive effect on Z. insignis in enhancing the ability to adapt the heavy metal contaminated soil and played potential role in the revegetation of heavy metal contaminated soil. But in practical application, the combination of AM, hosts and heavy metal should be considered.

  11. Trace metal fronts in European shelf waters

    NASA Astrophysics Data System (ADS)

    Kremling, K.

    1983-05-01

    The Hebrides shelf edge area is characterized by strong horizontal salinity gradients (fronts) which mark the boundary between Scottish coastal and oceanic waters1,2. The results presented here, obtained in summer 1981 on a transect between the open North Atlantic and the German Bight (Fig. 1), confirm that the hydrographical front is accompanied by dramatic increases in inorganic nutrients (phosphate, silicate) and dissolved trace elements such as Cd, Cu, Mn, and 226Ra (Figs 2 and 3). These data (together with measurements from North Sea regions) suggest that the trace metals are mobilized from partly reduced (organic-rich) sediments and vertically mixed into the surface waters3. The regional variations evident from the transect are interpreted as being the result of the hydrography prevailing in waters around the British Isles4.

  12. Trace metals in wine and vineyard environment in southern Ukraine.

    PubMed

    Vystavna, Yuliya; Rushenko, Liliya; Diadin, Dmytro; Klymenko, Olga; Klymenko, Mykola

    2014-03-01

    The study was focused on measuring the concentration levels of trace metals in the environment, vines and wine within the wine-growing region of Ukraine and comparing the findings to the data from well known wine-growing areas. Analysis was carried out of Cr, Cu, Ni, Pb and Zn in irrigation water, grape juice and wine, Cu, Pb and Zn in soil (pseudo-total and acid-soluble fractions) and Vitis vinifera L. in leaves and grapes. The accumulation levels of Cu and Zn from soil to leaves were significantly higher than from soil to grapes. Pb had lower potential to accumulate in aerial parts than Cu and Zn. Higher contents of Cu and Zn were observed in Muscat white grape juice compared to Chardonnay. The concentration levels of Zn and Cu were higher in wine than in juice. Trace metals were regulated by the soil composition and biological specificity of cultivars. The data obtained from the study area did not exceed the international limits.

  13. Vacuolar accumulation of heavy metals in Datura cultured cells is metal concentration dependent

    SciTech Connect

    Krotz, R.M.; Wagner, G.J.

    1987-04-01

    Vacuolar-extravacuolar compartmentation studies were performed to determine if the vacuole serves as an accumulation site for Cd, Zn, and Ni, after growth of Datura cultured cells in trace and high levels of these metals. After 3 to 4 days growth with 0.12 ..mu..M Cd or 0.02 ..mu..M Ni (radiolabeled) no evidence was obtained for vacuolar accumulation of these metals. In contrast, growth with 30 or 45 ..mu..M Cd, 11 ..mu..M Ni (with or without trace radiolabel), or 300 and 500 ..mu..M Zn resulted in isolated vacuoles which were enriched in metal. Compartmentation after exposure to low levels of Zn and also Cu is being investigated as is the subcellular site(s) of Cd-binding peptide formed during growth in high Cd. The hypothesis that Zn is accumulated as vacuolar organic acid salts is being tested directly because no evidence was found for formation of substantial ligand of Cd-peptide in response to Zn exposure.

  14. Radionuclides and trace metals in eastern Mediterranean Sea algae.

    PubMed

    Al-Masri, M S; Mamish, S; Budier, Y

    2003-01-01

    Three types of sea alga distributed along the Syrian coast have been collected and analyzed for radioactivity and trace elements. Results have shown that (137)Cs concentrations in all the analyzed sample were relatively low (less than 1.2 Bq kg(-1) dry weight) while the levels of naturally occurring radionuclides, such as (210)Po and (210)Pb, were found to be high in most samples; the highest observed value (27.43 Bq kg(-1) dry weight) for (210)Po being in the red Jania longifurca alga. In addition, most brown alga species were also found to accumulate (210)Po, which indicates their selectivity to this isotope. On the other hand, brown alga (Cystoseira and Sargassum Vulgare) have shown a clear selectivity for some trace metals such as Cr, As, Cu and Co, this selectivity may encourage their use as biomonitor for pollution by trace metals. Moreover, the red alga species were found to contain the highest levels of Mg while the brown alga species were found to concentrate Fe, Mn, Na and K and nonmetals such as Cl, I and Br. PMID:12660047

  15. Seminal plasma trace metal levels in industrial workers.

    PubMed

    Dawson, E B; Evans, D R; Harris, W A; Powell, L C

    2000-05-01

    This study compares the seminal plasma trace metal levels of hospital workers with groups of industrial workers in a petroleum refinery, smelter, and chemical plant. The metals measured were the essential metals (copper, zinc, nickel, cobalt, and manganese) and the toxic metals (lead, cadmium, and aluminum). The group mean +/- SE metal level for each group (50 subjects per group) was calculated, and the statistical significance of the group mean differences of the industrial groups with the hospital group (control) was determined by the Student's t-test. The differences observed in the smelter group were increased copper and zinc (p < or = 0.001) and decreased nickel, cobalt, and manganese (p < or = 0.001, < or = 0.01). The refinery group differences were increased copper, zinc, and nickel (p < or = 0.001) but decreased cobalt and manganese (p < or = 0.001). The chemical group differences were increased zinc (p < or = 0.001) and decreased cobalt (p < or = 0.001). The seminal plasma levels of the toxic metals lead and aluminum were increased in each of the industrial groups (p < or = 0.001). Concurrent differences were (1) decreased accumulation of nickel, cobalt, and manganese in the smelter group, (2) decreased cobalt and manganese in the refinery group, and (3) only decreased cobalt in the chemical group. PMID:11051584

  16. Trace metal speciation and bioavailability in anaerobic digestion: A review.

    PubMed

    Thanh, Pham Minh; Ketheesan, Balachandran; Yan, Zhou; Stuckey, David

    2016-01-01

    Trace metals are essential for the growth of anaerobic microorganisms, however, in practice they are often added to anaerobic digesters in excessive amounts, which can lead to inhibition. The concept of bioavailability of metals in anaerobic digestion has been poorly understood in the past, and a lack of deep understanding of the relationship between trace metal speciation and bioavailability can result in ineffective metal dosing strategies for anaerobic digesters. Sequential extraction schemes are useful for fractionating trace metals into their different forms, and metal sulfides can serve as a store and source for trace metals during anaerobic digestion, while natural/synthetic chelating agents (soluble microbial products-SMPs, extracellular polysaccharides-EPS, and EDTA/NTA) are capable of controlling trace metal bioavailability. Nevertheless, more work is needed to: investigate the speciation and bioavailability of Ca, Mg, Mn, W, and Se; compare the bioavailability of different forms of trace metals e.g. carbonates, sulfides, phosphates to different anaerobic trophic groups; determine what factors influence metal sulfide dissolution; investigate whether chelating agents can increase trace metal bioavailability; develop and adapt specialized analytical techniques, and; determine how trace metal dynamics change in an anaerobic membrane bioreactor (AnMBR).

  17. Limitation of productivity by trace metals in the sea

    SciTech Connect

    Morel, F.M.M.; Price, N.M. ); Hudson, R.J.M. )

    1991-12-01

    Some trace metals such as Fe, Ni, Cu, and Zn are essential for the growth of phytoplankton. The concentrations of these essential trace elements in seawater are so low as to limit their availability to aquatic microbiota. Trace element uptake is ultimately limited by kinetics of reaction with transport ligands or by diffusion to the cell. From what the authors know of the characteristics of the uptake systems of phytoplankton and their trace metal requirements they can estimate that Fe and Zn may at some times in some place limit phytoplankton productivity, which is in accord with available field data on trace metal enrichments.

  18. Influence of life history and sex on metal accumulation in two beetle species (insecta: Coleoptera)

    SciTech Connect

    Lindqvist, L.; Block, M.

    1997-04-01

    Insects are important components of most terrestrial environments owing to their great abundance, biomass and diversity. They also make up an important food resource for other animals. Consequently, in many food webs insects constitute important links in metal-transport chains between trophic levels. Therefore trace-metal concentrations in insects have an important influence on the trace-metal distribution in the biosphere. In various insects, Cd, Cu and Zn are usually accumulated to the extent that they reach levels above those of the food, whereas Fe is not. In response to metal pollution, accumulation of nonessential metals was found to increase markedly, whereas essential metals accumulated less owing to regulating mechanisms in the insects. In polluted environments, metal concentrations were found to be higher in predatory invertebrates than in phytophagous ones in studies where insects were analysed in broad categories such as families. However, no such trend was observed when species were treated separately. The pattern of metal accumulation can differ between species. This is true even for species utilizing the same food resource. For instance, concentrations of Cd, Cu and Fe differed between four species of sawflies feeding on pine needles from the same locality. It is therefore likely that insects with different food sources accumulate metals differently depending on the concentration and chemical form of the metals in the food. There have been few studies aimed at determining whether patterns of metal accumulation differ between males and females of the same species. In one such study on the sawfly Neodiprion sertifer concentrations of Cd, Cu and Fe tended to be higher in males than in females. However, this pattern was not found in two other sawfly species. Target organs for Cd were found to differ between males and females in the grasshopper Aiolopus thalassinus. The testis accumulated Cd to a higher degree than the ovaries.

  19. Assessing the risk of metal mixtures in contaminated sediments on Chironomus riparius based on cytosolic accumulation.

    PubMed

    Péry, Alexandre R R; Geffard, Alain; Conrad, Arnaud; Mons, Raphaël; Garric, Jeanne

    2008-11-01

    Sediments usually contain mixtures of trace metals introduced via natural geochemical processes and anthropogenic activities. Kinetics and effects of these metals are strongly dependent both on the composition of the mixture and on the physico-chemical characteristics of the sediment. Relating effects to metal concentration may consequently be advised. However, total accumulation may be a poor predictor of metal toxicity for Chironomus riparius exposed to contaminated field sediments. As an alternative, we proposed to relate effects on Chironomus growth with cytosolic metal accumulation, measured in larvae after a short exposure period. Dose-response relationships were derived for zinc, copper, and cadmium through single-metal exposure data analysed with toxicokinetics and toxicodynamics models. They permitted, on the basis of cytosolic accumulation measures, to predict successfully the effects of mixtures of cadmium, zinc, and copper on the growth of larvae exposed to spiked sediments, as well as to field sediments in which zinc and copper were assumed to be predominant. PMID:18514899

  20. Trace metal concentrations in tropical mangrove sediments, NE Brazil.

    PubMed

    Miola, Brígida; Morais, Jáder Onofre de; Pinheiro, Lidriana de Souza

    2016-01-15

    Sediment cores were taken from the mangroves of the Coreaú River estuary off the northeast coast of Brazil. They were analyzed for grain size, CaCO3, organic matter, and trace metal (Cd, Pb, Zn, Cu, Al, and Fe) contents. Mud texture was the predominant texture. Levels of trace metals in surface sediments indicated strong influence of anthropogenic processes, and diagenetic processes controlled the trace metal enrichment of core sediments of this estuary. The positive relationships between trace metals and Al and Fe indicate that Cu, Zn, Pb, and Cd concentrations are associated mainly with Al and Fe oxy-hydroxides and have natural sources.

  1. Source identification and assessment of sediment contamination of trace metals in Kogarah Bay, NSW, Australia.

    PubMed

    Alyazichi, Yasir M; Jones, Brian G; McLean, Errol

    2015-02-01

    The distribution of trace metals (spatial and temporal) and sedimentary fractions were investigated to identify the concentrations and sources of trace metals within Kogarah Bay, NSW, Australia. A total of 59 surface sediments and six subsurface samples from core of the sediment were collected. The contamination factor and pollution load index indices used to evaluate environmental effects of trace metals. The study area was found to be uncontaminated with Cr and Ni, moderately contaminated with As and considerably contaminated with Cu, Zn and Pb. The concentrations of Cr and Ni were below both effect range low and effect range median, while As, Cu, Zn and Pb were slightly above effect range low. The highest concentrations of these trace metals such as Cu, Zn and Pb were found in the north, northwest and southeast of the bay, close to discharge points, stormwater outlets and around boatyards and watercrafts. The spatial distributions of metals were strongly related to muddy particles and organic matter. The temporal sediments of metals declined with increased sediment depth, which reflects accumulation of trace metals since European settlement in this area. Furthermore, the source of the trace metals was found to be stormwater outlets, gasoline fumes, boatyards and other human activities.

  2. Spatial distribution and ecological risk assessment of trace metals in urban soils in Wuhan, central China.

    PubMed

    Zhang, Chutian; Yang, Yong; Li, Weidong; Zhang, Chuanrong; Zhang, Ruoxi; Mei, Yang; Liao, Xiangsen; Liu, Yingying

    2015-09-01

    Surface soil samples from 467 sample sites were collected in urban area of Wuhan City in 2013, and total concentrations of five trace metals (Pb, Zn, Cu, Cr, and Cd) were measured. Multivariate and geostatistical analyses showed that concentrations of Pb, Zn, and Cu are higher along Yangtze River in the northern area of Wuhan, gradually decrease from city center to suburbs, and are mainly controlled by anthropogenic activities, while those of Cr and Cd are relatively spatially homogenous and mainly controlled by soil parent materials. Pb, Zn, Cu, and Cd have generally higher concentrations in roadsides, industrial areas, and residential areas than in school areas, greenbelts, and agricultural areas. Areas with higher road and population densities and longer urban construction history usually have higher trace metal concentrations. According to estimated results of the potential ecological risk index and Nemero synthesis pollution index, almost the whole urban area of Wuhan is facing considerable potential ecological risk caused by soil trace metals. These results reveal obvious trends of trace metal pollution, and an important impact of anthropogenic activities on the accumulation of trace metals in soil in Wuhan. Vehicular emission, industrial activities, and household wastes may be the three main sources for trace metal accumulation. Increasing vegetation cover may reduce this threat. It should be pointed out that Cd, which is strongly accumulated in soil, could be the largest soil pollution factor in Wuhan. Effective measures should be taken as soon as possible to deal with Cd enrichment, and other trace metals in soil should also be reduced, so as to protect human health in this important large city. PMID:26251059

  3. Spatial distribution and ecological risk assessment of trace metals in urban soils in Wuhan, central China.

    PubMed

    Zhang, Chutian; Yang, Yong; Li, Weidong; Zhang, Chuanrong; Zhang, Ruoxi; Mei, Yang; Liao, Xiangsen; Liu, Yingying

    2015-09-01

    Surface soil samples from 467 sample sites were collected in urban area of Wuhan City in 2013, and total concentrations of five trace metals (Pb, Zn, Cu, Cr, and Cd) were measured. Multivariate and geostatistical analyses showed that concentrations of Pb, Zn, and Cu are higher along Yangtze River in the northern area of Wuhan, gradually decrease from city center to suburbs, and are mainly controlled by anthropogenic activities, while those of Cr and Cd are relatively spatially homogenous and mainly controlled by soil parent materials. Pb, Zn, Cu, and Cd have generally higher concentrations in roadsides, industrial areas, and residential areas than in school areas, greenbelts, and agricultural areas. Areas with higher road and population densities and longer urban construction history usually have higher trace metal concentrations. According to estimated results of the potential ecological risk index and Nemero synthesis pollution index, almost the whole urban area of Wuhan is facing considerable potential ecological risk caused by soil trace metals. These results reveal obvious trends of trace metal pollution, and an important impact of anthropogenic activities on the accumulation of trace metals in soil in Wuhan. Vehicular emission, industrial activities, and household wastes may be the three main sources for trace metal accumulation. Increasing vegetation cover may reduce this threat. It should be pointed out that Cd, which is strongly accumulated in soil, could be the largest soil pollution factor in Wuhan. Effective measures should be taken as soon as possible to deal with Cd enrichment, and other trace metals in soil should also be reduced, so as to protect human health in this important large city.

  4. Trophic transfer of trace metals: Subcellular compartmentalization in a polychaete and assimilation by a decapod crustacean

    USGS Publications Warehouse

    Rainbow, P.S.; Poirier, L.; Smith, B.D.; Brix, K.V.; Luoma, S.N.

    2006-01-01

    The chemical form of accumulated trace metal in prey is important in controlling the bioavailataility of dietary metal to a predator. This study investigated the trophic transfer of radiolabelled Ag, Cd and Zn from the polychaete worm Nereis diversicolor to the decapod crustacean Palaemonetes varians. We used 2 populations of worms with different proportions of accumulated metals in different subcellular fractions as prey, and loaded the worms with radiolabelled metals either from sediment or from solution. Accumulated radiolabelled metals were fractionated into 5 components : metal-rich granules (MRG), cellular debris, organelles, metallothionein-like proteins (MTLP), and other (heat-sensitive) proteins (HSP). Assimilation efficiencies (AE) of the metals by P. varians were measured from the 4 categories of prey (i.e. 2 populations, radiolabelled from sediment or solution). There were significant differences for each metal between the AEs from the different prey categories, confirming that origin of prey and route of uptake of accumulated trace metal will cause intraspecific differences in subsequent metal assimilation. Correlations were sought between AEs and selected fractions or combinations of fractions of metals in the prey-MRG, Trophically Available Metal (TAM = MTLP + HSP + organelles) and total protein (MTLP + HSP). TAM explained 28% of the variance in AEs for Ag, but no consistent relationships emerged between AEs and TAM or total protein when the metals were considered separately. AEs did, however, show significant positive regressions with both TAM and total protein when the 3 metals were considered together, explaining only about 21 % of the variance in each case. A significant negative relationship was observed between MRG and AE for all metals combined. The predator (P. varians) can assimilate dietary metal from a range of the fractions binding metals in the prey (N. diversicolor), with different assimilation efficiencies summated across these

  5. Trace metals in water, sediment and bivalves of a tropical estuary, west coast of India.

    PubMed

    Parvez Al-Usmani, S M; Jagtap, T G; Patil, D N

    2015-10-15

    Trace metal pollution was studied in water, sediment and three selected bivalves in Mandovi and Chapora estuaries of Goa. The trace metal in water and sediment of Mandovi was higher than in Chapora. The concentration in the tissues was in the range of 1205.2-2506.7 ppm for Paphia malabarica, 1906.2-2802.6 ppm for Perna viridis and 778.7-1607.5 ppm for Saccostrea cucullata in Mandovi estuary. Tha values for Chapora were 199.4-625.8 ppm for P. malabarica, 812.6-1220.2 for P. viridis and 392.5-418.6 ppm for S. cucullata. The anthropogenic input of metal in Mandovi estuary appears to be mainly responsible for the high accumulation of trace metals. These bivalves have potential to serve as indicator for metal contamination in seafood of Goa.

  6. Trace metals in urban streams and detention ponds

    SciTech Connect

    Licsko, Z.J.; Struger, J.

    1995-12-31

    Trace metal levels were monitored over a nine month period in two urban creeks in the Hamilton Harbour watershed and in two urban stormwater retention ponds in Guelph, Ontario. Samples were collected both during dry or non-event periods and immediately after wet weather events. Both water and surficial sediment samples were collected and tested for cadmium, copper, lead, mercury, nickel, and zinc. In almost all cases during wet weather conditions, Canadian Water Quality Guidelines for the protection of freshwater aquatic life were exceeded in water for lead (>7 mg/L), copper (>4 mg/L), and zinc (>30 mg/L) . Both stormwater ponds accumulated trace metals in sediment to levels above the lowest effect level guideline for the protection and management of aquatic sediment in Ontario, and, in the case of zinc (> 820 ug/g), above the severe effect level guideline. These levels of contamination raise serious concerns about the use of these and similar facilities as habitat for biota.

  7. Geochronology and historical deposition of trace metals in three tropical estuaries in the Gulf of Guinea

    NASA Astrophysics Data System (ADS)

    Mahu, Edem; Nyarko, Elvis; Hulme, Samuel; Swarzenski, Peter; Asiedu, Daniel K.; Coale, Kenneth H.

    2016-08-01

    The depositional histories of trace metals (Pb, Cu, and Zn) in sediment cores from three Ghanaian estuaries were reconstructed using radioisotope-derived (210Pb and 137Cs) geochronologies. A core collected from each of the Amisa, Sakumo II and Volta estuaries was analyzed for trace metals and radionuclides. Lead-210 and 137Cs dating via gamma spectroscopy, and trace metal analysis via inductively coupled plasma mass spectrometry (ICP-MS) were used in deriving sedimentation rates, geochronologies and accumulation trends of trace metals. The sedimentation rates in all three estuaries (in the range of 0.54-0.83 cm yr-1) were greater than the predicted sea level rise (∼0.33 cm yr-1) for the Accra Coast of Ghana. The 210Pb depositional rates of 6.83 dpm cm-2 y-1, 2.74 dpm cm-2 y-1 and 1.75 dpm cm-2 y-1 estimated for the Amisa, Sakumo II and Volta estuaries, respectively, are higher than those recorded in other latitudes. Trace metal analysis revealed differences in the concentrations of Cu, Pb and Zn between deeper and surficial layers of each core to be in the range of 10-20%, which is well within the natural variations attributed to geochemical factors. Relative to the Amisa and Volta estuaries, the temporal profiles of Al-normalized metal concentrations and estimated fluxes suggest anthropogenic processes augmented the natural fluxes of trace metals, particularly Zn into the Sakumo II estuary during the last 7 years.

  8. Microbial Influences on Trace Metal Cycling in a Meromictic Lake, Fayetteville Green Lake, NY

    NASA Astrophysics Data System (ADS)

    Zerkle, A. L.; House, C.; Kump, L.

    2002-12-01

    Microorganisms can exist in aquatic environments at very high cell densities of up to 1011 cells/L, and can accumulate significant quantities of trace metals. Bacteria actively take up bioactive trace metals, including Fe, Zn, Mn, Co, Ni, Cu, and Mo, which function as catalytic centers in metalloproteins and metal-activated enzymes involved in virtually all cellular functions. In addition, bacteria may catalyze the release of trace metals from inorganic substrates by processes such as the reduction of iron and manganese oxides, suggesting that trace metal distributions within a natural environment dominated by microbial processes may be controlled primarily by microbial ecology. Fayetteville Green Lake (FGL), NY, is a permanently stratified meromictic lake that has a well-oxygenated surface water mass (mixolimnion) overlying a relatively stagnant, anoxic deep water mass (monimolimnion). A chemocline separates the water masses at around 20m depth, where oxygen concentrations decrease and sulfate and methane concentrations increase. In addition, previous studies have indicated that trace metals such as V, Cr, Co, Mn, and Fe reach elevated concentrations at the chemocline. Using fluorescent in situ hybridization (FISH) of FGL samples from depths of up to 40m with bacterial and archaeal probes, we have shown that fluctuating redox conditions within the FGL water column correlate with significant variations in the composition and distribution of microbial populations with depth. The mixolimnion is dominated by Eubacteria, with increasing concentrations of Archaea in the lower anoxic zone. Increases in microbial cell densities coincide with increases in trace metals at the chemocline, suggesting microbial activity may be responsible for trace metal release at this boundary. 16S rRNA PCR cloning techniques are currently being used to identify dominant microbial populations at various levels within the FGL water column. Future studies will focus on the potential for these

  9. Comparative biomonitors of coastal trace metal contamination in tropical South America (N. Brazil).

    PubMed

    e Silva, Carlos Augusto R; Smith, Brian D; Rainbow, Philip S

    2006-05-01

    Samples of 5 bivalve molluscs (Crassostrea rhizophorae, Mytella charruana, Anomalocardia brasiliana, Anadara ovalis, Phacoides pectinata), 2 barnacles (Fistulobalanus citerosum, Balanus amphitrite) and leaves of the mangrove tree Rhizophora mangle were collected from up to 11 sites in two estuaries in Natal, Brazil--the comparatively contaminated Potengi estuary and the comparatively uncontaminated Curimataú estuary. Specimens were analysed for the trace metals Zn, Cu, Cd, Fe, Mn and Ni, and a comparative assessment made of the power of the different species as trace metal biomonitors. Four of the 5 bivalves (not P. pectinata) take up metals from solution and suspended material (food source), while P. pectinata as a lucinid with symbiotic chemosynthetic bacteria takes up metals from dissolved sources only. The organisms with the strongest net accumulation of particular metals showed the greatest discrimination between trace metal bioavailabilities between sites. Barnacles (F. citerosum) showed the best discrimination, but oysters (C. rhizophorae) are particularly recommended as biomonitors given their strong accumulation patterns for many trace metals, their large size and their local abundance. PMID:16574213

  10. Trophic transfer of trace metals from the polychaete worm Nereis diversicolor to the polychaete N. virens and the decapod crustacean Palaemonetes varians

    USGS Publications Warehouse

    Rainbow, P.S.; Poirier, L.; Smith, B.D.; Brix, K.V.; Luoma, S.N.

    2006-01-01

    Diet is an important exposure route for the uptake of trace metals by aquatic invertebrates, with trace metal trophic transfer depending on 2 stages - assimilation and subsequent accumulation by the predator. This study investigated the trophic transfer of trace metals from the sediment-dwelling polychaete worm Nereis diversicolor from metal-rich estuarine sediments in southwestern UK to 2 predators - another polychaete N. virens (Cu, Zn, Pb, Cd, Fe) and the decapod crustacean Palaemonetes varians (Cu, Zn, Pb, Cd, Fe, Ag, As, Mn). N. virens showed net accumulation of Cu, Zn, Pb and Cd from the prey; accumulation increased with increasing prey concentration, but a coefficient of trophic transfer decreased with increasing prey concentration, probably because a higher proportion of accumulated metal in the prey is bound in less trophically available (insoluble) detoxified forms. The trace metal accumulation patterns of P. varians apparently restricted significant net accumulation of metals from the diet of N. diversicolor to just Cd. There was significant mortality of the decapods fed on the diets of metal-rich worms. Metal-rich invertebrates that have accumulated metals from the rich historical store in the sediments of particular SW England estuaries can potentially pass these metals along food chains, with accumulation and total food chain transfer depending on the metal assimilation efficiencies and accumulation patterns of the animal at each trophic level. This trophic transfer may be significant enough to have ecotoxicological effects. ?? Inter-Research 2006.

  11. Facilitation Drives the Positive Effects of Plant Richness on Trace Metal Removal in a Biodiversity Experiment

    PubMed Central

    Wang, Jiang; Ge, Yuan; Chen, Tong; Bai, Yi; Qian, Bao Ying; Zhang, Chong Bang

    2014-01-01

    Background Phytoextraction is an environmentally acceptable and inexpensive technique for mine tailing rehabilitation that uses metallophyte plants. These plants reduce the soil trace metal contents to environmentally acceptable levels by accumulating trace metals. Recently, whether more trace metals can be removed by species-rich communities of these plants received great attention, as species richness has been reported having positive effects on ecosystem functions. However, how the species richness affects trace metals removal of plant communities of mine tailing is rarely known. Methodology/Principal Findings We examined the effects of species richness on soil trace metal removal in both natural and experimental plant communities. The root lengths and stem heights of each plant species were measured in order to calculate the functional diversity indices. Our results showed that trace metal (Cu, Cd, Pb and Zn) concentrations in mine tailing soil declined as species richness increased in both the natural and experimental plant communities. Species richness, rather than functional diversity, positively affected the mineralomass of the experimental plant communities. The intensity of plant-plant facilitation increased with the species richness of experimental communities. Due to the incremental role of plant-plant facilitation, most of the species had higher biomasses, higher trace metal concentrations in their plant tissues and lower malondialdehyde concentrations in their leaves. Consequently, the positive effects of species richness on mineralomass were mostly attributable to facilitation among plants. Conclusions/Significance Our results provide clear evidence that, due to plant-plant facilitation, species richness positively affects the removal of trace metals from mine tailing soil through phytoextraction and provides further information on diversity conservation and environmental remediation in a mine tailing environment. PMID:24695538

  12. Trace metal concentrations in estuaries and coastal regions

    SciTech Connect

    Hunt, C.D.

    1994-12-31

    Estuaries and coastal regions are highly variable in the physical and hydrographic conditions. As a result of heavy urbanization and industrialization of the head waters of most estuaries, there are substantial localized inputs of contaminants to the estuary. These factors combined with the flushing characteristics of individual estuaries to create relatively unique features that result in variation in the typical levels of trace metals for these systems. This makes intercomparison of the estuaries difficult. Comparability among estuaries becomes even more difficult when metals analyses are conducted without proper control of field and laboratory contamination, now firmly established in the trace metal analytical literature as a prerequisite for reliable marine trace metals analysis. This paper compares the concentrations of selected trace metal (Ag, Cd, Cu, Ni, Pb, and Zn) concentrations in the waters of several major estuaries of the United States. The basis of comparison is that all samples war collected under rigid trace metal clean collection and analysis procedures. Generally, metal concentrations within the estuaries are similar. Metal concentrations in the higher salinity coastal regions are more similar in concentration. The comparison provides a baseline of typical concentrations of these trace metals in the coastal waters against which future analytical results can be compared.

  13. Arsenic and Associated Trace Metals in Texas Groundwater

    NASA Astrophysics Data System (ADS)

    Lee, L.; Herbert, B. E.

    2002-12-01

    The value of groundwater has increased substantially worldwide due to expanding human consumption. Both the quantity and quality of groundwater are important considerations when constructing policies on natural resource conservation. This study is focused on evaluating groundwater quality in the state of Texas. Historical data from the Texas Water Development Board and the National Uranium Resource Evaluation were collected into a GIS database for spatial and temporal analyses. Specific attentions were placed on arsenic and other trace metals in groundwater. Recent studies in the United States have focused on isolated incidences of high arsenic occurrence, ignoring possible connections between arsenic and other trace metals. Descriptive statistics revealed strong correlations in groundwater between arsenic and other oxyanions including vanadium, selenium and molybdenum. Arsenic and associated trace metals were clustered at three physiographic hotspots, the Southern High Plains, the Gulf Coastal Plains of Texas, and West Texas. A geologic survey showed that arsenic and other trace metals in Texas groundwater follow local geologic trends. Uranium deposits and associated mineralization were found to occur in the same physiographic locations. Uranium mineralization may be a significant natural source of arsenic and other trace metals in Texas groundwater. Recharge, evaporative concentration, and aquifer characteristics were also contributing factors to the occurrence of trace metals in Texas groundwater. Spatial statistics were used to delineate natural sources from anthropogenic inputs. Similarly, the natural background was estimated from the spatial distribution of trace metal observations in Texas groundwater.

  14. Trace-element accumulation by Hygrohypnum ochraceum in the upper Rio Grande Basin, Colorado and New Mexico, USA

    SciTech Connect

    Carter, L.F.; Porter, S.D.

    1997-12-01

    Accumulation of 12 trace elements by transplanted aquatic bryophytes (Hygrohypnum ochraceum) was determined at 13 sites in the Rio Grande and tributary streams in southern Colorado and northern New Mexico as part of the US Geological Survey`s National Water-Quality Assessment Program. The purposes of the study were to determine the spatial distribution of trace elements in relation to land-use practices in the upper Rio Grande Basin, compare accumulation rates of metals in bryophytes at sites contaminated by trace elements, and evaluate transplanted aquatic bryophytes as a tool for examining the bioavailability of trace elements in relation to concentrations in water and bed sediment. Concentrations of Cd, Cu, Pb, and Zn in bryophytes, water, and bed sediment were significantly higher at sites that receive drainage from mining areas than at sites near agricultural or urban activities. Concentrations of most trace elements were lower in a tributary stream below an urban source than at sites near mining or agricultural use. Concentrations of Cu and Zn in bryophytes correlated with concentrations in water and bed sediment. In addition, bryophyte concentrations of As, Cd, and Pb correlated with concentrations in bed sediment. Transplanted bryophytes can provide an indication of bioavailability. Rates of accumulation were related to the magnitude of ambient trace-element concentrations; maximal uptake occurred during the first 10 d of exposure. Trace-element concentrations in transplanted bryophytes could potentially be used to predict water and sediment concentrations that represent an integration of conditions over short to intermediate lengths of time, rather than instantaneous conditions as measured using water samples.

  15. Trace-element accumulation by Hygrohypnum ochraceum in the upper Rio Grande Basin, Colorado and New Mexico, Usa

    USGS Publications Warehouse

    Carter, L.F.; Porter, S.D.

    1997-01-01

    Accumulation of 12 trace elements by transplanted aquatic bryophytes (Hygrohypnum ochraceum) was determined at 13 sites in the Rio Grande and tributary streams in southern Colorado and northern New Mexico as part of the U.S. Geological Survey's National Water-Quality Assessment Program. The purposes of the study were to determine the spatial distribution of trace elements in relation to land-use practices in the upper Rio Grande Basin, compare accumulation rates of metals in bryophytes at sites contaminated by trace elements, and evaluate transplanted aquatic bryophytes as a tool for examining the bioavailability of trace elements in relation to concentrations in water and bed sediment. Concentrations of Cd, Cu, Pb, and Zn in bryophytes, water, and bed sediment were significantly higher at sites that receive drainage from mining areas than at sites near agricultural or urban activities. Concentrations of most trace elements were lower in a tributary stream below an urban source than at sites near mining or agricultural use. Concentrations of Cu and Zn in bryophytes correlated with concentrations in water and bed sediment. In addition, bryophyte concentrations of As, Cd, and Pb correlated with concentrations in bed sediment. Transplanted bryophytes can provide an indication of bioavailability. Rates of accumulation were related to the magnitude of ambient trace-element concentrations; maximal uptake occurred during the first 10 d of exposure. Trace-element concentrations in transplanted bryophytes could potentially be used to predict water and sediment concentrations that represent an integration of conditions over short to intermediate lengths of time, rather than instantaneous conditions as measured using water samples.

  16. Laser-Induced Breakdown Spectroscopy of Trace Metals

    NASA Technical Reports Server (NTRS)

    Simons, Stephen (Technical Monitor); VanderWal, Randall L.; Ticich, Thomas M.; West, Joseph R., Jr.

    2004-01-01

    An alternative approach for laser-induced breakdown spectroscopy (LIBS) determination of trace metal determination in liquids is demonstrated. The limits of detection (LOD) for the technique ranged from 10 ppb to 10 ppm for 15 metals metals (Mg, Al, Si, Ca, Ti, Cr, Fe, Co, Ni, Cu, Zn, As, Cd, Hg, Pb) tested.

  17. Accumulation and effects of metal mixtures in two seaweed species.

    PubMed

    Jarvis, Tayler A; Bielmyer-Fraser, Gretchen K

    2015-05-01

    Metal pollution, due to various anthropogenic sources, may pose a threat to marine ecosystems. Metals can be introduced into food chains via bioaccumulation in primary producers, and may potentially lead to toxic effects. Macroalgae are used as food by a wide variety of organisms, and are therefore extremely important in aquatic systems. This study investigated the accumulation and effects of metals in two macroalgae species. The green seaweed, Ulva lactuca and the red seaweed, Agardhiella subulata were each concurrently exposed to five metals (Cu, Ni, Pb, Cd, and Zn) and U. lactuca was also exposed to each metal individually for 48 h. Metal accumulation in the seaweed was measured, and various photosynthetic parameters were assessed, using imaging pulse amplitude modulated (PAM) fluorometry. Increased metal accumulation occurred in both seaweed species after 48 h exposure to metal mixtures and each metal individually. The distribution of metals in both seaweed species changed with increasing metal exposure concentrations, resulting in higher proportions of Cu and Zn in the metal-exposed groups, as compared to respective controls. Further, U. lactuca accumulated higher concentrations of metals when exposed to each metal individually rather than in metal mixtures, suggesting interactions among metals for uptake and/or bioaccumulation. Significant impairment of photosynthetic parameters in U. lactuca was observed after exposure to 100 and 1000 μg/L metal mixtures, as well as 100 μg/L of either Cd or Cu. These results demonstrate metal bioaccumulation and toxic effects in important primary producers, and may have implications for higher trophic levels.

  18. Metal accumulation in earthworms inhabiting floodplain soils.

    PubMed

    Vijver, Martina G; Vink, Jos P M; Miermans, Cornelis J H; van Gestel, Cornelis A M

    2007-07-01

    The main factors contributing to variation in metal concentrations in earthworms inhabiting floodplain soils were investigated in three floodplains differing in inundation frequency and vegetation type. Metal concentrations in epigeic earthworms showed larger seasonal variations than endogeic earthworms. Variation in internal levels between sampling intervals were largest in earthworms from floodplain sites frequently inundated. High and low frequency flooding did not result in consistent changes in internal metal concentrations. Vegetation types of the floodplains did not affect metal levels in Lumbricus rubellus, except for internal Cd levels, which were positively related to the presence of organic litter. Internal levels of most essential metals were higher in spring. In general, no clear patterns in metal uptake were found and repetition of the sampling campaign will probably yield different results. PMID:17254683

  19. Accumulation of heavy metals by vegetables grown in mine wastes

    SciTech Connect

    Cobb, G.P.; Sands, K.; Waters, M.; Wixson, B.G.; Dorward-King, E.

    2000-03-01

    Lead, cadmium, arsenic, and zinc were quantified in mine wastes and in soils mixed with mine wastes. Metal concentrations were found to be heterogeneous in the wastes. Iceberg lettuce, Cherry Belle radishes, Roma bush beans, and Better Boy tomatoes were cultivated in mine wastes and in waste-amended soils. Lettuce and radishes had 100% survival in the 100% mine waste treatments compared to 0% and 25% survival for tomatoes and beans, respectively. Metal concentrations were determined in plant tissues to determine uptake and distribution of metals in the edible plant parts. Individual soil samples were collected beneath each plant to assess metal content in the immediate plant environment. This analysis verified heterogeneous metal content of the mine wastes. The four plant species effectively accumulated and translocated lead, cadmium, arsenic, and zinc. Tomato and bean plants contained the four metals mainly in the roots and little was translocated to the fruits. Radish roots accumulated less metals compared to the leaves, whereas lettuce roots and leaves accumulated similar concentrations of the four metals. Lettuce leaves and radish roots accumulated significantly more metals than bean and tomato fruits. This accumulation pattern suggests that consumption of lettuce leaves or radish roots from plants grown in mine wastes would pose greater risks to humans and wildlife than would consumption of beans or tomatoes grown in the same area. The potential risk may be mitigated somewhat in humans, as vegetables grown in mine wastes exhibited stunted growth and chlorosis.

  20. Evaluation of metal trace detachment from dosing pumps using PIXE

    NASA Astrophysics Data System (ADS)

    Lozano, Omar; Mejia, Jorge; Laloy, Julie; Alpan, Lütfiye; Toussaint, Olivier; Dogné, Jean-Michel; Lucas, Stéphane

    2014-07-01

    Metal trace detachment evaluation is essential for instruments destined for pharmaceutical applications, such as pumps. Particle-Induced X-ray Emission (PIXE) was used to determine and quantify metal traces originated from stainless steel and ceramic dosing pumps. Metal traces were quantified from either distilled water samples or cellulose filters in two tests: a short-term test of 16 h mimicking a daily cycle of a dosing pump for industrial applications, and a long-term test of 9 days evaluating the pump wearing. The main result is that ceramic dosing pumps present lower metal detachment than stainless steel counterparts. Traces of Si and Al were found originating from pieces around the pumps (pipes and joints).

  1. Separation of traces of metal ions from sodium matrices

    NASA Technical Reports Server (NTRS)

    Korkisch, J.; Orlandini, K. A.

    1969-01-01

    Method for isolating metal ion traces from sodium matrices consists of two extractions and an ion exchange step. Extraction is accomplished by using 2-thenoyltrifluoracetone and dithizone followed by cation exchange.

  2. Metal accumulation and toxicity: the critical accumulated concentration of metabolically available zinc in an oyster model.

    PubMed

    Rainbow, Philip S; Liu, Fengjie; Wang, Wen-Xiong

    2015-05-01

    Invertebrates typically carry out detoxification of accumulated metals. There is, therefore, no threshold total body concentration of accumulated metal initiating toxicity, the onset of toxic effects rather being related to a critical concentration of metabolically available (MA) accumulated metal. The challenge remains as to whether any particular combination of subcellular fractions of accumulated metal can be identified to represent this theoretical MA component. One candidate combined fraction is the so-termed metal sensitive fraction (MSF), consisting of metal bound to organelles and non-detoxificatory soluble proteins. In this study, we used laboratory zinc accumulation and toxicity data for four populations of the oyster Crassostrea hongkongensis with different histories of zinc exposure in the field to address the challenge. We conclude that in a 'control' population of the oyster, the MSF does approximate to the theoretical metabolically available zinc concentration. In populations with a history of field exposure to raised zinc bioavailabilities, however, the MSF would include more zinc detoxified in the lysosome component of organelle-bound metal, and the MSF in such populations would deviate more from the theoretical MA metal concentration.

  3. Ecotoxicological risk assessment of trace metals in humid subtropical soil.

    PubMed

    Adhikari, Gopi; Bhattacharyya, Krishna G

    2015-11-01

    In this work, several physicochemical properties of sub-tropical soil (up to 20 cm depth) like water holding capacity, organic carbon content, cation exchange capacity, texture, pH, and electrical conductivity were determined along with the trace metals, Co, Cr, Cu, Mn, Ni, Pb and Zn, in order to evaluate inter-relations among the trace metals and the soil properties. The contribution of the trace metals to ecotoxicological risk was assessed using various tools. Cr, Cu, Mn and Zn contents were found to be lower than the world average, but Co, Ni, and Pb had higher contents. The trace metal concentrations were utilized to obtain the pollution index and the potential ecotoxicological aspects. The trace metals were shown to have come from similar origin and their retention in the soil was contributed by properties like organic carbon, cation exchange capacity, clay content and water holding capacity of the soil. The pollution index showed that the trace metals had the sequence of Pb (considerably polluted) > Co, Ni (moderately polluted) > Cr, Cu, Mn and Zn (unpolluted). The composite ecological risk index was the highest in agricultural land with irrigation and fertilizer use, and was the lowest in the forest land.

  4. Influence of biochar amendments on marine sediment trace metal bioavailability

    NASA Astrophysics Data System (ADS)

    Gehrke, G. E.; Hsu-Kim, H.

    2014-12-01

    Biochar has become a desirable material for use in agricultural application to enhance soil quality and in-situ soil and sediment remediation to immobilize organic contaminants. We investigated the effects of biochar sediment amendments on the bioavailability of a suite of inorganic trace metals (Cr, Co, Ni, Cu, Zn, Pb) in contaminated sediments from multiple sites in Elizabeth River, VA. We incubated sediments in microcosms with a variety of water column redox and salinity conditions and compared sediments amended with two types of woody biochar to sediments amended with charcoal activated carbon and unamended sediments. We leached sediments in artificial gut fluid mimic of the benthic invertebrate Arenicola marina as a measure of bioavailability of the trace metals analyzed. In unamended anaerobic sediments, the gut fluid mimic leachable fraction of each trace metal is 1-4% of the total sediment concentration for each metal. Initial results indicate that in anaerobic microcosms, woody biochar sediment amendments (added to 5% dry wt) decrease the gut fluid mimic leachable fraction by 30-90% for all trace metals analyzed, and have comparable performance to charcoal activated carbon amendments. However, in microcosms without controlled redox conditions, woody biochar amendments increase the bioavailable fraction of Ni and Cu by up to 80%, while decreasing the bioavailable fraction of Co, Zn, and Pb by approximately 50%; charcoal activated carbon amendments decreased the bioavailability of all trace metals analyzed by approximately 20%. In microcosms without an overlying water column, biochar and activated carbon amendments had no significant effects on trace metal bioavailability. This research demonstrates that biochar can effectively decrease the bioavailability of trace metals in marine sediments, but its efficiency is metal-specific, and environmental conditions impact biochar performance.

  5. A primer on trace metal-sediment chemistry

    USGS Publications Warehouse

    Horowitz, Arthur J.

    1985-01-01

    In most aquatic systems, concentrations of trace metals in suspended sediment and the top few centimeters of bottom sediment are far greater than concentrations of trace metals dissolved in the water column. Consequently, the distribution, transport, and availability of these constituents can not be intelligently evaluated, nor can their environmental impact be determined or predicted solely through the sampling and analysis of dissolved phases. This Primer is designed to acquaint the reader with the basic principles that govern the concentration and distribution of trace metals associated with bottom and suspended sediments. The sampling and analysis of suspended and bottom sediments are very important for monitoring studies, not only because trace metal concentrations associated with them are orders of magnitude higher than in the dissolved phase, but also because of several other factors. Riverine transport of trace metals is dominated by sediment. In addition, bottom sediments serve as a source for suspended sediment and can provide a historical record of chemical conditions. This record will help establish area baseline metal levels against which existing conditions can be compared. Many physical and chemical factors affect a sediment's capacity to collect and concentrate trace metals. The physical factors include grain size, surface area, surface charge, cation exchange capacity, composition, and so forth. Increases in metal concentrations are strongly correlated with decreasing grain size and increasing surface area, surface charge, cation exchange capacity, and increasing concentrations of iron and manganese oxides, organic matter, and clay minerals. Chemical factors are equally important, especially for differentiating between samples having similar bulk chemistries and for inferring or predicting environmental availability. Chemical factors entail phase associations (with such sedimentary components as interstitial water, sulfides, carbonates, and organic

  6. Delonix regia and Casuarina equisetifolia as passive biomonitors and as bioaccumulators of atmospheric trace metals.

    PubMed

    Ukpebor, Emmanuel Ehiabhi; Ukpebor, Justina Ebehirieme; Aigbokhan, Emmanuel; Goji, Idris; Onojeghuo, Alex Okiemute; Okonkwo, Anthony Chinedum

    2010-01-01

    The suitability of two common and ubiquitously distributed and exotic ornamental plant species in Nigeria-Delonix regia and Casuarina equisetifolia as biomonitors and as effective bioaccumulators of atmospheric trace metals (Cd, Pb, Zn and Cu) has been evaluated. Bark and leaf samples from these plant species were collected in June and July 2006 at five locations in Benin City. Four of the sampling sites were in areas of high traffic density and commercial activities, the fifth site is a remote site, selected to act as a control and also to provide background information for the metals. The plant samples were collected and processed using standard procedures and trace metals were determined using atomic absorption spectrometer. The bark of the plants was able to bioaccumulate the trace metals, especially Pb which originates from anthropogenic contributions in the city. The Pb range of 20.00-70.00 microg/g measured for the bark samples of D. regia, exceeded the normal plant Pb concentration of 0.2-20.0 microg/g and most Pb data available in literature. The bark of the plants was observed to accumulate more metals compared to the leave, while D. regia was found to be slightly better than C. equisetifolia in trace metal uptake efficiency. Spatial variations in the distributions of Pb and Zn were significant (p < 0.05), and the continuous use of leaded fuel in Nigeria was identified as the predominant source of Pb in the atmosphere.

  7. Groundwater acidification and the mobilization of trace metals in a sandy aquifer.

    PubMed

    Kjøller, Claus; Postma, Dieke; Larsen, Flemming

    2004-05-15

    The acidification of groundwater due to acid rain impact and the mobilization of the trace metals Ni, Be, Cd and Co was studied in a noncalcareous sandy aquifer. The groundwater is acidified down to pH 4.4 in the upper 3-4 m of the saturated zone. There is a sharp acidification front and below that the pH increases to 5.2-6.5. The acid zone groundwater contains an Al concentration of approximately 0.2 mM. These observations could be explained by a reactive transport model for downward groundwater movement based on ion exchange and equilibrium with Al(OH)3. At the acidification front, the Al3+ in groundwater exchanges for sorbed Ca2+ and Mg2+ and the coupled dissolution of Al(OH)3 causes the pH to increase. The downward migration rate of the acidification front is 3.5-5.0 cm/yr. Trace metals (Ni, Be, Cd and Co) are found to accumulate near the acidification front. Downward moving, low pH, and trace metal containing groundwater passes the acidification front, and the trace metals adsorb as the pH increases. The acidification front moves downward at a slower rate, and in this process the heavy metals are desorbed. Accordingly, the acidification front functions as a geochemical trap where trace metals accumulate, and their amount will increase with time. Different surface complexation models were explored to explain the behavior of Ni. Neither a simple iron oxide surface complexation model nor ion exchange could explain the field observations of the Ni distribution. The sediment appeared, even at low pH, to have a much stronger affinity toward Ni than predicted by the iron oxide model. The discrepancy can be accounted for in the model by increasing the Ni binding strength constant in combination with an increased number of reactive sites.

  8. The biogeochemical cycles of trace metals in the oceans.

    PubMed

    Morel, F M M; Price, N M

    2003-05-01

    Planktonic uptake of some essential metals results in extraordinarily low concentrations in surface seawater. To sequester or take up these micronutrients, various microorganisms apparently release strong complexing agents and catalyze redox reactions that modify the bioavailability of trace metals and promote their rapid cycling in the upper water column. In turn, the low availability of some metals controls the rate of photosynthesis in parts of the oceans and the transformation and uptake of major nutrients such as nitrogen. The extremely low concentrations of several essential metals are both the cause and the result of ultraefficient uptake systems in the plankton and of widespread replacement of metals by one another for various biochemical functions.

  9. Oxidative stress in marine bivalves tissues in response to accumulation of heavy metals

    SciTech Connect

    Chelomin, V.P.; Belcheva, N.N.; Zakartsev, M.V.

    1995-12-31

    Using model aquarium experiments the authors have shown that the accumulation of heavy metals (copper and cadmium) by the tissues of marine bivalves (Mytilus edulis, Mizuhopecten yessoensis) is followed by a complex of alterations in the lipid matrix of some membrane organelles. It is supposed that the disturbance of balance of prooxidant and antioxidant processes is the main mechanism in heavy metal-inducible damage, of membranes. This possibility is supported by results of levels of conjugated dienes, malondialdehyde and Shiff`s bases, determined as indicators of lipid peroxidation in different tissues of molluscs, markedly increased with metal accumulation. Unlike to cadmium, the copper possess prooxidative activity, stimulating the peroxidation of membrane lipids directly. In spite of some distinctions the intracellular antioxidative systems (glutathione system and tocopherol) showed extreme sensitivity to the accumulation of both metals. It was demonstrated that the accumulation of these metals was followed by die changes of glutathione and tocopherol contents and the inhibition of glutathione-reductase. activity,, but it was not correlated with changes of Se-depending glutathioneperoxidase activity. As it results from kinetic data the most damages of glutathione system are revealed on this earliest stages of metal accumulation when metallothionein synthesis is on the low level. The amount of glutathione in the tissues was restored almost to their original level when metallothionein synthesis increases markedly. But, total amount of peroxides is retained on the high level for a long period of time. On the basis of results it is reasonable to assume that the accumulation of these metals by mollusc tissues does not proceed without leaving a trace. This process is a potential menace for increasing of destructive events in consequence of disturbance of balance of prooxidant and antioxidant processes.

  10. Trophic relationships and health risk assessments of trace metals in the aquaculture pond ecosystem of Pearl River Delta, China.

    PubMed

    Cheng, Zhang; Man, Yu Bon; Nie, Xiang Ping; Wong, Ming Hung

    2013-02-01

    Cadmium, lead, zinc, Chromium, copper, nickel and manganese in sediments and in aquatic organisms were collected from the aquaculture pond ecosystem of the Pearl River Delta (PRD), China and analyzed to evaluate bioaccumulation and trophic transfer in food chains, as well as the potential health risk of exposure to the Hong Kong residents via dietary intake of these aquatic products. The results revealed that based on the biota-sediment accumulation factor, omnivorous fish and zooplankton accumulated more trace metals from sediment than carnivorous fish. Concentrations of seven trace metals in aquaculture pond of PRD significantly decreased with increasing trophic levels, showing that these trace metals were trophically diluted in predatory and omnivorous food chains. The hazard index values of all fish species were smaller than 1 for adults and children, indicating there was no health risk from the multiple metals via ingestion of the freshwater fish for the inhabitants.

  11. Effects of a reservoir flushing on trace metal partitioning, speciation and benthic invertebrates in the floodplain.

    PubMed

    Peter, Dorothea Hug; Castella, Emmanuel; Slaveykova, Vera I

    2014-12-01

    Elimination of sediments from river reservoirs is a common management problem for hydroelectric power plants. Periodical flushing can have negative impacts downstream. This study investigated the impact of a flushing event on the physico-chemical changes in the downstream sections and on the consequences for the benthic macroinvertebrate community. A special emphasis was placed on trace metal fate, partitioning and speciation. The assessment of taxonomic diversity and the frequency of taxa with specific traits was used to estimate the impact on the macroinvertebrate community. Trace metals were measured in the dissolved and particulate fraction, in the surface sediment and in selected macroinvertebrates. Bioanalogical diffusive gradient thin films (DGT) complemented the approach. The results showed an increase of Al, Co, Mn and Ni in the dissolved fraction (Mdis). Crdis, Fedis, Pbdis, and Cudis showed strong spatial variation. In the exchangeable fraction of particulate metals, trends were contrasted, depending on the metal. The calculated free ion and DGT concentrations increased during the flush for all metals, except for Cu. Accumulation in invertebrates increased only in a small number of cases. Macroinvertebrate diversity was negatively impacted as shown by lower taxonomic richness and rarefied richness after the event. Trait profiles were also affected. Overall, the study revealed that flushing operations have an impact on trace metal partitioning between dissolved, suspended particulate matter and sediments, metal speciation, as well as the functional invertebrate diversity.

  12. Estuaries as filters: the role of tidal marshes in trace metal removal.

    PubMed

    Teuchies, Johannes; Vandenbruwaene, Wouter; Carpentier, Roos; Bervoets, Lieven; Temmerman, Stijn; Wang, Chen; Maris, Tom; Cox, Tom J S; Van Braeckel, Alexander; Meire, Patrick

    2013-01-01

    Flux calculations demonstrate that many estuaries are natural filters for trace metals. Yet, the underlying processes are poorly investigated. In the present study, it was hypothesized that intertidal marshes contribute significantly to the contaminant filter function of estuaries. Trace metal concentrations and sediment characteristics were measured along a transect from the subtidal, over an intertidal flat and marsh to a restored marsh with controlled reduced tide. Metal concentrations in the intertidal and restored marsh were found to be a factor two to five higher than values in the subtidal and intertidal flat sediments. High metal concentrations and high accretion rates indicate a high metal accumulation capacity of the intertidal marshes. Overbank sedimentation in the tidal marshes of the entire estuary was calculated to remove 25% to 50% of the riverine metal influx, even though marshes comprise less than 8% of the total surface of the estuary. In addition, the large-scale implementation of planned tidal marsh restoration projects was estimated to almost double the trace metal storage capacity of the present natural tidal marshes in the estuary.

  13. Trace metal anomalies in bleached Porites coral at Meiji Reef, tropical South China Sea

    NASA Astrophysics Data System (ADS)

    Li, Shu; Yu, Kefu; Zhao, Jianxin; Feng, Yuexing; Chen, Tianran

    2016-04-01

    Coral bleaching has generally been recognized as the main reason for tropical coral reef degradation, but there are few long-term records of coral bleaching events. In this study, trace metals including chromium (Cr), copper (Cu), molybdenum (Mo), manganese (Mn), lead (Pb), tin (Sn), titanium (Ti), vanadium (V), and yttrium (Y), were analyzed in two Porites corals collected from Meiji Reef in the tropical South China Sea (SCS) to assess differences in trace metal concentrations in bleached compared with unbleached coral growth bands. Ti, V, Cr, and Mo generally showed irregular fluctuations in both corals. Bleached layers contained high concentrations of Mn, Cu, Sn, and Pb. Unbleached layers showed moderately high concentrations of Mn and Cu only. The different distribution of trace metals in Porites may be attributable to different selectivity on the basis of vital utility or toxicity. Ti, V, Cr, and Mo are discriminated against by both coral polyps and zooxanthellae, but Mn, Cu, Sn, and Pb are accumulated by zooxanthellae and only Mn and Cu are accumulated by polyps as essential elements. The marked increase in Cu, Mn, Pb, and Sn are associated with bleaching processes, including mucus secretion, tissue retraction, and zooxanthellae expulsion and occlusion. Variation in these trace elements within the coral skeleton can be used as potential tracers of short-lived bleaching events.

  14. Sedimentary input of trace metals from the Chukchi Shelf

    NASA Astrophysics Data System (ADS)

    Aguilar-Islas, A. M.; Seguré, M.; Rember, R.; Nishino, S.

    2014-12-01

    The distribution of trace metals in the Arctic Ocean has implications for their global cycles, yet until recently few trace metal observations were available from this rapidly changing ocean. Profiles of dissolved Fe from recent Japanese field efforts in the Western Canada Basin (2008, 2010) indicate the broad Chukchi Shelf as a source of Fe to the halocline of the Western Canada Basin. Here we present dissolved and particulate data for crustal (Al, Mn, Fe) and non-crustal elements (Co, Cu, Zn) from the productive Chukchi Sea to characterize the sedimentary input of these metals to shelf waters contributing to the halocline layer of the Canada Basin. Water column profiles were collected in late summer 2013 onboard the R/V Mirai at 10 stations from the Bering Strait to the slope, and at a time-series (10 days) station located over the outer shelf. A narrow and variable (5-10 m) benthic boundary layer was sampled at the time-series station with highly elevated dissolved and suspended particulate metal concentrations. High metal concentrations were also observed in the subsurface at a station over Barrow Canyon where mixing is enhanced. Reactivity of suspended particulate metals was determined by the leachable vs. refractory fractions. Metal concentrations were determined by ICP-MS. Trace metal transport from the shelf to the interior will be discussed in context with shelf mechanisms contributing to this export, and to expected future changes in the Arctic Ocean.

  15. Trace metals in some fish species of South Carolina.

    PubMed

    Koli, A K; Sandhu, S S; Canty, W T; Felix, K L; Reed, R J; Whitmore, R

    1978-09-01

    Samples of fish from freshwater and saltwater sources of ocean, rivers, and lakes over the state of South Carolina were collected. The fish collected were Shrimp, Silver Snapper, White Bass, Catfish, Mudfish and Trout. The sample flasks were incubated in a constant temperature stirring water bath at 58 degrees C until clear solution in reagent-grade nitric acid. Triplicate samples of fish muscle tissue were analyzed by wet digestion and dry digestion methods. Trace metal levels were determined by flame atomic absorption using a Perkin-Elmer Model 306 spectrophotometer. Mercury determination was made by Coleman MAS-50 mercury analyzer. A significant finding of this report is that saltwater fish have more trace metal levels than freshwater fish, and larger fish have higher trace metals than smaller fish. Iron and zinc levels were much higher in Shrimp than any other species analyzed.

  16. Equilibrium modeling of trace metal transport from Duluth complex rockpile

    SciTech Connect

    Kelsey, P.D.; Klusman, R.W.; Lapakko, K.

    1996-12-31

    Geochemical modeling was used to predict weathering processes and the formation of trace metal-adsorbing secondary phases in a waste rock stockpile containing Cu-Ni ore mined from the Duluth Complex, MN. Amorphous ferric hydroxide was identified as a secondary phase within the pile, from observation and geochemical modeling of the weathering process. Due to the high content of cobalt, copper, nickel, and zinc in the primary minerals of the waste rock and in the effluent, it was hypothesized that the predicted and observed precipitant ferric hydroxide would adsorb small quantities of these trace metals. This was verified using sequential extractions and simulated using adsorption geochemical modeling. It was concluded that the trace metals were adsorbed in small quantities, and adsorption onto the amorphous ferric hydroxide was in decreasing order of Cu > Ni > Zn > Co. The low degree of adsorption was due to low pH water and competition for adsorption sites with other ions in solution.

  17. Accumulation of neurotoxic organochlorines and trace elements in brain of female European eel (Anguilla anguilla).

    PubMed

    Bonnineau, C; Scaion, D; Lemaire, B; Belpaire, C; Thomé, J-P; Thonon, M; Leermaker, M; Gao, Y; Debier, C; Silvestre, F; Kestemont, P; Rees, J-F

    2016-07-01

    Xenobiotics such as organochlorine compounds (OCs) and metals have been suggested to play a significant role in the collapse of European eel stocks in the last decades. Several of these pollutants could affect functioning of the nervous system. Still, no information is so far available on levels of potentially neurotoxic pollutants in eel brain. In present study, carried out on female eels caught in Belgian rivers and canals, we analyzed brain levels of potentially-neurotoxic trace elements (Ag, Al, As, Cd, Co, Cr, Cu, Fe, Hg, MeHg, Mn, Ni, Pb, Sn, Sb, Zn) and OCs (Polychlorinated biphenyls, PCBs; Hexachlorocyclohexanes, HCHs; Dichlorodiphenyltrichloroethane and its metabolites, DDTs). Data were compared to levels in liver and muscle tissues. Eel brain contained very high amounts of OCs, superior to those found in the two other tissues. Interestingly, the relative abundance of PCB congeners markedly differed between tissues. In brain, a predominance of low chlorinated PCBs was noted, whereas highly chlorinated congeners prevailed in muscle and liver. HCHs were particularly abundant in brain, which contains the highest amounts of β-HCH and ϒ-HCH. p,p'-DDTs concentration was similar between brain and muscle (i.e., about twice that of liver). A higher proportion of p,p'-DDT was noticed in brain. Except for Cr and inorganic Hg, all potentially neurotoxic metals accumulated in brain to levels equal to or lower than hepatic levels. Altogether, results indicate that eel brain is an important target for organic and, to a lesser extent, for inorganic neurotoxic pollutants.

  18. Accumulation of neurotoxic organochlorines and trace elements in brain of female European eel (Anguilla anguilla).

    PubMed

    Bonnineau, C; Scaion, D; Lemaire, B; Belpaire, C; Thomé, J-P; Thonon, M; Leermaker, M; Gao, Y; Debier, C; Silvestre, F; Kestemont, P; Rees, J-F

    2016-07-01

    Xenobiotics such as organochlorine compounds (OCs) and metals have been suggested to play a significant role in the collapse of European eel stocks in the last decades. Several of these pollutants could affect functioning of the nervous system. Still, no information is so far available on levels of potentially neurotoxic pollutants in eel brain. In present study, carried out on female eels caught in Belgian rivers and canals, we analyzed brain levels of potentially-neurotoxic trace elements (Ag, Al, As, Cd, Co, Cr, Cu, Fe, Hg, MeHg, Mn, Ni, Pb, Sn, Sb, Zn) and OCs (Polychlorinated biphenyls, PCBs; Hexachlorocyclohexanes, HCHs; Dichlorodiphenyltrichloroethane and its metabolites, DDTs). Data were compared to levels in liver and muscle tissues. Eel brain contained very high amounts of OCs, superior to those found in the two other tissues. Interestingly, the relative abundance of PCB congeners markedly differed between tissues. In brain, a predominance of low chlorinated PCBs was noted, whereas highly chlorinated congeners prevailed in muscle and liver. HCHs were particularly abundant in brain, which contains the highest amounts of β-HCH and ϒ-HCH. p,p'-DDTs concentration was similar between brain and muscle (i.e., about twice that of liver). A higher proportion of p,p'-DDT was noticed in brain. Except for Cr and inorganic Hg, all potentially neurotoxic metals accumulated in brain to levels equal to or lower than hepatic levels. Altogether, results indicate that eel brain is an important target for organic and, to a lesser extent, for inorganic neurotoxic pollutants. PMID:27376663

  19. Trace metal storage in recent floodplain sediments along the Dill River, central Germany

    NASA Astrophysics Data System (ADS)

    Martin, Charles W.

    2015-04-01

    Trace metals are stored in near-channel floodplain sediments along many rivers in industrial and mined watersheds of western European countries such as Germany. In this paper, I document the distribution of Cu, Pb, and Zn in 13 cores collected from near-channel floodplain sediments along a 25-km reach of the Dill River in central Germany. Mean concentrations of the three trace metals exceed background concentrations, an indication of anthropogenic enrichment along the study reach; many individual samples have concentrations several times the background levels and exceed standards for trace metals contained in the German Federal Soil Protection Act. Metal concentrations generally peak at depths of 0.2 to 0.7 m below the floodplain surface and are assumed to represent the period of maximum metal releases to the environment through upstream industrial activity, ore mining, or both. In eight of the cores, radiocarbon ages obtained below the depth of peak metal concentrations provide maximum dates for sediment accumulation of between 90 and 1700 years ago, with most ages clustering in the period of 90 to 300 years ago. The ages and depth to peak metal concentrations indicate 0.6 to 1.0 m of floodplain sedimentation over the last 150 to 300 years (0.3-0.4 cm y- 1), which exceed sedimentation amounts and rates found in surrounding watersheds. Surface sediments contain lower metal concentrations, suggesting deposition recently of cleaner sediments. Trace metals stored along the Dill River serve as a reminder that stores of contaminants exist in geomorphically sensitive locations of the fluvial system. These legacy sediments bear the chemical imprint of industrial or mining activities that no longer occur in the watershed.

  20. Biomonitor of Environmental Stress: Coral Trace Metal Analysis

    NASA Astrophysics Data System (ADS)

    Grumet, N.; Hughen, K.

    2006-12-01

    Tropical reef corals are extremely sensitive to changes in environmental conditions and, as a result of environmental degradation and global climate change, coral reefs around the globe are severely threatened. Increased human population and development in tropical regions is leading to higher turbidity and silt loading from terrestrial runoff, increased pesticides and nutrients from agricultural land-use and sewage, and the release of toxic trace metals to coastal waters from industrial pollution. The uptake of these metals and nutrients within the coral skeletal aragonite is a sensitive biomonitor of environmental stresses on coral health. We analyzed 18 trace metals from the surface of coral skeletons collected in Bermuda, Indonesia and Belize to assess a range of threats to coral reef health - including climate change, agricultural runoff and pesticides, and coastal development and tourism. This surface sample network also includes samples representing 4 different coral species. Trace metal analysis was performed on an inductively coupled plasma mass spectrometer (ICP-MS) to a high degree of accuracy and precision at extremely low (ppb) concentrations using a protocol we developed for samples less than 2 mg. Proper cleaning techniques were employed to minimize blank level concentrations for ultra-trace metal ICP-MS solution analysis. However, Zn/Ca and Ni/Ca concentrations remain below analytical detection limits. Initial results indicate that sea surface temperature proxies (e.g., Sr/Ca, B/Ca and Mg/Ca) display similar ratios between the different sites, whereas those metals associated with anthropogenic activities, such as Co, Pb and Cu, are site-specific and are linked to individual environmental stressors. Results from this study will be applied to down core trace metal records in the future. In doing so, we aim to understand the impacts of compounding environmental stresses on coral health, and to identify regional threshold values beyond which corals

  1. Trace metal mobilization in soil by bacterial polymers

    SciTech Connect

    Chen, Jyh-Herng; Czajka, D.R.; Lion, L.W.

    1995-02-01

    Enhanced transport of trace metal in porous media can occur in the presence of a ligand or {open_quotes}carrier{close_quotes} that has a high affinity for binding the pollutant, is dispersed and mobile in the soil environment, is recalcitrant with respect to microbial degradation, and is acceptable to the public. These aspects of the facilitated transport to trace metals are discussed with respect to a naturally occurring carrier; extracellular polymers of bacterial origin. The literature is reviewed regarding the production and composition of bacterial extracellular polymers, the processes relevant to the facilitated transport of trace metals in soil by bacterial polymers, and potential for transformation of polymers in soils by microbial degradation. Model calculations of contaminant retardation are presented for the case of polymer-mediated transport of cadmium in a sandy aquifer material. The available information suggests that extracellular polymers can bind metal ions and are mobile in the soil environment. Extracellular polymers also appear to be relatively slowly degraded by soil microorganisms. These properties and the supporting model calculations indicate that extracellular polymers of bacterial origin merit consideration as agents that may be applied to contaminated soils to enhance trace metal mobility. 58 refs., 3 figs.

  2. Trace metals partitioning among different sedimentary mineral phases and the deposit-feeding polychaete Armandia brevis.

    PubMed

    Díaz-de-Alba, Margarita; Huerta-Diaz, Miguel Angel; Delgadillo-Hinojosa, Francisco; Hare, Landis; Galindo-Riaño, M Dolores; Siqueiros-Valencia, Arturo

    2016-02-01

    Trace metals (Cd, Co, Cu, Fe, Mn, Ni, Pb, Zn) were determined in two operationally defined fractions (HCl and pyrite) in sediments from Ensenada and El Sauzal harbors (Mexico). The HCl fraction had significantly higher metal concentrations relative to the pyrite fraction in both harbors, underlining the weak tendency of most trace metals to associate with pyrite. Exceptionally, Cu was highly pyritized, with degrees of trace metal pyritization (DTMP) >80% in both harbors. Dissolved Fe flux measurements combined with solid phase Fe sulfide data indicated that 98 mt of Fe are precipitated as iron sulfides every year in Ensenada Harbor. These Fe sulfides (and associated trace metals) will remain preserved in the sediments, unless they are perturbed by dredging or sediment resuspension. Calculations indicate that dredging activities could export to the open ocean 0.20±0.13 to (0.30±0.56)×10(3) mt of Cd and Cu, respectively, creating a potential threat to marine benthic organisms. Degrees of pyritization (DOP) values in Ensenada and El Sauzal harbors were relatively low (<25%) while degrees of sulfidization (DOS) were high (~50%) because of the contribution of acid volatile sulfide. DOP values correlated with DTMP values (p≤0.001), indicating that metals are gradually incorporated into pyrite as this mineral is formed. Significant correlations were also found between DTMP values and -log(Ksp(MeS)/Ksp(pyr)) for both harbors, indicating that incorporation of trace metals into the pyrite phase is a function of the solubility product of the corresponding metal sulfide. The order in which elements were pyritized in both harbors was Zn≈Mntrace metal concentrations and metal concentrations measured in Armandia brevis (a deposit-feeding Opheliid polychaete), suggesting that these labile sedimentary metals are preferentially accumulated by the polychaete, making it a

  3. Accumulation of heavy metals in oil-contaminated peat soils

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.; Savichev, A. T.; Trofimov, S. Ya.; Shishkonakova, E. A.

    2012-10-01

    X-ray fluorescence and X-ray radiometry represent easy and simple methods to determine concentrations of heavy metals in the ash of peat soils contaminated with oil and can be applied for soil monitoring purposes. Oil spills on peat bogs produce two contamination zones differing in the composition of heavy metals. In the zone of primary contamination, the peat surface is covered by a bitumen crust with V, Ni, Sr, Ba, Ce, and La accumulating there. This zone adjoins the zone of secondary peat contamination, where heavy alkaline-earth metals (Sr, Ba) and lanthanides (Ce and La) are accumulated to a lesser extent. Biological preparations recommended for remediation of oil-contaminated peat soils should be tolerant to high concentrations of heavy metals, particularly, V, Ni, and Ba that are present in the oil contaminated soils in relatively high amounts.

  4. Physiological changes and tissue metal accumulation in rainbow trout exposed to foodborne and waterborne metals

    SciTech Connect

    Farag, A.A.; Boese, C.J.; Bergman, H.L. . Dept. of Zoology and Physiology); Woodward, D.F. )

    1994-12-01

    Sublethal physiological effects and metal residue accumulation in tissues were measured in adult and juvenile rainbow trout fed a metal-contaminated diet and/or exposed to waterborne metals for 21 d. The consumption of metal-contaminated invertebrates from the Clark Fork River, Montana, significantly affected scale loss and metal accumulation in gut tissue of adult trout. Survival, scale loss, and metal accumulation in gill and kidney tissue were affected by exposure to a waterborne mixture of Cd, Cu, and Pb at twice the acceptable levels and Zn at the maximum acceptable level established by the US Environmental Protection Agency for protection of aquatic wildlife. A combination of dietary and waterborne metals also caused lipid peroxidation in the kidney of adult fish and decreased whole-body potassium of juvenile trout. In general, metal accumulation in tissues was higher in gill and kidney with waterborne exposures and was higher in stomach and pyloric caeca with dietary exposure. And metal concentrations in juvenile whole-body tissues accumulated significantly with a combination of waterborne and dietary metals. Although some physiological changes were noted (scale loss, lipid peroxidation of kidney), an exposure time longer than 21 d is probably needed to observe more extensive physiological changes. Regardless, results from this study suggest that a full assessment of metal exposure to fish populations in natural systems must include evaluation of dietary as well as waterborne metal contamination.

  5. Assessment of trace metal pollution in sediments and intertidal fauna at the coast of Cameroon.

    PubMed

    Ngeve, Magdalene N; Leermakers, Martine; Elskens, Marc; Kochzius, Marc

    2015-06-01

    Coastal systems act as a boundary between land and sea. Therefore, assessing pollutant concentrations at the coast will provide information on the impact that land-based anthropogenic activities have on marine ecosystems. Sediment and fauna samples from 13 stations along the whole coast of Cameroon were analyzed to assess the level of trace metal pollution in sediments and intertidal fauna. Sediments showed enrichment of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn. However, pollution of greater concern was observed for Cd, Cr, Cu, Ni, and Zn at the northern stations. Some sites recorded trace metal levels higher than recommended in sediment quality guidelines. Species diversity was low, and high bioaccumulation of trace metals was observed in biological samples. Some edible gastropod species accumulated trace metals above the safety limits of the World Health Organization, European Medicine Agency, and the US Environment Protection Agency. Although industrial pollution is significant along Cameroon's coast, natural pollution from the volcano Mount Cameroon is also of concern.

  6. Assessment of trace metal pollution in sediments and intertidal fauna at the coast of Cameroon.

    PubMed

    Ngeve, Magdalene N; Leermakers, Martine; Elskens, Marc; Kochzius, Marc

    2015-06-01

    Coastal systems act as a boundary between land and sea. Therefore, assessing pollutant concentrations at the coast will provide information on the impact that land-based anthropogenic activities have on marine ecosystems. Sediment and fauna samples from 13 stations along the whole coast of Cameroon were analyzed to assess the level of trace metal pollution in sediments and intertidal fauna. Sediments showed enrichment of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn. However, pollution of greater concern was observed for Cd, Cr, Cu, Ni, and Zn at the northern stations. Some sites recorded trace metal levels higher than recommended in sediment quality guidelines. Species diversity was low, and high bioaccumulation of trace metals was observed in biological samples. Some edible gastropod species accumulated trace metals above the safety limits of the World Health Organization, European Medicine Agency, and the US Environment Protection Agency. Although industrial pollution is significant along Cameroon's coast, natural pollution from the volcano Mount Cameroon is also of concern. PMID:25957194

  7. Elucidating the Composition and Distribution of Trace Metals in Corals

    NASA Astrophysics Data System (ADS)

    Farfan, G.; Webb, S. M.; Apprill, A.; Hansel, C. M.

    2014-12-01

    Coral reefs host a plethora of marine life and thereby provide a wealth of aesthetic and economic benefits to coastal countries. Anthropogenic influences, including local coastal water contamination, however threaten the health of these delicate ecosystems. Metal incorporation into carbonate minerals, the backbone of coral reefs, is known to have a large yet variable impact on carbonate structure and solubility. Yet, trace metal influences on the structure, porosity, composition, and solubility of coral skeletons is largely unknown. Here, we coupled synchrotron-based micro-X-ray fluorescence (u-XRF) mapping and X-ray absorption near edge structure (XANES) spectroscopy with micro-X-ray diffraction (XRD) to explore the distribution and speciation of trace metals associated with corals and their impact on the carbonate structure of corals obtained from reefs varying in anthropogenic influence - Florida Keys, FL USA and the Federated States of Micronesia. Iron and copper were the most abundant metals in the biological tissue, while in some areas zinc was observed in the tissue, overlapping with the skeleton. Trace metals were not detectable in the aragonite skeletons; in fact, the distributions of Ca and Fe were anti-correlated. XANES spectra show that the iron is primarily Fe(III), likely as the poorly crystalline iron oxide ferrihydrite structure or trapped within ferretin proteins. The same trace metals were observed in corals of different species and from different environments. This in situ investigation corroborates previous studies that corals tend to incorporate iron into the biological components but not into the aragonite skeleton. Given the dominant partitioning of metals within the biological tissue rather than the coral skeleton, the specific carbon molecules responsible for metal attenuation and their fate under changing geochemical conditions and following coral death require exploration.

  8. Development of functional trait biomarkers for trace metal exposure in freshwater clams (Musculium spp.).

    PubMed

    Schoonover, Cody M; Wieker, Jessica; Pope, Rachelle; Brown, Chelsea; Cooper, Emily; DeWitt, Jariel; Gunselman, Samuel; Jensen, Cory; Stevens, Whitney; Yri, Jenae; Nezat, Carmen; Joyner-Matos, Joanna

    2016-10-01

    Exposure to trace metals typically causes oxidative stress; these consequences are better-characterized in estuarine and marine species than in freshwater species. How cellular-level responses to metal pollution influence whole-organism and population-level traits is poorly understood. We tested whether exposure to single metals (zinc and cadmium) and to metal mixtures (water in equilibrium with sediment from a highly polluted lake) alters two ecologically-relevant traits in freshwater clams, locomotion and reproduction. Fingernail clams (Musculium spp.) from unimpacted habitats were exposed to single metals and the metal mixture for up to 49days. The single metal doses (≤5mg/L Zn and ≤20μg/L Cd) were not toxicologically meaningful as clam survival, burial, and climbing activity did not differ across treatments. Water in equilibrium with the lake sediment contained cadmium, copper, lead, and zinc. Clams exposed to this metal mixture had decreased climbing activity but no change in burial activity. Metal-exposed clams had lower fecundity (number of shelled juveniles extruded by adult clams) and patterns in metal accumulation corresponded with lake sediment dose and clam activity. In contrast to the functional traits, stress protein expression and whole-clam glycogen content did not vary across treatment groups. These results indicate that fingernail clams of the genus Musculium are appropriate for development as sentinel species for metal pollution and can serve as a model for determining how metal pollution alters metabolic allocation patterns in freshwater organisms. PMID:27085374

  9. Traffic-Related Trace Element Accumulation in Roadside Soils and Wild Grasses in the Qinghai-Tibet Plateau, China

    PubMed Central

    Wang, Guanxing; Yan, Xuedong; Zhang, Fan; Zeng, Chen; Gao, Dan

    2013-01-01

    This research examines traffic-source trace elements accumulations and distributions in roadside soils and wild grasses in the Qinghai-Tibet Plateau. A total of 100 soil samples and 100 grass samples including Achnatherum splendens, Anaphalis nepalensis, Artemisia sphaerocephala, Carex moorcroftii, Iris lacteal, Kobresia myosuroides, Oreosolen wattii, Oxytropis ochrocephala and Stellera chamaejasme were collected at 100 sites from different road segments. The contents of metals and metalloids, including Cu, Zn, Cd, Pb, Cr, Co, Ni and As, in the soil and grass samples were analyzed using ICP-MS. The total mean concentrations of the eight trace elements in soils are Cu (22.84 mg/kg), Zn (100.56 mg/kg), Cd (0.28 mg/kg), Pb (28.75 mg/kg), Cr (36.82 mg/kg), Co (10.24 mg/kg), Ni (32.44 mg/kg) and As (21.43 mg/kg), while in grasses are Cu (9.85 mg/kg), Zn (31.47 mg/kg), Cd (0.05 mg/kg), Pb (2.06 mg/kg), Cr (14.16 mg/kg), Co (0.55 mg/kg), Ni (4.03 mg/kg) and As (1.33 mg/kg). The metal and metalloid concentrations in the nine grass species were all below the critical values of hyperaccumulators. The mean values and Multivariate Analysis of Variance (MANOVA) results indicate that: (1) the concentrations of the trace elements in the soils are higher than those in the grasses, (2) the concentrations of Cu, Zn, Cd, Pb in the soils decrease as the roadside distance increases, (3) the concentrations of trace elements in the grasses are the highest at 10 m from the road edge, (4) the higher the traffic volume, the higher the concentrations of the trace elements in the roadside soils and grasses, and (5) when the land cover is meadow, the lower the sand content in the soil, the lower the trace element concentrations. With a trace element’s bioavailability represented by its transfer factor (TF) from the soil to the grass, the TFs of the eight trace elements are not in the same orders for different grass species. PMID:24380977

  10. Traffic-related trace element accumulation in roadside soils and wild grasses in the Qinghai-Tibet Plateau, China.

    PubMed

    Wang, Guanxing; Yan, Xuedong; Zhang, Fan; Zeng, Chen; Gao, Dan

    2013-12-30

    This research examines traffic-source trace elements accumulations and distributions in roadside soils and wild grasses in the Qinghai-Tibet Plateau. A total of 100 soil samples and 100 grass samples including Achnatherum splendens, Anaphalis nepalensis, Artemisia sphaerocephala, Carex moorcroftii, Iris lacteal, Kobresia myosuroides, Oreosolen wattii, Oxytropis ochrocephala and Stellera chamaejasme were collected at 100 sites from different road segments. The contents of metals and metalloids, including Cu, Zn, Cd, Pb, Cr, Co, Ni and As, in the soil and grass samples were analyzed using ICP-MS. The total mean concentrations of the eight trace elements in soils are Cu (22.84 mg/kg), Zn (100.56 mg/kg), Cd (0.28 mg/kg), Pb (28.75 mg/kg), Cr (36.82 mg/kg), Co (10.24 mg/kg), Ni (32.44 mg/kg) and As (21.43 mg/kg), while in grasses are Cu (9.85 mg/kg), Zn (31.47 mg/kg), Cd (0.05 mg/kg), Pb (2.06 mg/kg), Cr (14.16 mg/kg), Co (0.55 mg/kg), Ni (4.03 mg/kg) and As (1.33 mg/kg). The metal and metalloid concentrations in the nine grass species were all below the critical values of hyperaccumulators. The mean values and Multivariate Analysis of Variance (MANOVA) results indicate that: (1) the concentrations of the trace elements in the soils are higher than those in the grasses, (2) the concentrations of Cu, Zn, Cd, Pb in the soils decrease as the roadside distance increases, (3) the concentrations of trace elements in the grasses are the highest at 10 m from the road edge, (4) the higher the traffic volume, the higher the concentrations of the trace elements in the roadside soils and grasses, and (5) when the land cover is meadow, the lower the sand content in the soil, the lower the trace element concentrations. With a trace element's bioavailability represented by its transfer factor (TF) from the soil to the grass, the TFs of the eight trace elements are not in the same orders for different grass species.

  11. Phytoaccumulation of trace elements by wetland plants: 3. Uptake and accumulation of ten trace elements by twelve plant species

    SciTech Connect

    Qian, J.H.; Zayed, A.; Zhu, Y.L.; Yu, M.; Terry, N.

    1999-10-01

    Interest is increasing in using wetland plants in constructed wetlands to remove toxic elements from polluted wastewater. To identify those wetland plants that hyperaccumulate trace elements, 12 plant species were tested for their efficiency to bioconcentrate 10 potentially toxic trace elements including As, b, Cd, Cr, Cu, Pb, Mn, Hg, Ni, and Se. Individual plants were grown under carefully controlled conditions and supplied with 1 mg L{sup {minus}1} of each trace element individually for 10 d. Except B, all elements accumulated to much higher concentrations in roots than in shoots. Highest shoot tissue concentrations (mg kg{sup {minus}1} DW) of the various trace elements were attained by the following species: umbrella plant (Cyperus alternifolius L.) for Mn (198) and Cr (44); water zinnia (Wedelia trilobata Hitchc.) for Cd (148) and Ni (80); smartweed (Polygonum hydropiperoides Michx.) for Cu (95) and Pb (64); water lettuce (Pistia stratiotes L.) for Hg (92), As (34), and Se (39); and mare's tail (hippuris vulgaris L.) for B (1132). Whereas, the following species attained the highest root tissue concentrations (mg kg{sup {minus}1} DW); stripped rush (Baumia rubiginosa) for Mn (1683); parrot's feather (Myriophyllum brasiliense Camb.) for Cd (1426) and Ni (1077); water lettuce for Cu (1038), Hg (1217), and As (177); smartweed for Cr (2980) and Pb (1882); mare's tail for B (1277); and monkey flower (Mimulus guttatus Fisch.) for Se (384). From a phytoremediation perspective, smartweed was probably the best plant species for trace element removal from wastewater due to its faster growth and higher plant density.

  12. Seedling emergence, growth and trace elements tolerance and accumulation by Lamiaceae species in a mine soil.

    PubMed

    Parra, A; Zornoza, R; Conesa, E; Gómez-López, M D; Faz, A

    2014-10-01

    The potential use of three Laminaceae species (Lavandula dentata, Rosmarinus officinalis and Thymus vulgaris) for the phytostabilisation of a trace elements contaminated (acid) soil has been evaluated. These species were grown in mine tailing soil unamended (TS) and amended with calcium carbonate and pig manure (ATS), and unpolluted substrate for control (CT); plant growth, root characterisation, soil trace elements contents and their accumulation in plants were measured. Results indicated that seed emergence was independent from substrate characteristics, but seedlings died in TS with 40% survival in ATS. The biomass of L. dentata and T. vulgaris and root development in R. officinalis were negatively affected when grown in TS but without differences between ATS and CT. Applicating amendments reduced soil exchangeable and extractable fractions concentrations of trace elements in ATS compared with TS. The establishment of L. dentata and R. officinalis were related to trace elements immobilisation. Trace element concentrations in plants grown in tailing soils were similar to those reported for control, although applicating amendments reduced Zn accumulation in all species, and favoured increased absorption and aerial translocation of As and Pb by L. dentata and T. vulgaris; nonetheless, levels were below toxicity thresholds. Thus, these species fulfill the criteria for phytostabilisation purposes, aided by employing amendments.

  13. Seedling emergence, growth and trace elements tolerance and accumulation by Lamiaceae species in a mine soil.

    PubMed

    Parra, A; Zornoza, R; Conesa, E; Gómez-López, M D; Faz, A

    2014-10-01

    The potential use of three Laminaceae species (Lavandula dentata, Rosmarinus officinalis and Thymus vulgaris) for the phytostabilisation of a trace elements contaminated (acid) soil has been evaluated. These species were grown in mine tailing soil unamended (TS) and amended with calcium carbonate and pig manure (ATS), and unpolluted substrate for control (CT); plant growth, root characterisation, soil trace elements contents and their accumulation in plants were measured. Results indicated that seed emergence was independent from substrate characteristics, but seedlings died in TS with 40% survival in ATS. The biomass of L. dentata and T. vulgaris and root development in R. officinalis were negatively affected when grown in TS but without differences between ATS and CT. Applicating amendments reduced soil exchangeable and extractable fractions concentrations of trace elements in ATS compared with TS. The establishment of L. dentata and R. officinalis were related to trace elements immobilisation. Trace element concentrations in plants grown in tailing soils were similar to those reported for control, although applicating amendments reduced Zn accumulation in all species, and favoured increased absorption and aerial translocation of As and Pb by L. dentata and T. vulgaris; nonetheless, levels were below toxicity thresholds. Thus, these species fulfill the criteria for phytostabilisation purposes, aided by employing amendments. PMID:25065800

  14. Unexpected Consequences: Gold Mining in Peru and Trace Metal Mobilization

    NASA Astrophysics Data System (ADS)

    Wang, R. Z.; Pinedo-Gonzalez, P.; Clark, K. E.; West, A. J.

    2014-12-01

    Artisanal miners in the Peruvian Amazon, especially in the Madre de Dios region, are targeting fluvial deposits along riverbanks as part of a modern-day gold rush. These miners often use mercury, causing Hg pollution and ecological damage. Research on the environmental consequences of these mines has focused primarily on the fate of Hg, and to date little work has considered whether mining river sediments affects the release and cycling of other trace metals. This project measures trace metal concentrations in soil and vegetation samples developed on fluvial sediments at one mine site and two non-mine (control) sites across gradients in natural plant succession and riverbank composition. Some metals, including Pb and Mo, showed leachable metal concentrations (determined using EPA Method 2050B and ICP-MS analysis) that were lower in mine site soils than control site soils, but higher in mine site vegetation than control site vegetation. These results held across all gradients in natural plant succession and soil composition. This suggests that metals may be preferentially mobilized from the soil and taken up by surrounding vegetation as a result of mining activities. Soils were also treated with a sequential leach to separate metals that are exchangeable, bound to carbonates, bound to Fe and Mn oxides, bound to organic matter and in the residual phase. Initial data shows that trace metal concentrations are generally lower in all phases from mine soils vs. control soils, across all gradients in natural plant succession and soil composition. Trace metal mobilization due to mining is facilitated by changing pH or redox conditions - e.g., by exposing buried minerals to water and oxygen. Fluvial sediments at these studied sites were already exposed during their erosion and transport, but anoxic conditions following deposition may allow a build-up of metals that are mobilized once sediments are re-worked by mining. It is also possible that Hg affects the mobility of other

  15. Trace metals in gills of fish from the Arabian Gulf

    SciTech Connect

    Al-Yakoob, S.; Bahloul, M. ); Bou-Olayan, A.H.

    1994-11-01

    Complexation of metals by coordinate linkages with appropriate organic molecules in biological tissues is an important process involved in metal accumulation by aquatic organisms. Fish respiratory systems differ from all other systems because damage to gills has immediate impacts on the rest of the fish's body. Veer et al. observed significant correlation between gill-metal concentration and whole-body weight. More nickel is accumulated in gill tissue of the catfish (Clarias batrachus) than in the liver or intestine. More cadmium is accumulated in gill tissue of the fish Heteropneustes fossilis (Bloch) and Channa punctatus (Bloch) than in the liver or kidney. When exposed to lethal and sublethal concentrations of copper, gills of the freshwater fish Labeo rohita (Hamilton) showed the highest degree of copper accumulation. Petroleum and petrochemical industry wastes contribute significantly to metal enrichment of the Arabian Gulf marine environment. Because accumulation of metal ions is significant in gills, levels of Cd, Cr, Cu, Ni and Pb were investigated in gills of fish from potentially impacted areas along the western side of the Arabian Gulf after the 1991 oil-spill. 15 refs., 3 figs., 1 tab.

  16. Trace metals and cancer: The case of neuroblastoma

    NASA Astrophysics Data System (ADS)

    Gouget, B.; Sergeant, C.; Llabador, Y.; Devès, G.; Vesvres, M. H.; Simonoff, M.; Bénard, J.

    2001-07-01

    N- myc oncogene amplification is one of the most established prognostic factors in neuroblastoma (NB), a young children solid tumor. Amounts of ferritin, an iron storage protein, are abnormally increased in serum of patients with advanced stage disease. N- myc amplified NB cells can synthesize zinc metalloenzymes allowing tumor invasion and metastases formation. The aim of this study was to find a relationship between N- myc amplification and trace metals in human neuroblasts. Coupling PIXE and RBS techniques, nuclear microprobe allowed to analyze elemental distributions and to determine trace metal concentrations within cultured neuroblasts characterized by various degrees of N- myc amplification. They were compared to trace metal distributions and concentrations in tumor xenograft models of human NB, after injection of cells from the same lines in athymic nude mice. Our data allowed to establish a relation between trace metal contents and mechanisms of NB oncogenesis, amplified cell lines representing more aggressive phenotypes of the disease. They should be confirmed by analysis of cultured neuroblasts and tumors issued from a non-amplified cell line transfected with the N- myc oncogene.

  17. Effect of trace metal availability on coccolithophorid calcification.

    PubMed

    Schulz, K G; Zondervan, I; Gerringa, L J A; Timmermans, K R; Veldhuis, M J W; Riebesell, U

    2004-08-01

    The deposition of atmospheric dust into the ocean has varied considerably over geological time. Because some of the trace metals contained in dust are essential plant nutrients which can limit phytoplankton growth in parts of the ocean, it has been suggested that variations in dust supply to the surface ocean might influence primary production. Whereas the role of trace metal availability in photosynthetic carbon fixation has received considerable attention, its effect on biogenic calcification is virtually unknown. The production of both particulate organic carbon and calcium carbonate (CaCO3) drives the ocean's biological carbon pump. The ratio of particulate organic carbon to CaCO3 export, the so-called rain ratio, is one of the factors determining CO2 sequestration in the deep ocean. Here we investigate the influence of the essential trace metals iron and zinc on the prominent CaCO3-producing microalga Emiliania huxleyi. We show that whereas at low iron concentrations growth and calcification are equally reduced, low zinc concentrations result in a de-coupling of the two processes. Despite the reduced growth rate of zinc-limited cells, CaCO3 production rates per cell remain unaffected, thus leading to highly calcified cells. These results suggest that changes in dust deposition can affect biogenic calcification in oceanic regions characterized by trace metal limitation, with possible consequences for CO2 partitioning between the atmosphere and the ocean.

  18. Trace metal enrichment in agricultural soils of Jianghan Plain

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Ying, S.; Daniel, J. N.; Bu, J.; Gan, Y.; Wang, Y.; Schaefer, M.; Fendorf, S. E.

    2014-12-01

    Coal consumption in China is increasing annually due to constantly rising energy demand. As a result, a massive amount of coal combustion byproducts, particularly in the form of fly ash, are expelled from power plants and distributed through atmospheric transport. The fly ash is eventually deposited on to land, potentially contaminating agricultural soils. Coal fly ash contains high concentration of a suite of toxic trace metals including lead, chromium, and arsenic. In this study, we surveyed the concentration of trace metals in agricultural soils at 131 sites within a 20 km radius of Yangluo Power Plant, a 2400 MW plant within the highly populated Jianghan Plain of Central China. Using X-ray fluorecence (XRF) spectrometry, the total concentration of trace metals in homogenized surface and subsurface soil samples were measured to calculate the corresponding enrichment factor at each site. Our initial findings demonstrate that Pb is enriched in a majority of sites, independent of land use, whereas As and Cr are generally not enriched in this region. Further studies using Pb isotopes as a source-tracing tool will help determine the Pb pollution's origin. Ultimately, the results of this study may inform whether crops grown within the Jianghan Plain have the potential of being contaminated by metals emitted from coal power plants.

  19. Spatial analysis and indicator building for metal accumulation in mosses.

    PubMed

    Schröder, Winfried; Pesch, Roland

    2004-11-01

    Mosses are used as passive accumulation monitors for metal accumulation in terrestrial ecosystems. Under leadership of the Federal Agency for Environmental Protection Germany took part in the previous European-wide moss monitoring campaigns 1990, 1995 and 2000. The investigations accomplished thereby cannot be presented completely in this article. The remarks rather concentrate on methodical aspects of the statistical data analysis. In Chapter 2 the design of data collection is summarized. Chapter 3 treats the geostatistical analysis and transformation of point data to areal information. Chapter 4 describes the aggregation of the element-specific metal concentrations in mosses to a spatially and temporally differentiated indicator of metal accumulation by means of descriptive and multivariate statistics. The work presented is only a small part of geostatistics and multivariate statistics which fit for analysis of moss monitoring data. Taking the results presented here as a basis, the following steps would further be of great importance: cluster-analytic evaluation of the results of the Moss Monitoring 1990 and 1995, detailing the cluster results using additional empirical and location describing information (e.g. moss species, ecoregions, site and species specific variability of metal accumulation) as well as optimizing the indicator buildung by testing of multivariate statistical regression models (e.g. Classification and Regression Trees). PMID:15473533

  20. Accumulation of heavy metals in selected medicinal plants.

    PubMed

    Sarma, Hemen; Deka, Suresh; Deka, Hemen; Saikia, Rashmi Rekha

    2011-01-01

    In this review, we evaluate the reports published between 1993 and 2011 that address the heavy metal accumulation in 88 medicinal plant species. We compare the safe limits for heavy metals set by governmental agencies vs. the levels at which such metals actually exist in selected medicinal plants. We also evaluate the uses and effectiveness of medicinal plants in health care, and assess the hazards of medicinal plant uses, in view of the growing worldwide use of medicinal plants. From our extensive review of the literature, we discovered that a maximum permissible level (MPL) of Pb is exceeded in 21 plant medicine species, Cd in 44 species, and Hg in 10 species. Vetiveria zizanioides a potential candidate species for the treatment of cardiovascular diseases absorb a wide range of heavy metals from metal-contaminated soils. We believe that this species is the single most impressive example of a potentially hazardous medicinal plant. Based on our review, we endorse the hypothesis that heavy metal accumulation by medicinal plants is mainly caused by extraction of soluble metals from contaminated soil, sediments and air. One continuing problem in protecting consumers of plant-based medicines is that permissible levels of all heavy metals in herbal medicine have not yet been standardized by regulating governmental entities. Moreover, there are few limit tests that exist for heavy metal content of medicinal plants, or permissible limits for essential dietary minerals, in most medicinal plants. The dearth of such limits hamstrings development of medicinal plant research and delays the release of either new or improved versions of medicinal plants or their components. In the present review, we emphasize that medicinal plants are often subjected to heavy metal contamination and that the levels at which these heavy metals sometimes occur exceeds permissible levels for some species. Therefore, collecting medicinal plants from areas that are, or may be, contaminated should be

  1. Trace Metal Sequestration by the Manganese Oxidizing Bacterium Pseudomonas putida

    NASA Astrophysics Data System (ADS)

    Toner, B.; Manceau, A.; Marcus, M. A.; Sposito, G.

    2002-12-01

    Bacterial cells are an important source of chemically reactive surfaces in freshwater and soil environments. Pseudomonas putida strain MnB1 cells, like many gram negative bacteria, present an outer membrane studded with phosphate groups and carbohydrates as well as a billowing biofilm of extracellular polysaccharides to the surrounding microenvironment. The cell outer membrane and the biofilm possess functional groups that complex trace metals. During certain growth phases P. putida is also a manganese oxidizing bacterium, causing the cells to coat themselves in Mn(IV) oxide. Therefore, in addition to the cell outer membrane and associated biofilm, trace metals may sorb to the biogenic Mn oxide. To explore the relative contributions to trace metal sorption by the bacterial cells and biogenic Mn oxide, zinc and nickel were added to suspensions of bacterial cells with three different conditions: cells in the absence of Mn, cells in the process of Mn oxidation and cells with preformed biogenic Mn oxide. Adsorption isotherms were measured to quantify Zn and Ni sorption to P. putida in the presence and absence of biogenic Mn oxide. Zinc and Ni K-edge EXAFS spectra were measured to determine how and where the metals were binding to the bacterial cells and biogenic Mn oxide. The Zn and Ni adsorption isotherms exhibited two plateaus. The metal complexation was dependent on concentration with Zn having a higher affinity for phosphate and Ni for carboxyl functional groups. The preformed biogenic Mn oxide has high affinity for Zn and Ni and the bacterial surface contributed little to metal removal from solution under these conditions. However, if the metal is present in solution while Mn oxidation is occurring the bacterial cell surface influences greatly the overall removal of metal. Manganese oxidizing bacteria such as P. putida contribute to environmental metal sequestration by catalyzing the production of Mn oxide minerals, and the bacterial cells are themselves reactive

  2. Metal accumulation and evaluation of effects in a freshwater turtle.

    PubMed

    Yu, Shuangying; Halbrook, Richard S; Sparling, Donald W; Colombo, Robert

    2011-11-01

    A variety of contaminants have been detected in aquatic and terrestrial environments around the Paducah Gaseous Diffusion Plant (PGDP), Kentucky. The presence of these contaminants at the PGDP may pose a risk to biota, yet little is known about the bioaccumulation of contaminants and associated effects in wildlife, especially in aquatic turtles. The current study was initiated to evaluate: (1) the accumulation of heavy metals (Cd, Cr, Cu, Pb, and Hg) in aquatic ecosystems associated with the PGDP using red-eared slider turtle (Trachemys scripta elegans) as biomonitors; (2) maternal transfer of heavy metals; and (3) potential hematological and immunological effects resulting from metal accumulation. A total of 26 turtles were collected from 7 ponds located south, adjacent, and north of the PGDP. Liver Cu concentrations were significantly different among ponds and Cu concentrations in eggs were positively correlated with female Cu concentrations in kidney. The concentrations of heavy metals measured in turtle tissues and eggs were low and, based on previous studies of reptiles and established avian threshold levels of heavy metals, did not appear to have adverse effects on aquatic turtles inhabiting ponds near the PGDP. However, total white blood cell counts, heterophil to lymphocyte ratio, and phytohemagglutinin stimulation index were correlated with metal concentrations. Because other factors may affect the hematological and immunological indices, further investigation is needed to determine if these effects are associated with metal exposure, other contaminants, or disease. PMID:21688058

  3. Trace metal levels in sediments of Pearl Harbor (Hawaii)

    SciTech Connect

    Ashwood, T.L.; Olsen, C.R.; Larsen, I.L.; Tamura, T.

    1986-09-01

    This study was conducted to measure the distribution of lead and other trace metals in the sediments of Pearl Harbon (Hawaii) to determine whether paint chips from vessels of the US Navy's Inactive Fleet have affected the environmental quality of Middle Loch. Sediment cores (ranging from 0.5 to 3.0 m long) were collected from Middle Loch near the Naval Inactive Ships Maintenance Facility and in an area of West Loch that is relatively isolated and unaffected by naval operations. Concentrations of copper, lead, and zinc averaged 180 ..mu..g/g, 49 ..mu..g/g, and 272 ..mu..g/g, respectively, in recent Middle Loch sediments. These concentrations are significantly higher than those in either historical Middle Loch sediments or recent West Loch sediments. However, except for lead, the concentrations in recent Middle Loch sediments are similar to those of older Middle Loch sediments, which indicates that the increase in trace metal contamination began before the onset of Inactive Fleet operations (about 1946). Increased trace metal levels in recent Middle Loch sediments might be expected to result from two potential sources: (1) sewage discharges and (2) paint from inactive vessels. Since paint contains elevated levels of lead and zinc but little copper, the elevated copper levels in Middle Loch sediments tend to implicate sewage as the source of trace metal contamination. Moreover, the lead:zinc ratio of recent Middle Loch sediments (0.18:1) is a factor of 10 lower than that measured in paint (2.1:1), and the Middle Loch lead:zinc ratio is not significantly greater than that measured in recent West Loch sediments (0.21:1). Hence, we suggest that sewage rather than paint is the major source of trace metal contamination of Middle Loch. This is consistent with the findings of a previous study by US navy personnel.

  4. A precious-metal free micro fuel cell accumulator

    NASA Astrophysics Data System (ADS)

    Bretthauer, C.; Müller, C.; Reinecke, H.

    2011-05-01

    In recent years, integrated fuel cell (FC) type primary and secondary batteries attracted a great deal of attention as integrated on-chip power sources due to their high theoretical power densities. Unfortunately, the costs of these devices have been rather high. This is partially due to the involved clean-room processes, but also due to the fact that these devices generally rely on expensive precious-metals such as Pd and Pt. Therefore we developed a novel integrated FC type accumulator that is based on non-precious-metals only. The key component of the presented accumulator is its alkaline polymer electrolyte membrane that allows not only the usage of a low-cost AB5 type hydrogen storage electrode, but also the usage of La0.6Ca0.4CoO3 as a precious-metal free bifunctional catalyst for the air-breathing electrode. Additionally the presented design requires only comparatively few cleanroom processes which further reduces the overall production costs. Although abdicating precious-metals, the presented accumulator shows an open circuit voltage of 0.81 V and a maximum power density of 0.66 mW cm-2 which is comparable or even superior to former precious-metal based cells.

  5. Accumulation rates of airborne heavy metals in wetlands

    USGS Publications Warehouse

    Souch, C.J.; Filippelli, G.M.; Dollar, N.; Perkins, S.; Mastalerz, Maria

    2002-01-01

    Accumulation rates of heavy metals (Cd, Cr, Cu, Mn, Pb, and Zn) retained in wetland sediments in northwest Indiana-downwind of the Chicago-Gary-Hammond industrial area-are quantified to assess anthropogenic influences on atmospheric fluxes. Metal concentrations for 22 sediment cores are determined by ICP-AES after ashing and strong acid extraction. Relations between organic content and metal concentrations at depth are used to separate natural and anthropogenic sources. Accumulation rates over the lifetime of the wetlands (???4500 years) have averaged 0.2 (Cd), 1.4 (Cu), 1.7 (Cr), 13.4 (Mn), 4.8 (Pb), and 18.7 (Zn) mg m-2 y-1. Rates for the last 100 years have increased on average by factors of 6 (Cd), 8 (Cu), 10 (Mn), 15 (Pb), and 30 (Zn), remaining effectively constant for Cr. Where the wetlands have been drained, metals have been lost from the sediments, owing to changes in organic content and local hydrochemistry (exposure to acidic rainfall). Sediment-based accumulation rates at the undrained sites are higher, though generally consistent, with measured and modeled atmospheric fluxes documented by short-term studies conducted over the last three decades. The fraction of the total metals in the wetlands estimated to be of anthropogenic origin ranges from approximately 3% for Cr, up to approximately 35% for Pb, and 70% for Zn. This historic legacy of contamination must be considered in land management decisions, particularly when wetlands are drained.

  6. Trace elements and heavy metals in the Grand Bay National Estuarine Reserve in the northern Gulf of Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Grand Bay National Estuarine Research Reserve has the highest biotic diversity of habitats and offer a reserve of food resources and commercially significant species. Rapid human civilization has led to accumulation of heavy metals and trace elements in estuaries. The Grand Bay National Estuarin...

  7. Metal accumulation in bobcats in the Southeastern USA.

    PubMed

    Thomason, Rachel K; Lockhart, J Mitchell; Loughry, W J; Bielmyer-Fraser, Gretchen K

    2016-10-01

    Bobcats (Lynx rufus) are wide-ranging mammals found throughout the continental USA. As carnivores near the top of their food chain, bobcats would seem to be a useful bioindicator of metal pollution in terrestrial environments. However, there is very limited research on bobcats in toxicology studies. Here, we offer the first analysis of metal (copper, selenium, silver, and zinc) contaminants in the livers of wild bobcats. Liver tissues from 120 adult bobcats (i.e., estimated to be ≥1 year old) were collected from 2003 to 2006 at four sites in Georgia and Florida, USA that experienced relatively similar levels of human disturbance. We found no differences in metal concentrations between males and females. At two of the sites sampled over three consecutive years, there was substantial year-to-year variation in the concentrations of Cu, Se, and Zn. We also documented some variation between sites, but only between sites sampled in different years, which may reflect additional temporal, rather than spatial, variation. Concentrations of Cu and Ag were significantly positively correlated with one another, as were concentrations of Se and Zn. Contrary to expectation, there were no significant relationships between body weight and metal concentrations. Finally, comparison with results from previous metal toxicology studies of nine-banded armadillos (Dasypus novemcinctus) and Virginia opossums (Didelphis virgianus), collected from the same sites during the same years, showed differential patterns of accumulation across species, suggesting that ecological lifestyle is an important influence on metal accumulation. This study provides reference levels of metal contaminants in the liver of bobcats as well as insight into metal accumulation in a top level carnivore.

  8. Metal accumulation in bobcats in the Southeastern USA.

    PubMed

    Thomason, Rachel K; Lockhart, J Mitchell; Loughry, W J; Bielmyer-Fraser, Gretchen K

    2016-10-01

    Bobcats (Lynx rufus) are wide-ranging mammals found throughout the continental USA. As carnivores near the top of their food chain, bobcats would seem to be a useful bioindicator of metal pollution in terrestrial environments. However, there is very limited research on bobcats in toxicology studies. Here, we offer the first analysis of metal (copper, selenium, silver, and zinc) contaminants in the livers of wild bobcats. Liver tissues from 120 adult bobcats (i.e., estimated to be ≥1 year old) were collected from 2003 to 2006 at four sites in Georgia and Florida, USA that experienced relatively similar levels of human disturbance. We found no differences in metal concentrations between males and females. At two of the sites sampled over three consecutive years, there was substantial year-to-year variation in the concentrations of Cu, Se, and Zn. We also documented some variation between sites, but only between sites sampled in different years, which may reflect additional temporal, rather than spatial, variation. Concentrations of Cu and Ag were significantly positively correlated with one another, as were concentrations of Se and Zn. Contrary to expectation, there were no significant relationships between body weight and metal concentrations. Finally, comparison with results from previous metal toxicology studies of nine-banded armadillos (Dasypus novemcinctus) and Virginia opossums (Didelphis virgianus), collected from the same sites during the same years, showed differential patterns of accumulation across species, suggesting that ecological lifestyle is an important influence on metal accumulation. This study provides reference levels of metal contaminants in the liver of bobcats as well as insight into metal accumulation in a top level carnivore. PMID:27629555

  9. Seagrasses as indicators for coastal trace metal pollution: a global meta-analysis serving as a benchmark, and a Caribbean case study.

    PubMed

    Govers, Laura L; Lamers, Leon P M; Bouma, Tjeerd J; Eygensteyn, Jelle; de Brouwer, Jan H F; Hendriks, A Jan; Huijbers, Chantal M; van Katwijk, Marieke M

    2014-12-01

    Seagrass beds are highly productive coastal ecosystems providing a large array of ecosystem services including fisheries and carbon sequestration. As seagrasses are known to be highly sensitive to anthropogenic forcing, we evaluated the use of trace metal concentrations in seagrasses as bioindicators for trace metal pollution of coastal regions at both global and local scale. We carried out a meta-analysis based on literature data to provide a global benchmark list for trace metal accumulation in seagrasses, which was lacking in literature. We subsequently carried out a case study at the Caribbean islands of Curaçao and Bonaire to test for local-scale differences in trace metal concentrations in seagrasses, and internal metal allocation. The benchmark and local study show that trace metal concentrations in seagrass leaves, regardless of the species, can vary over a 100-1000-fold range, and are related to the level of anthropogenic pressure, making seagrasses highly valuable indicators.

  10. Sediment properties and trace metal pollution assessment in surface sediments of the Laizhou Bay, China.

    PubMed

    Xu, Gang; Liu, Jian; Pei, Shaofeng; Gao, Maosheng; Hu, Gang; Kong, Xianghuai

    2015-08-01

    Spatial distribution, ecological risk, pollutant source, and transportation of trace metals in surface sediments, as well as the sediment properties, were analyzed in this study to assess the pollution status of trace metal in the Laizhou Bay, China. Results of provenance analyses indicate that surface sediments were primarily from weathering products carried by the surrounding short rivers and partially from loess matters carried by the Yellow River. Variations of trace metal concentrations were mostly controlled by the accumulation of weathering products, organic matters, and the hydrodynamics. Geoaccumulation index suggests that no Cr pollution occurred in the study area, and Cu, Pb, and Zn pollutions appeared only at a few stations. Comparatively, Cd and As pollutions were at noticeably weak to moderate level at many stations. The combination of six trace metals in this study had a 21% probability of being toxic in our study area based on sediment quality guidelines. Enrichment factors (EFs) and statistical analyses indicate that Cu, Pb, and Zn were primarily derived from the natural process of weathering. By contrast, Cd, As, and Cr (especially Cd and As) were provided by the anthropogenic activities to a large extent. Due to the dilution of coarse-grained sediments, there was even no contamination at some of stations that were obviously influenced by humans. Based on the current study of transportation process of fine-grained sediments in combination with the spatial distribution of EFs, it is found that the migration of anthropogenic trace metals was mainly controlled by the tide in the Laizhou Bay. The study suggests that an effective strategies and remedial measures should be designed and undertaken to prevent further anthropogenic Cd and As pollutions in this area in the future.

  11. Sponges as sentinels: Metal accumulation using transplanted sponges across a metal gradient.

    PubMed

    Davis, Andrew R; de Mestre, Corrine; Maher, William; Krikowa, Frank; Broad, Allison

    2014-12-01

    To be effective sentinels, organisms must be able to be readily translocated to contamination hotspots. The authors sought to assess metal accumulation in genetically identical explants of a relatively common estuarine sponge, Suberites cf. diversicolor. Explants were transplanted to 7 locations across a metal contamination gradient in a large coastal estuary in southeastern Australia to establish, first, that explants of this species could be successfully translocated; second, that explants accumulated metals (cadmium, copper, lead, selenium, and zinc) sufficiently rapidly to be effective sentinels; third, that rates of metal accumulation in explants were in agreement with metal concentrations within sediments (<63-µm fraction) at each of the transplant locations; and finally, that changes in explant biomass correlated with overall metal load. Suberites were readily transplanted, with no mortality observed for the 2 mo of transplantation. Metal accumulation for lead, cadmium, and zinc was in close agreement with sediment metal concentrations, and explants showed dramatic increases in these metals in the heavily contaminated northern sections of the estuarine lake. No striking patterns were apparent for copper and selenium. Finally, growth was negatively correlated with total metal load and standardized total metal load in our explants. Taken together, these outcomes confirm that explants of this sponge are amenable to translocation and show considerable promise as biomonitors.

  12. Sponges as sentinels: Metal accumulation using transplanted sponges across a metal gradient.

    PubMed

    Davis, Andrew R; de Mestre, Corrine; Maher, William; Krikowa, Frank; Broad, Allison

    2014-12-01

    To be effective sentinels, organisms must be able to be readily translocated to contamination hotspots. The authors sought to assess metal accumulation in genetically identical explants of a relatively common estuarine sponge, Suberites cf. diversicolor. Explants were transplanted to 7 locations across a metal contamination gradient in a large coastal estuary in southeastern Australia to establish, first, that explants of this species could be successfully translocated; second, that explants accumulated metals (cadmium, copper, lead, selenium, and zinc) sufficiently rapidly to be effective sentinels; third, that rates of metal accumulation in explants were in agreement with metal concentrations within sediments (<63-µm fraction) at each of the transplant locations; and finally, that changes in explant biomass correlated with overall metal load. Suberites were readily transplanted, with no mortality observed for the 2 mo of transplantation. Metal accumulation for lead, cadmium, and zinc was in close agreement with sediment metal concentrations, and explants showed dramatic increases in these metals in the heavily contaminated northern sections of the estuarine lake. No striking patterns were apparent for copper and selenium. Finally, growth was negatively correlated with total metal load and standardized total metal load in our explants. Taken together, these outcomes confirm that explants of this sponge are amenable to translocation and show considerable promise as biomonitors. PMID:25208806

  13. Volcanic Degassing of Halogens and Trace Metals at Mt Etna, Sicily - A Melt Inclusion Investigation

    NASA Astrophysics Data System (ADS)

    Collins, S. J.; Pyle, D. M.; Maclennan, J.; Mather, T. A.

    2007-12-01

    The process of volcanic degassing has important implications for eruption style, environmental impact of volcanic aerosols and economic mineralization processes at depth. Mt Etna, Sicily is persistently degassing, and responsible for 5-10% of global annual volcanic emissions of CO2, SO2 and volatile trace metals. We collected a suite of olivine hosted melt inclusions and matrix glasses in newly erupted products from Mt Etna, Sicily, spanning the major eruptions of the previous 6 years. These glasses have been measured for the concentrations of volatile (H, C, Cl, F) and trace elements (Li, Zr) by ion microprobe at the University of Edinburgh and for major and trace elements with a particular focus on the volatile trace metals by electron microprobe and laser ablation ICP-MS at the University of Cambridge. Volatile and trace element concentrations in melt inclusions allow us to constrain the storage, gas accumulation and degassing processes at Mt Etna over the past 6 years. The 2004-2007 melts were residual from the 2001- 2003 and were stored at a shallow depth where they evolved and equilibrated with a CO2-rich, H2O- poor flux of gas from depth. Because the life cycle of these melts is now well understood we can use new data of halogen and trace metal compositions from these same melt inclusions to determine the effect the shallow degassing process has on the behaviour of such environmentally and economically important elements. Trace metals and the halide forming elements are enriched in the volcanic plume of Etna partly because of their volatile behaviour and also due to the formation of stable complexes with the hard ligands Cl, F and S. Removal of metals from the melt by the process of shallow degassing will deplete the residual melt in trace metals and remove these elements from the volcanic system preventing ore formation, while enhancing the concentrations in the volcanic plume. We investigate the extent at which this has occurred on Mt Etna over the past 6

  14. Trace Metal Source Terms in Carbon Sequestration Environments

    SciTech Connect

    Karamalidis, Athanasios; Torres, Sharon G.; Hakala, Jacqueline A.; Shao, Hongbo; Cantrell, Kirk J.; Carroll, Susan A.

    2013-01-01

    ABSTRACT: Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising; however, possible CO2 or CO2-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define to provide a range of concentrations that can be used as the trace element source term for reservoirs and leakage pathways in risk simulations. Storage source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from cements and sandstones, shales, carbonates, evaporites, and basalts from the Frio, In Salah, Illinois Basin, Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands, and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution was tracked by measuring solution concentrations over time under conditions (e.g., pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for maximum contaminant levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments because of the presence of CO2. Results indicate that Cr and Pb released from sandstone reservoir and shale cap rocks exceed the MCLs byan order of magnitude, while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the trace element source term for reservoirs and leakage pathways in risk simulations to further evaluate the impact of leakage on groundwater quality.

  15. Trace metal source terms in carbon sequestration environments.

    PubMed

    Karamalidis, Athanasios K; Torres, Sharon G; Hakala, J Alexandra; Shao, Hongbo; Cantrell, Kirk J; Carroll, Susan

    2013-01-01

    Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising; however, possible CO(2) or CO(2)-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define a range of concentrations that can be used as the trace element source term for reservoirs and leakage pathways in risk simulations. Storage source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from cements and sandstones, shales, carbonates, evaporites, and basalts from the Frio, In Salah, Illinois Basin, Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands, and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution was tracked by measuring solution concentrations over time under conditions (e.g., pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for maximum contaminant levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments because of the presence of CO(2). Results indicate that Cr and Pb released from sandstone reservoir and shale cap rocks exceed the MCLs by an order of magnitude, while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the trace element source term for reservoirs and leakage pathways in risk simulations to further evaluate the impact of leakage on groundwater quality. PMID:23215015

  16. Trace metal source terms in carbon sequestration environments.

    PubMed

    Karamalidis, Athanasios K; Torres, Sharon G; Hakala, J Alexandra; Shao, Hongbo; Cantrell, Kirk J; Carroll, Susan

    2013-01-01

    Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising; however, possible CO(2) or CO(2)-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define a range of concentrations that can be used as the trace element source term for reservoirs and leakage pathways in risk simulations. Storage source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from cements and sandstones, shales, carbonates, evaporites, and basalts from the Frio, In Salah, Illinois Basin, Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands, and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution was tracked by measuring solution concentrations over time under conditions (e.g., pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for maximum contaminant levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments because of the presence of CO(2). Results indicate that Cr and Pb released from sandstone reservoir and shale cap rocks exceed the MCLs by an order of magnitude, while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the trace element source term for reservoirs and leakage pathways in risk simulations to further evaluate the impact of leakage on groundwater quality.

  17. Trace metal mapping by laser-induced breakdown spectroscopy

    SciTech Connect

    Kaiser, Jozef; Novotny, Dr. Karel; Hrdlicka, A; Malina, R; Hartl, M; Kizek, R; Adam, V

    2012-01-01

    Abstract: Laser-Induced Breakdown Spectroscopy (LIBS) is a sensitive optical technique capable of fast multi-elemental analysis of solid, gaseous and liquid samples. The potential applications of lasers for spectrochemical analysis were developed shortly after its invention; however the massive development of LIBS is connected with the availability of powerful pulsed laser sources. Since the late 80s of 20th century LIBS dominated the analytical atomic spectroscopy scene and its application are developed continuously. Here we review the utilization of LIBS for trace elements mapping in different matrices. The main emphasis is on trace metal mapping in biological samples.

  18. Effects of zinc and copper on growth and metal accumulation in duckweed, Lemna minor

    SciTech Connect

    Dirilgen, N.; Inel, Y. )

    1994-09-01

    Heavy metal pollutants are known to be quite toxic to a wide variety of aquatic plants. Lemna (duckweed), due to its special feature, is sought as a test organism for aquatic pollutant studies and for wastewater treatment. Lemna grows rapidly and reproduces vegetatively; its biomass is measured easily. It is adaptable to various aquatic conditions; it extacts and also accumulates metals in its frond bodies. Among the metals, Cu is classified as extremely toxic and Zn is classified as moderately toxic to Lemna. It is reported that both Cu and Zn concentrations in the medium have a great impact on the growth responses and the physiological processes in Lemna. Deficiencies in Cu and Zn resulted in chlorosis of L.minor fronds and low concentrations of CU interfered with the floral induction in L.minor and L.gibba. Excess Cu inhibited both frond growth and frond multiplication of L. paucicostata and it decreased the content of chlorophyll [alpha] and photosynthetic CO[sub 2] uptake in L.minor. In water bodies, metals always are present in combination. Consequently, metal pair interaction is a factor to be considered. However, there are few studies on the effects of metal pair interactions on duckweed growth and metal accumulation. The purpose of this study was to investigate the effects of increased concentrations of Zn and Cu in combination on growth and metal accumulation by Lemna minor L. under controlled laboratory conditions. Zn and Cu were chosen since they are known as essential trace elements for duckweed up to a certain concentration; above that growth inhibition might occur. 16 refs., 3 figs., 6 tabs.

  19. Effects of sewage sludge amendment on snail growth and trace metal transfer in the soil-plant-snail food chain.

    PubMed

    Bourioug, Mohamed; Gimbert, Frédéric; Alaoui-Sehmer, Laurence; Benbrahim, Mohammed; Badot, Pierre-Marie; Alaoui-Sossé, Badr; Aleya, Lotfi

    2015-11-01

    Cu, Zn, Pb, and Cd concentrations in a soil plant (Lactuca sativa) continuum were measured after sewage sludge amendment. The effects of sewage sludge on growth and trace metal bioaccumulation in snails (Cantareus aspersus) were investigated in a laboratory experiment specifically designed to identify contamination sources (e.g., soil and leaves). Application of sewage sludge increased trace metal concentrations in topsoil. However, except Zn, metal concentrations in lettuce leaves did not reflect those in soil. Lettuce leaves were the main source of Zn, Cu, and Cd in exposed snails. Bioaccumulation of Pb suggested its immediate transfer to snails via the soil. No apparent toxic effects of trace metal accumulation were observed in snails. Moreover, snail growth was significantly stimulated at high rates of sludge application. This hormesis effect may be due to the enhanced nutritional content of lettuce leaves exposed to sewage sludge.

  20. Trace metals in edible tissues of livestock and poultry

    SciTech Connect

    Coleman, M.E.; Elder, R.S.; Basu, P.; Koppenaal, G.P.

    1992-07-01

    Data from a random-sampling study are presented for trace metals in edible tissues of livestock (bovine including bull, steer, cow heifer, calf; ovine including bull, steer, cow, heifer, calf; ovine including mature sheep and lambs; porcine including market hogs, boar/stag, and slow) and poultry (including young and mature chicken, young turkey, and duck). Tissue homogenates were ashed, and residual materials were dissolved in hydrochloric acid for analysis by atomic absorption spectroscopy. Statistical summaries of data are provided for the trace metals lead, cadmium, cobalt, copper, iron, manganese, nickel, and zinc. The heavy metals of toxicological concern, lead and cadmium, are emphasized in this study. Lead and cadmium were rarely detected in muscle (0.2-0.5% positive among 2314 animals sampled). Lead was also infrequently detected in liver (1.8% positive) and kidney (2.4% positive). Nearly 46% of livers analyzed were positive for cadmium, and approximately 78 of kidney samples were positive for cadmium. No regulatory limits are established in the United States for the trace metals reported in this study, although restrictions on the use of kidneys from mature poultry as human food have been established because of concern about potential cadmium levels. Kidneys from this study, more frequently than livers, bore cadmium levels that exceeded the regulatory limits of other countries or organizations. Regulatory implications of the data are discussed. 23 refs., 7 tabs.

  1. Trace metal speciation in natural waters: Computational vs. analytical

    USGS Publications Warehouse

    Kirk, Nordstrom D.

    1996-01-01

    Improvements in the field sampling, preservation, and determination of trace metals in natural waters have made many analyses more reliable and less affected by contamination. The speciation of trace metals, however, remains controversial. Chemical model speciation calculations do not necessarily agree with voltammetric, ion exchange, potentiometric, or other analytical speciation techniques. When metal-organic complexes are important, model calculations are not usually helpful and on-site analytical separations are essential. Many analytical speciation techniques have serious interferences and only work well for a limited subset of water types and compositions. A combined approach to the evaluation of speciation could greatly reduce these uncertainties. The approach proposed would be to (1) compare and contrast different analytical techniques with each other and with computed speciation, (2) compare computed trace metal speciation with reliable measurements of solubility, potentiometry, and mean activity coefficients, and (3) compare different model calculations with each other for the same set of water analyses, especially where supplementary data on speciation already exist. A comparison and critique of analytical with chemical model speciation for a range of water samples would delineate the useful range and limitations of these different approaches to speciation. Both model calculations and analytical determinations have useful and different constraints on the range of possible speciation such that they can provide much better insight into speciation when used together. Major discrepancies in the thermodynamic databases of speciation models can be evaluated with the aid of analytical speciation, and when the thermodynamic models are highly consistent and reliable, the sources of error in the analytical speciation can be evaluated. Major thermodynamic discrepancies also can be evaluated by simulating solubility and activity coefficient data and testing various

  2. Trace Metal Source Terms in Carbon Sequestration Environments

    SciTech Connect

    Karamalidis, Athanasios K; Torres, Sharon G; Hakala, J Alexandra; Shao, Hongbo; Cantrell, Kirk J; Carroll, Susan

    2012-02-05

    Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising, however, possible CO₂ or CO₂-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define trace metal source terms from the reaction of supercritical CO₂, storage reservoir brines, reservoir and cap rocks. Storage reservoir source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from sandstones, shales, carbonates, evaporites, basalts and cements from the Frio, In Salah, Illinois Basin – Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution is tracked by measuring solution concentrations over time under conditions (e.g. pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for Maximum Contaminant Levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments due to the presence of CO₂. Results indicate that Cr and Pb released from sandstone reservoir and shale cap rock exceed the MCLs by an order of magnitude while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the reservoir and caprock source term to further evaluate the impact of leakage on groundwater quality.

  3. Removal of trace metal contaminants from potable water by electrocoagulation.

    PubMed

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K

    2016-01-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.

  4. Removal of trace metal contaminants from potable water by electrocoagulation

    NASA Astrophysics Data System (ADS)

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-06-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.

  5. Removal of trace metal contaminants from potable water by electrocoagulation

    PubMed Central

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-01-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency. PMID:27324564

  6. Microplate Technique for Determining Accumulation of Metals by Algae

    PubMed Central

    Hassett, James M.; Jennett, J. Charles; Smith, James E.

    1981-01-01

    A microplate technique was developed to determine the conditions under which pure cultures of algae removed heavy metals from aqueous solutions. Variables investigated included algal species and strain, culture age (11 and 44 days), metal (mercury, lead, cadmium, and zinc), pH, effects of different buffer solutions, and time of exposure. Plastic, U-bottomed microtiter plates were used in conjunction with heavy metal radionuclides to determine concentration factors for metal-alga combinations. The technique developed was rapid, statistically reliable, and economical of materials and cells. Results (expressed as concentration factors) were in reasonably good agreement with literature values. All species of algae studied removed mercury from solution. Green algae proved better at accumulating cadmium than did blue-green algae. No alga studied removed zinc, perhaps because cells were maintained in the dark during the labeling period. Chlamydomonas sp. proved superior in ability to remove lead from solution. PMID:16345764

  7. Red sea corals as biomonitors of trace metal pollution.

    PubMed

    Hanna, R G; Muir, G L

    1990-05-01

    Red Sea corals have been found to be biomonitors of trace metal pollution. A comparative study was undertaken on three species from a polluted area near a desalination plant at Jeddah (Saudi Arabia) and from an unpolluted area. The results show that corals take-up trace elements from their aquatic environment and thereby act to record changes in the composition of that environment. Variations in the composition of skeletons and soft tissues of corals have been correlated with changes in sea water composition. Three coral species, Porites lutea, Goniastrea retiformis and Pocillopora verrucosa have been analysed for Hg, Cu, Zn, Pb, Mn, Fe, Ni, Cd, V, Al, Cr, Mg, B, Ca, and Sr in both skeletal and soft tissues. Results show that corals in the polluted areas have significantly higher concentrations of trace elements compared to that of corals from unpolluted areas.

  8. Estimation of trace metal elements in oral mucosa specimens by using SR-XRF, PIXE, and XAFS.

    PubMed

    Sugiyama, Tomoko; Uo, Motohiro; Wada, Takahiro; Omagari, Daisuke; Komiyama, Kazuo; Noguchi, Tadahide; Jinbu, Yoshinori; Kusama, Mikio

    2015-02-01

    The effects of dissolved elements from metal dental restorations are a major concern in lesions of the oral mucosa, and the evaluation of accumulated metal elements, especially their distribution and chemical state, is essential for determining the precise effects of trace metals. In this study, X-ray fluorescence with synchrotron radiation (SR-XRF) and particle-induced X-ray emission (PIXE) were applied for distribution analysis of the trace metal elements contained in the oral mucosa, and the chemical states of the elements were estimated using X-ray absorption fine structure (XAFS) analysis. Appropriate combination of these analysis techniques, particularly SR-XRF and PIXE, to visualize the distributions of the elements in the oral mucosa allowed for the observation and evaluation of accumulated metal ions and debris. Importantly, the analyses in this study could be carried out using conventional histopathological specimens without damaging the specimens. Therefore, this method would be applicable for the detection of accumulated trace metal elements in biopsy specimens from the oral mucosa.

  9. Comparison of metal accumulation in mussels at different local and global scales.

    PubMed

    Blackmore, Graham; Wang, Wen-Xiong

    2003-02-01

    Cadmium and zinc uptake from the dissolved phase, assimilation efficiency (AE) from the dietary phase, and body burden as well as clearance rate were measured in green mussels, Perna viridis, and blue mussels Mytilus edulis, M. galloprovincialis and Mytilus trossulus. Perna viridis was collected from four sites differentially enriched with trace metals in Hong Kong and blue mussels were collected from different climatic zones, i.e., subarctic and temperate, to allow comparisons with the more tropical green mussels. Despite similar shell length, the dry weight of mussels varied significantly between sites and species and this had a large effect on Cd and Zn accumulation, clearance rate, and metal body burden. All data were, therefore, weight adjusted to allow comparison without this confounding factor. Trace-metal body concentrations were significantly different between sites, and P. viridis collected from Tsing Yi, Hong Kong, had the highest levels of all measured metals when compared with other Hong Kong sites. There was, however, no relationship between the degree of metal enrichment and the Cd and Zn uptake (both from dissolved and particulate sources) and clearance rates. Furthermore, Cd and Zn uptake (dissolved and particulate) and clearance rate varied little between species or climatic zones of collection. Thus, over the range of body trace-metal concentrations measured and between mussel species over large geographical distances and climatic zones, the uptake rates, AEs, and clearance rates are similar when measured under the same laboratory conditions after body-size correction. When other factors such as salinity are also corrected, biomonitoring data from different areas and even utilizing different mussel species may be directly comparable. This study therefore provides important evidence in support of Mussel Watch Programs.

  10. Adsorption of humic acids and trace metals in natural waters

    NASA Technical Reports Server (NTRS)

    Leung, W. H.

    1982-01-01

    Studies concerning the interactions between suspended hydrous iron oxide and dissolved humic acids and trace metals are reported. As a major component of dissolved organic matters and its readiness for adsorption at the solid/water interface, humic acids may play a very important role in the organometallic geochemistry of suspended sediments and in determining the fate and distribution of trace metals, pesticides and anions in natural water systems. Most of the solid phases in natural waters contain oxides and hydroxides. The most simple promising theory to describe the interactions of hydrous iron oxide interface is the surface complex formation model. In this model, the adsorptions of humic acids on hydrous iron oxide may be interpreted as complex formation of the organic bases (humic acid oxyanions) with surface Fe ions. Measurements on adsorptions were made in both fresh water and seawater. Attempts have been made to fit our data to Langmuir adsorption isotherm. Adsorption equilibrium constants were determined.

  11. Sites of mineral deposition in metal-accumulating cells

    SciTech Connect

    Mason, A.Z.; Simkiss, K.

    1982-06-01

    The basophil cells of the hepatopancrease of gastropods containing intracellular granules, which act as the sites of accumulation or detoxification of environmentally available metals, are discissed. A technique is described which results in the loss of these concretions and allows an ultrastructural study of their formation. Manganese ions are used as a probe for this mineralization process which is shown to occur on the inner surface of a vesicular membrane.

  12. Interaction of functionalized fullerenes and metal accumulation in Daphnia magna.

    PubMed

    Yu, Zhi-Guo; Wang, Wen-Xiong

    2014-05-01

    In aquatic environments, transformation of pollutants by association with functionalized carbon-based nanoparticles can dramatically change their cycling pathways. The present study quantified the uptake and depuration behavior of cadmium and zinc bound with functionalized fullerene nanoparticles (f-nC(60)) in a freshwater cladoceran, Daphnia magna, in a well-dispersed medium. Metal uptake proceeded with a linear pattern during the 8-h exposure period, and the uptake rate constants (ku) were 1.3-fold to 1.4-fold higher for Cd or comparable for Zn bound with f-nC(60) than those of the free ones. The assimilation efficiencies of Cd and Zn bound with f-nC(60) were significantly enhanced when compared with those metals bound with algal food. Furthermore, the depuration of metals bound with f-nC(60) was relatively slower compared to the depuration of metals bound with carbon nanotubes. A longer exposure to f-nC(60) resulted in an even slower depuration of metals. The authors conclude that metal binding with f-nC(60) as modified nanoparticles could serve as a new pathway for the elevated metal accumulation in Daphnia.

  13. Accumulation of metals and histopathology in Oreochromis niloticus exposed to treated NNPC Kaduna (Nigeria) petroleum refinery effluent

    SciTech Connect

    Onwumere, B.G.; Oladimeji, A.A. )

    1990-04-01

    Accumulation of heavy metals and histopathology were observed in Oreochromis niloticus exposed to treated petroleum refinery effluent from the Nigerian National Petroleum Corporation, Kaduna. Analysis of fish metal burden showed that the fish concentrated trace metals a thousand times above the levels existing in the exposure medium. Some metals were preferentially accumulated more than others and the accumulation was, in decreasing order, Pb, Fe, Zn, Cu, Mn, Cr, Ni, and Cd. Whole fish metal burden was lower in fish from which the gill, liver, and kidney had been removed, suggesting that these organs accumulated the metals more than other tissues. Hemorrhaging of fins was observed in all treatment concentrations except that of the control, and fish exposed to 40 and 50% effluent were most affected. Erosion of the caudal fin was also observed in fish exposed to 40 and 50% effluent. Examination of the organs for histopathology revealed damages to the gills. Gills with edematous fused lamellae congested with blood were observed. No histopathological damage was observed in the liver and kidney. The extent of metal accumulation and histopathological damage were directly related to the effluent concentrations.

  14. Behavior of trace metals in simulated gasification conditions

    SciTech Connect

    Benson, S.A.; Erickson, T.A.; Zygarlicke, C.J.

    1995-03-01

    The fate of trace metals is being investigated in two emerging coal gasification electric power-generating systems: integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC). Some of the trace metals in coal are considered air toxics when released into the atmosphere and can also cause the degradation of fuel cell efficiency as a result of contamination. The fate of trace metals during coal conversion in GCC and IGFC systems is closely tied to how the trace metals are associated in the coal and gasification conditions. Bench- and pilot-scale gasification experiments were performed using Illinois No. 6 coal to determine the partitioning of mercury, selenium, arsenic, nickel, cadmium, lead, and chromium into gas, liquid, and solid phases as a function of gasification conditions and coal composition. Entrained ash was collected from the small-scale reactor using a multicyclone and impinger sampling train. Coal analysis revealed arsenic, mercury, nickel, lead, and selenium to be primarily associated with pyrite. Chromium was associated primarily with clay minerals, and cadmium appeared to have mostly an organic association. The partitioning during gasification indicated that chromium, lead, and nickel were enriched in the small ash particulate fraction (less than 1.5 {mu}m), while arsenic, selenium, and mercury were depleted in the particulate and more enriched in the vapor-phase fraction (collected in the impingers). Oxygen contents were varied to represent both combustion and gasification systems. Most of the work was conducted at lower oxygen-to-carbon ratios. Lower oxygen-to-carbon ratios resulted in more reducing environments in the gasification system, which appeared to drive more mercury to the vapor phase. Under constant oxygen-to-carbon ratios, mercury, selenium, and cadmium showed increasing volatility with increasing reaction zone temperature.

  15. Metal ion-inducing metabolite accumulation in Brassica rapa.

    PubMed

    Jahangir, Muhammad; Abdel-Farid, Ibrahim Bayoumi; Choi, Young Hae; Verpoorte, Robert

    2008-09-29

    Plants face a number of biotic and abiotic environmental stress factors during growth. Among the abiotic factors, in particular, a great deal of attention has been paid to metals not only because of their increasing amounts in the environment due to rapid industrial development but also because of the variation of metal composition in soil. Cultivation of crops close to industrial areas or irrigation with contaminated water may result in both growth inhibition and tissue accumulation of metals. Brassica species are well known as metal accumulators and are being used for phytoremediation of contaminated soils. However, the metal tolerance mechanism in the plant still remains unclear. In order to investigate the metabolomic changes induced by metal ions in Brassica, plants were subjected to concentrations 50, 100, 250 and 500 mmol of copper (Cu), iron (Fe) and manganese (Mn) in separate treatments. (1)H NMR and two-dimensional NMR spectra coupled with principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) were applied to investigate the metabolic change in Brassica rapa (var. Raapstelen). The (1)H-NMR analysis followed by the application of chemometric methods revealed a number of metabolic consequences. Among the metabolites that showed variation, glucosinolates and hydroxycinnamic acids conjugated with malates were found to be the discriminating metabolites as were primary metabolites like carbohydrates and amino acids. This study shows that the effects of Cu and Fe on plant metabolism were larger than those of Mn and that the metabolomic changes varied not only according to the type of metal but also according to its concentration.

  16. Plants accumulating heavy metals in the Danube River wetlands

    PubMed Central

    2013-01-01

    Background We present herein our results regarding the accumulation of four heavy metals (copper, cadmium, lead, and zinc) in four aquatic species plants (Ceratophyllum demersum, Potamogeton pectinatus, Potamogeton lucens, Potamogeton perfoliatus) collected from the Danube River, South-Western part of Romania and their possible use as indicators of aquatic ecosystems pollution with heavy metals. Methods Elements concentration from the vegetal material was determined through Inductively Coupled Plasma – Mass Spectrometry. Results The species were chosen based on their previous use as bioindicators in aquatic ecosystems and due to the fact they are one of the most frequent aquatic plant species of the Danube River ecosystems within the Iron Gates Natural Park. Highest amounts are recorded for Ceratophyllum demersum (3.52 μg/g for Cd; 22.71 μg/g for Cu; 20.06 μg/g for Pb; 104.23 μg/g for Zn). Among the Potamogeton species, the highest amounts of heavy metals are recorded in Potamogeton perfoliatus (1.88 μg/g for Cd; 13.14 μg/g for Cu; 13.32 μg/g for Pb; 57.96 μg/g for Zn). The sequence for the bioconcentration factors (BCFs) calculated in order to describe the accumulation of the four metals is Cd >> Zn > Pb > Cu. Increase of the zinc concentration determines an increase of the cadmium concentration (Spearman rho=0.40, p=0.02). Conclusions Despite the low ambiental levels of heavy metals, the four aquatic plants have the ability to accumulate significant amounts, which make them useful as biological indicators. BCF value for Ceratophyllum demersum indicated this species as a cadmium hyperaccumulator. PMID:24359799

  17. Asbestos fibres introduce trace metals into streamwater and sediments.

    PubMed

    Schreier, H

    1987-01-01

    Based on a case study in the Sumas River, it is demonstrated that asbestos fibres, which were introduced by a massive landslide, have altered the water quality and sediment conditions in the downstream section of the river. Asbestos fibres, because of their small size, are readily transported and resuspended i in stream systems. Associated with the fibres are high quantities of Ni, Cr, Co and Mn which occur as contaminations and isomorphic substitutions in most asbestos materials. A direct link between discharge, asbestos fibre and Ni concentrations was demonstrated in the water. Trace metal values in the sediments decrease with distance from the point source but the concentrations 20 km downstream of the slide are still significantly higher than levels at a control station unaffected by the slide. Asbestos fibres leach in acid media, and Mg and trace metals are removed. The process and rates were illustrated on the basis of laboratory experiments using organic acids. Since the pH in the streamwater is decreasing from 8.4 to 7.1 in the downstream direction, trace metals release is of concern. PMID:15092801

  18. Model for trace metal exposure in filter-feeding flamingos at alkaline Rift Valley Lake, Kenya

    SciTech Connect

    Nelson, Y.M.; DiSante, C.J.; Lion, L.W.; Thampy, R.J.; Raini, J.A.; Motelin, G.K.

    1998-11-01

    Toxic trace metals have been implicated as a potential cause of recent flamingo kills at Lake Nakuru, Kenya. Chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) have accumulated in the lake sediments as a result of unregulated discharges and because this alkaline lake has no natural outlet. Lesser flamingos (Phoeniconaias minor) at Lake Nakuru feed predominantly on the cyanobacterium Spirulina platensis, and because of their filter-feeding mechanism, they are susceptible to exposure to particle-bound metals. Trace metal adsorption isotherms to lake sediments and S. platensis were obtained under simulated lake conditions, and a mathematical model was developed to predict metal exposure via filter feeding based on predicted trace metal phase distribution. Metal adsorption to suspended solids followed the trend Pb {much_gt} Zn > Cr > Cu, and isotherms were linear up to 60 {micro}g/L. Adsorption to S. platensis cells followed the trend Pb {much_gt} Zn > Cu > Cr and fit Langmuir isotherms for Cr, Cu and Zn and a linear isotherm for Pb. Predicted phase distributions indicated that Cr and Pb in Lake Nakuru are predominantly associated with suspended solids, whereas Cu and Zn are distributed more evenly between the dissolved phase and particulate phases of both S. platensis and suspended solids. Based on established flamingo feeding rates and particle size selection, predicted Cr and Pb exposure occurs predominantly through ingestion of suspended solids, whereas Cu and Zn exposure occurs through ingestion of both suspended solids and S. platensis. For the lake conditions at the time of sampling, predicted ingestion rates based on measured metal concentrations in lake suspended solids were 0.71, 6.2, 0.81, and 13 mg/kg-d for Cr, Cu, Pb, and Zn, respectively.

  19. Trace element accumulation in fishes collected from coastal waters of the Caspian Sea.

    PubMed

    Anan, Yasumi; Kunito, Takashi; Tanabe, Shinsuke; Mitrofanov, Igor; Aubrey, David G

    2005-01-01

    Concentrations of 13 trace elements (V, Mn, Cr, Co, Cu, Zn, Se, Mo, Ag, Cd, Hg, Tl and Pb) were determined in muscle of bony fishes collected from coastal areas of the Caspian Sea (Kazakhstan, Azerbaijan, Turkmenistan and Iran). In all the fishes, Zn concentration was highest, followed by Cu, Se, Mn and Co, while levels of toxic elements (Ag, Cd, Cd, Tl and Pb) were relatively low. Concentrations of several elements were significantly varied between the species in each sampling area. For most of the trace elements examined, the concentrations decreased significantly with body weight of fishes. In contrast, a positive correlation with body weight was found for Co, Se and Pb concentrations in one fish species, and Hg in 2 fish species. Geographical difference in the concentrations of trace elements was examined using the Caspian roach collected from five stations of Iranian coastal waters. The concentrations of Co, Mo, Ag, Cd and Tl were higher in fishes from western stations than those from eastern stations, whereas the opposite trend was observed for Hg, indicating that local sources of trace metal pollution may be present in the Iranian coastal areas of the Caspian Sea. Levels of trace elements in Caspian fishes were relatively low in comparison to those of other regions, but Zn and Hg levels in some specimens exceeded the guideline values for food. PMID:16051278

  20. Trace Metals in Urban Stormwater Runoff and their Management

    NASA Astrophysics Data System (ADS)

    Li, T.; Hall, K.; Li, L. Y.; Schreier, H.

    2009-04-01

    In past decades, due to the rapid urbanization, land development has replaced forests, fields and meadows with impervious surfaces such as roofs, parking lots and roads, significantly affecting watershed quality and having an impact on aquatic systems. In this study, non-point source pollution from a diesel bus loop was assessed for the extent of trace metal contamination of Cu, Mn, Fe, and Zn in the storm water runoff. The study was carried out at the University of British Columbia (UBC) in the Greater Vancouver Regional District (GVRD) of British Columbia, Canada. Fifteen storm events were monitored at 3 sites from the diesel bus loop to determine spatial and temporal variations of dissolved and total metal concentrations in the storm water runoff. The dissolved metal concentrations were compared with the provincial government discharge criteria and the bus loop storm water quality was also compared with previous studies conducted across the GVRD urban area. To prevent storm water with hazardous levels of contaminants from being discharged into the urban drainage system, a storm water catch basin filter was installed and evaluated for its efficiency of contaminants removal. The perlite filter media adsorption capacities for the trace metals, oil and grease were studied for better maintenance of the catch basin filter. Dissolved copper exceeded the discharge criteria limit in 2 out of 15 cases, whereas dissolved zinc exceeded the criteria in 4 out of 15 cases, and dissolved manganese was below the criteria in all of the events sampled. Dissolved Cu and Zn accounted for 36 and 45% of the total concentration, whereas Mn and Fe only accounted for 20 and 4% of their total concentration, respectively. Since they are more mobile and have higher bioaccumulation potentials, Zn and Cu are considered to be more hazardous to the aquatic environment than Fe and Mn. With high imperviousness (100%) and intensive traffic at the UBC diesel bus loop, trace metal concentrations

  1. Metal accumulation in wild nine-banded armadillos.

    PubMed

    Jarvis, Tayler A; Lockhart, J Mitchell; Loughry, W J; Bielmyer, Gretchen K

    2013-08-01

    Nine-banded armadillos (Dasypus novemcinctus) are widespread and abundant New World mammals with a lifestyle that entails prolonged, intimate contact with soils. Thus, armadillos would seem a promising candidate as a sentinel species to monitor chemical contamination in terrestrial ecosystems. Surprisingly, there have been virtually no toxicology studies on armadillos. Here, we provide the first analysis of metal contaminants for wild armadillos. Liver tissues were obtained from 302 armadillos collected at 6 sites in Georgia and Florida, USA that varied in their extent of human disturbance, from rural pine plantations to highly modified military/space installations. Data were stratified by age (juvenile and adult), sex, and site. Temporal (yearly) variation was examined at two of the sites that were sampled over three consecutive years. Concentrations of aluminum, cadmium, copper, nickel, lead, and zinc were measured in liver samples from each site. Although reference levels are not available for armadillos, accumulated metal concentrations were comparable to those reported for other mammals. We found no evidence of sex or age differences in the concentrations of any metal, except for Cd (age) and Pb (sex and age). However, concentrations of most metals varied substantially across sites and over time. Finally, concentrations of many metals were positively correlated with one another, suggesting that they likely co-occurred in some areas. Collectively, this study indicates the utility of armadillos as a sentinel species for studies of metal contamination in terrestrial systems, and highlights the need for further studies of other toxicants in these animals. PMID:23794189

  2. Accumulation of heavy metals in the earthworm Eisenia foetida

    SciTech Connect

    Hartenstein, R.; Neuhauser, E.F.; Collier, J.

    1980-01-01

    Conversion of waste-activated sludge into egesta by the earthworm Eisenia foetida resulted in neither an increase nor decrease of 0.1 N HCl-extractable cadmium, copper, nickel, lead, or zinc. The addition of 2500 ppM copper as copper sulfate to activated sludge caused 100% mortality whthin 1 week, though feeding upon nonamended activated sludges with up to 1500 ppM copper over several months was innocuous. Amendment of sludge with 10, 50, and 100 ppM Cd as CdSO/sub 4/ resulted in 3.90-, 2.04-, and 1.44-fold concentrations in the earthworm over the quantities present in the sludge, with a range of 118 to 170 ppM being found on exposure to the highest level for periods of 1 to 5 weeks at 25/sup 0/C. In field trials with nonamended sludge, however, containing 12 to 27 ppM Cd, biweekly sampling for 28 weeks revealed accumulations in E. foetida ranging from 8 to 46 ppM; control earthworms not exposed to culture media with easily measurable Cd levels contained 0.3 to 2 ppM Cd. Upwards to about 50 ppM Ni, 325 ppM Pb, and 250 ppM Zn accumulated from sludges amended with ionic soluble forms of these metals. In the field, where these metals ranged from 2 to 46, 1 to 53, and 68 to 210 ppM, respectively, an upper concentration of about 50 ppM Ni, 55 ppM Pb, and 250 ppM Zn were found in the earthworm. Distinctions were made between accumulable and concentratable and a discussion is provided to show that each of the most problematic heavy metals, Cd, Zn, Ni, Pb, and Cu, may accumulate or concentrate in the earthworm.

  3. Trace metals in Japanese eel Anguilla japonica in relation to ecological migratory types and growth stages

    NASA Astrophysics Data System (ADS)

    Le, Dung Quang; Chino, Naoko; Shirai, Kotaro; Arai, Takaomi

    2010-04-01

    In order to understand the metal concentrations in Japanese eel Anguilla japonica, nine elements were analyzed in the livers of different migratory types of eels collected from Tokushima region (south Japan). Migratory types were defined by examining the Sr:Ca ratio in otoliths. The results showed that there were significant differences in V, Cr, Cd, and Pb concentrations among the migratory types. Mature-sea-eels show a higher risk of metal accumulation than other migratory types of eels, and the concentrations of Mn, Cu, and Zn in mature eels were significantly higher than those in immature eels. The study suggests that the eel liver is a valuable bioindicator for trace metals; however, when using the eel as a bioindicator to reveal the pollutants in aquatic systems, life history analysis should be carried out for accurate interpretation of the results.

  4. Arsenic and trace metals in commercially important bivalves, Anadara granosa and Paphia undulata

    SciTech Connect

    Mat, I. )

    1994-06-01

    The semi-culture of marine bivalves particularly Anadara granosa is of considerable economic importance in Malaysia. Currently, about 4-5000 ha of mudflats along the west coast are utilized for this purpose. Therefore, contamination of the highly productive mudflats with heavy metals tend to be accumulated in the filter feeding organisms such as bivalve molluscs which often serve as important environmental sinks of heavy metals. Bivalve molluscs, A. granosa and Paphia undulata are commercially important seafoods and popular among the locals in Malaysia. With this point in mind, it is intended to evaluate the concentration levels of arsenic as well as trace metals (Co, Cu, Ni, Cd, Zn, Cr and Pb) in both species derived from retail outlets in the city of Kuala Lumpur. Although this analysis may not indicate the site of capture but may act as a direct check on the contamination of seafoods available to the consumers. 17 refs., 2 tabs.

  5. Trace metal seasonal variations in Texas marine sediments

    USGS Publications Warehouse

    Holmes, C.W.

    1986-01-01

    Trace elements in coastal environments are derived from three major sources: (1) the bordering watershed; (2) the offshore marine environment; and (3) industrial and/or urban effluent. The site of deposition, however, is controlled by physical and chemical processes in the coastal zone. In many cases, these processes are controlled by climate and can vary seasonally. In the harbor at Corpus Christi, Texas, the summer climate creates an oxygen-poor environment in the water column near the sediment-water interface. This causes chalcophilic metals to precipitate from the water, resulting in high concentrations in the sediments near the source. During the winter, turbulence created by strong winds causes the entire water mass to become aerated and oxidizing, and remobilization of some metals results. In addition, this turbulence accelerates circulation which transports the metal-enriched waters from the harbor. On the outer continental shelf of south Texas, the infaunal activity varies seasonally with bottom water temperatures. As this infaunal activity has an effect on the chemical environment within the sediment near the sediment-water interface, the observed trace metal content at the interface also appears to change with the seasons. ?? 1986.

  6. Trace metals in the Góta river estuary

    NASA Astrophysics Data System (ADS)

    Danielsson, Lars-Göran; Magnusson, Bertil; Westerlund, Stig; Zhang, Kerong

    1983-07-01

    The concentrations of the trace metals Cd, Cu, Fe, Ni, Pb and Zn in the Göta River estuary have been investigated. The following metal fractions have been determined: acid-leachable, dissolved, labile and particulate. The estuary represents a salt wedge type estuary and is situated in a densely populated region of Sweden. The metal concentrations found for the dissolved fraction is in the range of what can be considered as background levels for freshwater. It is difficult to evaluate any estuarine processes other than conservative mixing for Cd, Cu, Ni and Zn. The dissolved levels in the freshwater end member are Cd, 9-25 ngl -1; Cu, 1·1-1·4 μgl -1; Fe, 20-75 μg l -1: Ni, 0·7-0·9 μg l -1: Pb 0·09-0·2 μg l -1; and Zn, 6-7 μg l -1: The results from the acid-leachable fraction show that at high suspended load the particles sediment in the river mouth. The trace metal levels in this fraction are subject to large variations.

  7. Trace metals in heavy crude oils and tar sand bitumens

    SciTech Connect

    Reynolds, J.G.

    1990-11-28

    Fe, Ni, and V are considered trace impurities in heavy crude oils and tar sand bitumens. In order to understand the importance of these metals, we have examined several properties: (1) bulk metals levels, (2) distribution in separated fractions, (3) size behavior in feeds and during processing, (4) speciation as a function of size, and (5) correlations with rheological properties. Some of the results of these studies show: (1) V and Ni have roughly bimodal size distributions, (2) groupings were seen based on location, size distribution, and Ni/V ratio of the sample, (3) Fe profiles are distinctively different, having a unimodal distribution with a maximum at relatively large molecular size, (4) Fe concentrations in the tar sand bitumens suggest possible fines solubilization in some cases, (5) SARA separated fractions show possible correlations of metals with asphaltene properties suggesting secondary and tertiary structure interactions, and (6) ICP-MS examination for soluble ultra-trace metal impurities show the possibility of unexpected elements such as U, Th, Mo, and others at concentrations in the ppB to ppM range. 39 refs., 13 figs., 5 tabs.

  8. Distribution of trace metals in anchialine caves of Adriatic Sea, Croatia

    NASA Astrophysics Data System (ADS)

    Cuculić, Vlado; Cukrov, Neven; Kwokal, Željko; Mlakar, Marina

    2011-11-01

    This study presents results of the first comprehensive research on ecotoxic trace metals (Cd, Pb, Cu and Zn) in aquatic anchialine ecosystems. Data show the influence of hydrological and geological characteristics on trace metals in highly stratified anchialine water columns. Distribution of Cd, Pb, Cu and Zn in two anchialine water bodies, Bjejajka Cave and Lenga Pit in the Mljet National park, Croatia were investigated seasonally from 2006 to 2010. Behaviour and concentrations of dissolved and total trace metals in stratified water columns and metal contents in sediment, carbonate rocks and soil of the anchialine environment were evaluated. Trace metals and dissolved organic carbon (DOC) concentrations in both anchialine water columns were significantly elevated compared to adjacent seawater. Zn and Cu concentrations were the highest in the Lenga Pit water column and sediment. Elevated concentrations of Zn, Pb and Cu in Bjejajka Cave were mainly terrigenous. Significantly elevated concentrations of cadmium (up to 0.3 μg L -1) were found in the water column of Bjejajka cave, almost two orders of magnitude higher compared to nearby surface seawater. Laboratory analysis revealed that bat guano was the major source of cadmium in Bjejajka Cave. Cadmium levels in Lenga Pit, which lacks accumulations of bat guano, were 20-fold lower. Moreover, low metal amounts in carbonate rocks in both caves, combined with mineral leaching experiments, revealed that carbonates play a minor role as a source of metals in both water columns. We observed two types of vertical distribution pattern of cadmium in the stratified anchialine Bjejajka Cave water column. At lower salinities, non-conservative behaviour was characterized by strong desorption and enrichment of dissolved phase while, at salinities above 20, Cd behaved conservatively and its dissolved concentration decreased. Conservative behaviour of Cu, Pb, Zn and DOC was observed throughout the water column. After heavy rains, Cd

  9. Spatial and temporal trace metal distribution of a Peruvian basin: recognizing trace metal sources and assessing the potential risk.

    PubMed

    Yacoub, C; Blazquez, N; Pérez-Foguet, A; Miralles, N

    2013-10-01

    Recent efforts have been made to determine the environmental impact of mining over the past 11 years in the Jequetepeque River basin, in northern Peru. We have now analyzed data from two studies to elucidate the spatial and temporal trace metal distributions and to assess the sources of contamination. These two studies were carried out from 2003 to 2008 by a Peruvian government administration and from 2008 to 2010 by us. We analyzed 249 samples by principal component analysis, measuring: pH, electrical conductivity, total dissolved solids, total suspended solids, chloride, weak-acid-dissociable cyanide, total cyanide, nitrite and nitrate, ammonium, sulfate, and trace metals and metalloids (Al, As, Ca, Cd, Cu, Cr, Fe, Mg, Mn, Ni, Pb, and Zn). Within the spatial distribution of the basin, the highest Al, As, Cu, Fe, Ni, and Pb concentrations were found at the closest point to the mine sites for both periods of time, with the higher peaks measured during the first years of the sampling data. Temporal trends showed higher concentrations of Cu and Fe in samples taken before 2005, at which point the two mines were closed. Risk assessment was quantified by the hazard quotient as related to water ingestion. The risk for human health posed by the concentrations of several trace metals and metalloids was found to be highly adverse (As and Cr), significant (Al, Cd, Cu, Fe, and Pb), or minimal (Ni and Zn). PMID:23479118

  10. Sources and areal distribution of trace metals in recent sediments of Middle Loch, Pearl Harbor (Hawaii)

    SciTech Connect

    Ashwood, T.L.; Olsen, C.R.; Larsen, I.L.

    1989-05-01

    The primary objective of this project was to determine whether current operations of the Naval Inactive Ships Maintenance Facility contribute significant trace metal contamination to Middle Loch of Pearl Harbor. Secondary objectives were (1) to identify and quantify all major sources of trace metal contamination in Middle Loch and (2) to determine if trace metal concentrations in Middle Loch have declined following termination of direct discharges from the Pearl City Sewage Treatment Plant. Sediment samples from ten locations within Middle Loch and from two locations in each of the two major streams entering the loch were analyzed for radioisotopes and metals. Major elements (aluminum and calcium) as well as organic and inorganic carbon were used to help characterize sediment composition and source. High aluminum-to-calcium ratios and high organic carbon concentrations are associated with terrigenous material carried into Middle Loch by the streams. The presence of the natural, short-lived (53-d half-life) radioisotope /sup 7/Be was used to identify sites where the sedimentary material was recently deposited (i.e., within the past 3 months) and to identify patterns of recent sediment accumulation. Beryllium-7 was detected at eight of the ten sample sites within Middle Loch and in all stream samples. High /sup 7/Be inventories beneath the ships and at the mouths of the streams suggest that these are areas of rapid sediment accumulation, or sediment focusing. The concentrations of /sup 7/Be closely match the expected input based on rain-bucket data. This suggests that Middle Loch effectively traps all the /sup 7/Be through adsorption onto suspended matter and deposition to the sediments. 14 refs., 10 figs., 8 tabs.

  11. The role of Spartina maritima and Sarcocornia fruticosa on trace metals retention in Ria Formosa, Portugal

    NASA Astrophysics Data System (ADS)

    Moreira da Silva, Manuela; Duarte, Duarte; Isidoro, Jorge; Chícharo, Luís

    2013-04-01

    Over the last years, phytoremediation has become an increasingly recognized pathway for contaminant removal from water and shallow soils. Assessing the phytoremediation potential of wetlands is complex due to variable conditions of hydrology, soil/sediment types, plant species diversity, growing season and water chemistry. Physico-chemical properties of wetlands provide many positive attributes for remediating contaminants. Saltmarsh plants can sequestrate and inherently tolerate high metal concentrations found in saltmarsh sediments. An increasing number of studies have been carried out to understand the role of halophyte vegetation on retention, biovailability and remediation of the pollutants in coastal areas (estuaries and lagoons). It is already known that the accumulation capacity and the pattern of metal distribution in the plant tissues vary among plant species, namely monocotyledonous and dicotyledonous, and with sediment characteristics. During the last decades, there has been a large increase in urbanization and industrialization of the area surrounding Ria Formosa. Due to this reality, anthropogenic contaminants, including trace metals, are transported via untreated sewage and agricultural effluents to several parts of the lagoon. The dominant producers are Spartina maritima (Poales: Poaceae) and Sarcocornia fruticosa (Caryophyllales: Chenopodiaceae), appearing in pure stands respectively in the lower and in the upper saltmarshes. The aim of this work was to survey, comparatively, the role of S. maritima and S. fruticosa on minor and trace element (Ag, Cd, Cu, Cr, Mo, Ni, Pb and Zn), contents and distribution amongst sediment and plant tissues. Both S. maritima and S. fruticosa could fix metals from the surrounding belowground environment and accumulate metals, mainly in roots (also in rhizomes in the case of the former). Metal translocation to aerial parts of the plants was, in general, residual.

  12. Lead isotopes and trace metals in dust at Yucca Mountain

    USGS Publications Warehouse

    Kwak, Loretta; Neymark, Leonid A.; Peterman, Zell E.

    2008-01-01

    Lead (Pb)-isotope compositions and trace-metal concentrations were determined for samples of dust collected from underground and surface locations at and near the proposed radioactive waste repository at Yucca Mountain, Nevada. Rare earth element concentrations in the dust samples from the underground tunnels are similar to those in wholerock samples of the repository host rocks (Miocene Tiva Canyon Tuff and Topopah Spring Tuff), supporting interpretation that the subsurface dust is mainly composed of rock comminuted during tunnel construction. Other trace metals (arsenic, cadmium, cobalt, chromium, copper, manganese, nickel, lead, antimony, thallium, and zinc) are variably enriched in the subsurface dust samples relative to the average concentrations in the host rocks. Average concentrations of arsenic and lead in dust samples, high concentrations of which can cause corrosion of waste canisters, have enrichment factors from 1.2 to 1.6 and are insignificant relative to the range of concentrations for these metals observed in the host rock samples. Most dust samples from surface sites also are enriched in many of these trace metals relative to average repository host rocks. At least some of these enrichments may be artifacts of sampling. Plotted on a 208Pb/206Pb-207Pb/206Pb graph, Pb-isotope compositions of dust samples from underground sites form a mixing line extending from host-rock Pb-isotope compositions towards compositions of many of the dust samples from surface sites; however, combined Pb concentration and isotope data indicate the presence of a Pbenriched component in the subsurface dust that is not derived from host rock or surface dust and may derive from anthropogenic materials introduced into the underground environment.

  13. Trace metals geochemistry of Bengkulu river and estuary

    NASA Astrophysics Data System (ADS)

    Firdaus, M. Lutfi; Darti, Puspa; Alwi, Wiwit; Swistoro, Eko; Sundaryono, Agus; Ruyani, Aceng

    2015-09-01

    Unique feature of Indonesian archipelago in addition to its location that settled between the Pacific Ocean and the Indian Ocean has made Indonesian seas as important parts of the world ocean system. In contrast, research on Indonesian seas including its marine geochemistry is scarce. Research findings have proven that Indonesian seas and its characteristics, such as Indonesian throughflow, are important in the seawater thermohaline circulation that affect world's global climate. The transports of mass and heat from the Pacific into the Indian Ocean are crucial for the oceanic circulation and sea surface temperatures. It is only until recently known that water masses movement could be traced using chemical elements such as Zr and Hf. In modern ocean, sources of these chemicals are mostly from continents. Chemicals had been brought to the oceans through river, estuary, coastal and eventually open seawater. We have analyzed selected important trace metals of Bengkulu river and estuary starting from upper stream of Bengkulu River to coastal seawater of the Indian Ocean. Concentrations of trace metals in the sample were determined by inductively coupled plasma - optical emission spectrometry (ICP-OES). Dissolved and labile particulate concentrations of Al, Fe, Mn, V, Sr and Zn are reported in this study.

  14. Trace metals in deep ocean waters: A review

    NASA Astrophysics Data System (ADS)

    Aparicio-González, Alberto; Duarte, Carlos M.; Tovar-Sánchez, Antonio

    2012-09-01

    Major advances in analytical chemistry and instrumentation have prompted major advances in our understanding of trace metal biogeochemistry. However, the deep-water concentration of most trace elements has not been yet assessed across broad regions of the oceans. A synthesis of data on trace metals (i.e. Cd, Co, Cu, Mo, Ni, Pb and Zn) measured and reported for depths 1000 m or deeper, between 1976 and 2009 revealed major gaps in our coverage of this key property. Cadmium and Cu have been the elements more extensively measured with 264 and 210 deep profiles reported in 64 and 57 articles, respectively, while Mo and Co have been reported only at 17 and 60 ocean sites, respectively. Globally 68.1% (216.1 106 km2) of deep oceans (1000 m or deeper) have not been sampled. The bulk of depth profiles published in peer reviewed scientific literature are from the Northern hemisphere (69.7% of the total reported profiles) rendering the Southern hemisphere as a poorly explored region for these important properties (mainly in the South and Eastern Pacific Ocean and in the Tropical Indian Ocean). Vertical profiles of dissolved elements plotted with data compiled during the last 34 years indicate that, in addition to the variation of concentrations, vertical distributions differs per ocean basin.

  15. Phytoremediation using microbially mediated metal accumulation in Sorghum bicolor.

    PubMed

    Phieler, René; Merten, Dirk; Roth, Martin; Büchel, Georg; Kothe, Erika

    2015-12-01

    Reclaiming land that has been anthropogenically contaminated with multiple heavy metal elements, e.g., during mining operations, is a growing challenge worldwide. The use of phytoremediation has been discussed with varying success. Here, we show that a careful examination of options of microbial determination of plant performance is a key element in providing a multielement remediation option for such landscapes. We used both (a) mycorrhiza with Rhizophagus irregularis and (b) bacterial amendments with Streptomyces acidiscabies E13 and Streptomyces tendae F4 to mediate plant-promoting and metal-accumulating properties to Sorghum bicolor. In pot experiments, the effects on plant growth and metal uptake were scored, and in a field trial at a former uranium leaching heap site near Ronneburg, Germany, we could show the efficacy under field conditions. Different metals could be extracted at the same time, with varying microbial inoculation and soil amendment scenarios possible when a certain metal is the focus of interest. Especially, manganese was extracted at very high levels which might be useful even for phytomining approaches.

  16. Evaluating heavy metal accumulation and potential health risks in vegetables irrigated with treated wastewater.

    PubMed

    Qureshi, Asad Sarwar; Hussain, M Iftikhar; Ismail, Shoaib; Khan, Qaisar Mehmood

    2016-11-01

    Effect of irrigation with treated municipal wastewater on the accumulation of heavy metals in soils and food crops and potential health risks to human via consumption of these food crops are evaluated. The higher concentrations of iron (Fe), copper (Cu), chromium (Cr) and zinc (Zn) were found in lettuce, radish and carrots, respectively. However, trace metal levels in all vegetables were far lower than the food safety criteria of World Health Organization and European Union. Bioaccumulation factors (BAF) for heavy metals in different vegetables showed a trend in the order: Fe > Zn > Cu > Cr. The trends of estimated dietary intake (EDIs) for adults were in the order of Fe > Zn > Cr > Cu. The highest level of total coliform was recorded in spinach, followed by radish, egg plant, tomatoes and lettuce. The low uptake of heavy metals by vegetables shows that the health risks for human are insignificant. As the variations in transfer factor of metals is related to absorption capability of vegetables, soil properties and nutrient management, the risk of human exposure to metal contamination can be significantly reduced by selecting appropriate crops. PMID:27521639

  17. Evaluating heavy metal accumulation and potential health risks in vegetables irrigated with treated wastewater.

    PubMed

    Qureshi, Asad Sarwar; Hussain, M Iftikhar; Ismail, Shoaib; Khan, Qaisar Mehmood

    2016-11-01

    Effect of irrigation with treated municipal wastewater on the accumulation of heavy metals in soils and food crops and potential health risks to human via consumption of these food crops are evaluated. The higher concentrations of iron (Fe), copper (Cu), chromium (Cr) and zinc (Zn) were found in lettuce, radish and carrots, respectively. However, trace metal levels in all vegetables were far lower than the food safety criteria of World Health Organization and European Union. Bioaccumulation factors (BAF) for heavy metals in different vegetables showed a trend in the order: Fe > Zn > Cu > Cr. The trends of estimated dietary intake (EDIs) for adults were in the order of Fe > Zn > Cr > Cu. The highest level of total coliform was recorded in spinach, followed by radish, egg plant, tomatoes and lettuce. The low uptake of heavy metals by vegetables shows that the health risks for human are insignificant. As the variations in transfer factor of metals is related to absorption capability of vegetables, soil properties and nutrient management, the risk of human exposure to metal contamination can be significantly reduced by selecting appropriate crops.

  18. A True Eddy Accumulation - Eddy Covariance hybrid for measurements of turbulent trace gas fluxes

    NASA Astrophysics Data System (ADS)

    Siebicke, Lukas

    2016-04-01

    sampling system closely reproduced dynamics of simulated TEA-TM fluxes. In conclusion this study introduces a new approach to trace gas flux measurements using transient-mode true eddy accumulation. First TEA-TM CO2 fluxes compared favorably with side-by-side EC fluxes, in agreement with our previous experiments comparing discrete TEA to EC. True eddy accumulation has thus potential for measuring turbulent fluxes of a range of atmospheric tracers using slow response analyzers.

  19. Heavy metal accumulation by recombinant mammalian metallothionein within Escherichia coli protects against elevated metal exposure.

    PubMed

    Sauge-Merle, Sandrine; Lecomte-Pradines, Catherine; Carrier, Patrick; Cuiné, Stéphan; Dubow, Michael

    2012-08-01

    Metallothioneins (MTs) are ubiquitous metal-binding, cysteine-rich, small proteins known to provide protection against toxic heavy metals such as cadmium. In an attempt to increase the ability of bacterial cells to accumulate heavy metals, sheep MTII was produced in fusion with the maltose binding protein (MBP) and localized to the cytoplasmic or periplasmic compartments of Escherichia coli. For all metals tested, higher levels of bioaccumulation were measured with strains over-expressing MBP-MT in comparison with control strains. A marked bioaccumulation of Cd, As, Hg and Zn was observed in the strain over-expressing MBP-MT in the cytoplasm, whereas Cu was accumulated to higher levels when MBP-MT was over-expressed in the periplasm. Metal export systems may also play a role in this bioaccumulation. To illustrate this, we over-expressed MBP-MT in the cytoplasm of two mutant strains of E. coli affected in metal export. The first, deficient in the transporter ZntA described to export numerous divalent metal ions, showed increasing quantities of Zn, Cd, Hg and Pb being bioaccumulated. The second, strain LF20012, deficient in As export, showed that As was bioaccumulated in the form of arsenite. Furthermore, high quantities of accumulated metals, chelated by MBP-MT in the cytoplasm, conferred greater metal resistance levels to the cells in the presence of added toxic metals, such as Cd or Hg, while other metals showed toxic effects when the export systems were deficient. The strain over-expressing MBP-MT in the cytoplasm, in combination, with disruption of metal export systems, could be used to develop strategies for bioremediation.

  20. Caddisflies Hydropsyche spp. as biomonitors of trace metal bioavailability thresholds causing disturbance in freshwater stream benthic communities.

    PubMed

    Awrahman, Zmnako A; Rainbow, Philip S; Smith, Brian D; Khan, Farhan R; Fialkowski, Wojciech

    2016-09-01

    Demonstration of an ecotoxicological effect of raised toxic metal bioavailabilities on benthic macroinvertebrate communities in contaminated freshwater streams typically requires the labour-intensive identification and quantification of such communities before the application of multivariate statistical analysis. A simpler approach is the use of accumulated trace metal concentrations in a metal-resistant biomonitor to define thresholds that indicate the presence of raised trace metal bioavailabilities causing ecotoxicological responses in populations of more metal-sensitive members of the community. We explore further the hypothesis that concentrations of toxic metals in larvae of species of the caddisfly genus Hydropsyche can be used to predict metal-driven ecotoxicological responses in more metal-sensitive mayflies, especially ephemerellid and heptageniid mayflies, in metal-contaminated rivers. Comparative investigation of two caddisflies, Hydropsyche siltalai and Hydropsyche angustipennis, from metal-contaminated rivers in Cornwall and Upper Silesia, Poland respectively, has provided preliminary evidence that this hypothesis is applicable across caddisfly species and contaminated river systems. Use of a combined toxic unit approach, relying on independent data sets, suggested that copper and probably also arsenic are the drivers of mayfly ecotoxicity in the River Hayle and the Red River in Cornwall, while cadmium, lead and zinc are the toxic agents in the Biala Przemsza River in Poland. This approach has great potential as a simple tool to detect the more subtle effects of mixed trace metal contamination in freshwater systems. An informed choice of suitable biomonitor extends the principle to different freshwater habitats over different ranges of severity of trace metal contamination. PMID:27357485

  1. Caddisflies Hydropsyche spp. as biomonitors of trace metal bioavailability thresholds causing disturbance in freshwater stream benthic communities.

    PubMed

    Awrahman, Zmnako A; Rainbow, Philip S; Smith, Brian D; Khan, Farhan R; Fialkowski, Wojciech

    2016-09-01

    Demonstration of an ecotoxicological effect of raised toxic metal bioavailabilities on benthic macroinvertebrate communities in contaminated freshwater streams typically requires the labour-intensive identification and quantification of such communities before the application of multivariate statistical analysis. A simpler approach is the use of accumulated trace metal concentrations in a metal-resistant biomonitor to define thresholds that indicate the presence of raised trace metal bioavailabilities causing ecotoxicological responses in populations of more metal-sensitive members of the community. We explore further the hypothesis that concentrations of toxic metals in larvae of species of the caddisfly genus Hydropsyche can be used to predict metal-driven ecotoxicological responses in more metal-sensitive mayflies, especially ephemerellid and heptageniid mayflies, in metal-contaminated rivers. Comparative investigation of two caddisflies, Hydropsyche siltalai and Hydropsyche angustipennis, from metal-contaminated rivers in Cornwall and Upper Silesia, Poland respectively, has provided preliminary evidence that this hypothesis is applicable across caddisfly species and contaminated river systems. Use of a combined toxic unit approach, relying on independent data sets, suggested that copper and probably also arsenic are the drivers of mayfly ecotoxicity in the River Hayle and the Red River in Cornwall, while cadmium, lead and zinc are the toxic agents in the Biala Przemsza River in Poland. This approach has great potential as a simple tool to detect the more subtle effects of mixed trace metal contamination in freshwater systems. An informed choice of suitable biomonitor extends the principle to different freshwater habitats over different ranges of severity of trace metal contamination.

  2. Contamination from an affluent of Furnas reservoir by trace metals.

    PubMed

    Cavalcanti, P P; Rodrigues, L C A; Beijo, L A; Barbosa, S; Xavier, T T; Magalhães, F

    2014-11-01

    This study aims to determine concentrations and characterize trace metals distribution in an affluent of Furnas reservoir, Alfenas-MG. Water and sediment samples were taken monthly, 2010/10-2011/07 in five sites of Córrego do Pântano for subsequent determination of Pb, Cd and Zn levels by chemical analysis. The stream studied is in disagreement with Brazilian legislation for Class II water bodies (CONAMA 357). The highlights are the unsuitable concentrations of Pb for human consumption, according to Ministry of Health 2914 decree, providing risk for population.

  3. Accumulation of heavy metals in the mole in Finland.

    PubMed

    Pankakoski, E; Hyvärinen, H; Jalkanen, M; Koivisto, I

    1993-01-01

    Metal concentrations (Cu, Ni, Zn, Cd, Cr, Hg, Pb and Mo) were analysed from the liver and kidneys of moles, Talpa europaea L. (Insectivora), trapped in southern Finland on both contaminated and rural areas. In rural areas the concentrations of Cd, Cu, Zn, Pb and Mo were lower in juveniles (individuals in their first summer), except for Zn in the liver, which was lower in adults. When the animals were divided into annual classes (0-6 years), Cd and Mo concentrations in the liver increased significantly with age, while concentrations of Cu, Zn and Cr tended to decrease. Female moles had higher Pb concentrations than males, especially adult females, which also had lower levels of Cu in the liver than adult males. Moles in the metropolitan area of Helsinki clearly differed from those in rural areas in that the concentrations of heavy metals in these moles were higher (especially for the most toxic metals: Cd, Pb and Hg), and their body weight was lower. The renal concentrations of Cd in most of the moles in Helsinki exceeded the threshold that has been shown to have a nephrotoxic effect in mammals. In one subsample from Helsinki, Pb and Zn concentrations in the mole liver decreased as the distance from the highway increased. Concentrations of Pb in earthworms and several heavy metals in soil also decreased similarly in the same area. Our data indicate that Pb accumulates in moles through their diet of earthworms. PMID:15091866

  4. Trace element accumulation in relation to trophic niches of shorebirds using intertidal mudflats

    NASA Astrophysics Data System (ADS)

    Lucia, Magali; Bocher, Pierrick; Chambosse, Mélanie; Delaporte, Philippe; Bustamante, Paco

    2014-09-01

    This study investigated the link between trace element concentrations and respective diets of two shorebird species present in the Pertuis Charentais, Atlantic coast of France: the Dunlin (Calidris alpina) and Redshank (Tringa totanus). Trace element concentrations (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, Zn) were investigated in the liver, kidney, muscle and feathers of 28 dunlins and 15 redshanks accidentally dead during catches by mist net. Analyses of carbon and nitrogen stable isotope ratios were carried out in liver, muscle and feathers to determine whether differences in diet explained the variations in elemental levels. These results were compared to previous data obtained on two other shorebird species present on the same sites: the Black-tailed Godwit (Limosa limosa) and the Red Knot (Calidris canutus). This study demonstrated that shorebirds of the Pertuis Charentais were characterized by differential trace element bioaccumulation. Arsenic and Se concentrations in internal tissues were elevated in red knots and dunlins, whereas redshanks displayed higher Cd concentrations. These trace element bioaccumulation discrepancies could mainly come from divergences of trophic habits between shorebirds. Species with the highest trophic position displayed the highest Hg concentrations in the liver, muscle and feathers demonstrating therefore the biomagnification potential of this metal, as opposed to Cd and Pb. The same trend was observed in muscle and feathers for Se and only in feathers for As. These data highlighted the need to study several tissues to obtain a full comprehension of trace element exposure and pathways especially for long-distance migrating species using various habitats and sites.

  5. Quantification and localization of trace metals in natural plancton using a synchrotron x-ray fluorescence microprobe.

    SciTech Connect

    Twining, B. S.; Baines, S. B.; Fisher, N. S.; Jacobsen, C.; Maser, J.; State Univ. of New York at Stony Brook

    2003-03-01

    The accumulation of trace metals by planktonic protists influences the growth of primary producers, metal biogeochemical cycling, and metal bioaccumulation in aquatic food chains. Despite their importance, unequivocal measurements of trace element concentrations in individual plankton cells have not been possible to date. We have used the 2-ID-E side-branch hard x-ray microprobe at the Advanced Photon Source to measure trace elements in individual marine plankton cells. This microprobe employs zoneplate optics to produce the sub-micron spatial resolution and low background fluorescence required to produce trace element maps of planktonic protist cells ranging in size from 3 to >50 {micro}m. We have developed preservation, rinsing, and mounting protocols that remove most of the salt from our marine samples, thus simplifying the identification of unknown cells and reducing high Cl-related background fluorescence. We have also developed spectral modeling techniques that account for the frequent overlap of adjacent fluorescence peaks and non-uniform detector response. Finally, we have used parallel soft x-ray transmission and epifluorescence microscopy images to estimate C normalized trace element concentrations, identify functional cell types (e.g., photosynthetic vs. non-photosynthetic), and correlate cell structures with spatial patterns in trace element fluorescence.

  6. Limited accumulation of copper in heavy metal adapted mosses.

    PubMed

    Antreich, Sebastian; Sassmann, Stefan; Lang, Ingeborg

    2016-04-01

    Copper is an essential micronutrient but has toxic effects at high concentrations. Bryophytes are remarkably tolerant to elevated levels of copper but we wondered if this tolerance might be species dependent. Therefore, in three moss species, Physcomitrella patens, Mielichhoferia elongata and Pohlia drummondii, the accumulation of copper was compared with semiquantitative SEM-EDX analyses after six weeks of cultivation on copper containing media. We investigated the role of the copper-linked anion and applied copper as CuCl2, CuSO4 and CuEDTA, respectively. Line scans along the growth axis of moss gametophores allowed for a detailed analysis of copper detection from the base towards the tip. Mosses originating from metal-containing habitats (i.e. M. elongata and P. drummondii) revealed a lower accumulation of copper when compared to the non-adapted P. patens. CuEDTA had a shielding effect in all three species and copper levels differed greatly from CuCl2 or CuSO4. The detection of reactive oxygen species (ROS), H2O2 and O2(-), was further used to indicate stress levels in the gametophore stems. ROS staining was increased along the whole stem and the tip in the non-adapted species P. patens whereas the tolerant species M. elongata and P. drummondii generally showed less staining located mainly at the base of the stem. We discuss the relation between metal accumulation and ROS production using indicator dyes in the three moss species. As moss gametophores are very delicate structures, ROS staining provide an excellent alternative to spectrophotometric analyses to estimate stress levels. PMID:26878481

  7. Trace metal sorption by natural particles and coarse colloids

    NASA Astrophysics Data System (ADS)

    Lead, J. R.; Hamilton-Taylor, J.; Davison, W.; Harper, M.

    1999-06-01

    The effects of size and geochemical properties on the binding of trace metals to natural colloids and particles have been investigated. Suspended particulate matter (SPM) from the River Mersey in NW England was fractionated by centrifugation to give three size fractions (nominally 0.05-0.5 μm, 0.5-1.0 μm and >1.0 μm). The SPM was characterized by scanning electron microscopy and by carbon and nitrogen analysis. Large proportions of the particles were microbial in origin, dominated by diatoms in the largest size fraction and bacteria in all fractions. Acid-base titrations indicated a significant difference between the proton binding characteristics of the three samples. The smallest fraction had the greatest charge per unit mass whereas the largest fraction had the least charge: 2.0 and 1.0 meq g -1 charge developed between pH 4 and 10, respectively. Experimental sorption studies with Cd and Cu indicated that metal binding per unit mass of SPM varied little between the three size fractions, although Cd was more strongly bound to the two smallest fractions. A simple one-site binding model provided a good description of the data and showed that the observed Cd and Cu sorption constants were consistent with literature values. The findings indicate that metal binding to the three size fractions is controlled mainly by the mass concentration and pH. The dependence on mass suggests that the surface area effective for binding is substantially independent of the size class. The results question the importance of the role played by the sub-micron fraction in trace metal binding by natural particle assemblages.

  8. Contribution of trace metals in structuring in situ macroinvertebrate community composition along a salinity gradient

    SciTech Connect

    Peeters, E.T.H.M.; Gardeniers, J.J.P.; Koelmans, A.A.

    2000-04-01

    Macroinvertebrates were studied along a salinity gradient in the North Sea Canal, The Netherlands, to quantify the effect of trace metals (cadmium, copper, lead, zinc) on community composition. In addition, two methods for assessing metal bioavailability (normalizing metal concentrations on organic carbon and on the smallest sediment fraction) were compared. Factor analyses showed that normalizing trace metals resulted in an improved separation of trace metals from ecological factors (depth, organic carbon, granulometry, and chloride). The variation in the macroinvertebrate data was partitioned into four sources using partial canonical correspondence analysis, with the partitions being purely ecological factors, purely trace metals, mutual ecological factors and trace metals, and unexplained. Partial canonical correspondence analysis applied to total and normalized trace metal concentrations gave similar results in terms of unexplained variances. However, normalization on organic carbon resulted in the highest percentage of variation explained by purely ecological factors and purely trace metals. Accounting for bioavailability thus improves the identification of factors affecting the in situ community structure. Ecological factors explained 45.4% and trace metals 8.6% of the variation in the macroinvertebrate community composition in the ecosystem of the North Sea Canal. These contributions were significant, and it is concluded that trace metals significantly affected the community composition in an environment with multiple stressors. Variance partitioning is recommended for incorporation in further risk assessment studies.

  9. Interactive influences of bioactive trace metals on biological production in oceanic waters

    SciTech Connect

    Bruland, K.W.; Donat, J.R.; Hutchins, D.A. )

    1991-12-01

    The authors present an overview of the oceanic chemistries of the bioactive trace metals, Mn, Fe, Co, Ni, Cu, and Zn; the authors combine field data with results from laboratory phytoplankton culture-trace metal studies and speculate on the potential influences of these trace metals on oceanic plankton production and species composition. Most field studies have focused on the effects of single metals. However, they propose that synergistic and antagonistic interactions between multiple trace metals could be very important in the oceans. Trace metal antagonisms that may prove particularly important are those between Cu and the potential biolimiting metals Fe, Mn, and Zn. These antagonistic interactions could have the greatest influence on biological productivity in areas of the open ocean isolated from terrestrial inputs, such as the remote high nutrient regions of the Pacific and Antarctic Oceans. The emerging picture of trace metal-biota interactions in these oceanic areas is one in which biology strongly influences distribution and chemical speciation of all these bioactive trace metals. It also seems likely that many of these bioactive trace metals and their speciation may influence levels of primary productivity, species composition, and trophic structure. Future investigations should give more complete consideration to the interactive effects of biologically important trace metals.

  10. Accumulation of elements by edible mushroom species: part I. Problem of trace element toxicity in mushrooms.

    PubMed

    Mleczek, Mirosław; Siwulski, Marek; Stuper-Szablewska, Kinga; Rissmann, Iwona; Sobieralski, Krzysztof; Goliński, Piotr

    2013-01-01

    The aim of this study was to evaluate Cd, Co, Cu, Hg, Ni, Pb, Sr and Zn accumulation in six edible mushroom species and to assess their risk and benefits to human consumers. Mushrooms (Leccinium aurantiacum, Xerocomus badius, Lactarius deliciosus, Boletus edulis, Cantharellus cibarius and Suillus luteus) were collected from selected regions of Poland during 1990-2010. The highest diversity between studied mushroom species was observed in terms of Cu and Zn accumulation. Significant differences in the accumulation efficiency were found among the six mushroom species examined. The most efficient were Boletus edulis (Cd and Hg), Suillus luteus (Cu and Sr), and Lactarius deliciosus (Pb and Zn). In the case of Co and Ni, the most effective were Xerocomus badius and Leccinium aurantiacum, respectively. The calculated bioconcentration factor (BCF) values of Cd, Cu, Hg, Sr and Zn were > 1 for all species in this study while Co, Ni and Pb usually were bioexcluded (BCF < 1). Additionally, based on the calculated daily intake rates of trace elements determined it can be concluded that occasional consumption of fruiting bodies of L. aurantiacum, X. badius, L. deliciosus, B. edulis, C. cibarius and S. luteus collected in Poland is safe and this finding largely agrees with results from recent studies by other authors.

  11. Mobilization of Trace Metals in an Experimental Carbon Sequestration Scenario

    NASA Astrophysics Data System (ADS)

    Marcon, V.; Kaszuba, J. P.

    2012-12-01

    Mobilizing trace metals with injection of supercritical CO2 into deep saline aquifers is a concern for geologic carbon sequestration. The potential for leakage from these systems requires an understanding of how injection reservoirs interact with the overlying potable aquifers. Hydrothermal experiments were performed to evaluate metal mobilization and mechanisms of release in a carbonate storage reservoir and at the caprock-reservoir boundary. Experiments react synthetic Desert Creek limestone and/or Gothic Shale, formations in the Paradox Basin, Utah, with brine that is close to equilibrium with these rocks. A reaction temperature of 1600C accelerates the reaction kinetics without changing in-situ water-rock reactions. The experiments were allowed to reach steady state before injecting CO2. Changes in major and trace element water chemistry, dissolved carbon and sulfide, and pH were tracked throughout the experiments. CO2 injection decreases the pH by 1 to 2 units; concomitant mineral dissolution produces elevated Ba, Cu, Fe, Pb, and Zn concentrations in the brine. Concentrations subsequently decrease to approximately steady state values after 120-330 hours, likely due to mineral precipitation as seen in SEM images and predicted by geochemical modeling. In experiments that emulate the caprock-reservoir boundary, final Fe (0.7ppb), an element of secondary concern for the EPA, and Pb (0.05ppb) concentrations exceed EPA limits, whereas Ba (0.140ppb), Cu (48ppb), and Zn (433ppb) values remain below EPA limits. In experiments that simulate deeper reservoir conditions, away from the caprock boundary, final Fe (3.5ppb) and Pb (0.017ppb) values indicate less mobilization than seen at the caprock-reservoir boundary, but values still exceed EPA limits. Barium concentrations always remain below the EPA limit of 2ppb, but are more readily mobilized in experiments replicating deeper reservoir conditions. In both systems, transition elements Cd, Cr, Cu, Pb and Zn behave in a

  12. Effects of gypsum on trace metals in soils and earthworms.

    PubMed

    Chen, Liming; Kost, Dave; Tian, Yongqiang; Guo, Xiaolu; Watts, Dexter; Norton, Darrell; Wolkowski, Richard P; Dick, Warren A

    2014-01-01

    Mined gypsum has been beneficially used for many years as an agricultural amendment. A large amount of flue gas desulfurization (FGD) gypsum is produced by removal of SO from flue gas streams when fuels with high S content are burned. The FGD gypsum, similar to mined gypsum, can enhance crop production. However, information is lacking concerning the potential environmental impacts of trace metals, especially Hg, in the FGD gypsum. Flue gas desulfurization and mined gypsums were evaluated to determine their ability to affect concentrations of Hg and other trace elements in soils and earthworms. The study was conducted at four field sites across the United States (Ohio, Indiana, Alabama, and Wisconsin). The application rates of gypsums ranged from 2.2 Mg ha in Indiana to 20 Mg ha in Ohio and Alabama. These rates are 2 to 10 times higher than typically recommended. The lengths of time from gypsum application to soil and earthworm sampling were 5 and 18 mo in Ohio, 6 mo in Indiana, 11 mo in Alabama, and 4 mo in Wisconsin. Earthworm numbers and biomass were decreased by FGD and mined gypsums in Ohio. Among all the elements examined, Hg was slightly increased in soils and earthworms in the FGD gypsum treatments compared with the control and the mined gypsum treatments. The differences were not statistically significant except for the Hg concentration in the soil at the Wisconsin site. Selenium in earthworms in the FGD gypsum treatments was statistically higher than in the controls but not higher than in the mined gypsum treatments at the Indiana and Wisconsin sites. Bioaccumulation factors for nondepurated earthworms were statistically similar or lower for the FGD gypsum treatments compared with the controls for all elements. Use of FGD gypsum at normal recommended agricultural rates seems not to have a significant impact on concentrations of trace metals in earthworms and soils. PMID:25602559

  13. Chemometric evaluation of trace metals in Prunus persica L. Batech and Malus domestica from Minićevo (Serbia).

    PubMed

    Alagić, Slađana Č; Tošić, Snežana B; Dimitrijević, Mile D; Petrović, Jelena V; Medić, Dragana V

    2017-02-15

    The samples of spatial soils and different organs of Prunus persica L. Batech and Malus domestica were analyzed by methods such as inductively coupled plasma optical emission spectroscopy (ICP-OES), Hierarchical Cluster Analysis (HCA), One-way ANOVA, and calculation of biological accumulation factors (BAFs) with the aim of investigating whether these methods may help in the evaluation of trace metals in plants, as well as in the estimation of plant bioaccumulation potentials. ICP-OES provided accurate data on present concentrations of Cu, Zn, Pb, As, Cd, and Ni which showed that most concentrations were in normal ranges, except in some cases for Cu, Zn, and As. HCA illustrated nicely various specifics in the distribution of metals in both investigated systems plant-soil. One-way ANOVA pointed successfully on the existing statistical differences between metal concentrations. Calculated BAFs showed that both plants had very low accumulation rates for all elements; they acted as metal excluders.

  14. Chemometric evaluation of trace metals in Prunus persica L. Batech and Malus domestica from Minićevo (Serbia).

    PubMed

    Alagić, Slađana Č; Tošić, Snežana B; Dimitrijević, Mile D; Petrović, Jelena V; Medić, Dragana V

    2017-02-15

    The samples of spatial soils and different organs of Prunus persica L. Batech and Malus domestica were analyzed by methods such as inductively coupled plasma optical emission spectroscopy (ICP-OES), Hierarchical Cluster Analysis (HCA), One-way ANOVA, and calculation of biological accumulation factors (BAFs) with the aim of investigating whether these methods may help in the evaluation of trace metals in plants, as well as in the estimation of plant bioaccumulation potentials. ICP-OES provided accurate data on present concentrations of Cu, Zn, Pb, As, Cd, and Ni which showed that most concentrations were in normal ranges, except in some cases for Cu, Zn, and As. HCA illustrated nicely various specifics in the distribution of metals in both investigated systems plant-soil. One-way ANOVA pointed successfully on the existing statistical differences between metal concentrations. Calculated BAFs showed that both plants had very low accumulation rates for all elements; they acted as metal excluders. PMID:27664673

  15. Daily intake of trace metals through coffee consumption in India.

    PubMed

    Suseela, B; Bhalke, S; Kumar, A V; Tripathi, R M; Sastry, V N

    2001-02-01

    The trace element contents of five varieties of instant coffee powder available in the Indian market have been analysed. Ca, Cr, Fe, K, Mg, Mn, Ni, Sr, Zn and Pb, Cd, Cu have been determined using atomic absorption spectrophotometry and differential pulse anodic stripping voltammetry, respectively. The metal levels in the coffee powders observed in this study are comparable with those reported for green coffe beans (Arabica and Robusta variety) reported worldwide with the exception of Sr and Zn, which were on the lower side of the reported values. Concentrations of these metals have been converted into intake figures based on coffee consumption. The daily intakes of the above metals through ingestion of coffee are 1.4 mg, 1.58 microg, 124 microg, 41.5 mg, 4.9 mg, 17.9 microg, 2.9 microg, 3.8 microg, 12.5 microg, 0.2 microg, 0.03 microg and 15.5 microg, respectively. The values, which were compared with the total dietary, intake of metals through ingestion by the Mumbai population, indicate that the contribution from coffee is less than or around 1% for most of the elements except for Cr and Ni which are around 3%. PMID:11288908

  16. Trace metals pollution in seawater and groundwater in the ship breaking area of Sitakund Upazilla, Chittagong, Bangladesh.

    PubMed

    Hasan, Asma Binta; Kabir, Sohail; Selim Reza, A H M; Zaman, Mohammad Nazim; Ahsan, Mohammad Aminul; Akbor, Mohammad Ahedul; Rashid, Mohammad Mamunur

    2013-06-15

    This study reveals potential accumulation of trace metals in the sea and groundwater due to ship breaking activities which take place along the Bay of Bengal in Sitakund Upazilla, Chittagong, Bangladesh. When compared with WHO and Bangladesh domestic standards for water quality, it is revealed that seawater was strongly polluted by Fe and Hg, moderately by Mn and Al, and slightly by Pb and Cd. Groundwater was strongly polluted by Fe, Pb and Hg, moderately by Mn and Al, and slightly by As. Trace element concentrations of all seawater samples exceeded the average concentration of elements in the Earth's seawater. The application of Principal Components Analysis identified two sources of pollution-marine and ship breaking. The mechanism of groundwater pollution inferred that if seawater is polluted, nearby groundwater is also polluted with trace metals due to the influence of seawater intrusion.

  17. Agriculturally Induced Heavy Metal Accumulation in Seyfe Lake, Turkey.

    PubMed

    Bölükbaşı, Vildan; Akın, Beril Salman

    2016-03-01

    The aim of the present 1-year study was to investigate the effect of heavy metals in synthetic fertilizers on water and sediment quality in the Seyfe Lake, where agricultural activity was the only anthropogenic source. Metal concentrations of five different types of synthetic fertilizers used in agricultural fields within the Seyfe Lake closed basin were as follows: Zn > Pb > Cu > Cr > Cd > As > Ni > Co. The annual average of heavy metal concentrations in the sediment samples were as follows: Zn > Pb > As > Cr > Ni > Cu > Cd > Co. Seyfe Lake sediment was classified as anthropogenically "highly polluted" in terms of the As and Zn concentrations at each sample station based on the sediment quality guidelines. Furthermore, the sediment could be classified as "moderately to highly polluted" in terms of the As concentration, based on the geo-accumulation index. PMID:26744023

  18. Assessment of trace metal contamination level and toxicity in sediments from coastal regions of West Bengal, eastern part of India.

    PubMed

    Antizar-Ladislao, Blanca; Mondal, Priyanka; Mitra, Soumita; Sarkar, Santosh Kumar

    2015-12-30

    The work investigated concentration of trace metals in surface sediments (0-10 cm; < 63 μm grain size) from 15 sampling sites of diverse environmental stresses covering Hugli River Estuary (HRE) and Sundarban Mangrove Wetland (SMW), eastern coastal part of India. The trace metal concentrations in sediments exhibited an overall decreasing trend as follows: Cr (21.2-60.9)>Cu (11.60-102.47)>Ni (19.10-52.60)>Pb (7.09-183.88)>As (4.41-11.46)>Cd (0.02-4.4)>Ag (0.02-0.87). Both the geo-accumulation index (Igeo) and contamination factor (CF) values revealed significant pollution by Ag, Cd and Pb at Nurpur of HRE. Potential Ecological Risk Index (RI) (61.21 ± 112.40) showed wide range of variations from low (19.76) to serious (463.20) ecological risk. A positive significant correlation was found between metals and organic carbon in sediments. The ecological risk associated with the trace metals in sediment was considered on the consensus based Sediment Quality Guidelines (SQGs). The work suggests that the trace metals present in sediments posed adverse effects on the sediment-dwelling organisms. PMID:26581818

  19. Marine lake as in situ laboratory for studies of organic matter influence on speciation and distribution of trace metals

    NASA Astrophysics Data System (ADS)

    Mlakar, Marina; Fiket, Željka; Geček, Sunčana; Cukrov, Neven; Cuculić, Vlado

    2015-07-01

    Karst marine lakes are unique marine systems, also recognized as in situ "laboratories" in which geochemical processes on a different scale compared to the open sea, can be observed. In this study, organic matter cycle and its impact on distribution of trace metals in the marine lake Mir, located on Dugi Otok Island, in the central part of the eastern Adriatic Sea, was investigated for the first time. Studied marine lake is small, isolated, shallow basin, with limited communication with the open sea. Intense spatial and seasonal variations of organic matter, dissolved and particulate (DOC, POC), and dissolved trace metals concentrations in the water column of the Lake are governed predominantly by natural processes. Enhanced oxygen consumption in the Lake during summer season, high DOC and POC concentrations and low redox potential result in occasional occurrence of anoxic conditions in the bottom layers with appearance of sulfur species. Speciation modeling showed that dissolved trace metals Cu, Pb and Zn, are mostly bound to organic matter, while Cd, Co and Ni are present predominantly as free ions and inorganic complexes. Trace metals removal from the water column and their retention in the sediment was found to depend on the nature of the relationship between specific metal and organic or inorganic phases, sulfides, Fe-oxyhydroxydes or biogenic calcite. The above is reflected in the composition of the sediments, which are, in addition to influence of karstic background and bathymetry of the basin, significantly affected by accumulation of detritus at the bottom of the Lake.

  20. Assessment of trace metal contamination level and toxicity in sediments from coastal regions of West Bengal, eastern part of India.

    PubMed

    Antizar-Ladislao, Blanca; Mondal, Priyanka; Mitra, Soumita; Sarkar, Santosh Kumar

    2015-12-30

    The work investigated concentration of trace metals in surface sediments (0-10 cm; < 63 μm grain size) from 15 sampling sites of diverse environmental stresses covering Hugli River Estuary (HRE) and Sundarban Mangrove Wetland (SMW), eastern coastal part of India. The trace metal concentrations in sediments exhibited an overall decreasing trend as follows: Cr (21.2-60.9)>Cu (11.60-102.47)>Ni (19.10-52.60)>Pb (7.09-183.88)>As (4.41-11.46)>Cd (0.02-4.4)>Ag (0.02-0.87). Both the geo-accumulation index (Igeo) and contamination factor (CF) values revealed significant pollution by Ag, Cd and Pb at Nurpur of HRE. Potential Ecological Risk Index (RI) (61.21 ± 112.40) showed wide range of variations from low (19.76) to serious (463.20) ecological risk. A positive significant correlation was found between metals and organic carbon in sediments. The ecological risk associated with the trace metals in sediment was considered on the consensus based Sediment Quality Guidelines (SQGs). The work suggests that the trace metals present in sediments posed adverse effects on the sediment-dwelling organisms.

  1. Reactive trace metals in the stratified central North Pacific

    SciTech Connect

    Bruland, K.W. ); Orians, K.J. ); Cowen, J.P. )

    1994-08-01

    Vertical concentration profiles of the dissolved and suspended particulate phases were determined for a suite of reactive trace metals, Al, Fe, Mn, Zn, and Cd, during summertime at a station in the center of the North Pacific gyre. During summer the euphotic zone becomes stratified, forming a shallow (0-25 m), oligotrophic, mixed layer overlying a subsurface (25-140 m), strongly-stratified region. The physical, biological, and chemical structure within the euphotic zone during this period enhanced the effect of atmospheric inputs of Al, Fe, and Mn on mixed layer concentrations. For example, the concentration of dissolved Fe in the surface mixed layer was eighteen times that observed at a depth of 100 m. The observed aeolian signature of these metals matched that predicted from estimates of atmospheric input during the period between the onset of stratification and sampling. The distributions of suspended particulate Al, Fe, and Mn all exhibited minima in the euphotic zone and increased with depth into the main thermocline. Particulate Al and Fe were then uniform with depth below 1000 m before increasing in the near bottom nepheloid layer. Average particulate phase concentrations in intermediate and deep waters of the central North Pacific were 1.0, 0.31, and 0.055 nmol[center dot]kg[sup [minus]1] for Al, Fe, and Mn, respectively. The distribution of particulate Cd exhibited a maximum within the subsurface euphotic zone. Particulate zinc also exhibited a surface maximum, albeit a smaller one. Concentrations of particulate Zn and Cd in intermediate and deep waters were 17 and 0.2 pmol[center dot]kg[sup [minus]1]. Substantial interbasin differences in particulate trace metals occur. Concentrations of suspended particulate Al, Fe, and Mn were three to four times lower in the central North Pacific than recently reported for the central North Atlantic gyre, consistent with differences in atmospheric input to these two regions.

  2. Trace element accumulation in Cassiopea sp. (Scyphozoa) from urban marine environments in Australia.

    PubMed

    Templeman, Michelle A; Kingsford, Michael J

    2010-03-01

    Jellyfishes are robust, short-lived animals, tolerant to a wide range of environmental conditions and pollutants. The benthic jellyfish, Cassiopea sp. was collected from five locations along the north and eastern coast of Australia and analysed for trace elements to determine if this species has potential as a marine biomonitor. Both the oral arm and bell tissues readily accumulated aluminium, arsenic, barium, cadmium, chromium, copper, iron, manganese and zinc above ambient seawater levels. In contrast, lithium appeared to be actively regulated within the tissues while calcium, magnesium and strontium reflected the ambient environment. The multi-element signatures showed spatial variation, reflecting the geographical separations between locations, with locations closer together showing more similar elemental patterns. The combination of bioaccumulative capacity, life history traits and biophysical aspects indicate that this species has high potential as a biomonitor in coastal marine systems. PMID:19747724

  3. Trace element accumulation in Cassiopea sp. (Scyphozoa) from urban marine environments in Australia.

    PubMed

    Templeman, Michelle A; Kingsford, Michael J

    2010-03-01

    Jellyfishes are robust, short-lived animals, tolerant to a wide range of environmental conditions and pollutants. The benthic jellyfish, Cassiopea sp. was collected from five locations along the north and eastern coast of Australia and analysed for trace elements to determine if this species has potential as a marine biomonitor. Both the oral arm and bell tissues readily accumulated aluminium, arsenic, barium, cadmium, chromium, copper, iron, manganese and zinc above ambient seawater levels. In contrast, lithium appeared to be actively regulated within the tissues while calcium, magnesium and strontium reflected the ambient environment. The multi-element signatures showed spatial variation, reflecting the geographical separations between locations, with locations closer together showing more similar elemental patterns. The combination of bioaccumulative capacity, life history traits and biophysical aspects indicate that this species has high potential as a biomonitor in coastal marine systems.

  4. Clean Sampling and Analysis of River and Estuarine Waters for Trace Metal Studies.

    PubMed

    Jiann, Kuo-Tung; Wen, Liang-Saw; Santschi, Peter H

    2016-01-01

    Most of the trace metal concentrations in ambient waters obtained a few decades ago have been considered unreliable owing to the lack of contamination control. Developments of some techniques aiming to reduce trace metal contamination in the last couple of decades have resulted in concentrations reported now being orders of magnitude lower than those in the past. These low concentrations often necessitate preconcentration of water samples prior to instrumental analysis of samples. Since contamination can appear in all phases of trace metal analyses, including sample collection (and during preparation of sampling containers), storage and handling, pretreatments, and instrumental analysis, specific care needs to be taken in order to reduce contamination levels at all steps. The effort to develop and utilize "clean techniques" in trace metal studies allows scientists to investigate trace metal distributions and chemical and biological behavior in greater details. This advancement also provides the required accuracy and precision of trace metal data allowing for environmental conditions to be related to trace metal concentrations in aquatic environments. This protocol that is presented here details needed materials for sample preparation, sample collection, sample pretreatment including preconcentration, and instrumental analysis. By reducing contamination throughout all phases mentioned above for trace metal analysis, much lower detection limits and thus accuracy can be achieved. The effectiveness of "clean techniques" is further demonstrated using low field blanks and good recoveries for standard reference material. The data quality that can be obtained thus enables the assessment of trace metal distributions and their relationships to environmental parameters. PMID:27404762

  5. Clean Sampling and Analysis of River and Estuarine Waters for Trace Metal Studies.

    PubMed

    Jiann, Kuo-Tung; Wen, Liang-Saw; Santschi, Peter H

    2016-07-01

    Most of the trace metal concentrations in ambient waters obtained a few decades ago have been considered unreliable owing to the lack of contamination control. Developments of some techniques aiming to reduce trace metal contamination in the last couple of decades have resulted in concentrations reported now being orders of magnitude lower than those in the past. These low concentrations often necessitate preconcentration of water samples prior to instrumental analysis of samples. Since contamination can appear in all phases of trace metal analyses, including sample collection (and during preparation of sampling containers), storage and handling, pretreatments, and instrumental analysis, specific care needs to be taken in order to reduce contamination levels at all steps. The effort to develop and utilize "clean techniques" in trace metal studies allows scientists to investigate trace metal distributions and chemical and biological behavior in greater details. This advancement also provides the required accuracy and precision of trace metal data allowing for environmental conditions to be related to trace metal concentrations in aquatic environments. This protocol that is presented here details needed materials for sample preparation, sample collection, sample pretreatment including preconcentration, and instrumental analysis. By reducing contamination throughout all phases mentioned above for trace metal analysis, much lower detection limits and thus accuracy can be achieved. The effectiveness of "clean techniques" is further demonstrated using low field blanks and good recoveries for standard reference material. The data quality that can be obtained thus enables the assessment of trace metal distributions and their relationships to environmental parameters.

  6. Drought changes the dynamics of trace element accumulation in a Mediterranean Quercus ilex forest.

    PubMed

    Sardans, J; Peñuelas, J

    2007-06-01

    We conducted a field drought manipulation experiment in an evergreen oak Mediterranean forest from 1999 to 2005 to investigate the effects of the increased drought predicted for the next decades on the accumulation of trace elements that can be toxic for animals, in stand biomass, litter and soil. Drought increased concentrations of As, Cd, Ni, Pb and Cr in roots of the dominant tree species, Quercus ilex, and leaf Cd concentrations in Arbutus unedo and of Phillyrea latifolia codominant shrubs. The increased concentration of As and Cd can aggravate the toxic capacity of those two elements, which are already next or within the levels that have been shown to be toxic for herbivores. The study also showed a great reduction in Pb biomass content (100-135 gha(-1)) during the studied period (1999-2005) showing the effectiveness of the law that prohibited leaded fuel after 2001. The results also indicate that drought increases the exportation of some trace elements to continental waters. PMID:17137692

  7. Baseline concentrations of trace metals in macroalgae from the Strait of Magellan, Chile.

    PubMed

    Astorga-España, Maria Soledad; Calisto-Ulloa, Nancy Cristina; Guerrero, Sandra

    2008-02-01

    Samples of four different species of seaweed were collected monthly between October 2000 and March 2001 from the coast of the Strait of Magellan, Chile to establish baseline levels of trace metals (silver, total mercury, nickel, lead, antimony, vanadium and zinc) and to compare the accumulation capacity among species. The algae included in the study were Adenocystis utricularis (n=15); Enteromorpha sp. (n=11), Mazzaella laminarioides (n=12) and Porphyra columbina (n=6). The concentration range of each metal in microg g(-1) dry weight varied as follows: Ag=ND-0.3, Hg=ND-0.02, Ni=ND-12.6, Pb = ND-11.2, Sb=ND-1.97, V=ND-11.34 and Zn=14.10-79. Results showed that levels of Ag, Hg, Ni, Pb, Sb, V and Zn for all species were similar to those found in other studies for non-contaminated areas with very little influence from anthropogenic activity. Also among the four species studied macroalgae Enteromorpha sp. had the highest capacity for metal accumulation and could therefore be considered as a biomonitor for future studies in the area.

  8. Changes in trace metals in Thalassia testudinum after hurricane impacts.

    PubMed

    Whelan, T; Van Tussenbroek, B I; Santos, M G Barba

    2011-12-01

    Major hurricanes Emily and Wilma hit the Mexican Caribbean in 2005. Changes in trace metals in the seagrass Thalassia testudinum prior to (May 2004, 2005) and following passage of these hurricanes (May, June 2006) were determined at four locations along a ≈ 130 km long stretch of coast. Before the hurricanes, essential metals were likely limiting and concentrations of potentially toxic Pb were high in a contaminated lagoon (27.5 μg g(-1)) and near submarine springs (6.10 μg g(-1)); the likely sources were inland sewage disposal or excessive boat traffic. After the hurricanes, Pb decreased to 2.0 μg g(-1) in the contaminated lagoon probably through flushing. At the northern sites, essential Fe increased >2-fold (from 26.8 to 68.3 μg g(-1) on average), possibly from remobilization of anoxic sediments or upwelling of deep seawater during Wilma. Thus, hurricanes can be beneficial to seagrass beds in flushing toxic metals and replenishing essential elements. PMID:22018884

  9. Changes in trace metals in Thalassia testudinum after hurricane impacts.

    PubMed

    Whelan, T; Van Tussenbroek, B I; Santos, M G Barba

    2011-12-01

    Major hurricanes Emily and Wilma hit the Mexican Caribbean in 2005. Changes in trace metals in the seagrass Thalassia testudinum prior to (May 2004, 2005) and following passage of these hurricanes (May, June 2006) were determined at four locations along a ≈ 130 km long stretch of coast. Before the hurricanes, essential metals were likely limiting and concentrations of potentially toxic Pb were high in a contaminated lagoon (27.5 μg g(-1)) and near submarine springs (6.10 μg g(-1)); the likely sources were inland sewage disposal or excessive boat traffic. After the hurricanes, Pb decreased to 2.0 μg g(-1) in the contaminated lagoon probably through flushing. At the northern sites, essential Fe increased >2-fold (from 26.8 to 68.3 μg g(-1) on average), possibly from remobilization of anoxic sediments or upwelling of deep seawater during Wilma. Thus, hurricanes can be beneficial to seagrass beds in flushing toxic metals and replenishing essential elements.

  10. Atmospheric deposition of trace metals onto Massachusetts Bay

    SciTech Connect

    Golomb, D.; Ryan, D.; Eby, N.; Underhill, J.

    1997-12-31

    Wet and dry atmospheric deposition of trace metals was measured at biweekly intervals for one year, from 15 September 1992 to 16 September 1993, at two sites on Massachusetts Bay, Nahant, near Boston and Truro, near the tip of Cape Cod. Wet and dry deposition was measured using a conventional wet/dry collector, except that the dry bucket contained a layer of water in order to simulate the uptake of dry deposition onto a water surface. In addition, at Nahant, a dichotomous particle collector was used to measure metal concentrations on particles. Analytical methods were INAA and ICP-MS. Generally, dry deposition of metals was greater at Nahant than at Truro, and wet deposition was greater or equal at Truro than at Nahant. Averaging results from the two sites, the following deposition rates (wet + dry) were obtained for the Bay in {mu}g m{sup {minus}2} yr{sup {minus}1}: Al 102000, As 132, Cd 405, Co 58, Cr 2700, Cu 3500, Fe 140000, Mn 4420, Ni 7200, Pb 2700, Sb 160, Se 264, Zn 7800.

  11. Field validation, in Scotland and Iceland, of the artificial mussel for monitoring trace metals in temperate seas.

    PubMed

    Leung, Kenneth M Y; Furness, Robert W; Svavarsson, Jörundur; Lau, T C; Wu, Rudolf S S

    2008-01-01

    The artificial mussel (AM), a novel chemical sampling device, has been developed for monitoring dissolved trace metals in marine environments. The AM consists of Chelex-100 suspended in artificial seawater within Perspex tubing and enclosed with semi-permeable polyacrylamide gel at both ends. To validate the field performance of the AM in temperate waters, we deployed AMs alongside transplanted blue mussels Mytilus edulis in coastal environments in Scotland (Holy Loch, Loch Fyne, Loch Striven and Millport) and Iceland (Reykjavikurhöfn, Gufunes, South of thornerney, Hofsvik, Hvalfjörethur and Sandgerethi) for monitoring trace metals. While uptake patterns of Cd between the AM and M. edulis were highly comparable, discrepancies were found in the accumulation profiles of the other metals (Cu, Cr, Pb and Zn), in particular Zn. Nonetheless, the AMs gave a better resolution to accurately reveal the spatial difference in dissolved metal contamination when compared with M. edulis. AMs complement the use of mussels since AMs indicate dissolved metals in seawater, whereas uptake by mussels indicates a mixture of dissolved and particulate metals. Our results also indicated that historical metal exposure of the transplanted M. edulis could significantly confound their metal concentrations especially when the deployment period was short (i.e. <34d). This study suggested that the AM can overcome problems associated with variable biological attributes and pre-exposure history in the mussel, and provides a standardized and representative time-integrated estimate of dissolved metal concentrations in different marine environments. PMID:18328506

  12. Biomonitoring of trace metal bioavailabilities to the barnacle Amphibalanus amphitrite along the Iranian coast of the Persian Gulf.

    PubMed

    Nasrolahi, A; Smith, B D; Ehsanpour, M; Afkhami, M; Rainbow, P S

    2014-10-01

    The fouling barnacle Amphibalanus amphitrite is a cosmopolitan biomonitor of trace metal bioavailabilities, with an international comparative data set of body metal concentrations. Bioavailabilities of As, Cd, Cr, Cu, Fe, Mn, Pb, V and Zn to A. amphitrite were investigated at 19 sites along the Iranian coast of the understudied Persian Gulf. Commercial and fishing ports showed extremely high Cu bioavailabilities, associated with high Zn bioavailabilities, possibly from antifouling paints and procedures. V availability was raised at one port, perhaps associated with fuel leakage. Cd bioavailabilities were raised at sites near the Strait of Hormuz, perhaps affected by adjacent upwelling off Oman. The As data allow a reinterpretation of the typical range of accumulated As concentrations in A. amphitrite. The Persian Gulf data add a new region to the A. amphitrite database, confirming its importance in assessing the ecotoxicologically significant trace metal contamination of coastal waters across the world.

  13. Marine Bioinorganic Chemistry: The Role of Trace Metals in the Oceanic Cycles of Major Nutrients

    NASA Astrophysics Data System (ADS)

    Morel, F. M. M.; Milligan, A. J.; Saito, M. A.

    2003-12-01

    The bulk of living biomass is chiefly made up of only a dozen "major" elements - carbon, hydrogen, oxygen, nitrogen, phosphorus, sodium, potassium, chlorine, calcium, magnesium, sulfur (and silicon in diatoms) - whose proportions vary within a relatively narrow range in most organisms. A number of trace elements, particularly first row transition metals - manganese, iron, nickel, cobalt, copper, and zinc - are also "essential" for the growth of organisms. At the molecular level, the chemical mechanisms by which such elements function as active centers or structural factors in enzymes and by which they are accumulated and stored by organisms is the central topic of bioinorganic chemistry. At the scale of ocean basins, the interplay of physical, chemical, and biological processes that govern the cycling of biologically essential elements in seawater is the subject of marine biogeochemistry. For those interested in the growth of marine organisms, particularly in the one-half of the Earth's primary production contributed by marine phytoplankton, bioinorganic chemistry and marine biogeochemistry are critically linked by the extraordinary paucity of essential trace elements in surface seawater, which results from their biological utilization and incorporation in sinking organic matter. How marine organisms acquire elements that are present at nano- or picomolar concentrations in surface seawater; how they perform critical enzymatic functions when necessary metal cofactors are almost unavailable are the central topics of "marine bioinorganic chemistry." The central aim of this field is to elucidate at the molecular level the metal-dependent biological processes involved in the major biogeochemical cycles.By examining the solutions that emerged from the problems posed by the scarcity of essential trace elements, marine bioinorganic chemists bring to light hitherto unknown ways to take up or utilize trace elements, new molecules, and newer "essential" elements. Focusing on

  14. Bioavailability and toxicity of trace metals to the cladoceran Daphnia magna in relation to cadmium exposure history

    NASA Astrophysics Data System (ADS)

    Guan, Rui

    The cladoceran Daphnia magna is widely used in freshwater bioassessments and ecological risk assessments. This study designed a series of experiments employing radiotracer methodology to quantify the trace metals (mainly Cd and Zn) biokinetics in D. magna under different environmental and biological conditions and to investigate the influences of different Cd exposure histories on the bioavailability and toxicity of trace metals to D. magna. A bioenergetic-based kinetic model was finally applied in predicting the Cd accumulation dynamics in D. magna and the model validity under non-steady state was assessed. Cd assimilation was found in this study to be influenced by the food characteristics (e.g., metal concentration in food particles), the metal exposure history of the animals, and the genetic characteristics. Some of these influences could be interpreted by the capacity and/or competition of those metal binding sites within the digestive tract and/or the detoxifying proteins metallothionein (MT). My study demonstrated a significant induction of MT in response to Cd exposure and it was the dominant fraction in sequestering the internal nonessential trace metals in D. magna. The ratio of Cd body burden to MT might better predict the Cd toxicity on the digestion systems of D. magna than the Cd tissue burden alone within one-generational exposure to Cd. It was found that metal elimination (rate constant and contribution of different release routes) was independent of the food concentration and the dietary metal concentration, implying that the elimination may not be metabolically controlled. The incorporation of the bioenergetic-based kinetic model, especially under non-steady state, is invaluable in helping to understand the fate of trace metals in aquatic systems and potential environmental risks. The dependence of biokinetic parameters on environmental factors rather than on genotypes implies a great potential of using biokinetics in inter-laboratory comparisons.

  15. Accumulation and partitioning of biomass, nutrients, and trace elements in switchgrass for phytoremediation of municipal biosolids.

    PubMed

    Jeke, Nicholson N; Zvomuya, Francis; Ross, Lisette

    2016-09-01

    In situ phytoremediation of municipal biosolids is a promising alternative to the land spreading and landfilling of biosolids from end-of-life municipal lagoons. Accumulation and partitioning of dry matter, nitrogen (N), phosphorus (P), and trace elements were determined in aboveground biomass (AGB) and belowground biomass (BGB) of switchgrass (Panicum virgatum L.) to determine the harvest stage that maximizes phytoextraction of contaminants from municipal biosolids. Seedlings were transplanted into 15-L plastic pails containing 3.9 kg (dry wt.) biosolids. Biomass yield components and contaminant concentrations were assessed every 14 days for up to 161 days. Logistic model fits to biomass yield data indicated no significant differences in asymptotic yield between AGB and BGB. Switchgrass partitioned significantly more N and P to AGB than to BGB. Maximum uptake occurred 86 days after transplanting (DAT) for N and 102 DAT for P. Harvesting at peak aboveground element accumulation removed 5% of N, 1.6% of P, 0.2% of Zn, 0.05% of Cd, and 0.1% of Cr initially present in the biosolids. These results will contribute toward identification of the harvest stage that will optimize contaminant uptake and enhance in situ phytoremediation of biosolids using switchgrass. PMID:26940512

  16. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time.

    PubMed

    Przybysz, A; Sæbø, A; Hanslin, H M; Gawroński, S W

    2014-05-15

    Particulate matter is harmful to human health. To reduce its concentration in air, plants could be used as biological filters, accumulating particulate matter on their foliage. In a study carried out at three sites with differing pollution levels and exposure to precipitation, the capacity of evergreen species (Taxus baccata L., Hedera helix L. and Pinus sylvestris L.) to accumulate particulate matter and trace elements from ambient air in urban areas was investigated. The effects of rainfall and the passage of time on particulate matter deposition on foliage were also determined. The results showed that foliage accumulated an increasing quantity of particulate matter in successive months, but the actual amount of particulate matter and trace elements accumulated differed considerably between sites and plant species. The greatest accumulation of air pollutants occurred on the foliage of plants protected from the rain at a site exposed to traffic related pollution and the smallest accumulation at a rural site. Among the species analysed, the deposited mass of particulate matter and trace elements was the greatest on P. sylvestris. In all species, precipitation removed a considerable proportion of particles accumulated on foliage. Most of the removed particulate matter was large size fraction, but little belong to the smallest size fraction. These results showed that both, the dynamics of deposition and leaf washing by rain during the season need to be considered when evaluating the total effect of vegetation in pollutant remediation.

  17. Genome-wide association study of toxic metals and trace elements reveals novel associations

    PubMed Central

    Ng, Esther; Lind, P. Monica; Lindgren, Cecilia; Ingelsson, Erik; Mahajan, Anubha; Morris, Andrew; Lind, Lars

    2015-01-01

    The accumulation of toxic metals in the human body is influenced by exposure and mechanisms involved in metabolism, some of which may be under genetic control. This is the first genome-wide association study to investigate variants associated with whole blood levels of a range of toxic metals. Eleven toxic metals and trace elements (aluminium, cadmium, cobalt, copper, chromium, mercury, manganese, molybdenum, nickel, lead and zinc) were assayed in a cohort of 949 individuals using mass spectrometry. DNA samples were genotyped on the Infinium Omni Express bead microarray and imputed up to reference panels from the 1000 Genomes Project. Analyses revealed two regions associated with manganese level at genome-wide significance, mapping to 4q24 and 1q41. The lead single nucleotide polymorphism (SNP) in the 4q24 locus was rs13107325 (P-value = 5.1 × 10−11, β = −0.77), located in an exon of SLC39A8, which encodes a protein involved in manganese and zinc transport. The lead SNP in the 1q41 locus is rs1776029 (P-value = 2.2 × 10−14, β = −0.46). The SNP lies within the intronic region of SLC30A10, another transporter protein. Among other metals, the loci 6q14.1 and 3q26.32 were associated with cadmium and mercury levels (P = 1.4 × 10−10, β = −1.2 and P = 1.8 × 10−9, β = −1.8, respectively). Whole blood measurements of toxic metals are associated with genetic variants in metal transporter genes and others. This is relevant in inferring metabolic pathways of metals and identifying subsets of individuals who may be more susceptible to metal toxicity. PMID:26025379

  18. Genome-wide association study of toxic metals and trace elements reveals novel associations.

    PubMed

    Ng, Esther; Lind, P Monica; Lindgren, Cecilia; Ingelsson, Erik; Mahajan, Anubha; Morris, Andrew; Lind, Lars

    2015-08-15

    The accumulation of toxic metals in the human body is influenced by exposure and mechanisms involved in metabolism, some of which may be under genetic control. This is the first genome-wide association study to investigate variants associated with whole blood levels of a range of toxic metals. Eleven toxic metals and trace elements (aluminium, cadmium, cobalt, copper, chromium, mercury, manganese, molybdenum, nickel, lead and zinc) were assayed in a cohort of 949 individuals using mass spectrometry. DNA samples were genotyped on the Infinium Omni Express bead microarray and imputed up to reference panels from the 1000 Genomes Project. Analyses revealed two regions associated with manganese level at genome-wide significance, mapping to 4q24 and 1q41. The lead single nucleotide polymorphism (SNP) in the 4q24 locus was rs13107325 (P-value = 5.1 × 10(-11), β = -0.77), located in an exon of SLC39A8, which encodes a protein involved in manganese and zinc transport. The lead SNP in the 1q41 locus is rs1776029 (P-value = 2.2 × 10(-14), β = -0.46). The SNP lies within the intronic region of SLC30A10, another transporter protein. Among other metals, the loci 6q14.1 and 3q26.32 were associated with cadmium and mercury levels (P = 1.4 × 10(-10), β = -1.2 and P = 1.8 × 10(-9), β = -1.8, respectively). Whole blood measurements of toxic metals are associated with genetic variants in metal transporter genes and others. This is relevant in inferring metabolic pathways of metals and identifying subsets of individuals who may be more susceptible to metal toxicity.

  19. Impact of metal pools and soil properties on metal accumulation in Folsomia candida (Collembola).

    PubMed

    Vijver, M; Jager, T; Posthuma, L; Peijnenburg, W

    2001-04-01

    Soil-dwelling organisms are exposed to metals in different ways. Evidence exists for predominant pore water uptake of metals by soft-bodied oligochaete species. In the present research, uptake kinetics of metals and the metalloid As by the semi-soft-bodied springtail Folsomia candida were studied, for which uptake via the pore water is less obvious. Springtails were exposed in 16 field soils and in metal-spiked artificial Organization for Economic Cooperation and Development (Paris, France) soil (OECD soil). Subsequently, accumulation parameters were statistically related to soil metal pools and soil properties. In Cd-spiked OECD soil, internal Cd levels were linearly related to external Cd concentrations, whereas the springtails maintained fixed internal levels of Cu and Zn regardless of spiked concentrations. In the field soils, all body concentrations of the elements As, Cr, and Ni were below detection limit. The essential metals Cu and Zn were presumably regulated, and no influence of soil characteristics could be demonstrated. For Cd and Pb, accumulation patterns were correlated mainly to solid-phase soil characteristics. The presence of these explanatory variables in the multiple correlations suggests that an uptake mechanism that is solely determined by pore water concentrations should not be taken as a universally applicable principle in risk assessments of metals for soil invertebrates. Cadmium in OECD soils was more available for uptake than in the field soils. The difference remained when extractability was taken into account. The results suggest that experiments in OECD soil cannot be used directly in risk assessment for nonessential metals (at least for F. candida), although a reduction of uncertainties in metal risk assessment can be reached by consistent use of body residues rather than external concentrations. PMID:11345445

  20. Accumulation of airborne trace elements in mosses, lichens and synthetic materials exposed at urban monitoring stations: towards a harmonisation of the moss-bag technique.

    PubMed

    Giordano, S; Adamo, P; Spagnuolo, V; Tretiach, M; Bargagli, R

    2013-01-01

    Mosses, lichens and cellulose filters were exposed for 17 weeks at four urban monitoring stations in Naples (S Italy) to assess the accumulation of airborne Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Ni, Pb, Ti, V, and Zn. In each site, the element accumulation was significantly higher in the moss Hypnum cupressiforme than in the lichen Pseudevernia furfuracea. Acid washed mosses accumulated the highest amount of trace elements, but the differences in element concentrations among the moss samples exposed after water washing and different devitalisation treatments (acid washing, oven drying and water boiling) and between the lichen samples exposed with and without the nylon bag were not statistically significant. The cellulose filters showed the lowest accumulation capability. The reciprocal ordination of sites and exposed materials showed an increasing contamination gradient (especially for Pb, Cu and Zn) from the background site to the trafficked city streets; this pattern was undetectable from PM(10) data recorded by the automatic monitoring devices operating in the four exposure sites. The element profile in exposed materials did not change substantially throughout the urban area and particles of polluted urban soils seem the main source of airborne metals in Naples. Through a comprehensive evaluation of the results from this and previous studies, a protocol is suggested for the moss-bag monitoring of trace element deposition in urban environments.

  1. Predicting the toxicity of sediment-associated trace metals with simultaneously extracted trace metal: Acid-volatile sulfide concentrations and dry weight-normalized concentrations: A critical comparison

    USGS Publications Warehouse

    Long, E.R.; MacDonald, D.D.; Cubbage, J.C.; Ingersoll, C.G.

    1998-01-01

    The relative abilities of sediment concentrations of simultaneously extracted trace metal: acid-volatile sulfide (SEM:AVS) and dry weight- normalized trace metals to correctly predict both toxicity and nontoxicity were compared by analysis of 77 field-collected samples. Relative to the SEM:AVS concentrations, sediment guidelines based upon dry weight-normalized concentrations were equally or slightly more accurate in predicting both nontoxic and toxic results in laboratory tests.

  2. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth.

    PubMed

    Li, Kefeng; Ramakrishna, Wusirika

    2011-05-15

    Naturally occurring bacteria play an important role in bioremediation of heavy metal pollutants in soil and wastewater. This study identified high levels of resistance to zinc, cesium, lead, arsenate and mercury in eight copper resistant Pseudomonas strains previously isolated from Torch Lake sediment. These strains showed variable susceptibility to different antibiotics. Furthermore, these metal resistant strains were capable of bioaccumulation of multiple metals and solubilization of copper. Bacterial strains TLC 3-3.5-1 and TLC 6-6.5-1 showed high bioaccumulation ability of Zn (up to 15.9 mg/g dry cell) and Pb (80.7 mg/g dry cell), respectively. All the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal solubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. The multiple metal-resistant bacterial isolates characterized in our study have potential applications for remediation of metal contaminated soils in combination with plants and metal contaminated water. PMID:21420236

  3. The geochemistry of redox sensitive trace metals in sediments

    SciTech Connect

    Morford, J.L.; Emerson, S.

    1999-06-01

    The authors analyzed the redox sensitive elements V, Mo, U, Re and Cd in surface sediments from the Northwest African margin, the US Northwest margin and the Arabian Sea to determine their response under a range of redox conditions. Where oxygen penetrates 1 cm or less into the sediments, Mo and V diffuse to the overlying water as Mn is reduced and remobilized. Authigenic enrichments of U, Re and Cd are evident under these redox conditions. With the onset of sulfate reduction, all of the metals accumulate authigenically with Re being by far the most enriched. General trends in authigenic metal accumulation are described by calculating authigenic fluxes for the 3 main redox regimes: oxic, reducing where oxygen penetrates {le} 1 cm, and anoxic conditions. Using a simple diagenesis model and global estimates of organic carbon rain rate and bottom water oxygen concentrations, the authors calculate the area of sediments below 1,000 m water depth in which oxygen penetration is {le} 1 cm to be 4% of the ocean floor. They conclude that sediments where oxygen penetrates {le} 1 cm release Mn, V and Mo to seawater at rates of 140%--260%, 60%--150% and 5%--10% of their respective riverine fluxes, using the authigenic metal concentrations and accumulation rates from this work and other literature. These sediments are sinks for Re, Cd and U, with burial fluxes of 70%--140%, 30%--80% and 20%--40%, respectively, of their dissolved riverine inputs. They modeled the sensitivity of the response of seawater Re, Cd and V concentrations to changes in the area of reducing sediments where oxygen penetrates {le} 1 cm. The analysis suggests a negligible change in seawater Re concentration, whereas seawater concentrations of Cd and V could have decreased and increased, respectively, by 5%--10% over 20 kyr if the area of reducing sediments increased by a factor of 2 and by 10%--20% if the area increased by a factor of 3. The concentration variations for a factor of 2 increase in the area of

  4. The spatial distribution, accumulation and potential source of seldom monitored trace elements in sediments of Three Gorges Reservoir, China

    PubMed Central

    Han, Lanfang; Gao, Bo; Zhou, Huaidong; Xu, Dongyu; Wei, Xin; Gao, Li

    2015-01-01

    The alteration of hydrologic condition of Three Gorges Reservoir (TGR) after impoundment has caused numerous environmental changes. This study investigated the distribution, accumulation and potential sources of the seldom monitored trace elements (SMTEs) in sediments from three tributaries (ZY, MX and CT) and one mainstream (CJ) in TGR during different seasons. The average contents of most SMTEs excluding Sb in the winter were similar to that in the summer. For Sb, its average concentrations in the summer and winter were roughly six and three times higher than its background value, respectively. Contamination factor (CF) and geoaccumulation index (Igeo) demonstrated that most of the sediments were obviously contaminated by Sb. The enrichment factors (EF) of Ga and Sb were higher than 2.0, revealing the possible anthropogenic inputs; However, the EFs of other SMTEs were lower than 1.5, indicating the natural inputs. Correlation and principal component analysis suggested the most SMTEs were positively correlated with major elements (Cr, Mn, Cu, Zn, As, Cd and Pb) and clay contents, which implies that SMTEs had the same sources with these major metals, and the fine particles might be a major carrier for transporting SMTEs from the rivers to the TGR. PMID:26538153

  5. The distribution, accumulation and potential source of seldom monitored trace elements in sediments of Beijiang River, South China.

    PubMed

    Gao, Bo; Lu, Jin; Zhou, Huai-Dong; Yin, Shu-Hua; Hao, Hong

    2012-01-01

    A geochemical study of Beijiang River sediments was carried out to analyze the concentrations, distribution, accumulation and potential sources of the seldom monitored trace elements (SMTEs: Sc, V, Co, Ga, Y, Sn and Sb). The mean concentrations of Sc, V, Co, Ga, Y, Sn and Sb were 8.2, 60.3, 9.6, 17.2, 28.6, 85.6 and 39.0 mg/kg, respectively. The concentrations of the SMTEs, together with their spatial distribution showed that the SMTEs were mainly due to anthropogenic inputs from the metal smelting industries and local mining activities in the upper region of the river. The assessment by geoaccumulation index indicates that Sc, V, Co, Ga and Y are at the unpolluted level, Sn is at the 'strongly contaminated' level, and Sb is at the 'extremely contaminated' level. The pollution level of the SMTEs is: Sb > Sn > Y > Ga > Co > V > Sc. The results of correlation analysis and principal component analysis indicated the Sn and Sb were positively correlated with each other, indicating a common source in sediments. In conclusion, our results indicate that the sediments in Beijiang River have been severely contaminated by Sn and Sb.

  6. The spatial distribution, accumulation and potential source of seldom monitored trace elements in sediments of Three Gorges Reservoir, China.

    PubMed

    Han, Lanfang; Gao, Bo; Zhou, Huaidong; Xu, Dongyu; Wei, Xin; Gao, Li

    2015-11-05

    The alteration of hydrologic condition of Three Gorges Reservoir (TGR) after impoundment has caused numerous environmental changes. This study investigated the distribution, accumulation and potential sources of the seldom monitored trace elements (SMTEs) in sediments from three tributaries (ZY, MX and CT) and one mainstream (CJ) in TGR during different seasons. The average contents of most SMTEs excluding Sb in the winter were similar to that in the summer. For Sb, its average concentrations in the summer and winter were roughly six and three times higher than its background value, respectively. Contamination factor (CF) and geoaccumulation index (Igeo) demonstrated that most of the sediments were obviously contaminated by Sb. The enrichment factors (EF) of Ga and Sb were higher than 2.0, revealing the possible anthropogenic inputs; However, the EFs of other SMTEs were lower than 1.5, indicating the natural inputs. Correlation and principal component analysis suggested the most SMTEs were positively correlated with major elements (Cr, Mn, Cu, Zn, As, Cd and Pb) and clay contents, which implies that SMTEs had the same sources with these major metals, and the fine particles might be a major carrier for transporting SMTEs from the rivers to the TGR.

  7. The spatial distribution, accumulation and potential source of seldom monitored trace elements in sediments of Three Gorges Reservoir, China.

    PubMed

    Han, Lanfang; Gao, Bo; Zhou, Huaidong; Xu, Dongyu; Wei, Xin; Gao, Li

    2015-01-01

    The alteration of hydrologic condition of Three Gorges Reservoir (TGR) after impoundment has caused numerous environmental changes. This study investigated the distribution, accumulation and potential sources of the seldom monitored trace elements (SMTEs) in sediments from three tributaries (ZY, MX and CT) and one mainstream (CJ) in TGR during different seasons. The average contents of most SMTEs excluding Sb in the winter were similar to that in the summer. For Sb, its average concentrations in the summer and winter were roughly six and three times higher than its background value, respectively. Contamination factor (CF) and geoaccumulation index (Igeo) demonstrated that most of the sediments were obviously contaminated by Sb. The enrichment factors (EF) of Ga and Sb were higher than 2.0, revealing the possible anthropogenic inputs; However, the EFs of other SMTEs were lower than 1.5, indicating the natural inputs. Correlation and principal component analysis suggested the most SMTEs were positively correlated with major elements (Cr, Mn, Cu, Zn, As, Cd and Pb) and clay contents, which implies that SMTEs had the same sources with these major metals, and the fine particles might be a major carrier for transporting SMTEs from the rivers to the TGR. PMID:26538153

  8. Heavy metals accumulation in two syntopic sandhopper species: Talitrus saltator (Montagu) and Talorchestia ugolinii Bellan Santini and Ruffo.

    PubMed

    Ugolini, A; Borghini, F; Focardi, S; Chelazzi, G

    2005-11-01

    We assessed the capacity for heavy metals accumulation in Talorchestia ugolinii by standard methods of heavy metals analysis. To compare the bioaccumulation in syntopic sandhopper species, we collected samples of T. ugolinii and Talitrus saltator living on the same and on different beaches in Corsica. There was a marked difference in the zonal distribution of the two species along the sea-land axis of the beach: T. ugolinii was distributed nearer the water line than T. saltator. The bioaccumulation capacity of T. ugolinii only partly matched that of the Mediterranean T. saltator: while Hg, Zn, Cu, and Cd were accumulated by both species, Al and Fe were accumulated by T. saltator but not by T. ugolinii. Pb was accumulated only by T. ugolinii, while Cr did not seem to be accumulated by either species. The bioaccumulation in sympatric T. saltator and T. ugolinii specimens collected on the same beach reflected the general trend of the two species on the Tyrrhenian and Corsican coasts, respectively. Moreover, six of the eight heavy metals considered (Hg, Pb, Zn, Fe, Al, Cu) were present in higher quantities in T. ugolinii than in T. saltator, independently of whether the trace elements were accumulated by the two species. Thus, there are some differences between T. ugolinii and T. saltator, even when the two species live in the same locality. These differences involve their zonation within the damp belt of sand, the bioaccumulation of some heavy metals (Al, Pb, Fe), and the quantity of each heavy metal in the body, independent of the bioaccumulation capacity.

  9. Effects of acidification on metal accumulation by aquatic plants and invertebrates. 2. Wetlands, ponds and small lakes

    USGS Publications Warehouse

    Albers, P.H.; Camardese, M.B.

    1993-01-01

    High concentrations of trace metals in the water of low-pH lakes and streams could result in elevated amounts of metals within or adsorbed to aquatic plants and, possibly, invertebrates. Concentrations of Al, Cd, Ca, Cu, Fe, Pb, Mg, Mn, Hg, Ni, P, and Zn were compared in water, plants, and aquatic invertebrates of wetlands, ponds, and small lakes in Maryland and Maine. The accumulation of metals by aquatic plants and insects and the concentrations of metals in water were not greatly affected by pH. None of the metal concentrations significantly correlated with metals in insects. Plant metal concentrations poorly correlated with metal concentrations in water. Concentrations of metals exceeded acceptable dietary levels more frequently in plants than in invertebrates. Concerns about metal toxicity in birds that feed on invertebrates and plants from acidified waters seem to be unwarranted. Positive correlations among pH, Ca in water, Ca in insects, and Ca in plants imply that acidification can reduce the Ca content of aquatic biota. Aquatic insects were low in Ca, but crayfishes and snails, which are adversely affected by low pH, were very high. A concern for waterfowl is Ca deprivation from decreased Ca availability in low-pH wetlands, ponds, and small lakes.

  10. The influence of sedimentation on metal accumulation and cellular oxidative stress markers in the Antarctic bivalve Laternula elliptica

    NASA Astrophysics Data System (ADS)

    Husmann, G.; Abele, D.; Monien, D.; Monien, P.; Kriews, M.; Philipp, E. E. R.

    2012-10-01

    Recent rapid climate warming at the western Antarctic Peninsula (WAP) results in elevated glacial melting, enhanced sedimentary run-off, increased turbidity and impact of ice-scouring in shallow coastal areas. Discharge of mineral suspension from volcanic bedrock ablation and chronic physical disturbance is expected to influence sessile filter feeders such as the Antarctic soft shell clam Laternula elliptica (King and Broderip, 1832). We investigated effects of sedimentary run-off on the accumulation of trace metals, and together with physical disturbance, the cumulative effect on oxidative stress parameters in younger and older L. elliptica from two stations in Potter Cove (King George Island, Antarctica) which are distinctly impacted by turbidity and ice-scouring. Fe, Mn, Sr, V and Zn concentrations were slightly higher in sediments of the station receiving more sediment run-off, but not enriched in bivalves of this station. The only element that increased in bivalves experimentally exposed to sediment suspension for 28 days was Mn. Concentration of the waste accumulation biomarker lipofuscin in nervous tissue was higher in L. elliptica from the “exposed” compared to the “less exposed” site, whereas protein carbonyl levels in bivalve mantle tissue were higher at the less sediment impacted site. Tissue metal content and lipofuscin in nervous tissue were generally higher in older compared to younger individuals from both field stations. We conclude that elevated sediment ablation does not per se result in higher metal accumulation in L. elliptica. Instead of direct absorbance from sediment particles, metal accumulation in gills seems to indicate uptake of compounds dissolved in the water column, whereas metals in digestive gland appear to originate from enriched planktonic or detritic food. Accumulation of cellular waste products and potentially reactive metals over lifetime presumably alters L. elliptica physiological performance with age and may

  11. Trace metal interactions with microbial biofilms in natural and engineered systems

    SciTech Connect

    Lion, L.W.; Shuler, M.L.; Hsieh, K.M.; Ghiorse, W.C. )

    1988-01-01

    Trace metal adsorption and desorption are important processes in natural aquatic systems and in designed treatment systems. Adsorption of metals onto particulate matter and humic substances has been documented in fresh water and marine systems. Although biofilms coating surfaces are well documented, the chemical mechanisms concerning metal removal have not been investigated thoroughly. Biofilms consist predominantly of bacterial cells enmeshed in a network of negatively charged extracellular polymers. The biofilms are assumed to contain ferromanganese deposits which can play an important role in trace metal absorption. Microorganisms have developed resistance to metal toxicity, especially since the Industrial Revolution. Detoxification mechanisms include biomethylation, biosynthesis of intracellular traps, cellular efflux, synthesis of chelating agents, and surface precipitation. Mathematical models have been developed to describe various aspects of trace metal interaction with surfaces: (1) cellular growth, attachment, and polymer production; (2) metal binding to inorganic surfaces; (3) metal binding to cellular surfaces; and (4) biofilm model integrated with a metal-binding model.

  12. Oxide charge accumulation in metal oxide semiconductor devices during irradiation

    SciTech Connect

    Lee, D. ); Chan, C. )

    1991-05-15

    An analysis of a simple physical model for radiation induced oxide charge accumulation in the SiO{sub 2} layer of metal oxide semiconductor (MOS) structure has been developed. The model assumes that both electron and hole traps exist in the oxide layer. These traps can capture electrons as well as holes during irradiation. Using this model, final oxide charge distributions in the oxide layer of MOS capacitors exposed to a total dose radiation can be predicted. The resulting charge distribution is calculated to yield the midgap voltage shifts as functions of total dose, bias voltage, and oxide thickness. The results are shown to agree well with the experimental data. Furthermore, the model successfully analyzes the radiation-induced negative oxide charge distribution in an ion-implanted, radiation-hard MOS capacitor. These negative oxide charge distributions not only partially compensate the effects of trapped positive oxide charges but also reduced the density of positive oxide charges trapped near the Si/SiO{sub 2} interface. We found the reduction of the positive oxide charge density near the Si/SiO{sub 2} interface is due to internal electric field modification in the oxide layer.

  13. Release and systemic accumulation of heavy metals from preformed crowns used in restoration of primary teeth.

    PubMed

    Kodaira, Hiroe; Ohno, Kohachiro; Fukase, Naoko; Kuroda, Midori; Adachi, Shiki; Kikuchi, Motohiro; Asada, Yoshinobu

    2013-01-01

    Preformed crowns for restoration of primary teeth are used in various treatments and are essential for restoring the crowns of primary molars. However, there are concerns that mechanical, chemical, and thermal stimulation may cause release of components of such crowns. We examined systemic accumulation of heavy metals associated with preformed crowns (3M Stainless Steel Primary Molar Crowns) used in primary tooth restoration. The participants were 37 children who had visited the Pediatric Dental Clinic of Tsurumi University Dental Hospital. They were divided into two groups: 22 participants without a history of being fitted with a preformed crown for primary tooth restoration (controls), and 15 participants with preformed crowns for primary tooth restoration. Analysis of hair samples showed a significant difference in the level of the trace element Cr - an important component of the preformed crowns - between children with and without preformed crowns, but no significant differences in Fe or Ni levels. Levels of the trace elements Ni, Cr, and Fe were within allowable ranges, indicating that these minerals were not likely to be harmful.

  14. Metals and trace elements in feathers: A geochemical approach to avoid misinterpretation of analytical responses.

    PubMed

    Borghesi, Fabrizio; Migani, Francesca; Andreotti, Alessandro; Baccetti, Nicola; Bianchi, Nicola; Birke, Manfred; Dinelli, Enrico

    2016-02-15

    Assessing trace metal pollution using feathers has long attracted the attention of ecotoxicologists as a cost-effective and non-invasive biomonitoring method. In order to interpret the concentrations in feathers considering the external contamination due to lithic residue particles, we adopted a novel geochemical approach. We analysed 58 element concentrations in feathers of wild Eurasian Greater Flamingo Phoenicopterus roseus fledglings, from 4 colonies in Western Europe (Spain, France, Sardinia, and North-eastern Italy) and one group of adults from zoo. In addition, 53 elements were assessed in soil collected close to the nesting islets. This enabled to compare a wide selection of metals among the colonies, highlighting environmental anomalies and tackling possible causes of misinterpretation of feather results. Most trace elements in feathers (Al, Ce, Co, Cs, Fe, Ga, Li, Mn, Nb, Pb, Rb, Ti, V, Zr, and REEs) were of external origin. Some elements could be constitutive (Cu, Zn) or significantly bioaccumulated (Hg, Se) in flamingos. For As, Cr, and to a lesser extent Pb, it seems that bioaccumulation potentially could be revealed by highly exposed birds, provided feathers are well cleaned. This comprehensive study provides a new dataset and confirms that Hg has been accumulated in feathers in all sites to some extent, with particular concern for the Sardinian colony, which should be studied further including Cr. The Spanish colony appears critical for As pollution and should be urgently investigated in depth. Feathers collected from North-eastern Italy were the hardest to clean, but our methods allowed biological interpretation of Cr and Pb. Our study highlights the importance of external contamination when analysing trace elements in feathers and advances methodological recommendations in order to reduce the presence of residual particles carrying elements of external origin. Geochemical data, when available, can represent a valuable tool for a correct

  15. Assessment of trace metals in four bird species from Korea.

    PubMed

    Kim, Jungsoo; Oh, Jong-Min

    2013-08-01

    In birds, heavy metal concentrations are influenced by diet intake, migratory pattern, and residence time. In the present study, heavy metal concentrations (in microgram per gram dry weight) were measured in livers of four bird species from Korea. Iron concentrations were greater in Eurasian Woodcocks (Scolopax rusticola) than in Grey Herons (Ardea cinerea), Little Egrets (Egretta garzetta), and Schrenck's Bitterns (Ixobrychus eurhythmus). Copper concentrations in Grey Herons were significantly higher than in other species. Lead concentrations were greater in Schrenck's Bitterns and Eurasian Woodcocks than in Grey Herons and Little Egrets. Eurasian Woodcocks had higher cadmium concentrations than in other species. Zinc and manganese concentrations did not differ among species. Iron, zinc, manganese, and copper concentrations from this study were within the range of other Korean bird studies, and these concentrations were far below toxic levels. Cadmium and lead accumulation trends in each species were different, and the results might be associated with their migration pattern and residence time in Korea. Grey Herons, Little Egrets, and Schrenck's Bitterns are usually summer visitors, and Eurasian Woodcocks are passage migrants. But herons and egrets were collected in spring, autumn, and winter, but not during breeding season. They might be residents, so they could more reflect Korean cadmium and lead contaminations than Schrenck's Bitterns. However, Eurasian Woodcocks could more reflect habitats outside Korea because of their short staying time in Korea.

  16. Recent Deposition of Trace Metals to Central (Summit) Greenland as Recorded in 3-Meter Snow Pits

    NASA Astrophysics Data System (ADS)

    Overdier, J.; Shafer, M.; Schauer, J.; von Schneidemesser, E.; Hagler, G.; Bergin, M.

    2007-12-01

    During the summer 2005 and 2006 field seasons at Summit (3270 m) Greenland we collected snow core samples for comprehensive geochemical characterization. This sampling effort was one facet of our larger program with the overall objective of improving our understanding of the sourcing and post depositional diagenesis of organic carbon depositing on the Greenland ice sheet. From snow pits of 3-meter depth, representing ~4 years of recent accumulation, detailed profiles of a suite of chemical variables were obtained, including: total and water soluble organic carbon, particulate organic and elemental carbon, inorganic ions, and comprehensive elemental and isotopic analysis. The elemental characterization supports our source reconciliation efforts in providing sub-seasonal data on aerosol particulate matter chemistry from which sourcing vectors can be inferred. Elemental and isotopic analyses on the melted snow cores were carried-out using high-resolution (sector-field) ICP-MS (Finnegan Element 2). A large suite of elements were quantified, including: the major/crustal elements (Al, Ca, K, Fe. Na, Mg, Si), minor crustal elements (Ba, Cs, Li, Rb, Sc, Sr, Ti) light transition metals (Co, Cr, Cu, Mn, Ni, Zn), heavy transition metals (Ag, Cd, Hg, Pb, Tl, W), oxyanion metals (As, Mo, U, V), platinum group metals (Rh, Pd, Pt), rare earths (Ce, Er, Eu, La, Nd, Sm, Y, Yb), as well as, Be, Sb, Sn, sulfur and phosphorus. Very large (>30x) temporal variation in snow core concentrations were measured for Al, Ba, Cr, Cu, Fe, Mg, P, Rb, Sr, Ti, U, Zn and all the rare earths, while low variation (~5x) is observed for the elements As, Cd, Hg, Mo, S and Sn. The later group is representative of the more mobile, anthropogenically dominated/sourced trace metals. Principal crustal elements (Al, Ca, Fe, K, Mg, Na) and sulfate (S) present similar profiles, with significant burial peaks in spring. Major burial peaks are relatively uniformly spaced (~70 cm apart), indicating some consistency

  17. Comparison of metal accumulation in the azooxanthellate scleractinian coral (Tubastraea coccinea) from different polluted environments.

    PubMed

    Chan, Isani; Hung, Jia-Jang; Peng, Shao-Hung; Tseng, Li-Chun; Ho, Tung-Yuan; Hwang, Jiang-Shiou

    2014-08-30

    The response of metal accumulation in coral Tubastraea coccinea to various degrees of metal enrichment was investigated from the Yin-Yang Sea (YYS) receiving abandoned mining effluents, the Kueishan Islet (KI) hydrothermal vent field, and the nearshore area of remoted Green Island (GI). The concentrations of most dissolved metals were highest in seawater at YYS, followed by KI, and then GI, showing the effects of anthropogenic and venting inputs on metal levels. Five metals (Co, Fe, Mn, Ni, and Zn) yielded significant differences (p<0.05) among the skeleton samples. We identified similar patterns in the metal-Ca ratios, indicating that the elevated metals in skeletons was a consequence of external inputs. The coral tissues were relatively sensitive in monitoring metal accumulation, showing significant differences among three locations for Cd, Co, Cu, Fe, Pb, Ni, and Zn. Specific bioconcentration factors provided strong support for the differential metal accumulation in skeletons and tissues. PMID:24321880

  18. Advanced Gasification Mercury/Trace Metal Control with Monolith Traps

    SciTech Connect

    Musich, Mark; Swanson, Michael; Dunham, Grant; Stanislowski, Joshua

    2010-10-05

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m{sup 3} (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m{sup 3} (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most

  19. ADVANCED GASIFICATION MERCURY/TRACE METAL CONTROL WITH MONOLITH TRAPS

    SciTech Connect

    Mark A. Musich; Michael L. Swanson; Grant E. Dunham; Joshua J. Stanislowski

    2010-07-31

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m3 (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m3 (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most effective arsine

  20. Sewage sludge application in a plantation: effects on trace metal transfer in soil-plant-snail continuum.

    PubMed

    Bourioug, Mohamed; Gimbert, Frédéric; Alaoui-Sehmer, Laurence; Benbrahim, Mohammed; Aleya, Lotfi; Alaoui-Sossé, Badr

    2015-01-01

    We studied the potential bioaccumulation of Cu, Zn, Pb and Cd by the snail Cantareus aspersus and evaluated the risk of leaching after application of sewage sludge to forest plantation ecosystems. Sewage sludge was applied to the soil surface at two loading rates (0, and 6 tons ha(-1) in dry matter) without incorporation into the soil so as to identify the sources of trace metal contamination in soil and plants and to evaluate effects on snail growth. The results indicated a snail mortality rate of less than 1% during the experiment, while their dry weight decreased significantly (<0.001) in all treatment modalities. Thus, snails showed no acute toxicity symptoms after soil amendment with sewage sludge over the exposure period considered. Additions of sewage sludge led to higher levels of trace metals in forest litter compared to control subplots, but similar trace metal concentrations were observed in sampling plants. Bioaccumulation study demonstrated that Zn had not accumulated in snails compared to Cu which accumulated only after 28 days of exposure to amended subplots. However, Pb and Cd contents in snails increased significantly after 14 and 28 days of exposure in both the control and amended subplots. At the last sampling date, in comparison to controls the Cd increase was higher in snails exposed to amended subplots. Thus, sludge spread therefore appears to be responsible for the observed bioaccumulation for Cu and Cd after 28days of exposure. Concerning Pb accumulation, the results from litter-soil-plant compartments suggest that soil is this metal's best transfer source.

  1. Advanced Gasification Mercury/Trace Metal Control with Monolith Traps

    SciTech Connect

    Michael L. Swanson; Grant E. Dunham; Mark A. Musich

    2007-02-01

    Three potential additives for controlling mercury emissions from syngas at temperatures ranging from 350 to 500 F (177 to 260 C) were developed. Current efforts are being directed at increasing the effective working temperature for these sorbents and also being able to either eliminate any potential mercury desorption or trying to engineer a trace metal removal system that can utilize the observed desorption process to repeatedly regenerate the same sorbent monolith for extended use. Project results also indicate that one of these same sorbents can also successfully be utilized for arsenic removal. Capture of the hydrogen selenide in the passivated tubing at elevated temperatures has resulted in limited results on the effective control of hydrogen selenide with these current sorbents, although lower-temperature results are promising. Preliminary economic analysis suggests that these Corning monoliths potentially could be more cost-effective than the conventional cold-gas (presulfided activated carbon beds) technology currently being utilized. Recent Hg-loading results might suggest that the annualized costs might be as high as 2.5 times the cost of the conventional technology. However, this annualized cost does not take into account the significantly improved thermal efficiency of any plant utilizing the warm-gas monolith technology currently being developed.

  2. Depositional record of trace metals and degree of contamination in core sediments from the Mandovi estuarine mangrove ecosystem, west coast of India.

    PubMed

    Veerasingam, S; Vethamony, P; Mani Murali, R; Fernandes, B

    2015-02-15

    The concentrations of seven trace metals (Fe, Mn, Cu, Cr, Co, Pb and Zn) in three sediment cores were analysed to assess the depositional trends of metals and their contamination level in the Mandovi estuary, west coast of India. All sediment cores showed enrichment of trace metals in the upper part of core sediments and decrease in concentration with depth, suggesting excess of anthropogenic loading (including mining activities) occurred during the recent past. Scanning electron microscope (SEM) images distinguished the shape, size and structure of particles derived from lithogenic and anthropogenic sources in core sediments. The geo-accumulation index (I(geo)) values indicate that Mandovi estuary is 'moderately polluted' with Pb, whereas 'unpolluted to moderately polluted' with Fe, Mn, Cu, Cr, Co and Zn. The comparative analysis of trace metals revealed that Fe and Mn were highly enriched in the Mandovi estuary compared to all other Indian estuaries. PMID:25510546

  3. Depositional record of trace metals and degree of contamination in core sediments from the Mandovi estuarine mangrove ecosystem, west coast of India.

    PubMed

    Veerasingam, S; Vethamony, P; Mani Murali, R; Fernandes, B

    2015-02-15

    The concentrations of seven trace metals (Fe, Mn, Cu, Cr, Co, Pb and Zn) in three sediment cores were analysed to assess the depositional trends of metals and their contamination level in the Mandovi estuary, west coast of India. All sediment cores showed enrichment of trace metals in the upper part of core sediments and decrease in concentration with depth, suggesting excess of anthropogenic loading (including mining activities) occurred during the recent past. Scanning electron microscope (SEM) images distinguished the shape, size and structure of particles derived from lithogenic and anthropogenic sources in core sediments. The geo-accumulation index (I(geo)) values indicate that Mandovi estuary is 'moderately polluted' with Pb, whereas 'unpolluted to moderately polluted' with Fe, Mn, Cu, Cr, Co and Zn. The comparative analysis of trace metals revealed that Fe and Mn were highly enriched in the Mandovi estuary compared to all other Indian estuaries.

  4. [Accumulation of heavy metals in the sediments of Shenzhen Bay, south China].

    PubMed

    Huang, Xiaoping; Li, Xiangdong; Yue, Weizhong; Huang, Liangmin; Li, Yoksheung

    2003-07-01

    Heavy metals concentrations in marine sediment cores of Shenzhen Bay were measured, and the profile distribution characteristic of heavy metals was discussed. Combined with the 210 Pb dating results, the contamination history of heavy metals was studied in high resolution records, and the metal accumulation processes were also analyzed. The results indicated that the concentrations of heavy metals was relatively low compared with other area in the world, but the elements of Pb, Cu and Zn were obviously contaminated by anthropogenic impact. The rapid economical development of Shenzhen in the last 20 years and Hong Kong in 1960-1970s contributed much on accumulation of heavy metals in the sediments.

  5. Bioaccumulation of trace metals in farmed fish from South China and potential risk assessment.

    PubMed

    Qiu, Yao-Wen; Lin, Duan; Liu, Jing-Qin; Zeng, Eddy Y

    2011-03-01

    Concentrations of trace metals were determined in water, sediment, fish feed and two species of farmed fish, pompano and snapper, collected from Daya Bay and Hailing Bay of South China in July 2007 and January 2008. Total average concentrations of Cu, Pb, Zn, Cd, Cr, Hg and As were 1.6, 2.7, 27.3, 0.025, 0.62, 0.18 and 0.59 μg/g dry wt in pompano and 1.5, 2.6, 23.6, 0.020, 0.55, 0.22 and 0.53 μg/g dry wt in snapper. In general, the concentrations of all target metals except Hg were positively correlated with lipid contents whereas negative correlations were observed between the metal concentrations and fish body weights. Model calculation indicated that dietary uptake of Zn and Cd predominate their accumulation in snapper, accounting for 99.9% and 98.2% of the total inputs. Risk assessments suggested that potential ecological and human health risk may be present due to elevated Pb concentrations in sediment and farmed fish.

  6. [Absorption and accumulation of heavy metals by plants around a smelter].

    PubMed

    Cui, Shunag; Zhou, Qixing; Chao, Lei

    2006-03-01

    The study on the absorption and accumulation of heavy metals lead, zinc, copper and cadmium by 8 plant species around a smelter showed that the metals accumulation by plants differed with plant species, their parts, and kinds of metals. Abutilon theophrasti had a higher capability of absorbing and accumulating Pb, Conyza canadensis, Ambrosia trifida, Polygonumn lapathifolium, A. theophrasti, Solanum nigrum, Chenopodium acuminatum and Helianthus tuberosus had a higher capability of absorbing and accumulating Zn, C. acuminatunz and A. theophrasti had a higher capability of absorbing and accumulating Cu, and S. nigrum, C. acuminatum, A. theophrasti, P. lapathifolium and C. canadensis had a higher capability of absorbing and accumulating Cd. These plants had TF values higher than 1, and were suitable for phytoextraction to remedy polluted soil. As for the plants with TF values lower than 1, they were suitable as the phytostabilizers of heavy metals-contaminated lands. PMID:16724753

  7. [Absorption and accumulation of heavy metals by plants around a smelter].

    PubMed

    Cui, Shunag; Zhou, Qixing; Chao, Lei

    2006-03-01

    The study on the absorption and accumulation of heavy metals lead, zinc, copper and cadmium by 8 plant species around a smelter showed that the metals accumulation by plants differed with plant species, their parts, and kinds of metals. Abutilon theophrasti had a higher capability of absorbing and accumulating Pb, Conyza canadensis, Ambrosia trifida, Polygonumn lapathifolium, A. theophrasti, Solanum nigrum, Chenopodium acuminatum and Helianthus tuberosus had a higher capability of absorbing and accumulating Zn, C. acuminatunz and A. theophrasti had a higher capability of absorbing and accumulating Cu, and S. nigrum, C. acuminatum, A. theophrasti, P. lapathifolium and C. canadensis had a higher capability of absorbing and accumulating Cd. These plants had TF values higher than 1, and were suitable for phytoextraction to remedy polluted soil. As for the plants with TF values lower than 1, they were suitable as the phytostabilizers of heavy metals-contaminated lands.

  8. Macronutrients and trace metals in soil and food crops of Isfahan Province, Iran.

    PubMed

    Keshavarzi, Behnam; Moore, Farid; Ansari, Maryam; Rastegari Mehr, Meisam; Kaabi, Helena; Kermani, Maryam

    2015-01-01

    The distribution of 10 macronutrients and trace metals in the arable soils of Isfahan Province, their phytoavailability, and associated health risks were investigated; 134 plant and 114 soil samples (from 114 crop fields) were collected and analyzed at harvesting time. Calculation of the soil pollution index (SPI) revealed that arable soil polluted by metals was more severe in the north and southwest of the study area. The results of cluster analysis indicated that Pb, Zn, and Cu share a similar origin from industries and traffic. The concentrations of macronutrients and trace metals in the sampled crops were found in the order of K > Ca > S > Mg > P and Fe > Mn > Zn > Cu > Pb, respectively, whereas calculation of the bioconcentration factor (BCF) indicated that the accumulation of the investigated elements in crops was generally in the order of S ≈ K > P > Mg > Ca and Zn > Cu > Mn > Pb > Fe, respectively. Thus, various parameters including crop species and the physical, chemical, and biological properties of soil also affected the bioavailability of the elements besides the total element contents in soil. Daily intake (DI) values of elements were lower than the recommended daily intake (RDI) levels in rice grains except for Fe and Mn, but for wheat grains, all elements displayed DI values higher than the RDI. Moreover, based on the hazard index (HI) values, inhabitants are experiencing a significant potential health risk solely due to the consumption of wheat and rice grains (particularly wheat grains). Mn health quotient (HQ) also indicated a high risk of Mn absorption for crop consumer inhabitants.

  9. Differential patterns of accumulation and retention of dietary trace elements associated with coal ash during larval development and metamorphosis of an amphibian.

    PubMed

    Heyes, Andrew; Rowe, Christopher L; Conrad, Phillip

    2014-01-01

    We performed an experiment in which larval gray tree frogs (Hyla chrysoscelis) were raised through metamorphosis on diets increased with a suite of elements associated with coal combustion residues (silver [Ag], arsenic [As], cadmium [Cd], chromium [Cr], copper [Cu], mercury [Hg], lead [Pb], selenium [Se], vanadium [V], and zinc [Zn]) at "low" and "high" concentrations. We quantified accumulation of metals at three life stages (mid-larval development, initiation of metamorphosis, and completion of metamorphosis) as well as effects on survival, metabolic rate, size at metamorphosis, and duration and loss of weight during metamorphosis. Most elements were accumulated in a dose-dependent pattern by some or all life stages, although this was not the case for Hg. For most elements, larval body burdens exceeded those of later life stages in some or all treatments (control, low, or high). However for Se, As, and Hg, body burdens in control and low concentrations were increased in later compared with earlier life stages. A lack of dose-dependent accumulation of Hg suggests that the presence of high concentrations of other elements (possibly Se) either inhibited accumulation or increased depuration of Hg. The duration of metamorphosis (forelimb emergence through tail resorption) was lengthened in individuals exposed to the highest concentrations of elements, but there were no other statistically significant biological effects. This study shows that patterns of accumulation and possibly depuration of metals and trace elements are complex in animals possessing complex life cycles. Further study is required to determine specific interactions affecting these patterns, in particular which elements may be responsible for affecting accumulation or retention of Hg when organisms are exposed to complex mixtures of elements. PMID:24169791

  10. Differential patterns of accumulation and retention of dietary trace elements associated with coal ash during larval development and metamorphosis of an amphibian.

    PubMed

    Heyes, Andrew; Rowe, Christopher L; Conrad, Phillip

    2014-01-01

    We performed an experiment in which larval gray tree frogs (Hyla chrysoscelis) were raised through metamorphosis on diets increased with a suite of elements associated with coal combustion residues (silver [Ag], arsenic [As], cadmium [Cd], chromium [Cr], copper [Cu], mercury [Hg], lead [Pb], selenium [Se], vanadium [V], and zinc [Zn]) at "low" and "high" concentrations. We quantified accumulation of metals at three life stages (mid-larval development, initiation of metamorphosis, and completion of metamorphosis) as well as effects on survival, metabolic rate, size at metamorphosis, and duration and loss of weight during metamorphosis. Most elements were accumulated in a dose-dependent pattern by some or all life stages, although this was not the case for Hg. For most elements, larval body burdens exceeded those of later life stages in some or all treatments (control, low, or high). However for Se, As, and Hg, body burdens in control and low concentrations were increased in later compared with earlier life stages. A lack of dose-dependent accumulation of Hg suggests that the presence of high concentrations of other elements (possibly Se) either inhibited accumulation or increased depuration of Hg. The duration of metamorphosis (forelimb emergence through tail resorption) was lengthened in individuals exposed to the highest concentrations of elements, but there were no other statistically significant biological effects. This study shows that patterns of accumulation and possibly depuration of metals and trace elements are complex in animals possessing complex life cycles. Further study is required to determine specific interactions affecting these patterns, in particular which elements may be responsible for affecting accumulation or retention of Hg when organisms are exposed to complex mixtures of elements.

  11. Geochemical index of trace metals in the surficial sediments from the western continental shelf of India, Arabian Sea.

    PubMed

    Laluraj, C M; Nair, S M

    2006-12-01

    The present study focuses on the determination and abundance of trace metals (viz. Cu, Ni, Zn, Cr, Co, Cd, Mn and Fe) in the surficial sediments of west coast of Arabian Sea along the Indian subcontinent. Sediment samples were collected from three transects along the western continental shelf of Arabian Sea. The enrichment of Fe and Mn in coastal oxic-sediments indicates the precipitation of these redox sensitive elements as Fe- and Mn-hydroxides and oxides, whereas the low Fe and Mn concentrations in the oxygen deficient sediments of deeper stations reflects the dissolution of their hydroxides and oxides. Concentrations of fairly redox insensitive trace metals like Cu, Ni, Zn, Cr and Cd (with the exceptions of Cr) showed higher values at nearshore sediments, then it decreased towards seaward and again showed a slight increase at oxygen minimum stations in all the three transects. This geochemical variability in their distributional characteristics is mainly associated with the extent to which the precipitation or dissolution of Fe- and Mn-oxides/hydroxides occur since the scavenging or releasing effects of Fe- and Mn-oxides/hydroxides act as significant 'sinks' or 'sources' of heavy metals. The change in wind pattern, coastal upwelling and increased productivity are also the reported factors which influence the biogeochemical cycling of trace metals in the surface sediments of west coast of India. Enrichment factor generally showed a high gradient accumulation from nearshore to shelf.

  12. Assessment of the contamination of riparian soil and vegetation by trace metals--A Danube River case study.

    PubMed

    Pavlović, P; Mitrović, M; Đorđević, D; Sakan, S; Slobodnik, J; Liška, I; Csanyi, B; Jarić, S; Kostić, O; Pavlović, D; Marinković, N; Tubić, B; Paunović, M

    2016-01-01

    The aim of this study was to assess the spatial distribution of arsenic and heavy metals (Cd, Cr, Cu Hg, Ni, Pb and Zn) in a riparian area influenced by periodical flooding along a considerable stretch of the Danube River. This screening was undertaken on soil and plant samples collected from 43 sites along 2386 km of the river, collected during the international Joint Danube Survey 3 expedition (ICPDR, 2015). In addition, data on the concentration of these elements in river sediment was used in order to describe the relationship between sediment, riparian soil and riparian plants. A significant positive correlation (Spearman r, for p<0.05) was found for trace metal concentrations in river sediment and soil (r=0.817). A significant correlation between soil and plants (r=0.438) and sediment and plants (r=0.412) was also found for trace metal concentrations. Elevated levels of Cd, Cr, Cu, and Ni were found at certain sites along the Serbian stretch, while elevated concentrations of Hg were also detected in Hungary, of Pb along the Romanian stretch and of As along the Bulgarian stretch (the Lower Danube). These results point to the presence of naturally-occurring metals derived from ore deposits in the Danube River Basin and anthropogenic metals, released by mining and processing of metal ores and other industrial facilities, which are responsible for the entry of metals such as Cu, Ni and Zn. Our results also indicated toxic Cd and Zn levels in plant samples, measured at the Hercegsznato site (Middle Danube, Hungary), which highlighted these elements as a potential limiting factor for riparian vegetation in that area. The distribution of the analysed elements in plant material also indicates the species-specific accumulation of trace metals. Based on our results, the Lower and Middle Danube were found to be more polluted in terms of the analysed elements.

  13. Assessment of the contamination of riparian soil and vegetation by trace metals--A Danube River case study.

    PubMed

    Pavlović, P; Mitrović, M; Đorđević, D; Sakan, S; Slobodnik, J; Liška, I; Csanyi, B; Jarić, S; Kostić, O; Pavlović, D; Marinković, N; Tubić, B; Paunović, M

    2016-01-01

    The aim of this study was to assess the spatial distribution of arsenic and heavy metals (Cd, Cr, Cu Hg, Ni, Pb and Zn) in a riparian area influenced by periodical flooding along a considerable stretch of the Danube River. This screening was undertaken on soil and plant samples collected from 43 sites along 2386 km of the river, collected during the international Joint Danube Survey 3 expedition (ICPDR, 2015). In addition, data on the concentration of these elements in river sediment was used in order to describe the relationship between sediment, riparian soil and riparian plants. A significant positive correlation (Spearman r, for p<0.05) was found for trace metal concentrations in river sediment and soil (r=0.817). A significant correlation between soil and plants (r=0.438) and sediment and plants (r=0.412) was also found for trace metal concentrations. Elevated levels of Cd, Cr, Cu, and Ni were found at certain sites along the Serbian stretch, while elevated concentrations of Hg were also detected in Hungary, of Pb along the Romanian stretch and of As along the Bulgarian stretch (the Lower Danube). These results point to the presence of naturally-occurring metals derived from ore deposits in the Danube River Basin and anthropogenic metals, released by mining and processing of metal ores and other industrial facilities, which are responsible for the entry of metals such as Cu, Ni and Zn. Our results also indicated toxic Cd and Zn levels in plant samples, measured at the Hercegsznato site (Middle Danube, Hungary), which highlighted these elements as a potential limiting factor for riparian vegetation in that area. The distribution of the analysed elements in plant material also indicates the species-specific accumulation of trace metals. Based on our results, the Lower and Middle Danube were found to be more polluted in terms of the analysed elements. PMID:26184864

  14. Distribution and Potential Toxicity of Trace Metals in the Surface Sediments of Sundarban Mangrove Ecosystem, Bangladesh

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Ramanathan, A.; Mathukumalli, B. K. P.; Datta, D. K.

    2014-12-01

    The distribution, enrichment and ecotoxocity potential of Bangladesh part of Sundarban mangrove was investigated for eight trace metals (As, Cd, Cr, Cu, Fe, Mn, Pb and Zn) using sediment quality assessment indices. The average concentration of trace metals in the sediments exceeded the crustal abundance suggesting sources other than natural in origin. Additionally, the trace metals profile may be a reflection of socio-economic development in the vicinity of Sundarban which further attributes trace metals abundance to the anthropogenic inputs. Geoaccumulation index suggests moderately polluted sediment quality w.r.t. Ni and As and background concentrations for Al, Fe, Mn, Cu, Zn, Pb, Co, As and Cd. Contamination factor analysis suggested low contamination by Zn, Cr, Co and Cd, moderate by Fe, Mn, Cu and Pb while Ni and As show considerable and high contamination, respectively. Enrichment factors for Ni, Pb and As suggests high contamination from either biota or anthropogenic inputs besides natural enrichment. As per the three sediment quality guidelines, Fe, Mn, Cu, Ni, Co and As would be more of a concern with respect to ecotoxicological risk in the Sundarban mangroves. The correlation between various physiochemical variables and trace metals suggested significant role of fine grained particles (clay) in trace metal distribution whereas owing to low organic carbon content in the region the organic complexation may not be playing significant role in trace metal distribution in the Sundarban mangroves.

  15. Trace and ultratrace metals in bottled waters: survey of sources worldwide and comparison with refillable metal bottles.

    PubMed

    Krachler, Michael; Shotyk, William

    2009-01-15

    Bottled waters from diverse natural and industrial sources are becoming increasingly popular worldwide. Several potentially harmful trace metals (Ag, Be, Li, Ge, Sb, Sc, Te, Th, U) are not monitored regularly in such waters. As a consequence, there is extremely limited data on the abundance and potential health impacts of many potentially toxic trace elements. Containers used for the storage of bottled waters might also increase trace metal levels above threshold limits established for human consumption by the EPA or WHO. Applying strict clean room techniques and sector field ICP-MS, 23 elements were determined in 132 brands of bottled water from 28 countries. In addition, leaching experiments with high purity water and various popular metal bottles investigated the release of trace metals from these containers. The threshold limits for elements such as Al, Be, Mn and U in drinking water were clearly exceeded in some waters. Several bottled waters had Li concentrations in the low mg/L range, a level which is comparable to blood plasma levels of patients treated against manic depression with Li-containing drugs. The rate of release of trace metals from metal bottles assessed after 13 days was generally low, with one exception: Substantial amounts of both Sb and Tl were released from a commercially available pewter pocket flask, exceeding international guidelines 5- and 11-fold, respectively. Trace metal levels of most bottled waters are below guideline levels currently considered harmful for human health. The few exceptions that exist, however, clearly reveal that health concerns are likely to manifest through prolonged use of such waters. The investigated coated aluminium and stainless steel bottles are harmless with respect to leaching of trace metals into drinking water. Pocket flasks, in turn, should be selected with great care to avoid contamination of beverages with harmful amounts of potentially toxic trace metals such as Sb and Tl. PMID:18990431

  16. Trace and ultratrace metals in bottled waters: survey of sources worldwide and comparison with refillable metal bottles.

    PubMed

    Krachler, Michael; Shotyk, William

    2009-01-15

    Bottled waters from diverse natural and industrial sources are becoming increasingly popular worldwide. Several potentially harmful trace metals (Ag, Be, Li, Ge, Sb, Sc, Te, Th, U) are not monitored regularly in such waters. As a consequence, there is extremely limited data on the abundance and potential health impacts of many potentially toxic trace elements. Containers used for the storage of bottled waters might also increase trace metal levels above threshold limits established for human consumption by the EPA or WHO. Applying strict clean room techniques and sector field ICP-MS, 23 elements were determined in 132 brands of bottled water from 28 countries. In addition, leaching experiments with high purity water and various popular metal bottles investigated the release of trace metals from these containers. The threshold limits for elements such as Al, Be, Mn and U in drinking water were clearly exceeded in some waters. Several bottled waters had Li concentrations in the low mg/L range, a level which is comparable to blood plasma levels of patients treated against manic depression with Li-containing drugs. The rate of release of trace metals from metal bottles assessed after 13 days was generally low, with one exception: Substantial amounts of both Sb and Tl were released from a commercially available pewter pocket flask, exceeding international guidelines 5- and 11-fold, respectively. Trace metal levels of most bottled waters are below guideline levels currently considered harmful for human health. The few exceptions that exist, however, clearly reveal that health concerns are likely to manifest through prolonged use of such waters. The investigated coated aluminium and stainless steel bottles are harmless with respect to leaching of trace metals into drinking water. Pocket flasks, in turn, should be selected with great care to avoid contamination of beverages with harmful amounts of potentially toxic trace metals such as Sb and Tl.

  17. Efficient shedding of accumulated metals during metamorphosis in metal-adapted populations of the midge Chironomus riparius

    SciTech Connect

    Groenendijk, D.; Kraak, M.H.S.; Admiraal, W. . Dept. of Aquatic Ecology and Ecotoxicology)

    1999-06-01

    Metal accumulation and loss during metamorphosis were investigated in Chironomus riparius populations in a metal contaminated lowland river. Cadmium and zinc levels were measured in imagoes and larvae at reference and metal-exposed sites. It was hypothesized that the relationship between metal concentrations in biota and environmental compartments would be influenced by the presence of metal-adapted chironomids. In contrast to the large interpopulation differences in larval body burdens of cadmium, body burdens in imagoes vanished to background levels for all midge populations. This indicated that any cadmium accumulated in larval stages was lost during metamorphosis. This nearly 100% efficiency in shedding of cadmium is most likely caused by an increased metal handling capacity present in exposed midges. In agreement with the cadmium measurements, larval body burdens of zinc showed also highly significant interpopulation differences. In contrast with the cadmium values, however, body burdens of zinc in imagoes showed highly significant interpopulation differences and differences were even recorded between the two exposed sites, indicating interpopulation differences in shedding capacity for zinc. It is concluded that the highly efficient shedding of accumulated metals reflected the metal adaptation recorded in earlier studies of metal-exposed C. riparius populations from the River Dommel. Based on the differences in metal accumulation and the differences found in shedding of metals between the two exposed midge populations, it was concluded that population differentiation due to metal stress is a gradual process rather than an all-or-nothing situation.

  18. Source and Cycling of Trace Metals and Nutrients in a Microbial Coalbed Methane System

    NASA Astrophysics Data System (ADS)

    Earll, M. M.; Barnhart, E. P.; Ritter, D.; Vinson, D. S.; Orem, W. H.; Vengosh, A.; McIntosh, J. C.

    2015-12-01

    The source and cycling of trace metals and nutrients in coalbed methane (CBM) systems are controlled by both geochemical processes, such as dissolution or precipitation, and biological mediation by microbial communities. CBM production by the microbes is influenced by trace metals and macronutrients such as nitrogen (N) and phosphate (P). Previous studies have shown the importance of these nutrients to both enhance and inhibit methane production; however, it's not clear whether they are sourced from coal via in-situ biodegradation of organic matter or transported into the seams with groundwater recharge. To address this knowledge gap, trace metal and nutrient geochemistry and the organic content of solid coal and associated groundwater will be investigated across a hydrologic gradient in CBM wells in the Powder River Basin, MT. Sequential dissolution experiments (chemical extraction of organic and inorganic constituents) using 8 core samples of coal and sandstone will provide insight into the presence of trace metals and nutrients in coalbeds, the associated minerals present, and their mobilization. If significant concentrations of N, P, and trace metals are present in core samples, in-situ sourcing of nutrients by microbes is highly probable. The biogeochemical evolution of groundwater, as it relates to trace metal and nutrient cycling by microbial consortia, will be investigated by targeting core-associated coal seams from shallow wells in recharge areas to depths of at least 165 m and across a 28 m vertical profile that include overburden, coal, and underburden. If microbial-limiting trace metals and nutrients are transported into coal seams with groundwater recharge, we would expect to see higher concentrations of trace metals and nutrients in recharge areas compared to deeper coalbeds. The results of this study will provide novel understanding of where trace metals and nutrients are sourced and how they are cycled in CBM systems.

  19. Content and distribution of trace metals in pristine permafrost environments of Northeastern Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Antcibor, I.; Eschenbach, A.; Kutzbach, L.; Bolshiyanov, D.; Pfeiffer, E.-M.

    2012-04-01

    Arctic regions are one of the most sensitive areas with respect to climatic changes and human impacts. Research is required to discover how the function of permafrost soils as a buffering system for metal pollutants could change in response to the predicted changes. The goal of this work is to determine the background levels of trace metals in the pristine arctic ecosystems of the Lena River Delta in Northeastern Siberia and to evaluate the possible effect of human impacts on this arctic region. The Lena River Delta represents areas with different dominating geomorphologic processes that can generally be divided between accumulation and erosion sites. Frequent changes of the river water level create different periods of sedimentation and result in the formation of stratified soils and sediment layers which are dominated either by mineral substrates with allochthonous organic matter or pure autochthonous peat. The deposited sediments that have formed the delta islands are mostly composed of sand fractions; therefore the buffering effects of clay materials can be neglected. Samoylov Island is representative of the south-central and eastern modern delta surfaces of the Lena River Delta and is selected as a pilot study site. We determined total element contents of Fe, Mn, Zn, Cd, Ni, Cu, As, Pb, Co and Hg in soil horizons from different polygonal elevated rims, polygonal depressed centers and the middle floodplain. High gravimetric concentrations (related to dry mass of soil material) of Mn and Fe are found within all soil profiles and vary from 0.14 to 1.39 g kg-1 and from 10.7 to 41.2 g kg-1, respectively. While the trace element concentrations do not exceed typical crustal abundances, the maximum values of most of the metals are observed within the soil profile situated at the middle floodplain. This finding suggests that apart from the parent material the second potential source of trace metals is due to allochthonous substance input during annual flooding of the

  20. Trace metal contamination of Beaufort's Dyke, North Channel, Irish Sea: a legacy of ordnance disposal.

    PubMed

    Callaway, Alexander; Quinn, Rory; Brown, Craig J; Service, Matthew; Benetti, Sara

    2011-11-01

    Beaufort's Dyke is a disused ordnance disposal ground within the North Channel of the Irish Sea. Over 1 million tonnes of ordnance were disposed of in the dyke over a 40 year period representing a substantial volume of trace metal pollutants introduced to the seabed. Utilising particle transport modelling software we simulated the potential transport of metal particles from Beaufort's Dyke over a 3 month period. This demonstrated that Beaufort's Dyke has the potential to act as a source for trace metal contamination to areas beyond the submarine valley. Trace metal analysis of sediments from the Dyke and surrounding National Marine Monitoring Programme areas demonstrate that the Dyke is not the most contaminated site in the region. Particle transport modelling enables the transport pathways of trace metal contaminants to be predicted. Implementation of the technique in other munitions disposal grounds will provide valuable information for the selection of monitoring stations.

  1. Quantitative Trait Loci and Inter-Organ Partitioning for Essential Metal and Toxic Analogue Accumulation in Barley

    PubMed Central

    Reuscher, Stefan; Kolter, Andreas; Hoffmann, Astrid; Pillen, Klaus

    2016-01-01

    The concentrations of both essential nutrients and chemically similar toxic analogues accumulated in cereal grains have a major impact on the nutritional quality and safety of crops. Naturally occurring genetic diversity can be exploited for the breeding of improved varieties through introgression lines (ILs). In this study, multi-element analysis was conducted on vegetative leaves, senesced flag leaves and mature grains of a set of 54 ILs of the wild ancestral Hordeum vulgare ssp. spontaneum in the cultivated variety Hordeum vulgare ssp. vulgare cv. Scarlett. Plants were cultivated on an anthropogenically heavy metal-contaminated soil collected in an agricultural field, thus allowing simultaneous localization of quantitative trait loci (QTL) for the accumulation of both essential nutrients and toxic trace elements in barley as a model cereal crop. For accumulation of the micronutrients Fe and Zn and the interfering toxin Cd, we identified 25, 16 and 5 QTL, respectively. By examining the gene content of the introgressions, we associated QTL with candidate genes based on homology to known metal homeostasis genes of Arabidopsis and rice. Global comparative analyses suggested the preferential remobilization of Cu and Fe, over Cd, from the flag leaf to developing grains. Our data identifies grain micronutrient filling as a regulated and nutrient-specific process, which operates differently from vegetative micronutrient homoeostasis. In summary, this study provides novel QTL for micronutrient accumulation in the presence of toxic analogues and supports a higher degree of metal specificity of trace element partitioning during grain filling in barley than previously reported for other cereals. PMID:27078500

  2. Quantitative Trait Loci and Inter-Organ Partitioning for Essential Metal and Toxic Analogue Accumulation in Barley.

    PubMed

    Reuscher, Stefan; Kolter, Andreas; Hoffmann, Astrid; Pillen, Klaus; Krämer, Ute

    2016-01-01

    The concentrations of both essential nutrients and chemically similar toxic analogues accumulated in cereal grains have a major impact on the nutritional quality and safety of crops. Naturally occurring genetic diversity can be exploited for the breeding of improved varieties through introgression lines (ILs). In this study, multi-element analysis was conducted on vegetative leaves, senesced flag leaves and mature grains of a set of 54 ILs of the wild ancestral Hordeum vulgare ssp. spontaneum in the cultivated variety Hordeum vulgare ssp. vulgare cv. Scarlett. Plants were cultivated on an anthropogenically heavy metal-contaminated soil collected in an agricultural field, thus allowing simultaneous localization of quantitative trait loci (QTL) for the accumulation of both essential nutrients and toxic trace elements in barley as a model cereal crop. For accumulation of the micronutrients Fe and Zn and the interfering toxin Cd, we identified 25, 16 and 5 QTL, respectively. By examining the gene content of the introgressions, we associated QTL with candidate genes based on homology to known metal homeostasis genes of Arabidopsis and rice. Global comparative analyses suggested the preferential remobilization of Cu and Fe, over Cd, from the flag leaf to developing grains. Our data identifies grain micronutrient filling as a regulated and nutrient-specific process, which operates differently from vegetative micronutrient homoeostasis. In summary, this study provides novel QTL for micronutrient accumulation in the presence of toxic analogues and supports a higher degree of metal specificity of trace element partitioning during grain filling in barley than previously reported for other cereals. PMID:27078500

  3. Accumulation of trace elements and organochlorines by surf scoters wintering in the Pacific northwest

    USGS Publications Warehouse

    Henny, C.J.; Blus, L.J.; Grove, R.A.; Thompson, S.P.

    1991-01-01

    Selenium, cadmium, mercury, copper, manganese, zinc, aluminum, lead, PCBs and DDE were accumulated by segments of the surf scoter (Melanitta perspicillata) population that winters in the Pacific Northwest, but whether the uptake occurred on breeding and/or wintering grounds was uncertain for some contaminants. Surf scoters collected in Puget Sound and San Francisco Bay (in another study) during the same period (January 1985) contained similar concentrations of cadmium, but Alsea Bay scoters contained more. Cadmium was inversely related to both liver and body weights of Northwest scoters in January; similar weight losses were reported in experimental laboratory studies. Northwest and north San Francisco Bay scoters contained similar mercury concentrations, but those in south San Francisco Bay contained higher concentrations. San Francisco Bay scoters contained higher arsenic and selenium concentrations than those in the Northwest; however, the 43.4 ppm (geometric mean, dry wt) selenium in livers at Commencement Bay in January was above levels associated with the reproductive problems in aquatic birds at Kesterson National Wildlife Refuge. Even higher concentrations of some elements may be found in surf scoters in March, because a later collection (March) at San Francisco Bay yielded higher concentrations than found there in January. Trace element concentrations in birds at a given wintering location are variable among species and may be influenced by diet, breeding grounds, and physiology (e.g., at Commencement Bay surf scoters with a sediment-associated diet contained 50X more cadmium in their kidneys than did fish-eating western grebes [Aechmophorus occidentalis]). The numerous wildlife species that live on estuaries require further attention.

  4. Comparative Study of the Effects of Long and Short Term Biological Processes on the Cycling of Colloidal Trace Metals

    NASA Astrophysics Data System (ADS)

    Pinedo, P.; Sanudo-Wilhelmy, S. A.; West, A.

    2013-05-01

    Nanoparticle (or colloids), with sizes operationally defined as ranging from 1nm to 1000nm diameter, are thought to play an important role in metal cycling in the ocean due to their high surface area to volume ratio and abundance in marine systems. In coastal waters, the bulk of marine nanoparticles are organic, so short and long term biological processes are expected to influence the dynamics of these types of particles in marine environments. This is, in turn, expected to influence metal concentrations. Here we selected two different environments to study the influence of long-term biological events (phytoplankton blooms) and short-term biological events (diel cycles of photosynthesis and respiration) on the cycling of colloidal trace metals. We focus on Cu and Fe, both biogeochemically important metals but with differing colloidal behavior. Long term processes (West Neck Bay): A bay (West Neck Bay, Long Island) with predictable natural phytoplankton blooms, but with limited inputs of freshwater, nutrients and metals, was selected to study the partitioning of Cu and Fe between colloidal and soluble pools over the course of a bloom. During the bloom, there was a significant build-up of Cu associated with DOM accumulation and a removal of Fe via particle stripping. Fraction-specific metal concentrations, and metal accumulation and removal rates, were found to be significantly correlated with chlorophyll-a concentration and with dissolved organic matter (DOM). Short term processes (Catalina Island): To identify the cyclical variation in metal speciation during diel (24-hour) cycles of photosynthesis and respiration, we conducted a study off Catalina Island, a pristine environment where trace metal cycling is solely controlled by biological processes and changes in the phytoplankton community are well characterized. The speciation of Fe between soluble and colloidal pools showed that Fe has a high affinity for colloidal material and that the distribution between

  5. Retention of trace metals by solidified/stabilized wastes: assessment of long-term metal release.

    PubMed

    Badreddine, R; Humez, A N; Mingelgrin, U; Benchara, A; Meducin, F; Prost, R

    2004-03-01

    Toxic elements found in wastes may have a negative impact on the environment, especially through the contamination of groundwater and plants. To reduce their mobility and availability, French regulations mandate the solidification and stabilization of toxic wastes. Many methods to stabilize and solidify wastes exist, among them the Ecofix process which employs low cost materials and consists of mixing wastes with lime, aluminum hydroxide, and silica. To evaluate the long-term behavior of solidified/stabilized (S/S) samples, their alteration under saturated conditions was studied in a water extractor, a Soxhlet-like device, used to follow the weathering of rocks. Kinetic measurements have shown that the release of Fe, Pb, Cd, Cr, and Cu was very slow, indicating a strong retention of these elements by the S/S materials prepared by the Ecofix process. To elucidate the mechanisms of retention of the trace metals, the mineral phases that existed in the S/S samples throughout and at the end of the extraction runs were studied by X-ray diffraction and by infrared and nuclear magnetic resonance spectroscopies. Scanning electron microscopic (SEM) examinations and electron microprobe analyses of the S/S samples were also performed at different stages of weathering. These observations revealed that assorted calcium silicate hydrates (C-S-H) were the predominant phases in the S/S preparations and that gradual alterations occurred in the structure of the investigated materials. The overall Ca/Si ratio of the C-S-H phases decreased as the enhanced alteration progressed. Although trace metals in oxide, hydroxide, and carbonate forms were found in the S/S materials, the bulk of the trace metals was incorporated in the matrix of the C-S-H phases.

  6. Determination of trace metals in drinking water in Irbid City-Northern Jordan.

    PubMed

    Alomary, Ahmed

    2013-02-01

    Drinking water samples from Irbid, the second populated city in Jordan were analyzed for trace metals (As, Ba, Cd, Pb, Cr, Cu, Fe, Zn, Mn, Ni, and Se) content. The study was undertaken to determine if the metal concentrations were within the national and international guidelines. A total of 90 drinking water samples were collected from Al-Yarmouk University area. The samples were collected from three different water types: tap water (TW), home-purified water (HPW), and plant-purified water (PPW). All the samples were analyzed for trace metals using an inductively coupled plasma-optical emission spectrometry. All the samples analyzed were within the United States Environmental Protection Agency admissible pH limit (6.5-8.5). The results showed that concentrations of the trace metals vary significantly between the three drinking water types. The results showed that HPW samples have the lowest level of trace metals and the concentrations of some essential trace metals in these samples are less than the recommended amounts. Slight differences in the metal contents were found between HPW samples, little differences between PPW samples; however, significant differences were found between TW samples. Although some TW samples showed high levels of trace metals, however, the mean level of most elements determined in the samples were well within the Jordanian standards as well as the World Health Organization standards for drinking water.

  7. Pollution status of the Bohai Sea: an overview of the environmental quality assessment related trace metals.

    PubMed

    Gao, Xuelu; Zhou, Fengxia; Chen, Chen-Tung Arthur

    2014-01-01

    It is well recognized that the ecosystem of the Bohai Sea is being rapidly degraded and the Sea has basically lost its function as a fishing ground. Billions of funds have been spent in slowing down, halting and finally reversing the environmental deterioration of the Bohai Sea. Although trace metals are routinely monitored, the data with high temporal resolution for a clear understanding of biogeochemical processes in the ecosystem of the Bohai Sea are insufficient, especially in the western literature. In this review, status of trace metal contamination in the Bohai Sea is assessed based on a comprehensive review of their concentrations recorded in the waters, sediments and organisms over the past decades. Studies show that metal contamination in the Bohai Sea is closely associated with the fast economic growth in the past decades. Concentrations of trace metals are high in coastal areas especially in the estuaries. Alarmingly high metal concentrations are observed in the waters, sediments and organisms from the western Bohai Bay and the northern Liaodong Bay, especially the coasts near Huludao in the northernmost area of the Bohai Sea, which is being polluted by industrial sewage from the surrounding areas. The knowledge of the speciation and fractionation of trace metals and the influence of submarine groundwater discharge on the biogeochemistry of trace metals in the Bohai Sea is far from enough and related work needs to be done urgently to get a better understanding of the influence of trace metals on the ecosystem of the Bohai Sea. A clear understanding of the trace metal pollution status of the Bohai Sea could not be achieved presently for lack of systematic cooperation in different research fields. It is quite necessary to apply the environmental and ecological modeling to the investigation of trace metals in the Bohai Sea and then provide foundations for the protection of the environment and ecosystem of the Bohai Sea.

  8. Bioaccumulation of metallic trace elements and organic pollutants in marine sponges from the South Brittany Coast, France.

    PubMed

    Gentric, Charline; Rehel, Karine; Dufour, Alain; Sauleau, Pierre

    2016-01-01

    The purpose of this study was to compare the accumulation of metallic and organic pollutants in marine sponges with the oyster Crassostrea gigas used as sentinel species. The concentrations of 12 Metallic Trace Elements (MTEs), 16 Polycyclic Aromatic Hydrocarbons (PAHs), 7 PolyChlorinated Biphenyls (PCBs), and 3 organotin derivatives were measured in 7 marine sponges collected in the Etel River (South Brittany, France). Results indicated Al, Co, Cr, Fe, Pb, and Ti particularly accumulated in marine sponges such as Hymeniacidon perlevis and Raspailia ramosa at higher levels compared to oysters. At the opposite, Cu and Zn accumulated significantly at higher concentrations in oysters. Among PAHs analyzed, benzo(a)pyrene bioaccumulated in H. perlevis at levels up to 17-fold higher than in oysters. In contrast, PCBs bioaccumulated preferentially in oysters. Significant differences exist in the abilities of marine phyla and sponge species to accumulate organic and metallic pollutants however, among the few sponge species studied, H. perlevis showed impressive bioaccumulation properties. The use of this species as bioindicator and/or bioremediator near shellfish farming areas is also discussed.

  9. Bioaccumulation of metallic trace elements and organic pollutants in marine sponges from the South Brittany Coast, France.

    PubMed

    Gentric, Charline; Rehel, Karine; Dufour, Alain; Sauleau, Pierre

    2016-01-01

    The purpose of this study was to compare the accumulation of metallic and organic pollutants in marine sponges with the oyster Crassostrea gigas used as sentinel species. The concentrations of 12 Metallic Trace Elements (MTEs), 16 Polycyclic Aromatic Hydrocarbons (PAHs), 7 PolyChlorinated Biphenyls (PCBs), and 3 organotin derivatives were measured in 7 marine sponges collected in the Etel River (South Brittany, France). Results indicated Al, Co, Cr, Fe, Pb, and Ti particularly accumulated in marine sponges such as Hymeniacidon perlevis and Raspailia ramosa at higher levels compared to oysters. At the opposite, Cu and Zn accumulated significantly at higher concentrations in oysters. Among PAHs analyzed, benzo(a)pyrene bioaccumulated in H. perlevis at levels up to 17-fold higher than in oysters. In contrast, PCBs bioaccumulated preferentially in oysters. Significant differences exist in the abilities of marine phyla and sponge species to accumulate organic and metallic pollutants however, among the few sponge species studied, H. perlevis showed impressive bioaccumulation properties. The use of this species as bioindicator and/or bioremediator near shellfish farming areas is also discussed. PMID:26634290

  10. What factors determine trace metal contamination in Lake Tonga (Algeria)?

    PubMed

    Bourhane-Eddine, Belabed; Victor, Frossard; Amel, Dhib; Souad, Turki; Lotfi, Aleya

    2013-12-01

    A study of trace metal (TM) contamination was conducted at Lake Tonga (Algeria), a site surrounded by several indirect contamination point sources such as an abandoned mine and steelworks. Studying two sampling sites over four seasons, we were able to depict the spatial and temporal variability of TM contamination in the lake. Among the seven TM examined (Pb, Cd, Fe, Zn, Ni, Cu, and Cr), only Fe, Pb, and Cd showed concentrations significantly higher than the site's geological background. The contamination index (sediment concentration/background concentration) calculated for these three TM (Cd = 1.9 ± 1.6, Fe = 6.8 ± 1.8, and Pb = 3.3 ± 2.6) clearly indicated anthropogenic contamination. Sediment TM contamination differed both between sampling sites and seasons despite environmental variables (e.g., oxygen and pH) being similar, thus suggesting different TM contamination sources. Fe contamination was high at the two sampling sites and over all studied seasons, possibly indicating general lake-scale Fe contamination, probably related to atmospheric deposition of steelworks emissions both on the lake and within the watershed. Lake tributaries were further suspected of channeling Fe contamination from the watershed into the lake. On the other hand, the sampling site close to the outlet was especially rich in Cd and Pb typically reflecting contamination by mine wastes. The indirect connection between the abandoned mine and the lake indicates that runoff of mine leachates through groundwater was likely a candidate in explaining the specificity of the TM contamination in this part of the lake. This study provides insights for management of TM contamination by addressing both spatial and temporal variability within the lake as well as differences in contamination sources.

  11. On nutrients and trace metals: Effects from Enhanced Weathering

    NASA Astrophysics Data System (ADS)

    Amann, T.; Hartmann, J.

    2015-12-01

    The application of rock flour on suitable land ("Enhanced Weathering") is one proposed strategy to reduce the increase of atmospheric CO2 concentrations. At the same time it is an old and established method to add fertiliser and influence soil properties. Investigations of this method focused on the impact on the carbonate system, as well as on engineering aspects of a large-scale application, but potential side effects were never discussed quantitatively. We analysed about 120,000 geochemically characterised volcanic rock samples from the literature. Applying basic statistics, theoretical release rates of nutrients and potential contaminants by Enhanced Weathering were evaluated for typical rock types. Applied rock material can contain significant amounts of essential or beneficial nutrients (potassium, phosphorus, micronutrients). Their release can partly cover the demand of major crops like wheat, rice or corn, thereby increasing crop yield on degraded soils. However, the concentrations of considered elements are variable within a specific rock type, depending on the geological setting. High heavy metal concentrations are found in (ultra-) basic rocks, the class with the highest CO2 drawdown potential. More acidic rocks contain less or no critical amounts, but sequester less CO2. Findings show that the rock selection determines the capability to supply significant amounts of nutrients, which could partly substitute industrial mineral fertiliser usage. At the same time, the release of harmful trace element has to be considered. Through careful selection of regionally available rocks, benefits could be maximised and drawbacks reduced. The deployment of Enhanced Weathering to sequester CO2 and to ameliorate soils necessitates an ecosystem management, considering the release and fate of weathered elements in plants, soils and water. Cropland with degraded soils would benefit while having a net negative CO2 effect, while other carbon dioxide removal strategies, like

  12. Effects of elevated CO2 concentrations and fly ash amended soils on trace element accumulation and translocation among roots, stems and seeds of Glycine max (L.) Merr.

    PubMed

    Rodriguez, J H; Klumpp, A; Fangmeier, A; Pignata, M L

    2011-03-15

    The carbon dioxide (CO(2)) levels of the global atmosphere and the emissions of heavy metals have risen in recent decades, and these increases are expected to produce an impact on crops and thereby affect yield and food safety. In this study, the effects of elevated CO(2) and fly ash amended soils on trace element accumulation and translocation in the root, stem and seed compartments in soybean [Glycine max (L.) Merr.] were evaluated. Soybean plants grown in fly ash (FA) amended soil (0, 1, 10, 15, and 25% FA) at two CO(2) regimes (400 and 600 ppm) in controlled environmental chambers were analyzed at the maturity stage for their trace element contents. The concentrations of Br, Co, Cu, Fe, Mn, Ni, Pb and Zn in roots, stems and seeds in soybeans were investigated and their potential risk to the health of consumers was estimated. The results showed that high levels of CO(2) and lower concentrations of FA in soils were associated with an increase in biomass. For all the elements analyzed except Pb, their accumulation in soybean plants was higher at elevated CO(2) than at ambient concentrations. In most treatments, the highest concentrations of Br, Co, Cu, Fe, Mn, and Pb were found in the roots, with a strong combined effect of elevated CO(2) and 1% of FA amended soils on Pb accumulation (above maximum permitted levels) and translocation to seeds being observed. In relation to non-carcinogenic risks, target hazard quotients (TQHs) were significant in a Chinese individual for Mn, Fe and Pb. Also, the increased health risk due to the added effects of the trace elements studied was significant for Chinese consumers. According to these results, soybean plants grown for human consumption under future conditions of elevated CO(2) and FA amended soils may represent a toxicological hazard. Therefore, more research should be carried out with respect to food consumption (plants and animals) under these conditions and their consequences for human health.

  13. Novel Sorbent-Based Process for High Temperature Trace Metal Removal

    SciTech Connect

    Gokhan Alptekin

    2008-09-30

    intermittent operation of the PSDF gasifier (due to the difficulties in the handling of the low quality lignite), only a small fraction of the sorbent capacity was utilized (we measured a mercury capacity of 3.27 mg/kg, which is only a fraction of the 680 mg/kg Hg capacity measured for the same sorbent used at our bench-scale evaluations at TDA). Post reaction examination of the sorbent by chemical analysis also indicated some removal As and Se (we did not detect any significant amounts of Cd in the synthesis gas or over the sorbent). The tests at UNDEERC was more successful and showed clearly that the TDA sorbent can effectively remove Hg and other trace metals (As and Se) at high temperature. The on-line gas measurements carried out by TDA and UNDEERC separately showed that TDA sorbent can achieve greater than 95% Hg removal efficiency at 260 C ({approx}200g sorbent treated more than 15,000 SCF synthesis gas). Chemical analysis conducted following the tests also showed modest amounts of As and Se accumulation in the sorbent bed (the test durations were still short to show higher capacities to these contaminants). We also evaluated the stability of the sorbent and the fate of mercury (the most volatile and unstable of the trace metal compounds). The Synthetic Ground Water Leaching Procedure Test carried out by an independent environmental laboratory showed that the mercury will remain on the sorbent once the sorbent is disposed. Based on a preliminary engineering and cost analysis, TDA estimated the cost of mercury removal from coal-derived synthesis gas as $2,995/lb (this analysis assumes that this cost also includes the cost of removal of all other trace metal contaminants). The projected cost will result in a small increase (less than 1%) in the cost of energy.

  14. Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems.

    PubMed

    Vardanyan, Lilit G; Ingole, Baban S

    2006-02-01

    Aquatic macrophytes are unchangeable biological filters and they carry out purification of the water bodies by accumulating dissolved metals and toxins in their tissue. In view of their potential to entrap several toxic heavy metals, 45 macrophytes belonging to 8 families collected from two different physiographic locations (36 from Sevan Lake, Armenia; 9 from Carambolim Lake, Old Goa, India) were studied for estimation of 14 heavy metals. The study was aimed at understanding the importance of these macrophytes in accumulation of toxic metals and controlling the heavy metal pollution and suggesting the remedial measures, if any, for the preservation and restoration of lake ecosystem. Inductively Coupled Plasma-Atomic Emission Spectrometric (ICP-AES) analyses of these aquatic macrophytes have shown the importance of aquatic macrophytes in accumulation of heavy metals and maintaining the clarity of water bodies beside their role in trophic systems. Accumulation of most of the heavy metals was higher in root system. The representative macrophytes from two different physiographic locations show similar trends and order in accumulating different metals generally. Of the 14 metals investigated, 9 (Ca, Fe, Al, Cr, Cu, Ba, Ti, Co and Pb) showed higher rates of accumulation in the root whereas 3 (Mn, Zn and Mg) showed more accumulation in stem and 1 (Ca) showed higher accumulation in the leaves. In most of the samples Cu was accumulated more in the roots (50+/-47.15 microg/g) and less in flowers (9.52+/-3.97 microg/g). Occurrence of heavy metal was much higher in macrophytes of Sevan Lake than that of the Carambolim Lake. The accumulation of 14 elements was in order of Ca>Mg>Fe>Al>Mn>Ba>Zn>Ti>Cu>Cr>Co>Ni>Pb>Cd. The present study revealed that the aquatic macrophytes play a very significant role in removing the different metals from the ambient environments. They probably play a major role in reducing the effect of high concentration of heavy metals. Therefore, the

  15. Investigation of Water Safety in Non-treated Drinking Water with Trace Toxic Metals.

    PubMed

    Ly, Suw Young; Kim, Dae Hong; Lee, Ga Eun

    2013-09-01

    The trace toxic metal copper was assayed using mercury immobilized on a carbon nanotube electrode (MCW), with a graphite counter and a reference electrode. In this study, a macro-scale convection motor was interfaced with a MCW three-electrode system, in which a handmade MCW was optimized using cyclic- and square-wave stripping voltammetry. An analytical electrolyte for tap water was used instead of an expensive acid or base ionic solution. Under these conditions, optimum parameters were 0.09 V amplitude, 40 Hz frequency, 0.01 V incremental potential, and a 60-s accumulation time. A diagnostic working curve was obtained from 50.0 to 350 μg/L. At a constant Cu(II) concentration of 10.0 μg/L, the statistical relative standard deviation was 1.78% (RSD, n = 15), the analytical accumulation time was only 60 s, and the analytical detection limit approached 4.6 μg/L (signal/noise = 3). The results were applied to nontreated drinking water. The content of the analyzed copper using 9.0 and 4.0 μg/L standards were 8.68 μg/L and 3.96 μg/L; statistical values R(2) = 0.9987 and R(2) = 0.9534, respectively. This method is applicable to biological diagnostics or food surveys. PMID:24386522

  16. Metal accumulation, growth, antioxidants and oil yield of Brassica juncea L. exposed to different metals.

    PubMed

    Sinha, Sarita; Sinam, Geetgovind; Mishra, Rohit Kumar; Mallick, Shekhar

    2010-09-01

    In agricultural fields, heavy metal contamination is responsible for limiting the crop productivity and quality. This study reports that the plants of Brassica juncea L. cv. Pusa bold grown on contaminated substrates [Cu, Cr(VI), As(III), As(V)] under simulated field conditions have shown translocation of metals to the upper part and its sequestration in the leaves without significantly affecting on oil yield, except for Cr and higher concentration of As(V), compared to control. Decrease in the oil content in As(V) treated plants was observed in a dose dependent manner; however, maximum decrease was recorded in Cr treated plants. Among all the metal treatments, Cr was the most toxic as evident from the decrease in oil content, growth parameters and antioxidants. The accumulation of metals was below the detection limit in the seeds grown on 10 and 30 mg kg(-1) As(III) and Cr(VI); 10 mg kg(-1) As(V)) and thus can be recommended only for oil cultivation. PMID:20663558

  17. Modelling metal accumulation using humic acid as a surrogate for plant roots.

    PubMed

    Le, T T Yen; Swartjes, Frank; Römkens, Paul; Groenenberg, Jan E; Wang, Peng; Lofts, Stephen; Hendriks, A Jan

    2015-04-01

    Metal accumulation in roots was modelled with WHAM VII using humic acid (HA) as a surrogate for root surface. Metal accumulation was simulated as a function of computed metal binding to HA, with a correction term (E(HA)) to account for the differences in binding site density between HA and root surface. The approach was able to model metal accumulation in roots to within one order of magnitude for 95% of the data points. Total concentrations of Mn in roots of Vigna unguiculata, total concentrations of Ni, Zn, Cu and Cd in roots of Pisum sativum, as well as internalized concentrations of Cd, Ni, Pb and Zn in roots of Lolium perenne, were significantly correlated to the computed metal binding to HA. The method was less successful at modelling metal accumulation at low concentrations and in soil experiments. Measured concentrations of Cu internalized in L. perenne roots were not related to Cu binding to HA modelled and deviated from the predictions by over one order of magnitude. The results indicate that metal uptake by roots may under certain conditions be influenced by conditional physiological processes that cannot simulated by geochemical equilibrium. Processes occurring in chronic exposure of plants grown in soil to metals at low concentrations complicate the relationship between computed metal binding to HA and measured metal accumulation in roots.

  18. Modelling metal accumulation using humic acid as a surrogate for plant roots.

    PubMed

    Le, T T Yen; Swartjes, Frank; Römkens, Paul; Groenenberg, Jan E; Wang, Peng; Lofts, Stephen; Hendriks, A Jan

    2015-04-01

    Metal accumulation in roots was modelled with WHAM VII using humic acid (HA) as a surrogate for root surface. Metal accumulation was simulated as a function of computed metal binding to HA, with a correction term (E(HA)) to account for the differences in binding site density between HA and root surface. The approach was able to model metal accumulation in roots to within one order of magnitude for 95% of the data points. Total concentrations of Mn in roots of Vigna unguiculata, total concentrations of Ni, Zn, Cu and Cd in roots of Pisum sativum, as well as internalized concentrations of Cd, Ni, Pb and Zn in roots of Lolium perenne, were significantly correlated to the computed metal binding to HA. The method was less successful at modelling metal accumulation at low concentrations and in soil experiments. Measured concentrations of Cu internalized in L. perenne roots were not related to Cu binding to HA modelled and deviated from the predictions by over one order of magnitude. The results indicate that metal uptake by roots may under certain conditions be influenced by conditional physiological processes that cannot simulated by geochemical equilibrium. Processes occurring in chronic exposure of plants grown in soil to metals at low concentrations complicate the relationship between computed metal binding to HA and measured metal accumulation in roots. PMID:25482978

  19. Correlation between some selected trace metal concentrations in six species of fish from the Arabian Sea

    SciTech Connect

    Ashraf, M.; Jaffar, M.

    1988-07-01

    The role of trace metals in marine ecosystems has been keenly investigated during recent years. It is known that abundance of essential trace metals regulates the metal content in the organisms by homeostatic control mechanisms, which when cease to function cause essential trace metals to act in an either acutely or chronically toxic manner. Therefore, a correlation study based on essential and non-essential trace metal concentrations is imperative for extending the existing knowledge of bioaccumulation of trace metals in marine organisms. An attempt has been made in the present investigation to bring out quantitative correlations between the concentrations of iron, copper, lead and zinc in the edible muscle tissue of six species of marine fish: Salmon (salmon sole); tuna (thunnus thynnus); pomfret silver (pampus argenteus); Pomfret black (formioniger); long tail tuna (thynnus tonggel) and Indian oil sardine (sardinella longiceps). These fish are abundantly available in Pakistan along the coastal line of the Arabian Sea and have great commercial value. The computational analysis on the trace metal correlation was conducted using an MSTAT statistical package.

  20. [Accumulation and release characteristics of heavy metals in Crassostrea rivalaris under mixed exposure].

    PubMed

    Chen, Hai-gang; Jia, Xiao-ping; Lin, Qin; Ma, Sheng-wei; Cai, Wen-gui; Wang, Zeng-huan

    2008-04-01

    With a mixed solution of lead (Pb), zinc (Zn), copper (Cu), nickel (Ni), cadmium (Cd), chromium (Cr), mercury (Hg) and arsenic (As), this paper studied the accumulation and release characteristics of test heavy metals in Crassostrea rivalaris. The results showed that C. rivalaris had a strong ability to accumulate Pb, Cu, Ni, Cd, Cr and Hg, being able to indicate the concentration levels of these heavy metals in solution, but a weak ability to accumulate Zn and As. In the following 35 days release stage, no significant change was observed in the contents of test heavy metals in C. rivalaris, suggesting that C. rivalaris had weak ability to release heavy metals. Two-compartment kinetic model could well fit the accumulation of heavy metals in C. rivalaris, but failed in simulating their release characteristics.

  1. Distribution of trace metals and methylmercury in soft tissues of the freshwater eel Anguilla marmorata in Vietnam.

    PubMed

    Le, Dung Quang; Nguyen, Duc Cu; Harino, Hiroya; Kakutani, Naoya; Chino, Naoko; Arai, Takaomi

    2010-08-01

    This study investigated trace metals in water, sediment, and various organs of the mature eel Anguilla marmorata in the Ba River, Vietnam. The metal concentrations in water and sediment did not exceed the Vietnam water criteria and sediment background concentration, except for Mn and Pb in sediment. The results of metal analysis in eel specimens indicated that the liver and kidney were the dominant organs for almost all trace metals, whereas muscle tended to accumulate high levels of Hg and approximately 87.4-100% of Hg was methylmercury. A strong positive correlation between mercury levels in muscle and age were found, but there was no correlation between mercury and body size. Interestingly, a high concentration of Zn was found in the gonad and liver; this indicated that high levels of Zn in the liver might play a physiologically important role in the eel's biological mechanisms during gonadal maturation. Though almost none of the metal concentrations in the muscle exceeded the reference doses of the U.S. EPA, approximately 80% of eels from the river contained mercury exceeding the recommended levels (0.30 microg/g) of the U.S. EPA and might present a risk for human consumption.

  2. Assessing the trace metal pollution in the sediments of Mahshahr Bay, Persian Gulf, via a novel pollution index.

    PubMed

    Vaezi, A R; Karbassi, A R; Fakhraee, M

    2015-10-01

    Sediment samples were collected from the Petrochemical Special Economic Zone of Mahshahr Bay, Persian Gulf, and analyzed for possible trace metal contamination by means of a chemical partitioning method. The heavy metal contents in the sediments follow the order of Al > Sr > Mn > Zn > Ni > Ba > Cr > Cu > As > Co. The degree of sediment contamination was evaluated using pollution load index (PLI), modified degree of contamination (mC d), geo-accumulation index (I geo), and enrichment factor (EF). All these indices compare present concentrations of metals to their background levels in crust and shale. In a specific area with high geological background like Mahshahr Bay, such a comparison may lead to erroneous conclusions. Due to the remarkable contribution of lithogenous fraction, as the natural component, to the bulk concentration of trace metals in the sediments of such an area, assessment of chemical hazard to the surrounding aquatic environment should not be carried out through traditional approaches. In the present study, anthropogenic portion of the metals was determined through one-step chemical sequential extraction and lithogenous portion substituted for the mean crust and shale levels in the new pollution index (RIAquatic). PLI, mC d, and I geo revealed overall low values, but EF, pollution index (I POLL), and newly developed pollution index were relatively high for all samples.

  3. Chemical influences on trace metal-sulfide interactions in anoxic sediments

    SciTech Connect

    Morse, J.W.; Luther, G.W. III

    1999-10-01

    Interactions of trace metals with sulfide in anoxic environments are important in determining their chemical form and potential toxicity to organisms. In recent years, a considerable body of observational data has accumulated that indicates very different behavior for various trace metals in sulfidic sediments. These differences in behavior cannot be entirely attributed to thermodynamic relationships, but also reflect differences in ligand exchange reaction kinetics, and redox reaction pathways. Pb, Zn, and Cd, which are generally pyritized to only a few percent of the reactive fraction, have faster water exchange reaction kinetics than Fe{sup 2+}, resulting in MeS phases precipitating prior to FeS formation and subsequent pyrite formation, whereas, Co and Ni, which have slower H{sub 2}O exchange kinetics than Fe{sup 2+}, are incorporated into pyrite. Although Hg and Cu have faster reaction kinetics than Fe{sup 2+}, both are incorporated into pyrite or leached from the pyrite fraction with nitric acid. Hg undergoes significant chloride complexation, which can retard reaction with sulfide, but can also replace Fe in FeS to form HgS, which can only be dissolved in the pyrite fraction. Cu{sup 2+} is reduced by sulfide and forms a variety of sulfides with and without Fe that can only be dissolved with nitric acid. Mn{sup 2+} does not form a MnS phase easily and is incorporated into pyrite at high iron degrees of pyritization (DOP). Oxyanions of Mo and As are first reduced by sulfide. These reduced forms may then react with sulfides resulting in incorporation into pyrite. However, the oxyanion of Cr is reduced to Cr{sup 3+}, which is kinetically inert to reaction with sulfide and, therefore, not incorporated into pyrite.

  4. Trace metal distribution in sediments of northern continental shelf of Crete Island, Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Poulos, S. E.; Dounas, C. G.; Alexandrakis, G.; Koulouri, P.; Drakopoulos, P.

    2009-08-01

    The present study investigates the distribution of trace metals (Zn, Hg, Cd, Cu, and Pb), as indicators of pollution, in the surficial offshore shelf sediments along the northern coast of Heraklion Prefecture (Crete, Mediterranean Sea). The concentrations and the spatial distribution of the different trace metals, in relation to the sedimentological characteristics and the water circulation pattern of the entire continental shelf, are associated with human inshore sources of pollutants located along the coastline of the study area. Although the trace metal concentrations measured are higher than the background values, they are not considered to be dangerous to human health, as they are lower than the standard values given by the World Health Organisation, with only a few localised exceptions. Furthermore, results reveal the important role of local hydrodynamism that moves fine-grained material and associated trace metals offshore (seawards to wave breaking zone) and then transports them eastwards by entrapping them in the prevailing offshore shelf-water circulation.

  5. Trace Element Composition of Metal and Sulphides in Iron Meteorites Determined Using ICP-MS

    NASA Astrophysics Data System (ADS)

    Giscard, M. D.; Hammond, S. J.; Bland, P. A.; Benedix, G. K.; Rogers, N. W.; Russell, S. S.; Genge, M. J.; Rehkamper, M.

    2012-09-01

    We measured trace element concentrations in Nantan, Toluca, Cape York, Carthage, Gibeon and Dronino. Poikiloblastic daubreelite in Gibeon indicates shock metamorphism. There is a volatile depletion in metal and sulphides.

  6. TRACE ELEMENT CHEMISTRY IN RESIDUAL-TREATED SOIL: KEY CONCEPTS AND METAL BIOAVAILABILITY

    EPA Science Inventory

    Trace element solubility and availability in land-applied residuals is governed by fundamental chemical reactions between metal constituents, soil, and residual components. Iron, aluminum, and manganese oxides; organic matter; and phosphates, carbonates, and sulfides are importan...

  7. Consumer-producer relationships for trace metals in Chorthippus brunneus (Thunberg. )

    SciTech Connect

    Johnson, M.S.

    1986-08-01

    The behavior of trace metals in terrestrial food chains is a subject of ecological interest, particularly in polluted environments where the potential exists for bioconcentration of metals known to be essential in trace amounts for normal plant and animal metabolism, as well as those with no known metabolic function but recognized toxicological properties. Laboratory studies of food chain relationships afford a means by which direct comparisons can be made between trace metals as a basis for interpretation of data collected from wild plant and animal populations. This study compares the behavior of three trace elements, copper, zinc and cadmium, in terms of their assimilation under experimental conditions by the herbivorous common field grasshopper, Chorthippus brunneus (Thunberg.). This voracious orthopteran is widely distributed in Britain and is particularly prominent in the restricted invertebrate community of some metal smelter-affected grasslands where it forms important seasonal prey for insectivorous small mammals.

  8. Characterizing the Environmental Availability of Trace Metals in Savannah River Site Soils

    SciTech Connect

    Serkiz, S.M.

    1999-03-18

    An eight step sequential extraction technique was used to characterize the environmental availability of trace metals from background and waste site soil samples collected from the US Department of Energy's Savannah River Site (SRS).

  9. Potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for phytoremediation of dredging sludge contaminated by trace metals.

    PubMed

    Arbaoui, Sarra; Evlard, Aricia; Mhamdi, Mohamed El Wafi; Campanella, Bruno; Paul, Roger; Bettaieb, Taoufik

    2013-07-01

    The potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for accumulation of cadmium and zinc was investigated. Plants have been grown in lysimetres containing dredging sludge, a substratum naturally rich in trace metals. Biomass production was determined. Sludge and water percolating from lysimeters were analyzed by atomic absorption spectrometry. No visible symptoms of toxicity were observed during the three- month culture. Kenaf and corn tolerate trace metals content in sludge. Results showed that Zn and Cd were found in corn and kenaf shoots at different levels, 2.49 mg/kg of Cd and 82.5 mg/kg of Zn in kenaf shoots and 2.1 mg/kg of Cd and 10.19 mg/kg in corn shoots. Quantities of extracted trace metals showed that decontamination of Zn and Cd polluted substrates is possible by corn and kenaf crops. Tolerance and bioaccumulation factors indicated that both species could be used in phytoremediation.

  10. Zn, Cd, S and trace metal bioaccumulation in willow (Salix spp.) cultivars grown hydroponically.

    PubMed

    McBride, M B; Martinez, C E; Kim, B

    2016-12-01

    Willows (Salix spp.) can be used to phytoremediate soils contaminated by Zn and Cd under certain conditions. In this study, the ability of 14 Salix cultivars to concentrate Cd, Zn and S in leaves was measured in hydroponic culture with 10 and 200 µM Cd and Zn, respectively, in the nutrient medium. The cultivars showed a wide range of biomass yields, tolerance to metals, and foliar concentrations of Zn and Cd, with some cultivars accumulating up to 1000 mg kg(-1) Zn, 70 mg kg(-1) Cd and 10,000 mg kg(-1) S with only mild phytotoxicity symptoms attributable to excess Zn. Cultivars with higher foliar Zn concentrations tended to have higher foliar Cd concentrations as well, and competition between Zn and Cd for uptake was observed. Exposure of Salix cultivars to Cd and Zn did not affect foliar concentrations of secondary metabolites such as polyphenols, but trace metal concentrations in leaves were significantly reduced (Fe and Cu) or increased (Mn) by exposure to excess Zn and Cd. Sulfur-XANES spectroscopy showed foliar S to be predominantly in highly oxidized (sulfate plus sulfonate) and reduced (thiol) forms, with oxidized S more prevalent in willows with the highest total S content.

  11. Zn, Cd, S and trace metal bioaccumulation in willow (Salix spp.) cultivars grown hydroponically.

    PubMed

    McBride, M B; Martinez, C E; Kim, B

    2016-12-01

    Willows (Salix spp.) can be used to phytoremediate soils contaminated by Zn and Cd under certain conditions. In this study, the ability of 14 Salix cultivars to concentrate Cd, Zn and S in leaves was measured in hydroponic culture with 10 and 200 µM Cd and Zn, respectively, in the nutrient medium. The cultivars showed a wide range of biomass yields, tolerance to metals, and foliar concentrations of Zn and Cd, with some cultivars accumulating up to 1000 mg kg(-1) Zn, 70 mg kg(-1) Cd and 10,000 mg kg(-1) S with only mild phytotoxicity symptoms attributable to excess Zn. Cultivars with higher foliar Zn concentrations tended to have higher foliar Cd concentrations as well, and competition between Zn and Cd for uptake was observed. Exposure of Salix cultivars to Cd and Zn did not affect foliar concentrations of secondary metabolites such as polyphenols, but trace metal concentrations in leaves were significantly reduced (Fe and Cu) or increased (Mn) by exposure to excess Zn and Cd. Sulfur-XANES spectroscopy showed foliar S to be predominantly in highly oxidized (sulfate plus sulfonate) and reduced (thiol) forms, with oxidized S more prevalent in willows with the highest total S content. PMID:27216699

  12. Effects of trace metal ions on secondary metabolism and the morphological development of streptomycetes.

    PubMed

    Locatelli, Fabricio M; Goo, Kian-Sim; Ulanova, Dana

    2016-05-01

    Bacteria belonging to the Streptomyces genus are characterized by a complex life cycle and the production of many bioactive secondary metabolites. Trace metals play an important role in streptomycete metabolism and development, however, their mechanism of action is not fully understood. In this review, we summarize the present knowledge on metallosensing regulators and trace metal action, as well as discuss the possible application in natural product discovery. PMID:27110673

  13. Effects of Trace Metal Concentrations on the Growth of the Coral Endosymbiont Symbiodinium kawagutii

    PubMed Central

    Rodriguez, Irene B.; Lin, Senjie; Ho, Jiaxuan; Ho, Tung-Yuan

    2016-01-01

    Symbiodinium is an indispensable endosymbiont in corals and the most important primary producer in coral reef ecosystems. During the past decades, coral bleaching attributed to the disruption of the symbiosis has frequently occurred resulting in reduction of coral reef coverage globally. Growth and proliferation of corals require some specific trace metals that are essential components of pertinent biochemical processes, such as in photosynthetic systems and electron transport chains. In addition, trace metals are vital in the survival of corals against oxidative stress because these metals serve as enzymatic cofactors in antioxidative defense mechanisms. The basic knowledge about trace metal requirements of Symbiodinium is lacking. Here we show that the requirement of Symbiodinium kawagutii for antioxidant-associated trace metals exhibits the following order: Fe >> Cu/Zn/Mn >> Ni. In growth media with Cu, Zn, Mn, and varying Fe concentrations, we observed that Cu, Zn, and Mn cellular quotas were inversely related to Fe concentrations. In the absence of Cu, Zn, and Mn, growth rates increased with increasing inorganic Fe concentrations up to 1250 pM, indicating the relatively high Fe requirement for Symbiodinium growth and potential functional complementarity of these metals. These results demonstrate the relative importance of trace metals to sustain Symbiodinium growth and a potential metal inter replacement strategy in Symbiodinium to ensure survival of coral reefs in an oligotrophic and stressful environment. PMID:26903964

  14. Effects of Trace Metal Concentrations on the Growth of the Coral Endosymbiont Symbiodinium kawagutii.

    PubMed

    Rodriguez, Irene B; Lin, Senjie; Ho, Jiaxuan; Ho, Tung-Yuan

    2016-01-01

    Symbiodinium is an indispensable endosymbiont in corals and the most important primary producer in coral reef ecosystems. During the past decades, coral bleaching attributed to the disruption of the symbiosis has frequently occurred resulting in reduction of coral reef coverage globally. Growth and proliferation of corals require some specific trace metals that are essential components of pertinent biochemical processes, such as in photosynthetic systems and electron transport chains. In addition, trace metals are vital in the survival of corals against oxidative stress because these metals serve as enzymatic cofactors in antioxidative defense mechanisms. The basic knowledge about trace metal requirements of Symbiodinium is lacking. Here we show that the requirement of Symbiodinium kawagutii for antioxidant-associated trace metals exhibits the following order: Fe > Cu/Zn/Mn > Ni. In growth media with Cu, Zn, Mn, and varying Fe concentrations, we observed that Cu, Zn, and Mn cellular quotas were inversely related to Fe concentrations. In the absence of Cu, Zn, and Mn, growth rates increased with increasing inorganic Fe concentrations up to 1250 pM, indicating the relatively high Fe requirement for Symbiodinium growth and potential functional complementarity of these metals. These results demonstrate the relative importance of trace metals to sustain Symbiodinium growth and a potential metal inter replacement strategy in Symbiodinium to ensure survival of coral reefs in an oligotrophic and stressful environment. PMID:26903964

  15. Accumulation of copper and other metals by copper-resistant plant-pathogenic and saprophytic pseudomonads

    SciTech Connect

    Cooksey, D.A.; Azad, H.R. )

    1992-01-01

    Copper-resistant strains of Pseudomonas syringae carrying the cop operon produce periplasmic copper-binding proteins, and this sequestration outside the cytoplasm has been proposed as a resistance mechanism. In this study, strain PS61 of P. syringae carrying the cloned cop operon accumulated more total cellular copper than without the operon. Several other copper-resistant pseudomonads with homology to cop were isolated from plants, and these bacteria also accumulated copper. Two highly resistant species accumulated up to 115 to 120 mg of copper per g (dry weight) of cells. P. putida 08891 was more resistant to several metals than P. syringae pv. tomato PT23, but this increased resistance was not correlated with an increased accumulation of metals other than copper. Several metals were accumulated by both PT23 and P. putida, but when copper was added to induce the cop operon, there was generally no increase of accumulation of the other metals, suggesting that the cop operon does not contribute to accumulation of these other metals. The exceptions were aluminium for PT23 and iron for P. putida, which accumulated to higher levels when copper was added to the cultures. The results of this study support the role of copper sequestration in the copper resistance mechanism of P. syringae and suggest that this mechanism is common to several copper-resistant Pseudomonas species found on plants to which antimicrobial copper compounds are applied for plant disease control.

  16. Metal accumulation and sublethal effects in the sea anemone, Aiptasia pallida, after waterborne exposure to metal mixtures.

    PubMed

    Brock, J R; Bielmyer, G K

    2013-09-01

    The marine environment is subjected to contamination by a complex mixture of metals from various anthropogenic sources. Measuring the biological responses of organisms to a complex mixture of metals allows for examination of metal-specific responses in an environmentally realistic exposure scenario. To address this issue, the sea anemone, Aiptasia pallida was exposed to a control and a metal mixture (copper, zinc, nickel, and cadmium) at three exposure levels (10, 50, and 100 μg/L) for 7 days. Anemones were then transferred to metal-free seawater for an additional 7 days after the metal exposure to assess metal depuration and recovery. Metal accumulation, activity of the enzymes catalase, glutathione reductase, and carbonic anhydrase, as well as, cell density of the symbiotic zooxanthellae were measured over 14 days. Metal accumulation in A. pallida occurred in a concentration dependent manner over the 7-day exposure period. Altered enzyme activity and tentacle retraction of the host, as well as decreased zooxanthellae cell density were observed responses over the 7 days, after exposure to a metal concentration as low as 10 μg/L. Metal depuration and physiological recovery were dependent on both the metal and the exposure concentration. Understanding how A. pallida and their symbionts are affected by metal exposures in the laboratory may allow better understanding about the responses of symbiotic cnidarians in metal polluted aquatic environments. PMID:23845877

  17. Trace element differentiation in ferruginous accumulation soil patterns under tropical rainforest of southern Cameroon, the role of climatic change.

    PubMed

    Temgoua, Emile; Pfeifer, Hans-Rudolf; Bitom, Dieudonné

    2003-03-01

    Regions under tropical rainforest cover, such as central Africa and Brazil are characterised by degradation and dismantling of old ferricrete structures. In southern Cameroon, these processes are relayed by present-day ferruginous accumulation soil facies, situated on the middle and the lower part of hill slopes. These facies become progressively harder towards the surface, containing from bottom to top, mainly kaolinite, kaolinite-goethite and Al-rich goethite-hematite, and are discontinuous to the relictic hematite-dominated ferricrete that exist in the upper part of the hill slope. These features were investigated in terms of geochemical differentiation of trace elements. It appears that, in contrast to the old ferricrete facies, the current ferruginous accumulations are enriched in transitional trace elements (V, Cr, Co, Y, Sc) and Pb, while alkali-earth elements are less differentiated. This recent chemical accumulation is controlled both by intense weathering of the granodiorite bedrock and by mobilisation of elements previously accumulated in the old ferricrete. The observed processes are clearly linked to the present-day humid climate with rising groundwater tables. They slowly replace the old ferricretes formed during Cretaceous time under more seasonal climatic conditions, representing an instructive case of continuos global change.

  18. Metal pollution in a contaminated bay: relationship between metal geochemical fractionation in sediments and accumulation in a polychaete.

    PubMed

    Fan, Wenhong; Xu, Zhizhen; Wang, Wen-Xiong

    2014-08-01

    Jinzhou Bay in Northern China has been seriously contaminated with metals due to the impacts of smelting activities. In this study, we investigated the relationship between metal accumulation in a deposit-feeding polychaete Neanthes japonica and metal concentration and geochemical fractionation (Cd, Cu, Pb, Zn and Ni) in sediments of Jinzhou Bay. Compared with the historical data, metals in the more mobile geochemical fraction (exchangeable and carbonate fractions) were gradually partitioned into the more stable fraction (Fe-Mn oxides) over time. Metal concentration and geochemical fractionation in sediment significantly affected metal bioavailability and accumulation in polychaetes, except for Ni. Metal accumulation in polychaetes was significantly influenced by Fe or Mn content, and to a lesser degree by organic matter. Prediction of metal bioaccumulation in polychaetes was greatly improved by normalizing metal concentrations to Mn content in sediment. The geochemical fractionation of metals in sediments including the exchangeable, organic matter and Fe-Mn oxides were important in controlling the sediment metal bioavailability to polychaetes.

  19. Distribution, enrichment, and potential toxicity of trace metals in the surface sediments of Sundarban mangrove ecosystem, Bangladesh: a baseline study before Sundarban oil spill of December, 2014.

    PubMed

    Kumar, Alok; Ramanathan, Al; Prasad, M B K; Datta, Dilip; Kumar, Manoj; Sappal, Swati Mohan

    2016-05-01

    The distribution, enrichment, and ecotoxicity potential of Bangladesh part of Sundarban mangrove was investigated for eight trace metals (As, Cd, Cr, Cu, Fe, Mn, Pb, and Zn) using sediment quality assessment indices. The average concentration of trace metals in the sediments exceeded the crustal abundance suggesting sources other than natural in origin. Additionally, the trace metals profile may be a reflection of socio-economic development in the vicinity of Sundarban which further attributes trace metals abundance to the anthropogenic inputs. A total of eleven surficial sediment samples were collected along a vertical transect along the freshwater-saline water gradient. The sediment samples were digested using EPA 3051 method and were analyzed on ICP-MS. Geo-accumulation index suggests moderately polluted sediment quality with respect to Ni and As and background concentrations for Al, Fe, Mn, Cu, Zn, Pb, Co, As, and Cd. Contamination factor analysis suggested low contamination by Zn, Cr, Co, and Cd, moderate by Fe, Mn, Cu, and Pb while Ni and As show considerable and high contamination, respectively. Enrichment factors for Ni, Pb, and As suggests high contamination from either biota or anthropogenic inputs besides natural enrichment. As per the three sediment quality guidelines, Fe, Mn, Cu, Ni, Co, and As would be more of a concern with respect to ecotoxicological risk in the Sundarban mangroves. The correlation between various physiochemical variables and trace metals suggested significant role of fine grained particles (clay) in trace metal distribution whereas owing to low organic carbon content in the region the organic complexation may not be playing significant role in trace metal distribution in the Sundarban mangroves. PMID:26822216

  20. Spatial distribution of heavy metal accumulation in the sediments after dam construction.

    PubMed

    Shim, Moo Joon; Yang, Yun Mo; Oh, Da Yeon; Lee, Soo Hyung; Yoon, Yi Yong

    2015-12-01

    The sedimentary environment has been modified in the Geum River where an estuary dam and midstream dams were constructed. Furthermore, the Geum River tributaries deliver contaminants from the wastewater of an industrial complex. However, the influence of tributaries and dams on sedimentary metal deposition has not been extensively studied. The objectives of this study are to assess metal accumulation and to investigate the source of the metals. Sediments were collected in the main channel and two tributaries on October 2013. Abnormal accumulations of fine sediments were not observed above the midstream dams. Chromium, Ni, and Zn showed higher concentrations in above the midstream dam, but their concentrations were not related to grain size. Cadmium, Cu, Pb, and Hg were much higher upstream from the first midstream dam and came from one of the major tributaries. Arsenic was the only element found at higher concentrations downstream from the last midstream dam and was likely sourced from abandoned mines and/or agricultural activity. The pollution indexes indicated deposition of all metals, except Cr and Ni, may have been affected by anthropogenic activity. With respect to long-term accumulation of the metals, accumulation of Pb, Zn, and Cu by anthropogenic input largely increased, implying accumulation of these metals has continued due to anthropogenic activity since the estuary dam was constructed. Our results suggest that changes in river flow caused by the estuary dam and anthropogenic input from tributaries sources increased the accumulation of heavy metals (e.g., Pb, Zn, Cu, and As). PMID:26549487

  1. Spatial distribution of heavy metal accumulation in the sediments after dam construction.

    PubMed

    Shim, Moo Joon; Yang, Yun Mo; Oh, Da Yeon; Lee, Soo Hyung; Yoon, Yi Yong

    2015-12-01

    The sedimentary environment has been modified in the Geum River where an estuary dam and midstream dams were constructed. Furthermore, the Geum River tributaries deliver contaminants from the wastewater of an industrial complex. However, the influence of tributaries and dams on sedimentary metal deposition has not been extensively studied. The objectives of this study are to assess metal accumulation and to investigate the source of the metals. Sediments were collected in the main channel and two tributaries on October 2013. Abnormal accumulations of fine sediments were not observed above the midstream dams. Chromium, Ni, and Zn showed higher concentrations in above the midstream dam, but their concentrations were not related to grain size. Cadmium, Cu, Pb, and Hg were much higher upstream from the first midstream dam and came from one of the major tributaries. Arsenic was the only element found at higher concentrations downstream from the last midstream dam and was likely sourced from abandoned mines and/or agricultural activity. The pollution indexes indicated deposition of all metals, except Cr and Ni, may have been affected by anthropogenic activity. With respect to long-term accumulation of the metals, accumulation of Pb, Zn, and Cu by anthropogenic input largely increased, implying accumulation of these metals has continued due to anthropogenic activity since the estuary dam was constructed. Our results suggest that changes in river flow caused by the estuary dam and anthropogenic input from tributaries sources increased the accumulation of heavy metals (e.g., Pb, Zn, Cu, and As).

  2. Enhanced anaerobic digestion of food waste by trace metal elements supplementation and reduced metals dosage by green chelating agent [S, S]-EDDS via improving metals bioavailability.

    PubMed

    Zhang, Wanli; Zhang, Lei; Li, Aimin

    2015-11-01

    This study aimed at investigating the effects of trace metals on methane production from food waste and examining the feasibility of reducing metals dosage by ethylenediamine-N,N'-disuccinic acid (EDDS) via improving metals bioavailability. The results indicated that the effects of metal elements highly depended on the supplemental concentrations. Trace metals supplemented under moderate concentrations greatly enhanced the methane yield. However, the excessive supplementation of Fe (1000 mg/L) and Ni (50 mg/L) exhibited the obvious toxicity to methanogens. The combinations of trace metals exhibited remarkable synergistic effects. The supplementation of Fe (100 mg/L) + Co (1 mg/L) + Mo (5 mg/L) + Ni (5 mg/L) obtained the greatest methane yield of 504 mL/g VSadded and the highest increment of 35.5% compared to the reactor without metals supplementation (372 mL/g VSadded). The changes of metals speciation showed the reduction of metals bioavailability during anaerobic digestion, which might weaken the stimulative effects of trace metals. However, the addition of EDDS improved metals bioavailability for microbial uptake and stimulated the activity of methanogens, and therefore, strengthened the stimulative effects of metals on anaerobic digestion of food waste. The batch and semi-continuous experiments confirmed that the addition of EDDS (20 mg/L) bonded to trace metals prior to their supplementation could obtain a 50% reduction of optimal metals dosage. This study provided a feasible method to reduce trace metals dosage without the degeneration of process performance of anaerobic digestion.

  3. Determination of trace and heavy metals in some commonly used medicinal herbs in Ayurveda.

    PubMed

    Nema, Neelesh K; Maity, Niladri; Sarkar, Birendra K; Mukherjee, Pulok K

    2014-11-01

    Traditionally, the herbal drugs are well established for their therapeutic benefits. Depending upon their geographical sources sometimes the trace and heavy metals' content may differ, which may lead to severe toxicity. So, the toxicological and safety assessment of these herbal drugs are one of the major issues in recent days. Eight different plant species including Aloe vera, Centella asiatica, Calendula officinalis, Cucumis sativus, Camellia sinensis, Clitoria ternatea, Piper betel and Tagetes erecta were selected to determine their heavy and trace metals content and thereby to assure their safer therapeutic application. The trace and heavy metals were detected through atomic absorption spectrometry analysis. The selected medicinal plant materials were collected from the local cultivated regions of West Bengal, India, and were digested with nitric acid and hydrochloric acid as specified. Absorbance was measured through atomic absorption spectrometer (AA 303) and the concentration of different trace and heavy metals in the plant samples were calculated. The quantitative determinations were carried out using standard calibration curve obtained by the standard solutions of different metals. The contents of heavy metals were found to be within the prescribed limit. Other trace metals were found to be present in significant amount. Thus, on the basis of experimental outcome, it can be concluded that the plant materials collected from the specific region are safe and may not produce any harmful effect of metal toxicity during their therapeutic application. The investigated medicinal plants contain trace metals such as copper (Cu), chromium (Cr), manganese (Mn), iron (Fe) and nickel (Ni) as well as heavy metals such as arsenic (As), lead (Pb) and mercury (Hg), which were present within the permissible limit. PMID:23222691

  4. Metal accumulation capacity of five species of Sphagnum moss

    SciTech Connect

    Aulio, K.

    1985-10-01

    The present paper describes the first experimental evidence of the species-specific differences in the cation accumulation properties in Sphagnum mosses. Manganese was chosen for the object of the experiments because this element appears to show the greatest variability under natural conditions.

  5. Trace metal concentrations in Posidonia oceanica of North Corsica (northwestern Mediterranean Sea): use as a biological monitor?

    PubMed Central

    Gosselin, Marc; Bouquegneau, Jean-Marie; Lefèbvre, Frédéric; Lepoint, Gilles; Pergent, Gerard; Pergent-Martini, Christine; Gobert, Sylvie

    2006-01-01

    Background Within semi-closed areas like the Mediterranean Sea, anthropic wastes tend to concentrate in the environment. Metals, in particular, are known to persist in the environment and can affect human health due to accumulation in the food chain. The seagrass Posidonia oceanica, widely found in Mediterranean coastal waters, has been chosen as a "sentinel" to quantify the distribution of such pollutants within the marine environment. Using a technique similar to dendrochronology in trees, it can act as an indicator of pollutant levels over a timeframe of several months to years. In the present study, we measured and compared the levels of eight trace metals (Cr, Ni, Cu, Zn, As, Se, Cd, and Pb) in sheaths dated by lepidochronology and in leaves of shoots sampled from P. oceanica meadows collected from six offshore sites in northern Corsica between 1988 and 2004; in the aim to determine 1) the spatial and 2) temporal variations of these metals in these areas and 3) to compared these two types of tissues. Results We found low trace metal concentrations with no increase over the last decade, confirming the potential use of Corsican seagrass beds as reference sites for the Mediterranean Sea. Temporal trends of trace metal concentrations in sheaths were not significant for Cr, Ni, Cu, As or Se, but Zn, Cd, and Pb levels decreased, probably due to the reduced anthropic use of these metals. Similar temporal trends between Cu levels in leaves (living tissue) and in sheaths (dead tissue) demonstrated that lepidochronology linked with Cu monitoring is effective for surveying the temporal variability of this metal. Conclusion Leaves of P. oceanica can give an indication of the metal concentration in the environment over a short time period (months) with good accuracy. On the contrary, sheaths, which gave an indication of changes over long time periods (decades), seem to be less sensitive to variations in the metal concentration in the environment. Changes in human

  6. Assessment of diffuse trace metal inputs into surface waters - Combining empirical estimates with process based simulations

    NASA Astrophysics Data System (ADS)

    Schindewolf, Marcus; Steinz, André; Schmidt, Jürgen

    2015-04-01

    As a result of mining activities since the 13th century, surface waters of the German Mulde catchment suffer from deleterious dissolved and sediment attached lead (Pb) and zinc (Zn) inputs. The leaching rate of trace metals with drainage water is a significant criterion for assessing trace metal concentrations of soils and associated risks of ground water pollution. However, the vertical transport rates of trace metals in soils are difficult to quantify. Monitoring is restricted to small lysimeter plots, which limits the transferability of results. Additionally the solid-liquid-transfer conditions in soils are highly variable, primarily due to the fluctuating retention time of percolating soil water. In contrast, lateral sediment attached trace metal inputs are mostly associated with soil erosion and resulting sediment inputs into surface waters. Since soil erosion by water is related to rare single events, monitoring and empirical estimates reveal visible shortcomings. This gap in knowledge can only be closed by process based model calculations. Concerning these calculations it has to be considered, that Pb and Zn are predominantly attached to the fine-grained soil particles (<0.063 mm). The selective nature of soil erosion causes a preferential transport of these fine particles, while less contaminated larger particles remain on site. Consequently trace metals are enriched in the eroded sediment compared to the origin soil. This paper aims to introduce both, a new method that allows the assessment of trace metal leaching rates from contaminated top soils for standardised transfer conditions and a process based modelling approach for sediment attached trace metal inputs into surface waters. Pb and Zn leaching rates amounts to 20 Mg ha-1 yr-1 resp. 114 Mg ha-1 yr-1. Deviations to observed dissolved trace metal yields at the Bad Düben gauging station are caused by plant uptake and subsoil retention. Sediment attached Pb and Zn input rates amounts to 114 Mg ha-1 yr

  7. Accumulation of trace elements, pesticides, and polychlorinated biphenyls in sediments and the clam Corbicula manilensis of the Apalachicola River, Florida

    USGS Publications Warehouse

    Elder, J.F.; Mattraw, H.C., Jr.

    1984-01-01

    A survey of trace element and synthetic organic compound concentrations in botton materials was conducted on the Apalachichola River in northwest Florida in 1979-80 as part of the Apalachicola River Quality Assessment. Substances analyzed included trace elements (predominantly heavy metals), organochlorine insecticides, organophosphorus insecticides, chlorinated phenoxy-acid herbicides, and polychlorinated biphenyls (PCBs). Three kinds of materials were surveyed: fine-grained sediments, whole-body tissue of the Asiatic clam Corbicula manilensis, and bottom-load organic detritus. No hazardous levels of any of the substances were found. Concentrations in the fine-grained sediments and clams were generally at least ten times lower than maximum limits considered safe for biota of aquatic systems. A comparison of trace-substance data from the Apalachicola River with data from Lake Seminole (upstream) and Apalachicola Bay (downstream) showed lower concentrations in riverine clams. Sediment concentrations in all parts of the system were comparable. Most trace substances in the Apalachicola River enter the river from the upstream part of the basin (the Chattahoochee and Flint Rivers in Georgia and Alabama) and from nonpoint sources throughout the basin. There are no major point discharges along the Apalachicola. Trend analysis was limited by the scope of the study, but did not reveal any spatial or temporal trends in concentrations of any of the substances analyzed. Concentrations of organic compounds and most metals in Corbicula manilensis did not correlate with those in sediments.

  8. Snow Core Records of Recent Deposition of Trace Metals to Central (Summit) Greenland

    NASA Astrophysics Data System (ADS)

    Shafer, M. M.; Schauer, J. J.; Bergin, M.

    2009-12-01

    later group is representative of the more mobile, anthropogenically dominated trace metals. “Crustal” elements (Al, Ca, Fe, K, Mg, Ti), sulfate (S), and the rare earths present similar profiles, with significant burial peaks in spring. These major burial peaks are uniformly spaced (~70 cm apart), indicating consistency in net snow accumulation rates and transport vectors. A suite of trace elements (Cd, Mn, Ni, P, Pb, Tl, U) exhibit deposition patterns similar to that of the crustals and S. However, the burial patterns of several other elements (Cu, Sn, Zn, oxyanions) were weakly correlated with the crustals and other modes are apparent. The Hg profile exhibits summer peaks and is anti-correlated with most other elements, but is correlated with TOC. TOC and LMWA are, in general though, poorly correlated with most elements, indicating that post-depositional diagenesis may be significant for carbon. A principal component analysis identified four element clusters that appear to be consistent with deposition modalities and element geochemistry, and which explains 71% of total variance.

  9. Depuration effects on trace metals in Anomalocardia brasiliana (Gmelin, 1791)

    SciTech Connect

    Wallner-Kersanach, M. ); Lobo, S.E.; Silva, E.M. da )

    1994-06-01

    Bivalves have been regarded as suitable bioindicators of metal pollution in the marine and estuarine environments. However, the metal concentrations of the soft parts of individual bivalves can vary considerably depending on size variations, geographic and genetic differences, individual variability in metal uptake, ingestion of sediment particles and induction of metal-binding proteins. Metal-containing particulate matter in the gut can also be significant. These authors showed that if deputation is not carried out, then large variations in metal concentrations are more likely to occur. In the Todos os Santos Bay on the northeastern coast of Brazil, the cockle A. brasiliana is the most abundant bivalve and is well adapted to area conditions. An important source of food for many local communities, this species has been frequently used as an indicator for heavy metals pollution; however, no data have been published on metal concentrations of A. brasiliana of different size classes and on the effects of deputation on overall concentration. It is therefore important to determine the metal concentrations in A. brasiliana both from the point of view of how the concentrations relate to metal loading of the area. The effect of size upon metal concentration of shellfish has been examined by Boyden, who found that zinc in Mytilus edulis was greater in smaller individuals while cadmium was independent of size. The objective of this study was to determine concentrations of copper, zinc, cadmium and lead in A. brasiliana collected from a site with a relatively low impact of heavy metal contamination, to examine metals in different size classes and to assess the effect of depuration on tissue concentration of the metals. These elements were selected due to their toxicity to marine organisms, when their excess as free metal may interact with cell structures and/or enzymes affecting metabolic activities. 22 refs., 2 figs., 2 tabs.

  10. Redox conditions and trace metal cycling in coastal sediments from the maritime Antarctic

    NASA Astrophysics Data System (ADS)

    Monien, Patrick; Lettmann, Karsten Alexander; Monien, Donata; Asendorf, Sanja; Wölfl, Anne-Cathrin; Lim, Chai Heng; Thal, Janis; Schnetger, Bernhard; Brumsack, Hans-Jürgen

    2014-09-01

    Redox-sensitive trace metals (Mn, Fe, U, Mo, Re), nutrients and terminal metabolic products (NO3-, NH4+, PO43-, total alkalinity) were investigated for the first time in pore waters of Antarctic coastal sediments. The results of this study reveal a high spatial variability in redox conditions in surface sediments from Potter Cove, King George Island, western Antarctic Peninsula. Particularly in the shallower areas of the bay the significant correlation between sulphate depletion and total alkalinity, the inorganic product of terminal metabolism, indicates sulphate reduction to be the major pathway of organic matter mineralisation. In contrast, dissimilatory metal oxide reduction seems to be prevailing in the newly ice-free areas and the deeper troughs, where concentrations of dissolved iron of up to 700 μM were found. We suggest a combination of several factors to be responsible for the domination of metal oxide reduction over sulphate reduction in these areas. These include the increased accumulation of fine-grained material with high amounts of reducible metal oxides, a reduced availability of metabolisable organic matter and an enhanced physical and biological disturbance by bottom water currents, ice scouring and burrowing organisms. Based on modelled iron fluxes we calculate the contribution of the Antarctic shelf to the pool of potentially bioavailable iron (Feb) to be 6.9 × 103 to 790 × 103 t yr-1. Consequently, these shelf sediments would provide an Feb flux of 0.35-39.5 mg m-2 yr-1 (median: 3.8 mg m-2 yr-1) to the Southern Ocean. This contribution is in the same order of magnitude as the flux provided by icebergs and significantly higher than the input by aeolian dust. For this reason suboxic shelf sediments form a key source of iron for the high nutrient-low chlorophyll (HNLC) areas of the Southern Ocean. This source may become even more important in the future due to rising temperatures at the WAP accompanied by enhanced glacier retreat and the

  11. Phosphatase-mediated heavy metal accumulation by a Citrobacter sp. and related enterobacteria.

    PubMed

    Macaskie, L E; Bonthrone, K M; Rouch, D A

    1994-08-15

    A Citrobacter sp. was reported previously to accumulate heavy metals as cell-bound heavy metal phosphates. Metal uptake is mediated by the activity of a periplasmic acid-type phosphatase that liberates inorganic phosphate to provide the precipitant ligand for heavy metals presented to the cells. Amino acid sequencing of peptide fragments of the purified enzyme revealed significant homology to the phoN product (acid phosphatase) of some other enterobacteria. These organisms, together with Klebsiella pneumoniae, previously reported to produce acid phosphatase, were tested for their ability to remove uranium and lanthanum from challenge solutions supplemented with phosphatase substrate. The coupling of phosphate liberation to metal bioaccumulation was limited to the metal accumulating Citrobacter sp.; therefore the participation of species-specific additional factors in metal bioaccumulation was suggested.

  12. Trace metals adhered to urban sediments. Results from fieldwork in Poços de Caldas, Brazil

    NASA Astrophysics Data System (ADS)

    Isidoro, Jorge; Silveira, Alexandre; Júnior, José; Poleto, Cristiano; de Lima, João; Gonçalves, Flávio; Alvarenga, Lívia

    2016-04-01

    The urbanization process has consequences such as the introduction of new sources of pollution and changes in the natural environment, like increase of impervious areas that accumulate pollutants between rainfall events. The pollution caused by the washing of accumulated sediment on the gutters, ultimately carried to water bodies through the stormwater drainage system, stands out in this process. This study aimed to quantify and characterize the sediments accumulated in the gutters of roads in an urban area of Poços de Caldas (MG), Brazil. Fieldwork took place during the period of 21.05.2013 to 27.08.2013. Main goal was to investigate the process of accumulation of dry sediments on impervious surfaces and find how this process relates with the urban occupation. More specific goals were to quantify the average mass and characterize the granulometric distribution of accumulated sediments, and identify the occurrence of trace metals Zn, Cu, Ni, Cd, Cu and Pb in the fraction of sediments with diameter smaller or equal to 63μm. The samples were weighed to find the aggregate mass and then sieved through meshes of 63μm, 125μm, 250μm, 600μm, 1180μm, and 2000μm for the granulometric analysis. Samples of the sediment fraction smaller than 63μm of diameter were subjected to analysis by Energy Dispersive X-Ray Fluorescence (EDXRF) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) for the identification of trace metals. We found that the aggregate mass of accumulated sediments varies in time and space and is particularly influenced by the land use of the sampling areas. Areas under construction produced more sediments than built areas or areas without construction. This study may serve as an input for creating diffuse pollution control and mitigation strategies towards the reduction of accumulated pollutants in the urban environment of Poços de Caldas. Pb and Zn shown the highest concentrations. The heavy metal concentration decreases after wet

  13. Soil microbial communities as suitable bioindicators of trace metal pollution in agricultural volcanic soils

    NASA Astrophysics Data System (ADS)

    Parelho, Carolina; dos Santos Rodrigues, Armindo; do Carmo Barreto, Maria; Gonçalo Ferreira, Nuno; Garcia, Patrícia

    2015-04-01

    Summary: The biological, chemical and physical properties of soil confer unique characteristics that enhance or influence its overall biodiversity. The adaptive character of soil microbial communities (SMCs) to metal pollution allows discriminating soil health, since changes in microbial populations and activities may function as excellent indicators of soil pollutants. Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals (TM). In our previous works, we identified priority TM affecting agricultural Andosols under different agricultural land uses. Within this particular context, the objectives of this study were to (i) assess the effect of soil TM pollution in different agricultural systems (conventional, traditional and organic) on the following soil properties: microbial biomass carbon, basal soil respiration, metabolic quotient, enzymatic activities (β-glucosidase, acid phosphatase and dehydrogenase) and RNA to DNA ratio; and (ii) evaluate the impact of TM in the soil ecosystem using the integrated biomarker response (IBR) based on a set of biochemical responses of SMCs. This multi-biomarker approach will support the development of the "Trace Metal Footprint" for different agricultural land uses in volcanic soils. Methods: The study was conducted in S. Miguel Island (Azores, Portugal). Microbial biomass carbon was measured by chloroform-fumigation-incubation-assay (Vance et al., 1987). Basal respiration was determined by the Jenkinson & Powlson (1976) technique. Metabolic quotient was calculated as the ratio of basal respiration to microbial biomass C (Sparkling & West, 1988). The enzymatic activities of β-glucosidase and acid phosphatase were determined by the Dick et al. (1996) method and dehydrogenase activity by the Rossel et al. (1997) method. The RNA and DNA were co-extracted from the same

  14. Downwash of atmospherically deposited trace metals in peat and the influence of rainfall intensity: an experimental test.

    PubMed

    Hansson, Sophia V; Tolu, Julie; Bindler, Richard

    2015-02-15

    Accumulation records of pollutant metals in peat have been frequently used to reconstruct past atmospheric deposition rates. While there is good support for peat as a record of relative changes in metal deposition over time, questions remain whether peat archives represent a quantitative or a qualitative record. Several processes can potentially influence the quantitative record of which downwashing is particularly pertinent as it would have a direct influence on how and where atmospherically deposited metals are accumulated in peat. The aim of our study was two-fold: first, to compare and contrast the retention of dissolved Pb, Cu, Zn and Ni in peat cores; and second, to test the influence of different precipitation intensities on the potential downwashing of metals. We applied four 'rainfall' treatments to 13 peat cores over a 3-week period, including both daily (2 or 5.3 mm day(-1)) and event-based additions (37 mm day(-1), added over 1h or over a 10h rain event). Two main trends were apparent: 1) there was a difference in retention of the added dissolved metals in the surface layer (0-2 cm): 21-85% for Pb, 18-63% for Cu, 10-25% for Zn and 10-20% for Ni. 2) For all metals and both peat types (sphagnum lawn and fen), the addition treatments resulted in different downwashing depths, i.e., as the precipitation-addition increased so did the depth at which added metals could be detected. Although the largest fraction of Pb and Cu was retained in the surface layer and the remainder effectively immobilized in the upper peat (≤ 10 cm), there was a smearing effect on the overall retention, where precipitation intensity exerts an influence on the vertical distribution of added trace metals. These results indicate that the relative position of a deposition signal in peat records would be preserved, but it would be quantitatively attenuated.

  15. Accumulation of trace elements in the fruiting bodies of macrofungi in the Krusné Hory Mountains Czechoslovakia.

    PubMed

    Lepsová, A; Mejstrík, V

    1988-10-15

    The concentrations of some trace elements (Pb, Cd, Cu, Fe, Mn, Zn, Co, Ni) were determined in fruiting bodies of 20 fungal species from seven families (order Agaricales, Basidiomycetes) growing in the Krusné Hory Mountains, Czechoslovakia, where the air pollution is characterized as moderate. Samples were collected from three stands: a spruce forest, the waterlogged margin of a peat bog, and the peat bog itself. The biomass of fruiting bodies of all macrofungi was determined simultaneously. The trace element concentrations varied among trophic groups of fungi: saprophytic species (S) and those parasitic on Sphagnum (Sph) exhibited the highest concentrations, while wood-decomposing (Wd) species displayed the lowest. Several species mycorrhizal with spruce (Ms), such as Amanita umbrinolutea, Russula ochroleuca, and Xerocomus badius, also attained higher concentrations than were found for other mycorrhizal fungi. The trace element concentrations were higher in the caps than in the stems of the fungi. The fraction of trace metals retained by the biomass of fruiting bodies of fungi with respect to annual fallout is estimated at 1 0/00. Factors affecting fungal uptake of trace elements are discussed. PMID:3238419

  16. Heavy Metal and Trace Metal Analysis in Soil by Sequential Extraction: A Review of Procedures

    PubMed Central

    Zimmerman, Amanda Jo; Weindorf, David C.

    2010-01-01

    Quantification of heavy and trace metal contamination in soil can be arduous, requiring the use of lengthy and intricate extraction procedures which may or may not give reliable results. Of the many procedures in publication, some are designed to operate within specific parameters while others are designed for more broad application. Most procedures have been modified since their inception which creates ambiguity as to which procedure is most acceptable in a given situation. For this study, the Tessier, Community Bureau of Reference (BCR), Short, Galán, and Geological Society of Canada (GCS) procedures were examined to clarify benefits and limitations of each. Modifications of the Tessier, BCR, and GCS procedures were also examined. The efficacy of these procedures is addressed by looking at the soils used in each procedure, the limitations, applications, and future of sequential extraction. PMID:20414344

  17. Volcano emissions of trace metals, atmospheric deposition, and supply to biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Hinkley, T.; Thornber, C. R.; Matsumoto, A.

    2003-12-01

    Quiescently degassing (not exploding) volcanoes inject into the troposphere plumes that have remarkably high concentrations of ordinarily-rare, volatile trace metals. In pre-industrial times, these emissions appear to have accounted for the strong "enrichments" (relative to concentrations in crustal material or in ocean solute) of many such trace metals in the material deposited from the atmosphere. This has been shown by measuring the source strength of the emissions of metals from volcanoes, and comparing that to the amounts of the metals (excess over amounts accounted for by rock dust and sea salt) deposited onto high-latitude ice sheets: volcano degassing outputs of metals and deposition masses of metals to ice are comparable, on the basis of the masses (fluxes) and proportions of the metals, and from the proportions of lead (Pb) isotopes. There is indication that in modern industrial times the elevated trace metal fractions in the atmospheric material that has small particle size and long atmospheric residence time is still more strongly influenced by volcano emissions than by industrial emissions. Throughout earth's history it is likely that volcano emissions were a major control on the environmental background levels of trace elements, in which plants and animals evolved their tolerances to these mostly-poisonous substances.

  18. Accumulation dynamics and acute toxicity of silver nanoparticles to Daphnia magna and Lumbriculus variegatus: implications for metal modeling approaches.

    PubMed

    Khan, Farhan R; Paul, Kai B; Dybowska, Agnieszka D; Valsami-Jones, Eugenia; Lead, Jamie R; Stone, Vicki; Fernandes, Teresa F

    2015-04-01

    Frameworks commonly used in trace metal ecotoxicology (e.g., biotic ligand model (BLM) and tissue residue approach (TRA)) are based on the established link between uptake, accumulation and toxicity, but similar relationships remain unverified for metal-containing nanoparticles (NPs). The present study aimed to (i) characterize the bioaccumulation dynamics of PVP-, PEG-, and citrate-AgNPs, in comparison to dissolved Ag, in Daphnia magna and Lumbriculus variegatus; and (ii) investigate whether parameters of bioavailability and accumulation predict acute toxicity. In both species, uptake rate constants for AgNPs were ∼ 2-10 times less than for dissolved Ag and showed significant rank order concordance with acute toxicity. Ag elimination by L. variegatus fitted a 1-compartment loss model, whereas elimination in D. magna was biphasic. The latter showed consistency with studies that reported daphnids ingesting NPs, whereas L. variegatus biodynamic parameters indicated that uptake and efflux were primarily determined by the bioavailability of dissolved Ag released by the AgNPs. Thus, principles of BLM and TRA frameworks are confounded by the feeding behavior of D. magna where the ingestion of AgNPs perturbs the relationship between tissue concentrations and acute toxicity, but such approaches are applicable when accumulation and acute toxicity are linked to dissolved concentrations. The uptake rate constant, as a parameter of bioavailability inclusive of all available pathways, could be a successful predictor of acute toxicity.

  19. Uncoupling of reactive oxygen species accumulation and defence signalling in the metal hyperaccumulator plant Noccaea caerulescens.

    PubMed

    Fones, Helen N; Eyles, Chris J; Bennett, Mark H; Smith, J Andrew C; Preston, Gail M

    2013-09-01

    The metal hyperaccumulator plant Noccaea caerulescens is protected from disease by the accumulation of high concentrations of metals in its aerial tissues, which are toxic to many pathogens. As these metals can lead to the production of damaging reactive oxygen species (ROS), metal hyperaccumulator plants have developed highly effective ROS tolerance mechanisms, which might quench ROS-based signals. We therefore investigated whether metal accumulation alters defence signalling via ROS in this plant. We studied the effect of zinc (Zn) accumulation by N. caerulescens on pathogen-induced ROS production, salicylic acid accumulation and downstream defence responses, such as callose deposition and pathogenesis-related (PR) gene expression, to the bacterial pathogen Pseudomonas syringae pv. maculicola. The accumulation of Zn caused increased superoxide production in N. caerulescens, but inoculation with P. syringae did not elicit the defensive oxidative burst typical of most plants. Defences dependent on signalling through ROS (callose and PR gene expression) were also modified or absent in N. caerulescens, whereas salicylic acid production in response to infection was retained. These observations suggest that metal hyperaccumulation is incompatible with defence signalling through ROS and that, as metal hyperaccumulation became effective as a form of elemental defence, normal defence responses became progressively uncoupled from ROS signalling in N. caerulescens. PMID:23758201

  20. Subcellular partitioning of non-essential trace metals (Ag, As, Cd, Ni, Pb, and Tl) in livers of American (Anguilla rostrata) and European (Anguilla anguilla) yellow eels.

    PubMed

    Rosabal, Maikel; Pierron, Fabien; Couture, Patrice; Baudrimont, Magalie; Hare, Landis; Campbell, Peter G C

    2015-03-01

    We determined the intracellular compartmentalization of the trace metals Ag, As, Cd, Ni, Pb, and Tl in the livers of yellow eels collected from the Saint Lawrence River system in Canada (Anguilla rostrata) and in the area of the Gironde estuary in France (Anguilla anguilla). Differential centrifugation, NaOH digestion and thermal shock were used to separate eel livers into putative "sensitive" fractions (heat-denatured proteins, mitochondria and microsomes+lysosomes) and detoxified metal fractions (heat-stable peptides/proteins and granules). The cytosolic heat-stable fraction (HSP) was consistently involved in the detoxification of all trace metals. In addition, granule-like structures played a complementary role in the detoxification of Ni, Pb, and Tl in both eel species. However, these detoxification mechanisms were not completely effective because increasing trace metal concentrations in whole livers were accompanied by significant increases in the concentrations of most trace metals in "sensitive" subcellular fractions, that is, mitochondria, heat-denatured cytosolic proteins and microsomes+lysosomes. Among these "sensitive" fractions, mitochondria were the major binding sites for As, Cd, Pb, and Tl. This accumulation of non-essential metals in "sensitive" fractions likely represents a health risk for eels inhabiting the Saint Lawrence and Gironde environments.

  1. Vegetation and Cold Trapping Modulating Elevation-dependent Distribution of Trace Metals in Soils of a High Mountain in Eastern Tibetan Plateau.

    PubMed

    Bing, Haijian; Wu, Yanhong; Zhou, Jun; Li, Rui; Luo, Ji; Yu, Dong

    2016-01-01

    Trace metals adsorbed onto fine particles can be transported long distances and ultimately deposited in Polar Regions via the cold condensation effect. This study indicated the possible sources of silver (Ag), cadmium (Cd), copper (Cu), lead (Pb), antimony (Sb) and zinc (Zn) in soils on the eastern slope of Mt. Gongga, eastern Tibetan Plateau, and deciphered the effects of vegetation and mountain cold condensation on their distributions with elevation. The metal concentrations in the soils were comparable to other mountains worldwide except the remarkably high concentrations of Cd. Trace metals with high enrichment in the soils were influenced from anthropogenic contributions. Spatially, the concentrations of Cu and Zn in the surface horizons decreased from 2000 to 3700 m a.s.l., and then increased with elevation, whereas other metals were notably enriched in the mid-elevation area (approximately 3000 m a.s.l.). After normalization for soil organic carbon, high concentrations of Cd, Pb, Sb and Zn were observed above the timberline. Our results indicated the importance of vegetation in trace metal accumulation in an alpine ecosystem and highlighted the mountain cold trapping effect on trace metal deposition sourced from long-range atmospheric transport.

  2. Vegetation and Cold Trapping Modulating Elevation-dependent Distribution of Trace Metals in Soils of a High Mountain in Eastern Tibetan Plateau

    PubMed Central

    Bing, Haijian; Wu, Yanhong; Zhou, Jun; Li, Rui; Luo, Ji; Yu, Dong

    2016-01-01

    Trace metals adsorbed onto fine particles can be transported long distances and ultimately deposited in Polar Regions via the cold condensation effect. This study indicated the possible sources of silver (Ag), cadmium (Cd), copper (Cu), lead (Pb), antimony (Sb) and zinc (Zn) in soils on the eastern slope of Mt. Gongga, eastern Tibetan Plateau, and deciphered the effects of vegetation and mountain cold condensation on their distributions with elevation. The metal concentrations in the soils were comparable to other mountains worldwide except the remarkably high concentrations of Cd. Trace metals with high enrichment in the soils were influenced from anthropogenic contributions. Spatially, the concentrations of Cu and Zn in the surface horizons decreased from 2000 to 3700 m a.s.l., and then increased with elevation, whereas other metals were notably enriched in the mid-elevation area (approximately 3000 m a.s.l.). After normalization for soil organic carbon, high concentrations of Cd, Pb, Sb and Zn were observed above the timberline. Our results indicated the importance of vegetation in trace metal accumulation in an alpine ecosystem and highlighted the mountain cold trapping effect on trace metal deposition sourced from long-range atmospheric transport. PMID:27052807

  3. Vegetation and Cold Trapping Modulating Elevation-dependent Distribution of Trace Metals in Soils of a High Mountain in Eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Bing, Haijian; Wu, Yanhong; Zhou, Jun; Li, Rui; Luo, Ji; Yu, Dong

    2016-04-01

    Trace metals adsorbed onto fine particles can be transported long distances and ultimately deposited in Polar Regions via the cold condensation effect. This study indicated the possible sources of silver (Ag), cadmium (Cd), copper (Cu), lead (Pb), antimony (Sb) and zinc (Zn) in soils on the eastern slope of Mt. Gongga, eastern Tibetan Plateau, and deciphered the effects of vegetation and mountain cold condensation on their distributions with elevation. The metal concentrations in the soils were comparable to other mountains worldwide except the remarkably high concentrations of Cd. Trace metals with high enrichment in the soils were influenced from anthropogenic contributions. Spatially, the concentrations of Cu and Zn in the surface horizons decreased from 2000 to 3700 m a.s.l., and then increased with elevation, whereas other metals were notably enriched in the mid-elevation area (approximately 3000 m a.s.l.). After normalization for soil organic carbon, high concentrations of Cd, Pb, Sb and Zn were observed above the timberline. Our results indicated the importance of vegetation in trace metal accumulation in an alpine ecosystem and highlighted the mountain cold trapping effect on trace metal deposition sourced from long-range atmospheric transport.

  4. Modelling of trace metal uptake by roots taking into account complexation by exogenous organic ligands

    NASA Astrophysics Data System (ADS)

    Jean-Marc, Custos; Christian, Moyne; Sterckeman, Thibault

    2010-05-01

    The context of this study is phytoextraction of soil trace metals such as Cd, Pb or Zn. Trace metal transfer from soil to plant depends on physical and chemical processes such as minerals alteration, transport, adsorption/desorption, reactions in solution and biological processes including the action of plant roots and of associated micro-flora. Complexation of metal ions by organic ligands is considered to play a role on the availability of trace metals for roots in particular in the event that synthetic ligands (EDTA, NTA, etc.) are added to the soil to increase the solubility of the contaminants. As this role is not clearly understood, we wanted to simulate it in order to quantify the effect of organic ligands on root uptake of trace metals and produce a tool which could help in optimizing the conditions of phytoextraction.We studied the effect of an aminocarboxilate ligand on the absorption of the metal ion by roots, both in hydroponic solution and in soil solution, for which we had to formalize the buffer power for the metal. We assumed that the hydrated metal ion is the only form which can be absorbed by the plants. Transport and reaction processes were modelled for a system made up of the metal M, a ligand L and the metal complex ML. The Tinker-Nye-Barber model was adapted to describe the transport of solutes M, L and ML in the soil and absorption of M by the roots. This allowed to represent the interactions between transport, chelating reactions, absorption of the solutes at the root surface, root growth with time, in order to simulate metal uptake by a whole root system.Several assumptions were tested such as i) absorption of the metal by an infinite sink and according to a Michaelis-Menten kinetics, solutes transport by diffusion with and without ii) mass flow and iii) soil buffer power for the ligand L. In hydroponic solution (without soil buffer power), ligands decreased the trace metal flux towards roots, as they reduced the concentration of hydrated

  5. Target organs of the Manila clam Ruditapes philippinarum for studying metal accumulation and biomarkers in pollution monitoring: laboratory and in-situ transplantation experiments.

    PubMed

    Won, Eun-Ji; Kim, Kyung-Tae; Choi, Jin-Young; Kim, Eun-Soo; Ra, Kongtae

    2016-08-01

    To characterize the target organs of the Manila clam Ruditapes philippinarum for use in environmental study, the accumulation of trace metals and three biomarkers was measured in different organs. Exposure with Cu and Pb carried out under laboratory conditions revealed a linear uptake of metals throughout the experimental period in each tissue. In particular, significant increase was observed in gills and mantle. The increase of intracellular reactive oxygen species showed the great potential of gills as a target tissue for both Cu and Pb exposure. The highest activity of glutathione S-transferase and their relative increase in activity were also observed in gills. Metallothionein-like protein levels, however, increased greatly in the digestive gland and mantle during Cu and Pb exposure, respectively, although all tissues, except the foot, showed significant changes after 24 h of metal exposure. In the field study, the highest concentration of metals was recorded in the gills and mantle, accounting for over 50 % of the total accumulated metal in all sites. Additionally, Cu and Pb increased significantly in these two organs, respectively. However, the order of accumulation rate in laboratory exposure was not concomitant with those of the lab-based study, suggesting that different routes of metal uptake and exposure duration induce distinct partitioning of metals and regulating system in R. philippinarum. These series of exposure studies demonstrated that gills, mantle, and digestive gland in R. philippinarum are potential target tissues in environmental monitoring study using metal concentrations and biomarkers. PMID:27450372

  6. Effect of metal chelators on excretion and tissue levels of essential trace elements

    SciTech Connect

    Tandon, S.K.; Jain, V.K.; Mathur, A.K.

    1984-10-01

    The influence of one, three, and six doses of ethylenediaminetetraacetic acid (EDTA) diethylenetriaminepentaacetic acid (DTPA), and triethylenetetramine (TETA) on the urinary excretion of Ca, Cu, Fe, and Zn, and on their levels in liver, kidneys, heart, and serum in rats, was investigated to ascertain their suitability in amelioration of metal intoxication. While excretion of all the essential trace metals examined was enhanced significantly, the tissue and serum levels of some of them either increased or decreased after administration of the chelators. The results suggest depletion of some of the endogenous trace metals from the body and their intertissue redistribution following treatment with these chelating agents.

  7. Biomass, Nutrient, and Trace Element Accumulation and Partitioning in Cattail ( L.) during Wetland Phytoremediation of Municipal Biosolids.

    PubMed

    Jeke, Nicholson N; Zvomuya, Francis; Cicek, Nazim; Ross, Lisette; Badiou, Pascal

    2015-09-01

    Biomass and contaminant accumulation and partitioning in plants determine the harvest stage for optimum contaminant uptake during phytoremediation of municipal biosolids. This wetland microcosm bioassay characterized accumulation and partitioning of biomass, nutrients (N and P), and trace elements (Zn, Cu, Cr, and Cd) in cattail ( L.) in a growth room. Four cattail seedlings were transplanted into each 20-L plastic pail containing 3.9 kg (dry wt.) biosolids from an end-of-life municipal lagoon. A 10-cm-deep water column was maintained above the 12-cm-thick biosolids layer. Plants were harvested every 14 d over a period of 126 d for determination of aboveground biomass (AGB) and belowground biomass (BGB) yields, along with contaminant concentrations in these plant tissues. Logistic model fits to biomass yield data indicated no significant difference in asymptotic yield between AGB and BGB. Aboveground biomass accumulated significantly greater amounts of N and P and lower amounts of trace elements than BGB. Maximum N accumulation in AGB occurred 83 d after transplanting (DAT), and peak P uptake occurred at 86 DAT. Harvesting at maximum aboveground accumulation removed (percent of the initial element concentration in the biosolids) 4% N, 3% P, 0.05% Zn, 0.6% Cu, 0.1% Cd, and 0.2% Cr. Therefore, under the conditions of this study, phytoremediation would be most effective if cattail is harvested at 86 DAT. These results contribute toward the identification of the harvest stage that will optimize contaminant uptake and enhance in situ phytoremediation of biosolids using cattail. PMID:26436271

  8. Accumulation of trace elements and growth responses in Corbicula fluminea downstream of a coal-fired power plant

    SciTech Connect

    Peltier, G.L.; Wright, M.S.; Hopkins, W.A.; Meyer, J.L.

    2009-07-15

    Lentic organisms exposed to coal-fired power plant (CFPP) discharges can have elevated trace element concentrations in their tissues, but this relationship and its potential consequences are unclear for lotic organisms. To explore these patterns in a lotic environment, we transplanted Corbicula fluminea from a reference stream to a stream receiving CFPP discharge. We assessed trace element accumulation and glutathione concentration in clam tissue, shell growth, and condition index at five sites along a contamination gradient. Clams at the most upstream and contaminated site had the highest growth rate, condition index, glutathione concentrations, and concentrations of arsenic (7.85 {+-} 0.25 {mu} g/g (dry mass)), selenium (17.75 {+-} 0.80 {mu} g/g), and cadmium (7.28 {+-} 0.34 {mu} g/g). Mercury concentrations declined from 4.33 {+-} 0.83 to 0.81 {+-} 0.11 {mu} g/g (dry mass) in clams transplanted into the selenium-rich environment nearest the power plant, but this effect was not as evident at less impacted, downstream sites. Even though dilution of trace elements within modest distances from the power plant reduced bioaccumulation potential in clams, long-term loading of trace elements to downstream depositional regions (e.g., slow moving, silty areas) is likely significant.

  9. Trace metals in the NE Atlantic coastal zone of Finisterre (Iberian Peninsula): Terrestrial and marine sources and rates of sedimentation

    NASA Astrophysics Data System (ADS)

    Prego, Ricardo; Santos-Echeandía, Juan; Bernárdez, Patricia; Cobelo-García, Antonio; Varela, Manuel

    2013-10-01

    The biogeochemical patterns of bioactive metals (Cd, Co, Cu, Ni, V and Zn) and Pb were studied in the Corcubión Sound, an area close to Cape Finisterre (NW Iberian Peninsula). Seasonal patterns of dissolved and particulate trace metals in freshwater and seawater, as well as in phytoplankton were determined during three upwelling events in the winter, late spring and summer of 2005. Metals were also analyzed in the surface and to 1 m-depth in the sediments. Upwelling patterns permit the discrimination between those of the outer Sound and Corcubión Inlet. Dissolved trace metal concentrations in the seawater of the outer Sound were in the range of those reported for the Northeast Atlantic Ocean. Mean values of dissolved metal concentrations in the upwelled ENACW were: 0.07 ± 0.03 nMCd, 0.11 ± 0.02 nMCo, 2.6 ± 1.6 nMCu, 4.6 ± 0.6 nMNi, 0.20 ± 0.10 nMPb, 31 ± 2 nMV and 3.8 ± 2.3 nMZn. Higher values for dissolved Co, Cu and Zn were measured in two inflowing streams and in the Inlet. A severe-moderate contamination of these metals and Pb was detected in the sediments of the Inlet. Three different sediment layers were observed in cores located at the outer-Inlet boundary. The most recent showed the highest mass accumulation rates, mainly of Cu (e.g. 428 mgCu·m- 2·yr- 1), Pb and Zn, during the last decade. The intermediate unit corresponds to the 20th century (e.g. 39 mgCu·m- 2·yr- 1) and the deeper layer from the 19th to 14th centuries can be regarded as representing the pre-industrial period, and shows the lowest rates of metal accumulation (e.g. 7 mgCu·m- 2·yr- 1). Diatoms were the main autochthonous source of metals in the sediments. The genera Chaetoceros and Lauderia dominate the overlaying seawater during winter and Pseudonitzschia and Leptocylindrus were typical of summer blooms while in the sediments Chaetoceros, Paralia, Leptocylindrus and Thalassionema were the main diatom genera. The comparison of the normalized metal vs. Si in the phytoplankton

  10. Risk assessment of dissolved trace metals in drinking water of Karachi, Pakistan.

    PubMed

    Karim, Zahida

    2011-06-01

    Health risk caused by the exposure to trace metals in water through different exposure pathways was investigated. Graphite furnace atomic absorption spectrometry was used for the determination of trace metals (nickel, copper, chromium, lead, cobalt, manganese and iron) in drinking water samples. The concentration of metals was compared with the world health organization (WHO) drinking water quality guideline values. Risk of metals on human health was evaluated using Hazard Quotient (HQ). Hazard quotients of all metals through oral ingestion and dermal absorption are found in the range of 1.11 × 10⁻² to 1.35 × 10⁻¹ and 8.52 × 10⁻⁵ to 9.75 × 10⁻², respectively. The results of the present study reflect the unlikely potential for adverse health effects to the inhabitants of Karachi due to the oral ingestion and dermal absorption of water containing these metals.

  11. The distribution of the heavy metal accumulation rate in the biomass of three Daphnia species

    SciTech Connect

    Gajula, V.K.; Hovorka, J.; Stuchlik, E.

    1995-12-31

    The difference in the accumulation rate of a mixture of heavy metals in aquatic organisms is of considerable interest because of its importance in the prediction of the effect of pollutants in aquatic systems. In this study the authors are making an effort to evaluate the accumulation patterns of pollutants in aquatic organisms by establishing a relation between the level of an accumulated mixture of heavy metals (Cd, Zn, Pb, As, Hg) in individuals of Daphnia magna, Daphnia pulicaria and Daphnia galeata and its dry weight with respect to the form of heavy metals in the aquatic environment. One age group of Daphnia species (10 day old) were exposed to 5 ppb, 10 ppb and 20 ppb of the mixture of heavy metals for 24 hours in three different experiments. In the first experiment the mixture of heavy metals was present exclusively in labelled algae (Scendesmus actus), in the second in an aquatic medium with non labelled algae, and in the third experiment the mixture of heavy metals was dissolved in the aquatic medium only without the addition of algae. The concentration of the heavy metal mixture in individuals of D.magna; D.pulicaria and D.galeata was determined using atomic absorption spectrometry. Results were statistically evaluated and the rate of accumulation and influence of various heavy metals in the biomass of three Daphnia species is discussed.

  12. Effects of surrounding land use on metal accumulation in environments and submerged plants in subtropical ponds.

    PubMed

    Liu, Hui; Bu, Hongmei; Liu, Guihua; Wang, Zhixiu; Liu, Wenzhi

    2015-12-01

    Ponds are widely used as stormwater treatment facilities to retain contaminants, including metals, and to improve water quality throughout the world. However, there is still a limited understanding of the effects of surrounding land use on metal accumulation in pond environments and organisms. To address this gap, we measured the concentrations of nine metals (i.e., Al, Ba, Ca, K, Li, Mg, Na, Se, and Sr) in water, sediments, and submerged plants collected from 37 ponds with different surrounding land uses in southwestern China and assessed the metal accumulation capacity of four dominant submerged plant species. Our results showed that Al, Ca, and K concentrations in the water were above drinking water standards. In the sediments, the average concentrations of Ca and Sr were higher than the corresponding soil background values. Ceratophyllum demersum L. could accumulate more K in aboveground biomass than Myriophyllum spicatum L. and Potamogeton maackianus A. Benn. The K concentration in submerged plants was positively influenced by the corresponding metal concentration in the water and negatively influenced by water temperature. Among the nine studied metals, only the water K concentration in ponds receiving agricultural runoff was significantly higher than that for ponds receiving urban and forested runoff. This result suggests that surrounding land use types have no significant effect on metal accumulation in sediments and submerged plants in the studied ponds. A large percentage of the metals in these ponds may be derived from natural sources such as the weathering of rocks.

  13. Effects of surrounding land use on metal accumulation in environments and submerged plants in subtropical ponds.

    PubMed

    Liu, Hui; Bu, Hongmei; Liu, Guihua; Wang, Zhixiu; Liu, Wenzhi

    2015-12-01

    Ponds are widely used as stormwater treatment facilities to retain contaminants, including metals, and to improve water quality throughout the world. However, there is still a limited understanding of the effects of surrounding land use on metal accumulation in pond environments and organisms. To address this gap, we measured the concentrations of nine metals (i.e., Al, Ba, Ca, K, Li, Mg, Na, Se, and Sr) in water, sediments, and submerged plants collected from 37 ponds with different surrounding land uses in southwestern China and assessed the metal accumulation capacity of four dominant submerged plant species. Our results showed that Al, Ca, and K concentrations in the water were above drinking water standards. In the sediments, the average concentrations of Ca and Sr were higher than the corresponding soil background values. Ceratophyllum demersum L. could accumulate more K in aboveground biomass than Myriophyllum spicatum L. and Potamogeton maackianus A. Benn. The K concentration in submerged plants was positively influenced by the corresponding metal concentration in the water and negatively influenced by water temperature. Among the nine studied metals, only the water K concentration in ponds receiving agricultural runoff was significantly higher than that for ponds receiving urban and forested runoff. This result suggests that surrounding land use types have no significant effect on metal accumulation in sediments and submerged plants in the studied ponds. A large percentage of the metals in these ponds may be derived from natural sources such as the weathering of rocks. PMID:26199006

  14. Seawater-induced mobilization of trace metals from mackinawite-rich estuarine sediments.

    PubMed

    Wong, Vanessa N L; Johnston, Scott G; Burton, Edward D; Bush, Richard T; Sullivan, Leigh A; Slavich, Peter G

    2013-02-01

    Benthic sediments in coastal acid sulfate soil (CASS) drains can contain high concentrations (~1-5%) of acid volatile sulfide (AVS) as nano-particulate mackinawite. These sediments can sequester substantial quantities of trace metals. Because of their low elevation and the connectivity of drains to estuarine channels, these benthic sediments are vulnerable to rapid increases in ionic strength from seawater incursion by floodgate opening, floodgate failure, storm surge and seasonal migration of the estuarine salt wedge. This study examines the effect of increasing seawater concentration on trace metal mobilization from mackinawite-rich drain sediments (210-550 μmol g⁻¹ AVS) collected along an estuarine salinity gradient. Linear combination fitting of S K-edge XANES indicated mackinawite comprised 88-96% of sediment-bound S. Anoxic sediment suspensions were conducted with seawater concentrations ranging from 0% to 100%. We found that mobilization of some metals increased markedly with increasing ionic strength (Cu, Fe, Mn, Ni) whereas Al mobilization decreased. The largest proportion of metals mobilized from the labile metal pool, operationally defined as Σexchangeable + acid-extractable + organically-bound metals, occurred in sediments from relatively fresh upstream sites (up to 39% mobilized) compared to sediments sourced from brackish downstream sites (0-11% mobilized). The extent of relative trace metal desorption generally followed the sequence Mn > Ni ≈ Cu > Zn > Fe > Al. Trace metal mobilization from these mackinawite-rich sediments was attributed primarily to desorption of weakly-bound metals via competitive exchange with marine-derived cations and enhanced complexation with Cl⁻ and dissolved organic ligands. These results have important implications for trace metal mobilization from these sediments at near-neutral pH under current predicted sea-level rise and climate change scenarios.

  15. Trace Metal Acquisition by Marine Heterotrophic Bacterioplankton with Contrasting Trophic Strategies

    PubMed Central

    Barbeau, Katherine A.

    2016-01-01

    Heterotrophic bacteria in the SAR11 and Roseobacter lineages shape the marine carbon, nitrogen, phosphorous, and sulfur cycles, yet they do so having adopted divergent ecological strategies. Currently, it is unknown whether these globally significant groups partition into specific niches with respect to micronutrients (e.g., trace metals) and how that may affect marine trace metal cycling. Here, we used comparative genomics to identify diverse iron, cobalt, nickel, copper, and zinc uptake capabilities in SAR11 and Roseobacter genomes and uncover surprising unevenness within and between lineages. The strongest predictors for the extent of the metal uptake gene content are the total number of transporters per genome, genome size, total metal transporters, and GC content, but numerous exceptions exist in both groups. Taken together, our results suggest that SAR11 have strongly minimized their trace metal uptake versatility, with high-affinity zinc uptake being a unique exception. The larger Roseobacter genomes have greater trace metal uptake versatility on average, but they also appear to have greater plasticity, resulting in phylogenetically similar genomes having largely different capabilities. Ultimately, phylogeny is predictive of the diversity and extent of 20 to 33% of all metal uptake systems, suggesting that specialization in metal utilization mostly occurred independently from overall lineage diversification in both SAR11 and Roseobacter. We interpret these results as reflecting relatively recent trace metal niche partitioning in both lineages, suggesting that concentrations and chemical forms of metals in the marine environment are important factors shaping the gene content of marine heterotrophic Alphaproteobacteria of the SAR11 and Roseobacter lineages. PMID:26729720

  16. Trace Metal Acquisition by Marine Heterotrophic Bacterioplankton with Contrasting Trophic Strategies.

    PubMed

    Hogle, Shane L; Thrash, J Cameron; Dupont, Chris L; Barbeau, Katherine A

    2016-03-01

    Heterotrophic bacteria in the SAR11 and Roseobacter lineages shape the marine carbon, nitrogen, phosphorous, and sulfur cycles, yet they do so having adopted divergent ecological strategies. Currently, it is unknown whether these globally significant groups partition into specific niches with respect to micronutrients (e.g., trace metals) and how that may affect marine trace metal cycling. Here, we used comparative genomics to identify diverse iron, cobalt, nickel, copper, and zinc uptake capabilities in SAR11 and Roseobacter genomes and uncover surprising unevenness within and between lineages. The strongest predictors for the extent of the metal uptake gene content are the total number of transporters per genome, genome size, total metal transporters, and GC content, but numerous exceptions exist in both groups. Taken together, our results suggest that SAR11 have strongly minimized their trace metal uptake versatility, with high-affinity zinc uptake being a unique exception. The larger Roseobacter genomes have greater trace metal uptake versatility on average, but they also appear to have greater plasticity, resulting in phylogenetically similar genomes having largely different capabilities. Ultimately, phylogeny is predictive of the diversity and extent of 20 to 33% of all metal uptake systems, suggesting that specialization in metal utilization mostly occurred independently from overall lineage diversification in both SAR11 and Roseobacter. We interpret these results as reflecting relatively recent trace metal niche partitioning in both lineages, suggesting that concentrations and chemical forms of metals in the marine environment are important factors shaping the gene content of marine heterotrophic Alphaproteobacteria of the SAR11 and Roseobacter lineages. PMID:26729720

  17. Remediation studies of trace metals in natural and treated water using surface modified biopolymer nanofibers

    NASA Astrophysics Data System (ADS)

    Musyoka, Stephen Makali; Ngila, Jane Catherine; Mamba, Bhekie B.

    In this study, remediation results of trace metals in natural water and treated water using three functionalized nanofiber mats of cellulose and chitosan are reported. The nanofiber materials, packed in mini-columns, were employed for the remediation of five toxic trace metals (Cd, Pb, Cu, Cr and Ni) from natural water samples. Trace metals in real water samples were undetectable as the concentrations were lower than the instrument’s detection limits of 0.27 × 10-3 (Cd) and 4.2 × 10-2 (Pb) μg mL-1, respectively. However, after percolation through the functionalised biosorbents in cartridges, detectability of the metal ions was enhanced. The starting volume of the natural water sample was 100 mL, which was passed through a column containing the nanofibers sorbent and the retained metals eluted with 5 mL of 2.0 M nitric acid. The eluate was analyzed for metals concentrations. An enrichment factor of 20 for the metals was realized as a result of the pre-concentration procedure applied to handle the determination of the metals at trace levels. The order of remediation of the studied metals using the nanofibers was as follows: chitosan/PAM-g-furan-2,5-dione < cellulose-g-furan-2,5-dione < cellulose-g-oxolane-2,5-dione. The modified biopolymer nanofibers were able to adsorb trace metals from the river water and treated water, thereby confirming their capability of water purification. These materials are proposed as useful tools and innovative approach for improving the quality of drinking for those consumers in small scale households.

  18. Environmental relevance of laboratory-derived kinetic models to predict trace metal bioaccumulation in gammarids: Field experimentation at a large spatial scale (France).

    PubMed

    Urien, N; Lebrun, J D; Fechner, L C; Uher, E; François, A; Quéau, H; Coquery, M; Chaumot, A; Geffard, O

    2016-05-15

    Kinetic models have become established tools for describing trace metal bioaccumulation in aquatic organisms and offer a promising approach for linking water contamination to trace metal bioaccumulation in biota. Nevertheless, models are based on laboratory-derived kinetic parameters, and the question of their relevance to predict trace metal bioaccumulation in the field is poorly addressed. In the present study, we propose to assess the capacity of kinetic models to predict trace metal bioaccumulation in gammarids in the field at a wide spatial scale. The field validation consisted of measuring dissolved Cd, Cu, Ni and Pb concentrations in the water column at 141 sites in France, running the models with laboratory-derived kinetic parameters, and comparing model predictions and measurements of trace metal concentrations in gammarids caged for 7 days to the same sites. We observed that gammarids poorly accumulated Cu showing the limited relevance of that species to monitor Cu contamination. Therefore, Cu was not considered for model predictions. In contrast, gammarids significantly accumulated Pb, Cd, and Ni over a wide range of exposure concentrations. These results highlight the relevance of using gammarids for active biomonitoring to detect spatial trends of bioavailable Pb, Cd, and Ni contamination in freshwaters. The best agreements between model predictions and field measurements were observed for Cd with 71% of good estimations (i.e. field measurements were predicted within a factor of two), which highlighted the potential for kinetic models to link Cd contamination to bioaccumulation in the field. The poorest agreements were observed for Ni and Pb (39% and 48% of good estimations, respectively). However, models developed for Ni, Pb, and to a lesser extent for Cd, globally underestimated bioaccumulation in caged gammarids. These results showed that the link between trace metal concentration in water and in biota remains complex, and underlined the limits of

  19. The role of nanominerals and mineral nanoparticles in the transport of toxic trace metals: Field-flow fractionation and analytical TEM analyses after nanoparticle isolation and density separation

    NASA Astrophysics Data System (ADS)

    Plathe, Kelly L.; von der Kammer, Frank; Hassellöv, Martin; Moore, Johnnie N.; Murayama, Mitsuhiro; Hofmann, Thilo; Hochella, Michael F.

    2013-02-01

    Nanominerals and mineral nanoparticles from a mining-contaminated river system were examined to determine their potential to co-transport toxic trace metals. A recent large-scale dam removal project on the Clark Fork River in western Montana (USA) has released reservoir and upstream sediments contaminated with toxic trace metals (Pb, As, Cu and Zn), which had accumulated there as a consequence of more than a century and a half of mining activity proximal to the river's headwaters near the cities of Butte and Anaconda. To isolate the high-density nanoparticle fractions from riverbed and bank sediments, a density separation with sodium polytungstate (2.8 g/cm3) was employed prior to a standard nanoparticle extraction procedure. The stable, dispersed nanoparticulate fraction was then analyzed by analytical transmission electron microscopy (aTEM) and flow field-flow fractionation (FlFFF) coupled to both multi-angle laser light scattering (MALLS) and high-resolution, inductively coupled plasma mass spectrometry (HR-ICPMS). FlFFF analysis revealed a size distribution in the nano range and that the elution profiles of the trace metals matched most closely to that for Fe and Ti. aTEM confirmed these results as the majority of the Fe and Ti oxides analyzed were associated with one or more of the trace metals of interest. The main mineral phases hosting trace metals are goethite, ferrihydrite and brookite. This demonstrates that they are likely playing a significant role in dictating the transport and distribution of trace metals in this river system, which could affect the bioavailability and toxicity of these metals.

  20. Trace metals in the brown mussel Perna perna from the coastal waters off Yemen (Gulf of Aden): how concentrations are affected by weight, sex, and seasonal cycle.

    PubMed

    Sokolowski, A; Bawazir, A S; Wolowicz, M

    2004-01-01

    The effects of seasonal cycle, sex of individuals, and changes of soft tissues weight on accumulated trace metal concentrations (Cd, Cu, Fe, Mn, Pb, Zn) were examined in the brown mussel Perna perna collected monthly from a natural rocky habitat in the coastal waters off Yemen, the Gulf of Aden, for a period of ten months. Basic hydrological parameters were recorded simultaneously. All metals analyzed displayed seasonal fluctuations with different temporal patterns and variable amplitudes. Similar seasonal cycles were observed for Cu, Mn, and Pb with an increase in accumulated concentration during the rainy period (NE monsoon), and a decrease thereafter. The concentrations of Cu, Mn, and partially Pb appeared to be related to environmental changes, the concentration of Pb possibly also being related to changes in body weight. Accumulated concentrations of Cu and Mn thus seem to reflect actual metal bioavailability in the ecosystem quite efficiently. The tissue levels of Fe and Cd changed inversely to fluctuations in body weight with additional variation due to monsoon-related environmental changes. The behaviors of Fe and Cd are therefore driven by seasonally changing body weight with a considerable contribution of external factors including fluctuations in hydrological conditions and metal exposure. The Zn concentrations tended to increase gradually throughout most of the year regardless of its concentration in the environment. Zinc is considered to be mainly regulated by physiological mechanisms in the mussel, making its accumulated metal concentration independent to some degree of environmental levels. Significant differences in trace metal concentrations between sexes (in favour of females) might have resulted from more intense formation of reproductive tissues and metal accumulation in sexual products of females during the prespawning and spawning periods. PMID:15025166

  1. Impact of long-term organic residue recycling in agriculture on soil solution composition and trace metal leaching in soils.

    PubMed

    Cambier, Philippe; Pot, Valérie; Mercier, Vincent; Michaud, Aurélia; Benoit, Pierre; Revallier, Agathe; Houot, Sabine

    2014-11-15

    Recycling composted organic residues in agriculture can reduce the need of mineral fertilizers and improve the physicochemical and biological properties of cultivated soils. However, some trace elements may accumulate in soils following repeated applications and impact other compartments of the agrosystems. This study aims at evaluating the long-term impact of such practices on the composition of soil leaching water, especially on trace metal concentrations. The field experiment QualiAgro started in 1998 on typical loess Luvisol of the Paris Basin, with a maize-wheat crop succession and five modalities: spreading of three different urban waste composts, farmyard manure (FYM), and no organic amendment (CTR). Inputs of trace metals have been close to regulatory limits, but supplies of organic matter and nitrogen overpassed common practices. Soil solutions were collected from wick lysimeters at 45 and 100 cm in one plot for each modality, during two drainage periods after the last spreading. Despite wide temporal variations, a significant effect of treatments on major solutes appears at 45 cm: DOC, Ca, K, Mg, Na, nitrate, sulphate and chloride concentrations were higher in most amended plots compared to CTR. Cu concentrations were also significantly higher in leachates of amended plots compared to CTR, whereas no clear effect emerged for Zn. The influence of amendments on solute concentrations appeared weaker at 1 m than at 45 cm, but still significant and positive for major anions and DOC. Average concentrations of Cu and Zn at 1m depth lied in the ranges [2.5; 3.8] and [2.5; 10.5 μg/L], respectively, with values slightly higher for plots amended with sewage sludge compost or FYM than for CTR. However, leaching of both metals was less than 1% of their respective inputs through organic amendments. For Cd, most values were <0.05 μg/L. So, metals added through spreading of compost or manure during 14 years may have increased metal concentrations in leachates of

  2. Impact of long-term organic residue recycling in agriculture on soil solution composition and trace metal leaching in soils.

    PubMed

    Cambier, Philippe; Pot, Valérie; Mercier, Vincent; Michaud, Aurélia; Benoit, Pierre; Revallier, Agathe; Houot, Sabine

    2014-11-15

    Recycling composted organic residues in agriculture can reduce the need of mineral fertilizers and improve the physicochemical and biological properties of cultivated soils. However, some trace elements may accumulate in soils following repeated applications and impact other compartments of the agrosystems. This study aims at evaluating the long-term impact of such practices on the composition of soil leaching water, especially on trace metal concentrations. The field experiment QualiAgro started in 1998 on typical loess Luvisol of the Paris Basin, with a maize-wheat crop succession and five modalities: spreading of three different urban waste composts, farmyard manure (FYM), and no organic amendment (CTR). Inputs of trace metals have been close to regulatory limits, but supplies of organic matter and nitrogen overpassed common practices. Soil solutions were collected from wick lysimeters at 45 and 100 cm in one plot for each modality, during two drainage periods after the last spreading. Despite wide temporal variations, a significant effect of treatments on major solutes appears at 45 cm: DOC, Ca, K, Mg, Na, nitrate, sulphate and chloride concentrations were higher in most amended plots compared to CTR. Cu concentrations were also significantly higher in leachates of amended plots compared to CTR, whereas no clear effect emerged for Zn. The influence of amendments on solute concentrations appeared weaker at 1 m than at 45 cm, but still significant and positive for major anions and DOC. Average concentrations of Cu and Zn at 1m depth lied in the ranges [2.5; 3.8] and [2.5; 10.5 μg/L], respectively, with values slightly higher for plots amended with sewage sludge compost or FYM than for CTR. However, leaching of both metals was less than 1% of their respective inputs through organic amendments. For Cd, most values were <0.05 μg/L. So, metals added through spreading of compost or manure during 14 years may have increased metal concentrations in leachates of

  3. Bioaccumulation and depuration of some trace metals in the mussel, Perna viridis (Linnaeus)

    SciTech Connect

    Lakshmanan, P.T. ); Nambisan, P.N.K. )

    1989-07-01

    Bivalves are well known for their ability to concentrate heavy metals in their tissue from environmental water. Experimental studies on the accumulation of these pollutants by molluscs have been extensively conducted. The depuration of accumulated metals in a toxicant free medium has also been studied. Bivalve molluscs may form useful tools in monitoring heavy metal pollution. However, such studies are scant in tropical species. This paper reports the bioaccumulation and depuration of Hg, Cu, Zn and Pb by the mussel Perna viridis (Linnaeus) from seawater and explores its suitability as an indicator organism for metal pollution.

  4. Metal accumulation and metallothionein concentrations in tree swallow nestlings near acidified lakes

    SciTech Connect

    St. Louis, V.; Breebaart, L. . Dept. of Zoology); Barlow, J.C. . Dept. of Zoology Royal Ontario Museum, Toronto, Ontario . Dept. of Ornithology); Klaverkamp, J.F. . Dept. of Fisheries and Oceans)

    1993-07-01

    The authors studied metal accumulation in hepatic and renal tissues of tree swallow (Tachycineta bicolor) nestlings at acidified and nonacid reference lakes in northwestern Ontario. Hepatic concentrations of metallothionein (metal-binding proteins, MT) in tree swallow nestlings were negatively correlated with pH of the nest-site lake. Combined concentrations of Cu and Zn in the liver were correlated with liver MT concentrations, but Cd was not. Although no overt signs of metal toxicity were observed in nestlings near acid lakes, the results clearly provided evidence that metals are transferred from acid lakes to birds and that these metals are correlated with increases in hepatic MT production.

  5. Accumulation of heavy metals in epidermal glands of the waterlily (Nymphaeaceae).

    PubMed

    Lavid, N; Barkay, Z; Tel-Or, E

    2001-02-01

    This study investigates the anatomical aspects of heavy-metal accumulation in the waterlily (Nymphaea 'Aurora', Nymphaeaceae). Epidermal glands were identified by light microscopy on the abaxial side of the leaf laminae and on the epidermis of the rhizome; glandular trichomes were observed in the petiole epidermis. Glands were not observed in the roots. Accumulation of heavy metals in these glands was monitored using a scanning electron microscope equipped for energy-dispersive spectroscopy. Further experiments showed maximal cadmium and calcium accumulation in the mature leaf lamina in daylight, and this accumulation was inhibited by the herbicide 3-(3',4'-dichlorophenyl)-1,1-dimethylurea. These results suggest that, in Nymphaea, heavy metals are accumulated primarily in association with glands found in plant organs that have direct contact with water or mud. Deposition and storage of heavy metals by these glands may represent a stage in the sequestration and detoxification of the metals. Our results raise the possibility of utilizing waterlilies for the removal of heavy metals from polluted environments.

  6. Concentration effect of trace metals in Jordanian patients of urinary calculi.

    PubMed

    Abboud, Iyad Ahmed

    2008-02-01

    Due to the increase in the number of urinary calculi disease cases in Jordan, stone samples were collected from patients from various Jordanian hospitals (Princes Basma (PBH), King Abdullah University (KAUH), Al-Basheer (ABH) and Al-Mafraq (AMH)). This study concentrates on the effect of trace metals in patients of urinary calculi. Trace metals were detected in 110 urinary calculi samples using X-ray fluorescence (XRF) and atomic absorption spectroscopy (AAS) techniques. Of the calculi examined, 21 were pure calcium oxalate (CaOax), 29 were mixed calcium oxalate/uric acid, 23 were mixed calcium oxalate/phosphate (apatite), 25 were phosphate calculi (apatite/struvite), five were mixed calcium oxalate monohydrate/struvite, four were urate calculi (mixed ammonium acid urate/sodium acid urate) and three were pure cystine calculi. The concentration measurement of Ca and other trace metals levels has been found useful in understanding the mechanism of stone formation and in evaluating pathological factors. It has been found that Ca is the main constituent of the urinary calculi, especially those stones composed of calcium oxalate and calcium phosphate. The concentration of most of the trace metals that were analyzed was (Ca = 48.18, Na = 1.56, K = 0.9, Mg = 3.08, Fe = 1.17, Al = 0.49, Zn = 0.7, Cu = 0.19, Mn = 0.029, P = 10.35, S = 1.88, Sr = 0.306, Mo = 0.2, Cr = 0.146, Co = 0.05, Ni = 0.014)%. In conclusion, metals concentration in Jordanian patient's urinary calculi samples was higher than its equivalents of other patients'. It has been noted that there is no concentration of toxic trace elements (like Li, V, Pb, Cd, and As). Some heavy metals, however, were detected Mo, Cr, Co and Ni as traces. P and S ions are present in few calculi stones as traces.

  7. Insights into Carbonate Formation through the Incorporation of Trace Metals into Ooids

    NASA Astrophysics Data System (ADS)

    Fairbank, V. E.; Robinson, L. F.; Parkinson, I. J.; Elliott, T.

    2014-12-01

    Trace metal ratios are widely used as paleoclimate proxies for past ocean conditions. In particular Mg/Ca and Sr/Ca ratios in biogenic carbonates have been used as paleothermometers. Of course the use of these trace metal ratios as reliable climate proxies does not come without complications. As well as biologically mediated "vital effects", there have also been other secondary controls on trace metal incorporation reported, including salinity, carbonate ion concentration and growth rate. Within this study a range of trace metal ratios and their isotopes have been measured for modern ooid samples forming under a range of environmental conditions. Since ooids are thought to form through inorganic precipitation (although microbial mediation may play a role), the "vital effects" seen in biogenic carbonates should be minimised or absent. Therefore, ooids should be expected to incorporate trace metals similarly to carbonate precipitated in experimental studies. Through studying modern ooids we can test this hypothesis, as well as looking at the factors that affect the incorporation of trace metals into calcium carbonates without the control of typical "vital effects".The sample set includes both pure aragonite and pure calcite ooids, as well as samples with intermediate mineralogy as determined by in situ Raman spectroscopy. The distribution coefficients for purely aragonite or calcite ooids are offset from the reported inorganic precipitate values, with DSr being larger, while DMg has been found to be lower. The incorporation of Mg and Sr across the sample set is inversely correlated and does not seem to be explained by mineralogy alone. Here we explore alternative secondary factors contributing to the incorporation of these trace elements into oolitic carbonate. This will be accomplished by utilising stable Sr isotope fractionation during incorporation and using kinetic models and distribution coefficients to investigate the controls on Mg and Sr partitioning into

  8. Heavy metal accumulation and source analysis in greenhouse soils of Wuwei District, Gansu Province, China.

    PubMed

    Bai, L Y; Zeng, X B; Su, S M; Duan, R; Wang, Y N; Gao, X

    2015-04-01

    Greenhouse soils and arable (wheat field) soil samples were collected to identify the effects of greenhouse cultivation on the accumulation of six heavy metals (Cd, Cu, Zn, Pb, Cr, and Ni) and to evaluate the likely sources responsible for heavy metal accumulation in the irrigated desert soils of Wuwei District, China. The results indicated that the mean concentrations of Cd, Cu, Zn, Pb, Cr, and Ni were 0.421, 33.85, 85.31, 20.76, 53.12, and 28.59 mg kg(-1), respectively. The concentrations of Cd, Cu, and Zn in greenhouse soils were 60, 23, and 14% higher than those in arable soils and 263, 40, and 25% higher than background concentrations of natural soils in the study area, respectively. These results indicated that Cd, Cu, and Zn accumulation occurred in the greenhouse soils, and Cd was the most problematically accumulated heavy metal, followed by Cu and Zn. There was a significant positive correlation between the concentrations of Cd, Cu, and Zn in greenhouse soils and the number of years under cultivation (P < 0.05). Greenhouse cultivation had little impact on the accumulation of Cr, Ni, or Pb. Correlation analysis and principal component analysis suggested that the accumulation of Cd, Cu, and Zn in greenhouse soils resulted mainly from fertilizer applications. Our results indicated that the excessive and long-term use of fertilizers and livestock manures with high heavy metal levels leads to the accumulation of heavy metals in soils. Therefore, rational fertilization programs and reductions in the concentrations of heavy metals in both fertilizers and manure must be recommended to maintain a safe concentration of heavy metals in greenhouse soils.

  9. Mobility and bioavailability of trace metals in sulfidic coastal sediments.

    PubMed

    Sundelin, B; Eriksson, A K

    2001-04-01

    High concentrations of Hg, Cd, Pb, Cu, and Zn were found in the euxinic sediment of the inner archipelago of Stockholm. In the sulfide-rich sediment, they are precipitated as metal sulfides with low dissolving capacity and bioavailability. In two experiments, the significance of acid-volatile sulfide (AVS) and dissolved sulfides for mobility, bioavailability, and toxicity of metals were studied by oxygenation of intact sediment cores. Influence of bioturbating deposit-feeding amphipods, that is, Monoporeia affinis, was examined on studied sediment processes. Results showed a low mobility of most metals except Cd and Zn. Bioturbation did not enhance mobility. Cd and Zn, released from the sediment, were not bioaccumulated in amphipods. In contrast, the less mobile metals Hg and Pb were bioaccumulated. A low toxicity of contaminated sediments, in terms of mortality and embryonic malformations of amphipods, was recorded. Results indicate that Cd, Zn, and Cu are comparatively unavailable after oxygenation of the metal sulfides. Similar results were recorded in contaminated sediments differing in redox potential, AVS, dissolved sulfides, and organic contents, suggesting that other metal ligands, in addition to AVS, are important for metal bioavailability and toxicity in anoxic and suboxic environments. PMID:11345449

  10. Trace metal imaging with high spatial resolution: applications in biomedicine.

    PubMed

    Qin, Zhenyu; Caruso, Joseph A; Lai, Barry; Matusch, Andreas; Becker, J Sabine

    2011-01-01

    New generations of analytical techniques for imaging of metals are pushing hitherto boundaries of spatial resolution and quantitative analysis in biology. Because of this, the application of these imaging techniques described herein to the study of the organization and dynamics of metal cations and metal-containing biomolecules in biological cell and tissue is becoming an important issue in biomedical research. In the current review, three common metal imaging techniques in biomedical research are introduced, including synchrotron X-ray fluorescence (SXRF) microscopy, secondary ion mass spectrometry (SIMS), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). These are exemplified by a demonstration of the dopamine-Fe complexes, by assessment of boron distribution in a boron neutron capture therapy cell model, by mapping Cu and Zn in human brain cancer and a rat brain tumor model, and by the analysis of metal topography within neuromelanin. These studies have provided solid evidence that demonstrates that the sensitivity, spatial resolution, specificity, and quantification ability of metal imaging techniques is suitable and highly desirable for biomedical research. Moreover, these novel studies on the nanometre scale (e.g., of individual single cells or cell organelles) will lead to a better understanding of metal processes in cells and tissues.

  11. Seasonal trends in growth and biomass accumulation of selected nutrients and metals in six species of emergent aquatic macrophytes

    SciTech Connect

    Behrends, L.L.; Bailey, E.; Bulls, M.J.; Coonrod, H.S.; Sikora, F.J.

    1996-05-01

    Growth and biomass accumulation of selected nutrients and trace metals were monitored for six species of aquatic macrophytes during June, August and November, 1993. Plant species were cultivated in two polyculture treatments, each replicated three times. Polyculture I consisted of Scirpus acutus (hardstem bullrush), Phragmites communes (common reed), and Phalaris arundinacea (canary grass). Polyculture H consisted of Typha spp. (cattail), Scirpus atrovirens (green bullrush), and Scirpus cyperinus (wool grass). Each of the six cells (6 x 9 x 0.6 m), was operated as a gravel-substrate, subsurface-flow wetlands in a continuous recirculating mode. At six week intervals, macro, micro and trace elements were dissolved and added to the sump of the recirculating system. On each of three sampling dates, replicate shoot and root samples were collected, segregated by species and tissue type (roots, rhizomes, stems and leaves), and prepared for gravimetric biomass estimates and chemical analysis. Tissue specific concentrations of N, P, K, Ca, Mg, Fe, Mn, Zn and Cu, were determined on each date for each species and tissue type. Results will be discussed with respect to species specific growth rates, biomass accumulation, and seasonal uptake and translocation of plant nutrients.

  12. Interaction Between Trace Metals, Sodium and Sorbents in Combustion.

    SciTech Connect

    Wendt, O.L.; Davis, S.

    1997-10-17

    The proposed research is directed at an understanding of how to exploit interactions between sodium, toxic metals and sorbents, in order to optimize sorbents injection procedures, which can be used to capture and transform these metals into environmentally benign forms. The research will use a 17kW downflow, laboratory combustor, to yield data that can be interpreted in terms of fundamental kinetic mechanisms. Metals to be considered are lead, cadmium, and arsenic. Sorbents will be kaolinite, bauxite, and limestone. The role of sulfur will also be determined.

  13. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment

    PubMed Central

    Zhou, Hang; Yang, Wen-Tao; Zhou, Xin; Liu, Li; Gu, Jiao-Feng; Wang, Wen-Lei; Zou, Jia-Ling; Tian, Tao; Peng, Pei-Qin; Liao, Bo-Han

    2016-01-01

    The objectives of the present study were to investigate heavy metal accumulation in 22 vegetable species and to assess the human health risks of vegetable consumption. Six vegetable types were cultivated on farmland contaminated with heavy metals (Pb, Cd, Cu, Zn, and As). The target hazard quotient (THQ) method was used to assess the human health risks posed by heavy metals through vegetable consumption. Clear differences were found in the concentrations of heavy metals in edible parts of the different vegetables. The concentrations of heavy metals decreased in the sequence as leafy vegetables > stalk vegetables/root vegetables/solanaceous vegetables > legume vegetables/melon vegetables. The ability of leafy vegetables to uptake and accumulate heavy metals was the highest, and that of melon vegetables was the lowest. This indicated that the low accumulators (melon vegetables) were suitable for being planted on contaminated soil, while the high accumulators (leafy vegetables) were unsuitable. In Shizhuyuan area, China, the total THQ values of adults and children through consumption of vegetables were 4.12 and 5.41, respectively, suggesting that the residents may be facing health risks due to vegetable consumption, and that children were vulnerable to the adverse effects of heavy metal ingestion. PMID:26959043

  14. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment.

    PubMed

    Zhou, Hang; Yang, Wen-Tao; Zhou, Xin; Liu, Li; Gu, Jiao-Feng; Wang, Wen-Lei; Zou, Jia-Ling; Tian, Tao; Peng, Pei-Qin; Liao, Bo-Han

    2016-03-04

    The objectives of the present study were to investigate heavy metal accumulation in 22 vegetable species and to assess the human health risks of vegetable consumption. Six vegetable types were cultivated on farmland contaminated with heavy metals (Pb, Cd, Cu, Zn, and As). The target hazard quotient (THQ) method was used to assess the human health risks posed by heavy metals through vegetable consumption. Clear differences were found in the concentrations of heavy metals in edible parts of the different vegetables. The concentrations of heavy metals decreased in the sequence as leafy vegetables > stalk vegetables/root vegetables/solanaceous vegetables > legume vegetables/melon vegetables. The ability of leafy vegetables to uptake and accumulate heavy metals was the highest, and that of melon vegetables was the lowest. This indicated that the low accumulators (melon vegetables) were suitable for being planted on contaminated soil, while the high accumulators (leafy vegetables) were unsuitable. In Shizhuyuan area, China, the total THQ values of adults and children through consumption of vegetables were 4.12 and 5.41, respectively, suggesting that the residents may be facing health risks due to vegetable consumption, and that children were vulnerable to the adverse effects of heavy metal ingestion.

  15. Accumulation of heavy metals in mosses: a biomonitoring study.

    PubMed

    Macedo-Miranda, G; Avila-Pérez, P; Gil-Vargas, P; Zarazúa, G; Sánchez-Meza, J C; Zepeda-Gómez, C; Tejeda, S

    2016-01-01

    The metropolitan area of the Toluca Valley (MATV) extends over an area of 1208.55 km(2) and has 1,361,500 inhabitants making it the fifth highest populated area in the country and the second highest in the state. The MATV has several environmental problems, with regards to the air quality. Particles PM10 and PM2.5 are considered to be the main pollutant due to these particles frequently exceeding the limit laid down in the standards of the air quality in the country. For this reason, samples of the mosses Fabriona ciliaris and Leskea angustata were collected at different sites in MATV, Mexico in order to establish the atmospheric deposition of heavy metals by means of the analysis of the mosses tissues. Results show the average metal concentrations in the mosses in the order of: Zn > Pb > Cr > Cd. The concentration capacities of heavy metals were higher in Fabriona ciliaris than Leskea angustata. Enrichment factors for Cr, Zn, Pb and Cd were obtained using the soils from the same sampling area. Enrichment factors results show that Cr is conservative in both sampling seasons with a terrigenous origin; Zn is moderately enriched in both sampling seasons and mainly associated to pedological-soil or substrate contribution and anthropogenic activities and Cd is highly enriched in the rainy season and Pb is highly enriched in both sampling seasons, with a predominantly anthropogenic origin. This study provides information to be considered in the strategies for similar environmental problems in the world.

  16. Accumulation of heavy metals in mosses: a biomonitoring study.

    PubMed

    Macedo-Miranda, G; Avila-Pérez, P; Gil-Vargas, P; Zarazúa, G; Sánchez-Meza, J C; Zepeda-Gómez, C; Tejeda, S

    2016-01-01

    The metropolitan area of the Toluca Valley (MATV) extends over an area of 1208.55 km(2) and has 1,361,500 inhabitants making it the fifth highest populated area in the country and the second highest in the state. The MATV has several environmental problems, with regards to the air quality. Particles PM10 and PM2.5 are considered to be the main pollutant due to these particles frequently exceeding the limit laid down in the standards of the air quality in the country. For this reason, samples of the mosses Fabriona ciliaris and Leskea angustata were collected at different sites in MATV, Mexico in order to establish the atmospheric deposition of heavy metals by means of the analysis of the mosses tissues. Results show the average metal concentrations in the mosses in the order of: Zn > Pb > Cr > Cd. The concentration capacities of heavy metals were higher in Fabriona ciliaris than Leskea angustata. Enrichment factors for Cr, Zn, Pb and Cd were obtained using the soils from the same sampling area. Enrichment factors results show that Cr is conservative in both sampling seasons with a terrigenous origin; Zn is moderately enriched in both sampling seasons and mainly associated to pedological-soil or substrate contribution and anthropogenic activities and Cd is highly enriched in the rainy season and Pb is highly enriched in both sampling seasons, with a predominantly anthropogenic origin. This study provides information to be considered in the strategies for similar environmental problems in the world. PMID:27375984

  17. Dilution mixing estimates of trace metal concentrations of suspended sediments

    SciTech Connect

    Marcus, W.A. )

    1989-02-01

    Dilution mixing equations, at first glance, appear to provide an easy and useful approach for estimating pollutant loads in sediments of unmonitored stream channels. Results from Left Hand Creek, Colorado, however, indicate that only under proper circumstances can dilution mixing models be used to estimate suspended metal concentrations in unmonitored channels with any accuracy. The utility of this technique is severely limited by errors at monitored sites in measuring metal concentrations within sediments and sediment discharge. Specifically, three general constraints must be met before making dilution mixing estimates of unmonitored concentrations: (1) estimated sediment discharges in an unmonitored tributary should be at least 30 percent of that in the main channel below the confluence; (2) there must be a significant difference between the estimated or monitored metal load in the channel below the confluence and the metal loads of the upstream channels; and (3) travel times between the monitoring sites must be incorporated within the calculations.

  18. Evaluation of urban environment pollution based on the accumulation of macro- and trace elements in epiphytic lichens.

    PubMed

    Parzych, Agnieszka; Astel, Aleksander; Zduńczyk, Anna; Surowiec, Tomasz

    2016-01-01

    Nitrogen, phosphorus, potassium, magnesium, zinc, nickel, copper, manganese, iron and lead accumulation properties of three epiphytic lichen species (Hypogymnia physodes (L.) Nyl., Parmelia sulcata Taylor and Xanthoria parietina (L.) Th. Fr.) were compared. An assessment of pollution of the municipal environment in Słupsk (Poland) according to macro- and trace elements was also done. Lichen samples were taken in Autumn 2013 from Betula pendula, Fraxinus excelsior, Acer platanoides, A. pseudoplatanus and Populus sp. trees. Sampling stations comprised of house development areas, green urban parks, vicinity of streets with heavy traffic and industrial enterprises. It was found that lichens represent diverse accumulation properties to pollutants according to the species. X. parietina indicated the highest bioaccumulation in relation to N, K, Mg, Zn and Fe, the thalli of H. physodes accumulated the largest amounts of Ni and Pb, while P. sulcata P and Cu. Manganese was accumulated in similar quantities by all species. Evidences acquired by the use of factor analysis proved that pollution in Słupsk municipal environment is a serious issue with three major sources domination: street dust, marine factor and residual oil combustion. The high-risk areas were detected and visualized using surface maps based on Kriging algorithm. It was seen that the highest pollution occurs in the town centre, while the smallest happened on its outskirts and in urban parks.

  19. Evaluation of urban environment pollution based on the accumulation of macro- and trace elements in epiphytic lichens.

    PubMed

    Parzych, Agnieszka; Astel, Aleksander; Zduńczyk, Anna; Surowiec, Tomasz

    2016-01-01

    Nitrogen, phosphorus, potassium, magnesium, zinc, nickel, copper, manganese, iron and lead accumulation properties of three epiphytic lichen species (Hypogymnia physodes (L.) Nyl., Parmelia sulcata Taylor and Xanthoria parietina (L.) Th. Fr.) were compared. An assessment of pollution of the municipal environment in Słupsk (Poland) according to macro- and trace elements was also done. Lichen samples were taken in Autumn 2013 from Betula pendula, Fraxinus excelsior, Acer platanoides, A. pseudoplatanus and Populus sp. trees. Sampling stations comprised of house development areas, green urban parks, vicinity of streets with heavy traffic and industrial enterprises. It was found that lichens represent diverse accumulation properties to pollutants according to the species. X. parietina indicated the highest bioaccumulation in relation to N, K, Mg, Zn and Fe, the thalli of H. physodes accumulated the largest amounts of Ni and Pb, while P. sulcata P and Cu. Manganese was accumulated in similar quantities by all species. Evidences acquired by the use of factor analysis proved that pollution in Słupsk municipal environment is a serious issue with three major sources domination: street dust, marine factor and residual oil combustion. The high-risk areas were detected and visualized using surface maps based on Kriging algorithm. It was seen that the highest pollution occurs in the town centre, while the smallest happened on its outskirts and in urban parks. PMID:26745547

  20. The relation between Acid Volatile Sulfides (AVS) and metal accumulation in aquatic invertebrates: implications of feeding behavior and ecology.

    PubMed

    De Jonge, Maarten; Blust, Ronny; Bervoets, Lieven

    2010-05-01

    The present study evaluates the relationship between Acid Volatile Sulfides (AVS) and metal accumulation in invertebrates with different feeding behavior and ecological preferences. Natural sediments, pore water and surface water, together with benthic and epibenthic invertebrates were sampled at 28 Flemish lowland rivers. Different metals as well as metal binding sediment characteristics including AVS were measured and multiple regression was used to study their relationship with accumulated metals in the invertebrates taxa. Bioaccumulation in the benthic taxa was primarily influenced by total metal concentrations in the sediment. Regarding the epibenthic taxa metal accumulation was mostly explained by the more bioavailable metal fractions in both the sediment and the water. AVS concentrations were generally better correlated with metal accumulation in the epibenthic invertebrates, rather than with the benthic taxa. Our results indicated that the relation between AVS and metal accumulation in aquatic invertebrates is highly dependent on feeding behavior and ecology.

  1. Using stable isotope systematics and trace metals to constrain the dispersion of fish farm pollution

    NASA Astrophysics Data System (ADS)

    Torchinsky, A.; Shiel, A. E.; Price, M.; Weis, D. A.

    2010-12-01

    Fish farming is a growing industry of great economic importance to coastal communities. Unfortunately, open-net fish farming is associated with the release of organic and metal pollution, which has the potential to adversely affect the coastal marine environment. The dispersion of fish farm pollution and its environmental impact are not well understood/quantified. Pollutants released by fish farms include organic products such as uneaten feed pellets and fish feces, as well as chemicals and pharmaceuticals, all of which may enter marine ecosystems. In this study, we took advantage of bioaccumulation in passive suspension feeding Manila Clams collected at varying distances from an open-net salmon farm located in the Discovery Islands of British Columbia. Measurements of stable C and N isotopes, as well as trace metal concentrations, in the clams were used to investigate the spread of pollutants by detecting the presence of fish farm waste in the clams’ diet. Lead isotopic measurements were used to identify other significant anthropogenic pollution sources, which may impact the study area. Clams located within the areal extent of waste discharged by a fish farm are expected to exhibit anomalous light stable isotope ratios and metal concentrations, reflecting the presence of pollutants accumulated directly from seawater and from their diet. Clams were collected in the Discovery Islands from three sites in the Octopus Islands, located 850 m, 2100 m and 3000 m north of the Cyrus Rocks salmon farm (near Quadra Island) and from a reference site on Penn Island. Light stable isotope ratios (δN = ~10‰, with little variation between sites, and δC from -14.5 to -17.3‰) of the clams suggest that the most distal site (i.e., 3000 m away) is most impacted by organic fish farm waste (i.e., food pellets and feces) and that contributions of organic waste actually decrease closer to the farm. Not surprisingly, the smallest contribution of organic waste was detected in clams

  2. Using portable X-ray fluorescence spectrometry and GIS to assess environmental risk and identify sources of trace metals in soils of peri-urban areas in the Yangtze Delta region, China.

    PubMed

    Ran, Jing; Wang, Dejian; Wang, Can; Zhang, Gang; Yao, Lipeng

    2014-08-01

    Portable X-ray fluorescence (PXRF) spectrometry may be very suitable for a fast and effective environmental assessment and source identification of trace metals in soils. In this study, topsoils (0-10 cm) at 139 sites were in situ scanned for total trace metals (Cr, Cu, Ni, Pb and Zn) and arsenic concentrations by PXRF in a typical town in Yangtze Delta region of Jiangsu province, China. To validate the utility of PXRF, 53 samples were collected from the scanning sites for the determination of selected trace metals using conventional methods. Based on trace metal concentrations detected by in situ PXRF, the contamination extent and sources of trace metals were studied via geo-accumulation index, multivariate analysis and geostatistics. The trace metal concentrations determined by PXRF were similar to those obtained via conventional chemical analysis. The median concentration of As, Cr, Cu, Ni, Pb and Zn in soils were 10.8, 56.4, 41.5, 43.5, 33.5, and 77.7 mg kg(-1), respectively. The distribution patterns of Cr, Cu, Ni, Pb, and Zn were mostly affected by anthropogenic sources, while As was mainly derived from lithogenic sources. Overall, PXRF has been successfully applied to contamination assessment and source identification of trace metals in soils. PMID:24875935

  3. The Little Penguin (Eudyptula minor) as an indicator of coastal trace metal pollution.

    PubMed

    Finger, Annett; Lavers, Jennifer L; Dann, Peter; Nugegoda, Dayanthi; Orbell, John D; Robertson, Bruce; Scarpaci, Carol

    2015-10-01

    Monitoring trace metal and metalloid concentrations in marine animals is important for their conservation and could also reliably reflect pollution levels in their marine ecosystems. Concentrations vary across tissue types, with implications for reliable monitoring. We sampled blood and moulted feathers of the Little Penguin (Eudyptula minor) from three distinct colonies, which are subject to varying levels of anthropogenic impact. Non-essential trace metal and metalloid concentrations in Little Penguins were clearly linked to the level of industrialisation adjacent to the respective foraging zones. This trend was more distinct in blood than in moulted feathers, although we found a clear correlation between blood and feathers for mercury, lead and iron. This study represents the first reported examination of trace metals and metalloids in the blood of any penguin species and demonstrates that this high trophic feeder is an effective bioindicator of coastal pollution. PMID:26160534

  4. The Little Penguin (Eudyptula minor) as an indicator of coastal trace metal pollution.

    PubMed

    Finger, Annett; Lavers, Jennifer L; Dann, Peter; Nugegoda, Dayanthi; Orbell, John D; Robertson, Bruce; Scarpaci, Carol

    2015-10-01

    Monitoring trace metal and metalloid concentrations in marine animals is important for their conservation and could also reliably reflect pollution levels in their marine ecosystems. Concentrations vary across tissue types, with implications for reliable monitoring. We sampled blood and moulted feathers of the Little Penguin (Eudyptula minor) from three distinct colonies, which are subject to varying levels of anthropogenic impact. Non-essential trace metal and metalloid concentrations in Little Penguins were clearly linked to the level of industrialisation adjacent to the respective foraging zones. This trend was more distinct in blood than in moulted feathers, although we found a clear correlation between blood and feathers for mercury, lead and iron. This study represents the first reported examination of trace metals and metalloids in the blood of any penguin species and demonstrates that this high trophic feeder is an effective bioindicator of coastal pollution.

  5. Accumulation of heavy metals in crayfish and fish from selected Czech reservoirs.

    PubMed

    Kuklina, Iryna; Kouba, Antonín; Buřič, Miloš; Horká, Ivona; Duriš, Zdeněk; Kozák, Pavel

    2014-01-01

    To evaluate the accumulation of aluminium, cadmium, chromium, copper, lead, mercury, nickel, and zinc in crayfish and fish organ tissues, specimens from three drinking water reservoirs (Boskovice, Landštejn, and Nová Říše) and one contaminated site (Darkovské moře) in the Czech Republic were examined. Crayfish hepatopancreas was confirmed to be the primary accumulating site for the majority of metals (Cu > Zn > Ni > Cd > Cr), while Hg and Cr were concentrated in abdominal muscle, and Al and Pb were concentrated in gill. Metals found in Nová Říše specimens included Cu > Zn > Ni and those found in Boskovice included Zn > Hg > Cr. Cd concentrations were observed only in Landštejn specimens, while contaminated Darkovské moře specimens showed the highest levels of accumulation (Cu > Al > Zn > Pb). The majority of evaluated metals were found in higher concentrations in crayfish: Cu > Al > Zn > Ni > Cr > Cd > Pb, with Hg being the only metal accumulating higher in fish. Due to accumulation similarities of Al in crayfish and fish gill, differences of Hg in muscle, and features noted for the remaining metals in examined tissues, biomonitoring should incorporate both crayfish and fish to produce more relevant water quality surveys.

  6. Accumulation of Heavy Metals in Crayfish and Fish from Selected Czech Reservoirs

    PubMed Central

    Kuklina, Iryna; Kouba, Antonín; Buřič, Miloš; Horká, Ivona; Ďuriš, Zdeněk; Kozák, Pavel

    2014-01-01

    To evaluate the accumulation of aluminium, cadmium, chromium, copper, lead, mercury, nickel, and zinc in crayfish and fish organ tissues, specimens from three drinking water reservoirs (Boskovice, Landštejn, and Nová Říše) and one contaminated site (Darkovské moře) in the Czech Republic were examined. Crayfish hepatopancreas was confirmed to be the primary accumulating site for the majority of metals (Cu > Zn > Ni > Cd > Cr), while Hg and Cr were concentrated in abdominal muscle, and Al and Pb were concentrated in gill. Metals found in Nová Říše specimens included Cu > Zn > Ni and those found in Boskovice included Zn > Hg > Cr. Cd concentrations were observed only in Landštejn specimens, while contaminated Darkovské moře specimens showed the highest levels of accumulation (Cu > Al > Zn > Pb). The majority of evaluated metals were found in higher concentrations in crayfish: Cu > Al > Zn > Ni > Cr > Cd > Pb, with Hg being the only metal accumulating higher in fish. Due to accumulation similarities of Al in crayfish and fish gill, differences of Hg in muscle, and features noted for the remaining metals in examined tissues, biomonitoring should incorporate both crayfish and fish to produce more relevant water quality surveys. PMID:24738051

  7. Trace enrichment of metal ions in aquatic environments by Saccharomyces cerevisiae.

    PubMed

    Mapolelo, M; Torto, N

    2004-09-01

    Sorption properties of baker's yeast cells, characterised as Saccharomyces cerevisiae were evaluated for trace enrichment of metal ions: Cd(2+), Cr(3+), Cr(6+), Cu(2+), Pb(2+) and Zn(2+) from aqueous environments. Metal concentration was determined by flame atomic absorption spectrometry (FAAS). Parameters affecting metal uptake such as solution pH, incubation time, amount of yeast biomass and effect of glucose concentration (energy source) were optimised. Further studies were carried out to evaluate the effects on metal uptake after treating yeast with glucose as well as with an organic solvent. The results showed that trace enrichment of the metals under study with yeast, depends upon the amount of yeast biomass, pH and incubation time. Treatment of yeast cells with 10-20mM glucose concentration enhanced metal uptake with exception to Cr(6+), whose metal enrichment capacity decreased at glucose concentration of 60mM. Of the investigated organic solvents THF and DMSO showed the highest and lowest capacity, respectively, to enhance metal uptake by yeast cells. Trace enrichment of metal ions from stream water, dam water, treated wastewater from a sewage plant and wastewater from an electroplating plant achieved enrichment factors (EF) varying from 1 to 98, without pre-treatment of the sample. pH adjustment further enhanced the EF for all samples. The results from these studies demonstrate that yeast is a viable trace metal enrichment media that can be used freely suspended in solution to achieve very high EF in aquatic environments. PMID:18969566

  8. Metal accumulation by submerged macrophytes in eutrophic lakes at the watershed scale.

    PubMed

    Xing, Wei; Wu, Haoping; Hao, Beibei; Liu, Guihua

    2013-10-01

    Metal concentrations (Al, Ba, Ca, K, Li, Mg, Na, Se, Sr and Ti) in submerged macrophytes and corresponding water and sediments were studied in 24 eutrophic lakes along the middle and lower reaches of the Yangtze River (China). Results showed that these eutrophic lakes have high metal concentrations in both water and sediments because of human activities. Average concentrations of Al and Na in tissues of submerged macrophytes were very high in sampled eutrophic lakes. By comparison, Ceratophyllum demersum and Najas marina accumulated more metals (e.g. Ba, Ca, K, Mg, Na, Sr and Ti). Strong positive correlations were found between metal concentrations in tissues of submerged macrophytes, probably because of co-accumulation of metals. The concentrations of Li, Mg, Na and Sr in tissues of submerged macrophytes significantly correlated with their corresponding water values, but not sediment values.

  9. Trends of labile trace metals in tropical urban water under highly contrasted weather conditions.

    PubMed

    Villanueva, J D; Le Coustumer, P; Denis, A; Abuyan, R; Huneau, F; Motelica-Heino, M; Peyraube, N; Celle-Jeanton, H; Perez, T R; Espaldon, M V O

    2015-09-01

    The spatio-temporal trend of trace metals (Cd, Co, Cr, Cu, Ni, Pb, and Zn) in a tropical urban estuary under the influence of monsoon was determined using diffusive gradient in thin films (DGT) in situ samplers. Three different climatic periods were observed: period 1, dry with dredging activity; period 2, intermediate meaning from dry to wet event; and period 3, wet having continuous rainfall. Conforming to monsoon regimes, these periods correspond to the following: transition from winter to summer, winter, and summer monsoons, respectively. The distinction of each period is defined by their specific hydrological and physico-chemical conditions. Substantial concentrations of the trace metals were detected. The distribution and trend of the trace metals under the challenge of a tropical climate were able to follow using DGT as a sensitive in situ sampler. In order to identify the differences among periods, statistical analyses were performed. This allowed discriminating period 2 (oxic water) as significantly different compared to other periods. The spatio-temporal analysis was then applied in order to distinguish the trend of the trace metals. Results showed that the trend of trace metals can be described according to their response to (i) seasonal variations (Cd and Cr), (ii) spatio-temporal conditions (Co, Cu, Ni, and Pb), and (iii) neither (i) nor (ii) meaning exhibiting no response or having constant change (Zn). The correlation of the trace metals and the physico-chemical parameters reveals that Cd, Co, Cu, and Cr are proportional to the dissolved oxygen (DO), Cd and Ni are correlated pH, and Zn lightly influenced by salinity.

  10. Trends of labile trace metals in tropical urban water under highly contrasted weather conditions.

    PubMed

    Villanueva, J D; Le Coustumer, P; Denis, A; Abuyan, R; Huneau, F; Motelica-Heino, M; Peyraube, N; Celle-Jeanton, H; Perez, T R; Espaldon, M V O

    2015-09-01

    The spatio-temporal trend of trace metals (Cd, Co, Cr, Cu, Ni, Pb, and Zn) in a tropical urban estuary under the influence of monsoon was determined using diffusive gradient in thin films (DGT) in situ samplers. Three different climatic periods were observed: period 1, dry with dredging activity; period 2, intermediate meaning from dry to wet event; and period 3, wet having continuous rainfall. Conforming to monsoon regimes, these periods correspond to the following: transition from winter to summer, winter, and summer monsoons, respectively. The distinction of each period is defined by their specific hydrological and physico-chemical conditions. Substantial concentrations of the trace metals were detected. The distribution and trend of the trace metals under the challenge of a tropical climate were able to follow using DGT as a sensitive in situ sampler. In order to identify the differences among periods, statistical analyses were performed. This allowed discriminating period 2 (oxic water) as significantly different compared to other periods. The spatio-temporal analysis was then applied in order to distinguish the trend of the trace metals. Results showed that the trend of trace metals can be described according to their response to (i) seasonal variations (Cd and Cr), (ii) spatio-temporal conditions (Co, Cu, Ni, and Pb), and (iii) neither (i) nor (ii) meaning exhibiting no response or having constant change (Zn). The correlation of the trace metals and the physico-chemical parameters reveals that Cd, Co, Cu, and Cr are proportional to the dissolved oxygen (DO), Cd and Ni are correlated pH, and Zn lightly influenced by salinity. PMID:26081775

  11. Detection of trace metallic elements in oral lichenoid contact lesions using SR-XRF, PIXE, and XAFS

    PubMed Central

    Sugiyama, Tomoko; Uo, Motohiro; Wada, Takahiro; Omagari, Daisuke; Komiyama, Kazuo; Miyazaki, Serika; Numako, Chiya; Noguchi, Tadahide; Jinbu, Yoshinori; Kusama, Mikio; Mori, Yoshiyuki

    2015-01-01

    Oral lichen planus (OLP) and oral lichenoid contact lesions (OLCL) are chronic inflammatory mucocutaneous reactions with a risk of malignant transformation that alter the epithelium. OLP and OLCL have similar clinical and histopathological features and it is difficult to distinguish one from the other. Metallic restorations are suspected to generate OLCLs. Trace metal analysis of OLCL specimens may facilitate the discrimination of symptoms and identification of causative metallic restorations. The purpose of this study was to assess OLCL tissue samples for the prevalence of metallic elements derived from dental restorations, and to discriminate OLCL from OLP by using synchrotron radiation-excited X-ray fluorescence analysis (SR-XRF), particle-induced X-ray emission (PIXE), and X-ray absorption fine structure (XAFS). Typical elements of dental materials were detected in the OLCL, whereas no obvious element accumulation was detected in OLP and negative control specimens. The origin of the detected metallic elements was presumed to be dental alloys through erosion. Therefore, our findings support the feasibility of providing supporting information to distinguish OLCL from OLP by using elemental analysis. PMID:26085368

  12. Detection of trace metallic elements in oral lichenoid contact lesions using SR-XRF, PIXE, and XAFS.

    PubMed

    Sugiyama, Tomoko; Uo, Motohiro; Wada, Takahiro; Omagari, Daisuke; Komiyama, Kazuo; Miyazaki, Serika; Numako, Chiya; Noguchi, Tadahide; Jinbu, Yoshinori; Kusama, Mikio; Mori, Yoshiyuki

    2015-06-18

    Oral lichen planus (OLP) and oral lichenoid contact lesions (OLCL) are chronic inflammatory mucocutaneous reactions with a risk of malignant transformation that alter the epithelium. OLP and OLCL have similar clinical and histopathological features and it is difficult to distinguish one from the other. Metallic restorations are suspected to generate OLCLs. Trace metal analysis of OLCL specimens may facilitate the discrimination of symptoms and identification of causative metallic restorations. The purpose of this study was to assess OLCL tissue samples for the prevalence of metallic elements derived from dental restorations, and to discriminate OLCL from OLP by using synchrotron radiation-excited X-ray fluorescence analysis (SR-XRF), particle-induced X-ray emission (PIXE), and X-ray absorption fine structure (XAFS). Typical elements of dental materials were detected in the OLCL, whereas no obvious element accumulation was detected in OLP and negative control specimens. The origin of the detected metallic elements was presumed to be dental alloys through erosion. Therefore, our findings support the feasibility of providing supporting information to distinguish OLCL from OLP by using elemental analysis.

  13. Flexible digestion strategies and trace metal assimilation in marine bivalves

    USGS Publications Warehouse

    Decho, Alan W.; Luoma, Samuel N.

    1996-01-01

    Pulse-chase experiments show that two marine bivalves take optimal advantage of different types of particulate food by varying food retention time in a flexible two-phase digestive system. For example, carbon is efficiently assimilated from bacteria by subjecting nearly all the ingested bacteria to prolonged digestion. Prolonging digestion also enhances assimilation of metals, many of which are toxic in minute quantities if they are biologically available. Detritus-feeding aquatic organisms have always lived in environments naturally rich in particle-reactive metals. We suggest that avoiding excess assimilation of metals could be a factor in the evolution of digestion strategies. We tested that suggestion by studying digestion of particles containing different Cr concentrations. We show that bivalves are capable of modifying the digestive processing of food to reduce exposure to high, biologically available, Cr concentrations. The evolution of a mechanism in some species to avoid high concentrations of metals in food could influence how effects of modern metal pollution are manifested in marine ecosystems.

  14. Requirements for modeling trace metal partitioning in oxidized estuarine sediments

    USGS Publications Warehouse

    Luoma, S.N.; Davis, J.A.

    1983-01-01

    The fate of particulate-bound metals is of particular importance in estuaries because major biological energy flows involve consumption of detrital particles. The biological impact of particulate-bound metals is strongly influenced by the partitioning of metals among sediment components at the oxidized sediment-water interface. Adequate methods for directly measuring this partitioning are not available, thus a modeling approach may be most useful. Important requirements for such a model include: (1) determinations of metal binding intensities which are comparable among sediment components important in oxidized sediments; (2) comparable determinations of the binding capacities of the several forms of each component; (3) operational determinations of the abundance in natural sediments of components of defined binding capacity; (4) assessments of the influence of particle coatings and multicomponent aggregation on the available binding capacity of each substrate; (5) consideration of the effect of Ca and Mg competition on binding to different components; and (6) determinations of the kinetics of metal redistribution among components in oxidized sediments. ?? 1983.

  15. Lead Isotopic Composition and Trace Metals in Aerosols for Source Apportionment

    NASA Astrophysics Data System (ADS)

    Chien, C. T.; Paytan, A.

    2014-12-01

    Transported thousands of miles away from their source, aerosols can be dispersed and deposition throughout the Earth's surface. Aerosols from natural and industrial sources have different characteristics and health impacts thus it is important to identify their sources. The lead isotopic composition and trace metals in aerosol samples collected in different regions and periods around the world can help us better understand spatial and seasonal variation of aerosol sources. Aerosol samples collected in California, Bermuda, China and the Red Sea have been analyzed. The trace metal and Pb isotopes in these samples provide information regarding the various sources of aerosols to these sites.

  16. Trace metal content in aspirin and women's cosmetics via proton induced x-ray emission (PIXE)

    SciTech Connect

    Hichwa, B.P.; Pun, D.D.; Wang, D.

    1981-04-01

    A multielemental analysis to determine the trace metal content of generic and name-brand aspirins and name-brand lipsticks was done via proton induced x-ray (PIXE) measurements. The Hope College PIXE system is described as well as the target preparation methods. The trace metal content of twelve brands of aspirin and aspirin substitutes and fourteen brands of lipstick are reported. Detection limits for most elements are in the range of 100 parts per billion (ppb) to 10 parts per million (ppm).

  17. Comparative Ni tolerance and accumulation potentials between Mesembryanthemum crystallinum (halophyte) and Brassica juncea: Metal accumulation, nutrient status and photosynthetic activity.

    PubMed

    Amari, Taoufik; Ghnaya, Tahar; Debez, Ahmed; Taamali, Manel; Ben Youssef, Nabil; Lucchini, Giorgio; Sacchi, Gian Attilio; Abdelly, Chedly

    2014-11-01

    Saline soils often constitute sites of accumulation of industrial and urban wastes contaminated by heavy metals. Halophytes, i.e. native salt-tolerant species, could be more suitable for heavy metal phytoextraction from saline areas than glycophytes, most frequently used so far. In the framework of this approach, we assess here the Ni phytoextraction potential in the halophyte Mesembryanthemum crystallinum compared with the model species Brassica juncea. Plants were hydroponically maintained for 21 days at 0, 25, 50, and 100μM NiCl2. Nickel addition significantly restricted the growth activity of both species, and to a higher extent in M. crystallinum, which did not, however, show Ni-related toxicity symptoms on leaves. Interestingly, photosynthesis activity, chlorophyll content and photosystem II integrity assessed by chlorophyll fluorescence were less impacted in Ni-treated M. crystallinum as compared to B. juncea. The plant mineral nutrition was differently affected by NiCl2 exposure depending on the element, the species investigated and even the organ. In both species, roots were the preferential sites of Ni(2+) accumulation, but the fraction translocated to shoots was higher in B. juncea than in M. crystallinum. The relatively good tolerance of M. crystallinum to Ni suggests that this halophyte species could be used in the phytoextraction of moderately polluted saline soils. PMID:25171515

  18. Trace element supplementation in the biogas production from wheat stillage--optimization of metal dosing.

    PubMed

    Schmidt, Thomas; Nelles, Michael; Scholwin, Frank; Pröter, Jürgen

    2014-09-01

    A trace element dosing strategy for the anaerobic digestion of wheat stillage was developed in this study. Mesophilic CSTR reactors were operated with the sulfuric substrate wheat stillage in some cases under trace element deficiency. After supplementing trace elements during the start-up, one of the elements of Fe, Ni, Co, Mo, and W were depleted in one digester while still augmenting the other elements to determine minimum requirements for each element. The depletion of Fe and Ni resulted in a rapid accumulation of volatile fatty acids while Co and W seem to have a long-term effect. Based on the results it was possible to reduce the dosing of trace elements, which is positive with reference to economic and environmental aspects.

  19. Trace element accumulation and trophic relationships in aquatic organisms of the Sundarbans mangrove ecosystem (Bangladesh).

    PubMed

    Borrell, Asunción; Tornero, Victoria; Bhattacharjee, Dola; Aguilar, Alex

    2016-03-01

    The Sundarbans forest is the largest and one of the most diverse and productive mangrove ecosystems in the world. Located at the northern shoreline of the Bay of Bengal in the Indian Ocean and straddling India and Bangladesh, the mangrove forest is the result of three primary river systems that originate further north and northwest. During recent decades, the Sundarbans have been subject to increasing pollution by trace elements caused by the progressive industrialization and urbanization of the basins of these three rivers. As a consequence, animals and plants dwelling downstream in the mangroves are exposed to these pollutants in varying degrees, and may potentially affect human health when consumed. The aim of the present study was to analyse the concentrations of seven trace elements (Zn, Cu, Cr, Hg, Pb, Cd and As) in 14 different animal and plant species collected in the Sundarbans in Bangladesh to study their transfer through the food web and to determine whether their levels in edible species are acceptable for human consumption. δ(15)N values were used as a proxy of the trophic level. A decrease in Zn, Cu, Pb and Cd levels was observed with increasing trophic position. Trace element concentrations measured in all organisms were, in general, lower than the concentrations obtained in other field studies conducted in the same region. When examined with respect to accepted international standards, the concentrations observed in fish and crustaceans were generally found to be safe for human consumption. However, the levels of Zn in Scylla serrata and Cr and Cd in Harpadon nehereus exceeded the proposed health advisory levels and may be of concern for human health.

  20. Trace element accumulation and trophic relationships in aquatic organisms of the Sundarbans mangrove ecosystem (Bangladesh).

    PubMed

    Borrell, Asunción; Tornero, Victoria; Bhattacharjee, Dola; Aguilar, Alex

    2016-03-01

    The Sundarbans forest is the largest and one of the most diverse and productive mangrove ecosystems in the world. Located at the northern shoreline of the Bay of Bengal in the Indian Ocean and straddling India and Bangladesh, the mangrove forest is the result of three primary river systems that originate further north and northwest. During recent decades, the Sundarbans have been subject to increasing pollution by trace elements caused by the progressive industrialization and urbanization of the basins of these three rivers. As a consequence, animals and plants dwelling downstream in the mangroves are exposed to these pollutants in varying degrees, and may potentially affect human health when consumed. The aim of the present study was to analyse the concentrations of seven trace elements (Zn, Cu, Cr, Hg, Pb, Cd and As) in 14 different animal and plant species collected in the Sundarbans in Bangladesh to study their transfer through the food web and to determine whether their levels in edible species are acceptable for human consumption. δ(15)N values were used as a proxy of the trophic level. A decrease in Zn, Cu, Pb and Cd levels was observed with increasing trophic position. Trace element concentrations measured in all organisms were, in general, lower than the concentrations obtained in other field studies conducted in the same region. When examined with respect to accepted international standards, the concentrations observed in fish and crustaceans were generally found to be safe for human consumption. However, the levels of Zn in Scylla serrata and Cr and Cd in Harpadon nehereus exceeded the proposed health advisory levels and may be of concern for human health. PMID:26748006

  1. Early Diagenesis and Trace Element Accumulation in North American Arctic Margin Sediments

    NASA Astrophysics Data System (ADS)

    Kuzyk, Z. Z. A.; Gobeil, C.; Goni, M. A.; Macdonald, R. W.

    2014-12-01

    Concentrations of redox-sensitive elements (S, Mn, Mo, U, Cd, Re) were analyzed in a set of 27 sediment cores collected along a section extending from the North Bering Sea to Davis Strait via the Canadian Archipelago. Sedimentary distributions and accumulation rates of the elements were used to document the early diagenetic properties of North American Arctic margin sediments and to estimate the importance of this margin as a sink for key elements in the Arctic and global ocean. Distributions of Mn, total S and reduced inorganic S demonstrated that most sediments had relatively thick (>1 cm) surface oxic layers underlain by weakly reducing conditions, reflecting limited sulphate reduction. Strongly reducing conditions sufficient for significant sulphate reduction and strong sedimentary pyrite burial occurred only in certain subregions, including the Bering-Chukchi Shelves, shallow portions of Barrow Canyon, and, to a lesser extent, Lancaster Sound. Estimated accumulation rates of authigenic S, Mo, Cd and U, and total Re displayed marked spatial variability related to sedimentary redox conditions. Strong relationships between the accumulation rates and vertical carbon flux, estimated from regional primary production values and water depth at the coring sites, indicate that the primary driver in the regional patterns is variation in labile carbon forcing. After accounting for the influence of carbon flux, authigenic Mo accumulation rates show a significant relationship with vascular plant input to the sediments, implying that terrestrial organic matter contributes to supporting metabolism in Arctic margin sediments. In the Chukchi Shelf, where our cores represent a sizeable area (~140,000 km2), and where we encountered the strongest reducing conditions and highest authigenic element accumulation rates in sediments, we estimate that the total authigenic S, Mo, Cd and U accumulation may account for as much as 9% of the pyrite S, 14% of the Mo, 6%-24% of the Cd, and 10

  2. Study of Plant Cell Wall Polymers Affected by Metal Accumulation Using Stimulated Raman Scattering Microscopy

    SciTech Connect

    Ding, Shi-You

    2015-03-02

    This project aims to employ newly-developed chemical imaging techniques to measure, in real-time, the concentration, dynamics and spatial distribution of plant cell wall polymers during biomass growth with inoculation of transgenic symbiotic fungi, and to explore a new pathway of delivering detoxified metal to plant apoplast using transgenic symbiotic fungi, which will enhance metal accumulation from soil, and potentially these metals may in turn be used as catalysts to improve the efficiency of biomass conversion to biofuels. The proposed new pathway of biomass production will: 1) benefit metal and radionuclide contaminant mobility in subsurface environments, and 2) potentially improve biomass production and process for bioenergy

  3. Spatial pattern of heavy metals accumulation risk in urban soils of Beijing and its influencing factors.

    PubMed

    Liu, Rui; Wang, Meie; Chen, Weiping; Peng, Chi

    2016-03-01

    Accumulations of heavy metals in urban soils are highly spatial heterogeneity and affected by multiple factors including soil properties, land use and pattern, population and climatic conditions. We studied accumulation risks of Cd, Cu, Pb and Zn in unban soils of Beijing and their influencing based on the regression tree analysis and a GIS-based overlay model. Result shows that Zinc causes the most extensive soil pollution and Cu result in the most acute soil pollution. The soil's organic carbon content and CEC and population growth are the most significant factors affecting heavy metal accumulation. Other influence factors in land use pattern, urban landscape, and wind speed also contributed, but less pronounced. The soils in areas with higher degree of urbanization and surrounded by intense vehicular traffics have higher accumulation risk of Cd, Cu, Pb, and Zn. PMID:26716731

  4. Seasonal variation and sources of dissolved trace metals in Maó Harbour, Minorca Island.

    PubMed

    Martínez-Soto, Marly C; Tovar-Sánchez, Antonio; Sánchez-Quiles, David; Rodellas, Valentí; Garcia-Orellana, Jordi; Basterretxea, Gotzon

    2016-09-15

    The environmental conditions of semi-enclosed coastal water-bodies are directly related to the catchment, human activities, and oceanographic setting in which they are located. As a result of low tidal forcing, and generally weak currents, waters in Mediterranean harbours are poorly renewed, leading to quality deterioration. Here, we characterise the seasonal variation of trace metals (i.e. Co, Cd, Cu, Fe, Mo, Ni, Pb, and Zn) in surface waters, and trace metal content in sediments from Maó Harbour, a semi-enclosed coastal ecosystem in the NW Mediterranean Sea. Our results show that most of the dissolved trace metals in the waters of Maó Harbour exhibit a marked inner-outer concentration gradient, suggesting a permanent input into the inner part of the harbour. In general, metal concentrations in the waters of Maó Harbour are higher than those in offshore waters. Concentration of Cu (21±8nM), Fe (9.2±3.2nM) and Pb (1.3±0.4nM) are particularly high when compared with other coastal areas of the Mediterranean Sea. The concentration of some metals such as Cu and Zn increases during summertime, when the human population and boat traffic increase during the tourism season, and when resuspension from the metal enriched sediments is higher. The evaluation of the metal sources in the harbour reveals that, compared with other putative sources such as runoff, aerosol deposition and fresh groundwater discharges, contaminated sediments are the main source of the metals found in the water column, most likely through vessel-driven resuspension events. This study contributes to the understanding of the processes that control the occurrence and distribution of trace metals in Maó Harbour, thus aiding in the effective management of the harbour, and enhancing the overall quality of the seawater ecosystem. PMID:27163484

  5. Effect of trace metals on growth of Streptococcus mutans in a teflon chemostat.

    PubMed

    Aranha, H; Strachan, R C; Arceneaux, J E; Byers, B R

    1982-02-01

    Correlations between the presence of certain trace metals in dental enamel or in drinking water and the incidence of human dental caries have been demonstrated; therefore, the effects of several trace metals on growth of the cariogenic organism Streptococcus mutans OMZ176 were determined. For continuous growth in a chemically defined medium (treated with Chelex-100 to lower trace metal contamination and supplemented with high-purity trace metal salts) used in a chemostat constructed of Teflon, S. mutans required input of carbon dioxide and supplementation with magnesium (126 microM) and manganese (18 to 54 microM). Addition of iron (3.6 microM) increased the level of steady-state growth by a factor of 2.8 (stimulation index [SI]); zinc at 0.4 microM nearly doubled equilibrium growth (SI = 0.9). Higher concentrations of iron and zinc (5.4 and 0.8 microM, respectively) were less stimulatory (SI values of 1.95 and 0.3, respectively). Small (but statistically significant) increases in steady-state growth were effected by cobalt (SI = 0.3 at 5.1 to 20.4 microM) and tin (SI = 0.4 at 5.1 to 10.2 microM). These data suggest nutritional requirements for these metals. Copper at a concentration of 0.16 microM was inhibitory. These results show significant effects of these metals on growth of S. mutans and may confirm epidemiological evidence suggesting a role for certain trace metals in the incidence of dental caries. PMID:7035364

  6. Effects of low-level dams on the distribution of sediment, trace metals, and organic substances in the lower Schuylkill River basin, Pennsylvania

    USGS Publications Warehouse

    Yorke, Thomas H.; Stamer, John K.; Pederson, Gary L.

    1985-01-01

    Heavy use of the Schuylkill River for municipal water supplies and a history of accidental spills and discharges of trace metals and organic substances have been a concern of State and local officials for many years. The U.S. Geological Survey, as part of their River Quality Assessment Program, developed a study to assess the occurrence and distribution of trace substances that pose a threat to human health and aquatic life. This report presents the results of the part of the study that evaluates the effects of low-level dams in the lower basin on the distribution and transport of sediment and trace substances. A combination of historical and current data were used in the assessment. Suspended-sediment data collected at several mainstem and tributary sites from 1954 to 1979 and sedimentation surveys of the six pools in the lower basin were used to define the sediment-transport characteristics of the river. These data provided a base for assessing the transport of trace substances, which are associated closely with riverbed sediments and suspended particles. Water and riverbed samples were collected for analyses of trace substances at numerous sites in the lower basin from 1978 to 1980. The six dams on the river between Pottstown and Philadelphia have had a significant effect on the transport of sediment and trace substances. Between 1954 and 1970, more than 4.7 million cubic yards of sediment accumulated in the pools formed by the dams. The quantity of sediment deposited in the pools ranged from 150,000 cubic yards in Plymouth Pool to 1.6 million cubic yards in Fairmount Pool. The rate of accumulation in the pools was a function of pool size and geometry and the frequency of storms. About 35 percent of the total sediment discharged by the river was stored in the six pools from 1954 to 1970. Since 1970, the net change in sediment accumulation has been minimal. More than 24 percent of the sediment in Fairmount Pool in 1970 was scoured from the pool during Hurricane

  7. Trace metals in sediments of a Mediterranean estuary affected by human activities (Acheloos river estuary, Greece).

    PubMed

    Dassenakis, M; Degaita, A; Scoullos, M

    1995-05-19

    Trace metals were studied in the sediments of the ecologically, economically and scientifically important estuary of the Acheloos river, in western Greece. Human activities (dams, agriculture, traffic, etc.) influence the estuarine system of Acheloos and in combination with the hydrological, mineralogical and morphological characteristics of the estuary affect the chemical behaviour and the distribution patterns of trace metals in its sediments. The large scale disturbance of the system is imminent in the near future as it is planned to divert approximately 50% of the river water. A study of the distribution patterns of trace metals revealed that in the estuary there are zones with different metal levels. The concentrations of most metals (Al, Fe, Cu, Ni, Zn) are elevated in three of these zones (upstream, sill, seawards). A different behaviour was observed for Mn due to its association with carbonates that were observed in significant concentrations throughout the estuarine zone. A sequential extraction procedure, applied to the sediments, indicated low percentages of easily exchangeable metals, increased mobility of Cu and Zn and increased association of Ni, Cr and Fe with the aluminosilicate lattice. Although the river is not considered to be heavily polluted, some metals have shown an enrichment in the surface sediments as a result of general anthropogenic activities not derived from point sources.

  8. Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data

    USGS Publications Warehouse

    Veltman, K.; Huijbregts, M.A.J.; Vijver, M.G.; Peijnenburg, W.J.G.M.; Hobbelen, P.H.F.; Koolhaas, J.E.; van Gestel, C.A.M.; van Vliet, P.C.J.; Jan, Hendriks A.

    2007-01-01

    The mechanistic bioaccumulation model OMEGA (Optimal Modeling for Ecotoxicological Applications) is used to estimate accumulation of zinc (Zn), copper (Cu), cadmium (Cd) and lead (Pb) in the earthworm Lumbricus rubellus. Our validation to field accumulation data shows that the model accurately predicts internal cadmium concentrations. In addition, our results show that internal metal concentrations in the earthworm are less than linearly (slope < 1) related to the total concentration in soil, while risk assessment procedures often assume the biota-soil accumulation factor (BSAF) to be constant. Although predicted internal concentrations of all metals are generally within a factor 5 compared to field data, incorporation of regulation in the model is necessary to improve predictability of the essential metals such as zinc and copper. ?? 2006 Elsevier Ltd. All rights reserved.

  9. Metals pollution tracing in the sewerage network using the diffusive gradients in thin films technique.

    PubMed

    Thomas, P

    2009-01-01

    Diffusive Gradients in Thin-films (DGT) is a quantitative, passive monitoring technique that can be used to measure concentrations of trace species in situ in solutions. Its potential for tracing metals pollution in the sewer system has been investigated by placing the DGT devices into sewage pumping stations and into manholes, to measure the concentration of certain metals in the catchment of a sewage treatment works with a known metals problem. In addition the methodology and procedure of using the DGT technique in sewers was investigated. Parameters such as temperature and pH were measured to ensure they were within the limits required by the DGT devices, and the optimum deployment time was examined. It was found that although the results given by the DGT technique could not be considered to be fully quantitative, they could be used to identify locations that were showing an excess concentration of metals, and hence trace pollution back to its source. The DGT technique is 'user friendly' and requires no complicated equipment for deployment or collection, and minimal training for use. It is thought that this is the first time that the DGT technique has been used in situ in sewers for metals pollution tracing.

  10. Geological factors affecting the distribution of trace metals in glacial sediments of central Newfoundland

    USGS Publications Warehouse

    Klassen, R.A.

    1998-01-01

    In central Newfoundland (NTS 12A/10, 15, 16, 2H/1), As, Pb, and Zn concentrations in the clay-sized ( 1000 ppm), exceeding levels commonly set for purposes of environmental protection. Near Pb-Zn mines at Buchans, geochemical variation with depth reflects the dispersal of detritus from mineralized bedrock, and differences in sediment type and provenance. There, surface sediments are rich in granitic debris derived from the Topsails igneous terrane 5 km north of Buchans and contain low concentrations of trace metals. These sediments are compositionally unrelated to either Buchans Group volcanic rock or an underlying, older till enriched in sulphide minerals and trace metals. Metal-rich till extending up to 10 km southwest of Buchans results from combined glacial and debris flow transport related to two distinct geological events. Trace metals are enriched (two- to fourfold) in the clay-sized fraction of till compared to the silt and clay-sized, and are associated with Al- and Mg-bearing minerals that preferentially concentrate in the clay fraction. The geochemistry of the silt and clay-sized fraction can approximate that of the < 2-mm fraction. Background variations in till illustrate the important role of a geological framework to the interpretation of geochemical surveys and the origins of trace metals in the environment.

  11. Tissue distribution and correlation profiles of heavy-metal accumulation in the freshwater crayfish Astacus leptodactylus.

    PubMed

    Tunca, Evren; Ucuncu, Esra; Ozkan, Alper Devrim; Ulger, Zeynep Ergul; Tekinay, Turgay

    2013-05-01

    The present work details the analysis of heavy-metal and metalloid concentrations in exoskeleton, gill, hepatopancreas, and abdominal muscle tissues of 60 crayfish (Astacus leptodactylus) specimens collected from Lake Hirfanlı, a dam lake located in Kırşehir (Turkey) with a low metal-contamination profile. Concentrations of 11 metals (aluminum [Al], chromium [Cd], manganese [Mn], cobalt [Co], nickel [Ni], copper [Cu], molybdenum [Mo], silver [Ag], cadmium [Cd], mercury [Hg], and lead [Pb]) and a metalloid (arsenic [As]) were measured by inductively coupled plasma-mass spectrometry, and the relative frequencies of the most abundant isotopes of Cr, Cu, Ag, Cd, Hg, and Pb were evaluated. Three correlation trends were evaluated between the following: (1) different elements in the each individual tissue, (2) individual elements in different tissues, and (3) different elements in different tissues. In addition, correlation rates of growth parameters (weight, cephalothorax length, and total length) with heavy-metal and metalloid concentrations in each tissue were investigated. Our results suggest that substantial differences in metal and metalloid-accumulation levels exist between male and female specimens, with stronger correlations between the heavy-metal concentrations observed in the male cohort. It is notable that correlation trends of Co, Cu, (52)As, Cr, and Ni in exoskeleton of the male specimens display strong similarities. Likewise, a very strong correlation is present in Ni-Cd and Ni-Pb accumulations in abdominal muscle of the male specimens; a similar trend is present between Cd and Pb concentrations in the same tissue of female specimens. For correlation rates of different heavy metals and metalloid in different tissues, the strongest positive association observed was between (63)Cu in gill and As in hepatopancreas, whereas the strongest negative correlation was between accumulated Ni in abdominal muscle and As in exoskeleton. Strong correlations between

  12. Reconstructing Early Industrial Contributions to Legacy Trace Metal Contamination in Southwestern Pennsylvania

    NASA Astrophysics Data System (ADS)

    Rossi, R.; Bain, D.; Hillman, A. L.; Pompeani, D. P.; Abbott, M. B.

    2015-12-01

    The remobilization of legacy contamination stored in floodplain sediments remains a threat to ecosystem and human health, particularly with potential changes in global precipitation patterns and flooding regimes. Vehicular and industrial emissions are often the dominant, recognized source of anthropogenic trace metal loadings to ecosystems today. However, loadings from early industrial activities are poorly characterized and potential sources of trace metal inputs. While potential trace metal contamination from these activities is recognized (e.g., the historical use of lead arsenate as a pesticide), the magnitude and distribution of legacy contamination is often unknown. This presentation reconstructs a lake sediment record of trace metal inputs from an oxbow lake in Southwestern Pennsylvania. Sediment cores were analyzed for major and trace metal chemistry, carbon to nitrogen ratios, bulk density, and magnetic susceptibility. Sediment trace metal chemistry in this approximately 250 year record (180 cm) record changes in land use and industry both in the 19th century and the 20th century. Of particular interest is early 19th century loadings of arsenic and calcium to the lake, likely attributable to pesticides and lime used in tanning processes near the lake. After this period of tanning dominated inputs, sediment barium concentrations rise, likely reflecting the onset of coal mining operations and resulting discharge of acid mine drainage to surface waters. In the 20th century portion of our record (70 -20 cm), patterns in sediment zinc, cadmium, and lead concentrations are dominated by the opening and closing of the nearby Donora Zinc Works and the American Steel & Wire Works, infamous facilities in the history of air quality regulation. The most recent sediment chemistry records periods include the enactment of air pollution legislation (~ 35 cm), and the phase out of tetraethyl leaded gasoline (~30 cm). Our study documents the impact of early industry in the

  13. Crabs tell the difference--Relating trace metal content with land use and landscape attributes.

    PubMed

    Álvaro, Nuno V; Neto, Ana I; Couto, Ruben P; Azevedo, José M N; Rodrigues, Armindo S

    2016-02-01

    Heavy metal concentration in a given locality depends upon its natural characteristics and level of anthropogenic pressure. Volcanic sites have a different heavy metal footprint from agriculture soils and both differ from urban centres. Different animal species absorb heavy metals differently according to their feeding behaviour and physiology. Depending on the capability to accumulate heavy metals, some species can be used in biomonitoring programs for the identification of disturbed areas. Crabs are included in these species and known to accumulate heavy metals. The present study investigates the potential of Pachygrapsus marmoratus (Fabricius, 1787), a small crab abundant in the Azores intertidal, as an indicator of the presence of heavy metals in Azorean coastal environments, comparing hydrothermal vent locations, urban centres and locations adjacent to agricultural activity. Specimens were collected in the same period and had their hepatopancreas removed, dried and analysed for heavy metals. Results revealed differences in concentration of the studied elements between all sampling sites, each one revealing a distinct heavy metal content. Fe, Cu, Mn, Zn and Cd are the metals responsible for separating the various sites. The concentration levels of the heavy metals recorded in the present study reflect the environmental available metals where the organisms live. This, associated to the large availability of P. marmoratus specimens in the Azores, and to the fact that these animals are easy to capture and handle, suggests this species as a potential bioindicator for heavy metal concentration in Azorean coastal areas, both humanized and naturally disturbed.

  14. Trace metal biogeochemistry in mangrove ecosystems: a comparative assessment of acidified (by acid sulfate soils) and non-acidified sites.

    PubMed

    Nath, Bibhash; Birch, Gavin; Chaudhuri, Punarbasu

    2013-10-01

    The generation of acidity and subsequent mobilization of toxic metals induced by acid sulfate soils (ASSs) are known to cause severe environmental damage to many coastal wetlands and estuaries of Australia and worldwide. Mangrove ecosystems serve to protect coastal environments, but are increasingly threatened from such ASS-induced acidification due to variable hydrological conditions (i.e., inundation-desiccation cycles). However, the impact of such behaviors on trace metal distribution, bio-availability and accumulation in mangrove tissues, i.e., leaves and pneumatophores, are largely unknown. In this study, we examined how ASS-induced acidifications controlled trace metal distribution and bio-availability in gray mangrove (Avicennia marina) soils and in tissues in the Kooragang wetland, New South Wales, Australia. We collected mangrove soils, leaves and pneumatophores from a part of the wetland acidified from ASS (i.e., an affected site) for detailed biogeochemical studies. The results were compared with samples collected from a natural intertidal mangrove forest (i.e., a control site) located within the same wetland. Soil pH (mean: 5.90) indicated acidic conditions in the affected site, whereas pH was near-neutral (mean: 7.17) in the control site. The results did not show statistically significant differences in near-total and bio-available metal concentrations, except for Fe and Mn, between affected and control sites. Iron concentrations were significantly (p values≤0.001) greater in the affected site, whereas Mn concentrations were significantly (p values≤0.001) greater in the control site. However, large proportions of near-total metals were potentially bio-available in control sites. Concentrations of Fe and Ni were significantly (p values≤0.001) greater in leaves and pneumatophores of the affected sites, whereas Mn, Cu, Pb and Zn were greater in control sites. The degree of metal bio-accumulation in leaves and pneumatophores suggest contrasting

  15. Trace metal biogeochemistry in mangrove ecosystems: a comparative assessment of acidified (by acid sulfate soils) and non-acidified sites.

    PubMed

    Nath, Bibhash; Birch, Gavin; Chaudhuri, Punarbasu

    2013-10-01

    The generation of acidity and subsequent mobilization of toxic metals induced by acid sulfate soils (ASSs) are known to cause severe environmental damage to many coastal wetlands and estuaries of Australia and worldwide. Mangrove ecosystems serve to protect coastal environments, but are increasingly threatened from such ASS-induced acidification due to variable hydrological conditions (i.e., inundation-desiccation cycles). However, the impact of such behaviors on trace metal distribution, bio-availability and accumulation in mangrove tissues, i.e., leaves and pneumatophores, are largely unknown. In this study, we examined how ASS-induced acidifications controlled trace metal distribution and bio-availability in gray mangrove (Avicennia marina) soils and in tissues in the Kooragang wetland, New South Wales, Australia. We collected mangrove soils, leaves and pneumatophores from a part of the wetland acidified from ASS (i.e., an affected site) for detailed biogeochemical studies. The results were compared with samples collected from a natural intertidal mangrove forest (i.e., a control site) located within the same wetland. Soil pH (mean: 5.90) indicated acidic conditions in the affected site, whereas pH was near-neutral (mean: 7.17) in the control site. The results did not show statistically significant differences in near-total and bio-available metal concentrations, except for Fe and Mn, between affected and control sites. Iron concentrations were significantly (p values≤0.001) greater in the affected site, whereas Mn concentrations were significantly (p values≤0.001) greater in the control site. However, large proportions of near-total metals were potentially bio-available in control sites. Concentrations of Fe and Ni were significantly (p values≤0.001) greater in leaves and pneumatophores of the affected sites, whereas Mn, Cu, Pb and Zn were greater in control sites. The degree of metal bio-accumulation in leaves and pneumatophores suggest contrasting

  16. Proline accumulation in lemongrass (Cymbopogon flexuosus Stapf.) due to heavy metal stress.

    PubMed

    Handique, G K; Handique, A K

    2009-03-01

    Toxic heavy metals viz. lead, mercury and cadmium induced differential accumulation of proline in lemongrass (Cymbopogon flexuosus Stapf.) grown in soil amended with 50, 100, 200, 350 and 500 mg kg(-1) of the metals have been studied. Proline accumulation was found to be metal specific, organ specific and linear dose dependant. Further, proline accumulation following short term exposure (two months after transplantation) was higher than long term exposure (nine months after transplantation). Proline accumulation following short term exposure was 2.032 to 3.839 micro moles g(-1) for cadmium (50-200 mg kg(-1)); the corresponding range for mercury was 1.968 to 5.670 micro moles g(-1) and 0.830 to 4.567 micro moles g(-1) for lead (50-500 mg kg(-1) for mercury and lead). Proline accumulation was consistently higher in young tender leaf than old leaf, irrespective of the metal or duration of exposure. For cadmium treatment proline level was 2.032 to 3.839 micro moles g(-1) for young leaves while the corresponding value for old leaf was 1.728 to 2.396 micro moles g(-1) following short term exposure. The same trend was observed for the other two metals and duration of exposure. For control set proline accumulation in root was 0.425 micro moles g(-1) as against 0.805 and 0.533 micro moles g(-1) in young and old leaves respectively indicating that proline accumulation in root are lower than leaves, under both normal and stressed condition.

  17. Fungal accumulation of metals from building materials during brown rot wood decay.

    PubMed

    Hastrup, Anne Christine Steenkjær; Jensen, Bo; Jellison, Jody

    2014-08-01

    This study analyzes the accumulation and translocation of metal ions in wood during the degradation performed by one strain of each of the three brown rot fungi; Serpula lacrymans, Meruliporia incrassata and Coniophora puteana. These fungi species are inhabitants of the built environment where the prevention and understanding of fungal decay is of high priority. This study focuses on the influence of various building materials in relation to fungal growth and metal uptake. Changes in the concentration of iron, manganese, calcium and copper ions in the decayed wood were analyzed by induced coupled plasma spectroscopy and related to wood weight loss and oxalic acid accumulation. Metal transport into the fungal inoculated wood was found to be dependent on the individual strain/species. The S. lacrymans strain caused a significant increase in total iron whereas the concentration of copper ions in the wood appeared decreased after 10 weeks of decay. Wood inoculated with the M. incrassata isolate showed the contrary tendency with high copper accumulation and low iron increase despite similar weight losses for the two strains. However, significantly lower oxalic acid accumulation was recorded in M. incrassata degraded wood. The addition of a building material resulted in increased weight loss in wood degraded by C. puteana in the soil-block test; however, this could not be directly linked specifically to the accumulation of any of the four metals recorded. The accumulation of oxalic acid seemed to influence the iron uptake. The study assessing the influence of the presence of soil and glass in the soil-block test revealed that soil contributed the majority of the metals for uptake by the fungi and contributed to increased weight loss. The varying uptake observed among the three brown rot fungi strains toward the four metals analyzed may be related to the specific non-enzymatic and enzymatic properties including bio-chelators employed by each of the species during wood

  18. Evaluating Insects as Bioindicators of Heavy Metal Contamination and Accumulation near Industrial Area of Gujrat, Pakistan

    PubMed Central

    Azam, Iqra; Afsheen, Sumera; Zia, Ahmed; Javed, Muqaddas; Saeed, Rashid; Sarwar, Muhammad Kaleem; Munir, Bushra

    2015-01-01

    To study the accumulation and contamination of heavy metals (i.e., Cd, Cr, Cu, Ni, and Zn) in soil, air, and water, few insect species were assayed as ecological indicators. Study area comes under industrial zone of district Gujrat of Punjab, Pakistan. Insects used as bioindicators included a libellulid dragonfly (Crocothemis servilia), an acridid grasshopper (Oxya hyla hyla), and a nymphalid butterfly (Danaus chrysippus) near industrial zone of Gujrat. Accumulation of Cd was highest in insect species followed by Cu, Cr, Zn, and Ni at p < 0.05. Hierarchical cluster analysis (HACA) was carried out to study metal accumulation level in all insects. Correlation and regression analysis confirmed HACA observations and declared concentration of heavy metals above permissible limits. Metal concentrations in insects were significantly higher near industries and nallahs in Gujrat and relatively higher concentrations of metals were found in Orthoptera than Odonata and Lepidoptera. The total metal concentrations in insects were pointed significantly higher at sites S3 (Mid of HalsiNala), S9 (End of HalsiNala), and S1 (Start of HalsiNala), whereas lowest value was detected at site S6 (Kalra Khasa) located far from industrial area. HACA indicates that these insect groups are potential indicators of metal contamination and can be used in biomonitoring. PMID:26167507

  19. Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes.

    PubMed

    Basile, A; Sorbo, S; Conte, B; Cobianchi, R Castaldo; Trinchella, F; Capasso, C; Carginale, V

    2012-04-01

    A comprehensive understanding of the uptake, tolerance, and transport of heavy metals by plants will be essential for the development of phytoremediation technologies. In the present paper, we investigated accumulation, tissue and intracellular localization, and toxic effects of cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) in three aquatic macrophytes (the angiosperms Lemna minor and Elodea canadensis, and the moss Leptodictyum riparium). We also tested and compared their capacity to absorb heavy metal from water under laboratory conditions. Our data showed that all the three species examined could be considered good bioaccumulators for the heavy metals tested. L. riparium was the most resistant species and the most effective in accumulating Cu, Zn, and Pb, whereas L. minor was the most effective in accumulating Cd. Cd was the most toxic metal, followed by Pb, Cu, and Zn. At the ultrastructural level, sublethal concentrations of the heavy metals tested caused induced cell plasmolysis and alterations of the chloroplast arrangement. Heavy metal removal experiments revealed that the three macrophytes showed excellent performance in removing the selected metals from the solutions in which they are maintained, thus suggesting that they could be considered good candidates for wastewaters remediation purpose.

  20. Evaluating Insects as Bioindicators of Heavy Metal Contamination and Accumulation near Industrial Area of Gujrat, Pakistan.

    PubMed

    Azam, Iqra; Afsheen, Sumera; Zia, Ahmed; Javed, Muqaddas; Saeed, Rashid; Sarwar, Muhammad Kaleem; Munir, Bushra

    2015-01-01

    To study the accumulation and contamination of heavy metals (i.e., Cd, Cr, Cu, Ni, and Zn) in soil, air, and water, few insect species were assayed as ecological indicators. Study area comes under industrial zone of district Gujrat of Punjab, Pakistan. Insects used as bioindicators included a libellulid dragonfly (Crocothemis servilia), an acridid grasshopper (Oxya hyla hyla), and a nymphalid butterfly (Danaus chrysippus) near industrial zone of Gujrat. Accumulation of Cd was highest in insect species followed by Cu, Cr, Zn, and Ni at p < 0.05. Hierarchical cluster analysis (HACA) was carried out to study metal accumulation level in all insects. Correlation and regression analysis confirmed HACA observations and declared concentration of heavy metals above permissible limits. Metal concentrations in insects were significantly higher near industries and nallahs in Gujrat and relatively higher concentrations of metals were found in Orthoptera than Odonata and Lepidoptera. The total metal concentrations in insects were pointed significantly higher at sites S3 (Mid of HalsiNala), S9 (End of HalsiNala), and S1 (Start of HalsiNala), whereas lowest value was detected at site S6 (Kalra Khasa) located far from industrial area. HACA indicates that these insect groups are potential indicators of metal contamination and can be used in biomonitoring. PMID:26167507

  1. Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes.

    PubMed

    Basile, A; Sorbo, S; Conte, B; Cobianchi, R Castaldo; Trinchella, F; Capasso, C; Carginale, V

    2012-04-01

    A comprehensive understanding of the uptake, tolerance, and transport of heavy metals by plants will be essential for the development of phytoremediation technologies. In the present paper, we investigated accumulation, tissue and intracellular localization, and toxic effects of cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) in three aquatic macrophytes (the angiosperms Lemna minor and Elodea canadensis, and the moss Leptodictyum riparium). We also tested and compared their capacity to absorb heavy metal from water under laboratory conditions. Our data showed that all the three species examined could be considered good bioaccumulators for the heavy metals tested. L. riparium was the most resistant species and the most effective in accumulating Cu, Zn, and Pb, whereas L. minor was the most effective in accumulating Cd. Cd was the most toxic metal, followed by Pb, Cu, and Zn. At the ultrastructural level, sublethal concentrations of the heavy metals tested caused induced cell plasmolysis and alterations of the chloroplast arrangement. Heavy metal removal experiments revealed that the three macrophytes showed excellent performance in removing the selected metals from the solutions in which they are maintained, thus suggesting that they could be considered good candidates for wastewaters remediation purpose. PMID:22567718

  2. Evaluating Insects as Bioindicators of Heavy Metal Contamination and Accumulation near Industrial Area of Gujrat, Pakistan.

    PubMed

    Azam, Iqra; Afsheen, Sumera; Zia, Ahmed; Javed, Muqaddas; Saeed, Rashid; Sarwar, Muhammad Kaleem; Munir, Bushra

    2015-01-01

    To study the accumulation and contamination of heavy metals (i.e., Cd, Cr, Cu, Ni, and Zn) in soil, air, and water, few insect species were assayed as ecological indicators. Study area comes under industrial zone of district Gujrat of Punjab, Pakistan. Insects used as bioindicators included a libellulid dragonfly (Crocothemis servilia), an acridid grasshopper (Oxya hyla hyla), and a nymphalid butterfly (Danaus chrysippus) near industrial zone of Gujrat. Accumulation of Cd was highest in insect species followed by Cu, Cr, Zn, and Ni at p < 0.05. Hierarchical cluster analysis (HACA) was carried out to study metal accumulation level in all insects. Correlation and regression analysis confirmed HACA observations and declared concentration of heavy metals above permissible limits. Metal concentrations in insects were significantly higher near industries and nallahs in Gujrat and relatively higher concentrations of metals were found in Orthoptera than Odonata and Lepidoptera. The total metal concentrations in insects were pointed significantly higher at sites S3 (Mid of HalsiNala), S9 (End of HalsiNala), and S1 (Start of HalsiNala), whereas lowest value was detected at site S6 (Kalra Khasa) located far from industrial area. HACA indicates that these insect groups are potential indicators of metal contamination and can be used in biomonitoring.

  3. Rapid and gradual modes of aerosol trace metal dissolution in seawater

    PubMed Central

    Mackey, Katherine R. M.; Chien, Chia-Te; Post, Anton F.; Saito, Mak A.; Paytan, Adina

    2015-01-01

    Atmospheric deposition is a major source of trace metals in marine surface waters and supplies vital micronutrients to phytoplankton, yet measured aerosol trace metal solubility values are operationally defined, and there are relatively few multi-element studies on aerosol-metal solubility in seawater. Here we measure the solubility of aluminum (Al), cadmium (Cd), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) from natural aerosol samples in seawater over a 7 days period to (1) evaluate the role of extraction time in trace metal dissolution behavior and (2) explore how the individual dissolution patterns could influence biota. Dissolution behavior occurs over a continuum ranging from rapid dissolution, in which the majority of soluble metal dissolved immediately upon seawater exposure (Cd and Co in our samples), to gradual dissolution, where metals dissolved slowly over time (Zn, Mn, Cu, and Al in our samples). Additionally, dissolution affected by interactions with particles was observed in which a decline in soluble metal concentration over time occurred (Fe and Pb in our samples). Natural variability in aerosol chemistry between samples can cause metals to display different dissolution kinetics in different samples, and this was particularly evident for Ni, for which samples showed a broad range of dissolution rates. The elemental molar ratio of metals in the bulk aerosols was 23,189Fe: 22,651Al: 445Mn: 348Zn: 71Cu: 48Ni: 23Pb: 9Co: 1Cd, whereas the seawater soluble molar ratio after 7 days of leaching was 11Fe: 620Al: 205Mn: 240Zn: 20Cu: 14Ni: 9Pb: 2Co: 1Cd. The different kinetics and ratios of aerosol metal dissolution have implications for phytoplankton nutrition, and highlight the need for unified extraction protocols that simulate aerosol metal dissolution in the surface ocean. PMID:25653645

  4. Octanol-solubility of dissolved and particulate trace metals in contaminated rivers: implications for metal reactivity and availability.

    PubMed

    Turner, Andrew; Mawji, Edward

    2005-05-01

    The lipid-like, amphiphilic solvent, n-octanol, has been used to determine a hydrophobic fraction of dissolved and particulate trace metals (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) in contaminated rivers. In a sample from the River Clyde, southwest Scotland, octanol-solubility was detected for all dissolved metals except Co, with conditional octanol-water partition coefficients, D(ow), ranging from about 0.2 (Al and Cu) to 1.25 (Pb). In a sample taken from the River Mersey, northwest England, octanol-solubility was detected for dissolved Al and Pb, but only after sample aliquots had been spiked with individual ionic metal standards and equilibrated. Spiking of the River Clyde sample revealed competition among different metals for hydrophobic ligands. Metal displacement from hydrophobic complexes was generally most significant following the addition of ionic Al or Pb, although the addition of either of these metals had little effect on the octanol-solubility of the other. In both river water samples hydrophobic metals were detected on the suspended particles retained by filtration following their extraction in n-octanol. In general, particulate Cu and Zn (up to 40%) were most available, and Al, Co and Pb most resistant (<1%) to octanol extraction. Distribution coefficients defining the concentration ratio of octanol-soluble particle-bound metal to octanol-soluble dissolved metal were in the range 10(3.3)-10(5.3)mlg(-1). The presence of hydrophobic dissolved and particulate metal species has implications for our understanding of the biogeochemical behaviour of metals in aquatic environments. Specifically, such species are predicted to exhibit characteristics of non-polar organic contaminants, including the potential to penetrate the lipid bilayer. Current strategies for assessing the bioavailability and toxicity of dissolved and particulate trace metals in natural waters may, therefore, require revision.

  5. Bellows-Type Accumulators for Liquid Metal Loops of Space Reactor Power Systems

    SciTech Connect

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    2006-01-20

    In many space nuclear power systems, the primary and/or secondary loops use liquid metal working fluids, and require accumulators to accommodate the change in the liquid metal volume and maintain sufficient subcooling to avoid boiling. This paper developed redundant and light-weight bellows-type accumulators with and without a mechanical spring, and compared the operating condition and mass of the accumulators for different types of liquid metal working fluids and operating temperatures: potassium, NaK-78, sodium and lithium loops of a total capacity of 50 liters and nominal operating temperatures of 840 K, 860 K, 950 K and 1340 K, respectively. The effects of using a mechanical spring and different structural materials on the design, operation and mass of the accumulators are also investigated. The structure materials considered include SS-316, Hastelloy-X, C-103 and Mo-14Re. The accumulator without a mechanical spring weighs 23 kg and 40 kg for a coolant subcooling of 50 K and 100 K, respectively, following a loss of the fill gas. The addition of a mechanical spring comes with a mass penalty, in favor of higher redundancy and maintaining a higher liquid metal subcooling.

  6. Heavy Metal Accumulation by Periphyton Is Related to Eutrophication in the Hai River Basin, Northern China

    PubMed Central

    Tang, Wenzhong; Cui, Jingguo; Shan, Baoqing; Wang, Chao; Zhang, Wenqiang

    2014-01-01

    The Hai River Basin (HRB) is one of the most polluted river basins in China. The basin suffers from various types of pollutants including heavy metals and nutrients due to a high population density and rapid economic development in this area. We assessed the relationship between heavy metal accumulation by periphyton playing an important role in fluvial food webs and eutrophication in the HRB. The concentrations of the unicellular diatoms (type A), filamentous algae with diatoms (type B), and filamentous algae (type C) varied along the river, with type A dominating upstream, and types B then C increasing in concentration further downstream, and this was consistent with changes in the trophic status of the river. The mean heavy metal concentrations in the type A, B and C organisms were Cr: 18, 18 and 24 mg/kg, respectively, Ni: 9.2, 10 and 12 mg/kg, respectively, Cu: 8.4, 19 and 29 mg/kg, respectively, and Pb: 11, 9.8 and 7.1 mg/kg respectively. The bioconcentration factors showed that the abilities of the organisms to accumulate Cr, Ni and Pb decreased in the order type A, type B, then type C, but their abilities to accumulate Cu increased in that order. The Ni concentration was a good predictor of Cr, Cu and Pb accumulation by all three periphyton types. Our study shows that heavy metal accumulation by periphyton is associated with eutrophication in the rivers in the HRB. PMID:24482681

  7. Bellows-Type Accumulators for Liquid Metal Loops of Space Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    2006-01-01

    In many space nuclear power systems, the primary and/or secondary loops use liquid metal working fluids, and require accumulators to accommodate the change in the liquid metal volume and maintain sufficient subcooling to avoid boiling. This paper developed redundant and light-weight bellows-type accumulators with and without a mechanical spring, and compared the operating condition and mass of the accumulators for different types of liquid metal working fluids and operating temperatures: potassium, NaK-78, sodium and lithium loops of a total capacity of 50 liters and nominal operating temperatures of 840 K, 860 K, 950 K and 1340 K, respectively. The effects of using a mechanical spring and different structural materials on the design, operation and mass of the accumulators are also investigated. The structure materials considered include SS-316, Hastelloy-X, C-103 and Mo-14Re. The accumulator without a mechanical spring weighs 23 kg and 40 kg for a coolant subcooling of 50 K and 100 K, respectively, following a loss of the fill gas. The addition of a mechanical spring comes with a mass penalty, in favor of higher redundancy and maintaining a higher liquid metal subcooling.

  8. Heavy metal accumulation by periphyton is related to eutrophication in the Hai River Basin, Northern China.

    PubMed

    Tang, Wenzhong; Cui, Jingguo; Shan, Baoqing; Wang, Chao; Zhang, Wenqiang

    2014-01-01

    The Hai River Basin (HRB) is one of the most polluted river basins in China. The basin suffers from various types of pollutants including heavy metals and nutrients due to a high population density and rapid economic development in this area. We assessed the relationship between heavy metal accumulation by periphyton playing an important role in fluvial food webs and eutrophication in the HRB. The concentrations of the unicellular diatoms (type A), filamentous algae with diatoms (type B), and filamentous algae (type C) varied along the river, with type A dominating upstream, and types B then C increasing in concentration further downstream, and this was consistent with changes in the trophic status of the river. The mean heavy metal concentrations in the type A, B and C organisms were Cr: 18, 18 and 24 mg/kg, respectively, Ni: 9.2, 10 and 12 mg/kg, respectively, Cu: 8.4, 19 and 29 mg/kg, respectively, and Pb: 11, 9.8 and 7.1 mg/kg respectively. The bioconcentration factors showed that the abilities of the organisms to accumulate Cr, Ni and Pb decreased in the order type A, type B, then type C, but their abilities to accumulate Cu increased in that order. The Ni concentration was a good predictor of Cr, Cu and Pb accumulation by all three periphyton types. Our study shows that heavy metal accumulation by periphyton is associated with eutrophication in the rivers in the HRB.

  9. Steady-state model of biota sediment accumulation factor for metals in two marine bivalves

    SciTech Connect

    Thomann, R.V.; Mahony, J.D.; Mueller, R.

    1995-11-01

    A model of the biota sediment accumulation factor (BSAF) is developed to relate the ratio of metal concentrations in two marine bivalves (Crassostrea virginica and Mytilus edulis) to sediment metal concentration. A generalized metal BSAF can be approximated by a simple relationship that is a function of sediment to water column partitioning, the bioconcentration factor (BCF), the depuration rate, the metal assimilation efficiency from food, the bivalve feeding rate, and the growth rate. Analyses of Mussel Watch data indicate that the medium BSAF across stations varies by about three orders of magnitude from Zn, Cd, and Cu at the highest levels of BSAF = 1 to 10, while Cr has the lowest BSAF at 0.01. Total Hg is about 1.0 and Ni and Pb are approximately 0.1. Calibration of the model indicates that the food route of metal accumulation is significant for all metals but specially for Zn, Cd, Cu, and Hg where virtually all of the observed BSAF is calculated to be due to ingestion of metal from food in the overlying water. These results indicate a potential significance of the metal-binding protein metallothionein, which results in relatively high binding of metal and resulting low depuration rates.

  10. Adsorption of trace metals to plastic resin pellets in the marine environment.

    PubMed

    Holmes, Luke A; Turner, Andrew; Thompson, Richard C

    2012-01-01

    Plastic production pellets collected from beaches of south west England contain variable concentrations of trace metals (Cr, Co, Ni, Cu, Zn, Cd and Pb) that, in some cases, exceed concentrations reported for local estuarine sediments. The rates and mechanisms by which metals associate with virgin and beached polyethylene pellets were studied by adding a cocktail of 5 μg L(-1) of trace metals to 10 g L(-1) pellet suspensions in filtered seawater. Kinetic profiles were modelled using a pseudo-first-order equation and yielded response times of less than about 100 h and equilibrium partition coefficients of up to about 225 ml g(-1) that were consistently higher for beached pellets than virgin pellets. Adsorption isotherms conformed to both the Langmuir and Freundlich equations and adsorption capacities were greater for beached pellets than for virgin pellets. Results suggest that plastics may represent an important vehicle for the transport of metals in the marine environment. PMID:22035924

  11. Authigenesis of trace metals in energetic tropical shelf environments

    NASA Astrophysics Data System (ADS)

    Breckel, Erin J.; Emerson, Steven; Balistrieri, Laurie S.

    2005-07-01

    We evaluated authigenic changes of Fe, Mn, V, U, Mo, Cd and Re in suboxic, periodically remobilized, tropical shelf sediments from the Amazon continental shelf and the Gulf of Papua. The Cd/Al, Mo/Al, and U/Al ratios in Amazon shelf sediments were 82%, 37%, and 16% less than those in Amazon River suspended sediments, respectively. Very large depletions of U previously reported in this environment were not observed. The Cd/Al ratios in Gulf of Papua sediments were 76% lower than measurements made on several Papua New Guinea rivers, whereas U/Al ratios in the shelf sediments were enriched by approximately 20%. Other metal/Al ratios in the Papua New Guinea river suspended sediments and continental shelf sediments were not distinguishably different. Comparison of metal/Al ratios to grain size distributions in Gulf of Papua samples indicates that our observations cannot be attributed to differences in grain size between the river suspended sediments and continental shelf sediments. These two shelves constitute a source of dissolved Cd to the world ocean equal to 29-100% of the dissolved Cd input from rivers, but only 3% of the dissolved Mo input and 4% of the dissolved U input. Release of Cd, Mo, and U in tropical shelf sediments is likely a result of intense Fe and Mn oxide reduction in pore waters and resuspension of the sediments. Since we do not observe depletions of particulate Fe and Mn in the shelf sediments most of these dissolved metals must reoxidize in the overlying waters and reprecipitate. As Cd exhibits the largest losses on these tropical shelves, we examined the ability of newly formed Fe and Mn oxides to adsorb dissolved Cd using a geochemical diffuse double-layer surface complexation model and found the oxide surfaces are relatively ineffective at readsorbing Cd in seawater due to surface-site competition by Mg and Ca. If the remobilization and reoxidation of Fe and Mn occurs frequently enough before sediment is buried significant amounts of Cd may be

  12. Authigenesis of trace metals in energetic tropical shelf environments

    USGS Publications Warehouse

    Breckel, E.J.; Emerson, S.; Balistrieri, L.S.

    2005-01-01

    We evaluated authigenic changes of Fe, Mn, V, U, Mo, Cd and Re in suboxic, periodically remobilized, tropical shelf sediments from the Amazon continental shelf and the Gulf of Papua. The Cd/Al, Mo/Al, and U/Al ratios in Amazon shelf sediments were 82%, 37%, and 16% less than those in Amazon River suspended sediments, respectively. Very large depletions of U previously reported in this environment were not observed. The Cd/Al ratios in Gulf of Papua sediments were 76% lower than measurements made on several Papua New Guinea rivers, whereas U/Al ratios in the shelf sediments were enriched by approximately 20%. Other metal/Al ratios in the Papua New Guinea river suspended sediments and continental shelf sediments were not distinguishably different. Comparison of metal/Al ratios to grain size distributions in Gulf of Papua samples indicates that our observations cannot be attributed to differences in grain size between the river suspended sediments and continental shelf sediments. These two shelves constitute a source of dissolved Cd to the world ocean equal to 29-100% of the dissolved Cd input from rivers, but only 3% of the dissolved Mo input and 4% of the dissolved U input. Release of Cd, Mo, and U in tropical shelf sediments is likely a result of intense Fe and Mn oxide reduction in pore waters and resuspension of the sediments. Since we do not observe depletions of particulate Fe and Mn in the shelf sediments most of these dissolved metals must reoxidize in the overlying waters and reprecipitate. As Cd exhibits the largest losses on these tropical shelves, we examined the ability of newly formed Fe and Mn oxides to adsorb dissolved Cd using a geochemical diffuse double-layer surface complexation model and found the oxide surfaces are relatively ineffective at readsorbing Cd in seawater due to surface-site competition by Mg and Ca. If the remobilization and reoxidation of Fe and Mn occurs frequently enough before sediment is buried significant amounts of Cd may be

  13. Water and acid soluble trace metals in atmospheric particles

    NASA Technical Reports Server (NTRS)

    Lindberg, S. E.; Harriss, R. C.

    1983-01-01

    Continental aerosols are collected above a deciduous forest in eastern Tennessee and subjected to selective extractions to determine the water-soluble and acid-leachable concentrations of Cd, Mn, Pb, and Zn. The combined contributions of these metals to the total aerosol mass is 0.5 percent, with approximately 70 percent of this attributable to Pb alone. A substantial fraction (approximately 50 percent or more) of the acid-leachable metals is soluble in distilled water. In general, this water-soluble fraction increases with decreasing particle size and with increasing frequency of atmospheric water vapor saturation during the sampling period. The pattern of relative solubilities (Zn being greater than Mn, which is approximately equal to Cd, which is greater than Pb) is found to be similar to the general order of the thermodynamic solubilities of the most probable salts of these elements in continental aerosols with mixed fossil fuel and soil sources.

  14. Trace metal dynamics in floodplain soils of the river Elbe: a review.

    PubMed

    Schulz-Zunkel, Christiane; Krueger, Frank

    2009-01-01

    This paper reviews trace metal dynamics in floodplain soils using the Elbe floodplains in Germany as an example of extraordinary importance because of the pollution level of its sediments and soils. Trace metal dynamics are determined by processes of retention and release, which are influenced by a number of soil properties including pH value, redox potential, organic matter, type and amount of clay minerals, iron-, manganese- and aluminum-oxides. Today floodplains act as important sinks for contaminants but under changing hydraulic and geochemical conditions they may also act as sources for pollutants. In floodplains such changes may be extremes in flooding or dry periods that particularly lead to altered redox potentials and that in turn influence the pH value, the mineralization of organic matter as well as the charge of the pedogenic oxides. Such reactions may affect the bioavailability of trace metals in soils and it can be clearly seen that the bioavailability of metals is an important factor for estimating trace metal remobilization in floodplain soils. However as bioavailability is not a constant factor, there is still a lack of quantification of metal mobilization particularly on the basis of changing geochemical conditions. Moreover, mobile amounts of metals in the soil solution do not indicate to which extent remobilized metals will be transported to water bodies or plants and therefore potentially have toxicological effects. Consequently, floodplain areas still need to be taken into consideration when studying the role and behavior of sediments and soils for transporting pollutants within river systems, particularly concerning the Water Framework Directive.

  15. Trace metal dynamics in floodplain soils of the river Elbe: a review.

    PubMed

    Schulz-Zunkel, Christiane; Krueger, Frank

    2009-01-01

    This paper reviews trace metal dynamics in floodplain soils using the Elbe floodplains in Germany as an example of extraordinary importance because of the pollution level of its sediments and soils. Trace metal dynamics are determined by processes of retention and release, which are influenced by a number of soil properties including pH value, redox potential, organic matter, type and amount of clay minerals, iron-, manganese- and aluminum-oxides. Today floodplains act as important sinks for contaminants but under changing hydraulic and geochemical conditions they may also act as sources for pollutants. In floodplains such changes may be extremes in flooding or dry periods that particularly lead to altered redox potentials and that in turn influence the pH value, the mineralization of organic matter as well as the charge of the pedogenic oxides. Such reactions may affect the bioavailability of trace metals in soils and it can be clearly seen that the bioavailability of metals is an important factor for estimating trace metal remobilization in floodplain soils. However as bioavailability is not a constant factor, there is still a lack of quantification of metal mobilization particularly on the basis of changing geochemical conditions. Moreover, mobile amounts of metals in the soil solution do not indicate to which extent remobilized metals will be transported to water bodies or plants and therefore potentially have toxicological effects. Consequently, floodplain areas still need to be taken into consideration when studying the role and behavior of sediments and soils for transporting pollutants within river systems, particularly concerning the Water Framework Directive. PMID:19465710

  16. Atmospherically deposited trace metals from bulk mineral concentrate port operations.

    PubMed

    Taylor, Mark Patrick

    2015-05-15

    Although metal exposures in the environment have declined over the last two decades, certain activities and locations still present a risk of harm to human health. This study examines environmental dust metal and metalloid hazards (arsenic, cadmium, lead and nickel) associated with bulk mineral transport, loading and unloading port operations in public locations and children's playgrounds in the inner city of Townsville, northern Queensland. The mean increase in lead on post-play hand wipes (965 μg/m(2)/day) across all sites was more than 10-times the mean pre-play loadings (95 μg/m(2)/day). Maximum loading values after a 10-minute play period were 3012 μg/m(2), more than seven times the goal of 400 μg/m(2) used by the Government of Western Australia (2011). Maximum daily nickel post-play hand loadings (404 μg/m(2)) were more than 26 times above the German Federal Immission Control Act 2002 annual benchmark of 15 μg/m(2)/day. Repeat sampling over the 5-day study period showed that hands and surfaces were re-contaminated daily from the deposition of metal-rich atmospheric dusts. Lead isotopic composition analysis of dust wipes ((208)Pb/(207)Pb and (206)Pb/(207)Pb) showed that surface dust lead was similar to Mount Isa type ores, which are exported through the Port of Townsville. While dust metal contaminant loadings are lower than other mining and smelting towns in Australia, they exceeded national and international benchmarks for environmental quality. The lessons from this study are clear - even where operations are considered acceptable by managing authorities, targeted assessment and monitoring can be used to evaluate whether current management practices are truly best practice. Reassessment can identify opportunities for improvement and maximum environmental and human health protection. PMID:25706750

  17. Atmospherically deposited trace metals from bulk mineral concentrate port operations.

    PubMed

    Taylor, Mark Patrick

    2015-05-15

    Although metal exposures in the environment have declined over the last two decades, certain activities and locations still present a risk of harm to human health. This study examines environmental dust metal and metalloid hazards (arsenic, cadmium, lead and nickel) associated with bulk mineral transport, loading and unloading port operations in public locations and children's playgrounds in the inner city of Townsville, northern Queensland. The mean increase in lead on post-play hand wipes (965 μg/m(2)/day) across all sites was more than 10-times the mean pre-play loadings (95 μg/m(2)/day). Maximum loading values after a 10-minute play period were 3012 μg/m(2), more than seven times the goal of 400 μg/m(2) used by the Government of Western Australia (2011). Maximum daily nickel post-play hand loadings (404 μg/m(2)) were more than 26 times above the German Federal Immission Control Act 2002 annual benchmark of 15 μg/m(2)/day. Repeat sampling over the 5-day study period showed that hands and surfaces were re-contaminated daily from the deposition of metal-rich atmospheric dusts. Lead isotopic composition analysis of dust wipes ((208)Pb/(207)Pb and (206)Pb/(207)Pb) showed that surface dust lead was similar to Mount Isa type ores, which are exported through the Port of Townsville. While dust metal contaminant loadings are lower than other mining and smelting towns in Australia, they exceeded national and international benchmarks for environmental quality. The lessons from this study are clear - even where operations are considered acceptable by managing authorities, targeted assessment and monitoring can be used to evaluate whether current management practices are truly best practice. Reassessment can identify opportunities for improvement and maximum environmental and human health protection.

  18. High concentrations of trace metals in oysters from the Patuxent River, Maryland

    SciTech Connect

    Riedel, G.; Sanders, J.; Abbe, G.

    1995-12-31

    Oyster (Crassostrea virginica) populations from the Patuxent River have been analyzed for trace metals by a number of organizations over at least the past 19 years. During that period, high concentrations of Cu (200--500 {micro}g/g dry weight), Cd (3--7 {micro}g/g) and Ag (2--8 /{micro}g/g) have been found in oysters from the oyster bars furthest up river. In particular, Cd values in oysters from this region have had concentrations approaching or exceeding current FDA warning levels throughout the period. In previous studies it was suggested that a coal-burning power plant located in that region, Chalk Point Steam Electric Station, was responsible for the copper enrichment due to the corrosion of Cu/Ni alloy condenser tubes. However, a monthly survey of trace elements in the nearby oyster populations from 1986 to the present showed only a small decline in copper concentrations after the plant switched from Cu/Ni to Ti alloy condenser tubes in 1987. Other potential sources for trace metals in the region include municipal and industrial discharges, atmospheric deposition, and biocides (anti-fouling paint in particular). The very rapid rise in trace element concentrations in oysters with position up river, and the lack of such a response by another local bivalve, the hooked mussel (Ischadium recurvum), suggests that a physiological effect of low salinity stress on oysters may be in part responsible for the high concentrations of trace metals in oysters in this region.

  19. Trace metals, stable isotope ratios, and trophic relations in seabirds from the North Pacific Ocean.

    PubMed

    Elliott, John E

    2005-12-01

    Trace elements including mercury, cadmium, selenium, and stable nitrogen isotope ratios (sigma15N) were measured in tissues of Pacific seabirds. Two species of albatross (Diomedea immutabilis, Diomedea nigripes), four species of shearwaters (Puffinus bulleri, Puffinus carneipes, Puffinus griseus, Puffinus tenuirostris), northern fulmar (Fulmarus glacialis), and horned puffin (Fratercula corniculata) were collected opportunistically by an experimental fishery in the North Pacific Ocean. Two species each of petrels (Oceanodroma leucorhoa, Oceanodroma furcata) and auklets (Ptychoramphus aleuticus, Cerorhinca monocerata) were collected at breeding colonies on the north coast of British Columbia, Canada. Concentrations of toxic trace metals varied considerably among the pelagic nonbreeders; highest concentrations consistently were in D. nigripes (e.g., Hg), 70-fold greater than F. corniculata (e.g., Cd), eightfold greater than P. tenuirostris (e.g., Se), and fourfold greater than F. corniculata. Most essential trace elements varied little among species, consistent with physiological regulation. Values for sigma15N correlated positively with hepatic Se (r = 0.771, p = 0.025) and negatively with Co (r = 0.817, p = 0.013). Among the four breeding species, there were significant positive associations for sigma15N in muscle and hepatic Se (r = 0.822, p = 0.002), Hg (r = 0.744, p = 0.0001), and Cd (r = 0.589, p = 0.003). Differences in time scales integrated by sigma15N versus trace metals in tissues probably reduced the apparent associations between trace-metal exposure and diet.

  20. Historical changes in trace metals and hydrocarbons in nearshore sediments, Alaskan Beaufort Sea, prior and subsequent to petroleum-related industrial development: Part I. Trace metals.

    PubMed

    Naidu, A Sathy; Blanchard, Arny L; Misra, Debasmita; Trefry, John H; Dasher, Douglas H; Kelley, John J; Venkatesan, M Indira

    2012-10-01

    Concentrations of Fe, As, Ba, Cd, Cu, Cr, Pb, Mn, Ni, Sn, V and Zn in mud (<63μm size), and total and methyl Hg in gross sediment are reported for Arctic Alaska nearshore. Multivariate-PCA analysis discriminated seven station clusters defined by differences in metal concentrations, attributed to regional variations in granulometry and, as in Elson Lagoon, to focused atmospheric fluxes of contaminants from Eurasia. In Colville Delta-Prudhoe Bay, V increase was noted in 1985 and 1997 compared to 1977, and Ba increase from 1985 to 1997. Presumably the source of increased V is the local gas flaring plant, and the elevated Ba is due to barite accumulation from oil drilling effluents. In Prudhoe Bay, concentration spikes of metals in ∼1988 presumably reflect enhanced metals deposition following maximum oil drilling in 1980s. In summary, the Alaskan Arctic nearshore has remained generally free of metal contamination despite petroleum-related activities in past 40 years.

  1. Tricholoma matsutake can absorb and accumulate trace elements directly from rock fragments in the shiro.

    PubMed

    Vaario, Lu-Min; Pennanen, Taina; Lu, Jinrong; Palmén, Jorma; Stenman, Jarkko; Leveinen, Jussi; Kilpeläinen, Petri; Kitunen, Veikko

    2015-07-01

    Tricholoma matsutake, a highly valued delicacy in Japan and East Asia, is an ectomycorrhizal fungus typically found in a complex soil community of mycorrhizae, soil microbes, and host-tree roots referred to as the shiro in Japan. A curious characteristic of the shiro is an assortment of small rock fragments that have been implicated as a direct source of minerals and trace elements for the fungus. In this study, we measured the mineral content of 14 samples of shiro soil containing live matsutake mycelium and the extent to which the fungus can absorb minerals directly from the rock fragments. X-ray powder diffraction identified major phases of quartz, microcline, orthoclase, and albite in all shiro samples. PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting and direct sequencing confirmed the presence of T. matsutake on 32 of 33 rock fragments. Piloderma sp. co-occurred on 40% of fragments and was positively correlated with locations known to produce good mushroom crops. The ability of T. matsutake to absorb trace elements directly from rock fragments was examined in vitro on nutrient-agar plates supplemented with rock fragments from the shiro. In comparison to the mineral content of tissues grown on control media, the concentration of Al, Cu, Fe, Mn, P, and Zn increased from 1.1 to 106.4 times for both T. matsutake and Piloderma sp. Mineral content of dried sporocarps sampled from the study site partially reflected the results of the in vitro study. We discuss the implications of our results with respect to the natural development and artificial culture of this important fungus. PMID:25355073

  2. Tricholoma matsutake can absorb and accumulate trace elements directly from rock fragments in the shiro.

    PubMed

    Vaario, Lu-Min; Pennanen, Taina; Lu, Jinrong; Palmén, Jorma; Stenman, Jarkko; Leveinen, Jussi; Kilpeläinen, Petri; Kitunen, Veikko

    2015-07-01

    Tricholoma matsutake, a highly valued delicacy in Japan and East Asia, is an ectomycorrhizal fungus typically found in a complex soil community of mycorrhizae, soil microbes, and host-tree roots referred to as the shiro in Japan. A curious characteristic of the shiro is an assortment of small rock fragments that have been implicated as a direct source of minerals and trace elements for the fungus. In this study, we measured the mineral content of 14 samples of shiro soil containing live matsutake mycelium and the extent to which the fungus can absorb minerals directly from the rock fragments. X-ray powder diffraction identified major phases of quartz, microcline, orthoclase, and albite in all shiro samples. PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting and direct sequencing confirmed the presence of T. matsutake on 32 of 33 rock fragments. Piloderma sp. co-occurred on 40% of fragments and was positively correlated with locations known to produce good mushroom crops. The ability of T. matsutake to absorb trace elements directly from rock fragments was examined in vitro on nutrient-agar plates supplemented with rock fragments from the shiro. In comparison to the mineral content of tissues grown on control media, the concentration of Al, Cu, Fe, Mn, P, and Zn increased from 1.1 to 106.4 times for both T. matsutake and Piloderma sp. Mineral content of dried sporocarps sampled from the study site partially reflected the results of the in vitro study. We discuss the implications of our results with respect to the natural development and artificial culture of this important fungus.

  3. Tracing the atomic mass unit to the kilogram by ion accumulation

    NASA Astrophysics Data System (ADS)

    Gläser, Michael

    2003-12-01

    An experimental approach for linking the atomic mass unit to the