Science.gov

Sample records for accumulated drainage area

  1. Drainage area data for Alabama streams

    USGS Publications Warehouse

    Stallings, J.S.; Peirce, L.B.

    1957-01-01

    The drainage area of a river basin is an important parameter in many engineering equations used for hydrologic design. It is not a parameter, however, that always requires precise measurement. Factors in the hydrologic cycle such as rainfall, runoff, transpiration, and infiltration cannot be measured nearly as closely as drainage area. Largely for this reason, drainage areas are often measured to varying degrees of precision depending upon the immediate need, with little thought to some other use or some other user of the figure obtained. It can readily be appreciated that this practice, continued for long by many different agencies, will result in a heterogeneous collection of drainage area figures, often discordant and of an accuracy unknown to any but those who computed them. Figures of drainage area published by various Federal agencies are frequently discrepant or contradictory, giving rise to confusion in the use of drainage area data. Seeking to better this situation, the Federal Inter-Agency River Basin Committee (FIARBC) in November 1951 published its Bulletin No. 4, Inter-Agency Coordination of Drainage Area Data. That Bulletin recommended procedures to be followed by the interested Federal agencies “for coordinating drainage area data in the interest of promoting uniformity, reducing confusion and contradiction of published figures, and improving the ready availability of drainage area data pertaining to drainage basins of the United States and its possessions.”

  2. Drainage Areas of Selected Streams in Virginia

    USGS Publications Warehouse

    Hayes, Donald C.; Wiegand, Ute

    2006-01-01

    Drainage areas were determined for more than 1,600 basins in the three major river basins of Virginia -- the North Atlantic Slope, South Atlantic Slope, and Ohio River Basins. Drainage areas range from 0.004 square mile to 7,866 square miles. A geographic information system was used to digitize and store data associated with the drainage basins. Drainage divides were digitized from digital U.S. Geological Survey 7.5-minute, 1:24,000-scale, topographic quadrangles using procedures recommended by the Subcommittee on Hydrology, Federal Interagency River Basin Committee. Digital drainage basins were quality assured, polygons of the closed drainage basins were generated, and drainage areas were computed.

  3. Drainage areas of the Guyandotte River basin, West Virginia

    USGS Publications Warehouse

    Mathes, M.V.

    1977-01-01

    This report, prepared in cooperation with the West Virginia Office of Federal-State Relations (now the Office of Economic and Community Development), lists in tabular form 435 drainage areas for basins within the Guyandotte River basin of West Virginia. Drainage areas are compiled for sites at the mouths of all streams having drainage areas of approximately five square miles or greater, for sites at U.S. Geological Survey gaging stations (past and present), and for other miscellaneous sites. (Woodard-USGS)

  4. Drainage areas of the Kanawha River basin, West Virginia

    USGS Publications Warehouse

    Mathes, M.V.; Payne, D.D., Jr.; Shultz, R.A.; Kirby, J.R.

    1982-01-01

    Drainage areas for 1,493 drainage area divisions for the Kanawha River basin, West Virginia, are listed in the report. Also tabulated for each site are river miles, plus location identifiers: County, latitude and longitude, and the West Virginia District map number. (USGS)

  5. Drainage areas of the Potomac River basin, West Virginia

    USGS Publications Warehouse

    Wiley, Jeffrey B.; Hunt, Michelle L.; Stewart, Donald K.

    1996-01-01

    This report contains data for 776 drainage-area divisions of the Potomac River Basin, from the headwaters to the confluence of the Potomac River and the Shenandoah River. Data, compiled in downstream order, are listed for streams with a drainage area of approximately 2 square miles or larger within West Virginia and for U.S. Geological Survey streamflow-gaging stations. The data presented are the stream name, the geographical limits in river miles, the latitude and longitude of the point, the name of the county, and the 7 1/2-minute quadrangle in which the point lies, and the drainage area of that site. The total drainage area of the Potomac River Basin downstream of the confluence of the Shenandoah River at the State boundary is 9,367.29 square miles.

  6. Guidelines for Waste Accumulation Areas (WAAs)

    SciTech Connect

    Not Available

    1991-07-01

    The purpose of this document is to set conditions for establishing and maintaining areas for the accumulation of hazardous waste at LBL. Areas designed for accumulation of these wastes in quantities greater than 100 kg (220 lb) per month of solid waste or 55 gallons per month of liquid waste are called Waste Accumulation Areas (WAAs). Areas designed for accumulation of wastes in smaller amounts are called Satellite Accumulation Areas (SAAs). This document provides guidelines for employee and organizational responsibilities for WAAs; constructing a WAA; storing waste in a WAA; operating and maintaining a WAA, and responding to spills in a WAA. 4 figs.

  7. Drainage areas of streams in Arkansas, Ouachita River basin

    USGS Publications Warehouse

    Yanchosek, John J.; Hines, Marion S.

    1979-01-01

    Drainage areas, determined in accordance with procedure recommended by the Subcommittee on Hydrology of the Federal Inter-Agency River Basin Committee, are listed for points on streams in the Ouachita River basin in Arkansas. Points on the streams are identified by some topographic feature and by latitude and longitude. (USGS).

  8. Parking Area No. 11. Note rolled curbing and drainage design ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Parking Area No. 11. Note rolled curbing and drainage design in foreground. Building No. 8 in rear. Looking northeast - Easter Hill Village, Bordered by South Twenty-sixth Street, South Twenty-eighth Street, Hinkley Avenue, Foothill Avenue & Corto Square, Richmond, Contra Costa County, CA

  9. Erosion and deposition as indicated by sediment accumulation in stock reservoirs in the Powder River drainage basin, Wyoming

    USGS Publications Warehouse

    Roach, Carl H.; Colby, Bruce R.

    1957-01-01

    This report gives the results of an investigation by the U.S. Geological Survey and U.S. Bureau of Reclamation of sediment accumulation in stock reservoirs in the powder River drainage basin upstream from Arvada, Wyo. The study was made to determine the net rates of erosion in the upland areas and the effects of the reservoirs on the amount of sediment transported to the parent stream. The climate of the area ranges from cold and humid on the high mountains to warm and semiarid on the plains. The average annual precipitation ranges from less than 15 inches on the plains to more than 27 inches in the high mountains, which have a maximum altitude of 13,165 feet. The rocks in the Powder River drainage basin range in age from Precambrian to Recent. The 25 stock reservoirs that were used in the study have drainage areas of 0.09 to 3.53 square miles, are from 3 to 51 years old, and impound water from areas that have land slopes averaging from about 3 to 41 percent. The ratio of average reservoir capacity to drainage area ranges from about 2 to nearly 200 acre-feet per square mile. After adjustment for trap efficiency the average annual sediment yield to the 25 reservoirs ranged from 0.04 to 1.49 acre-feet per square mile and averaged 0.50 acre-foot per square mile of drainage area. The average sediment yield from 6 drainage areas mostly underlain by shale was 0.80 acre-foot per year, 2.3 times greater than yields from the areas underlain by sandstone or sandy shales. Correlations show that the sediment yield increased approximately as the 1.5 power of the channel density, the 0.4 power oif the shape factor, the 0.7 power of the average land slope, and the -0.25 power of the age of the reservoir. Empirical equations for sediment yield and trap efficiency for the area studied are given.

  10. Pleistocene drainage incision in the upper Mississippi Valley Driftless Area

    SciTech Connect

    Knox, J.C.

    1985-01-01

    The deep dissection of the Wisconsin Driftless Area and topographically similar, but glaciated areas in adjacent states is generally acknowledged to have occurred during the Pleistocene, but the precise chronology has been poorly understood. The distribution of pre-Illinoian glacial outwash gravels on uplands and valley side benches near the Mississippi River, on the western margin of the Wisconsin Driftless Area, indicates that the major incision (50-60 m) of drainage had occurred during the very early Pleistocene. Deposits in cut-off valley meanders, a common feature in the lower reaches of Driftless Area rivers, provide a basis for relative dating of the valley incision. The cut-offs appear to have evolved episodically when, at various times during the Pleistocene, glacial debris blocked the drainages of the Mississippi and Wisconsin Rivers causing massive alluviation of side valley tributaries. A radiocarbon date of 21,910 +/- 350 year B.P., representing a buried soil horizon at 22 m depth and about 9 m above the bedrock floor of a cut-off valley meander and 18 m above the bedrock floor of the adjacent present-day valley, supports stratigraphic interpretations that suggest modest valley incision into bedrock probably occurred during the Illinoian and may have also occurred during the early Wisconsinan.

  11. A quick algorithm of counting flow accumulation matrix for deriving drainage networks from a DEM

    NASA Astrophysics Data System (ADS)

    Wang, Yanping; Liu, Yonghe; Xie, Hongbo; Xiang, ZhongLin

    2011-06-01

    Computerized auto-extraction of drainage networks from Digital Elevation Model (DEM) has been widely used in hydrological modeling and relevant studies. Several essential procedures need to be implemented in eight-directional(D8) watershed delineation method, among which a problem need to be resolved is the lack of a high efficiency algorithm for quick and accurate computation of flow accumulation matrix involved in river network delineations. For the problem of depression filling, the algorithm presented by Oliver Planchon has resolved it. This study was aimed to develop a simple and quick algorithm for flow accumulation matrix computations. For this purpose, a simple and high efficiency algorithm of the time complexity of O(n) compared to the commonly used code of the time complexity of O(n2) orO(nlogn) , has been developed. Performance tests on this newly developed algorithm were conducted for different size of DEMs, and the results suggested that the algorithm has a linear time complexity with increasing sizes of DEM. The computation efficiency of this newly developed algorithm is many times higher than the commonly used code, and for a DEM of size 1000*1000, flow accumulation matrix computation can be completed within only several seconds compared with about few minutes needed by common used algorithms.

  12. Drainage basin morphometry controls on the active depositional area of debris flow fans

    NASA Astrophysics Data System (ADS)

    Mihir, Monika; Wasklewicz, Thad; Malamud, Bruce

    2015-04-01

    A majority of the research on understanding the connection between alluvial fans and drainage basins to date has focused on coarse-scale relations between total fan area and drainage basin area. Here we take a new approach where we assess relationships between active fan depositional area and drainage basin morphometry using 52 debris flow fans (32 from the White Mountains and 20 from the Inyo Mountains) on the eastern side of Owens Valley, California, USA. The boundaries for fans, drainage basin and active depositional areas were delineated from 10m digital elevation models and 1 m aerial photographs. We examined the relationships between the normalised active depositional area of the fan (Afad/Af, where Afad is the fan active depositional area and Af the entire fan area) and the following four variables for drainage basin: (i) area (Adb), (ii) total stream length (Ls), (iii) relief (BHH), (iv) roughness (R). We find a statistically significant (r2 > 0.40) inverse power-law relationship between recent sediment contribution to the fan and drainage basin area (Afad/Af = 0.29Adb-0.167) drainage network length (Afad/Af = 0.39Ls-0.161) and basin relief (Afad/Af = 3.90BHH-0.401), and a statistically weak (r2 = 0.22) inverse power law with basin roughness (Afad/Af = 0.32R0.5441). Drainage basin size combined with other morphometric variables may largely determine efficiency in sediment transport and delivery to the fan surface. A large proportion of the total fan area of smaller fans are flooded by debris flow indicating less sediment storage in the drainage basins and greater efficiency in sediment delivery. The findings signify the importance of coarse-scale relationships to both long- and short-term fan evolution.

  13. 46 CFR 178.450 - Calculation of drainage area for cockpit and well deck vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PASSENGER VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178... Drainage area in inch2 = (Recess Volume × Recess Ratio) + (Weather Deck Volume × Weather Deck Ratio) Recess...) measured in centimeters2 (feet2). VR=volume of any weather tight structure below the bulwark of the...

  14. 46 CFR 178.450 - Calculation of drainage area for cockpit and well deck vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PASSENGER VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178... Drainage area in inch2 = (Recess Volume × Recess Ratio) + (Weather Deck Volume × Weather Deck Ratio) Recess...) measured in centimeters2 (feet2). VR=volume of any weather tight structure below the bulwark of the...

  15. 46 CFR 178.450 - Calculation of drainage area for cockpit and well deck vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PASSENGER VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178... Drainage area in inch2 = (Recess Volume × Recess Ratio) + (Weather Deck Volume × Weather Deck Ratio) Recess...) measured in centimeters2 (feet2). VR=volume of any weather tight structure below the bulwark of the...

  16. 46 CFR 178.450 - Calculation of drainage area for cockpit and well deck vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PASSENGER VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178... Drainage area in inch2 = (Recess Volume × Recess Ratio) + (Weather Deck Volume × Weather Deck Ratio) Recess...) measured in centimeters2 (feet2). VR=volume of any weather tight structure below the bulwark of the...

  17. 46 CFR 178.450 - Calculation of drainage area for cockpit and well deck vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PASSENGER VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178... Drainage area in inch2 = (Recess Volume × Recess Ratio) + (Weather Deck Volume × Weather Deck Ratio) Recess...) measured in centimeters2 (feet2). VR=volume of any weather tight structure below the bulwark of the...

  18. Relative importance of impervious area, drainage density, width function, and subsurface storm drainage on flood runoff from an urbanized catchment

    NASA Astrophysics Data System (ADS)

    Ogden, Fred L.; Raj Pradhan, Nawa; Downer, Charles W.; Zahner, Jon A.

    2011-12-01

    The literature contains contradictory conclusions regarding the relative effects of urbanization on peak flood flows due to increases in impervious area, drainage density and width function, and the addition of subsurface storm drains. We used data from an urbanized catchment, the 14.3 km2 Dead Run watershed near Baltimore, Maryland, USA, and the physics-based gridded surface/subsurface hydrologic analysis (GSSHA) model to examine the relative effect of each of these factors on flood peaks, runoff volumes, and runoff production efficiencies. GSSHA was used because the model explicitly includes the spatial variability of land-surface and hydrodynamic parameters, including subsurface storm drains. Results indicate that increases in drainage density, particularly increases in density from low values, produce significant increases in the flood peaks. For a fixed land-use and rainfall input, the flood magnitude approaches an upper limit regardless of the increase in the channel drainage density. Changes in imperviousness can have a significant effect on flood peaks for both moderately extreme and extreme storms. For an extreme rainfall event with a recurrence interval in excess of 100 years, imperviousness is relatively unimportant in terms of runoff efficiency and volume, but can affect the peak flow depending on rainfall rate. Changes to the width function affect flood peaks much more than runoff efficiency, primarily in the case of lower density drainage networks with less impermeable area. Storm drains increase flood peaks, but are overwhelmed during extreme rainfall events when they have a negligible effect. Runoff in urbanized watersheds with considerable impervious area shows a marked sensitivity to rainfall rate. This sensitivity explains some of the contradictory findings in the literature.

  19. Drainage areas in the Big Sioux River basin in eastern South Dakota

    USGS Publications Warehouse

    Amundson, Frank D.; Koch, Neil C.

    1985-01-01

    The Big Sioux River basin of eastern South Dakota contains an important surface water supply and a sizeable aquifer system of major importance to the economy of South Dakota. The aquifers are complex, consisting of many small aquifers that are hydrologically associated with several large aquifers and the Big Sioux River. The complexity and interrelation of the surface water/groundwater systems has already created management problems. As development continues and increases, the problems will increase in number and complexity. To aid in planning for future development, an accurate determination of drainage areas for all basins, sub-basins, and noncontributing areas in the Big Sioux River basin is needed. All named stream basins, and all unnamed basins > 10 sq mi within the Big Sioux River basin in South Dakota are shown and are listed by stream name. Stream drainage basins in South Dakota were delineated by visual interpretation of contour information shown on U.S. Geological Survey 77-1/2 minute topographic maps. One table lists the drainage areas of major drainage basins in the Big Sioux River basin that do not have a total drainage area value > 10 sq mi. Another shows the drainage area above stream gaging stations in the Big Sioux River basin. (Lantz-PTT)

  20. Guidelines for Waste Accumulation Areas (WAAs) at LBL. Revision 1

    SciTech Connect

    Not Available

    1994-06-01

    The purpose of this document is to set conditions for establishing and containing areas for the accumulation of hazardous waste at LBL. Areas designed for accumulation of these wastes for up to 90 days in quantities greater than 55 gallons (208 liters) of hazardous waste, one quart (0.946 liter) of extremely hazardous waste, or one quart (0.946 liter) of acutely hazardous waste are called Waste Accumulation Areas (WAAs). Areas designed for accumulation of wastes in smaller amounts are called Satellite Accumulation Areas (SAAs). This document provides guidelines for employee and organizational responsibilities for WAAs, constructing a WAA, storing waste in a WAA, operating and maintaining a WAA, and responding to spills in a WAA.

  1. Appendix D-21 Building 696S Consolidation Waste Accumulation Area

    SciTech Connect

    Michalik, R L

    2005-04-15

    This appendix is designed to provide information specific to the Building 696S Consolidation Waste Accumulation Area (B-696S CWAA), a waste storage area. The appendix is not designed to be used as a sole source of information. All general information that is not specific to the B-696S CWAA is included in the Contingency Plan for Waste Accumulation Areas, dated July 2004, and should be referenced.

  2. Hydrogeological aspects of groundwater drainage of the urban areas in Kuwait City

    NASA Astrophysics Data System (ADS)

    Al-Rashed, Muhammad F.; Sherif, Mohsen M.

    2001-04-01

    Residential areas in Kuwait City have witnessed a dramatic rise in subsurface water tables over the last three decades. This water rise phenomenon is attributed mainly to over irrigation practices of private gardens along with leakage from domestic and sewage networks. This paper presents a comprehensive study for urban drainage in two selected areas representing the two hydrogeological settings encountered in Kuwait City. In the first area, a vertical drainage scheme was applied successfully over an area of 1 km2. The system has been under continuous operation and monitoring for more than 4 years without problems, providing a permanent solution for the water rise problem in this area. The hydrogeological system has approached steady state conditions and the water levels have dropped to about 3·5 m below the ground surface. In the second area a dual drainage scheme, composing of horizontal and vertical elements, is proposed. Horizontal elements are suggested in the areas where the deep groundwater contains hazardous gases that may pose environmental problems. The proposed drainage scheme in the second area has not yet been implemented. Field tests were conducted to assess the aquifer parameters in both areas and a numerical model has been developed to predict the long-term response of the hydrogeological system in the two areas under consideration.

  3. Digital database architecture and delineation methodology for deriving drainage basins, and a comparison of digitally and non-digitally derived numeric drainage areas

    USGS Publications Warehouse

    Dupree, Jean A.; Crowfoot, Richard M.

    2012-01-01

    The drainage basin is a fundamental hydrologic entity used for studies of surface-water resources and during planning of water-related projects. Numeric drainage areas published by the U.S. Geological Survey water science centers in Annual Water Data Reports and on the National Water Information Systems (NWIS) Web site are still primarily derived from hard-copy sources and by manual delineation of polygonal basin areas on paper topographic map sheets. To expedite numeric drainage area determinations, the Colorado Water Science Center developed a digital database structure and a delineation methodology based on the hydrologic unit boundaries in the National Watershed Boundary Dataset. This report describes the digital database architecture and delineation methodology and also presents the results of a comparison of the numeric drainage areas derived using this digital methodology with those derived using traditional, non-digital methods. (Please see report for full Abstract)

  4. Annual peak discharges from small drainage areas in Montana through September 1976

    USGS Publications Warehouse

    Johnson, M.V.; Omang, R.J.; Hull, J.A.

    1977-01-01

    Annual peak discharge from small drainage areas is tabulated for 336 sites in Montana. The 1976 additions included data collected at 206 sites. The program which investigates the magnitude and frequency of floods from small drainage areas in Montana, was begun July 1, 1955. Originally 45 crest-stage gaging stations were established. The purpose of the program is to collect sufficient peak-flow data, which through analysis could provide methods for estimating the magnitude and frequency of floods at any point in Montana. The ultimate objective is to provide methods for estimating the 100-year flood with the reliability needed for road design. (Woodard-USGS)

  5. Event mean concentration and first flush effect from different drainage systems and functional areas during storms.

    PubMed

    Peng, Hai-Qin; Liu, Yan; Wang, Hong-Wu; Gao, Xue-Long; Ma, Lu-Ming

    2016-03-01

    This study aimed to investigate the characteristics of the event mean concentration (EMC) and first flush effect (FFE) during typical rainfall events in outfalls from different drainage systems and functional areas. Stormwater outfall quality data were collected from five outfalls throughout Fuzhou City (China) during 2011-2012. Samples were analyzed for water quality parameters, such as COD, NH3-N, TP, and SS. Analysis of values indicated that the order of the event mean concentrations (EMCs) in outfalls was intercepting combined system > direct emission combined system > separated system. Most of the rainfall events showed the FFE in all outfalls. The order of strength of the FFE was residential area of direct emission combined system > commercial area of separated system > residential area of intercepting combined system > office area of separated system > residential area of separated system. Results will serve as guide in managing water quality to reduce pollution from drainage systems. PMID:26564194

  6. Power-law tail probabilities of drainage areas in river basins

    USGS Publications Warehouse

    Veitzer, S.A.; Troutman, B.M.; Gupta, V.K.

    2003-01-01

    The significance of power-law tail probabilities of drainage areas in river basins was discussed. The convergence to a power law was not observed for all underlying distributions, but for a large class of statistical distributions with specific limiting properties. The article also discussed about the scaling properties of topologic and geometric network properties in river basins.

  7. Nutrient trends through time in Sweden's Baltic Drainage Area

    NASA Astrophysics Data System (ADS)

    Fischer, I.; Destouni, G.; Prieto, C.

    2015-12-01

    Changes in climate and land-use have and will continue to modify regional hydrology, in turn impacting environmental health, agricultural productivity and water resource quality and availability. The Baltic region is an area of interest as the coast spans nine countries- serving over 100 million people. The Baltic Sea contains one of the largest human caused hypoxic dead zones due to eutrophication driven by anthropogenic excess loading of nutrients. Policies to reduce these loads include also international directives and agreements, such as the EU Water Framework Directive, adopted in 2000 to protect and improve water quality throughout the European Union, and the Baltic Sea Action Plan under the Helsinki Commission aimed specifically at reducing the nutrient loading to and mitigating the eutrophication of the Baltic Sea. In light of these policies and amidst the number of studies on the Baltic Sea we ask, using the accessible nutrient and discharge data what does nutrient loading look like today? Are the most excessive loads going down? Observed nutrient and flow time series across Sweden allow for answering these questions, by spatial and temporal trend analysis of loads from various parts of Sweden to the Baltic Sea. Analyzing these observed time series in conjunction with the ecological health status classifications of the EU Water Framework Directive, allows in particular for answering the question if the loads into the water bodies with the poorest water quality, and from those to the Baltic Sea, are improving, being maintained or deteriorating. Such insight is required to contribute to relevant and efficient water and nutrient load management. Furthermore, empirically calculating nutrient loads, rather than only modeling, reveals that the water body health classification may not reflect what water bodies actually contribute the heaviest loads to the Baltic Sea. This work also underscores the importance of comprehensive analysis of all available data from

  8. Statewide Analysis of the Drainage-Area Ratio Method for 34 Streamflow Percentile Ranges in Texas

    USGS Publications Warehouse

    Asquith, William H.; Roussel, Meghan C.; Vrabel, Joseph

    2006-01-01

    The drainage-area ratio method commonly is used to estimate streamflow for sites where no streamflow data are available using data from one or more nearby streamflow-gaging stations. The method is intuitive and straightforward to implement and is in widespread use by analysts and managers of surface-water resources. The method equates the ratio of streamflow at two stream locations to the ratio of the respective drainage areas. In practice, unity often is assumed as the exponent on the drainage-area ratio, and unity also is assumed as a multiplicative bias correction. These two assumptions are evaluated in this investigation through statewide analysis of daily mean streamflow in Texas. The investigation was made by the U.S. Geological Survey in cooperation with the Texas Commission on Environmental Quality. More than 7.8 million values of daily mean streamflow for 712 U.S. Geological Survey streamflow-gaging stations in Texas were analyzed. To account for the influence of streamflow probability on the drainage-area ratio method, 34 percentile ranges were considered. The 34 ranges are the 4 quartiles (0-25, 25-50, 50-75, and 75-100 percent), the 5 intervals of the lower tail of the streamflow distribution (0-1, 1-2, 2-3, 3-4, and 4-5 percent), the 20 quintiles of the 4 quartiles (0-5, 5-10, 10-15, 15-20, 20-25, 25-30, 30-35, 35-40, 40-45, 45-50, 50-55, 55-60, 60-65, 65-70, 70-75, 75-80, 80-85, 85-90, 90-95, and 95-100 percent), and the 5 intervals of the upper tail of the streamflow distribution (95-96, 96-97, 97-98, 98-99 and 99-100 percent). For each of the 253,116 (712X711/2) unique pairings of stations and for each of the 34 percentile ranges, the concurrent daily mean streamflow values available for the two stations provided for station-pair application of the drainage-area ratio method. For each station pair, specific statistical summarization (median, mean, and standard deviation) of both the exponent and bias-correction components of the drainage-area ratio

  9. Estimating Vadose Zone Drainage From a Capped Seepage Basin, F Area, Savannah River Site

    NASA Astrophysics Data System (ADS)

    Wan, J.; Tokunaga, T. K.; Denham, M.

    2011-12-01

    Large volumes of waste solutions were commonly discharged into unlined seepage basins at many different facilities in the past. Plutonium was extracted from depleted uranium from 1955 to 1988 at the F-Area within the Savannah River Site, with contaminated process waters disposed of in permeable seepage basins. The primarily acidic solutions contained radioactive components (including tritium, 129I, and multiple isotopes of U, Pu, Sr, and Cs), elevated nitrate, and some metals (Hg, Pb, Cd). Basin 3 was the largest F-Area seepage basin, covering 2.0 hectare, with the water table typically at about 20 m below the soil surface. The local groundwater flows at an average velocity of 200 m/y in the approximately 10 m thick shallow aquifer, and is underlain by the low permeability Tan Clay. We used nearly 20 years of groundwater quality data from a monitoring well immediately downstream of Basin 3 to estimate the post-closure drainage of waste solutions through its underlying vadose zone, into the shallow aquifer. The measurements of tritium, nitrate, and specific conductance, were used as plume tracers in our estimates of vadose zone drainage. These calculations indicate that early stages of post-closure waste drainage occurred with high fluxes (≈ 1 m/y), and quickly declined. However, even after 20 years, drainage continues at a low but significant rate of several cm/y. These estimated drainage fluxes can help constrain predictions on the waste plume behavior, especially with respect to its emerging trailing gradient and anticipated time scales suitable for monitored natural attenuation.

  10. Appendix D-16A Building 515 Waste Accumulation Area

    SciTech Connect

    Tidwell, L

    2005-03-29

    The B-515 WAA is located in the southeast quadrant of the LLNL Main Site (see Figure D-1) along the west side of Building 515 (B-515). Hazardous wastes may be stored at the B-515 WAA for 90 days or less, until transferred to the appropriate Radioactive and Hazardous Waste Management (RHWM) facility or other permitted treatment, storage or disposal facility (TSDF). The design storage capacity of this WAA is 4,840 gallons. This appendix is designed to provide information specific to the Building 515 Waste Accumulation Area (B-515 WAA), a waste storage area. This appendix is not designed to be used as a sole source of information. All general information that is not specific to the B-515 WAA is included in the Contingency Plan for Waste Accumulation Areas, dated July 2004, and should be referenced.

  11. Annual peak discharges from small drainage areas in Montana through September 1978

    USGS Publications Warehouse

    Omang, R.J.; Parrett, C.; Hull, J.A.

    1979-01-01

    Annual peak stage and discharge data have been collected and tabulated for crest-stage gaging sites in Montana. The crest-stage program was begun in July 1955 to investigate the magnitude and frequency of floods from small drainage areas. The program has expanded from 45 crest-stage gaging stations initially to 173 stations maintained in 1978. Data are tabulated for the period of record. (Woodard-USGS)

  12. Annual peak discharges from small drainage areas in Montana through September 1977

    USGS Publications Warehouse

    Omang, R.J.; Hull, J.A.

    1978-01-01

    Annual peak stage and stream-discharge data have been collected and tabulated for crest-stage gaging sites in Montana. The crest-stage program was begun in July 1955 to investigate the magnitude and frequency of floods from small drainage areas. The program has expanded from 45 crest-stage gaging stations initially to 191 stations in 1977. Data are tabulated for 336 sites throughout the period of record. (Woodard-USGS)

  13. Annual peak discharges from small drainage areas in Montana through September 1981

    USGS Publications Warehouse

    Omang, R.J.

    1982-01-01

    Annual peak stage and discharge data have been collected and tabulated for crest-stage gaging sites in Montana. The crest-stage program was begun in July 1955 to investigate the magnitude and frequency of floods from small drainage areas. The program has expanded from 45 crest-stage gaging stations initially to 172 stations maintained in 1981. Data in the report are tabulated for the period of record. (USGS)

  14. Annual peak discharges from small drainage areas in Montana through September 1980

    USGS Publications Warehouse

    Omang, R.J.; Parrett, Charles; Hull, J.A.

    1955-01-01

    Annual peak stage and discharge data have been collected and tabulated for crest-stage gaging sites in Montana. The crest-stage program was begun in July 1955 to investigate the magnitude and frequency of floods from small drainage areas. The program has expanded from 45 crest-stage gaging stations initially to 172 stations maintained in 1980. Data in the report are tabulated for the period of record. (USGS)

  15. Annual peak discharges from small drainage areas in Montana through September 1979

    USGS Publications Warehouse

    Omang, R.J.; Parrett, C.; Hull, J.A.

    1955-01-01

    Annual peak stage and discharge data have been collected and tabulated for crest-stage gaging sites in Montana. The crest-stage program was begun in July 1955 to investigate the magnitude and frequency of floods from small drainage areas. The program has expanded from 45 crest-stage gaging stations initially to 173 stations maintained in 1979. Data in the report are tabulated for the period of record. (USGS)

  16. Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area

    USGS Publications Warehouse

    Trumbore, S.E.; Harden, J.W.

    1997-01-01

    Rates of input, accumulation, and turnover of C differ markedly within soil profiles and in soils with different drainage in the BOREAS northern study area. Soil C storage increases from ???3 kg C m-2 in well-drained, sandy soils to greater than 100 kg C m-2 in wetlands. Two modes of C accumulation were observed in upland soil profiles. Large annual C inputs (0.06-0.1 kg C m-2 yr-1) and slow decomposition (turnover times of 6-250 years) lead to rapid C accumulation in regrowing surface moss and detrital layers following fire. Deep organic layers that have accumulated over the millennia since the initiation of soil development, and are located below the most recent charred horizon, show slower rates of input (0.015-0.03 kg C m-2 yr-1) and turnover (100-1600 years) and accumulate C about 10 times slower than surface detrital layers. Rates of C input to soils derived from C and 14C data were in accord with net primary production estimates, with highest rates of input (0.14-0.6 kg C m-2 yr-1) in wetlands. Turnover times for C in surface detrital layers were 6-15 years for well-drained sand soils that showed highest soil temperatures in summer, 30-40 years for wetlands, and 36-250 years for uplands with thick moss cover and black spruce trees. Long (>100 years) turnover times in upland black spruce/clay soils most likely reflect the influence of woody debris incorporated into detrital layers. Turnover times for deep organic and mineral layer C were controlled by drainage, with fastest turnover (80-130 years) in well-drained sand soils and slowest turnover (>3000 years) in wetlands. Total C accumulation rates, which account for C losses from both deep organic and surface detrital layers, are close to zero for sand/jack pine soils, 0.003-0.01 kg C m-2 yr-1 for moderately to poorly drained sites in mature forest stands, and 0.03 kg C m-2 yr-1 for a productive fen. Decomposition of organic matter more than several decades old accounts for 9-22% of total heterotrophic

  17. Geochemical study of acid mine drainage of the Big Lick Tunnel area, Williamstown, PA

    SciTech Connect

    Tollin, S. . Dept. of Geosciences)

    1993-03-01

    Acid mine drainage in the anthracite region of Pennsylvania continues to be a significant environmental problem. This study examines the acid mine outflow from the Big Lick Tunnel, north of Williamstown, Dauphin County, Pennsylvania. The tunnel drains abandoned mines on the north side of the Big Lick Mountain. Mining ceased in the area circa 1940, and the tunnel has been in operation since that time. The water, soil and stream bed sediment geochemistry has been studied to determine their changes in chemistry over distance. The pH, TDS and metal concentrations were the primary focus. Metal concentrations were determined using an ICP unit. Data indicates the pH of the outflow to range between 6.7 and 7.3 Fe and Mn concentrations are as high as 9.7 ppb. Extensive metal precipitation ( yellow boy'') occurs within the tunnel and for several hundred meters from the mouth of the tunnel. The combination of near neutral pH and high metal concentration suggest that the drainage is in contact with highly alkaline materials prior to discharge from the tunnel. The geology of the area does not suggest bedrock as the possible source of alkaline material. One hypothesis is that the acidic water is reacting with the concrete tunnel and being neutralized. Data also suggests that the Fe precipitates much quicker than the Mn, resulting in a zonation between Fe-rich and Mn-rich sediments along the length of the drainage.

  18. Drainage Area-Dependent Knickpoint Generation Mechanisms, Smith River, northern California

    NASA Astrophysics Data System (ADS)

    Caldwell, D. J.; Kelsey, H. M.

    2011-12-01

    Knickpoints and knickzones (reaches of relatively high gradient located immediately downstream of a knickpoint) are a prominent characteristic of the channel slopes of both mainstem and tributary channels of the 1,575 km2 Smith River drainage in northern California. We have investigated these knickpoints using aerial photos, 10 m and 1 m digital elevation models (DEM's), and NAIP images supplemented by Schmidt hammer rock strength measurements and field verification of channel and terrace elevations using real time kinematic GPS surveys. Two types of knickpoints occur. At higher drainage areas (threshold of greater than ~250 km2), knickpoints occur within rock types with no significant difference in rock strength. There is a distinct upstream convergence of the modern channel with the lowest elevated strath surface along these knickzones, resulting in elevated strath surfaces downstream of the knickzones. We infer that the knickpoints are transient and that the straths are more vertically separated from the modern channel only after the knickpoint has migrated upstream. The causative baselevel fall that generates migrating knickpoints in the Smith River may be eustatic sea level fall following Quaternary highstands. For instance, fluvial terraces are cut into stage 5 marine terraces at the coast and these fluvial terraces likely are generated in the wake of knickpoints migrating upstream. In contrast, at drainage areas less than ~250 km2, the only knickpoints present in channels are those associated with large landslides that mobilize entire hillslopes into the channel, forcing a channel response. Notably absent along the Smith River are any knickpoints associated with changes in rock strength, as measured by Schmidt hammer values. From these observations, we infer that, first, major knickpoints along channels above a threshold drainage area of about 250 km2 are generated by baselevel fall that propagates upstream through channels of varying rock type; and second

  19. Hydrologic data for the drainage basins of Chatfield and Cherry Creek Lakes, Denver metropolitan area, Colorado

    USGS Publications Warehouse

    Gibbs, J.W.; Arnold, L.M.; Reed, R.L.

    1983-01-01

    Chatfield and Cherry Creek Lakes are flood control lakes constructed by the U.S. Army Corps of Engineers and leased to the Colorado Division of Parks and Recreation. Both lakes are in the Denver metropolitan area and provide a variety of recreational activities, including boating, camping, fishing, picnicking, and swimming. The projected increase of urban development in the drainage basins of Chatfield and Cherry Creek lakes could increase the constituent loads delivered to the lakes. Due to the eutrophic condition of Cherry Creek Lake and the potential eutrophic condition of Chatfield Lake, increased constituent loads could affect the suitability of the lakes for recreation. A monitoring program was started to determine the constituent loads of the drainage basins to both lakes. A network of monitoring stations was established to collect ambient water quality samples, storm runoff water quality samples, precipitation, and stream discharge. In the Cherry Creek basin 12 observation wells were established in the alluvium upgradient from Cherry Creek lake. Water levels and water quality data were collected to determine the quantity and quality of groundwater entering Cherry Creek lake. Data were collected from January through December 1982. The data may be used to evaluate the present and projected impact of urbanization in the drainage basins and the effect of increased constituent loads delivered to Chatfield and Cherry Creek lakes. (Author 's abstract)

  20. Preliminary appraisal of the geohydrologic aspects of drainage wells, Orlando area, central Florida

    USGS Publications Warehouse

    Kimrey, Joel O.

    1978-01-01

    The Floridan aquifer contains two highly transmissive cavernous zones in the Orlando area: an upper producing zone about 150-600 feet below land surface and a lower producing zone about 1,100-1 ,500 feet below land surface. Natural head differences are downward and there is hydraulic connection between the two producing zones. Drainage wells are finished open-end into the upper producing zone and emplace surface waters directly into that zone by gravity. Quantitatively, their use constitutes an effective method of artificial recharge. Their negative aspects relate to the probably poor, but unknown, quality of the recharge water. Caution is suggested in drawing definite and final conclusions on the overall geohydrologic and environmental effects of drainage wells prior to the collection and interpretation of a considerable quantity of new data. Though few ground-water pollution problems have been documented, the potential for pollution should be seriously considered in light of the probable continuing need to use drainage wells; the probable volumes and quality of water involved; and the hydraulic relations between the two producing zones. (Woodard-USGS)

  1. A network description on geometry and economics of Yangtze drainage area

    NASA Astrophysics Data System (ADS)

    Wang, Binbin; Xu, Tian; He, Da-Ren

    2004-03-01

    Drainage basin of large rivers can be viewed as a network. This is well known in geomorphology. Recently, Dodds and Rothman performed an investigation of detailed geometry of river networks [1]. After them, we have investigated geometry and economics of drainage area of Yangtze, the largest river in China. In our first-degree network, we define all the anabranches of Yangtze as the nodes, and the flowing water as the directed edges. A statistics has been performed with 2332 anabranches. Six statistical properties have been obtained, which are in a good agreement with the conclusions reported in Ref. [1] and show that the drainage basin of Yangtze is a scale-free network. In our second-degree network, we define all the open ports along the anabranches as the nodes, and the trade relationship between each pair of nodes as an edge. Population, GDP, berth number, and the large quantities of goods taken in and sent out of 229 open ports have been investigated. A simple model has been suggested to describe the trade process. The results are in a good agreement with the statistical data and show that our second-degree network is also scale-free. [1] P. S. Dodds and D. H. Rothman, Phys. Rev. E 63, (2000) 016115; 016116; 016117.

  2. Effects of recharge from drainage wells on quality of water in the Floridan Aquifer in the Orlando area, central Florida

    USGS Publications Warehouse

    Schiner, G.R.; German, E.R.

    1983-01-01

    Approximately 400 drainage wells in the Orlando area inject, by gravity, large quantities of stormwater runoff that may or may not be suitable for most purposes without treatment into the same freshwater zones of the Floridan aquifer tapped for public supply. The wells are used mostly to control lake levels and dispose of urban storm runoff. Recharge from drainage wells compensates for heavy withdrawals from the Floridan aquifer and helps maintain aquifer pressures that retard upward saltwater encroachment. Sixty-five supply wells and 21 drainage wells within a 16-mile radius of Orlando were sampled from September 1977 to June 1979. Most constituent concentrations were slightly higher in water from drainage wells than in water from supply wells. The most notable differences were in bacteria colony count and total nitrogen concentrations. With the exception of bacteria, water from drainage wells would generally meet the maximum contaminant levels established by the National Interim Primary and Proposed Secondary Drinking Water Regulations. (USGS)

  3. Annual peak discharges from small drainage areas in Montana for stations discontinued before 1978

    USGS Publications Warehouse

    Omang, R.J.; Hull, J.A.; Parrett, Charles

    1979-01-01

    Annual peak stage and discharge data have been tabulated for crest-stage gage sites in Montana. The crest-stage program was begun in July 1955 to investigate the magnitude and frequency of floods from samll drainage areas. The program has expanded from 45 crest-stage gaging stations initially to 172 stations maintained in 1978. From 1955 to 1978, 156 stations have been discontinued. This report is a tabulation of the stage and discharge data for the discontinued stations. (Woodard-USGS)

  4. Reclamation by tubewell drainage in Rechna Doab and adjacent areas, Punjab region, Pakistan

    USGS Publications Warehouse

    Malmberg, Glenn T.

    1975-01-01

    Around the turn of the century, a network of more than 40,000 miles of canals was constructed to divert water from the Indus River and its tributaries to about 23 million acres of largely unused desert in the Punjab region of Pakistan. The favorable climate and the perennial supply of irrigation water made available through the canals instituted the beginning of intensive farming. However, because of generally poor drainage and the high rate of canal leakage, the water table began to rise. As the population increased and agriculture expanded, the demand for irrigation water soon exceeded the available supply. Spreading of the canal supply to meet the expanded needs locally created shortages that prevented adequate leaching. Increased evaporation from the rising water table further contributed to the progressive accumulation of soluble salts in the soil. By the late 1930's the combined effect of waterlogging and salinity had reduced the agricultural productivity of the region to one of the lowest in the world. In 1954, after several unsuccessful projects were undertaken to reclaim affected areas and to stop the progressive encroachment of waterlogging and salinization, the Government of Pakistan in cooperation with the U.S. International Cooperation Administration undertook a study of the geology and hydrology of the Indus Plain that ultimately resulted in the formulation of a ground-water reclamation program. The principal feature of the program is the utilization of a network of deep wells spaced about a mile apart for the dual purpose of lowering the water table and for providing supplemental irrigation water. Through financial assistance and technical and engineering support principally from the United States, construction began in 1960 on the first of 18 proposed reclamation projects that eventually will include 21 million acres and more than 28,000 wells having an installed capacity of more than 100,000 cubic feet per second. An area of about 1.3 million acres

  5. Cluster analysis for characterization of rainfalls and CSO behaviours in an urban drainage area of Tokyo.

    PubMed

    Yu, Yang; Kojima, Keisuke; An, Kyoungjin; Furumai, Hiroaki

    2013-01-01

    Combined sewer overflow (CSO) from urban areas is recognized as a major pollutant source to the receiving waters during wet weather. This study attempts to categorize rainfall events and corresponding CSO behaviours to reveal the relationship between rainfall patterns and CSO behaviours in the Shingashi urban drainage areas of Tokyo, Japan where complete service by a combined sewer system (CSS) and CSO often takes place. In addition, outfalls based on their annual overflow behaviours were characterized for effective storm water management. All 117 rainfall events recorded in 2007 were simulated by a distributed model InfoWorks CS to obtain CSO behaviours. The rainfall events were classified based on two sets of parameters of rainfall pattern as well as CSO behaviours. Clustered rainfall and CSO groups were linked by similarity analysis. Results showed that both small and extreme rainfalls had strong correlations with the CSO behaviours, while moderate rainfall had a weak relationship. This indicates that important and negligible rainfalls from the viewpoint of CSO could be identified by rainfall patterns, while influences from the drainage area and network should be taken into account when estimating moderate rainfall-induced CSO. Additionally, outfalls were finally categorized into six groups indicating different levels of impact on the environment. PMID:23925181

  6. Efflorescent sulfates from Baia Sprie mining area (Romania)--Acid mine drainage and climatological approach.

    PubMed

    Buzatu, Andrei; Dill, Harald G; Buzgar, Nicolae; Damian, Gheorghe; Maftei, Andreea Elena; Apopei, Andrei Ionuț

    2016-01-15

    The Baia Sprie epithermal system, a well-known deposit for its impressive mineralogical associations, shows the proper conditions for acid mine drainage and can be considered a general example for affected mining areas around the globe. Efflorescent samples from the abandoned open pit Minei Hill have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman and near-infrared (NIR) spectrometry. The identified phases represent mostly iron sulfates with different hydration degrees (szomolnokite, rozenite, melanterite, coquimbite, ferricopiapite), Zn and Al sulfates (gunningite, alunogen, halotrichite). The samples were heated at different temperatures in order to establish the phase transformations among the studied sulfates. The dehydration temperatures and intermediate phases upon decomposition were successfully identified for each of mineral phases. Gunningite was the single sulfate that showed no transformations during the heating experiment. All the other sulfates started to dehydrate within the 30-90 °C temperature range. The acid mine drainage is the main cause for sulfates formation, triggered by pyrite oxidation as the major source for the abundant iron sulfates. Based on the dehydration temperatures, the climatological interpretation indicated that melanterite formation and long-term presence is related to continental and temperate climates. Coquimbite and rozenite are attributed also to the dry arid/semi-arid areas, in addition to the above mentioned ones. The more stable sulfates, alunogen, halotrichite, szomolnokite, ferricopiapite and gunningite, can form and persists in all climate regimes, from dry continental to even tropical humid. PMID:26544892

  7. Capture and characterization of particulate phosphorus from farm drainage waters in the Everglades Agricultural Area

    NASA Astrophysics Data System (ADS)

    Bhadha, J. H.; Lang, T.; Daroub, S.

    2012-12-01

    The buildup of highly labile, organic, phosphorus (P)-enriched sediments in farms canals within the Everglades Agricultural Area (EAA) has been associated with the production of floating aquatic vegetation. During drainage events, these sediments are susceptible to transport and contribute to the overall P load. In order to evaluate the total P load exiting the farm canals, a settling tank experiment was conducted to capture the sediments during drainage events from eight farms. Drainage water was channelized through two 200L polypropylene collection tanks which allowed sediments to settle at the bottom based on its particle size. Water was carefully siphoned out of the tanks and the sediments collected for analyses. A five step P-fractionation process was used to distinguish organic (o) and inorganic (i) forms of P: KCl extractable P, NaOH extractable P, HCl extractable P, and residual P. The KCl-Pi fraction represents the labile Pi that is water soluble and exchangeable (loosely adsorbed); NaOH extractable P represents Fe- and Al- bound inorganic P (NaOH-Pi) and organic P associated with humic and fulvic acids (NaOH-Po). The HCl-Pi fraction includes Ca- and Mg- bound P, while Residue-P represents recalcitrant organic P compounds and P bound to minerals. The sediments were also used to conduct a P-flux study under both aerobic and anaerobic conditions. Our goal is to provide growers with vital information and insight into P loading that will help them in their efforts to reduce off-farm P loads in the EAA.

  8. Evaluation of Reactive Mixtures for Passive Treatment of Mine Drainage from a Waste Rock Storage Area

    NASA Astrophysics Data System (ADS)

    Jeen, S. W.; Mattson, B.

    2014-12-01

    Laboratory column tests for a passive treatment system for mine drainage from a waste rock storage area was conducted to evaluate suitable reactive mixture, system configuration, flow rate, and residence time. Five columns containing straw, chicken manure, mushroom compost, and limestone, either in layered or mixed, were set up and operated for a total of 74 days to simulate the treatment system. The key variables determined from the tests include pH and redox adjustment of the treatment system, treatment efficiency for acidity and metals, sulfate removal rates, and precipitation of secondary minerals as sinks for metals. The results showed that all of the five columns removed metals of concern (i.e., Al, Cd, Co, Cu, Fe, Ni, Zn) with residence time of 15 hours and greater. The organic materials used in the test provided sufficient sulfate reduction that is available for metal removal in the mine drainage. The sulfate removal rates ranged between 200 and 600 mg/L/day. Reaction mechanisms responsible for the removal of metals may include sulfate reduction and subsequent sulfide precipitation, precipitation of secondary carbonates and hydroxides, co-precipitation, and sorption on organic materials and secondary precipitates. The results from the columns tests provide a basis for design of a pilot-scale field passive treatment system, such as permeable reactive barrier (PRB) or reducing and alkalinity producing system (RAPS).

  9. Drainage areas of New York streams, by river basins; a stream gazetteer; Part 1, Data compiled as of October 1980

    USGS Publications Warehouse

    Wagner, L.A.

    1982-01-01

    Hydrologic studies concerned with surface water require geographic data of several types, among which are stream length and size of drainage area from which runoff is contributed. This gazetteer presents all drainage-area data on New York streams that were available as of October 1980. The information is grouped by river basin, and each section consists of two lists. The first gives sites alphabetically by stream name and includes the body of water to which the stream is tributary, county in which the site is located, drainage area above the mouth, coordinates of the topographic quadrangle on the State index map , and the Geological Survey site number. The second list presents site information by U.S. Geological Survey site number (downstream order along the main stream) and includes drainage area, distance of measurement site above the mouth, and location by latitude and longitude. Data were compiled from published and unpublished sources, all of which are available for inspection at the U.S. Geological Survey in Albany, N.Y. Also included are updated values on several river basins that have been redelineated and whose drainage areas have been recomputed and retabulated since 1977. (USGS)

  10. Radiation dose to the lymph drainage area in esophageal cancer with involved-field irradiation

    PubMed Central

    SHEN, WENBIN; GAO, HONGMEI; ZHU, SHUCHAI; LI, YOUMEI; LI, JUAN; LIU, ZHIKUN; SU, JINWEI

    2016-01-01

    The aim of this study was to quantify the radiation dose to the corresponding lymph drainage area in esophageal cancer using three-dimensional conformal radiation therapy (3D-CRT) with involvED-field IRradiation (IFI) and to analyze associated factors. A retrospective analysis oF 81 patients with esophageal cancer was conducted. According to the location of the lesions, the lymph drainage area was delineated and the dosimetric parameters were calculated. The 1-, 3-, 5- and 8-year survival rates of the patients were 67.90, 33.33, 20.99 and 11.11%, respectively. Based on the dose-volume histogram in the treatment plan, we calculated the volume percentage of the planning target volume including clinically positive lymph nodes (PTV-N) receiving radiation doses of 30, 35, 40, 45 and 50 Gy (VPTV-N30-50). The median values of VPTV-N30-50 were 73, 70, 67, 64 and 58%, respectively. The prescribed dose size exhibited no correlation with VPTV-N30-35, but did exhibit a significant correlation with VPTV-N40-50; the radiation field was not correlated with VPTV-N30-45, but exhibited a significant correlation with VPTV-N50; The length of the lesion on esophageal barium meal X-ray and the PTV were significantly correlated with VPTV-N30–50. The analysis of variance revealed that the VPTV-NX value in the upper thoracic segment was higher compared with that in the middle and lower thoracic segments; VPTV-N30-35 values differed significantly according to the different locations of the lesions, whereas VPTV-N40-50 values exhibited no significant differences. The value of VPTV-NX exerted no significant effect on long-term patient survival. Therefore, the corresponding lymph drainage area of esophageal cancer IS subjected to a certain Radiation dose when patients undergo 3D-CRT with IFI, which may play a role in the prevention of regional nodal metastasis. However, this hypothesis requires confirmation by further clinical studies. PMID:26870295

  11. The role of discharge variation in scaling of drainage area and food chain length in rivers

    USGS Publications Warehouse

    Sabo, John L.; Finlay, Jacques C.; Kennedy, Theodore A.; Post, David M.

    2010-01-01

    Food chain length (FCL) is a fundamental component of food web structure. Studies in a variety of ecosystems suggest that FCL is determined by energy supply, environmental stability, and/or ecosystem size, but the nature of the relationship between environmental stability and FCL, and the mechanism linking ecosystem size to FCL, remain unclear. Here we show that FCL increases with drainage area and decreases with hydrologic variability and intermittency across 36 North American rivers. Our analysis further suggests that hydrologic variability is the mechanism underlying the correlation between ecosystem size and FCL in rivers. Ecosystem size lengthens river food chains by integrating and attenuating discharge variation through stream networks, thereby enhancing environmental stability in larger river systems.

  12. Geographic Information Systems Methods for Determining Drainage-Basin Areas, Stream-Buffered Areas, Stream Length, and Land Uses for the Neosho and Spring Rivers in Northeastern Oklahoma

    USGS Publications Warehouse

    Masoner, Jason R.; March, Ferrella

    2006-01-01

    Geographic Information Systems have many uses, one of which includes the reproducible computation of environmental characteristics that can be used to categorize hydrologic features. The Oklahoma Department of Wildlife Conservation and the Oklahoma Department of Environmental Quality are investigating Geographic Information Systems techniques to determine partial drainage-basin areas, stream-buffer areas, stream length, and land uses (drainage basin and stream characteristics) in northeastern Oklahoma. The U.S Geological Survey, in cooperation with Oklahoma Department of Wildlife Conservation and the Oklahoma Department of Environmental Quality, documented the methods used to determine drainage-basin and stream characteristics for the Neosho and Spring Rivers above Grand Lake Of the Cherokees in northeastern Oklahoma and calculated the characteristics. The drainage basin and stream characteristics can be used by the Oklahoma Department of Wildlife Conservation and the Oklahoma Department of Environmental Quality to aid in natural-resource assessments.

  13. Tectonically-beheaded drainages (wind gaps), Palmdale area, Los Angeles, County, California

    SciTech Connect

    Lachapelle, W.A. ); Shlemon, R.J.

    1993-04-01

    Five discrete wind gaps, informally designated 1 (west) through 5 (east), occur along a 6.5 km distance between the Anaverde water gap on the west and the Old Harold Road drainage on the east at Palmdale, California. Aerial photographic and geomorphic interpretations combined with boring and trench logs indicate that the windgaps were once courses of low-order, northward-flowing drainages now beheaded by the San Andreas Fault (SAF). Wind gaps 2 through 5 now contain only intermittent underfit streams, but are bordered by remnants of high-level fluvial terrace gravels attesting to long periods of flow across the SAF before cutoff by tectonic displacement. Representative wind gap 5 contains approximately 6-m of fining-upward sands and silts, and yields an approximately 10,000-yr radiocarbon date from near the base of the section. Based mainly on wind gap morphology and on an average right-lateral slip rate of about 35 mm/yr for this segment of the SAF, the authors suggest three possible hypotheses to account for the origin of the Palmdale area wind gaps: (1) they were beheaded by continual lateral movement of the SAF; (2) they maintained flow across the SAF during much of Pleistocene time, but were eventually defeated by an increasing rate of slip in latest Pleistocene time or (3) they continued flow across the SAF until latest Pleistocene time, particularly during pluvial epochs, but were eventually cut off owing to the onset of more aridic climatic and sedimentation regimes in early Holocene time.

  14. Effect of Water Mine Drainage on Estimation of Surface Runoff in Hilly Area

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Liu, P.; Gao, Z.; Han, Y.

    2013-12-01

    Large amounts of groundwater are discharged during underground mining operations, which result in the drawdown of groundwater, known as aquifer dewatering in mining areas. As a result, groundwater runoff condition is inevitably changed. In addition, the surface runoff situation may be influenced indirectly, even decreased its amount owing to the hydraulic connection between surface water and groundwater. Moreover, the deceased surface runoff may lead to significantly effect on the surrounding agriculture irrigation, safe drinking and ecological environment, especially in the hilly area with poor developed and minimal storage capacity aquifer. Using the numerical simulation method, the above mentioned problems are given detailed analysis in the case study of a mine lied in the middle of china. According to the mine development and utilization scheme, the mine water yield calculated using the module MODFLOW is nearly 83.0×104m3/a during the twenty-four years of mining. The area having obvious groundwater level drawdown caused by the mine drainage is about 5.75 km2. Besides, the annual surface runoff is decreased by 20.4%, generally resulted in the river depletion from January to March.

  15. Mineralogical correlation of surficial sediment from area drainages with selected sedimentary interbeds at the Idaho National Engineering Laboratory, Idaho

    SciTech Connect

    Bartholomay, R.C.

    1990-08-01

    Ongoing research by the US Geological Survey at the INEL involves investigation of the migration of radioactive elements contained in low-level radioactive waste, hydrologic and geologic factors affecting waste movement, and geochemical factors that influence the chemical composition of the waste. Identification of the mineralogy of the Snake River Plain is needed to aid in the study of the hydrology and geochemistry of subsurface waste disposal. The US Geological Surveys project office at the Idaho National Engineering Laboratory, in cooperation with the US Department of Energy, used mineralogical data to correlate surficial sediment samples from the Big Lost River, Little Lost River, and Birch Greek drainages with selected sedimentary interbed core samples taken from test holes at the RWMC (Radioactive Waste Management Complex), TRA (Test Reactors Area), ICPP (Idaho Chemical Processing Plant), and TAN (Test Area North). Correlating the mineralogy of a particular present-day drainage area with a particular sedimentary interbed provides information on historical source of sediment for interbeds in and near the INEL. Mineralogical data indicate that surficial sediment samples from the Big Lost River drainage contained a larger amount of feldspar and pyroxene and a smaller amount of calcite and dolomite than samples from the Little Lost River and Birch Creek drainages. Mineralogical data from sedimentary interbeds at the RWMC, TRA, and ICPP correlate with surficial sediment of the present-day big Lost River drainage. Mineralogical data from a sedimentary interbed at TAN correlate with surficial sediment of the present-day Birch Creek drainage. 13 refs., 5 figs., 3 tabs.

  16. Rainfall interception by bracken in open habitats — Relations between leaf area, canopy storage and drainage rate

    NASA Astrophysics Data System (ADS)

    Pitman, John Iain

    1989-02-01

    A rainfall simulator has been used to investigate how the free throughfall coefficient p, canopy storage C, and drainage rate Ds, of bracken varies with projected leaf area index ( LAI) over a LAI range of 0.4 to 5.88. For field canopies p was found to be a simple exponential function of LAI. Measured maximum water shortage, Cmax was related to LAI by Cmax = 0.467 (± 0.004) LAI. Attempts to relate the measured storage and drainage rate using the modified Rutter drainage function and the recently proposed Calder drainage model were unsuccessful, primarily because both assume zero drainage at zero C. The experimental data show that C always has some positive value Cmin when drainage from the canopy ceases. Cmin was related to LAI by Cmin = (0.156 ± 0.004) LAI, and is smaller than reported values Two new asymptotic drainage functions were fitted to the data, using optimisation with excellent results: Ds = [e K( C- Cmin)] - 1 (I) Ds = A( C - Cmin) K (II) optimisation of eqns. (I) and (II) for each experiment showed that the values Cmin, K and A were simple functions of LAI. Thus both empirical expressions could be expressed as simple functions of LAI and storage, and hence generalized over the complete LAI range. Model (I) explained over 90% of the variance of Ds over the LAI range 0.4 to 5.88. If remote sensing techniques are used to obtain values of LAI, the functions presented have wide applicability to bracken growing in open habitats. Leyton et al. (1967).

  17. Suspended sediment and sediment-source areas in the Fountain Creek drainage basin upstream from Widefield, southeastern Colorado

    USGS Publications Warehouse

    Von Guerard, Paul

    1989-01-01

    Suspended-sediment samples were collected from synoptic-sampling sites to determine suspended-sediment concentrations, loads, yields, and sediment-source areas in the Fountain Creek drainage basin upstream from Widefield, Colorado. Suspended-sediment yields ranged from 0.004 to 278 tons/sq mi/day. Twenty-four sites were sampled that represent urban and rural land use. The median suspended-sediment yield from urban drainage basins was 7.7 tons/sq mi/day and the median suspended-sediment yield from rural drainage basins was 0.46 ton/sq mi/day. Sediment-transport equations were derived for total suspended-sediment discharge and suspended-sand discharge at seven periodic-sampling sites. Annual suspended-sediment loads and yields were computed for the 1985 water year. Urbanization in the downstream parts of the Monument Creek drainage basin, the main tributary to Fountain Creek, affected sediment loads. The downstream 14% of the Monument Creek drainage basin contributed about 61% of the annual suspended-sediment load transported at the mouth of Monument Creek. About 73% of the annual suspended-sediment load for Fountain Creek at Colorado Springs was contributed by Monument Creek. Abandoned mill tailings along Fountain Creek contributed little to total suspended sediment load. Contributions of streambank erosion to basin sediment yields were not quantified. However, the measured rate of streambank erosion at a site on Fountain Creek has increased during a 37-year period. (USGS)

  18. The influence of acidic mine and spoil drainage on water quality in the mid-Wales area.

    PubMed

    Fuge, R; Laidlaw, I M; Perkins, W T; Rogers, K P

    1991-06-01

    The many abandoned base metal mines of the mid-Wales ore field are sources of extensive pollution. Some of the mineralised veins contain large amounts of pyrite and marcasite and oxidative weathering of these produces sulphuric acid resulting in very acidic mine drainage waters. In addition, the spoil tips associated with these mines can contain abundant iron sulphides. Drainage waters from these sources have pH values as low as 2.6 and are heavily contaminated with metals such as Al, Zn, Cd and Ni.Two of the main rivers of the area, the Rheidol and Ystwyth, intercept heavily contaminated acidic drainage which has a marked effect on water quality. The Rheidol contains over 100 μg L(-1) Zn for 16 km downstream of the acid water influx. This level is over three times the recommended EEC limit for Zn in salmonoid waters of low hardness. PMID:24202839

  19. Relative tectonics and debris flow hazards in the Beijing mountain area from DEM-derived geomorphic indices and drainage analysis

    NASA Astrophysics Data System (ADS)

    Cheng, Weiming; Wang, Nan; Zhao, Min; Zhao, Shangmin

    2016-03-01

    The geomorphic setting of the tectonically active area around Beijing is a result of complex interactions involving Yanshan neotectonic movements and processes of erosion and deposition. The Beijing Mountain study area contains the junction of two mountain ranges (the Yanshan Mountains and the Taihang Mountains). Tectonic activity has significantly influenced the drainage system and the geomorphic situation in the area, leading to a high probability of the development of debris flows, which is one of the major abrupt geological disasters in the region. Based on 30-m-resolution ASTER GDEM data, a total of 752 drainage basins were extracted using ArcGIS software. A total of 705 debris flow valleys were visually interpreted from ALOS satellite images and published documents. Seven geomorphic indices were calculated for each basin including the relief amplitude, the hypsometric integral, the stream length gradient, the basin shape indices, the fractal dimension, the asymmetry factor, and the ratio of the valley floor width to the height. These geomorphic indices were divided into five classes and the ratio of the number of the debris flow valleys to the number of the drainage basins for each geomorphic index was computed and analyzed for every class. Average class values of the seven indices were used to derive an index of relative active tectonics (IRAT). The ratio of the number of the debris flow valleys to the number of the drainage basins was computed for every class of IRAT. The degree of probable risk level was then defined from the IRAT classes. Finally, the debris flow hazard was evaluated for each drainage basin based on the combined effect of probable risk level and occurrence frequency of the debris flows. The result showed a good correspondence between IRAT classes and the ratio of the number of the debris flow valleys to the number of the drainage basins. Approximately 65% of the drainage basins with occurred debris flow valleys are at a high risk level

  20. Feature pruning by upstream drainage area to support automated generalization of the United States National Hydrography Dataset

    USGS Publications Warehouse

    Stanislawski, L.V.

    2009-01-01

    The United States Geological Survey has been researching generalization approaches to enable multiple-scale display and delivery of geographic data. This paper presents automated methods to prune network and polygon features of the United States high-resolution National Hydrography Dataset (NHD) to lower resolutions. Feature-pruning rules, data enrichment, and partitioning are derived from knowledge of surface water, the NHD model, and associated feature specification standards. Relative prominence of network features is estimated from upstream drainage area (UDA). Network and polygon features are pruned by UDA and NHD reach code to achieve a drainage density appropriate for any less detailed map scale. Data partitioning maintains local drainage density variations that characterize the terrain. For demonstration, a 48 subbasin area of 1:24 000-scale NHD was pruned to 1:100 000-scale (100 K) and compared to a benchmark, the 100 K NHD. The coefficient of line correspondence (CLC) is used to evaluate how well pruned network features match the benchmark network. CLC values of 0.82 and 0.77 result from pruning with and without partitioning, respectively. The number of polygons that remain after pruning is about seven times that of the benchmark, but the area covered by the polygons that remain after pruning is only about 10% greater than the area covered by benchmark polygons. ?? 2009.

  1. Improving Landslide Inventories by Limiting Land Classification to Drainage Areas of Debris Flow-Dominated Channels

    NASA Astrophysics Data System (ADS)

    Lyons, N. J.; Mitasova, H.; Wegmann, K. W.

    2011-12-01

    Landslide inventories, frequently created by aerial photograph interpretation (API), are often used in the production of hillslope hazard maps to characterize past landslides or to evaluate a hazard model. In the former application of inventories, potential landslides in hazard maps are delineated as areas that have similar morphometrics as past landslides at locations of modeled hillslope instability. Therefore, the accuracy of the inventory has a strong influence upon hazard extent. In the latter application, the partial inventories that sometimes result from API, due to the subjectivity of interpretation and revegetation of landslides, likely results in incorrect evaluations. A more complete, less subjective technique is needed to not only better characterize past landslides and improve evaluation of hazard models, but also to assess the extent of areas prone to significant mass wasting in mountainous regions due to the evolution of landscapes. Inventory accuracy continues to improve with new technology and automated techniques, though rarely is the form of a channel's topography incorporated into the inventory process despite the growing evidence of a topographic signature of debris flows. This signature demarcates the transition between the dominant channel erosional process: fluvial or debris flow. These process transitions are often observed at scaling breaks in log-log plots of a channel's drainage area versus slope (DS plot). The scaling breaks, above which the effects of fluvial power laws upon channel topography are not observed and below which debris flow scars are not found, may signify the lowest point in the watershed where debris flows occur. We present an inventory technique that limits a land classification algorithm to areas that are upstream from this scaling break determined from DS plots of five streams in the Great Smoky Mountains National Park (GSMNP) region of the southern Appalachians. Topographic data for the DS plots and the

  2. Development of flood probability charts for urban drainage network in coastal areas through a simplified joint assessment approach

    NASA Astrophysics Data System (ADS)

    Archetti, R.; Bolognesi, A.; Casadio, A.; Maglionico, M.

    2011-04-01

    The operating conditions of urban drainage networks during storm events certainly depend on the hydraulic conveying capacity of conduits but also on downstream boundary conditions. This is particularly true in costal areas where the level of the receiving water body is directly or indirectly affected by tidal or wave effects. In such cases, not just different rainfall conditions (varying intensity and duration), but also different sea-levels and their effects on the network operation should be considered. This paper aims to study the behaviour of a seaside town storm sewer network, estimating the threshold condition for flooding and proposing a simplified method to assess the urban flooding severity as a function of either climate variables. The case study is a portion of the drainage system of Rimini (Italy), implemented and numerically modelled by means of InfoWorks CS code. The hydraulic simulation of the sewerage system has therefore allowed to identify the percentage of nodes of the drainage system where flooding is expected to occur. Combining these percentages with both climate variables values has lead to the definition charts representing the combined degree of risk "sea-rainfall" for the drainage system under investigation. A final comparison between such charts and the results obtained from a one-year sea-rainfall time series has confirmed the reliability of the analysis.

  3. Development of flood probability charts for urban drainage network in coastal areas through a simplified joint assessment approach

    NASA Astrophysics Data System (ADS)

    Archetti, R.; Bolognesi, A.; Casadio, A.; Maglionico, M.

    2011-10-01

    The operating conditions of urban drainage networks during storm events depend on the hydraulic conveying capacity of conduits and also on downstream boundary conditions. This is particularly true in coastal areas where the level of the receiving water body is directly or indirectly affected by tidal or wave effects. In such cases, not just different rainfall conditions (varying intensity and duration), but also different sea-levels and their effects on the network operation should be considered. This paper aims to study the behaviour of a seaside town storm sewer network, estimating the threshold condition for flooding and proposing a simplified method to assess the urban flooding severity as a function of climate variables. The case study is a portion of the drainage system of Rimini (Italy), implemented and numerically modelled by means of InfoWorks CS code. The hydraulic simulation of the sewerage system identified the percentage of nodes of the drainage system where flooding is expected to occur. Combining these percentages with both climate variables' values has lead to the definition of charts representing the combined degree of risk "rainfall-sea level" for the drainage system under investigation. A final comparison between such charts and the results obtained from a one-year rainfall-sea level time series has demonstrated the reliability of the analysis.

  4. Advanced Reservoir Characterization and Evaluation of CO{sub 2} Gravity Drainage in the Naturally Fractured Spraberry Trend Area

    SciTech Connect

    Schechter, D.S.

    1999-02-03

    The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and, (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. This report provides results of the third year of the five-year project for each of the four areas including a status report of field activities leading up to injection of CO2.

  5. Advanced Reservoir Characterization and Evaluation of CO2 Gravity Drainage in the Naturally Fractured Spraberry Trend Area, Class III

    SciTech Connect

    Knight, Bill; Schechter, David S.

    2002-07-26

    The goal of this project was to assess the economic feasibility of CO2 flooding the naturally fractured Spraberry Trend Area in west Texas. This objective was accomplished through research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. This provides results of the final year of the six-year project for each of the four areas.

  6. Runoff and drainage water quality from geotextile and gravel pads used in livestock feeding and loafing areas.

    PubMed

    Singh, Anshu; Bicudo, José R; Workman, Stephen R

    2008-05-01

    Geotextile and gravel pads offer a low-cost alternative to concrete for providing all-weather surfaces for cattle and vehicle traffic, and are used in many livestock facilities to minimize mud, runoff and erosion of heavy traffic areas. The objective of this study was to compare different combinations of geotextile and gravel used in heavy livestock traffic areas that minimize the potential for water pollution. Three different pad combinations were constructed in 2.4 x 6-m plots as follows: (i) woven geotextile+100mm of gravel+50mm Dense Grade Aggregate (DGA); (ii) woven geotextile + geoweb+100 mm DGA; and (iii) non-woven geotextile+152 mm of gravel+50mm DGA; (iv) mud lots as control. The third combination was equivalent to one of the base treatments specified by the Kentucky Natural Resource and Conservation Service (NRCS). All treatment combinations were duplicated. Lysimeter pans were installed in four out of eight plots for the collection of leachate or drainage water. Runoff was collected at the lower end of the plots. About 14 kg of beef cattle manure were added evenly to the plots. Rainfall at 50mm/h was applied using rainfall simulators. In the first five of ten experiments, manure was removed from the surface of the pads after each experiment. In the remaining five experiments manure accumulated on the surface of the pads. The effect of pad treatment was significant on the electrical conductivity (EC), total solids (TS), chemical oxygen demand (COD), nitrite (NO2-N), total nitrogen (TN) and total phosphorus (TP) values in surface runoff at the 5% level. Manure removal did not have any significant effect on the nutrient content of runoff or leachate samples except for ammonia (NH4-N) values. Although a mass balance indicated relatively small amounts of organic matter and nutrients were lost by runoff and leaching, the actual contamination level of both runoff and leachate samples were high; TP levels as high as 12 mg/l (5.4 mg/m2) in runoff and nitrate (NO3

  7. Purification and treatment of mine drainage in some mine areas of China

    SciTech Connect

    Yu, H.

    1998-12-31

    The methods of purification and precipitation process of turbid mine water are discussed in the paper. The processes of water treatment are coagulation, precipitation, filtration and disinfection. According to each characteristic of water quality, different ways and technological processes of water treatment are carried out. Finally, the purification of mine drainages are shown through some practical examples with obvious environmental benefits.

  8. GRACE and AMSR-E-based estimates of winter season solid precipitation accumulation in the Arctic drainage region

    NASA Astrophysics Data System (ADS)

    Seo, Ki-Weon; Ryu, Dongryeol; Kim, Baek-Min; Waliser, Duane E.; Tian, Baijun; Eom, Jooyoung

    2010-10-01

    Solid precipitation plays a major role in controlling the winter hydrological cycle and spring discharge in the Arctic region. However, it has not been well documented due to sharply decreasing numbers of precipitation gauges, gauge measurement biases, as well as limitations of conventional satellite methods in high latitudes. In this study, we document the winter season solid precipitation accumulation in the Arctic region using the latest new satellite measurements from the Gravity Recovery and Climate Experiment (GRACE) and the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E). GRACE measures the winter total water (mainly from snow water equivalent (SWE)) storage change through gravity changes while AMSR-E measures the winter SWE through passive microwave measurements. The GRACE and AMSR-E measurements are combined with in situ and numerical model estimates of discharge and evapotranspiration to estimate the winter season solid precipitation accumulation in the Arctic region using the water budget equation. These two satellite-based estimates are then compared to the conventional estimates from two global precipitation products, such as the Global Precipitation Climatology Project (GPCP) and Climate Prediction Center's Merged Analysis of Precipitation (CMAP), and three reanalyses, the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis, the European Centre for Medium-Range Weather Forecasts' ERA-Interim, and the Japan Meteorological Agency's Climate Data Assimilation System (JCDAS) reanalysis. The GRACE-based estimate is very close to the GPCP and ERA-Interim estimates. The AMSR-E-based estimate is the most different from the other estimates. This GRACE-based measurement of winter season solid precipitation accumulation can provide a new valuable benchmark to understand the hydrological cycle, to validate and evaluate the model simulation, and to improve data assimilation in the

  9. Thermodynamic Model for Fluid-Fluid Interfacial Areas in Porous Media for Arbitrary Drainage-Imbibition Sequences

    SciTech Connect

    Schroth, Martin H.; Oostrom, Mart; Dobson, Richard; Zeyer, Josef

    2008-08-01

    Fluid/fluid interfacial areas are important in controlling the rate of mass and energy transfer between fluid phases in porous media. We present a modified thermodynamically based model (TBM) to predict fluid/fluid interfacial areas in porous media for arbitrary drainage/imbibition sequences. The TBM explicitly distinguishes between interfacial areas associated with continuous (free) and isolated (entrapped) nonwetting fluids. The model is restricted to two-fluid systems in which (1) no significant conversion of mechanical work into heat occurs, (2) the wetting fluid completely wets the porous medium’s solid surfaces, and (3) no changes in interfacial area due to mass transfer between phases occur. We show example calculations for two different drainage/imbibition sequences in two porous media: a highly uniform silica sand and a well-graded silt. The TBM’s predictions for interfacial area associated with free nonwetting-fluid are identical to those of a previously published geometry-based model (GBM). However, predictions for interfacial area associated with entrapped nonwetting-fluid are consistently larger in the TBM than in the GBM. Although a comparison of model predictions with experimental data is currently only possible to a limited extent, good general agreement was found for the TBM. As required model parameters are commonly used as inputs for or tracked during multifluid-flow simulations, the modified TBM may be easily incorporated in numerical codes.

  10. Advanced Reservoir Characterization and Evaluation of CO2 Gravity Drainage in the Naturally Fractured Spraberry Trend Area

    SciTech Connect

    McDonald, Paul; Schechter, David S.

    1999-11-01

    The overall goal of this project was to assess the economic feasibility of CO2 flooding the naturally fractured Spraberry Trend Area in West Texas. This objective was accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) analytical and numerical simulation of Spraberry reservoirs, and, (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. Additionally, a ten (10) acre field demonstration pilot project is part of this project. This report discusses the activity, during the third calendar quarter (July through September) of 1998 (fourth quarter of the projects fiscal year).

  11. Heavy metals content in acid mine drainage at abandoned and active mining area

    NASA Astrophysics Data System (ADS)

    Hatar, Hazirah; Rahim, Sahibin Abd; Razi, Wan Mohd; Sahrani, Fathul Karim

    2013-11-01

    This study was conducted at former Barite Mine, Tasik Chini and former iron mine Sungai Lembing in Pahang, and also active gold mine at Lubuk Mandi, Terengganu. This study was conducted to determine heavy metals content in acid mine drainage (AMD) at the study areas. Fourteen water sampling stations within the study area were chosen for this purpose. In situ water characteristic determinations were carried out for pH, electrical conductivity (EC), redox potential (ORP) and total dissolved solid (TDS) using multi parameter YSI 556. Water samples were collected and analysed in the laboratory for sulfate, total acidity and heavy metals which follow the standard methods of APHA (1999) and HACH (2003). Heavy metals in the water samples were determined directly using Inductive Coupled Plasma Mass Spectrometry (ICP-MS). Data obtained showed a highly acidic mean of pH values with pH ranged from 2.6 ± 0.3 to 3.2 ± 0.2. Mean of electrical conductivity ranged from 0.57 ± 0.25 to 1.01 ± 0.70 mS/cm. Redox potential mean ranged from 487.40 ± 13.68 to 579.9 ± 80.46 mV. Mean of total dissolved solids (TDS) in AMD ranged from 306.50 ± 125.16 to 608.14 ± 411.64 mg/L. Mean of sulfate concentration in AMD ranged from 32.33 ± 1.41 to 207.08 ± 85.06 mg/L, whereas the mean of total acidity ranged from 69.17 ± 5.89 to 205.12 ± 170.83 mgCaCO3/L. Heavy metals content in AMD is dominated by Fe, Cu, Mn and Zn with mean concentrations range from 2.16 ± 1.61 to 36.31 ± 41.02 mg/L, 0.17 ± 0.13 to 11.06 ± 2.85 mg/L, 1.12 ± 0.65 to 7.17 ± 6.05 mg/L and 0.62 ± 0.21 to 6.56 ± 4.11 mg/L, respectively. Mean concentrations of Ni, Co, As, Cd and Pb were less than 0.21, 0.51, 0.24, 0.05 and 0.45 mg/L, respectively. Significant correlation occurred between Fe and Mn, Cu, Zn, Co and Cd. Water pH correlated negatively with all the heavy metals, whereas total acidity, sulfate, total dissolved solid, and redox potential correlated positively. The concentration of heavy metals in the AMD

  12. Influence of particulates on phosphorus loading exported from farm drainage during a storm event in the Everglades Agricultural Area

    NASA Astrophysics Data System (ADS)

    Bhadha, J. H.; Lang, T. A.; Daroub, S. H.

    2015-12-01

    The purpose of this study was to evaluate the influence of particulates on P loading captured during a single storm event. The Everglades Agricultural Area of Florida comprises 280,000 hectares of organic soil farmland artificially drained by ditches, canals and pumps. Phosphorus (P)-enriched suspended particulates in canals are susceptible to transport and can contribute significantly to the overall P loads in drainage water. A settling tank experiment was conducted to capture particulates during tropical storm Isaac in 2012 from three farms approximately 2.4 to 3.6 km2 in size. Farm canal discharge water was collected in a series of two 200 liter settling tanks over a seven-day drainage period, during tropical storm Isaac. Water from the settling tanks was siphoned through Imhoff settling cones, where the particulates were allowed to settle and collected for P-fractionation analyses, and compared to intact sediment cores collected from the bottom of the canals. The discharged particulates contained higher organic matter content (OM), total P, and labile P fractions compared to the canal bottom sediments. Based on the equilibrium P concentrations, surface sediments behave as a source of P to the water column. A seven-day continuous drainage event exported 4.7 to 11.1 metric tons of suspended solids per farm, corresponding to 32 to 63 kg of particulate P being lost to downstream ecosystems. Drainage associated to a single seven-day storm event exported up to 61% of the total annual farm P load. It is evident from this study that short-term, high-intensity storm events can skew annual P loads due to the export of significantly higher particulate matter from farm canals. Exported particulates rich in P can provide a supplemental source of nutrients if captured and replenished back into the farmlands, as a sustainable farming practice.

  13. Chemical Data for Detailed Studies of Irrigation Drainage in the Salton Sea Area, California, 1995?2001

    USGS Publications Warehouse

    Schroeder, Roy A.

    2004-01-01

    The primary purpose of this report is to present all chemical data from the Salton Sea area collected by the U.S. Geological Survey between 1995 and 2001. The data were collected primarily for the Department of the Interior's National Irrigation Water Quality Program (NIWQP). The report also contains a brief summary and citation to investigations done for the NIWQP between 1992 and 1995. The NIWQP began studies in the Salton Sea area in 1986 to evaluate effects on the environment from potential toxins, especially selenium, in irrigation-induced drainage. This data report is a companion to several reports published from the earlier studies and to interpretive publications that make use of historical and recent data from this area. Data reported herein are from five collection studies. Water, bottom material, and suspended sediment collected in 1995-96 from the New River, the lower Colorado River, and the All-American Canal were analyzed for elements, semi-volatile (extractable) organic compounds, and organochlorine compounds. Sufficient suspended sediment for chemical analyses was obtained by tangential-flow filtration. A grab sample of surficial bottom sediment collected from near the deepest part of the Salton Sea in 1996 was analyzed for 44 elements and organic and inorganic carbon. High selenium concentration confirmed the effective transfer (sequestration) of selenium into the bottom sediment. Similar grab samples were collected 2 years later (1998) from 11 locations in the Salton Sea and analyzed for elements, as before, and also for nutrients, organochlorine compounds, and polycyclic aromatic hydrocarbons. Nutrients were measured in bottom water, and water-column profiles were obtained for pH, conductance, temperature, and dissolved oxygen. Element and nutrient concentrations were obtained in 1999 from cores at 2 of the above 11 sites, in the north subbasin of the Salton Sea. The most-recent study reported herein was done in 2001 and contains element data on

  14. Development of regional curves relating bankfull-channel geometry and discharge to drainage area for streams in Pennsylvania and selected areas of Maryland

    USGS Publications Warehouse

    Chaplin, Jeffrey J.

    2005-01-01

    Natural-stream designs are commonly based on the dimensions of the bankfull channel, which is capable of conveying discharges that transport sediment without excessive erosion or deposition. Regional curves relate bankfull-channel geometry and discharge to drainage area in watersheds with similar runoff characteristics and commonly are utilized by practitioners of natural-stream design to confirm or refute selection of the field-identified bankfull channel. Data collected from 66 streamflow-gaging stations and associated stream reaches between December 1999 and December 2003 were used in one-variable ordinary least-squares regression analyses to develop regional curves relating drainage area to cross-sectional area, discharge, width, and mean depth of the bankfull channel. Watersheds draining to these stations are predominantly within the Piedmont, Ridge and Valley, and Appalachian Plateaus Physiographic Provinces of Pennsylvania and northern Maryland. Statistical analyses of physiography, percentage of watershed area underlain by carbonate bedrock, and percentage of watershed area that is glaciated indicate that carbonate bedrock, not physiography or glaciation, has a controlling influence on the slope of regional curves. Regional curves developed from stations in watersheds underlain by 30 percent or less carbonate bedrock generally had steeper slopes than the corresponding relations developed from watersheds underlain by greater than 30 percent carbonate bedrock. In contrast, there is little evidence to suggest that regional curves developed from stations in the Piedmont or Ridge and Valley Physiographic Province are different from the corresponding relations developed from stations in the Appalachian Plateaus Physiographic Province. On the basis of these findings, regional curves are presented to represent two settings that are independent of physiography: (1) noncarbonate settings characterized by watersheds with carbonate bedrock underlying 30 percent or less

  15. The scavenging of silver by manganese and iron oxides in stream sediments collected from two drainage areas of Colorado

    USGS Publications Warehouse

    Chao, T.T.; Anderson, B.J.

    1974-01-01

    Stream sediments of two well-weathered and aerated drainage areas of Colorado containing anomalous amounts of silver were allowed to react by shaking with nitric acid of different concentrations (1-10M). Silver, manganese, and iron simultaneously dissolved were determined by atomic absorption. The relationship between silver dissolution and the dissolution of manganese and/or iron was evaluated by linear and multiple regression analyses. The highly significant correlation coefficient (r = 0.913) between silver and manganese dissolution suggests that manganese oxides are the major control on the scavenging of silver in these stream sediments, whereas iron oxides only play a secondary role in this regard. ?? 1974.

  16. Effects of soil drainage, canopy position, and needle age on leaf area index for a black spruce boreal chronosequence

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B.; Wang, C.; Gower, S. T.

    2001-12-01

    Leaf area index (LAI) and vegetation cover are primary drivers of ecosystem models that simulate water and carbon exchange. Along with specific leaf area (SLA), LAI is critical for accurate physiological models at the stand, landscape, and biome levels. Wildfire is the primary disturbance in the boreal forest, producing a mosaic of different-aged stands with different LAI structures. The objectives of this study were to (i) compare several experimental methods for determining SLA; (ii) examine the effects of stand age, soil drainage, canopy position, tree species, and leaf age on specific leaf area (SLA); and (iii) characterize overstory and understory SLA, LAI and foliage biomass for a 130-year boreal black spruce chronosequence. The study was conducted on a 130-year boreal black spruce chronosequence near Thompson, Manitoba. The experimental design was a nested factorial design with soil drainage nested inside of stand age; separate well-drained and poorly drained areas were located within each of the seven sites in the chronosequence. The comparison of two experimental methods for determining leaf area (volume displacement vs. flatbed scanner) produced highly correlated results (N = 50, R2 = 0.91). Preliminary ANOVA results indicate that significant effects for SLA included needle age, stand age, the age * species interaction (all p < 0.01), and soil drainage (p = 0.01). Canopy position (top, middle, or bottom of canopy) was not significant (p = 0.16). Specific leaf area values for black spruce (Picea mariana (Mill.) BSP) averaged 5.44 and 4.61 m2 kg-1 for current-year and older foliage, respectively, and 6.20 and 4.68 m2 kg-1 for jack pine (Pinus banksiana Lamb.). Values for deciduous species were considerably higher. Overstory hemispheric area index (HSAI) varied significantly (p = 0.02) across the chronosequence, from 0.22 m2 m-2 in the young stands to 5.83 m2 m-2 in the older ones. These LAI figures were in good agreement with previous optically based

  17. Physical, chemical, and biological data for detailed study of irrigation drainage in the Salton Sea area, California, 1988-90

    USGS Publications Warehouse

    Schroeder, R.A.; Rivera, Mick

    1993-01-01

    This report contains physical, chemical, and biological data associated with irrigation drainage in the Salton Sea area collected during the late 1980's. The data were collected in support of the u.S. Department of the Interior's National Irrigation Water Quality Program in the Western United States to evaluate effects on the environment from potential toxics in irrigation-induced drainage. The data have been used to support interpretations in several recent publications. This data report is the companion to a comprehensive U.S. Geological Survey interpretive report that describes the geochemical and biological pathways of potential toxics, especially selenium, in the study area. The report contains data on concentra- tions of a broad suite of trace elements in soil, irrigation (Colorado River) water, drainwater, surface water (including the Salton Sea), ground- water, aquatic plants, invertebrates, amphibians, reptiles, fish, birds, bird eggs, and turtle eggs. Included, also, are light stable isotope (hydrogen, oxygen, carbon, nitrogen, and sulfur), tritium, and radiocarbon data for selected aqueous samples and organochlorine-pesticide concentrations in biota. Geochemical samples were collected from more than 100 drainwater-collection sites, several surface- water locations, 15 fields, 3 multiple-depth lysimeter and piezometer installations, and the Alamo River Delta on the southeastern shore of the Salton Sea, and from laboratory evaporations of Colorado River water. Biological samples were collected from 39 sites, including 16 Salton Sea shore locations, 5 streams, 7 freshwater impound- ments, 11 drainwater ditches, and 2 additional locations in the Imperial Valley. (USGS)

  18. Quantity and quality of stormwater runoff recharged to the Floridan aquifer system through two drainage wells in the Orlando, Florida area

    SciTech Connect

    German, E.R.

    1989-01-01

    Quantity and quality of inflow to two drainage wells in the Orlando, Fla., area were determined for the period April 1982 through March 1983. The wells, located at Lake Midget and at Park Lake, are used to control the lake levels during rainy periods. The lakes receive stormwater runoff from mixed residential-commercial areas of about 64 acres (Lake Midget) and 96 acres (Park Lake) and would frequently flood adjacent areas if the wells did not drain the excess stormwater. These lakes and wells are typical of stormwater drainage systems in the area.

  19. Assessment of drainage network extractions in a low-relief area of the Cuvelai Basin (Namibia) from multiple sources: LiDAR, topographic maps, and digital aerial orthophotographs

    NASA Astrophysics Data System (ADS)

    Persendt, F. C.; Gomez, C.

    2016-05-01

    Accurate delineation of drainage networks (DNs) is crucial for hydrological or hydraulic modelling, and the comprehension of fluvial processes. This task presents challenging aspects in complex lowland terrains with subtle relief and particularly for data poor-areas like the Cuvelai river basin (CRB), Namibia, where the present study takes place. In the CRB standard methods of drainage network extraction from low resolution gridded digital elevation models (DEMs) are unsuitable, hence airborne Light Detection and Ranging (LiDAR) solutions have been utilized. However, LiDAR also presents challenges to large areal applications, especially with a surface roughness exceeding the capacity of numerous algorithms. Indeed, LiDAR-based DEMs (2 and 50 m resolutions) need to be hydrologically corrected and smoothed to enable the extraction of scale-relevant geomorphologic features such as DNs. In the present contribution, channels from topographic maps (blue lines) were compared to those from hydrologically corrected and uncorrected LiDAR DEMs, heads-up digitized channels from high-resolution digital aerial orthophotographs, field-mapped channels and auxiliary data. The 'maximum gradient deterministic eight (D8)' GIS algorithm was applied to the corrected and uncorrected LiDAR DEMs using two network extraction methods: area threshold support and curvature/drop analysis. Different progressive flow accumulation threshold values (12) were used to delineate channels with these methods. Validation was performed between the field-mapped channels, the modelled channels and those derived from multiple sources. Additionally, spatial and quantitative analyses were performed on geomorphologic parameters and indices. The results have shown that hydrologically corrected LiDAR DEMs offer useful details for identifying low order stream segments in headwaters, while blue lines derived from the national hydrography datasets for watersheds, located in elevated and low-lying areas of the study

  20. FUNDAMENTAL STUDY ON REAL-TIME FLOOD FORECASTING METHOD FOR LOCALLY HEAVY RAINFALL IN URBAN DRAINAGE AREAS

    NASA Astrophysics Data System (ADS)

    Kimura, Makoto; Kido, Yoshinobu; Nakakita, Eiichi

    Recently, locally heavy rainfall occurs frequently at highly urbanized area, and causes serious personal accidents, so importance of flood forecasting system is growing in order to reduce damage of inundation. However, flood forecasting that secured lead-time for evacuation is extremely difficult, because the rainfall flows out rapidly. In this study, the numerical simulation model that can finely express inundation mechanism of urban drainage areas was applied with the most recent available data and analysis tool. The influence of the factor (i.e. sewer system, overland and rainfall information) which affected inundation mechanism was evaluated through the sensibility analysis with this model, and evaluation results show some requirements of model condition and information on time and space resolution of real-time flood forecasting.

  1. Impact of runoff infiltration on contaminant accumulation and transport in the soil/filter media of Sustainable Urban Drainage Systems: A literature review.

    PubMed

    Tedoldi, Damien; Chebbo, Ghassan; Pierlot, Daniel; Kovacs, Yves; Gromaire, Marie-Christine

    2016-11-01

    The increasing use of Sustainable Urban Drainage Systems (SUDS) for stormwater management raises some concerns about the fate of ubiquitous runoff micropollutants in soils and their potential threat to groundwater. This question may be addressed either experimentally, by sampling and analyzing SUDS soil after a given operating time, or with a modeling approach to simulate the fate and transport of contaminants. After briefly reminding the processes responsible for the retention, degradation, or leaching of several urban-sourced contaminants in soils, this paper presents the state of the art about both experimental and modeling assessments. In spite of noteworthy differences in the sampling protocols, the soil parameters chosen as explanatory variables, and the methods used to evaluate the site-specific initial concentrations, most investigations undoubtedly evidenced a significant accumulation of metals and/or hydrocarbons in SUDS soils, which in the majority of the cases appears to be restricted to the upper 10 to 30cm. These results may suggest that SUDS exhibit an interesting potential for pollution control, but antinomic observations have also been made in several specific cases, and the inter-site concentration variability is still difficult to appraise. There seems to be no consensus regarding the level of complexity to be used in models. However, the available data deriving from experimental studies is generally limited to the contamination profiles and a few parameters of the soil, as a result of which "complex" models (including colloid-facilitated transport for example) appear to be difficult to validate before using them for predictive evaluations. PMID:27432725

  2. Contribution of directly connected and isolated impervious areas to urban drainage network hydrographs

    NASA Astrophysics Data System (ADS)

    Seo, Y.; Choi, N.-J.; Schmidt, A. R.

    2013-09-01

    This paper addresses the mass balance error observed in runoff hydrographs in urban watersheds by introducing assumptions regarding the contribution of infiltrated rainfall from pervious areas and isolated impervious area (IIA) to the runoff hydrograph. Rainfall infiltrating into pervious areas has been assumed not to contribute to the runoff hydrograph until Hortonian excess rainfall occurs. However, mass balance analysis in an urban watershed indicates that rainfall infiltrated to pervious areas can contribute directly to the runoff hydrograph, thereby offering an explanation for the long hydrograph tail commonly observed in runoff from urban storm sewers. In this study, a hydrologic analysis based on the width function is introduced, with two types of width functions obtained from both pervious and impervious areas, respectively. The width function can be regarded as the direct interpretation of the network response. These two width functions are derived to obtain distinct response functions for directly connected impervious areas (DCIA), IIA, and pervious areas. The results show significant improvement in the estimation of runoff hydrographs and suggest the need to consider the flow contribution from pervious areas to the runoff hydrograph. It also implies that additional contribution from flow paths through joints and cracks in sewer pipes needs to be taken into account to improve the estimation of runoff hydrographs in urban catchments.

  3. Contribution of directly connected and isolated impervious areas to urban drainage network hydrographs

    NASA Astrophysics Data System (ADS)

    Seo, Y.; Choi, N.-J.; Schmidt, A. R.

    2013-05-01

    This paper addresses the mass balance error observed in runoff hydrographs in urban watersheds by introducing assumptions regarding the contribution of infiltrated rainfall from pervious areas and isolated impervious area (IIA) to the runoff hydrograph. Rainfall infiltrating into pervious areas has been assumed not to contribute to the runoff hydrograph until Hortonian excess rainfall occurs. However, mass balance analysis in an urban watershed indicates that rainfall infiltrated to pervious areas can contribute to direct runoff hydrograph, thereby offering an explanation for the long hydrograph tail commonly observed in runoff from urban storm sewers. In this study, a hydrologic analysis based on the width function is introduced, with two types of width functions obtained from both pervious and impervious areas, respectively. The width function can be regarded as the direct interpretation of the network response. These two width functions are derived to obtain distinct response functions for directly connected impervious areas (DCIA), IIA, and pervious areas. The results show significant improvement in the estimation of runoff hydrographs and suggest the need to consider the flow contribution from pervious areas to the runoff hydrograph. It also implies that additional contribution from flow paths through joints and cracks in sewer pipes needs to be taken into account to improve the estimation of runoff hydrographs in urban catchments.

  4. Benthic invertebrates of benchmark streams in agricultural areas of eastern Wisconsin, Western Lake Michigan Drainages

    USGS Publications Warehouse

    Rheaume, S.J.; Lenz, B.N.; Scudder, B.C.

    1996-01-01

    Information gathered from these benchmark streams can be used as a regional reference for comparison with other streams in agricultural areas, based on communities of aquatic biota, habitat, and water quality.

  5. Application of LANDSAT images to the study of level soils for recognizing drainage areas. Thesis Paper

    NASA Technical Reports Server (NTRS)

    Espinoza, M. U.

    1977-01-01

    Photographic images from LANDSAT 1 were applied to the study of soil in Desaguadero, Bolivia, in order to locate areas with high agricultural and livestock potential. Photointerpretation techniques were emphasized and advantages of information obtained via multispectral satellite images in various bands and combinations were demonstrated.

  6. Influence of DEM resolution on drainage network extraction: A multifractal analysis

    NASA Astrophysics Data System (ADS)

    Ariza-Villaverde, A. B.; Jiménez-Hornero, F. J.; Gutiérrez de Ravé, E.

    2015-07-01

    Different hydrological algorithms have been developed to automatically extract drainage networks from digital elevation models (DEMs). D8 is the most widely used algorithm to delineate drainage networks and catchments from a DEM. This algorithm has certain advantages such as simplicity, the provision of a reasonable representation for convergent flow conditions and consistency among flow patterns, calculated contributing areas and the spatial representation of subcatchments. However, it has limitations in selecting suitable flow accumulation threshold values to determine the pixels that belong to drainage networks. Although the effects of DEM resolution on some terrain attributes, stream characterisation and watershed delineation have been studied, analyses of the influence of DEM resolution on flow accumulation threshold values have been limited. Recently, multifractal analyses have been successfully used to find appropriate flow accumulation threshold values. The application of this type of analysis to evaluate the relationship between DEM resolution and flow accumulation threshold value needs to be explored. Therefore, this study tested three DEM resolutions for four drainage basins with different levels of drainage network distribution by comparing the Rényi spectra of the drainage networks that were obtained with the D8 algorithm against those determined by photogrammetric restitution. According to the results, DEM resolution influences the selected flow accumulation threshold value and the simulated network morphology. The suitable flow accumulation threshold value increases as the DEM resolution increases and shows greater variability for basins with lower drainage densities. The links between DEM resolution and terrain attributes were also examined.

  7. Trace element accumulations in 13 avian species collected from the Kanto area, Japan.

    PubMed

    Horai, Sawako; Watanabe, Izumi; Takada, Hideshige; Iwamizu, Yoshikazu; Hayashi, Terutake; Tanabe, Shinsuke; Kuno, Katsuji

    2007-02-15

    In the present study, concentrations of 13 elements (Li, Cr, Mn, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Hg) were measured in the tissues of the livers, the kidneys, pectoral muscles, lungs and brains of 13 avian species collected from the Kanto area of Japan. The difference in hepatic heavy metal levels of the grey herons from the two sites was compared. Metal levels in the sediment of the Tama River estuary, situated in the Haneda area, were also measured. These results revealed that heavy metal pollution is present in an aquatic area of Haneda. The accumulation patterns of Cu and Zn in the livers of grey herons appeared to be separated into two groups. Additionally, the present study includes the properties of other metal accumulations and their relationships in avian species. PMID:17229456

  8. Investigating the chronology of late Wisconsinan ice sheet drainage in the pseudo-driftless area of western Wisconsin

    NASA Astrophysics Data System (ADS)

    Bellomo, L.; Weinman, B. A.

    2011-12-01

    The pseudo-driftless area (Hobbs 1999) in Minnesota and Wisconsin is a band of previously glaciated landscape that remained unglaciated during the Last Glacial Maximum. Due to the underlying Ordovician dolomite and sandstone bedrock, the terrain is karstic and many of the local caves are in-filled with glacial sediment, which have helped to preserve a record of past surficial processes. The chronology the Superior and Chippewa lobes in western Wisconsin has been difficult to constrain due to the lack of suitable dating methods. Samples of sediment taken from Crystal Cave in early 2011 were dated using OSL (Bellomo et al 2011) and yielded date between from 24ka to 16ka. These dates helped further constrain the timing of the maximum and retreat of the Superior and Chippewa lobes in this area of Wisconsin. Combining geological and soil maps with a 30-meter DEM created a glacial drainage map where potential sources for further investigation were identified. The DEM also allowed for a newer and higher resolution interpretation of the relationship between the glaciated and periglaciated landscape. Additionally, the position of a karstic terrain on the margin of a large ice-sheet afforded a unique investigation into the relationship between surfical processes and their preservation in subterranean spaces.

  9. Synoptically driven down-slope winds and their effects on local nocturnal-drainage air flow in The Geysers Geothermal Resource Area

    SciTech Connect

    Orgill, M.M.; Schreck, R.I.; Whiteman, C.D.

    1981-07-01

    Some of the possible synoptic to local sale interactions are identified and discussed that may have an important influence on the development and persistence of nocturnal drainage (katabatic) winds in the eastern portion of The Geysers geothermal development area. On the basis of the July 1979 ASCOT field data at The Geysers, the interactions identified are summarized.

  10. Preliminary appraisal of ephemeral-streamflow characteristics as related to drainage area, active-channel width, and soils in northwestern New Mexico

    USGS Publications Warehouse

    Hejl, H.R., Jr.

    1980-01-01

    Regression equations are presented to predict ephemeral streamflow characteristics in the San Juan Basin in northwestern New Mexico. The standard error of estimate for predicting runoff for water year 1978 using drainage area as the independent variable was 152 percent. Indications are that reliable equations for predicating annual runoff can be developed and the standard error of estimate might be reduced significantly with additional years of record. The coefficient of regression when relating drainage area to runoff for water year 1978 was significant at the 1-percent level. Preliminary results also indicate it is feasible to predict streamflow characteristics using hyrologic soil-group classifications based on runoff potential. The standard error of estimate for predicting peak discharges with recurrence intervals of 2, 5, 10, 25, 50, and 100 years using active-channel width as the independent variable averaged about 50 percent, and the regression coefficient was significant at the 1-percent level. Using drainage area to predict peak discharges resulted in a standard error of estimate that averaged about 60 percent and a regression coefficient significant at the 5-percent level. The standard error of estimate averaged about 45 percent when active-channel width and drainage area were related to peak discharges in multiple regression analyses. (USGS)

  11. Relation of drainage problems to high ground-water levels, Coconut Grove area, Oahu, Hawaii

    USGS Publications Warehouse

    Swain, L.A.; Huxel, C.J., Jr.

    1971-01-01

    Purpose and Scope In 1969, hydrologic data-collection sites were established in and around the Coconut Grove area for the purpose of measuring directly the relationship between rainfall, runoff, ground-water levels, the level of water in Kawainui Swamp and the canals, and tidal fluctuations. The primary objective was to identify the causes of the occurrence and persistence of flooding and to gain data on which to base recommendations for remedial action. The scope of the study included establishing and operating flow and stage-recording gages on the Swamp, Kawainui Canal, and the inner canal; periodic and repeated measurements of ground-water level in test borings throughout the residential area; collection and analysis of soil and construction borings made for engineering purposes; the assembly and analysis of all available data relating surface and subsurface flow conditions, and the development of conclusions as to the causes and means to alleviate the flooding. This report summarizes the information collected from October 1969 to June 1971, includes analysis of the data, and discusses the probable causes of flooding.

  12. Daily Accumulated Area of Snow Melt Onset on Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Bliss, A. C.; Anderson, M. R.

    2012-12-01

    The ice and snow in the Arctic are vital components of the global climate system, which has seen record-breaking changes in recent years. Changes in the onset of melting in the Arctic during the spring and summer months greatly changes the surface albedo of snow and ice covered surfaces, impacting sea ice loss through the remainder of the melt season. The present study utilizes the date on which melting begins in the snow atop sea ice, derived from passive microwave brightness temperatures from the DMSP SMMR, SSM/I (F08-F13), and SSMIS (F17) platforms, to analyze regional and inter-annual variability in the onset of melting in the Arctic. The Advanced Horizontal Range Algorithm (AHRA) snowmelt onset dates used in this study exploit the changes between 19 GHz (18 GHz for SMMR) and 37 GHz brightness temperatures to derive snow melt onset dates over Arctic sea ice from 1979-2011. Each annual AHRA snowmelt onset date grid indicates the day from the first of the year that melting occurred at each grid point. To analyze snowmelt onset on a daily basis, the annual grids are partitioned by date. A melt onset area is calculated by summing the number of grid points experiencing melt on individual dates then multiplying by the grid resolution to produce an areal extent of melt onset for each date during the melt seasons throughout the study period. By totaling the daily areal extent of melt onset, an accumulation is calculated by summing the area of melt each day throughout the melt season. Variations observed in the melt accumulation pattern through a melt season can be attributed to the weather conditions present at the time of melt onset. Analysis of the daily accumulation of melt area indicates high variability in the timing of snowmelt onset over the 1979-2011 record and a trend towards earlier melt onset dates for the Arctic region as a whole and sub-regionally. The accumulation of melt area through the melt season shows the SMMR years (1979-1987) to generally be below

  13. Hydrological modeling of a watershed affected by acid mine drainage (Odiel River, SW Spain). Assessment of the pollutant contributing areas

    NASA Astrophysics Data System (ADS)

    Galván, L.; Olías, M.; Cánovas, C. R.; Sarmiento, A. M.; Nieto, J. M.

    2016-09-01

    The Odiel watershed drains materials belonging to the Iberian Pyrite Belt, where significant massive sulfide deposits have been mined historically. As a result, a huge amount of sulfide-rich wastes are deposited in the watershed, which suffer from oxidation, releasing acidic lixiviates with high sulfate and metal concentrations. In order to reliably estimate the metal loadings along the watershed a complete series of discharge and hydrochemical data are essential. A hydrological model was performed with SWAT (Soil and Water Assessment Tool) to solve the scarcity of gauge stations along the watershed. The model was calibrated and validated from daily discharge data (from 1980 to 2010) at the outlet of the watershed, river inputs into an existent reservoir, and a flow gauge station close to the northern area of the watershed. Discharge data obtained from the hydrological model, together with analytical data, allowed the estimation of the dissolved pollutant load delivered annually by the Odiel River (e.g. 9140 t of Al, 2760 t of Zn). The pollutant load is influenced strongly by the rainfall regime, and can even double during extremely rainy years. Around 50% of total pollution comes from the Riotinto Mining District, so the treatment of Riotinto lixiviates reaching the Odiel watershed would reduce the AMD (Acid Mine Drainages) in a remarkable way, improving the water quality downstream, especially in the reservoir of Alcolea, currently under construction. The information obtained in this study will allow the optimization of remediation efforts in the watershed, in order to improve its water quality.

  14. Characterization of water pollution in drainage networks using continuous monitoring data in the Citadel area of Hue City, Vietnam.

    PubMed

    Nagano, Y; Teraguchi, T; Lieu, P K; Furumai, H

    2014-01-01

    In the Citadel area of Hue City, drainage systems that include canals and ponds are considerable sources of fecal contaminants to inundated water during the rainy season because canals and ponds receive untreated wastewater. It is important to investigate the characteristics of hydraulics and water pollution in canals and ponds. At the canals and ponds, water sampling was conducted during dry and wet weather periods in order to evaluate fecal contamination and to investigate changes in water pollution caused by runoff inflow. Inundated water was also collected from streets during heavy rainfall. At the canals and ponds, concentrations of Escherichia coli and total coliform exceeded the Vietnamese regulation values for surface water in 23 and 24 out of 27 samples (85 and 89%), respectively. The water samples were categorized based on the characteristics of water pollution using cluster analysis. In the rainy season, continuous monitoring was conducted at the canals and ponds using water depth and electrical conductivity (EC) sensors to investigate the dynamic relationship between water level and water pollution. It is suggested that in the canals, high EC meant water stagnation and low EC signified river water inflow. Therefore, EC might be a good indicator of water flow change in canals. PMID:25116489

  15. Accumulation of waterborne mercury(II) in specific areas of fish brain

    SciTech Connect

    Rouleau, C.; Borg-Neczak, K.; Gottofrey, J.; Tjaelve, H.

    1999-10-01

    The authors used whole-body autoradiography to study the distribution of {sup 203}Hg(II) in the central nervous system of brown (Salmo trutta) and rainbow (Oncorhynchus mykiss) trout. Fish were either exposed to waterborne Hg(II) for 7 and 21 d or they received an intravenous injection of the metal and were sacrificed 1 and 21 d later. Mercury did not accumulate in the brain after intravenous injection, indicating that the blood-brain barrier is impervious to Hg in plasma. In contrast, Hg was accumulated in specific areas of the grain and spinal cord following water exposure. The specificity of the accumulation sites strongly suggests that waterborne Hg was taken up by water-exposed receptor cells of sensory nerves and subsequently transferred toward the brain by axonal transport, a normal physiological process for the transport of organelles and dissolved neuronal constituents along nerve axons. Accumulation of Hg in ventral horn ganglis is probably the result of leaching of metal from blood into muscle followed by uptake in motor plates. Axonal transport allows waterborne inorganic Hg, and possibly other xenobiotics, to circumvent the blood-brain barrier. Considering the importance of complex behavior in the life of fish, and the well-known deleterious effects of mercury on the nervous system, the toxicological significance of this uptake route needs to be assessed.

  16. Progress report on hydrologic investigations of small drainage areas in New Hampshire : preliminary relations for estimating peak discharges on rural, unregulated streams

    USGS Publications Warehouse

    LeBlanc, Denis R.

    1978-01-01

    The magnitude and frequency of floods on rural, unregulated streams in New Hampshire with drainage areas between 0.27 and 622 square miles may be estimated from drainage area, main-channel slope, and a precipitation intensity index. Based on multiple-regression analyses of data from 59 gaged sites in New Hampshire and adjacent areas of bordering states, peak discharges for recurrence intervals of 2, 5, 10, 25, 50, and 100 years can be estimated equations. The estimating relations can be applied to streams where flows are not significantly affected by regulation, diversion, or urbanization; where usable manmade storage does not exceed 4.5 million cubic feet per square mile; or where the basin characteristics are within a specified range. The average standard error of the estimate ranged from 35 percent for the 2-year flood to 58 percent for the 100-year flood. (Woodard-USGS)

  17. 40 CFR 262.211 - Making the hazardous waste determination at an on-site central accumulation area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Material for Laboratories Owned by Eligible Academic Entities § 262.211 Making the hazardous waste determination at an on-site central accumulation area. If an eligible academic entity makes the hazardous waste... central accumulation area. (e) If the unwanted material is a hazardous waste, the eligible academic...

  18. 40 CFR 262.211 - Making the hazardous waste determination at an on-site central accumulation area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Material for Laboratories Owned by Eligible Academic Entities § 262.211 Making the hazardous waste determination at an on-site central accumulation area. If an eligible academic entity makes the hazardous waste... central accumulation area. (e) If the unwanted material is a hazardous waste, the eligible academic...

  19. Evaluating Insects as Bioindicators of Heavy Metal Contamination and Accumulation near Industrial Area of Gujrat, Pakistan.

    PubMed

    Azam, Iqra; Afsheen, Sumera; Zia, Ahmed; Javed, Muqaddas; Saeed, Rashid; Sarwar, Muhammad Kaleem; Munir, Bushra

    2015-01-01

    To study the accumulation and contamination of heavy metals (i.e., Cd, Cr, Cu, Ni, and Zn) in soil, air, and water, few insect species were assayed as ecological indicators. Study area comes under industrial zone of district Gujrat of Punjab, Pakistan. Insects used as bioindicators included a libellulid dragonfly (Crocothemis servilia), an acridid grasshopper (Oxya hyla hyla), and a nymphalid butterfly (Danaus chrysippus) near industrial zone of Gujrat. Accumulation of Cd was highest in insect species followed by Cu, Cr, Zn, and Ni at p < 0.05. Hierarchical cluster analysis (HACA) was carried out to study metal accumulation level in all insects. Correlation and regression analysis confirmed HACA observations and declared concentration of heavy metals above permissible limits. Metal concentrations in insects were significantly higher near industries and nallahs in Gujrat and relatively higher concentrations of metals were found in Orthoptera than Odonata and Lepidoptera. The total metal concentrations in insects were pointed significantly higher at sites S3 (Mid of HalsiNala), S9 (End of HalsiNala), and S1 (Start of HalsiNala), whereas lowest value was detected at site S6 (Kalra Khasa) located far from industrial area. HACA indicates that these insect groups are potential indicators of metal contamination and can be used in biomonitoring. PMID:26167507

  20. Evaluating Insects as Bioindicators of Heavy Metal Contamination and Accumulation near Industrial Area of Gujrat, Pakistan

    PubMed Central

    Azam, Iqra; Afsheen, Sumera; Zia, Ahmed; Javed, Muqaddas; Saeed, Rashid; Sarwar, Muhammad Kaleem; Munir, Bushra

    2015-01-01

    To study the accumulation and contamination of heavy metals (i.e., Cd, Cr, Cu, Ni, and Zn) in soil, air, and water, few insect species were assayed as ecological indicators. Study area comes under industrial zone of district Gujrat of Punjab, Pakistan. Insects used as bioindicators included a libellulid dragonfly (Crocothemis servilia), an acridid grasshopper (Oxya hyla hyla), and a nymphalid butterfly (Danaus chrysippus) near industrial zone of Gujrat. Accumulation of Cd was highest in insect species followed by Cu, Cr, Zn, and Ni at p < 0.05. Hierarchical cluster analysis (HACA) was carried out to study metal accumulation level in all insects. Correlation and regression analysis confirmed HACA observations and declared concentration of heavy metals above permissible limits. Metal concentrations in insects were significantly higher near industries and nallahs in Gujrat and relatively higher concentrations of metals were found in Orthoptera than Odonata and Lepidoptera. The total metal concentrations in insects were pointed significantly higher at sites S3 (Mid of HalsiNala), S9 (End of HalsiNala), and S1 (Start of HalsiNala), whereas lowest value was detected at site S6 (Kalra Khasa) located far from industrial area. HACA indicates that these insect groups are potential indicators of metal contamination and can be used in biomonitoring. PMID:26167507

  1. Effectiveness of highway-drainage systems in preventing contamination of ground water by road salt, Route 25, southeastern Massachusetts; description of study area, data collection programs, and methodology

    USGS Publications Warehouse

    Church, P.E.; Armstrong, D.S.; Granato, G.E.; Stone, V.J.; Smith, K.P.; Provencher, P.L.

    1996-01-01

    Four test sites along a 7-mile section of Route 25 in southeastern Massachusetts, each representing a specific highway-drainage system, were instrumented to determine the effectiveness of the drainage systems in preventing contamination of ground water by road salt. One of the systems discharges highway runoff onsite through local drainpipes. The other systems use trunkline drainpipes through which runoff from highway surfaces, shoulders, and median strips is diverted and discharged into either a local stream or a coastal waterway. Route 25 was completed and opened to traffic in the summer of 1987. Road salt was first applied to the highway in the winter of 1987-88. The study area is on a thick outwash plain composed primarily of sand and gravel. Water-table depths range from 15 to 60 feet below land surface at the four test sites. Ground-water flow is in a general southerly direction, approximately perpendicular to the highway. Streamflow in the study area is controlled primarily by ground-water discharge. Background concentrations of dissolved chloride, sodium, and calcium-the primary constituents of road salt-are similar in ground water and surface water and range from 5 to 20, 5 to 10, and 1 to 5 milligrams per liter, respectively. Data-collection programs were developed for monitoring the application of road salt to the highway, the quantity of road-salt water entering the ground water, diverted through the highway-drainage systems, and entering a local stream. The Massachusetts Highway Department monitored road salt applied to the highway and reported these data to the U.S. Geological Survey. The U.S. Geological Survey designed and operated the ground-water, highway- drainage, and surface-water data-collection programs. A road-salt budget will be calculated for each test site so that the effectiveness of the different highway-drainage systems in preventing contamination of ground water by road salt can be determined.

  2. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Humboldt Wildlife Management Area, Churchill and Pershing Counties, Nevada, 1990-91

    USGS Publications Warehouse

    Seiler, R.L.; Ekechukwu, G.A.; Hallock, R.J.

    1993-01-01

    A reconnaissance investigation was begun in 1990 to determine whether the quality of irrigation drainage in and near the Humboldt Wildlife Management Area, Nevada, has caused or has the potential to cause harmful effects on human health, fish, and wildlife or to impair beneficial uses of water. Samples of surface and ground water, bottom sediment, and biota collected from sites upstream and downstream from the Lovelock agricultural area were analyzed for potentially toxic trace elements. Also analyzed were radioactive substances, major dissolved constitu- ents, and nutrients in water, as well as pesticide residues in bottom sediment and biota. In samples from areas affected by irrigation drainage, the following constituents equaled or exceeded baseline concentrations or recommended standards for protection of aquatic life or propagation of wildlife--in water: arsenic, boron, dissolved solids, mercury, molybdenum, selenium, sodium, and un-ionized ammonia; in bottom sediment; arsenic and uranium; and in biota; arsenic, boron, and selenium. Selenium appears to be biomagnified in the Humboldt Sink wetlands. Biological effects observed during the reconnaissance included reduced insect diversity in sites receiving irrigation drainage and acute toxicity of drain water and sediment to test organisms. The current drought and upstream consumption of water for irrigation have reduced water deliveries to the wetlands and caused habitat degradation at Humboldt Wildlife Management Area. During this investigation. Humboldt and Toulon Lakes evaporated to dryness because of the reduced water deliveries.

  3. Tracking Forest and Open Area Effects on Snow Accumulation by Unmanned Aerial Vehicle Photogrammetry

    NASA Astrophysics Data System (ADS)

    Lendzioch, T.; Langhammer, J.; Jenicek, M.

    2016-06-01

    Airborne digital photogrammetry is undergoing a renaissance. The availability of low-cost Unmanned Aerial Vehicle (UAV) platforms well adopted for digital photography and progress in software development now gives rise to apply this technique to different areas of research. Especially in determining snow depth spatial distributions, where repetitive mapping of cryosphere dynamics is crucial. Here, we introduce UAV-based digital photogrammetry as a rapid and robust approach for evaluating snow accumulation over small local areas (e.g., dead forest, open areas) and to reveal impacts related to changes in forest and snowpack. Due to the advancement of the technique, snow depth of selected study areas such as of healthy forest, disturbed forest, succession, dead forest, and of open areas can be estimated at a 1 cm spatial resolution. The approach is performed in two steps: 1) developing a high resolution Digital Elevation Model during snow-free and 2) during snow-covered conditions. By substracting these two models the snow depth can be accurately retrieved and volumetric changes of snow depth distribution can be achieved. This is a first proof-of-concept study combining snow depth determination and Leaf Area Index (LAI) retrieval to monitor the impact of forest canopy metrics on snow accumulation in coniferous forest within the Šumava National Park, Czech Republic. Both, downward-looking UAV images and upward-looking LAI-2200 canopy analyser measurements were applied to reveal the LAI, controlling interception and transmitting radiation. For the performance of downward-looking images the snow background instead of the sky fraction was used. In contrast to the classical determination of LAI by hemispherical photography or by LAI plant canopy analyser, our approach will also test the accuracy of LAI measurements by UAV that are taken simultaneously during the snow cover mapping campaigns. Since the LAI parameter is important for snowpack modelling, this method presents

  4. Changing surface-atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland

    NASA Astrophysics Data System (ADS)

    Charalampidis, C.; van As, D.; Box, J. E.; van den Broeke, M. R.; Colgan, W. T.; Doyle, S. H.; Hubbard, A. L.; MacFerrin, M.; Machguth, H.; Smeets, C. J. P. P.

    2015-11-01

    We present 5 years (2009-2013) of automatic weather station measurements from the lower accumulation area (1840 m a.s.l. - above sea level) of the Greenland ice sheet in the Kangerlussuaq region. Here, the summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in a strongly negative surface mass budget (SMB) and surface meltwater run-off. The observed run-off was due to a large ice fraction in the upper 10 m of firn that prevented meltwater from percolating to available pore volume below. Analysis reveals an anomalously low 2012 summer-averaged albedo of 0.71 (typically ~ 0.78), as meltwater was present at the ice sheet surface. Consequently, during the 2012 melt season, the ice sheet surface absorbed 28 % (213 MJ m-2) more solar radiation than the average of all other years. A surface energy balance model is used to evaluate the seasonal and interannual variability of all surface energy fluxes. The model reproduces the observed melt rates as well as the SMB for each season. A sensitivity analysis reveals that 71 % of the additional solar radiation in 2012 was used for melt, corresponding to 36 % (0.64 m) of the 2012 surface lowering. The remaining 64 % (1.14 m) of surface lowering resulted from high atmospheric temperatures, up to a +2.6 °C daily average, indicating that 2012 would have been a negative SMB year at this site even without the melt-albedo feedback. Longer time series of SMB, regional temperature, and remotely sensed albedo (MODIS) show that 2012 was the first strongly negative SMB year, with the lowest albedo, at this elevation on record. The warm conditions of recent years have resulted in enhanced melt and reduction of the refreezing capacity in the lower accumulation area. If high temperatures continue, the current lower accumulation area will turn into a region with superimposed ice in coming years.

  5. Changing Surface-Atmosphere Energy Exchange and Refreezing Capacity of the Lower Accumulation Area, West Greenland

    NASA Astrophysics Data System (ADS)

    Charalampidis, C.; van As, D.; Machguth, H.; Smeets, P.; van den Broeke, M. R.; Box, J. E.

    2014-12-01

    We present five years (2009-2013) of automatic weather station (AWS) data from the lower accumulation area (1840 m above sea level) of the Kangerlussuaq region, western Greenland ice sheet. The summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in negative surface mass budget (SMB) and surface runoff. The observed runoff was due to a large ice fraction in the upper 10 m of firn that prevented melt water from percolating to available pore space below. Analysis of the in situ data reveals a relatively low 2012 summer albedo of ~0.7 as melt water was present at the surface. Consequently, during the 2012 melt season the surface absorbed 30% (213 MJ m-2) more solar radiation than in 2010. We drive a surface energy balance model with the AWS data to evaluate the seasonal and interannual variability of all surface energy fluxes. The model is able to reproduce the observed melt rates as well as the SMB for each season. While the drive for melt is solar radiation, year-to-year differences are controlled by terrestrial radiation, apart from 2012 when solar radiation dominated melt. Sensitivity tests reveal that 72% of the excess solar energy in 2012 was used for melt, corresponding to 40% (0.67 m) of the 2012 surface ablation. The remaining ablation (0.99 m) was primarily due to the relatively high atmospheric temperatures up to +2.6 °C daily average, indicating that 2012 would have been a negative SMB year in the lower accumulation area even without the melt-albedo feedback. Longer time series of SMB, regional temperature and remotely sensed albedo (MODIS) suggest that 2012 was the first negative SMB year with the lowest albedo at this elevation on record. The warming conditions of the last years resulted in enhanced melt and reduction of the refreezing capacity of the lower accumulation area. If the warming continues the lower accumulation area will be transformed into superimposed ice.

  6. Influence of lowland forests on subsurface salt accumulation in shallow groundwater areas

    PubMed Central

    Tóth, Tibor; Balog, Kitti; Szabó, András; Pásztor, László; Jobbágy, Esteban G.; Nosetto, Marcelo D.; Gribovszki, Zoltán

    2013-01-01

    In flat sedimentary plains in areas with a sub-humid climate, tree planting on grasslands and arable lands creates strong hydrological shifts. As a result of deep rooting and high water uptake of trees, groundwater levels drop and subsurface salt accumulation increases. Tree planting has expanded globally and in Hungary it reached rates of 15 000 ha year−1, being focused mainly in the Great Hungarian Plain where forests replace grasslands and crops in a region with widespread shallow groundwater. We performed soil and groundwater observations in 31 pairs of forest and control plots in the region, including gradients of initial water table depth and salinity, soil layering, and tree species and age. Accumulated tree biomass was positively correlated with soil salinization rates following tree planting, being also affected by species (poplar > common oak > black locust) and stand age. Differences among tree species effects appeared to be related to their growth rates. Due to downward deep percolation and salt leaching episodes during the Hungarian winters, the observed salt accumulation rates were lower than those described under similar settings in the warmer Argentine Pampas. PMID:25228311

  7. Distribution and accumulation of hexachlorobutadiene in soils and terrestrial organisms from an agricultural area, East China.

    PubMed

    Tang, Zhenwu; Huang, Qifei; Cheng, Jiali; Qu, Dan; Yang, Yufei; Guo, Wei

    2014-10-01

    Hexachlorobutadiene (HCBD) is a potential persistent organic pollutant that has been found in abiotic environments and organisms. However, information on HCBD in soils and its accumulation in terrestrial food chains is scarce. This study investigated the accumulation of HCBD in soils, plants, and terrestrial fauna in a typical agricultural area in Eastern China, and drew comparisons with organochlorine pesticides (OCPs). The HCBD concentrations in soils were <0.02-3.1ng/g dry weight, which were similar to α-endosulfan concentrations but much lower than the concentrations of some other OCPs. The HCBD soil-plant accumulation factors, 8.5-38.1, were similar to those of o,p'-DDT and higher than those of HCHs and p,p'-DDT, indicating that HCBD is strongly bioaccumulated by rice and vegetables. HCBD concentrations of 1.3-8.2ng/g lipid weight were found in herbivorous insects, earthworms, and Chinese toads. The biomagnification factor, the ratio between the lipid-normalized concentrations in the predator and the prey, was found to be 0.16-0.64 for different food chains of Chinese toads, so HCBD was found not to biomagnify, which is in contrast with OCPs. Further research into whether HCBD is biomagnified in high trophic level organisms or through the entire terrestrial food web is required. PMID:25124679

  8. Influence of lowland forests on subsurface salt accumulation in shallow groundwater areas.

    PubMed

    Tóth, Tibor; Balog, Kitti; Szabó, András; Pásztor, László; Jobbágy, Esteban G; Nosetto, Marcelo D; Gribovszki, Zoltán

    2014-01-01

    In flat sedimentary plains in areas with a sub-humid climate, tree planting on grasslands and arable lands creates strong hydrological shifts. As a result of deep rooting and high water uptake of trees, groundwater levels drop and subsurface salt accumulation increases. Tree planting has expanded globally and in Hungary it reached rates of 15 000 ha year(-1), being focused mainly in the Great Hungarian Plain where forests replace grasslands and crops in a region with widespread shallow groundwater. We performed soil and groundwater observations in 31 pairs of forest and control plots in the region, including gradients of initial water table depth and salinity, soil layering, and tree species and age. Accumulated tree biomass was positively correlated with soil salinization rates following tree planting, being also affected by species (poplar > common oak > black locust) and stand age. Differences among tree species effects appeared to be related to their growth rates. Due to downward deep percolation and salt leaching episodes during the Hungarian winters, the observed salt accumulation rates were lower than those described under similar settings in the warmer Argentine Pampas. PMID:25228311

  9. Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area. Annual report, September 1, 1995--August 31, 1996

    SciTech Connect

    Schechter, D.S.

    1997-12-01

    The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding in the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) analytical and numerical simulation of Spraberry reservoirs, and, (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the first year of the five-year project for each of the four areas.

  10. Acid mine drainage prevention, control and treatment technology development for the Stockett/Sand Coulee area. Topical report, March 1, 1995--March 31, 1996

    SciTech Connect

    Brown, T.

    1996-12-31

    The project was initiated to assist the State of Montana to develop a methodology to ameliorate acid mine drainage problems associated with the abandoned mines located in the Stockett/Sand Coulee area near Great Falls, Montana. Extremely acidic water is continuously discharging from abandoned coal mines in the Stockett/Sand Coulee area at an estimated rate of greater than 600 acre-feet per year (about 350 to 400 gallons per minute). Due to its extreme acidity, the water is unusable and is contaminating other water supplies. Most of the local alluvial aquifers have been contaminated, and nearly 5% of the private wells that were tested in the area during the mid-1980`s showed some degree of contamination. Significant government money has been spent replacing water supplies due to the magnitude of this problem. In addition, millions of dollars have been spent trying to remediate acid mine drainage occurring in this coal field. To date, the techniques used have focused on the management and containment of mine waters, rather than designing technologies that would prevent the formation of acid mine drainage.

  11. Environmental Protection Department Operations and Regulatory Affairs Division Contingency Plan for Site 300 Waste Accumulation Area(s)

    SciTech Connect

    Levy, R

    2005-07-14

    This Contingency Plan identifies personnel responsibilities, emergency equipment, and required actions necessary to mitigate potential incidents at the Waste Accumulation Area(s) (WAA)(s) located at the Lawrence Livermore National Laboratory (LLNL) Experimental Test Site 300 (Site 300) as shown in Figure 1. This Plan is designed to prepare personnel to minimize hazards to human health and the environment from fires, explosions, or any sudden or nonsudden release of hazardous, radioactive, or mixed waste constituents to the air, ground surface, or water from waste stored in the WAA(s). The LLNL Site 300 currently has one WAA. The location of the WAA is shown in Figure 2 and identified in Table 1. As programmatic needs change, it may become necessary to establish additional WAAs at Site 300. The WAA is a small, regularly monitored storage area where waste can be accumulated and stored temporarily. Hazardous and mixed waste can be stored or accumulated in a WAA for up to 90 days, after which it must be transferred to a Department of Toxic Substances Control (DTSC) authorized onsite treatment or storage facility or an authorized offsite treatment, storage, or disposal facility (TSDF). The onsite TSDFs authorized by DTSC are managed by the Radioactive and Hazardous Waste Management (RHWM) Division and by the Chemistry and Materials Science Directorate (CMS) at Site 300. Hazardous, radioactive, or mixed waste is referred to as ''waste'' in this document. Radioactive waste has been included in this Plan as a ''Best Management Practice'' to aid in response, where appropriate. However, radioactive waste is not regulated by DTSC under this Plan. This Contingency Plan is divided into two parts: (1) The first part, referred to as the ''General Plan'', is general information that is applicable to the existing and any subsequent WAAs. The General Plan includes Sections 1-7 and Appendices A-C. (2) The second part, referred to as the ''Site-Specific Plan'', contains site

  12. The burial of headwater streams in drainage pipes reduces in-stream nitrate retention: results from two US metropolitan areas

    EPA Science Inventory

    Nitrogen (N) retention in stream networks is an important ecosystem service that may be affected by the widespread burial of headwater streams in urban watersheds. Stream burial occurs when segments of a channel are encased in drainage pipe and buried beneath the land surface to...

  13. Physical, chemical, and biological data for detailed study of irrigation drainage in the San Juan River area, New Mexico, 1993-94, with supplemental data, 1991-95

    USGS Publications Warehouse

    Thomas, C.L.; Lusk, J.D.; Bristol, R.S.; Wilson, R.M.; Shineman, A.R.

    1997-01-01

    In response to increasing concern about the quality of irrigation drainage and its potential effects on fish, wildlife, and human health, the U.S. Department of the Interior formed an interbureau task group to prepare a plan for investigating water- quality problems on irrigation projects sponsored by the Department of the Interior. The San Juan River area in northwestern New Mexico was one of the areas designated for study. Investigators collected water, bottom-sediment, soil, and biological samples at more than 50 sites in the San Juan River area during 1993-94. Sample sites included (1) sites located within Department of the Interior irrigation project service areas, or areas that receive drainage from irrigation projects; (2) reference sites for comparison with irrigation project sites; and (3) sites located within the reach of the San Juan River from Navajo Dam to 10 miles downstream from the dam. The types of habitat sampled included the main stem of the San Juan River, backwater areas adjacent to the San Juan River, tributaries to the San Juan River, ponds, seeps, irrigation-delivery canals, irrigation-drainage canals, a stock tank, and shallow ground water. The types of media sampled included water, bottom sediment, soil, aquatic plants, aquatic invertebrates, amphibians, and fish. Semipermeable-membrane devices were used as a surrogate medium to sample both air and water in some instances. Sample measurements included concentrations of major ions, trace elements, organochlorine pesticides, polychlorinated biphenyls, polycyclic-aromatic-hydrocarbon compounds, and stable isotopes of hydrogen and oxygen. This report presents tables of physical, chemical, and biological data collected for the U.S. Department of the Interior National Irrigation Water-Quality Program. Additionally, supplemental physical, chemical, and biological data collected in association with the Navajo Indian Irrigation Project are presented.

  14. Accumulation of radionuclides in selected marine biota from Manjung coastal area

    NASA Astrophysics Data System (ADS)

    Abdullah, Anisa; Hamzah, Zaini; Saat, Ahmad; Wood, Ab. Khalik; Alias, Masitah

    2015-04-01

    Distribution of radionuclides from anthropogenic activities has been intensively studied due to the accumulation of radionuclides in marine ecosystem. Manjung area is affected by rapid population growth and socio-economic development such as heavy industrial activities including coal fired power plant, iron foundries, port development and factories, agricultural runoff, waste and toxic discharge from factories.It has radiological risk and toxic effect when effluent from the industries in the area containing radioactive materials either being transported to the atmosphere and deposited back over the land or by run off to the river and flow into coastal area and being absorbed by marine biota. Radionuclides presence in the marine ecosystem can be adversely affect human health when it enters the food chain. This study is focusing on the radionuclides [thorium (Th), uranium (U), radium-226 (226Ra), radium-228 (228Ra) and potassium-40 (40K)] content in marine biota and sea water from Manjung coastal area. Five species of marine biota including Johnius dussumieri (Ikan Gelama), Pseudorhombus malayanus (Ikan Sebelah), Arius maculatus (Ikan Duri), Portunus pelagicus (Ketam Renjong) and Charybdis natator (Ketam Salib) were collected during rainy and dry seasons. Measurements were carried out using Inductively Coupled Plasma Mass Spectrometer (ICPMS). The results show that the concentration of radionuclides varies depends on ecological environment of respective marine biota species. The concentrations and activity concentrations are used for the assessment of potential internal hazard index (Hin), transfer factor (TF), ingestion dose rate (D) and health risk index (HRI) to monitor radiological risk for human consumption.

  15. Size-frequency analysis of petroleum accumulations in selected United States plays: potential analogues for frontier areas

    USGS Publications Warehouse

    Attanasi, E.D.; Freeman, P.A.

    2004-01-01

    This report presents the petroleum accumulation size-frequency relationships of selected mature plays assessed in the U.S. Geological Survey?s 1995 National Assessment of Oil and Gas Resources. The plays provide assessors with potential analogue models from which to estimate the numbers of undiscovered accumulations in medium and smaller size categories. Each play selected was required to have at least 50 discovered accumulations. Discovered accumulations plus the mean number of undiscovered accumulations equals the total accumulations assessed at the play level. There were 36 plays that met the criteria for oil accumulations and 25 plays that met the criteria for gas accumulations. Other properties of the plays such as primary trap type, lithology, depth, and hydrocarbon characteristics are also provided to assist the geologist in choosing an appropriate analogue. The text explains how the analogue size-frequency relationships can be used to estimate the number of small and medium size accumulations for frontier-area plays or partially explored plays in high cost areas. Although this document has been written in support of the Alaska North Slope Assessment, the basic size?frequency relationships provided are applicable elsewhere.

  16. Resistance to and Accumulation of Heavy Metals by Actinobacteria Isolated from Abandoned Mining Areas

    PubMed Central

    El Baz, Soraia; Baz, Mohamed; El Gharmali, Abdelhay; Imziln, Boujamâa

    2015-01-01

    Accumulation of high concentrations of heavy metals in environments can cause many human health risks and serious ecological problems. Nowadays, bioremediation using microorganisms is receiving much attention due to their good performance. The aim of this work is to investigate heavy metals resistance and bioaccumulation potential of actinobacteria strains isolated from some abandoned mining areas. Analysis of mining residues revealed that high concentration of zinc “Zn” was recorded in Sidi Bouatman, Arbar, and Bir Nhass mining residues. The highest concentration of lead “Pb” was found in Sidi Bouatman. Copper “Cu,” cadmium “Cd,” and chromium “Cr” were found with moderate and low concentrations. The resistance of 59 isolated actinobacteria to the five heavy metals was also determined. Using molecular identification 16S rRNA, these 27 isolates were found to belong to Streptomyces and Amycolatopsis genera. The results showed different levels of heavy metal resistance; the minimum inhibitory concentration (MIC) recorded was 0.55 for Pb, 0.15 for Cr, and 0.10 mg·mL−1 for both Zn and Cu. Chemical precipitation assay of heavy metals using hydrogen sulfide technic (H2S) revealed that only 27 isolates have a strong ability to accumulate Pb (up to 600 mg of Pb per g of biomass for Streptomyces sp. BN3). PMID:25763383

  17. Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island,Water Year 2002

    USGS Publications Warehouse

    Breault, Robert F.

    2009-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamflow-gaging stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2002 (October 1, 2001 to September 30, 2002). Water-quality samples were also collected at 35 of 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2002 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2002. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 12.6 cubic feet per second (ft3/s) to the reservoir during WY 2002. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.14 to 8.1 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 534,000 kilograms (kg) of sodium and 851,000 kg of chloride to the Scituate Reservoir during WY 2002; sodium and chloride yields for the tributaries ranged from 2,900 to 40,200 kilograms per square mile (kg/mi2) and from 4,200 to 68,200 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 16.8 milligrams per

  18. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2003

    USGS Publications Warehouse

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2003 (October 1, 2002, to September 30, 2003). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2003 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2003. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 31 cubic feet per second (ft3/s) to the reservoir during WY 2003. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.44 to 20 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,200,000 kilograms (kg) of sodium and 1,900,000 kg of chloride to the Scituate Reservoir during WY 2003; sodium and chloride yields for the tributaries ranged from 10,000 to 61,000 kilograms per square mile (kg/mi2) and from 15,000 to 100,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 21.3 milligrams per liter

  19. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2010

    USGS Publications Warehouse

    Smith, Kirk P.; Breault, Robert F.

    2011-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB), Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance and water temperature. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2010 (October 1, 2009, to September 30, 2010). Water-quality samples also were collected at 37 sampling stations by the PWSB and at 14 monitoring stations by the USGS during WY 2010 as part of a long sampling program; all stations are in the Scituate Reservoir drainage area. Waterquality data collected by PWSB are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2010. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 39 cubic feet per second (ft3/s) to the reservoir during WY 2010. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.7 to 27 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,500,000 kilograms (kg) of sodium and 2,500,000 kg of chloride to the Scituate Reservoir during WY 2010; sodium and chloride yields for the tributaries ranged from 11,000 to 66,000 kilograms per square mile (kg/mi2) and from 18,000 to 110,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the PWSB, the median of the median chloride

  20. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2004

    USGS Publications Warehouse

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2004 (October 1, 2003, to September 30, 2004). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2004 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2004. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 27 cubic feet per second (ft3/s) to the reservoir during WY 2004. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.42 to 19 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,100,000 kilograms (kg) of sodium and 1,700,000 kg of chloride to the Scituate Reservoir during WY 2004; sodium and chloride yields for the tributaries ranged from 12,000 to 61,000 kilograms per square mile (kg/mi2) and from 17,000 to 100,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 24.8 milligrams per liter

  1. Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, Water Year 2005

    USGS Publications Warehouse

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island’s largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2005 (October 1, 2004, to September 30, 2005). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2005 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2005. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 30 cubic feet per second (ft3/s) to the reservoir during WY 2005. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.42 to 19 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,300,000 kilograms (kg) of sodium and 2,000,000 kg of chloride to the Scituate Reservoir during WY 2005; sodium and chloride yields for the tributaries ranged from 13,000 to 77,000 kilograms per square mile (kg/mi2) and from 19,000 to 130,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 25.3 milligrams per

  2. Detailed study of irrigation drainage in and near wildlife management areas, west-central Nevada, 1987-90; Part C, Summary of irrigation-drainage effects on water quality, bottom sediment, and biota

    USGS Publications Warehouse

    Hoffman, Ray J.

    1993-01-01

    This report presents a summary of the detailed scientific study of Stillwater Wildlife Management Area and other nearby wetlands in west-central Nevada during 1987-90. The work was funded by the National Irrigation Water Quality Program of the U.S. Department of the Interior with the overall objectives of determining (1) the extent, magnitude, and effects of selected water-quality constituents associated with irrigation drainage on fish, wildlife, and human health, and (2) the sources and exposure pathways that cause contamination where adverse effects are documented. Much of the information in this report was summarized from two previously published interpretive reports that were completed to fulfill study objectives. Where applicable, data for the study area from other published sources also were utilized. The results of these studies indicate that the aquatic biota in natural wetlands of the Carson Desert are adversely affected by hydrological and geochemical sources and processes in the Newlands Irrigation Project area. Reactions between water and naturally occurring minerals in the shallow alluvial aquifer increase concentrations of potentially toxic constituents in ground water that eventually enters the wetlands. Once in the wetlands, these constituents are furhter concentrated by evaporation and transpiration. Water from some agricultural drains that enter Stillwater WMA was acutely toxic to aquatic organisms. The drains in the agricultural areas, which eventually discharge to the wetlands, were also implicated as sites of uptake of selenium and mercury by aquatic organisms.

  3. Accumulation of radionuclides in selected marine biota from Manjung coastal area

    SciTech Connect

    Abdullah, Anisa Hamzah, Zaini; Wood, Ab. Khalik; Saat, Ahmad; Alias, Masitah

    2015-04-29

    Distribution of radionuclides from anthropogenic activities has been intensively studied due to the accumulation of radionuclides in marine ecosystem. Manjung area is affected by rapid population growth and socio-economic development such as heavy industrial activities including coal fired power plant, iron foundries, port development and factories, agricultural runoff, waste and toxic discharge from factories.It has radiological risk and toxic effect when effluent from the industries in the area containing radioactive materials either being transported to the atmosphere and deposited back over the land or by run off to the river and flow into coastal area and being absorbed by marine biota. Radionuclides presence in the marine ecosystem can be adversely affect human health when it enters the food chain. This study is focusing on the radionuclides [thorium (Th), uranium (U), radium-226 ({sup 226}Ra), radium-228 ({sup 228}Ra) and potassium-40 ({sup 40}K)] content in marine biota and sea water from Manjung coastal area. Five species of marine biota including Johnius dussumieri (Ikan Gelama), Pseudorhombus malayanus (Ikan Sebelah), Arius maculatus (Ikan Duri), Portunus pelagicus (Ketam Renjong) and Charybdis natator (Ketam Salib) were collected during rainy and dry seasons. Measurements were carried out using Inductively Coupled Plasma Mass Spectrometer (ICPMS). The results show that the concentration of radionuclides varies depends on ecological environment of respective marine biota species. The concentrations and activity concentrations are used for the assessment of potential internal hazard index (H{sub in}), transfer factor (TF), ingestion dose rate (D) and health risk index (HRI) to monitor radiological risk for human consumption.

  4. Accumulation of artificial radionuclides in agricultural plants in the area used for surface nuclear tests.

    PubMed

    Kozhakhanov, T E; Lukashenko, S N; Larionova, N V

    2014-11-01

    The paper reports on the study of artificial radionuclide accumulation in agricultural crops grown at the territory with high concentration of radionuclides, and first of all - with high concentration of transuranium elements. As a result of this work, peculiarities of accumulation and distribution of artificial radionuclides in the vegetative and generative organs of the studied plants have been revealed. Basic accumulation factors have been found for (137)Cs, (90)Sr, (239+240)Pu, and (241)Am in agricultural products. Accumulation factor dependence on type of planting was found for the investigated types of plants. It has been found that the vegetative organs accumulate radionuclides most of all. PMID:25128979

  5. Prediction of Regional Streamflow Frequency using Model Tree Ensembles: A data-driven approach based on natural and anthropogenic drainage area characteristics

    NASA Astrophysics Data System (ADS)

    Schnier, S.; Cai, X.

    2012-12-01

    This study introduces a highly accurate data-driven method to predict streamflow frequency statistics based on known drainage area characteristics which yields insights into the dominant controls of regional streamflow. The model is enhanced by explicit consideration of human interference in local hydrology. The basic idea is to use decision trees (i.e., regression trees) to regionalize the dataset and create a model tree by fitting multi-linear equations to the leaves of the regression tree. We improve model accuracy and obtain a measure of variable importance by creating an ensemble of randomized model trees using bootstrap aggregation (i.e., bagging). The database used to induce the models is built from public domain drainage area characteristics for 715 USGS stream gages (455 in Texas and 260 in Illinois). The database includes information on natural characteristics such as precipitation, soil type and slope, as well as anthropogenic ones including land cover, human population and water use. Model accuracy was evaluated using cross-validation and several performance metrics. During the validation, the gauges that are withheld from the analysis represent ungauged watersheds. The proposed method outperforms standard regression models such as the method of residuals for predictions in ungauged watersheds. Importantly, out-of-bag variable importance combined with models for 17 points along the flow duration curve (FDC) (i.e., from 0% to 100% exceedance frequency) yields insight into the dominant controls of regional streamflow. The most discriminant variables for high flows are drainage area and seasonal precipitation. Discriminant variables for low flows are more complex and model accuracy is improved with base-flow data, which is particularly difficult to obtain for ungauged sites. Consideration of human activities, such as percent urban and water use, is also shown to improve accuracy of low flow predictions. Drainage area characteristics, especially

  6. Drainage networks and watersheds delineation derived from TIN-based digital elevation models

    NASA Astrophysics Data System (ADS)

    Freitas, Henrique Rennó de Azeredo; Freitas, Corina da Costa; Rosim, Sergio; Oliveira, João Ricardo de Freitas

    2016-07-01

    Triangulated Irregular Networks (TIN) efficiently define terrain models from which drainage networks and watersheds can be extracted with important applications in hydrology. In this work, the TIN model is represented by a constrained Delaunay triangulation obtained from contour lines and sampled points. Paths of steepest descent calculated from the TIN are connected by processing the triangles according to an associated priority, then forming a drainage graph structure proposed to generate drainage networks from accumulated flows. Major problems such as flat areas and pits that create inconsistencies in the terrain model and discontinuities in flows are removed with procedures that interpolate the elevation values of particular points on the TIN. Drainage networks are defined by arbitrary threshold values, and their associated watersheds and subwatersheds are then delineated. TIN results are qualitatively and quantitatively compared to an available reference drainage network, and also to regular grid results generated with the TerraHidro system. The drainage networks automatically obtained from the drainage graph highly agree to the main courses of water on the terrain, indicating that the TIN is an attractive alternative terrain model for hydrological purposes, and that the proposed drainage graph can be used for the automatic extraction of drainage networks that are consistent with real-world hydrological patterns.

  7. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Stillwater Wildlife Management Area, Churchill County, Nevada, 1986-87

    USGS Publications Warehouse

    Hoffman, R.J.; Hallock, R.J.; Rowe, T.G.; Lico, M.S.; Burge, H.L.; Thompson, S.P.

    1990-01-01

    A reconnaissance was initiated in 1986 to determine whether the quality of irrigation-drainage water in and near the Stillwater Wildlife Management Area, Nevada, has caused or has potential to cause harmful effects on human health, fish, wildlife, or other beneficial uses of water. Samples of surface and groundwater, bottom sediment, and biota were collected from sites upstream and downstream from the Fallon agricultural area in the Carson Desert, and analyzed for potentially toxic trace elements. Other analysis included radioactive substances, major dissolved constituents, and nutrients in water, and pesticide residues in bottom sediment and biota. In areas affected by irrigation drainage, the following constituents were found to commonly exceed baseline concentrations or recommended criteria for protection of aquatic life or propagation of wildlife: In water, arsenic, boron, dissolved solids, molybdenum, sodium, and un-ionized ammonia; in bottom sediments, arsenic, lithium, mercury, molybdenum, and selenium; and in biota, arsenic, boron, chromium, copper, mercury, selenium, and zinc. In some wetlands, selenium and mercury appeared to be biomagnified, and arsenic bioaccumulated. Pesticides contamination in bottom sediments and biota was insignificant. Adverse biological effects observed during this reconnaissance included gradual vegetative changes and species loss, fish die-offs, waterfowl disease epidemics, and persistent and unexplained deaths of migratory birds. (USGS)

  8. Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area. Annual report, September 1, 1996--August 31, 1997

    SciTech Connect

    Schechter, D.S.

    1998-07-01

    The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the second year of the five-year project for each of the four areas. In the first area, the author has completed the reservoir characterization, which includes matrix description and detection (from core-log integration) and fracture characterization. This information is found in Section 1. In the second area, the author has completed extensive inhibition experiments that strongly indicate that the weakly water-wet behavior of the reservoir rock may be responsible for poor waterflood response observed in many Spraberry fields. In the third area, the author has made significant progress in analytical and numerical simulation of performance in Spraberry reservoirs as seen in Section 3. In the fourth area, the author has completed several suites of CO{sub 2} gravity drainage in Spraberry and Berea whole cores at reservoir conditions and reported in Section 4. The results of these experiments have been useful in developing a model for free-fall gravity drainage and have validated the premise that CO{sub 2} will recover oil from tight, unconfined Spraberry matrix. The final three years of this project involves implementation of the CO{sub 2} pilot. Up to twelve new wells are planned in the pilot area; water injection wells to contain the CO{sub 2}, three production wells to monitor performance of CO{sub 2}, CO{sub 2} injection wells including one horizontal injection well and logging observation wells to monitor CO{sub 2} flood fronts. Results of drilling

  9. Drainage networks after wildfire

    USGS Publications Warehouse

    Kinner, D.A.; Moody, J.A.

    2005-01-01

    Predicting runoff and erosion from watersheds burned by wildfires requires an understanding of the three-dimensional structure of both hillslope and channel drainage networks. We investigate the small-and large-scale structures of drainage networks using field studies and computer analysis of 30-m digital elevation model. Topologic variables were derived from a composite 30-m DEM, which included 14 order 6 watersheds within the Pikes Peak batholith. Both topologic and hydraulic variables were measured in the field in two smaller burned watersheds (3.7 and 7.0 hectares) located within one of the order 6 watersheds burned by the 1996 Buffalo Creek Fire in Central Colorado. Horton ratios of topologic variables (stream number, drainage area, stream length, and stream slope) for small-scale and large-scale watersheds are shown to scale geometrically with stream order (i.e., to be scale invariant). However, the ratios derived for the large-scale drainage networks could not be used to predict the rill and gully drainage network structure. Hydraulic variables (width, depth, cross-sectional area, and bed roughness) for small-scale drainage networks were found to be scale invariant across 3 to 4 stream orders. The relation between hydraulic radius and cross-sectional area is similar for rills and gullies, suggesting that their geometry can be treated similarly in hydraulic modeling. Additionally, the rills and gullies have relatively small width-to-depth ratios, implying sidewall friction may be important to the erosion and evolutionary process relative to main stem channels.

  10. Advanced Reservoir Characterization and Evaluation of CO{sub 2} Gravity Drainage in the Naturally Fractured Spraberry Trend Area, Class III

    SciTech Connect

    Knight, Bill; Schechter, David S.

    2001-11-19

    The goal of this project was to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in west Texas. This objective was accomplished through research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. The four areas have been completed and reported in the previous annual reports. This report provides the results of the final year of the project including two SPE papers (SPE 71605 and SPE 71635) presented in the 2001 SPE Annual Meeting in New Orleans, two simulation works, analysis of logging observation wells (LOW) and progress of CO{sub 2} injection.

  11. Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area, Class III

    SciTech Connect

    Heckman, Tracy; Schechter, David S.

    2000-04-11

    The overall goal of this project was to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective was accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) analytical and numerical simulation of Spraberry reservoirs, and, (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the fourth year of the five-year project for each of the four areas including a status report of field activities leading up to injection of CO{sub 2}.

  12. 210Pb mass accumulation rates in the depositional area of the Magra River (Mediterranean Sea, Italy)

    NASA Astrophysics Data System (ADS)

    Delbono, I.; Barsanti, M.; Schirone, A.; Conte, F.; Delfanti, R.

    2016-08-01

    Nine sediment cores were collected between 2009 and 2012 in the inner continental shelf (Mediterranean Sea, Italy) mainly influenced by the Magra River, at water depths ranging from 11 to 64 m. Mass Accumulation Rates (MARs) were calculated through 210Pb analysed by Gamma spectrometry. Three different dating models (single and two-layer CF-CS, CRS) were applied to clay normalised 210Pbxs profiles and 137Cs was used to validate the 210Pb geochronology. The maximum MAR values (>2 g cm-2 yr-1) were found in the region adjacent to the Magra River mouth and outside the Gulf of La Spezia (0.9±0.1 g cm-2 yr-1 at St. 3-C6 and 4-C4). Results from 137Cs/210Pbxs ratios calculated in Surface Mixed Layers (SMLs) evidenced the coastal boundaries of the Magra River depositional area, which is very limited towards south. Differently, in the north-west sector, fine sediments are generally driven by the Ligurian Current and move towards north-west: at the deepest and most distant station from the River mouth, the MAR value is the lowest one in the study area. Few major Magra River floods occurred during the sediment core sampling period. By using the short-lived radioisotope 7Be as a tracer of river floods, a clear 7Be signature of 2009 flood is present at St. 1-SA1C. Finally, by analyzing the clay normalised 210Pbxs profiles, a decrease of its activity dating the years 1999 and 2000 is observed in four cores, corresponding to two major Magra River floods occurring in those years.

  13. Comparison of surgical procedures and percutaneous drainage in the treatment of liver hydatide cysts: a retrospective study in an endemic area

    PubMed Central

    Akkucuk, Seckin; Aydogan, Akin; Ugur, Mustafa; Yetim, Ibrahim; Davran, Ramazan; Oruc, Cem; Kilic, Erol; Temiz, Muhyittin

    2014-01-01

    Introduction: Surgical procedures are still the golden standard option in the treatment of liver cystic echinococcosis. However, minimal invasive technics like percutaneous drainage are rising trends. We aimed to compare the efficacy of surgical and percutaneous options in the treatment of liver hydatidosis in an endemic area. Methods: Patients who underwent surgical or percutaneous procedures for hydatid disease between January 2007 and December 2012 were retrospectively evaluated. Recurrence rates, hospital stay time, and related factors were analyzed. Results: There were 44 (35.5%) male and 80 (64.5%) female patients in this study. Eighty two patients (Group I) had undergone surgery (66.1%) and 42 patients (Group II) had undergone percutaneous drainage (33.9%). The mean cyst size was 7.28 ± 2.51 cm in Group I and 8.76 ± 3.30 cm in Group II. Nine recurrences (7.3%) were detected during study. Five of the recurrences were in Group II (11.9%) and four (4.9%) of them were in Group I. The mean length of hospital stay of all patients was 5.42 ± 3.16 days. Discussion: Percutaneous drainage techniques can be a good alternative to surgery in selected patients. In complicated cases like cystobiliary fistula, surgery is superior to percutaneous approaches. The hospital stay time, recurrence rate and postoperative complications were not enhanced when compared to percutaneous treatment in our study. Despite all controversy about the low morbidity after percutaneous treatment, surgical approach is still a preferable option in patients with liver hydatidosis when it is performed by experienced surgeons. PMID:25232421

  14. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the American Falls Reservoir area, Idaho, 1988-89. Water Resources Investigation

    SciTech Connect

    Low, W.H.; Mullins, W.H.

    1990-01-01

    The report presents results of a reconnaissance investigation to determine whether potentially toxic concentrations of selected trace elements or organochlorine compounds associated with irrigation drainage exist in surface and ground water, bottom sediment, aquatic plants, benthic invertebrates, fish, and waterbirds in the American Falls Reservoir area. American Falls Reservoir was selected for investigation in part because several previous investigations of fish in the reservoir indicated that mercury and cadmium concentrations exceeded human health standards and periodic botulism-related die-offs of waterbirds have been known to occur. Also, rocks south and southeast of the reservoir contain naturally occurring selenium concentrations many times greater than those in the continental crust. Samples of water, bottom sediment, aquatic plants, benthic invertebrates, fish, and waterbirds were collected from nine sites in the American Falls Reservoir area. The samples were analyzed for selected inorganic and organic constituents to determine whether concentrations exceeded known standards or criteria.

  15. Assessment and application of a snowblow modelling approach for identifying enhanced snow accumulation in areas of former glaciation

    NASA Astrophysics Data System (ADS)

    Mills, Stephanie; Smith, Michael; Le Brocq, Anne; Ardakova, Ekaterina; Hillier, John; Boston, Clare

    2016-04-01

    The redistribution of snow by wind can play an important role in providing additional mass to the surface of glaciers and can, therefore, have an impact on the glacier's surface mass balance. In areas of marginal glaciation, this local topo-climatic effect may be prove crucial for the initiation and survival of glaciers, whilst it can also increase heterogeneity in the distribution of snow on ice caps and ice sheets. We present a newly developed snowblow model which calculates spatial variations in relative snow accumulation that result from variations in topography. We apply this model to areas of former marginal glaciation in the Brecon Beacons, Wales and an area of former plateau icefield glaciation in the Monadhliath, Scotland. We can then determine whether redistribution by snow can help explain variations in the estimated equilibrium line altitudes (ELAs) of these former glaciers. Specifically, we compare the areas where snow is modelled as accumulating, to the reconstructed glacier surface, which is based on mapped moraines believed to be of Younger Dryas age. The model is applied to 30 m resolution DEMs and potential snow accumulation is simulated from different wind directions in order to determine the most likely contributing sector. Total snow accumulation in sub-set areas is then calculated and compared to the reconstructed glacier area. The results suggest that areas with larger amounts of snow accumulation often correspond with those where the ELA is lower than surrounding glaciers and vice versa, in both the marginal and icefield setting, suggesting that the role of snowblow in supplying additional mass to the surface of glaciers is significant.

  16. [Construct of Yangtze-Huai River rural areas ecological drainage system and its retention effect on pollutants].

    PubMed

    Shan, Bao-Qing; Li, Nan; Tang, Wen-Zhong

    2012-11-01

    Ecological drainage system (EDS) including ditches, ponds and wetland was constructed at the Paifangchen village on the north of Chaohu Lake, Anhui, and its retention effect on pollution was investigated. With the comprehensive function of sewage discharge, collecting and process, the system could intercept runoff pollutants effectively. The results acquired from 3 rainfall events showed that the retention rates of EDS to TSS, COD, TP and TN were 78.2%, 57.8%, 55.5% and 64.2% respectively, and the concentrations at outflow of the system to TSS, COD, TP and NH4(+) -N were 23.5, 66.3, 0.49 and 3.03 mg x L(-1) separately, met the first standard of "Integrated Wastewater Discharge Standards". Ponds were the important unit of EDS and the daily water quality concentrations of TSS, COD, TP and TN were 28.0, 31.2, 0.47 and 4.65 mg x L(-1) respectively, met the V standard of "Environment Quality Standards for Surface Water" basically. PMID:23323408

  17. Paleohydrology of meandering systems: a new approach for the reconstruction of ancient drainage areas and the quantification of the controlling factors

    NASA Astrophysics Data System (ADS)

    Held, A.; Cojan, I.

    2009-12-01

    In meandering system fluvial sedimentology, studying infill geometries and sedimentary structures of channelized sandstone bodies, gives information about the sedimentary dynamic and the depositional environment. Associated with such a sedimentary approach, paleohydrology enables the reconstruction of hydrological parameters such as discharge, drainage area or stream length. Although fluvial systems are known to be influenced by allogenic and/or autogenic processes, climate or structural evolution were not taken into account in previous paleohydrological studies. Therefore, the present study attempts to develop a new method of paleohydrological reconstitution, based on the geometry of fluvial sandstone bodies and constrained by the controlling factors (climate and tectonic). We selected two meandering systems of the same age, developed under different climatic setting: the first one is located in the Alpine Foreland Basin (SE France) and was associated to a subtropical humid realm; the second one is situated in the Loranca Basin (Central Spain) and was related to subtropical semi-arid conditions. Dealing with the uniformitarianism concept, we developed a new method to determine the paleohydrological parameters of the two different systems. For each of these two climatic setting we have constructed an equivalent modern rivers database taking into account their respective climatic conditions. By defining empirical relations, we translated the point-bar thickness (the only data available in the field) into paleohydrological parameters, such as channel geometry, water discharge and basin geometry. Because fluvial members studied are composed of several channelized sequences; each of them gives a specific drainage area depending on discharge value and climatic coefficient. But assuming a constant basin area all along the river evolution, we can quantify the spatiotemporal impact of the climate on the development of an alluvial system. Furthermore, granulometry

  18. Application of a watershed model (HSPF) for evaluating sources and transport of pathogen indicators in the Chino Basin drainage area, San Bernardino County, California

    USGS Publications Warehouse

    Hevesi, Joseph A.; Flint, Lorraine E.; Church, Clinton D.; Mendez, Gregory O.

    2011-01-01

    A watershed model using Hydrologic Simulation Program-FORTRAN (HSPF) was developed for the urbanized Chino Basin in southern California to simulate the transport of pathogen indicator bacteria, evaluate the flow-component and land-use contributions to bacteria contamination and water-quality degradation throughout the basin, and develop a better understanding of the potential effects of climate and land-use change on water quality. The calibration of the model for indicator bacteria was supported by historical data collected before this study and by samples collected by the U.S. Geological Survey from targeted land-use areas during storms in water-year 2004. The model was successfully calibrated for streamflow at 5 gage locations representing the Chino Creek and Mill Creek drainages. Although representing pathogens as dissolved constituents limits the model's ability to simulate the transport of pathogen indicator bacteria, the bacteria concentrations measured over the period 1998-2004 were well represented by the simulated concentrations for most locations. Hourly concentrations were more difficult to predict because of high variability in measured bacteria concentrations. In general, model simulations indicated that the residential and commercial land uses were the dominant sources for most of the pathogen indicator bacteria during low streamflows. However, simulations indicated that land used for intensive livestock (dairies and feedlots) and mixed agriculture contributed the most bacteria during storms. The calibrated model was used to evaluate how various land use, air temperature, and precipitation scenarios would affect flow and transport of bacteria. Results indicated that snow pack formation and melt were sensitive to changes in air temperature in the northern, mountainous part of the Chino Basin, causing the timing and magnitude of streamflow to shift in the natural drainages and impact the urbanized areas of the central Chino Basin. The relation between

  19. Physical, chemical, and biological data for detailed study of irrigation drainage in the Uncompahgre Project area and in the Grand Valley, west-central Colorado, 1991-92

    USGS Publications Warehouse

    Butler, D.L.; Wright, W.G.; Hahn, D.A.; Krueger, R.P.; Osmundson, B.C.

    1994-01-01

    Because of concerns about potential effects of irrigation drainage on fish and wildlife resources and on human health, the U.S. Department of the Interior initiated a program in 1985 to assess water-quality problems associated with Federal irrigation projects in the Western United States. Physical, chemical, and biological data were collected for a detailed study of irrigation drainage in the Uncompahgre Project area and in the Grand Valley, west-central Colorado, during 1991-92. This report lists onsite measurements and concen- trations of major constituents, trace elements, and stable isotopes for surface-water- and ground-water-sampling sites. Insecticide data collected in the Grand Valley are presented. Ranges of specific-conductance measurements and dissolved- oxygen concentrations for selected wells and a daily record of water-level altitude and specific conduc- tance for a well in the Grand Valley are presented. The report presents historical water-level and dissolved-solids data for two wells in the Grand Valley. Concentrations of trace elements, major constituents, total carbon, and organic carbon in bottom-sediment, bedrock, and in aquifer-sediment samples and semiquantitative data on clay and bulk mineralogy of samples of the Mancos Shale are presented. The report contains selenium-speciation data for selected water and bottom-sediment samples and selected aquifer-test results. Biological samples collected in the Uncompahgre Project area and in the Grand Valley included aquatic plants, aquatic invertebrates, fish, birds, and bird eggs. The report lists concentrations of trace elements in biological samples collected in 1991-92. A limited number of biological samples were analyzed for pesticides, PCB's, and polycyclic aromatic hydrocarbons.

  20. EMI-Sensor Data to Identify Areas of Manure Accumulation on a Feedlot Surface

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was initiated to test the validity of using electromagnetic induction (EMI) survey data, a prediction-based sampling strategy and ordinary linear regression modeling to predict spatially variable feedlot surface manure accumulation. A 30 m × 60 m feedlot pen with a central mound was selecte...

  1. Electromagnetic Induction Sensor Data to Identify Areas of Manure Accumulation on a Feedlot Surface

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was initiated to test the validity of using electromagnetic induction (EMI) survey data, a prediction-based sampling strategy and ordinary linear regression modeling to predict spatially variable feedlot surface manure accumulation. A 30 m × 60 m feedlot pen with a central mound was selecte...

  2. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India.

    PubMed

    Singh, N K; Raghubanshi, A S; Upadhyay, A K; Rai, U N

    2016-08-01

    The present study was conducted to quantify the arsenic (As) and other heavy metal concentrations in the plants and algae growing naturally in As contaminated blocks of North-24-Pargana and Nandia district, West Bengal, India to assess their bioaccumulation potential. The plant species included five macrophytes and five algae were collected from the nine selected sites for estimation of As and other heavy metals accumulated therein by using Inductively Coupled Plasma Mass Spectrophotometer (ICP-MS). Results revealed that maximum As concentration (117mgkg(-1)) was recorded in the agricultural soil at the Barasat followed by Beliaghat (111mgkg(-1)) sites of North-24-Pargana. Similarly, concentration of selenium (Si, 249mgkg(-1)), lead (Pb, 79.4mgkg(-1)), chromium (Cr, 138mgkg(-1)) was also found maximum in the soil at Barasat and cadmium (Cd, 163mgkg(-1)) nickel (Ni, 36.5mgkg(-1)) at Vijaynagar site. Among the macrophytes, Eichhornia crassipes found more dominating species in As contaminated area and accumulate As (597mgkg(-1)) in the shoot at kanchrapara site. The Lemna minor found to accumulate maximum As (735mgkg(-1)) in the leaves at Sonadanga and Pistia stratiotes accumulated minimum As (24.5mgkg(-1)) in the fronds from Ranaghat site. In case of diatoms, maximum As (760mgkg(-1)) was accumulated at Kanchrapara site followed by Hydrodictiyon reticulatum (403mgkg(-1)) at the Ranaghat site. High concentration of As and other heavy metal in soil indicates long term effects of irrigation with contaminated ground water, however, high concentration of heavy metals in naturally growing plants and algae revealed their mobilization through leaching and possible food chain contamination. Therefore, efficient heavy metal accumulator macrophytes Eichhornia crassipes, Lemna minor, Spirodela polyrhiza may be exploited in removing metals from contaminated water by developing a plant based treatment system. However, As accumulator algal species may be used as a bioresource for

  3. Heavy Metals Accumulation of Some Plant Species Grown on Mining Area at Mahad AD`Dahab, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Farraj, A. S.; Al-Wabel, M. I.

    Samples from different plants species, which grown around Mahad AD`Dahab Mine, have been selected to study their ability to accumulate these heavy metals. These plant species were: Pergularia tomentosa, Calotropis procera, Acacia tortilis, Ochradenus baccatus, Salsola sp., Rhiza strica, Convolvalus sp., Euculeptus sp., Family graminaea and Prosopis juliflora. Moreover, some of soil samples under each plant were collected. Plants and soils samples were analyzed for their contents of As, Cd, Cu, Pb and Zn. Two way ANOVA analysis without interaction was performed to examine the effect of plant species and heavy metals concentration in soil on their accumulation by plants. Although significant differences were not found at 0.01 levels among the plant species, it was found that Pergularia tomentosa was the highest to accumulate heavy metals. Considering the mean of accumulating heavy metals, plant species accumulated heavy metals by this order: Pergularia tomentosa, Euculeptus sp. Convolvalus sp. Family graminaea, Rhiza strica, Acacia tortilis, Prosopis juliflora, Salsola sp. Calotropis procera, Ochradenus baccatus. According to the mean of BAF's, heavy metals concentration of Cd was found to be significantly different than Cu, Pb and Zn. From above, these plants should be described as not-excluder and can be explored further for phytoremediation of metal polluted soils. On other hand, the practice of providing foliage and pods as fodder for live stock should be avoided in Mahad AD`Dahab area.

  4. Water information bulletin No. 30, part 13: geothermal investigations in Idaho. Preliminary geologic reconnaissance of the geothermal occurrences of the Wood River Drainage Area

    SciTech Connect

    Anderson, J.E.; Bideganeta, K.; Mitchell, J.C.

    1985-04-01

    Pre-tertiary sediments of the Milligen and Wood River Formations consisting primarily of argillite, quartzite, shale and dolomite are, for the most part, exposed throughout the area and are cut locally by outliers of the Idaho Batholith. At some locations, Tertiary-age Challis Volcanics overlay these formations. Structurally the area is complex with major folding and faulting visible in many exposures. Many of the stream drainages appear to be fault controlled. Hydrologic studies indicate hot spring occurrences are related to major structural trends, as rock permeabilities are generally low. Geochemical studies using stable isotopes of hydrogen and oxygen indicate the thermal water in the Wood River region to be depleted by about 10 0/00 in D and by 1 to 2 0/00 in /sup 18/0 relative to cold water. This suggests the water could be meteoric water that fell during the late Pleistocene. The geological data, as well as the chemical data, indicate the geothermal waters are heated at depth, and subsequently migrate along permeable structural zones. In almost all cases the chemical data suggest slightly different thermal histories and recharge areas for the water issuing from the hot springs. Sustained use of the thermal water at any of the identified springs is probably limited to flow rates approximating the existing spring discharge. 28 refs., 16 figs., 3 tabs.

  5. Element accumulation, distribution, and phytoremediation potential in selected metallophytes growing in a contaminated area.

    PubMed

    Nadgórska-Socha, Aleksandra; Kandziora-Ciupa, Marta; Ciepał, Ryszard

    2015-07-01

    The distribution of elements in three pseudometallophytes species Cardaminopsis arenosa, Plantago lanceolata, and Plantago major, naturally occurring at metalliferous and non-metalliferous sites in southern Poland, was investigated. The accumulation of Al, Cd, Cu, Fe, Mn, Pb, Zn, as well as Ca, P, Na, and K in shoots and roots was measured. The level of the accumulated trace elements (ATE) was visibly higher in C. arenosa and P. lanceolata from metalliferous sites than non-contaminated ones. However, the level of the accumulated nutrient elements (ANE) was visibly higher only in C. arenosa plants. Also, higher potassium share in ANE was found in the shoots of C. arenosa and Plantago species from metalliferous sites than non-contaminated ones. The highest content of Cd, Zn, Pb, Al, Fe, and Mn was found in C. arenosa, which better reflected metal concentrations in the metalliferous and non-metalliferous soil than other plants. In the studied Plantago species, in almost all cases in all sites TF (translocation coefficient) and MR (mobility ratio) were below 1, which indicates they use the excluder strategy. The best accumulation ability was found for C. arenosa. The higher translocation coefficients (TF > 1) for Zn and Cd in C. arenosa shoots make it suitable for phytoextraction from soil, while the lower translocation ratios (TF < 1) for Zn and Cd in Plantago species and also for Pb in C. arenosa make them suitable for phytostabilization. Almost in all cases the plants had enrichment coefficient >2, which suggested that they may act as indicators of the soil metal contamination. PMID:26088758

  6. A comparative study of antimony accumulation in plants growing in two mining areas in Iran, Moghanlo, and Patyar.

    PubMed

    Jamali Hajiani, Naser; Ghaderian, Seyed Majid; Karimi, Naser; Schat, Henk

    2015-11-01

    Antimony occurs locally at high concentrations in some mineralized soils. Very little is known about behavior of antimony in plants. In this study, we analyzed the soil and vegetation of two mining areas in Iran, Patyar, and Moghanlo. Total Sb concentrations in soil were 358-3482 mg/kg in Moghanlo and 284-886 mg/kg in Patyar. Corresponding Sb concentrations in plant shoots were 0.8-287 and 1.3-49 mg/kg, respectively. In both areas, foliar Sb concentrations increased with acid-extractable soil Sb, although the slope was about 2-fold steeper for Patyar than for Moghanlo. Regressing the foliar concentrations on water-soluble Sb yielded identical slopes for both areas, suggesting that the soluble fraction of Sb rather than total Sb is the direct determinant of foliar Sb accumulation. Both in Patyar and Moghanlo, only a minor part of the total variance of shoot Sb was explained by soluble Sb. The major part was explained by plant species, demonstrating that plant taxonomic identity is the most important determinant of foliar Sb accumulation capacity in both areas. The translocation factor (TF) was highly variable too, with species as the only significant variance component. Only four species were able to accumulate more than 100 mg/kg Sb in their leaves. Among these species, Achillea wilhelmsii and Matthiola farinosa were by far the best Sb accumulators, with, on average, 141 and 132 mg/kg Sb in their leaves. Of these two, only Matthiola farinosa consistently maintained TF values far above unity across the whole range of soluble Sb in Moghanlo. PMID:26077322

  7. Constructed wetlands as a component of the agricultural landscape: Mitigation of herbicides in simulated runoff from upland drainage areas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Constructed wetlands are a recommended practice for buffering pollutant source areas and receiving waters. A wetland consisting of a sediment trap and two treatment cells was constructed in a Mississippi Delta lake watershed. A 3-h simulated runoff event was initiated (2003) to evaluate fate and tr...

  8. Lake evolution of the terminal area of Shiyang River drainage in arid China since the last glaciation

    USGS Publications Warehouse

    Shi, Q.; Chen, F.-H.; Zhu, Y.; Madsen, D.

    2002-01-01

    Investigations of geomorphology and sedimentology, and analyses of radiocarbon dates, grain size and carbonate of the sediment at the present-dry closed basin in the terminal area of Shiyang River in arid China were conducted to recover the history of palaeolake change since the last glacial. The terminal area was covered by eolian sand before 13,000 14C BP. Lacustrine deposits covered the eolian sand after 13,000 14C BP, but were succeeded rapidly by eolian or fluvial deposits ca. 11,200-10,000 BP. This fact plus the grain-size distribution and CaCO3 content showed that climate was extremely dry during the last glacial, but wet-dry oscillations characterized the late glacial. A single coalescent lake, over 45 m deep and 2130 km2, formed between 10,000-6400 14C BP in the basin. The lake disintegrated into several shallow carbonate lakes or swamps gradually after 6400 14C BP. Eolian sand reached into the most part of the basin during the period. The lake evolution in the area generally reflects the East Asian summer monsoon history forced by Northern hemisphere insolation. Short time-scale lake fluctuations also existed in the area since the last glacial. ?? 2002 Elsevier Science Ltd and INQUA. All rights reserved.

  9. A method to mitigate acid-mine drainage in the Shamokin area, Pennsylvania, U.S.A.

    NASA Astrophysics Data System (ADS)

    Rahn, Perry H.

    1992-01-01

    The three anthracite coal fields of eastern Pennsylvania occur in large synclinal basins surrounded by sandstone hogback ridges. The streams draining the coal regions are heavily contaminated by sulfuric acid due to the weathering of pyrite in the abandoned mines and culm. Dams could be built in the water gaps of the streams leaving the basins, forming huge reservoirs. For example, in the western part of the Middle Coal Field (Shamokin-Mt. Carmel area), the construction of four dams would form a reservoir that would inundate practically all the culm banks, abandoned mines, and environmentally abused lands in this coal field. The reservoir (at approximately 410 m elevation) would be approximately 140 sq km in area and could be the source of water for pumped-storage hydroelectricity generation. The water should have moderately good quality and could serve the recreational needs of a vast population of the Middle Atlantic states.

  10. Minerals and mine drainage

    SciTech Connect

    Liang, H.C.; Thomson, B.M.

    2009-09-15

    A review of literature published in 2008 and early 2009 on research related to the production of acid mine drainage and/or in the dissolution of minerals as a result of mining, with special emphasis on the effects of these phenomena on the water quality in the surrounding environment, is presented. This review is divided into six sections: 1) Site Characterization and Assessment, 2) Protection, Prevention, and Restoration, 3) Toxicity Assessment, 4) Environmental Fate and Transport, 5) Biological Characterization, and 6) Treatment Technologies. Because there is much overlap in research areas associated with minerals and mine drainage, many papers presented in this review can be classified into more than one category, and the six sections should not be regarded as being mutually-exclusive, nor should they be thought of as being all-inclusive.

  11. Adaptation Options for Land Drainage Systems Towards Sustainable Agriculture and Environment: A Czech Perspective

    NASA Astrophysics Data System (ADS)

    Kulhavý, Zbyněk; Fučík, Petr

    2015-04-01

    In this paper, issues of agricultural drainage systems are introduced and discussed from the views of their former, current and future roles and functioning in the Czech Republic (CR). A methodologically disparate survey was done on thirty-nine model localities in CR with different intensity and state of land drainage systems, aimed at description of commonly occurred problems and possible adaptations of agricultural drainage as perceived by farmers, land owners, landscape managers or by protective water management. The survey was focused on technical state of drainage, fragmentation of land ownership within drained areas as well as on possible conflicts between agricultural and environmental interests in a landscape. Achieved results confirmed that there is obviously an increasing need to reassess some functions of prevailingly single-purpose agricultural drainage systems. Drainage intensity and detected unfavourable technical state of drainage systems as well as the risks connected with the anticipated climate change from the view of possible water scarcity claims for a complex solution. An array of adaptation options for agricultural drainage systems is presented, aiming at enhancement of water retention time and improvement of water quality. It encompasses additional flow-controlling measures on tiles or ditches, or facilities for making selected parts of a drainage system inoperable in order to retain or slow down the drainage runoff, to establish water accumulation zones and to enhance water self-cleaning processes. However, it was revealed that the question of landowner parcels fragmentation on drained land in CR would dramatically complicate design and realization of these measures. Presented solutions and findings are propounded with a respect to contemporary and future state policies and international strategies for sustainable agriculture, water management and environment.

  12. A novel selenocystine-accumulating plant in selenium-mine seepage area of Yutangba, China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yutangba, located in the northwestern Hubei province, China, is the only selenium (Se) mine in the world with Se content as high as 8500 mg/kg. High Se concentrations in water and soil can be collected from certain restricted areas near abandoned stone coal spoils. In the seepage areas of Se mines, ...

  13. Quaternary geology and geomorphology of the Dinosaur Provincial Park area and surrounding plains, Alberta, Canada: the identification of former glacial lobes, drainage diversions and meltwater flood tracks

    NASA Astrophysics Data System (ADS)

    Evans, David J. A.

    2000-06-01

    The Quaternary geology and geomorphology of the lower Red Deer River drainage basin, centred on the Dinosaur Provincial Park badlands, provides information on pre-Late Wisconsinan drainage patterns and the dynamics of former lobes of the Laurentide Ice Sheet in western Canada. Patterns of deglaciation, proglacial lake evolution and spillway incision are also reconstructed based upon the distribution of surface materials and glacial/glaciofluvial landforms. The Empress Group fluvial and glaciolacustrine sediments, which could be as young as 27 ka BP, infill the precursor Red Deer River and its tributaries and document the initial advance of glacier ice into southern Alberta. Glaciotectonic disturbance of older sediments and bedrock, the production of deformation tills and the construction of a megafluting complex and cupola hills record the advances of a glacier lobe centred over the study area. Stratified inter- and intra-till beds record pulses of subglacial meltwater between phases of subsole deformation. The thickening of tills towards the margin of the lobe represents a till wedge, an expected product of sediment advection by glaciers moving over deformable beds. The eastern margin of the glacier lobe is demarcated by the interlobate Suffield hummocky moraine belt which contains overprinted thrust ridges, which record diachronous oscillations of neighbouring lobes within the ice sheet. Proglacial and glaciofluvial sediments were deposited in the area in association with proglacial Lake Bassano/Patricia, which drained eastwards when the Suffield moraine was dissected by spillways. Changes in the size of glacial lake Bassano/Patricia are clearly documented by a sequence of spillway incisions which culminated in the erosion of scabland topography and the initiation of a new course for the Red Deer River, a 15 km southward diversion of the main channel. In distinct contrast to the documented incision histories of other small rivers in Alberta, One Tree Creek and

  14. Water withdrawals for irrigation, municipal, mining, thermoelectric-power, and drainage uses in Arizona outside of active management areas, 1991-2000

    USGS Publications Warehouse

    Tadayon, Saeid

    2005-01-01

    Economic development in Arizona is largely influenced by access to adequate water supplies owing to the State's predominantly semiarid to arid climate. Water demand is met by pumping ground water from aquifers or by con-veying surface water through a system of reservoirs and canals. Water-withdrawal data provide important information on how water demand affects the State's water resources. Information on water withdrawals also can help planners and managers assess the effectiveness of water-management policies, regulations, and conservation activities. This report includes water-withdrawal data for irrigation, municipal, mining, thermoelectric-power, and drainage uses for 1991-2000, and describes the methods used to collect, compile, and estimate the data. Data are reported for the Arizona Department of Water Resources ground-water basins outside of Active Management Areas. Because of the climate, ground water and surface water are used to irrigate nearly all agricultural fields in Arizona. Irrigation accounted for the largest use of water in the study area during 1991-2000. The amount of water withdrawn for irrigation varies greatly from year to year for some of the basins, primarily because of differences in the consumptive water requirement for different crops and because of changes in irrigated acreage. The population of Arizona increased about 35 percent from 1991 to 2000-from about 3.79 million in 1991 to about 5.13 million in 2000. Correspondingly, water withdrawal for municipal use increased steadily in most of the basins during 1991-2000. Ground-water withdrawals for mining did not show any consistent trends during 1991-2000. Increases and decreases in withdrawals for mining were most likely due to variations in mineral production. Mineral prices and competition from mining in other States and foreign countries probably result in annual increases or decreases in mineral production in Arizona. Between 1991 and 2000, ground-water withdrawals for

  15. Extent of Low-accumulation 'Wind Glaze' Areas on the East Antarctic Plateau: Implications for Continental Ice Mass Balance

    NASA Technical Reports Server (NTRS)

    Scambos, Theodore A.; Frezzotti, Massimo; Haran, T.; Bohlander, J.; Lenaerts, J. T. M.; Van Den Broeke, M. R.; Jezek, K.; Long, D.; Urbini, S.; Farness, K.; Neumann, T.; Albert, M.; Winther, J.-G.

    2012-01-01

    Persistent katabatic winds form widely distributed localized areas of near-zero net surface accumulation on the East Antarctic ice sheet (EAIS) plateau. These areas have been called 'glaze' surfaces due to their polished appearance. They are typically 2-200 square kilometers in area and are found on leeward slopes of ice-sheet undulations and megadunes. Adjacent, leeward high-accumulation regions (isolated dunes) are generally smaller and do not compensate for the local low in surface mass balance (SMB). We use a combination of satellite remote sensing and field-gathered datasets to map the extent of wind glaze in the EAIS above 1500m elevation. Mapping criteria are derived from distinctive surface and subsurface characteristics of glaze areas resulting from many years of intense annual temperature cycling without significant burial. Our results show that 11.2 plus or minus 1.7%, or 950 plus or minus 143 x 10(exp 3) square kilometers, of the EAIS above 1500m is wind glaze. Studies of SMB interpolate values across glaze regions, leading to overestimates of net mass input. Using our derived wind-glaze extent, we estimate this excess in three recent models of Antarctic SMB at 46-82 Gt. The lowest-input model appears to best match the mean in regions of extensive wind glaze.

  16. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    PubMed Central

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; Morales, Alejandro; Weise, Sean E.; Sharkey, Thomas D.

    2015-01-01

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness. PMID:25914696

  17. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    SciTech Connect

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; Morales, Alejandro; Weise, Sean E.; Sharkey, Thomas D.

    2015-04-09

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness.

  18. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    DOE PAGESBeta

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; Morales, Alejandro; Weise, Sean E.; Sharkey, Thomas D.

    2015-04-09

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growthmore » analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness.« less

  19. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana.

    PubMed

    Weraduwage, Sarathi M; Chen, Jin; Anozie, Fransisca C; Morales, Alejandro; Weise, Sean E; Sharkey, Thomas D

    2015-01-01

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness. PMID:25914696

  20. Heavy metal distribution and partitioning in the vicinity of the discharge areas of Lisbon drainage basins (Tagus Estuary, Portugal)

    NASA Astrophysics Data System (ADS)

    Duarte, Bernardo; Silva, Gilda; Costa, José Lino; Medeiros, João Paulo; Azeda, Carla; Sá, Erica; Metelo, Inês; Costa, Maria José; Caçador, Isabel

    2014-10-01

    Worldwide estuarine ecosystems are by their privileged geographic location, anthropogenically impacted systems. Heavy metal contamination in estuarine waters and sediments are well known to be one of the most important outcomes driven from human activities. The partitioning of these elements has been widely focused, due to its importance not only on the estuarine biogeochemistry but also on its bioavailability to the trophic webs. As observed in other estuaries, in the Tagus basin, no increase in the partition coefficients with the increasing suspended particulate matter concentrations was observed, mostly due to a permanent dilution process of the suspended matter, rich in heavy metals and less contaminated and resuspended bottom sediments. Another important outcome of this study was the common origin of all the analysed heavy metals, probably due to the large industrialization process that the margins of the Tagus estuary suffered in the past, although no relationship was found with the presence of the different discharge areas. In fact, metal partitioning seems to be mostly influenced by the chemical species in which the pollutant is delivered to the system and on water chemistry, with a higher emphasis on the metal cycling essentially between the particulate and dissolved phase. This partitioning system acquires a relevant importance while evaluating the impacts of marine construction and the associated dredging operations, and consequent changes in the estuarine water chemistry.

  1. An energy-based model accounting for snow accumulation and snowmelt in a coniferous forest and in an open area

    NASA Astrophysics Data System (ADS)

    Matějka, Ondřej; Jeníček, Michal

    2016-04-01

    An energy balance approach was used to simulate snow water equivalent (SWE) evolution in an open area, forest clearing and coniferous forest during winter seasons 2011/12 and 2012/13 in the Bystřice River basin (Krušné Mountains, Czech Republic). The aim was to describe the impact of vegetation on snow accumulation and snowmelt under different forest canopy structure and trees density. Hemispherical photographs were used to describe the forest canopy structure. Energy balance model of snow accumulation and melt was set up. The snow model was adjusted to account the effects of forest canopy on driving meteorological variables. Leaf area index derived from 32 hemispherical photographs of vegetation and sky was used to implement the forest influence in the snow model. The model was evaluated using snow depth and SWE data measured at 16 localities in winter seasons from 2011 to 2013. The model was able to reproduce the SWE evolution in both winter seasons beneath the forest canopy, forest clearing and open area. The SWE maximum in forest sites was by 18% lower than in open areas and forest clearings. The portion of shortwave radiation on snowmelt rate was by 50% lower in forest areas than in open areas due to shading effect. The importance of turbulent fluxes was by 30% lower in forest sites compared to openings because of wind speed reduction up to 10% of values at corresponding open areas. Indirect estimation of interception rates was derived. Between 14 and 60% of snowfall was intercept and sublimated in the forest canopy in both winter seasons. Based on model results, the underestimation of solid precipitation (heated precipitation gauge used for measurement) at the weather station Hřebečná was revealed. The snowfall was underestimated by 40% in winter season 2011/12 and by 13% in winter season 2012/13. Although, the model formulation appeared sufficient for both analysed winter seasons, canopy effects on the longwave radiation and ground heat flux were not

  2. Drainage divides, Massachusetts-Hudson River basin

    USGS Publications Warehouse

    Wandle, S. William, Jr.

    1982-01-01

    Drainage boundaries for selected subbasins in northern Berkshire County, Massachusetts, are delineated on five topographic quadrangle maps at a scale of 1:24,000. Drainage basins are shown for all U.S. Geological Survey data-collection sites and for mouths of major rivers. Drainage basins are shown for the outlets of lakes or ponds and for rivers where the drainage area is greater than 3 square miles. Successive sites are indicated where the intervening area is at least 6 square miles on tributary streams and 10 square miles along the Hoosic or North Branch Noosic Rivers. (USGS)

  3. Mobility of Po and U-isotopes under acid mine drainage conditions: an experimental approach with samples from Río Tinto area (SW Spain).

    PubMed

    Barbero, L; Gázquez, M J; Bolívar, J P; Casas-Ruiz, M; Hierro, A; Baskaran, M; Ketterer, M E

    2014-12-01

    Under acid mine drainage (AMD) conditions, the solubilities and mobilities of many elements are vastly different from conditions prevailing in most natural waters. Studies are underway in the Río Tinto area (Iberian Pyrite Belt), in order to understand the behavior and mobility of long-lived U-series radionuclides under AMD conditions. A set of leaching experiments utilizing typical country rocks from the Tinto River basin, waste rock pile composite materials, iron-rich riverbed sediments and gossan (weathered naturally rock) were performed towards this purpose. Initial leaching experiments using distilled water kept in contact with solid material for 300, 100, 50 and 1 h resulted in very low concentrations of U with (234)U/(238)U activity ratios close to equilibrium and activity concentrations of (210)Po < 0.03 mBq/g. Leaching experiments performed with sulfuric acid media (0.1 and 0.01 M), and contact times between the solid and solution for 24 h were conducted to quantify the amount of U-isotopes and (210)Po leached, and the radioactive disequilibria generated between the radionuclides in the leachate. These experiments show that Po mobility in acidic conditions (pH around 1-2) is very low, with (210)Po activity in the leachate to be 6% in average for the solid sample. By contrast, mobility of U-isotopes is higher than that of Po, around 1.2%. PMID:24308958

  4. Cd and Zn accumulation in plants from the Padaeng zinc mine area.

    PubMed

    Phaenark, C; Pokethitiyook, P; Kruatrachue, M; Ngernsansaruay, C

    2009-07-01

    Significant cadmium (Cd) contamination In soil and rice has been discovered in Mae Sot, Tak province, Thailand where the rice-based agricultural systems are established in the vicinity of a zinc mine. The prolonged consumption of Cd contaminated rice has potential risks to public health and health impacts of Cd exposed populations in Mae Sot have been demonstrated. The Thai government has prohibited rice cultivation in the area as an effort to prevent further exposure. Phytoextraction, the use of plants to remove contaminants from soil, is a potential option to manage Cd-contaminated areas. However, successful phytoextraction depends on first identifying effective hyperaccumulator plants appropriate for local climatic conditions. Five sampling sites at Padaeng Zinc mine, Tak province were selected to collect plant and soil samples. Total Cd and Zn concentrations in sediments or soils were approximately 596 and 20,673 mg kg(-1) in tailing pond area, 543 and 20,272 mg kg(-1) in open pit area, 894 and 31,319 mg kg(-1) in stockpile area, 1458 and 57,012 mg kg(-1) in forest area and 64 and 2733 mg kg(-1) in Cd contaminated rice field. Among a total of 36 plant species from 16 families, four species (Chromolaena odoratum, Gynura pseudochina, Impatiens violaeflora and Justicia procumbens) could be considered as Cd hyperaccumulators since their shoot Cd concentrations exceeded 100 mg Cd kg(-1) dry mass and they showed a translocation factor >1. Only Justicia procumbens could be considered as a Zn hyperaccumulator (Zn concentration in its shoot more than 10,000 mg Zn kg(-1) dry mass with the translocation factor >1). PMID:19810350

  5. Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco mining area, Mexico.

    PubMed

    Romero, F M; Núñez, L; Gutiérrez, M E; Armienta, M A; Ceniceros-Gómez, A E

    2011-02-01

    In the Taxco mining area, sulfide mineral oxidation from inactive tailings impoundments and abandoned underground mines has produced acid mine drainage (AMD; pH 2.2-2.9) enriched in dissolved concentrations (mg l⁻¹) sulfate, heavy metals, and arsenic (As): SO₄²⁻ (pH 1470-5454), zinc (Zn; 3.0-859), iron (Fe; pH 5.5-504), copper (Cu; pH 0.7-16.3), cadmium (Cd; pH 0.3-6.7), lead (Pb; pH < 0.05-1.8), and As (pH < 0.002-0.6). Passive-treatment systems using limestone have been widely used to remediate AMD in many parts of the world. In limestone-treatment systems, calcite simultaneously plays the role of neutralizing and precipitating agent. However, the acid-neutralizing potential of limestone decreases when surfaces of the calcite particles become less reactive as they are progressively coated by metal precipitates. This study constitutes first-stage development of passive-treatment systems for treating AMD in the Taxco mine area using indigenous calcareous shale. This geologic material consists of a mixture of calcite, quartz, muscovite, albite, and montmorillonite. Results of batch leaching test indicate that calcareous shale significantly increased the pH (to values of 6.6-7.4) and decreased heavy metal and As concentrations in treated mine leachates. Calcareous shale had maximum removal efficiency (100%) for As, Pb, Cu, and Fe. The most mobile metals ions were Cd and Zn, and their average percentage removal was 87% and 89%, respectively. In this natural system (calcareous shale), calcite provides a source of alkalinity, whereas the surfaces of quartz and aluminosilicate minerals possibly serve as a preferred locus of deposition for metals, resulting in the neutralizing agent (calcite) beings less rapidly coated with the precipitating metals and therefore able to continue its neutralizing function for a longer time. PMID:20523977

  6. Biosorption of metal and salt tolerant microbial isolates from a former uranium mining area. Their impact on changes in rare earth element patterns in acid mine drainage.

    PubMed

    Haferburg, Götz; Merten, Dirk; Büchel, Georg; Kothe, Erika

    2007-12-01

    The concentration of metals in microbial habitats influenced by mining operations can reach enormous values. Worldwide, much emphasis is placed on the research of resistance and biosorptive capacities of microorganisms suitable for bioremediation purposes. Using a collection of isolates from a former uranium mining area in Eastern Thuringia, Germany, this study presents three Gram-positive bacterial strains with distinct metal tolerances. These strains were identified as members of the genera Bacillus, Micrococcus and Streptomyces. Acid mine drainage (AMD) originating from the same mining area is characterized by high metal concentrations of a broad range of elements and a very low pH. AMD was analyzed and used as incubation solution. The sorption of rare earth elements (REE), aluminum, cobalt, copper, manganese, nickel, strontium, and uranium through selected strains was studied during a time course of four weeks. Biosorption was investigated after one hour, one week and four weeks by analyzing the concentrations of metals in supernatant and biomass. Additionally, dead biomass was investigated after four weeks of incubation. The maximum of metal removal was reached after one week. Up to 80% of both Al and Cu, and more than 60% of U was shown to be removed from the solution. High concentrations of metals could be bound to the biomass, as for example 2.2 mg/g U. The strains could survive four weeks of incubation. Distinct and different patterns of rare earth elements of the inoculated and non-inoculated AMD water were observed. Changes in REE patterns hint at different binding types of heavy metals regarding incubation time and metabolic activity of the cells. PMID:18072248

  7. Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China.

    PubMed

    Yanqun, Zu; Yuan, Li; Schvartz, Christian; Langlade, Laurent; Fan, Liu

    2004-06-01

    A field survey of higher terrestrial plants growing on Lanping lead-zinc mine, China were conducted to identify species accumulating exceptionally large concentrations of Pb, Cd, Cu and Zn of 20 samples of 17 plant species. Concentrations of Pb and Zn in soil and in plant were higher than that of Cu and Cd. Significant difference was observed among the average concentrations of four heavy metals in plants (except Cd and Cu) and in soil (except Pb and Zn) (P<0.05). For the enrichment coefficient of the four heavy metals in plant, the order of average was Pbtree>herbaceous, and herbaceous grew in soil with the highest concentrations of four heavy metals. In different areas, the concentrations of Pb, Cd, Cu and Zn in plants and soils and enrichment coefficient were different. Plants in Paomaping had more accumulating ability to Pb, Cd and Zn, and plants in Jinfeng River had more accumulating ability to Cu. Six plant species, i.e. S. cathayana, Lithocarpus dealbatus, L. plyneura, Fargesia dura, Arundinella yunnanensis and R. annae in Paomaping, had high accumulation capacity. R. annae in Paomaping had hyperaccumulating capacity to Pb, Cd and Zn, L. plyneura to Pb and Cd, and S. cathayana to Cd, respectively. PMID:15031017

  8. Examining soil erosion and nutrient accumulation in forested and agriculture lands of the low mountainous area of Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Pham, A. T.; Gomi, T.; Takahisa, F.; Phung, K. V.

    2011-12-01

    We examined soil erosion and nutrient accumulations in the Xuanmai area located in the low mountainous region of Northern Vietnam, based on field investigations and remote sensing approaches. The study area had been degraded by land-use change from forest to agriculture in the last 20 years. In contrast, around the study area, the Vietnam government promoted reforestation projects. Such changes in land-use conditions, which may or may not be associated with vegetation ground cover conditions, potentially alter soil erosion and nutrient accumulation. We selected 10 dominant land-use types including forested land (e.g., Pinus massoniana and Acacia mangium plantation) agriculture land (e.g., Cassava), and bare land. We established three 1 x 1 m plots in each land-use type in September 2010. Vegetation biomass, litter cover, soil erosion (height of soil pedestal), and soil physical (soil bulk density and particle size distribution) and chemical properties (Total soil carbon, nitrate, and phosphorus) were measured. Height of soil pedestal can be a record of soil erosion by rain splash during rainy periods from April to August (prior to our field study). We also conducted remote sensing analysis using Landsat TM images obtained in 1993, 2000, and 2007 for identifying temporal patterns of land-use types. We found that the intensity of soil erosion depended primary on current vegetation ground cover condition with no regard of land-use. Hence, nutrient accumulation varied among vegetation ground cover and soil erosion. Remote sensing analysis suggested that shrub and bare lands had been altered from forested land more recently. Our finding suggested that variability of soil nutrient conditions can be associated with long-term soil erosion and production processes. Findings of our study are that: (1) current vegetation and litter ground cover affected the amount of surface soil erosion, and (2) legacy of land-use can be more critical for soil nutrient accumulation. Both

  9. Accumulation of metals in fish from lead-zinc mining areas of southeastern Missouri, USA

    USGS Publications Warehouse

    Schmitt, C.J.; Brumbaugh, W.G.; May, T.W.

    2007-01-01

    The potential effects of proposed lead-zinc mining in an ecologically sensitive area were assessed by studying a nearby mining district that has been exploited for about 30 yr under contemporary environmental regulations and with modern technology. Blood and liver samples representing fish of three species (largescale stoneroller, Campostoma oligolepis, n=91; longear sunfish, Lepomis megalotis, n=105; and northern hog sucker, Hypentelium nigricans, n=20) were collected from 16 sites representing a range of conditions relative to lead-zinc mining and ore beneficiation in southeastern Missouri. Samples were analyzed for lead, zinc, and cadmium, and for a suite of biomarkers (reported in a companion paper). A subset of the hog sucker (n=9) representing three sites were also analyzed for nickel and cobalt. Blood and liver lead concentrations were highly correlated (r=0.84-0.85, P<0.01) in all three species and were significantly (ANOVA, P<0.01) greater at sites <10 km downstream of active lead-zinc mines and mills and in a historical lead-zinc mining area than at reference sites, including a site in the area proposed for new mining. Correlations between blood and liver cadmium concentrations were less evident than for lead but were nevertheless statistically significant (r=0.26-0.69, P <0.01-0.07). Although blood and liver cadmium concentrations were highest in all three species at sites near mines, within-site variability was greater and mining-related trends were less evident than for lead. Blood and liver zinc concentrations were significantly correlated only in stoneroller (r=0.46, P<0.01) and mining-related trends were not evident. Concentrations of cobalt and nickel in blood and liver were significantly higher (ANOVA, P<0.01) at a site near an active mine than at a reference site and a site in the historical lead-zinc mining area. These findings confirm previous studies indicating that lead and other metals are released to streams from active lead-zinc mines and

  10. Agricultural Drainage Water Management in the Upper Mississippi River Basin: Potential Impact and Implementation Strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unique soil and climate of the Upper Mississippi River Basin area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Drainage practices alter the ...

  11. Preliminary results from agricultural drainage water management CIG projects on Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field demonstrations were monitored to compare the crop yields, drainage discharge, and nutrient loadings to streams from managed and unmanaged subsurface drainage systems. Paired drainage systems within the same field, under similar soil, area, cropping, and management conditions, were identified. ...

  12. 46 CFR 178.430 - Drainage of well deck vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.430 Drainage of well deck vessels. (a) The weather deck on a well deck vessel must be watertight. (b) The area required on a...

  13. 46 CFR 178.430 - Drainage of well deck vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.430 Drainage of well deck vessels. (a) The weather deck on a well deck vessel must be watertight. (b) The area required on a...

  14. 46 CFR 178.430 - Drainage of well deck vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.430 Drainage of well deck vessels. (a) The weather deck on a well deck vessel must be watertight. (b) The area required on a...

  15. 46 CFR 178.430 - Drainage of well deck vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.430 Drainage of well deck vessels. (a) The weather deck on a well deck vessel must be watertight. (b) The area required on a...

  16. 46 CFR 178.430 - Drainage of well deck vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.430 Drainage of well deck vessels. (a) The weather deck on a well deck vessel must be watertight. (b) The area required on a...

  17. Entrepreneurial Human Capital Accumulation and the Growth of Rural Businesses: A Four-Country Survey in Mountainous and Lagging Areas of the European Union

    ERIC Educational Resources Information Center

    Skuras, Dimitris; Meccheri, Nicolas; Moreira, Manuel Belo; Rosell, Jordi; Stathopoulou, Sophia

    2005-01-01

    The paper presents the processes of entrepreneurial human capital accumulation and its impact on rural business growth. Data are derived from four surveys on rural businesses in mountainous and less favoured areas in Southern Europe. Formal pathways of entrepreneurial human capital accumulation refer to education and training, while informal…

  18. Analysis of the varved clay accumulation in the Pärnu Bay area, Estonia

    NASA Astrophysics Data System (ADS)

    Kalvans, Andis; Hang, Tiit

    2015-04-01

    Varved clays are commonly found glaciolacustrine sediments representing high-resolution environmental archives of the deglaciation events. We examine varve formation in the Baltic Ice Lake at the Pärnu Bay area, Estonia, during the deglaciation of the last Scandinavian glaciation from the region. The data set of Hang and Kohv (2013) spanning 584 years is used. Analysis of the spatial variation of the seasonal layer thickness distribution based on 26 sediment cores and sub-varve resolution grain size analysis from a single section was performed. The Baltic Ice Lake water level reconstruction indicates that the water depth at the study region was up to 80 m (Rosentau et al., 2009). It is found that during the first ~130 years after the ice retreat the summer sedimentation was dominated by sediment loaded underflows emanating form the ice margin: summer layer thickness is strongly positively correlated with water depth. The winter layer thickness during this period does not demonstrate significant correlation with water depth suggesting that the simple raining-out of the suspended material from a water column was complicated by water circulation. Ice retreat from the Pandivere-Neva line of the marginal formations just north from study area took place during the interval from 96 to 130 local varve years. During the transition marked shift from proglacial to distal sedimentary environment is observed: the summer layer thickens decreased dramatically and it's thickens is markedly higher in the area close to the ice margin. The winter layer thickens becomes strongly correlated to the water depth, suggesting that the simple sedimentation model with no water circulation and addition of no new sediments is valid. The grain size data is used to estimate the "terminal grain size" - the size of the larges particles sedimented at the top of the winter layer. Provided that no significant water circulation took place during the winter, the terminal grain size will be controlled

  19. Mapping of fluoride endemic area and assessment of F(-1) accumulation in soil and vegetation.

    PubMed

    Saini, Poonam; Khan, Suphiya; Baunthiyal, Mamta; Sharma, Vinay

    2013-02-01

    The prevalence of fluorosis is mainly due to the consumption of more fluoride (F(-1)) through drinking water, vegetables, and crops. The objective of the study was mapping of F(-1) endemic area of Newai Tehsil, Tonk district, Rajasthan, India. For the present study, water, soil (0-45 cm), and vegetation samples were collected from 17 villages. Fluoride concentration in water samples ranged from 0.3 to 9.8 mg/l. Out of 17 villages studied, the amounts of F(-1) content of eight villages were found to exceed the permissible limits. Labile F(-1) content and total F(-1) content in soil samples ranges 11.00-70.05 mg/l and 50.3-179.63 μg g(-1), respectively. F(-1) content in tree species was found in this order Azadirachta indica 47.32-55.76 μg g(-1) > Prosopis juliflora 40.16-49.63 μg g(-1) > Acacia tortilis 34.39-43.60 μg g(-1). While in case of leafy vegetables, F(-1) content order was Chenopodium album 54.23-98.42 μg g(-1) > Spinacea oleracea 30.41-64.09 μg g(-1) > Mentha arvensis 35.48-51.97 μg g(-1). The order of F(-1) content in crops was found as 41.04 μg g(-1) Pennisetum glaucum > 13.61 μg g(-1) Brassica juncea > 7.98 μg g(-1) Triticum sativum in Krishi Vigyan Kendra (KVK) farms. Among vegetation, the leafy vegetables have more F(-1) content. From the results, it is suggested that the people of KVK farms should avoid the use of highly F(-1) containing water for irrigation and drinking purpose. It has been recommended to the government authority to take serious steps to supply drinking water with low F(-1) concentration for the fluorosis affected villages. Further, grow more F(-1) hyperaccumulator plants in F(-1) endemic areas to lower the F(-1) content of the soils. PMID:22638723

  20. Geothermal investigations in Idaho. Part 12. Stable isotopic evaluation of thermal water occurrences in the Weiser and Little Salmon River drainage basins and adjacent areas, west-central Idaho with attendant gravity and magnetic data on the Weiser area

    SciTech Connect

    Mitchell, J.C.; Bideganeta, K.; Palmer, M.A.

    1984-12-01

    Fifteen thermal springs, two thermal wells, and eight cold springs in the Weiser and Little Salmon river drainages were sampled for deuterium and oxygen-18 analysis during the fall of 1981. The straight-line fit of delta D and delta /sup 18/O versus latitude and longitude observed in the data is what would be expected if the recharge areas for the thermal and non-thermal waters were in close proximity to their respective discharge points. The discrete values of delta D and delta /sup 18/O for each thermal discharge suggest that none of the sampled thermal systems have common sources. The depleted deuterium and oxygen-18 contents of most thermal relative to non-thermal waters sampled suggests that the thermal waters might be Pleistocene age precipitation. The isotopic data suggest little or no evidence for mixing of thermal and non-thermal water for the sampled discharges. Thermal waters from Weiser, Crane Creek, Cove Creek, and White Licks hot springs show enrichment in oxygen-18 suggesting that these waters have been at elevated temperatures relative to other sampled thermal discharges in the area. Gravity and magnetic data gathered by the Idaho State University Geology Department in the Weiser Hot Springs area suggest that southeastward plunging synclinal-anticlinal couples, which underlie the hot springs, are cut south of the springs by a northeast trending boundary fault.

  1. Modeling coastal plain drainage ditches with SWAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the low-relief Eastern Shore region of Maryland, extensive land areas used for crop production require drainage systems either as tile drains or open ditches. The prevalence of drainage ditches in the region is being linked to increased nutrient loading of the Chesapeake Bay. Process-based water ...

  2. Simulation of the effects of critical factors on ozone formation and accumulation in the greater Athens area

    NASA Astrophysics Data System (ADS)

    Bossioli, Elissavet; Tombrou, Maria; Dandou, Aggeliki; Soulakellis, Nikos

    2007-01-01

    In the present study, the temporal and spatial dynamics of the ozone production in the greater Athens area (GAA) is examined by using the photochemical UAM-V model coupled with the meteorological MM5 model. Several numerical experiments were performed in order to investigate and to quantify the effect of critical factors that conduce to the ozone formation and accumulation during ozone episodes. The initial scenario is able to reproduce the observed ozone patterns, but it underestimates the observed peaks in most of the downwind suburban stations. Using process analysis, we demonstrate the contribution of chemical and physical processes to ozone formation and destruction. The inclusion of biogenic emissions and their distribution based on a satellite vegetation index, as well as the adjustment of the speciation of the anthropogenic NMVOC emissions according to specific characteristics measured in street and aged city plumes, lead to a more realistic description of the urban mixture and thus of the ozone production. The effect of the urban sector introduced via a simplified urbanized meteorological data set, provoke a differentiation of the spatial pattern attributed to the accumulation of the primary NOX pollutants inside the city center and to the consequent limited horizontal advection toward the peripheral zone. Finally, the ozone background turned out to be a key factor for the model performance. The statistical evaluation of the results reveals the importance and the necessity of implementing all the above modifications; the persistence of some discrepancies is associated with meteorological or modeling coupling limitations.

  3. Transient drainage summary report

    SciTech Connect

    1996-09-01

    This report summarizes the history of transient drainage issues on the Uranium Mill Tailings Remedial Action (UMTRA) Project. It defines and describes the UMTRA Project disposal cell transient drainage process and chronicles UMTRA Project treatment of the transient drainage phenomenon. Section 4.0 includes a conceptual cross section of each UMTRA Project disposal site and summarizes design and construction information, the ground water protection strategy, and the potential for transient drainage.

  4. Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area. First annual technical progress report, September 1, 1995--August 31, 1996

    SciTech Connect

    Schechter, D.S.

    1996-12-17

    The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) analytical and numerical simulation of Spraberry reservoirs, and, (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the first year of the five-year project for each of the four areas.

  5. Ecological response of benthic foraminifera to the acid drainage from mine areas. An example from the Gromolo torrent mouth (Eastern Ligurian Sea, Italy)

    NASA Astrophysics Data System (ADS)

    Bergamin, Luisa; Capello, Marco; Carbone, Cristina; Magno, Maria Celia; Consani, Sirio; Cutroneo, Laura; Ferraro, Luciana; Pierfranceschi, Giancarlo; Romano, Elena

    2016-04-01

    Benthic foraminiferal assemblages react in short time to natural and anthropogenic environmental changes and, for this, they are considered as reliable indicators of environmental quality. An interesting application of these indicators is the study of their response to environmental changes in coastal marine areas, affected by dismissed mines and dump areas. The Libiola Fe-Cu sulphide mine was intensively exploited in 19th and 20th centuries, and the activity ended in 1962. The sulphide mineral assemblages consist of pyrite and chalcopyrite, with minor sphalerite and pyrrhotite, in a gangue of quartz and chlorite. The sulphide ore occurs within the Jurassic ophiolites of the Northern Apennines which were subjected to metamorphic and tectonic processes during the subsequent Apennine orogenesis. Waters circulating in the Libiola mine area, and discharging in the adjacent streams and creeks, are strongly polluted due to the diffuse occurrence of Acid Mine Drainage processes. The Gromolo torrent collects these acidic waters enriched of heavy metals which flow into Ligurian Sea. The study area is characterised by a shelf with a gentle slope, mainly constituted by sediment supplied by Entella torrent. The general circulation has trend from East to West and the coastal drift is generally eastwards. A total of 15 marine sediment samples (upper 2 cm) were collected by means of Van Veen grab in the coastal zone close to the Gromolo mouth and analyzed for living (rose Bengal stained) and dead benthic foraminifera, together with grain size, metals and trace elements, and metal fractioning. Quantitative foraminiferal parameters, like as abundance, species diversity, heterogeneity and assemblage composition, were determined and evaluated for environmental purpose. Additionally, possible increase above the natural background level of deformed specimens was considered as indicative of metal contamination. The grain-size analyses highlighted mainly sandy sediments, characterized by

  6. [Concentrations of mercury in ambient air in wastewater irrigated area of Tianjin City and its accumulation in leafy vegetables].

    PubMed

    Zheng, Shun-An; Han, Yun-Lei; Zheng, Xiang-Qun

    2014-11-01

    Gaseous Hg can evaporate and enter the plants through the stomata of plat leaves, which will cause a serious threat to local food safety and human health. For the risk assessment, this study aimed to characterize atmospheric mercury (Hg) as well as its accumulation in 5 leafy vegetables (spinach, edible amaranth, rape, lettuce, allium tuberosum) from sewage-irrigated area of Tianjin City. Bio-monitoring sites were located in paddy (wastewater irrigation for 30 a), vegetables (wastewater irrigation for 15 a) and grass (control) fields. Results showed that after long-term wastewater irrigation, the mean values of mercury content in paddy and vegetation fields were significantly higher than the local background value and the national soil environment quality standard value for mercury in grade I, but were still lower than grade II. Soil mercury contents in the studied control grass field were between the local background value and the national soil environment quality standard grade I . Besides, the atmospheric environment of paddy and vegetation fields was subjected to serious mercury pollution. The mean values of mercury content in the atmosphere of paddy and vegetation fields were 71.3 ng x m(-3) and 39.2 ng x m(-3), respectively, which were markedly higher than the reference gaseous mercury value on the north sphere of the earth (1.5-2.0 ng x m(-3)). The mean value of ambient mercury in the control grass fields was 9.4 ng x m(-3). In addition, it was found that the mercury content in leafy vegetables had a good linear correlation with the ambient total gaseous mercury (the data was transformed into logarithms as the dataset did not show a normal distribution). The comparison among 5 vegetables showed that the accumulations of mercury in vegetables followed this order: spinach > edible amaranth > allium tuberosum > rape > lettuce. Median and mean values of mercury contents in spinach and edible amaranth were greater than the hygienic standard for the allowable

  7. A theoretical treatise of drainage and seepage in bottom land areas adjacent to incised channels: the J. J. van Deemter analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saturated groundwater flow research on agricultural land in early times was mainly concerned with drainage of excessive rain. The key issue then was the spacing of drains or ditches to provide the efficient and effective removal, within a given time, of excessive water for a given soil. The focus wa...

  8. Automated extraction of natural drainage density patterns for the conterminous United States through high performance computing

    USGS Publications Warehouse

    Stanislawski, Larry V.; Falgout, Jeff T.; Buttenfield, Barbara P.

    2015-01-01

    Hydrographic networks form an important data foundation for cartographic base mapping and for hydrologic analysis. Drainage density patterns for these networks can be derived to characterize local landscape, bedrock and climate conditions, and further inform hydrologic and geomorphological analysis by indicating areas where too few headwater channels have been extracted. But natural drainage density patterns are not consistently available in existing hydrographic data for the United States because compilation and capture criteria historically varied, along with climate, during the period of data collection over the various terrain types throughout the country. This paper demonstrates an automated workflow that is being tested in a high-performance computing environment by the U.S. Geological Survey (USGS) to map natural drainage density patterns at the 1:24,000-scale (24K) for the conterminous United States. Hydrographic network drainage patterns may be extracted from elevation data to guide corrections for existing hydrographic network data. The paper describes three stages in this workflow including data pre-processing, natural channel extraction, and generation of drainage density patterns from extracted channels. The workflow is concurrently implemented by executing procedures on multiple subbasin watersheds within the U.S. National Hydrography Dataset (NHD). Pre-processing defines parameters that are needed for the extraction process. Extraction proceeds in standard fashion: filling sinks, developing flow direction and weighted flow accumulation rasters. Drainage channels with assigned Strahler stream order are extracted within a subbasin and simplified. Drainage density patterns are then estimated with 100-meter resolution and subsequently smoothed with a low-pass filter. The extraction process is found to be of better quality in higher slope terrains. Concurrent processing through the high performance computing environment is shown to facilitate and refine

  9. PASSIVE TREATMENT OF ACID ROCK DRAINAGE FROM A SUBSURFACE MINE

    EPA Science Inventory

    Acidic, metal-contaminated drainages are a critical problem facing many areas of the world. Acid rock drainage results when metal sulfide minerals, particularly pyrite, are oxidized by exposure to oxygen and water. The deleterious effects of these drainages on receiving streams a...

  10. Envisat derived Elevation Changes of the Greenland Ice Sheet, and a Comparison with ICESat Results in the Accumulation Area.

    NASA Astrophysics Data System (ADS)

    Sandberg Sørensen, L.; Simonsen, S. B.; Meister, R.; Forsberg, R.; Levinsen, J. F.; Flament, T.

    2014-12-01

    We show that an along track method for deriving rates of elevation change can successfully be applied to Envisat radar altimetry data over Greenland (2002-2010). The results provide improved resolution and coverage compared to previous results obtained from cross-over methods. Also, we find that temporal changes in the elevation change rate can be derived from Envisat data, and show clear examples of this by generating five-year running means for selected areas of the Greenland ice sheet. For a period between 2003 and 2009, the elevation of the ice sheets was measured by both the laser altimeter on board ICESat and the radar altimeter on board Envisat. We compare rates of elevation change derived from ICESat and Envisat for this time span in which both sensors were operating. We focus on the area above the equilibrium line altitude, in order to specifically derive information on snow parameters. A comparison of the elevation changes observed by the two sensors shows a complex pattern, which can be explained regionally by model output describing the changes in both firn air content and accumulation rates.

  11. Detailed study of selenium and other constituents in water, bottom sediment, soil, alfalfa, and biota associated with irrigation drainage in the Uncompahgre Project area and in the Grand Valley, west-central Colorado, 1991-93

    USGS Publications Warehouse

    Butler, D.L.; Wright, W.G.; Stewart, K.C.; Osmundson, B.C.; Krueger, R.P.; Crabtree, D.W.

    1996-01-01

    In 1985, the U.S. Department of the Interior began a program to study the effects of irrigation drainage in the Western United States. These studies were done to determine whether irrigation drainage was causing problems related to human health, water quality, and fish and wildlife resources. Results of a study in 1991-93 of irrigation drainage associated with the Uncompahgre Project area, located in the lower Gunnison River Basin, and of the Grand Valley, located along the Colorado River, are described in this report. The focus of the report is on the sources, distribution, movement, and fate of selenium in the hydrologic and biological systems and the effects on biota. Generally, other trace- constituent concentrations in water and biota were not elevated or were not at levels of concern. Soils in the Uncompahgre Project area that primarily were derived from Mancos Shale contained the highest concentrations of total and watrer-extractable selenium. Only 5 of 128\\x11alfalfa samples had selenium concentrations that exceeded a recommended dietary limit for livestock. Selenium data for soil and alfalfa indicate that irrigation might be mobilizing and redistributing selenium in the Uncompahgre Project area. Distribution of dissolved selenium in ground water is affected by the aqueous geochemical environment of the shallow ground- water system. Selenium concentrations were as high as 1,300\\x11micrograms per liter in water from shallow wells. The highest concentrations of dissolved selenium were in water from wells completed in alluvium overlying the Mancos Shale of Cretaceous age; selenium concentrations were lower in water from wells completed in Mancos Shale residuum. Selenium in the study area could be mobilized by oxidation of reduced selenium, desorption from aquifer sediments, ion exchange, and dissolution. Infiltration of irrigation water and, perhaps nitrate, provide oxidizing conditions for mobilization of selenium from alluvium and shale residuum and for

  12. WATER DRAINAGE MODEL

    SciTech Connect

    J.B. Case

    2000-05-30

    The drainage of water from the emplacement drift is essential for the performance of the EBS. The unsaturated flow properties of the surrounding rock matrix and fractures determine how well the water will be naturally drained. To enhance natural drainage, it may be necessary to introduce engineered drainage features (e.g. drilled holes in the drifts), that will ensure communication of the flow into the fracture system. The purpose of the Water Drainage Model is to quantify and evaluate the capability of the drift to remove water naturally, using the selected conceptual repository design as a basis (CRWMS M&O, 1999d). The analysis will provide input to the Water Distribution and Removal Model of the EBS. The model is intended to be used to provide postclosure analysis of temperatures and drainage from the EBS. It has been determined that drainage from the EBS is a factor important to the postclosure safety case.

  13. Potentially toxic element contamination in soil and accumulation in maize plants in a smelter area in Kosovo.

    PubMed

    Nannoni, Francesco; Rossi, Sara; Protano, Giuseppe

    2016-06-01

    A biogeochemical field study was carried out in the industrial area of Kosovska Mitrovica in northern Kosovo, where agricultural soils were contaminated by potentially toxic elements due to smelting activity. Total and bioavailable contents of As, Cd, Co, Cu, Pb, Sb, U and Zn in soil and their concentrations in maize roots and grains were determined. Soil contamination by As, Cd, Cu, Pb, Sb and Zn was variable from slightly to highly contaminated soils and influenced both the bioavailable fraction and accumulation of these potentially toxic elements in maize tissues. The comparison between potentially toxic element concentrations in roots and grains indicated that maize is able to limit the transfer of non-essential elements to edible parts. The plant-to-soil bioconcentration indices suggested that the transfer of potentially toxic elements from soil to plant was predicted better by bioavailable concentrations than by the total contents. These indices further identified some competitions and interactions among these elements in root uptake and root-to-grain translocation. PMID:26961525

  14. Using EMI, Geospatial Statistics and Multi-Linear Regression for Identifying Areas of Manure Accumulation on Feedlot Surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accumulated feedlot manure negatively affects the environment. The objective was to test the validity of using EMI mapping methods combined with predictive-based sampling and ordinary linear regression for measuring spatially variable manure accumulation. A Dualem-1S EMI meter also recording GPS c...

  15. Illinois drainage water management demonstration project

    USGS Publications Warehouse

    Pitts, D.J.; Cooke, R.; Terrio, P.J.

    2004-01-01

    Due to naturally high water tables and flat topography, there are approximately 4 million ha (10 million ac) of farmland artificially drained with subsurface (tile) systems in Illinois. Subsurface drainage is practiced to insure trafficable field conditions for farm equipment and to reduce crop stress from excess water within the root zone. Although drainage is essential for economic crop production, there have been some significant environmental costs. Tile drainage systems tend to intercept nutrient (nitrate) rich soil-water and shunt it to surface water. Data from numerous monitoring studies have shown that a significant amount of the total nitrate load in Illinois is being delivered to surface water from tile drainage systems. In Illinois, these drainage systems are typically installed without control mechanisms and allow the soil to drain whenever the water table is above the elevation of the tile outlet. An assessment of water quality in the tile drained areas of Illinois showed that approximately 50 percent of the nitrate load was being delivered through the tile systems during the fallow period when there was no production need for drainage to occur. In 1998, a demonstration project to introduce drainage water management to producers in Illinois was initiated by NRCS4 An initial aspect of the project was to identify producers that were willing to manage their drainage system to create a raised water table during the fallow (November-March) period. Financial assistance from two federal programs was used to assist producers in retrofitting the existing drainage systems with control structures. Growers were also provided guidance on the management of the structures for both water quality and production benefits. Some of the retrofitted systems were monitored to determine the effect of the practice on water quality. This paper provides background on the water quality impacts of tile drainage in Illinois, the status of the demonstration project, preliminary

  16. Automatic semi-continuous accumulation chamber for diffuse gas emissions monitoring in volcanic and non-volcanic areas

    NASA Astrophysics Data System (ADS)

    Lelli, Matteo; Raco, Brunella; Norelli, Francesco; Virgili, Giorgio; Continanza, Davide

    2016-04-01

    Since various decades the accumulation chamber method is intensively used in monitoring activities of diffuse gas emissions in volcanic areas. Although some improvements have been performed in terms of sensitivity and reproducibility of the detectors, the equipment used for measurement of gas emissions temporal variation usually requires expensive and bulky equipment. The unit described in this work is a low cost, easy to install-and-manage instrument that will make possible the creation of low-cost monitoring networks. The Non-Dispersive Infrared detector used has a concentration range of 0-5% CO2, but the substitution with other detector (range 0-5000 ppm) is possible and very easy. Power supply unit has a 12V, 7Ah battery, which is recharged by a 35W solar panel (equipped with charge regulator). The control unit contains a custom programmed CPU and the remote transmission is assured by a GPRS modem. The chamber is activated by DataLogger unit, using a linear actuator between the closed position (sampling) and closed position (idle). A probe for the measure of soil temperature, soil electrical conductivity, soil volumetric water content, air pressure and air temperature is assembled on the device, which is already arranged for the connection of others external sensors, including an automatic weather station. The automatic station has been tested on the field at Lipari island (Sicily, Italy) during a period of three months, performing CO2 flux measurement (and also weather parameters), each 1 hour. The possibility to measure in semi-continuous mode, and at the same time, the gas fluxes from soil and many external parameters, helps the time series analysis aimed to the identification of gas flux anomalies due to variations in deep system (e.g. onset of volcanic crises) from those triggered by external conditions.

  17. Advanced reservoir characterization and evaluation of CO2 gravity drainage in the naturally fractured Spraberry Trend Area. Annual report, September 1, 1996--August 31, 1997

    SciTech Connect

    McDonald, P.

    1998-06-01

    The objective of the Spraberry CO{sub 2} pilot project is to determine the technical and economic feasibility of continuous CO{sub 2} injection in the naturally fractured reservoirs of the Spraberry Trend. In order to describe, understand, and model CO{sub 2} flooding in the naturally fractured Spraberry reservoirs, characterization of the fracture system is a must. Additional reservoir characterization was based on horizontal coring in the second year of the project. In addition to characterization of natural fractures, horizontal coring has confirmed a previously developed rock model for describing the Spraberry Trend shaly sands. A better method for identifying Spraberry pay zones has been verified. The authors have completed the reservoir characterization, which includes matrix description and detection (from core-log integration) and fracture characterization. This information is found in Section 1. The authors have completed extensive imbibition experiments that strongly indicate that the weakly water-wet behavior of the reservoir rock may be responsible for poor waterflood response observed in many Spraberry fields. The authors have also made significant progress in analytical and numerical simulation of performance in Spraberry reservoirs as seen in Section 3. They have completed several suites of CO{sub 2} gravity drainage in Spraberry and Berea whole cores at reservoir conditions and reported in Section 4. The results of these experiments have been useful in developing a model for free-fall gravity drainage and have validated the premise that CO{sub 2} will recover oil from tight, unconfined Spraberry matrix.

  18. [Effects of phosphorus fertilization on leaf area index, biomass accumulation and allocation, and phosphorus use efficiency of intercropped maize].

    PubMed

    Chen, Yuan-Xue; Li, Han-Han; Zhou, Tao; Chen, Xin-Ping; Huang, Wei; Liu, Jing; Zhang, Chao-Chun; Xu, Kai-Wei

    2013-10-01

    A 2-year field experiment was conducted in 2011 and 2012 to investigate the effects of phosphorus (P) fertilization on the leaf area index (LAI), dry matter accumulation (DMA), and P use efficiency (PUE) of maize in wheat/maize/soybean intercropping system. Five P fertilization rates were installed, i.e., 0, 45, 90, 135, and 180 kg P2O5 x hm(-2) for wheat, marked as WP0, WP1, WP2, WP3, and WP4, respectively, and 0, 37.5, 75, 112.5, and 150 kg P2O5 x hm(-2) for maize, marked as MP0, MP1, MP2, MP3, and MP4, respectively. During the coexisted growth periods of wheat and maize, P fertilization increased the LAI, leaf area duration (LAD), and stem and leaf DMA of maize significantly. After the jointing stage of maize, the maize LAI, LAD, DMA, and crop growth rate (CGR) all decreased after an initial increase with the increasing P rate, with the maximum growth in treatment MP2 or MP3. During the reproductive stage of maize, the maize dry mass translocation from vegetative to reproductive organ increased with increasing P fertilization rate, and the grain yield of both maize and whole cropping system increased firstly and decreased then, with the maximum grain yield of maize and whole cropping system being 6588 and 11955 kg x hm(-2) in treatment P3, respectively. The P apparent recovery efficiency of maize was the highest (26.3%) in treatment MP2, being 82.6%, 38.4%, and 152.9% higher than that in MP1 (14.4%), MP3 (19.0%), and MP4 (10.4%), respectively. In sum, for the wheat/maize/soybean intercropping system, applying appropriate amount of P fertilizer could promote maize growth, alleviate the impact of wheat on maize, and consequently, increase the P apparent recovery efficiency of maize. In this study, the appropriate P fertilization rate was 75-112.5 kg P2O5 x hm(-2). PMID:24483073

  19. Balance Mass Flux and Velocity Across the Equilibrium Line in Ice Drainage Systems of Greenland

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Giovinetto, Mario B.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Estimates of balance mass flux and the depth-averaged ice velocity through the cross-section aligned with the equilibrium line are produced for each of six drainage systems in Greenland. (The equilibrium line, which lies at approximately 1200 m elevation on the ice sheet, is the boundary between the area of net snow accumulation at higher elevations and the areas of net melting at lower elevations around the ice sheet.) Ice drainage divides and six major drainage systems are delineated using surface topography from ERS (European Remote Sensing) radar altimeter data. The net accumulation rate in the accumulation zone bounded by the equilibrium line is 399 Gt/yr and net ablation rate in the remaining area is 231 Gt/yr. (1 GigaTon of ice is 1090 kM(exp 3). The mean balance mass flux and depth-averaged ice velocity at the cross-section aligned with the modeled equilibrium line are 0.1011 Gt kM(exp -2)/yr and 0.111 km/yr, respectively, with little variation in these values from system to system. The ratio of the ice mass above the equilibrium line to the rate of mass output implies an effective exchange time of approximately 6000 years for total mass exchange. The range of exchange times, from a low of 3 ka in the SE drainage system to 14 ka in the NE, suggests a rank as to which regions of the ice sheet may respond more rapidly to climate fluctuations.

  20. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  1. Influence of Sediment Transport on Formation of Sandbars in Drainage Canals during Floods

    NASA Astrophysics Data System (ADS)

    Mukai, Akie; Taruya, Hiroyuki; Tanaka, Yoshikazu; Naka, Tatsuo

    Sediment of drainage canals plays significant roles for aquatic plant rooting, fish spawning and invertebrate habitats. In steep areas, it is difficult to maintain the sediment during floods because water flows rapidly. Fast flowing water causes sediment loss and habitat loss through intense sediment transport. Therefore, we installed spur dikes in field drainage canals to control sediment transport and form sandbars to provide habitats for aquatic organisms. The results showed that sandbars were formed by controlling the sediment transport and the process of sandbar formation depended on the magnitude of flood discharge. When the flood discharge was small, the sediment was washed out between the spur dikes, and distinct sandbars were not formed except in areas aquatic plants. When the flood discharge was large, the sediment accumulated between the spur dikes, and sandbars were clearly formed. Without spur dikes, most sediment was flushed away by flood discharges. Consequently, spur dikes facilitate an increase in invertebrate populations by establishing sandbars for habitats.

  2. Minerals and mine drainage

    SciTech Connect

    Thomson, B.M.; Turney, W.R.

    1996-11-01

    This paper provides a review of literature published in 1995 on the subject of wastewater related to minerals and mine drainage. Topics covered include: environmental regulations and impacts; and characterization, prevention, treatment and reclamation. 65 refs.

  3. Ear drainage culture

    MedlinePlus

    ... needed. Your health care provider will use a cotton swab to collect the sample from inside the ... Using a cotton swab to take a sample of drainage from the outer ear is not painful. However, ear pain may ...

  4. Urine drainage bags

    MedlinePlus

    ... catheter and urine drainage bag because you have urinary incontinence (leakage), urinary retention (not being able to urinate), ... wall repair Inflatable artificial sphincter Radical prostatectomy Stress urinary incontinence Urge incontinence Urinary incontinence Urinary incontinence - injectable implant ...

  5. Preoperative biliary drainage.

    PubMed

    Saxena, Payal; Kumbhari, Vivek; Zein, Mohamad E L; Khashab, Mouen A

    2015-01-01

    The role of preoperative biliary drainage (PBD) in patients with distal or proximal biliary obstruction secondary to resectable tumors has been a matter for debate. A review of the literature using Medline, Embase and Cochrane databases was undertaken for studies evaluating routes of drainage (endoscopic or percutaneous) and stent types (plastic or metal) in patients with resectable disease. Preoperative biliary drainage is indicated for relief of symptomatic jaundice, cholangitis, patients undergoing neoadjuvant therapy or those patients where surgery may be delayed. Endoscopic methods are preferred over percutaneous methods because of lower complication rates. In patients with proximal biliary obstruction, PBD should be guided by imaging studies to aid in selective biliary cannulation for unilateral drainage in order to reduce the risk of cholangitis in undrained liver segments. PMID:25293587

  6. The effect of black carbon on reflectance of snow in the accumulation area of glaciers in the Baspa basin, Himachal Pradesh, India

    NASA Astrophysics Data System (ADS)

    Kulkarni, A. V.; Vinay Kumar, G.; Negi, H. S.; Srinivasan, J.; Satheesh, S. K.

    2013-04-01

    Himalayan glaciers are being extensively debated in scientific and public forums, as changes in their distribution can significantly affect the availability of water in many rivers originating in the region. The distribution of glaciers can be influenced by mass balance, and most of the glaciers located in the Pir Panjal and Greater Himalayan mountain ranges are losing mass at the rate of almost a meter per year. The Equilibrium Line Altitude (ELA) has also shifted upward by 400 m in the last two decades. This upward migration of ELA and the loss in mass could have been influenced by changes in temperature, precipitation and by the deposition of black carbon in the accumulation area of glaciers. The deposition of black carbon can reduce the albedo of snow in the accumulation area leading to faster melting of snow and causing more negative mass balance. In this investigation, a change in reflectance in the accumulation area of the Baspa basin is analysed for the year 2009, as the region has experienced extensive forest fires along with northern Indian biomass burning. The investigation has shown that: (1) The number of forest fires in the summer of 2009 was substantially higher than in any other year between 2001 and 2010; (2) the drop in reflectance in the visible region from April to May in the accumulation area was significantly higher in the year 2009 than in any other year from 2000 to 2012; (3) the temperature of the region was substantially lower than the freezing point during the active fire period of 2009, indicating the small influence of liquid water and grain size; (4) the drop in reflectance was observed only in the visible region, indicating role of contamination; (5) in the visible region, a mean drop in reflectance of 21± 5% was observed during the active fire period in the accumulation area. At some places, the drop was as high as 50 ± 5%. This can only be explained by the deposition of black carbon. The study suggests that a change in snow albedo

  7. Global 30m Height Above the Nearest Drainage

    NASA Astrophysics Data System (ADS)

    Donchyts, Gennadii; Winsemius, Hessel; Schellekens, Jaap; Erickson, Tyler; Gao, Hongkai; Savenije, Hubert; van de Giesen, Nick

    2016-04-01

    Variability of the Earth surface is the primary characteristics affecting the flow of surface and subsurface water. Digital elevation models, usually represented as height maps above some well-defined vertical datum, are used a lot to compute hydrologic parameters such as local flow directions, drainage area, drainage network pattern, and many others. Usually, it requires a significant effort to derive these parameters at a global scale. One hydrological characteristic introduced in the last decade is Height Above the Nearest Drainage (HAND): a digital elevation model normalized using nearest drainage. This parameter has been shown to be useful for many hydrological and more general purpose applications, such as landscape hazard mapping, landform classification, remote sensing and rainfall-runoff modeling. One of the essential characteristics of HAND is its ability to capture heterogeneities in local environments, difficult to measure or model otherwise. While many applications of HAND were published in the academic literature, no studies analyze its variability on a global scale, especially, using higher resolution DEMs, such as the new, one arc-second (approximately 30m) resolution version of SRTM. In this work, we will present the first global version of HAND computed using a mosaic of two DEMS: 30m SRTM and Viewfinderpanorama DEM (90m). The lower resolution DEM was used to cover latitudes above 60 degrees north and below 56 degrees south where SRTM is not available. We compute HAND using the unmodified version of the input DEMs to ensure consistency with the original elevation model. We have parallelized processing by generating a homogenized, equal-area version of HydroBASINS catchments. The resulting catchment boundaries were used to perform processing using 30m resolution DEM. To compute HAND, a new version of D8 local drainage directions as well as flow accumulation were calculated. The latter was used to estimate river head by incorporating fixed and

  8. Modeling of subglacial hydrological development following rapid supraglacial lake drainage

    PubMed Central

    Dow, C F; Kulessa, B; Rutt, I C; Tsai, V C; Pimentel, S; Doyle, S H; van As, D; Lindbäck, K; Pettersson, R; Jones, G A; Hubbard, A

    2015-01-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and examine whether substantial, efficient subglacial channels can form during or following lake drainage events and their effect on the water pressure in the surrounding distributed system. We force the model with field data from a lake drainage site, 70 km from the terminus of Russell Glacier in West Greenland. The model outputs suggest that efficient subglacial channels do not readily form in the vicinity of the lake during rapid drainage and instead water is evacuated primarily by a transient turbulent sheet and the distributed system. Following lake drainage, channels grow but are not large enough to reduce the water pressure in the surrounding distributed system, unless preexisting channels are present throughout the domain. Our results have implications for the analysis of subglacial hydrological systems in regions where rapid lake drainage provides the primary mechanism for surface-to-bed connections. Key Points Model for subglacial hydrological analysis of rapid lake drainage events Limited subglacial channel growth during and following rapid lake drainage Persistence of distributed drainage in inland areas where channel growth is limited PMID:26640746

  9. Drainage divides, Massachusetts; Westfield and Farmington River basins

    USGS Publications Warehouse

    Gadoury, Russell A.; Wandle, S. William, Jr.

    1983-01-01

    Drainage boundaries for selected subbasins in western Hampshire, western Hampden, and southeastern Berkshire Counties, Massachusetts, are delineated on 15 topographic quadrangle maps at a scale of 1:24,000. Drainage basins are shown for all U.S. Geological Survey data-collection sites and for mouths of major rivers. Drainage basins are shown for the outlets of lakes or ponds and for streams where the drainage area is greater than 3 square miles. Successive sites along watercourses are indicated where the intervening area is at least 6 square miles on tributary streams or 10 square miles along the Westfield or Farmington Rivers. (USGS)

  10. Impact of climate change on acid mine drainage generation and contaminant transport in water ecosystems of semi-arid and arid mining areas

    NASA Astrophysics Data System (ADS)

    Anawar, Hossain Md.

    Disposal of untreated and treated mining wastes and tailings exerts a significant threat and hazard for environmental contamination including groundwater, surface water, wetlands, land, food chain and animals. In order to facilitate remediation techniques, it is important to understand the oxidation of sulfidic minerals, and the hydrolysis of the oxidation products that result in production of acid mine drainage (AMD), toxic metals, low pH, SO42- and Fe. This review has summarized the impacts of climate change on geochemical reactions, AMD generation, and water quality in semi-arid/arid mining environments. Besides this, the study included the effects of hydrological, seasonal and climate change on composition of AMD, contaminant transport in watersheds and restoration of mining sites. Different models have different types of limitations and benefits that control their adaptability and suitability of application in various mining environments. This review has made a comparative discussion of a few most potential and widely used reactive transport models that can be applied to simulate the effect of climate change on sulfide oxidation and AMD production from mining waste, and contaminant transport in surface and groundwater systems.

  11. FISH HABITATS IMPACTED BY ACIDIC MINE DRAINAGE

    EPA Science Inventory

    This data set represents in-stream fish spawning and hatching areas that have been impacted by elevated acid content waters discharging from areas near mining activities. It is based on an EPA fisheries survey completed in 1995. Acid Mine Drainage, or AMD, occurs when water co...

  12. ON-FARM IRRIGATION AND DRAINAGE PRACTICES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter provides a technical discussion of irrigation and drainage design and water management practices associated with irrigation in arid and semiarid areas. Surface irrigation being the principal method used in most arid areas is discussed in detail with the various types being outlined and...

  13. Total arsenic accumulation in yabbies (Cherax destructor Clark) exposed to elevated arsenic levels in Victorian gold mining areas, Australia.

    PubMed

    Williams, Gemma; West, Jan M; Snow, Elizabeth T

    2008-06-01

    Arsenic is a proven carcinogen often found at high concentrations in association with gold and other heavy metals. The freshwater yabby, Cherax destructor Clark (Decapoda, Parastacidae), is a ubiquitous species native to Australia's central and eastern regions, with a growing international commercial market. However, in this region of Australia, yabby farmers often harvest organisms from old mine tailings dams with elevated environmental arsenic levels. Yabbies exposed to elevated environmental arsenic were found to accumulate and store as much as 100 microg/g arsenic in their tissues. The accumulation is proportional to the concentration of arsenic in the sediment and is high enough to be of concern for people who eat the yabbies. A comparison of arsenic levels in wild and lab-fed animals also was performed. Although there was no significant difference in the level of arsenic in the various organs of the wild animals, the animals purchased from a yabby farm showed a significantly higher arsenic concentration in their hepatopancreas (3.7 +/- 0.9 microg/g) compared to other organs (0.6-1.8 microg/g). Furthermore, after a 40-d exposure to food containing 200 to 300 microg/g inorganic arsenic, arsenate (As[V])-exposed animals showed a significant increase in tissue-specific arsenic accumulation, whereas arsenite (As[III])-exposed animals showed a lower, nonsignificant increase in As uptake, primarily in the hepatopancreas. These results have important implications for yabby growers and consumers alike. PMID:18198937

  14. Maps showing ground-water conditions in the northern part of the Gila River drainage from Painted Rock Dam to Texas Hill area, Maricopa, Pima, and Yuma counties, Arizona; 1978

    USGS Publications Warehouse

    White, Natalie D.; Leake, S.A.; Clay, D.M.

    1979-01-01

    The Gila River drainage from Painted Rock Dam to Texas Hill area includes about 3,000 square miles in southwestern Arizona. Ground-water development has taken place only in the northern part of the area, and only this part is included in the report. The southwestward-flowing Gila River drains the 1 ,900-square-mile northern part of the area. The main water-bearing unit is the valley-fill deposits. Since 1967, the estimated ground-water pumpage has exceeded 100,000 acre-feet per year, and in 1977 the ground-water pumpage was 210,000 acre-feet; the ground water is used mainly for irrigation. The ground-water withdrawals have resulted in general water-level declines in most of the area. Information shown on the maps includes change in water level, 1965-78 and 1973-78, and irrigated area; depth to water, altitude of the water level, and well depth; and specific conductance and fluoride concentration in the water. Hydrographs of the water level in selected wells and a table of historical pumpage also are included. Scale 1:250 ,000. (Kosco-USGS)

  15. Analysis of initial drainage network evolution from aerial photography and a DEM time series

    NASA Astrophysics Data System (ADS)

    Schneider, Anna; Gerke, Horst H.; Maurer, Thomas; Nenov, Rossen; Raab, Thomas

    2013-04-01

    The evolution of erosion rill or gully networks is a formative process in initial landscape development. Digital representations of drainage networks are often derived from Digital Elevation Models (DEMs) based on morphometric parameters, or mapped in field surveys or from aerial photographs. This study attempted to reconstruct and analyze the first five years of erosion rill network evolution in the 6 ha artificial catchment 'Hühnerwasser', which serves as a real world-laboratory to study patterns and processes of initial ecosystem development. The drainage network was characterized in a twofold approach, based on the analysis of remotely-sensed data. We used high-resolution drone-based aerial photographs to map the actively eroding rill network for four states of development, and a time series of ten Digital Elevation Models to characterize the morphology of the surface. Rill network maps and morphometric parameters were combined to allow for region-specific analyses of morphometry for different parts of the rill network. After a rapid growth of the erosion rill network during the first two years of development, a reduction of the area of actively eroding rills was observed. Region-specific analysis of morphometry indicates an increase in flow accumulation in the central parts of the rill network, which suggests that locally evolving feedback cycles between flow accumulation and erosion affected rill network development, in addition to the effects of precipitation characteristics and the growth of vegetation cover. The combination of drainage network characterization from aerial photography and DEMs could improve analyses of initial drainage network development in experimental studies, as it allows for critical comparisons of flow accumulation patterns and the actual patterns of erosion rills or gullies.

  16. 2012 Annual Report: Simulate and Evaluate the Cesium Transport and Accumulation in Fukushima-Area Rivers by the TODAM Code

    SciTech Connect

    Onishi, Yasuo; Yokuda, Satoru T.

    2013-03-28

    Pacific Northwest National Laboratory initiated the application of the time-varying, one-dimensional sediment-contaminant transport code, TODAM (Time-dependent, One-dimensional, Degradation, And Migration) to simulate the cesium migration and accumulation in the Ukedo River in Fukushima. This report describes the preliminary TODAM simulation results of the Ukedo River model from the location below the Ougaki Dam to the river mouth at the Pacific Ocean. The major findings of the 100-hour TODAM simulation of the preliminary Ukedo River modeling are summarized as follows:

  17. Environmental monitoring of the area surrounding oil wells in Val d'Agri (Italy): element accumulation in bovine and ovine organs.

    PubMed

    Miedico, Oto; Iammarino, Marco; Paglia, Giuseppe; Tarallo, Marina; Mangiacotti, Michele; Chiaravalle, A Eugenio

    2016-06-01

    In this work, environmental heavy metal contamination in the Val d'Agri area of Southern Italy was monitored, measuring the accumulation of 18 heavy metals (U, Hg, Pb, Cd, As, Sr, Sn, V, Ni, Cr, Mo, Co, Cu, Zn, Ca, Mn, Fe, and Al) in the organs of animals raised in the surrounding area (kidney, lung, and liver of bovine and ovine species). Val d'Agri features various oil processing centers which are potentially a significant source of environmental pollution, making it essential to perform studies that will outline the state of the art on which any recovery plans and interventions may be developed. The analysis was carried out using official and accredited analytical methods based on inductively coupled plasma mass spectrometry, and the measurements were statistically processed in order to give a contribution to risk assessment. Even though five samples showed Pb and Cd concentrations above the limits defined in the European Commission Regulation (EC) No 1881/2006, the mean concentrations of most elements suggest that contamination in this area is low. Consequently, these results also suggest that there is no particular risk for human exposure to toxic trace elements. Nevertheless, the findings of this work confirm that element accumulation in ovine species is correlated with geographical livestock area. Therefore, ovine-specific organs might be used as bioindicators for monitoring contamination by specific toxic elements in exposed areas. PMID:27165602

  18. Transformation Of Arsenic In Agricultural Drainage Water Disposed Into An Evaporation Basin In California, USA.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaporation basins have been widely used for the disposal of agricultural drainage in areas requiring subsurface drainage in the San Joaquin Valley of California, a high agricultural production area in USA. The irrigation drainage water contains elevated concentrations of trace elements, including S...

  19. Inventory of drainage wells and potential sources of contaminants to drainage-well inflow in Southwest Orlando, Orange County, Florida

    USGS Publications Warehouse

    Taylor, George Fred

    1993-01-01

    Potential sources of contaminants that could pose a threat to drainage-well inflow and to water in the Floridan aquifer system in southwest Orlando, Florida, were studied between October and December 1990. Drainage wells and public-supply wells were inventoried in a 14-square-mile area, and available data on land use and activities within each drainage well basin were tabulated. Three public-supply wells (tapping the Lower Floridan aquifer) and 38 drainage wells (open to the Upper Floridan aquifer) were located in 17 drainage basins within the study area. The primary sources of drainage-well inflow are lake overflow, street runoff, seepage from the surficial aquifer system, and process-wastewater disposal. Drainage-well inflow from a variety of ares, including resi- dential, commercial, undeveloped, paved, and industrial areas, are potential sources of con- taminants. The four general types of possible contaminants to drainage-well inflow are inorganic chemicals, organic compounds, turbidity, and microbiological contaminants. Potential contami- nant sources include plant nurseries, citrus groves, parking lots, plating companies, auto- motive repair shops, and most commonly, lake- overflow water. Drainage wells provide a pathway for contaminants to enter the Upper Floridan aquifer and there is a potential for contaminants to move downward from the Upper Floridan to the Lower Floridan aquifer.

  20. Accumulation of accident-derived radiocesium in lake and coastal sediments at 300-700 km distance from Fukushima area.

    PubMed

    Ochiai, S; Miyata, Y; Nagao, S; Yamamoto, M; Murakami, T; Nishimura, S; Itono, T; Suzuki, T; Hamataka, K; Kawano, Y; Hamajima, Y; Kashiwaya, K

    2015-11-01

    The accumulation of accident-derived radiocesium was investigated in nine water bodies located 300-700 km from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP). (134)Cs from the accident was detected in surface sediment of five water bodies. The (134)Cs concentration, corrected to the time of the accident in 2011, was generally lower than that of (137)Cs, and its spatial pattern does not fully correspond to that of (137)Cs. These results suggest that radiocesium derived from both FDNPP and past global fallout can be separately observed and that the contributions of both sources are non-uniform within these sites. The (134)Cs inventory in surface sediments is smaller than its deposition, suggesting that almost all deposited (134)Cs remains within the catchment and/or a part has been discharged from the saline and brackish water bodies. PMID:25953793

  1. Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods

    NASA Astrophysics Data System (ADS)

    Ozdemir, Hasan; Bird, Deanne

    2009-02-01

    An evaluation of morphometric parameters of two drainage networks derived from different sources was done to determine the influence of sub-basins to flooding on the main channel in the Havran River basin (Balıkesir-Turkey). Drainage networks for the sub-basins were derived from both topographic maps scaled 1:25.000 and a 10-m resolution digital elevation model (DEM) using geographic information systems (GIS). Blue lines, representing fluvial channels on the topographic maps were accepted as a drainage network, which does not depict all exterior links in the basin. The second drainage network was extracted from the DEM using minimum accumulation area threshold to include all exterior links. Morphometric parameters were applied to the two types of drainage networks at sub-basin levels. These parameters were used to assess the influence of the sub-basins on the main channel with respect to flooding. The results show that the drainage network of sub-basin 4—where a dam was constructed on its outlet to mitigate potential floods—has a lower influence morphometrically to produce probable floods on the main channel than that of sub-basins 1, 3, and 5. The construction of the dam will help reduce flooding on the main channel from sub-basin 4 but it will not prevent potential flooding from sub-basin 1, 3 and 5, which join the main channel downstream of sub-basin 4. Therefore, flood mitigation efforts should be considered in order to protect the settlement and agricultural lands on the floodplain downstream of the dam. In order to increase our understanding of flood hazards, and to determine appropriate mitigation solutions, drainage morphometry research should be included as an essential component to hydrologic studies.

  2. Spatial and temporal variations and controlling factors of sediment accumulation in the Yangtze River estuary and its adjacent sea area in the Holocene, especially in the Early Holocene

    NASA Astrophysics Data System (ADS)

    Feng, Zhibing; Liu, Baohua; Zhao, Yuexia; Li, Xishuang; Jiang, Li; Si, Shaokun

    2016-08-01

    The sub-bottom and collected borehole data provide insight into the transport and accumulation processes of the Yangtze-derived sediment in the study area since ~11 kyr BP. Five seismic units were identified according to six major acoustic surfaces. The sedimentary strata consist of fluvial, estuarine and deltaic systems from the bottom up, characterized by two different trends in sediment accumulation rates, i.e., low-high-low, and high-low-high. On the inner shelf of the East China Sea, the terrain with trough and ridge was formed by the Early Holocene transgression strata (formed in ~10 to 12 kyr BP) scoured by the later rectilinear tidal current due to postglacial sea-level transgression, and the sharply protruding seismic units are interpreted to be bedrocks outcropping on the seafloor. An analysis of the sedimentary characteristics in the boreholes and such factors as difference in accumulation rates, and tectonic subsidence led us to conclude that the paleo-coastline was located not far away from and to the east of Core ZK09 at ~9 kyr BP, and the southern bank of the Yangtze River estuary was located to the south of Core ZK09. At ~9 kyr BP, the Yangtze-derived sediments were transported eastwards along the southern bank of the Yangtze River and the barrier due to the influence of the paleo-coastal current from the north, the direction of the Yangtze-derived sediment transport was split on the northeast of the Zhoushan archipelago, and the sediments covered the terrain with trough and ridge. During the high sea level period (7 kyr BP-present), the eastward migration of paleo-coastline had resulted in the increase in accumulation rate. We also conclude that the sharp increase in accumulation rate near the Yangtze River estuary after ~2 kyr BP was not primarily caused by human activities. The position shifts of the estuary caused by the paleo-coastline migration and sea level oscillations since the Holocene is the main cause controlling the Yangtze

  3. Spatial and temporal variations and controlling factors of sediment accumulation in the Yangtze River estuary and its adjacent sea area in the Holocene, especially in the Early Holocene

    NASA Astrophysics Data System (ADS)

    Feng, Zhibing; Liu, Baohua; Zhao, Yuexia; Li, Xishuang; Jiang, Li; Si, Shaokun

    2016-08-01

    The sub-bottom and collected borehole data provide insight into the transport and accumulation processes of the Yangtze-derived sediment in the study area since ~11 kyr BP. Five seismic units were identified according to six major acoustic surfaces. The sedimentary strata consist of fluvial, estuarine and deltaic systems from the bottom up, characterized by two different trends in sediment accumulation rates, i.e., low-high-low, and high-low-high. On the inner shelf of the East China Sea, the terrain with trough and ridge was formed by the Early Holocene transgression strata (formed in ~10 to 12 kyr BP) scoured by the later rectilinear tidal current due to postglacial sea-level transgression, and the sharply protruding seismic units are interpreted to be bedrocks outcropping on the seafloor. An analysis of the sedimentary characteristics in the boreholes and such factors as difference in accumulation rates, and tectonic subsidence led us to conclude that the paleo-coastline was located not far away from and to the east of Core ZK09 at ~9 kyr BP, and the southern bank of the Yangtze River estuary was located to the south of Core ZK09. At ~9 kyr, large volume of sediments was deposited in the northern isles of the Zhoushan archipelago and their adjacent bedrocks, forming a barrier effect on later sediment transport. During 7.5-8 kyr BP, the Yangtze-derived sediments were transported eastwards along the southern bank of the Yangtze River and the barrier due to the influence of the paleo-coastal current from the north, the direction of the Yangtze-derived sediment transport was split on the northeast of the Zhoushan archipelago, and the sediments covered the terrain with trough and ridge. During the high sea level period (7 kyr BP-present), the eastward migration of paleo-coastline had resulted in the increase in accumulation rate. We also conclude that the sharp increase in accumulation rate near the Yangtze River estuary after ~2 kyr BP was not primarily caused by

  4. Agricultural drainage water management: Potential impact and implementation strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unique soil and climate of the Upper Mississippi River Basin (and the Lake Erie Basin) area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Dra...

  5. Drainage Water Filtration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tile drainage discharge from managed turf is known to carry elevated concentrations of agronomic fertilizers and chemicals. One approach being considered to reduce the transport is end-of-tile-filters. Laboratory and field studies have been initiated to address the efficacy of this approach. Result...

  6. Land Application of Wastes: An Educational Program. Drainage for Land Application Sites - Module 21, Objectives, and Script.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    Drainage for land treatment sites must be evaluated with respect to the purpose the system is meant to achieve. Off-site drainage controls the flow of storm runoff onto the site or groundwater incursion into the soil within the site. On-site drainage is employed for a variety of reasons. These two areas of drainage control must be designed as a…

  7. Detailed study of water quality, bottom sediment, and biota associated with irrigation drainage in the Salton Sea area, California, 1988-90

    USGS Publications Warehouse

    Setmire, J.G.; Schroeder, R.A.; Densmore, J.N.; Goodbred, S.O.; Audet, D.J.; Radke, W.R.

    1993-01-01

    Results of a detailed study by the National Irrigation Water-Quality Program (NIWQP), U.S. Department of the Interior, indicate that factors controlling contaminant concentrations in subsurface irrigation drainwater in the Imperial Valley are soil characteristics, hydrology, and agricultural practices. Higher contaminant concentrations commonly were associated with clayey soils, which retard the movement of irrigation water and thus increase the degree of evaporative concentration. Regression of hydrogen- and oxygen-isotope ratios in samples collected from sumps yields a linear drainwater evaporation line that extrapolates through the isotopic composition of Colorado River water, thus demonstrating that Colorado River water is the sole source of subsurface drainwater in the Imperial Valley. Ratios of selenium to chloride indicate that selenium present in subsurface drainwater throughout the Imperial Valley originates from the Colorado River. The selenium load discharged to the Salton Sea from the Alamo River, the largest contributor, is about 6.5 tons/yr. Biological sampling and analysis showed that drainwater contaminants, including selenium, boron, and DDE, are accumulating in tissues of migratory and resident birds that use food sources in the Imperial Valley and the Salton Sea. Selenium concentration in fish-eating birds, shorebirds, and the endangered Yuma clapper rail were at levels that could affect reproduction. Boron concentrations in migratory waterfowl and resident shorebirds were at levels that potentially could cause reduced growth in young. As a result of DDE contamination of food sources, waterfowl and fish-eating birds in the Imperial Valley may be experiencing reproductive impairment.

  8. Accumulate-Repeat-Accumulate-Accumulate-Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Thorpe, Jeremy

    2004-01-01

    Inspired by recently proposed Accumulate-Repeat-Accumulate (ARA) codes [15], in this paper we propose a channel coding scheme called Accumulate-Repeat-Accumulate-Accumulate (ARAA) codes. These codes can be seen as serial turbo-like codes or as a subclass of Low Density Parity Check (LDPC) codes, and they have a projected graph or protograph representation; this allows for a high-speed iterative decoder implementation using belief propagation. An ARAA code can be viewed as a precoded Repeat-and-Accumulate (RA) code with puncturing in concatenation with another accumulator, where simply an accumulator is chosen as the precoder; thus ARAA codes have a very fast encoder structure. Using density evolution on their associated protographs, we find examples of rate-lJ2 ARAA codes with maximum variable node degree 4 for which a minimum bit-SNR as low as 0.21 dB from the channel capacity limit can be achieved as the block size goes to infinity. Such a low threshold cannot be achieved by RA or Irregular RA (IRA) or unstructured irregular LDPC codes with the same constraint on the maximum variable node degree. Furthermore by puncturing the accumulators we can construct families of higher rate ARAA codes with thresholds that stay close to their respective channel capacity thresholds uniformly. Iterative decoding simulation results show comparable performance with the best-known LDPC codes but with very low error floor even at moderate block sizes.

  9. Design and assessment of urban drainage and water reuse systems for the reconstruction of formerly industrial areas: a case in Beijing.

    PubMed

    Liu, L; Zeng, S; Dong, X; Chen, J

    2013-01-01

    The Shougang Group is an industrial steel enterprise occupying 800 ha in Beijing that will cease production by 2010. The area will be converted to a new financial and commercial zone. The rebuilding of the water infrastructure in this area should address water shortages in Beijing and retain the industrial landmark of a large cooling water tank. A design framework and an assessment system with 11 indicators were developed for this purpose. Four reconstruction schemes are presented here. Scheme 1 is a traditional system that completely depends on outside the municipal facility. Schemes 2, 3, and 4 are systems to separately discharge greywater and blackwater. Scheme 4 uses a vacuum system that allows the reclamation of nutrients. Schemes 2 and 4 use wetland-treated greywater to fill the water tank. Scheme 3 reuses greywater for toilets after on-site treatment. Scheme 2 is recommended due to its lower cost, greater environmental benefit, moderate resource reclamation, and higher technical feasibility. PMID:23128621

  10. Sediment accumulation rates and high-resolution stratigraphy of recent fluvial suspension deposits in various fluvial settings, Morava River catchment area, Czech Republic

    NASA Astrophysics Data System (ADS)

    Sedláček, Jan; Bábek, Ondřej; Kielar, Ondřej

    2016-02-01

    We present a comprehensive study concerning sedimentary processes in fluvial sediment traps within the Morava River catchment area (Czech Republic) involving three dammed reservoirs, four meanders and oxbow lakes, and several natural floodplain sites. The objective of the study was to determine sediment accumulation rates (SAR), estimate erosion rates, calculating these using a combination of the 137Cs method and historical data. Another purpose of this study was to provide insight into changing erosion and accumulation rates over the last century. Extensive water course modifications were carried out in the Morava River catchment area during the twentieth century, which likely affected sedimentation rates along the river course. Other multiproxy stratigraphic methods (X-ray densitometry, magnetic susceptibility, and visible-light reflectance spectrometry) were applied to obtain additional information about sediment infill. Sediment stratigraphy revealed distinct distal-to-proximal patterns, especially in reservoirs. Granulometrically, silts and sandy silts prevailed in sediments. Oxbow lakes and meanders contained larger amounts of clay and organic matter, which is the main difference between them and reservoirs. Pronounced 137Cs peaks were recorded in all studied cores (maximum 377 Bq·kg- 1), thus indicating Chernobyl fallout from 1986 or older events. Calculated sediment accumulation rates were lowest in distal parts of reservoirs (0.13-0.58 cm/y) and floodplains (0.45-0.88 cm/y), moderately high rates were found in proximal parts of reservoirs and oxbow lakes (2.27-4.4 cm/y), and the highest rates in some oxbow lakes located near the river (6-8 cm/y). The frequency of the inundation still can be high in some natural areas as in the Litovelské Pomoraví protected area, whereas the decreasing frequency of the inundation in other modified parts can contribute to a lower sedimentation rate. The local effects such as difference between SARs in oxbow lakes and

  11. Preliminary results of biological monitoring using benthic macroinfauna of the discharge areas of Lisbon drainage basins in Tagus estuary after new developments in sanitation infrastructures

    NASA Astrophysics Data System (ADS)

    Azeda, Carla; Sá, Erica; Silva, Gilda; Medeiros, João Paulo; Tavares, Maria João; de Almeida, Pedro Raposo; Metelo, Inês; Costa, José Lino; Costa, Maria José

    2013-10-01

    The present study focused on the use of benthic macroinfauna to assess the ecological quality status of two specific areas in the Tagus estuary (Portugal), after the improvement in the sanitation infrastructures discharging in those areas. The sampling campaigns were held in summer of 2009, 2010 and 2011 in a set of impact and control stations. Multivariate analysis was used to determine the evolution of spatial and temporal patterns in benthic macroinfauna assemblages' composition. The ecological status of these assemblages was assessed by means of taxa richness, Shannon-Wiener diversity index and AMBI and M-AMBI biotic indices. The results obtained in both study areas seemed to indicate a trend for an improvement in the ecological condition of their benthic macroinfauna assemblages over time, although a consistent pattern was not found in all the analyses performed. When benthic macroinfauna assemblages under analysis are considerably degraded, the multimetric index M-AMBI seems to be more adequate for conducting monitoring studies than the AMBI index. However, the continuation of this work is indispensable to ensure the validity of this conclusion.

  12. Wound Drainage Culture (For Parents)

    MedlinePlus

    ... Things to Know About Zika & Pregnancy Wound Drainage Culture KidsHealth > For Parents > Wound Drainage Culture Print A A A Text Size What's in ... de heridas What It Is A wound drainage culture is a test to detect germs such as ...

  13. Cadmium Accumulation and Pathological Alterations in the Midgut Gland of Terrestrial Snail Helix pomatia L. from a Zinc Smelter Area: Role of Soil pH.

    PubMed

    Włostowski, Tadeusz; Kozłowski, Paweł; Łaszkiewicz-Tiszczenko, Barbara; Oleńska, Ewa

    2016-04-01

    The purpose of this study was to determine whether cadmium (Cd) accumulation and toxicity in the midgut gland of Helix pomatia snails living in a Cd-contaminated area were related to soil pH. Toxic responses in the midgut gland (i.e., increased vacuolization and lipid peroxidation) occurred in H. pomatia snails exhibiting the highest Cd levels in the gland (265-274 µg/g dry wt) and living on acidic soil (pH 5.3-5.5), while no toxicity was observed in snails accumulating less Cd (90 µg/g) and ranging on neutral soil (pH 7.0), despite the fact that total soil Cd was similar in the two cases. The accumulation of Cd in the gland was directly related to the water extractable Cd in soil, which in turn correlated inversely with soil pH, indicating that this factor had a significant effect on tissue Cd. It appeared further that the occurrence of Cd toxicity was associated with low levels of metallothionein in the gland of snails ranging on acidic soil. PMID:26868644

  14. Accumulation of co-localised unesterified cholesterol and neutral lipids within vacuolised elastin fibres in athero-prone areas of the human aorta.

    PubMed

    Bobryshev, Y V; Lord, R S

    1999-01-01

    To investigate whether there are alterations of elastin fibres in the arterial intima at the pre-atherosclerotic stage, grossly normal areas of human thoracic aorta were taken soon after death from 13 healthy trauma victims whose ages ranged from 16 to 40 years. Two areas were compared: atherosclerosis-prone (AP) areas localised to the dorsal aspect of the aorta along the rows of intercostal branch origins, and atherosclerosis-resistant (AR) areas from the ventral aorta. Electron microscopic analysis combined with cytochemical staining was applied. Unesterified cholesterol was identified using the filipin-staining technique while neutral lipids were visualised by the OTO-technique. Intimal features were studied by combining the filipin-staining and the OTO-technique. Electron microscopical examination showed that in both AR and AP areas, some elastin fibres in the intima were vacuolised. Unesterified cholesterol was found to be predominantly localised in the musculoelastic layer, in particular, inside the vacuolised elastin fibres. This localisation was seen in all 13 AP areas studied in contrast to the AR areas where it was observed in only four of 13 aortas studied (P < 0.0005, chi2-test). Accumulation of neutral lipids inside vacuolised elastin fibres was found in five out of 13 AP areas but was not observed in any of the AR areas (P=0.01, chi2). A combination of the filipin-staining and OTO-techniques showed that some deposits of neutral lipids and unesterified cholesterol within vacuolised elastin fibres were independently located from each other, but more frequently, neutral lipids were co-located with unesterified cholesterol. The present observations indicate a difference between AP and AR intimal areas which, in particular, relates to the structure of elastin fibres in the musculoelastic layer. The observations suggest that alterations of the extracellular matrix are involved in the trapping and retention of cholesterol and neutral lipids within the intima

  15. Detailed study of selenium and selected constituents in water, bottom sediment, soil, and biota associated with irrigation drainage in the San Juan River area, New Mexico, 1991-95

    USGS Publications Warehouse

    Thomas, Carole L.; Wilson, R.M.; Lusk, J.D.; Bristol, R.S.; Shineman, A.R.

    1998-01-01

    In response to increasing concern about the quality of irrigation drainage and its potential effects on fish, wildlife, and human health, the U.S. Department of the Interior began the National Irrigation Water Quality Program (NIWQP) to investigate these concerns at irrigation projects sponsored by the Department. The San Juan River in northwestern New Mexico was one of the areas designated for study. Study teams composed of scientists from the U.S. Geological Survey, the U.S. Fish and Wildlife Service, the Bureau of Reclamation, and the Bureau of Indian Affairs collected water, bottom-sediment, soil, and biological samples at 61 sites in the San Juan River area during 1993-94. Supplemental data collection conducted during 1991-95 by the Bureau of Indian Affairs and its contractor extended the time period and sampling sites available for analysis. Analytical chemistry performed on samples indicated that most potentially toxic elements other than selenium generally were not high enough to be of concern to fish, wildlife, and human health. Element concentrations in some water, bottom-sediment, soil, and biological samples exceeded applicable standards and criteria suggested by researchers in current literature. Selenium concentrations in water samples from 28 sites in the study area exceeded the 2-microgram-per-liter wildlife-habitat standard. Vanadium concentrations in water exceeded the 100-microgram-per-liter standard for livestock-drinking water at one site. In biota, selenium and aluminum concentrations regularly equaled or exceeded avian dietary threshold concentrations. In bottom sediment and soil, element concentrations above the upper limit of the baseline range for western soils were: selenium, 24 exceedances; lead, 2 exceedances; molybdenum, 2 exceedances; strontium, 4 exceedances; and zinc, 4 exceedances. Concentrations of total selenium in bottom-sediment and soil samples were significantly greater for Cretaceous than for non-Cretaceous soil types in the

  16. Making Space for Water: A review of SUstainable Drainage systems (SUDs) in a rural/urban area of Newcastle upon Tyne, UK.

    NASA Astrophysics Data System (ADS)

    Quinn, Paul; Tellier, Sebastien; Wilkinson, Mark

    2010-05-01

    Expansion of the city of Newcastle included a new development of over 3000 houses and an associated commercial area on agricultural land. The development firmly signed up to the notion that the new estate should adhere to full SUDs design and implementation. In essence there should be no loss of floodplain capacity, the total runoff from the new housing should not increase flood risk downstream and benefits to ecology, recreation and amenity should be fully maximised. Credit must be given to Newcastle City Council, the Environment Agency, the local water company and the developers themselves as a full set of large scale SUDs now exist and they are clearly an asset to the city. However, such a large scale landscape engineering endeavour has not been without direct and indirect problems. This paper reviews some of the experiences, problems and lessons learnt from SUDs implementation, the function of SUDs during flood events and the perception of SUDs by the public. During the life of the project several older estates close to the new development suffered from two major flood events; including foul water inundation, the drowning out of sewer overflows and intense flash flooding. These floods at first gave rise to the public perception that the new development had caused the flooding. During a research project entitled 'making space for water', the instrumentation of the river in the area and the SUDs took place. The hydrological data this produced has given rise to a mixture of positive and negative aspects of SUDs implementation. The cause of one flood was due to the drowning out of key sewer overflows by locally generated by urban flood flow arising from an upstream estate. The second flood was caused by a 48 hour storm event giving rise to high runoff from the rural area again drowning out key sewer overflows. The SUDs were found to perform well during storm events and do not increase runoff from the new estates. The main fundamental complaint is that despite such

  17. Accumulate-Repeat-Accumulate-Accumulate Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Thorpe, Jeremy

    2007-01-01

    Accumulate-repeat-accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate-repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity-check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.

  18. Agricultural drainage practices in Ireland

    NASA Astrophysics Data System (ADS)

    Ryan, T. D.

    1986-02-01

    Agricultural drainage practices are reviewed under two main headings: arterial drainage of river catch-ments by developing main channels, and field drainage of smaller parcels of land using pipes and open trenches. The use of cost/benefit analysis on the arterial drainage program is considered and the inherent errors are discussed. Conservation of the environment is described as it applies to land-scaping, fisheries, and wildlife, and the drainage authorities are shown to have an enlightened attitude to proper preservation of the world around us.

  19. Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation.

    PubMed

    Yang, Yurong; Liang, Yan; Ghosh, Amit; Song, Yingying; Chen, Hui; Tang, Ming

    2015-09-01

    To select suitable tree species associated with arbuscular mycorrhizal fungi (AMF) for phytoremediation of heavy metal (HM) contaminated area, we measured the AMF status and heavy metal accumulation in plant tissues in a lead-zinc mine area, Northwest China. All 15 tree species were colonized by AM fungi in our investigation. The mycorrhizal frequency (F%), mycorrhizal colonization intensity (M%) and spore density (SP) reduced concomitantly with increasing Pb and Zn levels; however, positive correlations were found between arbuscule density (A%) and soil total/DTPA-extractable Pb concentrations. The average concentrations of Pb, Zn, Cu and Cd in plant samples were 168.21, 96.61, 41.06, and 0.79 mg/kg, respectively. Populus purdomii Rehd. accumulated the highest concentrations of Zn (432.08 mg/kg) and Cu (140.85 mg/kg) in its leaves. Considerable amount of Pb (712.37 mg/kg) and Cd (3.86 mg/kg) were concentrated in the roots of Robinia pseudoacacia Linn. and Populus simonii Carr., respectively. Plants developed different strategies to survive in HM stress environment: translocating more essential metals (Zn and Cu) into the aerial parts, while retaining more toxic heavy metals (Pb and Cd) in the roots to protect the above-ground parts from damage. According to the translocation factor (TF), bioconcentration factor (BCF), growth rate and biomass production, five tree species (Ailanthus altissima (Mill.) Swingle, Cotinus coggygria Scop., P. simonii, P. purdomii, and R. pseudoacacia) were considered to be the most suitable candidates for phytoextraction and/or phytostabilization purposes. Redundancy analysis (RDA) showed that the efficiency of phytoremediation was enhanced by AM symbioses, and soil pH, Pb, Zn, and Cd levels were the main factors influencing the HM accumulation characteristics of plants. PMID:25929455

  20. Effects of land use and geohydrology on the quality of shallow ground water in two agricultural areas in the western Lake Michigan drainages, Wisconsin

    USGS Publications Warehouse

    Saad, David A.

    1997-01-01

     Estimated recharge dates showed that historic patterns of atrazine plus deethyl atrazine concentrations in ground water mimic historic patterns of atrazine use on corn. Concentrations in ground water that recharged prior to the early 1960s, when atrazine started to become widely used on corn in Wisconsin, were very low or not detectable. As atrazine use on corn steadily increased from the late 1960s to the late 1970s and early 1980s, detectable concentrations of atrazine plus deethyl atrazine in ground water became more common. The recharge dates of some of the highest measured concentrations of atrazine plus ethyl atrazine in ground water from both study areas correspond to the period of highest atrazine use on corn within the State.

  1. Strontium isotope record of seasonal scale variations in sediment sources and accumulation in low-energy, subtidal areas of the lower Hudson River estuary

    USGS Publications Warehouse

    Smith, J.P.; Bullen, T.D.; Brabander, D.J.; Olsen, C.R.

    2009-01-01

    Strontium isotope (87Sr/86Sr) profiles in sediment cores collected from two subtidal harbor slips in the lower Hudson River estuary in October 2001 exhibit regular patterns of variability with depth. Using additional evidence from sediment Ca/Sr ratios, 137Cs activity and Al, carbonate (CaCO3), and organic carbon (OCsed) concentration profiles, it can be shown that the observed variability reflects differences in the relative input and trapping of fine-grained sediment from seaward sources vs. landward sources linked to seasonal-scale changes in freshwater flow. During high flow conditions, the geochemical data indicate that most of the fine-grained sediments trapped in the estuary are newly eroded basin materials. During lower (base) flow conditions, a higher fraction of mature materials from seaward sources with higher carbonate content is trapped in the lower estuary. Results show that high-resolution, multi-geochemical tracer approaches utilizing strontium isotope ratios (87Sr/86Sr) can distinguish sediment sources and constrain seasonal scale variations in sediment trapping and accumulation in dynamic estuarine environments. Low-energy, subtidal areas such as those in this study are important sinks for metastable, short-to-medium time scale sediment accumulation. These results also show that these same areas can serve as natural recorders of physical, chemical, and biological processes that affect particle and particle-associated material dynamics over seasonal-to-yearly time scales. ?? 2009.

  2. Retrofitting for watershed drainage

    SciTech Connect

    Bennett, D.B. ); Heaney, J.P. )

    1991-09-01

    Over the past 8 years, degradation in Florida's Indian River Lagoon has taken the form of fish kills, reduced viable recreational and commercial fisheries, and loss of seagrass beds. Stormwater drainage practices in the watershed have been identified as the primary culprit in the slow demise of the lagoon. Specific drainage problems include an increased volume of freshwater runoff to the estuarine receiving water and deposition of organic sediments, reduced water clarity because of increased discharge of suspended solids and tea colored' groundwater - a result of drainage-canal-induced land dewatering, and eutrophication caused by nutrient loadings. In addition, poor flushing in lagoon segments makes runoff impacts even more damaging to the ecosystem. Recently, the lagoon has received national, regional, state, and local attention over its degradation and citizens' action and multi-agency efforts to restore it. To mitigate damage to the Indian River lagoon, agencies are considering alternatives such as retrofitting to reduce pollutant loads and implementing a more comprehensive watershed approach to stormwater management instead of individual controls on new development currently widely practiced. A comprehensive, long-term watershed control approach avoids unnecessary construction expenses, encourages cost-effective tradeoffs based on specific objectives, facilities performance monitoring, and accounts for cumulative impacts of continued growth in the watershed.

  3. Understanding the paradox of selenium contamination in mercury mining areas: high soil content and low accumulation in rice.

    PubMed

    Zhang, Hua; Feng, Xinbin; Jiang, Chengxin; Li, Qiuhua; Liu, Yi; Gu, Chunhao; Shang, Lihai; Li, Ping; Lin, Yan; Larssen, Thorjørn

    2014-05-01

    Rice is an important source of Se for billions of people throughout the world. The Wanshan area can be categorized as a seleniferous region due to its high soil Se content, but the Se content in the rice in Wanshan is much lower than that from typical seleniferous regions with an equivalent soil Se level. To investigate why the Se bioaccumulation in Wanshan is low, we measured the soil Se speciation using a sequential partial dissolution technique. The results demonstrated that the bioavailable species only accounted for a small proportion of the total Se in the soils from Wanshan, a much lower quantity than that found in the seleniferous regions. The potential mechanisms may be associated with the existence of Hg contamination, which is likely related to the formation of an inert Hg-Se insoluble precipitate in soils in Wanshan. PMID:24531269

  4. 33 CFR 239.7 - Separation of flood control works from urban drainage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... from urban drainage. 239.7 Section 239.7 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT... COVERED FLOOD CONTROL CHANNELS § 239.7 Separation of flood control works from urban drainage. Covered channels are likely to be considered in boundary areas demarking urban drainage and flood...

  5. 33 CFR 239.7 - Separation of flood control works from urban drainage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... from urban drainage. 239.7 Section 239.7 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT... COVERED FLOOD CONTROL CHANNELS § 239.7 Separation of flood control works from urban drainage. Covered channels are likely to be considered in boundary areas demarking urban drainage and flood...

  6. 33 CFR 239.7 - Separation of flood control works from urban drainage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... from urban drainage. 239.7 Section 239.7 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT... COVERED FLOOD CONTROL CHANNELS § 239.7 Separation of flood control works from urban drainage. Covered channels are likely to be considered in boundary areas demarking urban drainage and flood...

  7. 33 CFR 239.7 - Separation of flood control works from urban drainage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... from urban drainage. 239.7 Section 239.7 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT... COVERED FLOOD CONTROL CHANNELS § 239.7 Separation of flood control works from urban drainage. Covered channels are likely to be considered in boundary areas demarking urban drainage and flood...

  8. 40 CFR 434.30 - Applicability; description of the acid or ferruginous mine drainage subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Acid or Ferruginous Mine Drainage § 434.30 Applicability; description of the acid or ferruginous mine drainage subcategory. The provisions of this subpart are applicable to acid or ferruginous mine drainage from an active mining area...

  9. A quantitative assessment and synthesis of fifty years of published drainage phosphorus losses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The prevalence of artificial drainage systems in intensively cropped areas across North America combined with the importance of freshwater resources in these regions has created a critical intersection where understanding drainage phosphorus (P) transport is vital. In this study, drainage nutrient ...

  10. Hydrogeochemical of Paleogene formation water and its relationship with oil and gas mirgration and accumulation in Wenliu area of Dongpu Depression

    NASA Astrophysics Data System (ADS)

    Wang, J.; Zhu, R.

    2013-12-01

    The Dongpu Depression lies in Linqing Depression of the Bohai Bay,which is a small depression in a series of Cenozoic rift valley basin on North China Tectonic Plate in Eastern China. The studied area lies in northern central uplift belt. Based on the analysis of vertical and horizontal distribution characteristics of Shahejie formation's present hydrochemistry of Wenliu area, the origin of formation water and the relationship between hydrochemistry and oil and gas migration and accumulation were thoroughly studied. According to the vertical distribution characteristics of formation water geochemistry of Shahejie formation, it's hydrochemistry filed in the depth can be divided into five parts. The main reason why the hydrochemistry filed so complicated is that there developed so many faults.On the other hand, as the centrifuge of the end over flow, in the shallow strata, turning up the unusual condensed formation water. According to the ichnography of the mineralization degree of formation water of Sha3 member, Wenliu area has the highest mineralization degree of formation water in Dongpu depression which can be up to about 400(g/L). It is interesting that the high mineralization degree zone in consistent with the distribution of the hydrocarbon accumulation and has good connection with the distribution of halite, which lies in top central uplift. For it's the common point of mudstone compaction-released water and meteoric water infiltration, also due to the dissolution of halite which spreads widely in this area. In the northwestern, meteoric water infiltrated due to the long term activity of fault,The mineralization of formation water is lower than other places as the desalination of infiltrated meteoric water. The southeastern part that near the Qianliyuan sag, obviously affected by the desalting of compation-released water, has low mineralization of formation water. However, in top central uplift, the concentration zone due to cross-formational flow, with high

  11. Potential effects of coal mining and road construction on the water quality of Scofield Reservoir and its drainage area, central Utah, October 1982 to October 1984

    USGS Publications Warehouse

    Stephens, D.W.; Thompson, K.R.; Wangsgard, J.B.

    1996-01-01

    Studies were done during 1983-84 to determine the effect of coal mining in Pleasant Valley and construction of State Road 264 in Eccles Canyon on the water quality of local streams and on Scofield Reservoir. Streamflow during 1983-84 set high-flow records in all gaged streams and transported considerable sediment and associated trace metals and nutrients to Scofield Reservoir. Concentrations of most toxic substances were not sufficient to constitute a hazard in the streams or reservoir; however, concentrations of total phosphorus in the streams commonly exceeded water-quality criterion for phosphate as phosphorus of 0.05 milligram per liter, established by the State as an indicator of pollution. Data from Eccles Canyon creek, which is in an actively mined area, were compared to data from Boardinghouse Canyon creek, which is in a nearby canyon with no active mining or construction activities. Concentrations of iron, manganese, and zinc were substantially larger in Eccles Canyon creek than in Boardinghouse Canyon creek. Loads of suspended sediment during storms and base-flow conditions also were larger in Eccles Canyon creek. Concentrations of ammonia nitrogen, total phosphorus, mercury, and zinc in water from Scofield Reservoir occasionally exceeded Utah State water- quality standards and criteria for protection of aquatic wildlife that were in effect during 1983- 84. In combination with the generally cooler spring temperatures, shortened growing season, and greater flushing rate for the reservoir, the large inflow of water into the reservoir prevented the occurrence of blue-green blooms common in earlier years. Large concentrations of orthophosphorus and manganese were released from sediment cores, and concentrations of manganese in the hypolimnion frequently exceeded the Federal drinking-water standard.

  12. Urban rivers as conveyors of hydrocarbons to sediments of estuarine areas: source characterization, flow rates and mass accumulation.

    PubMed

    Mauad, Cristiane R; Wagener, Angela de L R; Massone, Carlos G; Aniceto, Mayara da S; Lazzari, Letícia; Carreira, Renato S; Farias, Cássia de O

    2015-02-15

    Aliphatic (n-C12-n-C40, unresolved complex mixture, resolved peaks) and aromatic hydrocarbons (46 PAH) were investigated in suspended particulate matter (SPM) sampled over eleven months in six of the major rivers and two channels of the Guanabara Bay Basin. PAH flow rates of the most contaminated rivers, the contribution to the PAH sediment load of the receiving bay, and the main sources of hydrocarbons were determined. PAH (38) ranged from 28 ng L(-1) to 11,514 ng L(-1). Hydrocarbon typology and statistical evaluation demonstrated contribution of distinct sources in different regions and allowed quantification of these contributions. Total flow rate for the five major rivers amounts to 3 t year(-1) and responds for 30% of the total PAH annual input into the northern area of the Guanabara Bay. For the first time PAH mass deposited in the bay sediments has been estimated and shall serve as base for decision making and source abatement. PMID:25434473

  13. [Accumulation of Mercury in Soil-maize System of Non-ferrous Metals Smelting Area and Its Related Risk Assessment].

    PubMed

    Ji, Xiao-feng; Zheng, Na; Wang, Yang; Liu, Qiang; Zhang, Jing-jing

    2015-10-01

    Soil heavy metal pollution, especially the mercury pollution, has been widespread concern in non-ferrous metallurgical area. This study focused on the content, distribution and pollution status of Hg in maize soil of Huludao city. Meanwhile, Hg contents in the various organs of maize were analyzed. Hg concentration in soil ranged from 0.25 to 3.49 mg x kg(-1) with the average content of 1.78 mg x kg(-1), which was 48 times as high as the background value of Liaoning soil. Around 2-3m range of zinc plant, the pattern of spatial distribution showed that the content of Hg was gradually increased with the increase of the distance to Huludao zinc plant. The result of geoaccumulation index reflected that Hg pollution is up to moderate pollution level on the whole. 54. 6% of the total sample were belonged to the serious pollution level. The potential ecological risk index of Hakanson was applied to assess the ecological risk of Hg. The target hazard quotient method (THQ) was used to assess the health risk for human, the results revealed that there was no significant health risk by consumption corn. Mercury is very difficult to transport in soil-maize system, and there is no obvious health risks to adults. But the risk coefficient of children, which is up to 0.056. is much higher than adults. PMID:26841621

  14. An integrated map correlation method and multiple-source sites drainage-area ratio method for estimating streamflows at ungauged catchments: A case study of the Western Black Sea Region, Turkey.

    PubMed

    Ergen, Kayra; Kentel, Elcin

    2016-01-15

    Stream gauges measure the temporal variation of water quantity; thus they are vital in managing water resources. The stream gauge network in Turkey includes a limited number of gauges and often streamflow estimates need to be generated at ungauged locations where reservoirs, small hydropower plants, weirs, etc. are planned. Prediction of streamflows at ungauged locations generally relies on donor gauges where flow is assumed to be similar to that at the ungauged location. Generally, donor stream gauges are selected based on geographical proximity. However, closer stream gauges are not always the most-correlated ones. The Map Correlation Method (MCM) enables development of a map that shows the spatial distribution of the correlation between a selected stream gauge and any other location within the study region. In this study, a new approach which combines MCM with the multiple-source site drainage-area ratio (DAR) method is used to estimate daily streamflows at ungauged catchments in the Western Black Sea Region. Daily streamflows predicted by the combined three-source sites DAR with MCM approach give higher Nash-Sutcliffe Efficiency (NSE) values than those predicted using the nearest stream gauge as the donor stream gauge, for most of the trial cases. Hydrographs and flow duration curves predicted using this approach are usually in better agreement with the observed hydrographs and flow duration curves than those predicted using the nearest catchment. PMID:26520038

  15. Fate and movement of selenium from drainage sediments disposed onto soil with and without vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disposal options for accumulated salty and selenium-laden agricultural drainage sediments are needed to protect the agricultural ecosystem near the San Luis Drain in central California. Thus, a 7-year pilot-scale field study evaluated the effect of disposing Se-laden drainage sediment with a (total ...

  16. Stontium-90 contamination in vegetation from radioactive waste seepage areas at ORNL, and theoretical calculations of /sup 90/Sr accumulation by deer

    SciTech Connect

    Garten, C.T. Jr.; Lomax, R.D.

    1987-06-01

    This report describes data obtained during a preliminary characterization of /sup 90/Sr levels in browse vegetation from the vicinity of seeps adjacent to ORNL solid waste storage areas (SWSA) where deer (Odocoileus virginianus) were suspected to accumulate /sup 90/Sr through the food chain. The highest strontium concentrations in plant samples were found at seeps associated with SWSA-5. Strontium-90 concentrations in honeysuckle and/or blackberry shoots from two seeps in SWSA-5 averaged 39 and 19 nCi/g dry weight (DW), respectively. The maximum concentration observed was 90 nCi/g DW. Strontium-90 concentrations in honeysuckle and blackberry shoots averaged 7.4 nCi/g DW in a study area south of SWSA-4, and averaged 1.0 nCi/g DW in fescue grass from a seepage area located on SWSA-4. A simple model (based on metabolic data for mule deer) has been used to describe the theoretical accumulation of /sup 90/Sr in bone of whitetail deer following ingestion of contaminated vegetation. These model calculations suggest that if 30 pCi /sup 90/Sr/g deer bone is to be the accepted screening level for retaining deer killed on the reservation, then 5-pCi /sup 90/Sr/g DW vegetation should be considered as a possible action level in making decisions about the need for remedial measures, because unrestricted access and full utilization of vegetation contaminated with <5 pCi/g DW results in calculated steady-state (maximum) /sup 90/Sr bone concentrations of <30 pCi/g in a 45-kg buck.

  17. Vertical distribution of phosphorus in agricultural drainage ditch soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pedological processes such as gleization and organic matter accumulation may affect the vertical distribution of P within agricultural drainage ditch soils. The objective of this study was to assess the vertical distribution of P as a function of horizonation in ditch soils at the University of Mary...

  18. Numerical Three-Dimensional Model of Airport Terminal Drainage System

    NASA Astrophysics Data System (ADS)

    Strzelecki, Michał

    2014-03-01

    During the construction of an airport terminal it was found that as a result of the hydrostatic pressure of underground water the foundation plate of the building had dangerously shifted in the direction opposite to that of the gravitational forces. The only effective measure was to introduce a drainage system on the site. The complex geology of the area indicated that two independent drainage systems, i.e., a horizontal system in the Quaternary beds and a vertical system in the Tertiary water-bearing levels, were necessary. This paper presents numerical FEM calculations of the two drainage systems being part of the airport terminal drainaged esign. The computer simulation which was carried out took into consideration the actual effect of the drainage systems and their impact on the depression cone being formed in the two aquifers.

  19. Spatial distribution of metal accumulation areas on the continental shelf of the Basque Country (Bay of Biscay): A GIS-based approach

    NASA Astrophysics Data System (ADS)

    Legorburu, Irati; Galparsoro, Ibon; Larreta, Joana; Rodríguez, José Germán; Borja, Ángel

    2013-12-01

    Recent environmental legislation, worldwide, aims to restore and protect the quality of the marine environment. Within this context, in order to maintain the good functioning of marine ecosystems, sediment pollution monitoring is becoming increasingly important. Hence, for this contribution, the spatial distribution of Cd, Fe, Hg, Mn, Ni and Pb accumulation areas were determined, for the sediments of the Basque continental shelf. Statistically-assisted Geographical Information System (GIS)-mapping techniques were used, in order to infer the processes responsible for such accumulations. Differences in contaminant entrance pathways were observed between sectors. However, hydrodynamic conditions favored the rapid dispersal of contaminants and their stable distribution. The methodology used resulted in a suitable approach for identifying contaminant distribution patterns, which could be used in environmental assessment processes. Nevertheless, an important knowledge gap on the distribution of contaminants in offshore sediments was identified. Extensions of actual monitoring programs are suggested, in order to improve the information available for identifying the behavior and process-drivers for contaminants in offshore systems. This would permit the achievement of a more complete approach, to understand the effects of land-derived contaminants, on offshore systems.

  20. Accumulation and toxic effect of arsenic and other heavy metals in a contaminated area of West Bengal, India, in the lichen Pyxine cocoes (Sw.) Nyl.

    PubMed

    Bajpai, Rajesh; Upreti, D K

    2012-09-01

    Ecological indicators can be used to assess the condition of the environment, to provide an early warning signal of changes in the surrounding environment or to diagnose the causes of an environmental problem. The study aims to evaluate the applicability of a common foliose lichen Pyxine cocoes (Sw.) Nyl., as an indicator to evaluate the arsenic and heavy metal rich sites. The naturally growing lichen and its substratum (bark) were utilized to biomonitor the accumulation of arsenic (As) and other heavy metals (Al, Cd, Cr, Cu, Fe, Pb and Zn) in Chinsurah, a highly As contaminated area of West Bengal. Significantly higher levels of Al, Cr, Fe, Pb and Zn (p<0.01), Cd and Cu (p<0.05) were found in the lichens especially in samples collected from road sites. Higher As concentration (48.1±2.1 μg g(-1)) in samples were found near the paddy field, indicating pesticide-herbicides as its source used in agriculture. The substrate exhibits lower concentration of most of the metals while Cr, Cd and Pb were below detection limit. As evident from the bioaccumulation factor most of the metals accumulated in lichen thallus are air borne. Chl a and Chl b concentrations decreased significantly with increasing distance from roadside whereas the carotenoid and protein showed an enhanced level. The chlorophyll stability index, chlorophyll degradation and carotenoid contents were found to be the most sensitive parameters to assess the vitality of lichen thallus against changing environment. PMID:22762786

  1. Insulated waterproof drainage material

    SciTech Connect

    Tarko, P.L.

    1988-03-15

    An insulative waterproof drainage material is described comprising: a sheet of rigid material having hills and valleys therein to define a core having opposed surfaces; permeable fabric material attached to one of the opposed surfaces; and a layer of thermally insulative material on the other of the opposed surfaces. The insulative material has first surface covering the hills and valleys and a second surface oppositely disposed from the first surface defining an outer surface. The outer surface is spaced a preselected distance D from the hills of the core. The pre-selected distance D define an insulative material thickness corresponding to a pre-selected thermal value.

  2. Seasonal and Interannual Variations of Evaporation and their Relations with Precipitation, Net Radiation, and Net Carbon Accumulation for the Gediz Basin Area

    NASA Technical Reports Server (NTRS)

    Choudhury, Bhaskar J.

    1999-01-01

    A model combining the rate of carbon assimilation with water and energy balance equations has been run using satellite and ancillary data for a period of 60 months (January 1986 to December 1990). Calculations for the Gediz basin area give mean annual evaporation as 395 mm, which is composed of 45% transpiration, 42% soil evaporation and 13% interception. The coefficient of interannual variation of evaporation is found to be 6%, while that for precipitation and net radiation are, respectively, 16% and 2%, illustrating that net radiation has an important effect in modulating interannual variation of evaporation. The mean annual water use efficiency (i.e., the ratio of net carbon accumulation and total evaporation) is ca. 1 g/sq m/mm, and has a coefficient of interannual variation of 5%. A comparison of the mean water use efficiency with field observations suggests that evaporation over the area is utilized well for biomass production. The reference crop evaporation for irrigated areas has annual mean and coefficient of variation as, respectively, 1176 mm and 3%. The total evaporation during three summer months of peak evaporation (June-August) is estimated to be about 575 mm for irrigated crops like maize and cotton. Seasonal variations of the fluxes are presented.

  3. Mercury mine drainage and processes that control its environmental impact

    USGS Publications Warehouse

    Rytuba, J.J.

    2000-01-01

    Mine drainage from mercury mines in the California Coast Range mercury mineral belt is an environmental concern because of its acidity and high sulfate, mercury, and methylmercury concentrations. Two types of mercury deposits are present in the mineral belt, silica-carbonate and hot-spring type. Mine drainage is associated with both deposit types but more commonly with the silica-carbonate type because of the extensive underground workings present at these mines. Mercury ores consisting primarily of cinnabar were processed in rotary furnaces and retorts and elemental mercury recovered from condensing systems. During the roasting process mercury phases more soluble than cinnabar are formed and concentrated in the mine tailings, commonly termed calcines. Differences in mineralogy and trace metal geochemistry between the two deposit types are reflected in mine drainage composition. Silica-carbonate type deposits have higher iron sulfide content than hot- spring type deposits and mine drainage from these deposits may have extreme acidity and very high concentrations of iron and sulfate. Mercury and methylmercury concentrations in mine drainage are relatively low at the point of discharge from mine workings. The concentration of both mercury species increases significantly in mine drainage that flows through and reacts with calcines. The soluble mercury phases in the calcines are dissolved and sulfate is added such that methylation of mercury by sulfate reducing bacteria is enhanced in calcines that are saturated with mine drainage. Where mercury mine drainage enters and first mixes with stream water, the addition of high concentrations of mercury and sulfate generates a favorable environment for methylation of mercury. Mixing of oxygenated stream water with mine drainage causes oxidation of dissolved iron(II) and precipitation of iron oxyhydroxide that accumulates in the streambed. Both mercury and methylmercury are strongly adsorbed onto iron oxyhydroxide over the p

  4. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Vermejo Project area and the Maxwell National Wildlife Refuge, Colfax County, northeastern New Mexico, 1993

    USGS Publications Warehouse

    Bartolino, J.R.; Garrabrant, L.A.; Wilson, Mark; Lusk, J.D.

    1996-01-01

    Based on findings of limited studies during 1989-92, a reconnaissance investigation was conducted in 1993 to assess the effects of the Vermejo Irrigation Project on water quality in the area of the project, including the Maxwell National Wildlife Refuge. This project was part of a U.S. Department of the Interior National Irrigation Water-Quality Program to determine whether irrigation drainage has caused or has the potential to cause significant harmful effects on human health, fish, and wildlife and whether irrigation drainage may adversely affect the suitability of water for other beneficial uses. For this study, samples of water, sediment, and biota were collected from 16 sites in and around the Vermejo Irrigation Project prior to, during the latter part of, and after the 1993 irrigation season (April, August-September, and November, respectively). No inorganic constituents exceeded U.S. Environmental Protection Agency drinking-water standards. The State of New Mexico standard of 750 micrograms per liter for boron in irrigation water was exceeded at three sites (five samples), though none exceeded the livestock water standard of 5,000 micrograms per liter. Selenium concentrations exceeded the State of New Mexico chronic standard of 2 micrograms per liter for wildlife and fisheries water in at least eight samples from five sites. Bottom-sediment samples were collected and analyzed for trace elements and compared to concentrations of trace elements in soils of the Western United States. Concentrations of three trace elements at eight sites exceeded the upper values of the expected 95-percent ranges for Western U.S. soils. These included molybdenum at one site, selenium at seven sites, and uranium at four sites. Cadmium and copper concentrations exceeded the National Contaminant Biomonitoring Program 85th percentile in fish from six sites. Average concentrations of selenium in adult brine flies (33.7 mg/g dry weight) were elevated above concentrations in other

  5. Topological Analysis of Urban Drainage Networks

    NASA Astrophysics Data System (ADS)

    Yang, Soohyun; Paik, Kyungrock; McGrath, Gavan; Rao, Suresh

    2016-04-01

    Urban drainage networks are an essential component of infrastructure, and comprise the aggregation of underground pipe networks carrying storm water and domestic waste water for eventual discharge to natural stream networks. Growing urbanization has contributed to rapid expansion of sewer networks, vastly increasing their complexity and scale. Importance of sewer networks has been well studied from an engineering perspective, including resilient management, optimal design, and malfunctioning impact. Yet, analysis of the urban drainage networks using complex networks approach are lacking. Urban drainage networks consist of manholes and conduits, which correspond to nodes and edges, analogous to junctions and streams in river networks. Converging water flows in these two networks are driven by elevation gradient. In this sense, engineered urban drainage networks share several attributes of flows in river networks. These similarities between the two directed, converging flow networks serve the basis for us to hypothesize that the functional topology of sewer networks, like river networks, is scale-invariant. We analyzed the exceedance probability distribution of upstream area for practical sewer networks in South Korea. We found that the exceedance probability distributions of upstream area follow power-law, implying that the sewer networks exhibit topological self-similarity. The power-law exponents for the sewer networks were similar, and within the range reported from analysis of natural river networks. Thus, in line with our hypothesis, these results suggest that engineered urban drainage networks share functional topological attributes regardless of their structural dissimilarity or different underlying network evolution processes (natural vs. engineered). Implications of these findings for optimal design of sewer networks and for modeling sewer flows will be discussed.

  6. Pipe downchute stormwater drainage system

    SciTech Connect

    Gross, W.E.

    1995-12-31

    SCS Engineers (SCS) was provided with the challenge of developing a completely enclosed pipe downchute system for stormwater drainage at the Fresh Kills Landfill in New York City, the largest landfill in the world. With a total landfill drainage subshed totaling over 1000 acres, and an average yearly precipitation at the site of approximately 4.2 feet, the final constructed stormwater drainage system would capture and convey over 591 million gallons of stormwater runoff per year, and discharge it into 17 stormwater basins.This paper describes the drainage system.

  7. Ditch Drainage Management for Water Quality Improvement: Ditch Drainage Treatment Structures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural productivity is often dependent on drainage ditches to remove excessive water from fields. Although such ditches can act to transport nutrients and other contaminants directly to surface waters, they also represent a potential interaction point in which runoff from non-point areas are ...

  8. Integrated on-farm drainage management for drainage water disposal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Providing environmentally safe methods for drainage water disposal is a significant challenge for irrigated agriculture. Subsurface drainage water contains salt and nutrients that may have significant deleterious effects on surface water quality. A system was developed for the reuse of saline drai...

  9. Downeast Drainage: Characterization of Upland Drainage Attributes for Parameterization of Gulf of Maine Watersheds

    NASA Astrophysics Data System (ADS)

    Van Dam, B. M., Jr.; Smith, S. M.; Beard, K.; Peckenham, J. M.

    2014-12-01

    Research undertaken by the New England Sustainability Consortium includes use of multi-scale elevation data ranging from one arc-second (~30m) NED to two-meter LiDAR for delineation and subsequent characterization of watersheds draining to the Gulf of Maine. Watersheds within the study area range from the Penobscot River (drainage area > 22,000 km2) to small coastal streams with drainage basins <1km2. The research seeks to relate fresh water flows to water quality conditions within bathing beaches and shellfish harvesting areas along the Maine coast. Although spatial analysts typically pursue topographic data with the highest available resolution, use of multi-scale elevation data is necessary in regions where datasets are created from different survey methods. The sizes of the watersheds draining to the Gulf of Maine vary substantially, with several large interior-reaching watersheds dwarfing most of the coastal basins. An elevation raster at a two meter grid size can produce large file sizes and long processing times, presenting cost-benefit considerations due to the relatively low level of detail necessary for comparison of the largest watersheds to the rest of the study basins. Our watershed delineation method involves a multi-step approach to capture the inland portions of large watersheds using 10m and 30m USGS DEMs, while maintaining use of two-meter coastal LiDAR to accurately delineate the small coastal basins. Our delineated watersheds are parameterized based on multiple geomorphological and land use characteristics to facilitate evaluation of the relation between watershed and coastal water quality conditions at monitoring stations along the Maine coast. Landscape characteristics under consideration include watershed size (drainage area), surface drainage network density, soil drainage, vegetation cover, and impervious surface area.

  10. Broad-scale sampling of primary freshwater fish populations reveals the role of intrinsic traits, inter-basin connectivity, drainage area and latitude on shaping contemporary patterns of genetic diversity

    PubMed Central

    Robalo, Joana I.; Pereira, Ana M.; Branco, Paulo; Santos, José Maria; Ferreira, Maria Teresa; Sousa, Mónica; Doadrio, Ignacio

    2016-01-01

    Background. Worldwide predictions suggest that up to 75% of the freshwater fish species occurring in rivers with reduced discharge could be extinct by 2070 due to the combined effect of climate change and water abstraction. The Mediterranean region is considered to be a hotspot of freshwater fish diversity but also one of the regions where the effects of climate change will be more severe. Iberian cyprinids are currently highly endangered, with over 68% of the species raising some level of conservation concern. Methods. During the FISHATLAS project, the Portuguese hydrographical network was extensively covered (all the 34 river basins and 47 sub-basins) in order to contribute with valuable data on the genetic diversity distribution patterns of native cyprinid species. A total of 188 populations belonging to 16 cyprinid species of Squalius, Luciobarbus, Achondrostoma, Iberochondrostoma, Anaecypris and Pseudochondrostoma were characterized, for a total of 3,678 cytochrome b gene sequences. Results. When the genetic diversity of these populations was mapped, it highlighted differences among populations from the same species and between species with identical distribution areas. Factors shaping the contemporary patterns of genetic diversity were explored and the results revealed the role of latitude, inter-basin connectivity, migratory behaviour, species maximum size, species range and other species intrinsic traits in determining the genetic diversity of sampled populations. Contrastingly, drainage area and hydrological regime (permanent vs. temporary) seem to have no significant effect on genetic diversity. Species intrinsic traits, maximum size attained, inter-basin connectivity and latitude explained over 30% of the haplotype diversity variance and, generally, the levels of diversity were significantly higher for smaller sized species, from connected and southerly river basins. Discussion. Targeting multiple co-distributed species of primary freshwater fish allowed

  11. Broad-scale sampling of primary freshwater fish populations reveals the role of intrinsic traits, inter-basin connectivity, drainage area and latitude on shaping contemporary patterns of genetic diversity.

    PubMed

    Sousa-Santos, Carla; Robalo, Joana I; Pereira, Ana M; Branco, Paulo; Santos, José Maria; Ferreira, Maria Teresa; Sousa, Mónica; Doadrio, Ignacio

    2016-01-01

    Background. Worldwide predictions suggest that up to 75% of the freshwater fish species occurring in rivers with reduced discharge could be extinct by 2070 due to the combined effect of climate change and water abstraction. The Mediterranean region is considered to be a hotspot of freshwater fish diversity but also one of the regions where the effects of climate change will be more severe. Iberian cyprinids are currently highly endangered, with over 68% of the species raising some level of conservation concern. Methods. During the FISHATLAS project, the Portuguese hydrographical network was extensively covered (all the 34 river basins and 47 sub-basins) in order to contribute with valuable data on the genetic diversity distribution patterns of native cyprinid species. A total of 188 populations belonging to 16 cyprinid species of Squalius, Luciobarbus, Achondrostoma, Iberochondrostoma, Anaecypris and Pseudochondrostoma were characterized, for a total of 3,678 cytochrome b gene sequences. Results. When the genetic diversity of these populations was mapped, it highlighted differences among populations from the same species and between species with identical distribution areas. Factors shaping the contemporary patterns of genetic diversity were explored and the results revealed the role of latitude, inter-basin connectivity, migratory behaviour, species maximum size, species range and other species intrinsic traits in determining the genetic diversity of sampled populations. Contrastingly, drainage area and hydrological regime (permanent vs. temporary) seem to have no significant effect on genetic diversity. Species intrinsic traits, maximum size attained, inter-basin connectivity and latitude explained over 30% of the haplotype diversity variance and, generally, the levels of diversity were significantly higher for smaller sized species, from connected and southerly river basins. Discussion. Targeting multiple co-distributed species of primary freshwater fish allowed

  12. Lineations on the ``White'' Accumulation Areas of the Residual Northern Ice Cap of Mars: Their Relation to the ``Accublation'' and Ice Flow Hypothesis

    NASA Astrophysics Data System (ADS)

    Fisher, David A.; Winebrenner, Dale P.; Stern, Harry

    2002-09-01

    Mars Orbiter Camera (MOC) images of the whiter areas of the residual North Polar Cap (P. C. Thomas et al. 2000, Nature404, 161-164) show a gentle hummocky pitted surface that has been popularly called "cottage cheese" terrain. The pits are 1 or 2 m deep and tens of meters across. They are typically joined in roughly linear strings or long depressions and these features are referred to here as "lineations." The lineations tend to have one or occasionally two preferred directions. We have examined the MOC imagery for the North Cap and using high-resolution images that have good wide-angle context images were able to determine the lineation angles for 31 sites scattered over most of the ice cap. We propose a process that will produce linear features in the white areas, then relate the orientation of the lineations over much of the North Cap to these processes and the inferred ice flow direction. There is first-order agreement between the measured sign of the lineation angles and those predicted assuming ice flow. Higher accumulations and velocities are predicted in the catchment for ice that flows into Chasma Boreale. This comes from the indications that katabatic winds are concentrated in this catchment.

  13. [Thoracic drainage technique for emergencies].

    PubMed

    Orsini, B; Bonnet, P M; Avaro, J P

    2010-02-01

    The purpose of this report is to describe a simple, reproducible technique for pleural drainage. This technique that requires scant resources should be used only in life-threatening situations calling for pleural drainage. It is not intended to replace conventional techniques. PMID:20337108

  14. DRAINAGE MATERIALS AND THEIR EVOLUTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An historical account of the development and innovation of drainage materials in the World is given. For more than 100 years prior to 1970, clay and concrete tile were the most common for agricultural drainage. Smooth-wall plastic pipe was used to a limited extent in the late 1950's for subdrain con...

  15. An efficient and comprehensive method for drainage network extraction from DEM with billions of pixels using a size-balanced binary search tree

    NASA Astrophysics Data System (ADS)

    Bai, Rui; Li, Tiejian; Huang, Yuefei; Li, Jiaye; Wang, Guangqian

    2015-06-01

    With the increasing resolution of digital elevation models (DEMs), computational efficiency problems have been encountered when extracting the drainage network of a large river basin at billion-pixel scales. The efficiency of the most time-consuming depression-filling pretreatment has been improved by using the O(NlogN) complexity least-cost path search method, but the complete extraction steps following this method have not been proposed and tested. In this paper, an improved O(NlogN) algorithm was proposed by introducing a size-balanced binary search tree (BST) to improve the efficiency of the depression-filling pretreatment further. The following extraction steps, including the flow direction determination and the upslope area accumulation, were also redesigned to benefit from this improvement. Therefore, an efficient and comprehensive method was developed. The method was tested to extract drainage networks of 31 river basins with areas greater than 500,000 km2 from the 30-m-resolution ASTER GDEM and two sub-basins with areas of approximately 1000 km2 from the 1-m-resolution airborne LiDAR DEM. Complete drainage networks with both vector features and topographic parameters were obtained with time consumptions in O(NlogN) complexity. The results indicate that the developed method can be used to extract entire drainage networks from DEMs with billions of pixels with high efficiency.

  16. Drainage divides, Massachusetts; Blackstone and Thames River basins

    USGS Publications Warehouse

    Krejmas, Bruce E.; Wandle, S. William

    1982-01-01

    Drainage boundaries for selected subbasins of the Blackstone and Thames River basins in eastern Hampden, eastern Hampshire, western Norfolk, southern Middlesex, and southern Worcester Counties, Massachusetts, are delineated on 12 topographic quadrangle maps at a scale of 1:24,000. Drainage basins are shown for all U.S. Geological Survey data-collection sites and for mouths of major rivers. Drainage basins are shown for the outlets of lakes or ponds and for streams where the drainage area is greater than 3 square miles. Successive sites along watercourses are indicated where the intervening area is at least 6 miles on tributary streams or 15 square miles along the Blackstone River, French River, or Quinebaug River. (USGS)

  17. An Optimal Balance between Efficiency and Safety of Urban Drainage Networks

    NASA Astrophysics Data System (ADS)

    Seo, Y.

    2014-12-01

    Urban drainage networks have been developed to promote the efficiency of a system in terms of drainage time so far. Typically, a drainage system is designed to drain water from developed areas promptly as much as possible during floods. In this regard, an artificial drainage system have been considered to be more efficient compared to river networks in nature. This study examined artificial drainage networks and the results indicate they can be less efficient in terms of network configuration compared with river networks, which is counter-intuitive. The case study of 20 catchments in Seoul, South Korea shows that they have wide range of efficiency in terms of network configuration and consequently, drainage time. This study also demonstrates that efficient drainage networks are more sensitive to spatial and temporal rainfall variation such as rainstorm movement. Peak flows increase more than two times greater in effective drainage networks compared with inefficient and highly sinuous drainage networks. Combining these results, this study implies that the layout of a drainage network is an important factor in terms of efficient drainage and also safety in urban catchments. Design of an optimal layout of the drainage network can be an alternative non-structural measures that mitigate potential risks and it is crucial for the sustainability of urban environments.

  18. Detailed study of irrigation drainage in and near wildlife management areas, west-central Nevada, 1987-90; Part B, Effect on biota in Stillwater and Fernley Wildlife Management Areas and other nearby wetlands

    USGS Publications Warehouse

    Hallock, Robert J., (Edited By); Hallock, Linda L.

    1993-01-01

    A water-quality reconnaissance study during 1986-87 found high concentrations of several potentially toxic elements in water, bottom sediment, and biota in and near Stillwater Wildlife Management Area (WMA). This study prompted the U.S. Department of the Interior to initiate a more detailed study to determine the hydrogeochemical processes that control water quality in the Stillwater WMA, and other nearby wetlands, and the resulting effects on biota, especially migratory birds. Present wetland size is about 10% of historical size; the dissolved- solids load in the water in these now-isolated wetlands has increased only moderately, but the dissolved-solids concentration has increased more than seven-fold. Wetland vegetation has diminished and species composition in flow water has shifted to predominant salt-tolerant species in many areas. Decreased vegetative cover for nesting is implicated in declining waterfowl production. Decreases in numbers or virtual absence of several wildlife species are attributed to degraded water quality. Results of toxicity tests indicate that water in some drains and wetland areas is acutely toxic to some fish and invertebrates. Toxicity is attributed to the combined presence of arsenic, boron, lithium, and molybdenum. Biological pathways are involved in the transport of mercury and selenium from agricultural drains to wetlands. Hatch success of both artificially incubated and field-reared duck eggs was greater than/= 90 percent; no teratogenesis was observed. Mercury in muscle tissue of waterfowl harvested from Carson Lake in October 1987 exceeded the human health criterion six-fold.

  19. Binding of sperm protein Izumo1 and its egg receptor Juno drives Cd9 accumulation in the intercellular contact area prior to fusion during mammalian fertilization.

    PubMed

    Chalbi, Myriam; Barraud-Lange, Virginie; Ravaux, Benjamin; Howan, Kevin; Rodriguez, Nicolas; Soule, Pierre; Ndzoudi, Arnaud; Boucheix, Claude; Rubinstein, Eric; Wolf, Jean Philippe; Ziyyat, Ahmed; Perez, Eric; Pincet, Frédéric; Gourier, Christine

    2014-10-01

    Little is known about the molecular mechanisms that induce gamete fusion during mammalian fertilization. After initial contact, adhesion between gametes only leads to fusion in the presence of three membrane proteins that are necessary, but insufficient, for fusion: Izumo1 on sperm, its receptor Juno on egg and Cd9 on egg. What happens during this adhesion phase is a crucial issue. Here, we demonstrate that the intercellular adhesion that Izumo1 creates with Juno is conserved in mouse and human eggs. We show that, along with Izumo1, egg Cd9 concomitantly accumulates in the adhesion area. Without egg Cd9, the recruitment kinetics of Izumo1 are accelerated. Our results suggest that this process is conserved across species, as the adhesion partners, Izumo1 and its receptor, are interchangeable between mouse and human. Our findings suggest that Cd9 is a partner of Juno, and these discoveries allow us to propose a new model of the molecular mechanisms leading to gamete fusion, in which the adhesion-induced membrane organization assembles all key players of the fusion machinery. PMID:25209248

  20. Geomodel constructs of the Earth's crust for water continuation of the Korotaikha depression from gravity and magnetic data for revealing promising areas of oil and gas accumulation

    NASA Astrophysics Data System (ADS)

    Litvinova, Tamara; Kudryavtsev, Ivan

    2016-04-01

    The paper considers the results of re-interpretation of geophysical data within the water continuation of the Korotaikha depression. To solve the issue of identifying promising areas of oil and gas accumulation in the region, magnetic and gravity materials were reprocessed: digital maps of potential fields at 1: 500 000 scale were compiled on a frame network of seismic lines (3 lines on land and 3 lines in water area) made by reflection-CDP, density models to a depth of 20 km by solving the direct problem of gravity prospecting in GM-SYS module (Geosoft) in 2D formulation were constructed. Deep reflection-CDP seismic sections specified according to the deep wells were used as starting models. Correctness of the selected density models was controlled by comparing the theoretical curve with the values interpolated on the profile line from the digital model of gravity anomaly (Bouguer, density of the intermediate layer of 2.67 g/cm3). Magnetic modeling was performed using geometry of blocks from the obtained density models to a depth of 20 km and is based on selection of local anomaly sources in the upper section (in the Triassic strata). Blocks of the Precambrian basement were used as sources of regional magnetic anomalies in the considered models. Modeling constructs show the defining role of the topography of terrigenous and carbonate complex boundary within the Paleozoic section as a source of gravity anomalies for the region under study. These findings are confirmed by comparison of gravity and seismic data (maps of local gravity anomalies and structural maps of reflecting horizons) and additionally substantiated by analysis of the nature of local magnetic anomalies distribution. The latter are associated with the Triassic basalt horizons at the top of the terrigenous complex and thus also reflect structures of the sedimentary cover, which are registered independently by gravity data.

  1. Salt and N leaching and soil accumulation due to cover cropping practices

    NASA Astrophysics Data System (ADS)

    Gabriel, J. L.; Quemada, M.

    2012-04-01

    Nitrate leaching beyond the root zone can increase water contamination hazards and decrease crop available N. Cover crops used in spite of fallow are an alternative to reduce nitrate contamination in the vadose zone, because reducing drainage and soil mineral N accumulation. Cover crops can improve important characteristics in irrigated land as water retention capacity or soil aggregate stability. However, increasing evapotranspiration and consequent drainage below the root system reduction, could lead to soil salt accumulation. Salinity affects more than 80 million ha of arable land in many areas of the world, and one of the principal causes for yield reduction and even land degradation in the Mediterranean region. Few studies dealt with both problems at the same time. Therefore, it is necessary a long-term evaluation of the potential effect on soil salinity and nitrate leaching, in order to ensure that potential disadvantages that could originate from soil salt accumulation are compensated with all advantages of cover cropping. A study of the soil salinity and nitrate leaching was conducted during 4 years in a semiarid irrigated agricultural area of Central Spain. Three treatments were studied during the intercropping period of maize (Zea mays L.): barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and fallow. Cover crops were killed in March allowing seeding of maize of the entire trial in April, and all treatments were irrigated and fertilised following the same procedure. Before sowing, and after harvesting maize and cover crops, soil salt and nitrate accumulation was determined along the soil profile. Soil analysis was conducted at six depths every 0.20 m in each plot in samples from four 0 to 1.2-m depth holes dug. The electrical conductivity of the saturated paste extract and soil mineral nitrogen was measured in each soil sample. A numerical model based on the Richards water balance equation was applied in order to calculate drainage at 1.2 m depth

  2. Separation of drainage runoff during rainfall-runoff episodes using the stable isotope method and drainage water temperature

    NASA Astrophysics Data System (ADS)

    Zajíček, Antonín; Kvítek, Tomáš; Pomije, Tomáš

    2014-05-01

    Stabile isotopes of 2H 18O and drainage water temperature were used as natural tracers for separation rainfall-runoff event hydrograph on several tile drained catchments located in Bohemian-Moravian Highland, Czech Republic. Small agricultural catchments with drainage systems built in slopes are typical for foothill areas in the Czech and Moravian highland. Often without permanent surface runoff, the drainage systems represent an important portion of runoff and nitrogen leaching out of the catchment. The knowledge of the drainage runoff formation and the origin of its components are prerequisites for formulation of measures leading to improvement of the drainage water quality and reduction of nutrient leaching from the drained catchments. The results have proved presence of event water in the drainage runoff during rainfall-runoff events. The proportion of event water observed in the drainage runoff varied between 15 - 60 % in the summer events and 0 - 50 % in winter events, while the sudden water temperature change was between 0,1 - 4,2 °C (2 - 35 %). The comparison of isotope separation of the drainage runoff and monitoring the drainage water temperature have demonstrated that in all cases of event water detected in the runoff, a rapid change in the drainage water temperature was observed as well. The portion of event water in the runoff grows with the growing change in water temperature. Using component mixing model, it was demonstrated that water temperature can be successfully used at least as a qualitative and with some degree of inaccuracy as a quantitative tracer as well. The drawback of the non-conservative character of this tracer is compensated by both its economic and technical accessibility. The separation results also resemble results of separations at small streams. Together with a similarly high speed of the discharge reaction to beginning of precipitation, it is obvious that the mechanism of surface runoff formation and drainage runoff formation

  3. Soil carbon stocks and their rates of accumulation and loss in a boreal forest landscape

    USGS Publications Warehouse

    Rapalee, G.; Trumbore, S.E.; Davidson, E.A.; Harden, J.W.; Veldhuis, H.

    1998-01-01

    Boreal forests and wetlands are thought to be significant carbon sinks, and they could become net C sources as the Earth warms. Most of the C of boreal forest ecosystems is stored in the moss layer and in the soil. The objective of this study was to estimate soil C stocks (including moss layers) and rates of accumulation and loss for a 733 km2 area of the BOReal Ecosystem-Atmosphere Study site in northern Manitoba, using data from smaller-scale intensive field studies. A simple process-based model developed from measurements of soil C inventories and radiocarbon was used to relate soil C storage and dynamics to soil drainage and forest stand age. Soil C stocks covary with soil drainage class, with the largest C stocks occurring in poorly drained sites. Estimated rates of soil C accumulation or loss are sensitive to the estimated decomposition constants for the large pool of deep soil C, and improved understanding of deep soil C decomposition is needed. While the upper moss layers regrow and accumulate C after fires, the deep C dynamics vary across the landscape, from a small net sink to a significant source. Estimated net soil C accumulation, averaged for the entire 733 km2 area, was 20 g C m-2 yr-1 (28 g C m-2 yr-1 accumulation in surface mosses offset by 8 g C m-2 yr-1 lost from deep C pools) in a year with no fire. Most of the C accumulated in poorly and very poorly drained soils (peatlands and wetlands). Burning of the moss layer in only 1% of uplands would offset the C stored in the remaining 99% of the area. Significant interannual variability in C storage is expected because of the irregular occurrence of fire in space and time. The effects of climate change and management on fire frequency and on decomposition of immense deep soil C stocks are key to understanding future C budgets in boreal forests.

  4. A dynamic model of soil salinity and drainage generation in irrigated agriculture: A framework for policy analysis

    NASA Astrophysics Data System (ADS)

    Dinar, Ariel; Aillery, Marcel P.; Moore, Michael R.

    1993-06-01

    This paper presents a dynamic model of irrigated agriculture that accounts for drainage generation and salinity accumulation. Critical model relationships involving crop production, soil salinity, and irrigation drainage are based on newly estimated functions derived from lysimeter field tests. The model allocates land and water inputs over time based on an intertemporal profit maximization objective function and soil salinity accumulation process. The model is applied to conditions in the San Joaquin Valley of California, where environmental degradation from irrigation drainage has become a policy issue. Findings indicate that in the absence of regulation, drainage volumes increase over time before reaching a steady state as increased quantities of water are allocated to leaching soil salts. The model is used to evaluate alternative drainage abatement scenarios involving drainage quotas and taxes, water supply quotas and taxes, and irrigation technology subsidies. In our example, direct drainage policies are more cost-effective in reducing drainage than policies operating indirectly through surface water use, although differences in cost efficiency are relatively small. In some cases, efforts to control drainage may result in increased soil salinity accumulation, with implications for long-term cropland productivity. While policy adjustments may alter the direction and duration of convergence to a steady state, findings suggest that a dynamic model specification may not be necessary due to rapid convergence to a comon steady state under selected scenarios.

  5. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  6. 140. ARAIII Grading and drainage plan showing plot plan, including ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    140. ARA-III Grading and drainage plan showing plot plan, including berms around waste storage tank and fuel oil storage tank. Aerojet-general 880-area-GCRE-101-1. Date: February 1958. Ineel index code no. 063-0101-00-013-102507. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  7. Drainage efficiency in the urban environment under non-extreme rainfall

    NASA Astrophysics Data System (ADS)

    Aronica, G.; Lanza, L.

    2003-04-01

    It is a common experience that failures in urban drainage systems occur quite frequently as a consequence of rainfall events presenting relatively lower return periods than expected, even in the case of correctly designed sewer networks and pipes. Inlets are in those cases the critical nodes, and efficient drainage is only ensured when care is taken on their appropriate design and positioning within the drainage area. The lack of maintenance and overloads in the hydraulic system conducing street waters into the pipe network are often responsible for drainage failures and the consequent flooding of urban areas. Simulation of the drainage network efficiency should therefore take into account both the hydraulics of sewer pipes and the performances of the surface-subsurface connecting devices. Assuming correct dimensioning and positioning, still large uncertainties hold about the actual operation of such simple devices, due to unpredictable obstruction effects or anyway limited drainage capabilities. This contribution amplifies upon the evaluation of these uncertainties by employing a mixed approach made of some deterministic and stochastic components. The deterministic part is obtained by using an hyperbolic hydraulic model for the simulation of flood wave propagation over surface urban drainage structures, i.e. streets and pathways. The stochastic component is intended as the efficiency function controlling the inlets operation at various stages of the drainage process. The aim is to evaluate the effects of unpredictable drainage failures in a distributed form throughout the system in order to assess the efficiency of the drainage network as a whole.

  8. Nocturnal drainage wind characteristics in two converging air sheds

    SciTech Connect

    Gedayloo, T.; Clements, W.E.; Barr, S.; Archuleta, J.A.

    1980-01-01

    During the short experimental period in the Grants Basin of Northeastern New Mexico a survey was conducted on the complex meteorology of this area. Emphasis was placed on the nocturnal drainage flow because of the potential hazards to the populated areas of Milan and Grants from the effluents of the uranium mining and milling operation in this area. This investigation has shown that the nocturnal drainage flow patterns agree with the winds predicted on the basis of the complex terrain of the area. Because of the surface cooling at night (over 25/sup 0/C during summer and about 20/sup 0/C during winter), air from elevated surrounding areas flows to the low lying regions consequently setting up a nocturnal drainage flow. This regime exists over 60% of the time during summer months and over 65% of the time during winter months with a depth generally less than 200 m. In the San Mateo air shed the drainage flow is east northeast, and in the Ambrosia Lake air shed it is from northwest. The confluence of these two air flows contributes mainly to the drainage flow through the channel formed by La Ja Mesa and Mesa Montanosa. The analysis of data collected by the recording Flats Station confirms the prediction that although the area south of the channel region broadens considerably causing a reduction in flow speed, contributions from the southside of La Jara Mesa and Mesa Montanosa partly compensate for this reduction. The position of this recording station is 15 to 20 km from the populated towns of Milan and Grants. A drainage flow speed of approximately 2.2 m s/sup -1/ and the duration of over 11 hours as recorded by this station indicates that air from the San Mateo and Ambrosia Lake regions may be transported southwards to these population centers during a nocturnal period. In order to test this prediction, a series of multi-atmospheric tracer experiments were conducted in the Grants Basin.

  9. The Global Geometry of River Drainage Basins and the Signature of Tectonic and Autogenic Processes

    NASA Astrophysics Data System (ADS)

    Giachetta, E.; Willett, S.

    2015-12-01

    The plan-form structure of the world's river basins contains extensive information regarding tectonic, paleo-geographic and paleo-climate conditions, but interpretation of this structure is complicated by the need to disentangle these processes from the autogenic behavior of fluvial processes. One method of interpreting this structure is by utilizing the well-established scaling between drainage area and channel slope. Integration of this scaling relationship predicts a relationship between channel length and downstream integrated drainage area, referred to in recent studies as χ (Willett et al., 2014). In this paper, we apply this methodology at a continental scale by calculating χ for the world's river networks using hydrological information from the HydroSHED (Hydrological data and maps based on SHuttleElevation Derivatives at multiple Scales) suite of geo-referenced data sets (drainage directions and flow accumulations). River pixels were identified using a minimum drainage area of 5 km2. A constant value of m/n of 0.45 was assumed. We applied a new method to correct χ within closed basins where base level is different from sea level. Mapping of χ illustrates the geometric stability of a river network, thus highlighting where tectonic or climatic forcing has perturbed the shape and geometry. Each continent shows characteristic features. Continental rift margins on all continents show clear asymmetric escarpments indicating inland migration. Active orogenic belts break up older river basins, but are difficult to interpret because of spatially variable uplift rates. Regions of recent tilting are evident even in cratonic areas by lateral reorganizations of basins. Past and pending river captures are identified on all continents. Very few regions on Earth appear to be in near-equilibrium, though some are identified; for example the Urals appears to provide a stable continental divide for Eurasia. Our analysis of maps of χ at the global scale quantifies a

  10. Percutaneous Abscess Drainage

    MedlinePlus

    ... a specially trained interventional radiologist in an interventional radiology suite or under CT guidance in a separate area of the radiology department. You will be positioned on the examining ...

  11. Drainage basins in Duval County, Florida

    USGS Publications Warehouse

    Stone, Roy B.; Largen, Joseph B.

    1983-01-01

    The drainage basins and subbasins in Duval County, Florida, are delineated on this atlas map. The county 's 840 square-mile area is drained by three major river systems; the St. Johns, 668 square miles; Nassau, 113 square miles; and St. Marys, 59 square miles. The remainder of the county is drained by a network of small streams that flow into either the Intracoastal Waterway or directly into the Atlantic Ocean. The sub-basins range in size from less than one square mile to more than 50 square miles. (USGS)

  12. Environmental and socio-economic impacts of pipe drainage in Pakistan.

    PubMed

    Ghumman, Abdul Razzaq; Ghazaw, Yousry Mahmoud; Hashmi, Hashim Nisar; Kamal, Mumtaz Ahmed; Niazi, Muhammed Farooq

    2012-03-01

    Many drainage schemes and salinity control projects have been executed world wide. Pipe drainage has widely been used in Pakistan, Egypt and India to control waterlogging. The impact of pipe drainage on land and water was evaluated in this paper using data of three pipe drainage projects in Pakistan namely Khushab Salinity Control and Reclamation Project, Fourth Drainage Project in Faisalabad and Swabi Salinity Control and Reclamation Project. Data by regular monitoring of these projects were collected. The effect of pipe drainage on water table depth at these three locations has been compared. Water quality and soil salinity improvement due to the pipe drainage has also been investigated. Data, related to water table depths and discharges from drain pipes/wells, was collected. Observation wells, installed at various places by the Water and Power Development Authority, were used for collection of this data. To evaluate the impact of the projects on salinity, soil samples from all the three locations were tested. A questionnaire was prepared to get the view of the people about the projects. It was revealed that in these areas, due to subsurface pipe drainage, the percentage of the abandoned land has been considerably decreased. Over drainage was observed in a few places of the projects. The farmers at such places were asked to change their cropping patterns. Ultimately, there has been an increase in area under cultivation, crop yields and cropping intensity in the projects' area. PMID:21603921

  13. The Subglacial Drainage System Structure and Morphology of Storglaciären, Sweden

    NASA Astrophysics Data System (ADS)

    Williamson, A. G.; Dahlke, H. E.; Willis, I. C.

    2013-12-01

    modelled using these obtained melt values. Melt was assumed to accumulate at the bed in situ, and the modelled discharges were compared with empirical proglacial-stream discharge measurements from August 2012. The results, obtained by comparing theoretical subglacial drainage system reconstructions with observed data, suggest that the glacier-wide steady-state water pressure beneath Storglaciären is 70-80% of ice overburden. Use of the melt model failed to constrain subglacial water pressure to a more precise value, likely due to Storglaciären's polythermal regime (specifically the lower ablation area's cold surface layer) and its extensive englacial network feeding the proglacial stream Nordjåkk. Breakthrough curves suggest that Storglaciären's lower ablation area has two drainage areas: a somewhat hydraulically efficient homogenously braided stream, observed to evolve over the field season's course, which drains only a few spatially isolated injection sites in the south, and a central axis that drains all other injection sites in a hydraulically efficient system. The importance of supraglacial recharge in determining breakthrough curve characteristics is also highlighted; it is suggested that use of breakthrough curves to infer change from channelised to distributed systems may need reconsideration for some glaciers.

  14. Drainage capture and discharge variations driven by glaciation in the Southern Alps, New Zealand

    SciTech Connect

    Ann V. Rowan; Mitchell A. Plummer; Simon H. Brocklehurst; Merren A. Jones; David M. Schultz

    2013-02-01

    Sediment flux in proglacial fluvial settings is primarily controlled by discharge, which usually varies predictably over a glacial–interglacial cycle. However, glaciers can flow against the topographic gradient to cross drainage divides, reshaping fluvial drainage networks and dramatically altering discharge. In turn, these variations in discharge will be recorded by proglacial stratigraphy. Glacial-drainage capture often occurs in alpine environments where ice caps straddle range divides, and more subtly where shallow drainage divides cross valley floors. We investigate discharge variations resulting from glacial-drainage capture over the past 40 k.y. for the adjacent Ashburton, Rangitata, and Rakaia basins in the Southern Alps, New Zealand. Although glacial-drainage capture has previously been inferred in the range, our numerical glacier model provides the first quantitative demonstration that this process drives larger variations in discharge for a longer duration than those that occur due to climate change alone. During the Last Glacial Maximum, the effective drainage area of the Ashburton catchment increased to 160% of the interglacial value with drainage capture, driving an increase in discharge exceeding that resulting from glacier recession. Glacial-drainage capture is distinct from traditional (base level–driven) drainage capture and is often unrecognized in proglacial deposits, complicating interpretation of the sedimentary record of climate change.

  15. Map showing drainage basins and locations of streamflow-measuring sites, Fairfax County, Virginia

    USGS Publications Warehouse

    Mohler, E.H.

    1977-01-01

    A drainage basin map of Fairfax County shows basins for named streams with drainage areas of 1.1 sq mi (2.8 sq km) or more. Areas of minor streams draining directly into the Potomac River and Occoquan Creek are tabulated. The locations of continuous-record and partial-record (peak-flow and low-flow) flow sites are shown. The use of topographic and climatic characteristics of drainage basins to transfer flow data from gaged areas to ungaged areas is discussed. (Woodard-USGS)

  16. Observing a catastrophic thermokarst lake drainage in northern Alaska

    USGS Publications Warehouse

    Jones, Benjamin M.; Arp, Christopher D.

    2015-01-01

    The formation and drainage of thermokarst lakes have reshaped ice-rich permafrost lowlands in the Arctic throughout the Holocene. North of Teshekpuk Lake, on the Arctic Coastal Plain of northern Alaska, thermokarst lakes presently occupy 22.5% of the landscape, and drained thermokarst lake basins occupy 61.8%. Analysis of remotely sensed imagery indicates that nine lakes (>10 ha) have drained in the 1,750 km2 study area between 1955 and 2014. The most recent lake drainage was observed using in situ data loggers providing information on the duration and magnitude of the event, and a nearby weather station provided information on the environmental conditions preceding the lake drainage. Lake 195 (L195), an 80 ha thermokarst lake with an estimated water volume of ~872,000 m3, catastrophically drained on 05 July 2014. Abundant winter snowfall and heavy early summer precipitation resulted in elevated lake water levels that likely promoted bank overtopping, thermo-erosion along an ice-wedge network, and formation of a 9 m wide, 2 m deep, and 70 m long drainage gully. The lake emptied in 36 hours, with 75% of the water volume loss occurring in the first ten hours. The observed peak discharge of the resultant flood was 25 m3/s, which is similar to that in northern Alaska river basins whose areas are more than two orders of magnitude larger. Our findings support the catastrophic nature of sudden lake drainage events and the mechanistic hypotheses developed by J. Ross Mackay.

  17. Determination of drainage density for surface-mine reclamation in the western US. Final report

    SciTech Connect

    Gregory, D.I.; Schumm, S.A.; Watson, C.C.

    1985-07-01

    As part of any surface-mined land reclamation plan, quantitative geomorphic data is required in order that relatively stable landforms can be constructed. Drainage density is an extremely important characteristic of the landscape that reflects the interaction between eroding forces and the erodibility of an area. There is a characteristic drainage density for each location, and when this is identified, it should be used in reclamation design. Mining and reclamation will change other properties of drainage basins, which will, in turn, affect drainage density. Baselevel control provided by resistant bedrock outcrops may be removed; infiltration capacity may be decreased by mixing fine-textured subsoil with topsoil; and relief may be increased through bulking of overburden or decreased by removal of thick coal seams. Therefore, the characteristic drainage densities will require adjustment as a result of these changes, and additional research is needed in order to refine estimates of drainage density.

  18. Acid mine drainage. (Latest citations from the NTIS data base). Published Search

    SciTech Connect

    Not Available

    1992-04-01

    The bibliography contains citations concerning laboratory and field analyses of acid mine drainage. Topics include site investigations and characterization, remediation and monitoring programs, contaminant treatment research, and control and abatement studies. Chemical analyses of affected areas, and evaluation of terrestrial and aquatic ecosystem responses to acid drainage are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  19. FEASIBILITY OF SILVER-LEAD MINE WASTE MANIPULATION FOR MINE DRAINAGE CONTROL

    EPA Science Inventory

    The purpose of the Feasibility Study Dry Fork of Belt Creek, Montana is to examine solutions and methods of abatement of acid mine drainage problems and recommend a solution. The Galena Creek area in the Dry Fork of Belt Creek drainage contains several old mine tailings piles fro...

  20. Agricultural Drainage Water Management: Potential Impact and Implementation Strategies for Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unique soil and climate of the Upper Mississippi River Basin (and the Lake Erie Basin) area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Dra...

  1. 33 CFR 239.7 - Separation of flood control works from urban drainage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Separation of flood control works... COVERED FLOOD CONTROL CHANNELS § 239.7 Separation of flood control works from urban drainage. Covered channels are likely to be considered in boundary areas demarking urban drainage and flood...

  2. Watershed SWAT Evaluation of Control Drainage Structure in Ditch management for Improved Water Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Eastern Shore region of Maryland, extensive land areas used for crop production require drainage systems either as tile drains or open ditches. Increased nutrient loading of the Chesapeake Bay is being partly linked to the prevalence of ditch drainage in the region. Studies have shown that an...

  3. Changes in yield and nitrate losses from using drainage water management in Central Iowa, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage water management (DWM) is a potentially valuable management practice for reducing nitrate losses to surface waters in areas of artificial drainage. But the practice is essentially untested in Midwest US conditions and its water quality and crop yield benefits unknown. This paper reports res...

  4. Drainage pits in cohesionless materials: implications for surface of Phobos.

    PubMed

    Horstman, K C; Melosh, H J

    1989-09-10

    , noncohesive regolith is nearly equal to the thickness of regolith and appears to gbe independent of the angle of repose, within the resolution of our experiments. This provides a simple means of estimating regolith thickness where drainage pits are present. On Phobos, two locations differing by 90 degrees in longitude have average pit spacings that suggest regolith thicknesses of 290 and 300 m, suggesting that large areas of Phobos have a nearly uniform regolith thickness of approximately 300 m. PMID:11539795

  5. Models Robustness for Simulating Drainage and NO3-N Fluxes

    NASA Astrophysics Data System (ADS)

    Jabro, Jay; Jabro, Ann

    2013-04-01

    Computer models simulate and forecast appropriate agricultural practices to reduce environmental impact. The objectives of this study were to assess and compare robustness and performance of three models -- LEACHM, NCSWAP, and SOIL-SOILN--for simulating drainage and NO3-N leaching fluxes in an intense pasture system without recalibration. A 3-yr study was conducted on a Hagerstown silt loam to measure drainage and NO3-N fluxes below 1 m depth from N-fertilized orchardgrass using intact core lysimeters. Five N-fertilizer treatments were replicated five times in a randomized complete block experimental design. The models were validated under orchardgrass using soil, water and N transformation rate parameters and C pools fractionation derived from a previous study conducted on similar soils under corn. The model efficiency (MEF) of drainage and NO3-N fluxes were 0.53, 0.69 for LEACHM; 0.75, 0.39 for NCSWAP; and 0.94, 0.91for SOIL-SOILN. The models failed to produce reasonable simulations of drainage and NO3-N fluxes in January, February and March due to limited water movement associated with frozen soil and snow accumulation and melt. The differences between simulated and measured NO3-N leaching and among models' performances may also be related to soil N and C transformation processes embedded in the models These results are a monumental progression in the validation of computer models which will lead to continued diffusion across diverse stakeholders.

  6. Minimizing contamination hazards to waterbirds using agricultural drainage evaporation ponds

    NASA Astrophysics Data System (ADS)

    Bradford, David F.; Smith, Lynda A.; Drezner, Deborah S.; Shoemaker, J. David

    1991-11-01

    In much of the San Joaquin Valley, California, USA, inadequate drainage of applied irrigation water and accumulating salts in the soil have necessitated the installation of subsurface tile drainage systems to preserve crop productivity. At present, these subsurface drainage waters are disposed of by means of evaporation ponds or discharges into the San Joaquin River. Unfortunately, most of these agricultural drainage waters contain high concentrations of salts and naturally occurring trace elements, such as selenium, and recent evidence indicates that substantial numbers of waterbirds are exposed to contamination by selenium in the evaporation ponds. In order to avoid, minimize, or mitigate the adverse impacts on wildlife using the ponds, alternative pond management methods must be identified and evaluated for implementation. A number of methods have the potential to be cost-effective in significantly reducing the contamination hazard to birds using agricultural evaporation ponds. Twenty general methods were evaluated in this study, and four methods are recommended for implementation: remove levee vegetation, remove windbreaks, deepen the ponds, and haze birds. A number of other methods are recommended for further consideration because they appear to have good prospects for reducing the contamination hazard: steepen interior levee slopes, apply herbicides and insecticides, place netting on pond shorelines, and provide freshwater habitat adjacent to evaporation ponds. It may be necessary to use a combination of methods to effectively control selenium contamination of aquatic birds because it is unlikely that a single affordable pond management method will be able to entirely eliminate the contamination hazard.

  7. 24 CFR 3280.610 - Drainage systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Fittings. Drainage fittings shall be recessed drainage pattern with smooth interior waterways of the same... vent. Where required by structural design, wet-vented drain piping may be offset vertically when...

  8. Benefits of digital thoracic drainage systems.

    PubMed

    Danitsch, Debbie

    A number of risks and complications are associated with traditional chest drainage systems. A trust decided to trial digital drainage systems, and found the new systems improved treatment time and patient mobility. PMID:22536712

  9. Increasing urban flood magnitudes: Is it the drainage network?

    NASA Astrophysics Data System (ADS)

    Zahner, J. A.; Ogden, F. L.

    2004-05-01

    It has been long thought that increases in impervious area had the greatest impact on urban runoff volume and increased flood peaks. This theory was recently challenged by a study in Charlotte, North Carolina that concluded that the increase in storm drainage connectivity and hence hydraulic efficiency played the greatest role in increasing flood magnitudes. Prediction of hydrologic conditions in urbanized watersheds is increasingly turning to distributed-parameter models, as these methods are capable of describing land-surface modifications and heterogeneity. One major deficiency of many of these models, however, is their inability to explicitly handle storm drainage networks. The purpose of this research is to examine the effect of subsurface storm drainage networks on the formation of floods. Factors considered include changes in network topology as described by the drainage width function and the relative importance of improved drainage efficiency relative to imperviousness. The Gridded Surface/Subsurface Hydrologic Analysis (GSSHA), a square-grid (raster) hydrologic model that solves the equations of transport of mass, energy, and momentum, has been modified to include storm drainage capability. This has made it possible to more accurately model the complexity of an urban watershed. The SUPERLINK scheme was chosen to model flow in closed conduits. This method solves the St. Venant equations in one dimension and employs the widely used "Preissmann slot" to extend their applicability to storm sewer flow. The SUPERLINK scheme is significantly different from the Preissmann scheme in that it is able to robustly simulate traditional flows as well as moving shocks. The coupled GSSHA SUPERLINK model will be used to simulate the effect of a subsurface drainage network on an urbanizing catchment.

  10. Drainage divide migration induced by rainfall gradient in orogenic landscape and the split of the associated drainage networks

    NASA Astrophysics Data System (ADS)

    Bonnet, S.

    2009-12-01

    Although numerical models demonstrate that topography in orogens is asymmetric when forced by orographic precipitations, drainage divide migration (the mechanism responsible for this asymmetry) has never been documented in natural orogens, even though the latter actually exhibits an asymmetric topography in most cases (e. g., Taiwan, southern Alps). Drainage divide migration is investigated here in the laboratory modelling of erosion and landscape dynamics under spatially-constant uplift forcing but with a lateral precipitation gradient. As observed numerically, precipitation gradient induces the migration of the drainage divide toward the drier side of the landscape and the development of an asymmetric topography. The divide is simultaneously uplifted such that the mean topographic slope of the wetter side of the landscape remains constant during its elongation. On the opposite, the progressive shortening of the drier side of the landscape results in a progressive steepening of its topography. This leads to a very unstable landscape and an original mechanism that splits the drainage networks is observed there: each initial drainage network progressively splits into two individual networks that become separated by the growth of a new hillcrest. Through this mechanism, the numbers of drainage basins extending to the main divide increases during divide migration such that the universal law of drainage outlet spacing is maintained. Given the pattern of rainfall, the migration of the drainage divide induces a continuous decrease in the mean runoff within the drainage basins located on the drier side of the landscape. There, the area of the drainage basins decreases because of the combination of (i) the continuous size reduction which is the direct consequence of the divide migration, and (ii) the abrupt size reduction consecutive to the split of the drainage networks and the individuation of two drainage basins from a previous single one. By continually reducing the

  11. Temporal variability of nitrogen and phosphorus transport in subsurface drainage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface drainage is a necessity for crop production agriculture in humid climates with poorly drained soils. The Midwestern United States is the most productive agricultural area in the world. In excess of 20.6 million ha (37%) of the tillable acres in the Midwest are managed with subsurface tile...

  12. Arsenic Speciation and Accumulation In Evapoconcentrating Waters Of Agricultural Evaporation Basins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To sustain agricultural productivity, evaporation basins (or ponds) have been widely used for the disposal of agricultural drainage in areas requiring subsurface drainage in the San Joaquin Valley of California, USA. The drainage water contains elevated concentration of trace elements including sele...

  13. Quaternary Reorganization of North American Mid-continent Drainage Systems

    NASA Astrophysics Data System (ADS)

    Carson, E. C.; Rawling, J. E., III; Attig, J. W.; Bates, B. R.

    2013-12-01

    Identification of ancestral drainage systems in the North American mid-continent has been a topic of research and debate among geologists since the middle of the 19th Century. Over time our understanding of the significance of Quaternary glaciations in reshaping drainage patterns has grown. The ancestral Teays River, which drained large areas of the central Appalachians and flowed westward across Indiana and western Illinois, was dammed multiple times by Quaternary glaciers before finally being rerouted to the course of the modern central Ohio River. Similarly, the northward-flowing ancestral Pittsburgh River was dammed by pre-Illinoian glaciers; subsequent stream piracy converted this river system into the modern Allegheny, Monongahela and uppermost Ohio Rivers. Deposits and geomorphic features along the westward-flowing lower Wisconsin River indicate that the modern upper Mississippi River and Wisconsin River may have experienced a similar history of ice blockage, stream piracy, and radical rerouting. Coring into the Bridgeport strath terrace along the lower Wisconsin River reveals that the bedrock surface dips to the east, indicating the valley was cut by an eastward-flowing river. We believe the most likely scenario following this interpretation is that an ancestral river flowing along the modern upper Mississippi River valley made a sharp bend at Prairie du Chien, WI, and flowed eastward along the valley occupied by the modern lower Wisconsin River. This river, referred to here as the Wyalusing River, likely flowed northeastward into the Great Lakes (St. Lawrence) drainage until that path was blocked by ice advancing from the northwest. Subsequent stream piracy immediately south of the modern confluence of the Mississippi and Wisconsin Rivers rerouted these streams, converting them to the headwaters of the greater Mississippi drainage. The combined rerouting of these river systems into entirely different drainage basins necessitates significant fundamental

  14. Foam drainage on a sloping weir

    NASA Astrophysics Data System (ADS)

    Grassia, P.; Neethling, S. J.; Cilliers, J. J.

    2002-08-01

    Foam drainage is considered in a froth flotation tank with a sloping weir. The drainage is shown to be gravity dominated in most of the foam, except for thin boundary layers at the base of the froth, and along the sloping weir. The mathematical reason for the boundary layers is that capillary suction is a much weaker effect than gravity, but cannot be ignored altogether, because it represents a singular perturbation. The relative weakness of capillary suction with respect to gravity is represented by a key dimensionless parameter, denoted K, which satisfies Kll 1. The volumetric flow at any point along the weir boundary layer is the accumulation of all liquid that has rained onto the weir above the point in question: typically, this flow is linear in distance measured downward from the weir lip. All liquid raining onto the weir is ultimately returned to the pulp phase as a high-speed jet. The jet velocity scales with the frac{2}{3} power of distance from the weir lip, and is O(K^{-2/3}) times larger than the typical velocity in the gravity-dominated flow in the bulk of the flotation tank. The liquid volume fraction in the jet is likewise O(K^{-2/3}) larger than that in the bulk. Across the jet, the foam exhibits a known profile of liquid fraction vs. distance from the weir: this is known as the equilibrium profile. The foam requires a distance equivalent to O(K^{4/3}) weir lengths to dry out significantly from the wetness value on the weir, but a larger O(K) distance to fall back to a wetness comparable with that in the bulk of the froth.

  15. Foam drainage on a sloping weir.

    PubMed

    Grassia, P; Neethling, S J; Cilliers, J J

    2002-08-01

    Foam drainage is considered in a froth flotation tank with a sloping weir. The drainage is shown to be gravity dominated in most of the foam, except for thin boundary layers at the base of the froth, and along the sloping weir. The mathematical reason for the boundary layers is that capillary suction is a much weaker effect than gravity, but cannot be ignored altogether, because it represents a singular perturbation. The relative weakness of capillary suction with respect to gravity is represented by a key dimensionless parameter, denoted K, which satisfies K<1. The volumetric flow at any point along the weir boundary layer is the accumulation of all liquid that has rained onto the weir above the point in question: typically, this flow is linear in distance measured downward from the weir lip. All liquid raining onto the weir is ultimately returned to the pulp phase as a high-speed jet. The jet velocity scales with the (2/3) power of distance from the weir lip, and is O(K(-2/3)) times larger than the typical velocity in the gravity-dominated flow in the bulk of the flotation tank. The liquid volume fraction in the jet is likewise O(K(-2/3)) larger than that in the bulk. Across the jet, the foam exhibits a known profile of liquid fraction vs. distance from the weir: this is known as the equilibrium profile. The foam requires a distance equivalent to O(K(4/3)) weir lengths to dry out significantly from the wetness value on the weir, but a larger O(K) distance to fall back to a wetness comparable with that in the bulk of the froth. PMID:15015124

  16. 24 CFR 3280.610 - Drainage systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Drainage systems. 3280.610 Section... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Plumbing Systems § 3280.610 Drainage systems. (a) General. (1) Each fixture directly connected to the drainage system shall be installed with...

  17. Drainage water management for water quality protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land drainage has been central to the development of North America since colonial times. Increasingly, agricultural drainage is being targeted as a conduit for pollution, particularly nutrient pollution. The export of agricultural drainage water and associated pollutants to surface water can be mana...

  18. Mine Drainage Control and Treatment Options

    EPA Science Inventory

    This presentation is the third in a series of webinars for Region 10's Hardrock Mine Geochemistry and Hydrology Webinar Workshops. It will discuss briefly how mine drainage forms, some suggested mitigation methods, how ions in the drainage change if drainage does get to the envi...

  19. Model for Plateau border drainage of power-law fluid with mobile interface and its application to foam drainage.

    PubMed

    Wang, Zebin; Narsimhan, Ganesan

    2006-08-01

    A model for drainage of a power-law fluid through a Plateau border is proposed which accounts for the actual Plateau border geometry and interfacial mobility. The non-dimensionalized Navier-Stokes equations have been solved using finite element method to obtain the contours of velocity within the Plateau border cross section and average Plateau border velocity in terms of dimensionless inverse surface viscosity and power-law rheological parameters. The velocity coefficient, the correction for the average velocity through a Plateau border of actual geometry compared to that for a simplified circular geometry of the same area of cross section, was expressed as a function of dimensionless inverse surface viscosity and flow behavior index of the power-law fluid. The results of this improved model for Plateau border drainage were then incorporated in a previously developed foam drainage model [G. Narsimhan, J. Food Eng. 14 (1991) 139] to predict the evolution of liquid holdup profiles in a standing foam. Foam drainage was found to be slower for actual Plateau border cross section compared to circular geometry and faster for higher interfacial mobility and larger bubble size. Evolution of liquid holdup profiles in a standing foam formed by whipping and stabilized by 0.1% beta-lactoglobulin in the presence of xanthan gum when subjected to 16g and 45g centrifugal force fields was measured using magnetic resonance imaging for different xanthan gum concentrations. Drainage resulted in the formation of a separate liquid layer at the bottom at longer times. Measured bubble size, surface shear viscosity of beta-lactoglobulin solutions and literature values of power-law parameters of xanthan gum solution were employed in the current model to predict the evolution of liquid holdup profile which compared well with the experimental data. Newtonian model for foam drainage for zero shear viscosity underpredicted drainage rates and did not agree with the experimental data. PMID

  20. Regulation of agricultural drainage to San Joaquin River

    SciTech Connect

    Johns, G.E.; Watkins, D.A. )

    1989-02-01

    A technical committee reported on: (1) proposed water quality objectives for the San Joaquin River Basin; (2) proposed effluent limitations for agricultural drainage discharges in the basin to achieve these objectives; and (3) a proposal to regulate these discharges. The costs and economic impact of achieving various alternative water quality objectives were also evaluated. The information gathered by the technical committee will be used by the Regional Board along with other information in their review of the San Joaquin River Basin Water Quality Control Plan and their actions to regulate agricultural drainage in the San Joaquin Valley. The results of the Technical Committee's efforts as reported in Regulation of Agricultural Drainage to the San Joaquin River, August 1987. Based on the available information, the improvement in water quality resulting from implementation of the interim selenium objective and long-term objectives for salts, molybdenum and boron is necessary to provide reasonable protection to beneficial uses. The costs needed to implement these objectives seem reasonable. However, data on the: (1) concentrations of selenium that protect aquatic ecosystems in the basin; (2) concentrations of selenium that protect human consumers of fish and wildlife; and (3) drainage flows and quality produced in and upgradient of the drainage study area need to be developed and reviewed before a long-term selenium water quality objective is implemented. 16 refs., 2 figs., 4 tabs.

  1. Assessments of chromium (and other metals) in vegetables and potential bio-accumulations in humans living in areas affected by tannery wastes.

    PubMed

    Chen, Hualin; Arocena, Joselito M; Li, Jianbing; Thring, Ronald W; Zhou, Jiangmin

    2014-10-01

    Chromium (Cr) commonly enters the food chain through uptake by vegetables. However, accurate prediction of plant uptake of Cr (and other metals) still remains a challenge. In this study, we evaluated 5 indices of availability for Cr (and other metals) to identify reliable predictors of metal transfer from soils to garlic, onion, bokchoy, radish and celery grown in soils impacted by tannery wastes. The potential bio-accumulation of Cr in humans was calculated from the Cr content of vegetable predicted by the best bio-availability index, amounts of vegetable consumed and recommended daily doses for Cr. Our results show that soil total Cr is the best predictor of Cr transfer from soils to onion (Cr in onion=8.51+0.005 Total Cr) while Cr extractable by Synthetic Precipitation Leaching Procedure at pH 5 correlates very well with Cr uptake by bokchoy (Cr bokchoy=5.86+7.32 SPLP-5 Cr) and garlic (Cr garlic=7.63+2.36 SPLP-5 Cr). The uptake of Cr by radish and celery could not be reliably estimated by any of the 5 indices of availability tested in this study. Potential bio-accumulation of Cr in humans (BA-Cr) increases from soils with low Cr (BA-Cr=11.5) to soil with high total Cr (BA-Cr=31.3). Due to numerous soil factors affecting the behavior of Cr in soils and the physiological differences among vegetables, we suggest that the prediction of the transfer of Cr (and other metals) from soils to plants should be specific to site, metal and vegetable. Potential bio-accumulation of Cr in humans can be derived from a transfer function of Cr from soils to plants and the human consumption of vegetables. PMID:25048934

  2. Analysis of runoff from small drainage basins in Wyoming

    USGS Publications Warehouse

    Craig, Gordon S.; Rankl, James G.

    1978-01-01

    A flood-hydrograph study has defined the magnitude and frequency of flood volumes and flood peaks that can be expected from drainage basins smaller than 11 square miles in the plains and valley areas of Wyoming. Rainfall and runoff data, collected for 9 years on a seasonal basis (April through September), were used to calibrate a rainfall-runoff model on each of 22 small basins. Long-term records of runoff volume and peak discharge were synthesized for these 22 basins. Flood volumes and flood peaks of specific recurrence intervals (2, 5, 10, 25, 50, and 100 years) were then related to basin characteristics with a high degree of correlation. Flood volumes were related to drainage area, maximum relief, and basin slope. Flood peaks were related to drainage area, maximum relief, basin slope, and channel slope. An investigation of ponding behind a highway embankment, with available storage capacity and with a culvert to allow outflow, has shown that the single fast-rising peak is most important in culvert design. Consequently, a dimensionless hydrograph defines the characteristic shape of flood hydrographs to be expected from small drainage basins in Wyoming. For design purposes, a peak and volume can be estimated from basin characteristics and used with the dimensionless hydrograph to produce a synthetic single-peak hydrograph. Incremental discharges of the hydrograph can be routed along a channel, where a highway fill and culvert are to be placed, to help determine the most economical size of culvert if embankment storage is to be considered.

  3. Condeep drainage systems speed consolidation

    SciTech Connect

    Not Available

    1982-12-01

    The foundation drainage systems underlying the 6 Condeep platforms installed in the North Sea have successfully speeded up the rate of sediment consolidation and stabilization of the platform. The systems on 2 of the first concrete gravity units have now been shut down after full consolidation. The drainage, or antiliquefaction system, is vital during the first storm periods before full consolidation has taken place. In the case of the last Condeep platforms installed on stiff clays, full consolidation has taken place within a period of 2 yr. As the base of each concrete gravity platform is divided into skirt compartments, it is possible to adjust the water pressure within each compartment separately and adjust for the tilting of the structure.

  4. Ultrasound-Guided Percutaneous Drainage of Neonatal Pyometrocolpos Under Local Anesthesia

    SciTech Connect

    Algin, Oktay; Erdogan, Cuneyt; Kilic, Nizamettin

    2011-02-15

    Hydrometrocolpos is an uncommon congenital disorder with cystic dilatation of the vagina and uterus that occurs as a result of accumulated secretions from the reproductive tract due to distal genital tract obstruction. Secondary infection may also occur, resulting in pyometrocolpos, a potentially lethal disease. Immediate drainage of the cystic mass in patients determined to have pyometrocolpos is required to prevent or treat uropathy and septicemia until definitive corrective surgery can be performed. We report an unusual cause of obstructive uropathy in three infants: pyometrocolpos due to lower genital tract atresia. Ultrasound-guided percutaneous drainage of the pyometrocolpos resulted in dramatically improved clinical and laboratory findings in these patients. Ultrasound-guided percutaneous drainage under local anesthesia is a simple, minimally invasive, safe, and effective procedure that facilitates later successful corrective surgery and avoids the need for more complex drainage procedures.

  5. Accumulation of heavy metals in the vegetables grown in wastewater irrigated areas of Dehradun, India with reference to human health risk.

    PubMed

    Chopra, A K; Pathak, Chakresh

    2015-07-01

    The present study on accumulation of heavy metals in the vegetables viz. Beta vulgaris, Phaseolus vulgaris, Spinacea oleracea, and Brassica oleracea var. botrytis grown in the wastewater-irrigated soil near the Bindal river, Dehradun, has shown the maximum accumulation of metals for Pb (196.91 ± 8.13 mg/kg), Cu (36.75 ± 6.19 mg/kg), Zn (305.54 ± 14.30 mg/kg), Ni (125.48 ± 5.97 mg/kg), Cd (29.58 ± 4.26 mg/kg), and Cr (93.06 ± 3.25 mg/kg) in agricultural soil irrigated with wastewater. The enrichment factor of soil was maximum for Cr (8.74) and minimum for Cu (0.88). In case of vegetables, the concentrations of heavy metals were maximum for Pb (86.69 ± 6.69) in the flower of B. oleracea var. botrytis, Cu (33.49 ± 2.09) and Zn (161.86 ± 17.79) in the leaves of S. oleracea, Ni (80.72 ± 8.40) and Cd (23.19 ± 2.76), and Cr (57.18 ± 8.16) in the root of B. vulgaris grown in wastewater (WW)-irrigated soil. The bioaccumulation factor (BAF) for Cu (0.911) was maximum in S. oleracea and minimum for Pb (0.440) in B. vulgaris. The maximum daily intake of metals was found for Zn (0.059) in S. oleracea and minimum for Cd (0.008) in B. vulgaris. The human health risk index was found to be more than 1 for Pb and Cd. The long-term wastewater irrigation resulted in accumulation of heavy metals in vegetables which may cause potential health risks to consumers as these vegetables are sold in local markets of Dehradun city. PMID:26092239

  6. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in Bowdoin National Wildlife Refuge and adjacent areas of the Milk River Basin, northeastern Montana 1986-87

    SciTech Connect

    Lambing, J.H.; Jones, W.E.; Sutphin, J.W.

    1988-01-01

    Concentrations of trace elements, radiochemicals, and pesticides in the Bowdoin National Wildlife Refuge lakes generally were not substantially larger than those in the water supplied from Dodson South Canal or in irrigation drainage. Concentrations of arsenic uranium and vanadium in Dry Lake Unit, and boron in Lake Bowdoin were notably larger than at other sites. Zinc concentrations in an irrigation drain and two shallow domestic wells were elevated relative to other sites. Concentrations of gross alpha radiation and gross beta radiation were elevated in Dry Lake Unit. Pesticides concentrations at all sites were 0.08 microg/L or less. Water use guidelines concentrations for boron, cadmium, uranium, zinc, and gross alpha radiation were slightly exceeded at several sites. In general, trace-constituent concentrations measured in the water do not indicate any potential toxicity problems in Bowdoin National Wildlife Refuge; however, highwater conditions in 1986 probably caused dilution of dissolved constituents compared to recent dry years. Trace element concentrations in bottom sediment of the refuge lakes were generally similar to background concentrations in the soils. The only exception was Dry Lake Unit, which had concentrations of chromium, copper, nickel, vanadium, and zinc that were about double the mean background concentrations. The maximum selenium concentration in bottom sediment was 0.6 microg/g. Pesticide concentrations in bottom sediments were less than analytical detection limits at all sites. 46 refs., 13 figs., 22 tabs.

  7. Simulation of streamflow in small drainage basins in the southern Yampa River basin, Colorado

    USGS Publications Warehouse

    Parker, R.S.; Norris, J.M.

    1989-01-01

    Coal mining operations in northwestern Colorado commonly are located in areas that have minimal available water-resource information. Drainage-basin models can be a method for extending water-resource information to include periods for which there are no records or to transfer the information to areas that have no streamflow-gaging stations. To evaluate the magnitude and variability of the components of the water balance in the small drainage basins monitored, and to provide some method for transfer of hydrologic data, the U.S. Geological Survey 's Precipitation-Runoff Modeling System was used for small drainage basins in the southern Yampa River basin to simulate daily mean streamflow using daily precipitation and air-temperature data. The study area was divided into three hydrologic regions, and in each of these regions, three drainage basins were monitored. Two of the drainage basins in each region were used to calibrate the Precipitation-Runoff Modeling System. The model was not calibrated for the third drainage basin in each region; instead, parameter values were transferred from the model that was calibrated for the two drainage basins. For all of the drainage basins except one, period of record used for calibration and verification included water years 1976-81. Simulated annual volumes of streamflow for drainage basins used in calibration compared well with observed values; individual hydrographs indicated timing differences between the observed and simulated daily mean streamflow. Observed and simulated annual average streamflows compared well for the periods of record, but values of simulated high and low streamflows were different than observed values. Similar results were obtained when calibrated model parameter values were transferred to drainage basins that were uncalibrated. (USGS)

  8. Drainage basins and channel incision on Mars

    PubMed Central

    Aharonson, Oded; Zuber, Maria T.; Rothman, Daniel H.; Schorghofer, Norbert; Whipple, Kelin X.

    2002-01-01

    Measurements acquired by the Mars Orbiter Laser Altimeter on board the Mars Global Surveyor indicate that large drainage systems on Mars have geomorphic characteristics inconsistent with prolonged erosion by surface runoff. We find the topography has not evolved to an expected equilibrium terrain form, even in areas where runoff incision has been previously interpreted. By analogy with terrestrial examples, groundwater sapping may have played an important role in the incision. Longitudinally flat floor segments may provide a direct indication of lithologic layers in the bedrock, altering subsurface hydrology. However, it is unlikely that floor levels are entirely due to inherited structures due to their planar cross-cutting relations. These conclusions are based on previously unavailable observations, including extensive piece-wise linear longitudinal profiles, frequent knickpoints, hanging valleys, and small basin concavity exponents. PMID:16578863

  9. Drainage basins and channel incision on Mars.

    PubMed

    Aharonson, Oded; Zuber, Maria T; Rothman, Daniel H; Schorghofer, Norbert; Whipple, Kelin X

    2002-02-19

    Measurements acquired by the Mars Orbiter Laser Altimeter on board the Mars Global Surveyor indicate that large drainage systems on Mars have geomorphic characteristics inconsistent with prolonged erosion by surface runoff. We find the topography has not evolved to an expected equilibrium terrain form, even in areas where runoff incision has been previously interpreted. By analogy with terrestrial examples, groundwater sapping may have played an important role in the incision. Longitudinally flat floor segments may provide a direct indication of lithologic layers in the bedrock, altering subsurface hydrology. However, it is unlikely that floor levels are entirely due to inherited structures due to their planar cross-cutting relations. These conclusions are based on previously unavailable observations, including extensive piece-wise linear longitudinal profiles, frequent knickpoints, hanging valleys, and small basin concavity exponents. PMID:16578863

  10. Drainage Asperities on Subduction Megathrusts

    NASA Astrophysics Data System (ADS)

    Sibson, R. H.

    2012-12-01

    Geophysical observations coupled with force-balance analyses suggest that the seismogenic shear zone interface of subduction megathrusts is generally fluid-overpressured to near-lithostatic values (λv = Pf/σv > 0.9) below the forearc hanging-wall, strongly modulating the profile of frictional shear resistance. Fluid sources include the accretionary prism at shallow levels and, with increasing depth, metamorphic dehydration of material entrained within the subduction shear zone together with progressive metamorphism of oceanic crust in the downgoing slab. Solution transfer in fine-grained material contained within the deeper subduction shear zone (150 < T < 350°C) likely contributes to hydrothermal sealing of fractures. A dramatic difference may therefore exist between low prefailure permeability surrounding the megathrust and high postfailure fracture permeability along the rupture zone and adjacent areas of aftershock activity. Observed postseismic changes in the velocity structure of the fore-arc hanging-wall led Husen and Kissling (2001) to propose massive fluid loss across the subduction interface following the 1995 Antofagasta, Chile, Mw8.0 megathrust rupture. Such trans-megathrust discharges represent a variant of 'fault-valve' action in which the subduction interface itself acts as a seal trapping overpressured fluids derived from metamorphic dehydration beneath. In low-permeability assemblages the maximum sustainable overpressure is limited by the activation or reactivation of brittle faults and fractures under the prevailing stress state. Highest overpressures tend to occur at low differential stress in compressional stress regimes. Loci for fluid discharge are likely determined by stress heterogeneities along the megathrust (e.g. the hangingwall of the rupture at its downdip termination). Discharge sites may be defined by swarm aftershocks defining activated fault-fracture meshes. However, fluid loss across a subduction interface will be enhanced when

  11. Drainage reorganization during mountain building in the river system of the Eastern Cordillera of the Colombian Andes

    NASA Astrophysics Data System (ADS)

    Struth, Lucía; Babault, Julien; Teixell, Antonio

    2015-12-01

    The Eastern Cordillera of Colombia is a thick-skinned thrust-fold belt that is characterized by two topographic domains: (1) the axial zone, a high altitude plateau (the Sabana de Bogotá, 2500 masl) with low local relief and dominated by longitudinal rivers, and (2) the Cordillera flanks, where local relief exceeds 1000 m and transverse rivers dominate. On the basis of an analysis of digital topography and river parameters combined with a review of paleodrainage data, we show that the accumulation of shortening and crustal thickening during the Andean orogeny triggered a process of fluvial reorganization in the Cordillera. Owing to a progressive increase of the regional slope, the drainage network evolves from longitudinal to transverse-dominated, a process that is still active at present. This study provides the idea of progressive divide migration toward the inner part of the mountain belt, by which the area of the Sabana de Bogotá plateau is decreasing, the flanks increase in area, and ultimately transverse rivers will probably dominate the drainage of the Cordillera.

  12. Quasi-one-dimensional foam drainage

    NASA Astrophysics Data System (ADS)

    Grassia, P.; Cilliers, J. J.; Neethling, S. J.; Ventura-Medina, E.

    Foam drainage is considered in a froth flotation cell. Air flow through the foam is described by a simple two-dimensional deceleration flow, modelling the foam spilling over a weir. Foam microstructure is given in terms of the number of channels (Plateau borders) per unit area, which scales as the inverse square of bubble size. The Plateau border number density decreases with height in the foam, and also decreases horizontally as the weir is approached. Foam drainage equations, applicable in the dry foam limit, are described. These can be used to determine the average cross-sectional area of a Plateau border, denoted A, as a function of position in the foam. Quasi-one-dimensional solutions are available in which A only varies vertically, in spite of the two-dimensional nature of the air flow and Plateau border number density fields. For such situations the liquid drainage relative to the air flow is purely vertical. The parametric behaviour of the system is investigated with respect to a number of dimensionless parameters: K (the strength of capillary suction relative to gravity), α (the deceleration of the air flow), and n and h (respectively, the horizontal and vertical variations of the Plateau border number density). The parameter K is small, implying the existence of boundary layer solutions: capillary suction is negligible except in thin layers near the bottom boundary. The boundary layer thickness (when converted back to dimensional variables) is independent of the height of the foam. The deceleration parameter α affects the Plateau border area on the top boundary: weaker decelerations give larger Plateau border areas at the surface. For weak decelerations, there is rapid convergence of the boundary layer solutions at the bottom onto ones with negligible capillary suction higher up. For strong decelerations, two branches of solutions for A are possible in the K=0 limit: one is smooth, and the other has a distinct kink. The full system, with small but non

  13. Removing soluble phosphorus from agricultural drainage waters using FGD gypsum filters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Decades of applying chicken litter to meet nitrogen demand has led to accumulation of phosphorus (P) in soils of the Delmarva Peninsula. This legacy P that now approaches levels up to ten times the agronomic optimum is a major source of P entering drainage ditches that eventually empty into the Ches...

  14. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in Bowdoin National Wildlife Refuge and adjacent areas of the Milk River basin, northeastern Montana, 1986-87

    USGS Publications Warehouse

    Lambing, J.H.; Jones, W.E.; Sutphin, J.W.

    1988-01-01

    Concentrations of trace elements, radiochemicals, and pesticides in the Bowdoin National Wildlife Refuge lakes generally were not substantially larger than those in the water supplied from Dodson South Canal or in irrigation drainage. Concentrations of arsenic (47 micrograms/L), uranium (43 microg/L), and vanadium (51 microg/L) in Dry Lake Unit, and boron (1,000 microg/L) in Lake Bowdoin were notably larger than at other sites. Zinc concentrations in an irrigation drain (56 microg/L) and two shallow domestic wells (40 and 47 microg/L) were elevated relative to other sites. Concentrations of gross alpha radiation (64 picocuries/L) and gross beta radiation (71 picocuries/L) were elevated in Dry Lake Unit. Pesticides concentrations at all sites were 0.08 microg/L or less. Water use guidelines concentrations for boron, cadmium, uranium, zinc, and gross alpha radiation were slightly exceeded at several sites. In general, trace-constituent concentrations measured in the water do not indicate any potential toxicity problems in Bowdoin National Wildlife Refuge; however, highwater conditions in 1986 probably caused dilution of dissolved constituents compared to recent dry years. Trace element concentrations in bottom sediments of the refuge lakes were generally similar to background concentrations in the soils. The only exception was Dry Lake Unit, which had concentrations of chromium (99 micrograms/g), copper (37 microg/g), nickel (37 microg/g), vanadium (160 microg/g), and zinc (120 microg/g) that were about double the mean background concentrations. The maximum selenium concentration in bottom sediment was 0.6 microg/g. Pesticide concentrations in bottom sediments were less than analytical detection limits at all sites. With few exceptions, concentrations of trace elements and pesticides in biota generally were less than values known to produce harmful effects on growth or reproduction. (Lantz-PTT)

  15. Accumulation of DOC in Low Phosphate Low Chlorophyll (LPLC) area: is it related to higher production under high N:P ratio?

    NASA Astrophysics Data System (ADS)

    Mauriac, R.; Moutin, T.; Baklouti, M.

    2010-09-01

    The biogeochemistry of carbon and nutrients (N, P) in the surface layer of the ocean strongly depends on the interaction between C, N and P at the cell level and at the population level where interaction between primary producers (phytoplankton) and remineralizers (heterotrophic bacteria) impact the overall stock and dynamics of organic carbon. To understand these interactions in the surface layer of the Mediterranean Sea, we implemented, using Eco3M, a multi-element, steady state, mechanistic model. This cell-based model intend to represent the growth of phytoplankton and heterotrophic bacteria under various amount of nutrients. As a results, it displays the expected biogeochemical characteristics of the system and give us insight on the expected interaction between phytoplankton and heterotrophic bacteria both in term of competition for inorganic nutrients and in term of commensalism for organic carbon. In this study, we found a good quantitative agreement between model results and literrature data for stocks and fluxes of the western Mediterranean basin. In addition, for phytoplankton we show how the uncoupling between carbon production and growth could impact the overall DOC dynamic and based on these results, we proposed a new explanantion for the observed DOC accumulation in the surface layer of the Mediterranean Sea.

  16. Accumulation of Heavy Metals and Metalloid in Foodstuffs from Agricultural Soils around Tarkwa Area in Ghana, and Associated Human Health Risks.

    PubMed

    Bortey-Sam, Nesta; Nakayama, Shouta M M; Akoto, Osei; Ikenaka, Yoshinori; Fobil, Julius N; Baidoo, Elvis; Mizukawa, Hazuki; Ishizuka, Mayumi

    2015-08-01

    This study was carried out to assess the extent of heavy metals and metalloid accumulation from agricultural soils to foodstuffs (viz, M. esculenta (cassava) and Musa paradisiaca (plantain)) around thirteen neighboring communities within Tarkwa, Ghana; and to estimate the human health risk associated with consumption of these foodstuffs. Concentrations of As, Cd, Co, Cr, Cu, Ni, Pb, and Zn were measured with an inductively coupled plasma-mass spectrometer and mercury analysis was done using a mercury analyzer. From the results, 30% of cassava samples collected, contained higher concentrations of Pb when compared to Codex Alimentarius Commission standard values. Bioconcentration factor indicated that Ni had higher capacity of absorption into food crops from soil than the other heavy metals. For both children and adults, the target hazard quotient (THQ) of Pb in cassava in communities such as Techiman, Wangarakrom, Samahu, and Tebe (only children) were greater than 1, which is defined as an acceptable risk value. This indicated that residents could be exposed to significant health risks associated with cassava consumption. PMID:26225988

  17. Accumulation of Heavy Metals and Metalloid in Foodstuffs from Agricultural Soils around Tarkwa Area in Ghana, and Associated Human Health Risks

    PubMed Central

    Bortey-Sam, Nesta; Nakayama, Shouta M. M.; Akoto, Osei; Ikenaka, Yoshinori; Fobil, Julius N.; Baidoo, Elvis; Mizukawa, Hazuki; Ishizuka, Mayumi

    2015-01-01

    This study was carried out to assess the extent of heavy metals and metalloid accumulation from agricultural soils to foodstuffs (viz, M. esculenta (cassava) and Musa paradisiaca (plantain)) around thirteen neighboring communities within Tarkwa, Ghana; and to estimate the human health risk associated with consumption of these foodstuffs. Concentrations of As, Cd, Co, Cr, Cu, Ni, Pb, and Zn were measured with an inductively coupled plasma–mass spectrometer and mercury analysis was done using a mercury analyzer. From the results, 30% of cassava samples collected, contained higher concentrations of Pb when compared to Codex Alimentarius Commission standard values. Bioconcentration factor indicated that Ni had higher capacity of absorption into food crops from soil than the other heavy metals. For both children and adults, the target hazard quotient (THQ) of Pb in cassava in communities such as Techiman, Wangarakrom, Samahu, and Tebe (only children) were greater than 1, which is defined as an acceptable risk value. This indicated that residents could be exposed to significant health risks associated with cassava consumption. PMID:26225988

  18. Mine Drainage Generation and Control Options.

    PubMed

    Wei, Xinchao; Rodak, Carolyn M; Zhang, Shicheng; Han, Yuexin; Wolfe, F Andrew

    2016-10-01

    This review provides a snapshot of papers published in 2015 relevant to the topic of mine drainage generation and control options. The review is broken into 3 sections: Generation, Prediction and Prevention, and Treatment Options. The first section, mine drainage generation, focuses on the characterization of mine drainage and the environmental impacts. As such, it is broken into three subsections focused on microbiological characterization, physiochemical characterization, and environmental impacts. The second section of the review is divided into two subsections focused on either the prediction or prevention of acid mine drainage. The final section focuses on treatment options for mine drainage and waste sludge. The third section contains subsections on passive treatment, biological treatment, physiochemical treatment, and a new subsection on beneficial uses for mine drainage and treatment wastes. PMID:27620096

  19. Diffusion of microcystins (cyanobacteria hepatotoxins) from the reservoir of Isahaya Bay, Japan, into the marine and surrounding ecosystems as a result of large-scale drainage.

    PubMed

    Takahashi, Tohru; Umehara, Akira; Tsutsumi, Hiroaki

    2014-12-15

    In the artificial reservoir of the Isahaya reclaimed land, Nagasaki, Japan, algal blooms have become an annual event, dominated primarily by the microcystin (MC) producing cyanobacteria Microcystis aeruginosa. Although the majority of MCs are either degraded by bacteria or washed out to sea, some remain in the sediment of the reservoir and bay throughout the year. As a result, they also accumulate in aquatic organisms (mullet, oyster, etc.) that inhabit the reservoir and surrounding areas, as well as midge flies that spend their larval period in the bottom of the reservoir. Accordingly, MCs also accumulate in the predators of these organisms, allowing the toxin to spread from the hydrosphere to terrestrial ecosystems. The most effective method for resolving this potentially dangerous condition is to introduce seawater into the reservoir by opening the drainage gates at high tide. PMID:25444624

  20. Preoperative drainage for malignant biliary strictures: is it time for self-expanding metallic stents?

    PubMed

    Roque, Jason; Ho, Shiaw-Hooi; Goh, Khean-Lee

    2015-01-01

    Palliation of jaundice improves the general health of the patient and, therefore, surgical outcomes. Because of the complexity and location of strictures, especially proximally, drainage has been accompanied by increased morbidity due to sepsis. Another concern is the provocation of an inflammatory and fibrotic reaction around the area of stent placement. Preoperative biliary drainage with self-expanding metallic stent (SEMS) insertion can be achieved via a percutaneous method or through endoscopic retrograde cholangiopancreatography. A recently published multicenter randomized Dutch study has shown increased morbidity with preoperative biliary drainage. A Cochrane meta-analysis has also shown a significantly increased complication rate with preoperative drainage. However, few of these studies have used a SEMS, which allows better biliary drainage. No randomized controlled trials have compared preoperative deployment of SEMS versus conventional plastic stents. The outcomes of biliary drainage also depend on the location of the obstruction, namely the difficulty with proximal compared to distal strictures. Pathophysiologically, palliation of jaundice will benefit all patients awaiting surgery. However, preoperative drainage often results in increased morbidity because of procedure-related sepsis. The use of SEMS may change the outcome of preoperative biliary drainage dramatically. PMID:25674520

  1. Modeling Antarctic Subglacial Lake Filling and Drainage Cycles

    NASA Technical Reports Server (NTRS)

    Dow, Christine F.; Werder, Mauro A.; Nowicki, Sophie; Walker, Ryan T.

    2016-01-01

    The growth and drainage of active subglacial lakes in Antarctica has previously been inferred from analysis of ice surface altimetry data. We use a subglacial hydrology model applied to a synthetic Antarctic ice stream to examine internal controls on the filling and drainage of subglacial lakes. Our model outputs suggest that the highly constricted subglacial environment of our idealized ice stream, combined with relatively high rates of water flow funneled from a large catchment, can combine to create a system exhibiting slow-moving pressure waves. Over a period of years, the accumulation of water in the ice stream onset region results in a buildup of pressure creating temporary channels, which then evacuate the excess water. This increased flux of water beneath the ice stream drives lake growth. As the water body builds up, it steepens the hydraulic gradient out of the overdeepened lake basin and allows greater flux. Eventually this flux is large enough to melt channels that cause the lake to drain. Lake drainage also depends on the internal hydrological development in the wider system and therefore does not directly correspond to a particular water volume or depth. This creates a highly temporally and spatially variable system, which is of interest for assessing the importance of subglacial lakes in ice stream hydrology and dynamics.

  2. Modeling Antarctic subglacial lake filling and drainage cycles

    NASA Astrophysics Data System (ADS)

    Dow, Christine F.; Werder, Mauro A.; Nowicki, Sophie; Walker, Ryan T.

    2016-07-01

    The growth and drainage of active subglacial lakes in Antarctica has previously been inferred from analysis of ice surface altimetry data. We use a subglacial hydrology model applied to a synthetic Antarctic ice stream to examine internal controls on the filling and drainage of subglacial lakes. Our model outputs suggest that the highly constricted subglacial environment of our idealized ice stream, combined with relatively high rates of water flow funneled from a large catchment, can combine to create a system exhibiting slow-moving pressure waves. Over a period of years, the accumulation of water in the ice stream onset region results in a buildup of pressure creating temporary channels, which then evacuate the excess water. This increased flux of water beneath the ice stream drives lake growth. As the water body builds up, it steepens the hydraulic gradient out of the overdeepened lake basin and allows greater flux. Eventually this flux is large enough to melt channels that cause the lake to drain. Lake drainage also depends on the internal hydrological development in the wider system and therefore does not directly correspond to a particular water volume or depth. This creates a highly temporally and spatially variable system, which is of interest for assessing the importance of subglacial lakes in ice stream hydrology and dynamics.

  3. Drainage in a rising foam.

    PubMed

    Yazhgur, Pavel; Rio, Emmanuelle; Rouyer, Florence; Pigeonneau, Franck; Salonen, Anniina

    2016-01-21

    Rising foams created by continuously blowing gas into a surfactant solution are widely used in many technical processes, such as flotation. The prediction of the liquid fraction profile in such flowing foams is of particular importance since this parameter controls the stability and the rheology of the final product. Using drift flux analysis and recently developed semi-empirical expressions for foam permeability and osmotic pressure, we build a model predicting the liquid fraction profile as a function of height. The theoretical profiles are very different if the interfaces are considered as mobile or rigid, but all of our experimental profiles are described by the model with mobile interfaces. Even the systems with dodecanol are well known to behave as rigid in forced drainage experiments. This is because in rising foams the liquid fraction profile is fixed by the flux at the bottom of the foam. Here the foam is wet with higher permeability and the interfaces are not in equilibrium. These results demonstrate once again that it is not only the surfactant system that controls the mobility of the interface, but also the hydrodynamic problem under consideration. For example liquid flow through the foam during generation or in forced drainage is intrinsically different. PMID:26554500

  4. Gypsum accumulation on carbonate stone

    USGS Publications Warehouse

    McGee, E.S.; Mossotti, V.G.

    1992-01-01

    The accumulation of gypsum on carbonate stone has been investigated through exposure of fresh samples of limestone and marble at monitored sites, through examination of alteration crusts from old buildings and through laboratory experiments. Several factors contribute to gypsum accumulation on carbonate stone. Marble or limestone that is sheltered from direct washing by rain in an urban environment with elevated pollution levels is likely to accumulate a gypsum crust. Crust development may be enhanced if the stone is porous or has an irregular surface area. Gypsum crusts are a surficial alteration feature; gypsum crystals form at the pore opening-air interface, where evaporation is greatest.

  5. Conceptual design report for site drainage control

    SciTech Connect

    Hunter, M.R.

    1996-07-01

    The Mound Plant (Mound), located in Miamisburg, Ohio, is a Department of Energy (DOE) development and production facility performing support work for DOE`s weapons and energy-related programs. EG&G Mound Applied Technologies, Inc. (EG&G) is the Operating Contractor (OC) for this Government-Owned, Contractor-Operated (GOCO) facility. The work performed at Mound emphasizes nuclear energy and explosives technology. Mound is currently implementing an Environmental, Safety & Health (ES&H) Upgrades Program designed to protect its employees, the public, and the environment from adverse effects caused by facility activities. The first project of this multiphase program is now in the final stages of construction, and the second project is currently under design. Four additional projects, one of which is presented in this report, are in the conceptual design stage. At Mound, 22 soil zones have become contaminated with radioactive material. These zones cover approximately 20 percent of the total area of developed property at the site. During a storm event, the rainwater washes contaminated soil from these zones into the storm sewer system. These radioactive contaminants may then be discharged along with the stormwater into the Great Miami River via the Miami Erie Canal. This conceptual design report (CDR), Site Drainage Control, the fourth project in the ES&H program, describes a project that will provide improvements and much needed repairs to inadequate and deteriorating portions of the storm drainage system on the developed property. The project also will provide a stormwater retention facility capable of storing the stormwater runoff, from the developed property, resulting from a 100-year storm event. These improvements will permit the effective control and monitoring of stormwater to prevent the spread of radioactive contaminants from contaminated soil zones and will provide a means to collect and contain accidental spills of hazardous substances.

  6. Risk analysis of sustainable urban drainage and irrigation

    NASA Astrophysics Data System (ADS)

    Ursino, Nadia

    2015-09-01

    Urbanization, by creating extended impervious areas, to the detriment of vegetated ones, may have an undesirable influence on the water and energy balances of urban environments. The storage and infiltration capacity of the drainage system lessens the negative influence of urbanization, and vegetated areas help to re-establish pre-development environmental conditions. Resource limitation, climate, leading to increasing water scarcity, demographic and socio-institutional shifts promote more integrated water management. Storm-water harvesting for landscape irrigation mitigates possible water restrictions for the urban population in drought scenarios. A new probabilistic model for sustainable rainfall drainage, storage and re-use systems was implemented in this study. Risk analysis of multipurpose storage capacities was generalized by the use of only a few dimensionless parameters and applied to a case study in a Mediterranean-type climate, although the applicability of the model is not restricted to any particular climatic type.

  7. Assessment of the service performance of drainage system and transformation of pipeline network based on urban combined sewer system model.

    PubMed

    Peng, Hai-Qin; Liu, Yan; Wang, Hong-Wu; Ma, Lu-Ming

    2015-10-01

    In recent years, due to global climate change and rapid urbanization, extreme weather events occur to the city at an increasing frequency. Waterlogging is common because of heavy rains. In this case, the urban drainage system can no longer meet the original design requirements, resulting in traffic jams and even paralysis and post a threat to urban safety. Therefore, it provides a necessary foundation for urban drainage planning and design to accurately assess the capacity of the drainage system and correctly simulate the transport effect of drainage network and the carrying capacity of drainage facilities. This study adopts InfoWorks Integrated Catchment Management (ICM) to present the two combined sewer drainage systems in Yangpu District, Shanghai (China). The model can assist the design of the drainage system. Model calibration is performed based on the historical rainfall events. The calibrated model is used for the assessment of the outlet drainage and pipe loads for the storm scenario currently existing or possibly occurring in the future. The study found that the simulation and analysis results of the drainage system model were reliable. They could fully reflect the service performance of the drainage system in the study area and provide decision-making support for regional flood control and transformation of pipeline network. PMID:26022395

  8. Subsurface drainage volume reduction with drainage water management: Case studies in Ohio, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the main contributors to poor water quality in the Mississippi River and aeral increase in the hypoxic zone in the Gulf of Mexico is intensive drainage of the cropland within the watershed. Controlled drainage has been demonstrated as an approach to curb totla drainage outflow and nutrient di...

  9. Fluvial drainage networks: the fractal approach as an improvement of quantitative geomorphic analyses

    NASA Astrophysics Data System (ADS)

    Melelli, Laura; Liucci, Luisa; Vergari, Francesca; Ciccacci, Sirio; Del Monte, Maurizio

    2014-05-01

    Drainage basins are primary landscape units for geomorphological investigations. Both hillslopes and river drainage system are fundamental components in drainage basins analysis. As other geomorphological systems, also the drainage basins aim to an equilibrium condition where the sequence of erosion, transport and sedimentation approach to a condition of minimum energy effort. This state is revealed by a typical geometry of landforms and of drainage net. Several morphometric indexes can measure how much a drainage basin is far from the theoretical equilibrium configuration, revealing possible external disarray. In active tectonic areas, the drainage basins have a primary importance in order to highlight style, amount and rate of tectonic impulses, and morphometric indexes allow to estimate the tectonic activity classes of different sectors in a study area. Moreover, drainage rivers are characterized by a self-similarity structure; this promotes the use of fractals theory to investigate the system. In this study, fractals techniques are employed together with quantitative geomorphological analysis to study the Upper Tiber Valley (UTV), a tectonic intermontane basin located in northern Apennines (Umbria, central Italy). The area is the result of different tectonic phases. From Late Pliocene until present time the UTV is strongly controlled by a regional uplift and by an extensional phase with different sets of normal faults playing a fundamental role in basin morphology. Thirty-four basins are taken into account for the quantitative analysis, twenty on the left side of the basin, the others on the right side. Using fractals dimension of drainage networks, Horton's laws results, concavity and steepness indexes, and hypsometric curves, this study aims to obtain an evolutionary model of the UTV, where the uplift is compared to local subsidence induced by normal fault activity. The results highlight a well defined difference between western and eastern tributary basins

  10. CXCL9 Is Important for Recruiting Immune T Cells into the Brain and Inducing an Accumulation of the T Cells to the Areas of Tachyzoite Proliferation to Prevent Reactivation of Chronic Cerebral Infection with Toxoplasma gondii

    PubMed Central

    Ochiai, Eri; Sa, Qila; Brogli, Morgan; Kudo, Tomoya; Wang, Xisheng; Dubey, Jitender P.; Suzuki, Yasuhiro

    2016-01-01

    T cells are required to maintain the latency of chronic infection with Toxoplasma gondii in the brain. Here, we examined the role of non–glutamic acid-leucine-arginine CXC chemokine CXCL9 for T-cell recruitment to prevent reactivation of infection with T. gondii. Severe combined immunodeficient (SCID) mice were infected and treated with sulfadiazine to establish a chronic infection. Immune T cells from infected wild-type mice were transferred into the SCID mice in combination with treatment with anti-CXCL9 or control sera. Three days later, sulfadiazine was discontinued to initiate reactivation of infection. Numbers of CD4+ and CD8+ T cells isolated from the brains were markedly less in mice treated with anti-CXCL9 serum than in mice treated with control serum at 3 days after sulfadiazine discontinuation. Amounts of tachyzoite (acute stage form of T. gondii)-specific SAG1 mRNA and numbers of foci associated with tachyzoites were significantly greater in the former than the latter at 5 days after sulfadiazine discontinuation. An accumulation of CD3+ T cells into the areas of tachyzoite growth was significantly less frequent in the SCID mice treated with anti-CXCL9 serum than in mice treated with control serum. These results indicate that CXCL9 is crucial for recruiting immune T cells into the brain and inducing an accumulation of the T cells into the areas where tachyzoites proliferate to prevent reactivation of chronic T. gondii infection. PMID:25432064

  11. Approach for evaluating inundation risks in urban drainage systems.

    PubMed

    Zhu, Zhihua; Chen, Zhihe; Chen, Xiaohong; He, Peiying

    2016-05-15

    Urban inundation is a serious challenge that increasingly confronts the residents of many cities, as well as policymakers. Hence, inundation evaluation is becoming increasingly important around the world. This comprehensive assessment involves numerous indices in urban catchments, but the high-dimensional and non-linear relationship between the indices and the risk presents an enormous challenge for accurate evaluation. Therefore, an approach is hereby proposed to qualitatively and quantitatively evaluate inundation risks in urban drainage systems based on a storm water management model, the projection pursuit method, the ordinary kriging method and the K-means clustering method. This approach is tested using a residential district in Guangzhou, China. Seven evaluation indices were selected and twenty rainfall-runoff events were used to calibrate and validate the parameters of the rainfall-runoff model. The inundation risks in the study area drainage system were evaluated under different rainfall scenarios. The following conclusions are reached. (1) The proposed approach, without subjective factors, can identify the main driving factors, i.e., inundation duration, largest water flow and total flood amount in this study area. (2) The inundation risk of each manhole can be qualitatively analyzed and quantitatively calculated. There are 1, 8, 11, 14, 21, and 21 manholes at risk under the return periods of 1-year, 5-years, 10-years, 20-years, 50-years and 100-years, respectively. (3) The areas of levels III, IV and V increase with increasing rainfall return period based on analyzing the inundation risks for a variety of characteristics. (4) The relationships between rainfall intensity and inundation-affected areas are revealed by a logarithmic model. This study proposes a novel and successful approach to assessing risk in urban drainage systems and provides guidance for improving urban drainage systems and inundation preparedness. PMID:26897578

  12. Hydro-climatological Impact of Century Long Drainage in Midwestern United States

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Merwade, V.; Bain, D. J.

    2008-12-01

    Today's Corn Belt in the Midwest USA is located on an area which was largely wetlands 150 years ago. Compared to the pre-European settlement baseline, more than 85% of wetland area has been lost. Large scale artificial drainage activity, which peaked between 1900 and 1930, is primarily responsible for this decrease in wetland area. The consequences of wetland drainage have been characterized including diminished flood storage, changes in vegetation community composition, habitat loss, and changes in bio- geochemistry (e.g., carbon sink to carbon source). However, one potentially important impact, the effect of wetland loss on regional hydro-climatology (temperature and precipitation), has not been characterized. This study will: (a) present the history of artificial drainage in Midwest USA from 1860 to present, and (b) discuss the interaction between wetland drainage and the atmosphere using modeling experiments. Study area encompassing 8 states in Midwest USA (293 million acre) contains intensively drained states like Indiana and Ohio, as well as less drained states like Wisconsin and Missouri. Geospatial data sets of drainage acreages at county scale are based on US census reports from 1920 to 1980 and contemporary wetland data are based on remote sensing data. Interaction between wetland drainage and the atmosphere will be modeled using a coupled land surface and regional climate model.

  13. 24 CFR 3285.604 - Drainage system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Drainage system. 3285.604 Section... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Ductwork and Plumbing and Fuel Supply Systems § 3285.604 Drainage system. (a) Crossovers. Multi-section homes with plumbing in more than one...

  14. 24 CFR 3285.604 - Drainage system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Drainage system. 3285.604 Section... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Ductwork and Plumbing and Fuel Supply Systems § 3285.604 Drainage system. (a) Crossovers. Multi-section homes with plumbing in more than one...

  15. Drainage Water Management for the Midwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface tile drainage is an essential water management practice on many highly productive fields in the Midwest. However, nitrate carried in drainage water can lead to local water quality problems and contribute to hypoxia in the Gulf of Mexico, so strategies are needed to reduce the nitrate load...

  16. Agricultural Drainage Management Systems Task Force (ADMSTF)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Drainage Management Systems (ADMS) Task Force was initiated during a Charter meeting in the fall of 2002 by dedicated professional employees of Federal, State, and Local Government Agencies and Universities. The Agricultural Drainage Management (ADM) Coalition was established in 200...

  17. Ohio USA stoneflies (Insecta, Plecoptera): species richness estimation, distribution of functional niche traits, drainage affiliations, and relationships to other states

    PubMed Central

    DeWalt, R. Edward; Cao, Yong; Tweddale, Tari; Grubbs, Scott A.; Hinz, Leon; Pessino, Massimo; Robinson, Jason L.

    2012-01-01

    Abstract Ohio is an eastern USA state that historically was >70% covered in upland and mixed coniferous forest; about 60% of it glaciated by the Wisconsinan glacial episode. Its stonefly fauna has been studied in piecemeal fashion until now. The assemblage of Ohio stoneflies was assessed from over 4,000 records accumulated from 18 institutions, new collections, and trusted literature sources. Species richness totaled 102 with estimators Chao2 and ICE Mean predicting 105.6 and 106.4, respectively. Singletons and doubletons totaled 18 species. All North American families were represented with Perlidae accounted for the highest number of species at 34. The family Peltoperlidae contributed a single species. Most species had univoltine–fast life cycles with the vast majority emerging in summer, although there was a significant component of winter stoneflies. Nine United States Geological Survey hierarchical drainage units level 6 (HUC6) were used to stratify specimen data. Species richness was significantly related to the number of unique HUC6 locations, but there was no relationship with HUC6 drainage area. A nonparametric multidimensional scaling analysis found that larger HUC6s in the western part of the state had similar assemblages with lower species richness that were found to align with more savanna and wetland habitat. Other drainages having richer assemblages were aligned with upland deciduous and mixed coniferous forests of the east and south where slopes were higher. The Ohio assemblage was most similar to the well–studied fauna of Indiana (88 spp.) and Kentucky (108 spp.), two neighboring states. Many rare species and several high quality stream reaches should be considered for greater protection. PMID:22539876

  18. Critical Concavity of a Drainage Basin for Steady-State

    NASA Astrophysics Data System (ADS)

    Byun, Jongmin; Paik, Kyungrock

    2015-04-01

    Longitudinal profiles of natural streams are known to show concave forms. Saying A as drainage area, channel gradient S can be expressed as the power-law, S≈A-θ (Flint, 1974), which is one of the scale-invariant features of drainage basin. According to literature, θ of most natural streams falls into a narrow range (0.4 < θ < 0.7) (Tucker and Whipple, 2002). It leads to fundamental questions: 'Why does θ falls into such narrow range?' and 'How is this related with other power-law scaling relationships reported in natural drainage basins?' To answer above questions, we analytically derive θ for a steady-state drainage basin following Lane's equilibrium (Lane, 1955) throughout the corridor and named this specific case as the 'critical concavity'. In the derivation, sediment transport capacity is estimated by unit stream power model (Yang, 1976), yielding a power function of upstream area. Stability of channel at a local point occurs when incoming flux equals outgoing flux at the point. Therefore, given the drainage at steady-state where all channel beds are stable, the exponent of the power function should be zero. From this, we can determine the critical concavity. Considering ranges of variables associated in this derivation, critical concavity cannot be resolved as a single definite value, rather a range of critical concavity is suggested. This range well agrees with the widely reported range of θ (0.4 < θ < 0.7) in natural streams. In this theoretical study, inter-relationships between power-laws such as hydraulic geometry (Leopold and Maddock, 1953), dominant discharge-drainage area (Knighton et al., 1999), and concavity, are coupled into the power-law framework of stream power sediment transport model. This allows us to explore close relationships between their power-law exponents: their relative roles and sensitivity. Detailed analysis and implications will be presented. References Flint, J. J., 1974, Stream gradient as a function of order, magnitude

  19. Effect of Dredging an Agricultural Drainage Ditch on Water Column Herbicide Concentration, as Predicted by Fluvarium Techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In artificially drained agricultural areas, dredging of drainage ditches is often necessary to ensure drainage of fields adequate to permit field operations. Fluvarium experiments were performed in order to evaluate the potential of the bed material changes associated with ditch dredging to impact ...

  20. Accumulation of lead, cadmium and chromium in some plants cultivated along the bank of river Ribila at Odo-nla area of Ikorodu, Lagos state, Nigeria.

    PubMed

    Akinola, M O; Ekiyoyo, T A

    2006-07-01

    Heavy metal in soil samples and in washed and unwashed samples of Telfaria occidentalis (ugwu) and Talinum triangulare (waterleaf) cultivated on the bank of river Ribila in Odo-nla village were determined. The soil was moderately polluted with cadmium when compared with Federal Environmental Protection Agency standards. The difference between the unwashed and washed plant samples revealed that metal pollutants exist as superficial contaminants on the foliage surface which is the edible portion and if the foliage portion is washed thoroughly it may be safe for dietary consumption. There is no doubt that continuous discharge of effluent and gaseous emissions from the industries located in this area and dumping of domestic wastes into the river may lead to higher concentrations of these heavy metals in the soil and in the tissue of the leafy vegetables cultivated on the river bank over time. This can eventually lead to pollution of the soil and the cultivated plants, which are ready source of food for the people and other organisms in the food chain. PMID:17402256

  1. Spatial and Temporal Variability of Surface Snow Accumulation and Snow Chemistry at East Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Motoyama, H.; Ito, K.; Hirabayashi, M.

    2014-12-01

    Snow stakes along the traverse routes have been observed for long term monitoring program 'the variation of ice sheet surface mass balance' from the 1960's by the Japanese Antarctic Research Expedition in Shirase glacier drainage basin, East Antarctica. During the traverse route between coastal S16 point (69 02'S, 40 03'E, 580m a.s.l.) to inland Dome Fuji (77 22'S, 39 42'E, 3,810m a.s.l.), the snow stake observations every 2 km have been carried out from 1993. Yearly net snow accumulations from S16 to Dome Fuji were calculated. Heavy, modern and light snow events were observed. They were different in way accumulating spatial pattern depending on places. The yearly accumulation rates were compared with seasonal change of AAO-index (SAM). As a result, yearly accumulation rate and AAO-index showed the positive correlation.Surface snow samplings were conducted every 10km along the traverse route. Generally, the snow surface features are classified into three regions. (1) the coastal region: smooth surface, high snow accumulation (2) the katabatic slope region: rough sastrugi surface and smooth glazed surface(3) the high plateau region: smooth surface, little snow accumulation The chemistry of surface snow changes from the coast to inland. Furthermore, the chemical properties of snow are different for each surface at the same area. We can classify the surface snow with fresh drifting snow, deposited drift snow, soft and hard surface snow, sustrugi, surface hoar and so on. The value of each isotope ration and ion concentration greatly varied. Sometimes, snow might deposit thick equally. But the deposited snow was redistributed by the wind. When the snowstorm occurred, the blowing snow started to deposit in a certain opportunity. As for it, the area was not the uniform. It is necessary to discuss inhomogeneity of the depositional condition quantitatively.

  2. Subglacial drainage characterization on a small surge type alpine glacier on the St. Elias range, Yukon Territory, Canada.

    NASA Astrophysics Data System (ADS)

    Rada, C.; Schoof, C.

    2014-12-01

    Subglacial drainage is known to play an important role in glacier dynamics trough its influence on basal sliding. However, drainage is also the most poorly understood dynamic process due to the difficulties of observing, identifying and modeling the physics involved. In an effort to improve understanding of subglacial hydrological processes, we have monitored a small, approximately 100 m thick surge-type alpine glacier for seven years. 225 boreholes, positioned to capture the spatial structure of the drainage system over a 0.4 km² study area in its upper ablation area, were instrumented with permanent pressure transducers, in addition to a permanent GPS array and weather station installed on the glacier. Our principal results are i) Each year the drainage system experiences a relatively brief (1-2 month) period of activity driven by diurnal surface melt, with a spring event and a spatial reorganization of the drainage system. ii) The evolution of the drainage system can lead to very narrow main drainage axes, poorly connected laterally but traceable over long downslope distances (>500 m) with very little attenuation of the pressure signal, indicating that leakage into englacial or subglacial storage is relatively small. In at least one instance, a borehole have reached directly a channel with highly turbulent water flow. iii) Our data also indicates the occurrence of distributed drainage over extended spatial regions, co-existing in close spatial proximity with channelized areas showing little evidence of hydraulic connection between them. v) Crevasses appear to have a significant influence on the pattern of drainage. vi) While most neighboring boreholes exhibit uncorrelated winter water pressures, there is strong evidence for winter-time drainage activity in the form of pressure oscillations along main drainage axes. vii) There is strong evidence for interannual variability in the distributed versus channelized character of drainage, with drainage axes shifting

  3. RESOURCE CHARACTERIZATION AND QUANTIFICATION OF NATURAL GAS-HYDRATE AND ASSOCIATED FREE-GAS ACCUMULATIONS IN THE PRUDHOE BAY - KUPARUK RIVER AREA ON THE NORTH SLOPE OF ALASKA

    SciTech Connect

    Robert Hunter; Shirish Patil; Robert Casavant; Tim Collett

    2003-06-02

    Interim results are presented from the project designed to characterize, quantify, and determine the commercial feasibility of Alaska North Slope (ANS) gas-hydrate and associated free-gas resources in the Prudhoe Bay Unit (PBU), Kuparuk River Unit (KRU), and Milne Point Unit (MPU) areas. This collaborative research will provide practical input to reservoir and economic models, determine the technical feasibility of gas hydrate production, and influence future exploration and field extension of this potential ANS resource. The large magnitude of unconventional in-place gas (40-100 TCF) and conventional ANS gas commercialization evaluation creates industry-DOE alignment to assess this potential resource. This region uniquely combines known gas hydrate presence and existing production infrastructure. Many technical, economical, environmental, and safety issues require resolution before enabling gas hydrate commercial production. Gas hydrate energy resource potential has been studied for nearly three decades. However, this knowledge has not been applied to practical ANS gas hydrate resource development. ANS gas hydrate and associated free gas reservoirs are being studied to determine reservoir extent, stratigraphy, structure, continuity, quality, variability, and geophysical and petrophysical property distribution. Phase 1 will characterize reservoirs, lead to recoverable reserve and commercial potential estimates, and define procedures for gas hydrate drilling, data acquisition, completion, and production. Phases 2 and 3 will integrate well, core, log, and long-term production test data from additional wells, if justified by results from prior phases. The project could lead to future ANS gas hydrate pilot development. This project will help solve technical and economic issues to enable government and industry to make informed decisions regarding future commercialization of unconventional gas-hydrate resources.

  4. Analysis of runoff from small drainage basins in Wyoming

    USGS Publications Warehouse

    Craig, Gordon S.; Rankl, James G.

    1977-01-01

    A flood-hydrograph study has defined the magnitude and frequency of flood volumes and flood peaks that can be expected from drainage basins smaller than 11 square miles in the plains and valley areas of Wyoming. Rainfall and runoff data, collected for 9 years on a seasonal basis (April through September), were used to calibrate a rainfall-runoff model on each of 22 small basins. Long-term records of runoff volume and peak discharge were synthesized for these 22 basins. Flood volumes and flood peaks of specific recurrence intervals (2, 5, 10, 25, 50, and 100 years) were then related to basin characteristics with a high degree of correlation. Flood volumes were related to drainage area, maximum relief, and basin slope. Flood peaks were related to drainage area, maximum relief, basin slope, and channel slope. An investigation of ponding behind a highway embankment, with available storage capacity and with a culvert to allow outflow, has shown that the single fast-rising peak is most important in culvert design. Consequently, a dimensionless hydrograph defines the characteristic shape of flood hydrographs to be expected from small drainage basins in Wyoming. For design purposes, a peak and volume can be estimated from basin characteristics and used with the dimensionless hydrograph to produce a synthetic single-peak hydrograph. Incremental discharges of the hydrograph can be routed along a channel, where a highway fill and culvert are to be placed, to help determine the most economical size of culvert if embankment storage is to be considered. (Woodard-USGS)

  5. Acid mine drainage. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1997-06-01

    The bibliography contains citations concerning laboratory and field analyses of acid mine drainage. Topics include site investigations and characterization, remediation and monitoring programs, contaminant treatment research, and control and abatement studies. Chemical analyses of affected areas, and evaluation of terrestrial and aquatic ecosystem responses to acid drainage are also discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Acid mine drainage. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-04-01

    The bibliography contains citations concerning laboratory and field analyses of acid mine drainage. Topics include site investigations and characterization, remediation and monitoring programs, contaminant treatment research, and control and abatement studies. Chemical analyses of affected areas, and evaluation of terrestrial and aquatic ecosystem responses to acid drainage are also discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  7. Spatiotemporal Evaluation of Nocturnal Cold Air Drainage Over a Simple Slope Using Thermal Infrared Imagery

    NASA Astrophysics Data System (ADS)

    Ikani, V.; Chokmani, K.; Fathollahi, L.; Granberg, H.; Fournier, R.

    2016-06-01

    Measurements of climatic processes such as cold air drainage flows are problematic over mountainous areas. Observation of cold air drainage is not available in the existing observation network and it requires a special methodology. The main objective of this study was to characterize the cold air drainage over regions with a slope. A high resolution infrared camera, a meteorological station and Digital Elevation Model (DEM) were used. The specific objective was to derive nocturnal cold air drainage velocity over the slope. To address these objectives, a number of infrared measurement campaigns were conducted during calm and clear sky conditions over an agricultural zone (blackcurrant farm) in Canada. Using thermal infrared images, the nocturnal surface temperature gradient were computed in hourly basis. The largest gradient magnitudes were found between 17h -20h. The cooling rates at basin area were two times higher in comparison to the magnitudes observed within slope area. The image analysis illustrated this considerable temperature gradient of the basin may be partly due to transport of cold air drainage into the basin from the slope. The results show that thermal imagery can be used to characterize and understand the microclimate related to the occurrence of radiation frost in the agricultural field. This study provided the opportunity to track the cold air drainage flow and pooling of cold air in low lying areas. The infrared analysis demonstrated that nocturnal drainage flow displayed continuous variation in terms of space and time in response to microscale slope heterogeneities. In addition, the analysis highlighted the periodic aspect for cold air drainage flow.

  8. Numerical evaluation of the groundwater drainage system for underground storage caverns

    NASA Astrophysics Data System (ADS)

    Park, Eui Seob; Chae, Byung Gon

    2015-04-01

    A novel concept storing cryogenic liquefied natural gas in a hard rock lined cavern has been developed and tested for several years as an alternative. In this concept, groundwater in rock mass around cavern has to be fully drained until the early stage of construction and operation to avoid possible adverse effect of groundwater near cavern. And then rock mass should be re-saturated to form an ice ring, which is the zone around cavern including ice instead of water in several joints within the frozen rock mass. The drainage system is composed of the drainage tunnel excavated beneath the cavern and drain holes drilled on rock surface of the drainage tunnel. In order to de-saturate sufficiently rock mass around the cavern, the position and horizontal spacing of drain holes should be designed efficiently. In this paper, a series of numerical study results related to the drainage system of the full-scale cavern are presented. The rock type in the study area consists mainly of banded gneiss and mica schist. Gneiss is in slightly weathered state and contains a little joint and fractures. Schist contains several well-developed schistosities that mainly stand vertically, so that vertical joints are better developed than the horizontals in the area. Lugeon tests revealed that upper aquifer and bedrock are divided in the depth of 40-50m under the surface. Groundwater level was observed in twenty monitoring wells and interpolated in the whole area. Numerical study using Visual Modflow and Seep/W has been performed to evaluate the efficiency of drainage system for underground liquefied natural gas storage cavern in two hypothetically designed layouts and determine the design parameters. In Modflow analysis, groundwater flow change in an unconfined aquifer was simulated during excavation of cavern and operation of drainage system. In Seep/W analysis, amount of seepage and drainage was also estimated in a representative vertical section of each cavern. From the results

  9. Two-dimensional dynamical drainage-flow model with Monte Carlo transport and diffusion calculations

    SciTech Connect

    Garrett, A.J.; Smith, F.G. III

    1982-09-01

    A simplified drainage flow model was developed from the equations of motion and the mass continuity equation in a terrain-following coordinate system. The equations were reduced to a two-dimensional system by vertically integrating over the drainage layer. A numerical solution for the drainage layer depth and wind field was obtained using a fourth order finite difference scheme. A Monte Carlo simulation was used to calculate the transport and diffusion of tracer gases. Model simulations of drainage flow have been compared to observations from the 1980 Geysers area experiments. The Geysers area is mountainous, with steep slopes, some of which are steeper than 10/sup 0/. The model predictions of wind direction are good, but with speeds are not predicted as accurately. Simulation of perfluorocarbon tracer concentrations were in good agreement with observed values. Maximum tracer concentration was predicted to within a factor of five. While predicted plume arrival was somewhat early, the model closely predicted the duration of the passage for plume concentrations greater than 0.5 ppt. The two-dimensional model was found to work equally well in simulating drainage flows over the Savannah River Plant (SRP) and surrounding terrain with slopes of around 1/sup 0/. The model correctly predicted that drainage winds at SRP are usually shallower than 60 m, which is the height at which meteorological towers measure the winds in the SRP production areas. The modest computational requirements of the model make it suitable for use in screening potential industrial sites.

  10. 7 CFR 1924.108 - Grading and drainage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... affect the structure and show proposed solutions. Grading will promote drainage of surface water away from buildings and foundations, minimize earth settlement and erosion, and assure that drainage...

  11. 7 CFR 1924.108 - Grading and drainage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... affect the structure and show proposed solutions. Grading will promote drainage of surface water away from buildings and foundations, minimize earth settlement and erosion, and assure that drainage...

  12. External accumulation of radionuclide in hepatic hydrothorax

    SciTech Connect

    Albin, R.J.; Johnston, G.S.

    1989-05-01

    Hepatic hydrothorax is a complication in approximately 5% of patients with cirrhosis. Ascites is almost always present and helps to suggest the correct diagnosis. However, when ascites is absent, radionuclide imaging has proven to be helpful in establishing that the pleural effusion originated from ascitic fluid. When pleural fluid is rapidly removed, such as by thoracostomy tube drainage, the radioisotope may accumulate outside the thorax and produce a negative scan of the chest. When the radionuclide scan is nondiagnostic and the pleural space is being rapidly drained, the pleural fluid collecting system should always be imaged before rejecting a diagnosis of hepatic hydrothorax.

  13. Endoscopic Gallbladder Drainage for Acute Cholecystitis

    PubMed Central

    Widmer, Jessica; Alvarez, Paloma; Sharaiha, Reem Z.; Gossain, Sonia; Kedia, Prashant; Sarkaria, Savreet; Sethi, Amrita; Turner, Brian G.; Millman, Jennifer; Lieberman, Michael; Nandakumar, Govind; Umrania, Hiren; Gaidhane, Monica

    2015-01-01

    Background/Aims Surgery is the mainstay of treatment for cholecystitis. However, gallbladder stenting (GBS) has shown promise in debilitated or high-risk patients. Endoscopic transpapillary GBS and endoscopic ultrasound-guided GBS (EUS-GBS) have been proposed as safe and effective modalities for gallbladder drainage. Methods Data from patients with cholecystitis were prospectively collected from August 2004 to May 2013 from two United States academic university hospitals and analyzed retrospectively. The following treatment algorithm was adopted. Endoscopic retrograde cholangiopancreatography (ERCP) with sphincterotomy and cystic duct stenting was initially attempted. If deemed feasible by the endoscopist, EUS-GBS was then pursued. Results During the study period, 139 patients underwent endoscopic gallbladder drainage. Among these, drainage was performed in 94 and 45 cases for benign and malignant indications, respectively. Successful endoscopic gallbladder drainage was defined as decompression of the gallbladder without incidence of cholecystitis, and was achieved with ERCP and cystic duct stenting in 117 of 128 cases (91%). Successful endoscopic gallbladder drainage was also achieved with EUS-guided gallbladder drainage using transmural stent placement in 11 of 11 cases (100%). Complications occurred in 11 cases (8%). Conclusions Endoscopic gallbladder drainage techniques are safe and efficacious methods for gallbladder decompression in non-surgical patients with comorbidities. PMID:26473125

  14. [Selection of type of urinary tract drainage in laparoscopic ureterolithotomy].

    PubMed

    Kisliakov, D A; Sirota, E S; Shpot', E V; Enikeev, M É

    2014-01-01

    The article presents the results of 44 laparoscopic ureterolithotomies performed for large stones in upper and middle third of the ureter. Patients' age ranged from 35 to 82 years. The different types of drainage of the urinary tract depending on the characteristics of surgical treatment (retro- or transperitoneal ureterolithotomy) were used. The effectiveness was evaluated according to the results of plain urography, ultrasound, and multi-layer spiral CT. The results showed that the preferred method of urinary tract drainage is a preoperative deployment of ureteral catheter-stent. However, in the case of impossibility of such procedure, preoperative deployment of ureteral catheter with subsequent intraoperative replacing it on catheter-stent is permissible. With retroperitoneal approach, tubeless ureterolithotomy is feasible in the absence of the ipsilateral kidney stones, residual ureteral stones and pronounced changes in the area of finding the stones. PMID:25799734

  15. Spatial structures of stream and hillslope drainage networks following gully erosion after wildfire

    USGS Publications Warehouse

    Moody, J.A.; Kinner, D.A.

    2006-01-01

    The drainage networks of catchment areas burned by wildfire were analysed at several scales. The smallest scale (1-1000 m2) representative of hillslopes, and the small scale (1000 m2 to 1 km2), representative of small catchments, were characterized by the analysis of field measurements. The large scale (1-1000 km2), representative of perennial stream networks, was derived from a 30-m digital elevation model and analysed by computer analysis. Scaling laws used to describe large-scale drainage networks could be extrapolated to the small scale but could not describe the smallest scale of drainage structures observed in the hillslope region. The hillslope drainage network appears to have a second-order effect that reduces the number of order 1 and order 2 streams predicted by the large-scale channel structure. This network comprises two spatial patterns of rills with width-to-depth ratios typically less than 10. One pattern is parallel rills draining nearly planar hillslope surfaces, and the other pattern is three to six converging rills draining the critical source area uphill from an order 1 channel head. The magnitude of this critical area depends on infiltration, hillslope roughness and critical shear stress for erosion of sediment, all of which can be substantially altered by wildfire. Order 1 and 2 streams were found to constitute the interface region, which is altered by a disturbance, like wildfire, from subtle unchannelized drainages in unburned catchments to incised drainages. These drainages are characterized by gullies also with width-to-depth ratios typically less than 10 in burned catchments. The regions (hillslope, interface and chanel) had different drainage network structures to collect and transfer water and sediment. Copyright ?? 2005 John Wiley & Sons, Ltd.

  16. ABA and GA3 increase carbon allocation in different organs of grapevine plants by inducing accumulation of non-structural carbohydrates in leaves, enhancement of phloem area and expression of sugar transporters.

    PubMed

    Murcia, Germán; Pontin, Mariela; Reinoso, Herminda; Baraldi, Rita; Bertazza, Gianpaolo; Gómez-Talquenca, Sebastián; Bottini, Rubén; Piccoli, Patricia N

    2016-03-01

    Grape quality for winemaking depends on sugar accumulation and metabolism in berries. Abscisic acid (ABA) and gibberellins (GAs) have been reported to control sugar allocation in economically important crops, although the mechanisms involved are still unknown. The present study tested if ABA and gibberellin A3 (GA3) enhance carbon allocation in fruits of grapevines by modifying phloem loading, phloem area and expression of sugar transporters in leaves and berries. Pot-grown Vitis vinifera cv. Malbec plants were sprayed with ABA and GA3 solutions. The amount of soluble sugars in leaves and berries related to photosynthesis were examined at three points of berry growth: pre-veraison, full veraison and post-veraison. Starch levels and amylase activity in leaves, gene expression of sugar transporters in leaves and berries and phloem anatomy were examined at full veraison. Accumulation of glucose and fructose in berries was hastened in ABA-treated plants at the stage of full veraison, which was correlated with enhancement of Vitis vinifera HEXOSE TRANSPORTER 2 (VvHT2) and Vitis vinifera HEXOSE TRANSPORTER 6 (VvHT6) gene expression, increases of phloem area and sucrose content in leaves. On the other hand, GA3 increased the quantity of photoassimilates delivered to the stem thus increasing xylem growth. In conclusion, stimulation of sugar transport by ABA and GA3 to berries and stems, respectively, was due to build-up of non-structural carbohydrates in leaves, modifications in phloem tissue and modulation in gene expression of sugar transporters. PMID:26411544

  17. Retroperitoneoscopic drainage of a psoas abscess.

    PubMed

    Katara, Avinash N; Shah, Rasik S; Bhandarkar, Deepraj S; Unadkat, Rajan J

    2004-09-01

    Pyogenic psoas abscess in the pediatric age group is a primary condition caused mostly by Staphylococcus aureus. The preferred treatment is percutaneous or surgical drainage under a cover of systemic antibiotics. Laparoscopic drainage scores over open surgery in terms of minimal invasion, shorter hospital stay, better patient comfort, and more complete drainage compared with the percutaneous approach. The authors report a case of a 4-year-old boy with a psoas abscess that was effectively drained laparoscopically through an extraperitoneal approach. PMID:15359416

  18. Topographically mediated ice stream subglacial drainage networks

    NASA Astrophysics Data System (ADS)

    Hiester, J.; Sergienko, O. V.; Hulbe, C. L.

    2016-02-01

    Satellite laser altimetry reveals short timescale changes in Antarctic ice sheet surface elevation that are suggested to be driven by subglacial water transport and storage. Here details of the interaction between the dynamics of ice stream flow, subglacial water system, and bed elevation relief are examined in the context of idealized, heterogeneous bed geometries. Using a two-way coupled model of ice and subglacial water flow, we show that basal topography controls the temporal and spatial variability of the sub-ice stream hydraulic system. The orientation and characteristic dimensions of the topographic undulations determine the morphology (connected subglacial ponds or channel-like subglacial water features) and timescales of the sub-ice stream drainage system. The short-term (several years to decades) variability of the simulated coupled ice stream/subglacial water system suggests that the short-term surface variations detected in remote sensing observations may be indicative of a rapidly evolving subglacial water system. Our simulations also show that interaction between ice flow and the highly dynamic subglacial water system has a strong effect on effective stress in the ice. Large effective stress magnitudes arise over areas where the basal traction is characterized by strong spatial gradients, that is, transitions from high to low basal traction or vise versa. These transitions migrate on multiyear timescales and thus cause large effective stress variability on the same temporal scales.

  19. An analytical model for predicting water table dynamics during drainage and evaporation

    NASA Astrophysics Data System (ADS)

    Cook, F. J.; Rassam, D. W.

    2002-06-01

    Water table dynamics in tile-drained fields have been thoroughly investigated by numerous researchers. Recent studies have highlighted the importance of incorporating the effects of evaporation into the design of such drainage systems. In tropical areas, evaporation plays a particularly crucial role in lowering the water table in finely textured soils. In this paper, water table dynamics are investigated for the case of coupled drainage and evaporation. A simple analytical model that determines the relative contribution of the drainage component to the draw down of the water table is proposed. The model's estimates compare reasonably well to field data, as well as those derived from numerical simulations conducted for various evaporation rates and soil types. When presented in a non-dimensional form, the model's results can provide a quick estimate of the relative contribution of drainage to lowering the water table, which is highly relevant to the hydrology of acid sulphate soils.

  20. Structural control of fluvial drainage in the western domain of the Cape Fold Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Manjoro, Munyaradzi

    2015-01-01

    The purpose of the study was to examine the extent to which drainage morphology has been influenced by faulting, folding and bedrock lithology in the Cape Fold Belt (CFB) of South Africa. This region was formed during Paleozoic-Mesozoic convergence along the south-western margin of Gondwana. An extensive structural geology database, terrain characteristics and stream network data were analysed using Geographical Information Systems (GIS) to examine the possible linkages between structure and fluvial drainage. Results indicated that the contemporary geomorphology of the area reflects the influence of folding and faulting as well as differential erosion. The following drainage anomalies suggestive of strong structural control were identified: orientation of flow direction of major streams corresponding to structural lineaments, abrupt changes in stream direction influenced by anticline fold axes, faults and joints, and fault-aligned streams. Drainage development in the study area responded noticeably to the underlying structure. The study raises questions with regard to the implications of one major or multiple dominant structural controls on drainage morphology and pattern. The findings have relevance with regard to the understanding fluvial drainage development and landform evolution in tectonically deformed regions.

  1. Numeric Modeling of Valley Networks and Drainage Systems on Mars

    NASA Astrophysics Data System (ADS)

    Vidal, A.

    2006-12-01

    Valley networks observed on Mars are often invoked to support the historical presence of water on the surface of Mars. There is a need for quantification of these networks and the drainage processes associated with them. Numerical modeling of these streams and drainage basins within a GIS environment allows for rapid assessment of hydrologic surface processes. In this study, several areas of valley networks which had been previously mapped visually using Viking, MOC, and MOLA datasets were re-examined using numeric processes and tools available in ArcGIS. Specifically, stream length and drainage density were quantified using the MOLA gridded DEM and ArcGIS tools. This process is significantly faster than the visual identification and delineation techniques used in the past. The project sought to test whether or not computer-assisted techniques were comparable in accuracy and precision to previous studies using visual techniques. To do this, two quadrangles previously visually mapped by Carr (1995) and Hynek and Phillips (2003) were analyzed. Total valley network length at the first site was found to be 18,300 km, compared to previous estimates of 1,308 km (Carr) and 11,100 km (Hynek and Phillips). Drainage density was calculated to be 0.0605/km, compared to previous estimates of 0.0076/km (Carr) and 0.065/km (Hynek and Phillips). The highest stream order found was 5th, compared to 3rd (Carr) and 6th (Hynek and Phillips). In the second quadrangle, total valley network length was measured at 4,010 km, compared to 453 km and 3,496 km. The drainage density was calculated to be 0.068/km, compared to 0.011/km and 0.082/km. The highest stream order found was 4th, compared to 2nd and 5th. Results were very similar to those using visual interpretation of MOC shaded relief by Hynek and Phillips. A difference in stream order, however, suggests that the computer-aided technique may not connect systems that visually have been connected. Still, automated results offer an

  2. Toward strict liability for abandoned mine drainage

    SciTech Connect

    Bryan, M.D.

    1983-01-01

    This note examines ways to impose responsibility for abating the pollution caused by mine drainage. It describes coal mine drainage and control techniques, then examines abatement responsibility under the common law doctrine of public nuisance, the Surface Mining Control and Reclamation Act of 1977, the Federal Water Pollution Control Act, and the Resource Conservation and Recovery Act of 1976. More statutory and regulatory controls will probably be devised in the near future, given the serious problem such drainage poses and the lack of existing controls. It is also likely, given the trend apparent in the statutes and cases, that such controls will adopt rules of strict liability for abandoned mine drainage based on mere ownership of property. 175 references.

  3. 24 CFR 3285.203 - Site Drainage.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Site Preparation § 3285.203 Site Drainage. (a... other physical conditions prohibit this slope, the site must be provided with drains or swales...

  4. 24 CFR 3285.203 - Site Drainage.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Site Preparation § 3285.203 Site Drainage. (a... other physical conditions prohibit this slope, the site must be provided with drains or swales...

  5. 24 CFR 3285.203 - Site Drainage.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Site Preparation § 3285.203 Site Drainage. (a... other physical conditions prohibit this slope, the site must be provided with drains or swales...

  6. 24 CFR 3285.203 - Site Drainage.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Site Preparation § 3285.203 Site Drainage. (a... other physical conditions prohibit this slope, the site must be provided with drains or swales...

  7. PRIORITY POLLUTANT REMOVAL FROM MINE DRAINAGE

    EPA Science Inventory

    A study of the removal of selected priority pollutants from acid mine drainage was conducted at EPA's Crown, West Virginia, site. The pollutants studied were the volatiles benzene, chloroform, methylene chloride, tetrachloroethene, toluene, trans-dichloroethene; the semivolatiles...

  8. Fractal Analysis of Drainage Basins on Mars

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Marinova, M. M.; McGovern, P. J.; Clifford, S. M.

    2002-01-01

    We used statistical properties of drainage networks on Mars as a measure of martian landscape morphology and an indicator of landscape evolution processes. We utilize the Mars Orbiter Laser Altimeter (MOLA) data to construct digital elevation maps (DEMs) of several, mostly ancient, martian terrains. Drainage basins and channel networks are computationally extracted from DEMs and their structures are analyzed and compared to drainage networks extracted from terrestrial and lunar DEMs. We show that martian networks are self-affine statistical fractals with planar properties similar to terrestrial networks, but vertical properties similar to lunar networks. The uniformity of martian drainage density is between those for terrestrial and lunar landscapes. Our results are consistent with the roughening of ancient martian terrains by combination of rainfall-fed erosion and impacts, although roughening by other fluvial processes cannot be excluded. The notion of sustained rainfall in recent Mars history is inconsistent with our findings.

  9. SURFACE FLOODS IN COIMBRA: simple and dual-drainage studies

    NASA Astrophysics Data System (ADS)

    Leitão, J. P.; Simões, N. E.; Pina, R.; Marques, A. Sá; Maksimović, Č.; Gonçalves, Gil

    2009-09-01

    Surface water flooding occurs due to extreme rainfall and the inability of the sewer system to drain all runoff. As a consequence, a considerable volume of water is carried out over the surface through preferential flow paths and can eventually accumulate in natural (or man-made) ponds. This can cause minor material losses but also major incidents with obvious consequences in economic activities and the normal people's life. Unfortunately, due to predicted climate changes and increase of urbanisation levels, the urban flooding phenomenon has been reported more often. The Portuguese city of Coimbra is a medium size city that has suffered several river floods in the past. However, after the construction of hydraulic control structures, the number of fluvial flood events was greatly reduced. In the 1990s two new problems started. On one hand, houses started to be built on flood plain areas; on the other hand, some areas experienced a boom in the degree of urbanisation. This created flood problems of a different type dislocating the flood areas from the traditional flood areas along the river to new areas that did not reported flood in history. The catchment studied has a total area of approximately 1.5 km2 and discharges in the Coselhas brook The catchment can be divided in three regions with different characteristics: (i) the "Lower City" which is a low-lying area with 0.4 km2 and with a combined sewer system; (ii) the "Upper City" which is a considerably hilly area, highly urbanized and with an area of approximately 0.2 km2; and (iii) the remaining area which is also highly urbanized, with an area of 0.9 km2, where the main flood problems are generated. The sewer system is 34.8 km long; 29 km are of the combined type, and only 1.2 km is exclusive for storm water. The time of concentration of the catchment is estimated to be 45 min. On the 9 June 2006, an extreme rainfall event caused severe flooding in the city. After the rainfall had stopped, water continued to

  10. Numerical investigation of the spatial scale and time dependency of tile drainage contribution to stream flow

    NASA Astrophysics Data System (ADS)

    Thomas, Nicholas W.; Arenas, Antonio A.; Schilling, Keith E.; Weber, Larry J.

    2016-07-01

    Tile drainage systems are pervasive in the Central U.S., significantly altering the hydrologic system. The purpose of this study was to assess the effects of tile drainage systems on streamflow. A physically based coupled hydrologic model was applied to a 45 km2 agricultural Iowa watershed. Tile drainage was incorporated though an equivalent porous medium approach, calibrated though numerical experimentation. Experimental results indicated that a significant increase in hydraulic conductivity of the equivalent medium layer was needed to achieve agreement in total outflow with an explicit numerical representation of a tiled system. Watershed scale analysis derived the tile drainage contribution to stream flow (QT/Q) from a numerical tracer driven analysis of instream surface water. During precipitation events tile drainage represented 30% of stream flow, whereas during intervals between precipitations events, 61% of stream flow originated from the tile system. A division of event and non-event periods produced strong correlations between QT/Q and drainage area, positive for events, and negative for non-events. The addition of precipitation into the system acted to saturate near surface soils, increase lateral soil water movement, and dilute the relatively stable instream tile flow. Increased intensity precipitation translated the QT/Q relationship downward in a consistent manner. In non-event durations, flat upland areas contributed large contributions of tile flow, diluted by larger groundwater (non-tile) contribution to stream flow in the downstream steeper portion of the watershed. Study results provide new insights on the spatiotemporal response of tile drainage to precipitation and contributions of tile drainage to streamflow at a watershed scale, with results having important implications for nitrate transport.

  11. Phosphorus transport in agricultural subsurface drainage: a review.

    PubMed

    King, Kevin W; Williams, Mark R; Macrae, Merrin L; Fausey, Norman R; Frankenberger, Jane; Smith, Douglas R; Kleinman, Peter J A; Brown, Larry C

    2015-03-01

    Phosphorus (P) loss from agricultural fields and watersheds has been an important water quality issue for decades because of the critical role P plays in eutrophication. Historically, most research has focused on P losses by surface runoff and erosion because subsurface P losses were often deemed to be negligible. Perceptions of subsurface P transport, however, have evolved, and considerable work has been conducted to better understand the magnitude and importance of subsurface P transport and to identify practices and treatments that decrease subsurface P loads to surface waters. The objectives of this paper were (i) to critically review research on P transport in subsurface drainage, (ii) to determine factors that control P losses, and (iii) to identify gaps in the current scientific understanding of the role of subsurface drainage in P transport. Factors that affect subsurface P transport are discussed within the framework of intensively drained agricultural settings. These factors include soil characteristics (e.g., preferential flow, P sorption capacity, and redox conditions), drainage design (e.g., tile spacing, tile depth, and the installation of surface inlets), prevailing conditions and management (e.g., soil-test P levels, tillage, cropping system, and the source, rate, placement, and timing of P application), and hydrologic and climatic variables (e.g., baseflow, event flow, and seasonal differences). Structural, treatment, and management approaches to mitigate subsurface P transport-such as practices that disconnect flow pathways between surface soils and tile drains, drainage water management, in-stream or end-of-tile treatments, and ditch design and management-are also discussed. The review concludes by identifying gaps in the current understanding of P transport in subsurface drains and suggesting areas where future research is needed. PMID:26023966

  12. Impact of Fertigation versus Slow Release Fertilizer Formulations on Nitrate Enrichment of Nursery Drainage Water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate-nitrogen losses in surface drainage and runoff water from ornamental plant production areas can be significant. In nitrogen-limited watersheds discharge of nitrogen (N) from production areas can have significant, negative impacts on non-target aquatic systems. This study monitored nitrate-N...

  13. MINE DRAINAGE CONTROL FROM METAL MINES IN A SUBALPINE ENVIRONMENT - A FEASIBILITY STUDY

    EPA Science Inventory

    Investigations of the McLaren mine and mill areas and the Glengary mine area in the vicinity of Cooke City, Montana, were undertaken from July 1973 through September 1975, to examine the acid mine drainage (AMD) from these sources and determine the feasibility of rehabilitating t...

  14. [The value of wound drainage with or without suction].

    PubMed

    Schmidt, J; Hasselbach, A; Schnorr, W; Baranek, T; Letsch, R

    2005-11-01

    Even though the discussion for desisting from wound drainage has arisen, this is not reflected in the reality of surgical treatment. In more than 90% of all procedures wound drainage is used. It remains to be proven whether suction drainage actually is superior to gravity drainage in everyday use. In a random study with 200 patients it was proven that suction drainage shows no significant advantage in liquid quantum, haematoma and the frequency of complications. We conclude that the economically favourable gravity drainage can replace the more expensive suction drainage in most cases. PMID:16228157

  15. Data supplement to: Quality of coal mine drainage to Washington, 1975-77

    USGS Publications Warehouse

    Fuste, Louis A.; Packard, F.A.; Fretwell, M.O.; Garland, D.P.

    1983-01-01

    From December 1975 to September 1977 the U.S. Geological Survey studied coal mine drainage in western Washington to 1) characterize the water quality of drainage from abandoned mines in the 11 coal-bearing areas of the State; 2) examine the water quality effects on a stream receiving drainage from an abandoned coal mine; 3) determine the baseline water-quality conditions at two prospective underground coal mine areas; and 4) recommend procedures for monitoring stream quality in the baseline areas in the event that mining occurs. This report presents physical, chemical, and biological data collected during the study period from Gallop Creek (Whatcom County), Loretta Creek (Skagit County), and Wilkeson Creek (Pierce County) and from 100 abandoned coal mines in western Washington, and from a borehole hydraulic-mining test site. Biological information included taxonomic identifications and counts of benthic invertebrates and periphytic algae. (USGS)

  16. Endoscopic ultrasound-guided drainage of pancreatic pseudocysts

    PubMed Central

    Săftoiu, Adrian; Vilmann, Andreas; Vilmann, Peter

    2015-01-01

    Pancreatic pseudocysts are fluid collections in the peripancreatic tissues associated with acute or chronic pancreatitis. Endoscopic ultrasound (EUS)-guided drainage has become an established indication, having better results as compared to percutaneous drainage, nonguided endoscopic drainage, or surgical drainage. The aim of this review is to assess critically the current literature concerning EUS-guided pseudocyst drainage and to review the place of the procedure in the clinical decision management algorithms of these patients. PMID:26643700

  17. Endoscopic ultrasound-guided drainage of pancreatic pseudocysts.

    PubMed

    Saftoiu, Adrian; Vilmann, Andreas; Vilmann, Peter

    2015-01-01

    Pancreatic pseudocysts are fluid collections in the peripancreatic tissues associated with acute or chronic pancreatitis. Endoscopic ultrasound (EUS)-guided drainage has become an established indication, having better results as compared to percutaneous drainage, nonguided endoscopic drainage, or surgical drainage. The aim of this review is to assess critically the current literature concerning EUS-guided pseudocyst drainage and to review the place of the procedure in the clinical decision management algorithms of these patients. PMID:26643700

  18. Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica with airborne observations of snow accumulation (Invited)

    NASA Astrophysics Data System (ADS)

    Medley, B.; Joughin, I. R.; Smith, B. E.; Das, S. B.; Steig, E. J.; Conway, H.; Gogineni, P. S.; Criscitiello, A. S.; McConnell, J. R.; van den Broeke, M. R.; Lenaerts, J.; Bromwich, D. H.; Nicolas, J. P.

    2013-12-01

    One of the largest sources of uncertainty in quantifying ice-sheet mass balance originates from our lack of understanding of spatiotemporal snow accumulation rates. Traditional in situ measurements of the accumulation rate (i.e., firn cores, snow pits, and stake farms) do not adequately capture the complex spatial variations in regional accumulation and are not suitable for regional mass balance studies. Accumulation measurements using ground-based radar systems capture the spatial variability in accumulation over discrete (i.e., annual to multi-decadal) and consistent time intervals along hundreds of kilometers of survey paths but cannot access certain areas of the ice sheet (e.g., highly crevassed regions). On the other hand, spatiotemporally complete global and regional atmospheric models of the accumulation rate are increasingly being used in place of measurements, but few regional measurements exist to rigorously test the temporal skill of these models. Here, we use data from two airborne radar systems, developed by the Center for Remote Sensing of Ice Sheets, to calculate recent accumulation rates over the Pine Island and Thwaites drainage systems along the Amundsen Coast of West Antarctica. These measurements are then used to: (1) assess the skill of global and regional atmospheric models and (2) precisely determine basin-wide accumulation rates for mass balance estimates. The spatial coverage limitation that makes field measurements disadvantageous for regional mass balance studies is overcome by aerial survey designed for maximum spatial coverage of these drainage basins. We measure the snow accumulation rate using the ultra-wideband airborne radar data to track near-surface internal horizons. The horizon thickness is converted to a water-equivalent thickness using a regionally representative density profile. Accumulation rates are calculated by dividing the water-equivalent thickness by the horizon age, which is determined either by annual count or using

  19. Estimation of Tile Drainage Contribution to Streamflow and Nutrient Export Loads

    NASA Astrophysics Data System (ADS)

    Schilling, K. E.; Arenas Amado, A.; Jones, C. S.; Weber, L. J.

    2015-12-01

    Subsurface drainage is a very common practice in the agricultural U.S. Midwest. It is typically installed in poorly drained soils in order to enhance crop yields. The presence of tile drains creates a route for agrichemicals to travel and therefore negatively impacts stream water quality. This study estimated through end-member analyses the contributions of tile drainage, groundwater, and surface runoff to streamflow at the watershed scale based on continuously monitored data. Especial attention was devoted to quantifying tile drainage impact on watershed streamflow and nutrient export loads. Data analyzed includes streamflow, rainfall, soil moisture, shallow groundwater levels, in-stream nitrate+nitrite concentrations and specific conductance. Data were collected at a HUC12 watershed located in Northeast Iowa, USA. Approximately 60% of the total watershed area is devoted to agricultural activities and forest and grassland are the other two predominant land uses. Results show that approximately 20% of total annual streamflow comes from tile drainage and during rainfall events tile drainage contribution can go up to 30%. Furthermore, for most of the analyzed rainfall events groundwater responded faster and in a more dramatic fashion than tile drainage. The State of Iowa is currently carrying out a plan to reduce nutrients in Iowa waters and the Gulf of Mexico (Iowa Nutrient Reduction Strategy). The outcome of this investigation has the potential to assist in Best Management Practice (BMP) scenario selection and therefore help the state achieve water quality goals.

  20. Urban drainage system planning and design--challenges with climate change and urbanization: a review.

    PubMed

    Yazdanfar, Zeinab; Sharma, Ashok

    2015-01-01

    Urban drainage systems are in general failing in their functions mainly due to non-stationary climate and rapid urbanization. As these systems are becoming less efficient, issues such as sewer overflows and increase in urban flooding leading to surge in pollutant loads to receiving water bodies are becoming pervasive rapidly. A comprehensive investigation is required to understand these factors impacting the functioning of urban drainage, which vary spatially and temporally and are more complex when weaving together. It is necessary to establish a cost-effective, integrated planning and design framework for every local area by incorporating fit for purpose alternatives. Carefully selected adaptive measures are required for the provision of sustainable drainage systems to meet combined challenges of climate change and urbanization. This paper reviews challenges associated with urban drainage systems and explores limitations and potentials of different adaptation alternatives. It is hoped that the paper would provide drainage engineers, water planners, and decision makers with the state of the art information and technologies regarding adaptation options to increase drainage systems efficiency under changing climate and urbanization. PMID:26177398

  1. Location of Agricultural Drainage Pipes and Assessment of Agricultural Drainage Pipe Conditions Using Ground Penetrating Radar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods are needed to not only locate buried agricultural drainage pipe, but to also determine if the pipes are functioning properly with respect to water delivery. The primary focus of this research project was to confirm the ability of ground penetrating radar (GPR) to locate buried drainage pipe ...

  2. Location of agricultural drainage pipes and assessment of agricultural drainage pipe conditions using ground penetrating radar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods are needed to not only locate buried agricultural drainage pipe, but to also determine if the pipes are functioning properly with respect to water delivery. The primary focus of this research project was to confirm the ability of ground penetrating radar (GPR) to locate buried drainage pipe ...

  3. Nitrogen surface water retention in the Baltic Sea drainage basin

    NASA Astrophysics Data System (ADS)

    Stålnacke, P.; Pengerud, A.; Vassiljev, A.; Smedberg, E.; Mörth, C.-M.; Hägg, H. E.; Humborg, C.; Andersen, H. E.

    2015-02-01

    In this paper, we estimate the surface water retention of nitrogen (N) in all the 117 drainage basins to the Baltic Sea with the use of a statistical model (MESAW) for source apportionment of riverine loads of pollutants. Our results show that the MESAW model was able to estimate the N load at the river mouth of 88 Baltic Sea rivers, for which we had observed data, with a sufficient degree of precision and accuracy. The estimated retention parameters were also statistically significant. Our results show that around 380 000 t of N are annually retained in surface waters draining to the Baltic Sea. The total annual riverine load from the 117 basins to the Baltic Sea was estimated at 570 000 t of N, giving a total surface water N retention of around 40%. In terms of absolute retention values, three major river basins account for 50% of the total retention in the 117 basins; i.e. around 104 000 t of N are retained in Neva, 55 000 t in Vistula and 32 000 t in Oder. The largest retention was found in river basins with a high percentage of lakes as indicated by a strong relationship between N retention (%) and share of lake area in the river drainage areas. For example in Göta älv, we estimated a total N retention of 72%, whereof 67% of the retention occurred in the lakes of that drainage area (Lake Vänern primarily). The obtained results will hopefully enable the Helsinki Commission (HELCOM) to refine the nutrient load targets in the Baltic Sea Action Plan (BSAP), as well as to better identify cost-efficient measures to reduce nutrient loadings to the Baltic Sea.

  4. Implication of drainage basin parameters of a tropical river basin of South India

    NASA Astrophysics Data System (ADS)

    Babu, K. J.; Sreekumar, S.; Aslam, Arish

    2016-03-01

    Drainage morphometry provides quantitative description of the drainage system which is an important aspect of the characterisation of watersheds. Chalakudi River is one of the important rivers of the South India which has attracted attention of many environmental scientists recently because of the proposed Athirapally Hydel Project across the river. SRTM (Shuttle Radar Topographic Mission) data were used for preparing DEM (Digital Elevation Model), Aspect Map and Slope Map. Geographical Information System (GIS) was used for the evaluation of linear, areal and relief aspects of morphometric parameters. The study reveals that the terrain exhibits dentritic and trellis pattern of drainage. The Chalakudi River Basin has a total area of 1,448.73 km2 and is designated as seventh-order basin. The drainage density of the basin is estimated as 2.54 and the lower-order streams mostly dominate the basin. The high basin relief indicates high runoff and sediment transport. The elongation ratio of the Chalakudi Basin is estimated as 0.48 and indicates that the shape of the basin is elongated. The development of stream segments in the basin area is more or less effected by rainfall. Relief ratio indicates that the discharge capability of watershed is very high and the groundwater potential is meagre. The low value of drainage density in spite of mountainous relief indicates that the area is covered by dense vegetation and resistant rocks permeated by fractures and joints. These studies are helpful in watershed development planning and wise utilization of natural resources.

  5. Demographic characteristics of American eel in the Potomac River drainage, Virginia

    USGS Publications Warehouse

    Goodwin, K.R.; Angermeier, P.L.

    2003-01-01

    Studies of the demographic characteristics of the American eel Anguilla rostrata over broad spatial scales are scarce. Eels in the Shenandoah River drainage and lower Potomac River tributaries of Virginia were sampled over 2 years in both inland and near-coastal areas to describe the demographic characteristics in each area and document drainagewide patterns. Eels from the inland Shenandoah River drainage were significantly longer (median = 767 mm total length) and older (median = 11.5 years) than those found in the near-coastal Potomac River tributaries (median total length = 142 mm; median age = 2.0 years). In addition, the sex ratio varied in Potomac River tributaries, but only female were found in the Shenandoah River drainage. Catch per unit effort decreased with increasing distance inland and was further depressed upstream of some dams. Eel demographics in the Shenandoah drainage were similar to those observed in other studies done at distances exceeding 300 river kilometers (rkm) inland, whereas the demographics of Potomac River tributary eels were similar to those observed in other coastal and near-coastal areas. Large female eels found 300-500 rkm inland in this study may be especially important to the population's reproductive potential because of their greater fecundity. Investigations aimed at describing the demographics of eels in a region should sample throughout drainages to ensure accurate characterization. Effective management of eels will require innovative approaches that recognize the large-scale, complex structure of the population.

  6. Quantitative analysis of drainage obtained from aerial photographs and RBV/LANDSAT images

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Formaggio, A. R.; Epiphanio, J. C. N.; Filho, M. V.

    1981-01-01

    Data obtained from aerial photographs (1:60,000) and LANDSAT return beam vidicon imagery (1:100,000) concerning drainage density, drainage texture, hydrography density, and the average length of channels were compared. Statistical analysis shows that significant differences exist in data from the two sources. The highly drained area lost more information than the less drained area. In addition, it was observed that the loss of information about the number of rivers was higher than that about the length of the channels.

  7. Foam drainage placed on a porous substrate.

    PubMed

    Arjmandi-Tash, O; Kovalchuk, N; Trybala, A; Starov, V

    2015-05-14

    A model for drainage/imbibition of a foam placed on the top of a porous substrate is presented. The equation of liquid imbibition into the porous substrate is coupled with a foam drainage equation at the foam/porous substrate interface. The deduced dimensionless equations are solved using a finite element method. It was found that the kinetics of foam drainage/imbibition depends on three dimensionless numbers and the initial liquid volume fraction. The result shows that there are three different regimes of the process. Each regime starts after initial rapid decrease of a liquid volume fraction at the foam/porous substrate interface: (i) rapid imbibition: the liquid volume fraction inside the foam at the foam/porous substrate interface remains constant close to a final liquid volume fraction; (ii) intermediate imbibition: the liquid volume fraction at the interface with the porous substrate experiences a peak point and imbibition into the porous substrate is slower as compared with the drainage; (iii) slow imbibition: the liquid volume fraction at the foam/porous substrate interface increases to a maximum limiting value and a free liquid layer is formed between the foam and the porous substrate. However, the free liquid layer disappears after some time. The transition points between these three different drainage/imbibition regimes were delineated by introducing two dimensionless numbers. PMID:25811970

  8. [Appropriate Biliary Drainage Methods for Unresectable Cholangiocarcinomas].

    PubMed

    Oishi, Tatsurou; Kanemoto, Yoshiaki; Yoshioka, Yuuta; Sawada, Ryuuichirou; Sekine, Sachi; Miyanaga, Hiroto; Sakahira, Hideki; Takahashi, Hironori; Miyamoto, Katsufumi; Koyama, Takashi

    2015-11-01

    We investigated the efficacy of different biliary drainage methods for the treatment of unresectable cholangiocarcinomas. We performed a retrospective study of 28 patients with unresectable cholangiocarcinomas who underwent biliary drainage at our hospital between January 2008 and June 2014 to compare the incidence of post-drainage stent dysfunction (SD) and reintervention (RI) for SD according to primary drainage method, lesion site, and complication status (the presence or absence of cholangitis). The duration of stent patency was compared between the different stent types. No significant differences in the incidence of SD and RI were found according to primary drainage methods, lesion site, or the presence or absence of cholangitis. The mean durations of stent patency for plastic and metal stents were 2.7 months and 7.4 months, respectively, suggesting that metal stents should be selected when the estimated prognosis is ≥2 months. Furthermore, metal stent placement, rather than the additional placement of plastic stents, should be considered a feasible option in cases of SD. PMID:26805093

  9. Solids Accumulation Scouting Studies

    SciTech Connect

    Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

    2012-09-26

    The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of

  10. Hydrologic Impact Of Subsurface Drainage Of Agricultural Fields

    NASA Astrophysics Data System (ADS)

    Naz, B. S.; Johannsen, C. J.; Bowling, L. C.

    2005-12-01

    Although subsurface drainage has benefited agricultural productions in many regions of the U.S., there are also concerns about the potential impacts of these systems on watershed hydrology and water quality. This study was focused on tile lines identification and hydrologic response of subsurface drainage systems for the Agronomy Center for Research and Education (ACRE), West Lafayette, Indiana and the Southeastern Purdue Agriculture Center (SEPAC) in southeastern, Indiana. The purpose of the study was to develop and evaluate a remote sensing methodology for automatic detection of tile lines from aerial photographs and to evaluate the Distributed Hydrology Soil-Vegetation Model (DHSVM) to analyze the hydrologic response of tile drained fields. A step-wise approach was developed to first use different image enhancement techniques to increase the visual distinction of tile lines from other details in the image. A new classification model was developed to identify locations of subsurface tiles using a decision tree classifier which compares the multiple data sets such as enhanced image data, land use class, soil drainage class, hydrologic group and surface slope. Accuracy assessment of the predicted tile map was done by comparing the locations of tile drains with existing historic maps and ground-truth data. The overall performance of decision tree classifier model coupled with other pre- and post- classification methods shows that this model can be a very effective tool in identifying tile lines from aerial photographs over large areas of land. Once the tile map was created, the DHSVM was applied to ACRE and SEPAC respectively to see the hydrological impact of the subsurface drainage network. Observed data for 3-years (1998-2000) at ACRE and for 6-years (1993-1998) at SEPAC were used to calibrate and validate the model. The model was simulated for three scenarios: 1) baseline scenario (no tiles), 2) with known tile lines and 3) with tile lines created through

  11. Climate and Tectonics Need Not Apply: Transient Erosion Driven by Drainage Integration, Aravaipa Creek, AZ

    NASA Astrophysics Data System (ADS)

    Jungers, M.; Heimsath, A. M.

    2013-12-01

    Periods of transient erosion during landscape evolution are most commonly attributed to fluvial systems' responses to changes in tectonic or climatic forcing. Dramatic changes in base level and sudden increases in drainage area associated with drainage reorganization can, however, drive punctuated events of incision and erosion equal in magnitude to those driven by tectonics or climate. In southeastern Arizona's Basin and Range, a mature portion of the North American physiographic province, the modern Gila River system integrates a network of previously internally drained structural basins. One basin in particular, Aravaipa Creek, is the most recent to join the broader Gila River fluvial network. Following drainage integration, Aravaipa Creek rapidly incised to equilibrate with its new, much lower, base level. In doing so, it carved Aravaipa Canyon, excavated a large volume of sedimentary basin fill, and captured drainage area from the still internally drained Sulphur Springs basin. Importantly, this dramatic episode of transient incision and erosion was the result of drainage integration alone. We hypothesize that the adjustment time for Aravaipa Creek was shorter than the timescale of any climate forcing, and regional extensional tectonics were quiescent at the time of integration. We can, therefore, explicitly quantify the magnitude of transient incision and erosion driven by drainage reorganization. We use remnants of the paleo-basin surface and modern landscape elevations to reconstruct the pre-drainage integration topography of Aravaipa Creek basin. Doing so enables us to quantify the magnitude of incision driven by drainage reorganization as well as the volume of material eroded from the basin subsequent to integration. Key control points for our landscape reconstruction are: (1) the inferred elevation of the spillover point between Aravaipa Creek and the San Pedro River; (2) Quaternary pediment-capping gravels above Aravaipa Canyon (3) perched remnants of

  12. Mine Drainage and Oil Sand Water.

    PubMed

    Wei, Xinchao; Wolfe, F Andrew; Li, Yanjun

    2015-10-01

    Mine drainage from the mining of mineral resources (coal, metals, oil sand, or industrial minerals) remains as a persistent environmental problem. This review summarizes the scientific literature published in 2014 on the technical issues related to mine drainage or mine water in active and abandoned coal/hard rock mining sites or waste spoil piles. Also included in this review is the water from oil sand operations. This review is divided into the four sections: 1) mine drainage characterization, 2) prediction and environmental impact, 3) treatment technologies, 4) oil sand water. Many papers presented in this review address more than one aspect and different sections should not be regarded as being mutuallyexclusive or all-inclusive. PMID:26420092

  13. [Drainage for Subcutaneous Emphysema after Pulmonary Resection].

    PubMed

    Funakoshi, Yasunobu; Ohmori, Kenichi; Takeda, Shinichi

    2016-05-01

    Severe subcutaneous emphysema sometimes develops after pulmonary resection. We report our management of ten patients who were treated with subcutaneous Penrose drainage. Water seal test at chest closure showed no air leakage in 5, and a small amount in 5. Chest X-ray at the progression of massive subcutaneous emphysema showed no obvious pneumothorax in 2, and slight apical pneumothorax in 8. Subcutaneous emphysema developed after removal of chest tubes in 6, and before removal in 4. Subcutaneous drains were inserted at the midclavicular line or the side chest in 8, and both in 2. Subcutaneous emphysema improved immediately after subcutaneous Penrose drainage with active compressive massage. Subcutaneous penrose drainage is easy and useful for relieving massive subcutaneous emphysema. PMID:27220920

  14. Local and synoptic controls on rapid supraglacial lake drainage in West Greenland

    NASA Astrophysics Data System (ADS)

    Williamson, Andrew; Banwell, Alison; Arnold, Neil; Willis, Ian

    2016-04-01

    Many supraglacial lakes within the ablation zone of the Greenland Ice Sheet (GrIS) are known to drain rapidly (in <1 day) in the mid- to late melt season, delivering large meltwater pulses to the subglacial drainage system, thus affecting basal water pressures and ice-sheet dynamics. Although it is now generally recognised that rapid lake drainage is caused by hydrofracture, the precise controls on hydrofracture initiation remain poorly understood: they may be linked to a local critical water-volume threshold, or they may be associated with synoptic-scale factors, such as ice thickness, driving stresses, ice velocities and strain rates. A combination of the local water-volume threshold and one or more synoptic-scale factors may explain the overall patterns of rapid lake drainage, but this requires verification using targeted field- and remotely-based studies that cover large areas of the GrIS and span long timescales. Here, we investigate a range of potential controls on rapid supraglacial lake drainage in the land-terminating Paakitsoq region of the ice sheet, northeast of Jakobshavn Isbræ, for the 2014 melt season. We have analysed daily 250-m Moderate Resolution Imaging Spectroradiometer (MODIS) imagery in order to calculate lake areas, depths and volumes, and have developed an automatic lake-tracking algorithm to determine the dates on which all rapid lake drainage events occur. For each rapidly draining lake, the water volumes immediately prior to drainage are compared with other local factors, notably lake-filling rate and ice thickness, and with a variety of synoptic-scale features, such as slope angles, driving stresses, surface velocities, surface strain rates and the incidence of nearby lake-drainage events. We present the outcomes of our statistical analysis to elicit the statistically significant controls on hydrofracture beneath supraglacial lakes.

  15. Evaluation on the Efficiency of Subsurface Drainage in Chiu-Fen Landslide at Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Ying, L. Y.; Lin, D. G.

    2015-12-01

    For administrative district, the Chiu-Fen landslide is situated at northern Taiwan and comes within the jurisdiction of Ruei-Fang district, New Taipei City Government. Chiu-Fen village is a famous spot for sightseeing and tourism in Southeast Asia. In the last decade, for economic purpose, a vast area of slope land in Chiu-Fen area was reclaimed into business and commercial districts. However, due to the complicated geological and hydrological conditions, improper reclamation, and lack of appropriate soil and water conservation facilities, large scale landslides are frequently triggered by typhoon rainfall and causes damages to the transportation and residential building in the community. As a consequence, the government initiated a comprehensive field investigations and remediation plans to stabilize the landslide from 1997 and the remediation works were concentrated on subsurface drainages, namely the application of drainage well (a vertical shaft with multi-level horizontal drainage boreholes). To investigate the efficiency of drainage wells on the landslide, the A1-profile in the landslide which covers the drainage wells W2 and W4 was selected for a series of rainfall seepage and slope stability analyses. In addition, a 48-hrs design rainfall with return period of 25, 50 and 100 years based on the local meteorological data bank was adopted for the analyses. The numerical results indicate the factor safety FS of the three potential sliding surfaces within A1-profile are constantly keeping greater than one (FS > 1.0) and without decreasing with the elapsed time during rainfall. This implies that the subsurface drainage works can drain off the infiltrated rainwater from a high intensity and long duration rainfall and preserve the slope stability of landslides from deterioration. Finally, the efficiency of the drainage wells can be evaluated quantitatively in terms of the time-dependent factor of safety and the pore water pressure distribution on several potential

  16. Biopsy and drainage techniques in children.

    PubMed

    Hogan, Mark J; Hoffer, Fredric A

    2010-12-01

    Drainage and biopsy are mainstay procedures in pediatric interventional radiology. As in the adult population, percutaneous biopsy and fluid collection drainage can be performed almost anywhere in the body, in almost all organ systems, and for myriad indications. However, there are some technique differences in children. Radiation protection is paramount, requiring alterations in imaging and guidance. Children have unique sedation and anesthetic requirements, and smaller patients provide both advantages and disadvantages that require/allow for alteration of the procedural techniques. This article will focus on these differences and describe specific techniques applicable to pediatric patients. PMID:21055674

  17. Effect of Salts on Drainage of Foam

    NASA Astrophysics Data System (ADS)

    Sett, Soumyadip; Karakashev, Stoyan; Smoukov, Stoyan; Yarin, Alexander

    Gravitational drainage from thin planar vertical sodium dodecyl sulfate (SDS) films in the presence of inorganic salts was experimentally studied. Strong ion-specific effects of the counter ions were found to affect the stability and the rate of drainage of the planar foam films as a function of concentration of the inorganic salts. The counter-ions can either stabilize (below the critical concentration) or destabilize the foam films. We found that the strongest foam stabilizer salt became the strongest foam destabilizer beyond its critical concentration.

  18. Environmental Controls over Peat Accumulation in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Baughman, C. A.; Mann, D. H.; Heiser, P. A.; Kunz, M. L.

    2012-12-01

    Wide spread accumulation of peat (paludification) began on Alaska's North Slope during the Pleistocene/Holocene transition starting ca. 12,000 14C years ago and established this region as a carbon sink. Its status as a C sink is in question today because of rapid climate change. Our project's focus is on the relationship between peat, microclimate, and topography in a portion of the Arctic Foothills 300-350 km south of Point Barrow on the northern flank of the Brooks Range. Our objectives are 1) Quantify how varying microclimate factors found along a climosequence determine the thickness of the thin surface peats (<50 cm) that have developed during the Holocene; 2) Estimate peat accumulation rates on level, initially well-drained geomorphic surfaces using a 3,000 year old chronosequence on river point bars; 3) Quantify how peat accumulation affects soil temperature regimes; 4) Develop a GIS-based peat-prediction model for a 50 km2 study area and estimate this area's pool of standing carbon. We used a combination of remotely sensed data, field measurements, and a GIS to gather data regarding slope, aspect, elevation, near-ground temperature, soil moisture, temperature at the organic/mineral horizon interface, solar radiation, upslope drainage area, and lastly, peat thickness. Peat is defined here as any near-surface soil horizon containing >25% organic carbon by volume. We employ statistical analyses to examine how each factor independently influences peat thickness and what suite of factors best explains peat distribution and thickness across the landscape. Results show a significant inverse relationship (R2 = 0.27, p-value <<.001) between slope and peat thickness, with an increase in steepness accompanying a decrease in peat thickness. There is a less significant relationship (R2 = 0.03, p-value = .02) between aspect and peat thickness. There is a significant positive relationship (R2 = 0.81, P-value <<.001) between peat thickness and July active layer thickness

  19. Tropospheric ozone in the Nisqually River Drainage, Mount Rainier National Park

    USGS Publications Warehouse

    Peterson, D.L.; Bowers, Darci

    1999-01-01

    We quantified the summertime distribution of tropospheric ozone in the topographically complex Nisqually River drainage of Mount Rainier National Park from 1994 to 1997. Passive ozone samplers were used along an elevational transect to measure weekly average ozone concentrations ranging from 570 m to 2040 m elevation. Weekly average ozone concentrations were positively correlated with elevation, with the highest concentrations consistently measured at the highest sampling site (Panorama Point). Weekly average ozone concentrations at Mount Rainier National Park are considerably higher than those in the Seattle-Tacoma metropolitan area to the west. The anthropogenic contribution to ozone within the Nisqually drainage was evaluated by comparing measurements at this location with measurements from a 'reference' site in the western Olympic Mountains. The comparison suggests there is a significant anthropogenic source of ozone reaching the Cascade Range via atmospheric transport from urban areas to the west. In addition. temporal (week to week) variation in ozone distribution is synchronous within the Nisqually drainage, which indicates that subregional patterns are detectable with weekly averages. The Nisqually drainage is likely the 'hot spot' for air pollution in Mount Rainier National Park. By using passive ozone samplers in this drainage in conjunction with a limited number of continuous analyzers, the park will have a robust monitoring approach for measuring tropospheric ozone over time and protecting vegetative and human health.

  20. Patterns of lymphatic drainage from the skin in patients with melanoma.

    PubMed

    Uren, Roger F; Howman-Giles, Robert; Thompson, John F

    2003-04-01

    An essential prerequisite for a successful sentinel lymph node biopsy (SLNB) procedure is an accurate map of the pattern of lymphatic drainage from the primary tumor site in each patient. In melanoma patients, mapping requires high-quality lymphoscintigraphy, which can identify the actual lymphatic collecting vessels as they drain into the sentinel lymph nodes. Small-particle radiocolloids are needed to achieve this goal, and imaging protocols must be adapted to ensure that all true sentinel nodes, including those in unexpected locations, are found in every patient. Clinical prediction of lymphatic drainage from the skin is not possible. The old clinical guidelines based on Sappey's lines therefore should be abandoned. Patterns of lymphatic drainage from the skin are highly variable from patient to patient, even from the same area of the skin. Unexpected lymphatic drainage from the skin of the back to sentinel nodes in the triangular intermuscular space and, in some patients, through the posterior body wall to sentinel nodes in the para-aortic, paravertebral, and retroperitoneal areas has been found. Lymphatic drainage from the head and neck frequently involves sentinel nodes in multiple node fields and can occur from the base of the neck up to nodes in the occipital or upper cervical areas or from the scalp down to nodes at the neck base, bypassing many node groups. The sentinel node is not always found in the nearest node field and is best defined as "any lymph node receiving direct lymphatic drainage from a primary tumor site." Lymphatic drainage can occur from the upper limb to sentinel nodes above the axilla. Drainage to the epitrochlear region from the hand and arm as well as to the popliteal region from the foot and leg is more common than was previously thought. Interval nodes, which lie along the course of a lymphatic vessel between a lesion site and a recognized node field, are not uncommon, especially in the trunk. Drainage across the midline of the body

  1. Fast carry accumulator design

    NASA Technical Reports Server (NTRS)

    Mastin, W. C.

    1971-01-01

    Simple iterative accumulator combined with gated-carry, carry-completion detection, and skip-carry circuits produces three accumulators with decreased carry propagation times. Devices are used in machine control, measurement equipment, and computer applications to increase speed of binary addition. NAND gates are used in combining network.

  2. Sediment management in sustainable urban drainage system ponds.

    PubMed

    Heal, K V; Hepburn, D A; Lunn, R J

    2006-01-01

    Since removal and disposal of sustainable urban drainage system (SUDS) sediment can incur high maintenance costs, assessments of sediment volumes, quality and frequency of removal are required. Sediment depth and quality were surveyed annually from 1999-2003 in three ponds and one wetland in Dunfermline, Scotland, UK. Highest sediment accumulation occurred in Halbeath Pond, in the most developed watershed and with no surface water management train. From comparison of measured potentially toxic metal concentrations (Cd, Cr, Cu, Fe, Ni, Pb, Zn) with standards, the average sediment quality should not impair aquatic ecosystems. 72-84% of the metal flux into the SUDS was estimated to be associated with coarse sediment (> 500 microm diameter) suggesting that management of coarse sediment is particularly important at this site. The timing of sediment removal for these SUDS is expected to be determined by loss of storage volume, rather than by accumulation of contaminants. If sediment removal occurs when 25% of the SUDS storage volume has infilled, it would be required after 17 years in Halbeath Pond, but only after 98 years in Linburn Pond (which has upstream detention basins). From the quality measurements, sediment disposal should be acceptable on adjacent land within the boundaries of the SUDS studied. PMID:16838706

  3. Quantifying radar-rainfall uncertainties in urban drainage flow modelling

    NASA Astrophysics Data System (ADS)

    Rico-Ramirez, M. A.; Liguori, S.; Schellart, A. N. A.

    2015-09-01

    This work presents the results of the implementation of a probabilistic system to model the uncertainty associated to radar rainfall (RR) estimates and the way this uncertainty propagates through the sewer system of an urban area located in the North of England. The spatial and temporal correlations of the RR errors as well as the error covariance matrix were computed to build a RR error model able to generate RR ensembles that reproduce the uncertainty associated with the measured rainfall. The results showed that the RR ensembles provide important information about the uncertainty in the rainfall measurement that can be propagated in the urban sewer system. The results showed that the measured flow peaks and flow volumes are often bounded within the uncertainty area produced by the RR ensembles. In 55% of the simulated events, the uncertainties in RR measurements can explain the uncertainties observed in the simulated flow volumes. However, there are also some events where the RR uncertainty cannot explain the whole uncertainty observed in the simulated flow volumes indicating that there are additional sources of uncertainty that must be considered such as the uncertainty in the urban drainage model structure, the uncertainty in the urban drainage model calibrated parameters, and the uncertainty in the measured sewer flows.

  4. The venous drainage of the human myocardium.

    PubMed

    von Lüdinghausen, M

    2003-01-01

    venous system. The microanatomy of the various proper cardiac veins is not very well explained and illustrated in old or new literature; therefore, special attention is paid in the present study to the detailed microanatomy of the cardiac venous drainage. This includes the topograpy and structural and surface anatomy of the coronary sinus (position, length and shape, diameters, area of cross-section, circumference and volume, curvature, elevation, ostial angle, enlargement, duplication, absence), and the exact enternal and internal morphological landmarks of the coronary sinus with reference to its myocardial cover, isolated myocardial belts, and "free" myocardial cords which connect the atrial and ventricular myocardium, and the atrial ostium of the coronary sinus. It is established that the frequency, distribution pattern, courses and mode of opening of the major ventricular and atrial cardiac veins and the occurrence, morphology, and efficiency of the ostial valves of the coronary sinus and its tributaries all influence the success of any selective catheter implantation and venous reperfusion technique to a great degree. There are many peculiarities of the cardiac veins which are worthy of consideration, for instance intramyocardial and aberrant courses of the anterior interventricular vein, the oblique vein of the left atrium, the posterior interventricular vein, the small cardiac vein, the posterior vein of the left ventricle, the left and right marginal veins, and the anterior cardiac veins. Various forms and courses of the intramural venous tunnel, sinus or channel of the right atrium were found and illustrated, and discussed in terms of developmental and comparative anatomy. This review incorporates a great variety of clinically significant, new morphological findings with regard to the coronary sinus and the cardiac venous system. The many anatomical peculiarities and hindrances to the catheterization of the coronary sinus and the reperfusion of (even selected

  5. A&M. Grading and drainage plan. Shows natural ground elevation of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Grading and drainage plan. Shows natural ground elevation of the (presumed) dry lake-bed shore and berm shielding the administrative area from the hot shop area. Ralph M. Parsons 902-2&3-ANP-U 4. Date: December 1953. Approved by INEEL Classification Office for public release. INEEL code no. 032-0000-00-693-106691 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  6. GROUNDWATER IMPACTED BY ACID MINE DRAINAGE

    EPA Science Inventory

    The generation and release of acidic, metal-rich water from mine wastes continues to be an intractable environmental problem. Although the effects of acid mine drainage (AMD) are most evident in surface waters, there is an obvious need for developing cost-effective approaches fo...

  7. Drainage hydraulics of permeable friction courses

    NASA Astrophysics Data System (ADS)

    Charbeneau, Randall J.; Barrett, Michael E.

    2008-04-01

    This paper describes solutions to the hydraulic equations that govern flow in permeable friction courses (PFC). PFC is a layer of porous asphalt approximately 50 mm thick that is placed as an overlay on top of an existing conventional concrete or asphalt road surface to help control splash and hydroplaning, reduce noise, and enhance quality of storm water runoff. The primary objective of this manuscript is to present an analytical system of equations that can be used in design and analysis of PFC systems. The primary assumptions used in this analysis are that the flow can be modeled as one-dimensional, steady state Darcy-type flow and that slopes are sufficiently small so that the Dupuit-Forchheimer assumptions apply. Solutions are derived for cases where storm water drainage is confined to the PFC bed and for conditions where the PFC drainage capacity is exceeded and ponded sheet flow occurs across the pavement surface. The mathematical solutions provide the drainage characteristics (depth and residence time) as a function of rainfall intensity, PFC hydraulic conductivity, pavement slope, and maximum drainage path length.

  8. 24 CFR 3280.610 - Drainage systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... be used to join copper tubing to threaded pipe. (c) Drain outlets. (1) Each manufactured home shall.... (2) (e) Size of drainage piping—(1) Fixture load. Except as provided by § 3280.611(d), drain pipe.... (2) Size. A wet-vented drain pipe shall be 2 inches minimum diameter and at least one pipe...

  9. BEHAVIOR OF DOUBLE GEONET DRAINAGE SYSTEMS

    EPA Science Inventory

    Geonets have become a popular component of leak detection systems at surface impoundments, waste piles, landfills and heap leach systems. hey provide a reasonable alternative to gravel drainage designs which become costly when large quantities of leachate are anticipated. This pa...

  10. Use of Water Fluxmeters to Measure Drainage

    SciTech Connect

    Gee, Glendon W.; Ward, Andy L.; Zhang, Z. F.; Anandacoomaraswamy, A.

    2004-03-24

    Water supplies throughout the world are rapidly diminishing in quantity and quality. Efforts over the next decade must focus on methods which use water more efficiently for agriculture, industry, and recreational purposes, and at the same time reduce the potential for groundwater pollution. To assist in this effort, we have developed an improved method to simultaneously measure drainage quantity and quality using a water fluxmeter. Our water fluxmeter is a wick-lysimeter fitted with a small tipping-spoon and a solution-collection system. The only moving part is the tipping spoon. We have tested our fluxmeters under a range of conditions, from non-vegetated desert settings in Washington State USA, to irrigated tea plantations in Sri Lanka. Conditions of over-irrigation have been documented with our fluxmeters. When 4200 mm of water was applied to sandy soil via drip irrigation, at the Washington State site, over 3100 mm of drainage occurred. In contrast, at the same site, in the absence of both irrigation and vegetation, drainage was found to range from 0 mm/yr for a 1-m-deep silt loam soil to more than 100 mm/yr for a coarse-gravel surface. Solute transport, related to nitrate leaching can also be analyzed using water fluxmeters. Water fluxmeters have provided a reliable and inexpensive method to assess both quantity and quality of drainage waters over a wide range of environmental conditions.

  11. DESIGN MANUAL: NEUTRALIZATION OF ACID MINE DRAINAGE

    EPA Science Inventory

    This manual was prepared to assist designers and operators of mine drainage treatment plants in the selection of processes, equipment, and procedures. Included is a review of the most popular neutralizing agents and the methods used to handle, prepare, and feed these alkalies. Al...

  12. Alfalfa production using saline drainage water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A three year study investigated the use of saline (< 6 dS/m) drainage water for irrigation of salt tolerant alfalfa in the presence of shallow saline groundwater. The irrigation treatments included; irrigating twice between cuttings with non-saline water, 2) irrigating with moderately saline water...

  13. Reality named endoscopic ultrasound biliary drainage.

    PubMed

    Guedes, Hugo Gonçalo; Lopes, Roberto Iglesias; de Oliveira, Joel Fernandez; Artifon, Everson Luiz de Almeida

    2015-10-25

    Endoscopic ultrasound (EUS) is used for diagnosis and evaluation of many diseases of the gastrointestinal (GI) tract. In the past, it was used to guide a cholangiography, but nowadays it emerges as a powerful therapeutic tool in biliary drainage. The aims of this review are: outline the rationale for endoscopic ultrasound-guided biliary drainage (EGBD); detail the procedural technique; evaluate the clinical outcomes and limitations of the method; and provide recommendations for the practicing clinician. In cases of failed endoscopic retrograde cholangiopancreatography (ERCP), patients are usually referred for either percutaneous transhepatic biliary drainage (PTBD) or surgical bypass. Both these procedures have high rates of undesirable complications. EGBD is an attractive alternative to PTBD or surgery when ERCP fails. EGBD can be performed at two locations: transhepatic or extrahepatic, and the stent can be inserted in an antegrade or retrograde fashion. The drainage route can be transluminal, duodenal or transpapillary, which, again, can be antegrade or retrograde [rendezvous (EUS-RV)]. Complications of all techniques combined include pneumoperitoneum, bleeding, bile leak/peritonitis and cholangitis. We recommend EGBD when bile duct access is not possible because of failed cannulation, altered upper GI tract anatomy, gastric outlet obstruction, a distorted ampulla or a periampullary diverticulum, as a minimally invasive alternative to surgery or radiology. PMID:26504507

  14. 24 CFR 3280.610 - Drainage systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., correctly located according to the size and type of fixture to be connected. (1) Water closet connection.... (2) (e) Size of drainage piping—(1) Fixture load. Except as provided by § 3280.611(d), drain pipe.... (2) Size. A wet-vented drain pipe shall be 2 inches minimum diameter and at least one pipe...

  15. CATAWISSA CREEK MINE DRAINAGE ABATEMENT PROJECT

    EPA Science Inventory

    The objective of this study was to determine the feasibility of flooding underground coal mine workings in an isolated basin of coal, thereby restoring or partially restoring the groundwater table in the basin and reducing the production of acid mine drainage. Flooding the mined ...

  16. Reality named endoscopic ultrasound biliary drainage

    PubMed Central

    Guedes, Hugo Gonçalo; Lopes, Roberto Iglesias; de Oliveira, Joel Fernandez; Artifon, Everson Luiz de Almeida

    2015-01-01

    Endoscopic ultrasound (EUS) is used for diagnosis and evaluation of many diseases of the gastrointestinal (GI) tract. In the past, it was used to guide a cholangiography, but nowadays it emerges as a powerful therapeutic tool in biliary drainage. The aims of this review are: outline the rationale for endoscopic ultrasound-guided biliary drainage (EGBD); detail the procedural technique; evaluate the clinical outcomes and limitations of the method; and provide recommendations for the practicing clinician. In cases of failed endoscopic retrograde cholangiopancreatography (ERCP), patients are usually referred for either percutaneous transhepatic biliary drainage (PTBD) or surgical bypass. Both these procedures have high rates of undesirable complications. EGBD is an attractive alternative to PTBD or surgery when ERCP fails. EGBD can be performed at two locations: transhepatic or extrahepatic, and the stent can be inserted in an antegrade or retrograde fashion. The drainage route can be transluminal, duodenal or transpapillary, which, again, can be antegrade or retrograde [rendezvous (EUS-RV)]. Complications of all techniques combined include pneumoperitoneum, bleeding, bile leak/peritonitis and cholangitis. We recommend EGBD when bile duct access is not possible because of failed cannulation, altered upper GI tract anatomy, gastric outlet obstruction, a distorted ampulla or a periampullary diverticulum, as a minimally invasive alternative to surgery or radiology. PMID:26504507

  17. SODA ASH TREATMENT OF NEUTRALIZED MINE DRAINAGE

    EPA Science Inventory

    Utilization of acid mine drainage (AMD) streams as a source of potable and industrial water has become a major goal of several proposed AMD treatment schemes. From among the various schemes available, the lime neutralization/soda ash softening process was selected for use at Alto...

  18. DRAINAGE IN FINITE-SIZED UNSATURATED ZONES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After the initiation of gravity drainage, water is often assumed to be either a) draining under unit gradient, or b) at capillary/gravity equilibrium. Both of these simplifications can be useful, but the regimes of validity of each assumption must be delineated. Water pressures are measured versus t...

  19. Physical modeling of transverse drainage mechanisms

    NASA Astrophysics Data System (ADS)

    Douglass, J. C.; Schmeeckle, M. W.

    2005-12-01

    Streams that incise across bedrock highlands such as anticlines, upwarps, cuestas, or horsts are termed transverse drainages. Their relevance today involves such diverse matters as highway and dam construction decisions, location of wildlife corridors, better-informed sediment budgets, and detailed studies into developmental histories of late Cenozoic landscapes. The transient conditions responsible for transverse drainage incision have been extensively studied on a case-by-case basis, and the dominate mechanisms proposed include: antecedence, superimposition, overflow, and piracy. Modeling efforts have been limited to antecedence, and such the specific erosional conditions required for transverse drainage incision, with respect to the individual mechanisms, remains poorly understood. In this study, fifteen experiments attempted to simulate the four mechanisms and constructed on a 9.15 m long, 2.1 m wide, and 0.45 m deep stream table. Experiments lasted between 50 and 220 minutes. The stream table was filled with seven tons of sediment consisting of a silt and clay (30%) and a fine to coarse sand (70%) mixture. The physical models highlighted the importance of downstream aggradation with regard to antecedent incision versus possible defeat and diversion. The overflow experiments indicate that retreating knickpoints across a basin outlet produce a high probability of downstream flooding when associated with a deep lake. Misters used in a couple of experiments illustrate a potential complication with regard to headward erosion driven piracy. Relatively level asymmetrically sloped ridges allow for the drainage divide across the ridge to retreat from headward erosion, but hindered when the ridge's apex undulates or when symmetrically sloped. Although these physical models cannot strictly simulate natural transverse drainages, the observed processes, their development over time, and resultant landforms roughly emulate their natural counterparts. Proposed originally from

  20. Net mass balance calculations for the Shirase Drainage Basin, east Antarctica, using the mass budget method

    NASA Astrophysics Data System (ADS)

    Nakamura, Kazuki; Yamanokuchi, Tsutomu; Doi, Koichiro; Shibuya, Kazuo

    2016-06-01

    We quantify the mass budget of the Shirase drainage basin (SHI), Antarctica, by separately estimating snow accumulation (surface mass balance; SMB) and glacier ice mass discharge (IMD). We estimated the SMB in the SHI, using a regional atmospheric climate model (RACMO2.1). The SMB of the mainstream A flow region was 12.1 ± 1.5 Gt a-1 for an area of 1.985 × 105 km2. Obvious overestimation of the model round the coast, ∼0.5 Gt a-1, was corrected for. For calculating the IMD, we employed a 15-m resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with a digital elevation model (DEM) to determine the heights at the grounding line (GL), after comparison with the interpolated Bamber DEM grid heights; the results of this are referred to as the measured heights. Ice thickness data at the GL were inferred by using a free-board relationship between the measured height and the ice thickness, and considering the measured firn depth correction (4.2 m with the reference ice density of 910 kg m-3) for the nearby blue-ice area. The total IMD was estimated to be 14.0 ± 1.8 Gt a-1. Semi-empirical firn densification model gives the estimate within 0.1-0.2 Gt a-1 difference. The estimated net mass balance, -1.9 Gt a-1, has a two-σ uncertainty of ±3.3 Gt a-1, and probable melt water discharge strongly suggests negative NMB, although the associated uncertainty is large.

  1. Identification of Bedrock Lithology using Fractal Dimensions of Drainage Networks extracted from Medium Resolution LiDAR Digital Terrain Models

    NASA Astrophysics Data System (ADS)

    Cámara, Joaquín; Gómez-Miguel, Vicente; Martín, Miguel Ángel

    2016-03-01

    Geologists know that drainage networks can exhibit different drainage patterns depending on the hydrogeological properties of the underlying materials. Geographic Information System (GIS) technologies and the increasing availability and resolution of digital elevation data have greatly facilitated the delineation, quantification, and study of drainage networks. This study investigates the possibility of inferring geological information of the underlying material from fractal and linear parameters describing drainage networks automatically extracted from 5-m-resolution LiDAR digital terrain model (DTM) data. According to the lithological information (scale 1:25,000), the study area is comprised of 30 homogeneous bedrock lithologies, the lithological map units (LMUs). These are mostly igneous and metamorphic rocks, but also include some sedimentary rocks. A statistical classification model of the LMUs by rock type has been proposed based on both the fractal dimension and drainage density of the overlying drainage networks. The classification model has been built using 16 LMUs, and it has correctly classified 13 of the 14 LMUs used for its validation. Results for the study area show that LMUs, with areas ranging from 177.83 ± 0.01 to 3.16 ± 0.01 km2, can be successfully classified by rock type using the fractal dimension and the drainage density of the drainage networks derived from medium resolution LiDAR DTM data with different flow support areas. These results imply that the information included in a 5-m-resolution LiDAR DTM and the appropriate techniques employed to manage it are the only inputs required to identify the underlying geological materials.

  2. 14 CFR 27.1187 - Ventilation and drainage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Fire Protection § 27.1187 Ventilation... cause an additional fire hazard. ... for ventilation and drainage of flammable fluids. The drainage means must be— (a) Effective...

  3. Nutrient Attenuation Under Natural Conditions in Agricultural Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage ditches are common practice in agricultural landscapes with poorly drained soils. Even though high concentrations of nutrients and other agricultural chemicals have been reportedly associated with agricultural drainage ditches, processes affecting nutrient transport in these ditches are not...

  4. 46 CFR 178.410 - Drainage of flush deck vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.410 Drainage of flush deck vessels. (a) Except as provided in paragraph (b) of this section, the weather deck on a flush deck...

  5. 46 CFR 178.410 - Drainage of flush deck vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.410 Drainage of flush deck vessels. (a) Except as provided in paragraph (b) of this section, the weather deck on a flush deck...

  6. 46 CFR 116.1110 - Drainage of flush deck vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ARRANGEMENT Drainage and Watertight Integrity of Weather Decks § 116.1110 Drainage of flush deck vessels. (a) Except as provided in paragraph (b) of this section, the weather deck on a flush deck vessel must...

  7. 46 CFR 178.410 - Drainage of flush deck vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.410 Drainage of flush deck vessels. (a) Except as provided in paragraph (b) of this section, the weather deck on a flush deck...

  8. 46 CFR 116.1110 - Drainage of flush deck vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ARRANGEMENT Drainage and Watertight Integrity of Weather Decks § 116.1110 Drainage of flush deck vessels. (a) Except as provided in paragraph (b) of this section, the weather deck on a flush deck vessel must...

  9. 46 CFR 116.1110 - Drainage of flush deck vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ARRANGEMENT Drainage and Watertight Integrity of Weather Decks § 116.1110 Drainage of flush deck vessels. (a) Except as provided in paragraph (b) of this section, the weather deck on a flush deck vessel must...

  10. 46 CFR 116.1110 - Drainage of flush deck vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ARRANGEMENT Drainage and Watertight Integrity of Weather Decks § 116.1110 Drainage of flush deck vessels. (a) Except as provided in paragraph (b) of this section, the weather deck on a flush deck vessel must...

  11. 46 CFR 178.410 - Drainage of flush deck vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.410 Drainage of flush deck vessels. (a) Except as provided in paragraph (b) of this section, the weather deck on a flush deck...

  12. 46 CFR 178.410 - Drainage of flush deck vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.410 Drainage of flush deck vessels. (a) Except as provided in paragraph (b) of this section, the weather deck on a flush deck...

  13. Detecting Subsurface Agricultural Tile Drainage using GIS and Remote Sensing Technique

    NASA Astrophysics Data System (ADS)

    Budhathoki, M.; Gokkaya, K.; Tank, J. L.; Christopher, S. F.; Hanrahan, B.

    2015-12-01

    Subsurface tile drainage is a common practice in many of the row crop dominated agricultural lands in the Upper Midwest, which increases yield by making the soil more productive. It is reported that nearly half of all cropland in Indiana benefits from some sort of artificial drainage. However, subsurface tile has a significant negative impact on surface water quality by providing a fast means of transport for nutrients from fertilizers. Therefore, generating spatial data of tile drainage in the field is important and useful for agricultural landscape and hydrological studies. Subsurface tile drains in Indiana's croplands are not widely mapped. In this study, we will delineate subsurface tile drainage in agricultural land in Shatto Ditch watershed, located in Kosciusko County, Indiana. We will use geo-spatial methodology, which was purposed by earlier researchers to detect tile drainage. We will use aerial color-infrared and satellite imagery along with Light Detection and Ranging (LiDAR) data. In order to map tile lines with possible accuracy, we will use GIS-based analysis in combination with remotely sensed data. This research will be comprised of three stages: 1) masking out the potential drainage area using a decision tree rule based on land cover information, soil drainage category, surface slope, and satellite image differencing technique, 2) delineate tile lines using image processing techniques, and 3) check the accuracy of mapped tile lines with ground control points. To our knowledge, this study will be the first to check the accuracy of mapping with ground truth data. Based on the accuracy of results, we will extend the methodology to greater spatial scales. The results are expected to contribute to better characterizing and controlling water pollution sources in Indiana, which is a major environmental problem.

  14. COMPOST-FREE BIOREACTOR TREATMENT OF ACID ROCK DRAINAGE LEVIATHAN MINE, CALIFORNIA INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    As part of the Superfund Innovative Technology Evaluation (SITE) program, an evaluation of the compost-free bioreactor treatment of acid rock drainage (ARD) from the Aspen Seep was conducted at the Leviathan Mine Superfund site located in a remote, high altitude area of Alpine Co...

  15. COMPOST-FREE BIOLOGICAL TREATMENT OF ACID ROCK DRAINAGE, TECHNICAL EVALUATION BULLETIN

    EPA Science Inventory

    As part of the Superfund Innovative Technology Evaluation (SITE) program, an evaluation of the compost-free bioreactor treatment of acid rock drainage (ARD) from the Aspen Seep was conducted at the Leviathan Mine Superfund site located in a remote, high altitude area of Alpine Co...

  16. COMPOST-FREE BIOREACTOR TREATMENT OF ACID ROCK DRAINAGE - TECHNOLOGY CAPSULE

    EPA Science Inventory

    As part of the Superfund Innovative Technology Evaluation (SITE) program, an evaluation of the compost-free bioreactor treatment of acid rock drainage (ARD) from the Aspen Seep was conducted at the Leviathan Mine Superfund site located in a remote, high altitude area of Alpine Co...

  17. UNDERGROUND MINE DRAINAGE CONTROL SNOWY CREEK-LAUREL RUN, WEST VIRGINIA, FEASIBILITY STUDY

    EPA Science Inventory

    A study was conducted at the Snowy Creek - Laurel Run basin near Terra Alta, West Virginia, to determine the feasibility of demonstrating mine drainage control by known abatement techniques in abandoned coal mine areas having shallow overburden. The basin contains two abandoned m...

  18. Watershed scale nitrogen and phosphorus partitioning between surface and subsurface drainage waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface drainage is a necessity for crop production agriculture in humid climates with poorly drained soils. The Midwestern United States is the most productive agricultural area in the world. In excess of 20.6 million ha (37%) of the tillable acres in the Midwest are managed with subsurface tile...

  19. A GIS-based approach in drainage morphometric analysis of Kanhar River Basin, India

    NASA Astrophysics Data System (ADS)

    Rai, Praveen Kumar; Mohan, Kshitij; Mishra, Sameer; Ahmad, Aariz; Mishra, Varun Narayan

    2014-11-01

    The study indicates that analysis of morphometric parameters with the help of geographic information system (GIS) would prove a viable method of characterizing the hydrological response behaviour of the watershed. It is also well observed that remote sensing satellite data is emerging as the most effective, time saving and accurate technique for morphometric analysis of a basin. This technique is found relevant for the extraction of river basin and its stream networks through ASTER (DEM) in conjunction with remote sensing satellite data (Landsat etm+, 2013 and georeferenced survey of Indian toposheet, 1972). In this study, Kanhar basin a tributaries of Son River has been selected for detailed morphometric analysis. Seven sub-watersheds are also delineated within this basin to calculate the selected morphometric parameters. Morphometric parameters viz; stream order, stream length, bifurcation ratio, drainage density, stream frequency, form factor, circulatory ratio, etc., are calculated. The drainage area of the basin is 5,654 km2 and shows sub-dendritic to dendritic drainage pattern. The stream order of the basin is mainly controlled by physiographic and lithological conditions of the area. The study area is designated as seventh-order basin with the drainage density value being as 1.72 km/km2. The increase in stream length ratio from lower to higher order shows that the study area has reached a mature geomorphic stage.

  20. Observations of drainage network change in a recently burned watershed using terrestrial laser scanning

    USGS Publications Warehouse

    Staley, Dennis; Wasklewicz, Thad; Kean, Jason

    2010-01-01

    Wildfire enhances the geomorphic response of a watershed to precipitation events, effectively altering the form of the hillslope and channel drainage network. Typically, drainage networks expand following rainfall on a recently burned watershed. Expansion of drainage networks following wildfire increases in erosion and sediment transport rates, and the probability of flash-flooding and debris-flows at downstream locations. Observations of the response of hillslope and channel drainage to individual precipitation events are vital to unraveling the dynamics of erosion processes in recently burned watersheds. Here, we apply terrestrial laser scanning (TLS) methods to produce digital terrain models (DTMs) of a recently burned watershed at an unprecedented spatial resolution. The DTM data aid the quantification of changes in the hillslope and channel drainage networks at several spatial scales. Two TLS surveys were conducted, one survey between 28-30 September 2008 to document pre-rainfall conditions, and one between 18-21 December 2008, three days after 52 mm of rainfall over a period of 22 hours. A Leica Geosystems ScanStation 2 TLS was used to generate 1 cm resolution DTMs, from which the hillslope and channel drainage networks were derived. The location and magnitude of erosion and deposition for each pixel within the basin was determined by calculating the topographic differences between DTMs. Changes in the drainage network morphology were identified through the analysis of bifurcation ratio, drainage density (including rills), rill length, horizontal migration of rills, width-depth ratios and upstream migration of knickpoints. Comparisons of these measures were made between morphologically distinct sub-basins within the study area, and between surveys. Analyses of bifurcation ratios, and measures of rill position and gullyhead migration indicate an expansion of the rill network and upstream migration of knickpoints. These results suggest that expansion of the

  1. A Comparison of Preoperative Biliary Drainage Methods for Perihilar Cholangiocarcinoma: Endoscopic versus Percutaneous Transhepatic Biliary Drainage

    PubMed Central

    Kim, Kwang Min; Park, Ji Won; Lee, Jong Kyun; Lee, Kwang Hyuck; Lee, Kyu Taek; Shim, Sang Goon

    2015-01-01

    Background/Aims Controversy remains over the optimal approach to preoperative biliary drainage in patients with resectable perihilar cholangiocarcinoma. We compared the clinical outcomes of endoscopic biliary drainage (EBD) with those of percutaneous transhepatic biliary drainage (PTBD) in patients undergoing preoperative biliary drainage for perihilar cholangiocarcinoma. Methods A total of 106 consecutive patients who underwent biliary drainage before surgical treatment were divided into two groups: the PTBD group (n=62) and the EBD group (n=44). Results Successful drainage on the first attempt was achieved in 36 of 62 patients (58.1%) with PTBD, and in 25 of 44 patients (56.8%) with EBD. There were no significant differences in predrainage patient demographics and decompression periods between the two groups. Procedure-related complications, especially cholangitis and pancreatitis, were significantly more frequent in the EBD group than the PTBD group (PTBD vs EBD: 22.6% vs 54.5%, p<0.001). Two patients (3.8%) in the PTBD group experienced catheter tract implantation metastasis after curative resection during the follow-up period. Conclusions EBD was associated with a higher risk of procedure-related complications than PTBD. These complications were managed properly without severe morbidity; however, in the PTBD group, there were two cases of cancer dissemination along the catheter tract. PMID:26087784

  2. Brief communication: Possible explanation of the values of Hack's drainage basin, river length scaling exponent

    NASA Astrophysics Data System (ADS)

    Hunt, Allen G.

    2016-04-01

    Percolation theory can be used to find water flow paths of least resistance. Application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law may allow interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.

  3. Explanation of the values of Hack's drainage basin, river length scaling exponent

    NASA Astrophysics Data System (ADS)

    Hunt, A. G.

    2015-08-01

    Percolation theory can be used to find water flow paths of least resistance. The application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law allows interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.

  4. The usefulness of Wi-Fi based digital chest drainage system in the post-operative care of pneumothorax

    PubMed Central

    Cho, Hyun Min; Hong, Yoon Joo; Byun, Chun Sung

    2016-01-01

    Background Chest drainage systems are usually composed of chest tube and underwater-seal bottle. But this conventional system may restrict patients doing exercise and give clinicians obscure data about when to remove tubes because there is no objective indicator. Recently developed digital chest drainage systems may facilitate interpretation of the grade of air leak and make it easy for clinicians to decide when to remove chest tubes. In addition, with combination of wireless internet devices, monitoring and managing of drainage system distant from the patient is possible. Methods Sixty patients of primary pneumothorax were included in a prospective randomized study and divided into two groups. Group I (study) consisted of digital chest drainage system while in group II (control), conventional underwater-seal chest bottle system was used. Data was collected from January, 2012 to September, 2013 in Eulji University Hospital, Daejeon, Korea. Results There was no difference in age, sex, smoking history and postoperative pain between two groups. But the average length of drainage was 2.2 days in group I and 3.1 days in group II (P<0.006). And more, about 90% of the patients in group I was satisfied with using new device for convenience. Conclusions Digital system was beneficial on reducing the length of tube drainage by real time monitoring. It also had advantage in portability, loudness and gave more satisfaction than conventional system. Moreover, internet based digital drainage system will be a good method in thoracic telemedicine area in the near future. PMID:27076934

  5. Evaluation of design factors for a cascade aerator to enhance the efficiency of an oxidation pond for ferruginous mine drainage.

    PubMed

    Oh, Chamteut; Ji, Sangwoo; Cheong, Youngwook; Yim, Giljae; Hong, Ji-Hye

    2016-10-01

    This research focused on the optimum design of a cascade aerator to enhance the efficiency of an oxidation pond in a passive treatment system for remediating ferruginous mine drainage. For this purpose, various aeration experiments with aerators of different drop heights (0-4 m) and formations (types A and B) were executed on mine drainage. Type A simply drops the mine drainage into the oxidation pond while type B sprays the mine drainage and retains it for 8 min in each step. The efficiency enhancement of the oxidation pond was strongly dependent on the increase in pH and DO of the mine drainage discharged into the pond. The water quality improved with the increase in drop height but especially showed better effect with type B. The reasons for this result were attributed to the increase of contact surface and retention time of the mine drainage. The cascade aerator, therefore, should be designed to be as high as possible with the assistance of spraying form and retention time of the mine drainage to maximize the efficiency of the oxidation pond. These effects could be evaluated by calculating required areas of the oxidation pond for 95% of Fe(2+) oxidation. PMID:26936197

  6. Airborne remote sensing of coal waste and acid mine drainage

    SciTech Connect

    Kim, K.E.; Lee, T.S.

    1996-07-01

    High resolution airborne remote sensing data, spatial resolution of 2m X 2m, were used to study the stream quality degradation due to the coal mines in Taebaek city, one of the major coalfields in Korea. In order to circumvent the severe topographic effect and small scale of the water stream, principal components with the least variances were utilized. They showed the subtle details in the image that were obscured by higher contrast due to the topographic effect. Through maximum likelihood classification of those components, yellowboy and mine waste could be effectively identified. Areas affected by acid mine drainage and mine waste could be also located by identifying areas of dead or dying vegetation using vegetation index map.

  7. Assessing Nutrient Transport Following Dredging of Agricultural Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are vital for many agricultural landscapes in the U.S. Previous research has indicated that dredging agricultural drainage ditches may degrade water quality. In this study, we monitored nutrient transport in two drainage ditches for six years (2003-2008), during which t...

  8. 14 CFR 27.1187 - Ventilation and drainage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ventilation and drainage. 27.1187 Section... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Fire Protection § 27.1187 Ventilation... for ventilation and drainage of flammable fluids. The drainage means must be— (a) Effective...

  9. 46 CFR 171.155 - Drainage of an open boat.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Drainage of an open boat. 171.155 Section 171.155 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO VESSELS CARRYING PASSENGERS Drainage of Weather Decks § 171.155 Drainage of an open boat....

  10. 46 CFR 178.420 - Drainage of cockpit vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Drainage of cockpit vessels. 178.420 Section 178.420 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.420 Drainage of...

  11. 46 CFR 178.440 - Drainage of open boats.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Drainage of open boats. 178.440 Section 178.440 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.440 Drainage of open boats. The...

  12. 46 CFR 178.440 - Drainage of open boats.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Drainage of open boats. 178.440 Section 178.440 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.440 Drainage of open boats. The...

  13. 46 CFR 171.155 - Drainage of an open boat.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Drainage of an open boat. 171.155 Section 171.155 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO VESSELS CARRYING PASSENGERS Drainage of Weather Decks § 171.155 Drainage of an open boat....

  14. 46 CFR 178.440 - Drainage of open boats.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Drainage of open boats. 178.440 Section 178.440 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.440 Drainage of open boats. The...

  15. 46 CFR 178.420 - Drainage of cockpit vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Drainage of cockpit vessels. 178.420 Section 178.420 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.420 Drainage of...

  16. 46 CFR 171.155 - Drainage of an open boat.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Drainage of an open boat. 171.155 Section 171.155 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO VESSELS CARRYING PASSENGERS Drainage of Weather Decks § 171.155 Drainage of an open boat....

  17. 46 CFR 178.420 - Drainage of cockpit vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Drainage of cockpit vessels. 178.420 Section 178.420 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.420 Drainage of...

  18. Equations for drainage component of the field water balance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate estimates of the drainage component of the field water balance are needed to achieve improved management of drainage in irrigated crop production systems and obtain improved estimates of evapotranspiration (ET) from soil water measurements. Estimating drainage for numerous soil and field co...

  19. 46 CFR 178.440 - Drainage of open boats.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Drainage of open boats. 178.440 Section 178.440 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.440 Drainage of open boats. The...

  20. 46 CFR 171.155 - Drainage of an open boat.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Drainage of an open boat. 171.155 Section 171.155 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO VESSELS CARRYING PASSENGERS Drainage of Weather Decks § 171.155 Drainage of an open boat....

  1. 46 CFR 171.155 - Drainage of an open boat.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Drainage of an open boat. 171.155 Section 171.155 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO VESSELS CARRYING PASSENGERS Drainage of Weather Decks § 171.155 Drainage of an open boat....

  2. 46 CFR 178.420 - Drainage of cockpit vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Drainage of cockpit vessels. 178.420 Section 178.420 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.420 Drainage of...

  3. 46 CFR 178.420 - Drainage of cockpit vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Drainage of cockpit vessels. 178.420 Section 178.420 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.420 Drainage of...

  4. 46 CFR 178.440 - Drainage of open boats.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Drainage of open boats. 178.440 Section 178.440 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.440 Drainage of open boats. The...

  5. Fluvial drainage systems: Margaritifer Sinus and Agyre (NC, NE) quadrangles, Mars

    NASA Technical Reports Server (NTRS)

    Boothroyd, J. C.; Grant, J. A.

    1984-01-01

    Fluvial drainage systems, delineated by mapping on stereo pairs of Viking Orbiter images, have developed in various-sized basins in the Margaritifer Sinus (MC-19) and Agyre (MC-26) Quadrangles, Mars. The Ladon Valles system is the largest, draining into and through two multi-ringed impact basins. Smaller fluvial basins to the southeast of the Ladon structural basin appear to have internal drainage. An intermediate-scale fluvial basin containing Himera Vallis extends along a north-south axis at 22 W and opens northward toward outflow channels south of Margaritifer Chaos. Stereo-pair mapping was extended furhter to the east, in MC-19 Ne, Se, and MC-26 NE, to investigate sources of outflow to the Ares Vallis system. The direction of flow in the channel at the northeast quadrant of the Ladon Basin is unresolved at present because of the poor quality of images available to form stereo pairs. However, an easterly drainage basin boundary running north-south along longitude 9 W, and extending westward at latitude 32-35 S, encloses a series of longitudinal drainage systems. Both the Parana Valles-Loire Vallis system and the Samara Valles system appear to drain in a northwesterly direction. The Samara flows to the Himera drainage basin, and the Parana-Loire to the northeast Ladon channel area.

  6. Quantifying urban intensity in drainage basins for assessing stream ecological conditions

    USGS Publications Warehouse

    McMahon, G.; Cuffney, T.F.

    2000-01-01

    Three investigations are underway, as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program, to study the relation between varying levels of urban intensity in drainage basins and in-stream water quality, measured by physical, chemical, and biological factors. These studies are being conducted in the vicinities of Boston (Massachusetts), Salt Lake City (Utah), and Birmingham (Alabama), areas where rapid urbanization is occurring. For each study, water quality will be sampled in approximately 30 drainage basins that represent a gradient of urban intensity. This paper focuses on the methods used to characterize and select the basins used in the studies. It presents a methodology for limiting the variability of natural landscape characteristics in the potential study drainage basins and for ranking the magnitude of human influence, or urbanization, based on land cover, infrastructure, and socioeconomic data in potential study basins. Basin characterization efforts associated with the Boston study are described for illustrative purposes.

  7. Drainage investment and wetland loss: an analysis of the national resources inventory data

    USGS Publications Warehouse

    Douglas, Aaron J.; Johnson, Richard L.

    1994-01-01

    The United States Soil Conservation Service (SCS) conducts a survey for the purpose of establishing an agricultural land use database. This survey is called the National Resources Inventory (NRI) database. The complex NRI land classification system, in conjunction with the quantitative information gathered by the survey, has numerous applications. The current paper uses the wetland area data gathered by the NRI in 1982 and 1987 to examine empirically the factors that generate wetland loss in the United States. The cross-section regression models listed here use the quantity of wetlands, the stock of drainage capital, the realty value of farmland and drainage costs to explain most of the cross-state variation in wetland loss rates. Wetlands preservation efforts by federal agencies assume that pecuniary economic factors play a decisive role in wetland drainage. The empirical models tested in the present paper validate this assumption.

  8. Film drainage of viscous liquids on top of bare bubble: Influence of the Bond number

    NASA Astrophysics Data System (ADS)

    Rouyer, Florence; Kočárková, Helena; Metallaoui, Salahedine; Pigeonneau, Franck; Lpmdi-Université Paris-Est Marne La Vallée Team; Svi-Saint-Gobain Recherche Team

    2011-11-01

    We present experimental result of film drainage on top of gas bubbles pushed by gravity forces toward the upper surface of a liquid bath for Newtonian liquids with mobile interface (UCON, castor oil and soda-lime-silica melt). The temporal evolution of the thickness of the film between a single bubble and the air/liquid interface is investigated via interference method under various physical conditions, range of viscosities and surface tension of the liquids, and bubble sizes. These experiments evidence the influence of the deformation of the thin film on the thinning rate and confirm the slow down of film drainage with Bond number as previously reported by numerical work. A simple model that considered the liquid flow in the cap squeezed by buoyancy forces of the bubble is in good agreement with experimental and numerical data. Qualitatively, the smaller is the area of the thin film compare to the surface of the bubble, the faster is the drainage.

  9. Nitrogen Accumulation, Transformations, And Export In Urban Ecosystems

    NASA Astrophysics Data System (ADS)

    Zhu, W.

    2006-05-01

    Global N biogeochemical cycle, like the global C cycle, has been fundamentally altered by human activities. Unlike C cycling, N inputs are regionally concentrated in human-dominated ecosystems such as large cities. The fate of elevated N input has important ecological and environmental consequences. In the arid Southwest, large quantities of N inputs can be accumulated in soils, due to the primary constraints of water on N usages and transfers. In a probability-based field sampling conducted in year 2000 in Central Arizona-Phoenix (a 6400- km2 study area), we found that farming and urbanization on average had caused an accumulative storage of 72.3 kg N/ha, mostly in the form of nitrate, in the surface 30 cm of soils. Hydrologic flowpaths over the arid urban landscapes could affect the fate of N. Our measured denitrification in urban retention basins had rates that were comparable to the highest reported in literature and constituted an important mechanism for N removal. In mesic Northeast, elevated atmospheric N deposition could alleviate natural N limitation to the ecosystem. Studies in remnant forests along an urban-to-rural gradient in the New York City metropolitan area showed higher soil N mineralization in urban sites than in rural sites. N transformations were found shifting from soluble organic N and NH4+ dominance to NO3- and nitrification, in agreement with the N saturation hypothesis. Changes in N biogeochemistry, however, are likely due to the combination of exotic earthworm invasion and the increase of N input, with both closely tied to human activities. Increases in ecosystem N availability and the shifting of N biogeochemical pathways lead to elevated N export. Using a small watershed approach, we studied Upper Susquehanna River drainage basin, the headwater area of the Chesapeake Bay. Our results showed significantly higher nitrate concentrations in urban streams than those watersheds with considerable agricultural land-use and rural watersheds

  10. Hydrogeomorphic effects of explosive volcanic eruptions on drainage basins

    USGS Publications Warehouse

    Pierson, Thomas C.; Major, Jon J.

    2014-01-01

    Explosive eruptions can severely disturb landscapes downwind or downstream of volcanoes by damaging vegetation and depositing large volumes of erodible fragmental material. As a result, fluxes of water and sediment in affected drainage basins can increase dramatically. System-disturbing processes associated with explosive eruptions include tephra fall, pyroclastic density currents, debris avalanches, and lahars—processes that have greater impacts on water and sediment discharges than lava-flow emplacement. Geo-morphic responses to such disturbances can extend far downstream, persist for decades, and be hazardous. The severity of disturbances to a drainage basin is a function of the specific volcanic process acting, as well as distance from the volcano and magnitude of the eruption. Postdisturbance unit-area sediment yields are among the world's highest; such yields commonly result in abundant redeposition of sand and gravel in distal river reaches, which causes severe channel aggradation and instability. Response to volcanic disturbance can result in socioeconomic consequences more damaging than the direct impacts of the eruption itself.

  11. Diminished Metal Accumulation in Riverine Fishes Exposed to Acid Mine Drainage over Five Decades

    PubMed Central

    Jeffree, Ross A.; Markich, Scott J.; Twining, John R.

    2014-01-01

    Bony bream (Nematalosa erebi) and black catfish (Neosilurus ater) were sampled from the fresh surface waters of the Finniss River in tropical northern Australia, along a metal pollution gradient draining the Rum Jungle copper/uranium mine, a contaminant source for over five decades. Paradoxically, populations of both fish species exposed to the highest concentrations of mine-related metals (cobalt, copper, lead, manganese, nickel, uranium and zinc) in surface water and sediment had the lowest tissue (bone, liver and muscle) concentrations of these metals. The degree of reduction in tissue concentrations of exposed populations was also specific to each metal and inversely related to its degree of environmental increase above background. Several explanations for diminished metal bioaccumulation in fishes from the contaminated region were evaluated. Geochemical speciation modeling of metal bioavailability in surface water showed no differences between the contaminated region and the control sites. Also, the macro-nutrient (calcium, magnesium and sodium) water concentrations, that may competitively inhibit metal uptake, were not elevated with trace metal contamination. Reduced exposure to contaminants due to avoidance behavior was unlikely due to the absence of refugial water bodies with the requisite metal concentrations lower than the control sites and very reduced connectivity at time of sampling. The most plausible interpretation of these results is that populations of both fish species have modified kinetics within their metal bioaccumulation physiology, via adaptation or tolerance responses, to reduce their body burdens of metals. This hypothesis is consistent with (i) reduced tissue concentrations of calcium, magnesium and sodium (macro-nutrients), in exposed populations of both species, (ii) experimental findings for other fish species from the Finniss River and other contaminated regions, and (iii) the number of generations exposed to likely selection pressure over 50 years. PMID:24663964

  12. Integrating Phytoextraction and Biofortification: Fungal Accumulation of Selenium in Plant Materials from Phytoremediation of Agricultural Drainage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phytomanagement of Se-polluted soil and water is one strategy that may be environmentally sustainable and cost-effective for soils and waters enriched with natural-occurring Se. Several plant species, including Indian mustard (Brassica juncea), pickleweed (Salicornia bigelovii), and other salt/S...

  13. Diminished metal accumulation in riverine fishes exposed to acid mine drainage over five decades.

    PubMed

    Jeffree, Ross A; Markich, Scott J; Twining, John R

    2014-01-01

    Bony bream (Nematalosa erebi) and black catfish (Neosilurus ater) were sampled from the fresh surface waters of the Finniss River in tropical northern Australia, along a metal pollution gradient draining the Rum Jungle copper/uranium mine, a contaminant source for over five decades. Paradoxically, populations of both fish species exposed to the highest concentrations of mine-related metals (cobalt, copper, lead, manganese, nickel, uranium and zinc) in surface water and sediment had the lowest tissue (bone, liver and muscle) concentrations of these metals. The degree of reduction in tissue concentrations of exposed populations was also specific to each metal and inversely related to its degree of environmental increase above background. Several explanations for diminished metal bioaccumulation in fishes from the contaminated region were evaluated. Geochemical speciation modeling of metal bioavailability in surface water showed no differences between the contaminated region and the control sites. Also, the macro-nutrient (calcium, magnesium and sodium) water concentrations, that may competitively inhibit metal uptake, were not elevated with trace metal contamination. Reduced exposure to contaminants due to avoidance behavior was unlikely due to the absence of refugial water bodies with the requisite metal concentrations lower than the control sites and very reduced connectivity at time of sampling. The most plausible interpretation of these results is that populations of both fish species have modified kinetics within their metal bioaccumulation physiology, via adaptation or tolerance responses, to reduce their body burdens of metals. This hypothesis is consistent with (i) reduced tissue concentrations of calcium, magnesium and sodium (macro-nutrients), in exposed populations of both species, (ii) experimental findings for other fish species from the Finniss River and other contaminated regions, and (iii) the number of generations exposed to likely selection pressure over 50 years. PMID:24663964

  14. Nutrient mass balance for the Albemarle-Pamlico Drainage Basin, North Carolina and Virginia, 1990

    USGS Publications Warehouse

    McMahon, G.; Woodside, M.D.

    1997-01-01

    A 1990 nitrogen and phosphorus mass balance calculated for eight National Stream Quality Accounting Network (NASQAN) basins in the Albemarle-Pamlico Drainage Basin indicated the importance of agricultural nonpoint sources of nitrogen and phosphorus and watershed nitrogen retention and processing capabilities. Basin total nitrogen and phosphorus input estimates were calculated for atmospheric deposition (which averaged 27 percent of total nitrogen inputs and 22 percent of total phosphorus inputs); crop fertilizer (27 and 25 percent); animal-waste (22 and 50 percent, respectively); point sources (3 percent each of total nitrogen and total phosphorus inputs); and biological nitrogen fixation (21 percent of total nitrogen inputs). Highest in-stream nitrogen and phosphorus loads were measured in predominantly agricultural drainage areas. Intermediate loads were observed in mixed agricultural/urban drainage areas; the lowest loads were measured in mixed agricultural/forested drainage areas. The difference between the sum of the nutrient input categories and the sum of the instream nutrient loads and crop-harvest nutrient removal was assigned to a residual category for the basin. The residual category averaged 51 percent of total nitrogen inputs and 54 percent of total phosphorus inputs.

  15. Bilothorax as a complication of percutaneous transhepatic biliary drainage.

    PubMed

    Sano, Atsushi; Yotsumoto, Takuma

    2016-01-01

    We report two cases of bilothorax that occurred as a complication of percutaneous transhepatic biliary drainage. In an 86-year-old woman who had undergone percutaneous transhepatic biliary drainage for obstructive jaundice, bilothorax occurred after accidental removal of the tube. She recovered with chest drainage only. An 83-year-old man who had undergone percutaneous transhepatic biliary drainage for cholecystitis developed bilothorax with infection. He recovered with thoracoscopic curettage. Although bilothorax is a rare complication of percutaneous transhepatic biliary drainage, appropriate diagnosis and prompt treatment is important, especially when bilothorax is accompanied by infection. PMID:26294694

  16. Percutaneous Transhepatic Biliary Drainage Complicated by Bilothorax.

    PubMed

    Kim, Stephanie H; Zangan, Steven M

    2015-03-01

    Percutaneous transhepatic biliary drainage (PTBD) is a well-established and safe technique for the management of biliary obstructions and leaks. While approach is variable based on operator preference, patient anatomy, and indications; PTBD is commonly performed via a right-sided intercostal route. With a right-sided approach, pleural complications may be encountered. The authors describe a case of a right PTBD complicated by a leak into the pleural space, with the subsequent development of bilothorax. PMID:27053829

  17. Estimating design-flood discharges for streams in Iowa using drainage-basin and channel-geometry characteristics

    USGS Publications Warehouse

    Eash, D.A.

    1993-01-01

    Procedures provided for applying the drainage-basin and channel-geometry regression equations depend on whether the design-flood discharge estimate is for a site on an ungaged stream, an ungaged site on a gaged stream, or a gaged site. When both a drainage-basin and a channel-geometry regression-equation estimate are available for a stream site, a procedure is presented for determining a weighted average of the two flood estimates. The drainage-basin regression equations are applicable to unregulated rural drainage areas less than 1,060 square miles, and the channel-geometry regression equations are applicable to unregulated rural streams in Iowa with stabilized channels.

  18. Capture and Characterization of Particulates Exported from Farm Drainage During a Storm Event: Effect on Phosphorus Loading

    NASA Astrophysics Data System (ADS)

    Bhadha, J. H.; Lang, T. A.; Daroub, S. H.

    2014-12-01

    Phosphorus (P)-enriched particulates in farms canals within the Everglades Agricultural Area (EAA) are susceptible to transport and contribute to the overall P load. During storm events, the volume of drainage discharge is significantly higher, and with it the mass of particulates exported. The particulates exported in the drainage water associated with tropical storm Isaac contained 47% higher OM, 65% higher TP, and 93% higher labile KCl-P fraction compared to the sediments. Based on the equilibrium P concentrations at the sediment-water interface, surface sediments behave as a source of P to the water column. A seven-day continuous drainage event exported 4.7 to 11.1 metric tons of suspended solids per farm, corresponding to 32 to 63 kg of particulate P being lost to downstream ecosystems. Drainage associated to a single storm event exported up to 64% of the total P load compared to the rest of the year.

  19. Drawdown behavior of gravity drainage wells

    SciTech Connect

    Aasen, J.A.; Ramey, H.J. Jr.

    1993-10-01

    An analytical solution for drawdown in gravity drainage wells is developed. The free-surface flow is viewed as incompressible, and anisotropy effects are included. The well is a line source well, and the reservoir is infinitely large. The model is valid for small drawdowns. The uniform wellbore potential inner boundary condition is modelled using the proper Green`s function. The discontinuity at the wellbore is solved by introducing a finite skin radius, and the formulation produces a seepage face. The calculated wellbore flux distribution and wellbore pressures are in fair agreement with results obtained using a numerical gravity drainage simulator. Three distinct flow periods are observed. The wellbore storage period is caused by the moving liquid level, and the duration is short. During the long intermediate flow period, the wellbore pressure is nearly constant. In this period the free surface moves downwards, and the liquid is produced mainly by vertical drainage. At long times the semilog straight line appears. The confined liquid solutions by Theis (1935) and van Everdingen and Hurst (1949) may be used during the pseudoradial flow period if the flowrate is low. New type curves are presented that yield both vertical and horizontal permeabilities.

  20. Channelized subglacial drainage over a deformable bed

    USGS Publications Warehouse

    Walder, J.S.; Fowler, A.

    1994-01-01

    We develop theoretically a description of a possible subglacial drainage mechanism for glaciers and ice sheets moving over saturated, deformable till. The model is based on the plausible assumption that flow of water in a thin film at the ice-till interface is unstable to the formation of a channelized drainage system, and is restricted to the case in which meltwater cannot escape through the till to an underlying aquifer. In describing the physics of such channelized drainage, we have generalized and extended Rothlisberger's model of channels cut into basal ice to include "canals' cut into the till, paying particular attention to the role of sediment properties and the mechanics of sediment transport. We show that sediment-floored Rothlisberger (R) channels can exist for high effective pressures, and wide, shallow, ice-roofed canals cut into the till for low effective pressures. Canals should form a distributed, non-arborescent system, unlike R channels. Geologic evidence derived from land forms and deposits left by the Pleistocene ice sheets in North America and Europe is consistent with predictions of the model. -from Authors