Science.gov

Sample records for accumulated flight hours

  1. Preparation and results of a 24-hour orbital flight.

    PubMed

    Titov, G S

    1963-01-01

    The space age presents man with unprecedented opportunities for discovery and for cooperative endeavors to benefit all mankind. My flight of August 6-7, 1961 was conducted for the purpose of determining whether man can stay and work effectively and whether all systems of the spaceship can operate successfully during a period of 24 hours in space. The flight of Vostok II represents an experimental step in a logical sequence which included the first earth orbiting flight of USSR citizen Yuri A. Gagarin. Preparation for the flight included the study of theoretical and applied subjects, testing in various kinds of apparatus which provide acceleration, heat and isolation experience, brief airborne weightless flights and parachute landings, in addition to extensive training in a real spacecraft having simulators for normal and emergency contingencies of space flight. The actual flight was therefore carried out with a sense of confidence and familiarity and with continuous close radio contact with ground centers from whom my fellow cosmonauts served as spokesmen. Sequential boosters totaling 600 000 kg thrust placed the 4731 kg spaceship into a perfect orbit varying in altitude from 178-246 km in a plane 64 degrees 58' inclined to the equator. The spaceship made 17 orbits around the earth landing 25 hours, 18 minutes after take-off. The cabin had full atmospheric pressure and a comfortable habitability which could be extended for 10 days. I was able to maneuver the spaceship and perform many other control functions, make observations and take pictures of the earth and its cloud cover, eat meals and sleep all with good efficiency. I experienced mild symptoms suggestive of seasickness which were aggravated by head turning, ameliorated by sleep and entirely relieved by resumption of g-loading during descent. Altogether analyses of the physical and structural performance of the spaceship and the continuously monitored physiological responses of the pilot indicate that all

  2. In-Flight Sleep of Flight Crew During a 7-hour Rest Break: Implications for Research and Flight Safety

    PubMed Central

    Signal, T. Leigh; Gander, Philippa H.; van den Berg, Margo J.; Graeber, R. Curtis

    2013-01-01

    Study Objectives: To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Design: Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Setting: Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Participants: Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). Interventions: N/A. Measurements and Results: Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. Conclusions: This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated. Citation: Signal TL; Gander PH; van den Berg MJ; Graeber RC. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety. SLEEP 2013;36(1):109–115. PMID:23288977

  3. Flight Hour Reductions in Fleet Replacement Pilot Training through Simulation.

    ERIC Educational Resources Information Center

    Smode, Alfred F.

    A project was undertaken to integrate the 2F87F operational flight trainer into the program for training replacement patrol plane pilots. The objectives were to determine the potential of the simulator as a substitute environment for learning aircraft tasks and to effectively utilize the simulator in pilot training. The students involved in the…

  4. A flight experiment to determine GPS photochemical contamination accumulation rates

    NASA Technical Reports Server (NTRS)

    Tribble, A. C.; Haffner, J. W.

    1990-01-01

    It was recently suggested that photochemically deposited contamination, originating from volatiles outgassed by a spacecraft, may be responsible for the anomalous degradation in power seen on the GPS Block 1 vehicles. In an attempt to confirm, or deny, the photochemical deposition rates predicted, a study was undertaken to design a flight experiment to be incorporated on the GPS vehicles currently in production. The objective was to develop an inexpensive, light weight instrument package that would give information on the contamination levels within a few months of launch. Three types of apparatus were studied, Quartz Crystal Microbalances, (QCM's), modified solar cells, and calorimeters. A calorimeter was selected due primarily to its impact on the production schedule of the GPS vehicles. An analysis of the sensitivity of the final design is compared to the predicted contamination accumulation rates in order to determine how long after launch it will take the experiment to show the effects of photochemical contamination.

  5. THE EFFECTS OF CHILL HOUR ACCUMULATION ON HYDROGEN CYANAMIDE EFFICACY IN RABBITEYE (VACCINIUM ASHEI READE) AND SOUTHERN HIGHBUSH BLUEBERRY CULTIVARS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A controlled environment study was conducted to evaluate the effects of chill-hour accumulation on the time of application and the resulting efficacy of the plant growth regulator, hydrogen cyanamide (H2CN2) in both rabbiteye and southern highbush blueberry cultivars. Application of H2CN2 at the in...

  6. [Individual peculiarities of adaptation to long-term space flights: 24-hour heart rhythm monitoring

    NASA Technical Reports Server (NTRS)

    Baevskii, R. M.; Bogomolov, V. V.; Gol'dberger, A. L.; Nikulina, G. A.; Charl'z, D. B.; Goldberger, A. L. (Principal Investigator); Charles, J. B. (Principal Investigator)

    2000-01-01

    Presented are results of studying 24-hr variability of the cardiac rhythm which characterizes individual difference in reactions of two crew members to the same set of stresses during a 115-day MIR mission. Spacelab (USA) cardiorecorders were used. Data of monitoring revealed significantly different baseline health statuses of the cosmonauts. These functional differences were also observed in the mission. In one of the cosmonauts, the cardiac regulation changed over to a more economic functioning with the autonomous balance shifted towards enhanced sympathetic activity. After 2-3 months on mission he had almost recovered pre-launch level of regulation. In the other, the regulatory system was appreciably strained at the beginning of the mission as compared with preflight baseline. Later on, on flight months 2-3, this strain kept growing till a drastic depletion of the functional reserve. On return to Earth, this was manifested by a strong stress reaction with a sharp decline in power of high-frequency and grow in power of very low frequency components of the heart rhythm. The data suggest that adaptation to space flight and reactions in the readaptation period are dependent on initial health status of crew members, and functional reserve.

  7. Accumulation of Tumor Suppressor P53 in Rat Muscle After a Space Flight

    NASA Astrophysics Data System (ADS)

    Ohnishi, T.; Wang, X.; Fukuda, S.; Takahashi, A.; Ohnishi, K.; Nagaoka, S.

    Tumor suppressor p53 functions as a cell cycle checkpoint under stressful conditions. Early studies have shown that genotoxic stress activates p53 pathway. Recently, many kinds of non-genotoxic stress such as heat shock, cold shock, and low pH also have been found to activate p53 pathway. The effects on living organism remains to be explored. Here, we show that an 18-day space flight induced a 3.6 fold accumulation of p53 in rat skeletal muscle. This results suggests that the p53 pathway plays a role in safeguarding genomic stability against the stressful space environments and supports our previous observation of p53 accumulation in rat skin after a space flight

  8. Frozen human cells can record radiation damage accumulated during space flight: mutation induction and radioadaptation.

    PubMed

    Yatagai, Fumio; Honma, Masamitsu; Takahashi, Akihisa; Omori, Katsunori; Suzuki, Hiromi; Shimazu, Toru; Seki, Masaya; Hashizume, Toko; Ukai, Akiko; Sugasawa, Kaoru; Abe, Tomoko; Dohmae, Naoshi; Enomoto, Shuichi; Ohnishi, Takeo; Gordon, Alasdair; Ishioka, Noriaki

    2011-03-01

    To estimate the space-radiation effects separately from other space-environmental effects such as microgravity, frozen human lymphoblastoid TK6 cells were sent to the "Kibo" module of the International Space Station (ISS), preserved under frozen condition during the mission and finally recovered to Earth (after a total of 134 days flight, 72 mSv). Biological assays were performed on the cells recovered to Earth. We observed a tendency of increase (2.3-fold) in thymidine kinase deficient (TK(-)) mutations over the ground control. Loss of heterozygosity (LOH) analysis on the mutants also demonstrated a tendency of increase in proportion of the large deletion (beyond the TK locus) events, 6/41 in the in-flight samples and 1/17 in the ground control. Furthermore, in-flight samples exhibited 48% of the ground-control level in TK(-) mutation frequency upon exposure to a subsequent 2 Gy dose of X-rays, suggesting a tendency of radioadaptation when compared with the ground-control samples. The tendency of radioadaptation was also supported by the post-flight assays on DNA double-strand break repair: a 1.8- and 1.7-fold higher efficiency of in-flight samples compared to ground control via non-homologous end-joining and homologous recombination, respectively. These observations suggest that this system can be used as a biodosimeter, because DNA damage generated by space radiation is considered to be accumulated in the cells preserved frozen during the mission, Furthermore, this system is also suggested to be applicable for evaluating various cellular responses to low-dose space radiation, providing a better understanding of biological space-radiation effects as well as estimation of health influences of future space explores. PMID:21161544

  9. Imaging Ultrasonic Sensor System SWISS completed 60.000 simulated flight hours to check structural integrity of aircraft subcomponent

    NASA Astrophysics Data System (ADS)

    Kress, Klaus-Peter; Baderschneider, Hans J.; Guse, Guenther

    2003-08-01

    more than 60000 simulated flight hours without problems and that the high volume coverage proved to be beneficial for detecting even unexpected damages.

  10. In Flight Performance of a Six Ampere-hour Nickel-cadmium Battery in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Mcdermott, J. K.

    1984-01-01

    Flight data for 17,000 orbital cycles are reviewed and summarized. The nickel cadmium battery system operated without failure or abnormality. Battery trend analysis used in determining the feasibility of extending mission life is discussed. The life test data for 20% depth of discharge indicates design life requirements would be reached even at a deeper depth of discharge.

  11. The 737 graphite composite flight spoiler flight service evaluation

    NASA Technical Reports Server (NTRS)

    Coggeshall, R. L.

    1985-01-01

    The flight service experience of 111 graphite-epoxy spoilers on 737 transport aircraft and related ground based environmental exposure of graphite-epoxy material specimens is covered. Spoilers have been installed on 28 aircraft representing seven major airlines operating throughout the world. An extended flight service evaluation program of 15 years is presently underway. As of December 1984, a total of 2,092, 155 spoiler flight hours and 2,954,814 spoiler landings had been accumulated by this fleet.

  12. Analysis of Droplet Size during the Ice Accumulation Phase Of Flight Testing

    NASA Technical Reports Server (NTRS)

    Miller, Eric James

    2004-01-01

    There are numerous hazards associated with air travel. One of the most serious dangers to the pilot and passengers safety is the result of flying into conditions which are conducive to the formation of ice on the surface of an aircraft. Being a pilot myself I am very aware of the dangers that Icing can pose and the effects it can have on an airplane. A couple of the missions of the Icing branch is to make flying safer with more research to increase our knowledge of how ice effects the aerodynamics of an airfoil, and to increase are knowledge of the weather for better forecasting. The Icing Branch uses three different tools to determine the aerodynamic affects that icing has on a wing. The Icing research tunnel is an efficient way to test various airfoils in a controlled setting. To make sure the data received from the wind tunnel is accurate the Icing branch conducts real flight tests with the DHC-6 Twin Otter. This makes sure that the methods used in the wind tunnel accurately model what happens on the actual aircraft. These two tools are also compared to the LEWICE code which is a program that models the ice shape that would be formed on an airfoil in the particular weather conditions that are input by the user. One benefit of LEWICE is that it is a lot cheaper to run than the wind tunnel or flight tests which make it a nice tool for engineers designing aircraft that don t have the money to spend on icing research. Using all three of these tools is a way to cross check the data received from one and check it against the other two. industries, but it is also looked at by weather analysts who are trying to improve forecasting methods. The best way to avoid the troubles of icing encounters is to not go into it in the first place. By looking over the flight data the analyst can determine which conditions will most likely lead to an icing encounter and then this information will aid forecasters when briefing the pilots on the weather conditions. am looking at the

  13. The "lipid accumulation product" is associated with 2-hour postload glucose outcomes in overweight/obese subjects with nondiabetic fasting glucose.

    PubMed

    Malavazos, Alexis Elias; Cereda, Emanuele; Ermetici, Federica; Caccialanza, Riccardo; Briganti, Silvia; Rondanelli, Mariangela; Morricone, Lelio

    2015-01-01

    "Lipid accumulation product" (LAP) is a continuous variable based on waist circumference and triglyceride concentration previously associated with insulin resistance. We investigated the accuracy of LAP in identifying oral glucose tolerance test (OGTT) abnormalities and compared it to the homeostasis model assessment of insulin resistance (HOMA-IR) in a population of overweight/obese outpatients presenting with nondiabetic fasting glucose. We studied 381 (male: 23%) adult (age: 18-70 years) overweight/obese Caucasians (body mass index: 36.9 ± 5.4 Kg/m(2)) having fasting plasma glucose < 7.0 mmol/L. OGTT was used to diagnose unknown glucose tolerance abnormalities: impaired glucose tolerance (IGT) and type-2 diabetes mellitus (T2-DM). According to OGTT 92, subjects had an IGT and 33 were diagnosed T2-DM. Logistic regression analysis detected a significant association for both LAP and HOMA-IR with single (IGT and T2-DM) and composite (IGT + T2-DM) abnormal glucose tolerance conditions. However, while the association with diabetes was similar between LAP and HOMA-IR, the relationship with IGT and composite outcomes by models including LAP was significantly superior to those including HOMA-IR (P = 0.006 and P = 0.007, resp.). LAP seems to be an accurate index, performing better than HOMA-IR, for identifying 2-hour postload OGTT outcomes in overweight/obese patients with nondiabetic fasting glucose. PMID:25792981

  14. The “Lipid Accumulation Product” Is Associated with 2-Hour Postload Glucose Outcomes in Overweight/Obese Subjects with Nondiabetic Fasting Glucose

    PubMed Central

    Malavazos, Alexis Elias; Cereda, Emanuele; Ermetici, Federica; Caccialanza, Riccardo; Briganti, Silvia; Rondanelli, Mariangela; Morricone, Lelio

    2015-01-01

    “Lipid accumulation product” (LAP) is a continuous variable based on waist circumference and triglyceride concentration previously associated with insulin resistance. We investigated the accuracy of LAP in identifying oral glucose tolerance test (OGTT) abnormalities and compared it to the homeostasis model assessment of insulin resistance (HOMA-IR) in a population of overweight/obese outpatients presenting with nondiabetic fasting glucose. We studied 381 (male: 23%) adult (age: 18–70 years) overweight/obese Caucasians (body mass index: 36.9 ± 5.4 Kg/m2) having fasting plasma glucose < 7.0 mmol/L. OGTT was used to diagnose unknown glucose tolerance abnormalities: impaired glucose tolerance (IGT) and type-2 diabetes mellitus (T2-DM). According to OGTT 92, subjects had an IGT and 33 were diagnosed T2-DM. Logistic regression analysis detected a significant association for both LAP and HOMA-IR with single (IGT and T2-DM) and composite (IGT + T2-DM) abnormal glucose tolerance conditions. However, while the association with diabetes was similar between LAP and HOMA-IR, the relationship with IGT and composite outcomes by models including LAP was significantly superior to those including HOMA-IR (P = 0.006 and P = 0.007, resp.). LAP seems to be an accurate index, performing better than HOMA-IR, for identifying 2-hour postload OGTT outcomes in overweight/obese patients with nondiabetic fasting glucose. PMID:25792981

  15. The 737 graphite composite flight spoiler flight service evaluation

    NASA Technical Reports Server (NTRS)

    Coggeshall, Randy L.

    1987-01-01

    The ninth flight service report was prepared in compliance with the requirements of Contract NAS1-11668. It covers the flight service experience of 111 graphite-epoxy spoilers on 737 transport aircraft and related ground-based environmental exposure of graphite epoxy material specimens for the period 1 Jan. 1985 through 31 Dec. 1986. Spoilers have been installed on 28 aircraft representing seven major airlines operating throughout the world. An extended flight service evaluation program of 15 years is presently underway. As of 31 Dec. 1986, a total of 3,339,608 spoiler flight-hours and 3,320,952 spoiler landings had been accumulated by this fleet.

  16. "2001: A Space Odyssey" Revisited: The Feasibility of 24 Hour Commuter Flights to the Moon Using NTR Propulsion with LUNOX Afterburners. Revised

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Dudzinski, Leonard A.

    2001-01-01

    The prospects for "24 hour" commuter flights to the Moon. similar to that portrayed in 2001: A Space Odyssey but on a more Spartan scale. are examined using two near term. "high leverage" technologies-liquid oxygen (LOX)-augmented nuclear thermal rocket (NTR) propulsion and "lunar-derived" oxygen (LUNOX) production. Iron-rich volcanic glass. or "orange soil," discovered during the Apollo 17 mission to Taurus-Littrow. has produced a 4% oxygen yield in recent NASA experiments using hydrogen reduction. LUNOX development and utilization would eliminate the need to transport oxygen supplies from Earth and is expected to dramatically reduce the size, cost and complexity of space transportation systems. The LOX-augmented NTR concept (LANTR) exploits the high performance capability of the conventional liquid hydrogen (LH2)-cooled NTR and the mission leverage provided by LUNOX in a unique way. LANTR utilizes the large divergent section of its nozzle as an "afterburner" into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the engine's choked sonic throat-essentially "scramjet propulsion in reverse." By varying the oxygen-to-hydrogen mixture ratio, the LANTR engine can operate over a wide range of thrust and specific impulse (Isp) values while the reactor core power level remains relatively constant. The thrust augmentation feature of LANTR means that "big engine" performance can be obtained using smaller. more affordable. easier to test NTR engines. The use of high-density LOX in place of low-density LH2 also reduces hydrogen mass and tank volume resulting in smaller space vehicles. An implementation strategy and evolutionary lunar mission architecture is outlined which requires only Shuttle C or "in-line" Shuttle-derived launch vehicles, and utilizes conventional NTR-powered lunar transfer vehicles (LTVs), operating in an "expendable mode" initially, to maximize delivered surface payload on each mission. The increased

  17. "2001: A Space Odyssey" Revisited--The Feasibility of 24 Hour Commuter Flights to the Moon Using NTR Propulsion with LUNOX Afterburners

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Dudzinski, Leonard A.

    1998-01-01

    The prospects for "24 hour" commuter flights to the Moon, similar to that portrayed in 2001: A Space Odyssey but on a more Spartan scale, are examined using two near term, "high leverage" technologies--liquid oxygen (LOX)-augmented nuclear thermal rocket (NTR) propulsion and "lunar-derived" oxygen (LUNOX) production. Ironrich volcanic glass, or "orange soil," discovered during the Apollo 17 mission to Taurus-Littrow, has produced a 4% oxygen yield in recent NASA experiments using hydrogen reduction. LUNOX development and utilization would eliminate the need to transport oxygen supplies from Earth and is expected to dramatically reduce the size, cost and complexity of space transportation systems. The LOX-augmented NTR concept (LANTR) exploits the high performance capability of the conventional liquid hydrogen (LH2)-cooled NTR and the mission leverage provided by LUNOX in a unique way, LANTR utilizes the large divergent section of its nozzle as an "afterburner" into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging front the engine's choked sonic throat--essentially "scramjet propulsion in reverse." By varying the oxygen-to-hydrogen mixture ratio, the LANTR engine can operate over a wide range of thrust and specific impulse (Isp) values while the reactor core power level remains relatively constant. The thrust augmentation feature of LANTR means that "big engine" performance can be obtained using smaller, more affordable, easier to test NTR engines. The use of high-density LOX in place of low-density LH2 also reduces hydrogen mass and tank volume resulting in smaller space vehicles. An implementation strategy and evolutionary lunar mission architecture is outlined which requires only Shuttle C or "in-line" Shuttle-derived launch vehicles, and utilizes conventional NTR-powered lunar transfer vehicles (LTVs), operating in an "expendable mode" initially, to maximize delivered surface payload on each mission. The increased

  18. 2001: A Space Odyssey Revisited: The Feasibility of 24 Hour Commuter Flights to the Moon Using NTR Propulsion with LUNOX Afterburners. Revised

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley; Dudzinski, Leonard A.

    2003-01-01

    The prospects for 24 hour commuter flights to the Moon, similar to that portrayed in 2001: A Space Odyssey but on a more Spartan scale, are examined using two near term, high leverage technologies: liquid oxygen (LOX)-augmented nuclear thermal rocket (NTR) propulsion and lunar-derived oxygen (LUNOX) production. Iron-rich volcanic glass, or orange soil, discovered during the Apollo 17 mission to Taurus-Littrow, has produced a 4 percent oxygen yield in recent NASA experiments using hydrogen reduction. LUNOX development and utilization would eliminate the need to transport oxygen supplies from Earth and is expected to dramatically reduce the size, cost and complexity of space transportation systems. The LOX-augmented NTR concept (LANTR) exploits the high performance capability of the conventional liquid hydrogen (LH2)-cooled NTR and the mission leverage provided by LUNOX in a unique way. LANTR utilizes the large divergent section of its nozzle as an afterburner into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the engine's choked sonic throat, essentially scramjet propulsion in reverse. By varying the oxygen-to-hydrogen mixture ratio, the LANTR engine can operate over a wide range of thrust and specific impulse (Isp) values while the reactor core power level remains relatively constant. The thrust augmentation feature of LANTR means that big engine performance can be obtained using smaller, more affordable, easier to test NTR engines. The use of high-density LOX in place of low density LH2 also reduces hydrogen mass and tank volume resulting in smaller space vehicles. An implementation strategy and evolutionary lunar mission architecture is outlined which requires only Shuttle C or in-line Shuttle-derived launch vehicles, and utilizes conventional NTR-powered lunar transfer vehicles (LTVs), operating in an expendable mode initially, to maximize delivered surface payload on each mission. The increased payload is

  19. Boeing/NASA composite components flight service evaluation

    NASA Technical Reports Server (NTRS)

    Coggeshall, Randy L.

    1989-01-01

    This tenth and final flight service report covers the flight service experience of 111 graphite-epoxy spoilers on 737 transport aircraft after 15 years of worldwide service. As of June 30, 1989, a total of 2,593,741 spoiler flight hours and 3,499,941 spoiler landings have been accumulated by the fleet. The high time spoiler had 42,007 flight hours. Results of 15 years of residual strength tests conducted on selected spoilers are reported. In addition, the flight service histories of composite elevators and stabilizers developed under NASA contracts NAS1-14952 and NAS1-15025, respectively, are reported.

  20. The accumulation pattern of ferruginol in the heartwood-forming Cryptomeria japonica xylem as determined by time-of-flight secondary ion mass spectrometry and quantity analysis

    PubMed Central

    Kuroda, Katsushi; Fujiwara, Takeshi; Hashida, Koh; Imai, Takanori; Kushi, Masayoshi; Saito, Kaori; Fukushima, Kazuhiko

    2014-01-01

    Background and Aims Heartwood formation is a unique phenomenon of tree species. Although the accumulation of heartwood substances is a well-known feature of the process, the accumulation mechanism remains unclear. The aim of this study was to determine the accumulation process of ferruginol, a predominant heartwood substance of Cryptomeria japonica, in heartwood-forming xylem. Methods The radial accumulation pattern of ferruginol was examined from sapwood and through the intermediate wood to the heartwood by direct mapping using time-of-flight secondary ion mass spectrometry (TOF-SIMS). The data were compared with quantitative results obtained from a novel method of gas chromatography analysis using laser microdissection sampling and with water distribution obtained from cryo-scanning electron microscopy. Key Results Ferruginol initially accumulated in the middle of the intermediate wood, in the earlywood near the annual ring boundary. It accumulated throughout the entire earlywood in the inner intermediate wood, and in both the earlywood and the latewood in the heartwood. The process of ferruginol accumulation continued for more than eight annual rings. Ferruginol concentration peaked at the border between the intermediate wood and heartwood, while the concentration was less in the latewood compared wiht the earlywood in each annual ring. Ferruginol tended to accumulate around the ray parenchyma cells. In addition, at the border between the intermediate wood and heartwood, the accumulation was higher in areas without water than in areas with water. Conclusions TOF-SIMS clearly revealed ferruginol distribution at the cellular level. Ferruginol accumulation begins in the middle of intermediate wood, initially in the earlywood near the annual ring boundary, then throughout the entire earlywood, and finally across to the whole annual ring in the heartwood. The heterogeneous timing of ferruginol accumulation could be related to the distribution of ray parenchyma cells

  1. Prediction of Vigilant Attention and Cognitive Performance Using Self-Reported Alertness, Circadian Phase, Hours since Awakening, and Accumulated Sleep Loss

    PubMed Central

    Bermudez, Eduardo B.; Klerman, Elizabeth B.; Czeisler, Charles A.; Cohen, Daniel A.; Wyatt, James K.; Phillips, Andrew J. K.

    2016-01-01

    Sleep restriction causes impaired cognitive performance that can result in adverse consequences in many occupational settings. Individuals may rely on self-perceived alertness to decide if they are able to adequately perform a task. It is therefore important to determine the relationship between an individual’s self-assessed alertness and their objective performance, and how this relationship depends on circadian phase, hours since awakening, and cumulative lost hours of sleep. Healthy young adults (aged 18–34) completed an inpatient schedule that included forced desynchrony of sleep/wake and circadian rhythms with twelve 42.85-hour “days” and either a 1:2 (n = 8) or 1:3.3 (n = 9) ratio of sleep-opportunity:enforced-wakefulness. We investigated whether subjective alertness (visual analog scale), circadian phase (melatonin), hours since awakening, and cumulative sleep loss could predict objective performance on the Psychomotor Vigilance Task (PVT), an Addition/Calculation Test (ADD) and the Digit Symbol Substitution Test (DSST). Mathematical models that allowed nonlinear interactions between explanatory variables were evaluated using the Akaike Information Criterion (AIC). Subjective alertness was the single best predictor of PVT, ADD, and DSST performance. Subjective alertness alone, however, was not an accurate predictor of PVT performance. The best AIC scores for PVT and DSST were achieved when all explanatory variables were included in the model. The best AIC score for ADD was achieved with circadian phase and subjective alertness variables. We conclude that subjective alertness alone is a weak predictor of objective vigilant or cognitive performance. Predictions can, however, be improved by knowing an individual’s circadian phase, current wake duration, and cumulative sleep loss. PMID:27019198

  2. Prediction of Vigilant Attention and Cognitive Performance Using Self-Reported Alertness, Circadian Phase, Hours since Awakening, and Accumulated Sleep Loss.

    PubMed

    Bermudez, Eduardo B; Klerman, Elizabeth B; Czeisler, Charles A; Cohen, Daniel A; Wyatt, James K; Phillips, Andrew J K

    2016-01-01

    Sleep restriction causes impaired cognitive performance that can result in adverse consequences in many occupational settings. Individuals may rely on self-perceived alertness to decide if they are able to adequately perform a task. It is therefore important to determine the relationship between an individual's self-assessed alertness and their objective performance, and how this relationship depends on circadian phase, hours since awakening, and cumulative lost hours of sleep. Healthy young adults (aged 18-34) completed an inpatient schedule that included forced desynchrony of sleep/wake and circadian rhythms with twelve 42.85-hour "days" and either a 1:2 (n = 8) or 1:3.3 (n = 9) ratio of sleep-opportunity:enforced-wakefulness. We investigated whether subjective alertness (visual analog scale), circadian phase (melatonin), hours since awakening, and cumulative sleep loss could predict objective performance on the Psychomotor Vigilance Task (PVT), an Addition/Calculation Test (ADD) and the Digit Symbol Substitution Test (DSST). Mathematical models that allowed nonlinear interactions between explanatory variables were evaluated using the Akaike Information Criterion (AIC). Subjective alertness was the single best predictor of PVT, ADD, and DSST performance. Subjective alertness alone, however, was not an accurate predictor of PVT performance. The best AIC scores for PVT and DSST were achieved when all explanatory variables were included in the model. The best AIC score for ADD was achieved with circadian phase and subjective alertness variables. We conclude that subjective alertness alone is a weak predictor of objective vigilant or cognitive performance. Predictions can, however, be improved by knowing an individual's circadian phase, current wake duration, and cumulative sleep loss. PMID:27019198

  3. Observation of Accumulated Metal Cation Distribution in Fish by Novel Stigmatic Imaging Time-of-Flight Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Aoki, Jun; Ikeda, Shinichiro; Toyoda, Michisato

    2014-02-01

    The accumulation of radioactive substances in biological organisms is a matter of great concern since the incident at the nuclear power plant in Fukushima, Japan. We have developed a novel technique for observing the distribution of accumulated metal cations in fish that employs a new imaging mass spectrometer, MULTUM-IMG2. Distributions of 133Cs and 88Sr in a sliced section of medaka (Oryzias latipes) are obtained with spatial resolution of µm-scale.

  4. The 737 graphite composite flight spoiler flight service evaluation

    NASA Technical Reports Server (NTRS)

    Stoecklin, R. L.

    1975-01-01

    The flight service experience of 108 graphite-epoxy spoilers on 737 transport aircraft, and related ground-based environmental exposure of graphite-epoxy material specimens were evaluated. Four spoilers were installed on each of 27 aircraft for a 5-year study. As of February 28, 1975, a total of 294,280 spoiler flight-hours and 460,686 spoiler landings were accumulated. Based on visual, ultrasonic, and destructive testing, no moisture migration into the honeycomb core and no core corrosion has occurred. Tests of removed spoilers and of ground-based exposure specimens after the first year of service indicate no significant changes in composite strength.

  5. Flight performance using a hyperstereo helmet-mounted display: post-flight debriefing questionnaire

    NASA Astrophysics Data System (ADS)

    Kalich, Melvyn E.; Rash, Clarence E.; Harding, Thomas H.; Jennings, Sion; Craig, Gregory; Stuart, Geoffrey W.

    2009-05-01

    Helmet-mounted display (HMD) designs have faced persistent head-supported mass and center of mass (CM) problems, especially HMD designs like night vision goggles (NVG) that utilize image intensification (I2) sensors mounted forward in front of the user's eyes. Relocating I2 sensors from the front to the sides of the helmet, at or below the transverse plane through the user's head CM, can resolve most of the CM problems. However, the resulting increase in the separation between the two I2 channels effectively increases the user's interpupillary distance (IPD). This HMD design is referred to as a hyperstero design and introduces the phenomenon of hyperstereopsis, a type of visual distortion where stereoscopic depth perception is exaggerated, particularly at distances under 200 feet (~60 meters). The presence of hyperstereopsis has been a concern regarding implementation of hyperstereo HMDs for rotary-wing aircraft. To address this concern, a flight study was conducted to assess the impact of hyperstereopsis on aircraft handling proficiency and pilot acceptance. Three rated aviators with differing levels of I2 and hyperstereo HMD experience conducted a series of flights that concentrated on low-level maneuvers over a two-week period. Initial and final flights were flown with a standard issue I2 device and a production hyperstereo design HMD. Interim flights were flown only with the hyperstereo HMD. Two aviators accumulated 8 hours of flight time with the hyperstereo HMD, while the third accumulated 6.9 hours. This paper presents data collected via written questionnaires completed by the aviators during the post-flight debriefings. These data are compared to questionnaire data from a previous flight investigation in which aviators in a copilot capacity, hands not on the flight controls, accumulated 8 flight hours of flight time using a hyperstereo HMD.

  6. [The relationship between fatigue and the specific features of a flight shift of civil aviation flight crew].

    PubMed

    Rodionov, O N

    2010-01-01

    The paper considers the development of fatigue in civil pilots in relation to the specific features of a flight shift, the duration of a flight, the size of a crew size, and the number of night flight hours. The flight lasting 28 consecutive days negatively affects the pilot's working capacity, with flight hours exceeding 90 hours, due to accumulated fatigue. At the stages "before landing" and "after landing", the degree of fatigue in aircraft commanders depends on the duration of a flight shift, peaking with the flights lasting more than 10-13 working hours. Inclusion of additional crewmen during flight shifts of more than 12 hours results in a reduction in the degree of fatigue in aircraft commanders. Night air departure and arrival are most unfavorable according to the degree of fatigue in aircraft commanders, i.e. the length of night time during flights, they are followed by a night air departure and daylight air arrival; a daylight air departure and night arrival rank third. Flights with daylight departure and daylight arrival are least of all exhausting. A night air arrival is characterized by the greatest degrees of integral fatigue at the stages "before landing" and "after landing", these are little associated with the duration of a flight shift. The existing provision, that such flights may be made thrice in succession, carries a risk for chronic fatigue. It is proposed to permit not more two flight shifts in succession during night air arrival. It is shown that it is necessary to take into account the factor of possible fatigue development on developing the regulation of flight shifts. PMID:20373715

  7. The 737 graphite composite flight spoiler flight service evaluation

    NASA Technical Reports Server (NTRS)

    Stoecklin, R. L.

    1977-01-01

    The flight service experience of 110 graphite epoxy spoilers on 737 transport aircraft was reviewed as well as ground based environmental exposure of graphite epoxy material specimens for the period from April 1976 through April 1977. Several spoilers were installed on each of 27 aircraft representing seven major airlines operating throughout the world. A flight service evaluation program of at least 5 years is under way. As of April 30, 1977, a total of 766,938 spoiler flight hours and 1,168,090 spoiler landings were accumulated by the fleet. Based on visual ultrasonic, and destructive testing, there was no evidence of moisture migration into the honeycomb core and no core corrosion. Tests of removed spoilers and of ground based exposure specimens after the third year of service continue to indicate modest changes in composite strength properties.

  8. Long-term environmental effects and flight service evaluation of composite materials

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson

    1987-01-01

    Results of a NASA-Langley sponsored research program to establish the long term effects of realistic flight environments and ground based exposure on advanced composite materials are presented. The effects of moisture, ultraviolet radiation, aircraft fuels and fluids, sustained stress, and fatigue loading are reported. Residual strength and stiffness as a function of exposure time and exposure location are reported for seven different material systems after 10 years of worldwide outdoor exposure. Flight service results of over 300 composite components installed on rotorcraft and transport aircraft are included. Over 4 million total component flight hours were accumulated on various aircraft since initiation of flight service in 1973. Service performance, maintenance characteristics, and residual strength of numerous composite components installed on commercial and military aircraft are reported as a function of flight hours and years in service. Residual strength test results of graphite/epoxy spoilers with 10 years of worldwide service and over 28,000 flight hours are reported.

  9. Determination of Functional Capabilities, the Level of Physical Performance and the State of Main Physiological Body Systems in the First Hours after the Accomplishment of Long-term Space Flights ("Field Test")

    NASA Technical Reports Server (NTRS)

    Kozlovskaya, Inesa; Tomilovskaya, Elena; Rukavishnikov, Ilya; Kitov, Vladimir; Reschke, Millard; Kofman, Igor

    2014-01-01

    Long-term stay in weightlessness is accompanied by alterations in the activity of main physiological body systems including sensory-motor, skeletal-muscular disturbances and cardiovascular deconditioning. However, up to now, there are no data on the state and level of functional performance of cosmonauts/astronauts directly after flight, nor are there data to help define the dynamic recovery of functional characteristics and work efficiency which are greatly needed to provide the safety and planning of their activity once they reach space objects. The Russian and American scientists are currently engaged in a joint experiment known as the "Field Test" with the goal of studying the functional performance and the state of main physiological body systems directly after landing and their temporal recovery dynamics. The functional performance is identified during the test by temporal characteristics of the movements of spatial translation, the stability of the vertical stance for 3.5 min, and the kinematic characteristics of walking - non-complicated and complicated. The following characteristics are identified as physiological characteristics of the test: a) orthostatic tolerance during stand test, b) back muscle tone; c) vertical stability - by characteristics of the correction responses to unexpected perturbations of the vertical stance, and d) support reactions during the performance of the full battery of tests. To date, a pilot version of the "Field Test" has been conducted with participation from four Russian cosmonauts. The results of studies have shown that in 1 - 5 hours after landing the functional abilities of the cosmonauts are considerably reduced. All the test movements at this time are considerably slower than preflight and the more complicated the task is, the greater significant reduction in orthostatic tolerance: during the first test that occurs 1 - 5 hours after landing. two of four cosmonauts declined to continue the task after the orthostatic test

  10. The 737 graphite composite flight spoiler flight service evaluation

    NASA Technical Reports Server (NTRS)

    Hoffman, D. J.; Stoecklin, R. L.

    1980-01-01

    The flight service experience of 111 graphite-epoxy spoilers on 737 transport aircraft and related ground based enviromental exposure of graphite-epoxy material specimens is reported. Spoilers were installed on 28 aircraft representing seven major airlines operating throughout the world. Over 1,188,367 spoiler flight hours and 1,786,837 spoiler landings were accumulated by this fleet. Tests of removed spoilers and ground-based exposure specimens after the fifth year of service indicate modest changes in composite strength properties. Two incidents of trailing edge delamination with subsequent core corrosion were observed. Based on visual, ultrasonic, and destructive testing, there has been no evidence of moisture migration into the honeycomb core and no core corrosion.

  11. Flight service evaluation of composite components on the Bell helicopter model 206L, flight service report

    NASA Technical Reports Server (NTRS)

    Zinberg, H.

    1984-01-01

    The flight service components for the Bell Model 206L JetRanger helicopter are examined. The components were placed in service in the Continental United States, Canada, and Alaska. The status of 34 sets of components is discussed. Approximately 27,500 flight hours were accumulated on the components as of 1 August 1983. Three sets of components and one-fifth of the exposure coupons were returned and tested. The results are given. The overall behavior of the components and associated problems are discussed.

  12. 14 CFR 61.64 - Use of a flight simulator and flight training device.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Have 1,000 hours of flight time in two different turbojet airplanes of the same class of airplane for... hours of flight time in the same type of airplane for which the type rating is sought; or (5) Have logged at least 2,000 hours of flight time, of which 500 hours were in turbine-powered airplanes of...

  13. 14 CFR 61.64 - Use of a flight simulator and flight training device.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Have 1,000 hours of flight time in two different turbojet airplanes of the same class of airplane for... hours of flight time in the same type of airplane for which the type rating is sought; or (5) Have logged at least 2,000 hours of flight time, of which 500 hours were in turbine-powered airplanes of...

  14. Age, flight experience, and risk of crash involvement in a cohort of professional pilots.

    PubMed

    Li, Guohua; Baker, Susan P; Grabowski, Jurek G; Qiang, Yandong; McCarthy, Melissa L; Rebok, George W

    2003-05-15

    Federal aviation regulations prohibit airline pilots from flying beyond the age of 60 years. However, the relation between pilot age and flight safety has not been rigorously assessed using empirical data. From 1987 to 1997, the authors followed a cohort of 3,306 commuter air carrier and air taxi pilots who were aged 45-54 years in 1987. During the follow-up period, the pilots accumulated a total of 12.9 million flight hours and 66 aviation crashes, yielding a rate of 5.1 crashes per million pilot flight hours. Crash risk remained fairly stable as the pilots aged from their late forties to their late fifties. Flight experience, as measured by total flight time at baseline, showed a significant protective effect against the risk of crash involvement. With adjustment for age, pilots who had 5,000-9,999 hours of total flight time at baseline had a 57% lower risk of a crash than their less experienced counterparts (relative risk = 0.43, 95% confidence interval: 0.21, 0.87). The protective effect of flight experience leveled off after total flight time reached 10,000 hours. The lack of an association between pilot age and crash risk may reflect a strong "healthy worker effect" stemming from the rigorous medical standards and periodic physical examinations required for professional pilots. PMID:12746239

  15. Flight-service program for advanced composite rudders on transport aircraft

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Flight service experience and in-service inspection results are reported for DC-10 graphite composite rudders during the third year of airline service. Test results and status are also reported for ground-based and airborne graphite-epoxy specimens with three different epoxy resin systems to obtain moisture absorption data. Twenty graphite composite rudders were produced, nine of which were installed on commercial aircraft during the past three years. The rudders collectively accumulated 75,863 flight hours. The high time rudder accumulated 12,740 flight hours in slightly over 36 months. The graphite composite rudders were inspected visually at approximately 1000 flight hour intervals and ultrasonically at approximately 3000 flight hour intervals in accordance with in-service inspection plans. All rudders were judged acceptable for continued service as a result of these inspections. Composite moisture absorption data on small specimens, both ground-based and carried aboard three flight-service aircraft, are given. The specimens include Thornel 300 fibers in Narmco 5208 and 5209 resin systems, and Type AS fibers in the Hercules 3501-6 resin system.

  16. Cracking the Credit Hour

    ERIC Educational Resources Information Center

    Laitinen, Amy

    2012-01-01

    The basic currency of higher education--the credit hour--represents the root of many problems plaguing America's higher education system: the practice of measuring time rather than learning. "Cracking the Credit Hour" traces the history of this time-based unit, from the days of Andrew Carnegie to recent federal efforts to define a credit hour. If…

  17. Forecasting Credit Hours.

    ERIC Educational Resources Information Center

    Bivin, David; Rooney, Patrick Michael

    1999-01-01

    This study used Tobit analysis to estimate retention probabilities and credit hours at two universities. Tobit was judged as appropriate for this problem because it recognizes the lower bound of zero on credit hours and incorporates this bound into parameter estimates and forecasts. Models are estimated for credit hours in a single year and…

  18. Miscarriage Among Flight Attendants

    PubMed Central

    Grajewski, Barbara; Whelan, Elizabeth A.; Lawson, Christina C.; Hein, Misty J.; Waters, Martha A.; Anderson, Jeri L.; MacDonald, Leslie A.; Mertens, Christopher J.; Tseng, Chih-Yu; Cassinelli, Rick T.; Luo, Lian

    2015-01-01

    Background Cosmic radiation and circadian disruption are potential reproductive hazards for flight attendants. Methods Flight attendants from 3 US airlines in 3 cities were interviewed for pregnancy histories and lifestyle, medical, and occupational covariates. We assessed cosmic radiation and circadian disruption from company records of 2 million individual flights. Using Cox regression models, we compared respondents (1) by levels of flight exposures and (2) to teachers from the same cities, to evaluate whether these exposures were associated with miscarriage. Results Of 2654 women interviewed (2273 flight attendants and 381 teachers), 958 pregnancies among 764 women met study criteria. A hypothetical pregnant flight attendant with median firsttrimester exposures flew 130 hours in 53 flight segments, crossed 34 time zones, and flew 15 hours during her home-base sleep hours (10 pm–8 am), incurring 0.13 mGy absorbed dose (0.36 mSv effective dose) of cosmic radiation. About 2% of flight attendant pregnancies were likely exposed to a solar particle event, but doses varied widely. Analyses suggested that cosmic radiation exposure of 0.1 mGy or more may be associated with increased risk of miscarriage in weeks 9–13 (odds ratio = 1.7 [95% confidence interval = 0.95–3.2]). Risk of a first-trimester miscarriage with 15 hours or more of flying during home-base sleep hours was increased (1.5 [1.1–2.2]), as was risk with high physical job demands (2.5 [1.5–4.2]). Miscarriage risk was not increased among flight attendants compared with teachers. Conclusions Miscarriage was associated with flight attendant work during sleep hours and high physical job demands and may be associated with cosmic radiation exposure. PMID:25563432

  19. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  20. Reliability with imperfect diagnostics. [flight-maintenance sequence

    NASA Technical Reports Server (NTRS)

    White, A. L.

    1983-01-01

    A reliability estimation method for systems that continually accumulate faults because of imperfect diagnostics is developed and an application for redundant digital avionics is presented. The present method assumes that if a fault does not appear in a short period of time, it will remain hidden until a majority of components are faulty and the system fails. A certain proportion of a component's faults are detected in a short period of time, and a description of their detection is included in the reliability model. A Markov model of failure during flight for a nonreconfigurable five-plex is presented for a sequence of one-hour flights followed by maintenance.

  1. 14 CFR 61.64 - Use of a flight simulator and flight training device.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... a supervised operating experience limitation; (ii) Have 1,000 hours of flight time in two different... time in the same type of airplane; or (v) Have logged at least 2,000 hours of flight time, of which 500... a supervised operating experience limitation; (ii) Have 1,000 hours of flight time in two...

  2. 14 CFR 61.64 - Use of a flight simulator and flight training device.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... a supervised operating experience limitation; (ii) Have 1,000 hours of flight time in two different... time in the same type of airplane; or (v) Have logged at least 2,000 hours of flight time, of which 500... a supervised operating experience limitation; (ii) Have 1,000 hours of flight time in two...

  3. Miracle Flights

    MedlinePlus

    ... the perfect solution for your needs. Book A Flight Request a flight now Click on the link ... Now Make your donation today Saving Lives One Flight At A Time Miracle Flights provides free flights ...

  4. Hourly marginal emissions tool

    EPA Science Inventory

    The hourly marginal emissions tool is an excel workbook that estimates the hourly NOx, SO2 and CO2 emission reductions of energy efficiency and renewable energy policies and programs in the electric power sector. It will be based on EPA's proposed "Road map for Incorporating ene...

  5. 5 CFR 610.408 - Use of credit hours.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Use of credit hours. 610.408 Section 610... Flexible and Compressed Work Schedules § 610.408 Use of credit hours. Members of the Senior Executive Service (SES) may not accumulate credit hours under an alternative work schedule. Any credit...

  6. 5 CFR 610.408 - Use of credit hours.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Use of credit hours. 610.408 Section 610... Flexible and Compressed Work Schedules § 610.408 Use of credit hours. Members of the Senior Executive Service (SES) may not accumulate credit hours under an alternative work schedule. Any credit...

  7. 5 CFR 610.408 - Use of credit hours.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Use of credit hours. 610.408 Section 610... Flexible and Compressed Work Schedules § 610.408 Use of credit hours. Members of the Senior Executive Service (SES) may not accumulate credit hours under an alternative work schedule. Any credit...

  8. 14 CFR 61.56 - Flight review.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight review. 61.56 Section 61.56... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS General § 61.56 Flight review. (a) Except as provided in paragraphs (b) and (f) of this section, a flight review consists of a minimum of 1 hour...

  9. 14 CFR 61.56 - Flight review.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight review. 61.56 Section 61.56... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS General § 61.56 Flight review. (a) Except as provided in paragraphs (b) and (f) of this section, a flight review consists of a minimum of 1 hour...

  10. Accumulate-Repeat-Accumulate-Accumulate-Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Thorpe, Jeremy

    2004-01-01

    Inspired by recently proposed Accumulate-Repeat-Accumulate (ARA) codes [15], in this paper we propose a channel coding scheme called Accumulate-Repeat-Accumulate-Accumulate (ARAA) codes. These codes can be seen as serial turbo-like codes or as a subclass of Low Density Parity Check (LDPC) codes, and they have a projected graph or protograph representation; this allows for a high-speed iterative decoder implementation using belief propagation. An ARAA code can be viewed as a precoded Repeat-and-Accumulate (RA) code with puncturing in concatenation with another accumulator, where simply an accumulator is chosen as the precoder; thus ARAA codes have a very fast encoder structure. Using density evolution on their associated protographs, we find examples of rate-lJ2 ARAA codes with maximum variable node degree 4 for which a minimum bit-SNR as low as 0.21 dB from the channel capacity limit can be achieved as the block size goes to infinity. Such a low threshold cannot be achieved by RA or Irregular RA (IRA) or unstructured irregular LDPC codes with the same constraint on the maximum variable node degree. Furthermore by puncturing the accumulators we can construct families of higher rate ARAA codes with thresholds that stay close to their respective channel capacity thresholds uniformly. Iterative decoding simulation results show comparable performance with the best-known LDPC codes but with very low error floor even at moderate block sizes.

  11. 24-hour care programs.

    PubMed

    Hergenrader, R

    1996-06-01

    Twenty-four-hour care programs, which combine group health programs with workers' compensation and disability benefits, hold considerable potential for cost savings and greater efficiency. This article explains these programs and uses a care history to show the savings they can achieve. PMID:10157798

  12. Accumulate-Repeat-Accumulate-Accumulate Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Thorpe, Jeremy

    2007-01-01

    Accumulate-repeat-accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate-repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity-check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.

  13. 14 CFR 91.1059 - Flight time limitations and rest requirements: One or two pilot crews.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-pilot crew if that crewmember's total flight time in all commercial flying will exceed— (1) 500 hours in... total flight time of the assigned flight, when added to any commercial flying by that flight...

  14. YF-17 in Flight

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Northrop Aviation YF-17 technology demonstrator aircraft in flight during a 1976 flight research program at NASA's Dryden Flight Research Center, Edwards, California. From May 27 to July 14, 1976, the Dryden Flight Research Center, Edwards, California, flew the Northrop Aviation YF-17 technology demonstrator to test the high-performance U.S. Air Force fighter at transonic speeds. The objectives of the seven-week flight test program included the study of maneuverability of this aircraft at transonic speeds and the collection of in-flight pressure data from around the afterbody of the aircraft to improve wind-tunnel predictions for future fighter aircraft. Also studied were stability and control and buffeting at high angles of attack as well as handling qualities at high load factors. Another objective of this program was to familiarize center pilots with the operation of advanced high-performance fighter aircraft. During the seven-week program, all seven of the center's test pilots were able to fly the aircraft with Gary Krier serving as project pilot. In general the pilots reported no trouble adapting to the aircraft and reported that it was easy to fly. There were no familiarization flights. All 25 research flights were full-data flights. They obtained data on afterbody pressures, vertical-fin dynamic loads, agility, pilot physiology, and infrared signatures. Average flight time was 45 minutes, although two flights involving in-flight refueling lasted approximately one hour longer than usual. Dryden Project Manager Roy Bryant considered the program a success. Center pilots felt that the aircraft was generations ahead of then current active military aircraft. Originally built for the Air Force's lightweight fighter program, the YF-17 Cobra left Dryden to support the Northrop/Navy F-18 Program. The F-18 Hornet evolved from the YF-17.

  15. Fiber optic signal collection system for primary flight control applications

    NASA Astrophysics Data System (ADS)

    Harper, Sandy L.

    1994-10-01

    The FOPMN is a fiber-optic signal collection system for primary flight control applications. An avionics bay protected electro-optic interface unit transmits light down fiber optic cable to an optical sensor housed in the harsh environment of a hydraulic actuator. The interface unit also receives the sensor's reflected pattern and calculates independent positions from the multiplexed signals. This paper discusses the FOPMN method for fiber-optically sensing and multiplexing two channels of position of a TEF actuator's main ram cylinder. Currently installed in NASA Dryden's SRA F/A-18, the FOPMN has accumulated approximately 15 hours of flight time. A performance comparison is made between the FOPMN positions and the flight control computer's feedback mechanism (the actuator LVDTs). Included is a discussion of some of the lessons learned as a result of testing the FOPMN in the lab and in flight. The FOPMN is well on its way to proving itself as a robust fiber optic system with the ability to multiplex numerous optical sensors for primary flight control. The success of the FOPMN leads to the second phase of the project--optical loop closure. Our goal for this phase is to have four FOPMN sensor channels on the main ram and/or the main control valve of the actuator to serve as the quad redundant feedback mechanism for flight control.

  16. 14 CFR 61.195 - Flight instructor limitations and qualifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... flight instructor has at least 5 flight hours of pilot-in-command time in the specific make and model of... appropriate. (h) Qualifications of the flight instructor for training first-time flight instructor applicants... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight instructor limitations...

  17. 14 CFR 61.195 - Flight instructor limitations and qualifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flight instructor has at least 5 flight hours of pilot-in-command time in the specific make and model of... appropriate. (h) Qualifications of the flight instructor for training first-time flight instructor applicants... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight instructor limitations...

  18. 14 CFR 61.195 - Flight instructor limitations and qualifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flight instructor has at least 5 flight hours of pilot-in-command time in the specific make and model of... appropriate. (h) Qualifications of the flight instructor for training first-time flight instructor applicants... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight instructor limitations...

  19. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Mcgough, J.; Moses, K.; Klafin, J. F.

    1982-01-01

    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed.

  20. Flight service evaluation of composite components on the Bell helicopter model 206L

    NASA Technical Reports Server (NTRS)

    Wilson, H. E., II

    1986-01-01

    This is the second annual report on the flight service components for the Bell Model 206L JetRanger helicopter. The components have been placed in service in the Continental United States, Canada, and Alaska. The report covers the period from 1 August 1983 to 1 January 1986. The status of 34 sets of components is discussed in this report. Approximately 73,000 flight hours were accumulated on the components as of 1 January 1986. Three years of coupon tests on the components are presented with test results. A vertical fin had been struck by lightning and the results of its examination and tests are included.

  1. PV Hourly Simulation Tool

    SciTech Connect

    Dean, Jesse; Metzger, Ian

    2010-12-31

    This software requires inputs of simple general building characteristics and usage information to calculate the energy and cost benefits of solar PV. This tool conducts and complex hourly simulation of solar PV based primarily on the area available on the rooftop. It uses a simplified efficiency calculation method and real panel characteristics. It includes a detailed rate structure to account for time-of-use rates, on-peak and off-peak pricing, and multiple rate seasons. This tool includes the option for advanced system design inputs if they are known. This tool calculates energy savings, demand reduction, cost savings, incentives and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  2. PV Hourly Simulation Tool

    2010-12-31

    This software requires inputs of simple general building characteristics and usage information to calculate the energy and cost benefits of solar PV. This tool conducts and complex hourly simulation of solar PV based primarily on the area available on the rooftop. It uses a simplified efficiency calculation method and real panel characteristics. It includes a detailed rate structure to account for time-of-use rates, on-peak and off-peak pricing, and multiple rate seasons. This tool includes themore » option for advanced system design inputs if they are known. This tool calculates energy savings, demand reduction, cost savings, incentives and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  3. Fixed Costs and Hours Constraints

    ERIC Educational Resources Information Center

    Johnson, William R.

    2011-01-01

    Hours constraints are typically identified by worker responses to questions asking whether they would prefer a job with more hours and more pay or fewer hours and less pay. Because jobs with different hours but the same rate of pay may be infeasible when there are fixed costs of employment or mandatory overtime premia, the constraint in those…

  4. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1982-01-01

    Kevlar-49 fairing panels, installed as flight service components on three l-1011's, were inspected after 8 years service. The fairings had accumulated a total of 62,000 hours, with one ship set having 20,850 hours service. Kevlar-49 components were found to be performing satisfactorily in service with no major problems. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structures.

  5. Magnesium and Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Zwart, Sara R.

    2016-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in astronauts before, during, and after space missions, in 43 astronauts (34 male, 9 female) on 4-6 month space flight missions. We also studied individuals participating in a ground analog of space flight, (head-down tilt bed rest, n=27, 35 +/- 7 y). We evaluated serum concentration and 24-hour urinary excretion of magnesium along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-d space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4- to 6-month space missions.

  6. Pathfinder aircraft in flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The unique Pathfinder solar-powered flying wing, is shown during a checkout flight from the Dryden Flight Research Center, Edwards, California. This two-hour low-altitude flight over Rogers Dry Lake, Nov. 19, 1996, served to test aircraft systems and functional procedures, according to officials of AeroVironment, Inc., Pathfinder's developer and operator. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  7. ATIC Flight Data Processing

    NASA Technical Reports Server (NTRS)

    Ahn, H. S.; Adams, James H., Jr.; Bashindzhagyan, G.; Ampe, J.; Case, G.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The first flight of the Advanced Thin Ionization Calorimeter (ATIC) experiment from McMurdo, Antarctica lasted for 16 days, starting on December 28, 2000. The ATIC instrument consists of a fully active 320-crystal, 960-channel Bismuth Germanate (BGO) calorimeter, 202 scintillator strips (808 channels) in 3 hodoscopes, interleaved with graphite target layers, and a 4480-pixel silicon matrix charge detector. We have developed an object-oriented data processing package based on ROOT. In this paper, we describe the data processing scheme used in handling the accumulated 45 GB of flight data. We discuss calibration issues, particularly the time-dependence of housekeeping information.

  8. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 5: Flight service and inspection

    NASA Technical Reports Server (NTRS)

    Kizer, J. A.

    1981-01-01

    Inspections of the C-130 composite-reinforced center wings were conducted over the flight service monitoring period of more than six years. Twelve inspections were conducted on each of the two C-130H airplanes having composite reinforced center wing boxes. Each inspection consisted of visual and ultrasonic inspection of the selective boron-epoxy reinforced center wings which included the inspection of the boron-epoxy laminates and the boron-epoxy reinforcement/aluminum structure adhesive bondlines. During the flight service monitoring period, the two C-130H aircraft accumulated more than 10,000 flight hours and no defects were detected in the inspections over this period. The successful performance of the C-130H aircraft with composite-reinforced center wings allowed the transfer of the responsibilities of inspecting and maintaining these two aircraft to the U. S. Air Force.

  9. 14 CFR 91.529 - Flight engineer requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 6 calendar months, that person has had at least 50 hours of flight time as a flight engineer on that... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight engineer requirements. 91.529... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and...

  10. 14 CFR 125.265 - Flight engineer requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., within the preceding 6 calendar months, that person has had at least 50 hours of flight time as a flight... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight engineer requirements. 125.265... Requirements § 125.265 Flight engineer requirements. (a) No person may operate an airplane for which a...

  11. 14 CFR 91.1061 - Augmented flight crews.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... crewmember, and no flight crewmember may accept an assignment, for flight time as a member of an augmented crew if that crewmember's total flight time in all commercial flying will exceed— (1) 500 hours in any... crewmember's flight time or duty period will exceed, or rest time will be less than— 3-Pilot crew...

  12. 14 CFR 91.1061 - Augmented flight crews.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... crewmember, and no flight crewmember may accept an assignment, for flight time as a member of an augmented crew if that crewmember's total flight time in all commercial flying will exceed— (1) 500 hours in any... crewmember's flight time or duty period will exceed, or rest time will be less than— 3-Pilot crew...

  13. 14 CFR 91.529 - Flight engineer requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 6 calendar months, that person has had at least 50 hours of flight time as a flight engineer on that... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight engineer requirements. 91.529... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and...

  14. 14 CFR 91.1061 - Augmented flight crews.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... crewmember, and no flight crewmember may accept an assignment, for flight time as a member of an augmented crew if that crewmember's total flight time in all commercial flying will exceed— (1) 500 hours in any... crewmember's flight time or duty period will exceed, or rest time will be less than— 3-Pilot crew...

  15. 14 CFR 125.265 - Flight engineer requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., within the preceding 6 calendar months, that person has had at least 50 hours of flight time as a flight... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight engineer requirements. 125.265... Requirements § 125.265 Flight engineer requirements. (a) No person may operate an airplane for which a...

  16. 14 CFR 125.265 - Flight engineer requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., within the preceding 6 calendar months, that person has had at least 50 hours of flight time as a flight... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight engineer requirements. 125.265... Requirements § 125.265 Flight engineer requirements. (a) No person may operate an airplane for which a...

  17. 14 CFR 91.529 - Flight engineer requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 6 calendar months, that person has had at least 50 hours of flight time as a flight engineer on that... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight engineer requirements. 91.529... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and...

  18. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  19. The Swedish duty hour enigma

    PubMed Central

    2014-01-01

    Background The Swedish resident duty hour limit is regulated by Swedish and European legal frameworks. With a maximum average of 40 working hours per week, the Swedish duty hour regulation is one of the most restrictive in the world. At the same time, the effects of resident duty hour limits have been neither debated nor researched in the Swedish context. As a result, little is known about the Swedish conceptual framework for resident duty hours, their restriction, or their outcomes: we call this “the Swedish duty hour enigma.” This situation poses a further question: How do Swedish residents themselves construct a conceptual framework for duty hour restrictions? Methods A case study was conducted at Karolinska University Hospital, Stockholm – an urban, research-intensive hospital setting. Semi-structured interviews were carried out with 34 residents currently in training in 6 specialties. The empirical data analysis relied on theoretical propositions and was conducted thematically using a pattern-matching technique. The interview guide was based on four main topics: the perceived effect of duty hour restrictions on (1) patient care, (2) resident education, (3) resident well-being, and (4) research. Results The residents did not perceive the volume of duty hours to be the main determinant of success or failure in the four contextual domains of patient care, resident education, resident well-being, and research. Instead, they emphasized resident well-being and a desire for flexibility. Conclusions According to Swedish residents’ conceptual framework on duty hours, the amount of time spent on duty is not a proxy for the quality of resident training. Instead, flexibility, organization, and scheduling of duty hours are considered to be the factors that have the greatest influence on resident well-being, quality of learning, and opportunities to attain the competence needed for independent practice. PMID:25559074

  20. 14 CFR Appendix F to Part 141 - Flight Instructor Certification Course

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... percent of the total flight training hour requirements of the approved course, or of this section... this part, may be credited for a maximum of 5 percent of the total flight training hour requirements of..., may be credited for a maximum of 10 percent of the total flight training hour requirements of...

  1. Is the Office Hour Obsolete?

    ERIC Educational Resources Information Center

    Behrens, Susan

    2013-01-01

    A colleague can't make a coffee date at a time the author proposes because it would conflict with his office hour. No student has actually made an appointment with him during the hour, but he is committed to being in his office as promised in case someone drops by. The author's reaction to her colleague's faithfulness to his posted office hour…

  2. Breast milk intake: 12 hour versus 24 hour assessment.

    PubMed

    De Carvalho, M; Pittard, W

    1982-11-01

    Letter to the editor commenting on "Clinical and field studies of human lactation: methodological considerations," by Brown et al. The point is made that in test-weighing infants to estimate breast milk intake, culture related breastfeeding practices must be studied before a 12 hour test period is used to estimate intake for a complete 24 hour period. In western cultures milk intake between 7 am and 7 pm was found to differ significantly from intake between 7 pm and 7 am, whereas in a Bangladesh study milk intake during the 2 12 hour periods was comparable. PMID:7137079

  3. Hourly Data Flow, Concentration of Hourly RINEX Files

    NASA Technical Reports Server (NTRS)

    Stowers, D.; Habrich, H.

    2000-01-01

    The program RNXDIFF makes use of subroutines of the Bernese GPS Software to get the content of each data field and successively compares the fields of the daily files with that of the concatenated hourly files.

  4. Medium energy gamma ray astronomy with transpacific balloon flights

    NASA Technical Reports Server (NTRS)

    Zych, A. D.; Jennings, M. C.; White, R. S.; Dayton, B.

    1981-01-01

    Transpacific balloon flights with the University of California, Riverside (UCR) double scatter telescope are discussed. With flight durations from 5 days up to perhaps 15 days the long observation times necessary for medium energy (1-30 MeV) gamma ray astronomy can be obtained. These flights would be made under the auspices of the Joint U.S.-Japan Balloon Flight Program at NASA. It is proposed that flights can provide at least 30 hours of observation time per flight for many discrete source candidates and 120 hours for detecting low intensity cosmic gamma ray bursts.

  5. Pathfinder aircraft flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder research aircraft's wing structure is clearly defined as it soars under a clear blue sky during a test flight from Dryden Flight Research Center, Edwards, California, in November of 1996. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  6. Soyuz Completes Expedited Flight to Station

    NASA Video Gallery

    The Soyuz TMA-09M spacecraft carrying Soyuz Commander Fyodor Yurchikhin and Flight Engineers Karen Nyberg and Luca Parmitano docks with the International Space Station less than six hours after its...

  7. The NASA digital VGH program: Exploration of methods and final results. Volume 2: L 1011 data 1978-1979: 1619 hours

    NASA Technical Reports Server (NTRS)

    Crabill, Norman L.

    1989-01-01

    Data obtained from the digital flight data recorder system of a L 1011 aircraft in 914 flights and 1619 hours of airline revenue operations are presented. Data on conditions with flap deployment and autopilot use are given. In addition, acceleration statistics are presented from 23 hours on nonrevenue flights.

  8. Understanding Flight

    SciTech Connect

    Anderson, David

    2001-01-31

    Through the years the explanation of flight has become mired in misconceptions that have become dogma. Wolfgang Langewiesche, the author of 'Stick and Rudder' (1944) got it right when he wrote: 'Forget Bernoulli's Theorem'. A wing develops lift by diverting (from above) a lot of air. This is the same way that a propeller produces thrust and a helicopter produces lift. Newton's three laws and a phenomenon called the Coanda effect explain most of it. With an understanding of the real physics of flight, many things become clear. Inverted flight, symmetric wings, and the flight of insects are obvious. It is easy to understand the power curve, high-speed stalls, and the effect of load and altitude on the power requirements for lift. The contribution of wing aspect ratio on the efficiency of a wing, and the true explanation of ground effect will also be discussed.

  9. Hypersonic trans-Pacific flight

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Advanced Aeronautics Design Program at The Ohio State University was to design a vehicle for hypersonic passenger flight across the Pacific Ocean. The specifications were as follows: (1) hypersonic flight; (2) range of 8000 nm; (3) passenger seating greater than 250; (4) operation from 15000 ft runways Mach number and altitude of operation were at the discretion of the design teams as were the propulsion system and type of fuel. The advanced aeronautics design sequence established specifically for this program consisted of a three quarter sequence as follows: Fall: ME 694 Senior Design Seminar - one quarter hour. Designers and specialists met one hour each week for ten weeks on relevant flight vehicle design topics. Winter: ME 515H Flight Vehicle Design - four quarter hours. Three design teams of six students each performed preliminary design studies of hypersonic configurations and potential propulsion systems. Each team's results were summarized in a final presentation to NASA Lewis Research Center personnel. The presentations resulted in the selection of the most promising design for additional development. Spring: AAE 516H Advanced Flight Vehicle Design - four quarter hrs. The class was reorganized to focus upon the specific design selected from the Winter configuration studies. Detailed analyses of thermal protection systems, costs, mission refinements, etc., completed the design task and final presentations were made to NASA Lewis Research Center staff.

  10. XB-70A_flight

    NASA Video Gallery

    During the 1960s, XB-70 was the world's largest experimental aircraft. Capable of flight at speeds of three times the speed of sound (2,000 miles per hour) at altitudes of 70,000 feet, the XB-70 wa...

  11. Predicting hours of care needed.

    PubMed

    Disler, P B; Roy, C W; Smith, B P

    1993-02-01

    This study investigated whether the number of hours of care needed by a person with disability could be predicted by his or her score on the Functional Independence Measure (FIM) or the Edinburgh Rehabilitation Status Scale (ERSS). Seventy-five subjects (age range, 19 to 65), from a variety of residential services, with neurological disabilities, were visited by an experienced observer to estimate the number of hours of care per week required, from whatever source, for the subject to manage adequately. A second observer, blind to the observations of the first, assessed the subjects' FIM and ERSS scores by interview with the subjects and their carers. Wide ranges of scores on both scales suggested that subjects with many different dependency levels were surveyed, confirmed by "required care hours" varying between 0 and 168 per week (median 18). Pearson's correlation coefficients were 0.36 for ERSS (p < 0.002) and -0.39 for FIM (p < 0.001). Analysis of the scattergrams identified three aberrant cases. Investigation of these showed they each had a high level of dependency due to supervision rather than physical care; exclusion of these cases resulted in much stronger correlations for the remaining 72 cases (ERSS, 0.61; FIM, -0.76). Both ERSS and FIM correlate well with hours of care required, but their association with hours of supervision is poor. PMID:8431096

  12. Miracle Flights for Kids

    MedlinePlus

    ... today Saving Lives One Flight At A Time Miracle Flights provides free flights to distant specialized care and valuable second opinions. Miracle Flights Through June 2016 Flights Coordinated: 101,862 ...

  13. Flight (Children's Books).

    ERIC Educational Resources Information Center

    Matthews, Susan; Reid, Rebecca; Sylvan, Anne; Woolard, Linda; Freeman, Evelyn B.

    1997-01-01

    Presents brief annotations of 43 children's books, grouped around the theme of flight: flights of imagination, flights across time and around the globe, flights of adventure, and nature's flight. (SR)

  14. ATIC Flight Data Processing

    NASA Technical Reports Server (NTRS)

    Ahn, H. S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The first flight of the Advanced Thin Ionization Calorimeter (ATIC) experiment from McMurdo, Antarctica lasted for 16 days, starting in December, 2000. The ATIC instrument consists of a fully active 320-crystal, 960-channel Bismuth Germanate (BGO) calorimeter, 202 scintillator strips in 3 hodoscopes interleaved with a graphite target, and a 4480-pixel silicon matrix charge detector. We have developed an Object Oriented data processing package based on ROOT. In this paper, we will describe the data processing scheme used in handling the accumulated 45 GB of flight data. We will also discuss trigger issues by comparing the measured energy-dependent trigger efficiency with its simulation and calibration issues by considering the time-dependence of housekeeping information, etc.

  15. Solar Hot Water Hourly Simulation

    2009-12-31

    The Software consists of a spreadsheet written in Microsoft Excel which provides an hourly simulation of a solar hot water heating system (including solar geometry, solar collector efficiency as a function of temperature, energy balance on storage tank and lifecycle cost analysis).

  16. 75 Hour Nurse Aide Course.

    ERIC Educational Resources Information Center

    Iowa Univ., Iowa City. Coll. of Education.

    This 75-hour nurse aide course has been designed to meet the training requirements of the Omnibus Budget Reconciliation Act of 1987 for aides working in nursing facilities and skilled nursing facilities. Emphasis in the course is on students achieving a basic level of knowledge and demonstrating skills to provide safe, effective resident care. The…

  17. PASSIVE SMOKING ON COMMERCIAL AIRLINE FLIGHTS

    EPA Science Inventory

    Inflight exposure to nicotine, urinary cotinine and symptom self reports were assessed in a study of 9 subjects (5 passengers and 4 attendants) on four routine commercial flights each of approximately 4 hours duration. rine samples were collected for 72 hours following each fligh...

  18. 14 CFR 121.453 - Flight engineer qualifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... airplane unless, within the preceding 6 calendar months, he has had at least 50 hours of flight time as a... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight engineer qualifications. 121.453... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Crewmember Qualifications § 121.453 Flight...

  19. 14 CFR 121.453 - Flight engineer qualifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... airplane unless, within the preceding 6 calendar months, he has had at least 50 hours of flight time as a... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight engineer qualifications. 121.453... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Crewmember Qualifications § 121.453 Flight...

  20. 14 CFR 121.453 - Flight engineer qualifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... airplane unless, within the preceding 6 calendar months, he has had at least 50 hours of flight time as a... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight engineer qualifications. 121.453... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Crewmember Qualifications § 121.453 Flight...

  1. Hourly temporal distribution of wind

    NASA Astrophysics Data System (ADS)

    Deligiannis, Ilias; Dimitriadis, Panayiotis; Koutsoyiannis, Demetris

    2016-04-01

    The wind process is essential for hydrometeorology and additionally, is one of the basic renewable energy resources. Most stochastic forecast models are limited up to daily scales disregarding the hourly scale which is significant for renewable energy management. Here, we analyze hourly wind timeseries giving emphasis on the temporal distribution of wind within the day. We finally present a periodic model based on statistical as well as hydrometeorological reasoning that shows good agreement with data. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  2. Relationships Between Physical Fitness, Demands of Flight Duty, and Musculoskeletal Symptoms Among Military Pilots.

    PubMed

    Rintala, Harri; Häkkinen, Arja; Siitonen, Simo; Kyröläinen, Heikki

    2015-12-01

    Although the mechanisms of G-induced stresses on the spinal structure of military pilots are well understood, less is known about relationships between the intensity of physical activity, fitness, occupational musculoskeletal symptoms, and the degree of resulting disabilities. During an aeromedical examination, Finnish military pilots answered a questionnaire on their flying experience, the occurrence of flight duty-related pain, the degree of resulting disabilities, and the intensity of physical activity they conducted. 195 males were selected for further analysis. They were divided into three groups, designated high G, low G, and HQ, according to their current flight duty profile. 93% of pilots who had passed fighter lead-in training reported flight duty-induced musculoskeletal disorders. The high-G group exhibited the highest aerobic capacity (p < 0.001) and muscular fitness scores (p < 0.001). The fittest individuals suffered markedly fewer disabilities than their less fit counterparts (p = 0.005). Flight hour accumulation among the subjects in the high-G group was associated (p = 0.010) with the occurrence of flight duty-induced disabilities. The fittest pilots flew aircraft that induce the heaviest accelerations. They also reported more musculoskeletal pain than the other pilots. Yet they seemed to experience fewer disabilities, which highlights the importance of physical training in the maintenance of operational readiness. PMID:26633667

  3. 14 CFR 61.57 - Recent flight experience: Pilot in command.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., and flight time, and the instrument currency must have been performed in actual weather conditions or under simulated weather conditions— (A) One hour of instrument flight time in a glider or in a single... the use of navigation electronic systems. (B) Two hours of instrument flight time in a glider or...

  4. 14 CFR 61.57 - Recent flight experience: Pilot in command.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., and flight time, and the instrument currency must have been performed in actual weather conditions or under simulated weather conditions— (A) One hour of instrument flight time in a glider or in a single... the use of navigation electronic systems. (B) Two hours of instrument flight time in a glider or...

  5. 14 CFR 61.57 - Recent flight experience: Pilot in command.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., and flight time, and the instrument currency must have been performed in actual weather conditions or under simulated weather conditions— (A) One hour of instrument flight time in a glider or in a single... the use of navigation electronic systems. (B) Two hours of instrument flight time in a glider or...

  6. Pathfinder Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Pathfinder research aircraft's wing structure was clearly defined as it soared under a clear blue sky during a test flight July 27, 1995, from Dryden Flight Research Center, Edwards, California. The center section and outer wing panels of the aircraft had ribs constructed of thin plastic foam, while the ribs in the inner wing panels are fabricated from lightweight composite material. Developed by AeroVironment, Inc., the Pathfinder was one of several unmanned aircraft being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long- duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar- powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus

  7. Pathfinder aircraft in flight

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Pathfinder research aircraft's wing structure was clearly defined as it soared under a clear blue sky during a test flight July 27, 1995, from Dryden Flight Research Center, Edwards, California. The center section and outer wing panels of the aircraft had ribs constructed of thin plastic foam, while the ribs in the inner wing panels are fabricated from lightweight composite material. Developed by AeroVironment, Inc., the Pathfinder was one of several unmanned aircraft being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus

  8. Enabling Electric Propulsion for Flight

    NASA Technical Reports Server (NTRS)

    Ginn, Starr Renee

    2015-01-01

    Team Seedling project AFRC and LaRC 31ft distributed electric propulsion wing on truck bed up 75 miles per hour for coefficient of lift validation. Convergent Aeronautic Solutions project, sub-project Convergent Electric Propulsion Technologies AFRC, LaRC and GRC, re-winging a 4 passenger Tecnam aircraft with a 31ft distributed electric propulsion wing. Advanced Air Transport Technologies (Fixed Wing), Hybrid Electric Research Theme, developing a series hybrid ironbird and flight sim to study integration and performance challenges in preparation for a 1-2 MW flight project.

  9. Enabling Electric Propulsion for Flight

    NASA Technical Reports Server (NTRS)

    Ginn, Starr

    2014-01-01

    Description of current ARMD projects; Team Seedling project AFRC and LaRC 31ft distributed electric propulsion wing on truck bed up 75 miles per hour for coefficient of lift validation. Convergent Aeronautic Solutions project (new ARMD reorg), sub-project Convergent Electric Propulsion Technologies AFRC, LaRC and GRC, re-winging a 4 passenger Tecnam aircraft with a 31ft distributed electric propulsion wing. Advanced Air Transport Technologies (Fixed Wing), Hybrid Electric Research Theme, developing a series hybrid ironbird and flight sim to study integration and performance challenges in preparation for a 1-2 MW flight project.

  10. Residency Work-Hours Reform

    PubMed Central

    Nuckols, Teryl K; Escarce, José J

    2005-01-01

    Background In response to proposed federal legislation, the Accreditation Council for Graduate Medical Education limited resident work-hours in July 2003. The cost may be substantial but, if successful, the reform might lower preventable adverse event costs in hospital and after discharge. Objectives This study sought to estimate the reform's net cost in 2001 dollars, and to determine the reduction in preventable adverse events needed to make reform cost neutral from teaching hospital and societal perspectives. Design Cost analysis using published literature and data. Net costs were determined for 4 reform strategies and over a range of potential effects on preventable adverse events. Results Nationwide, transferring excess work to task-tailored substitutes (the lowest-level providers appropriate for noneducational tasks) would cost $673 million; mid-level providers would cost $1.1 billion. Reform strategies promoting adverse events would increase net teaching hospital and societal costs as well as mortality. If task-tailored substitutes decrease events by 5.1% or mid-level providers decrease them by 8.5%, reform would be cost neutral for society. Events must fall by 18.5% and 30.9%, respectively, to be cost neutral for teaching hospitals. Conclusions Because most preventable adverse event costs occur after discharge, a modest decline (5.1% to 8.5%) in them might make residency work-hours reform cost neutral for society but only a much larger drop (18.5% to 30.9%) would make it cost neutral for teaching hospitals, unless additional funds are allocated. Future research should evaluate which reform approaches prevent adverse events and at what cost. PMID:16191130

  11. Flight service evaluation of composite components on the Bell helicopter model 206L

    NASA Technical Reports Server (NTRS)

    Wilson, Henry

    1993-01-01

    This is the final report on the advanced composite components which were placed in service on the 206L LongRanger helicopters in the continental United States, Canada, and Alaska. This report covers all test data which was gathered, as well as maintenance histories of the parts. The previous reports describe the fabrication, service experiences, and test data through 1986. This report contains information from these references, as well as data gathered after 1986. The status of the 40 sets of components is discussed. Each set consisted of a vertical fin, forward fairing, litter door, and baggage door. Almost 500,000 flight hours were accumulated on the 160 parts, with the high-time part accumulating 14,687 flight hours. Over 60 percent of the parts were destructively tested to measure strength and stiffness retention over the course of the program. The vertical fins had the greatest strength retention followed by the litter doors. The baggage doors had the poorest retention of strength. There was very little difference in property retention between the four primary operating regions: Northwest U.S., Southwest U.S., Gulf of Mexico Coastal Region, and the Northeast U.S. and Eastern Canada Region. The field problems have ranged from two lightning-struck fins to significant delaminations in the baggage doors. There was only one environmentally related field incident, in which the glass windows on the litter doors were found to loosen due to high temperatures experienced in the southwest region.

  12. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1979-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after five years' service. There are six Kevlar-49 panels on each aircraft: a left-hand and right-hand set of a wing-body sandwich fairing; a solid laminate under-wing fillet panel; and a 150 C (300 F) service aft engine fairing. The fairings have accumulated a total of 40,534 hours, with one ship set having 16,091 hours service as of Feb. 11, 1979. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings.

  13. 29 CFR 825.802 - Special rules for airline flight crew employees, calculation of leave.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... flight crew employee needs to take FMLA leave for a two-hour physical therapy appointment, the employer... flight crew employees are subject to § 825.205(a)(2), the physical impossibility provision....

  14. 29 CFR 825.802 - Special rules for airline flight crew employees, calculation of leave.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... flight crew employee needs to take FMLA leave for a two-hour physical therapy appointment, the employer... flight crew employees are subject to § 825.205(a)(2), the physical impossibility provision....

  15. My Half Hour with Einstein

    NASA Astrophysics Data System (ADS)

    Romer, Robert H.

    2005-03-01

    "So you're studying at Princeton. Would you like to meet Einstein?" That question, during a brief two-body collision at a cocktail party, a collision that was over before I could think of an appropriate response, led—over a year later—to one of the more memorable half hours of my life. It was an elastic collision, we drifted apart, and I thought it had simply been a casual remark until a few days later when the mail brought me a carbon copy [sic] of a letter (dated "25.XII.52") from the speaker, Dr. Tilly Edinger, to Albert Einstein. Accompanying the letter to Einstein was a card that Dr. Edinger advised me to send around to Einstein's home on Mercer Street to request a meeting. (What is perhaps most truly astonishing in connection with this event is that not only do I still have that carbon copy—and the eventual letter from Mercer Street that invited me to Einstein's home—but that I was able to find both documents in my attic!)

  16. Daedalus - Last Dryden flight

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Daedalus 88, with Glenn Tremml piloting, is seen here on its last flight for the NASA Dryden Flight Research Center, Edwards, California. The Light Eagle and Daedalus human powered aircraft were testbeds for flight research conducted at Dryden between January 1987 and March 1988. These unique aircraft were designed and constructed by a group of students, professors, and alumni of the Massachusetts Institute of Technology within the context of the Daedalus project. The construction of the Light Eagle and Daedalus aircraft was funded primarily by the Anheuser Busch and United Technologies Corporations, respectively, with additional support from the Smithsonian Air and Space Museum, MIT, and a number of other sponsors. To celebrate the Greek myth of Daedalus, the man who constructed wings of wax and feathers to escape King Minos, the Daedalus project began with the goal of designing, building and testing a human-powered aircraft that could fly the mythical distance, 115 km. To achieve this goal, three aircraft were constructed. The Light Eagle was the prototype aircraft, weighing 92 pounds. On January 22, 1987, it set a closed course distance record of 59 km, which still stands. Also in January of 1987, the Light Eagle was powered by Lois McCallin to set the straight distance, the distance around a closed circuit, and the duration world records for the female division in human powered vehicles. Following this success, two more aircraft were built, the Daedalus 87 and Daedalus 88. Each aircraft weighed approximately 69 pounds. The Daedalus 88 aircraft was the ship that flew the 199 km from the Iraklion Air Force Base on Crete in the Mediterranean Sea, to the island of Santorini in 3 hours, 54 minutes. In the process, the aircraft set new records in distance and endurance for a human powered aircraft. The specific areas of flight research conducted at Dryden included characterizing the rigid body and flexible dynamics of the Light Eagle, investigating sensors for an

  17. Human Space Flight

    NASA Technical Reports Server (NTRS)

    Woolford, Barbara

    2006-01-01

    The performance of complex tasks on the International Space Station (ISS) requires significant preflight crew training commitments and frequent skill and knowledge refreshment. This report documents a recently developed just-in-time training methodology, which integrates preflight hardware familiarization and procedure training with an on-orbit CD-ROM-based skill enhancement. This just-in-time concept was used to support real-time remote expert guidance to complete medical examinations using the ISS Human Research Facility (HRF). An American md Russian ISS crewmember received 2-hours of hands on ultrasound training 8 months prior to the on-orbit ultrasound exam. A CD-ROM-based Onboard Proficiency Enhancement (OPE) interactive multimedia program consisting of memory enhancing tutorials, and skill testing exercises, was completed by the crewmember six days prior to the on-orbit ultrasound exam. The crewmember was then remotely guided through a thoracic, vascular, and echocardiographic examination by ultrasound imaging experts. Results of the CD ROM based OPE session were used to modify the instructions during a complete 35 minute real-time thoracic, cardiac, and carotid/jugular ultrasound study. Following commands from the ground-based expert, the crewmember acquired all target views and images without difficulty. The anatomical content and fidelity of ultrasound video were excellent and adequate for clinical decision-making. Complex ultrasound experiments with expert guidance were performed with high accuracy following limited pre-flight training and CD-ROM-based in-flight review, despite a 2-second communication latency.

  18. Mars Balloon Flight Test Results

    NASA Technical Reports Server (NTRS)

    Hall, Jeffery L.; Pauken, Michael T.; Kerzhanovich, Viktor V.; Walsh, Gerald J.; Kulczycki, Eric A.; Fairbrother, Debora; Shreves, Chris; Lachenmeier, Tim

    2009-01-01

    This paper describes a set of four Earth atmosphere flight test experiments on prototype helium superpressure balloons designed for Mars. Three of the experiments explored the problem of aerial deployment and inflation, using the cold, low density environment of the Earth's stratosphere at an altitude of 30-32 km as a proxy for the Martian atmosphere. Auxiliary carrier balloons were used in three of these test flights to lift the Mars balloon prototype and its supporting system from the ground to the stratosphere where the experiment was conducted. In each case, deployment and helium inflation was initiated after starting a parachute descent of the payload at 5 Pa dynamic pressure, thereby mimicking the conditions expected at Mars after atmospheric entry and high speed parachute deceleration. Upward and downward looking video cameras provided real time images from the flights, with additional data provided by onboard temperature, pressure and GPS sensors. One test of a 660 cc pumpkin balloon was highly successful, achieving deployment, inflation and separation of the balloon from the flight train at the end of inflation; however, some damage was incurred on the balloon during this process. Two flight tests of 12 m diameter spherical Mylar balloons were not successful, although some lessons were learned based on the failure analyses. The final flight experiment consisted of a ground-launched 12 m diameter spherical Mylar balloon that ascended to the designed 30.3 km altitude and successfully floated for 9.5 hours through full noontime daylight and into darkness, after which the telemetry system ran out of electrical power and tracking was lost. The altitude excursions for this last flight were +/-75 m peak to peak, indicating that the balloon was essentially leak free and functioning correctly. This provides substantial confidence that this balloon design will fly for days or weeks at Mars if it can be deployed and inflated without damage.

  19. Microbial accumulation of uranium, radium, and cesium

    SciTech Connect

    Strandberg, G.W.; Shumate, S.E. II; Parrott, J.R. Jr.; North, S.E.

    1981-05-01

    Diverse microbial species varied considerably in their ability to accumulate uranium, cesium, and radium. Mechanistic differences in uranium uptake by Saccharomyces cerevisiae and Pseudomonas aeruginosa were indicated. S. serevisiae exhibited a slow (hours) surface accumulation of uranium which was subject to environmental factors, while P. aeruginosa accumulated uranium rapidly (minutes) as dense intracellular deposits and did not appear to be affected by environmental parameters. Metabolism was not required for uranium uptake by either organism. Cesium and radium were concentrated to a considerably lesser extent than uranium by the several species tested.

  20. Flight control systems development and flight test experience with the HiMAT research vehicles

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Earls, Michael R.

    1988-01-01

    Two highly maneuverable aircraft technology (HiMAT) remotely piloted vehicles were flown a total of 26 flights. These subscale vehicles were of advanced aerodynamic configuration with advanced technology concepts such as composite and metallic structures, digital integrated propulsion control, and ground (primary) and airborne (backup) relaxed static stability, digital fly-by-wire control systems. Extensive systems development, checkout, and flight qualification were required to conduct the flight test program. The design maneuver goal was to achieve a sustained 8-g turn at Mach 0.9 at an altitude of 25,000 feet. This goal was achieved, along with the acquisition of high-quality flight data at subsonic and supersonic Mach numbers. Control systems were modified in a variety of ways using the flight-determined aerodynamic characteristics. The HiMAT program was successfully completed with approximately 11 hours of total flight time.

  1. 50 CFR 20.23 - Shooting hours.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Taking § 20.23 Shooting hours. No person shall take migratory game birds except during the hours open to shooting as prescribed in subpart K of this part and...

  2. Long Work Hours May Hurt Your Health

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_159479.html Long Work Hours May Hurt Your Health At the job ... at Ohio State University. The link between long work hours and disease ''seems to be present a ...

  3. 12 hour shifts the Nambour Hospital experience.

    PubMed

    2007-08-01

    Union members have a lengthy history of campaigning for fair working hours and conditions. The success of such campaigns has led to the implementation of the eight hour working day and the 40 hour and then 38 hour week as industrial standards. More recently though, calls for greater flexibility in their shift arrangements by nurses at Nambour Hospital have led to a voluntary 12 hour shift being implemented in their Intensive Care Unit. While union members are protective of their hard won gains in achieving reduced working hours through the 8 hour day--ICU nurses at Nambour Hospital say the voluntary 12 hour shift initiative goes a way in addressing their work/life balance issues. PMID:17879604

  4. Green Flight Challenge

    NASA Video Gallery

    The CAFE Green Flight Challenge sponsored by Google will be held at the CAFE Foundation Flight Test Center at Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. The Green Flight Challeng...

  5. 10 CFR 26.205 - Work hours.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Work hours. 26.205 Section 26.205 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Managing Fatigue § 26.205 Work hours. (a) Individuals subject to work hour controls. Any individual who performs duties identified in § 26.4(a)(1) through...

  6. 50 CFR 20.23 - Shooting hours.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Shooting hours. 20.23 Section 20.23... PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Taking § 20.23 Shooting hours. No person shall take migratory game birds except during the hours open to shooting as prescribed in subpart K of this part and...

  7. 50 CFR 20.23 - Shooting hours.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Shooting hours. 20.23 Section 20.23... PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Taking § 20.23 Shooting hours. No person shall take migratory game birds except during the hours open to shooting as prescribed in subpart K of this part and...

  8. 50 CFR 20.23 - Shooting hours.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Shooting hours. 20.23 Section 20.23... PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Taking § 20.23 Shooting hours. No person shall take migratory game birds except during the hours open to shooting as prescribed in subpart K of this part and...

  9. 50 CFR 20.23 - Shooting hours.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Shooting hours. 20.23 Section 20.23... PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Taking § 20.23 Shooting hours. No person shall take migratory game birds except during the hours open to shooting as prescribed in subpart K of this part and...

  10. NASA's Flight Opportunities Program

    NASA Video Gallery

    NASA's Flight Opportunities Program is facilitating low-cost access to suborbital space, where researchers can test technologies using commercially developed vehicles. Suborbital flights can quickl...

  11. X-4 in flight

    NASA Technical Reports Server (NTRS)

    1951-01-01

    In the early days of transonic flight research, many aerodynamicists believed that eliminating conventional tail surfaces could reduce the problems created by shock wave interaction with the tail's lifting surfaces. To address this issue, the Army Air Forces's Air Technical Service awarded a contract to Northrop Aircraft Corporation on 5 April 1946 to build a piloted 'flying laboratory.' Northrop already had experience with tailless flying wing designs such as the N-1M, N-9M, XB-35, and YB-49. Subsequently, the manufacturer built two semi-tailless X-4 research aircraft, the first of which flew half a century ago. The X-4 was designed to investigate transonic compressibility effects at speeds near Mach 0.85 to 0.88, slightly below the speed of sound. Northrop project engineer Arthur Lusk designed the aircraft with swept wings and a conventional fuselage that housed two turbojet engines. It had a vertical stabilizer, but no horizontal tail surfaces. It was one of the smallest X-planes ever built, and every bit of internal space was used for systems and instrumentation. The first X-4 arrived at Muroc Air Force Base by truck on 15 November 1948. Over the course of several weeks, engineers conducted static tests, and Northrop test pilot Charles Tucker made initial taxi runs. Although small of stature, he barely fit into the diminutive craft. Tucker, a veteran Northrop test pilot, had previously flown the XB-35 and YB-49 flying wing bomber prototypes. Prior to flying for Northrop, he had logged 400 hours in jet airplanes as a test pilot for Lockheed and the Air Force. He would now be responsible for completing the contractor phase of the X-4 flight test program. Finally, all was ready. Tucker climbed into the cockpit, and made the first flight on 15 December 1948. It only lasted 18 minutes, allowing just enough time for the pilot to become familiar with the basic handling qualities of the craft. The X-4 handled well, but Tucker noted some longitudinal instability at all

  12. X-4 in flight

    NASA Technical Reports Server (NTRS)

    1951-01-01

    In the early days of transonic flight research, many aerodynamicists believed that eliminating conventional tail surfaces could reduce the problems created by shock wave interaction with the tail's lifting surfaces. To address this issue, the Army Air Forces's Air Technical Service awarded a contract to Northrop Aircraft Corporation on 5 April 1946 to build a piloted 'flying laboratory.' Northrop already had experience with tailless flying wing designs such as the N-1M, N-9M, XB-35, and YB-49. Subsequently, the manufacturer built two semi-tailless X-4 research aircraft, the first of which flew half a century ago. The X-4 was designed to investigate transonic compressibility effects at speeds near Mach 0.85 to 0.88, slightly below the speed of sound. Northrop project engineer Arthur Lusk designed the aircraft with swept wings and a conventional fuselage that housed two turbojet engines. It had a vertical stabilizer, but no horizontal tail surfaces. It was one of the smallest X-planes ever built, and every bit of internal space was used for systems and instrumentation. The first X-4 arrived at Muroc Air Force Base by truck on 15 November 1948. Over the course of several weeks, engineers conducted static tests, and Northrop test pilot Charles Tucker made initial taxi runs. Although small of stature, he barely fit into the diminutive craft. Tucker, a veteran Northrop test pilot, had previously flown the XB-35 and YB-49 flying wing bomber prototypes. Prior to flying for Northrop, he had logged 400 hours in jet airplanes as a test pilot for Lockheed and the Air Force. He would now be responsible for completing the contractor phase of the X-4 flight test program. Finally, all was ready. Tucker climbed into the cockpit, and made the first flight on 15 December 1948. It only lasted 18 minutes, allowing just enough time for the pilot to become familiar with the basic handling qualities of the craft. The X-4 handled well, but Tucker noted some longitudinal instability at all

  13. Aviation Pilot Training I & II. Flight Syllabus. Field Review Copy.

    ERIC Educational Resources Information Center

    Upchurch, Richard

    This guide for aviation pilot training I and II begins with a course description, resource information, and a course outline. The syllabus is designed to be used concurrently with the ground school program. A minimum of 29 flights are scheduled with a minimum of 40 hours total flight time. Tasks/competencies are categorized into five concept/duty…

  14. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Pilots: airplanes... Operations § 121.503 Flight time limitations: Pilots: airplanes. (a) A certificate holder conducting supplemental operations may schedule a pilot to fly in an airplane for eight hours or less during any...

  15. Flight Test Series 3: Flight Test Report

    NASA Technical Reports Server (NTRS)

    Marston, Mike; Sternberg, Daniel; Valkov, Steffi

    2015-01-01

    This document is a flight test report from the Operational perspective for Flight Test Series 3, a subpart of the Unmanned Aircraft System (UAS) Integration in the National Airspace System (NAS) project. Flight Test Series 3 testing began on June 15, 2015, and concluded on August 12, 2015. Participants included NASA Ames Research Center, NASA Armstrong Flight Research Center, NASA Glenn Research Center, NASA Langley Research center, General Atomics Aeronautical Systems, Inc., and Honeywell. Key stakeholders analyzed their System Under Test (SUT) in two distinct configurations. Configuration 1, known as Pairwise Encounters, was subdivided into two parts: 1a, involving a low-speed UAS ownship and intruder(s), and 1b, involving a high-speed surrogate ownship and intruder. Configuration 2, known as Full Mission, involved a surrogate ownship, live intruder(s), and integrated virtual traffic. Table 1 is a summary of flights for each configuration, with data collection flights highlighted in green. Section 2 and 3 of this report give an in-depth description of the flight test period, aircraft involved, flight crew, and mission team. Overall, Flight Test 3 gathered excellent data for each SUT. We attribute this successful outcome in large part from the experience that was acquired from the ACAS Xu SS flight test flown in December 2014. Configuration 1 was a tremendous success, thanks to the training, member participation, integration/testing, and in-depth analysis of the flight points. Although Configuration 2 flights were cancelled after 3 data collection flights due to various problems, the lessons learned from this will help the UAS in the NAS project move forward successfully in future flight phases.

  16. Flight service evaluation of kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft: Flight service report

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1981-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 7 years service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing-body sandwich fairing; a slid laminate under-wing fillet panel; and a 422 K service aft engine fairing. The three L-1011s include one each in service with Eastern, Air Canada, and TWA. The fairings have accumulated a total of 52,500 hours, with one ship set having 17.700 hours service. The inspections were conducted at the airlines' major maintenance bases with the participation of Lockheed Engineering. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems or any condition requiring corrective action. The only defects noted were minor impact damage and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  17. 14 CFR 121.523 - Flight time limitations: Crew of three or more pilots and additional airmen as required.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Crew of three or... OPERATIONS Flight Time Limitations: Supplemental Operations § 121.523 Flight time limitations: Crew of three... hours before beginning flight duty, one half of the time spent in deadhead transportation must...

  18. 14 CFR 121.523 - Flight time limitations: Crew of three or more pilots and additional airmen as required.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Crew of three or... OPERATIONS Flight Time Limitations: Supplemental Operations § 121.523 Flight time limitations: Crew of three... hours before beginning flight duty, one half of the time spent in deadhead transportation must...

  19. 14 CFR 121.523 - Flight time limitations: Crew of three or more pilots and additional airmen as required.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Crew of three or... OPERATIONS Flight Time Limitations: Supplemental Operations § 121.523 Flight time limitations: Crew of three... hours before beginning flight duty, one half of the time spent in deadhead transportation must...

  20. ER-2 in flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In this film clip, we see an ER-2 on its take off roll and climb as it departs from runway 22 at Edwards AFB, California. In 1981, NASA acquired its first ER-2 aircraft. The agency obtained a second ER-2 in 1989. These airplanes replaced two Lockheed U-2 aircraft, which NASA had used to collect scientific data since 1971. The U-2, and later the ER-2, were based at the Ames Research Center, Moffett Field, California, until 1997. In 1997, the ER-2 aircraft and their operations moved to NASA Dryden Flight Research Center, Edwards, California. Since the inaugural flight for this program, August 31, 1971, NASA U-2 and ER-2 aircraft have flown more than 4,000 data missions and test flights in support of scientific research conducted by scientists from NASA, other federal agencies, states, universities, and the private sector. NASA is currently using two ER-2 Airborne Science aircraft as flying laboratories. The aircraft, based at NASA Dryden, collect information about our surroundings, including Earth resources, celestial observations, atmospheric chemistry and dynamics, and oceanic processes. The aircraft also are used for electronic sensor research and development, satellite calibration, and satellite data validation. The ER-2 is a versatile aircraft well-suited to perform multiple mission tasks. It is 30 percent larger than the U-2 with a 20 feet longer wingspan and a considerably increased payload over the older airframe. The aircraft has four large pressurized experiment compartments and a high-capacity AC/DC electrical system, permitting it to carry a variety of payloads on a single mission. The modular design of the aircraft permits rapid installation or removal of payloads to meet changing mission requirements. The ER-2 has a range beyond 3,000 miles (4800 kilometers); is capable of long flight duration and can operate at altitudes up to 70,000 feet (21.3 kilometers) if required. Operating at an altitude of 65,000 feet (19.8 kilometers) the ER-2 acquires data

  1. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Flight engineers... Limitations: Flag Operations § 121.493 Flight time limitations: Flight engineers and flight navigators. (a) In any operation in which one flight engineer or flight navigator is required, the flight...

  2. Performance and Upgrades of the Fermilab Accumulator Stacktail Stochastic Cooling

    SciTech Connect

    Derwent, P. F.; Cullerton, Ed; McGinnis, David; Pasquinelli, Ralph; Sun Ding; Tinsley, David

    2006-03-20

    We report on the performance and planned upgrades to the Fermilab Accumulator Stacktail Stochastic Cooling System. The current system has achieved a maximum flux of 16.5e10/hour, limited by the input flux of antiprotons. The upgrades are designed to handle flux in excess of 40e10/hour.

  3. Performance and upgrades of the Fermilab Accumulator stacktail stochastic cooling

    SciTech Connect

    Derwent, P.F.; Cullerton, Ed; McGinnis, David; Pasquinelli, Ralph; Sun, Ding; Tinsley, David; /Fermilab

    2005-11-01

    We report on the performance and planned upgrades to the Fermilab Accumulator Stacktail Stochastic Cooling System. The current system has achieved a maximum flux of 16.5e10/hour, limited by the input flux of antiprotons. The upgrades are designed to handle flux in excess of 40e10/hour.

  4. Terrain Portrayal for Head-Down Displays Flight Test

    NASA Technical Reports Server (NTRS)

    Hughes, Monica F.; Glaab, Louis J.

    2003-01-01

    well as develop requirements and recommendations to facilitate the implementation and certification of SVS displays. The TP-HDD flight experiment utilized the NASA LaRC Cessna 206 Stationaire and evaluated eight terrain portrayal concepts in an effort to confirm and extend results from the previously conducted TP-HDD simulation experiment. A total of 15 evaluation pilots, of various qualifications, accumulated over 75 hours of dedicated research flight time at Newport News (PHF) and Roanoke (ROA), VA, airports from August through October, 2002. This report will present results from the portion of testing conducted at Roanoke, VA.

  5. Integrating Space Flight Resource Management Skills into Technical Lessons for International Space Station Flight Controller Training

    NASA Technical Reports Server (NTRS)

    Baldwin, Evelyn

    2008-01-01

    The Johnson Space Center s (JSC) International Space Station (ISS) Space Flight Resource Management (SFRM) training program is designed to teach the team skills required to be an effective flight controller. It was adapted from the SFRM training given to Shuttle flight controllers to fit the needs of a "24 hours a day/365 days a year" flight controller. More recently, the length reduction of technical training flows for ISS flight controllers impacted the number of opportunities for fully integrated team scenario based training, where most SFRM training occurred. Thus, the ISS SFRM training program is evolving yet again, using a new approach of teaching and evaluating SFRM alongside of technical materials. Because there are very few models in other industries that have successfully tied team and technical skills together, challenges are arising. Despite this, the Mission Operations Directorate of NASA s JSC is committed to implementing this integrated training approach because of the anticipated benefits.

  6. 40 CFR 89.118 - Deterioration factors and service accumulation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... selecting the service accumulation period and records describing the method used to accumulate service hours... must be based on good engineering judgment. (iii) Engineering analysis for established technologies. (A) In the case where an engine family uses established technology, an analysis based on good...

  7. 16 CFR 0.3 - Hours.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Hours. 0.3 Section 0.3 Commercial Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.3 Hours. Principal and field offices are open on each business day from 8:30 a.m. to 5 p.m....

  8. 47 CFR 0.403 - Office hours.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Office hours. 0.403 Section 0.403 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION General Information General § 0.403 Office hours. The main offices of the Commission are open from 8 a.m. to 5:30 p.m., Monday...

  9. 17 CFR 201.104 - Business hours.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false Business hours. 201.104 Section 201.104 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION RULES OF PRACTICE Rules of Practice General Rules § 201.104 Business hours. The Headquarters office of the Commission,...

  10. 20 CFR 801.304 - Business hours.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Business hours. 801.304 Section 801.304 Employees' Benefits BENEFITS REVIEW BOARD, DEPARTMENT OF LABOR ESTABLISHMENT AND OPERATION OF THE BOARD Action by the Board § 801.304 Business hours. The office of the Clerk of the Board at Washington,...

  11. 20 CFR 801.304 - Business hours.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Business hours. 801.304 Section 801.304 Employees' Benefits BENEFITS REVIEW BOARD, DEPARTMENT OF LABOR ESTABLISHMENT AND OPERATION OF THE BOARD Action by the Board § 801.304 Business hours. The office of the Clerk of the Board at Washington,...

  12. 17 CFR 201.104 - Business hours.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 2 2013-04-01 2013-04-01 false Business hours. 201.104 Section 201.104 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION RULES OF PRACTICE Rules of Practice General Rules § 201.104 Business hours. The Headquarters office of the Commission,...

  13. 20 CFR 801.304 - Business hours.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Business hours. 801.304 Section 801.304 Employees' Benefits BENEFITS REVIEW BOARD, DEPARTMENT OF LABOR ESTABLISHMENT AND OPERATION OF THE BOARD Action by the Board § 801.304 Business hours. The office of the Clerk of the Board at Washington,...

  14. 17 CFR 201.104 - Business hours.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 3 2014-04-01 2014-04-01 false Business hours. 201.104 Section 201.104 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION RULES OF PRACTICE Rules of Practice General Rules § 201.104 Business hours. The Headquarters office of the Commission,...

  15. 17 CFR 201.104 - Business hours.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 2 2012-04-01 2012-04-01 false Business hours. 201.104 Section 201.104 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION RULES OF PRACTICE Rules of Practice General Rules § 201.104 Business hours. The Headquarters office of the Commission,...

  16. 20 CFR 801.304 - Business hours.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Business hours. 801.304 Section 801.304 Employees' Benefits BENEFITS REVIEW BOARD, DEPARTMENT OF LABOR ESTABLISHMENT AND OPERATION OF THE BOARD Action by the Board § 801.304 Business hours. The office of the Clerk of the Board at Washington,...

  17. 24-Hour Academic Libraries: Adjusting to Change

    ERIC Educational Resources Information Center

    Bowman, Adam C.

    2013-01-01

    The purpose of this study was to explore the adaptive measures that academic libraries perform when implementing and operating a 24-hour schedule. Five in-depth interviews were conducted with current managerial-level librarians at 24-hour academic libraries. The exploratory interviews revealed similar measures for security, budgeting, employee…

  18. 16 CFR 0.3 - Hours.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Hours. 0.3 Section 0.3 Commercial Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.3 Hours. Principal and field offices are open on each business day from 8:30 a.m. to 5 p.m....

  19. 20 CFR 801.304 - Business hours.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Business hours. 801.304 Section 801.304 Employees' Benefits BENEFITS REVIEW BOARD, DEPARTMENT OF LABOR ESTABLISHMENT AND OPERATION OF THE BOARD Action by the Board § 801.304 Business hours. The office of the Clerk of the Board at Washington,...

  20. 17 CFR 201.104 - Business hours.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Business hours. 201.104 Section 201.104 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION RULES OF PRACTICE Rules of Practice General Rules § 201.104 Business hours. The Headquarters office of the Commission,...

  1. 47 CFR 0.403 - Office hours.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Office hours. 0.403 Section 0.403 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION General Information General § 0.403 Office hours. The main offices of the Commission are open from 8 a.m. to 5:30 p.m., Monday...

  2. A comparison between 24-hour and 2-hour urine collection for the determination of proteinuria.

    PubMed

    Somanathan, N; Farrell, T; Galimberti, A

    2003-07-01

    Proteinuria is one of the fundamental criteria for the diagnosis of pre-eclampsia with quantitative assessment based on the 24-hour urine protein estimation as the gold standard. This study was undertaken to determine whether a 2-hour protein estimation correlated with that of a formal 24-hour collection. Thirty women with proteinuric hypertension were recruited. There was significant correlation between the 2-hour and 24-hour urine protein levels (Pearson's correlation coefficient 0.76 (P 0.000). A positive 2-hour test was associated more closely with significant levels of 24-hour proteinuria than dipstick analysis alone. We conclude from this study that a random 2-hour sample could be used for the initial assessment of proteinuria and so avoid the delay associated with 24-hour quantification of urinary protein. PMID:12881076

  3. In-flight sleep, pilot fatigue and Psychomotor Vigilance Task performance on ultra-long range versus long range flights.

    PubMed

    Gander, Philippa H; Signal, T Leigh; van den Berg, Margo J; Mulrine, Hannah M; Jay, Sarah M; Jim Mangie, Captain

    2013-12-01

    This study evaluated whether pilot fatigue was greater on ultra-long range (ULR) trips (flights >16 h on 10% of trips in a 90-day period) than on long range (LR) trips. The within-subjects design controlled for crew complement, pattern of in-flight breaks, flight direction and departure time. Thirty male Captains (mean age = 54.5 years) and 40 male First officers (mean age = 48.0 years) were monitored on commercial passenger flights (Boeing 777 aircraft). Sleep was monitored (actigraphy, duty/sleep diaries) from 3 days before the first study trip to 3 days after the second study trip. Karolinska Sleepiness Scale, Samn-Perelli fatigue ratings and a 5-min Psychomotor Vigilance Task were completed before, during and after every flight. Total sleep in the 24 h before outbound flights and before inbound flights after 2-day layovers was comparable for ULR and LR flights. All pilots slept on all flights. For each additional hour of flight time, they obtained an estimated additional 12.3 min of sleep. Estimated mean total sleep was longer on ULR flights (3 h 53 min) than LR flights (3 h 15 min; P(F) = 0.0004). Sleepiness ratings were lower and mean reaction speed was faster at the end of ULR flights. Findings suggest that additional in-flight sleep mitigated fatigue effectively on longer flights. Further research is needed to clarify the contributions to fatigue of in-flight sleep versus time awake at top of descent. The study design was limited to eastward outbound flights with two Captains and two First Officers. Caution must be exercised when extrapolating to different operations. PMID:23889686

  4. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted research aircraft, seen here during a test flight in June 1998. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST

  5. Flight Test Engineering

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen

    2013-01-01

    Although the scope of flight test engineering efforts may vary among organizations, all point to a common theme: flight test engineering is an interdisciplinary effort to test an asset in its operational flight environment. Upfront planning where design, implementation, and test efforts are clearly aligned with the flight test objective are keys to success. This chapter provides a top level perspective of flight test engineering for the non-expert. Additional research and reading on the topic is encouraged to develop a deeper understanding of specific considerations involved in each phase of flight test engineering.

  6. X-1 in flight

    NASA Technical Reports Server (NTRS)

    1947-01-01

    -moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on Jan. 25, 1946. Powered flights began in December 1946. On Oct. 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager, became the first aircraft to exceed the speed of sound, reaching about 700 miles per hour (Mach 1.06) and an altitude of 43,000 feet. The number 2 X-1 was modified and redesignated the X-1E. The modifications included adding a conventional canopy, an ejection seat, a low-pressure fuel system of increased capacity, and a thinner high-speed wing. The X-1E was used to obtain in-flight data at twice the speed of sound, with particular emphasis placed on investigating the improvements achieved with the high-speed wing. These wings, made by Stanley Aircraft, were only 3 3/8-inches thick at the root and had 343 gauges installed in them to measure structural loads and aerodynamic heating. The X-1E used its rocket engine to power it up to a speed of 1,471 miles per hour (Mach 2.24) and to an altitude of 73,000 feet. Like the X-1 it was air-launched. The X-1 aircraft were almost 31 feet long and had a wingspan of 28 feet. The X-1 was built of conventional aluminum stressed-skin construction to extremely high structural standards. The X-1E was also 31 feet long but had a wingspan of only 22 feet, 10 inches. It was powered by a Reaction Motors, Inc., XLR-8-RM-5, four-chamber rocket engine. As did all X-1 rocket engines, the LR-8-RM-5 engine did not have throttle capability, but instead, depended on ignition of any one chamber or group of chambers to vary speed. There were also X-1A, X-1B, and and a short-lived X-1D models of the X-1.

  7. What are 12-hour shifts good for?

    PubMed

    In the UK many hospitals use 12-hour shifts, believing it to be a cost-efficient means of providing 24-hour nursing care on wards. While healthcare organisations need to find ways to deliver nursing care around the clock and efficiency is a key consideration, nurse leaders have raised concerns about ' whether nurses can function effectively and safely when working long hours (Calkin, 2012; Rogers et al, 2004). In this Policy Plus, we focus specifically on what is known about the impact of shift length on patient safety, employee health and quality of care. PMID:23696995

  8. Hourly rounding in a high dependency unit.

    PubMed

    Lowe, Lynsey; Hodgson, Gillian

    The Leeds Teaching Hospitals NHS Trust is one of the many organisations that have signed up to Safety Express, a pilot programme of the Department of Health's Quality, Innovation, Productivity and Prevention safe care coalition. Its aim is to reduce avoidable harm to patients in four areas: trips and falls, pressure ulcers, catheter-associated urinary tract infections and venous thromboembolism. Hourly rounding (hourly checks on patients) has been identified as a means of reducing harm to patients. This article describes the preparation needed to introduce hourly rounding in a high dependency unit. PMID:23189600

  9. Flight experience with flight control redundancy management

    NASA Technical Reports Server (NTRS)

    Szalai, K. J.; Larson, R. R.; Glover, R. D.

    1980-01-01

    Flight experience with both current and advanced redundancy management schemes was gained in recent flight research programs using the F-8 digital fly by wire aircraft. The flight performance of fault detection, isolation, and reconfiguration (FDIR) methods for sensors, computers, and actuators is reviewed. Results of induced failures as well as of actual random failures are discussed. Deficiencies in modeling and implementation techniques are also discussed. The paper also presents comparison off multisensor tracking in smooth air, in turbulence, during large maneuvers, and during maneuvers typical of those of large commercial transport aircraft. The results of flight tests of an advanced analytic redundancy management algorithm are compared with the performance of a contemporary algorithm in terms of time to detection, false alarms, and missed alarms. The performance of computer redundancy management in both iron bird and flight tests is also presented.

  10. Rehabilitation After International Space Station Flights

    NASA Technical Reports Server (NTRS)

    Chauvin, S. J.; Shepherd, B. A. S.; Guilliams, M. E.; Taddeo, T.

    2003-01-01

    Rehabilitating U.S. crew members to preflight status following flights on the Russian Mir Space Station required longer than six months for full functional recovery of some of the seven crew members. Additional exercise hardware has been added on the International Space Station as well as a rehabilitative emphasis on functional fitness/agility and proprioception. The authors will describe and present the results of the rehabilitation program for ISS and evaluate rehabilitative needs for longer missions. Pre- and in-flight programs emphasize strength and aerobic conditioning. One year before launch, crew members are assigned an Astronaut Strength and Conditioning specialist. Crew members are scheduled for 2 hours, 3 days a week, for pre-flight training and 2.5 hours, six days a week, for in-flight training. Crewmembers are tested on functional fitness, agility, isokinetic strength, and submaximal cycle ergometer evaluation before and after flight. The information from these tests is used for exercise prescriptions, comparison, and evaluation of the astronaut and training programs. The rehabilitation program lasts for 45 days and is scheduled for 2 hours during each crew workday. Phase 1 of the rehabilitation program starts on landing day and places emphasis on ambulation, flexibility, and muscle strengthening. Phase 2 adds proprioceptive exercise and cardiovascular conditioning. Phase 3 (the longest phase) focuses on functional development. All programs are tailored specifically for each individual according to their test results, preferred recreational activities, and mission roles and duties. Most crew members reached or exceeded their preflight test values 45 days after flight. Some crew members subjectively indicated the need for a longer rehabilitation period. The current rehabilitation program for returning ISS crew members seems adequate in content but may need to be extended for longer expeditions.

  11. X-38 - First Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In a scene reminiscent of the lifting body research flights conducted more than 30 years earlier, this photo shows a close-up view of NASA's B-52 mothership as it lifts off carrying a new generation of lifting body research vehicle--the X-38. The X-38 was designed to help develop an emergency crew return vehicle for the International Space Station. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the

  12. X-38 - First Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Reminiscent of the lifting body research flights conducted more than 30 years earlier, NASA's B-52 mothership lifts off carrying a new generation of lifting body research vehicle--the X-38. The X-38 was designed to help develop an emergency crew return vehicle for the International Space Station. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also

  13. 'Mighty Eagle' Takes Flight

    NASA Video Gallery

    The "Mighty Eagle," a NASA robotic prototype lander, had a successful first untethered flight Aug. 8 at the Marshall Center. During the 34-second flight, the Mighty Eagle soared and hovered at 30 f...

  14. Autonomous Soaring Flight Results

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.

    2006-01-01

    A viewgraph presentation on autonomous soaring flight results for Unmanned Aerial Vehicles (UAV)'s is shown. The topics include: 1) Background; 2) Thermal Soaring Flight Results; 3) Autonomous Dolphin Soaring; and 4) Future Plans.

  15. Fast carry accumulator design

    NASA Technical Reports Server (NTRS)

    Mastin, W. C.

    1971-01-01

    Simple iterative accumulator combined with gated-carry, carry-completion detection, and skip-carry circuits produces three accumulators with decreased carry propagation times. Devices are used in machine control, measurement equipment, and computer applications to increase speed of binary addition. NAND gates are used in combining network.

  16. Inflight Exercise Regimen for the 2-Hour Prebreathe Protocol

    NASA Technical Reports Server (NTRS)

    Foster, Philip P.; Gernhardt, Michael L.; Woodruff, Kristin K.; Schneider, Susan M.; Homick, Jerry L. (Technical Monitor)

    2000-01-01

    A 10 min aerobic prebreathe exercise up to 75% V-O2(sub max) on a dual-cycle ergometer, included in the 2-hour prebreathe protocol, has been shown to dramatically reduce the incidence of decompression sickness (DCS) at altitude. In-flight only leg ergometry will be available. A balanced exercise was developed using surgical tubing with the ergometer on-orbit. We hypothesize that a 75% V02max workload, individually prescribed, would be achieved using a target heart rate to regulate the intensity of the arm exercise. VO2, heart rate (HR) / ECG, V-CO2 /V-O2, V(sub E), and V(sub T), and rate of perceived exertion (Borg scale) were measured in eleven healthy subjects who passed a US Air Force Class III Physical examination. A V-O2 peak test was performed to assess the sub-maximal exercise prescription. Two series of sub-maximal tests were performed: (1) leg ergometer/hand ergometer and (2) leg ergometer/surgical tubes. We found no significant differences (P > 0.05) in comparing the means for V-O2 and HR between the predicted and measured values during the final 4 minute-stage at "75% V-O2 workload" or between the two types of sub-maximal tests. The prescribed prebreathe sub-maximal exercise performed with flight certified surgical tubes was achieved using the target HR.

  17. An Evaluation of First Offender Driver Alcohol Education Models: 40 Hours versus 15 Hours.

    ERIC Educational Resources Information Center

    Jaffee, Kim; And Others

    An evaluation assessed the impact of the 40- and 15-hour driver alcohol education (DAE) program models on attitudes, beliefs, and behaviors of driving while intoxicated (DWI) first offenders in Massachusetts. The 40-hour program evaluation studied 306 clients from 31 DAE programs; the 15-hour study group consisted of 207 clients in 23 DAE…

  18. Delinking resident duty hours from patient safety.

    PubMed

    Osborne, Roisin; Parshuram, Christopher S

    2014-01-01

    Patient safety is a powerful motivating force for change in modern medicine, and is often cited as a rationale for reducing resident duty hours. However, current data suggest that resident duty hours are not significantly linked to important patient outcomes. We performed a narrative review and identified four potential explanations for these findings. First, we question the relevance of resident fatigue in the creation of harmful errors. Second, we discuss factors, including workload, experience, and individual characteristics, that may be more important determinants of resident fatigue than are duty hours. Third, we describe potential adverse effects that may arise from--and, therefore, counterbalance any potential benefits of--duty hour reductions. Fourth, we explore factors that may mitigate any risks to patient safety associated with using the services of resident trainees. In summary, it may be inappropriate to justify a reduction in working hours on the grounds of a presumed linkage between patient safety and resident duty hours. Better understanding of resident-related factors associated with patient safety will be essential if improvements in important patient safety outcomes are to be realized through resident-focused strategies. PMID:25561349

  19. Delinking resident duty hours from patient safety

    PubMed Central

    2014-01-01

    Patient safety is a powerful motivating force for change in modern medicine, and is often cited as a rationale for reducing resident duty hours. However, current data suggest that resident duty hours are not significantly linked to important patient outcomes. We performed a narrative review and identified four potential explanations for these findings. First, we question the relevance of resident fatigue in the creation of harmful errors. Second, we discuss factors, including workload, experience, and individual characteristics, that may be more important determinants of resident fatigue than are duty hours. Third, we describe potential adverse effects that may arise from – and, therefore, counterbalance any potential benefits of – duty hour reductions. Fourth, we explore factors that may mitigate any risks to patient safety associated with using the services of resident trainees. In summary, it may be inappropriate to justify a reduction in working hours on the grounds of a presumed linkage between patient safety and resident duty hours. Better understanding of resident-related factors associated with patient safety will be essential if improvements in important patient safety outcomes are to be realized through resident-focused strategies. PMID:25561349

  20. Flight experiences with laminar flow

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    1986-01-01

    A review of natural laminar flow (NLF) flight experiences over the period from the 1930's to the present has been given to provide information on the achievability and maintainability of NLF in typical airplane operating environments. Significant effects of loss of laminar flow on airplane performance have been observed for several airplanes, indicating the importance of providing information on these changes to laminar flow airplane operators. Significant changes in airplane stability and control and maximum lift were observed in flight experiments with the loss of laminar flow. However, these effects can be avoided by proper selection of airfoils. Conservative laminar flow airfoil designs should be employed which do not experience significant loss of lift (caused by flow separation) upon the loss of laminar flow. Mechanisms have been observed for the effects of insect accumulation, flight through clouds and precipitation, and propeller slipstreams on laminar flow behavior. Fixed transition testing, in addition to free transition testing, is recommended as a new standard procedure for airplanes with surfaces designed to support laminar flow.

  1. Flight control experiences

    NASA Technical Reports Server (NTRS)

    Musgrave, F. S.

    1977-01-01

    A multidisciplinary medical-management team at mission control provided Skylab crew support by monitoring health, retrieving and compiling experimental data, assisting in the development of flight plans, and by contributing to in-flight procedures and checklists. Real time computers assisted the flight crews in performing medical and other experiments.

  2. In Flight, Online

    ERIC Educational Resources Information Center

    Lucking, Robert A.; Wighting, Mervyn J.; Christmann, Edwin P.

    2005-01-01

    The concept of flight for human beings has always been closely tied to imagination. To fly like a bird requires a mind that also soars. Therefore, good teachers who want to teach the scientific principles of flight recognize that it is helpful to share stories of their search for the keys to flight. The authors share some of these with the reader,…

  3. 29 CFR 778.110 - Hourly rate employee.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... number of hours worked in excess of 40 in the week. Thus a $6 hourly rate will bring, for an employee who works 46 hours, a total weekly wage of $294 (46 hours at $6 plus 6 at $3). In other words, the employee....80 for 46 hours (46 hours at $6.20 plus 6 hours at $3.10, or 40 hours at $6.20 plus 6 hours at $9.30)....

  4. X-37 Flight Demonstrator: X-40A Flight Test Approach

    NASA Technical Reports Server (NTRS)

    Mitchell, Dan

    2004-01-01

    The flight test objectives are: Evaluate calculated air data system (CADS) experiment. Evaluate Honeywell SIGI (GPS/INS) under flight conditions. Flight operation control center (FOCC) site integration and flight test operations. Flight test and tune GN&C algorithms. Conduct PID maneuvers to improve the X-37 aero database. Develop computer air date system (CADS) flight data to support X-37 system design.

  5. Ariane flight testing

    NASA Astrophysics Data System (ADS)

    Vedrenne, M.

    1983-11-01

    The object of this paper is to present the way in which the flight development tests of the Ariane launch vehicle have enabled the definition to be frozen and its qualification to be demonstrated before the beginning of the operational phase. A first part is devoted to the in-flight measurement facilities, the acquisition and evaluation systems, and to the organization of the in-flight results evaluation. The following part consists of the comparison between ground predictions and flight results for the main parameters as classified by system (stages, trajectory, propulsion, flight mechanics, auto pilot and guidance). The corrective actions required are then identified and the corresponding results shown.

  6. 14 CFR 121.481 - Flight time limitations: One or two pilot crews.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... operations may schedule a pilot to fly in an airplane that has a crew of one or two pilots for eight hours or... certificate holder conducting flag operations schedules a pilot to fly more than eight hours during any 24... of flight duty. This rest period must be at least twice the number of hours flown since the...

  7. 14 CFR 121.481 - Flight time limitations: One or two pilot crews.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operations may schedule a pilot to fly in an airplane that has a crew of one or two pilots for eight hours or... certificate holder conducting flag operations schedules a pilot to fly more than eight hours during any 24... of flight duty. This rest period must be at least twice the number of hours flown since the...

  8. How extreme is extreme hourly precipitation?

    NASA Astrophysics Data System (ADS)

    Papalexiou, Simon Michael; Dialynas, Yannis G.; Pappas, Christoforos

    2016-04-01

    The importance of accurate representation of precipitation at fine time scales (e.g., hourly), directly associated with flash flood events, is crucial in hydrological design and prediction. The upper part of a probability distribution, known as the distribution tail, determines the behavior of extreme events. In general, and loosely speaking, tails can be categorized in two families: the subexponential and the hyperexponential family, with the first generating more intense and more frequent extremes compared to the latter. In past studies, the focus has been mainly on daily precipitation, with the Gamma distribution being the most popular model. Here, we investigate the behaviour of tails of hourly precipitation by comparing the upper part of empirical distributions of thousands of records with three general types of tails corresponding to the Pareto, Lognormal, and Weibull distributions. Specifically, we use thousands of hourly rainfall records from all over the USA. The analysis indicates that heavier-tailed distributions describe better the observed hourly rainfall extremes in comparison to lighter tails. Traditional representations of the marginal distribution of hourly rainfall may significantly deviate from observed behaviours of extremes, with direct implications on hydroclimatic variables modelling and engineering design.

  9. Operational Implementation of a 2-Hour Prebreathe Protocol for International Space Station

    NASA Technical Reports Server (NTRS)

    Waligora, James M.; Conkin, J.; Foster, P. P.; Schneider, S.; Loftin, Karin C.; Gernhardt, Michael L.; Vann, R.

    2000-01-01

    Procedures, equipment, and analytical techniques were developed to implement the ground tested 2-hour protocol in-flight operations. The methods are: 1) The flight protocol incorporates additional safety margin over the ground tested protocol. This includes up to 20 min of additional time on enriched O2 during suit purge and pressure check, increased duration of extravehicular activity (EVA) preparation exercise during O2 prebreathing (up to 90 min vs; the tested 24 min), and reduced rates of depressurization. The ground test observations were combined with model projections of the conservative measures (using statistical models from Duke University and NASA JSQ to bound the risk of Type I and Type II decompression sickness (DCS). 2) An inflight exercise device using the in-flight ergometer and elastic tubes for upper body exercise was developed to replicate the dual cycle exercise in the ground trials. 3) A new in-flight breathing system was developed and man-tested. 4) A process to monitor inflight experience with the protocol, including the use of an in-suit Doppler bubble monitor when available, was developed. The results are: 1) The model projections of the conservative factors of the operational protocol were shown to reduce the risk of DCS to levels consistent with the observations of no DCS to date in the shuttle program. 2) Cross over trials of the dual cycle ergometer used in ground tests and the in-flight exercise system verified that02consumption and the % division of work between upper and lower body was not significantly different at the p= 0.05 level. 3) The in-flight breathing system was demonstrated to support work rates generating 75% O2(max) in 95 percentile subjects. 4) An in-flight monitoring plan with acceptance criteria was put in place for the 2-hour prebreathe protocol. And the conclusions are: The 2-hour protocol has been approved for flight, and all implementation efforts are in place to allow use of the protocol as early as flight ISS 7A

  10. 78 FR 26104 - Hours of Service of Drivers: Application for Exemption; Timberdoodle Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... of commercial motor vehicles (CMVs) from driving after accumulating 60 hours on duty in a period of 7... public dockets in the January 17, 2008, issue of the Federal Register (73 FR 3316). Public Participation...-addressed, stamped envelope or postcard, or print the acknowledgement page that appears after...

  11. 12-hour shifts: job satisfaction of nurses.

    PubMed

    Todd, C; Robinson, G; Reid, N

    1993-09-01

    A before and after study was carried out amongst staff of 10 wards of a county hospital before and after the introduction of a 12-hour shift system for nurses. The purpose was to investigate the impact of the shift system on job satisfaction. Some 320 nurses covering all qualified and unqualified grades were surveyed using a standard job satisfaction attitude scale. It was found that under the 12-hour shift both intrinsic and extrinsic factors of job satisfaction had been detrimentally affected. Considerable dissatisfaction was expressed about hours of work, conditions of work and the impact of the shift on domestic and social arrangements. The vast majority (83%) reported that they did not want to go on working the shift and there was support for the view that recruitment to nursing would be adversely affected by the shift. PMID:8313062

  12. [Nocturnal flight activities of Culicoides (Diptera: Ceratopogonidae) species in Konya].

    PubMed

    Dik, Bilal; Ergül, Recep

    2006-01-01

    This study was carried out in order to determine the nocturnal flight activities of Culicoides species during July, 1997 in Konya. Light traps were used for the collection of Culicoides specimens. They were placed in or nearby pens of poultry, sheep and cattle between the hours 20:00-22:00, 22:00-24:00, 24:00-02:00, 02:00-04:00, 04:00-06:00, and 06:00-08:00. A total of 4084 specimens were caught. Twelve species (C. puncticollis, C. maritimus, C. circumscriptus, C. punctatus, C. newsteadi, C. flavipulicaris, C. obsoletus, C. pulicaris, C. simulator, C. gejgelensis, C. salinarius, and C. vexans) were identified. C. puncticollis, C. maritimus, C. circumscriptus and C. punctatus were the most abundant species. It was found that the Culicoides species fly at night and their numbers decrease in the morning. The different species were observed to have different flight activities. A maximum number of C. puncticollis was captured in between the hours 20:00-22:00. A relatively high number of C. maritimus were caught between the hours of 20.00-22.00. Flight activity of this species peaked between the hours 22:00-24:00. The maximum number of C. circumscriptus was captured between the hours of 22:00-24:00 and 24:00-02:00. Flight activity of C. punctatus increased regularly from the hours of 20:00-22:00 until 02:00-04:00. PMID:17160855

  13. Constructing gridded hourly temperature data sets

    NASA Astrophysics Data System (ADS)

    Dumitrescu, Alexandru

    2013-04-01

    Air temperature is the main climatological element, with major impact on the earth-atmosphere energy balance. The characteristics of the surface air temperature in locations without meteorological measurements are obtained using spatio-temporal interpolation techniques. Gridded surface meteorological data are essential for evaluating the performance of regional climate models (RCMs), for applying Statistical Downscaling (SD) methods and as input data for hydrological models. In this study we proposed a methodolgy for interpolating hourly surface temperatures. Three gridding methods are compared. A two-step multivariate gridding approach was used. First we interpolated the hourly normal maps, considered as multiannual average (1961-2010), of air temperature for each hour (4 meteorological terms) of a standard year (366 days). In this step, the Residual Kriging method was used with potential predictors derived from DEM and Landcover Corinne. For interpolating the residuals of the regression model we tested 3 gridding methods: Multiquadratic (MQ), Ordinary Kriging (OK) and 3D Kriging (using time as a third dimension). In the second step, we calculated the anomalies of each hour, day, year for the period 1961-2010. The anomalies were interpolated using the same methods applied for gridding regression residuals. The final hourly surface air temperature maps were obtained by summing the maps from first step with the anomlies map. The main data used in this work were the hourly air temperatures of the 4 observation terms (01, 07, 13, 19), measured between 1961-2010 at the weather stations of the Romanian Meteorological Administration. The predictors were derived from SRTM (Shuttle Radar Topography Mission) DEM and from CORINE Land Cover 2000 product. The gridding was performed in a Romanian National Grid (Stereo 70), at 1 km2 spatial resolution, using R language. The study has been financed by the research project Changes in climate extremes and associated impact in

  14. Avoiding Lawsuits for Wage and Hour Violations.

    PubMed

    Silberman, Cherie L

    2016-01-01

    Due to the highly technical language in the wage and hour laws and regulations, employers often find that they have unknowingly violated the Fair Labor Standards Act (FLSA). This can occur because employers have improperly classified an employee as exempt or because employers do not realize that certain time should be paid in full. Improperly classifying employees as exempt or failing to compensate nonexempt employees for all time worked can lead to costly lawsuits, audits, or enforcement actions by the Wage and Hour Division of the Department of Labor. This article discusses the most common FLSA exemptions and provides best practices to avoid liability under the FLSA. PMID:27249874

  15. Out-of-hours special patient notes.

    PubMed

    Holt, Victoria; Bernstein, Dan; Jones, Adam; Millington-Sanders, Catherine; Ormerod, Georgina

    2013-01-01

    In 2011, an out-of-hours service in central London reviewed its system for special patient notes (SPNs) - a main mechanism to communicate valuable information about patients to the clinicians who cover two-thirds of the week when day-time general practices are closed. This revealed that: half of frequent callers did not have an SPNabout half of existing SPNs were out of dateday-time general practitioners (GPs) respond well to requests by out-of-hours doctors to provide an SPNproviding SPNs was low on the list of priorities of day-time GPs who were too busy reacting to everyday problems. PMID:25949699

  16. Out-of-hours special patient notes.

    PubMed

    Holt, Victoria; Bernstein, Dan; Jones, Adam; Millington-Sanders, Catherine; Ormerod, Georgina

    2012-01-01

    In 2011, an out-of-hours service in central London reviewed its system for special patient notes (SPNs) - a main mechanism to communicate valuable information about patients to the clinicians who cover two-thirds of the week when day-time general practices are closed. This revealed that: half of frequent callers did not have an SPNabout half of existing SPNs were out of dateday-time general practitioners (GPs) respond well to requests by out-of-hours doctors to provide an SPNproviding SPNs was low on the list of priorities of day-time GPs who were too busy reacting to everyday problems. PMID:25949684

  17. Biomechanics of bird flight.

    PubMed

    Tobalske, Bret W

    2007-09-01

    Power output is a unifying theme for bird flight and considerable progress has been accomplished recently in measuring muscular, metabolic and aerodynamic power in birds. The primary flight muscles of birds, the pectoralis and supracoracoideus, are designed for work and power output, with large stress (force per unit cross-sectional area) and strain (relative length change) per contraction. U-shaped curves describe how mechanical power output varies with flight speed, but the specific shapes and characteristic speeds of these curves differ according to morphology and flight style. New measures of induced, profile and parasite power should help to update existing mathematical models of flight. In turn, these improved models may serve to test behavioral and ecological processes. Unlike terrestrial locomotion that is generally characterized by discrete gaits, changes in wing kinematics and aerodynamics across flight speeds are gradual. Take-off flight performance scales with body size, but fully revealing the mechanisms responsible for this pattern awaits new study. Intermittent flight appears to reduce the power cost for flight, as some species flap-glide at slow speeds and flap-bound at fast speeds. It is vital to test the metabolic costs of intermittent flight to understand why some birds use intermittent bounds during slow flight. Maneuvering and stability are critical for flying birds, and design for maneuvering may impinge upon other aspects of flight performance. The tail contributes to lift and drag; it is also integral to maneuvering and stability. Recent studies have revealed that maneuvers are typically initiated during downstroke and involve bilateral asymmetry of force production in the pectoralis. Future study of maneuvering and stability should measure inertial and aerodynamic forces. It is critical for continued progress into the biomechanics of bird flight that experimental designs are developed in an ecological and evolutionary context. PMID:17766290

  18. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Flight engineers... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Flag Operations § 121.493 Flight time limitations: Flight engineers and flight navigators. (a)...

  19. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Flight engineers... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Flag Operations § 121.493 Flight time limitations: Flight engineers and flight navigators. (a)...

  20. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Flight engineers... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Flag Operations § 121.493 Flight time limitations: Flight engineers and flight navigators. (a)...

  1. 75 FR 2467 - Hours of Service

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-15

    ... Federal Motor Carrier Safety Administration 49 CFR Part 395 RIN 2126-AB26 Hours of Service AGENCY: Federal...-service (HOS) regulations. Specifically, the Agency wants to know what factors, issues, and data it should... Act Statement for the FDMS published in the Federal Register on January 17, 2008 (73 FR 3316), or...

  2. The 24-Hour Mathematical Modeling Challenge

    ERIC Educational Resources Information Center

    Galluzzo, Benjamin J.; Wendt, Theodore J.

    2015-01-01

    Across the mathematics curriculum there is a renewed emphasis on applications of mathematics and on mathematical modeling. Providing students with modeling experiences beyond the ordinary classroom setting remains a challenge, however. In this article, we describe the 24-hour Mathematical Modeling Challenge, an extracurricular event that exposes…

  3. On the Shelf in 48 Hours

    ERIC Educational Resources Information Center

    Hatcher, Marihelen

    2006-01-01

    Moving materials from receipt of the shipment to distribution to branches within 48 hours is such a hassle among members of the technical services department of Columbus Metropolitan Library. However, these issues challenged them to find alternative solutions to achieve their goals. After reviewing the in and outs of their department and making a…

  4. Stunden-abstract (Class-Hour Plan)

    ERIC Educational Resources Information Center

    Hohmann, Heinz-Otto

    1977-01-01

    Offers a class-hour plan for Grade 11 on the theme of "James Thurber, 'The Peacelike Mongoose' - Discussion of Text," dividing the treatment into stages: Introduction and Reading, Text Elucidation, Comprehension Check, Summarizing Content, Reflection, Written Homework. Possible alternative approaches are discussed. (Text is in German.) (IFS/WGA)

  5. Accommodating to Restrictions on Residents' Working Hours.

    ERIC Educational Resources Information Center

    Foster, Henry W., Jr.; Seltzer, Vicki L.

    1991-01-01

    In response to New York State legislation limiting house staff working hours, a survey of obstetrics and gynecology resident programs (n=26) was conducted. Results were used to construct a prototype call schedule and a hypothetical monthly schedule indicating how a single resident would function without violating any state regulations. (MSE)

  6. Flight code validation simulator

    SciTech Connect

    Sims, B.A.

    1995-08-01

    An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer (SANDAC) and reads and writes actual hardware sensor locations in which IMU (Inertial Measurements Unit) data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System (DMARS) in January 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.

  7. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  8. Pilot's Desk Flight Station

    NASA Technical Reports Server (NTRS)

    Sexton, G. A.

    1984-01-01

    Aircraft flight station designs have generally evolved through the incorporation of improved or modernized controls and displays. In connection with a continuing increase in the amount of information displayed, this process has produced a complex and cluttered conglomeration of knobs, switches, and electromechanical displays. The result was often high crew workload, missed signals, and misinterpreted information. Advances in electronic technology have now, however, led to new concepts in flight station design. An American aerospace company in cooperation with NASA has utilized these concepts to develop a candidate conceptual design for a 1995 flight station. The obtained Pilot's Desk Flight Station is a unique design which resembles more an operator's console than today's cockpit. Attention is given to configuration, primary flight controllers, front panel displays, flight/navigation display, approach charts and weather display, head-up display, and voice command and response systems.

  9. Effect of caffeine on simulator flight performance in sleep-deprived military pilot students.

    PubMed

    Lohi, Jouni J; Huttunen, Kerttu H; Lahtinen, Taija M M; Kilpeläinen, Airi A; Muhli, Arto A; Leino, Tuomo K

    2007-09-01

    Caffeine has been suggested to act as a countermeasure against fatigue in military operations. In this randomized, double-blind, placebo-controlled study, the effect of caffeine on simulator flight performance was examined in 13 military pilots during 37 hours of sleep deprivation. Each subject performed a flight mission in simulator four times. The subjects received either a placebo (six subjects) or 200 mg of caffeine (seven subjects) 1 hour before the simulated flights. A moderate 200 mg intake of caffeine was associated with higher axillary temperatures, but it did not affect subjectively assessed sleepiness. Flight performance was similar in both groups during the four rounds flown under sleep deprivation. However, subjective evaluation of overall flight performance in the caffeine group tended to be too optimistic, indicating a potential flight safety problem. Based on our results, we do not recommend using caffeine pills in military flight operations. PMID:17937364

  10. Flight Checklists And Interruptions

    NASA Technical Reports Server (NTRS)

    Linde, C.; Goguen, J.

    1991-01-01

    Report examines relation between performances of flight checklists and interruptions. Based on study of simulated flights of Boeing 707 Airplane. During each flight series of overlapping problems introduced. Study investigated patterns of communication that in carrying out checklists, may contribute to accidents. Showed good crews had high continuity in following checklists and it is not number of interruptions but rather duration of interruptions associated with quality of performance. Suggests greater burden placed on memory by one long interruption than by several short ones.

  11. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Simpson, James

    2010-01-01

    The Autonomous Flight Safety System (AFSS) is an independent self-contained subsystem mounted onboard a launch vehicle. AFSS has been developed by and is owned by the US Government. Autonomously makes flight termination/destruct decisions using configurable software-based rules implemented on redundant flight processors using data from redundant GPS/IMU navigation sensors. AFSS implements rules determined by the appropriate Range Safety officials.

  12. Unified powered flight guidance

    NASA Technical Reports Server (NTRS)

    Brand, T. J.; Brown, D. W.; Higgins, J. P.

    1973-01-01

    A complete revision of the orbiter powered flight guidance scheme is presented. A unified approach to powered flight guidance was taken to accommodate all phases of exo-atmospheric orbiter powered flight, from ascent through deorbit. The guidance scheme was changed from the previous modified version of the Lambert Aim Point Maneuver Mode used in Apollo to one that employs linear tangent guidance concepts. This document replaces the previous ascent phase equation document.

  13. Bat flight: aerodynamics, kinematics and flight morphology.

    PubMed

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. PMID:25740899

  14. Flight test and evaluation of Omega navigation for general aviation

    NASA Technical Reports Server (NTRS)

    Hwoschinsky, P. V.

    1975-01-01

    A seventy hour flight test program was performed to determine the suitability and accuracy of a low cost Omega navigation receiver in a general aviation aircraft. An analysis was made of signal availability in two widely separated geographic areas. Comparison is made of the results of these flights with other navigation systems. Conclusions drawn from the test experience indicate that developmental system improvement is necessary before a competent fail safe or fail soft area navigation system is offered to general aviation.

  15. Post-Flight Analysis of a 10K Sorption Cryocooler

    NASA Technical Reports Server (NTRS)

    Bard, R. C.; Karlmann, S.

    1997-01-01

    In May 1996, the Brilliant Eyes Ten-Kelvin Sorption Cryocooler Experiment (BETSCE) was flown aboard the Space Shuttle flight STS-77 in the first space-flight demonstration of chemisorption cryocooler technology. While on orbit, BETSCE successfully met its science objectives of cooling from 70 K to 10 K in less than two minutes, sustaining a 100 mW heat load below 11 K for over then minutes, and demonstrating recycle times of approximately eleven hours.

  16. X-38 in Flight during Second Free Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil

  17. X-38 in Flight during Second Free Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil

  18. Neurodegeneration with Brain Iron Accumulation

    MedlinePlus

    ... Diversity Find People About NINDS NINDS Neurodegeneration with Brain Iron Accumulation Information Page Synonym(s): Hallervorden-Spatz Disease, ... done? Clinical Trials Organizations What is Neurodegeneration with Brain Iron Accumulation? Neurodegeneration with brain iron accumulation (NBIA) ...

  19. 24-Hour Access: Responding to Students' Need for Late Library Hours at the University of Denver

    ERIC Educational Resources Information Center

    Sewell, Bethany B.

    2013-01-01

    The University of Denver's Penrose Library saw a substantial increase in use as a result of several new and enhanced services over a six-year period. In turn, longer operating hours and increased staffing for a 24-hours-a-day, five-days-a-week (24 x 5) operating schedule was funded. This case study analyzes student need for longer library hours…

  20. Technology review of flight crucial flight controls

    NASA Technical Reports Server (NTRS)

    Rediess, H. A.; Buckley, E. C.

    1984-01-01

    The results of a technology survey in flight crucial flight controls conducted as a data base for planning future research and technology programs are provided. Free world countries were surveyed with primary emphasis on the United States and Western Europe because that is where the most advanced technology resides. The survey includes major contemporary systems on operational aircraft, R&D flight programs, advanced aircraft developments, and major research and technology programs. The survey was not intended to be an in-depth treatment of the technology elements, but rather a study of major trends in systems level technology. The information was collected from open literature, personal communications and a tour of several companies, government organizations and research laboratories in the United States, United Kingdom, France, and the Federal Republic of Germany.

  1. 14 CFR 121.523 - Flight time limitations: Crew of three or more pilots and additional airmen as required.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Crew of three or... OPERATIONS Flight Time Limitations: Supplemental Operations § 121.523 Flight time limitations: Crew of three... duty for more than 30 hours. Such a crewmember is considered to be on continuous duty from the time...

  2. F-16XL ship #1 (#849) with Digital Flight Control System (DFCS) in flight over desert

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An image of the F-16XL #1 during its functional flight check of the Digital Flight Control System (DFCS) on December 16, 1997. The mission was flown by NASA research pilot Dana Purifoy, and lasted 1 hour and 25 minutes. The tests included pilot familiarly, functional check, and handling qualities evaluation maneuvers to a speed of Mach 0.6 and 300 knots. Purifoy completed all the briefed data points with no problems, and reported that the DFCS handled as well, if not better than the analog computer system that it replaced.

  3. Plastids and Carotenoid Accumulation.

    PubMed

    Li, Li; Yuan, Hui; Zeng, Yunliu; Xu, Qiang

    2016-01-01

    Plastids are ubiquitously present in plants and are the organelles for carotenoid biosynthesis and storage. Based on their morphology and function, plastids are classified into various types, i.e. proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. All plastids, except proplastids, can synthesize carotenoids. However, plastid types have a profound effect on carotenoid accumulation and stability. In this chapter, we discuss carotenoid biosynthesis and regulation in various plastids with a focus on carotenoids in chromoplasts. Plastid transition related to carotenoid biosynthesis and the different capacity of various plastids to sequester carotenoids and the associated effect on carotenoid stability are described in light of carotenoid accumulation in plants. PMID:27485226

  4. Flight design system-1 system design. Volume 5: Data management and data base documentation support system. [for shuttle flight planning

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Application software intended to reduce the man-hours required per flight design cycle by producing major flight design documents with little or no manual typing is described. The documentation support software is divided into two separately executable processors. However, since both processors support the same overall functions, and most of the software contained in one is also contained in the other, both are collectively presented.

  5. Electric System Intra-hour Operation Simulator

    2014-03-07

    ESIOS is a software program developed at Pacific Northwest National Laboratory (PNNL) that performs intra-hour dispatch and automatic generation control (AGC) simulations for electric power system frequency regulation and load/variable generation following. The program dispatches generation resources at minute interval to meet control performance requirements, while incorporating stochastic models of forecast errors and variability with generation, load, interchange and market behaviors. The simulator also contains an operator model that mimics manual actions to adjust resourcemore » dispatch and maintain system reserves. Besides simulating generation fleet intra-hour dispatch, ESIOS can also be used as a test platform for the design and verification of energy storage, demand response, and other technologies helping to accommodate variable generation.« less

  6. Effective Training for Flight in Icing Conditions

    NASA Technical Reports Server (NTRS)

    Barnhart, Billy P.; Ratvasky, Thomas P.

    2007-01-01

    The development of a piloted flight simulator called the Ice Contamination Effects Flight Training Device (ICEFTD) was recently completed. This device demonstrates the ability to accurately represent an iced airplane s flight characteristics and is utilized to train pilots in recognizing and recovering from aircraft handling anomalies that result from airframe ice formations. The ICEFTD was demonstrated at three recent short courses hosted by the University of Tennessee Space Institute. It was also demonstrated to a group of pilots at the National Test Pilot School. In total, eighty-four pilots and flight test engineers from industry and the regulatory community spent approximately one hour each in the ICEFTD to get a "hands on" lesson of an iced airplane s reduced performance and handling qualities. Additionally, pilot cues of impending upsets and recovery techniques were demonstrated. The purpose of this training was to help pilots understand how ice contamination affects aircraft handling so they may apply that knowledge to the operations of other aircraft undergoing testing and development. Participant feedback on the ICEFTD was very positive. Pilots stated that the simulation was very valuable, applicable to their occupations, and provided a safe way to explore the flight envelope. Feedback collected at each demonstration was also helpful to define additional improvements to the ICEFTD; many of which were then implemented in subsequent demonstrations.

  7. Support activities to maintain SUMS flight readiness

    NASA Technical Reports Server (NTRS)

    Wright, Willie

    1992-01-01

    The Shuttle Upper Atmosphere Mass Spectrometer (SUMS), a component experiment of the NASA Orbital Experiments Program (OEX), was flown aboard the shuttle Columbia (OV102) mounted at the forward end of the nose landing gear well with an atmospheric gas inlet system fitted to the lower fuselage (chin panel) surface. The SUMS was designed to provide atmospheric data in flow regimes inaccessible prior to the development of the Space Transportation System (STS). The experiment mission operation began about one hour prior to shuttle de-orbit entry maneuver and continued until reaching 1.6 torr (about 86 km altitude). The SUMS mass spectrometer consists of the spare unit from the Viking mission to Mars. Bendix Aerospace under contract to NASA LaRC incorporated the Viking mass spectrometer, a microprocessor based logic card, a pressurized instrument case, and the University of Texas at Dallas provided a gas inlet system into a configuration suited to interface with the shuttle Columbia. The SUMS experiment underwent static and dynamic calibration as well as vacuum maintenance before and after STS 40 shuttle flight. The SUMS flew a total of 3 times on the space shuttle Columbia. Between flights the SUMS was maintained in flight ready status. The flight data has been analyzed by the NASA LaRC Aerothermodynamics Branch. Flight data spectrum plots and reports are presented in the Appendices to the Final Technical Report for NAS1-17399.

  8. BP and Vascular Function Following Space Flight

    NASA Technical Reports Server (NTRS)

    Hatton, Daniel C.; Yue, Qi; Chapman, Justin; Xue, Hong; Dierickx, Jacqueline; Roullet, Chantal; Roullet, Jean-Baptiste; Phanouvong, Thongchanh; Watanabe, Mitsuaki; Otsuka, Keiichi; McCarron, David A.

    1997-01-01

    Blood pressure and mesenteric resistance artery function were assessed in 9-week-old spontaneously hypertensive rats following an 18 day shuttle flight on STS-80. Blood pressure was measured twice, first in conscious animals using a tail-cuff method and then while the animals were anesthetized with 2% halothane in O2. Isolated mesenteric resistance artery responses to cumulative additions of norepinephrine, acetylcholine, sodium nitroprusside, and calcium were measured within 17 hours of landing using wire myography. Blood pressure was slightly reduced in conscious animals following flight (p=0.056) but was significantly elevated (p less than.001) above vivarium control group values in anesthetized animals. Maximal contraction of mesenteric arteries to norepinephrine was attenuated in the flight animals (p less than.001)aswasrelaxationtoacetylcholine(p less than .001)andcalcium(p less than .05). There was no difference between flight and control animals in the vessel response to sodium nitroprusside (p greater than .05). The results suggest that there may have been an increase in synthesis and release of nitric oxide in the flight animals.

  9. Why Surface Nanobubbles Live for Hours

    NASA Astrophysics Data System (ADS)

    Weijs, Joost H.; Lohse, Detlef

    2013-02-01

    We present a theoretical model for the experimentally found but counterintuitive exceptionally long lifetime of surface nanobubbles. We can explain why, under normal experimental conditions, surface nanobubbles are stable for many hours or even up to days rather than the expected microseconds. The limited gas diffusion through the water in the far field, the cooperative effect of nanobubble clusters, and the pinned contact line of the nanobubbles lead to the slow dissolution rate.

  10. Household Energy Consumption Segmentation Using Hourly Data

    SciTech Connect

    Kwac, J; Flora, J; Rajagopal, R

    2014-01-01

    The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape dictionary. Structured approaches using features derived from the encoded data drive five sample program and policy relevant energy lifestyle segmentation strategies. We also ensure that the methodologies developed scale to large data sets.

  11. Ampere-Hour Meter For Rechargeable Battery

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Schott, Timothy D.; Tcheng, Ping

    1993-01-01

    Low-power analog/digital electronic circuit meters discharge of storage battery in ampere-hours. By metering discharge, one obtains indication of state of charge of battery and avoids unnecessary recharging, maintaining capacity of battery and prolonging life. Because of its small size and low power consumption, useful in such applications as portable video cameras, communication equipment on boats, portable audio equipment, and portable medical equipment.

  12. Spatial Reorientation Following Space Flight

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The short-arm centrifuge subjects an astronaut to conflicting sensory input and study the astronaut's perception of motion. It is one of several instruments used in the Spatial Reorientation Following Space Flight investigation to be conducted after astronauts return to Earth. During space flight, the vestibular organs no longer respond in a familiar way. Instead, inputs from the irner ear do not match those coming from the eyes. While on Earth, you can open your eyes to see if you truly are spinning, but astronauts do not have this luxury. Astronauts can see the floor, but have no sense of down; when they bend their heads forward, the otoliths are not stimulated properly. This state, called sensory conflict, must be resolved by the brain to maintain orientation. When they first return to Earth, astronauts are again disoriented because of sensory conflict. They undergo a period of spatial reorientation, as their brains reconcile what their eyes see and what their vestibular system senses. Recovery can take anywhere from hours to days depending on the length of the mission. Principal Investigator: Dr. William Paloski, Johnson Space Center, Houston, TX.

  13. Spatial Reorientation Following Space Flight

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The short-arm centrifuge subjects an astronaut to conflicting sensory input and study the astronaut's perception of motion. It is one of several instruments used in the Spatial Reorientation Following Space Flight investigation to be conducted on crewmembers. During space flight, the vestibular organs no longer respond in a familiar way. Instead, inputs from the irner ear do not match those coming from the eyes. While on Earth, you can open your eyes to see if you truly are spinning, but astronauts do not have this luxury. Astronauts can see the floor, but have no sense of down; when they bend their heads forward, the otoliths are not stimulated properly. This state, called sensory conflict, must be resolved by the brain to maintain orientation. When they first return to Earth, astronauts are again disoriented because of sensory conflict. They undergo a period of spatial reorientation, as their brains reconcile what their eyes see and what their vestibular system senses. Recovery can take anywhere from hours to days depending on the length of the mission. Principal Investigator: Dr. William Paloski, Johnson Space Center, Houston, TX.

  14. STS-113 Post Flight Presentation

    NASA Astrophysics Data System (ADS)

    2002-01-01

    The STS-113 post-flight presentation begins with a view of Mission Specialists Michael E. Lopez-Alegria and John B. Herrington getting suited for the space mission. The STS-113 crew consists of: Commander James D. Wetherbee, Pilot Paul Lockhart, Mission Specialists Michael Lopez-Alegria and John Herrington. Cosmonauts Valery Korzun, and Sergei Treschev, and astronaut Peggy Whitson who are all members of the expedition five crew, and Commander Kenneth Bowersox, Flight Engineers Nikolai Budarin and Donald Pettit, members of Expedition Six. The main goal of this mission is to take Expedition Six up to the International Space Station and Return Expedition Five to the Earth. The second objective is to install the P(1) Truss segment. Three hours prior to launch, the crew of Expedition Six along with James Wetherbee, Paul Lockhart, Michael Lopez-Alegria and John Herrington are shown walking to an astrovan, which takes them to the launch pad. The actual liftoff is presented. Three Extravehicular Activities (EVA)'s are performed on this mission. Michael Lopez-Alegria and John Herrington are shown performing EVA 1 and EVA 2 which include making connections between the P1 and S(0) Truss segments, and installing fluid jumpers. A panoramic view of the ISS with the Earth in the background is shown. The grand ceremony of the crew exchange is presented. The astronauts performing everyday duties such as brushing teeth, washing hair, sleeping, and eating pistachio nuts are shown. The actual landing of the Space Shuttle is presented.

  15. Geomagnetic storm forecasts several hours ahead

    NASA Astrophysics Data System (ADS)

    Podladchikova, Tatiana; Petrukovich, Anatoli

    In this study we present a service implemented at Space Research Institute, Russia, providing an advance warning about the future geomagnetic storm magnitude (the negative peak Dst) using first geomagnetic storm indications. We demonstrate a clear relation between the solar wind parameters in the beginning of the storm development with the ultimate storm strength. For suddenly developing major storms that have essential influence on susceptible technological systems such as satellites, pipelines, power systems, and radio communications we predict lower and upper limits of the negative peak Dst. The high predictive potential of the proposed technique was confirmed by testing it on geomagnetic storms during the period 1995-2013. The advance warning time about the future geomagnetic storm strength on average achieves 5-6 hours and varies from 1 to 22 hours. The error of the peak Dst prediction does not exceed 25% with probability of 0.96. The false prediction probability does not exceed 0.03. Real-time predictions of the geomagnetic storm magnitude are updated every hour and published at http://spaceweather.ru

  16. Chimpanzee accumulative stone throwing.

    PubMed

    Kühl, Hjalmar S; Kalan, Ammie K; Arandjelovic, Mimi; Aubert, Floris; D'Auvergne, Lucy; Goedmakers, Annemarie; Jones, Sorrel; Kehoe, Laura; Regnaut, Sebastien; Tickle, Alexander; Ton, Els; van Schijndel, Joost; Abwe, Ekwoge E; Angedakin, Samuel; Agbor, Anthony; Ayimisin, Emmanuel Ayuk; Bailey, Emma; Bessone, Mattia; Bonnet, Matthieu; Brazolla, Gregory; Buh, Valentine Ebua; Chancellor, Rebecca; Cipoletta, Chloe; Cohen, Heather; Corogenes, Katherine; Coupland, Charlotte; Curran, Bryan; Deschner, Tobias; Dierks, Karsten; Dieguez, Paula; Dilambaka, Emmanuel; Diotoh, Orume; Dowd, Dervla; Dunn, Andrew; Eshuis, Henk; Fernandez, Rumen; Ginath, Yisa; Hart, John; Hedwig, Daniela; Ter Heegde, Martijn; Hicks, Thurston Cleveland; Imong, Inaoyom; Jeffery, Kathryn J; Junker, Jessica; Kadam, Parag; Kambi, Mohamed; Kienast, Ivonne; Kujirakwinja, Deo; Langergraber, Kevin; Lapeyre, Vincent; Lapuente, Juan; Lee, Kevin; Leinert, Vera; Meier, Amelia; Maretti, Giovanna; Marrocoli, Sergio; Mbi, Tanyi Julius; Mihindou, Vianet; Moebius, Yasmin; Morgan, David; Morgan, Bethan; Mulindahabi, Felix; Murai, Mizuki; Niyigabae, Protais; Normand, Emma; Ntare, Nicolas; Ormsby, Lucy Jayne; Piel, Alex; Pruetz, Jill; Rundus, Aaron; Sanz, Crickette; Sommer, Volker; Stewart, Fiona; Tagg, Nikki; Vanleeuwe, Hilde; Vergnes, Virginie; Willie, Jacob; Wittig, Roman M; Zuberbuehler, Klaus; Boesch, Christophe

    2016-01-01

    The study of the archaeological remains of fossil hominins must rely on reconstructions to elucidate the behaviour that may have resulted in particular stone tools and their accumulation. Comparatively, stone tool use among living primates has illuminated behaviours that are also amenable to archaeological examination, permitting direct observations of the behaviour leading to artefacts and their assemblages to be incorporated. Here, we describe newly discovered stone tool-use behaviour and stone accumulation sites in wild chimpanzees reminiscent of human cairns. In addition to data from 17 mid- to long-term chimpanzee research sites, we sampled a further 34 Pan troglodytes communities. We found four populations in West Africa where chimpanzees habitually bang and throw rocks against trees, or toss them into tree cavities, resulting in conspicuous stone accumulations at these sites. This represents the first record of repeated observations of individual chimpanzees exhibiting stone tool use for a purpose other than extractive foraging at what appear to be targeted trees. The ritualized behavioural display and collection of artefacts at particular locations observed in chimpanzee accumulative stone throwing may have implications for the inferences that can be drawn from archaeological stone assemblages and the origins of ritual sites. PMID:26923684

  17. Chimpanzee accumulative stone throwing

    PubMed Central

    Kühl, Hjalmar S.; Kalan, Ammie K.; Arandjelovic, Mimi; Aubert, Floris; D’Auvergne, Lucy; Goedmakers, Annemarie; Jones, Sorrel; Kehoe, Laura; Regnaut, Sebastien; Tickle, Alexander; Ton, Els; van Schijndel, Joost; Abwe, Ekwoge E.; Angedakin, Samuel; Agbor, Anthony; Ayimisin, Emmanuel Ayuk; Bailey, Emma; Bessone, Mattia; Bonnet, Matthieu; Brazolla, Gregory; Buh, Valentine Ebua; Chancellor, Rebecca; Cipoletta, Chloe; Cohen, Heather; Corogenes, Katherine; Coupland, Charlotte; Curran, Bryan; Deschner, Tobias; Dierks, Karsten; Dieguez, Paula; Dilambaka, Emmanuel; Diotoh, Orume; Dowd, Dervla; Dunn, Andrew; Eshuis, Henk; Fernandez, Rumen; Ginath, Yisa; Hart, John; Hedwig, Daniela; Ter Heegde, Martijn; Hicks, Thurston Cleveland; Imong, Inaoyom; Jeffery, Kathryn J.; Junker, Jessica; Kadam, Parag; Kambi, Mohamed; Kienast, Ivonne; Kujirakwinja, Deo; Langergraber, Kevin; Lapeyre, Vincent; Lapuente, Juan; Lee, Kevin; Leinert, Vera; Meier, Amelia; Maretti, Giovanna; Marrocoli, Sergio; Mbi, Tanyi Julius; Mihindou, Vianet; Moebius, Yasmin; Morgan, David; Morgan, Bethan; Mulindahabi, Felix; Murai, Mizuki; Niyigabae, Protais; Normand, Emma; Ntare, Nicolas; Ormsby, Lucy Jayne; Piel, Alex; Pruetz, Jill; Rundus, Aaron; Sanz, Crickette; Sommer, Volker; Stewart, Fiona; Tagg, Nikki; Vanleeuwe, Hilde; Vergnes, Virginie; Willie, Jacob; Wittig, Roman M.; Zuberbuehler, Klaus; Boesch, Christophe

    2016-01-01

    The study of the archaeological remains of fossil hominins must rely on reconstructions to elucidate the behaviour that may have resulted in particular stone tools and their accumulation. Comparatively, stone tool use among living primates has illuminated behaviours that are also amenable to archaeological examination, permitting direct observations of the behaviour leading to artefacts and their assemblages to be incorporated. Here, we describe newly discovered stone tool-use behaviour and stone accumulation sites in wild chimpanzees reminiscent of human cairns. In addition to data from 17 mid- to long-term chimpanzee research sites, we sampled a further 34 Pan troglodytes communities. We found four populations in West Africa where chimpanzees habitually bang and throw rocks against trees, or toss them into tree cavities, resulting in conspicuous stone accumulations at these sites. This represents the first record of repeated observations of individual chimpanzees exhibiting stone tool use for a purpose other than extractive foraging at what appear to be targeted trees. The ritualized behavioural display and collection of artefacts at particular locations observed in chimpanzee accumulative stone throwing may have implications for the inferences that can be drawn from archaeological stone assemblages and the origins of ritual sites. PMID:26923684

  18. Accumulation of the planets

    NASA Technical Reports Server (NTRS)

    Wetherill, G. W.

    1987-01-01

    In modeling the accumulation of planetesimals into planets, it is appropriate to distinguish between two stages: an early stage, during which approximately 10 km diameter planetesimals accumulate locally to form bodies approximate 10 to the 25th g in mass; and a later stage in which the approximately 10 to the 25th g planetesimals accumulate into the final planets. In the terrestrial planet region, an initial planetesimal swarm corresponding to the critical mass of dust layer gravitational instabilities is considered. In order to better understand the accumulation history of Mercury-sized bodies, 19 Monte-Carlo simulations of terrestrial planet growth were calculated. A Monte Carlo technique was used to investigate the orbital evolution of asteroidal collision debris produced interior to 2.6 AU. It was found that there are two regions primarily responsible for production of Earth-crossing meteoritic material and Apollo objects. The same techniques were extended to include the origin of Earth-approaching asteroidal bodies. It is found that these same two resonant mechanisms predict a steady-state number of Apollo-Amor about 1/2 that estimated based on astronomical observations.

  19. Nuclear Shuttle in Flight

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This 1970 artist's concept shows a Nuclear Shuttle in flight. As envisioned by Marshall Space Flight Center Program Development engineers, the Nuclear Shuttle would deliver payloads to lunar orbit or other destinations then return to Earth orbit for refueling and additional missions.

  20. Electromechanical flight control actuator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.

  1. Space Flight. Teacher Resources.

    ERIC Educational Resources Information Center

    2001

    This teacher's guide contains information, lesson plans, and diverse student learning activities focusing on space flight. The guide is divided into seven sections: (1) "Drawing Activities" (Future Flight; Space Fun; Mission: Draw); (2) "Geography" (Space Places); (3) "History" (Space and Time); (4) "Information" (Space Transportation System;…

  2. Java for flight software

    NASA Technical Reports Server (NTRS)

    Benowitz, E.; Niessner, A.

    2003-01-01

    This work involves developing representative mission-critical spacecraft software using the Real-Time Specification for Java (RTSJ). This work currently leverages actual flight software used in the design of actual flight software in the NASA's Deep Space 1 (DSI), which flew in 1998.

  3. Exploring flight crew behaviour

    NASA Technical Reports Server (NTRS)

    Helmreich, R. L.

    1987-01-01

    A programme of research into the determinants of flight crew performance in commercial and military aviation is described, along with limitations and advantages associated with the conduct of research in such settings. Preliminary results indicate significant relationships among personality factors, attitudes regarding flight operations, and crew performance. The potential theoretical and applied utility of the research and directions for further research are discussed.

  4. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Santuro, Steve; Simpson, James; Zoerner, Roger; Bull, Barton; Lanzi, Jim

    2004-01-01

    Autonomous Flight Safety System (AFSS) is an independent flight safety system designed for small to medium sized expendable launch vehicles launching from or needing range safety protection while overlying relatively remote locations. AFSS replaces the need for a man-in-the-loop to make decisions for flight termination. AFSS could also serve as the prototype for an autonomous manned flight crew escape advisory system. AFSS utilizes onboard sensors and processors to emulate the human decision-making process using rule-based software logic and can dramatically reduce safety response time during critical launch phases. The Range Safety flight path nominal trajectory, its deviation allowances, limit zones and other flight safety rules are stored in the onboard computers. Position, velocity and attitude data obtained from onboard global positioning system (GPS) and inertial navigation system (INS) sensors are compared with these rules to determine the appropriate action to ensure that people and property are not jeopardized. The final system will be fully redundant and independent with multiple processors, sensors, and dead man switches to prevent inadvertent flight termination. AFSS is currently in Phase III which includes updated algorithms, integrated GPS/INS sensors, large scale simulation testing and initial aircraft flight testing.

  5. Deep venous thrombophlebitis: detection with 4-hour versus 24-hour platelet scintigraphy

    SciTech Connect

    Seabold, J.E.; Conrad, G.R.; Ponto, J.A.; Kimball, D.A.; Frey, E.E.; Ahmed, F.; Coughlan, J.D.; Jensen, K.C.

    1987-11-01

    Thirty-one nonheparinized patients with suspected deep venous thrombophlebitis (DVT) underwent contrast venography and indium-111 platelet scintigraphy (In-111 PS). Venography permitted identification of acute DVT in 12 of 31 cases (39%). One additional patient was considered to have acute DVT despite nonconclusive venography results. In-111 PS results were positive at 4 hours in nine of 13 cases (69%) and at 24 hours in 12 of 13 cases (92%). Two of four patients with false-negative 4-hour In-111 PS studies had received warfarin. Thus, the sensitivity of 4-hour In-111 PS in patients not receiving anticoagulants was 82%. Venography results were negative for acute DVT in 18 cases, and 4-hour In-111 PS studies were negative or equivocal in each. In-111 PS is an alternative to contrast venography for detecting acute DVT. If 4-hour In-111 PS results are positive, anticoagulation can be initiated. Delayed images are necessary if the 4-hour images are negative or equivocal.

  6. In-flight Assessment of Lower Body Negative Pressure as a Countermeasure for Post-flight Orthostatic Intolerance

    NASA Technical Reports Server (NTRS)

    Charles, J. B.; Stenger, M. B.; Phillips, T. R.; Arzeno, N. M.; Lee, S. M. C.

    2009-01-01

    Introduction. We investigated the efficacy of combining fluid loading with sustained lower body negative pressure (LBNP) to reverse orthostatic intolerance associated with weightlessness during and immediately after Space Shuttle missions. Methods. Shuttle astronauts (n=13) underwent 4 hours of LBNP at -30 mm(Hg) and ingested water and salt ( soak treatment) during flight in two complementary studies. In the first study (n=8), pre-flight heart rate (HR) and blood pressure (BP) responses to an LBNP ramp (5-min stages of -10 mm(Hg) steps to -50 mm(Hg) were compared to responses in-flight one and two days after LBNP soak treatment. In the second study (n=5), the soak was performed 24 hr before landing, and post-flight stand test results of soak subjects were compared with those of an untreated cohort (n=7). In both studies, the soak was scheduled late in the mission and was preceded by LBNP ramp tests at approximately 3-day intervals to document the in-flight loss of orthostatic tolerance. Results. Increased HR and decreased BP responses to LBNP were evident early in-flight. In-flight, one day after LBNP soak, HR and BP responses to LBNP were not different from pre-flight, but the effect was absent the second day after treatment. Post-flight there were no between-group differences in HR and BP responses to standing, but all 5 treatment subjects completed the 5-minute stand test whereas 2 of 7 untreated cohort subjects did not. Discussion. Exaggerated HR and BP responses to LBNP were evident within the first few days of space flight, extending results from Skylab. The combined LBNP and fluid ingestion countermeasure restored in-flight LBNP HR and BP responses to pre-flight levels and provided protection of post-landing orthostatic function. Unfortunately, any benefits of the combined countermeasure were offset by the complexity of its implementation, making it inappropriate for routine application during Shuttle flights.

  7. 5 CFR 550.1303 - Hourly rates of basic pay.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... annual rate in effect at the time the hour was actually worked. ... hourly rate of basic pay is computed by dividing the applicable annual rate of basic pay by 2756 hours. The resulting firefighter hourly rate of basic pay is multiplied by all nonovertime hours to...

  8. 5 CFR 550.1303 - Hourly rates of basic pay.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... annual rate in effect at the time the hour was actually worked. ... hourly rate of basic pay is computed by dividing the applicable annual rate of basic pay by 2756 hours. The resulting firefighter hourly rate of basic pay is multiplied by all nonovertime hours to...

  9. 29 CFR 778.114 - Fixed salary for fluctuating hours.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... average hourly earnings from the salary fall below the minimum hourly wage rate applicable under the Act... 29 Labor 3 2010-07-01 2010-07-01 false Fixed salary for fluctuating hours. 778.114 Section 778.114... salary for fluctuating hours. (a) An employee employed on a salary basis may have hours of work...

  10. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General...

  11. Flight Test Comparison of Synthetic Vision Display Concepts at Dallas/Fort Worth International Airport

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.; Kramer, Lynda J.; Arthur, Trey; Parrish, Russell V.; Barry, John S.

    2003-01-01

    Limited visibility is the single most critical factor affecting the safety and capacity of worldwide aviation operations. Synthetic Vision Systems (SVS) technology can solve this visibility problem with a visibility solution. These displays employ computer-generated terrain imagery to present 3D, perspective out-the-window scenes with sufficient information and realism to enable operations equivalent to those of a bright, clear day, regardless of weather conditions. To introduce SVS display technology into as many existing aircraft as possible, a retrofit approach was defined that employs existing HDD display capabilities for glass cockpits and HUD capabilities for the other aircraft. This retrofit approach was evaluated for typical nighttime airline operations at a major international airport. Overall, 6 evaluation pilots performed 75 research approaches, accumulating 18 hours flight time evaluating SVS display concepts that used the NASA LaRC's Boeing B-757-200 aircraft at Dallas/Fort Worth International Airport. Results from this flight test establish the SVS retrofit concept, regardless of display size, as viable for tested conditions. Future assessments need to extend evaluation of the approach to operations in an appropriate, terrain-challenged environment with daytime test conditions.

  12. 20140430_Green Machine Florida Canyon Hourly Data

    SciTech Connect

    Thibedeau, Joe

    2014-05-05

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 April to 30 April 2014.

  13. Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Vanderhoff, Alex

    2013-07-15

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 6/1/13 to 6/30/13

  14. Green Machine Florida Canyon Hourly Data 20130731

    DOE Data Explorer

    Vanderhoff, Alex

    2013-08-30

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 7/1/13 to 7/31/13.

  15. 20130416_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer

    Vanderhoff, Alex

    2013-04-24

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 4/16/13.

  16. Future Flight Decks

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas; Abbott, Kathy H.; Abbott, Terence S.; Schutte, Paul C.

    1998-01-01

    The evolution of commercial transport flight deck configurations over the past 20-30 years and expected future developments are described. Key factors in the aviation environment are identified that the authors expect will significantly affect flight deck designers. One of these is the requirement for commercial aviation accident rate reduction, which is probably required if global commercial aviation is to grow as projected. Other factors include the growing incrementalism in flight deck implementation, definition of future airspace operations, and expectations of a future pilot corps that will have grown up with computers. Future flight deck developments are extrapolated from observable factors in the aviation environment, recent research results in the area of pilot-centered flight deck systems, and by considering expected advances in technology that are being driven by other than aviation requirements. The authors hypothesize that revolutionary flight deck configuration changes will be possible with development of human-centered flight deck design methodologies that take full advantage of commercial and/or entertainment-driven technologies.

  17. 48 CFR 16.602 - Labor-hour contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... labor-hour contracts. See 12.207(b) for the use of labor-hour contracts for certain commercial services. ... METHODS AND CONTRACT TYPES TYPES OF CONTRACTS Time-and-Materials, Labor-Hour, and Letter Contracts...

  18. [Seven hour shifts versus 12 hours in intensive nursing care: going against the tide].

    PubMed

    Moreno Arroyo, M C; Jerez González, J A; Cabrera Jaime, S; Estrada Masllorens, J M; López Martín, A

    2013-01-01

    Working in shifts has an impact on the well being of health care professionals, affecting their quality of life. The main objective of this study is to describe the consequences of 12hours work shifts versus 7hours for nursing professionals working in intensive care units. A cost-sectional, descriptive study was conducted in two tertiary hospitals of Barcelona, these being the Hospital Clínico and Hospital Vall d'Hebron (of 7hour and 12hour shifts, respectively). The data was collected through a questionnaire having 29 closed questions that was anonymous and self-administered. The questionnaire was based on two scales: Standard Shiftwork Index and Shiftwork. locus of control. Data was processed through SPSS V.18.0. The target population consisted of 85 people, for whom 52 surveys were valid: 22 in Hospital Clínico of Barcelona and 30 in Hospital Vall d'Hebron. Professionals working a 12-hour shift express higher levels of work and family conciliation, especially in the case of leisure time to enjoy (×2: 10.635 p=0.031) and family-friends time dedication as well as lower levels of perceived fatigue. No differences were found between type of shift and ease of development of professional work, even though the 12-hour shift has higher levels. PMID:23891261

  19. Ion beam plume and efflux characterization flight experiment study. [space shuttle payload

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Zafran, S.; Cole, A.; Rosiak, G.; Komatsu, G. K.

    1977-01-01

    A flight experiment and flight experiment package for a shuttle-borne flight test of an 8-cm mercury ion thruster was designed to obtain charged particle and neutral particle material transport data that cannot be obtained in conventional ground based laboratory testing facilities. By the use of both ground and space testing of ion thrusters, the flight worthiness of these ion thrusters, for other spacecraft applications, may be demonstrated. The flight experiment definition for the ion thruster initially defined a broadly ranging series of flight experiments and flight test sensors. From this larger test series and sensor list, an initial flight test configuration was selected with measurements in charged particle material transport, condensible neutral material transport, thruster internal erosion, ion beam neutralization, and ion thrust beam/space plasma electrical equilibration. These measurement areas may all be examined for a seven day shuttle sortie mission and for available test time in the 50 - 100 hour period.

  20. Experiment 9: ASTROCULTURE: Growth and Starch Accumulation of Potato Tuber

    NASA Technical Reports Server (NTRS)

    Tibbitts, Theodore W.; Brown, Christopher S.; Croxdale, Judith G.; Wheeler, Raymond M.

    1998-01-01

    Potato explants (leaf, small stem section, and axillary bud) flown on STS-73 developed tubers of 1.5 cm diameter and 1.7 g mass during the 16-day period of space flight. The experiment was undertaken in the ASTROCULTURE(TM) experiment package under controlled temperature, humidity, lighting, and carbon dioxide concentrations. The tubers that formed in the explant system under microgravity had the same gross morphology, the same anatomical configuration of cells and tissues, and the same sizes, shapes, and surface character of starch granules as tubers formed in a 1 g environment. The total accumulation of starch and other energy containing compounds was similar in space flight and ground control tubers. Enzyme activity of starch synthase, starch phosphorylase, and total hydrolase was similar in space flight and ground controls, but activity of ADP-glucose pyrophosphorylase was reduced in the space flight tuber tissue. This experiment documented that potatoes will metabolize and accumulate starch as effectively in space flight as on the ground. Thus, this data provides the potential for effective utilization of potatoes in life support systems of space bases.

  1. Automated flight test management system

    NASA Technical Reports Server (NTRS)

    Hewett, M. D.; Tartt, D. M.; Agarwal, A.

    1991-01-01

    The Phase 1 development of an automated flight test management system (ATMS) as a component of a rapid prototyping flight research facility for artificial intelligence (AI) based flight concepts is discussed. The ATMS provides a flight engineer with a set of tools that assist in flight test planning, monitoring, and simulation. The system is also capable of controlling an aircraft during flight test by performing closed loop guidance functions, range management, and maneuver-quality monitoring. The ATMS is being used as a prototypical system to develop a flight research facility for AI based flight systems concepts at NASA Ames Dryden.

  2. Intelligent flight control systems

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1993-01-01

    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms.

  3. Flight Dynamics Analysis Branch

    NASA Technical Reports Server (NTRS)

    Stengle, Tom; Flores-Amaya, Felipe

    2000-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 572, in support of flight projects and technology development initiatives in fiscal year 2000. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics, spacecraft trajectory, attitude analysis, and attitude determination and control. The FDAB currently provides support for missions and technology development projects involving NASA, government, university, and private industry.

  4. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  5. Identification of atypical flight patterns

    NASA Technical Reports Server (NTRS)

    Statler, Irving C. (Inventor); Ferryman, Thomas A. (Inventor); Amidan, Brett G. (Inventor); Whitney, Paul D. (Inventor); White, Amanda M. (Inventor); Willse, Alan R. (Inventor); Cooley, Scott K. (Inventor); Jay, Joseph Griffith (Inventor); Lawrence, Robert E. (Inventor); Mosbrucker, Chris (Inventor)

    2005-01-01

    Method and system for analyzing aircraft data, including multiple selected flight parameters for a selected phase of a selected flight, and for determining when the selected phase of the selected flight is atypical, when compared with corresponding data for the same phase for other similar flights. A flight signature is computed using continuous-valued and discrete-valued flight parameters for the selected flight parameters and is optionally compared with a statistical distribution of other observed flight signatures, yielding atypicality scores for the same phase for other similar flights. A cluster analysis is optionally applied to the flight signatures to define an optimal collection of clusters. A level of atypicality for a selected flight is estimated, based upon an index associated with the cluster analysis.

  6. 40 CFR 86.426-78 - Service accumulation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... manufacturer's recommended shifting procedure will be used for laps 1 through 10. Lap 11 shifts (W.O.T... mass which is within 5 kg (11.0 lb) of the loaded vehicle mass specified by the Administrator. (b) During service accumulation, vehicles shall not be operated for more than 12 hours during an...

  7. PROTEIN ACCUMULATION IN LUNG LAVAGE FLUID FOLLOWING OZONE EXPOSURE

    EPA Science Inventory

    Accumulation of protein in lung lavage fluid was used as an indicator of pulmonary damage following exposure of guinea pigs to 03. Exposure of animals to 510, 1000 or 1960 micrograms/cu. m. (O.26, 0.51 or 1.0 ppm) of O3 for 72 hours resulted in significantly elevated levels of la...

  8. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1984-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 10 years of service. There are six Kevlar-49 panels on each aircraft: a left-hand and right-hand set of a wing-body sandwich fairing; a solid laminate under-wing fillet panel; and a 422 K (300 F) service aft engine fairing. The three L-1011s include one each in service with Eastern, Air Canada, and TWA. The fairings have accumulated a total of 79,568 hours, with one ship set having nearly 28,000 hours service. The inspections were conducted at the airlines' major maintenance bases with the participation of Lockheed Engineering. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history obtained in this program indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  9. Human Space Flight

    NASA Technical Reports Server (NTRS)

    Woolford, Barbara; Mount, Frances

    2004-01-01

    The first human space flight, in the early 1960s, was aimed primarily at determining whether humans could indeed survive and function in micro-gravity. Would eating and sleeping be possible? What mental and physical tasks could be performed? Subsequent programs increased the complexity of the tasks the crew performed. Table 1 summarizes the history of U.S. space flight, showing the projects, their dates, crew sizes, and mission durations. With over forty years of experience with human space flight, the emphasis now is on how to design space vehicles, habitats, and missions to produce the greatest returns to human knowledge. What are the roles of the humans in space flight in low earth orbit, on the moon, and in exploring Mars?

  10. Beta experiment flight report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A focused laser Doppler velocimeter system was developed for the measurement of atmospheric backscatter (beta) from aerosols at infrared wavelengths. The system was flight tested at several different locations and the results of these tests are summarized.

  11. Space flight hazards catalog

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The most significant hazards identified on manned space flight programs are listed. This summary is of special value to system safety engineers in developing safety checklists and otherwise tailoring safety tasks to specific systems and subsystems.

  12. SR-71 Flight

    NASA Video Gallery

    Two SR-71A aircraft were loaned from the U.S. Air Force for use for high-speed, high-altitude research at the NASA Dryden Flight Research Center, Edwards, California. One of them was later returned...

  13. Reflecting Random Flights

    NASA Astrophysics Data System (ADS)

    De Gregorio, Alessandro; Orsingher, Enzo

    2015-09-01

    We consider random flights in reflecting on the surface of a sphere with center at the origin and with radius R, where reflection is performed by means of circular inversion. Random flights studied in this paper are motions where the orientation of the deviations are uniformly distributed on the unit-radius sphere . We obtain the explicit probability distributions of the position of the moving particle when the number of changes of direction is fixed and equal to . We show that these distributions involve functions which are solutions of the Euler-Poisson-Darboux equation. The unconditional probability distributions of the reflecting random flights are obtained by suitably randomizing n by means of a fractional-type Poisson process. Random flights reflecting on hyperplanes according to the optical reflection form are considered and the related distributional properties derived.

  14. Traffic Aware Planner (TAP) Flight Evaluation

    NASA Technical Reports Server (NTRS)

    Maris, John M.; Haynes, Mark A.; Wing, David J.; Burke, Kelly A.; Henderson, Jeff; Woods, Sharon E.

    2014-01-01

    NASA's Traffic Aware Planner (TAP) is a cockpit decision support tool that has the potential to achieve significant fuel and time savings when it is embedded in the data-rich Next Generation Air Transportation System (NextGen) airspace. To address a key step towards the operational deployment of TAP and the NASA concept of Traffic Aware Strategic Aircrew Requests (TASAR), a system evaluation was conducted in a representative flight environment in November, 2013. Numerous challenges were overcome to achieve this goal, including the porting of the foundational Autonomous Operations Planner (AOP) software from its original simulation-based, avionics-embedded environment to an Electronic Flight Bag (EFB) platform. A flight-test aircraft was modified to host the EFB, the TAP application, an Automatic Dependent Surveillance Broadcast (ADS-B) processor, and a satellite broadband datalink. Nine Evaluation Pilots conducted 26 hours of TAP assessments using four route profiles in the complex eastern and north-eastern United States airspace. Extensive avionics and video data were collected, supplemented by comprehensive inflight and post-flight questionnaires. TAP was verified to function properly in the live avionics and ADS-B environment, characterized by recorded data dropouts, latency, and ADS-B message fluctuations. Twelve TAP-generated optimization requests were submitted to ATC, of which nine were approved, and all of which resulted in fuel and/or time savings. Analysis of subjective workload data indicated that pilot interaction with TAP during flight operations did not induce additional cognitive loading. Additionally, analyses of post-flight questionnaire data showed that the pilots perceived TAP to be useful, understandable, intuitive, and easy to use. All program objectives were met, and the next phase of TAP development and evaluations with partner airlines is in planning for 2015.

  15. Flight-Tested Prototype of BEAM Software

    NASA Technical Reports Server (NTRS)

    Mackey, Ryan; Tikidjian, Raffi; James, Mark; Wang, David

    2006-01-01

    Researchers at JPL have completed a software prototype of BEAM (Beacon-based Exception Analysis for Multi-missions) and successfully tested its operation in flight onboard a NASA research aircraft. BEAM (see NASA Tech Briefs, Vol. 26, No. 9; and Vol. 27, No. 3) is an ISHM (Integrated Systems Health Management) technology that automatically analyzes sensor data and classifies system behavior as either nominal or anomalous, and further characterizes anomalies according to strength, duration, and affected signals. BEAM (see figure) can be used to monitor a wide variety of physical systems and sensor types in real time. In this series of tests, BEAM monitored the engines of a Dryden Flight Research Center F-18 aircraft, and performed onboard, unattended analysis of 26 engine sensors from engine startup to shutdown. The BEAM algorithm can detect anomalies based solely on the sensor data, which includes but is not limited to sensor failure, performance degradation, incorrect operation such as unplanned engine shutdown or flameout in this example, and major system faults. BEAM was tested on an F-18 simulator, static engine tests, and 25 individual flights totaling approximately 60 hours of flight time. During these tests, BEAM successfully identified planned anomalies (in-flight shutdowns of one engine) as well as minor unplanned anomalies (e.g., transient oil- and fuel-pressure drops), with no false alarms or suspected false-negative results for the period tested. BEAM also detected previously unknown behavior in the F- 18 compressor section during several flights. This result, confirmed by direct analysis of the raw data, serves as a significant test of BEAM's capability.

  16. MSFC Doppler Lidar Science experiments and operations plans for 1981 airborne test flight

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Bilbro, J. W.; Kaufman, J. W.

    1981-01-01

    The flight experiment and operations plans for the Doppler Lidar System (DLS) are provided. Application of DLS to the study of severe storms and local weather penomena is addressed. Test plans involve 66 hours of flight time. Plans also include ground based severe storm and local weather data acquisition.

  17. 14 CFR Appendix C to Part 135 - Helicopter Flight Recorder Specifications

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Helicopter Flight Recorder Specifications C.... C Appendix C to Part 135—Helicopter Flight Recorder Specifications Parameters Range Installed system... time (from recorded on prior to takeoff) 25 hr minimum ±0.125% per hour 1 1 sec. Indicated airspeed...

  18. 14 CFR Appendix C to Part 135 - Helicopter Flight Recorder Specifications

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Helicopter Flight Recorder Specifications C.... C Appendix C to Part 135—Helicopter Flight Recorder Specifications Parameters Range Installed system... time (from recorded on prior to takeoff) 25 hr minimum ±0.125% per hour 1 1 sec. Indicated airspeed...

  19. 14 CFR Appendix C to Part 135 - Helicopter Flight Recorder Specifications

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Helicopter Flight Recorder Specifications C.... C Appendix C to Part 135—Helicopter Flight Recorder Specifications Parameters Range Installed system... time (from recorded on prior to takeoff) 25 hr minimum ±0.125% per hour 1 1 sec. Indicated airspeed...

  20. Orion Abort Flight Test

    NASA Technical Reports Server (NTRS)

    Hayes, Peggy Sue

    2010-01-01

    The purpose of NASA's Constellation project is to create the new generation of spacecraft for human flight to the International Space Station in low-earth orbit, the lunar surface, as well as for use in future deep-space exploration. One portion of the Constellation program was the development of the Orion crew exploration vehicle (CEV) to be used in spaceflight. The Orion spacecraft consists of a crew module, service module, space adapter and launch abort system. The crew module was designed to hold as many as six crew members. The Orion crew exploration vehicle is similar in design to the Apollo space capsules, although larger and more massive. The Flight Test Office is the responsible flight test organization for the launch abort system on the Orion crew exploration vehicle. The Flight Test Office originally proposed six tests that would demonstrate the use of the launch abort system. These flight tests were to be performed at the White Sands Missile Range in New Mexico and were similar in nature to the Apollo Little Joe II tests performed in the 1960s. The first flight test of the launch abort system was a pad abort (PA-1), that took place on 6 May 2010 at the White Sands Missile Range in New Mexico. Primary flight test objectives were to demonstrate the capability of the launch abort system to propel the crew module a safe distance away from a launch vehicle during a pad abort, to demonstrate the stability and control characteristics of the vehicle, and to determine the performance of the motors contained within the launch abort system. The focus of the PA-1 flight test was engineering development and data acquisition, not certification. In this presentation, a high level overview of the PA-1 vehicle is given, along with an overview of the Mobile Operations Facility and information on the White Sands tracking sites for radar & optics. Several lessons learned are presented, including detailed information on the lessons learned in the development of wind

  1. 1999 Flight Mechanics Symposium

    NASA Technical Reports Server (NTRS)

    Lynch, John P. (Editor)

    1999-01-01

    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium held on May 18-20, 1999. Sponsored by the Guidance, Navigation and Control Center of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.

  2. The flight robotics laboratory

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick A.; Williamson, Marlin J.; Glaese, John R.

    1988-01-01

    The Flight Robotics Laboratory of the Marshall Space Flight Center is described in detail. This facility, containing an eight degree of freedom manipulator, precision air bearing floor, teleoperated motion base, reconfigurable operator's console, and VAX 11/750 computer system, provides simulation capability to study human/system interactions of remote systems. The facility hardware, software and subsequent integration of these components into a real time man-in-the-loop simulation for the evaluation of spacecraft contact proximity and dynamics are described.

  3. Dexterous manipulator flight demonstration

    NASA Technical Reports Server (NTRS)

    Carter, Edward L.

    1989-01-01

    The Dexterous Manipulator Flight Experiment, an outgrowth of the Dexterous End Effector project, is an experiment to demonstrate newly developed equipment and methods that make for a dexterous manipulator which can be used on the Space Shuttle or other space missions. The goals of the project, the objectives of the flight experiment, the experiment equipment, and the tasks to be performed during the demonstration are discussed.

  4. Adaptive Structures Flight Experiments

    NASA Technical Reports Server (NTRS)

    Martin, Maurice

    1992-01-01

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  5. Adaptive structures flight experiments

    NASA Astrophysics Data System (ADS)

    Martin, Maurice

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  6. Heat pipe flight experiments

    NASA Technical Reports Server (NTRS)

    Ollendorf, S.

    1973-01-01

    OAO 3 heat pipe flight experiments to check out weightlessness behavior are reported. Tested were a hollow channel screen system with helical grooves, a heat pipe with a wicking system of horizontal grooves, and a spiral artery pipe with multichannel fluid return to the evaporator. Flight experiment data proved that all heat pipe geometries containing wicking systems provided uninterrupted fluid return to the condensators during weightlessness and sufficient cooling for isothermalizing optical instruments onboard OAO.

  7. Magnesium and Space Flight

    PubMed Central

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  8. Designing Flight Deck Procedures

    NASA Technical Reports Server (NTRS)

    Degani, Asaf; Wiener, Earl

    2005-01-01

    Three reports address the design of flight-deck procedures and various aspects of human interaction with cockpit systems that have direct impact on flight safety. One report, On the Typography of Flight- Deck Documentation, discusses basic research about typography and the kind of information needed by designers of flight deck documentation. Flight crews reading poorly designed documentation may easily overlook a crucial item on the checklist. The report surveys and summarizes the available literature regarding the design and typographical aspects of printed material. It focuses on typographical factors such as proper typefaces, character height, use of lower- and upper-case characters, line length, and spacing. Graphical aspects such as layout, color coding, fonts, and character contrast are discussed; and several cockpit conditions such as lighting levels and glare are addressed, as well as usage factors such as angular alignment, paper quality, and colors. Most of the insights and recommendations discussed in this report are transferable to paperless cockpit systems of the future and computer-based procedure displays (e.g., "electronic flight bag") in aerospace systems and similar systems that are used in other industries such as medical, nuclear systems, maritime operations, and military systems.

  9. Interprofessional Flight Camp.

    PubMed

    Alfes, Celeste M; Rowe, Amanda S

    2016-01-01

    The Dorothy Ebersbach Academic Center for Flight Nursing in Cleveland, OH, holds an annual flight camp designed for master's degree nursing students in the acute care nurse practitioner program, subspecializing in flight nursing at the Frances Payne Bolton School of Nursing at Case Western Reserve University. The weeklong interprofessional training is also open to any health care provider working in an acute care setting and focuses on critical care updates, trauma, and emergency care within the critical care transport environment. This year, 29 graduate nursing students enrolled in a master's degree program from Puerto Rico attended. Although the emergency department in Puerto Rico sees and cares for trauma patients, there is no formal trauma training program. Furthermore, the country only has 1 rotor wing air medical transport service located at the Puerto Rico Medical Center in San Juan. Flight faculty and graduate teaching assistants spent approximately 9 months planning for their participation in our 13th annual flight camp. Students from Puerto Rico were extremely pleased with the learning experiences at camp and expressed particular interest in having more training time within the helicopter flight simulator. PMID:27021671

  10. Student Parabolic Flight Campaign

    NASA Astrophysics Data System (ADS)

    Sentse, N. S. M.; Ockels, W. J.

    2002-01-01

    After the successful Student Parabolic Flight Campaigns held in 1994 and 1995, the European Space Agency resumed their organisation of parabolic flight campaigns, dedicated to students of all ESA member states on an annual basis. The Student Parabolic Flight Campaigns are in order to promote microgravity research among students, tomorrow's scientists, since students can bring new ideas and initiatives to the space industry. Already four parabolic flight campaigns have flown and the 2002 student parabolic flight campaign has just flown in September. Thirty experiments are selected to fly in each campaign using the criteria of originality, demonstration of zero G, technical complexity and outreach performed by the team. Each experiment team consists of four university students. This is the chance for students to have the real weightlessness experience on board of the A300 ZERO-G aircraft. In addition, for one or two of the very best student experiments from each campaign, there will be the possibility to re-fly themselves and their experiment on ESA's Professional Parabolic Flight Campaigns. Eventually, one student experiment will be flying to the International Space Station. Conclusively, students' experiments can get fundamentally new and exciting results!

  11. Magnesium and Space Flight.

    PubMed

    Smith, Scott M; Zwart, Sara R

    2015-12-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4-6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4-6-month space missions. PMID:26670248

  12. DC-8 Airborne Laboratory in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The NASA DC-8 in a right bank over the rugged Sierra Nevada Mountains. The former airliner is a 'dash-72' model and has a range of 5,500 miles. The craft can stay airborne for 12 hours and has an operational speed range between 300 and 500 knots. The research flights are made at between 500 and 41,000 feet. The aircraft can carry up to 30,000 lbs of research/science payload equipment installed in 15 mission-definable spaces. In this photo, the aircraft is shown in flight from below, with the DC-8 silhouetted against a blue sky. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  13. 14 CFR 61.56 - Flight review.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... flight review. (i) A flight simulator or flight training device may be used to meet the flight review requirements of this section subject to the following conditions: (1) The flight simulator or flight training... under part 142 of this chapter. (2) Unless the flight review is undertaken in a flight simulator that......

  14. STS-111 Flight Day 09 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-111 flight crew consists of Kenneth D. Cockrell, Commander, Paul S. Lockhart, Pilot, Franklin R. Chang-Diaz, Mission Specialist, Philippe Perrin, (CNES), Mission Specialist, Valery G. Korzun, (RSA), ISS Up, Peggy A. Whitson, ISS Up , Sergei Y. Treschev (RSC), ISS Up, Yuri I. Onufriyenko (RSA), ISS Down, Carl E. Walz, and Daniel W. Bursch (ISS) Down. The main goal on this ninth day of flight STS-111, is to replace the wrist roll joint of the Robotic Arm on the International Space Station. Live footage of the wrist roll joint replacement is presented. Paul Lockhart is the spacewalk coordinator for this mission. Franklin Chang-Diaz and Philippe Perrin, are responsible for replacing the wrist roll joint and performing maintenance activities. The spacewalk to repair this joint occurs outside the Space Station's Quest Airlock. The wrist roll joint was replaced successfully. The spacewalk took approximately 7 hours and 17 minutes to complete.

  15. 12-hour shifts: an ethical dilemma for the nurse executive.

    PubMed

    Lorenz, Susan G

    2008-06-01

    Flexible work hours, including 12-hour shifts, have become a common scheduling option for nurses. The author explores whether 12-hour shifts are an ethical scheduling option for nurses because recent research suggests that 12-hour shifts are a potential hazard to patients. A multistep model for ethical decision making, reflecting the concept of procedural justice, is used to examine this issue. PMID:18562834

  16. 46 CFR 9.9 - Two hours between broken periods.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Two hours between broken periods. 9.9 Section 9.9... COMPENSATION FOR OVERTIME SERVICES § 9.9 Two hours between broken periods. Where 2 hours or more intervene between broken periods, one-half day's extra pay will be allowed for each distinct 2-hour period or...

  17. 46 CFR 9.9 - Two hours between broken periods.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Two hours between broken periods. 9.9 Section 9.9... COMPENSATION FOR OVERTIME SERVICES § 9.9 Two hours between broken periods. Where 2 hours or more intervene between broken periods, one-half day's extra pay will be allowed for each distinct 2-hour period or...

  18. 46 CFR 9.9 - Two hours between broken periods.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Two hours between broken periods. 9.9 Section 9.9... COMPENSATION FOR OVERTIME SERVICES § 9.9 Two hours between broken periods. Where 2 hours or more intervene between broken periods, one-half day's extra pay will be allowed for each distinct 2-hour period or...

  19. 46 CFR 9.9 - Two hours between broken periods.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Two hours between broken periods. 9.9 Section 9.9... COMPENSATION FOR OVERTIME SERVICES § 9.9 Two hours between broken periods. Where 2 hours or more intervene between broken periods, one-half day's extra pay will be allowed for each distinct 2-hour period or...

  20. X-1A in flight with flight data superimposed

    NASA Technical Reports Server (NTRS)

    1953-01-01

    crew returned to base in satisfactory condition. Four pilots had completed 29 flights (including aborts). X-1B The Bell Aircraft Corporation X-1B was similar to the Bell X-1A except for the installation of wingtips extensions for its last three flight. The NACA portion of the X-1B flight test program was for the purpose of aerodynamic heating research, accumulating data during 1956-1958. The X-1B was fitted with special instrumentation for exploratory aerodynamic heating tests. It had over 300 thermocouples installed on it. It was the first aircraft to fly with a reaction control system, a prototype of the control system used on the X-15 and other piloted aircraft. Midway through its flight test program, the X-1B was equipped with an Reaction Motors, Inc. XLR-11-RM-9 engine which differed, from the other XLR-11s, only in having an electric spark, low-tension interrupter type ignition in place of the older high-tension type. On January 27, 1959 the X-1B was given to the Air Force Museum at Wright-Patterson Air Force Base, Ohio, for preservation and public display. This aircraft completed a total of 27 glide and powered flights made by eight USAF test pilots and two NACA test pilots. X-1C Following the X-1B was the projected X-1C, which was canceled while still in the mock-up stage. The birth of transonic and supersonic-capable aircraft like the North American F-86 Sabre and the North American F-100 Super Sabre eventually eliminated the need for the X-1C. X-1D The X-1D was the first advanced model of the X-1 family to roll from Bell Aircraft Corporation's plant. It arrived at Edwards, California, in July 1951 suspended from the bomb bay shackles of a Boeing EB-50A, (46-006) aircraft. On July 24, 1951, with Bell test pilot Jean 'Skip' Ziegler at the controls, the X-1D had the only successful flight of its career. It was an unpowered glide flight, and on landing the nose gear failed with the plane sliding to a stop. The aircraft was repaired and ready once more for flight

  1. Heat exchanger-accumulator

    DOEpatents

    Ecker, Amir L.

    1980-01-01

    What is disclosed is a heat exchanger-accumulator for vaporizing a refrigerant or the like, characterized by an upright pressure vessel having a top, bottom and side walls; an inlet conduit eccentrically and sealingly penetrating through the top; a tubular overflow chamber disposed within the vessel and sealingly connected with the bottom so as to define an annular outer volumetric chamber for receiving refrigerant; a heat transfer coil disposed in the outer volumetric chamber for vaporizing the liquid refrigerant that accumulates there; the heat transfer coil defining a passageway for circulating an externally supplied heat exchange fluid; transferring heat efficiently from the fluid; and freely allowing vaporized refrigerant to escape upwardly from the liquid refrigerant; and a refrigerant discharge conduit penetrating sealingly through the top and traversing substantially the length of the pressurized vessel downwardly and upwardly such that its inlet is near the top of the pressurized vessel so as to provide a means for transporting refrigerant vapor from the vessel. The refrigerant discharge conduit has metering orifices, or passageways, penetrating laterally through its walls near the bottom, communicating respectively interiorly and exteriorly of the overflow chamber for controllably carrying small amounts of liquid refrigerant and oil to the effluent stream of refrigerant gas.

  2. Significance of time awake for predicting pilots' fatigue on short-haul flights: implications for flight duty time regulations.

    PubMed

    Vejvoda, Martin; Elmenhorst, Eva-Maria; Pennig, Sibylle; Plath, Gernot; Maass, Hartmut; Tritschler, Kristjof; Basner, Mathias; Aeschbach, Daniel

    2014-10-01

    European regulations restrict the duration of the maximum daily flight duty period for pilots as a function of the duty start time and the number of scheduled flights. However, late duty end times that may include long times awake are not specifically regulated. In this study, fatigue levels in pilots finishing their duty late at night (00:00-01:59 hour) were analysed and compared with pilots starting their duty early (05:00-06:59 hour). Fatigue levels of 40 commercial short-haul pilots were studied during a total of 188 flight duty periods, of which 87 started early and 22 finished late. Pilots used a small handheld computer to maintain a duty and sleep log, and to indicate fatigue levels immediately after each flight. Sleep logs were checked with actigraphy. Pilots on late-finishing flight duty periods were more fatigued at the end of their duty than pilots on early-starting flight duty periods, despite the fact that preceding sleep duration was longer by 1.1 h. Linear mixed-model regression identified time awake as a preeminent factor predicting fatigue. Workload had a minor effect. Pilots on late-finishing flight duty periods were awake longer by an average of 5.5 h (6.6 versus 1.1 h) before commencing their duty than pilots who started early in the morning. Late-finishing flights were associated with long times awake at a time when the circadian system stops promoting alertness, and an increased, previously underestimated fatigue risk. Based on these findings, flight duty limitations should consider not only duty start time, but also the time of the final landing. PMID:25040665

  3. X-2 in flight

    NASA Technical Reports Server (NTRS)

    1956-01-01

    This inflight photograph of the X-2 (46-674) shows the twin set of shock-diamonds, characteristic of supersonic conditions in the exhaust plume from the two-chamber rocket engine. The Curtiss-Wright XLR-25 rocket engine caused one of several problems that delayed flight of the X-2. At one point, people in the project suggested its replacement. It was the first 'man-rated' (in the terminology of the day) rocket engine that was throttleable, and the technology was not yet mature. Other problems included the X-2's landing gear and the replacement of the planned electronic flight controls with a conventional hydromechanical system like that used in the F-86. The X-2 was a swept-wing, rocket-powered aircraft designed to fly faster than Mach 3 (three times the speed of sound). It was built for the U.S. Air Force by the Bell Aircraft Company, Buffalo, New York. The X-2 was flown to investigate the problems of aerodynamic heating as well as stability and control effectiveness at high altitudes and high speeds (in excess of Mach 3). Bell aircraft built two X-2 aircraft. These were constructed of K-monel (a copper and nickel alloy) for the fuselage and stainless steel for the swept wings and control surfaces. The aircraft had ejectable nose capsules instead of ejection seats because the development of ejection seats had not reached maturity at the time the X-2 was conceived. The X-2 ejection canopy was successfully tested using a German V-2 rocket. The X-2 used a skid-type landing gear to make room for more fuel. The airplane was air launched from a modified Boeing B-50 Superfortress Bomber. X-2 Number 1 made its first unpowered glide flight on Aug. 5, 1954, and made a total of 17 (4 glide and 13 powered) flights before it was lost Sept. 27, 1956. The pilot on Flight 17, Capt. Milburn Apt, had flown the aircraft to a record speed of Mach 3.2 (2,094 mph), thus becoming the first person to exceed Mach 3. During that last flight, inertial coupling occurred and the pilot was

  4. Building continuity in handovers with shorter residency duty hours

    PubMed Central

    2014-01-01

    As junior doctors work shorter hours in light of concerns about the harmful effects of fatigue on physician performance and health, it is imperative to consider how to ensure that patient safety is not compromised by breaks in the continuity of care. By reconceptualizing handover as a necessary bridge to continuity, and hence to safer patient care, the model of continuity-enhanced handovers has the potential to allay fears and improve patient care in an era of increasing fragmentation. “Continuity-enhanced handovers” differ from traditional handovers in several key aspects, including quality of information transferred, greater professional responsibility of senders and receivers, and a different philosophy of “coverage.” Continuity during handovers is often achieved through scheduling and staffing to maximize the provision of care by members of the primary team who have first-hand knowledge of patients. In this way, senders and receivers often engage in intra-team handovers, which can result in the accumulation of greater common ground or shared understanding of the patients they collectively care for through a series of repeated interactions. However, because maximizing team continuity is not always possible, other strategies such as cultivating high-performance teams, making handovers active learning opportunities, and monitoring performance during handovers are also important. Medical educators and clinicians should work toward adopting and testing principles of continuity-enhanced handovers in their local practices and share successes so that innovation and learning may spread easily among institutions and practices. PMID:25560954

  5. Building continuity in handovers with shorter residency duty hours.

    PubMed

    Arora, Vineet M; Reed, Darcy A; Fletcher, Kathlyn E

    2014-01-01

    As junior doctors work shorter hours in light of concerns about the harmful effects of fatigue on physician performance and health, it is imperative to consider how to ensure that patient safety is not compromised by breaks in the continuity of care. By reconceptualizing handover as a necessary bridge to continuity, and hence to safer patient care, the model of continuity-enhanced handovers has the potential to allay fears and improve patient care in an era of increasing fragmentation. "Continuity-enhanced handovers" differ from traditional handovers in several key aspects, including quality of information transferred, greater professional responsibility of senders and receivers, and a different philosophy of "coverage." Continuity during handovers is often achieved through scheduling and staffing to maximize the provision of care by members of the primary team who have first-hand knowledge of patients. In this way, senders and receivers often engage in intra-team handovers, which can result in the accumulation of greater common ground or shared understanding of the patients they collectively care for through a series of repeated interactions. However, because maximizing team continuity is not always possible, other strategies such as cultivating high-performance teams, making handovers active learning opportunities, and monitoring performance during handovers are also important. Medical educators and clinicians should work toward adopting and testing principles of continuity-enhanced handovers in their local practices and share successes so that innovation and learning may spread easily among institutions and practices. PMID:25560954

  6. Atmospheric radiation flight dose rates

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  7. F-14 in flight

    NASA Technical Reports Server (NTRS)

    1982-01-01

    NASA 991, an F-14 Navy Tomcat designated the F-14 (1X), cruises over the desert on a research flight at NASA's Dryden Flight Research Center, Edwards, California. The F-14 was used at Dryden between 1979 and 1985 in extensive high-angle-of-attack and spin-control-and-recovery tests. The NASA/Navy program, which included 212 total flights, achieved considerable improvement in the F-14 high-angle-of-attack flying qualities, improved departure and spin resistance, and contributed to substantial improvements in reducing 'wing rock,' (i.e., tilting from one side to another), at high angles of attack. NASA 991 had numerous special additions for high-angle-of-attack and spin-recovery research. These included a battery-powered auxiliary power unit, a flight test nose boom, and a special spin recovery system, consisting of forward mounted, hydraulically actuated canards and an emergency spin chute. NASA's F-14 was first flown by NASA research pilots, but was later flown by Grumman, and by Navy test pilots from Patuxent River Naval Air Station (NAS). The Navy test flights with the spin research vehicle constituted the first program that incorporated air combat maneuvering in its test flights at Dryden. The Navy brought F-14s from Point Mugu and Miramar NAS in San Diego to test the new spin control laws in combat situations. Although the new control laws proved valuable, the Navy did not incorporate them into production F-14s until the F-14D, nearly 15 years later. Among the 212 flights completed for this research project, the F-14 also tested a flush air data system, for gathering data about air speed; provided an updated aeromodel, which is currently in use on Navy F-14 training simulators; created natural laminar flow baseline data for many of NASA's later laminar flow programs; and tested low altitude, asymetric thrust.

  8. DAST in Flight

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The modified BQM-34 Firebee II drone with Aeroelastic Research Wing (ARW-1), a supercritical airfoil, during a 1980 research flight. The remotely-piloted vehicle, which was air launched from NASA's NB-52B mothership, participated in the Drones for Aerodynamic and Structural Testing (DAST) program which ran from 1977 to 1983. The DAST 1 aircraft (Serial #72-1557), pictured, crashed on 12 June 1980 after its right wing ripped off during a test flight near Cuddeback Dry Lake, California. The crash occurred on the modified drone's third free flight. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of

  9. NEXIS Reservoir Cathode 2000 Hour Life Test

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason; Schneider, Todd; Polk, Jay; Goebel, Dan; Ohlinger, Wayne; Hill, D. Norm

    2004-01-01

    The current design of the Nuclear Electric Xenon Ion System (NEXIS) employs a reservoir cathode as both the discharge and neutralizer cathode to meet the 10 yr thruster design life. The main difference between a reservoir cathode and a conventional discharge cathode is the source material (barium-containing compound) is contained within a reservoir instead of in an impregnated insert in the hollow tube. However, reservoir cathodes do not have much life test history associated with them. In order to demonstrate the feasibility of using a reservoir cathode as an integral part of the NEXIS ion thruster, a 2000 hr life test was performed. Several proof-of-concept (POC) reservoir cathodes were built early in the NEXIS program to conduct performance testing as well as life tests. One of the POC cathodes was sent to Marshall Space Flight Center (MSFC) where it was tested for 2000 hrs in a vacuum chamber. The cathode was operated at the NEXIS design point of 25 A discharge current and a xenon flow rate of 5.5 sccm during the 2000 hr test. The cathode performance parameters, including discharge current, discharge voltage, keeper current; keeper voltage, and flow rate were monitored throughout test. Also, the temperature upstream of cathode heater, the temperature downstream of the cathode heater, and the temperature of the orifice plate were monitored throughout the life of the test. The results of the 2000 hr test will be described in this paper. Included in the results will be time history of discharge current, discharge voltage, and flow rate. Also, a time history of the cathode temperature will be provided.

  10. 29 CFR 778.320 - Hours that would not be hours worked if not paid for.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... governed by the Portal-to-Portal Act (see paragraph (b) of this section), the agreement of the parties will... 4 of the Portal-to-Portal Act of 1947 (see parts 785 and 790 of this chapter), no agreement by the... not become hours worked under the Portal-to-Portal Act even if made compensable by contract,...

  11. 29 CFR 778.320 - Hours that would not be hours worked if not paid for.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... governed by the Portal-to-Portal Act (see paragraph (b) of this section), the agreement of the parties will... 4 of the Portal-to-Portal Act of 1947 (see parts 785 and 790 of this chapter), no agreement by the... not become hours worked under the Portal-to-Portal Act even if made compensable by contract,...

  12. 29 CFR 778.320 - Hours that would not be hours worked if not paid for.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... governed by the Portal-to-Portal Act (see paragraph (b) of this section), the agreement of the parties will... 4 of the Portal-to-Portal Act of 1947 (see parts 785 and 790 of this chapter), no agreement by the... not become hours worked under the Portal-to-Portal Act even if made compensable by contract,...

  13. 29 CFR 778.320 - Hours that would not be hours worked if not paid for.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... governed by the Portal-to-Portal Act (see paragraph (b) of this section), the agreement of the parties will... 4 of the Portal-to-Portal Act of 1947 (see parts 785 and 790 of this chapter), no agreement by the... not become hours worked under the Portal-to-Portal Act even if made compensable by contract,...

  14. 29 CFR 778.320 - Hours that would not be hours worked if not paid for.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... governed by the Portal-to-Portal Act (see paragraph (b) of this section), the agreement of the parties will... 4 of the Portal-to-Portal Act of 1947 (see parts 785 and 790 of this chapter), no agreement by the... not become hours worked under the Portal-to-Portal Act even if made compensable by contract,...

  15. Hours to Graduation: A National Survey of Credit Hours Required for Baccalaureate Degrees.

    ERIC Educational Resources Information Center

    Pitter, Gita Wijesinghe; And Others

    In the context of an increased emphasis on accountability in higher education and time taken to earn a baccalaureate degree, the Board of Regents of the State University System of Florida conducted a national survey of 75 public universities concerning the minimum credit hours required for the baccalaureate degree for various disciplines. The…

  16. Navigation Flight Operations for Mars Pathfinder

    NASA Technical Reports Server (NTRS)

    Vaughan, Robin M.; Kallemeyn, Pieter H., Jr.; Spencer, David A.; Braun, Robert D.

    2004-01-01

    On July 4, 1997, Mars Pathfinder became the first spacecraft to land on the surface of Mars in 21 years. Pathfinder was launched on December 4, 1996 and spent seven months en route to the red planet. This report discusses the navigation flight experience for the Mars Pathfinder interplanetary cruise. In particular, orbit determination and maneuver design and execution results are presented. Special emphasis is given to the navigation role in the days and hours leading up to and including the Entry, Descent, and Landing (EDL) phase.

  17. Adult immunization—Need of the hour

    PubMed Central

    Chakravarthi, P. Srinivas; Ganta, Avani; Kattimani, Vivekanand S.; Tiwari, Rahul V. C.

    2016-01-01

    Immunization is the process or the act of making individuals immune, which is usually done during childhood. Everyone is aware about immunization during childhood, however, very few know about adult immunization. This led us to review the adult immunization literature for the preventive strategies through various vaccination protocols. Adults do require vaccination protocols with booster doses for hepatitis B, Shingles, communicable diseases, traveler's diseases, etc. In this context, this article revises much of the available adult immunization literature and presents comprehensive guidelines. This article will increase the awareness regarding the importance of vaccination for adults to prevent a variety of conditions prevalent in our country as well as epidemics. The article comprehensively provides insights into the available vaccination and preventive strategy of human papilloma virus (HPV), hepatitis, and human immunodeficiency virus (HIV) infection in this part of the review. We strongly recommend all the health care professionals to educate their co-professionals and the public to use the benefits of adult immunization. It is the need of the hour and reduces the burden of treatment and increases productivity. PMID:27583212

  18. Adult immunization-Need of the hour.

    PubMed

    Chakravarthi, P Srinivas; Ganta, Avani; Kattimani, Vivekanand S; Tiwari, Rahul V C

    2016-01-01

    Immunization is the process or the act of making individuals immune, which is usually done during childhood. Everyone is aware about immunization during childhood, however, very few know about adult immunization. This led us to review the adult immunization literature for the preventive strategies through various vaccination protocols. Adults do require vaccination protocols with booster doses for hepatitis B, Shingles, communicable diseases, traveler's diseases, etc. In this context, this article revises much of the available adult immunization literature and presents comprehensive guidelines. This article will increase the awareness regarding the importance of vaccination for adults to prevent a variety of conditions prevalent in our country as well as epidemics. The article comprehensively provides insights into the available vaccination and preventive strategy of human papilloma virus (HPV), hepatitis, and human immunodeficiency virus (HIV) infection in this part of the review. We strongly recommend all the health care professionals to educate their co-professionals and the public to use the benefits of adult immunization. It is the need of the hour and reduces the burden of treatment and increases productivity. PMID:27583212

  19. Life of a Six-Hour Hurricane

    NASA Technical Reports Server (NTRS)

    Shelton, Kay L.; Molinari, John

    2009-01-01

    Hurricane Claudette developed from a weak vortex in 6 h as deep convection shifted from downshear into the vortex center, despite ambient vertical wind shear exceeding 10 m/s. Six hours later it weakened to a tropical storm, and 12 h after the hurricane stage a circulation center could not be found at 850 hPa by aircraft reconnaissance. At hurricane strength the vortex contained classic structure seen in intensifying hurricanes, with the exception of 7-12 C dewpoint depressions in the lower troposphere upshear of the center. These extended from the 100-km radius to immediately adjacent to the eyewall, where equivalent potential temperature gradients reached 6 K/km. The dry air was not present prior to intensification, suggesting that it was associated with vertical shear-induced subsidence upshear of the developing storm. It is argued that weakening of the vortex was driven by cooling associated with the mixing of dry air into the core, and subsequent evaporation and cold downdrafts. Evidence suggests that this mixing might have been enhanced by eyewall instabilities after the period of rapid deepening. The existence of a fragile, small, but genuinely hurricane-strength vortex at the surface for 6 h presents difficult problems for forecasters. Such a "temporary hurricane" in strongly sheared flow might require a different warning protocol than longer-lasting hurricane vortices in weaker shear.

  20. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-command flight time in the make and model of airplane; and (4) The pilot in command and the instructor... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL...

  1. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-command flight time in the make and model of airplane; and (4) The pilot in command and the instructor... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL...

  2. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight...

  3. Flight Planning in the Cloud

    NASA Technical Reports Server (NTRS)

    Flores, Sarah L.; Chapman, Bruce D.; Tung, Waye W.; Zheng, Yang

    2011-01-01

    This new interface will enable Principal Investigators (PIs), as well as UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) members to do their own flight planning and time estimation without having to request flight lines through the science coordinator. It uses an all-in-one Google Maps interface, a JPL hosted database, and PI flight requirements to design an airborne flight plan. The application will enable users to see their own flight plan being constructed interactively through a map interface, and then the flight planning software will generate all the files necessary for the flight. Afterward, the UAVSAR team can then complete the flight request, including calendaring and supplying requisite flight request files in the expected format for processing by NASA s airborne science program. Some of the main features of the interface include drawing flight lines on the map, nudging them, adding them to the current flight plan, and reordering them. The user can also search and select takeoff, landing, and intermediate airports. As the flight plan is constructed, all of its components are constantly being saved to the database, and the estimated flight times are updated. Another feature is the ability to import flight lines from previously saved flight plans. One of the main motivations was to make this Web application as simple and intuitive as possible, while also being dynamic and robust. This Web application can easily be extended to support other airborne instruments.

  4. Lessons from dragonfly flight

    NASA Astrophysics Data System (ADS)

    Wang, Z. Jane

    2005-11-01

    I will describe two lessons we learned from analyzing dragonfly flight using computers and table-top experiments. Part I: The role of drag in insect flight. Airplanes and helicopters are airborne via aerodynamic lift, not drag. However, it is not a priori clear that insects use only lift to fly. We find that dragonfly uses mainly drag to hover, which explains an anomalous factor of four in previous estimates of dragonfly lift coefficients, where drag was assumed to be negligible. Moreover, we show that the use of drag for flight is efficient at insect size. This suggests a re-consideration of the hovering efficiency of flapping flight, which is no longer described by the lift to drag ratio. Part II. Fore-hind wing interaction in dragonfly flight. A distinctive feature of dragonflies is their use of two pairs of wings which are driven by separate direct muscles. Dragonflies can actively modulate the phase delay between fore-hind wings during different maneuver. We compute the Navier-Stokes equation around two wings following the motion measured from our tethered dragonfly experiments, and find an explanation of the advantage of counter-stroking during hovering.

  5. Aerodynamics of bird flight

    NASA Astrophysics Data System (ADS)

    Dvořák, Rudolf

    2016-03-01

    Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird). Only such wings can produce both lift and thrust - two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc.), and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  6. [ROLE OF THE SYMPATHOADRENOMEDULLARY SYSTEM IN FORMATION OF PILOT'S ADAPTATION TO FLIGHT LOADS].

    PubMed

    Sukhoterin, A F; Pashchenko, P S; Plakhov, N N; Zhuravlev, A G

    2015-01-01

    Purpose of the work was to evaluate the sympathoadrenomedullary functions and associated psychophysiological reactions of pilots as a function of flight hours on highly maneuverable aircraft. Volunteers to the investigation were 78 pilots (41 pilots of maneuverable aircraft and 37 pilots of bombers and transporters). Selected methods were to enable comprehensive evaluation of the body functioning against flight loads. Our results evidence that piloting of high maneuverable aircraft but not of bombing and transporting aircrafts activates the sympathoadrenomedullary system significantly. This is particularly common to young pilots with the total flying time less than 1000 hours. Adaptive changes to flight factors were noted to develop with age and experience. PMID:26738308

  7. 14 CFR 61.57 - Recent flight experience: Pilot in command.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... represent the period beginning 1 hour after sunset and ending 1 hour before sunrise. (f) Night vision goggle operating experience. (1) A person may act as pilot in command in a night vision goggle operation with... and logs the following tasks as the sole manipulator of the controls on a flight during a night...

  8. Solids Accumulation Scouting Studies

    SciTech Connect

    Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

    2012-09-26

    The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of

  9. In-flight flow visualization using infrared imaging

    NASA Technical Reports Server (NTRS)

    Brandon, J. M.; Manuel, G. S.; Wright, R. E., Jr.; Holmes, B. J.

    1988-01-01

    A flight test investigation was conducted to evaluate infrared (IR) flow imaging techniques for boundary-layer flow visualization. The flight tests used a single-engine turboprop aircraft with a fiberglass-skinned natural laminar flow glove mounted on the left wing and an infrared imaging system to obtain flow visualization data. Data were compared to results obtained from other more conventional boundary-layer flow visualization methods and found to agree well. Test flights were conducted to determine the effect of test surface color on IR flow visualization results. In addition, flights were made during both night and daylight hours to assess the effect of solar radiation on the results. The investigation included an effort to visualize a vortex passing over the wing glove, but the tests provided only limited results.

  10. Decision Model of Flight Safety Based on Flight Event

    NASA Astrophysics Data System (ADS)

    Xiao-yu, Zhang; Jiu-sheng, Chen

    To improve the management of flight safety for airline company, the hierarchy model is established about the evaluation of flight safety by flight event. Flight safety is evaluated by improved analytical hierarchy process (AHP). The method to rectify the consistency judgment matrix is given to improve the AHP. Then the weight can be given directly without consistency judgment matrix. It ensures absolute consistent of judgment matrix. By statistic of flight event incidence history data, the flight safety analysis is processed by means of static evaluation and dynamic evaluation. The hierarchy structure model is implemented based on .NET, and the simulation result proves the validity of the method.

  11. 2001 Flight Mechanics Symposium

    NASA Technical Reports Server (NTRS)

    Lynch, John P. (Editor)

    2001-01-01

    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium held on June 19-21, 2001. Sponsored by the Guidance, Navigation and Control Center of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to attitude/orbit determination, prediction and control; attitude simulation; attitude sensor calibration; theoretical foundation of attitude computation; dynamics model improvements; autonomous navigation; constellation design and formation flying; estimation theory and computational techniques; Earth environment mission analysis and design; and, spacecraft re-entry mission design and operations.

  12. Theory of flapping flight

    NASA Technical Reports Server (NTRS)

    Lippisch, Alexander

    1925-01-01

    Before attempting to construct a human-powered aircraft, the aviator will first try to post himself theoretically on the possible method of operating the flapping wings. This report will present a graphic and mathematical method, which renders it possible to determine the power required, so far as it can be done on the basis of the wing dimensions. We will first consider the form of the flight path through the air. The simplest form is probably the curve of ordinary wave motion. After finding the flight curve, we must next determine the change in the angle of attack while passing through the different phases of the wave.

  13. Soaring flight in Guinea

    NASA Technical Reports Server (NTRS)

    Idrac, P

    1920-01-01

    The term soaring is applied here to the flight of certain large birds which maneuver in the air without moving their wings. The author explains the methods of his research and here gives approximate figures for the soaring flight of the Egyptian Vulture and the African White backed Vulture. Figures are given in tabular form for relative air speed per foot per second, air velocity per foot per second, lift/drag ratio, and selected coefficients. The author argues that although the figures given were taken from a very limited series of observations, they have nevertheless thrown some light on the use by birds of the internal energy of the air.

  14. C-47 in Flight

    NASA Technical Reports Server (NTRS)

    1963-01-01

    NASA Flight Research Center's Douglas R4D-5/C-47H (Bu. No. 17136) in flight, with its landing gear extended, in 1963. The R4D Skytrain was one of the early workhorses for NACA and NASA at Edwards Air Force Base, California, from 1952 to 1984. Designated the R4D by the U.S. Navy, the aircraft was called the C-47 by the U.S. Army and U.S. Air Force and the DC-3 by its builder, Douglas Aircraft. Nearly everyone called it the 'Gooney Bird.' In 1962, Congress consolidated the military-service designations and called all of them the C-47. After that date, the R4D at NASA's Flight Research Center (itself redesignated the Dryden Flight Research Center in 1976) was properly called a C-47. Over the 32 years it was used at Edwards, three different R4D/C-47s were used to shuttle personnel and equipment between NACA/NASA Centers and test locations throughout the country and for other purposes. One purpose was landing on 'dry' lakebeds used as alternate landing sites for the X-15, to determine whether their surfaces were hard (dry) enough for the X-15 to land on in case an emergency occurred after its launch and before it could reach Rogers Dry Lake at Edwards Air Force Base. The R4D/C-47 served a variety of needs, including serving as the first air-tow vehicle for the M2-F1 lifting body (which was built of mahogany plywood). The C-47 (as it was then called) was used for 77 tows before the M2-F1 was retired for more advanced lifting bodies that were dropped from the NASA B-52 'Mothership.' The R4D also served as a research aircraft. It was used to conduct early research on wing-tip-vortex flow visualization as well as checking out the NASA Uplink Control System. The first Gooney Bird was at the NACA High-Speed Flight Research Station (now the Dryden Flight Research Center) from 1952 to 1956 and flew at least one cross-country flight to the Langley Research Center, Hampton, Virginia. The second R4D, used from 1956 to 1979, made many flights to the Ames Research Center, Mountain

  15. ASTRID rocket flight test

    SciTech Connect

    Whitehead, J.C.; Pittenger, L.C.; Colella, N.J.

    1994-07-01

    On February 4, 1994, we successfully flight tested the ASTRID rocket from Vandenberg Air Force Base. The technology for this rocket originated in the Brilliant Pebbles program and represents a five-year development effort. This rocket demonstrated how our new pumped-propulsion technology-which reduced the total effective engine mass by more than one half and cut the tank mass to one fifth previous requirements-would perform in atmospheric flight. This demonstration paves the way for potential cost-effective uses of the new propulsion system in commercial aerospace vehicles, exploration of the planets, and defense applications.

  16. Toward Real Time Neural Net Flight Controllers

    NASA Technical Reports Server (NTRS)

    Jorgensen, C. C.; Mah, R. W.; Ross, J.; Lu, Henry, Jr. (Technical Monitor)

    1994-01-01

    NASA Ames Research Center has an ongoing program in neural network control technology targeted toward real time flight demonstrations using a modified F-15 which permits direct inner loop control of actuators, rapid switching between alternative control designs, and substitutable processors. An important part of this program is the ACTIVE flight project which is examining the feasibility of using neural networks in the design, control, and system identification of new aircraft prototypes. This paper discusses two research applications initiated with this objective in mind: utilization of neural networks for wind tunnel aircraft model identification and rapid learning algorithms for on line reconfiguration and control. The first application involves the identification of aerodynamic flight characteristics from analysis of wind tunnel test data. This identification is important in the early stages of aircraft design because complete specification of control architecture's may not be possible even though concept models at varying scales are available for aerodynamic wind tunnel testing. Testing of this type is often a long and expensive process involving measurement of aircraft lift, drag, and moment of inertia at varying angles of attack and control surface configurations. This information in turn can be used in the design of the flight control systems by applying the derived lookup tables to generate piece wise linearized controllers. Thus, reduced costs in tunnel test times and the rapid transfer of wind tunnel insights into prototype controllers becomes an important factor in more efficient generation and testing of new flight systems. NASA Ames Research Center is successfully applying modular neural networks as one way of anticipating small scale aircraft model performances prior to testing, thus reducing the number of in tunnel test hours and potentially, the number of intermediate scaled models required for estimation of surface flow effects.

  17. X-36 Taking off During First Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.

  18. X-36 Taking off during First Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.

  19. Region Three Aerial Measurement System Flight Planning Tool - 12006

    SciTech Connect

    Messick, Chuck; Pham, Minh; Smith, Ron; Isiminger, Dave

    2012-07-01

    The Region 3 Aerial Measurement System Flight Planning Tool is used by the National Nuclear Security Agency (NNSA), United States Department of Energy, Radiological Assistance Program, Region 3, to respond to emergency radiological situations. The tool automates the flight planning package process while decreasing Aerial Measuring System response times and decreases the potential for human error. Deployment of the Region Three Aerial Measurement System Flight Planning Tool has resulted in an immediate improvement to the flight planning process in that time required for mission planning has been reduced from 1.5 hours to 15 minutes. Anecdotally, the RAP team reports that the rate of usable data acquired during surveys has improved from 40-60 percent to over 90 percent since they began using the tool. Though the primary product of the flight planning tool is a pdf format document for use by the aircraft flight crew, the RAP team has begun carrying their laptop computer on the aircraft during missions. By connecting a Global Positioning System (GPS) device to the laptop and using ESRI ArcMap's GPS tool bar to overlay the aircraft position directly on the flight plan in real time, the RAP team can evaluate and correct the aircraft position as the mission is executed. (authors)

  20. Setting Spacecraft Maximum Allowable Concentrations for 1 hour or 24 hour contingency exposures to airborne chemicals

    NASA Technical Reports Server (NTRS)

    Garcia, Hector D.; Limero, Thomas F.; James, John T.

    1992-01-01

    Since the early years of the manned space program, NASA has developed and used exposure limits called Spacecraft Maximum Allowable Concentrations (SMACs) to help protect astronauts from airborne toxicants. Most of these SMACS are based on an exposure duration of 7 days, since this is the duration of a 'typical' mission. A set of 'contingency SMACs' is also being developed for scenarios involving brief (1-hour or 24- hour) exposures to relatively high levels of airborne toxicants from event-related 'contingency' releases of contaminants. The emergency nature of contingency exposures dictates the use of different criteria for setting exposure limits. The NASA JSC Toxicology Group recently began a program to document the rationales used to set new SMACs and plans to review the older, 7-day SMACs. In cooperation with the National Research Council's Committee on Toxicology, a standard procedure has been developed for researching, setting, and documenting SMAC values.

  1. Hourly wind profiler observations of the jet stream - Wind shear and pilot reports of turbulence

    NASA Technical Reports Server (NTRS)

    Syrett, William J.

    1991-01-01

    Hourly wind profiler observations of the jet stream are reported on the basis of over 400 hr of wind and temperature data taken during two prolonged jet stream passages over western and central Pennsylvania during mid-November 1986 and mid-January 1987. The mean wind speed profile with error bars for the 79 hr that the Crown radar was determined to be 'under' the jet stream is shown. A mean speed of 83 m/s for the period was found. A plot of wind shear for the hours of interest is given. Typically, the shear was at a maximum from 3 to 4 km below the level of maximum wind. Thus, an aircraft would have to fly through potentially rough air to reach the fuel savings and relative smoothness of flight at the jet stream level. A good correlation between pilot reports of turbulence and wind shear was found.

  2. Status of antiproton accumulation and cooling at Fermilab's Recycler

    SciTech Connect

    Prost, L.R.; Bhat, C.M.; Broemmelsiek, D.; Burov, A.; Carlson, K.; Crisp, J.; Derwent, P.; Eddy, N.; Gattuso, C.; Hu, M.; Pruss, S.; /Fermilab

    2009-08-01

    The Recycler ring is an 8 GeV permanent magnet storage ring where antiprotons are accumulated and prepared for Fermilab's Tevatron Collider program. With the goal of maximizing the integrated luminosity delivered to the experiments, storing, cooling and extracting antiprotons with high efficiency has been pursued. Over the past two years, while the average accumulation rate doubled, the Recycler continued to operate at a constant level of performance thanks to changes made to the Recycler Electron Cooler (energy stability and regulation, electron beam optics), RF manipulations and operating procedures. In particular, we discuss the current accumulation cycle in which {approx} 400 x 10{sup 10} antiprotons are accumulated and extracted to the Tevatron every {approx}15 hours.

  3. Habitual sleep length and patterns of recovery sleep after 24 hour and 36 hour sleep deprivation.

    PubMed

    Benoit, O; Foret, J; Bouard, G; Merle, B; Landau, J; Marc, M E

    1980-12-01

    Five long sleepers (LS) and 5 short sleepers (SS) were selected from 310 medical students. Nine regular sleepers (RS) were used as a control. The sleep was recorded during 3 reference nights, one recovery night after a 36 h sleep deprivation (R2), one morning sleep after a 24 h sleep deprivation (D1) and the night following D1(R1). According to previous data slow wave sleep (SWS) amounts were the same in the 3 groups while stage 2 and paradoxical sleep (PS) amounts increased with the sleep duration. The hourly distribution of intervening wakefulness and SWS were similar for all groups. When compared to RS or SS the hourly distribution in LS of PS was lower until the sixth hour. As a function of experimental conditions, sleep patterns of LS were the most affected. In R2 the sleep of LS more closely resembled that of RS or SS than in reference nights, while in R1 LS' sleep was the most disturbed. Morning sleep durations were very similar for all groups, but in LS intervening wakefulness was increased and PS was decreased when compared to RS and SS. Negative correlations (Spearman rank test) were found between the morning increase of body temperature after a sleep-deprived night and both TST and PS durations. In all recorded sleep periods, SWS amounts were positively correlated with prior wakefulness duration and the PS amount with TST. PMID:6160990

  4. [Roles and functions of military flight nursing: aeromedical evacuation].

    PubMed

    Lee, Chun-Lan; Hsiao, Yun-Chien; Chen, Chao-Yen

    2012-06-01

    Evacuating the injured is an important part of disaster medicine. Aircraft provide timely access to distant and remote areas and, in an emergency, can evacuate sick or injured individuals in such areas quickly and safely for critical treatment elsewhere. Aeromedical evacuation (AE) comprises the two categories of fixed-wing ambulance service and helicopter emergency medical service (HEMS). Each aims to accomplish unique objectives. In Taiwan, the Second Taiwan Strait Crisis in 1958 established the unique role and functions of medical flight nursing. Significant knowledge and experience has been accumulated in the field since that time in such areas as the effects of high altitude environments on individuals and equipment; physiological, psychological, social and spiritual factors that affect the injured and / or response team members; and emergency care delivery techniques. All have been essential elements in the development and delivery of comprehensive medical flight nurse training. Medical flight nursing belongs in a special professional category, as nurses must master knowledge on general and special-case casualty evacuation procedures, relevant instruments and equipment, triage, in-flight medical care, and aircraft loading requirements related to transporting the sick and injured. The internationalization of medical care has opened the potential to expand medical flight nursing roles and functions into disaster nursing. Although military considerations continue to frame medical flight nursing training and preparation today, the authors feel that creating strategic alliances with disaster nursing specialists and organizations overseas is a future developmental direction for Taiwan's medical flight nursing sector worth formal consideration. PMID:22661029

  5. ITER helium ash accumulation

    SciTech Connect

    Hogan, J.T.; Hillis, D.L.; Galambos, J.; Uckan, N.A. ); Dippel, K.H.; Finken, K.H. . Inst. fuer Plasmaphysik); Hulse, R.A.; Budny, R.V. . Plasma Physics Lab.)

    1990-01-01

    Many studies have shown the importance of the ratio {upsilon}{sub He}/{upsilon}{sub E} in determining the level of He ash accumulation in future reactor systems. Results of the first tokamak He removal experiments have been analysed, and a first estimate of the ratio {upsilon}{sub He}/{upsilon}{sub E} to be expected for future reactor systems has been made. The experiments were carried out for neutral beam heated plasmas in the TEXTOR tokamak, at KFA/Julich. Helium was injected both as a short puff and continuously, and subsequently extracted with the Advanced Limiter Test-II pump limiter. The rate at which the He density decays has been determined with absolutely calibrated charge exchange spectroscopy, and compared with theoretical models, using the Multiple Impurity Species Transport (MIST) code. An analysis of energy confinement has been made with PPPL TRANSP code, to distinguish beam from thermal confinement, especially for low density cases. The ALT-II pump limiter system is found to exhaust the He with maximum exhaust efficiency (8 pumps) of {approximately}8%. We find 1<{upsilon}{sub He}/{upsilon}{sub E}<3.3 for the database of cases analysed to date. Analysis with the ITER TETRA systems code shows that these values would be adequate to achieve the required He concentration with the present ITER divertor He extraction system.

  6. Autonomous Formation Flight

    NASA Technical Reports Server (NTRS)

    Schkolnik, Gerard S.; Cobleigh, Brent

    2004-01-01

    NASA's Strategic Plan for the Aerospace Technology Enterprise includes ambitious objectives focused on affordable air travel, reduced emissions, and expanded aviation-system capacity. NASA Dryden Flight Research Center, in cooperation with NASA Ames Research Center, the Boeing Company, and the University of California, Los Angeles, has embarked on an autonomous-formation-flight project that promises to make significant strides towards these goals. For millions of years, birds have taken advantage of the aerodynamic benefit of flying in formation. The traditional "V" formation flown by many species of birds (including gulls, pelicans, and geese) enables each of the trailing birds to fly in the upwash flow field that exists just outboard of the bird immediately ahead in the formation. The result for each trailing bird is a decrease in induced drag and thus a reduction in the energy needed to maintain a given speed. Hence, for migratory birds, formation flight extends the range of the system of birds over the range of birds flying solo. The Autonomous Formation Flight (AFF) Project is seeking to extend this symbiotic relationship to aircraft.

  7. F-104 in flight

    NASA Technical Reports Server (NTRS)

    1993-01-01

    F-104G N826NA during a 1993 flight over the Mojave desert, outfitted with an experiment pylon under the center fuselage and wing racks. The F-104 was originally designed by Kelly Johnson of the Lockheed Skunk Works as a day fighter. The aircraft soon proved ideal for both research and training. For instance, a modified F-104 tested the reaction control jets for the X-15. The F-104's short wings and low lift to drag ratio made it ideal to simulate the X-15 landing profile, which the F-104s often undertook before X-15 flights in order to acquaint pilots with the rocket plane's landing characteristics. This training role continued with the lifting bodies. NASA F-104s were also used for high-speed research after the X-1E was retired. Finally, the F-104s were also used as chase planes for research missions. The F-104G was a late model designed as a fighter bomber for low-level strike missions. It was built for use by the West German Air Force and other foreign governments. N826NA accomplished a wide-range of research activities, including tests of the Space Shuttle's Thermal Protection System (TPS) tiles. The aircraft made 1,415 flights before being retired. It is now on display at the Dryden Flight Research Center.

  8. Weather and Flight Testing

    NASA Technical Reports Server (NTRS)

    Wiley, Scott

    2007-01-01

    This viewgraph document reviews some of the weather hazards involved with flight testing. Some of the hazards reviewed are: turbulence, icing, thunderstorms and winds and windshear. Maps, pictures, satellite pictures of the meteorological phenomena and graphs are included. Also included are pictures of damaged aircraft.

  9. F-106 in flight

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Convair NF-106B designated #816 in level flight over cloud cover. This side view shows the tandem seating arrangement in the cockpit for two pilots and the relationship of the inlet to the cockpit area and leading edge of the wing.

  10. Overbooking Airline Flights.

    ERIC Educational Resources Information Center

    Austin, Joe Dan

    1982-01-01

    The problems involved in making reservations for airline flights is discussed in creating a mathematical model designed to maximize an airline's income. One issue not considered in the model is any public relations problem the airline may have. The model does take into account the issue of denied boarding compensation. (MP)

  11. Pegasus hypersonic flight research

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.; Meyer, Robert R., Jr.; Budd, Gerald D.

    1992-01-01

    Hypersonic aeronautics research using the Pegasus air-launched space booster is described. Two areas are discussed in the paper: previously obtained results from Pegasus flights 1 and 2, and plans for future programs. Proposed future research includes boundary-layer transition studies on the airplane-like first stage and also use of the complete Pegasus launch system to boost a research vehicle to hypersonic speeds. Pegasus flight 1 and 2 measurements were used to evaluate the results of several analytical aerodynamic design tools applied during the development of the vehicle as well as to develop hypersonic flight-test techniques. These data indicated that the aerodynamic design approach for Pegasus was adequate and showed that acceptable margins were available. Additionally, the correlations provide insight into the capabilities of these analytical tools for more complex vehicles in which design margins may be more stringent. Near-term plans to conduct hypersonic boundary-layer transition studies are discussed. These plans involve the use of a smooth metallic glove at about the mid-span of the wing. Longer-term opportunities are proposed which identify advantages of the Pegasus launch system to boost large-scale research vehicles to the real-gas hypersonic flight regime.

  12. Making sense: duty hours, work flow, and waste in graduate medical education.

    PubMed

    Bush, Roger W; Philibert, Ingrid

    2009-12-01

    Parsimony, and not industry, is the immediate cause of the increase of capital. Industry, indeed, provides the subject which parsimony accumulates. But whatever industry might acquire, if parsimony did not save and store up, the capital would never be the greater.Adam Smith, The Wealth of Nations, book 2, chapter 31In 2003, the Accreditation Council for Graduate Medical Education implemented resident duty hour limits that included a weekly limit and limits on continuous hours. Recent recommendations for added reductions in resident duty hours have produced concern about concomitant reductions in future graduates' preparedness for independent practice. The current debate about resident hours largely does not consider whether all hours residents spend in the educational and clinical-care environment contribute meaningfully either to residents' learning or to effective patient care. This may distract the community from waste in the current clinical-education model. We propose that use of "lean production" and quality improvement methods may assist teaching institutions in attaining a deeper understanding of work flow and waste. These methods can be used to assign value to patient- and learner-centered activities and outputs and to optimize the competing and synergistic aspects of all desired outcomes to produce the care the Institute of Medicine recommends: safe, effective, efficient, patient-centered, timely, and equitable. Finally, engagement of senior clinical faculty in determining the culture of the care and education system will contribute to an advanced social-learning and care network. PMID:21976000

  13. Advanced fighter technology integration (AFTI)/F-16 Automated Maneuvering Attack System final flight test results

    NASA Technical Reports Server (NTRS)

    Dowden, Donald J.; Bessette, Denis E.

    1987-01-01

    The AFTI F-16 Automated Maneuvering Attack System has undergone developmental and demonstration flight testing over a total of 347.3 flying hours in 237 sorties. The emphasis of this phase of the flight test program was on the development of automated guidance and control systems for air-to-air and air-to-ground weapons delivery, using a digital flight control system, dual avionics multiplex buses, an advanced FLIR sensor with laser ranger, integrated flight/fire-control software, advanced cockpit display and controls, and modified core Multinational Stage Improvement Program avionics.

  14. Centurion in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The lightweight structure of the Centurion remotely piloted flying wing can be seen clearly in this photo from beneath the vehicle. The photo was taken during an initial series of low-altitude, battery-powered test flights conducted in late 1998 at NASA's Dryden Flight Research Center, Edwards, California. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds

  15. Centurion in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The long, narrow wing design and lightweight structure of the Centurion remotely piloted flying wing is clearly visible in this photo, taken during an initial series of low-altitude, battery-powered flight tests with the aircraft at NASA's Dryden Flight Research Center in late 1998. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the

  16. Centurion in Banked Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Centurion remotely piloted flying wing during an initial series of low-altitude, battery-powered test flights in late 1998 at NASA's Dryden Flight Research Center, Edwards, California. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft

  17. Centurion in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Centurion remotely piloted flying wing during an initial series of low-altitude, battery-powered test flights in late 1998 at NASA's Dryden Flight Research Center, Edwards, California. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft

  18. Centurion in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The long, curved wing of the Centurion remotely piloted flying wing is clearly visible in this photo, taken during an initial series of low-altitude, battery-powered test flights in late 1998 at NASA's Dryden Flight Research Center, Edwards, California. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight

  19. 29 CFR 553.221 - Compensable hours of work.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Compensable hours of work. (a) The general rules on compensable hours of work are set forth in 29 CFR part 785 which is applicable to employees for whom the section 7(k) exemption is claimed. Special rules for...

  20. 29 CFR 785.21 - Less than 24-hour duty.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... be on duty for less than 24 hours is working even though he is permitted to sleep or engage in other... specified hours is working even though she is permitted to sleep when not busy answering calls. It makes...

  1. 29 CFR 785.21 - Less than 24-hour duty.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... be on duty for less than 24 hours is working even though he is permitted to sleep or engage in other... specified hours is working even though she is permitted to sleep when not busy answering calls. It makes...

  2. 29 CFR 553.221 - Compensable hours of work.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Compensable hours of work. (a) The general rules on compensable hours of work are set forth in 29 CFR part 785 which is applicable to employees for whom the section 7(k) exemption is claimed. Special rules for...

  3. 29 CFR 553.221 - Compensable hours of work.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Compensable hours of work. (a) The general rules on compensable hours of work are set forth in 29 CFR part 785 which is applicable to employees for whom the section 7(k) exemption is claimed. Special rules for...

  4. 29 CFR 553.221 - Compensable hours of work.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Compensable hours of work. (a) The general rules on compensable hours of work are set forth in 29 CFR part 785 which is applicable to employees for whom the section 7(k) exemption is claimed. Special rules for...

  5. 29 CFR 785.21 - Less than 24-hour duty.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... be on duty for less than 24 hours is working even though he is permitted to sleep or engage in other... specified hours is working even though she is permitted to sleep when not busy answering calls. It makes...

  6. 29 CFR 553.221 - Compensable hours of work.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Compensable hours of work. (a) The general rules on compensable hours of work are set forth in 29 CFR part 785 which is applicable to employees for whom the section 7(k) exemption is claimed. Special rules for...

  7. 29 CFR 785.21 - Less than 24-hour duty.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... be on duty for less than 24 hours is working even though he is permitted to sleep or engage in other... specified hours is working even though she is permitted to sleep when not busy answering calls. It makes...

  8. 29 CFR 785.21 - Less than 24-hour duty.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... be on duty for less than 24 hours is working even though he is permitted to sleep or engage in other... specified hours is working even though she is permitted to sleep when not busy answering calls. It makes...

  9. 75 FR 54543 - Changes to NARA Facilities' Hours of Operation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... of Operation AGENCY: National Archives and Records Administration. ACTION: Proposed rule. SUMMARY... provide NARA facilities' hours of operation. The proposed regulations will remove NARA facilities' hours of operation from the Code of Federal Regulations (CFR) and establish procedures that NARA...

  10. 5 CFR 551.521 - Fractional hours of work.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) A quarter of an hour shall be the largest fraction of an hour used for crediting irregular or... than the full fraction, odd minutes shall be rounded up or rounded down to the nearest full fraction...

  11. 5 CFR 551.521 - Fractional hours of work.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) A quarter of an hour shall be the largest fraction of an hour used for crediting irregular or... than the full fraction, odd minutes shall be rounded up or rounded down to the nearest full fraction...

  12. Transatlantic flight times and climate change

    NASA Astrophysics Data System (ADS)

    Williams, Paul

    2016-04-01

    Aircraft do not fly through a vacuum, but through an atmosphere whose meteorological characteristics are changing because of global warming. The impacts of aviation on climate change have long been recognised, but the impacts of climate change on aviation have only recently begun to emerge. These impacts include intensified turbulence (Williams and Joshi 2013) and increased take-off weight restrictions. A forthcoming study (Williams 2016) investigates the influence of climate change on flight routes and journey times. This is achieved by feeding synthetic atmospheric wind fields generated from climate model simulations into a routing algorithm of the type used operationally by flight planners. The focus is on transatlantic flights between London and New York, and how they change when the atmospheric concentration of carbon dioxide is doubled. It is found that a strengthening of the prevailing jet-stream winds causes eastbound flights to significantly shorten and westbound flights to significantly lengthen in all seasons, causing round-trip journey times to increase. Eastbound and westbound crossings in winter become approximately twice as likely to take under 5h 20m and over 7h 00m, respectively. The early stages of this effect perhaps contributed to a well-publicised British Airways flight from New York to London on 8 January 2015, which took a record time of only 5h 16m because of a strong tailwind from an unusually fast jet stream. Even assuming no future growth in aviation, extrapolation of our results to all transatlantic traffic suggests that aircraft may collectively be airborne for an extra 2,000 hours each year, burning an extra 7.2 million gallons of jet fuel at a cost of US 22 million, and emitting an extra 70 million kg of carbon dioxide. These findings provide further evidence of the two-way interaction between aviation and climate change. References Williams PD (2016) Transatlantic flight times and climate change. Environmental Research Letters, in

  13. Predicting Accumulations of Ice on Aerodynamic Surfaces

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin; Potapczuk, Mark; Addy, Gene; Wright, William

    2003-01-01

    LEWICE is a computer program that predicts the accumulation of ice on two-dimensional aerodynamic surfaces under conditions representative of the flight of an aircraft through an icing cloud. The software first calculates the airflow surrounding the body of interest, then uses the airflow to compute the trajectories of water droplets that impinge on the surface of the body. The droplet trajectories are also used to compute impingement limits and local collection efficiencies, which are used in subsequent ice-growth calculations and are also useful for designing systems to protect against icing. Next, the software predicts the shape of accumulating ice by modeling transfers of mass and energy in small control volumes. The foregoing computations are repeated over several computational time steps until the total icing exposure time is reached. Results of computations by LEWICE have been compared with an extensive database of measured ice shapes obtained from experiments, and have been shown to closely approximate those shapes under most conditions of interest to the aviation community.

  14. Eclipse - tow flight closeup and release

    NASA Technical Reports Server (NTRS)

    1998-01-01

    flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight-measured values of tow rope tension were well within predictions made by the simulation, aerodynamic characteristics and elastic properties of the tow rope were a significant component of the towing system; and the Dryden high-fidelity simulation provided a representative model of the performance of the QF-106 and C-141A airplanes in tow configuration. Total time on tow for the entire project was 5 hours, 34 minutes, and 29 seconds. All six flights were highly productive, and all project objectives were achieved. All three of the project objectives were successfully accomplished. The objectives were: demonstration of towed takeoff, climb-out, and separation of the EXD-01 from the towing aircraft; validation of simulation models of the towed aircraft systems; and development of ground and flight procedures for towing and launching a delta-winged airplane configuration safely behind a transport-type aircraft. NASA Dryden served as the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden also supplied engineering, simulation, instrumentation, range support, research pilots, and chase aircraft for the test series. Dryden personnel also performed the modifications to convert the QF-106 into the piloted EXD-01 aircraft. During the early flight phase of the project, Tracor, Inc. provided maintenance and ground support for the two QF-106 airplanes.The Air Force Flight Test Center (AFFTC), Edwards, California, provided the C-141A transport aircraft for the project, its flight and engineering support, and the aircrew. Kelly Space and Technology provided the modification design and fabrication of the hardware that was installed on the EXD-01 aircraft. Kelly Space and Technology hopes to use the data gleaned from the tow tests to develop a series of low-cost reusable

  15. Perseus A in Flight with Moon

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Perseus A, a remotely-piloted, high-altitude research aircraft, is seen here framed against the moon and sky during a research mission at the Dryden Flight Research Center, Edwards, California in August 1994. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft

  16. X-36 in Flight over Mojave Desert

    NASA Technical Reports Server (NTRS)

    1997-01-01

    a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.

  17. Time spent sitting during and outside working hours in bus drivers: A pilot study

    PubMed Central

    Varela-Mato, Veronica; Yates, Thomas; Stensel, David J.; Biddle, Stuart J.H.; Clemes, Stacy A.

    2015-01-01

    This cross-sectional pilot study objectively measured sedentary and non-sedentary time in a sample of bus drivers from the East Midlands, United Kingdom. Participants wore an activPAL3 inclinometer for 7 days and completed a daily diary. Driver's blood pressure, heart rate, waist circumference and body composition were measured objectively at the outset. The proportions of time spent sedentary and non-sedentary were calculated during waking hours on workdays and non-workdays and during working-hours and non-working-hours on workdays. 28 (85% of those enrolled into the study) provided valid objective monitoring data (89.3% male, [median ± IQR] age: 45.2 ± 12.8 years, BMI 28.1 ± 5.8 kg/m2). A greater proportion of time was spent sitting on workdays than non-workdays (75% [724 ± 112 min/day] vs. 62% [528 ± 151 min/day]; p < 0.001), and during working-hours than non-working-hours (83% [417 ± 88 min/day] vs. 68% [307 ± 64 min/day]; p < 0.001) on workdays. Drivers spent less than 3% of their overall time stepping. Bus drivers accumulate high levels of sitting time during working-hours and outside working-hours. Interventions are urgently needed in this at-risk group, which should focus on reducing sitting and increasing movement during breaks and increasing physical activity during leisure time to improve cardiovascular health. PMID:26844184

  18. Time spent sitting during and outside working hours in bus drivers: A pilot study.

    PubMed

    Varela-Mato, Veronica; Yates, Thomas; Stensel, David J; Biddle, Stuart J H; Clemes, Stacy A

    2016-06-01

    This cross-sectional pilot study objectively measured sedentary and non-sedentary time in a sample of bus drivers from the East Midlands, United Kingdom. Participants wore an activPAL3 inclinometer for 7 days and completed a daily diary. Driver's blood pressure, heart rate, waist circumference and body composition were measured objectively at the outset. The proportions of time spent sedentary and non-sedentary were calculated during waking hours on workdays and non-workdays and during working-hours and non-working-hours on workdays. 28 (85% of those enrolled into the study) provided valid objective monitoring data (89.3% male, [median ± IQR] age: 45.2 ± 12.8 years, BMI 28.1 ± 5.8 kg/m(2)). A greater proportion of time was spent sitting on workdays than non-workdays (75% [724 ± 112 min/day] vs. 62% [528 ± 151 min/day]; p < 0.001), and during working-hours than non-working-hours (83% [417 ± 88 min/day] vs. 68% [307 ± 64 min/day]; p < 0.001) on workdays. Drivers spent less than 3% of their overall time stepping. Bus drivers accumulate high levels of sitting time during working-hours and outside working-hours. Interventions are urgently needed in this at-risk group, which should focus on reducing sitting and increasing movement during breaks and increasing physical activity during leisure time to improve cardiovascular health. PMID:26844184

  19. 5 CFR 550.1304 - Overtime hourly rates of pay.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ADMINISTRATION (GENERAL) Firefighter Pay § 550.1304 Overtime hourly rates of pay. (a) For a firefighter who is... overtime hourly rate of pay equals 11/2 times the firefighter hourly rate of basic pay for that firefighter, as established under § 550.1303(a) and (b)(2). (b) For a firefighter who is exempt from the FLSA,...

  20. 29 CFR 778.324 - Effect on hourly rate employees.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Effect on hourly rate employees. 778.324 Section 778.324... Problems Reduction in Workweek Schedule with No Change in Pay § 778.324 Effect on hourly rate employees. A similar situation is presented where employees have been hired at an hourly rate of pay and...

  1. 29 CFR 778.324 - Effect on hourly rate employees.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Effect on hourly rate employees. 778.324 Section 778.324... Problems Reduction in Workweek Schedule with No Change in Pay § 778.324 Effect on hourly rate employees. A similar situation is presented where employees have been hired at an hourly rate of pay and...

  2. 46 CFR 9.9 - Two hours between broken periods.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Two hours between broken periods. 9.9 Section 9.9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC EXTRA COMPENSATION FOR OVERTIME SERVICES § 9.9 Two hours between broken periods. Where 2 hours or more...

  3. 5 CFR 550.1304 - Overtime hourly rates of pay.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ADMINISTRATION (GENERAL) Firefighter Pay § 550.1304 Overtime hourly rates of pay. (a) For a firefighter who is... overtime hourly rate of pay equals 11/2 times the firefighter hourly rate of basic pay for that firefighter, as established under § 550.1303(a) and (b)(2). (b) For a firefighter who is exempt from the FLSA,...

  4. 12 CFR 7.3000 - Bank hours and closings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Bank hours and closings. 7.3000 Section 7.3000 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Bank Operations § 7.3000 Bank hours and closings. (a) Bank hours. A national bank's board of...

  5. 12 CFR 7.3000 - Bank hours and closings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Bank hours and closings. 7.3000 Section 7.3000 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Bank Operations § 7.3000 Bank hours and closings. (a) Bank hours. A national bank's board of...

  6. 12 CFR 7.3000 - Bank hours and closings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Bank hours and closings. 7.3000 Section 7.3000 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Bank Operations § 7.3000 Bank hours and closings. (a) Bank hours. A national bank's board of...

  7. 12 CFR 7.3000 - Bank hours and closings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 1 2012-01-01 2012-01-01 false Bank hours and closings. 7.3000 Section 7.3000 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Bank Operations § 7.3000 Bank hours and closings. (a) Bank hours. A national bank's board of...

  8. 12 CFR 7.3000 - Bank hours and closings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Bank hours and closings. 7.3000 Section 7.3000 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Bank Operations § 7.3000 Bank hours and closings. (a) Bank hours. A national bank's board of...

  9. 5 CFR 551.521 - Fractional hours of work.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Fractional hours of work. 551.521 Section... ADMINISTRATION UNDER THE FAIR LABOR STANDARDS ACT Overtime Pay Provisions Fractional Hours of Work § 551.521 Fractional hours of work. (a) An employee shall be compensated for every minute of regular overtime work....

  10. 5 CFR 551.521 - Fractional hours of work.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Fractional hours of work. 551.521 Section... ADMINISTRATION UNDER THE FAIR LABOR STANDARDS ACT Overtime Pay Provisions Fractional Hours of Work § 551.521 Fractional hours of work. (a) An employee shall be compensated for every minute of regular overtime work....

  11. 5 CFR 610.408 - Use of credit hours.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Use of credit hours. 610.408 Section 610.408 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS HOURS OF DUTY Flexible and Compressed Work Schedules § 610.408 Use of credit hours. Members of the Senior...

  12. 5 CFR 610.408 - Use of credit hours.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Use of credit hours. 610.408 Section 610.408 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS HOURS OF DUTY Flexible and Compressed Work Schedules § 610.408 Use of credit hours. Members of the Senior...

  13. Resident Duty Hours: Enhancing Sleep, Supervision, and Safety

    ERIC Educational Resources Information Center

    Ulmer, Cheryl, Ed.; Wolman, Dianne Miller, Ed.; Johns, Michael M. E., Ed.

    2009-01-01

    Medical residents in hospitals are often required to be on duty for long hours. In 2003 the organization overseeing graduate medical education adopted common program requirements to restrict resident workweeks, including limits to an average of 80 hours over 4 weeks and the longest consecutive period of work to 30 hours in order to protect…

  14. Effect of NaCl on the accumulation of glycerol by three Aspergillus species.

    PubMed

    Zidan, M A; Abdel-Mallek, A Y

    1987-01-01

    The accumulation of glycerol was investigated in three Aspergillus species, A. niger, A. ochraceus and A. tamarii after being grown in media containing different NaCl concentrations. Intra-extracellular as well as total glycerol were markedly accumulated by the three organisms in response to increased salinity. However, at salinity levels of 10-14% NaCl, extracellular glycerol was somewhat lowered. In addition, it was found that the maximum accumulation of glycerol in A. niger and A. tamarii was reached within the first 10 hours after salinization. However, after desalinization, the extracellular glycerol was continuously increased within the first 6 hours at the expense of intracellular glycerol. PMID:3449615

  15. Boeing flight deck design philosophy

    NASA Technical Reports Server (NTRS)

    Stoll, Harty

    1990-01-01

    Information relative to Boeing flight deck design philosophy is given in viewgraph form. Flight deck design rules, design considerations, functions allocated to the crew, redundancy and automation concerns, and examples of accident data that were reviewed are listed.

  16. Accomplishments of the Advanced Reusable Technologies (ART) RBCC Project at NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Nelson, Karl W.; McArthur, J. Craig (Technical Monitor)

    2001-01-01

    and parametrics were performed at NASA / Glenn Research Center (GRC) and NASA / Langley Research Center (LaRC) for both the Aerojet and Rocketdyne concepts. LaRC conducted an Air-Breathing Launch Vehicle (ABLV) study for several vehicle concepts with RBCC propulsion systems. LaRC is also performing a CFD analysis of the ramjet mode for both flowpaths based on GASL test conditions. A study was performed in 1999 to investigate the feasibility of performing an RBCC flight test on the NASA / Dryden Flight Research Center (DFRC) SR-71 aircraft. Academia involvement in the ART project includes parametric RBCC flowpath testing by Pennsylvania State University (PSU). In addition to thrust and wall static pressure measurements, PSU is also using laser diagnostics to analyze the flowfield in the test rig. MSFC is performing CFD analysis of the PSU rig at select test conditions for model baseline and validation. Also, Georgia Institute of Technology (GT) conducted a vision vehicle study using the Aerojet RBCC concept. Overall, the ART project has been very successful in advancing RBCC technology. Along the way, several major milestones were achieved and "firsts" accomplished. For example, under the ART project, the first dynamic trajectory simulation testing was performed and the Rocketdyne engine A5 logged over one hour of accumulated test time. The next logical step is to develop and demonstrate a flight-weight RBCC engine system.

  17. DC-8 Airborne Laboratory in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA's DC-8 Airborne Science platform shown against a background of a dark blue sky on February 20, 1998. The aircraft is shown from the right rear, slightly above its plane, with the right wing in the foreground and the left wing and horizontal tail in the background. The former airliner is a 'dash-72' model and has a range of 5,400 miles. The craft can stay airborne for 12 hours and has an operational speed range between 300 and 500 knots. The research flights are made at between 500 and 41,000 feet. The aircraft can carry up to 30,000 lbs of research/science payload equipment installed in 15 mission-definable spaces. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  18. Economy of flight at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1976-01-01

    Prandtl's theory is used to determine the airflow over bodies and wings adapted to supersonic flight. By making use of these results, and by incorporating in them an allowance for the probable skin friction, some estimates of expected lift-drag ratios are made for various flight speeds with the best configuration. At each speed a slender body and wings having the best angle of sweepback are considered. For the range of supersonic speeds shown an airplane of normal density and loading would be required to operate at an altitude of the order of 60,000 feet. The limiting value of 1-1/2 times the speed of sound corresponds to a flight speed of 1000 miles per hour. At this speed about 1.5 miles per gallon of fuel are expected. It is interesting to note that this value corresponds to a value of more than 15 miles per gallon when the weight is reduced to correspond to that of an ordinary automobile.

  19. YF-12 in flight

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Flight Research Center's involvement with the YF-12A, an interceptor version of the Lockheed A-12, began in 1967. Ames Research Center was interested in using wind tunnel data that had been generated at Ames under extreme secrecy. Also, the Office of Advanced Research and Technology (OART) saw the YF-12A as a means to advance high-speed technology, which would help in designing the Supersonic Transport (SST). The Air Force needed technical assistance to get the latest reconnaissance version of the A-12 family, the SR-71A, fully operational. Eventually, the Air Force offered NASA the use of two YF-12A aircraft, 60-6935 and 60-6936. A joint NASA-USAF program was mapped out in June 1969. NASA and Air Force technicians spent three months readying 935 for flight. On 11 December 1969, the flight program got underway with a successful maiden flight piloted by Col. Joe Rogers and Maj. Gary Heidelbaugh of the SR-71/F-12 Test Force. During the program, the Air Force concentrated on military applications, and NASA pursued a loads research program. NASA studies included inflight heating, skin-friction cooling, 'coldwall' research (a heat transfer experiment), flowfield studies, shaker vane research, and tests in support of the Space Shuttle landing program. Ultimately, 935 became the workhorse of the program, with 146 flights between 11 December 1969 and 7 November 1979. The second YF-12A, 936, made 62 flights. It was lost in a non-fatal crash on 24 June 1971. It was replaced by the so-called YF-12C (SR-71A 61-7951, modified with YF-12A inlets and engines and a bogus tail number 06937). The Lockheed A-12 family, known as the Blackbirds, were designed by Clarence 'Kelly' Johnson. They were constructed mostly of titanium to withstand aerodynamic heating. Fueled by JP-7, the Blackbirds were capable of cruising at Mach 3.2 and attaining altitudes in excess of 80,000 feet. The first version, a CIA reconnaissance aircraft that first flew in April 1962 was called the A-12. An

  20. Cardiovascular physiology in space flight

    NASA Technical Reports Server (NTRS)

    Charles, John B.; Bungo, Michael W.

    1991-01-01

    The effects of space flight on the cardiovascular system have been studied since the first manned flights. In several instances, the results from these investigations have directly contradicted the predictions based on established models. Results suggest associations between space flight's effects on other organ systems and those on the cardiovascular system. Such findings provide new insights into normal human physiology. They must also be considered when planning for the safety and efficiency of space flight crewmembers.

  1. Bisphosphonate ISS Flight Experiment

    NASA Technical Reports Server (NTRS)

    LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeffrey; Shapiro, Jay; Lang, Thomas; Shackleford, Linda; Smith, Scott M.; Evans, Harlan; Spector, Elizabeth; Ploutz-Snyder, Robert; Sibonga, Jean; Keyak, Joyce; Nakamura, Toshitaka; Kohri, Kenjiro; Ohshima, Hiroshi; Moralez, Gilbert

    2014-01-01

    The bisphosphonate study is a collaborative effort between the NASA and JAXA space agencies to investigate the potential for antiresorptive drugs to mitigate bone changes associated with long-duration spaceflight. Elevated bone resorption is a hallmark of human spaceflight and bed rest (common zero-G analog). We tested whether an antiresorptive drug in combination with in-flight exercise would ameliorate bone loss and hypercalcuria during longduration spaceflight. Measurements include DXA, QCT, pQCT, and urine and blood biomarkers. We have completed analysis of 7 crewmembers treated with alendronate during flight and the immediate postflight (R+<2 week) data collection in 5 of 10 controls without treatment. Both groups used the advanced resistive exercise device (ARED) during their missions. We previously reported the pre/postflight results of crew taking alendronate during flight (Osteoporosis Int. 24:2105-2114, 2013). The purpose of this report is to present the 12-month follow-up data in the treated astronauts and to compare these results with preliminary data from untreated crewmembers exercising with ARED (ARED control) or without ARED (Pre-ARED control). Results: the table presents DXA and QCT BMD expressed as percentage change from preflight in the control astronauts (18 Pre-ARED and the current 5 ARED-1-year data not yet available) and the 7 treated subjects. As shown previously the combination of exercise plus antiresorptive is effective in preventing bone loss during flight. Bone measures for treated subjects, 1 year after return from space remain at or near baseline values. Except in one region, the treated group maintained or gained bone 1 year after flight. Biomarker data are not currently available for either control group and therefore not presented. However, data from other studies with or without ARED show elevated bone resorption and urinary Ca excretion while bisphosphonate treated subjects show decreases during flight. Comparing the two control

  2. The impact of overtime and long work hours on occupational injuries and illnesses: new evidence from the United States

    PubMed Central

    Dembe, A; Erickson, J; Delbos, R; Banks, S

    2005-01-01

    Aims: To analyse the impact of overtime and extended working hours on the risk of occupational injuries and illnesses among a nationally representative sample of working adults from the United States. Methods: Responses from 10 793 Americans participating in the National Longitudinal Survey of Youth (NLSY) were used to evaluate workers' job histories, work schedules, and occurrence of occupational injury and illness between 1987 and 2000. A total of 110 236 job records were analysed, encompassing 89 729 person-years of accumulated working time. Aggregated incidence rates in each of five exposure categories were calculated for each NLSY survey period. Multivariate analytical techniques were used to estimate the relative risk of long working hours per day, extended hours per week, long commute times, and overtime schedules on reporting a work related injury or illness, after adjusting for age, gender, occupation, industry, and region. Results: After adjusting for those factors, working in jobs with overtime schedules was associated with a 61% higher injury hazard rate compared to jobs without overtime. Working at least 12 hours per day was associated with a 37% increased hazard rate and working at least 60 hours per week was associated with a 23% increased hazard rate. A strong dose-response effect was observed, with the injury rate (per 100 accumulated worker-years in a particular schedule) increasing in correspondence to the number of hours per day (or per week) in the workers' customary schedule. Conclusions: Results suggest that job schedules with long working hours are not more risky merely because they are concentrated in inherently hazardous industries or occupations, or because people working long hours spend more total time "at risk" for a work injury. Strategies to prevent work injuries should consider changes in scheduling practices, job redesign, and health protection programmes for people working in jobs involving overtime and extended hours. PMID

  3. UAVSAR Flight-Planning System

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A system of software partly automates planning of a flight of the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) -- a polarimetric synthetic-aperture radar system aboard an unpiloted or minimally piloted airplane. The software constructs a flight plan that specifies not only the intended flight path but also the setup of the radar system at each point along the path.

  4. NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2009-01-01

    This DVD has several short videos showing some of the work that Dryden is involved in with experimental aircraft. These are: shots showing the Active AeroElastic Wing (AAW) loads calibration tests, AAW roll maneuvers, AAW flight control surface inputs, Helios flight, and takeoff, and Pathfinder takeoff, flight and landing.

  5. Flight crew health stabilization program

    NASA Technical Reports Server (NTRS)

    Wooley, B. C.; Mccollum, G. W.

    1975-01-01

    The flight crew health stabilization program was developed to minimize or eliminate the possibility of adverse alterations in the health of flight crews during immediate preflight, flight, and postflight periods. The elements of the program, which include clinical medicine, immunology, exposure prevention, and epidemiological surveillance, are discussed briefly. No crewmember illness was reported for the missions for which the program was in effect.

  6. 2,445 Hours of Code: What I Learned from Facilitating Hour of Code Events in High School Libraries

    ERIC Educational Resources Information Center

    Colby, Jennifer

    2015-01-01

    This article describes a school librarian's experience with initiating an Hour of Code event for her school's student body. Hadi Partovi of Code.org conceived the Hour of Code "to get ten million students to try one hour of computer science" (Partovi, 2013a), which is implemented during Computer Science Education Week with a goal of…

  7. Oxycodone accumulation in a hemodialysis patient.

    PubMed

    Foral, Pamela A; Ineck, Joseph R; Nystrom, Kelly K

    2007-02-01

    Oxycodone and oxycodone-containing analgesics are often used for the relief of pain. In the presence of renal dysfunction, the half-life of oxycodone and metabolites can be prolonged. We describe the case of a 41-year-old chronic hemodialysis patient who received multiple doses of oxycodone/acetaminophen resulting in accumulation of the medication and consequent lethargy, hypotension and respiratory depression. These adverse effects were reversed with multiple bolus doses of naloxone, followed by a continuous infusion administered for 45 hours. Utilizing the Naranjo probability scale, the patient had a "probable" adverse drug reaction to the oxycodone. Oxycodone should be used with caution in patients with chronic renal failure. PMID:17330696

  8. Optimal symmetric flight studies

    NASA Technical Reports Server (NTRS)

    Weston, A. R.; Menon, P. K. A.; Bilimoria, K. D.; Cliff, E. M.; Kelley, H. J.

    1985-01-01

    Several topics in optimal symmetric flight of airbreathing vehicles are examined. In one study, an approximation scheme designed for onboard real-time energy management of climb-dash is developed and calculations for a high-performance aircraft presented. In another, a vehicle model intermediate in complexity between energy and point-mass models is explored and some quirks in optimal flight characteristics peculiar to the model uncovered. In yet another study, energy-modelling procedures are re-examined with a view to stretching the range of validity of zeroth-order approximation by special choice of state variables. In a final study, time-fuel tradeoffs in cruise-dash are examined for the consequences of nonconvexities appearing in the classical steady cruise-dash model. Two appendices provide retrospective looks at two early publications on energy modelling and related optimal control theory.

  9. Engineering flight evaluation report

    NASA Technical Reports Server (NTRS)

    Morrison, J. A.

    1973-01-01

    The primary objective was to determine if the two-segment profile equipment, and operational procedures as defined by the B-727 Simulation Evaluation are operationally sound under all flight conditions expected to be encountered in line service. The evaluation was divided into the following areas: (1) to verify that the two-segment system operates as it was designed; (2) to conduct sufficient tests to secure a supplemental type certificate for line operation of the system; (3) to evaluate the normal operation of the equipment and procedures; (4) to evaluate the need for an autothrottle system for two-segment approaches; (5) to investigate abnormal operation of the equipment and procedures, including abused approaches and malfunctions of airborne and ground components; (6) to determine the accuracy and ease of flying the two-segment approach; (7) to determine the improvement in ground noise levels; and (8) to develop a guest pilot flight test syllabus.

  10. Flight loads and control

    NASA Technical Reports Server (NTRS)

    Mowery, D. K.; Winder, S. W.

    1972-01-01

    The prediction of flight loads and their potential reduction, using various control logics for the space shuttle vehicles, is very complex. Some factors, not found on previous launch vehicles, that increase the complexity are large lifting surfaces, unsymmetrical structure, unsymmetrical aerodynamics, trajectory control system coupling, and large aeroelastic effects. Discussed are these load producing factors and load reducing techniques. Identification of potential technology areas is included.

  11. Flight Crew Health Maintenance

    NASA Technical Reports Server (NTRS)

    Gullett, C. C.

    1970-01-01

    The health maintenance program for commercial flight crew personnel includes diet, weight control, and exercise to prevent heart disease development and disability grounding. The very high correlation between hypertension and overweight in cardiovascular diseases significantly influences the prognosis for a coronary prone individual and results in a high rejection rate of active military pilots applying for civilian jobs. In addition to physical fitness the major items stressed in pilot selection are: emotional maturity, glucose tolerance, and family health history.

  12. Infrared Thermography Flight Experimentation

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Carter, Matthew L.; Kirsch, Michael

    2003-01-01

    Analysis was done on IR data collected by DFRC on May 8, 2002. This includes the generation of a movie to initially examine the IR flight data. The production of the movie was challenged by the volume of data that needed to be processed, namely 40,500 images with each image (256 x 252) containing over 264 million points (pixel depth 4096). It was also observed during the initial analysis that the RTD surface coating has a different emissivity than the surroundings. This fact added unexpected complexity in obtaining a correlation between RTD data and IR data. A scheme was devised to generate IR data near the RTD location which is not affected by the surface coating This scheme is valid as long as the surface temperature as measured does not change too much over a few pixel distances from the RTD location. After obtaining IR data near the RTD location, it is possible to make a direct comparison with the temperature as measured during the flight after adjusting for the camera s auto scaling. The IR data seems to correlate well to the flight temperature data at three of the four RID locations. The maximum count intensity occurs closely to the maximum temperature as measured during flight. At one location (RTD #3), there is poor correlation and this must be investigated before any further progress is possible. However, with successful comparisons at three locations, it seems there is great potential to be able to find a calibration curve for the data. Moreover, as such it will be possible to measure temperature directly from the IR data in the near future.

  13. Flight Software Math Library

    NASA Technical Reports Server (NTRS)

    McComas, David

    2013-01-01

    The flight software (FSW) math library is a collection of reusable math components that provides typical math utilities required by spacecraft flight software. These utilities are intended to increase flight software quality reusability and maintainability by providing a set of consistent, well-documented, and tested math utilities. This library only has dependencies on ANSI C, so it is easily ported. Prior to this library, each mission typically created its own math utilities using ideas/code from previous missions. Part of the reason for this is that math libraries can be written with different strategies in areas like error handling, parameters orders, naming conventions, etc. Changing the utilities for each mission introduces risks and costs. The obvious risks and costs are that the utilities must be coded and revalidated. The hidden risks and costs arise in miscommunication between engineers. These utilities must be understood by both the flight software engineers and other subsystem engineers (primarily guidance navigation and control). The FSW math library is part of a larger goal to produce a library of reusable Guidance Navigation and Control (GN&C) FSW components. A GN&C FSW library cannot be created unless a standardized math basis is created. This library solves the standardization problem by defining a common feature set and establishing policies for the library s design. This allows the libraries to be maintained with the same strategy used in its initial development, which supports a library of reusable GN&C FSW components. The FSW math library is written for an embedded software environment in C. This places restrictions on the language features that can be used by the library. Another advantage of the FSW math library is that it can be used in the FSW as well as other environments like the GN&C analyst s simulators. This helps communication between the teams because they can use the same utilities with the same feature set and syntax.

  14. Flight Day 2 Highlights

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The STS-107 second flight day begins with a shot of the Spacehab Research Double Module. Live presentations of experiments underway inside of the Spacehab Module are presented. Six experiments are shown. As part of the Space Technology and Research Student Payload, students from Australia, China, Israel, Japan, New York, and Liechtenstein are studying the effect that microgravity has on ants, spiders, silkworms, fish, bees, granular materials, and crystals. Mission Specialist Kalpana Chawla is seen working with the zeolite crystal growth experiment.

  15. Neural Flight Control System

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen

    2003-01-01

    The Neural Flight Control System (NFCS) was developed to address the need for control systems that can be produced and tested at lower cost, easily adapted to prototype vehicles and for flight systems that can accommodate damaged control surfaces or changes to aircraft stability and control characteristics resulting from failures or accidents. NFCS utilizes on a neural network-based flight control algorithm which automatically compensates for a broad spectrum of unanticipated damage or failures of an aircraft in flight. Pilot stick and rudder pedal inputs are fed into a reference model which produces pitch, roll and yaw rate commands. The reference model frequencies and gains can be set to provide handling quality characteristics suitable for the aircraft of interest. The rate commands are used in conjunction with estimates of the aircraft s stability and control (S&C) derivatives by a simplified Dynamic Inverse controller to produce virtual elevator, aileron and rudder commands. These virtual surface deflection commands are optimally distributed across the aircraft s available control surfaces using linear programming theory. Sensor data is compared with the reference model rate commands to produce an error signal. A Proportional/Integral (PI) error controller "winds up" on the error signal and adds an augmented command to the reference model output with the effect of zeroing the error signal. In order to provide more consistent handling qualities for the pilot, neural networks learn the behavior of the error controller and add in the augmented command before the integrator winds up. In the case of damage sufficient to affect the handling qualities of the aircraft, an Adaptive Critic is utilized to reduce the reference model frequencies and gains to stay within a flyable envelope of the aircraft.

  16. MARS Flight Engineering Status

    SciTech Connect

    Fast, James E.; Dorow, Kevin E.; Morris, Scott J.; Thompson, Robert C.; Willett, Jesse A.

    2010-04-06

    The Multi-sensor Airborne Radiation Survey Flight Engineering project (MARS FE) has designed a high purity germanium (HPGe) crystal array for conducting a wide range of field measurements. In addition to the HPGe detector system, a platform-specific shock and vibration isolation system and environmental housing have been designed to support demonstration activities in a maritime environment on an Unmanned Surface Vehicle (USV). This report describes the status of the equipment as of the end of FY09.

  17. ATS-6 - Flight accelerometers

    NASA Technical Reports Server (NTRS)

    Mattson, R.; Honeycutt, G.; Lindner, F.

    1975-01-01

    The Applications Technology Satellite-6 (ATS-6) flight accelerometers were designed to provide data for verifying the basic spacecraft vibration modes during launch, to update the analytical model of the ATA structure, and to provide a capability for detection and diagnosis of inflight and anomalies. The experiment showed accelerations less than 2.5 g during liftoff and 1.1 g or less during staging with frequencies below 80 Hz. Measured values were generally within 1 g of predicted.

  18. Noise Reduction by Signal Accumulation

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2006-01-01

    The aim of this paper is to show how the noise reduction by signal accumulation can be accomplished with a data acquisition system. This topic can be used for student projects. In many cases, the noise reduction is an unavoidable part of experimentation. Several techniques are known for this purpose, and among them the signal accumulation is the…

  19. Flight Project Data Book

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Office of Space Science and Applications (OSSA) is responsible for the overall planning, directing, executing, and evaluating that part of the overall NASA program that has the goal of using the unique characteristics of the space environment to conduct a scientific study of the universe, to understand how the Earth works as an integrated system, to solve practical problems on Earth, and to provide the scientific and technological research foundation for expanding human presence beyond Earth orbit into the solar system. OSSA guides its program toward leadership through its pursuit of excellence across the full spectrum of disciplines. OSSA pursues these goals through an integrated program of ground-based laboratory research and experimentation, suborbital flight of instruments on airplanes, balloons, and sounding rockets; flight of instruments and the conduct of research on the Shuttle/Spacelab system and on Space Station Freedom; and development and flight of automated Earth-orbiting and interplanetary spacecraft. The OSSA program is conducted with the participation and support of other Government agencies and facilities, universities throughout the United States, the aerospace contractor community, and all of NASA's nine Centers. In addition, OSSA operates with substantial international participation in many aspects of our Space Science and Applications Program. OSSA's programs currently in operation, those approved for development, and those planned for future missions are described.

  20. The IBEX Flight Segment

    NASA Astrophysics Data System (ADS)

    Scherrer, J.; Carrico, J.; Crock, J.; Cross, W.; Delossantos, A.; Dunn, A.; Dunn, G.; Epperly, M.; Fields, B.; Fowler, E.; Gaio, T.; Gerhardus, J.; Grossman, W.; Hanley, J.; Hautamaki, B.; Hawes, D.; Holemans, W.; Kinaman, S.; Kirn, S.; Loeffler, C.; McComas, D. J.; Osovets, A.; Perry, T.; Peterson, M.; Phillips, M.; Pope, S.; Rahal, G.; Tapley, M.; Tyler, R.; Ungar, B.; Walter, E.; Wesley, S.; Wiegand, T.

    2009-08-01

    IBEX provides the observations needed for detailed modeling and in-depth understanding of the interstellar interaction (McComas et al. in Physics of the Outer Heliosphere, Third Annual IGPP Conference, pp. 162-181, 2004; Space Sci. Rev., 2009a, this issue). From mission design to launch and acquisition, this goal drove all flight system development. This paper describes the management, design, testing and integration of IBEX’s flight system, which successfully launched from Kwajalein Atoll on October 19, 2008. The payload is supported by a simple, Sun-pointing, spin-stabilized spacecraft with no deployables. The spacecraft bus consists of the following subsystems: attitude control, command and data handling, electrical power, hydrazine propulsion, RF, thermal, and structures. A novel 3-step orbit approach was employed to put IBEX in its highly elliptical, 8-day final orbit using a Solid Rocket Motor, which provided large delta-V after IBEX separated from the Pegasus launch vehicle; an adapter cone, which interfaced between the SRM and Pegasus; Motorized Lightbands, which performed separation from the Pegasus, ejection of the adapter cone, and separation of the spent SRM from the spacecraft; a ShockRing isolation system to lower expected launch loads; and the onboard Hydrazine Propulsion System. After orbit raising, IBEX transitioned from commissioning to nominal operations and science acquisition. At every phase of development, the Systems Engineering and Mission Assurance teams supervised the design, testing and integration of all IBEX flight elements.

  1. Radioastron flight operations

    NASA Technical Reports Server (NTRS)

    Altunin, V. I.; Sukhanov, K. G.; Altunin, K. R.

    1993-01-01

    Radioastron is a space-based very-long-baseline interferometry (VLBI) mission to be operational in the mid-90's. The spacecraft and space radio telescope (SRT) will be designed, manufactured, and launched by the Russians. The United States is constructing a DSN subnet to be used in conjunction with a Russian subnet for Radioastron SRT science data acquisition, phase link, and spacecraft and science payload health monitoring. Command and control will be performed from a Russian tracking facility. In addition to the flight element, the network of ground radio telescopes which will be performing co-observations with the space telescope are essential to the mission. Observatories in 39 locations around the world are expected to participate in the mission. Some aspects of the mission that have helped shaped the flight operations concept are: separate radio channels will be provided for spacecraft operations and for phase link and science data acquisition; 80-90 percent of the spacecraft operational time will be spent in an autonomous mode; and, mission scheduling must take into account not only spacecraft and science payload constraints, but tracking station and ground observatory availability as well. This paper will describe the flight operations system design for translating the Radioastron science program into spacecraft executed events. Planning for in-orbit checkout and contingency response will also be discussed.

  2. Space flight visual simulation.

    PubMed

    Xu, L

    1985-01-01

    In this paper, based on the scenes of stars seen by astronauts in their orbital flights, we have studied the mathematical model which must be constructed for CGI system to realize the space flight visual simulation. Considering such factors as the revolution and rotation of the Earth, exact date, time and site of orbital injection of the spacecraft, as well as its orbital flight and attitude motion, etc., we first defined all the instantaneous lines of sight and visual fields of astronauts in space. Then, through a series of coordinate transforms, the pictures of the scenes of stars changing with time-space were photographed one by one mathematically. In the procedure, we have designed a method of three-times "mathematical cutting." Finally, we obtained each instantaneous picture of the scenes of stars observed by astronauts through the window of the cockpit. Also, the dynamic conditions shaded by the Earth in the varying pictures of scenes of stars could be displayed. PMID:11542842

  3. Solar array flight experiment

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Emerging satellite designs require increasing amounts of electrical power to operate spacecraft instruments and to provide environments suitable for human habitation. In the past, electrical power was generated by covering rigid honeycomb panels with solar cells. This technology results in unacceptable weight and volume penalties when large amounts of power are required. To fill the need for large-area, lightweight solar arrays, a fabrication technique in which solar cells are attached to a copper printed circuit laminated to a plastic sheet was developed. The result is a flexible solar array with one-tenth the stowed volume and one-third the weight of comparably sized rigid arrays. An automated welding process developed to attack the cells to the printed circuit guarantees repeatable welds that are more tolerant of severe environments than conventional soldered connections. To demonstrate the flight readiness of this technology, the Solar Array Flight Experiment (SAFE) was developed and flown on the space shuttle Discovery in September 1984. The tests showed the modes and frequencies of the array to be very close to preflight predictions. Structural damping, however, was higher than anticipated. Electrical performance of the active solar panel was also tested. The flight performance and postflight data evaluation are described.

  4. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Wall, J. E., Jr.; Rang, E. R.; Lee, H. P.; Schulte, R. W.; Ng, W. K.

    1982-01-01

    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts.

  5. Flight experience with windshear detection

    NASA Technical Reports Server (NTRS)

    Zweifel, Terry

    1990-01-01

    Windshear alerts resulting from the Honeywell Windshear Detection and Guidance System are presented based on data from approximately 248,000 revenue flights at Piedmont Airlines. The data indicate that the detection system provides a significant benefit to the flight crew of the aircraft. In addition, nuisance and false alerts were found to occur at an acceptably low rate to maintain flight crew confidence in the system. Data from a digital flight recorder is also presented which shows the maximum and minimum windshear magnitudes recorded for a representative number of flights in February, 1987. The effect of the boundary layer of a steady state wind is also discussed.

  6. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... throwover control wheel that controls the elevator and ailerons, in place of fixed, dual controls, when—...

  7. Understanding and Counteracting Fatigue in Flight Crews

    NASA Technical Reports Server (NTRS)

    Mallis, Melissa; Neri, David; Rosekind, Mark; Gander, Philippa; Caldwell, John; Graeber, Curtis

    2007-01-01

    The materials included in the collection of documents describe the research of the NASA Ames Fatigue Countermeasures Group (FCG), which examines the extent to which fatigue, sleep loss, and circadian disruption affect flight-crew performance. The group was formed in 1980 in response to a Congressional request to examine a possible safety problem of uncertain magnitude due to transmeridian flying and a potential problem due to fatigue in association with various factors found in air-transport operations and was originally called the Fatigue/Jet Lag Program. The goals of the FCG are: (1) the development and evaluation of strategies for mitigating the effects of sleepiness and circadian disruption on pilot performance levels; (2) the identification and evaluation of objective approaches for the prediction of alertness changes in flight crews; and (3) the transfer and application of research results to the operational field via classes, workshops, and safety briefings. Some of the countermeasure approaches that have been identified to be scientifically valid and operationally relevant are brief naps (less than 40 min) in the cockpit seat and 7-min activity breaks, which include postural changes and ambulation. Although a video-based alertness monitor based on slow eyelid closure shows promise in other operational environments, research by the FCG has demonstrated that in its current form at the time of this reporting, it is not feasible to implement it in the cockpit. Efforts also focus on documenting the impact of untreated fatigue on various types of flight operations. For example, the FCG recently completed a major investigation into the effects of ultra-long-range flights (20 continuous hours in duration) on the alertness and performance of pilots in order to establish a baseline set of parameters against which the effectiveness of new ultra-long-range fatigue remedies can be judged.

  8. 28,000 Hour Xenon Hollow Cathode LifeTest Results

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1997-01-01

    The International Space Station Plasma Contactor System requires a hollow cathode assembly (HCA) with a lifetime of at least 18,000 hours. Critical components of the HCA include the hollow cathode and electron emitter. A series of hollow cathode wear tests was performed which included a life test operated at the maximum current of the HCA. This test sought to verify the hollow cathode design and contamination control protocols. The life test accumulated 27,800 hours of operation before failing to ignite. The hollow cathode exhibited relatively small changes in operating parameters over the course of the test. This life test is the longest duration test of a high current xenon hollow cathode reported to date.

  9. Support activities to maintain SUMS flight readiness, volume 3. Attachment B: Flight STS-35 report, section A

    NASA Technical Reports Server (NTRS)

    Wright, Willie

    1992-01-01

    The Shuttle Upper Atmosphere Mass Spectrometer (SUMS), a component experiment of the NASA Orbital Experiments Program (OEX), was flown aboard the shuttle Columbia (OV102) mounted at the forward end of the nose landing gear well with an atmospheric gas inlet system fitted to the lower fuselage (chin panel) surface. The SUMS was designed to provide atmospheric data in flow regimes inaccessible prior to the development of the Space Transportation System (STS). The experiment mission operation begins about 1 hour prior to shuttle de-orbit entry maneuver and continues until reaching 1.6 torr (about 86 km altitude). The SUMS flew a total of three missions, 61C, STS-35, and STS-40. Between flights, the SUMS was maintained in flight ready status. The flight data has been analyzed by the NASA LaRC Aerothermodynamics Branch. Flight data spectrum plots and reports are presented in the Appendices to the Final Technical Report for NAS1-17399. This volume presents flight data for flight STS-35 in graphical format.

  10. Extending the Precipitation Map Offshore Using Daily and 3-Hourly Combined Precipitation Estimates

    NASA Technical Reports Server (NTRS)

    Huffman, George J.; Adler, Robert F.; Bolvin, David T.; Curtis, Scott; Einaudi, Franco (Technical Monitor)

    2001-01-01

    One of the difficulties in studying landfalling extratropical cyclones along the Pacific Coast is the lack of antecedent data over the ocean, including precipitation. Recent research on combining various satellite-based precipitation estimates opens the possibility of realistic precipitation estimates on a global 1 deg. x 1 deg. latitude-longitude grid at the daily or even 3-hourly interval. The goal in this work is to provide quantitative precipitation estimates that correctly represent the precipitation- related variables in the hydrological cycle: surface accumulations (fresh-water flux into oceans), frequency and duration statistics, net latent heating, etc.

  11. Determination of the flight equipment maintenance costs of commuter airlines

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Labor and materials costs associated with maintaining and operating 12 commuter airlines carrying an average of from 42 to 1,100 passengers daily in a variety of aircraft types were studied to determine the total direct maintenance cost per flight hour for the airframe, engine, and avionics and other instruments. The distribution of maintenance costs are analyzed for two carriers, one using turboprop aircraft and the other using piston engine aircraft.

  12. Gypsum accumulation on carbonate stone

    USGS Publications Warehouse

    McGee, E.S.; Mossotti, V.G.

    1992-01-01

    The accumulation of gypsum on carbonate stone has been investigated through exposure of fresh samples of limestone and marble at monitored sites, through examination of alteration crusts from old buildings and through laboratory experiments. Several factors contribute to gypsum accumulation on carbonate stone. Marble or limestone that is sheltered from direct washing by rain in an urban environment with elevated pollution levels is likely to accumulate a gypsum crust. Crust development may be enhanced if the stone is porous or has an irregular surface area. Gypsum crusts are a surficial alteration feature; gypsum crystals form at the pore opening-air interface, where evaporation is greatest.

  13. Dynamic flight stability of a model dronefly in vertical flight

    NASA Astrophysics Data System (ADS)

    Shen, Chong; Sun, Mao

    2014-12-01

    The dynamic flight stability of a model dronefly in hovering and upward flight is studied. The method of computational fluid dynamics is used to compute the stability derivatives and the techniques of eigenvalue and eigenvector used to solve the equations of motion. The major finding is as following. Hovering flight of the model dronefly is unstable because of the existence of an unstable longitudinal and an unstable lateral natural mode of motion. Upward flight of the insect is also unstable, and the instability increases as the upward flight speed increases. Inertial force generated by the upward flight velocity coupled with the disturbance in pitching angular velocity is responsible for the enhancement of the instability.

  14. Flight Test of an Intelligent Flight-Control System

    NASA Technical Reports Server (NTRS)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.

    2003-01-01

    The F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) airplane (see figure) was the test bed for a flight test of an intelligent flight control system (IFCS). This IFCS utilizes a neural network to determine critical stability and control derivatives for a control law, the real-time gains of which are computed by an algorithm that solves the Riccati equation. These derivatives are also used to identify the parameters of a dynamic model of the airplane. The model is used in a model-following portion of the control law, in order to provide specific vehicle handling characteristics. The flight test of the IFCS marks the initiation of the Intelligent Flight Control System Advanced Concept Program (IFCS ACP), which is a collaboration between NASA and Boeing Phantom Works. The goals of the IFCS ACP are to (1) develop the concept of a flight-control system that uses neural-network technology to identify aircraft characteristics to provide optimal aircraft performance, (2) develop a self-training neural network to update estimates of aircraft properties in flight, and (3) demonstrate the aforementioned concepts on the F-15 ACTIVE airplane in flight. The activities of the initial IFCS ACP were divided into three Phases, each devoted to the attainment of a different objective. The objective of Phase I was to develop a pre-trained neural network to store and recall the wind-tunnel-based stability and control derivatives of the vehicle. The objective of Phase II was to develop a neural network that can learn how to adjust the stability and control derivatives to account for failures or modeling deficiencies. The objective of Phase III was to develop a flight control system that uses the neural network outputs as a basis for controlling the aircraft. The flight test of the IFCS was performed in stages. In the first stage, the Phase I version of the pre-trained neural network was flown in a passive mode. The neural network software was running using flight data

  15. Precise estimation of hourly global solar radiation for micrometeorological analysis by using data classification and hourly sunshine

    NASA Astrophysics Data System (ADS)

    Masaki, Yoshimitsu; Kuwagata, Tsuneo; Ishigooka, Yasushi

    2010-05-01

    We have developed a method for estimating hourly global solar radiation (GSR) from hourly sunshine duration data. This procedure requires only hourly sunshine duration as the input data and utilizes hourly precipitation and daily snow cover as auxiliary data to classify time intervals into six cases according to weather conditions. To obtain hourly GSR using a simple algebraic form, a quadratic function of the solar elevation angle and the sunshine duration ratio is used. Daily GSR is given by a sum of hourly GSRs. We evaluated the performance of the newly developed method using data obtained at 67 meteorological stations and found that the estimated GSR is highly consistent with that observed. Hourly and daily root-mean-square misfits are approximately 0.2 MJ/m2/h (~55 W/m2) and 1.4 to 1.5 MJ/m2/day (~16 to 17 W/m2), respectively. Our classification of weather conditions is effective for reducing estimation errors, especially under cloudy skies. Since the sunshine duration is observed at more meteorological stations than GSR, the proposed new method is a powerful tool for obtaining solar radiation with hourly resolution and a dense geographical distribution. One of the proposed methods, GSRgrn, can be applicable to hourly GSR estimations at different observation sites by setting local parameters (the precipitable water, surface albedo, and atmospheric turbidity) suitable to the sites. The hourly GSR can be applied for various micrometeorological studies, such as the heat budget of crop fields.

  16. Evaluation of a twelve-hour/day shift schedule

    SciTech Connect

    Lewis, P.M.; Swaim, D.J.

    1986-06-18

    In April 1985, the operating crews at the Fast Flux Test Facility near Richland, Washington, changed their rotating shift schedule from an 8-hour to a 12-hour a day work schedule. The primary purpose of the change was to reduce the attrition of operators by increasing their job satisfaction. Eighty-four percent of the operators favored the change. A program was established to evaluate the effects on plant performance, operator alertness, attrition, sleep, health, job satisfaction, and off-the-job satisfaction. Preliminary results from that evaluation program indicate that the 12-hour shift schedule is a reasonable alternative to an 8-hour schedule at this facility.

  17. Migration plans and hours of work in Malaysia.

    PubMed

    Gillin, E D; Sumner, D A

    1985-01-01

    "This article describes characteristics of prospective migrants in the Malaysian Family Life Survey and investigates how planning to move affects hours of work. [The authors] use ideas about intertemporal substitution...to discuss the response to temporary and permanent wage expectations on the part of potential migrants. [An] econometric section presents reduced-form estimates for wage rates and planned migration equations and two-stage least squares estimates for hours of work. Men currently planning a move were found to work fewer hours. Those originally planning only a temporary stay at their current location work more hours." PMID:12280256

  18. Lifting Body Flight Vehicles

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1998-01-01

    NASA has a technology program in place to build the X-33 test vehicle and then the full sized Reusable Launch Vehicle, VentureStar. VentureStar is a Lifting Body (LB) flight vehicle which will carry our future payloads into orbit, and will do so at a much reduced cost. There were three design contenders for the new Reusable Launch Vehicle: a Winged Vehicle, a Vertical Lander, and the Lifting Body(LB). The LB design won the competition. A LB vehicle has no wings and derives its lift solely from the shape of its body, and has the unique advantages of superior volumetric efficiency, better aerodynamic efficiency at high angles-of-attack and hypersonic speeds, and reduced thermal protection system weight. Classically, in a ballistic vehicle, drag has been employed to control the level of deceleration in reentry. In the LB, lift enables the vehicle to decelerate at higher altitudes for the same velocity and defines the reentry corridor which includes a greater cross range. This paper outlines our LB heritage which was utilized in the design of the new Reusable Launch Vehicle, VentureStar. NASA and the U.S. Air Force have a rich heritage of LB vehicle design and flight experience. Eight LB's were built and over 225 LB test flights were conducted through 1975 in the initial LB Program. Three LB series were most significant in the advancement of today's LB technology: the M2-F; HL-1O; and X-24 series. The M2-F series was designed by NASA Ames Research Center, the HL-10 series by NASA Langley Research Center, and the X-24 series by the Air Force. LB vehicles are alive again today.

  19. Orion Pad Abort 1 Flight Test - Ground and Flight Operations

    NASA Technical Reports Server (NTRS)

    Hackenbergy, Davis L.; Hicks, Wayne

    2011-01-01

    This paper discusses the ground and flight operations aspects to the Pad Abort 1 launch. The paper details the processes used to plan all operations. The paper then discussions the difficulties of integration and testing, while detailing some of the lessons learned throughout the entire launch campaign. Flight operational aspects of the launc are covered in order to provide the listener with the full suite of operational issues encountered in preparation for the first flight test of the Orion Launch Abort System.

  20. X-1A in flight over lakebed

    NASA Technical Reports Server (NTRS)

    1953-01-01

    requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on Jan. 25, 1946. Powered flights began in December 1946. On Oct. 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager, became the first aircraft to exceed the speed of sound, reaching about 700 miles per hour (Mach 1.06) and an altitude of 43,000 feet. The number 2 X-1 was modified and redesignated the X-1E. The modifications included adding a conventional canopy, an ejection seat, a low-pressure fuel system of increased capacity, and a thinner high-speed wing. The X-1E was used to obtain in-flight data at twice the speed of sound, with particular emphasis placed on investigating the improvements achieved with the high-speed wing. These wings, made by Stanley Aircraft, were only 3 3/8-inches thick at the root and had 343 gauges installed in them to measure structural loads and aerodynamic heating. The X-1E used its rocket engine to power it up to a speed of 1,471 miles per hour (Mach 2.24) and to an altitude of 73,000 feet. Like the X-1 it was air-launched. The X-1 aircraft were almost 31 feet long and had a wingspan of 28 feet. The X-1 was built of conventional aluminum stressed-skin construction to extremely high structural standards. The X-1E was also 31 feet long but had a wingspan of only 22 feet, 10 inches. It was powered by a Reaction Motors, Inc., XLR-8-RM-5, four-chamber rocket engine. As did all X-1 rocket engines, the LR-8-RM-5 engine did not have throttle capability, but instead, depended on ignition of any one chamber or group of chambers to vary speed. The X-1A, X-1B, and the X-1D were growth versions of the X-1. They were almost five feet longer, almost 2,500 pounds heavier and had conventional canopies. The X-1A and X-1B were modified to have ejection seats

  1. X-24B in flight and landing

    NASA Technical Reports Server (NTRS)

    1974-01-01

    also the pilot on the first powered mission November 15, 1973. Among the final flights with the X-24B were two precise landings on the main concrete runway at Edwards, which showed that accurate unpowered reentry vehicle landings were operationally feasible. These missions were flown by Manke and Air Force Major Mike Love and represented the final milestone in a program that helped write the flight plan for today's Space Shuttle program. After launch from the B-52 'mothership' at an altitude of about 45,000 feet, the XLR-11 rocket engine was ignited and the vehicle accelerated to speeds of more than 1,100 miles per hour and to altitudes of 60,000 to 70,000 feet. After the rocket engine was shut down, the pilots began steep glides towards the Edwards runway. As the pilots entered the final leg of the approach, they increased their rate of descent to build up speed and used this energy to perform a 'flare out' maneuver, which would slow their landing speed to about 200 miles per hour--the same basic approach pattern and landing speed of the current Space Shuttles. The final powered flight with the X-24B aircraft was on September 23, l975. The pilot was Bill Dana, and it was the last rocket-powered flight flown at Dryden. It was also Dana who flew the last X-15 mission about seven years earlier. Top speed reached with the X-24B was 1,164 miles per hour (Mach 1.76) by Love on October 25, 1974. The highest altitude reached was 74,100 feet, by Manke on May 22, 1975. The X-24B is on public display at the Air Force Museum, Wright-Patterson AFB, Ohio. This 25-second video clip shows the X-24B attached to its pylon under the B-52 wing, then shifts to a landing followed by the chase aircraft.

  2. Lunar Landing Research Vehicle (LLRV) in flight

    NASA Technical Reports Server (NTRS)

    1965-01-01

    LLRV, in case of jet engine failure, six-500-pounds-of thrust rockets could be used by the pilot to carefully apply lift thrust during the rapid descent to hopefully achieve a controllable landing. The pilot's platform extended forward between two legs while an electronics platform, similarly located, extended rearward. The pilot had a zero-zero ejection seat that would then lift him away to safety. Weight and balance design constraints were among the most challenging to meet for all phases of the program (design, development, operations). The two LLRVs were shipped disassembled from Bell to the FRC in April 1964, with program emphasis placed on vehicle No. 1. The scene then shifted to the old South Base area of Edwards Air Force Base. On the day of the first flight, Oct. 30, 1964, NASA research pilot Joe Walker flew it three times for a total of just under 60 seconds, to a peak altitude of approximately 10 feet. By mid-1966 the NASA Flight Research Center had accumulated enough data from the LLRV flight program to give Bell a contract to deliver three Lunar Landing Training Vehicles (LLTVs) at a cost of $2.5 million each. As 1966 ended, the LLRV #1 had flown 198 flights, and the LLRV #2 was being assembled, instrumented and cockpit modifications made at the South Base. The first flight of the number two LLRV in early January 1967 was quickly followed by five more. In December 1966 vehicle No. 1 was shipped to Houston, followed by No. 2 in mid January 1967. When Dryden's LLRVs arrived at Houston they joined the first of the LLTVs to eventually make up the five-vehicle training and simulator fleet. All five vehicles were relied on for simulation and training of moon landings.

  3. Pregnant Guppy in Flight

    NASA Technical Reports Server (NTRS)

    1960-01-01

    The Pregnant Guppy is a modified Boeing B-377 Stratocruiser used to transport the S-IV (second) stage for the Saturn I launch vehicle between manufacturing facilities on the West coast, and testing and launch facilities in the Southeast. The fuselage of the B-377 was lengthened to accommodate the S-IV stage and the plane's cabin section was enlarged to approximately double its normal volume. The idea was originated by John M. Conroy of Aero Spaceliners, Incorporated, in Van Nuys, California. The former Stratocruiser became a B-377 PG: the Pregnant Guppy. This photograph depicts the Pregnant Guppy in flight.

  4. Flight Mechanics Project

    NASA Technical Reports Server (NTRS)

    Steck, Daniel

    2009-01-01

    This report documents the generation of an outbound Earth to Moon transfer preliminary database consisting of four cases calculated twice a day for a 19 year period. The database was desired as the first step in order for NASA to rapidly generate Earth to Moon trajectories for the Constellation Program using the Mission Assessment Post Processor. The completed database was created running a flight trajectory and optimization program, called Copernicus, in batch mode with the use of newly created Matlab functions. The database is accurate and has high data resolution. The techniques and scripts developed to generate the trajectory information will also be directly used in generating a comprehensive database.

  5. The Third Flight Magnet

    NASA Technical Reports Server (NTRS)

    McGhee, R. Wayne

    1998-01-01

    A self-shielded superconducting magnet was designed for the NASA Goddard Space Flight Center Adiabatic Demagnetization Refrigerator Program. This is the third magnet built from this design. The magnets utilize Cryomagnetics' patented ultra-low current technology. The magnetic system is capable of reaching a central field of two tesla at slightly under two amperes and has a total inductance of 1068 henries. This final report details the requirements of the magnet, the specifications of the resulting magnet, the test procedures and test result data for the third magnet (Serial # C-654-M), and recommended precautions for use of the magnet.

  6. Flight-oogenesis syndrome in a blood-sucking bug: biochemical aspects of lipid metabolism.

    PubMed

    Oliveira, Giselle A; Baptista, Daniela L; Guimarães-Motta, Horacio; Almeida, Igor C; Masuda, Hatisaburo; Atella, Georgia C

    2006-08-01

    Lipophorin (Lp), either labeled in diacylglycerol moiety with [(3)H]-Palmitic acid or in phospholipid moiety with (32)Pi, was injected into Rhodnius prolixus females. Insects were induced to flight for different times. In just a few minutes of flight, the transfer of radioactivity to ovaries decreased, accompanied by its increase to flight muscles. After one hour of flight, Lp density was higher (1.132 g/mL) than before flight (1.116 g/mL). Lp purified from insects after flight was analyzed by gel filtration chromatography and a polyacrylamide gel pore limit electrophoresis. Both analyses demonstrated a decrease in Lp molecular mass after flight but no changes in apoLp-III amounts were observed. Time-course experiments showed that only 30 min of flight are required for the detection of changes in Lp density and molecular mass. About the same time of rest is necessary for Lp density and molecular mass to return to the baseline value. The lipid content from Lp particles, determined by high-performance thin-layer chromatography (HPTLC), showed a decrease in total lipids after flight. At the same time, an increase of many classes of lipids was observed in flight muscles except for triacylglycerol, which was reduced. The increase of flight muscle lipids was accompanied by a decrease of the ovaries lipid content. The insects subjected to daily exhaustive flight showed a significant decrease in total number of eggs produced. But insects subjected to a single exhaustive flight showed only a small reduction in total number of eggs. Lp density variation during the flight activity of Rhodnius prolixus females is discussed in association with physiological events such as oogenesis. PMID:16933278

  7. Cryogenic Two-Phase Flight Experiment: Results overview

    NASA Technical Reports Server (NTRS)

    Swanson, T.; Buchko, M.; Brennan, P.; Bello, M.; Stoyanof, M.

    1995-01-01

    This paper focuses on the flight results of the Cryogenic Two-Phase Flight Experiment (CRYOTP), which was a Hitchhiker based experiment that flew on the space shuttle Columbia in March of 1994 (STS-62). CRYOTP tested two new technologies for advanced cryogenic thermal control; the Space Heat Pipe (SHP), which was a constant conductance cryogenic heat pipe, and the Brilliant Eyes Thermal Storage Unit (BETSU), which was a cryogenic phase-change thermal storage device. These two devices were tested independently during the mission. Analysis of the flight data indicated that the SHP was unable to start in either of two attempts, for reasons related to the fluid charge, parasitic heat leaks, and cryocooler capacity. The BETSU test article was successfully operated with more than 250 hours of on-orbit testing including several cooldown cycles and 56 freeze/thaw cycles. Some degradation was observed with the five tactical cryocoolers used as thermal sinks, and one of the cryocoolers failed completely after 331 hours of operation. Post-flight analysis indicated that this problem was most likely due to failure of an electrical controller internal to the unit.

  8. Statistical analysis of flight times for space shuttle ferry flights

    NASA Technical Reports Server (NTRS)

    Graves, M. E.; Perlmutter, M.

    1974-01-01

    Markov chain and Monte Carlo analysis techniques are applied to the simulated Space Shuttle Orbiter Ferry flights to obtain statistical distributions of flight time duration between Edwards Air Force Base and Kennedy Space Center. The two methods are compared, and are found to be in excellent agreement. The flights are subjected to certain operational and meteorological requirements, or constraints, which cause eastbound and westbound trips to yield different results. Persistence of events theory is applied to the occurrence of inclement conditions to find their effect upon the statistical flight time distribution. In a sensitivity test, some of the constraints are varied to observe the corresponding changes in the results.

  9. Enhanced Flight Termination System Flight Demonstration and Results

    NASA Technical Reports Server (NTRS)

    Tow, David; Arce, Dennis

    2007-01-01

    This paper discusses the methodology, requirements, tests, and implementation plan for the live demonstration of the Enhanced Flight Termination System (EFTS) using a missile program at two locations in Florida: Eglin Air Force Base (AFB) and Tyndall AFB. The demonstration included the integration of EFTS Flight Termination Receivers (FTRs) onto the missile and the integration of EFTS-program-developed transmitter assets with the mission control system at Eglin and Tyndall AFBs. The initial test stages included ground testing and captive-carry flights, followed by a launch in which EFTS was designated as the primary flight termination system for the launch.

  10. Effect of light intensity on flight control and temporal properties of photoreceptors in bumblebees.

    PubMed

    Reber, Therese; Vähäkainu, Antti; Baird, Emily; Weckström, Matti; Warrant, Eric; Dacke, Marie

    2015-05-01

    To control flight, insects rely on the pattern of visual motion generated on the retina as they move through the environment. When light levels fall, vision becomes less reliable and flight control thus becomes more challenging. Here, we investigated the effect of light intensity on flight control by filming the trajectories of free-flying bumblebees (Bombus terrestris, Linnaeus 1758) in an experimental tunnel at different light levels. As light levels fell, flight speed decreased and the flight trajectories became more tortuous but the bees were still remarkably good at centring their flight about the tunnel's midline. To investigate whether this robust flight performance can be explained by visual adaptations in the bumblebee retina, we also examined the response speed of the green-sensitive photoreceptors at the same light intensities. We found that the response speed of the photoreceptors significantly decreased as light levels fell. This indicates that bumblebees have both behavioural (reduction in flight speed) and retinal (reduction in response speed of the photoreceptors) adaptations to allow them to fly in dim light. However, the more tortuous flight paths recorded in dim light suggest that these adaptations do not support flight with the same precision during the twilight hours of the day. PMID:25750416

  11. Flap or soar? How a flight generalist responds to its aerial environment.

    PubMed

    Shamoun-Baranes, Judy; Bouten, Willem; van Loon, E Emiel; Meijer, Christiaan; Camphuysen, C J

    2016-09-26

    The aerial environment is heterogeneous in space and time and directly influences the costs of animal flight. Volant animals can reduce these costs by using different flight modes, each with their own benefits and constraints. However, the extent to which animals alter their flight modes in response to environmental conditions has rarely been studied in the wild. To provide insight into how a flight generalist can reduce the energetic cost of movement, we studied flight behaviour in relation to the aerial environmental and landscape using hundreds of hours of global positioning system and triaxial acceleration measurements of the lesser black-backed gull (Larus fuscus). Individuals differed largely in the time spent in flight, which increased linearly with the time spent in flight at sea. In general, flapping was used more frequently than more energetically efficient soaring flight. The probability of soaring increased with increasing boundary layer height and time closer to midday, reflecting improved convective conditions supportive of thermal soaring. Other forms of soaring flight were also used, including fine-scale use of orographic lift. We explore the energetic consequences of behavioural adaptations to the aerial environment and underlying landscape and implications for individual energy budgets, foraging ecology and reproductive success.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. PMID:27528785

  12. Manganese As a Metal Accumulator

    EPA Science Inventory

    Manganese deposits in water distribution systems accumulate metals, radionuclides and oxyanions by a combination of surface complexation, adsorption and solid substitution, as well as a combination of oxidation followed by manganese reduction and sorption of the oxidized constitu...

  13. Evidence accumulation for spatial reasoning

    NASA Technical Reports Server (NTRS)

    Matsuyama, T.; Hwang, V. S. S.; Davis, L. S.

    1984-01-01

    The evidence accumulation proces of an image understanding system is described enabling the system to perform top-down(goal-oriented) picture processing as well as bottom-up verification of consistent spatial relations among objects.

  14. 14 CFR 417.219 - Data loss flight time and planned safe flight state analyses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Analysis § 417.219 Data loss flight time and planned safe flight state analyses. (a) General. For each launch, a flight safety analysis must establish data loss flight times, as identified by paragraph (b) of...) contains requirements for flight termination rules. (b) Data loss flight times. A flight safety...

  15. 14 CFR 125.297 - Approval of flight simulators and flight training devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Approval of flight simulators and flight... Flight Crewmember Requirements § 125.297 Approval of flight simulators and flight training devices. (a) Flight simulators and flight training devices approved by the Administrator may be used in...

  16. In-Flight System Identification

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1998-01-01

    A method is proposed and studied whereby the system identification cycle consisting of experiment design and data analysis can be repeatedly implemented aboard a test aircraft in real time. This adaptive in-flight system identification scheme has many advantages, including increased flight test efficiency, adaptability to dynamic characteristics that are imperfectly known a priori, in-flight improvement of data quality through iterative input design, and immediate feedback of the quality of flight test results. The technique uses equation error in the frequency domain with a recursive Fourier transform for the real time data analysis, and simple design methods employing square wave input forms to design the test inputs in flight. Simulation examples are used to demonstrate that the technique produces increasingly accurate model parameter estimates resulting from sequentially designed and implemented flight test maneuvers. The method has reasonable computational requirements, and could be implemented aboard an aircraft in real time.

  17. An Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Bull, James B.; Lanzi, Raymond J.

    2007-01-01

    The Autonomous Flight Safety System (AFSS) being developed by NASA s Goddard Space Flight Center s Wallops Flight Facility and Kennedy Space Center has completed two successful developmental flights and is preparing for a third. AFSS has been demonstrated to be a viable architecture for implementation of a completely vehicle based system capable of protecting life and property in event of an errant vehicle by terminating the flight or initiating other actions. It is capable of replacing current human-in-the-loop systems or acting in parallel with them. AFSS is configured prior to flight in accordance with a specific rule set agreed upon by the range safety authority and the user to protect the public and assure mission success. This paper discusses the motivation for the project, describes the method of development, and presents an overview of the evolving architecture and the current status.

  18. Accelerations in Flight

    NASA Technical Reports Server (NTRS)

    Norton, F H; Allen, E T

    1921-01-01

    This report deals with the accelerations obtained in flight on various airplanes at Langley Field for the purpose of obtaining the magnitude of the load factors in flight and to procure information on the behavior of an airplane in various maneuvers. The instrument used in these tests was a recording accelerometer of a new type designed by the technical staff of the National Advisory Committee for Aeronautics. The instrument consists of a flat steel spring supported rigidly at one end so that the free end may be deflected by its own weight from its neutral position by any acceleration acting at right angles to the plane of the spring. This deflection is measured by a very light tilting mirror caused to rotate by the deflection of the spring, which reflected the beam of light onto a moving film. The motion of the spring is damped by a thin aluminum vane which rotates with the spring between the poles of an electric magnet. Records were taken on landings and takeoffs, in loops, spins, spirals, and rolls.

  19. NASA - Human Space Flight

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2006-01-01

    The presentation covers five main topical areas. The first is a description of how things work in the microgravity environment such as convection and sedimentation. The second part describes the effects of microgravity on human physiology. This is followed by a description of the hazards of space flight including the environment, the space craft, and the mission. An overview of biomedical research in space, both on shuttle and ISS is the fourth section of the presentation. The presentation concludes with a history of space flight from Ham to ISS. At CART students (11th and 12th graders from Fresno Unified and Clovis Unified) are actively involved in their education. They work in teams to research real world problems and discover original solutions. Students work on projects guided by academic instructors and business partners. They will have access to the latest technology and will be expected to expand their learning environment to include the community. They will focus their studies around a career area (Professional Sciences, Advanced Communications, Engineering and Product Development, or Global Issues).

  20. New Theory of Flight

    NASA Astrophysics Data System (ADS)

    Hoffman, Johan; Jansson, Johan; Johnson, Claes

    2016-06-01

    We present a new mathematical theory explaining the fluid mechanics of subsonic flight, which is fundamentally different from the existing boundary layer-circulation theory by Prandtl-Kutta-Zhukovsky formed 100 year ago. The new theory is based on our new resolution of d'Alembert's paradox showing that slightly viscous bluff body flow can be viewed as zero-drag/lift potential flow modified by 3d rotational slip separation arising from a specific separation instability of potential flow, into turbulent flow with nonzero drag/lift. For a wing this separation mechanism maintains the large lift of potential flow generated at the leading edge at the price of small drag, resulting in a lift to drag quotient of size 15-20 for a small propeller plane at cruising speed with Reynolds number {Re≈ 107} and a jumbojet at take-off and landing with {Re≈ 108} , which allows flight at affordable power. The new mathematical theory is supported by computed turbulent solutions of the Navier-Stokes equations with a slip boundary condition as a model of observed small skin friction of a turbulent boundary layer always arising for {Re > 106} , in close accordance with experimental observations over the entire range of angle of attacks including stall using a few millions of mesh points for a full wing-body configuration.

  1. Human prolactin - 24-hour pattern with increased release during sleep.

    NASA Technical Reports Server (NTRS)

    Sassin, J. F.; Weitzman, E. D.; Kapen, S.; Frantz, A. G.

    1972-01-01

    Human prolactin was measured in plasma by radioimmunoassay at 20-minute intervals for a 24-hour period in each of six normal adults, whose sleep-wake cycles were monitored polygraphically. A marked diurnal variation in plasma concentrations was demonstrated, with highest values during sleep. Periods of episodic release occurred throughout the 24 hours.

  2. Is the Professor In? Faculty Presence during Office Hours

    ERIC Educational Resources Information Center

    Pfund, Rory A.; Rogan, Jessica D.; Burnham, Bryan R.; Norcross, John C.

    2013-01-01

    Two studies were conducted on the availability of full-time faculty during their posted office hours. In the first, we surveyed students and faculty at a single university on their estimates of the percentage of faculty present during office hours. Students ("N" = 380) and faculty ("N" = 176) estimated that 77% and 83% of…

  3. Workweeks of 41 Hours or More and Premium Pay.

    ERIC Educational Resources Information Center

    Bureau of Labor Statistics (DOL), Washington, DC.

    The survey conducted in May, 1975 by the Bureau of Census showed that both the number of employees working more than the standard 40-hour workweek and the number receiving premium pay for hours in excess of the standard were substantially fewer than in the previous year. About 14.1 million wage and salary employees worked overtime in May, 1975…

  4. 17 CFR 10.4 - Business address; hours.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 1 2014-04-01 2014-04-01 false Business address; hours. 10.4 Section 10.4 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION RULES OF PRACTICE General Provisions § 10.4 Business address; hours. The Office of Proceedings is located at Three...

  5. 17 CFR 12.3 - Business address; hours.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 1 2014-04-01 2014-04-01 false Business address; hours. 12.3 Section 12.3 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION RULES RELATING TO REPARATIONS General Information and Preliminary Consideration of Pleadings § 12.3 Business address; hours....

  6. 17 CFR 10.4 - Business address; hours.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 1 2012-04-01 2012-04-01 false Business address; hours. 10.4 Section 10.4 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION RULES OF PRACTICE General Provisions § 10.4 Business address; hours. The Office of Proceedings is located at Three...

  7. 39 CFR 959.3 - Office, business hours.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 39 Postal Service 1 2014-07-01 2014-07-01 false Office, business hours. 959.3 Section 959.3 Postal Service UNITED STATES POSTAL SERVICE PROCEDURES RULES OF PRACTICE IN PROCEEDINGS RELATIVE TO THE PRIVATE EXPRESS STATUTES § 959.3 Office, business hours. The offices of the officials mentioned in these rules...

  8. 17 CFR 10.4 - Business address; hours.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 1 2011-04-01 2011-04-01 false Business address; hours. 10.4 Section 10.4 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION RULES OF PRACTICE General Provisions § 10.4 Business address; hours. The Office of Proceedings is located at Three...

  9. 39 CFR 952.4 - Office business hours.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 39 Postal Service 1 2012-07-01 2012-07-01 false Office business hours. 952.4 Section 952.4 Postal Service UNITED STATES POSTAL SERVICE PROCEDURES RULES OF PRACTICE IN PROCEEDINGS RELATIVE TO FALSE REPRESENTATION AND LOTTERY ORDERS § 952.4 Office business hours. The offices of the officials identified in...

  10. 17 CFR 171.3 - Business address; hours.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 1 2011-04-01 2011-04-01 false Business address; hours. 171.3 Section 171.3 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION RULES RELATING TO... MEMBER RESPONSIBILITY ACTIONS General Provisions § 171.3 Business address; hours. The principal office...

  11. 39 CFR 959.3 - Office, business hours.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 39 Postal Service 1 2012-07-01 2012-07-01 false Office, business hours. 959.3 Section 959.3 Postal Service UNITED STATES POSTAL SERVICE PROCEDURES RULES OF PRACTICE IN PROCEEDINGS RELATIVE TO THE PRIVATE EXPRESS STATUTES § 959.3 Office, business hours. The offices of the officials mentioned in these rules...

  12. 19 CFR 101.6 - Hours of business.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... No. 11582, Jan. 1, 1971; 34 FR 2957; 3 CFR Ch. 11) (b) Local conditions requiring different hgurs. If... 19 Customs Duties 1 2013-04-01 2013-04-01 false Hours of business. 101.6 Section 101.6 Customs... GENERAL PROVISIONS § 101.6 Hours of business. Except as specified in paragraphs (a) through (g) of...

  13. 39 CFR 954.4 - Office business hours.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 39 Postal Service 1 2012-07-01 2012-07-01 false Office business hours. 954.4 Section 954.4 Postal Service UNITED STATES POSTAL SERVICE PROCEDURES RULES OF PRACTICE IN PROCEEDINGS RELATIVE TO THE DENIAL, SUSPENSION, OR REVOCATION OF PERIODICALS MAIL PRIVILEGES § 954.4 Office business hours. The offices of...

  14. 39 CFR 954.4 - Office business hours.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 39 Postal Service 1 2014-07-01 2014-07-01 false Office business hours. 954.4 Section 954.4 Postal Service UNITED STATES POSTAL SERVICE PROCEDURES RULES OF PRACTICE IN PROCEEDINGS RELATIVE TO THE DENIAL, SUSPENSION, OR REVOCATION OF PERIODICALS MAIL PRIVILEGES § 954.4 Office business hours. The offices of...

  15. 39 CFR 952.4 - Office business hours.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 39 Postal Service 1 2014-07-01 2014-07-01 false Office business hours. 952.4 Section 952.4 Postal Service UNITED STATES POSTAL SERVICE PROCEDURES RULES OF PRACTICE IN PROCEEDINGS RELATIVE TO FALSE REPRESENTATION AND LOTTERY ORDERS § 952.4 Office business hours. The offices of the officials identified in...

  16. 17 CFR 12.3 - Business address; hours.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 1 2011-04-01 2011-04-01 false Business address; hours. 12.3 Section 12.3 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION RULES RELATING TO REPARATIONS General Information and Preliminary Consideration of Pleadings § 12.3 Business address; hours....

  17. 17 CFR 171.3 - Business address; hours.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 1 2012-04-01 2012-04-01 false Business address; hours. 171.3 Section 171.3 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION RULES RELATING TO... MEMBER RESPONSIBILITY ACTIONS General Provisions § 171.3 Business address; hours. The principal office...

  18. 17 CFR 12.3 - Business address; hours.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 1 2012-04-01 2012-04-01 false Business address; hours. 12.3 Section 12.3 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION RULES RELATING TO REPARATIONS General Information and Preliminary Consideration of Pleadings § 12.3 Business address; hours....

  19. 17 CFR 171.3 - Business address; hours.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Business address; hours. 171.3 Section 171.3 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION RULES RELATING TO... MEMBER RESPONSIBILITY ACTIONS General Provisions § 171.3 Business address; hours. The principal office...

  20. 7 CFR 1520.2 - Location and hours.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Location and hours. 1520.2 Section 1520.2 Agriculture Regulations of the Department of Agriculture (Continued) FOREIGN AGRICULTURAL SERVICE, DEPARTMENT OF AGRICULTURE AVAILABILITY OF INFORMATION TO THE PUBLIC § 1520.2 Location and hours. Members of the...

  1. 7 CFR 1520.2 - Location and hours.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Location and hours. 1520.2 Section 1520.2 Agriculture Regulations of the Department of Agriculture (Continued) FOREIGN AGRICULTURAL SERVICE, DEPARTMENT OF AGRICULTURE AVAILABILITY OF INFORMATION TO THE PUBLIC § 1520.2 Location and hours. Members of the...

  2. 7 CFR 1520.2 - Location and hours.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Location and hours. 1520.2 Section 1520.2 Agriculture Regulations of the Department of Agriculture (Continued) FOREIGN AGRICULTURAL SERVICE, DEPARTMENT OF AGRICULTURE AVAILABILITY OF INFORMATION TO THE PUBLIC § 1520.2 Location and hours. Members of the...

  3. Contact Hours in Dutch and Vietnamese Higher Education: A Comparison

    ERIC Educational Resources Information Center

    Quyen, Do Thi Ngoc

    2009-01-01

    The number of contact hours, one of the important institutional context factors, was examined and compared between Dutch and Vietnamese higher education at institute and student levels in Psychology and Business and/or Economics specializations. The quantity of contact hours per credit point given by institutions was investigated in a number of…

  4. Resident duty hours in Canada: a survey and national statement.

    PubMed

    Masterson, Mark F; Shrichand, Pankaj; Maniate, Jerry M

    2014-01-01

    Physicians in general, and residents in particular, are adapting to duty schedules in which they have fewer continuous work hours; however, there are no Canadian guidelines on duty hours restrictions. To better inform resident duty hour policy in Canada, we set out to prepare a set of recommendations that would draw upon evidence reported in the literature and reflect the experiences of resident members of the Canadian Association of Internes and Residents (CAIR). A survey was prepared and distributed electronically to all resident members of CAIR. A total of 1796 eligible residents participated in the survey. Of those who responded, 38% (601) reported that they felt they could safely provide care for up to 16 continuous hours, and 20% (315) said that 12 continuous hours was the maximum period during which they could safely provide care (n=1592). Eighty-two percent (1316) reported their perception that the quality of care they had provided suffered because of the number of consecutive hours worked (n=1598). Only 52% (830) had received training in handover (n=1594); those who had received such training reported that it was commonly provided through informal modelling. On the basis of these data and the existing literature, CAIR recommends that resident duty hours be managed in a way that does not endanger the health of residents or patients; does not impair education; is flexible; and does not violate ethical or legal standards. Further, residents should be formally trained in handover skills and alternative duty hour models. PMID:25559388

  5. (Updated) Fort Detrick Gate Hours Change Effective April 10 | Poster

    Cancer.gov

    The Fort Detrick gate hours will change beginning Friday, April 10. The new hours were recently provided by the U.S. Army Garrison (USAG), Fort Detrick. NCI will continue to work with the USAG to address questions that may arise. Note that no changes have been made for facilities outside of the Fort Detrick campus (e.g., the Advanced Technology Research Facility).

  6. Hours of work, and perceptions of fatigue among truck drivers.

    PubMed

    Arnold, P K; Hartley, L R; Corry, A; Hochstadt, D; Penna, F; Feyer, A M

    1997-07-01

    Drivers and companies operating in the heavy road transport industry were surveyed about drivers' hours of work and perceptions of the causes and magnitude of fatigue as an industry problem. These drivers were operating in a state which, at the time of the survey, did not restrict driving hours for heavy haulage drivers. On the day of the interview, estimates based on retrospective and prospective reports, suggest that in a 24 hour period about 38% of drivers exceed 14 hours of driving, and 51% exceed 14 hours of driving plus other non-driving work. About 12% of drivers reported less than 4 hours of sleep on one or more working days in the week preceding the interview. These drivers are likely to be operating their vehicles while having a significant sleep debt. About 20% of drivers reported less than 6 hours sleep before starting their current journey, but nearly 40% of dangerous events that occurred on the journey were reported by these drivers (p < 0.05). Many drivers and company representatives reported fatigue to be a problem for other drivers, but considered themselves or their companies' drivers to be relatively unaffected by fatigue. There were differences between drivers' and companies' perceptions about causes of fatigue, and strategies that should be used to manage it. The results obtained from these drivers in an unregulated state were compared with earlier findings from drivers in states where driving hours restrictions are in place. PMID:9248505

  7. 17 CFR 12.3 - Business address; hours.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Business address; hours. 12.3 Section 12.3 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION RULES RELATING TO REPARATIONS General Information and Preliminary Consideration of Pleadings § 12.3 Business address; hours....

  8. 12 CFR 905.3 - Location and business hours.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 7 2011-01-01 2011-01-01 false Location and business hours. 905.3 Section 905.3 Banks and Banking FEDERAL HOUSING FINANCE BOARD FEDERAL HOUSING FINANCE BOARD ORGANIZATION AND OPERATIONS DESCRIPTION OF ORGANIZATION AND FUNCTIONS Functions and Responsibilities of Finance Board § 905.3 Location and business hours. (a)...

  9. 19 CFR 360.107 - Hours of operation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 3 2011-04-01 2011-04-01 false Hours of operation. 360.107 Section 360.107 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.107 Hours of operation. The automatic licensing system will generally be...

  10. 19 CFR 360.107 - Hours of operation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Hours of operation. 360.107 Section 360.107 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.107 Hours of operation. The automatic licensing system will generally be...

  11. 29 CFR 2530.200b-2 - Hour of service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINIMUM STANDARDS FOR EMPLOYEE PENSION BENEFIT PLANS UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY ACT OF 1974 RULES AND REGULATIONS FOR MINIMUM STANDARDS FOR EMPLOYEE PENSION BENEFIT PLANS Scope and General Provisions § 2530.200b-2 Hour of service. (a) General rule. An hour of service which must, as a minimum,...

  12. The 1973 dust storm on Mars: Maps from hourly photographs

    NASA Technical Reports Server (NTRS)

    Martin, L. J.

    1975-01-01

    The hourly progress of the 1973 major Martian storm was mapped using photographic images from the International Planetary Patrol. Two series of 20 daily maps show the semi-hourly positions of the storm brightenings in red light and blue light. The maps indicate that the 1973 storm had many similarities to the 1971 storm.

  13. Estimating Software Effort Hours for Major Defense Acquisition Programs

    ERIC Educational Resources Information Center

    Wallshein, Corinne C.

    2010-01-01

    Software Cost Estimation (SCE) uses labor hours or effort required to conceptualize, develop, integrate, test, field, or maintain program components. Department of Defense (DoD) SCE can use initial software data parameters to project effort hours for large, software-intensive programs for contractors reporting the top levels of process maturity,…

  14. 46 CFR 15.1111 - Work hours and rest periods.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Work hours and rest periods. 15.1111 Section 15.1111 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN MANNING REQUIREMENTS Vessels Subject to Requirements of STCW § 15.1111 Work hours and rest periods. (a) Each...

  15. 46 CFR 15.1111 - Work hours and rest periods.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Work hours and rest periods. 15.1111 Section 15.1111 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN MANNING REQUIREMENTS Vessels Subject to Requirements of STCW § 15.1111 Work hours and rest periods. (a) Every...

  16. 46 CFR 15.1111 - Work hours and rest periods.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Work hours and rest periods. 15.1111 Section 15.1111 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN MANNING REQUIREMENTS Vessels Subject to Requirements of STCW § 15.1111 Work hours and rest periods. (a) Each...

  17. 46 CFR 15.1111 - Work hours and rest periods.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Work hours and rest periods. 15.1111 Section 15.1111 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN MANNING REQUIREMENTS Vessels Subject to Requirements of STCW § 15.1111 Work hours and rest periods. (a) Each...

  18. 49 CFR 228.7 - Hours of duty.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Hours of duty. 228.7 Section 228.7 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HOURS OF SERVICE OF RAILROAD EMPLOYEES; RECORDKEEPING AND REPORTING; SLEEPING QUARTERS Records...

  19. 49 CFR 228.7 - Hours of duty.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Hours of duty. 228.7 Section 228.7 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HOURS OF SERVICE OF RAILROAD EMPLOYEES; RECORDKEEPING AND REPORTING; SLEEPING QUARTERS Records...

  20. 49 CFR 228.7 - Hours of duty.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Hours of duty. 228.7 Section 228.7 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HOURS OF SERVICE OF RAILROAD EMPLOYEES; RECORDKEEPING AND REPORTING; SLEEPING QUARTERS Records...