Science.gov

Sample records for accumulated organic matter

  1. Dispersed and accumulated organic matter in fractures: Primary migration evidences

    SciTech Connect

    Lopez, L.; Pasquali, J. )

    1993-02-01

    Concentrated organic matter accumulated in fractures (organic rich fraction) and dispersed organic matter (total rock) of the source rocks of the Querecual and San Antonio formations of the Eastern Venezuelan basin were studied. The distribution of organic matter was studied in polished sections. Sample were analyzed for total organic carbon (Ct), total bitumen and the n-alkane fraction within the bitumen. Dispersed and concentrated organic matter were analyzed separately, and the pertinent differences were established. Concentrated organic matter, probably accumulated to due migration of dispersed organic matter into fractures, or low pressure zones is deficient in n-alkanes of low molecular weight. This fact is interpreted as the result of the migration process that allows the preferential movement of light components of low polarity. It seems that the products of kerogen maturation start their transformation to materials more like crude oils from their primary migration, stage that is to say, within the source rock.

  2. Dissolved organic matter reduces algal accumulation of methylmercury

    USGS Publications Warehouse

    Luengen, Allison C.; Fisher, Nicholas S.; Bergamaschi, Brian A.

    2012-01-01

    Dissolved organic matter (DOM) significantly decreased accumulation of methylmercury (MeHg) by the diatom Cyclotella meneghiniana in laboratory experiments. Live diatom cells accumulated two to four times more MeHg than dead cells, indicating that accumulation may be partially an energy-requiring process. Methylmercury enrichment in diatoms relative to ambient water was measured by a volume concentration factor (VCF). Without added DOM, the maximum VCF was 32 x 104, and the average VCF (from 10 to 72 h) over all experiments was 12.6 x 104. At very low (1.5 mg/L) added DOM, VCFs dropped by approximately half. At very high (20 mg/L) added DOM, VCFs dropped 10-fold. Presumably, MeHg was bound to a variety of reduced sulfur sites on the DOM, making it unavailable for uptake. Diatoms accumulated significantly more MeHg when exposed to transphilic DOM extracts than hydrophobic ones. However, algal lysate, a labile type of DOM created by resuspending a marine diatom in freshwater, behaved similarly to a refractory DOM isolate from San Francisco Bay. Addition of 67 μM L-cysteine resulted in the largest drop in VCFs, to 0.28 x 104. Although the DOM composition influenced the availability of MeHg to some extent, total DOM concentration was the most important factor in determining algal bioaccumulation of MeHg.

  3. Accumulation and transformation of organic matter in different-aged dumps from sand quarries

    NASA Astrophysics Data System (ADS)

    Abakumov, E. V.

    2008-08-01

    The accumulation and transformation of organic matter were studied in chronoseries of different-aged (3-, 10-, 20-, 30-, 43-, and 60-year-old) soils and a background (reference) plot. The ecogenetic succession of plants on sand quarry dumps was characterized. It was shown that the pedogenesis rate was closely related to the rate of phytocenosis development, and the thicknesses of organic and mineral horizons increased synchronously. The profile distribution of organic matter in young soils was estimated as an ectomorphic distribution, and the humus reserves in the mineral horizons of the same soils were comparable with the reserves of organic matter in the litters. The illuvial horizons of the soils under study played a significant role in the deposition of carbon dioxide; the resistance of organic matter to mineralization increased with age. In the soil chronoseries, the combustion heat of litter organic matter increased, as well as the content of energy accumulated in the litters. The composition of humus differed strongly between the eluvial and illuvial horizons; in the chronosequence, the relative content of humic acids increased in the E horizon, and that of fulvic acids increased in the B horizon. The effect of the phytocenosis on the soil was increasingly mediated with time. The accumulation and transformation of organic matter were the leading pedogenic processes at all stages.

  4. Anthropogenic N deposition increases soil organic matter accumulation without altering its biochemical composition.

    PubMed

    Zak, Donald R; Freedman, Zachary B; Upchurch, Rima A; Steffens, Markus; Kögel-Knabner, Ingrid

    2017-02-01

    Accumulating evidence indicates that future rates of atmospheric N deposition have the potential to increase soil C storage by reducing the decay of plant litter and soil organic matter (SOM). Although the microbial mechanism underlying this response is not well understood, a decline in decay could alter the amount, as well as biochemical composition of SOM. Here, we used size-density fractionation and solid-state (13) C-NMR spectroscopy to explore the extent to which declines in microbial decay in a long-term (ca. 20 yrs.) N deposition experiment have altered the biochemical composition of forest floor, bulk mineral soil, as well as free and occluded particulate organic matter. Significant amounts of organic matter have accumulated in occluded particulate organic matter (~20%; oPOM); however, experimental N deposition had not altered the abundance of carboxyl, aryl, alkyl, or O/N-alkyl C in forest floor, bulk mineral soil, or any soil fraction. These observations suggest that biochemically equivalent organic matter has accumulated in oPOM at a greater rate under experimental N deposition, relative to the ambient treatment. Although we do not understand the process by which experimental N deposition has fostered the occlusion of organic matter by mineral soil particles, our results highlight the importance of interactions among the products of microbial decay and the chemical and physical properties of silt and clay particles that occlude organic matter from microbial attack. Because oPOM can reside in soils for decades to centuries, organic matter accumulating under future rates of anthropogenic N deposition could remain in soil for long periods of time. If temperate forest soils in the Northern Hemisphere respond like those in our experiment, then unabated deposition of anthropogenic N from the atmosphere has the potential to foster greater soil C storage, especially in fine-texture forest soils.

  5. Molecular nitrogen in natural gas accumulations: Generation from sedimentary organic matter at high temperatures

    SciTech Connect

    Littke, R.; Krooss, B.; Frielingsdorf, J.; Idiz, E.

    1995-03-01

    The occurrence of natural gas accumulations with high percentages (up to 100%) of molecular nitrogen in various hydrocarbon provinces represents a largely unresolved problem and a serious exploration risk. In this context, a geochemical and basin modeling study was performed to evaluate the potential of sedimentary organic matter to generate molecular nitrogen. The masses of nitrogen present in coals - if converted into molecular nitrogen - are sufficient to fill commercial gas reservoirs. A calculation for gas accumulations in northern Germany, where percentages of molecular nitrogen range from less than 5 to greater than 90%, reveals that the molecular nitrogen generated in underlying coal-bearing strata is sufficient to account for the nitrogen gas even in the largest fields. In addition, much of the total nitrogen in clay-rich rock types, such as shales and mudstones, is fixed in sedimentary organic matter and may add to the nitrogen generation capacity of the coals.

  6. Spectral Exploration of Calcium Accumulation in Organic Matter in Gray Desert Soil from Northwest China.

    PubMed

    Wang, Ping; Ma, Yucui; Wang, Xihe; Jiang, Hong; Liu, Hua; Ran, Wei; Shen, Qirong

    2016-01-01

    Little attention has been paid to the accumulation of soil organic matter (SOM) in the fringes of the mid-latitude desert. In this paper, soil samples from a long-term field experiment conducted from 1990 to 2013 at a research station in Urumqi, China by different fertilizer treatments, were used to determine soil properties and soil dissolved organic matter (DOM) by chemical analysis, fluorescence excitation emission matrix (EEM) spectroscopy, and high resolution-transmission electron microscopy (HR-TEM). The binding features of DOM under the addition of Ca(2+) were analyzed using a two-dimensional (2D) Fourier transform infrared (FTIR) spectrometer further to explore the response of the DOM to increasing concentrations of Ca(2+). Long-term application of chemical fertilizers and goat manure increased soil organic carbon (SOC) by 1.34- and 1.86-fold, respectively, relative to the non-fertilized control (8.95 g.kg(-1)). Compared with the control, application of chemical fertilizers and manure significantly increased the concentrations of Ca, Mg, Si, humic and fulvic acid-like substances in DOM but decreased the amounts of trivalent metals (Al and Fe) and protein-like substances. Although crystalline Al/Fe nanoparticles and amorphous or short-range-order Si/Al nanoparticles existed in all DOM samples, crystalline Ca/Si nanoparticles were predominant in the samples treated with goat manure. Although organic matter and Si-O-containing nanoparticles were involved in the binding of Ca(2+) to DOM, application of chemical fertilizers weakened Ca(2+) association with components of the amide II group (1510 cm(-1)) and Si-O linkage (1080 cm(-1)), whereas application of goat manure enhanced the affinity of Ca(2+) for Si-O linkage. Our results suggested that the enrichment of Ca in gray desert soil possibly helps accumulate SOM by forming crystalline Ca/Si nanoparticles in addition to Ca(2+) and organic matter complexes.

  7. Mobilization and plant accumulation of prometryne in soil by two different sources of organic matter.

    PubMed

    Jiang, Lei; Ma, Li; Sui, Ying; Han, Su Qing; Yang, Hong

    2011-07-01

    Prometryne is a selective herbicide of the s-triazine chemical family. Due to its weak absorption onto soil, it readily leaches down through the soil and contaminates underground water. Application of organic manure to soil has become a widespread practice as a disposal strategy to improve soil properties. In this study, we demonstrated the effect of pig manure compost (PMC) and lake-bed sludge (SL) on the sorption/desorption, mobility and bioavailability of prometryne in soil using comprehensive analysis approaches. Downward movement of prometryne was monitored in the packed soil column. Addition of PMC or SL decreased considerably the mobility and total concentration of prometryne in the soil leachate. Bioavailability analyses with wheat plants revealed that addition of the organic matter reduced accumulation of prometryne in tissues and increased plant elongation and biomass. These results indicate that the organic amendments are effective in modifying adsorption and mobility of the pesticide in soil.

  8. Stability of soil organic matter accumulated under long-term use as a rice paddy

    NASA Astrophysics Data System (ADS)

    Nakahara, Shiko; Zou, Ping; Ando, Ho; Fu, Jianrong; Cao, Zhihong; Nakamura, Toshio; Sugiura, Yuki; Watanabe, Akira

    2016-01-01

    To understand the mechanism responsible for the enhanced accumulation of soil organic matter (SOM) under long-term use as a rice paddy, soil samples from the plow layer from 16 fields that have been used for irrigated rice production from 5 to 2000 years in the Hangzhou Bay, China, were analyzed. The humin in silt/clay particles was isolated as a representative relatively stable SOM pool, and isotopic signatures (δ13C, δ15N, and 14C concentration), 13C nuclear magnetic resonance (NMR) spectra, and biodegradability in an incubation were examined. The amounts of C and N in the bulk soil, silt/clay, and silt/clay-humin increased with increasing period of use as a rice paddy within the east and west zones, respectively. The degree of humification determined for humic acids indicated that the progression of humification did not contribute to the accumulation of C beyond 100 years. The δ15N of silt/clay-humin suggested an increase in organic N derived from chemical fertilizer or recent biological fixation with increasing amount of this fraction. The 14C concentration showed a negative correlation with the amount of silt/clay-humin C. The structural property with regard to 13C NMR spectra and biodegradability of the silt/clay-humin remained constant with the length of use as a rice paddy or 14C concentration. These results suggest that the larger C or N accumulation in the soils with a longer rice paddy history can be attributed to an enhancement in the accumulation of recently generated SOM rather than the stable accumulation of humus over the years.

  9. Accumulation of organic matter in Cretaceous oxygen-deficient depositional environments in the central Pacific Ocean

    USGS Publications Warehouse

    Dean, W.E.; Claypool, G.E.; Thide, J.

    1984-01-01

    Complete records of organic-carbon-rich Cretaceous strata were continuouslycored on the flanks of the Mid-Pacific Mountains and southern Hess Rise in the central North Pacific Ocean during DSDP Leg 62. Organic-carbon-rich laminated silicified limestones were deposited in the western Mid-Pacific Mountains during the early Aptian, a time when that region was south of the equator and considerably shallower than at present. Organic-carbon-rich, laminated limestone on southern Hess Rise overlies volcanic basement and includes 136 m of stratigraphic section of late Albian to early Cenomanian age. This limestone unit was deposited rapidly as Hess Rise was passing under the equatorial high-productivity zone and was subsiding from shallow to intermediate depths. The association of volcanogenic components with organic-carbon-rich strata on Hess Rise in the Mid-Pacific Mountains is striking and suggests that there was a coincidence of mid-plate volcanic activity and the production and accumulation of organic matter at intermediate water depths in the tropical Pacific Ocean during the middle Cretaceous. Pyrolysis assays and analyses of extractable hydrocarbons indicate that the organic matter in the limestone on Hess Rise is composed mainly of lipid-rich kerogen derived from aquatic marine organisms and bacteria. Limestones from the Mid-Pacific Mountains generally contain low ratios of pyrolytic hydrocarbons to organic carbon and low hydrogen indices, suggesting that the organic matter may contain a significant proportion of land-derived material, possibly derived from numerous volcanic islands that must have existed before the area subsided. The organic carbon in all samples analyzed is isotopically light (??13C - 24 to - 29 per mil) relative to most modern rine organic carbon, and the lightest carbon is also the most lipid-rich. There is a positive linear correlation between sulfur and organic carbon in samples from Hess Rise and from the Mid-Pacific Mountains. The slopes

  10. Ecogeomorphology of Spartina patens-dominated tidal marshes: Soil organic matter accumulation, marsh elevation dynamics, and disturbance

    USGS Publications Warehouse

    Cahoon, D.R.; Ford, M.A.; Hensel, P.F.; Fagherazzi, Sergio; Marani, Marco; Blum, Linda K.

    2004-01-01

    Marsh soil development and vertical accretion in Spartina patens (Aiton) Muhl.-dominated tidal marshes is largely dependent on soil organic matter accumulation from root-rhizome production and litter deposition. Yet there are few quantitative data sets on belowground production and the relationship between soil organic matter accumulation and soil elevation dynamics for this marsh type. Spartina patens marshes are subject to numerous stressors, including sea-level rise, water level manipulations (i.e., flooding and draining) by impoundments, and prescribed burning. These stressors could influence long-term marsh sustainability by their effect on root production, soil organic matter accumulation, and soil elevation dynamics. In this review, we summarize current knowledge on the interactions among vegetative production, soil organic matter accumulation and marsh elevation dynamics, or the ecogeomorphology, of Spartina patens-dominated tidal marshes. Additional studies are needed of belowground production/decomposition and soil elevation change (measured simultaneously) to better understand the links among soil organic matter accumulation, soil elevation change, and disturbance in this marsh type. From a management perspective, we need to better understand the impacts of disturbance stressors, both lethal and sub-lethal, and the interactive effect of multiple stressors on soil elevation dynamics in order to develop better management practices to safeguard marsh sustainability as sea level rises.

  11. Controls over soil organic matter accumulation and turnover in the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Barrett, J. E.; Virginia, R. A.; Wall, D. H.

    2005-12-01

    Terrestrial ecosystems of the Antarctic Dry Valleys are among the most inhospitable soil environments on Earth due to extreme climate and severe substrate limitation on soil food webs. These ecosystems are a challenge to understanding controls over carbon (C) cycling since some of the major events controlling organic matter accumulation likely occurred during the Last Glacial Maximum when paleo-lakes deposited sediments over much of the presently exposed surfaces. It remains unclear to what extent dry valley soil ecosystems are fueled by legacy organic matter derived from these ancient sediments vs. rapid cycling of contemporary organic matter inputs. We report a model to evaluate controls over the soil organic C in the dry valleys. The model is based upon determinations of standing pools of soil C and is driven by rate parameters estimated from 120 d incubations conducted over a range of soil temperature and moisture. Theoretical values for parameters describing internal C transformations are used to generate predictions about the distribution of C among slow and rapidly cycling pools. Potential levels of contemporary C inputs are derived from a previously published primary production model for Antarctic cryptobiotic communities. Simulations (100 y) run under average climate conditions indicated initially high rates of C turnover with mean residence times of 20-50 y followed by equilibration of soil organic C at 25% to 80% of initial standing stocks. The model is very sensitive to temperature resulting from the high Q10 values calculated from the 120 d incubations; hence steady state soil C levels are determined largely by regional differences in climate. Sensitivity analyses indicated that steady state C levels are also very responsive to variation in simulated primary production, microbial efficiency, the distribution of C into labile and recalcitrant pools, and soil moisture. Model simulations run under recently observed climate suggest that C dynamics are

  12. Effects of Insect-Proof Net Cultivation, Rice-Duck Farming, and Organic Matter Return on Rice Dry Matter Accumulation and Nitrogen Utilization

    PubMed Central

    Liu, Xin; Xu, Guochun; Wang, Qiangsheng; Hang, Yuhao

    2017-01-01

    Insect-proof net cultivation (IPN), rice-duck farming (RD), and organic matter return (OM) are important methods to realize sustainable development of rice production. A split-plot field experiment was performed to study the effects of IPN, RD, and OM on the rice yield, dry matter accumulation and N utilization. Results showed that compared to inorganic N fertilizer (IN), wheat straw return, and biogas residue return increased the rice yield by 2.11–4.28 and 4.78–7.67%, respectively, and also improved dry matter and N accumulation after the elongation stage (EG), dry matter and N translocation, and N recovery efficiency (NRE). These results attributed to an increase in leaf SPAD values and net photosynthetic rate (Pn) after the EG. Compared to conventional rice farming (CR), RD promoted the rice yield by 1.52–3.74%, and contributed to higher the leaf photosynthesis, dry matter and N accumulation, dry matter and N translocation, and NRE. IPN decreased the intensity of sun radiation in the nets due to the coverage of the insect-proof nets, which declined the leaf Pn, dry matter accumulation and translocation, N absorption and translocation, and NRE compared to open field cultivation (OFC). The rice yield of IPN were 2.48–4.98% lower than that of OFC. Compared to the interaction between CR and IN, the interaction between RD and OM improved the rice yield by 5.26–9.33%, and increased dry matter and N accumulation after the EG, dry matter and N translocation, and NRE. These results indicated that OM, RD and the interaction between RD and OM could promote dry matter accumulation and N utilization, which was beneficial to improve the rice yield. PMID:28174589

  13. Effects of Insect-Proof Net Cultivation, Rice-Duck Farming, and Organic Matter Return on Rice Dry Matter Accumulation and Nitrogen Utilization.

    PubMed

    Liu, Xin; Xu, Guochun; Wang, Qiangsheng; Hang, Yuhao

    2017-01-01

    Insect-proof net cultivation (IPN), rice-duck farming (RD), and organic matter return (OM) are important methods to realize sustainable development of rice production. A split-plot field experiment was performed to study the effects of IPN, RD, and OM on the rice yield, dry matter accumulation and N utilization. Results showed that compared to inorganic N fertilizer (IN), wheat straw return, and biogas residue return increased the rice yield by 2.11-4.28 and 4.78-7.67%, respectively, and also improved dry matter and N accumulation after the elongation stage (EG), dry matter and N translocation, and N recovery efficiency (NRE). These results attributed to an increase in leaf SPAD values and net photosynthetic rate (Pn) after the EG. Compared to conventional rice farming (CR), RD promoted the rice yield by 1.52-3.74%, and contributed to higher the leaf photosynthesis, dry matter and N accumulation, dry matter and N translocation, and NRE. IPN decreased the intensity of sun radiation in the nets due to the coverage of the insect-proof nets, which declined the leaf Pn, dry matter accumulation and translocation, N absorption and translocation, and NRE compared to open field cultivation (OFC). The rice yield of IPN were 2.48-4.98% lower than that of OFC. Compared to the interaction between CR and IN, the interaction between RD and OM improved the rice yield by 5.26-9.33%, and increased dry matter and N accumulation after the EG, dry matter and N translocation, and NRE. These results indicated that OM, RD and the interaction between RD and OM could promote dry matter accumulation and N utilization, which was beneficial to improve the rice yield.

  14. Cover crops alter phosphorus soil fractions and organic matter accumulation in a Peruvian cacao agroforestry system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In many tropical soils, excessive weathering of primary minerals confounded by intense agricultural production has resulted in the depletion of organic matter and plant available forms of phosphorus (P). Long-term growth of cover crops in tropical agroforestry systems have been shown to influence nu...

  15. Chemical form matters: differential accumulation of mercury following inorganic and organic mercury exposures in zebrafish larvae.

    PubMed

    Korbas, Malgorzata; Macdonald, Tracy C; Pickering, Ingrid J; George, Graham N; Krone, Patrick H

    2012-02-17

    Mercury, one of the most toxic elements, exists in various chemical forms each with different toxicities and health implications. Some methylated mercury forms, one of which exists in fish and other seafood products, pose a potential threat, especially during embryonic and early postnatal development. Despite global concerns, little is known about the mechanisms underlying transport and toxicity of different mercury species. To investigate the impact of different mercury chemical forms on vertebrate development, we have successfully combined the zebrafish, a well-established developmental biology model system, with synchrotron-based X-ray fluorescence imaging. Our work revealed substantial differences in tissue-specific accumulation patterns of mercury in zebrafish larvae exposed to four different mercury formulations in water. Methylmercury species not only resulted in overall higher mercury burdens but also targeted different cells and tissues than their inorganic counterparts, thus revealing a significant role of speciation in cellular and molecular targeting and mercury sequestration. For methylmercury species, the highest mercury concentrations were in the eye lens epithelial cells, independent of the formulation ligand (chloride versusl-cysteine). For inorganic mercury species, in absence of l-cysteine, the olfactory epithelium and kidney accumulated the greatest amounts of mercury. However, with l-cysteine present in the treatment solution, mercuric bis-l-cysteineate species dominated the treatment, significantly decreasing uptake. Our results clearly demonstrate that the common differentiation between organic and inorganic mercury is not sufficient to determine the toxicity of various mercury species.

  16. Chemical Form Matters: Differential Accumulation of Mercury Following Inorganic and Organic Mercury Exposures in Zebrafish Larvae

    SciTech Connect

    Korbas, Malgorzata; MacDonald, Tracy C.; Pickering, Ingrid J.; George, Graham N.; Krone, Patrick H.

    2013-04-08

    Mercury, one of the most toxic elements, exists in various chemical forms each with different toxicities and health implications. Some methylated mercury forms, one of which exists in fish and other seafood products, pose a potential threat, especially during embryonic and early postnatal development. Despite global concerns, little is known about the mechanisms underlying transport and toxicity of different mercury species. To investigate the impact of different mercury chemical forms on vertebrate development, we have successfully combined the zebrafish, a well-established developmental biology model system, with synchrotron-based X-ray fluorescence imaging. Our work revealed substantial differences in tissue-specific accumulation patterns of mercury in zebrafish larvae exposed to four different mercury formulations in water. Methylmercury species not only resulted in overall higher mercury burdens but also targeted different cells and tissues than their inorganic counterparts, thus revealing a significant role of speciation in cellular and molecular targeting and mercury sequestration. For methylmercury species, the highest mercury concentrations were in the eye lens epithelial cells, independent of the formulation ligand (chloride versus L-cysteine). For inorganic mercury species, in absence of L-cysteine, the olfactory epithelium and kidney accumulated the greatest amounts of mercury. However, with L-cysteine present in the treatment solution, mercuric bis-L-cysteineate species dominated the treatment, significantly decreasing uptake. Our results clearly demonstrate that the common differentiation between organic and inorganic mercury is not sufficient to determine the toxicity of various mercury species.

  17. Organic matter and nutrient accumulation in reclaimed kaolin mine soils of Georgia

    SciTech Connect

    Haddock, R.B.; Morris, L.A.; Hendrick, R.L.; Ogden, E.A.

    1996-12-31

    Deficiencies in soil nutrients, particularly nitrogen, commonly result from replacement of natural soil profiles by overburden low in organic matter and essential elements. Reclamation success depends largely upon creating nutrient reserves, establishing adequate nutrient cycles, and developing a functional soil profile. Loblolly pine (Pinus taeda L.) stand productivity and soil characteristics of reclaimed kaolin mines in Georgia were evaluated along a chronosequence. Estimated site index (age 25) ranged from 11.3 m on poor sites to 24.1 m on productive sites. Projected volume at age 25 ranged from 119 m{sup 3}/ha on poor sites to 280 m{sup 3}/ha on productive sites. These values indicate that growth on many mined lands is comparable to growth on adjacent non-mined lands. Soil profile development below the surface soil was nonexistent on all sites and differences in soil texture and color did not adequately explain observed differences in site productivity. Foliar deficiencies in phosphorus, potassium and several micronutrients suggest that availability of nutrients and potential mineralization explain the observed differences in site productivity.

  18. The accumulation of radiocesium in coarse marine sediment: effects of mineralogy and organic matter.

    PubMed

    Kim, Yeongkyoo; Kim, Kangjoo; Kang, Hee-Dong; Kim, Wan; Doh, Si-Hong; Kim, Do-Sung; Kim, Byoung-Ki

    2007-09-01

    The controlling factors affecting the accumulation of (137)Cs in marine sediment have not been investigated in detail, especially in coarse grained sediment. Eighty eight coarse marine sediment samples near Wuljin, Korea, were characterized by quantitative X-ray-diffraction (XRD), gamma-ray, and total organic carbon (TOC) analysis. Those factors were then compared. The grain size was in the range of -0.48 to 3.6Mdphi corresponding to sand grains. TOC content was in the range of 0.06-1.75%, and the concentration of (137)Cs was organic carbon are the most important factors controlling (137)Cs fixation. The combined effect of biotite and TOC for (137)Cs fixation was also confirmed by multiple regression analysis ((137)Cs activity=1.712.TOC (wt%)+0.202.biotite (wt%)-0.097; R(2)=0.819). The regressed slopes indicated that the (137)Cs-adsorption capacity of TOC was about 8.5 times higher than that of biotite. However, the amount of (137)Cs adsorbed onto biotite was 30% more than that adsorbed onto TOC due to much greater biotite content in the sediment. The role of biotite in fixing (137)Cs becomes more important in sediment with coarser grains, containing little TOC.

  19. Contributions of pyrogenic materials on the accumulation of soil organic matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil amendment of charcoal co-product (HHVdb as high as coal) from thermochemical waste biomass-to-energy conversion (slow/fast pyrolysis and gasification) has received considerable interests for both contaminated and agricultural lands. Biochar amendment not only increases soil organic carbon cont...

  20. Mineralization of organic-matter labile fragments in the humus-accumulative horizon of soddy-podzolic soil

    NASA Astrophysics Data System (ADS)

    Trofimov, S. Ya.; Lazarev, A. S.; Fokin, A. D.

    2012-12-01

    The mineralization rate of the 14C-labeled organic matter (OM) in the humus-accumulative AE horizon of a soddy-podzolic soil was determined in a laboratory experiment. The labeling was performed in a field experiment when microamounts of 14C-labeled glucose, glycine, and uracil were added to tree waste in sacks embedded in the upper layer of the forest litter. Samples containing 14C were taken from the AE horizon (above which the sacks with the labeled material were placed) 7 and 20 months after the beginning of the experiment. The soil samples were wetted to a water content corresponding to ˜80% of the total water capacity and placed in hermetic vessels containing vials with a periodically renewed alkali solution. The incubation was performed at room temperature for 3.5 months; the alkali solutions in the vials were replaced and titrated 12 times during this period. Mineralization curves were plotted from the amounts of carbon dioxide absorbed by a 0.3 N NaOH solution, which were calculated for each time interval; its 14C content was determined by the scintillation method. The experimental treatments also included the determination of the OM mineralization rate in material from the AE horizon pretreated with a heavy liquid or a heavy liquid and a 0.1 N NaOH solution. The differences between the mineralization rates of the labeled organic matter applied to the soil in the form of glucose, glycine, and uracil under the field conditions after the interaction for 7 and 20 months were revealed. The changes in the mineralization rate after the successive extraction of the labile organic matter with a heavy liquid and a 0.1 N NaOH solution were studied. It was shown that the transformation of the labeled low-molecular-weight organic compounds in the soil over 20 months included their strong inclusion into the humus composition, which was confirmed by the similar values of the mineralization constants of the native and 14C-labeled OM. In addition, the treatments with the

  1. Recent sedimentary history of organic matter and nutrient accumulation in the Ohuira Lagoon, northwestern Mexico.

    PubMed

    Ruiz-Fernández, Ana Carolina; Frignani, Mauro; Tesi, Tommaso; Bojórquez-Leyva, Humberto; Bellucci, Luca Giorgio; Páez-Osuna, Federico

    2007-08-01

    (210)Pb-derived sediment accumulation rates, as well as a suite of geochemical proxies (Al, Fe, delta(13)C, delta(15)N), were used to assess the time-dependent variations of C, N, and P fluxes recorded in two sediment cores collected at Ohuira Lagoon, in the Gulf of California, Mexico, during the last 100 years. Sedimentary C, N, and P concentrations increased with time and were related to land clearing, water impoundment, and agriculture practices, such as fertilization. C:N:P ratios and delta(13)C suggested an estuarine system that is responsive to increased C loading from a N-limited phytoplankton community, whereas delta(15)N values showed the transition between an estuarine-terrestrial to an estuarine-more marine environment, as a consequence of the declining freshwater supply into the estuary due to the channeling and impoundment of El Fuerte River between 1900 and 1956. The recent increases in nutrient fluxes (2- to 9-fold the pre-anthropogenic fluxes of C and N, and 2 to 13 times for P) taking place in the mainland from the 1940s, were related to the expansion of the intensive agriculture fields and to the more recent development of shrimp farming activities.

  2. Distribution of inorganic and organic nutrients in the South Pacific Ocean - evidence for long-term accumulation of organic matter in nitrogen-depleted waters

    NASA Astrophysics Data System (ADS)

    Raimbault, P.; Garcia, N.; Cerutti, F.

    2008-03-01

    the surface water was only 4-5 days in the upwelling, but up to 30 days in the SPG, where light isotopic δ15N signal noted in the suspended POM suggests that N2-fixation provides a dominant supply of nitrogen to phytoplankton. The most striking feature was the large accumulation of dissolved organic matter (DOM) in the SPG compared to the surrounding waters, in particular dissolved organic carbon (DOC) where concentrations were at levels rarely measured in oceanic waters (>100 μmoles l-1). Due to this large pool of DOM in the SPG photic layer, integrated values followed a converse geographical pattern to that of inorganic nutrients with a large accumulation in the centre of the SPG. Whereas suspended particulate matter in the mixed layer had a C/N ratio largely conforming to the Redfield stochiometry (C/N≍6.6), marked deviations were observed in this excess DOM (C/N≍16 to 23). The marked geographical trend suggests that a net in situ source exists, mainly due to biological processes. Thus, in spite of strong nitrate-depletion leading to low chlorophyll biomass, the closed ecosystem of the SPG can accumulate large amounts of C-rich dissolved organic matter. The implications of this finding are examined, the conclusion being that, due to weak lateral advection, the biologically produced dissolved organic carbon can be accumulated and stored in the photic layer for very long periods. In spite of the lack of seasonal vertical mixing, a significant part of new production (up to 34%), which was mainly supported by dinitrogen fixation, can be exported to deep waters by turbulent diffusion in terms of DOC. The diffusive rate estimated in the SPG (134 μmolesC m-2 d-1), was quite equivalent to the particles flux measured by sediments traps.

  3. Depositional environment and organic matter accumulation of Upper Ordovician–Lower Silurian marine shale in the Upper Yangtze Platform, South China

    USGS Publications Warehouse

    Li, Yangfang; Zhang, Tongwei; Ellis, Geoffrey S.; Shao, Deyong

    2017-01-01

    The main controlling factors of organic matter accumulation in the Upper Ordovician Wufeng–Lower Silurian Longmaxi Formations are complex and remain highly controversial. This study investigates the vertical variation of total organic carbon (TOC) content as well as major and trace element concentrations of four Ordovician–Silurian transition sections from the Upper Yangtze Platform of South China to reconstruct the paleoenvironment of these deposits and to improve our understanding of those factors that have influenced organic matter accumulation in these deposits.The residual TOC content of the Wufeng Formation averages 3.2% and ranges from 0.12 to 6.0%. The overlying lower Longmaxi Formation displays higher TOC content (avg. 4.4%), followed upsection by consistent and lower values that average 1.6% in the upper Longmaxi Formation. The concentration and covariation of redox-sensitive trace elements (Mo, U and V) suggest that organic-rich intervals of the Wufeng Formation accumulated under predominantly anoxic conditions. Organic-rich horizons of the lower Longmaxi Formation were deposited under strongly anoxic to euxinic conditions, whereas organic-poor intervals of the upper Longmaxi Formation accumulated under suboxic conditions. Positive correlations between redox proxies and TOC contents suggest that organic matter accumulation was predominantly controlled by preservation. Barium excess (Baxs) values indicate high paleoproductivity throughout the entire depositional sequence, with an increase in the lower Longmaxi Formation. Increased productivity may have been induced by enhanced P recycling, as evidenced by elevated Corg/Ptot ratios. Mo–U covariation and Mo/TOC values reveal that the Wufeng Formation was deposited under extremely restricted conditions, whereas the Longmaxi Formation accumulated under moderately restricted conditions. During the Late Ordovician, the extremely restricted nature of ocean circulation on the Upper Yangtze Platform in

  4. Carbon Characteristics and Biogeochemical Processes of Uranium Accumulating Organic Matter Rich Sediments in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Boye, K.; Noel, V.; Tfaily, M. M.; Dam, W. L.; Bargar, J.; Fendorf, S. E.

    2015-12-01

    Uranium plume persistence in groundwater aquifers is a problem on several former ore processing sites on floodplains in the upper Colorado River Basin. Earlier observations by our group and others at the Old Rifle Site, CO, have noted that U concentrations are highest in organic rich, fine-grained, and, therefore, diffusion limited sediment material. Due to the constantly evolving depositional environments of floodplains, surficial organic matter may become buried at various stages of decomposition, through sudden events such as overbank flooding and through the slower progression of river meandering. This creates a discontinuous subsurface distribution of organic-rich sediments, which are hotspots for microbial activity and thereby central to the subsurface cycling of contaminants (e.g. U) and biologically relevant elements (e.g. C, N, P, Fe). However, the organic matter itself is poorly characterized. Consequently, little is known about its relevance in driving biogeochemical processes that control U fate and transport in the subsurface. In an investigation of soil/sediment cores from five former uranium ore processing sites on floodplains distributed across the Upper Colorado River Basin we confirmed consistent co-enrichment of U with organic-rich layers in all profiles. However, using C K-edge X-ray Absorption Spectroscopy (XAS) coupled with Fourier-Transformed Ion-Cyclotron-Resonance Mass-Spectroscopy (FT-ICR-MS) on bulk sediments and density-separated organic matter fractions, we did not detect any chemical difference in the organic rich sediments compared to the surrounding coarser-grained aquifer material within the same profile, even though there were differences in organic matter composition between the 5 sites. This suggests that U retention and reduction to U(IV) is independent of C chemical composition on the bulk scale. Instead it appears to be the abundance of organic matter in combination with a limited O2 supply in the fine-grained material that

  5. Organic matter accumulation in a thick, lacustrine, Lower Cretaceous sedimentary sequence in Gabon: Facies and maturity variations

    SciTech Connect

    Ralf, L.; Wilkes, H.

    1995-08-01

    A total of about forty core samples representing an almost two kilometer thick, lacustrine sedimentary sequence of Neocomian age in the south Gabon basin was analysed for its hydrocarbon generation potential, maturity and further organic matter characteristics. Organic carbon concentrations are variable and not particularly high (0.4-5%), but the organic matter is hydrogen-rich. This hydrogen-richness finds its expression in high hydrogen indices (about 600 to 700 mg hc/g TOC) which decrease with increasing maturation. According to pyrolysis experiments, hydrocarbon generation from the immature sediments is predicted to begin only at temperatures greater than 100{degrees}C and reaches a maximum only at temperatures greater than 150{degrees}C, because the organic material possesses a very high thermal stability. Such a high thermal stability was already established for lacustrine organic matter from some other deposits (e.g. Green River oil shales) and is certainly an important factor for the evaluation of hydrocarbon potentials in lacustrine basins. The maturity of the organic matter changes from immature to mature with increasing depth. Peak oil generation stage was almost reached by the deepest samples as indicated by a variety of optical and geochemical parameters. Generated petroleum should be wax-rich and rather poor in gas, except if oil to gas cracking occurs within the source rocks. With respect to molecular geochemistry, several interesting pecularities were found. As an example, variable distributions of several unknown tetracyclic terpanes (molecular formula C{sub 24}H{sub 42}) were detected in the samples of lower maturity. Two series of terpane pseudohomologues occur in the more mature samples, one of which is assumed to consist of diahopanes, the other yet remaining unknown. These compounds seem to be widely distributed in lacustrine sediments of higher maturity, thus possibly representing maturity and/or facies indicators.

  6. Influence of soil type and organic matter content on the bioavailability, accumulation, and toxicity of alpha-cypermethrin in the springtail Folsomia candida.

    PubMed

    Styrishave, Bjarne; Hartnik, Thomas; Christensen, Peter; Andersen, Ole; Jensen, John

    2010-05-01

    The influence of organic matter (OM) content on alpha-cypermethrin porewater concentrations and springtail Folsomia candida accumulation was investigated in two soils with different levels of organic matter, a forest soil with a total organic carbon (TOC) content of 5.0% (OM=11.5%) and an agricultural soil with a TOC content of 1.3% (OM=4.0%). Also, the effects of alpha-cypermethrin concentrations in soil and pore water and the influence of soil aging on springtail reproduction were investigated. Springtail reproduction was severely affected by increasing alpha-cypermethrin in soil with 1.3% TOC; the median effective concentration value (EC50) was estimated to 23.4 mg/kg (dry wt). Reproduction was only marginally affected in the soil with 5.0% TOC, and no EC50 value could be estimated. However, when expressing alpha-cypermethrin accumulation as a function of soil alpha-cypermethrin concentrations, no difference was found between the two soil types, and no additional alpha-cypermethrin uptake was observed at soil concentrations above approximately 200 mg/kg (dry wt). By using solid-phase microextraction (SPME), it could be demonstrated that alpha-cypermethrin porewater concentrations were higher in the soil with low organic matter (LOM) content than in the soil with high organic matter (HOM) content. Furthermore, a clear relationship was found between alpha-cypermethrin concentrations in springtails and porewater. Soil aging was not found to exert any effect on alpha-cypermethrin toxicity toward springtails. The study indicates that the springtail's accumulation of alpha-cypermethrin and reproduction is governed by alpha-cypermethrin porewater concentrations rather than the total alpha-cypermethrin concentration in soil.

  7. Terrestrial and Marine Organic Matter Accumulation in Hudson Bay: A High-Resolution Record of Climate/Watershed Processes over the Late Holocene

    NASA Astrophysics Data System (ADS)

    Alleau, Y.; Goni, M. A.; Kolcynski, L.; St-Onge, G.; Lajeunesse, P.; Haberzettl, T.

    2014-12-01

    A high-resolution record of organic matter accumulation in sediments from a combined gravity-piston core was collected from a site located at a water depth of 104 m inside Nastapoka Sound in the south-eastern region of Hudson Bay. The drainage basins in this region of Hudson Bay coincide roughly with the present-day tree line location and are within the forest-tundra transition zone. CAT- Scan and multi-sensor core logger data revealed relatively uniform sediments throughout the core. 14C-based geochronology indicates that the combined record extends to ~3200 cal BP and that accumulation rates were relatively constant (0.1-0.2 cm/y). Organic carbon, inorganic carbon and nitrogen contents display down-core variability consistent with changes in organic matter inputs but overall relatively stable depositional conditions over the last 3,000 years. Compositionally, we measured steady increases in the carbon:nitrogen ratios and lignin phenol content of sedimentary organic matter from 3200 cal BP to present consistent with enhanced inputs of vascular plant-derived organic matter. Lignin compositions (i.e. S/V and C/V phenol ratios) throughout the core are consistent with contributions from a mixture of conifer and angiosperm non-woody plant sources. Steady decreases in both S/V and C/V phenol ratios since 3200 cal BP to the present indicate enhanced contributions from conifer-dominated vegetation and are consistent with a steady expansion of boreal forests (white and black spruce) over shrub -dominated tundra (dwaf birch, willows, sedges) in this southern Arctic region over the late Holocene. No clear trends in the ratio of combustion products over lignin products are evident, suggesting a low fire frequency in the area during the covered time span of the record.

  8. Seasonal variability of the organic matter in a sedimentary coastal environment: sources, degradation and accumulation (continental shelf of the Gulf of Lions—northwestern Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Buscail, Roselyne; Pocklington, Roger; Germain, Claire

    1995-06-01

    The temporal variations of the superficial (0-1 cm) sedimentary organic matter were studied at a depth of 26 m on the continental shelf of the Gulf of Lions (northwestern Mediterranean). The samples were analyzed for total organic carbon, coarse organic carbon (>40 μm), hydrolyzable organic carbon, nitrogen, total amino acids, total and individual sugars (HPLC), lignin-derived compounds (HPLC) and kerogens (acid-soluble, humic substances and humin). Seasonal variations of the organic compounds are related to the sedimentological, hydrodynamical and physico-chemical environmental conditions. The mean annual values of the different organic compounds analyzed show the low quantities and their evolved character at the sediment-water interface: 0.5% total org C (TOC) (d.w.), 0.049% N (d.w.), C/N: 11.2, coarse org C (COQ: 62% of TOC, hydrolyzable org C: 45% TOC. The labile compounds represent a low percentage of the total organic matter (TOM), amino-acids: 12% of TOM and sugars: 5% of TOM. The relative proportions of soluble (humic) and insoluble kerogens (humin), respectively 6% and 94% of TOC are typical of a highly evolved organic matter. The large contribution of plant remains confirmed by the high proportion of COC, corresponds to a low proportion of humic substances and a high degree of condensation ( H/C = 1.3 ). The infrared spectroscopy determination of the functional groups of the humic substances permits us to confirm both autochtonous (marine) and allochtonous (terrestrial) sources of organic matter in the Têt prodeltaïc accumulation area. Numerous functional groups identified reveal the fresh quality of the organic inputs at the sediment-water interface. Aliphaticity is well marked and nitrogenous compounds (1 and 2 amines) correspond to autochtonous production (in spring: phyto- and zoo-planktonic blooms in the euphotic zone; in summer: primary production under the thermocline and phytobenthic blooms). Sugars are well represented, but from two origins

  9. The impact of selected soil organic matter fractions on the PAH accumulation in the agricultural soils from areas of different anthropopressure.

    PubMed

    Klimkowicz-Pawlas, Agnieszka; Smreczak, Bozena; Ukalska-Jaruga, Aleksandra

    2016-04-11

    The level of 16PAH accumulation was determined in 75 soil samples collected from two agricultural regions of Poland corresponding to the smallest Polish administrative unit at the LAU 2 level. Both regions are characterised by similar territory and soil cover but different history of pollution and different pressure of anthropogenic factors. Overall accumulation of Σ16PAHs in the upper soil layer was within a wide range with the median value of 291 and 1253 μg kg(-1) for a non-contaminated and high anthropopressure region, respectively. Nearly 75 % of the total polycyclic aromatic hydrocarbon (PAH) pool was represented by high molecular four-to-six-ring compounds, deriving mainly from combustion sources. The total organic carbon (Corg) and black carbon (BC) contents were the main parameters associated with the PAH accumulation in soils, and the level of the regional anthropopressure was considered a significant factor. The strongest links of PAHs/BC (r = 0.70, p ≤ 0.05) were found in the region of high anthropopressure, characterized by a relatively high content of BC (up to 45.3 g kg(-1)), which tends to heavily adsorb hydrocarbons. In a region of low influence exerted by anthropopressure, the PAH/Corg or PAH/BC relationships were not observed, which may suggest different diffuse sources of PAH origin and a dominant role of other organic matter fractions in retention of PAHs in soils.

  10. Changes in pH, dissolved organic matter and Cd species in the rhizosphere soils of Cd phytostabilizer Athyrium wardii (Hook.) Makino involved in Cd tolerance and accumulation.

    PubMed

    Zhang, Shujin; Li, Tingxuan; Zhang, Xizhou; Yu, Haiying; Zheng, Zicheng; Wang, Yongdong; Hao, Xiaoqing; Pu, Yong

    2014-03-01

    Phytostabilization has great practical significance and flexibility in the ecological restoration of mining tailings and remediation of heavy metals polluted soils. However, potential use of metallophytes in phytostabilization is limited by a lack of knowledge of many basic plant processes. A mining ecotype (ME) Athyrium wardii, Pb/Cd phytostabilizer, and a non-mining ecotype (NME) A. wardii were grown in a pot experiment to investigate the chemical characteristics of the rhizosphere when exposed to the Cd polluted soils. Rhizobags were used to collect rhizosphere and bulk soils, separately. The results indicated that the ME A. wardii was more efficient in Cd accumulation in the root than NME after growing in Cd polluted soils for 50 days in a green house. Soil solution pH and dissolved organic carbon (DOC) concentration in the rhizosphere of ME A. wardii were higher than in the bulk soil and initial values (before planting), whereas the increment in the ME A. wardii were greater than NME. Owing to the increasing of rhizosphere soil pH, exchangeable Cd significantly decreased, whereas the other Cd species were increased with increasing soil DOC values. It is assumed that the ME A. wardii was effective in stabilizing Cd from the mobile fraction to non-mobile fractions. Results from this study suggest that rhizosphere alkalinization and the exudation of high amounts of dissolved organic matter (DOM) to reduce heavy metal mobility might be the two important mechanisms involved in the metal tolerance/accumulation of ME A. wardii.

  11. Complex interplay between formation routes and natural organic matter modification controls capabilities of C60 nanoparticles (nC60) to accumulate organic contaminants.

    PubMed

    Hou, Lei; Fortner, John D; Wang, Ximeng; Zhang, Chengdong; Wang, Lilin; Chen, Wei

    2017-01-01

    Accumulation of organic contaminants on fullerene nanoparticles (nC60) may significantly affect the risks of C60 in the environment. The objective of this study was to further understand how the interplay of nC60 formation routes and humic acid modification affects contaminant adsorption of nC60. Specifically, adsorption of 1,2,4,5-tetrachlorobenzene (a model nonionic, hydrophobic organic contaminant) on nC60 was greatly affected by nC60 formation route - the formation route significantly affected the aggregation properties of nC60, thus affecting the available surface area and the extent of adsorption via the pore-filling mechanism. Depending on whether nC60 was formed via the "top-down" route (i.e., sonicating C60 powder in aqueous solution) or "bottom-up" route (i.e., phase transfer from an organic solvent) and the type of solvent involved (toluene versus tetrahydrofuran), modification of nC60 with Suwannee River humic acid (SRHA) could either enhance or inhibit the adsorption affinity of nC60. The net effect depended on the specific way in which SRHA interacted with C60 monomers and/or C60 aggregates of different sizes and morphology, which determined the relative importance of enhanced adsorption from SRHA modification via preventing C60 aggregation and inhibited adsorption through blocking available adsorption sites. The findings further demonstrate the complex mechanisms controlling interactions between nC60 and organic contaminants, and may have significant implications for the life-cycle analysis and risk assessment of C60.

  12. Accumulation of humic-like and proteinaceous dissolved organic matter in zero-discharge aquaculture systems as revealed by fluorescence EEM spectroscopy.

    PubMed

    Yamin, G; Borisover, M; Cohen, E; van Rijn, J

    2017-01-01

    Recirculating aquaculture systems (RAS), offering many economic and fish husbandry benefits, are characterized by an accumulation of dissolved organic matter (DOM) and, specifically, humic substances (HS). As reported in a number of studies, HS may affect biological activity in both invertebrates and vertebrates. Given the accumulation of HS in RAS, it is therefore of great interest to characterize DOM and, specifically, its HS fraction in the RAS. The present study was aimed at characterizing long-term changes in fluorescent DOM composition in the culture water of RAS systems, which were operated in a novel, zero water exchange mode. Two such zero-discharge recirculating systems (ZDS) were examined: a freshwater system, stocked with hybrid tilapia (Oreochromis aureus x Oreochromis niloticus) and a marine system, stocked with gilthead seabream (Sparus aurata). Excitation-emission matrices (EEMs) of fluorescence, coupled with parallel factor analysis (PARAFAC), were used to characterize and quantify the different DOM components in the ZDS. In the culture water, one tryptophan-like and four HS-like components were identified. The fluorescence intensities of three of the HS-like components as well as the tryptophan-like component increased at comparable rates during ZDS operation while a much slower accumulation of these compounds was observed in a parallel operated, flow-through, freshwater aquarium. The ZDS examined in this study comprised a sludge digestion stage where a considerable accumulation of all fluorescent components was detected. A HS-like components and a tryptophan-like component in blood of tilapia from the freshwater ZDS were similar to components found in the culture water. Blood levels of both components were higher in fish cultured in the DOM-rich ZDS than in fish raised in the control, flow-through freshwater aquarium. Fluorescence of the HS-like component found in the fish blood increased also with time of ZDS operation. The finding that fish

  13. Effects of chloride, sulfate and natural organic matter (NOM) on the accumulation and release of trace-level inorganic contaminants from corroding iron.

    PubMed

    Peng, Ching-Yu; Ferguson, John F; Korshin, Gregory V

    2013-09-15

    This study examined effects of varying levels of anions (chloride and sulfate) and natural organic matter (NOM) on iron release from and accumulation of inorganic contaminants in corrosion scales formed on iron coupons exposed to drinking water. Changes of concentrations of sulfate and chloride were observed to affect iron release and, in lesser extent, the retention of representative inorganic contaminants (vanadium, chromium, nickel, copper, zinc, arsenic, cadmium, lead and uranium); but, effects of NOM were more pronounced. DOC concentration of 1 mg/L caused iron release to increase, with average soluble and total iron concentrations being four and two times, respectively, higher than those in the absence of NOM. In the presence of NOM, the retention of inorganic contaminants by corrosion scales was reduced. This was especially prominent for lead, vanadium, chromium and copper whose retention by the scales decreased from >80% in the absence of NOM to <30% in its presence. Some of the contaminants, notably copper, chromium, zinc and nickel retained on the surface of iron coupons in the presence of DOC largely retained their mobility and were released readily when ambient water chemistry changed. Vanadium, arsenic, cadmium, lead and uranium retained by the scales were largely unsusceptible to changes of NOM and chloride levels. Modeling indicated that the observed effects were associated with the formation of metal-NOM complexes and effects of NOM on the sorption of the inorganic contaminants on solid phases that are typical for iron corrosion in drinking water.

  14. Is old organic matter simple organic matter?

    NASA Astrophysics Data System (ADS)

    Nunan, Naoise; Lerch, Thomas; Pouteau, Valérie; Mora, Philippe; Changey, Fréderique; Kätterer, Thomas; Herrmann, Anke

    2016-04-01

    Bare fallow soils that have been deprived of fresh carbon inputs for prolonged periods contain mostly old, stable organic carbon. In order to shed light on the nature of this carbon, the functional diversity profiles (MicroResp™, Biolog™ and enzyme activity spectra) of the microbial communities of long-term barefallow soils were analysed and compared with those of the microbial communities from their cultivated counterparts. The study was based on the idea that microbial communities adapt to their environment and that therefore the catabolic and enzymatic profiles would reflect the type of substrates available to the microbial communities. The catabolic profiles suggested that the microbial communities in the long-term bare-fallow soil were exposed to a less diverse range of substrates and that these substrates tended to be of simpler molecular forms. Both the catabolic and enzyme activity profiles suggested that the microbial communities from the long-term bare-fallow soils were less adapted to using polymers. These results do not fit with the traditional view of old, stable carbon being composed of complex, recalcitrant polymers. An energetics analysis of the substrate use of the microbial communities for the different soils suggested that the microbial communities from the long-term bare-fallow soils were better adapted to using readily oxidizable,although energetically less rewarding, substrates. Microbial communities appear to adapt to the deprivation of fresh organic matter by using substrates that require little investment.

  15. Historical accumulation of N and P and sources of organic matter and N in sediment in an agricultural reservoir in Northern China.

    PubMed

    Ni, Zhaokui; Wang, Shengrui; Chu, Zhaosheng; Jin, Xiangcan

    2015-07-01

    Agriculture has significantly intensified in Northern China since the 1980s. This intensification has caused a series of simultaneous lake ecological environment problems in this area. However, little is known about the role of agricultural intensification in historical nutrient dynamics and lake eutrophication processes. The Yanghe reservoir, a typical artificial reservoir characterized by high-yield grain production in Northern China, has been suffering from serious eutrophication and water quality deterioration. This study evaluates the effect of agricultural intensification on nutrient retention and source in the sediments using (210)Pb and (137)Cs dating techniques combined with stable C and N isotopes (δ(13)C, δ(15)N) and total organic carbon/total nitrogen, as well as total nitrogen (TN), total phosphorus (TP), and P fractions. Results suggested that agricultural intensification was keys to the accumulation of nutrients and was a source of organic matter (OM) and N in sediment for the past three decades. N and P pollution started in the 1980s and worsened from the 1990s. Good water quality status and steady sedimentary environment with low nutrient content (mean concentrations of TN and TP were 815 and 387 mg kg(-1), respectively) were observed before the 1980s. Sediment OM was primarily derived from aquatic plants, whereas N was primarily derived from soil erosion and aquatic plants. However, water quality began to deteriorate while sediment nutrient content began to increase after the 1980s, with values of 1186 mg kg(-1) for TN and 434 mg kg(-1) for TP in 1989. Sediment OM was primarily derived from C3 (sweet potato) and aquatic plants, and the major sources of N were soil erosion, fertilizer, and sewage, which accompany the rapid development of agriculture in the watershed. Following the further growth of grain production and fertilizers, excessive external nutrient loading has resulted in dramatic water quality and ecosystem deterioration since 1990

  16. Arctic River organic matter transport

    NASA Astrophysics Data System (ADS)

    Raymond, Peter; Gustafsson, Orjan; Vonk, Jorien; Spencer, Robert; McClelland, Jim

    2016-04-01

    Arctic Rivers have unique hydrology and biogeochemistry. They also have a large impact on the Arctic Ocean due to the large amount of riverine inflow and small ocean volume. With respect to organic matter, their influence is magnified by the large stores of soil carbon and distinct soil hydrology. Here we present a recap of what is known of Arctic River organic matter transport. We will present a summary of what is known of the ages and sources of Arctic River dissolved and particulate organic matter. We will also discuss the current status of what is known about changes in riverine organic matter export due to global change.

  17. An examination of historic inorganic sedimentation and organic matter accumulation in several marsh types within the Mobile Bay and and Mobile-Tensaw River Delta region

    USGS Publications Warehouse

    Smith, Christopher G.; Osterman, Lisa E.; Poore, Richard Z.

    2013-01-01

    Mass accumulation rates (MAR; g cm-2 y-1), linear sedimentation rates (LSR; cm y-1), and core geochronology derived from excess lead-210 (210Pb) profiles and inventories measured in six sediment cores collected from marsh sites from the MobileTensaw River Delta and Mobile Bay region record the importance of both continuous and event-driven inorganic sedimentation over the last 120 years. MAR in freshwater marshes varied considerably between sites and through time (0.24 and 1.31 g cm-2 y-1). The highest MARs occurred in the 1950s and 1960s and correspond to record discharge events along the Mobile and Tensaw Rivers. In comparison, MAR at salt marsh sites increased almost threefold over the last 120 years (0.05 to 0.18 g cm-2 y-1 or 0.23 to 0.48 cm y-1). From 1880 to 1960, organic accumulation remained fairly constant (20%), while intermittent pulses of high inorganic sedimentation were observed following 1960. The pulses in inorganic sedimentation coincide with several major hurricanes (e.g., Hurricanes Camille, Fredric, Georges, and Ivan). The nearly threefold increase in MAR in salt marshes during the last 120 years would thus appear to be partially dependent on inorganic sedimentation from storm events. This study shows that while hurricanes, floods, and other natural hazards are well-known threats to human infrastructure and coastal ecosystems, these events also transport sediment to marshes that help abate other pressures such as sea-level rise (SLR) and subsidence.

  18. Spectral Characterization of Plant-Derived Dissolved Organic Matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic matter (DOM) derived from fresh or early-stage decomposing soil amendment materials may play an important role in the process of organic matter accumulation. The DOM can influence many chemical processes, due to its reactivity with both soil solution components and soil surfaces. W...

  19. Simulation of accumulated matter from human feces in the sawdust matrix of the composting toilet.

    PubMed

    Hotta, Shinya; Funamizu, Naoyuki

    2009-02-01

    A bio-kinetic model for aerobic biodegradation of human feces was applied to the practical operation of the composting toilet. The first aim of this study was to describe nitrogen transformation in the toilet as well as organic carbon. Second aim was to obtain the kinetic parameters for better prediction of accumulated matter for a long time of the practical operation. Six simple fractions of fecal carbon (slowly hydrolyzable matter, easily hydrolyzable matter, readily biodegradable matter, biologically inert type of matter etc.) were prepared in the model. Nitrogen factors were incorporated to each factor of fecal carbon. Modification of only one kinetic parameter for hydrolysis of slowly hydrolyzable carbon was required to obtain the best fitting curve of accumulation in the toilet. Model prediction for one-year operation of the toilet showed that temporal accumulation of biodegradable organic matter was significant in the first stage whereas main accumulation would be biologically inert type of organic matter at the end of the operation.

  20. Influence of elevated alkalinity and natural organic matter (NOM) on tissue-specific metal accumulation and reproductive performance in fathead minnows during chronic, multi-trophic exposures to a metal mine effluent.

    PubMed

    Ouellet, Jacob D; Dubé, Monique G; Niyogi, Som

    2013-09-01

    Metal bioavailability in aquatic organisms is known to be influenced by various water chemistry parameters. The present study examined the influence of alkalinity and natural organic matter (NOM) on tissue-specific metal accumulation and reproductive performance of fathead minnows (Pimephales promelas) during environmentally relevant chronic exposures to a metal mine effluent (MME). Sodium bicarbonate (NaHCO3) or NOM (as commercial humic acid) were added to a Canadian MME [45 percent process water effluent (PWE)] in order to evaluate whether increases in alkalinity (3-4 fold) or NOM (~1.5-3mg/L dissolved organic carbon) would reduce metal accumulation and mitigate reproductive toxicity in fathead minnows during a 21-day multi-trophic exposure. Eleven metals (barium, boron, cobalt, copper, lithium, manganese, molybdenum, nickel, rubidium, selenium, and strontium) were elevated in the 45 percent PWE relative to the reference water. Exposure to the unmodified 45 percent PWE resulted in a decrease of fathead minnow egg production (~300 fewer eggs/pair) relative to the unmodified reference water, over the 21-day exposure period. Water chemistry modifications produced a modest decrease in free ion activity of some metals (as shown by MINTEQ, Version 3) in the 45 percent PWE exposure water, but did not alter the metal burden in the treatment-matched larval Chironomus dilutus (the food source of fish during exposure). The tissue-specific metal accumulation increased in fish exposed to the 45 percent PWE relative to the reference water, irrespective of water chemistry modifications, and the tissue metal concentrations were found to be similar between fish in the unmodified and modified 45 percent PWE (higher alkalinity or NOM) treatments. Interestingly however, increased alkalinity and NOM markedly improved fish egg production both in the reference water (~500 and ~590 additional eggs/pair, respectively) and 45 percent PWE treatments (~570 and ~260 additional eggs

  1. Accumulation of persistent organic pollutants in parasites.

    PubMed

    Yen Le, T T; Rijsdijk, Laurie; Sures, Bern; Hendriks, A Jan

    2014-08-01

    Organisms are simultaneously exposed to various stressors, including parasites and pollutants, that may interact with each other. Research on the accumulation of organic compounds in host-parasite systems is scant compared to studies on parasite-metal interactions and mainly focuses on intestinal endoparasites. We reviewed factors that determine the accumulation of persistent organic pollutants (POPs) in host-parasite systems. The wet/dry weight-based concentration of POPs in these parasites is usually lower than that in host tissues because of lower lipid contents in the parasites. However, the fractionation of the pollutants into parasites and their hosts may vary, depending on developmental stages in the life cycle of the parasites. Developmental stages determine the trophic relationship and the taxon of the parasite in the host-parasite systems because of different feeding strategies between the stages. Lipid-corrected concentrations of organic chemicals in the host are usually higher than those in the endoparasites studied. This phenomenon is attributed to a number of physiological and behavioural processes, such as feeding selectivity and strategy and excretion. Moreover, no significant relationship was found between the accumulation factor (i.e. the ratio between the lipid-corrected concentrations in parasites and in their hosts) for polychlorinated biphenyls and either hydrophobicity or molecular size. At the intermediate hydrophobicity, larger and more lipophilic compounds are accumulated at higher levels in both parasites and the host than smaller and less lipophilic compounds. The bioaccumulation of POPs in parasites is affected by some other abiotic, e.g. temperature, and biotic factors, e.g. the number of host species infected by parasites.

  2. Extraterrestrial organic matter: a review

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.

    1998-01-01

    We review the nature of the widespread organic material present in the Milky Way Galaxy and in the Solar System. Attention is given to the links between these environments and between primitive Solar System objects and the early Earth, indicating the preservation of organic material as an interstellar cloud collapsed to form the Solar System and as the Earth accreted such material from asteroids, comets and interplanetary dust particles. In the interstellar medium of the Milky Way Galaxy more than 100 molecular species, the bulk of them organic, have been securely identified, primarily through spectroscopy at the highest radio frequencies. There is considerable evidence for significantly heavier organic molecules, particularly polycyclic aromatics, although precise identification of individual species has not yet been obtained. The so-called diffuse interstellar bands are probably important in this context. The low temperature kinetics in interstellar clouds leads to very large isotopic fractionation, particularly for hydrogen, and this signature is present in organic components preserved in carbonaceous chondritic meteorites. Outer belt asteroids are the probable parent bodies of the carbonaceous chondrites, which may contain as much as 5% organic material, including a rich variety of amino acids, purines, pyrimidines, and other species of potential prebiotic interest. Richer in volatiles and hence less thermally processed are the comets, whose organic matter is abundant and poorly characterized. Cometary volatiles, observed after sublimation into the coma, include many species also present in the interstellar medium. There is evidence that most of the Earth's volatiles may have been supplied by a 'late' bombardment of comets and carbonaceous meteorites, scattered into the inner Solar System following the formation of the giant planets. How much in the way of intact organic molecules of potential prebiotic interest survived delivery to the Earth has become an

  3. Photodissolution of soil organic matter

    USGS Publications Warehouse

    Mayer, L.M.; Thornton, K.R.; Schick, L.L.; Jastrow, J.D.; Harden, J.W.

    2012-01-01

    Sunlight has been shown to enhance loss of organic matter from aquatic sediments and terrestrial plant litter, so we tested for similar reactions in mineral soil horizons. Losses of up to a third of particulate organic carbon occurred after continuous exposure to full-strength sunlight for dozens of hours, with similar amounts appearing as photodissolved organic carbon. Nitrogen dissolved similarly, appearing partly as ammonium. Modified experiments with interruption of irradiation to include extended dark incubation periods increased loss of total organic carbon, implying remineralization by some combination of light and microbes. These photodissolution reactions respond strongly to water content, with reaction extent under air-dry to fully wet conditions increasing by a factor of 3-4 fold. Light limitation was explored using lamp intensity and soil depth experiments. Reaction extent varied linearly with lamp intensity. Depth experiments indicate that attenuation of reaction occurs within the top tens to hundreds of micrometers of soil depth. Our data allow only order-of-magnitude extrapolations to field conditions, but suggest that this type of reaction could induce loss of 10-20% of soil organic carbon in the top 10. cm horizon over a century. It may therefore have contributed to historical losses of soil carbon via agriculture, and should be considered in soil management on similar time scales. ?? 2011 Elsevier B.V.

  4. Trace element accumulation in lotic dragonfly nymphs: Genus matters

    PubMed Central

    Fletcher, Dean E.; Lindell, Angela H.; Stillings, Garrett K.; Blas, Susan A.; McArthur, J. Vaun

    2017-01-01

    Constituents of coal combustion waste (CCW) expose aquatic organisms to complex mixtures of potentially toxic metals and metalloids. Multi-element trace element analyses were used to distinguish patterns of accumulation among 8 genera of dragonfly nymphs collected from two sites on a CCW contaminated coastal plain stream. Dragonfly nymphs are exceptional for comparing trace element accumulation in syntopic macroinvertebrates that are all predators within the same order (Odonata) and suborder (Anisoptera), but differ vastly in habitat use and body form. Sixteen trace element (Be, V, Cr, Ni, Cu, Zn, As, Se, Sr, Cd, Sb, Cs, Ba, Hg, Tl, and Pb) were analyzed and trophic position and basal carbon sources assessed with stable isotope analyses (C and N). Trophic positions varied within relatively narrow ranges. Size did not appear to influence trophic position. Trophic position rarely influenced trace element accumulation within genera and did not consistently correlate with accumulation among genera. Patterns between δ13C and trace element accumulation were generally driven by differences between sites. An increase in trace element accumulation was associated with a divergence of carbon sources between sites in two genera. Higher trace element concentrations tended to accumulate in nymphs from the upstream site, closer to contaminant sources. Influences of factors such as body form and habitat use appeared more influential on trace element accumulation than phylogeny for several elements (Ni, Ba, Sr, V, Be, Cd, and Cr) as higher concentrations accumulated in sprawler and the climber-sprawler genera, irrespective of family. In contrast, As and Se accumulated variably higher in burrowers, but accumulation in sprawlers differed between sites. Greater variation between genera than within genera suggests genus as an acceptable unit of comparison in dragonfly nymphs. Overall, taxonomic differences in trace element accumulation can be substantial, often exceeding variation

  5. Trace element accumulation in lotic dragonfly nymphs: Genus matters.

    PubMed

    Fletcher, Dean E; Lindell, Angela H; Stillings, Garrett K; Blas, Susan A; McArthur, J Vaun

    2017-01-01

    Constituents of coal combustion waste (CCW) expose aquatic organisms to complex mixtures of potentially toxic metals and metalloids. Multi-element trace element analyses were used to distinguish patterns of accumulation among 8 genera of dragonfly nymphs collected from two sites on a CCW contaminated coastal plain stream. Dragonfly nymphs are exceptional for comparing trace element accumulation in syntopic macroinvertebrates that are all predators within the same order (Odonata) and suborder (Anisoptera), but differ vastly in habitat use and body form. Sixteen trace element (Be, V, Cr, Ni, Cu, Zn, As, Se, Sr, Cd, Sb, Cs, Ba, Hg, Tl, and Pb) were analyzed and trophic position and basal carbon sources assessed with stable isotope analyses (C and N). Trophic positions varied within relatively narrow ranges. Size did not appear to influence trophic position. Trophic position rarely influenced trace element accumulation within genera and did not consistently correlate with accumulation among genera. Patterns between δ13C and trace element accumulation were generally driven by differences between sites. An increase in trace element accumulation was associated with a divergence of carbon sources between sites in two genera. Higher trace element concentrations tended to accumulate in nymphs from the upstream site, closer to contaminant sources. Influences of factors such as body form and habitat use appeared more influential on trace element accumulation than phylogeny for several elements (Ni, Ba, Sr, V, Be, Cd, and Cr) as higher concentrations accumulated in sprawler and the climber-sprawler genera, irrespective of family. In contrast, As and Se accumulated variably higher in burrowers, but accumulation in sprawlers differed between sites. Greater variation between genera than within genera suggests genus as an acceptable unit of comparison in dragonfly nymphs. Overall, taxonomic differences in trace element accumulation can be substantial, often exceeding variation

  6. Plant species differences in particulate matter accumulation on leaf surfaces.

    PubMed

    Sæbø, A; Popek, R; Nawrot, B; Hanslin, H M; Gawronska, H; Gawronski, S W

    2012-06-15

    Particulate matter (PM) accumulation on leaves of 22 trees and 25 shrubs was examined in test fields in Norway and Poland. Leaf PM in different particle size fractions (PM(10), PM(2.5), PM(0.2)) differed among the species, by 10- to 15-folds at both test sites. Pinus mugo and Pinus sylvestris, Taxus media and Taxus baccata, Stephanandra incisa and Betula pendula were efficient species in capturing PM. Less efficient species were Acer platanoides, Prunus avium and Tilia cordata. Differences among species within the same genus were also observed. Important traits for PM accumulation were leaf properties such as hair and wax cover. The ranking presented in terms of capturing PM can be used to select species for air pollution removal in urban areas. Efficient plant species and planting designs that can shield vulnerable areas in urban settings from polluting traffic etc. can be used to decrease human exposure to anthropogenic pollutants.

  7. The temperature sensitivity of organic matter decay in tidal marshes

    NASA Astrophysics Data System (ADS)

    Kirwan, M. L.; Guntenspergen, G. R.; Langley, J. A.

    2014-04-01

    Approximately half of marine carbon sequestration takes place in coastal wetlands, including tidal marshes, where ecosystems accumulate organic matter to build soil elevation and survive sea level rise. The long-term viability of marshes, and their carbon pools, depends in part on how the balance between productivity and decay responds to climate change. Here, we report the sensitivity of soil organic matter decay in tidal marshes to seasonal and latitudinal variations in temperature measured over a 3 year period. We find a moderate increase in decay rate at warmer temperatures (3-6% °C-1, Q10 = 1.3-1.5). Despite the profound differences between microbial metabolism in wetlands and uplands, our results indicate a strong conservation of temperature sensitivity. Moreover, simple comparisons with organic matter production suggest that elevated atmospheric CO2 and warmer temperatures will accelerate carbon accumulation in marsh soils, and enhance their ability to survive sea level rise.

  8. Sources and Distribution of Organic Matter in Sediments of the Louisiana Continental Shelf

    EPA Science Inventory

    Both riverine and marine sources of organic matter (OM) contribute to sediment organic pools, and either source can contribute significantly to sediment accumulation, burial, and remineralization rates on river dominated continental shelf systems. For the Louisiana continental sh...

  9. Priming of native soil organic matter by pyrogenic organic matter

    NASA Astrophysics Data System (ADS)

    DeCiucies, Silene; Dharmakeerthi, Saman; Whitman, Thea; Woolf, Dominic; Lehmann, Johannes

    2015-04-01

    Priming, in relation to pyrogenic organic matter (PyOM), describes the change in mineralization rate of non-pyrogenic ("native") soil organic matter (nSOM) due to the addition of PyOM. Priming may be 'positive', in that the addition of pyC increases the mineralization rate of native SOM, or 'negative', in that the mineralization rate of nSOM is decreased. Reasons for increased mineralization may include: (i) co-metabolism: microbial decomposition of labile C-additions increases microbial activity, and facilitates additional decomposition of npSOC by active enzymes; (ii) stimulation: substrate additions result in lifted pH, nutrient, oxygen, or water constraints resulting in increased microbial activity. Decreased mineralization may be a result of: (i) inhibition: the opposite of stimulation whereby constraints are aggravated by substrate addition. Substrate addition may also cause inhibition by interfering with enzymes or signaling compounds; (ii) preferential substrate utilization: labile fraction of PyOM additions are preferentially used up by microbes thus causing a decrease in nSOC decomposition; (iii) sorption: organic compounds are adsorbed onto PyOM surfaces, decreasing their rate of mineralization; (iv) stabilization: formation of organo-mineral associations forms stable SOC pools. We have conducted a suite of experiments to investigate these potential interactions. In a seven year long incubation study, PyOM additions increased total OM mineralization for the first 2.5 years, was equal to control after 6.2 years, and was 3% lower after 7.1 years. Cumulative nSOM mineralization was 23% less with the PyOM additions than without, and over 60% of the added PyOM was present in the labile soil fraction after the 7.1 year incubation. Two additional incubation studies, one with and without plants, showed greater nSOM mineralization in the short term and lower nSOM mineralization over the long term. Increased nSOC mineralization due to the presence of plants was

  10. Environmental factors regulating soil organic matter chlorination

    NASA Astrophysics Data System (ADS)

    Svensson, Teresia; Montelius, Malin; Reyier, Henrik; Rietz, Karolina; Karlsson, Susanne; Lindberg, Cecilia; Andersson, Malin; Danielsson, Åsa; Bastviken, David

    2016-04-01

    Natural chlorination of organic matter is common in soils. Despite the widespread abundance of soil chlorinated soil organic matter (SOM), frequently exceeding soil chloride abundance in surface soils, and a common ability of microorganisms to produce chlorinated SOM, we lack fundamental knowledge about dominating processes and organisms responsible for the chlorination. To take one step towards resolving the terrestrial chlorine (Cl) puzzle, this study aims to analyse how environmental factors influence chlorination of SOM. Four factors were chosen for this study: soil moisture (W), nitrogen (N), chloride (Cl) and organic matter quality (C). These factors are all known to be important for soil processes. Laboratory incubations with 36Cl as a Cl tracer were performed in a two soil incubation experiments. It was found that addition of chloride and nitrogen seem to hamper the chlorination. For the C treatment, on the other hand, the results show that chlorination is enhanced by increased availability of labile organic matter (glucose and maltose). Even higher chlorination was observed when nitrogen and water were added in combination with labile organic matter. The effect that more labile organic matter strongly stimulated the chlorination rates was confirmed by the second separate experiment. These results indicate that chlorination was not primarily a way to cut refractory organic matter into digestible molecules, representing one previous hypothesis, but is related with microbial metabolism in other ways that will be further discussed in our presentation.

  11. Refractory dissolved organic nitrogen accumulation in high-elevation lakes.

    PubMed

    Goldberg, S J; Ball, G I; Allen, B C; Schladow, S G; Simpson, A J; Masoom, H; Soong, R; Graven, H D; Aluwihare, L I

    2015-02-23

    The role of dissolved organic matter (DOM) as either a sink for inorganic nutrients or an additional nutrient source is an often-neglected component of nutrient budgets in aquatic environments. Here, we examined the role of DOM in reactive nitrogen (N) storage in Sierra Nevada (California, USA) lakes where atmospheric deposition of N has shifted the lakes toward seasonal phosphorus (P)-limitation. Nuclear magnetic resonance (NMR) spectroscopy and isotope analyses performed on DOM isolated from Lake Tahoe reveal the accumulation of refractory proteinaceous material with a 100-200-year residence time. In contrast, smaller lakes in the same watershed contain DOM with typical terrestrial characteristics, indicating that proteins in Lake Tahoe are autochthonously produced. These data support the role of DOM as a possible sink for reactive N in these lake ecosystems and identify a potential role for DOM in affecting the inorganic nutrient stoichiometry of these environments.

  12. Pre-biotic organic matter from comets and asteroids

    NASA Technical Reports Server (NTRS)

    Anders, Edward

    1989-01-01

    Only meteoritic fragments small enough to be gently decelerated by the atmosphere (10 to the -12th g to 10 to the -6th g) can deliver organic matter intact. The amount of such 'soft-landed' organic carbon can be estimated from data for the infall rate of meteoritic matter. At present rates, only about 0.0006 g/sq cm intact organic carbon would accumulate in 100 million years, but at the higher rates of about four billion yr ago, about 20 g/sq cm may have accumulated in the few hundred million years between the last cataclysmic impact and the beginning of life. It may have included some biologically important compounds that did not form by abiotic synthesis on earth.

  13. Chemodestructive fractionation of soil organic matter

    NASA Astrophysics Data System (ADS)

    Popov, A. I.; Rusakov, A. V.

    2016-06-01

    The method of chemodestructive fractionation is suggested to assess the composition of soil organic matter. This method is based on determination of the resilience of soil organic matter components and/or different parts of organic compounds to the impact of oxidizing agents. For this purpose, a series of solutions with similar concentration of the oxidant (K2Cr2O7), but with linearly increasing oxidative capacity was prepared. Chemodestructive fractionation showed that the portion of easily oxidizable (labile) organic matter in humus horizons of different soil types depends on the conditions of soil formation. It was maximal in hydromorphic soils of the taiga zone and minimal in automorphic soils of the dry steppe zone. The portion of easily oxidizable organic matter in arable soils increased with an increase in the rate of organic fertilizers application. The long-lasting agricultural use of soils and burying of the humus horizons within the upper one-meter layer resulted in the decreasing content of easily oxidizable organic matter. It was found that the portion of easily oxidizable organic matter decreases by the mid-summer or fall in comparison with the spring or early summer period.

  14. Mercury dilution by autochthonous organic matter in a fertilized mangrove wetland.

    PubMed

    Machado, Wilson; Sanders, Christian J; Santos, Isaac R; Sanders, Luciana M; Silva-Filho, Emmanoel V; Luiz-Silva, Wanilson

    2016-06-01

    A dated sediment core from a highly-fertilized mangrove wetland located in Cubatão (SE Brazil) presented a negative correlation between mercury (Hg) and organic carbon contents. This is an unusual result for a metal with well-known affinity to organic matter. A dilution of Hg concentrations by autochthonous organic matter explained this observation, as revealed by carbon stable isotopes signatures (δ(13)C). Mercury dilution by the predominant mangrove-derived organic matter counterbalanced the positive influences of algal-derived organic matter and clay contents on Hg levels, suggesting that deleterious effects of Hg may be attenuated. Considering the current paradigm on the positive effect of organic matter on Hg concentrations in coastal sediments and the expected increase in mangrove organic matter burial due to natural and anthropogenic stimulations of primary production, predictions on the influences of organic matter on Hg accumulation in mangrove wetlands deserve caution.

  15. Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a highly impacted mangrove wetland

    NASA Astrophysics Data System (ADS)

    Sanders, Christian J.; Eyre, Bradley D.; Santos, Isaac R.; Machado, Wilson; Luiz-Silva, Wanilson; Smoak, Joseph M.; Breithaupt, Joshua L.; Ketterer, Michael E.; Sanders, Luciana; Marotta, Humberto; Silva-Filho, Emmanoel

    2014-04-01

    The effect of nutrient enrichment on mangrove sediment accretion and carbon accumulation rates is poorly understood. Here we quantify sediment accretion through radionuclide tracers to determine organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) accumulation rates during the previous 60 years in both a nutrient-enriched and a pristine mangrove forest within the same geomorphological region of southeastern Brazil. The forest receiving high nutrient loads has accumulated OC, TN, and TP at rates that are fourfold, twofold, and eightfold respectively, higher than those from the undisturbed mangrove. Organic carbon and TN stable isotopes (δ13C and δ15N) reflect an increased presence of organic matter (OM) originating with either phytoplankton, benthic algae, or another allochthonous source within the more rapidly accumulated sediments of the impacted mangrove. This suggests that the accumulation rate of OM in eutrophic mangrove systems may be enhanced through the addition of autochthonous and allochthonous nonmangrove material.

  16. Characterization of Plant-derived Dissolved Organic Matter by Multiple Spectroscopic Techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic matter (DOM) derived from fresh or early-stage decomposing soil amendment materials may play an important role in the process of organic matter accumulation. In this study, eight DOM samples from alfalfa, corn, crimson clover, hairy vetch, lupin, soybean, wheat and dairy manure wer...

  17. Factors Regulating Soil Organic Matter Chlorination

    NASA Astrophysics Data System (ADS)

    Svensson, T.; Gustavsson, M.; Reyier, H.; Rietz, K.; Karlsson, S.; Göransson, C.; Andersson, M.; Öberg, G.; Bastviken, D.

    2013-12-01

    Natural chlorination of organic matter is a common process in various soils. Despite the widespread abundance of soil organic chlorine, knowledge on the processes and regulation of soil organic matter chlorination are modest. The purpose of this study is to elucidate how environmental factors may influence chlorination of organic matter in soil. Four factors were chosen for this study; water content, and nitrogen, organic carbon, and chloride concentrations. The variables are all known in different ways as important for microbes and transformation of chlorine in soil. The soil was collected from 5-15 cm depth in a coniferous forest southeast of Sweden. To test how the selected factors influenced chlorination of organic matter, we used soil laboratory incubations using 36Cl-chloride as a radioisotopic marker. A multivariate factorial design with two levels of i) soil moisture, ii) chloride amendment, iii) nitrogen amendment, and iv) glucose and maltose addition was used to simultaneously test for possible combination effects for all factors. A known radioactivity of 36chloride was added to the soil samples and incubated with four different factor treatments during an incubation period of 15 and 60 days. This presentation will discuss the results of this study including what combination of factors enhanced or hampered chlorination and thereby discuss previous observed variability of organic chlorine and chloride in soil.

  18. Spectral mapping of soil organic matter

    NASA Technical Reports Server (NTRS)

    Kristof, S. J.; Baumgardner, M. F.; Johannsen, C. J.

    1974-01-01

    Multispectral remote sensing data were examined for use in the mapping of soil organic matter content. Computer-implemented pattern recognition techniques were used to analyze data collected in May 1969 and May 1970 by an airborne multispectral scanner over a 40-km flightline. Two fields within the flightline were selected for intensive study. Approximately 400 surface soil samples from these fields were obtained for organic matter analysis. The analytical data were used as training sets for computer-implemented analysis of the spectral data. It was found that within the geographical limitations included in this study, multispectral data and automatic data processing techniques could be used very effectively to delineate and map surface soils areas containing different levels of soil organic matter.

  19. CHARACTERIZING THE ORGANIC MATTER IN SURFACE ...

    EPA Pesticide Factsheets

    The San Juan Bay Estuary (SJBE) is located on the north coast of Puerto Rico and includes the San Juan Bay, San José Lagoon, La Torrecilla Lagoon and Piñones Lagoon, as well as the Martín Peña and the Suárez Canals. The SJBE watershed has the highest density of inhabitants and major industrial activities in Puerto Rico. As a result, the SJBE is impacted by wastewater from combined-sewer overflows, faulty sewer lines, and storm water runoff; these factors combined with trash accumulation and infilling of the Martín Peña canal, contribute to decreased tidal exchange and reduced flushing in the estuary. To quantify the impact of the obstruction of the Martín Peña canal on anthropogenic nutrient distribution in the SJBE, over 200 sediment grab samples were collected throughout the estuary in 2015. The samples were analyzed for carbonate content, organic matter, grain size, bulk density, percent phosphorus, percent nitrogen (%N), and stable isotopes (δ15N and δ13C). The %N values were highest in the surface sediments from the western portion of the Martín Peña canal, where %N was >0.86%. In contrast, %N from the adjacent San José lagoon averaged <0.2%. Grain size distributions across the SJBE were consistent with low flushing in the inner portions of the SJBE. While the Martín Peña canal remains phosphorus limited, N:P ratios suggest the San Juna Bay and San José Lagoon have undergone major ecological shifts in the past two decades. Our

  20. Organic Matter in the Contemporary Ocean

    NASA Astrophysics Data System (ADS)

    Eglinton, T. I.; Repeta, D. J.

    2003-12-01

    This chapter summarizes selected aspects of our current understanding of the organic carbon (OC) cycle as it pertains to the modern ocean, including underlying surficial sediments. We briefly review present estimates of the size of OC reservoirs and the fluxes between them. We then proceed to highlight advances in our understanding that have occurred since the late 1980s, especially those which have altered our perspective of the ways organic matter is cycled in the oceans. We have focused on specific areas where substantial progress has been made, although in most cases our understanding remains far from complete. These are the fate of terrigenous OC inputs in the ocean, the composition of oceanic dissolved organic matter (DOM), the mechanisms of OC preservation, and new insights into microbial inputs and processes. In each case, we discuss prevailing hypotheses concerning the composition and fate of organic matter derived from the different inputs, the reactivity and relationships between different organic matter pools, and highlight current gaps in our knowledge.The advances in our understanding of organic matter cycling and composition has stemmed largely from refinements in existing methodologies and the emergence of new analytical capabilities. Molecular-level stable carbon and nitrogen isotopic measurements have shed new light on a range of biogeochemical processes. Natural abundance of radiocarbon data has also been increasingly applied as both a tracer and source indicator in studies of organic matter cycling. As for 13C, bulk 14C measurements are now complemented by measurements at the molecular level, and the combination of these different isotopic approaches has proven highly informative. The application of multinuclear solid- and liquid-state nuclear magnetic resonance (NMR) spectroscopy has provided a more holistic means to examine the complex array of macromolecules that appears to comprise both dissolved and particulate forms of organic matter. New

  1. [Infrared spectroscopy application in soil organic matter].

    PubMed

    Wu, J; Xi, S; Jiang, Y

    1998-02-01

    As an important method to study the constitution and properties of macromolecular organic compounds, the infrared spectroscopy has been more and more widely taken in the researches of soil organic matters (SOM). Especially,the application of FTIR and the combined uses of FTIR with chromatogram etc. have made the researches of SOM get a great progress in many aspects. In this paper, the infrared spectroscopy applications were reviewed in SOM. It includes the following contents: the methods to study SOM by IR, studies on the constitution of soil humic substances (SHS), extraction of SOM and classification of SHS, decomposition, transformation and humification of organic matters, the differences of SOM in different situations, the interactions of SHS with metais, clay minerals and other organics in soil.

  2. Organic matter loading affects lodgepole pine seedling growth.

    PubMed

    Wei, Xiaohua; Li, Qinglin; Waterhouse, M J; Armleder, H M

    2012-06-01

    Organic matter plays important roles in returning nutrients to the soil, maintaining forest productivity and creating habitats in forest ecosystems. Forest biomass is in increasing demand for energy production, and organic matter has been considered as a potential supply. Thus, an important management question is how much organic matter should be retained after forest harvesting to maintain forest productivity. To address this question, an experimental trial was established in 1996 to evaluate the responses of lodgepole pine seedling growth to organic matter loading treatments. Four organic matter loading treatments were randomly assigned to each of four homogeneous pine sites: removal of all organic matter on the forest floor, organic matter loading quantity similar to whole-tree-harvesting residuals left on site, organic matter loading quantity similar to stem-only-harvesting residuals, and organic matter loading quantity more similar to what would be found in disease- or insect-killed stands. Our 10-year data showed that height and diameter had 29 and 35 % increase, respectively, comparing the treatment with the most organic matter loading to the treatment with the least organic matter loading. The positive response of seedling growth to organic matter loading may be associated with nutrients and/or microclimate change caused by organic matter, and requires further study. The dynamic response of seedling growth to organic matter loading treatments highlights the importance of long-term studies. Implications of those results on organic matter management are discussed in the context of forest productivity sustainability.

  3. Organic Matter Loading Affects Lodgepole Pine Seedling Growth

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohua; Li, Qinglin; Waterhouse, M. J.; Armleder, H. M.

    2012-06-01

    Organic matter plays important roles in returning nutrients to the soil, maintaining forest productivity and creating habitats in forest ecosystems. Forest biomass is in increasing demand for energy production, and organic matter has been considered as a potential supply. Thus, an important management question is how much organic matter should be retained after forest harvesting to maintain forest productivity. To address this question, an experimental trial was established in 1996 to evaluate the responses of lodgepole pine seedling growth to organic matter loading treatments. Four organic matter loading treatments were randomly assigned to each of four homogeneous pine sites: removal of all organic matter on the forest floor, organic matter loading quantity similar to whole-tree-harvesting residuals left on site, organic matter loading quantity similar to stem-only-harvesting residuals, and organic matter loading quantity more similar to what would be found in disease- or insect-killed stands. Our 10-year data showed that height and diameter had 29 and 35 % increase, respectively, comparing the treatment with the most organic matter loading to the treatment with the least organic matter loading. The positive response of seedling growth to organic matter loading may be associated with nutrients and/or microclimate change caused by organic matter, and requires further study. The dynamic response of seedling growth to organic matter loading treatments highlights the importance of long-term studies. Implications of those results on organic matter management are discussed in the context of forest productivity sustainability.

  4. Production of fluorescent dissolved organic matter in Arctic Ocean sediments

    NASA Astrophysics Data System (ADS)

    Chen, Meilian; Kim, Ji-Hoon; Nam, Seung-Il; Niessen, Frank; Hong, Wei-Li; Kang, Moo-Hee; Hur, Jin

    2016-12-01

    Little is known about the production of fluorescent dissolved organic matter (FDOM) in the anoxic oceanic sediments. In this study, sediment pore waters were sampled from four different sites in the Chukchi-East Siberian Seas area to examine the bulk dissolved organic carbon (DOC) and their optical properties. The production of FDOM, coupled with the increase of nutrients, was observed above the sulfate-methane-transition-zone (SMTZ). The presence of FDOM was concurrent with sulfate reduction and increased alkalinity (R2 > 0.96, p < 0.0001), suggesting a link to organic matter degradation. This inference was supported by the positive correlation (R2 > 0.95, p < 0.0001) between the net production of FDOM and the modeled degradation rates of particulate organic carbon sulfate reduction. The production of FDOM was more pronounced in a shallow shelf site S1 with a total net production ranging from 17.9 to 62.3 RU for different FDOM components above the SMTZ depth of ca. 4.1 mbsf, which presumably underwent more accumulation of particulate organic matter than the other three deeper sites. The sediments were generally found to be the sources of CDOM and FDOM to the overlying water column, unearthing a channel of generally bio-refractory and pre-aged DOM to the oceans.

  5. Production of fluorescent dissolved organic matter in Arctic Ocean sediments

    PubMed Central

    Chen, Meilian; Kim, Ji-Hoon; Nam, Seung-Il; Niessen, Frank; Hong, Wei-Li; Kang, Moo-Hee; Hur, Jin

    2016-01-01

    Little is known about the production of fluorescent dissolved organic matter (FDOM) in the anoxic oceanic sediments. In this study, sediment pore waters were sampled from four different sites in the Chukchi-East Siberian Seas area to examine the bulk dissolved organic carbon (DOC) and their optical properties. The production of FDOM, coupled with the increase of nutrients, was observed above the sulfate-methane-transition-zone (SMTZ). The presence of FDOM was concurrent with sulfate reduction and increased alkalinity (R2 > 0.96, p < 0.0001), suggesting a link to organic matter degradation. This inference was supported by the positive correlation (R2 > 0.95, p < 0.0001) between the net production of FDOM and the modeled degradation rates of particulate organic carbon sulfate reduction. The production of FDOM was more pronounced in a shallow shelf site S1 with a total net production ranging from 17.9 to 62.3 RU for different FDOM components above the SMTZ depth of ca. 4.1 mbsf, which presumably underwent more accumulation of particulate organic matter than the other three deeper sites. The sediments were generally found to be the sources of CDOM and FDOM to the overlying water column, unearthing a channel of generally bio-refractory and pre-aged DOM to the oceans. PMID:27982085

  6. Phosphorus Accumulating Organisms and Biogeochemical Hotspots

    NASA Astrophysics Data System (ADS)

    Archibald, J.; Walter, M. T.

    2008-12-01

    Despite extensive research, many of the processes that control phosphorus (P) movement from agricultural fields to streams and lakes are not well understood. This limits our ability to develop management strategies that will mediate P contamination of freshwater ecosystems and subsequent eutrophication. Recent advances in molecular microbiology have prompted a paradigm shift in wastewater treatment that recognizes and exploits the ways specific microbial processes influence P solubility. Central to this enhanced biological phosphorus removal in wastewater treatment plants is a relatively recently discovered microorganism, Candidatus accumulibacter, which takes-up P and stores it internally as polyphosphate under alternating aerobic and anaerobic conditions. Within the past few months we have discovered this organism in the natural environment and its role in P biogeochemistry is unclear. We speculate that it may function similarly in variable source areas, which experience cycles of saturation and desaturation, as it does in the anaerobic- aerobic cycles in a wastewater treatment plant. If so, there may be potential opportunities to realize similarly new perspectives and advancements in the watershed context as have been seen in wastewater technologies. Here we present some of our preliminary findings.

  7. Lability of Secondary Organic Particulate Matter

    SciTech Connect

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; Giles, Mary K.; Zaveri, Rahul A.; Bertram, Allan K.; Martin, Scot T.

    2016-10-24

    Accurate simulations of the consenctrations of atmospheric organic particulate matter (PM) are needed for predicting energy flow in the Earth’s climate system. In the past, simulations of organic PM widely assume equilibrium partitioning of semivolatile organic compounds (SVOCs) between the PM and surrounding vapor. Herein, we test this assumption by measuring evaporation rates and associated vapor mass concentration of organic films representative of atmospheric PM. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH), indicating equilibrium partitioning above a transition RH but not below. In contrast for films representing biogenic PM, no threshold was observed, indicating equilibrium partitioning at all RHs. The results suggest that the mass lability of atmospheric organic PM can differ in consequential ways among Earth’s natural biomes, polluted regions, and regions of land-use change, and these differences need to be considered when simulating atmospheric organic PM.

  8. Accumulation of organic C components in soil and aggregates

    NASA Astrophysics Data System (ADS)

    Yu, Hongyan; Ding, Weixin; Chen, Zengming; Zhang, Huanjun; Luo, Jiafa; Bolan, Nanthi

    2015-09-01

    To explore soil organic carbon (SOC) accumulation mechanisms, the dynamics of C functional groups and macroaggregation were studied synchronously through aggregate fractionation and 13C NMR spectroscopy in sandy loam soil following an 18-year application of compost and fertilizer in China. Compared with no fertilizer control, both compost and fertilizer improved SOC content, while the application of compost increased macroaggregation. Fertilizer application mainly increased the levels of recalcitrant organic C components characterized by methoxyl/N-alkyl C and alkyl C, whereas compost application mainly promoted the accumulation of methoxyl/N-alkyl C, phenolic C, carboxyl C, O-alkyl C and di-O-alkyl C in bulk soil. The preferential accumulation of organic C functional groups in aggregates depended on aggregate size rather than nutrient amendments. These groups were characterized by phenolic C and di-O-alkyl C in the silt + clay fraction, carboxyl C in microaggregates and phenolic C, carboxyl C and methoxyl/N-alkyl C in macroaggregates. Thus, the differences in accumulated organic C components in compost- and fertilizer-amended soils were primarily attributable to macroaggregation. The accumulation of methoxyl/N-alkyl C in microaggregates effectively promoted macroaggregation. Our results suggest that organic amendment rich in methoxyl/N-alkyl C effectively improved SOC content and accelerated macroaggregation in the test soil.

  9. Accumulation of organic C components in soil and aggregates

    PubMed Central

    Yu, Hongyan; Ding, Weixin; Chen, Zengming; Zhang, Huanjun; Luo, Jiafa; Bolan, Nanthi

    2015-01-01

    To explore soil organic carbon (SOC) accumulation mechanisms, the dynamics of C functional groups and macroaggregation were studied synchronously through aggregate fractionation and 13C NMR spectroscopy in sandy loam soil following an 18-year application of compost and fertilizer in China. Compared with no fertilizer control, both compost and fertilizer improved SOC content, while the application of compost increased macroaggregation. Fertilizer application mainly increased the levels of recalcitrant organic C components characterized by methoxyl/N-alkyl C and alkyl C, whereas compost application mainly promoted the accumulation of methoxyl/N-alkyl C, phenolic C, carboxyl C, O-alkyl C and di-O-alkyl C in bulk soil. The preferential accumulation of organic C functional groups in aggregates depended on aggregate size rather than nutrient amendments. These groups were characterized by phenolic C and di-O-alkyl C in the silt + clay fraction, carboxyl C in microaggregates and phenolic C, carboxyl C and methoxyl/N-alkyl C in macroaggregates. Thus, the differences in accumulated organic C components in compost- and fertilizer-amended soils were primarily attributable to macroaggregation. The accumulation of methoxyl/N-alkyl C in microaggregates effectively promoted macroaggregation. Our results suggest that organic amendment rich in methoxyl/N-alkyl C effectively improved SOC content and accelerated macroaggregation in the test soil. PMID:26358660

  10. Organic matters: investigating the sources, transport, and fate of organic matter in Fanno Creek, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven; Keith, Mackenzie; Goldman, Jami H.; Rounds, Stewart A.

    2015-01-01

    The U.S. Geological Survey (USGS), in cooperation with Clean Water Services, recently completed an investigation into the sources, transport, and fate of organic matter in the Fanno Creek watershed. The information provided by this investigation will help resource managers to implement strategies aimed at decreasing the excess supply of organic matter that contributes to low dissolved-oxygen levels in Fanno Creek and downstream in the Tualatin River during summer. This fact sheet summarizes the findings of the investigation.

  11. Isotopic analysis of cometary organic matter

    NASA Astrophysics Data System (ADS)

    Kerridge, J. F.

    1991-04-01

    Carbon isotope ratios have been measured for CN in the coma of Comet Halley and for several CHON particles emitted by Halley. Of these, only the CHON-particle data may be reasonably related to organic matter in the cometary nucleus, but the true range of (C-13)/(C-12) values in those particles is quite uncertain. The D/H ratio in H2O in the Halley coma resembles that in Titan/Uranus.

  12. Peer reviewed: Characterizing aquatic dissolved organic matter

    USGS Publications Warehouse

    Leenheer, Jerry A.; Croué, Jean-Philippe

    2003-01-01

    Whether it causes aesthetic concerns such as color, taste, and odor; leads to the binding and transport of organic and inorganic contaminants; produces undesirable disinfection byproducts; provides sources and sinks for carbon; or mediates photochemical processes, the nature and properties of dissolved organic matter (DOM) in water are topics of significant environmental interest. DOM is also a major reactant in and product of biogeochemical processes in which the material serves as a carbon and energy source for biota and controls levels of dissolved oxygen, nitrogen, phosphorus, sulfur, numerous trace metals, and acidity.

  13. Temperature sensitivity of organic-matter decay in tidal marshes

    USGS Publications Warehouse

    Kirwan, Matthew L.; Guntenspergen, Glenn R.; Langley, J.A.

    2014-01-01

    Approximately half of marine carbon sequestration takes place in coastal wetlands, including tidal marshes, where organic matter contributes to soil elevation and ecosystem persistence in the face of sea-level rise. The long-term viability of marshes and their carbon pools depends, in part, on how the balance between productivity and decay responds to climate change. Here, we report the sensitivity of labile soil organic-matter decay in tidal marshes to seasonal and latitudinal variations in temperature measured over a 3-year period. We find a moderate increase in decay rate at warmer temperatures (3-6% per °C, Q10 = 1.3-1.5). Despite the profound differences between microbial metabolism in wetlands and uplands, our results indicate a strong conservation of temperature sensitivity. Moreover, simple comparisons with organic-matter production suggest that elevated atmospheric CO2 and warmer temperatures will accelerate carbon accumulation in marsh soils, and potentially enhance their ability to survive sea-level rise.

  14. Temperature sensitivity of organic-matter decay in tidal marshes

    NASA Astrophysics Data System (ADS)

    Kirwan, M. L.; Guntenspergen, G. R.; Langley, J. A.

    2014-09-01

    Approximately half of marine carbon sequestration takes place in coastal wetlands, including tidal marshes, where organic matter contributes to soil elevation and ecosystem persistence in the face of sea-level rise. The long-term viability of marshes and their carbon pools depends, in part, on how the balance between productivity and decay responds to climate change. Here, we report the sensitivity of labile soil organic-matter decay in tidal marshes to seasonal and latitudinal variations in temperature measured over a 3-year period. We find a moderate increase in decay rate at warmer temperatures (3-6% per °C, Q10 = 1.3-1.5). Despite the profound differences between microbial metabolism in wetlands and uplands, our results indicate a strong conservation of temperature sensitivity. Moreover, simple comparisons with organic-matter production suggest that elevated atmospheric CO2 and warmer temperatures will accelerate carbon accumulation in marsh soils, and potentially enhance their ability to survive sea-level rise.

  15. Isolation and chemical characterization of dissolved and colloidal organic matter

    USGS Publications Warehouse

    Aiken, G.; Leenheer, J.

    1993-01-01

    Commonly used techniques for the concentration and isolation of organic matter from water, such as preparative chromatography, ultrafiltration and reverse osmosis, and the methods used to analyze the organic matter obtained by these methods are reviewed. The development of methods to obtain organic matter that is associated with fractions of the dissolved organic carbon other than humic substances, such as organic bases, hydrophilic organic acids and colloidal organic matter are discussed. Methods specifically used to study dissolved organic nitrogen and dissolved organic phosphorous are also discussed. -from Authors

  16. Impact of biodegradation of organic matters on ammonia oxidation in compost.

    PubMed

    Zeng, Yang; De Guardia, Amaury; Ziebal, Christine; De Macedo, Flávia Junqueira; Dabert, Patrick

    2013-05-01

    Nitrification plays an important role in nitrogen turnover in composting process. It has been believed that nitrification occurs mainly during the maturation phase due to the elevated temperature during the active phase of composting. In this work, the intense biodegradation of organic matters is demonstrated to be another negative impact on the ammonia oxidation, the first step of nitrification. We investigated the ammonia oxidation in compost following organic matters addition at intermediate temperature. Different indicators of ammonia oxidation were studied, respectively. The accumulation of nitrite and nitrate was 10(2)-10(3) lower in composts with organic matters addition. The nitrous oxide emissions were absent or 40-fold inferior in these composts. The nitrogen mass balance indicated a less amount of oxidized ammonia after the addition. The ammonia-oxidizing bacteria declined following the organic matters addition. In contrast, the ammonia-oxidizing archaea were supported by the organic matters. Possible mechanisms of this impact were also discussed.

  17. Organic Carbon, Nitrogen and Phosphorus Accumulation Rates in the Soils of the Everglades Mangrove Ecotone

    NASA Astrophysics Data System (ADS)

    Smoak, J. M.; Breithaupt, J. L.; Sanders, C. J.

    2015-12-01

    One of the fundamental questions with regard to coastal ecotones relates to their role in the transformation, transport and storage of biogeochemically important constituents and how that role may be altered by climate change. Coastal wetlands provide a range of valuable ecosystem services including sequestering organic carbon (OC) and nutrients in their soils at rates greater than terrestrial ecosystems on a per area basis. As such the Everglades mangrove ecotone, the largest contiguous mangrove forest in North America, is a biogeochemical "hotspot" at the interface of freshwater marsh and the Gulf of Mexico. Over the last one hundred years this region has been impacted by a reduction in freshwater flow and a sea-level rise (SLR) of 2.3 mm/yr which combined to cause a landward shift in the ecotone. This creates an ideal setting to examine climate induced alterations in the mangrove-ecotone biogeochemical cycle. The ability of the Everglades mangrove forest to keep pace with SLR depends largely on the rate of organic matter accumulation as that accumulation is a key contributor to accretion. However, the basic threat from SLR can be exacerbated in some areas by accelerating organic matter mineralization due to increasing salinity. The increase in salinity supplies sulfate which functions as a terminal electron acceptor that soil microbes can utilize to enhance mineralization in the brackish ecotone regions of coastal wetlands. To investigate these processes, we measured mangrove forest soil accretion, OC, N and P accumulation rates over the most recent 10, 50 and 100 year periods (via 210Pb dating) from the Gulf of Mexico to the upper freshwater reaches of the mangrove forest within Everglades National Park. Lower organic carbon accumulation rates compared to the rest of the system were found in the ecotone region most susceptible to enhanced organic matter mineralization.

  18. Abiotic Bromination of Soil Organic Matter.

    PubMed

    Leri, Alessandra C; Ravel, Bruce

    2015-11-17

    Biogeochemical transformations of plant-derived soil organic matter (SOM) involve complex abiotic and microbially mediated reactions. One such reaction is halogenation, which occurs naturally in the soil environment and has been associated with enzymatic activity of decomposer organisms. Building on a recent finding that naturally produced organobromine is ubiquitous in SOM, we hypothesized that inorganic bromide could be subject to abiotic oxidations resulting in bromination of SOM. Through lab-based degradation treatments of plant material and soil humus, we have shown that abiotic bromination of particulate organic matter occurs in the presence of a range of inorganic oxidants, including hydrogen peroxide and assorted forms of ferric iron, producing both aliphatic and aromatic forms of organobromine. Bromination of oak and pine litter is limited primarily by bromide concentration. Fresh plant material is more susceptible to bromination than decayed litter and soil humus, due to a labile pool of mainly aliphatic compounds that break down during early stages of SOM formation. As the first evidence of abiotic bromination of particulate SOM, this study identifies a mechanistic source of the natural organobromine in humic substances and the soil organic horizon. Formation of organobromine through oxidative treatments of plant material also provides insights into the relative stability of aromatic and aliphatic components of SOM.

  19. Soil organic matter composition affected by potato cropping managements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic matter is a small but important soil component. As a heterogeneous mixture of geomolecules and biomolecules, soil organic matter (SOM) can be fractionated into distinct pools with different solubility and lability. Water extractable organic matter (WEOM) fraction is the most labile and mobil...

  20. The surface area of soil organic matter

    USGS Publications Warehouse

    Chiou, C.T.; Lee, J.-F.; Boyd, S.A.

    1990-01-01

    The previously reported surface area for soil organic matter (SOM) of 560-800 m2/g as determined by the ethylene glycol (EG) retention method was reexamined by the standard BET method based on nitrogen adsorption at liquid nitrogen temperature. Test samples consisted of two high organic content soils, a freeze-dried soil humic acid, and an oven-dried soil humic acid. The measured BET areas for these samples were less than 1 m2/g, except for the freeze-dried humic acid. The results suggest that surface adsorption of nonionic organic compounds by SOM is practically insignificant in comparison to uptake by partition. The discrepancy between the surface areas of SOM obtained by BET and EG methods was explained in terms of the 'free surface area' and the 'apparent surface area' associated with these measurements.The previously reported surface area for soil organic matter (SOM) of 560-800 m2/g as determined by the ethylene glycol (EG) retention method was reexamined by the standard BET method based on nitrogen adsorption at liquid nitrogen temperature. Test samples consisted of two high organic content soils, a freeze-dried soil humic acid, and an oven-dried soil humic acid. The measured BET areas for these samples were less than 1 m2/g, except for the freeze-dried humic acid. The results suggest that surface adsorption of nonionic organic compounds by SOM is practically insignificant in comparison to uptake by partition. The discrepancy between the surface areas of SOM obtained by BET and EG methods was explained in terms of the 'free surface area' and the 'apparent surface area' associated with these measurements.

  1. Organic geochemical analysis of sedimentary organic matter associated with uranium

    USGS Publications Warehouse

    Leventhal, J.S.; Daws, T.A.; Frye, J.S.

    1986-01-01

    Samples of sedimentary organic matter from several geologic environments and ages which are enriched in uranium (56 ppm to 12%) have been characterized. The three analytical techniqyes used to study the samples were Rock-Eval pyrolysis, pyrolysis-gas chromatography-mass spectrometry, and solid-state C-13 nuclear magnetic resonance (NMR) spectroscopy. In samples with low uranium content, the pyrolysis-gas chromatography products contain oxygenated functional groups (as hydroxyl) and molecules with both aliphatic and aromatic carbon atoms. These samples with low uranium content give measurable Rock-Eval hydrocarbon and organic-CO2 yields, and C-13 NMR values of > 30% aliphatic carbon. In contrast, uranium-rich samples have few hydrocarbon pyrolysis products, increased Rock-Eval organic-CO2 contents and > 70% aromatic carbon contents from C-13 NMR. The increase in aromaticity and decrease in hydrocarbon pyrolysis yield are related to the amount of uranium and the age of the uranium minerals, which correspond to the degree of radiation damage. The three analytical techniques give complementary results. Increase in Rock-Eval organic-CO2 yield correlates with uranium content for samples from the Grants uranium region. Calculations show that the amount of organic-CO2 corresponds to the quantity of uranium chemically reduced by the organic matter for the Grants uranium region samples. ?? 1986.

  2. Organic accumulation in lacustrine rift basin: constraints from mineralogical and multiple geochemical proxies

    NASA Astrophysics Data System (ADS)

    Fu, Xiugen; Jian, Wang; Chen, Wenbin; Feng, Xinglei; Wang, Dong; Song, Chunyan; Zeng, Shengqiang

    2015-03-01

    The Lunpola Basin in the central Tibet is the highest petroliferous basin in the world. The basin is a Cenozoic lacustrine rift basin with widespread oil shale depositions, which provide a valuable example for understanding the mechanisms of organic accumulation. Thirty-five samples of oil shale and mudstone were collected from one of the organic-rich oil shale intervals in the Lunpola Basin to discuss the controlling factors of organic enrichment. In the investigated oil shale interval, many redox proxies, including V/(V + Ni) ratios, Mo-U covariations, and pyrite framboid size distribution suggest anoxic conditions. However, the almost consistent variation patterns of TOC, P and Mo contents indicate that organic matter accumulation was controlled mainly by primary productivity. The relatively low Sr/Ba (average 0.74) and Sr/Cu ratios (average 4.75) suggest a warm-humid climate during the oil shale deposition. These conditions are suitable for living of organisms, which would raise the initial productivity of lake and in turn could have led to the oxygen-depleted conditions. The detrital input together with fast sedimentary rate during the oil shale deposition would result in dilution of organic matter.

  3. Some features of soil organic matter in parks and adjacent residential areas of Moscow

    NASA Astrophysics Data System (ADS)

    Prokof'eva, T. V.; Rozanova, M. S.; Poputnikov, V. O.

    2013-03-01

    The humus-accumulative horizons of soils from two natural-historical parks of Moscow and the adjacent residential areas were studied. An increase in the concentration of organic matter was observed in the soils of the residential areas. A tendency toward the formation of fulvate humus typical for southern taiga soils persisted in the low-carbonate nongleyed humus-accumulative horizons. At the same time, the transformation rate, character, and content of organic matter in the urban soils were strongly affected by the contamination, calcareous invasion, and remediation of the soils and sediments.

  4. The fate of airborne polycyclic organic matter.

    PubMed Central

    Nielsen, T; Ramdahl, T; Bjørseth, A

    1983-01-01

    Biological tests have shown that a significant part of the mutagenicity of organic extracts of collected airborne particulate matter is not due to polycyclic aromatic hydrocarbons (PAH). It is possible that part of these unknown compounds are transformation products of PAH. This survey focuses on the reaction of PAH in the atmosphere with other copollutants, such as nitrogen oxides, sulfur oxides, ozone and free radicals and their reaction products. Photochemically induced reactions of PAH are also included. The reactivity of particle-associated PAH is discussed in relation to the chemical composition and the physical properties of the carrier. Recommendations for future work are given. PMID:6825615

  5. Soil organic matter regulates molybdenum storage and mobility in forests

    USGS Publications Warehouse

    Marks, Jade A; Perakis, Steven; King, Elizabeth K; Pett-Ridge, Julie

    2015-01-01

    The trace element molybdenum (Mo) is essential to a suite of nitrogen (N) cycling processes in ecosystems, but there is limited information on its distribution within soils and relationship to plant and bedrock pools. We examined soil, bedrock, and plant Mo variation across 24 forests spanning wide soil pH gradients on both basaltic and sedimentary lithologies in the Oregon Coast Range. We found that the oxidizable organic fraction of surface mineral soil accounted for an average of 33 %of bulk soil Mo across all sites, followed by 1.4 % associated with reducible Fe, Al, and Mn-oxides, and 1.4 % in exchangeable ion form. Exchangeable Mo was greatest at low pH, and its positive correlation with soil carbon (C) suggests organic matter as the source of readily exchangeable Mo. Molybdenum accumulation integrated over soil profiles to 1 m depth (τMoNb) increased with soil C, indicating that soil organic matter regulates long-term Mo retention and loss from soil. Foliar Mo concentrations displayed no relationship with bulk soil Mo, and were not correlated with organic horizon Mo or soil extractable Mo, suggesting active plant regulation of Mo uptake and/or poor fidelity of extractable pools to bioavailability. We estimate from precipitation sampling that atmospheric deposition supplies, on average, over 10 times more Mo annually than does litterfall to soil. In contrast, bedrock lithology had negligible effects on foliar and soil Mo concentrations and on Mo distribution among soil fractions. We conclude that atmospheric inputs may be a significant source of Mo to forest ecosystems, and that strong Mo retention by soil organic matter limits ecosystem Mo loss via dissolution and leaching pathways.

  6. Remote sensing of total dry-matter accumulation in winter wheat

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Holben, B. N.; Elgin, J. H., Jr.; Mcmurtrey, J. E., III (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. Red and photographic-infrared spectral data collected on 21 dates over the growing season with a hand-held radiometer was quantitatively correlated with total dry-matter accumulation in winter wheat. The spectral data were found to be highly related to vigor and condition of the plant canopy. Two periods of drought stress and subsequent recovery from it were readily apparent in the spectral data. Simple ratios of the spectral data compensated for variations in solar intensities and, when integrated over the growing season, explained 79% of the variation in total above-ground accumulation of dry matter.

  7. Organic Matter in the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Cruiskshank, Dale P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Many solid bodies in the outer Solar System are covered with ices of various compositions, including water, carbon dioxide, methane, nitrogen, and other molecules that are solid at the low temperatures that prevail there. These ices have all been detected by remote sensing observations made with telescopes on Earth, or more recently, spacecraft in orbit (notably Galileo at Jupiter). The data also reveal other solid materials that could be minerals or complex carbon-bearing organic molecules. A study in progress using large ground-based telescopes to acquire infrared spectroscopic data, and laboratory results on the optical properties of complex organic matter, seeks to identify the non-icy materials on several satellites of Saturn, Uranus, and Neptune. The work on the satellites of Saturn is in part preparatory to the Cassini spacecraft investigation of the Saturn system, which will begin in 2004 and extend for four years.

  8. [Characteristics of dry matter and potassium accumulation and distribution in potato plant in semi-arid rainfed areas].

    PubMed

    Lu, Jian-Wu; Qiu, Hui-Zhen; Zhang, Wen-Ming; Wang, Di; Zhang, Jun-Lian; Zhang, Chun-Hong; Hou, Shu-Yin

    2013-02-01

    In 2010, a field experiment with potato (Solanum tuberosum) cultivar 'Xindaping' was conducted at the Dingxi Extension Center of Gansu Province, Northwest China, aimed to understand the accumulation and distribution patterns of dry matter (DM) and potassium (K) in the organs of potato plant in semi-arid rainfed areas. During the whole growth period of the cultivar, the DM accumulation in root, stem, and leaf all showed a unimodal curve, with the DM accumulation rate being leaf > stem > root, whereas the DM accumulation in whole plant and tuber was an S-curve. The maximum DM accumulation rate of the whole plant was higher than that of the tuber, and appeared 17 days earlier. The distribution of DM in different organs showed two turning points, i.e., during the tuber formation (TF) period and the tuber growth (TG) period. During TF period, the DM accumulation was the greatest in leaf, followed by in tuber. The TF period was also the DM balance period, which occurred 90 days after emergence. Before the DM balance period, the DM accumulation in tuber was lesser than that in root, stem, and leaf, and there was a positive correlation between the DM accumulation in tuber and in root, stem, and leaf. However, after the DM balance period, the DM accumulation in tuber was greater than that in root, stem, and leaf, and the correlation was negative. At seedling stage and in TF period, TG period, starch accumulation period, and maturity period, the DM accumulation in whole plant was 5%, 30%, 60%, 4% , and 1%, while that in tuber was 0,18% , 62 , 18% , and 2%, respectively. In the whole growth period, more than 50% of the DM was formed in TG period. The K concentration was the highest in stem and the lowest in tuber, though the K was mostly concentrated in root before the DM balance period. The K accumulation before the DM balance period was mostly in root, stem, and leaf, with the sequence of stem > leaf > root, but after the DM balance period, the K was mainly allocated in

  9. Molecular composition of organic matter controls methylmercury formation in boreal lakes.

    PubMed

    Bravo, Andrea G; Bouchet, Sylvain; Tolu, Julie; Björn, Erik; Mateos-Rivera, Alejandro; Bertilsson, Stefan

    2017-02-09

    A detailed understanding of the formation of the potent neurotoxic methylmercury is needed to explain the large observed variability in methylmercury levels in aquatic systems. While it is known that organic matter interacts strongly with mercury, the role of organic matter composition in the formation of methylmercury in aquatic systems remains poorly understood. Here we show that phytoplankton-derived organic compounds enhance mercury methylation rates in boreal lake sediments through an overall increase of bacterial activity. Accordingly, in situ mercury methylation defines methylmercury levels in lake sediments strongly influenced by planktonic blooms. In contrast, sediments dominated by terrigenous organic matter inputs have far lower methylation rates but higher concentrations of methylmercury, suggesting that methylmercury was formed in the catchment and imported into lakes. Our findings demonstrate that the origin and molecular composition of organic matter are critical parameters to understand and predict methylmercury formation and accumulation in boreal lake sediments.

  10. Molecular composition of organic matter controls methylmercury formation in boreal lakes

    PubMed Central

    Bravo, Andrea G.; Bouchet, Sylvain; Tolu, Julie; Björn, Erik; Mateos-Rivera, Alejandro; Bertilsson, Stefan

    2017-01-01

    A detailed understanding of the formation of the potent neurotoxic methylmercury is needed to explain the large observed variability in methylmercury levels in aquatic systems. While it is known that organic matter interacts strongly with mercury, the role of organic matter composition in the formation of methylmercury in aquatic systems remains poorly understood. Here we show that phytoplankton-derived organic compounds enhance mercury methylation rates in boreal lake sediments through an overall increase of bacterial activity. Accordingly, in situ mercury methylation defines methylmercury levels in lake sediments strongly influenced by planktonic blooms. In contrast, sediments dominated by terrigenous organic matter inputs have far lower methylation rates but higher concentrations of methylmercury, suggesting that methylmercury was formed in the catchment and imported into lakes. Our findings demonstrate that the origin and molecular composition of organic matter are critical parameters to understand and predict methylmercury formation and accumulation in boreal lake sediments. PMID:28181492

  11. Molecular composition of organic matter controls methylmercury formation in boreal lakes

    NASA Astrophysics Data System (ADS)

    Bravo, Andrea G.; Bouchet, Sylvain; Tolu, Julie; Björn, Erik; Mateos-Rivera, Alejandro; Bertilsson, Stefan

    2017-02-01

    A detailed understanding of the formation of the potent neurotoxic methylmercury is needed to explain the large observed variability in methylmercury levels in aquatic systems. While it is known that organic matter interacts strongly with mercury, the role of organic matter composition in the formation of methylmercury in aquatic systems remains poorly understood. Here we show that phytoplankton-derived organic compounds enhance mercury methylation rates in boreal lake sediments through an overall increase of bacterial activity. Accordingly, in situ mercury methylation defines methylmercury levels in lake sediments strongly influenced by planktonic blooms. In contrast, sediments dominated by terrigenous organic matter inputs have far lower methylation rates but higher concentrations of methylmercury, suggesting that methylmercury was formed in the catchment and imported into lakes. Our findings demonstrate that the origin and molecular composition of organic matter are critical parameters to understand and predict methylmercury formation and accumulation in boreal lake sediments.

  12. Stability of Ferrihydrite and Organic Matter in Ferrihydrite-Organic Matter Associations

    NASA Astrophysics Data System (ADS)

    Eusterhues, K.; Totsche, K. U.

    2015-12-01

    Iron oxides can bind particularly large amounts of organic matter (OM) and seem to be an important control on OM storage in many soils. To better understand the interactions between Fe oxides and OM, we produced ferrihydrite-OM associations by adsorption and coprecipitation in laboratory experiments. Because ferrihydrites are often formed in OM-rich solutions, we assume that coprecipitation is a common process in nature. In contrast to adsorption on pre-existing ferrihydrite surfaces, coprecipitation involves adsorption, occlusion (physical entrapment of OM), formation of Fe-OM complexes, and poisoning of ferrihydrite growth. The reactivity of coprecipitates may therefore differ from ferriydrites with adsorbed OM. Incubation experiments with an inoculum extracted from a Podzol forest-floor were carried out to quantify the mineralization of the adsorbed and coprecipitated organic matter. These experiments showed that the association with ferrihydrite stabilized the associated organic matter, but that differences in the degradability of adsorbed and coprecipitated organic matter were small. We therefore conclude that coprecipitation does not lead to a significant formation of microbial inaccessible organic matter domains. Microbial reduction experiments were performed using Geobacter bremensis. We observed that increasing amounts of associated OM led to decreasing initial reaction rates and a decreasing degree of dissolution. Reduction of coprecipitated ferrihydrites was faster than reduction of ferrihydrites with adsorbed OM. Our data demonstrate that the association with ferrihydrite can effectively stabilize labile polysaccharides. Vice versa, these polysaccharides may protect ferrihydrite from reduction by Geobacter-like bacteria. However, a challenge for future studies will be to link formation and degradation of mineral-organic associations to natural porous systems, that is, to the complex interplay of mass transport and microbial distribution in the

  13. Organic-carbon-rich rocks: Fast or slow organic-carbon accumulation?

    SciTech Connect

    Isaacs, C.M.; Piper, D.Z.; Keller, M.A.

    1996-12-31

    Organic-carbon-rich rocks and sediments are generally attributed in the marine geologic literature to high rates of organic carbon accumulation, resulting either from rapid input and/or excellent preservation. An alternate interpretation suggested by evidence from both oil-source rocks and modern sediments is that many organic-carbon-rich strata result from comparatively slow accumulation of organic carbon that is little diluted. The idea that organic-carbon-rich rocks represent rapid organic-carbon accumulation derives partly from the enhanced organic-carbon preservation associated with faster burial. Re-evaluation of published sediment trap and accumulation rate data in modern oceans shows, however, that sedimentation rate has been highly over-rated as a cause of high organic carbon abundance. As sedimentation rate increases, increased dilution outpaces increased preservation such that, other things being equal, more abundant organic carbon is associated with slower (not faster) sedimentation rates. Compared to an equal thickness of rapidly accumulated organic-carbon-lean sediment in the geologic record, slowly accumulated organic-carbon-rich sediment can represent 10-20 times more time-but be misinterpreted as reflecting rapid organic carbon accumulation by the common practice of interpolating age linearly with strata thickness. This relation explains the {open_quotes}enigma{close_quotes} of transgressive black shales, including numerous oil source-rocks worldwide associated with early phases of sea level rise. In offshore locations (20-200 km from the coast), rising sea level may sharply reduce terrigenous supply without significantly affecting productivity. The result is an organic-carbon-rich condensed zone reflecting neither high productivity nor low bottom-water oxygen nor rapid sedimentation, but simply lack of dilution.

  14. Organic-carbon-rich rocks: Fast or slow organic-carbon accumulation

    SciTech Connect

    Isaacs, C.M.; Piper, D.Z.; Keller, M.A. )

    1996-01-01

    Organic-carbon-rich rocks and sediments are generally attributed in the marine geologic literature to high rates of organic carbon accumulation, resulting either from rapid input and/or excellent preservation. An alternate interpretation suggested by evidence from both oil-source rocks and modern sediments is that many organic-carbon-rich strata result from comparatively slow accumulation of organic carbon that is little diluted. The idea that organic-carbon-rich rocks represent rapid organic-carbon accumulation derives partly from the enhanced organic-carbon preservation associated with faster burial. Re-evaluation of published sediment trap and accumulation rate data in modern oceans shows, however, that sedimentation rate has been highly over-rated as a cause of high organic carbon abundance. As sedimentation rate increases, increased dilution outpaces increased preservation such that, other things being equal, more abundant organic carbon is associated with slower (not faster) sedimentation rates. Compared to an equal thickness of rapidly accumulated organic-carbon-lean sediment in the geologic record, slowly accumulated organic-carbon-rich sediment can represent 10-20 times more time-but be misinterpreted as reflecting rapid organic carbon accumulation by the common practice of interpolating age linearly with strata thickness. This relation explains the [open quotes]enigma[close quotes] of transgressive black shales, including numerous oil source-rocks worldwide associated with early phases of sea level rise. In offshore locations (20-200 km from the coast), rising sea level may sharply reduce terrigenous supply without significantly affecting productivity. The result is an organic-carbon-rich condensed zone reflecting neither high productivity nor low bottom-water oxygen nor rapid sedimentation, but simply lack of dilution.

  15. Relating dissolved organic matter fluorescence to functional properties

    NASA Astrophysics Data System (ADS)

    Tipping, E.; Baker, A.; Thacker, S.; Gondar, D.

    2007-12-01

    The fluorescence excitation emission matrix properties of dissolved organic matter from three rivers and one lake in NW England are analysed. Sites are sampled in duplicate and for some sites seasonally to cover variations in dissolved organic matter composition, river flow, and carbon isotopic (13C, 14C) variability. Results are compared to the functional properties of the dissolved organic matter, the functional assays provide quantitative information on light absorption, fluorescence, photochemical fading, pH buffering, copper binding, benzo[a]pyrene binding, hydrophilicity and adsorption to alumina. Fluorescence characterization of the dissolved organic matter samples demonstrates that peak C fluorescence emission wavelength, the ratio of peak T to peak C fluorescence intensity, and the fluorescence : absorbance ratio best differentiate different dissolved organic matter samples. These parameters correspond to dissolved organic matter aromaticity, the ratio of labile to recalcitrant organic matter, and dissolved organic matter molecular weight. Peak C fluorescence emission wavelength, the ratio of peak T to peak C fluorescence intensity, and the fluorescence : absorbance ratio fluorescence parameters also have strong correlations with several of the functional assays, in particular the extinction coefficients, benzo(a)pyrene binding and alumina adsorption, and buffering capacity. In many cases, regression equations with a correlation coefficient >0.9 are obtained, suggesting that dissolved organic matter functional character can be predicted from DOM fluorescence properties. For one site, the relationship between dissolved organic matter source, fluorescence, function and carbon isotopic composition is discussed.

  16. Sequence stratigraphy of Cambrian economic phosphorites and organic matter-rich shales, Georgina basin, Australia

    SciTech Connect

    Southgate, P.N.; Shergold, J.H. )

    1991-03-01

    Sequence stratigraphic relationships in clastic- and carbonate-dominated sedimentary systems are comparatively well known. In these systems maximum flooding surfaces are often characterized by organic matter-rich sediments, glauconite, and phosphatic hardgrounds. This model explains the repeated occurrence of minor amounts of phosphate in the sedimentary record. However, it does not account for the large reserves of sedimentary phosphorite found in phosphate deposits of Cambrian, Ordovician, Permian, Cretaceous, and Miocene age. In Australia, economic phosphorites and their associated organic matter-rich shales, of Middle Cambrian age, accumulated in an intracratonic setting in the Georgina basin. The economic phosphorites occur in the lowermost two stratigraphic sequences of the basin and coincide with a period of major inundation of the continent. In each sequence the phosphorites are restricted to the upper parts of retrogradational parasequence sets of the transgressive system tract. In deeper water, drowned-platform and -ramp settings, micritic limestones, phosphatic hardgrounds, and organic matter-rich shales with benthonic and planktonic faunal components accumulated in dysaerobic environments. Further down the depositional slope and in subsequent parasequences, laminated organic matter-rich shales with TOC contents up to 16%, lacking benthonic but hosting planktonic faunal elements, accumulated in anaerobic conditions. Thus, economically significant phosphate deposits in the Georgina basin are the shallow-water, laterally equivalent facies of the weakly phosphatic and glauconitic dolomitic limestones and organic matter-rich shales, characteristic of the deeper water-condensed section.

  17. Hyaluronan accumulation and arrested oligodendrocyte progenitor maturation in vanishing white matter disease.

    PubMed

    Bugiani, Marianna; Postma, Nienke; Polder, Emiel; Dieleman, Nikki; Scheffer, Peter G; Sim, Fraser J; van der Knaap, Marjo S; Boor, Ilja

    2013-01-01

    Vanishing white matter disease is a genetic leukoencephalopathy caused by mutations in eukaryotic translation initiation factor 2B. Patients experience a slowly progressive neurological deterioration with episodes of rapid clinical worsening triggered by stress. The disease may occur at any age and leads to early death. Characteristic neuropathological findings include cystic degeneration of the white matter with feeble, if any, reactive gliosis, dysmorphic astrocytes and paucity of myelin despite an increase in oligodendrocytic density. These features have been linked to a maturation defect of astrocytes and oligodendrocytes. However, the nature of the link between glial immaturity and the observed neuropathological features is unclear. We hypothesized that the defects in maturation and function of astrocytes and oligodendrocytes are related. Brain tissue of seven patients with genetically proven vanishing white matter disease was investigated using immunohistochemistry, western blotting, quantitative polymerase chain reaction and size exclusion chromatography. The results were compared with those obtained from normal brain tissue of age-matched controls, from chronic demyelinated multiple sclerosis lesions and from other genetic and acquired white matter disorders. We found that the white matter of patients with vanishing white matter disease is enriched in CD44-expressing astrocyte precursor cells and accumulates the glycosaminoglycan hyaluronan. Hyaluronan is a major component of the extracellular matrix, and CD44 is a hyaluronan receptor. We found that a high molecular weight form of hyaluronan is overabundant, especially in the most severely affected areas. Comparison between the more severely affected frontal white matter and the relatively spared cerebellum confirms that high molecular weight hyaluronan accumulation is more pronounced in the frontal white matter than in the cerebellum. High molecular weight hyaluronan is known to inhibit astrocyte and

  18. Balance between salt stress and endogenous hormones influence dry matter accumulation in Jerusalem artichoke.

    PubMed

    Shao, Tianyun; Li, Lingling; Wu, Yawen; Chen, Manxia; Long, Xiaohua; Shao, Hongbo; Liu, Zhaopu; Rengel, Zed

    2016-10-15

    Salinity is one of the most serious environmental stresses limiting agricultural production. Production of Jerusalem artichoke on saline land is strategically important for using saline land resources. The interaction between plant hormones and salinity stress in governing Jerusalem artichoke (Helianthus tuberosus) growth is unclear. Jerusalem artichoke (variety Nanyu-1) was grown under variable salinity stress in the field, and a role of endogenous hormones [zeatin (ZT), auxins (IAA), gibberellins (GA3) and abscisic acid (ABA)] in regulating sugar and dry matter accumulation in tubers was characterized. Under mild salt stress (≤2.2gNaClkg(-1) soil), Nanyu-1 grew well with no significant alteration of dry matter distribution to stems and tubers. In contrast, under moderate salt stress (2.7gNaClkg(-1) soil), the distribution to stem decreased and to tubers decreased significantly. Mild salt stress induced sugar accumulation in tubers at the beginning of the tuber-expansion period, but significantly inhibited (i) transfer of non-reducing sugars to tubers, and (ii) polymerization and accumulation of fructan during the tuber-expansion stage. Under different salinity stress, before the stolon growth, the ratio of IAA/ABA in leaves increased significantly and that of GA3/ABA increased slightly; during tuber development, these ratios continued to decrease and reached the minimum late in the tuber-expansion period. While, salt stress inhibited (i) underground dry matter accumulation, (ii) tuber dry matter accumulation efficiency, (iii) transport of non-reducing sugars to tubers, and (iv) fructan accumulation efficiency during the tuber-expansion period; these effects were accompanied by significantly decreased tuber yield with an increase in salinity. With soil salinity increasing, the synthesis of IAA and GA3 was inhibited in leaves and tubers, while ABA synthesis was stimulated. In brief, tuber yield would significantly decreased with the increase of salinity.

  19. Starting life requires more than organic matter

    NASA Astrophysics Data System (ADS)

    Pascal, R.

    2015-10-01

    A physicochemical approach is proposed to study requirements for the origin of life in agreement with developments made in Systems Chemistry for several decades. Emphasis is made on the occurrence of environments generating abiotic chemical systems making more of themselves under far from equilibrium conditions. It follows that the presence of organic matter is only one of the components needed for the process of chemical evolution leading to life. The presence of an energy source with a potential equivalent to that of visible light is needed to render the activation step kinetically irreversible and the reproduction loop a unidirectional flux of reactants. This condition is required in order that reproduction follows an exponential law and dynamic kinetic stability governs the evolution toward the selection of improved variants. According to these views, no fundamental difference can be found between the chemical and biological stages of evolution.

  20. Dissolved organic matter uptake by Trichodesmium in the Southwest Pacific

    NASA Astrophysics Data System (ADS)

    Benavides, Mar; Berthelot, Hugo; Duhamel, Solange; Raimbault, Patrick; Bonnet, Sophie

    2017-01-01

    The globally distributed diazotroph Trichodesmium contributes importantly to nitrogen inputs in the oligotrophic oceans. Sites of dissolved organic matter (DOM) accumulation could promote the mixotrophic nutrition of Trichodesmium when inorganic nutrients are scarce. Nano-scale secondary ion mass spectrometry (nanoSIMS) analyses of individual trichomes sampled in the South Pacific Ocean, showed significant 13C-enrichments after incubation with either 13C-labeled carbohydrates or amino acids. These results suggest that DOM could be directly taken up by Trichodesmium or primarily consumed by heterotrophic epibiont bacteria that ultimately transfer reduced DOM compounds to their host trichomes. Although the addition of carbohydrates or amino acids did not significantly affect bulk N2 fixation rates, N2 fixation was enhanced by amino acids in individual colonies of Trichodesmium. We discuss the ecological advantages of DOM use by Trichodesmium as an alternative to autotrophic nutrition in oligotrophic open ocean waters.

  1. Dissolved organic matter uptake by Trichodesmium in the Southwest Pacific

    PubMed Central

    Benavides, Mar; Berthelot, Hugo; Duhamel, Solange; Raimbault, Patrick; Bonnet, Sophie

    2017-01-01

    The globally distributed diazotroph Trichodesmium contributes importantly to nitrogen inputs in the oligotrophic oceans. Sites of dissolved organic matter (DOM) accumulation could promote the mixotrophic nutrition of Trichodesmium when inorganic nutrients are scarce. Nano-scale secondary ion mass spectrometry (nanoSIMS) analyses of individual trichomes sampled in the South Pacific Ocean, showed significant 13C-enrichments after incubation with either 13C-labeled carbohydrates or amino acids. These results suggest that DOM could be directly taken up by Trichodesmium or primarily consumed by heterotrophic epibiont bacteria that ultimately transfer reduced DOM compounds to their host trichomes. Although the addition of carbohydrates or amino acids did not significantly affect bulk N2 fixation rates, N2 fixation was enhanced by amino acids in individual colonies of Trichodesmium. We discuss the ecological advantages of DOM use by Trichodesmium as an alternative to autotrophic nutrition in oligotrophic open ocean waters. PMID:28117432

  2. Spatial distribution and transport of soil organic matter through a semi-arid catchment

    NASA Astrophysics Data System (ADS)

    Cammeraat, L. H.

    2009-04-01

    Soil erosion and deposition plays an important role in the transport and reallocation of organic matter in terrestrial carbon dynamics. This study discusses the production, transport and storage of organic material in semi-arid, semi-natural shrubland and forest ecosystem in SE Spain. Goal is to study the faith of organic matter in these land use systems and to reveal their possible importance within the terrestrial carbon cycle and the importance of the spatial redistribution of organic matter through the landscape. The study was carried out at the Alquería field station in the Guadalentín basin in SE Spain on calcareous soils. Measurements were carried out at plant, plot and (sub-) catchment scale incorporating Stipa tenacissima tussock dominated shrublands, Pinus halepensis open forests and almond and cereal fields. The determination of organic matter was based on the production and presence of organic matter on the soil surface, the amount of organic matter incorporated in the soil as present under and around individual plants and scaled up using high resolution aerial photographs and remote sensing images. The standing biomass was determined as well, using allometric methods and scaled up also using high resolution aerial photographs to estimate total plant cover. The transport of organic matter is determined using organic matter collected in classical unbounded plots that have been monitored also for runoff and sediment yield. Sediment stored in a 60 year old retention basin was also studied to reveal the sediment and organic matter fluxes at broader spatio-temporal scales. Furthermore also soil material accumulated behind bench terraces was evaluated for soil organic carbon. The results will be discussed in the context of the sources and sinks of organic matter as well as to their linkage to erosion and hydrological processes. The spatial heterogeneity of the accumulated and transported organic matter is strongly related to the frequency-magnitude of

  3. Influence of Dissolved Organic Matter and Fe (II) on the Abiotic Reduction of Pentachloronitrobenzene

    EPA Science Inventory

    Nitroaromatic pesticides (NAPs) are hydrophobic contaminants that can accumulate in sediments by the deposition of suspended solids from surface waters. Fe(II) and dissolved organic matter (DOM), present in suboxic and anoxic zones of freshwater sediments, can transform NAPs in n...

  4. [Effects of Tillage on Distribution of Heavy Metals and Organic Matter Within Purple Paddy Soil Aggregates].

    PubMed

    Shi, Qiong-bin; Zhao, Xiu-lan; Chang, Tong-ju; Lu, Ji-wen

    2016-05-15

    A long-term experiment was utilized to study the effects of tillage methods on the contents and distribution characteristics of organic matter and heavy metals (Cu, Zn, Pb, Cd, Fe and Mn) in aggregates with different sizes (including 1-2, 0.25-1, 0.05-0.25 mm and < 0.05 mm) in a purple paddy soil under two tillage methods including flooded paddy field (FPF) and paddy-upland rotation (PR). The relationship between heavy metals and organic matter in soil aggregates was also analyzed. The results showed that the aggregates of two tillage methods were dominated by 0.05-0.25 mm and < 0.05 mm particle size, respectively. The contents of organic matter in each aggregate decreased with the decrease of aggregate sizes, however, compared to PR, FPF could significantly increase the contents of organic matter in soils and aggregates. The tillage methods did not significantly affect the contents of heavy metals in soils, but FPF could enhance the accumulation and distribution of aggregate, organic matter and heavy metals in aggregates with diameters of 1-2 mm and 0.25-1 mm. Correlation analysis found that there was a negative correlation between the contents of heavy metals and organic matter in soil aggregates, but a positive correlation between the amounts of heavy metal and organic matter accumulated in soil aggregates. From the slope of the correlation analysis equations, we could found that the sensitivities of heavy metals to the changes of soil organic matters followed the order of Mn > Zn > Pb > Cu > Fe > Cd under the same tillage. When it came to the same heavy metal, it was more sensitive in PR than in FPF.

  5. Sedimentary organic matter preservation: A test for selective degradation under oxic conditions

    SciTech Connect

    Hedges, J.I.; Hu, F.S.; Devol, A.H.; Hartnett, H.E.; Tsamakis, E.; Kei, R.G.

    1999-07-01

    The authors report here a test of the hypothesis that the extent of organic matter preservation in continental margin sediments is controlled by the average period accumulating particles reside in oxic porewater immediately beneath the water/sediment interface. Oxygen penetration depths, organic element compositions, and mineral surface areas were determined for 16 sediment cores collected along an offshore transect across the Washington continental shelf, slope, and adjacent Cascadia Basin. Individual amino acid, sugar, and pollen distributions were analyzed for a 11 to 12 cm horizon from each core, and {sup 14}C-based sediment accumulation rates and stable carbon isotope compositions were determined from depth profiles within a subset of six cores from representative sites. Sediment accumulation rates decreased, and dissolved O{sub 2} penetration depths increased offshore along the sampling transect. As a result, oxygen exposure times (OET) increased seaward from decades (mid-shelf and upper slope) to more than a thousand years (outer Cascadia Basin). Organic contents and compositions were essentially constant within individual sediment cores but varied consistently with location. In particular, organic carbon/surface area ratios decreased progressively offshore and with increasing OET. Three independent compositional parameters demonstrated that the remnant organic matter in farther offshore sediments is more degraded. Both concentration and compositional patterns indicated that sedimentary organic matter exhibits a distinct and reproducible oxic effect. OET helps integrate and explain organic matter preservation in accumulating continental margin sediments and hence provides a useful tool for assessing transfer of organic matter from the biosphere to the geosphere.

  6. Soil organic matter content effects on dermal pesticide bioconcentration in American toads (Bufo americanus).

    PubMed

    Van Meter, Robin J; Glinski, Donna A; Henderson, W Matthew; Purucker, S Thomas

    2016-11-01

    Pesticides have been implicated as a major factor in global amphibian declines and may pose great risk to terrestrial phase amphibians moving to and from breeding ponds on agricultural landscapes. Dermal uptake from soil is known to occur in amphibians, but predicting pesticide availability and bioconcentration across soil types is not well understood. The present study was designed to compare uptake of 5 current-use pesticides (imidacloprid, atrazine, triadimefon, fipronil, and pendimethalin) in American toads (Bufo americanus) from exposure on soils with significant organic matter content differences (14.1% = high organic matter and 3.1% = low organic matter). We placed toads on high- or low-organic matter soil after applying individual current-use pesticides on the soil surface for an 8-h exposure duration. Whole body tissue homogenates and soils were extracted and analyzed using liquid chromatography-mass spectrometry to determine pesticide tissue and soil concentration, as well as bioconcentration factor in toads. Tissue concentrations were greater on the low-organic matter soil than the high-organic matter soil across all pesticides (average ± standard error; 1.23 ± 0.35 ppm and 0.78 ± 0.23 ppm, respectively), and bioconcentration was significantly higher for toads on the low-organic matter soil (analysis of covariance p = 0.002). Soil organic matter is known to play a significant role in the mobility of pesticides and bioavailability to living organisms. Agricultural soils typically have relatively lower organic matter content and serve as a functional habitat for amphibians. The potential for pesticide accumulation in amphibians moving throughout agricultural landscapes may be greater and should be considered in conservation and policy efforts. Environ Toxicol Chem 2016;35:2734-2741. © 2016 SETAC.

  7. Cadmium accumulation by muskmelon under salt stress in contaminated organic soil.

    PubMed

    Ondrasek, Gabrijel; Gabrijel, Ondrasek; Romic, Davor; Davor, Romic; Rengel, Zed; Zed, Rengel; Romic, Marija; Marija, Romic; Zovko, Monika; Monika, Zovko

    2009-03-15

    Human-induced salinization and trace element contamination are widespread and increasing rapidly, but their interactions and environmental consequences are poorly understood. Phytoaccumulation, as the crucial entry pathway for biotoxic Cd into the human foodstuffs, correlates positively with rhizosphere salinity. Hypothesising that organic matter decreases the bioavailable Cd(2+) pool and therefore restricts its phytoextraction, we assessed the effects of four salinity levels (0, 20, 40 and 60 mM NaCl) and three Cd levels (0.3, 5.5 and 10.4 mg kg(-1)) in peat soil on mineral accumulation/distribution as well as vegetative growth and fruit yield parameters of muskmelon (Cucumis melo L.) in a greenhouse. Salt stress reduced shoot biomass and fruit production, accompanied by increased Na and Cl and decreased K concentration in above-ground tissues. A 25- and 50-day exposure to salinity increased Cd accumulation in leaves up to 87% and 46%, respectively. Accumulation of Cd in the fruits was up to 43 times lower than in leaves and remained unaltered by salinity. Soil contamination by Cd enhanced its accumulation in muskmelon tissues by an order of magnitude compared with non-contaminated control. In the drainage solution, concentrations of Na and Cl slightly exceeded those in the irrigation solution, whereas Cd concentration in drainage solution was lower by 2-3 orders of magnitude than the total amount added. Chemical speciation and distribution modelling (NICA-Donnan) using Visual MINTEQ showed predominance of dissolved organic ligands in Cd chemisorption and complexation in all treatments; however, an increase in salt addition caused a decrease in organic Cd complexes from 99 to 71%, with free Cd(2+) increasing up to 6% and Cd-chlorocomplexes up to 23%. This work highlights the importance of soil organic reactive surfaces in reducing trace element bioavailability and phytoaccumulation. Chloride salinity increased Cd accumulation in leaves but not in fruit peel and

  8. High salinity leads to accumulation of soil organic carbon in mangrove soil.

    PubMed

    Kida, Morimaru; Tomotsune, Mitsutoshi; Iimura, Yasuo; Kinjo, Kazutoshi; Ohtsuka, Toshiyuki; Fujitake, Nobuhide

    2017-06-01

    Although mangrove forests are one of the most well-known soil organic carbon (SOC) sinks, the mechanism underlying SOC accumulation is relatively unknown. High net primary production (NPP) along with the typical bottom-heavy biomass allocation and low soil respiration (SR) have been considered to be responsible for SOC accumulation. However, an emerging paradigm postulates that SR is severely underestimated because of the leakage of dissolved inorganic carbon (DIC) in groundwater. Here we propose a simple yet unique mechanism for SOC accumulation in mangrove soils. We conducted sequential extraction of water extractable organic matter (WEOM) from mangrove soils using ultrapure water and artificial seawater, respectively. A sharp increase in humic substances (HS) concentration was observed only in the case of ultrapure water, along with a decline in salinity. Extracted WEOM was colloidal, and ≤70% of it re-precipitated by the addition of artificial seawater. These results strongly suggest that HS is selectively flocculated and maintained in the mangrove soils because of high salinity. Because sea salts are a characteristic of any mangrove forest, high salinity may be one of mechanisms underlying SOC accumulation in mangrove soils.

  9. Assessing the Capacity of Plant Species to Accumulate Particulate Matter in Beijing, China

    PubMed Central

    Mo, Li; Ma, Zeyu; Xu, Yansen; Sun, Fengbin; Lun, Xiaoxiu; Liu, Xuhui; Chen, Jungang; Yu, Xinxiao

    2015-01-01

    Air pollution causes serious problems in spring in northern China; therefore, studying the ability of different plants to accumulate particulate matter (PM) at the beginning of the growing season may benefit urban planners in their attempts to control air pollution. This study evaluated deposits of PM on the leaves and in the wax layer of 35 species (11 shrubs, 24 trees) in Beijing, China. Differences in the accumulation of PM were observed between species. Cephalotaxus sinensis, Euonymus japonicus, Broussonetia papyriferar, Koelreuteria paniculata and Quercus variabilis were all efficient in capturing small particles. The plants exhibiting high amounts of total PM accumulation (on leaf surfaces and/or in the wax layer), also showed comparatively high levels of PM accumulation across all particle sizes. A comparison of shrubs and trees did not reveal obvious differences in their ability to accumulate particles based on growth form; a combination of plantings with different growth forms can efficiently reduce airborne PM concentrations near the ground. To test the relationships between leaf traits and PM accumulation, leaf samples of selected species were observed using a scanning electron microscope. Growth forms with greater amounts of pubescence and increased roughness supported PM accumulation; the adaxial leaf surfaces collected more particles than the abaxial surfaces. The results of this study may inform the selection of species for urban green areas where the goal is to capture air pollutants and mitigate the adverse effects of air pollution on human health. PMID:26506104

  10. Soil Organic Matter and Management of Plant-Parasitic Nematodes

    PubMed Central

    Widmer, T. L.; Mitkowski, N. A.; Abawi, G. S.

    2002-01-01

    Organic matter and its replenishment has become a major component of soil health management programs. Many of the soil's physical, chemical, and biological properties are a function of organic matter content and quality. Adding organic matter to soil influences diverse and important biological activities. The diversity and number of free-living and plant-parasitic nematodes are altered by rotational crops, cover crops, green manures, and other sources of organic matter. Soil management programs should include the use of the proper organic materials to improve soil chemical, physical, and biological parameters and to suppress plant-parasitic nematodes and soilborne pathogens. It is critical to monitor the effects of organic matter additions on activities of major and minor plant-parasitic nematodes in the production system. This paper presents a general review of information in the literature on the effects of crop rotation, cover crops, and green manures on nematodes and their damage to economic crops. PMID:19265946

  11. Modelling the metabolic shift of polyphosphate-accumulating organisms.

    PubMed

    Acevedo, B; Borrás, L; Oehmen, A; Barat, R

    2014-11-15

    Enhanced biological phosphorus removal (EBPR) is one of the most important methods of phosphorus removal in municipal wastewater treatment plants, having been described by different modelling approaches. In this process, the PAOs (polyphosphate accumulating organisms) and GAOs (glycogen accumulating organisms) compete for volatile fatty acids uptake under anaerobic conditions. Recent studies have revealed that the metabolic pathways used by PAOs in order to obtain the energy and the reducing power needed for polyhydroxyalkanoates synthesis could change depending on the amount of polyphosphate stored in the cells. The model presented in this paper extends beyond previously developed metabolic models by including the ability of PAO to change their metabolic pathways according to the content of poly-P available. The processes of the PAO metabolic model were adapted to new formulations enabling the change from P-driven VFA uptake to glycogen-driven VFA uptake using the same process equations. The stoichiometric parameters were changed from a typical PAO coefficient to a typical GAO coefficient depending on the internal poly-P with Monod-type expressions. The model was calibrated and validated with seven experiments under different internal poly-P concentrations, showing the ability to correctly represent the PAO metabolic shift at low poly-P concentrations. The sensitivity and error analysis showed that the model is robust and has the ability to describe satisfactorily the change from one metabolic pathway to the other one, thereby encompassing a wider range of process conditions found in EBPR plants.

  12. Recent organic carbon accumulation (~100 years) along the Cabo Frio, Brazil upwelling region

    NASA Astrophysics Data System (ADS)

    Sanders, Christian J.; Caldeira, Pedro P.; Smoak, Joseph M.; Ketterer, Michael E.; Belem, Andre; Mendoza, Ursula M. N.; Cordeiro, Lívia G. M. S.; Silva-Filho, Emmanoel V.; Patchineelam, Sambasiva R.; Albuquerque, Ana Luiza S.

    2014-03-01

    Six sediment cores were obtained from the Cabo Frio shelf region of coastal Brazil to quantify the accumulation of organic carbon in a highly productive upwelling region. The sampled locations, 10-60 km offshore at ~100 m water depth, were investigated for excess 210Pb (210Pbex) as well as 239+240Pu fallout activities to determine sedimentary dynamics. The 210Pbex and 239+240Pu dating models show that the sediment accumulation rates varied substantially throughout this complex hydrodynamic system (0.8-5.5 mm yr-1). Excess 210Pb and 239+240Pu fluxes indicate lateral transport, with varying intensity along the continental shelf. The stations with the greatest 210Pbex and 239+240Pu sediment inventories are also the sites with the highest carbon accumulation rates (CAR). The total organic carbon (TOC) and total nitrogen (TN) contents, along with the δ13C results, indicate that the organic matter deposited in this region is mainly of marine origin. The results of this work suggest that lateral transport, with varying intensity along the shelf, contribute to the large quantities of marine plankton buried at specific depositional settings in the Cabo Frio upwelling region (~1-8 mol of OC cm-2 yr-1).

  13. Sensitivity of soil organic matter in anthropogenically disturbed organic soils

    NASA Astrophysics Data System (ADS)

    Säurich, Annelie; Tiemeyer, Bärbel; Bechtold, Michel; Don, Axel; Freibauer, Annette

    2016-04-01

    Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. However, the variability of CO2 emissions increases with disturbance, and little is known on the soil properties causing differences between seemingly similar sites. Furthermore the driving factors for carbon cycling are well studied for both genuine peat and mineral soil, but there is a lack of information concerning soils at the boundary between organic and mineral soils. Examples for such soils are both soils naturally relatively high in soil organic matter (SOM) such as Humic Gleysols and former peat soils with a relative low SOM content due to intensive mineralization or mixing with underlying or applied mineral soil. The study aims to identify drivers for the sensitivity of soil organic matter and therefore for respiration rates of anthropogenically disturbed organic soils, especially those near the boundary to mineral soils. Furthermore, we would like to answer the question whether there are any critical thresholds of soil organic carbon (SOC) concentrations beyond which the carbon-specific respiration rates change. The German agricultural soil inventory samples all agricultural soils in Germany in an 8x8 km² grid following standardized protocols. From this data and sample base, we selected 120 different soil samples from more than 80 sites. As reference sites, three anthropogenically undisturbed peatlands were sampled as well. We chose samples from the soil inventory a) 72 g kg-1 SOC and b) representing the whole range of basic soil properties: SOC (72 to 568 g kg-1), total nitrogen (2 to 29 g kg-1), C-N-ratio (10 to 80) bulk density (0.06 to 1.41 g/cm³), pH (2.5 to 7.4), sand (0 to 95 %) and clay (2 to 70 %) content (only determined for samples with less than 190 g kg-1 SOC) as well as the botanical origin of the peat (if determinable). Additionally, iron oxides were determined for all samples. All samples were sieved (2 mm) and incubated at standardized water content and

  14. Aerobic methane production from organic matter

    NASA Astrophysics Data System (ADS)

    Vigano, I.

    2010-01-01

    Methane, together with H2O, CO2 and N2O, is an important greenhouse gas in th e Earth’s atmosphere playing a key role in the radiative budget. It has be en known for decades that the production of the reduced compound CH4 is possible almost exclusively in anoxic environments per opera of one of the most importan t class of microorganisms which form the Archaea reign. Methane can be produced also from incomplete combustion of organic material. The generation of CH4 in an oxygenated environment under near-ambient conditions is a new discovery made in 2006 by Keppler et. al where surprisingly they measured emissions of this green house gas from plants incubated in chambers with air containing 20% of oxygen. A lthough the estimates on a global scale are still object of an intensive debate, the results presented in this thesis clearly show the existence of methane prod uction under oxic conditions for non living plant material. Temperature and UV l ight are key factors that drive the generation of CH4 from plant matter in a wel l oxygenated environment.

  15. The evolution of organic matter in space.

    PubMed

    Ehrenfreund, Pascale; Spaans, Marco; Holm, Nils G

    2011-02-13

    Carbon, and molecules made from it, have already been observed in the early Universe. During cosmic time, many galaxies undergo intense periods of star formation, during which heavy elements like carbon, oxygen, nitrogen, silicon and iron are produced. Also, many complex molecules, from carbon monoxide to polycyclic aromatic hydrocarbons, are detected in these systems, like they are for our own Galaxy. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surprisingly high number of molecules that are used in contemporary biochemistry on the Earth are found in the interstellar medium, planetary atmospheres and surfaces, comets, asteroids and meteorites and interplanetary dust particles. Large quantities of extra-terrestrial material were delivered via comets and asteroids to young planetary surfaces during the heavy bombardment phase. Monitoring the formation and evolution of organic matter in space is crucial in order to determine the prebiotic reservoirs available to the early Earth. It is equally important to reveal abiotic routes to prebiotic molecules in the Earth environments. Materials from both carbon sources (extra-terrestrial and endogenous) may have contributed to biochemical pathways on the Earth leading to life's origin. The research avenues discussed also guide us to extend our knowledge to other habitable worlds.

  16. The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes

    USGS Publications Warehouse

    Kirwanm, M.L.; Langley, J.A.; Guntenspergen, Gleen R.; Megonigal, J.P.

    2013-01-01

    The balance between organic matter production and decay determines how fast coastal wetlands accumulate soil organic matter. Despite the importance of soil organic matter accumulation rates in influencing marsh elevation and resistance to sea-level rise, relatively little is known about how decomposition rates will respond to sea-level rise. Here, we estimate the sensitivity of decomposition to flooding by measuring rates of decay in 87 bags filled with milled sedge peat, including soil organic matter, roots and rhizomes. Experiments were located in field-based mesocosms along 3 mesohaline tributaries of the Chesapeake Bay. Mesocosm elevations were manipulated to influence the duration of tidal inundation. Although we found no significant influence of inundation on decay rate when bags from all study sites were analyzed together, decay rates at two of the sites increased with greater flooding. These findings suggest that flooding may enhance organic matter decay rates even in water-logged soils, but that the overall influence of flooding is minor. Our experiments suggest that sea-level rise will not accelerate rates of peat accumulation by slowing the rate of soil organic matter decay. Consequently, marshes will require enhanced organic matter productivity or mineral sediment deposition to survive accelerating sea-level rise.

  17. The Biogeochemistry of Chromophoric Dissolved Organic Matter in Coastal Waters

    DTIC Science & Technology

    2016-06-07

    97-1-0720 LONG-TERM GOAL The long-term goal of this research is to better understand the biogeochemical cycling of dissolved organic matter (DOM) in...are analyzed for particulate organic carbon and nitrogen , chlorophyll a, total suspended matter, DO13C, and fluorescence lifetime. These samples have

  18. Radio Frequency Sensing of Particulate Matter Accumulation on a Gasoline Particulate Filter

    SciTech Connect

    Parks, James; Prikhodko, Vitaly Y.; Sappok, Alex; Ragaller, Paul; Bromberg, Leslie

    2016-10-30

    Filter Sensing Technology’s radio frequency (RF) sensor for particulate filter on-board diagnostics (OBD) was studied on a lean gasoline engine at the National Transportation Research Center (NTRC) at Oak Ridge National Laboratory (ORNL). The response of the RF sensor to particulate matter (PM) or “soot” accumulation on the gasoline particulate filter (GPF) installed in the engine exhaust was evaluated. In addition, end plugs of the GPF were purposely removed, and subsequent changes to the RF sensor measured soot loading on the GPF were characterized. Results from the study showed that the RF sensor can accurately measure soot accumulation on a GPF; furthermore, the predicted decreased soot accumulation due to plug removal was detected by the RF sensor. Overall, the studies were short and preliminary in nature; however, clearly, the RF sensor demonstrated the capability of measuring GPF soot loading at a level suitable for use in lean gasoline engine emission control OBD and control.

  19. Low acetate concentrations favor polyphosphate-accumulating organisms over glycogen-accumulating organisms in enhanced biological phosphorus removal from wastewater.

    PubMed

    Tu, Yunjie; Schuler, Andrew J

    2013-04-16

    Glycogen-accumulating organisms (GAOs) are thought to compete with polyphosphate-accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) wastewater treatment systems. A laboratory sequencing batch reactor (SBR) was operated for one year to test the hypothesis that PAOs have a competitive advantage at low acetate concentrations, with a focus on low pH conditions previously shown to favor GAOs. PAOs dominated the system under conventional SBR operation with rapid acetate addition (producing high in-reactor concentrations) and pH values of 7.4-8.4. GAOs dominated when the pH was decreased (6.4-7.0). Decreasing the acetate addition rate led to very low reactor acetate concentrations, and PAOs recovered, supporting the study hypothesis. When the acetate feed rate was increased, EBPR failed again. Dominant PAOs and GAOs were Candidatus Accumulibacter phosphatis and Defluviicoccus Cluster 2, respectively, according to fluorescent in situ hybridization and 454 pyrosequencing. Surprisingly, GAOs were not the immediate causes of PAO failures, based on functional and population measurements. Pyrosequencing results suggested Dechloromonas and Tetrasphaera spp. may have also been PAOs, and additional potential GAOs were also identified. Full-scale systems typically have lower in-reactor acetate concentrations than laboratory SBRs, and so, previous laboratory studies may have overestimated the practical importance of GAOs as causes of EBPR failure.

  20. Complexation of trace metals by adsorbed natural organic matter

    USGS Publications Warehouse

    Davis, J.A.

    1984-01-01

    The adsorption behavior and solution speciation of Cu(II) and Cd(II) were studied in model systems containing colloidal alumina particles and dissolved natural organic matter. At equilibrium a significant fraction of the alumina surface was covered by adsorbed organic matter. Cu(II) was partitioned primarily between the surface-bound organic matter and dissolved Cu-organic complexes in the aqueous phase. Complexation of Cu2+ with the functional groups of adsorbed organic matter was stronger than complexation with uncovered alumina surface hydroxyls. It is shown that the complexation of Cu(II) by adsorbed organic matter can be described by an apparent stability constant approximately equal to the value found for solution phase equilibria. In contrast, Cd(II) adsorption was not significantly affected by the presence of organic matter at the surface, due to weak complex formation with the organic ligands. The results demonstrate that general models of trace element partitioning in natural waters must consider the presence of adsorbed organic matter. ?? 1984.

  1. Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area

    USGS Publications Warehouse

    Trumbore, S.E.; Harden, J.W.

    1997-01-01

    Rates of input, accumulation, and turnover of C differ markedly within soil profiles and in soils with different drainage in the BOREAS northern study area. Soil C storage increases from ???3 kg C m-2 in well-drained, sandy soils to greater than 100 kg C m-2 in wetlands. Two modes of C accumulation were observed in upland soil profiles. Large annual C inputs (0.06-0.1 kg C m-2 yr-1) and slow decomposition (turnover times of 6-250 years) lead to rapid C accumulation in regrowing surface moss and detrital layers following fire. Deep organic layers that have accumulated over the millennia since the initiation of soil development, and are located below the most recent charred horizon, show slower rates of input (0.015-0.03 kg C m-2 yr-1) and turnover (100-1600 years) and accumulate C about 10 times slower than surface detrital layers. Rates of C input to soils derived from C and 14C data were in accord with net primary production estimates, with highest rates of input (0.14-0.6 kg C m-2 yr-1) in wetlands. Turnover times for C in surface detrital layers were 6-15 years for well-drained sand soils that showed highest soil temperatures in summer, 30-40 years for wetlands, and 36-250 years for uplands with thick moss cover and black spruce trees. Long (>100 years) turnover times in upland black spruce/clay soils most likely reflect the influence of woody debris incorporated into detrital layers. Turnover times for deep organic and mineral layer C were controlled by drainage, with fastest turnover (80-130 years) in well-drained sand soils and slowest turnover (>3000 years) in wetlands. Total C accumulation rates, which account for C losses from both deep organic and surface detrital layers, are close to zero for sand/jack pine soils, 0.003-0.01 kg C m-2 yr-1 for moderately to poorly drained sites in mature forest stands, and 0.03 kg C m-2 yr-1 for a productive fen. Decomposition of organic matter more than several decades old accounts for 9-22% of total heterotrophic

  2. Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area

    NASA Astrophysics Data System (ADS)

    Trumbore, S. E.; Harden, J. W.

    1997-12-01

    Rates of input, accumulation, and turnover of C differ markedly within soil profiles and in soils with different drainage in the BOREAS northern study area. Soil C storage increases from ˜3 kg C m-2 in well-drained, sandy soils to greater than 100 kg C m-2 in wetlands. Two modes of C accumulation were observed in upland soil profiles. Large annual C inputs (0.06-0.1 kg C m-2 yr-1) and slow decomposition (turnover times of 6-250 years) lead to rapid C accumulation in regrowing surface moss and detrital layers following fire. Deep organic layers that have accumulated over the millennia since the initiation of soil development, and are located below the most recent charred horizon, show slower rates of input (0.015-0.03 kg C m-2 yr-1) and turnover (100-1600 years) and accumulate C about 10 times slower than surface detrital layers. Rates of C input to soils derived from C and 14C data were in accord with net primary production estimates, with highest rates of input (0.14-0.6 kg C m-2 yr-1) in wetlands. Turnover times for C in surface detrital layers were 6-15 years for well-drained sand soils that showed highest soil temperatures in summer, 30-40 years for wetlands, and 36-250 years for uplands with thick moss cover and black spruce trees. Long (>100 years) turnover times in upland black spruce/clay soils most likely reflect the influence of woody debris incorporated into detrital layers. Turnover times for deep organic and mineral layer C were controlled by drainage, with fastest turnover (80-130 years) in well-drained sand soils and slowest turnover (>3000 years) in wetlands. Total C accumulation rates, which account for C losses from both deep organic and surface detrital layers, are close to zero for sand/jack pine soils, 0.003-0.01 kg C m-2 yr-1 for moderately to poorly drained sites in mature forest stands, and 0.03 kg C m-2 yr-1 for a productive fen. Decomposition of organic matter more than several decades old accounts for 9-22% of total heterotrophic

  3. Missing links in the root-soil organic matter continuum

    SciTech Connect

    O'Brien, Sarah L.; Iversen, Colleen M

    2009-01-01

    The soil environment remains one of the most complex and poorly understood research frontiers in ecology. Soil organic matter (SOM), which spans a continuum from fresh detritus to highly processed, mineral-associated organic matter, is the foundation of sustainable terrestrial ecosystems. Heterogeneous SOM pools are fueled by inputs from living and dead plants, driven by the activity of micro- and mesofauna, and are shaped by a multitude of abiotic factors. The specialization required to measure unseen processes that occur on a wide range of spatial and temporal scales has led to the partitioning of soil ecology research across several disciplines. In the organized oral session 'Missing links in the root-soil organic matter continuum' at the annual Ecological Society of America meeting in Albuquerque, NM, USA, we joined the call for greater communication and collaboration among ecologists who work at the root-soil interface (e.g. Coleman, 2008). Our goal was to bridge the gap between scientific disciplines and to synthesize disconnected pieces of knowledge from root-centric and soil-centric studies into an integrated understanding of belowground ecosystem processes. We focused this report around three compelling themes that arose from the session: (1) the influence of the rhizosphere on SOM cycling, (2) the role of soil heterotrophs in driving the transformation of root detritus to SOM, and (3) the controlling influence of the soil environment on SOM dynamics. We conclude with a discussion of new approaches for gathering data to bridge gaps in the root-SOM continuum and to inform the next generation of ecosystem models. Although leaf litter has often been considered to be the main source of organic inputs to soil, Ann Russell synthesized a convincing body of work demonstrating that roots, rather than surface residues, control the accumulation of SOM in a variety of ecosystems. Living roots, which are chemically diverse and highly dynamic, also influence a wide

  4. Subcritical water extraction of organic matter from sedimentary rocks.

    PubMed

    Luong, Duy; Sephton, Mark A; Watson, Jonathan S

    2015-06-16

    Subcritical water extraction of organic matter containing sedimentary rocks at 300°C and 1500 psi produces extracts comparable to conventional solvent extraction. Subcritical water extraction of previously solvent extracted samples confirms that high molecular weight organic matter (kerogen) degradation is not occurring and that only low molecular weight organic matter (free compounds) are being accessed in analogy to solvent extraction procedures. The sedimentary rocks chosen for extraction span the classic geochemical organic matter types. A type I organic matter-containing sedimentary rock produces n-alkanes and isoprenoidal hydrocarbons at 300°C and 1500 psi that indicate an algal source for the organic matter. Extraction of a rock containing type II organic matter at the same temperature and pressure produces aliphatic hydrocarbons but also aromatic compounds reflecting the increased contributions from terrestrial organic matter in this sample. A type III organic matter-containing sample produces a range of non-polar and polar compounds including polycyclic aromatic hydrocarbons and oxygenated aromatic compounds at 300°C and 1500 psi reflecting a dominantly terrestrial origin for the organic materials. Although extraction at 300°C and 1500 psi produces extracts that are comparable to solvent extraction, lower temperature steps display differences related to organic solubility. The type I organic matter produces no products below 300°C and 1500 psi, reflecting its dominantly aliphatic character, while type II and type III organic matter contribute some polar components to the lower temperature steps, reflecting the chemical heterogeneity of their organic inventory. The separation of polar and non-polar organic compounds by using different temperatures provides the potential for selective extraction that may obviate the need for subsequent preparative chromatography steps. Our results indicate that subcritical water extraction can act as a suitable

  5. Photochemical Degradation of Persistent Organic Pollutants: A Study of Ice Photochemistry Mediated by Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Pierce, B.; Grannas, A. M.

    2010-12-01

    Contamination and accumulation of persistent organic pollutants (POPs) in the Arctic, an area previously considered as pristine and removed from human influence, has become a growing concern. Volatile and semi-volatile contaminants from lower latitudes are transported to the Arctic through a process known as global distillation. The polar regions are unique in that they sit in darkness during the winter until polar sunrise. These conditions allow pollutants to accumulate during winter and then undergo 24-hours of continuous irradiance in sunlit conditions. Photochemical degradation may thus be an important pathway to consider in the spring/summer Arctic season. Additionally, active photochemistry has also been observed in mid-latitude snowpacks. However, the potential photodegradation of anthropogenic contaminants in mid-latitude snow has received little attention in the literature. Aldrin, a once globally distributed pesticide, is of particular environmental concern due to its low solubility in water, known persistence in the environment, and its ability to degrade into environmentally persistent products. To investigate the potential photochemical degradation of aldrin, samples of aqueous aldrin solution (20 µg/L), in liquid and frozen phases, were irradiated under Q-Panel 340 lamps to simulate the UV radiation profile of natural sunlight. Following irradiation, samples were extracted with organic solvent containing an internal standard for GC-ECD analysis. Results indicated that frozen samples degrade more quickly than liquid samples. Photochemical half lives for frozen and liquid samples were found to be approximately 13.5 hours and 45 hours respectively. It was found that the addition of natural organic matter increased the aldrin degradation rate significantly. Ongoing studies will further evaluate the differences in liquid and frozen reactivity and the influence of different sources of natural organic matter.

  6. Dissolved Organic Matter and Emerging Contaminants in Urban Stream Ecosystems

    NASA Astrophysics Data System (ADS)

    Kaushal, S. S.; Findlay, S.; Groffman, P.; Belt, K.; Delaney, K.; Sides, A.; Walbridge, M.; Mayer, P.

    2009-05-01

    We investigated the effects of urbanization on the sources, bioavailability and forms of natural and anthropogenic organic matter found in streams located in Maryland, U.S.A. We found that the abundance, biaoavailability, and enzymatic breakdown of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved organic phosphorus (DOP) increased in streams with increasing watershed urbanization suggesting that organic nutrients may represent a growing form of nutrient loading to coastal waters associated with land use change. Organic carbon, nitrogen, and phosphorus in urban streams were elevated several-fold compared to forest and agricultural streams. Enzymatic activities of stream microbes in organic matter decomposition were also significantly altered across watershed land use. Chemical characterization suggested that organic matter in urban streams originated from a variety of sources including terrestrial, sewage, and in-stream transformation. In addition, a characterization of emerging organic contaminants (polyaromatic cyclic hydrocarbons, organochlorine pesticides, and polybrominated diphenyl ether flame retardents), showed that organic contaminants and dissolved organic matter increase with watershed urbanization and fluctuate substantially with changing climatic conditions. Elucidating the emerging influence of urbanization on sources, transport, and in-stream transformation of organic nutrients and contaminants will be critical in unraveling the changing role of organic matter in urban degraded and restored stream ecosystems.

  7. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China.

    PubMed

    Wu, Jianping; Liang, Guohua; Hui, Dafeng; Deng, Qi; Xiong, Xin; Qiu, Qingyan; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2016-02-15

    With the continuing increase in anthropogenic activities, acid rain remains a serious environmental threat, especially in the fast developing areas such as southern China. To detect how prolonged deposition of acid rain would influence soil organic carbon accumulation in mature subtropical forests, we conducted a field experiment with simulated acid rain (SAR) treatments in a monsoon evergreen broadleaf forest at Dinghushan National Nature Reserve in southern China. Four levels of SAR treatments were set by irrigating plants with water of different pH values: CK (the control, local lake water, pH ≈ 4.5), T1 (water pH=4.0), T2 (water pH=3.5), and T3 (water pH=3.0). Results showed reduced pH measurements in the topsoil exposed to simulated acid rains due to soil acidification. Soil respiration, soil microbial biomass and litter decomposition rates were significantly decreased by the SAR treatments. As a result, T3 treatment significantly increased the total organic carbon by 24.5% in the topsoil compared to the control. Furthermore, surface soil became more stable as more recalcitrant organic matter was generated under the SAR treatments. Our results suggest that prolonged acid rain exposure may have the potential to facilitate soil organic carbon accumulation in the subtropical forest in southern China.

  8. Changes in River Organic Matter Through Time.

    NASA Astrophysics Data System (ADS)

    Hudson, N.; Baker, A.; Ward, D.

    2006-12-01

    fluorescence, as an increase in pH was also observed in these samples. This work illustrates the dynamic character of river organic matter within a timescale and under conditions that are representative of the natural system.

  9. Impact of salinity on the anaerobic metabolism of phosphate-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO).

    PubMed

    Welles, L; Lopez-Vazquez, C M; Hooijmans, C M; van Loosdrecht, M C M; Brdjanovic, D

    2014-09-01

    The use of saline water as secondary quality water in urban environments for sanitation is a promising alternative towards mitigating fresh water scarcity. However, this alternative will increase the salinity in the wastewater generated that may affect the biological wastewater treatment processes, such as biological phosphorus removal. In addition to the production of saline wastewater by the direct use of saline water in urban environments, saline wastewater is also generated by some industries. Intrusion of saline water into the sewers is another source of salinity entering the wastewater treatment plant. In this study, the short-term effects of salinity on the anaerobic metabolism of phosphate-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO) were investigated to assess the impact of salinity on enhanced biological phosphorus removal. Hereto, PAO and GAO cultures enriched at a relatively low salinity level (0.02 % W/V) were exposed to salinity concentrations of up to 6 % (as NaCl) in anaerobic batch tests. It was demonstrated that both PAO and GAO are affected by higher salinity levels, with PAO being the more sensitive organisms to the increasing salinity. The maximum acetate uptake rate of PAO decreased by 71 % when the salinity increased from 0 to 1 %, while that of GAO decreased by 41 % for the same salinity increase. Regarding the stoichiometry of PAO, a decrease in the P-release/HAc uptake ratio accompanied with an increase in the glycogen consumption/HAc uptake ratio was observed for PAO when the salinity increased from 0 to 2 % salinity, indicating a metabolic shift from a poly-P-dependent to a glycogen-dependent metabolism. The anaerobic maintenance requirements of PAO and GAO increased as the salinity concentrations risen up to 4 % salinity.

  10. Characterization of Soil Organic Matter in Peat Soil with Different Humification Levels using FTIR

    NASA Astrophysics Data System (ADS)

    Teong, I. T.; Felix, N. L. L.; Mohd, S.; Sulaeman, A.

    2016-07-01

    Peat soil is defined as an accumulation of the debris and vegetative under the water logging condition. Soil organic matter of peat soil was affected by the environmental, weather, types of vegetative. Peat soil was normally classified based on its level of humification. Humification can be defined as the transformation of numerous group of substances (proteins, carbohydrates, lipids, etc.) and individual molecules present in living organic matter into group of substances with similar properties (humic substances). During the peat transformation process, content of soil organic matter also will change. Hence, that is important to determine out the types of the organic compound. FTIR (Fourier Transform Infrared) is a machine which is used to differential soil organic matter by using infrared. Infrared is a types of low energy which can determine the organic minerals. Hence, FTIR can be suitable as an indicator on its level of humification. The main objective of this study is to identify an optimized method to characterization of the soil organic content in different level of humification. The case study areas which had been chosen for this study are Parit Sulong, Batu Pahat and UCTS, Sibu. Peat soil samples were taken by every 0.5 m depth until it reached the clay layer. However, the soil organic matter in different humification levels is not significant. FTIR is an indicator which is used to determine the types of soil, but it is unable to differentiate the soil organic matter in peat soil FTIR can determine different types of the soil based on different wave length. Generally, soil organic matter was found that it is not significant to the level of humification.

  11. Priming-induced Changes in Permafrost Soil Organic Matter Decomposition

    NASA Astrophysics Data System (ADS)

    Pegoraro, E.; Schuur, E.; Bracho, R. G.

    2015-12-01

    Warming of tundra ecosystems due to climate change is predicted to thaw permafrost and increase plant biomass and litter input to soil. Additional input of easily decomposable carbon can alter microbial activity by providing a much needed energy source, thereby accelerating soil organic matter decomposition. This phenomenon, known as the priming effect, can increase CO2 flux from soil to the atmosphere. However, the extent to which this mechanism can decrease soil carbon stocks in the Arctic is unknown. This project assessed priming effects on permafrost soil collected from a moist acidic tundra site in Healy, Alaska. We hypothesized that priming would increase microbial activity by providing microbes with a fresh source of carbon, thereby increasing decomposition of old and slowly decomposing carbon. Soil from surface and deep layers were amended with multiple pulses of uniformly 13C labeled glucose and cellulose, and samples were incubated at 15° C to quantify whether labile substrate addition increased carbon mineralization. We quantified the proportion of old carbon mineralization by measuring 14CO2. Data shows that substrate addition resulted in higher respiration rates in amended soils; however, priming was only observed in deep layers, where 30% more soil-derived carbon was respired compared to control samples. This suggests that microbes in deep layers are limited in energy, and the addition of labile carbon increases native soil organic matter decomposition, especially in soil with greater fractions of slowly decomposing carbon. Priming in permafrost could exacerbate the effects of climate change by increasing mineralization rates of carbon accumulated over the long-term in deep layers. Therefore, quantifying priming effect in permafrost soils is imperative to understanding the dynamics of carbon turnover in a warmer world.

  12. The Effect of paper mill waste and sewage sludge amendments on soil organic matter

    NASA Astrophysics Data System (ADS)

    Méndez, Ana; Barriga, Sandra; Guerrero, Francisca; Gascó, Gabriel

    2013-04-01

    In general, Mediterranean soils have low organic matter content, due to the climate characteristics of this region and inadequate land management. Traditionally, organic wastes such as manure are used as amendment in order to improve the soil quality, increasing soil fertility by the accumulation of nitrogen, phosphorus and other plant nutrients in the soil. In the last decade, other anthropogenic organic wastes such as sewage sludge or paper waste materials have been studied as soil amendments to improve physical, chemical and biological properties of soils. The objective of the present work was to study the influence of waste from a paper mill and sewage sludge amendments on soil organic matter. For this reason, soil organic matter evolution was studied using thermogravimetric analysis (TGA), the derivative (dTG) and differential thermal analysis (DTA). Thermal analytical techniques have the advantage of using full samples without pre-treatments and have been extensively used to study the evolution of organic matter in soils, to evaluate composting process or to study the evolution of organic matter of growing media.

  13. Effects of agricultural practices on organic matter degradation in ditches

    PubMed Central

    Hunting, Ellard R.; Vonk, J. Arie; Musters, C.J.M.; Kraak, Michiel H.S.; Vijver, Martina G.

    2016-01-01

    Agricultural practices can result in differences in organic matter (OM) and agricultural chemical inputs in adjacent ditches, but its indirect effects on OM composition and its inherent consequences for ecosystem functioning remain uncertain. This study determined the effect of agricultural practices (dairy farm grasslands and hyacinth bulb fields) on OM degradation by microorganisms and invertebrates with a consumption and food preference experiment in the field and in the laboratory using natural OM collected from the field. Freshly cut grass and hyacinths were also offered to control for OM composition and large- and small mesh-sizes were used to distinguish microbial decomposition and invertebrate consumption. Results show that OM decomposition by microorganisms and consumption by invertebrates was similar throughout the study area, but that OM collected from ditches adjacent grasslands and freshly cut grass and hyacinths were preferred over OM collected from ditches adjacent to a hyacinth bulb field. In the case of OM collected from ditches adjacent hyacinth bulb fields, both microbial decomposition and invertebrate consumption were strongly retarded, likely resulting from sorption and accumulation of pesticides. This outcome illustrates that differences in agricultural practices can, in addition to direct detrimental effects on aquatic organisms, indirectly alter the functioning of adjacent aquatic ecosystems. PMID:26892243

  14. Effects of agricultural practices on organic matter degradation in ditches

    NASA Astrophysics Data System (ADS)

    Hunting, Ellard R.; Vonk, J. Arie; Musters, C. J. M.; Kraak, Michiel H. S.; Vijver, Martina G.

    2016-02-01

    Agricultural practices can result in differences in organic matter (OM) and agricultural chemical inputs in adjacent ditches, but its indirect effects on OM composition and its inherent consequences for ecosystem functioning remain uncertain. This study determined the effect of agricultural practices (dairy farm grasslands and hyacinth bulb fields) on OM degradation by microorganisms and invertebrates with a consumption and food preference experiment in the field and in the laboratory using natural OM collected from the field. Freshly cut grass and hyacinths were also offered to control for OM composition and large- and small mesh-sizes were used to distinguish microbial decomposition and invertebrate consumption. Results show that OM decomposition by microorganisms and consumption by invertebrates was similar throughout the study area, but that OM collected from ditches adjacent grasslands and freshly cut grass and hyacinths were preferred over OM collected from ditches adjacent to a hyacinth bulb field. In the case of OM collected from ditches adjacent hyacinth bulb fields, both microbial decomposition and invertebrate consumption were strongly retarded, likely resulting from sorption and accumulation of pesticides. This outcome illustrates that differences in agricultural practices can, in addition to direct detrimental effects on aquatic organisms, indirectly alter the functioning of adjacent aquatic ecosystems.

  15. Social dynamics within decomposer communities lead to nitrogen retention and organic matter build-up in soils.

    PubMed

    Kaiser, Christina; Franklin, Oskar; Richter, Andreas; Dieckmann, Ulf

    2015-12-01

    The chemical structure of organic matter has been shown to be only marginally important for its decomposability by microorganisms. The question of why organic matter does accumulate in the face of powerful microbial degraders is thus key for understanding terrestrial carbon and nitrogen cycling. Here we demonstrate, based on an individual-based microbial community model, that social dynamics among microbes producing extracellular enzymes ('decomposers') and microbes exploiting the catalytic activities of others ('cheaters') regulate organic matter turnover. We show that the presence of cheaters increases nitrogen retention and organic matter build-up by downregulating the ratio of extracellular enzymes to total microbial biomass, allowing nitrogen-rich microbial necromass to accumulate. Moreover, increasing catalytic efficiencies of enzymes are outbalanced by a strong negative feedback on enzyme producers, leading to less enzymes being produced at the community level. Our results thus reveal a possible control mechanism that may buffer soil CO2 emissions in a future climate.

  16. Deformation behaviors of peat with influence of organic matter.

    PubMed

    Yang, Min; Liu, Kan

    2016-01-01

    Peat is a kind of special material rich in organic matter. Because of the high content of organic matter, it shows different deformation behaviors from conventional geotechnical materials. Peat grain has a non-negligible compressibility due to the presence of organic matter. Biogas can generate from peat and can be trapped in form of gas bubbles. Considering the natural properties of peat, a special three-phase composition of peat is described which indicates the existence of organic matter and gas bubbles in peat. A stress-strain-time model is proposed for the compression of organic matter, and the surface tension effect is considered in the compression model of gas bubbles. Finally, a mathematical model has been developed to simulate the deformation behavior of peat considering the compressibility of organic matter and entrapped gas bubbles. The deformation process is the coupling of volume variation of organic matter, gas bubbles and water drainage. The proposed model is used to simulate a series of peat laboratory oedometer tests, and the model can well capture the test results with reasonable model parameters. Effects of model parameters on deformation of peat are also analyzed.

  17. Spatial Complexity of Soil Organic Matter Forms at Nanometre Scales

    SciTech Connect

    Lehmann,J.; Solomon, D.; Kinyangi, J.; Dathe, L.; Wirick, S.; Jacobsen, C.

    2008-01-01

    Organic matter in soil has been suggested to be composed of a complex mixture of identifiable biopolymers1 rather than a chemically complex humic material2. Despite the importance of the spatial arrangement of organic matter forms in soil3, its characterization has been hampered by the lack of a method for analysis at fine scales. X-ray spectromicroscopy has enabled the identification of spatial variability of organic matter forms, but was limited to extracted soil particles4 and individual micropores within aggregates5, 6. Here, we use synchrotron-based near-edge X-ray spectromicroscopy7 of thin sections of entire and intact free microaggregates6 to demonstrate that on spatial scales below 50 nm resolution, highly variable yet identifiable organic matter forms, such as plant or microbial biopolymers, can be found in soils at distinct locations of the mineral assemblage. Organic carbon forms detected at this spatial scale had no similarity to organic carbon forms of total soil. In contrast, we find that organic carbon forms of total soil were remarkably similar between soils from several temperate and tropical forests with very distinct vegetation composition and soil mineralogy. Spatial information on soil organic matter forms at the scale provided here could help to identify processes of organic matter cycling in soil, such as carbon stability or sequestration and responses to a changing climate.

  18. Organic matter in hydrothermal metal ores and hydrothermal fluids

    USGS Publications Warehouse

    Orem, W.H.; Spiker, E. C.; Kotra, R.K.

    1990-01-01

    Massive polymetallic sulfides are currently being deposited around active submarine hydrothermal vents associated with spreading centers. Chemoautolithotrophic bacteria are responsible for the high production of organic matter also associated with modern submarine hydrothermal activity. Thus, there is a significant potential for organic matter/metal interactions in these systems. We have studied modern and ancient hydrothermal metal ores and modern hydrothermal fluids in order to establish the amounts and origin of the organic matter associated with the metal ores. Twenty-six samples from modern and ancient hydrothermal systems were surveyed for their total organic C contents. Organic C values ranged from 0.01% to nearly 4.0% in these samples. Metal ores from modern and ancient sediment-covered hydrothermal systems had higher organic C values than those from modern and ancient hydrothermal systems lacking appreciable sedimentary cover. One massive pyrite sample from the Galapagos spreading center (3% organic C) had stable isotope values of -27.4% (??13C) and 2.1% (??15N), similar to those in benthic siphonophors from active vents and distinct from seep sea sedimentary organic matter. This result coupled with other analyses (e.g. 13C NMR, pyrolysis/GC, SEM) of this and other samples suggests that much of the organic matter may originate from chemoautolithotrophic bacteria at the vents. However, the organic matter in hydrothermal metal ores from sediment covered vents probably arises from complex sedimentary organic matter by hydrothermal pyrolysis. The dissolved organic C concentrations of hydrothermal fluids from one site (Juan de Fuca Ridge) were found to be the same as that of background seawater. This result may indicate that dissolved organic C is effectively scavenged from hydrothermal fluids by biological activity or by co-precipitation with metal ores. ?? 1990.

  19. Pyrogenic organic matter can alter microbial communication

    NASA Astrophysics Data System (ADS)

    Masiello, Caroline; Gao, Xiaodong; Cheng, Hsiao-Ying; Silberg, Jonathan

    2016-04-01

    Soil microbes communicate with each other to manage a large range of processes that occur more efficiently when microbes are able to act simultaneously. This coordination occurs through the continuous production of signaling compounds that are easily diffused into and out of cells. As the number of microbes in a localized environment increases, the internal cellular concentration of these signaling compounds increases, and when a threshold concentration is reached, gene expression shifts, leading to altered (and coordinated) microbial behaviors. Many of these coordinated behaviors have biogeochemically important outcomes. For example, methanogenesis, denitrification, biofilm formation, and the development of plant-rhizobial symbioses are all regulated by a simple class of cell-cell signaling molecules known as acyl homoserine lactones (AHLs). Pyrogenic organic matter in soils can act to disrupt microbial communication through multiple pathways. In the case of AHLs, charcoal's very high surface area can sorb these signaling compounds, preventing microbes from detecting each others' presence (Masiello et al., 2014). In addition, the lactone ring in AHLs is vulnerable to pH increases accompanying PyOM inputs, with soil pH values higher than 7-8 leading to ring opening and compound destabilization. Different microbes use different classes of signaling compounds, and not all microbial signaling compounds are pH-vulnerable. This implies that PyOM-driven pH increases may trigger differential outcomes for Gram negative bacteria vs fungi, for example. A charcoal-driven reduction in microbes' ability to detect cell-cell communication compounds may lead to a shift in the ability of microbes to participate in key steps of C and N cycling. For example, an increase in an archaeon-specific AHL has been shown to lead to a cascade of metabolic processes that eventually results in the upregulation of CH4 production (Zhang et al., 2012). Alterations in similar AHL compounds leads to

  20. Assessment of soil organic matter fluxes at the EU level

    NASA Astrophysics Data System (ADS)

    Gobin, Anne; Campling, Paul

    2010-05-01

    Soil has a complex relationship with climate change. Soil helps take carbon dioxide out of the air and as such it absorbs millions of tons each year, but with the Earth still warming micro-organisms grow faster, consume more soil organic matter and release carbon dioxide. The net result is a relative decline in soil organic carbon. With a growing population and higher bio-energy demands, more land is likely to be required for settlement, for commercial activity and for bio-energy production. Conversions from terrestrial ecosystems to urban and commercial activity will alter both the production and losses of organic matter, and have an indirect impact on potential SOM levels. Conversions between different terrestrial ecosystems have a direct impact on SOM levels. Net SOM losses are reported for several land conversions, e.g. from grassland to arable land, from wetlands to drained agricultural land, from crop rotations to monoculture, reforestation of agricultural land. In the context of looking for measures to support best practices to manage soil organic matter in Europe we propose a method to assess soil organic matter fluxes at the EU level. We adopt a parsimonious approach that is comparable to the nutrient balance approaches developed by the OECD and Eurostat. We describe the methodology and present the initial results of a European carbon balance indicator that uses existing European statistical and land use change databases. The carbon balance consists of the following components: organic matter production (I), organic matter losses (O), land use changes that effect both production and losses (E). These components are set against the (mostly legislative) boundary conditions that determine the maximum input potential (MIP) for soil organic matter. In order to budget SOM losses due to mineralisation, runs will be made with a multi-compartment SOM model that takes into account management practices, climate and different sources of organic matter.

  1. Understanding soil organic matter formation and stabilization (Philippe Duchaufour Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Kögel-Knabner, Ingrid

    2015-04-01

    During the biomass formation/decomposition cycle carbon dioxide (CO2), the main gas driving global warming, is either released from or stabilized in the organic matter of soils. One of the most fundamental functions of soil organic matter is the provision of metabolic energy which drives soil biological processes. In essence, it is the transformation of carbon by plant, micro- and macro-biological processes that provides energy and results in the establishment of a cycle that connects above- and belowground energy transformations. The amount and type of organic matter accumulated in soils is controlled, among other factors by intrinsic soil properties, specifically soil texture and the associated aggregate structures. Soil development leads to the formation of aggregated structures composed of a highly complex mixture of different mineral and organic constituents. The resulting soil type specific carbon sequestration can strongly be affected by soil management, varying greatly with the type and intensity of land use. The processes of formation and stabilization of organic matter through organo-mineral interactions in aggregated soil structures are controlled at the sub-µm scale. Understanding the binding of organic matter in these fine soil structures is thus key to elucidate the biogeochemical soil processes that are part of the carbon cycle as well as to evaluate the effects of soil management on the carbon cycle. I will discuss open questions for understanding these processes and how we can approach them by combining state-of-the-art analytical techniques with innovative experiments.

  2. Organic matter chlorination rates in different boreal soils: the role of soil organic matter content.

    PubMed

    Gustavsson, Malin; Karlsson, Susanne; Oberg, Gunilla; Sandén, Per; Svensson, Teresia; Valinia, Salar; Thiry, Yves; Bastviken, David

    2012-02-07

    Transformation of chloride (Cl(-)) to organic chlorine (Cl(org)) occurs naturally in soil but it is poorly understood how and why transformation rates vary among environments. There are still few measurements of chlorination rates in soils, even though formation of Cl(org) has been known for two decades. In the present study, we compare organic matter (OM) chlorination rates, measured by (36)Cl tracer experiments, in soils from eleven different locations (coniferous forest soils, pasture soils and agricultural soils) and discuss how various environmental factors effect chlorination. Chlorination rates were highest in the forest soils and strong correlations were seen with environmental variables such as soil OM content and Cl(-) concentration. Data presented support the hypothesis that OM levels give the framework for the soil chlorine cycling and that chlorination in more organic soils over time leads to a larger Cl(org) pool and in turn to a high internal supply of Cl(-) upon dechlorination. This provides unexpected indications that pore water Cl(-) levels may be controlled by supply from dechlorination processes and can explain why soil Cl(-) locally can be more closely related to soil OM content and the amount organically bound chlorine than to Cl(-) deposition.

  3. Correlation of resource plays and biodiversity patterns: accumulation of organic-rich shale tracks taxonomic turnover

    USGS Publications Warehouse

    Eoff, Jennifer D.

    2012-01-01

    Similar paleogeographic and paleotectonic settings characterize most self-sourced shale hydrocarbon plays. Their deposition occurred within similar orders of magnitude of eustatic events and during geologic periods characterized by “warm” (or transitional) climates and calcitic seas. In addition, the stratigraphic occurrence of shale plays parallels certain historical patterns of marine metazoan biodiversity. Such strong agreement among several correlation tools elucidates why these resources may be limited to discrete intervals of geological time. Correlation of self-sourced shale with biodiversity trends indicates that the factors controlling the deposition of marine organic matter may not be independent of those that induced taxonomic turnover. Paleoecological changes promoted accumulation and preservation of Type II kerogen. Deposition of self-sourced shale appears to correspond to reductions in absolute biodiversity and declining percentages of bioturbating taxa, with concomitant increases in proportions of pelagic taxa relative to infaunal and epifaunal organisms. Whereas upwelling and anoxia may have contributed to the deposition of kerogen in source rocks throughout much of the sedimentary record, diminished consumption of biomass by benthic metazoans likely augmented the preservation of organic carbon during deposition of this shale type. Rapid tectonic-plate reconfiguration induced coeval events, creating basins with sufficiently high rates of accommodation creation necessary to preserve additional organic material accumulating as the heterotrophic benthos suffered in response to rapidly changing environments. Combining sea-level curves, paleogeography, climate, and seawater chemistry provides a first-order approximation of the distribution of potential self-sourced shale in the geologic record. A model that predicts the stratigraphic distribution of self-sourced-shale deposition can aid in exploration of continuous hydrocarbon accumulations in self

  4. Accumulation of (241)Am by suspended matter, diatoms and aquatic weeds of the Yenisei River.

    PubMed

    Zotina, T A; Bolsunovsky, A Ya; Bondareva, L G

    2010-02-01

    In this work we experimentally estimated the capacities of the key components of the Yenisei River (Russia): particulate suspended matter (seston), diatom microalgae, and submerged macrophytes for accumulating (241)Am from water. In our experiments large particles of seston (>8mum), comparable in size with diatoms, took up most of americium from water. The accumulation of americium by isolated diatom algae (Asterionella formosa and Diatoma vulgare) was lower than by total seston. The concentration factors (CFs) of (241)Am for seston of the Yenisei River in our experiments were (2.8-6.9).10(5); for diatoms - (1.5-4.2).10(4). The CFs for aquatic plant Elodea canadensis were within the same order of magnitude as those for diatoms. Activity concentration and CFs of (241)Am were nearly the same in experiments under dark and light conditions. This is indicative of an energy independent mechanism of americium uptake from the water by diatoms and submerged macrophytes.

  5. Simulated atmospheric NO3- deposition increases soil organic matter by slowing decomposition.

    PubMed

    Zak, Donald R; Holmes, William E; Burton, Andrew J; Pregitzer, Kurt S; Talhelm, Alan F

    2008-12-01

    Presently, there is uncertainty regarding the degree to which anthropogenic N deposition will foster C storage in the N-limited forests of the Northern Hemisphere, ecosystems which are globally important sinks for anthropogenic CO2. We constructed organic matter and N budgets for replicate northern hardwood stands (n = 4) that have received ambient (0.7-1.2 g N x m(-2) x yr(-1) and experimental NO3- deposition (ambient plus 3 g NO3(-)-N x m(-2) x yr(-1)) for a decade; we also traced the flow of a 15NO3- pulse over a six-year period. Experimental NO3- deposition had no effect on organic matter or N stored in the standing forest overstory, but it did significantly increase the N concentration (+19%) and N content (+24%) of canopy leaves. In contrast, a decade of experimental NO3- deposition significantly increased amounts of organic matter (+12%) and N (+9%) in forest floor and mineral soil, despite no increase in detritus production. A greater forest floor (Oe/a) mass under experimental NO3- deposition resulted from slower decomposition, which is consistent with previously reported declines in lignolytic activity by microbial communities exposed to experimental NO3- deposition. Tracing 15NO3- revealed that N accumulated in soil organic matter by first flowing through soil microorganisms and plants, and that the shedding of 15N-labeled leaf litter enriched soil organic matter over a six-year duration. Our results demonstrate that atmospheric NO3- deposition exerts a direct and negative effect on microbial activity in this forest ecosystem, slowing the decomposition of aboveground litter and leading to the accumulation of forest floor and soil organic matter. To the best of our knowledge, this mechanism is not represented in the majority of simulation models predicting the influence of anthropogenic N deposition on ecosystem C storage in northern forests.

  6. Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea).

    PubMed

    Jessen, Gerdhard L; Lichtschlag, Anna; Ramette, Alban; Pantoja, Silvio; Rossel, Pamela E; Schubert, Carsten J; Struck, Ulrich; Boetius, Antje

    2017-02-01

    Bottom-water oxygen supply is a key factor governing the biogeochemistry and community composition of marine sediments. Whether it also determines carbon burial rates remains controversial. We investigated the effect of varying oxygen concentrations (170 to 0 μM O2) on microbial remineralization of organic matter in seafloor sediments and on community diversity of the northwestern Crimean shelf break. This study shows that 50% more organic matter is preserved in surface sediments exposed to hypoxia compared to oxic bottom waters. Hypoxic conditions inhibit bioturbation and decreased remineralization rates even within short periods of a few days. These conditions led to the accumulation of threefold more phytodetritus pigments within 40 years compared to the oxic zone. Bacterial community structure also differed between oxic, hypoxic, and anoxic zones. Functional groups relevant in the degradation of particulate organic matter, such as Flavobacteriia, Gammaproteobacteria, and Deltaproteobacteria, changed with decreasing oxygenation, and the microbial community of the hypoxic zone took longer to degrade similar amounts of deposited reactive matter. We conclude that hypoxic bottom-water conditions-even on short time scales-substantially increase the preservation potential of organic matter because of the negative effects on benthic fauna and particle mixing and by favoring anaerobic processes, including sulfurization of matter.

  7. Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea)

    PubMed Central

    Jessen, Gerdhard L.; Lichtschlag, Anna; Ramette, Alban; Pantoja, Silvio; Rossel, Pamela E.; Schubert, Carsten J.; Struck, Ulrich; Boetius, Antje

    2017-01-01

    Bottom-water oxygen supply is a key factor governing the biogeochemistry and community composition of marine sediments. Whether it also determines carbon burial rates remains controversial. We investigated the effect of varying oxygen concentrations (170 to 0 μM O2) on microbial remineralization of organic matter in seafloor sediments and on community diversity of the northwestern Crimean shelf break. This study shows that 50% more organic matter is preserved in surface sediments exposed to hypoxia compared to oxic bottom waters. Hypoxic conditions inhibit bioturbation and decreased remineralization rates even within short periods of a few days. These conditions led to the accumulation of threefold more phytodetritus pigments within 40 years compared to the oxic zone. Bacterial community structure also differed between oxic, hypoxic, and anoxic zones. Functional groups relevant in the degradation of particulate organic matter, such as Flavobacteriia, Gammaproteobacteria, and Deltaproteobacteria, changed with decreasing oxygenation, and the microbial community of the hypoxic zone took longer to degrade similar amounts of deposited reactive matter. We conclude that hypoxic bottom-water conditions—even on short time scales—substantially increase the preservation potential of organic matter because of the negative effects on benthic fauna and particle mixing and by favoring anaerobic processes, including sulfurization of matter. PMID:28246637

  8. Investigation of the organic matter in inactive nuclear tank liquids

    SciTech Connect

    Schenley, R.L.; Griest, W.H.

    1990-08-01

    Environmental Protection Agency (EPA) methodology for regulatory organics fails to account for the organic matter that is suggested by total organic carbon (TOC) analysis in the Oak Ridge National Laboratory (ORNL) inactive nuclear waste-tank liquids and sludges. Identification and measurement of the total organics are needed to select appropriate waste treatment technologies. An initial investigation was made of the nature of the organics in several waste-tank liquids. This report details the analysis of ORNL wastes.

  9. The accumulation of organic carbon in mineral soils by afforestation of abandoned farmland.

    PubMed

    Wei, Xiaorong; Qiu, Liping; Shao, Mingan; Zhang, Xingchang; Gale, William J

    2012-01-01

    The afforestation of abandoned farmland significantly influences soil organic carbon (OC). However, the dynamics between OC inputs after afforestation and the original OC are not well understood. To learn more about soil OC dynamics after afforestation of farmland, we measured the soil OC content in paired forest and farmland plots in Shaanxi Province, China. The forest plots had been established on farmland 18, 24, 48, 100, and 200 yr previously. The natural (13)C abundance of soil organic matter was also analyzed to distinguish between crop- and forest-derived C in the afforested soils. We observed a nonlinear accumulation of total OC in the 0-80 cm depth of the mineral soil across time. Total soil OC accumulated more rapidly under forest stands aged 18 to 48 yr than under forest stands aged 100 or 200 yrs. The rate of OC accumulation was also greater in the 0-10 cm depth than in the 10-80 cm depth. Forest-derived OC in afforested soils also accumulated nonlinearly across time, with the greatest increase in the 0-20 cm depth. Forest-derived OC in afforest soils accounted for 52-86% of the total OC in the 0-10 cm depth, 36-61% of the total OC in the 10-20 cm depth, and 11-50% of the total OC in the 20-80 cm depth. Crop-derived OC concentrations in the 0-20 cm depth decreased slightly after afforestation, but there was no change in crop-derived OC concentrations in the 20-80 cm depth. The results of our study support the claim that afforestation of farmland can sequester atmospheric CO(2) by increasing soil OC stocks. Changes in the OC stocks of mineral soils after afforestation appear to be influenced mainly by the input of forest-derived C rather than by the loss of original OC.

  10. Alteration of organic matter during infaunal polychaete gut passage and links to sediment organic geochemistry. Part I: Amino acids

    NASA Astrophysics Data System (ADS)

    Woulds, Clare; Middelburg, Jack J.; Cowie, Greg L.

    2012-01-01

    Of the factors which control the quantity and composition of organic matter (OM) buried in marine sediments, the links between infaunal ingestion and gut passage and sediment geochemistry have received relatively little attention. This study aimed to use feeding experiments and novel isotope tracing techniques to quantify amino acid net accumulation and loss during polychaete gut passage, and to link this to patterns of selective preservation and decay in sediments. Microcosms containing either Arenicolamarina or Hediste (formerly Nereis) diversicolor were constructed from defaunated sediment and filtered estuarine water, and maintained under natural temperature and light conditions. They were fed with 13C-labelled diatoms daily for 8 days, and animals were transferred into fresh, un-labelled sediment after ∼20 days. Samples of fauna, microcosm sediment and faecal matter were collected after 8, ∼20 and ∼40 days, and analysed for their bulk isotopic signatures and 13C-labelled amino acid compositions. Bulk isotopic data showed that, consistent with their feeding modes, Hediste assimilated added 13C more quickly, and attained a higher labelling level than Arenicola. Both species retained the added 13C in their biomass even after removal from the food. A principal component analysis of 13C-labelled amino acid mole percentages showed clear differences in composition between the algae, faunal tissues, and sediment plus faecal matter. Further, the two species of polychaete showed different compositions in their tissues. The amino acids phenylalanine, valine, leucine, iso-leucine, threonine and proline showed net accumulation in polychaete tissues. Serine, methionine, lysine, aspartic and glutamic acids and tyrosine were rapidly lost through metabolism, consistent with their presence in easily digestible cell components (as opposed to cell walls which offer physical protection). All sample types (polychaete tissues, sediments and faecal matter) were enriched in

  11. Characterizing Variability In Ohio River Natural Organic Matter

    EPA Science Inventory

    Surface water contains natural organic matter (NOM) which reacts with disinfectants creating disinfection byproducts (DBPs), some of which are USEPA regulated contaminants. Characterizing NOM can provide important insight on DBP formation and water treatment process adaptation t...

  12. Carbon cycle: Ocean dissolved organics matter

    NASA Astrophysics Data System (ADS)

    Amon, Rainer M. W.

    2016-12-01

    Large quantities of organic carbon are stored in the ocean, but its biogeochemical behaviour is elusive. Size-age-composition relations now quantify the production of tiny organic molecules as a major pathway for carbon sequestration.

  13. Biogeochemistry of Mangrove Soil Organic Matter: a Comparison Between Rhizophoraand AvicenniaSoils in South-eastern Brazil

    NASA Astrophysics Data System (ADS)

    Lacerda, L. D.; Ittekkot, V.; Patchineelam, S. R.

    1995-06-01

    Soil core samples from Rhizophora mangleL. and Avicennia schauerianaStapf & Leech forests from south-eastern Brazil were analysed for their total organic matter content and their sugars, amino acid and amino sugars composition. Organic carbon and nitrogen contents were higher in Avicenniathan in Rhizophorasoils. The contribution of sugars and amino acids to the total organic carbon pool was constant with depth in Rhizophorasoils whereas in Avicenniasoils it increased. Spectral distribution of sugars and amino acids showed a dominance of Ca-affine monomers, particularly acidic amino acids, and the sugar arabinose. Biogeochemical indicators derived from ratios of individual sugar and amino acid monomers confirm previous studies which showed that organic matter in both soils is mainly of mangrove origin. The results further suggest accumulation of organic matter in Rhizophorasoils and a continuing degradation of organic matter in Avicenniasoils. The latter may thus release more nutrients to adjacent ecosystems than Rhizophorasoils.

  14. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria

    PubMed Central

    Smriga, Steven; Fernandez, Vicente I.; Mitchell, James G.; Stocker, Roman

    2016-01-01

    The microenvironment surrounding individual phytoplankton cells is often rich in dissolved organic matter (DOM), which can attract bacteria by chemotaxis. These “phycospheres” may be prominent sources of resource heterogeneity in the ocean, affecting the growth of bacterial populations and the fate of DOM. However, these effects remain poorly quantified due to a lack of quantitative ecological frameworks. Here, we used video microscopy to dissect with unprecedented resolution the chemotactic accumulation of marine bacteria around individual Chaetoceros affinis diatoms undergoing lysis. The observed spatiotemporal distribution of bacteria was used in a resource utilization model to map the conditions under which competition between different bacterial groups favors chemotaxis. The model predicts that chemotactic, copiotrophic populations outcompete nonmotile, oligotrophic populations during diatom blooms and bloom collapse conditions, resulting in an increase in the ratio of motile to nonmotile cells and in the succession of populations. Partitioning of DOM between the two populations is strongly dependent on the overall concentration of bacteria and the diffusivity of different DOM substances, and within each population, the growth benefit from phycospheres is experienced by only a small fraction of cells. By informing a DOM utilization model with highly resolved behavioral data, the hybrid approach used here represents a new path toward the elusive goal of predicting the consequences of microscale interactions in the ocean. PMID:26802122

  15. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria.

    PubMed

    Smriga, Steven; Fernandez, Vicente I; Mitchell, James G; Stocker, Roman

    2016-02-09

    The microenvironment surrounding individual phytoplankton cells is often rich in dissolved organic matter (DOM), which can attract bacteria by chemotaxis. These "phycospheres" may be prominent sources of resource heterogeneity in the ocean, affecting the growth of bacterial populations and the fate of DOM. However, these effects remain poorly quantified due to a lack of quantitative ecological frameworks. Here, we used video microscopy to dissect with unprecedented resolution the chemotactic accumulation of marine bacteria around individual Chaetoceros affinis diatoms undergoing lysis. The observed spatiotemporal distribution of bacteria was used in a resource utilization model to map the conditions under which competition between different bacterial groups favors chemotaxis. The model predicts that chemotactic, copiotrophic populations outcompete nonmotile, oligotrophic populations during diatom blooms and bloom collapse conditions, resulting in an increase in the ratio of motile to nonmotile cells and in the succession of populations. Partitioning of DOM between the two populations is strongly dependent on the overall concentration of bacteria and the diffusivity of different DOM substances, and within each population, the growth benefit from phycospheres is experienced by only a small fraction of cells. By informing a DOM utilization model with highly resolved behavioral data, the hybrid approach used here represents a new path toward the elusive goal of predicting the consequences of microscale interactions in the ocean.

  16. Biodegradation of Kupferschiefer black shale organic matter (Fore-Sudetic Monocline, Poland) by indigenous microorganisms.

    PubMed

    Matlakowska, Renata; Sklodowska, Aleksandra

    2011-05-01

    This study provides the first evidence for the direct biodegradation of persistent organic matter extracted from the organic-rich polymetallic black shale ore Kupferschiefer, one of the most important sources of metals in the world. It was demonstrated that an enriched community of indigenous heterotrophic microorganisms isolated from black shale grown under aerobic conditions could utilize shale organic matter as the sole carbon and energy source. Colonization of shale organic matter was observed. The main biodegradation intermediates and products such as phosphonic acid dioctadecyl ester and isoindole-1,3 were detected in the aqueous phase of cultures. The bacterial community showed the ability to PAH biodegradation, assimilation of organic acids and esters as well as lipase activity. The intracellular accumulation of phosphorus by bacteria during growth on organic matter was confirmed. Strains within the genus Pseudomonas were found to dominate the bacterial population at the end of the experiment. The results of this study confirm that indigenous bacteria are likely to play a role in the biotransformation of black shale and can influence the geochemical cycles of ancient organic carbon in the deep terrestrial subsurface. This process may also occur in tailings ponds containing black shale, and cause the mobilization of potentially toxic compounds to the soil and groundwater.

  17. Composition and reactivity of ferrihydrite-organic matter associations

    NASA Astrophysics Data System (ADS)

    Eusterhues, Karin; Hädrich, Anke; Neidhardt, Julia; Küsel, Kirsten; Totsche, Kai

    2014-05-01

    The formation of organo-mineral associations affects many soil forming processes. On the one hand, it will influence soil organic matter composition and development, because the complex organic matter mixtures usually fractionate during their association with mineral surfaces. Whereas the associated fraction is supposed to be stabilized, the non-associated fraction remains mobile and available to degradation by microorganisms. On the other hand, the organic coating will completely change the interface properties of Fe oxides such as solubility, charge and hydrophobicity. This in turn will strongly influence their reactivity towards nutrients and pollutants, the adsorption of new organic matter, and the availability of ferric Fe towards microorganisms. To better understand such processes we produced ferrihydrite-organic matter associations by adsorption and coprecipitation in laboratory experiments. As a surrogate for dissolved soil organic matter we used the water-extractable fraction of a Podzol forest-floor layer under spruce. Sorptive fractionation of the organic matter was investigated by 13C NMR and FTIR. Relative to the original forest-floor extract, the ferrihydrite-associated OM was enriched in polysaccharides but depleted in aliphatic C and carbonyl C, especially when adsorption took place. Liquid phase incubation experiments were carried out with an inoculum extracted from the podzol forest-floor under oxic conditions at pH 4.8 to quantify the mineralization of the adsorbed and coprecipitated organic matter. These experiments showed that the association with ferrihydrite stabilized the associated organic matter, but that differences in the degradability of adsorbed and coprecipitated organic matter were small. We therefore conclude that coprecipitation does not lead to a significant formation of microbial inaccessible organic matter domains. Microbial reduction experiments were performed using Geobacter bremensis. We observed that increasing amounts of

  18. Representativity of mosses as biomonitor organisms for the accumulation of environmental chemicals in plants and soils

    SciTech Connect

    Thomas, W.

    1986-06-01

    The suitability of mosses for air pollution monitoring of benzohexachloride isomers and polyaromatic hydrocarbons is shown by residue data of different samples from Europe. The interpretation of the results makes it obvious that next to regional pattern analysis, hypotheses for atmospheric transport and deposition processes of different environmental chemicals can also be formed. An evaluation of these kinds of bioindicator methods is presented by a quantitative comparison of air pollution data and accumulated residues in plants. The results indicate a high retention efficiency of mosses for pollutants dominantly adsorbed to particulate matter in the air, like polyaromatic hydrocarbons and heavy metals. The comparison of residue data of trace pollutants in mosses and other plants underlines the indicator functions of lower plants for air monitoring patterns with the exception of chlorinated hydrocarbons. They are more effective enriched by coniferous plants which contain ingredients able to absorb and transport these groups of environmental pollutants in the organism.

  19. High dimensional reflectance analysis of soil organic matter

    NASA Technical Reports Server (NTRS)

    Henderson, T. L.; Baumgardner, M. F.; Franzmeier, D. P.; Stott, D. E.; Coster, D. C.

    1992-01-01

    Recent breakthroughs in remote-sensing technology have led to the development of high spectral resolution imaging sensors for observation of earth surface features. This research was conducted to evaluate the effects of organic matter content and composition on narrowband soil reflectance across the visible and reflective infrared spectral ranges. Organic matter from four Indiana agricultural soils, ranging in organic C content from 0.99 to 1.72 percent, was extracted, fractionated, and purified. Six components of each soil were isolated and prepared for spectral analysis. Reflectance was measured in 210 narrow bands in the 400- to 2500-nm wavelength range. Statistical analysis of reflectance values indicated the potential of high dimensional reflectance data in specific visible, near-infrared, and middle-infrared bands to provide information about soil organic C content, but not organic matter composition. These bands also responded significantly to Fe- and Mn-oxide content.

  20. Natural organic matter properties in Swedish agricultural streams

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Kyllmar, Katarina; Bergström, Lars; Köhler, Stephan

    2016-04-01

    We have analysed natural organic matter (NOM) properties in 18 agricultural streams in Sweden covering a broad range of environmental (climate, soil type), land use and water quality (nutrient and concentrations, pH, alkalinity) characteristics. Stream water samples collected every two weeks within an ongoing Swedish Monitoring Programme for Agriculture have been analysed for total/dissolved organic carbon, absorbance and fluorescence spectroscopy. A number of quantitative and qualitative spectroscopic parameters was calculated to help to distinguish between terrestrially-derived, refractory organic material and autochthonous, labile material indicative of biogeochemical transformations of terrestrial NOM and recent biological production. The study provides insights into organic matter properties and carbon budgets in agricultural streams and improves understanding of how agricultural catchments transform natural and anthropogenic fluxes of organic matter and nutrients to signals observed in receiving waters.

  1. The search for indigenous lunar organic matter.

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1972-01-01

    It is argued that the absence of organic compounds from returned lunar samples is to be expected even for a lunar history rich in primordial organics. The sites most likely to yield lunar organic compounds have not been investigated, and there may be an area of investigation conceivably critical to problems in prebiological chemistry and the early history of the solar system awaiting continued lunar exploration, manned or unmanned.

  2. Soil mineral surfaces of paddy soils are accessible for organic carbon accumulation after decalcification

    NASA Astrophysics Data System (ADS)

    Wissing, Livia

    2013-04-01

    We studied organic carbon (OC) accumulation due to organo-mineral associations during soil development on calcareous parent material. Two chronosequences in Zhejiang Province, PR China, were investigated; one under paddy cultivation with a maximum soil age of 2000 years, and the other under upland crops where the oldest soil was 700 years old. Bulk soils and soil fractions of the uppermost A horizons were analyzed for OC concentrations and radio carbon contents. Total pedogenic iron (Fed) concentration was determined by dithionite extraction and the proportion of oxalate extractable iron (Feox) was extracted by using the method of Schwertmann (1964). The specific surface area (SSA) of soil minerals was measured by the BET-N2 method (Brunauer et al., 1938) under four conditions: untreated, after organic matter removal, after iron removal and after removal of both. Within 700/2000 years of pedogenesis, we observed no change in clay mineral composition and no additional formation of the SSA of soil minerals. But the soils differed in the degree of decalcification, OC accumulation and in the formation of iron. Paddy soil management led to an enhanced decalcification and larger OC accumulation. Management-induced redox cycles caused larger proportions of Feox in paddy soils. Their large SSA, added to the surface area of clay minerals, provided additional options for OC covering. Unexpectedly, there was no evidence of formation of secondary minerals during soil development, which could provide new surfaces for OC accumulation. However, the study revealed higher OC coverings of mineral surfaces after decalcification in paddy soils. As carbonate and Ca2+ ions seemed to interconnect clay minerals, making their surface accessible to OC, the faster dissolution of carbonate and leaching of Ca2+ ions in paddy soils made additional clay mineral surfaces available to OC. In contrast, the surface area of minerals in non-paddy soils, in which decalcification was much lower, seemed

  3. Modeling organic matter stabilization during windrow composting of livestock effluents.

    PubMed

    Oudart, D; Paul, E; Robin, P; Paillat, J M

    2012-01-01

    Composting is a complex bioprocess, requiring a lot of empirical experiments to optimize the process. A dynamical mathematical model for the biodegradation of the organic matter during the composting process has been developed. The initial organic matter expressed by chemical oxygen demand (COD) is decomposed into rapidly and slowly degraded compartments and an inert one. The biodegradable COD is hydrolysed and consumed by microorganisms and produces metabolic water and carbon dioxide. This model links a biochemical characterization of the organic matter by Van Soest fractionating with COD. The comparison of experimental and simulation results for carbon dioxide emission, dry matter and carbon content balance showed good correlation. The initial sizes of the biodegradable COD compartments are explained by the soluble, hemicellulose-like and lignin fraction. Their sizes influence the amplitude of the carbon dioxide emission peak. The initial biomass is a sensitive variable too, influencing the time at which the emission peak occurs.

  4. Accumulator

    NASA Technical Reports Server (NTRS)

    Fenwick, J. R.; Karigan, G. H. (Inventor)

    1977-01-01

    An accumulator particularly adapted for use in controlling the pressure of a stream of fluid in its liquid phase utilizing the fluid in its gaseous phase was designed. The accumulator is characterized by a shell defining a pressure chamber having an entry throat for a liquid and adapted to be connected in contiguous relation with a selected conduit having a stream of fluid flowing through the conduit in its liquid phase. A pressure and volume stabilization tube, including an array of pressure relief perforations is projected into the chamber with the perforations disposed adjacent to the entry throat for accommodating a discharge of the fluid in either gaseous or liquid phases, while a gas inlet and liquid to gas conversion system is provided, the chamber is connected with a source of the fluid for continuously pressuring the chamber for controlling the pressure of the stream of liquid.

  5. A demonstration of an affinity between pyrite and organic matter in a hydrothermal setting

    PubMed Central

    2011-01-01

    One of the key-principles of the iron-sulphur world theory is to bring organic molecules close enough to interact with each other, using the surface of pyrite as a substrate in a hydrothermal setting. The present paper explores the relationship of pyrite and organic matter in a hydrothermal setting from the geological record; in hydrothermal calcite veins from Carboniferous limestones in central Ireland. Here, the organic matter is accumulated as coatings around, and through, pyrite grains. Most of the pyrite grains are euhedral-subhedral crystals, ranging in size from ca 0.1-0.5 mm in diameter, and they are scattered throughout the matrix of the vein calcite. The organic matter was deposited from a hydrothermal fluid at a temperature of at least 200°C, and gives a Raman signature of disordered carbon. This study points to an example from a hydrothermal setting in the geological record, demonstrating that pyrite can have a high potential for the concentration and accumulation of organic materials. PMID:21299877

  6. Defining the quality of soil organic matter

    EPA Science Inventory

    Soils represent the largest terrestrial pool of carbon (C) and hold approximately two-thirds of all C held in these ecosystems. However, not all C in soils is of equal quality. Some fractions of the organic forms, i.e., soil organic carbon (SOC) have long residence times while ...

  7. Soil organic matter contribution to the NW Mediterranean (Invited)

    NASA Astrophysics Data System (ADS)

    Kim, J.; Buscail, R.; Blokker, J.; Kerhervé, P.; Schouten, S.; Ludwig, W.; Sinninghe Damsté, J. S.

    2009-12-01

    The BIT (Branched and Isoprenoid Tetraether) index has recently been introduced as a proxy for soil organic matter input and is based on the relative abundance of non-isoprenoidal glycerol dialkyl glycerol tetraethers (GDGTs) derived from organisms living in terrestrial environments versus a structurally related isoprenoid GDGT “crenarchaeol” produced by marine Crenarchaeota (Hopmans et al., 2004). In this study, detailed spatial distribution patterns of BIT index were investigated in combination with other organic parameters in the continental margin of the north western Mediterranean. Based on a transect sampling strategy from source (land) to sink (sea) via river, we analysed a variety of soils from the Têt and Rhône basins, suspended particulate matter in waters of the Têt and Rhône rivers flowing into the Gulf of Lions, and marine surface sediments from the Gulf of Lions collected before and after a flood occurred in June 2008. Our study allows us to track BIT values along the transport pathway of soil organic matter and thus to estimate soil organic matter contribution in marine sediments in the Gulf of Lions (NW Mediterranean), a river-dominated continental margin. Hopmans, E.C., Weijers, J.W.H., Schefuss, E., Herfort, L., Sinninghe Damsté, J.S., Schouten, S., 2004. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoidtetraether lipids. Earth and Planetary Science Letters 224, 107-116.

  8. Effects of Crayfish on Quality of Fine Particulate Organic Matter

    NASA Astrophysics Data System (ADS)

    Montemarano, J. J.; Kershner, M. W.; Leff, L. G.

    2005-05-01

    The origin and ontogeny of detritus often determines its bioavailability. Crayfish shred and consume detrital organic matter, influencing fine particulate organic matter (FPOM) availability, composition and quality. Given consumption of FPOM by many invertebrates, crayfish can indirectly affect these organisms by altering FPOM bioavailability through organic matter fragmentation, biofilm disturbance, and defecation. These effects may or may not vary among coarse particulate organic matter (CPOM) from different leaf species. To assess crayfish effects on FPOM quality, crayfish were fed stream-conditioned maple or oak leaves in hanging 1-mm mesh-bottom baskets in aquaria. After 12 h, crayfish and remaining leaves were removed. FPOM fragments that fell through the mesh were vacuum filtered and analyzed for percent organic matter, C:N ratio, and bacterial abundance. The same analyses were conducted on crayfish feces collected using finger cots encasing crayfish abdomens. C:N ratios did not differ between feces and maple leaf CPOM, but were lower in FPOM produced through fragmentation and disturbance (P = 0.023). Overall, crayfish alter the ontogeny of detritus, which may, in turn, affect stream FPOM dynamics.

  9. Soil Organic Matter in Forest Ecosystems of the Forest-tundra zone of Central Siberia

    NASA Astrophysics Data System (ADS)

    Mukhortova, Liudmila

    2010-05-01

    contribute 57% of the total soil carbon on average, stable humus hence containing only 43% (from 13 to 63%) of the total carbon. This ratio between the main forest-tundra soil carbon pools might be attributed to a small soil depth of thawing and a low rate of plant residue decomposition that enhance easily mineralizable organic matter accumulation. Ecosystems of taiga zones showed different ratios between easily mineralizable and stable organic matter carbon: 53 and 47% in northern taiga (cryogenic soils), 49 and 51 % in central taiga, and 45 and 55 % in southern taiga, respectively. This study is funded by RFFI (project № 09-04-98004), and SB RAS Integrated project № 50.

  10. Evaluation of factors controlling the distribution of organic matter and phosphorus in the Eastern Arabian Shelf: A geostatistical reappraisal

    NASA Astrophysics Data System (ADS)

    Acharya, Shiba Shankar; Panigrahi, Mruganka K.

    2016-09-01

    The Eastern Arabian Shelf (EAS) is a region of high primary production and a part of an intense oxygen minimum zone as well. The EAS is a zone of significant accumulation of organic matter that is ascribable to either the prevalent anoxic condition or high primary productivity, There has been a considerable amount of debate on the dominant factor responsible for the enrichment of organic matter in the sediments in EAS. The present study is an attempt to resolve the issue through robust geostatistical analysis of published and unpublished data. Results of Empirical Bayesian kriging (EBK) and geographically weighted regression (GWR) of available data help to get a refined distribution of organic carbon and phosphorus in the Eastern Arabian Shelf as compared to the earlier known distribution patterns. The primary productivity, evaluated through the latest satellite dataset using Vertically Generalized Production Model, does not show any similarity with the distribution pattern of either organic carbon (Corg) or phosphorus, that was determined based on the in situ data. The negative correlations of primary production with Corg (r=-0.14) and P (r=-0.4) indicate that primary productivity is the most unlikely modulator of organic matter accumulation in the EAS. The negative correlation of bottom water oxygen concentration with Corg (r=-0.39) and Ti-normalized fraction of organic carbon (r=-0.56) indicates that anoxia plays a major role in the preservation of organic matter in the EAS. The mass accumulation rates of Corg and phosphorus show a strong dependency on sedimentation rate (r>0.88), which indicates that the accumulation rate of sediments outweighs the other depositional parameters in controlling the accumulation of organic matter in the EAS.

  11. PHOTOCHEMICAL TRANSFORMATIONS OF DISSOLVED ORGANIC MATTER IN A BLACKWATER RIVER

    EPA Science Inventory

    We examined photochemical alterations of dissolved organic matter (DOM) from the Satilla River, a high DOC (10-40 mg/liter) blackwater river of southeast Georgia. Water samples were filtered to remove most organisms, placed in quartz tubes, and incubated under natural sunlight a...

  12. Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Analysis of high-molecular-weight dissolved organic matter (DOM) from two estuaries in the northwest Atlantic Ocean reveals that black carbon (BC) is a significant component of previously uncharacterized DOM, suggesting that river-estuary systems are important exporters of recalcitrant dissolved organic carbon to the ocean.

  13. Organic Matter Application Can Reduce Copper Toxicity in Tomato Plants

    ERIC Educational Resources Information Center

    Campbell, Brian

    2010-01-01

    Copper fungicides and bactericides are often used in tomato cultivation and can cause toxic Cu levels in soils. In order to combat this, organic matter can be applied to induce chelation reactions and form a soluble complex by which much of the Cu can leach out of the soil profile or be taken up safely by plants. Organic acids such as citric,…

  14. Pedogenesis evolution of mine technosols: focus onto organic matter implication

    NASA Astrophysics Data System (ADS)

    Grégoire, Pascaud; Marilyne, Soubrand; Laurent, Lemee; Husseini Amelène, El-Mufleh Al; Marion, Rabiet; Emmanuel, Joussein

    2014-05-01

    Keywords: Mine technosols, pedogenesis, organic matter, environmental impact, pyr-GC-MS Technosols include soils subject to strong anthropogenic pressure and particularly to soil influenced by human transformed materials. In this context, abandoned mine sites contain a large amount of transformed waste materials often enriched with metals and/or metalloids. The natural evolution of technosols (pedogenesis) may induces the change in contaminants behaviour in term of stability of bearing phases, modification of pH oxydo-reduction conditions, organic matter turnover, change in permeability, or influence of vegetation cover. The fate of these elements in the soil can induce major environmental problems (contamination of biosphere and water resource). This will contribute to a limited potential use of these soils, which represent yet a large area around the world. The initial contamination of the parental material suggests that the pedological cover would stabilize the soil; however, the chemical reactivity must be taken in consideration particularly with respect to potential metal leachings. In this case, it is quite important to understand the development of soil in this specific context. Consequently, the global aims of this study are to understand the functioning of mine Technosols focusing onto the organic matter implication in their pedogenesis. Indeed, soil organic matter constitutes an heterogeneous fraction of organic compounds that plays an important role in the fate and the transport of metals and metalloids in soils. Three different soil profiles were collected representative to various mining context (contamination, time, climat), respectively to Pb-Ag, Sn and Au exploitations. Several pedological parameters were determined like CEC, pH, %Corg, %Ntot, C/N ratio, grain size distribution and chemical composition. The evolution of the nature of organic matter in Technosol was studied by elemental analyses and thermochemolysis was realized on the total and

  15. GROUNDWATER TRANSPORT OF HYDROPHOBIC ORGANIC COMPOUNDS IN THE PRESENCE OF DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    The effects of dissolved organic matter (DOM) on the transport of hydrophobic organic compounds in soil columns were investigated. Three compounds (naphthalene, phenanthrene and DDT) that spanned three orders of magnitude in water solubility were used. Instead of humic matter, mo...

  16. Sustaining effect of soil warming on organic matter decomposition

    NASA Astrophysics Data System (ADS)

    Hou, Ruixing; Ouyang, Zhu; Dorodnikov, Maxim; Wilson, Glenn; Kuzyakov, Yakov

    2015-04-01

    Global warming affects various parts of carbon (C) cycle including acceleration of soil organic matter (SOM) decomposition with strong feedback to atmospheric CO2 concentration. Despite many soil warming studies showed changes of microbial community structure, only very few were focused on sustainability of soil warming on microbial activity associated with SOM decomposition. Two alternative hypotheses: 1) acclimation because of substrate exhaustion and 2) sustaining increase of microbial activity with accelerated decomposition of recalcitrant SOM pools were never proven under long term field conditions. This is especially important in the nowadays introduced no-till crop systems leading to redistribution of organic C at the soil surface, which is much susceptible to warming effects than the rest of the profile. We incubated soil samples from a four-year warming experiment with tillage (T) and no-tillage (NT) practices under three temperatures: 15, 21, and 27 °C, and related the evolved total CO2 efflux to changes of organic C pools. Warmed soils released significantly more CO2 than the control treatment (no warming) at each incubation temperature, and the largest differences were observed under 15 °C (26% increase). The difference in CO2 efflux from NT to T increase with temperature showing high vulnerability of C stored in NT to soil warming. The Q10 value reflecting the sensitivity of SOM decomposition to warming was lower for warmed than non-warmed soil indicating better acclimation of microbes or lower C availability during long term warming. The activity of three extracellular enzymes: β-glucosidase, chitinase, sulphatase, reflecting the response of C, N and S cycles to warming, were significantly higher under warming and especially under NT compared to two other respective treatments. The CO2 released during 2 months of incubation consisted of 85% from recalcitrant SOM and the remaining 15% from microbial biomass and extractable organic C based on the

  17. Removal of dissolved organic matter by anion exchange: Effect of dissolved organic matter properties

    USGS Publications Warehouse

    Boyer, T.H.; Singer, P.C.; Aiken, G.R.

    2008-01-01

    Ten isolates of aquatic dissolved organic matter (DOM) were evaluated to determine the effect that chemical properties of the DOM, such as charge density, aromaticity, and molecular weight, have on DOM removal by anion exchange. The DOM isolates were characterized asterrestrial, microbial, or intermediate humic substances or transphilic acids. All anion exchange experiments were conducted using a magnetic ion exchange (MIEX) resin. The charge density of the DOM isolates, determined by direct potentiometric titration, was fundamental to quantifying the stoichiometry of the anion exchange mechanism. The results clearly show that all DOM isolates were removed by anion exchange; however, differences among the DOM isolates did influence their removal by MIEX resin. In particular, MIEX resin had the greatest affinity for DOM with high charge density and the least affinity for DOM with low charge density and low aromaticity. This work illustrates that the chemical characteristics of DOM and solution conditions must be considered when evaluating anion exchange treatment for the removal of DOM. ?? 2008 American Chemical Society.

  18. Organic content of particulate matter in turbine engine exhaust

    SciTech Connect

    Robertson, D.J.; Groth, R.H.; Blasko, T.J.

    1980-03-01

    Research report:Solid particulate matter, mainly carbon, emitted during fossil fuels combustion contains a variety of organic species adsorbed onto it. Studies were conducted to identify the organic compounds generated by a gas turbine engine. Total organics were determined by gas chromatography and flame ionization. Polynuclear aromatic hydrocarbons, phenols, and nitrosamines were present in samples collected from exhaust gases. (1 diagram, 4 references, 11 tables)

  19. Stabilization of ancient organic matter in deep buried paleosols

    NASA Astrophysics Data System (ADS)

    Marin-Spiotta, E.; Chaopricha, N. T.; Mueller, C.; Diefendorf, A. F.; Plante, A. F.; Grandy, S.; Mason, J. A.

    2012-12-01

    Buried soils representing ancient surface horizons can contain large organic carbon reservoirs that may interact with the atmosphere if exposed by erosion, road construction, or strip mining. Paleosols in long-term depositional sites provide a unique opportunity for studying the importance of different mechanisms on the persistence of organic matter (OM) over millennial time-scales. We report on the chemistry and bioavailability of OM stored in the Brady soil, a deeply buried (7 m) paleosol in loess deposits of southwestern Nebraska, USA. The Brady Soil developed 9,000-13,500 years ago during a time of warming and drying. The Brady soil represents a dark brown horizon enriched in C relative to loess immediately above and below. Spanning much of the central Great Plains, this buried soil contains large C stocks due to the thickness of its A horizon (0.5 to 1 m) and wide geographic extent. Our research provides a unique perspective on long-term OM stabilization in deep soils using multiple analytical approaches. Soils were collected from the Brady soil A horizon (at 7 m depth) and modern surface A horizons (0-15 cm) at two sites for comparison. Soils were separated by density fractionation using 1.85 g ml-1 sodium polytungstate into: free particulate organic matter (fPOM) and aggregate-occluded (oPOM) of two size classes (large: >20 μm, and small: < 20 μm). The remaining dense fraction was separated into sand, silt, and clay size fractions. The distribution and age of C among density and particle-size fractions differed between surface and Brady soils. We isolated the source of the characteristic dark coloring of the Brady soil to the oPOM-small fraction, which also contained 20% of the total organic C pool in the Brady soil. The oPOM-small fraction and the bulk soil in the middle of the Brady A horizon had 14C ages of 10,500-12,400 cal yr BP, within the time that the soil was actively forming at the land surface. Surface soils showed modern ages. Lipid analyses of

  20. [Denitrifying and phosphorus accumulating mechanisms of denitrifying phosphorus accumulating organisms (DPAOs) for wastewater treatment--a review].

    PubMed

    Yu, Hongting; Li, Min

    2015-03-04

    Eutrophication has raised increasing concerns due to its adverse effects on creatures. It is widely accepted that microbes are capable of removing nitrogen (N) and phosphate (P) via denitrification and P accumulation. So far, several strains can do this work. Therefore, more studies are focused on looking for micro-organisms that have both denitrification and P accumulation ability. Whether exposed to aerobic or anaerobic environment, microbial N and P removal mechanisms differ. Proton Motive Force and Electron Acceptor Theory are involved in the chemical process, whereas denitrifying enzymes polyphosphate kinases are regarded as the leading participators in the enzymatic systems. Studies have shown the influences of N on P accumulation, but further investigation should identify the influences of P on N removal. Here we reviewed the aspects of N and P removal mechanisms in denitrifying phosphorus accumulating organisms (DPAOs) and their potential to remove N and P from water system. Moreover, future works on clarifying denitrifying phosphorus accumulating mechanisms in depth and improving efficiency of removing N and P by DPAOs are provided.

  1. Structural and Isotopic Analysis of Organic Matter in Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Gilmour, I.

    2003-12-01

    The most ancient organic molecules available for study in the laboratory are those carried to Earth by infalling carbonaceous chondrite meteorites. All the classes of compounds normally considered to be of biological origin are represented in carbonaceous meteorites and, aside from some terrestrial contamination; it is safe to assume that these organic species were produced by nonbiological methods of synthesis. In effect, carbonaceous chondrites are a natural laboratory containing organic molecules that are the product of ancient chemical evolution. Understanding the sources of organic molecules in meteorites and the chemical processes that led to their formation has been the primary research goal. Circumstellar space, the solar nebulae, and asteroidal meteorite parent bodies have all been suggested as environments where organic matter may have been formed. Determination of the provenance of meteoritic organic matter requires detailed structural and isotopic information, and the fall of the Murchison CM2 chondrite in 1969 enabled the first systematic organic analyses to be performed on comparatively pristine samples of extraterrestrial organic material. Prior to that, extensive work had been undertaken on the organic matter in a range of meteorite samples galvanized, in part, by the controversial debate in the early 1960s on possible evidence for former life in the Orgueil carbonaceous chondrite (Fitch et al., 1962; Meinschein et al., 1963). It was eventually demonstrated that the suggested biogenic material was terrestrial contamination ( Fitch and Anders, 1963; Anders et al., 1964); however, the difficulties created by contamination have posed a continuing problem in the analysis and interpretation of organic material in meteorites (e.g., Watson et al., 2003); this has significant implications for the return of extraterrestrial samples by space missions. Hayes (1967) extensively reviewed data acquired prior to the availability of Murchison samples

  2. Spatial variation of salt-marsh organic and inorganic deposition and organic carbon accumulation: Inferences from the Venice lagoon, Italy

    NASA Astrophysics Data System (ADS)

    Roner, M.; D'Alpaos, A.; Ghinassi, M.; Marani, M.; Silvestri, S.; Franceschinis, E.; Realdon, N.

    2016-07-01

    inorganic soil content near the edge is due to the preferential deposition of inorganic sediment from the adjacent creek, and to the rapid decomposition of the relatively large biomass production. The higher organic matter content in the inner part of the marsh results from the small amounts of suspended sediment that makes it to the inner marsh, and to the low decomposition rate which more than compensates for the lower biomass productivity in the low-lying inner zones. Finally, the average soil organic carbon density from the LOI measurements is estimated to be 0.044 g C cm-3. The corresponding average carbon accumulation rate for the San Felice and Rigà salt marshes, 132 g C m-2 yr-1, highlights the considerable carbon stock and sequestration rate associated with coastal salt marshes.

  3. Organic matter in the Saturn system

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Khare, B. N.; Lewis, J. S.

    1984-01-01

    Theoretical and experimental predictions of the formation (and outgassing) of organic molecules in the outer solar system are compared with Voyager IRIS spectral data for the Titan atmosphere. The organic molecules of Titan are of interest because the species and processes within the atmosphere of that moon may have had analogs in the early earth atmosphere 4 Gyr ago. The spacecraft data confirmed the presence of alkanes, ethane, propane, ethylene, alkynes, acetylene, butadiene, methylacetylene, nitriles, hydrogen cyanide, cyanoacetylene, and cyanogen, all heavier than the dominant CH4. Experimental simulation of the effects of UV photolysis, alpha and gamma ray irradiation, electrical discharges and proton and electron bombardment of similar gas mixtures has shown the best promise for modeling the reactions producing the Titan atmosphere chemicals.

  4. Biogeochemical Processes That Produce Dissolved Organic Matter From Wheat Straw

    USGS Publications Warehouse

    Wershaw, Robert L.; Rutherford, David W.; Leenheer, Jerry A.; Kennedy, Kay R.; Cox, Larry G.; Koci, Donald R.

    2003-01-01

    The chemical reactions that lead to the formation of dissolved organic matter (DOM) in natural waters are poorly understood. Studies on the formation of DOM generally are complicated because almost all DOM isolates have been derived from mixtures of plant species composed of a wide variety of different types of precursor compounds for DOM formation. This report describes a study of DOM derived mainly from bales of wheat straw that had been left in a field for several years. During this period of time, black water from the decomposing wheat straw accumulated in pools in the field. The nuclear magnetic resonance and infrared spectra of the black water DOM indicate that it is composed almost entirely of lignin and carbohydrate polymeric units. Analysis by high-performance size-exclusion chromatography with multi-angle laser-light scattering detection indicates that the number average molecular weight of the DOM is 124,000 daltons. The results presented in this report indicate that the black water DOM is composed of hemicellulose chains cross-linked to lignin oligomers. These types of structures have been shown to exist in the hemicellulose matrix of plant cell walls. The cross-linked lignin-hemicellulose complexes apparently were released from partially degraded wheat-straw cell walls with little alteration. In solution in the black water, these lignin-hemicellulose polymers fold into compact globular particles in which the nonpolar parts of the polymer form the interiors of the particles and the polar groups are on the exterior surfaces of the particles. The tightly folded, compact conformation of these particles probably renders them relatively resistant to microbial degradation. This should be especially the case for the aromatic lignin structures that will be buried in the interiors of the particles.

  5. Do soils loose phosphorus with dissolved organic matter?

    NASA Astrophysics Data System (ADS)

    Kaiser, K.; Brödlin, D.; Hagedorn, F.

    2014-12-01

    During ecosystem development and soil formation, primary mineral sources of phosphorus are becoming increasingly depleted. Inorganic phosphorus forms tend to be bound strongly to or within secondary minerals, thus, are hardly available to plants and are not leached from soil. What about organic forms of phosphorus? Since rarely studied, little is known on the composition, mobility, and bioavailability of dissolved organic phosphorus. There is some evidence that plant-derived compounds, such as phytate, bind strongly to minerals as well, while microbial compounds, such as nucleotides and nucleic acids, may represent more mobile fractions of soil phosphorus. In some weakly developed, shallow soils, leaching losses of phosphorus seem to be governed by mobile organic forms. Consequently, much of the phosphorus losses observed during initial stages of ecosystem development may be due to the leaching of dissolved organic matter. However, the potentially mobile microbial compounds are enzymatically hydrolysable. Forest ecosystems on developed soils already depleted in easily available inorganic phosphorus are characterized by rapid recycling of organic phosphors. That can reduce the production of soluble forms of organic phosphorus as well as increase the enzymatic hydrolysis and subsequent plant uptake of phosphorus bound within dissolved organic matter. This work aims at giving an outlook to the potential role of dissolved organic matter in the cycling of phosphorus within developing forest ecosystems, based on literature evidence and first results of ongoing research.

  6. Detection of organic matter in interstellar grains.

    PubMed

    Pendleton, Y J

    1997-06-01

    Star formation and the subsequent evolution of planetary systems occurs in dense molecular clouds, which are comprised, in part, of interstellar dust grains gathered from the diffuse interstellar medium (DISM). Radio observations of the interstellar medium reveal the presence of organic molecules in the gas phase and infrared observational studies provide details concerning the solid-state features in dust grains. In particular, a series of absorption bands have been observed near 3.4 microns (approximately 2940 cm-1) towards bright infrared objects which are seen through large column densities of interstellar dust. Comparisons of organic residues, produced under a variety of laboratory conditions, to the diffuse interstellar medium observations have shown that aliphatic hydrocarbon grains are responsible for the spectral absorption features observed near 3.4 microns (approximately 2940 cm-1). These hydrocarbons appear to carry the -CH2- and -CH3 functional groups in the abundance ratio CH2/CH3 approximately 2.5, and the amount of carbon tied up in this component is greater than 4% of the cosmic carbon available. On a galactic scale, the strength of the 3.4 microns band does not scale linearly with visual extinction, but instead increases more rapidly for objects near the Galactic Center. A similar trend is noted in the strength of the Si-O absorption band near 9.7 microns. The similar behavior of the C-H and Si-O stretching bands suggests that these two components may be coupled, perhaps in the form of grains with silicate cores and refractory organic mantles. The ubiquity of the hydrocarbon features seen in the near infrared near 3.4 microns throughout out Galaxy and in other galaxies demonstrates the widespread availability of such material for incorporation into the many newly forming planetary systems. The similarity of the 3.4 microns features in any organic material with aliphatic hydrocarbons underscores the need for complete astronomical observational

  7. Andic soils : mineralogical effect onto organic matter dynamics, organic matter effect onto mineral dynamics, or both?

    NASA Astrophysics Data System (ADS)

    Basile-Doelsch, Isabelle; Amundson, Ronald; Balesdent, Jérome; Borschneck, Daniel; Bottero, Jean-Yves; Colin, Fabrice; de Junet, Alexis; Doelsch, Emmanuel; Legros, Samuel; Levard, Clément; Masion, Armand; Meunier, Jean-Dominique; Rose, Jérôme

    2014-05-01

    From a strictly mineralogical point of view, weathering of volcanic glass produces secondary phases that are short range ordered alumino-silicates (SRO-AlSi). These are imogolite tubes (2 to 3 nm of diameter) and allophane supposedly spheres (3.5 to 5 nm). Their local structure is composed of a curved gibbsite Al layer and Si tetrahedra in the vacancies (Q0). Proto-imogolites have the same local structure but are roof-shape nanoparticles likely representing the precursors of imogolite and allophanes (Levard et al. 2010). These structures and sizes give to the SRO-AlSi large specific surfaces and high reactivities. In some natural sites, imogolites and allophanes are formed in large quantities. Aging of these phases may lead to the formation of more stable minerals (halloysite, kaolinite and gibbsite) (Torn et al 1997). In natural environments, when the weathering of volcanic glass is associated with the establishment of vegetation, the soils formed are generally andosols. These soils are particularly rich in organic matter (OM), which is explained by the high ability of SRO-AlSi mineral phases to form bonds with organic compounds. In a first order "bulk" approach, it is considered that these bonds strongly stabilize the organic compounds as their mean age can reach more than 10 kyrs in some studied sites (Basile-Doelsch et al. 2005; Torn et al. 1997). However, the structure of the mineral phases present in andosols deserves more attention. Traditionally, the presence in the SRO-AlSi andosols was shown by selective dissolution approaches by oxalate and pyrophosphate. Using spectroscopic methods, mineralogical analysis of SRO-AlSi in andosols samples showed that these mineral phases were neither imogolites nor allophanes as originally supposed, but only less organized structures remained in a state of proto-imogolites (Basile-Doelsch al. 2005 ; Levard et al., 2012). The presence of OM would have an inhibitory effect on the formation of secondary mineral phases, by

  8. Organic matter dynamics in four seasonally flooded forest communities of the Dismal Swamp

    SciTech Connect

    Megonigal, J.P.; Day, F.P. Jr. Old Dominion Univ., Norfolk, VA )

    1988-09-01

    Budgets of organic matter dynamics for plant communities of the Great Dismal Swamp were developed to summarize an extensive data base, determine patterns of biomass allocation, transfer and accumulation, and make comparisons with other forested wetlands. Above ground net primary production on the flooded sites (1,050-1,176 g m{sup {minus}2} yr{sup {minus}1}) was significant greater than on a rarely flooded site (831 g m{sup {minus}2} yr{sup {minus}1}). Estimates of below ground net primary production were comparable to above ground production on flooded sites (824-1,221 gm{sup {minus}2} yr{sup {minus}1}). However, productivity was nearly three times greater below ground than above ground on the rarely flooded site (2,256 g m{sup {minus}2} yr{sup {minus}1}). Above ground productivity in Dismal Swamp forests is relatively high compared to other forested wetlands. This is attributed to the timing and periodic nature of flood events. Fine root turnover is shown to be an important source of soil organic matter. Estimates indicate that roots contribute about 60% of the annual increment to soil organic matter. Leaf litter contributes 6-28% and wood debris contributes 5-15%. Comparisons with other forested wetlands suggest that detritus accounts for greater than half of the total organic matter (living + dead) in many wetland systems.

  9. Composition of dissolved organic matter in groundwater

    NASA Astrophysics Data System (ADS)

    Longnecker, Krista; Kujawinski, Elizabeth B.

    2011-05-01

    Groundwater constitutes a globally important source of freshwater for drinking water and other agricultural and industrial purposes, and is a prominent source of freshwater flowing into the coastal ocean. Therefore, understanding the chemical components of groundwater is relevant to both coastal and inland communities. We used electrospray ionization coupled with Fourier-transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to examine dissolved organic compounds in groundwater prior to and after passage through a sediment-filled column containing microorganisms. The data revealed that an unexpectedly high proportion of organic compounds contained nitrogen and sulfur, possibly due to transport of surface waters from septic systems and rain events. We matched 292 chemical features, based on measured mass:charge ( m/z) values, to compounds stored in the Kyoto Encyclopedia of Genes and Genomes (KEGG). A subset of these compounds (88) had only one structural isomer in KEGG, thus supporting tentative identification. Most identified elemental formulas were linked with metabolic pathways that produce polyketides or with secondary metabolites produced by plants. The presence of polyketides in groundwater is notable because of their anti-bacterial and anti-cancer properties. However, their relative abundance must be quantified with appropriate analyses to assess any implications for public health.

  10. Interstellar and Solar System Organic Matter Preserved in Interplanetary Dust

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Nakamura-Messenger, Keiko

    2015-01-01

    Interplanetary dust particles (IDPs) collected in the Earth's stratosphere derive from collisions among asteroids and by the disruption and outgassing of short-period comets. Chondritic porous (CP) IDPs are among the most primitive Solar System materials. CP-IDPs have been linked to cometary parent bodies by their mineralogy, textures, C-content, and dynamical histories. CP-IDPs are fragile, fine-grained (less than um) assemblages of anhydrous amorphous and crystalline silicates, oxides and sulfides bound together by abundant carbonaceous material. Ancient silicate, oxide, and SiC stardust grains exhibiting highly anomalous isotopic compositions are abundant in CP-IDPs, constituting 0.01 - 1 % of the mass of the particles. The organic matter in CP-IDPs is isotopically anomalous, with enrichments in D/H reaching 50x the terrestrial SMOW value and 15N/14N ratios up to 3x terrestrial standard compositions. These anomalies are indicative of low T (10-100 K) mass fractionation in cold molecular cloud or the outermost reaches of the protosolar disk. The organic matter shows distinct morphologies, including sub-um globules, bubbly textures, featureless, and with mineral inclusions. Infrared spectroscopy and mass spectrometry studies of organic matter in IDPs reveals diverse species including aliphatic and aromatic compounds. The organic matter with the highest isotopic anomalies appears to be richer in aliphatic compounds. These materials also bear similarities and differences with primitive, isotopically anomalous organic matter in carbonaceous chondrite meteorites. The diversity of the organic chemistry, morphology, and isotopic properties in IDPs and meteorites reflects variable preservation of interstellar/primordial components and Solar System processing. One unifying feature is the presence of sub-um isotopically anomalous organic globules among all primitive materials, including IDPs, meteorites, and comet Wild-2 samples returned by the Stardust mission.

  11. Caracterisation of anthropogenic contribution to the coastal fluorescent organic matter

    NASA Astrophysics Data System (ADS)

    El Nahhal, Ibrahim; Nouhi, Ayoub; Mounier, Stéphane

    2015-04-01

    It is known that most of the coastal fluorescent organic matter is of a terrestrial origin (Parlanti, 2000; Tedetti, Guigue, & Goutx, 2010). However, the contribution of the anthropogenic organic matter to this pool is not well defined and evaluated. In this work the monitoring of little bay (Toulon Bay, France) was done in the way to determine the organic fluorescent response during a winter period. The sampling campaign consisted of different days during the month of December, 2014 ( 12th, 15th, 17th, 19th) on 21 different sampling sites for the fluorescence measurements (without any filtering of the samples) and the whole month of December for the bacterial and the turbidity measurements. Excitation Emission Matrices (EEMs) of fluorescence (from 200 to 400 nm and 220 to 420 nm excitation and emission range) were treated by parallel factor analysis (PARAFAC).The parafac analysis of the EEM datasets was conducted using PROGMEEF software in Matlab langage. On the same time that the turbidity and bacterial measurement (particularly the E.Coli concentration) were determined. The results gives in a short time range, information on the the contribution of the anthropogenic inputs to the coastal fluorescent organic matter. In addition, the effect of salinity on the photochemical degradation of the anthropogenic organic matter (especially those from wastewater treatment plants) will be studied to investigate their fate in the water end member by the way of laboratory experiments. Parlanti, E. (2000). Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organic Geochemistry, 31(12), 1765-1781. doi:10.1016/S0146-6380(00)00124-8 Tedetti, M., Guigue, C., & Goutx, M. (2010). Utilization of a submersible UV fluorometer for monitoring anthropogenic inputs in the Mediterranean coastal waters. Marine Pollution Bulletin, 60(3), 350-62. doi:10.1016/j.marpolbul.2009.10.018

  12. A marine sink for chlorine in natural organic matter

    NASA Astrophysics Data System (ADS)

    Leri, Alessandra C.; Mayer, Lawrence M.; Thornton, Kathleen R.; Northrup, Paul A.; Dunigan, Marisa R.; Ness, Katherine J.; Gellis, Austin B.

    2015-08-01

    Chloride--the most abundant ion in sea water--affects ocean salinity, and thereby seawater density and ocean circulation. Its lack of reactivity gives it an extremely long residence time. Other halogens are known to be incorporated into marine organic matter. However, evidence of similar transformations of seawater chloride is lacking, aside from emissions of volatile organochlorine by marine algae. Here we report high organochlorine concentrations from 180 to 700 mg kg-1 in natural particulate organic matter that settled into sediment traps at depths between 800 and 3,200 m in the Arabian Sea, taken between 1994 and 1995. X-ray spectromicroscopic imaging of chlorine bonding reveals that this organochlorine exists primarily in concentrated aliphatic forms consistent with lipid chlorination, along with a more diffuse aromatic fraction. High aliphatic organochlorine in particulate material from cultured phytoplankton suggests that primary production is a source of chlorinated organic matter. We also found that particulate algal detritus can act as an organic substrate for abiotic reactions involving Fe2+, H2O2 or light that incorporate chlorine into organic matter at levels up to several grams per kilogram. We conclude that transformations of marine chloride to non-volatile organochlorine through biological and abiotic pathways represent an oceanic sink for this relatively unreactive element.

  13. Aggregation of organic matter by pelagic tunicates

    SciTech Connect

    Pomeroy, L.R.; Deibel, D.

    1980-07-01

    Three genera of pelagic tunicates were fed concentrates of natural seston and an axenic diatom culture. Fresh and up to 4-day-old feces resemble flocculent organic aggregates containing populations of microorganisms, as described from highly productive parts of the ocean, and older feces resemble the nearly sterile flocculent aggregates which are ubiquitous in surface waters. Fresh feces consist of partially digested phytoplankton and other inclusions in an amorphous gelatinous matrix. After 18 to 36 h, a population of large bacteria develops in the matrix and in some of the remains of phytoplankton contained in the feces. From 48 to 96 h, protozoan populations arise which consume the bacteria and sometimes the remains of the phytoplankton in the feces. Thereafter only a sparse population of microorganisms remains, and the particles begin to fragment. Water samples taken in or below dense populations of salps and doliolids contained greater numbers of flocculent aggregates than did samples from adjacent stations.

  14. Search for Organic Matter in Leonid Meteoroids

    NASA Technical Reports Server (NTRS)

    Rairden, Richard L.; Jenniskens, Peter; Laux, Christophe O.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Near-ultraviolet 300-410 nm spectra of Leonid meteors were obtained in an effort to measure the strong B to X emission band of the radical CN in Leonid meteor spectra at 387 nm. CN is an expected product of ablation of nitrogen containing organic carbon in the meteoroids as well as a possible product of the aerothermochemistry induced by the kinetic energy of the meteor. A slitless spectrograph with objective grating was deployed on FISTA during the 1999 Leonid Multi-Instrument Aircraft Campaign. Fifteen first-order UV spectra were captured near the 02:00 UT meteor storm peak on November 18. It is found that neutral iron lines dominate the spectrum, with no clear sign of the CN band. The meteor plasma contains less than one CN molecule per three Fe atoms at the observed altitude of about 100 km.

  15. Search for Organic Matter in Leonid Meteoroids

    NASA Astrophysics Data System (ADS)

    Rairden, Richard L.; Jenniskens, Peter; Laux, Christophe O.

    Near-ultraviolet 300-410 nm spectra of Leonid meteoroids were obtained in an effort to measure the strong B --> X emission band of the radical CN in Leonid meteor spectra at 387 nm. CN is an expected product of ablation of nitrogen containing organic carbon in the meteoroids as well as a possible product of the aerothermochemistry induced by the kinetic energy of the meteor. A slit-less spectrograph with objective grating was deployed on FISTA during the 1999 Leonid Multi-Instrument Aircraft Campaign. Fifteen first-order UV spectra were captured near the 02:00 UT meteor storm peak on November 18. It is found that neutral iron lines dominate the spectrum, with no clear sign of the CN band. The meteor plasma contains less than one CN molecule per 3 Fe atoms at the observed altitude of about 100 km.

  16. [Leaf micro-morphology and features in adsorbing air suspended particulate matter and accumulating heavy metals in seven trees species].

    PubMed

    Liu, Ling; Fang, Yan-Ming; Wang, Shun-Chang; Xie, Ying; Yang, Dan-Dan

    2013-06-01

    The purpose of this study was to assess the relationship between tree leaf micro-morphology and features in adsorbing air suspended particulate matter and accumulating heavy metals. Seven tree species, including Ginkgo biloba, at heavy traffic density site in Huainan were selected to analyze the frequency of air particulate matter retained by leaves, the particle amount of different sizes per unit leaf area retained by leaves and its related micro-morphology structure, and the relationship between particle amount of different sizes per unit leaf area retained by leaves and its related accumulation of heavy metals. We found that the species characterized by small leaf area, special epidemis with abundant fax, and highly uneven cell wall, as well as big and dense stomata and without trichomes mainly absorbed fine particulate matter; while those species with many trichomes mainly retained coarse particulate matter. Accumulation of heavy metals in leaves of the seven species was significantly different except for Ph. Tree species with high capacities in heavy metal accumulation were Ginkgo biloba, Ligustrum lucidum, and Cinnamomum camphora. Accumulation of Cd, Cr, Ni, Zn, Cu and total heavy metal concentration for seven tree species was positively related to the amount of particulate matter absorbed. Correlation coefficients of d10 vs d2.5, d10 vs d1.0, d2.5 vs d1.0 were 0.987, 0.971, 0.996, respective, and the correlate level was significant. The ratios of d2.5/d10, d1.0/d10, d1.0/d2.5 were 0.844, 0.763, 0.822, indicating that the particulate matter from traffic was mainly fine particulates.

  17. Quenching and Sensitizing Fullerene Photoreactions by Natural Organic Matter

    EPA Science Inventory

    Effects of natural organic matter (NOM) on the photoreaction kinetics of fullerenes (i.e., C60 and fullerenol) were investigated using simulated sunlight and monochromatic radiation (365 nm). NOM from several sources quenched (slowed) the photoreaction of C60 aggregates in water ...

  18. Calculation of the enthalpy of formation of coal organic matter

    SciTech Connect

    A.M. Gyul'maliev; M.Ya. Shpirt

    2008-10-15

    The enthalpy of formation for the organic matter of coals in the coal rank series was calculated from the heat of the complete combustion reaction. Three variants were considered in which the experimental heating values and the values found from the correlation equation or calculated using the Mendeleev formula were taken as the heat of the complete combustion of coals.

  19. Photoproduction of Carbon Monoxide from Natural Organic Matter

    EPA Science Inventory

    Pioneering studies by Valentine provided early kinetic results that used carbon monoxide (CO) production to evaluate the photodecomposition of aquatic natural organic matter (NOM) . (ES&T 1993 27 409-412). Comparatively few kinetic studies have been conducted of the photodegradat...

  20. Lyophilization and Reconstitution of Reverse Osmosis Concentrated Natural Organic Matter

    EPA Science Inventory

    Disinfection by-product (DBP) research can be complicated by difficulties in shipping large water quantities and changing natural organic matter (NOM) characteristics over time. To overcome these issues, it is advantageous to have a reliable method for concentrating and preservin...

  1. [Changing characteristics of organic matter and pH of cultivated soils in Zhejiang province over the last 50 years].

    PubMed

    Zhang, Ming-Kui; Chang, Yue-Chang

    2013-11-01

    By comparing the current quality investigation data of cultivated soils in Zhejiang province with the past data, changing characteristics of organic matter and pH value of the soils in this province over last 50 years were analyzed. The results showed that content of organic matter and pH value of the cultivated soils changed greatly during past 50 years, and the changes varied with historical periods and soil types. From 1958 to 1980s, accumulation of soil organic matter was obvious, soil organic matter increased averagely by 40.34%, and the mean pH increased slightly by 0.05 of pH unit. From 1980s to 2008, the mean content of organic matter in paddy soils decreased by 5.58%. The changes of soil organic matter varied with distribution zones of the paddy soils. The mean content of organic matter of paddy soils in valley plain increased with time, and those in plain with water network, hilly area and coastal plain decreased with time. The mean contents of organic matter in fluvio-aquic soil and coastal saline soil in the year 2008 were 29.48% and 14.60% respectively higher than those in 1980s. As compared with those obtained at 1980s, the cultivated soil in this province have been significantly acidified in the past thirty years, the mean pH value declined by 0.25 of pH unit, and the decline of pH value of paddy soils was greater than those of fluvio-aquic soil and saline soil. Changes in fertilization structure and conversion of paddy fields to upland were thought as main causes of the changes in both soil organic matter and pH value.

  2. Tracing organic matter composition and distribution and its role on arsenic release in shallow Cambodian groundwaters

    NASA Astrophysics Data System (ADS)

    Lawson, Michael; Polya, David A.; Boyce, Adrian J.; Bryant, Charlotte; Ballentine, Christopher J.

    2016-04-01

    Biogeochemical processes that utilize dissolved organic carbon are widely thought to be responsible for the liberation of arsenic from sediments to shallow groundwater in south and southeast Asia. The accumulation of this known carcinogen to hazardously high concentrations has occurred in the primary source of drinking water in large parts of densely populated countries in this region. Both surface and sedimentary sources of organic matter have been suggested to contribute dissolved organic carbon in these aquifers. However, identification of the source of organic carbon responsible for driving arsenic release remains enigmatic and even controversial. Here, we provide the most extensive interrogation to date of the isotopic signature of ground and surface waters at a known arsenic hotspot in Cambodia. We present tritium and radiocarbon data that demonstrates that recharge through ponds and/or clay windows can transport young, surface derived organic matter into groundwater to depths of 44 m under natural flow conditions. Young organic matter dominates the dissolved organic carbon pool in groundwater that is in close proximity to these surface water sources and we suggest this is likely a regional relationship. In locations distal to surface water contact, dissolved organic carbon represents a mixture of both young surface and older sedimentary derived organic matter. Ground-surface water interaction therefore strongly influences the average dissolved organic carbon age and how this is distributed spatially across the field site. Arsenic mobilization rates appear to be controlled by the age of dissolved organic matter present in these groundwaters. Arsenic concentrations in shallow groundwaters (<20 m) increase by 1 μg/l for every year increase in dissolved organic carbon age compared to only 0.25 μg/l for every year increase in dissolved organic carbon age in deeper (>20 m) groundwaters. We suggest that, while the rate of arsenic release is greatest in shallow

  3. Organic and Inorganic Matter in Louisiana Coastal Waters: Vermilion, Atchafalaya, Terrebonne, Barataria, and Mississippi Regions.

    EPA Science Inventory

    Chromophoric dissolved organic matter (CDOM) spectral absorption, dissolved organic carbon (DOC) concentration, and the particulate fraction of inorganic (PIM) and organic matter (POM) were measured in Louisiana coastal waters at Vermilion, Atchafalaya, Terrebonne, Barataria, and...

  4. CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) DERIVED FROM DECOMPOSITION OF VARIOUS VASCULAR PLANT AND ALGAL SOURCES

    EPA Science Inventory

    Chromophoric dissolved organic (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organic matter...

  5. Molecular characterization of soil organic matter: a historic overview

    NASA Astrophysics Data System (ADS)

    Kögel-Knabner, Ingrid; Rumpel, Cornelia

    2014-05-01

    The characterization of individual molecular components of soil organic matter started in the early 19th century, but proceeded slowly. The major focus at this time was on the isolation and differentiation of different humic and fulvic acid fractions, which were considered to have a defined chemical composition and structure. The isolation and structural anlysis of specific individual soil organic matter components became more popular in the early 20th century. In 1936 40 different individual compounds had been isolated and a specific chemical strucutre had been attributed. These structural attributions were confirmed later for some, but not all of these individual compounds. In the 1950 much more individual compounds could be isolated and characterized, using complicated and time consuming chromatography. It became obvious that soil also contains a number of compounds of microbial origin, such as e.g., amino sugars and lipids. With the improvement of chrmoatographic separation techniques and the use of gas chromatography in combination with thin layerchromatography in the 1960 hundreds of individual compounds have been isolated and identified, most of them after chemical degradation of humic or fulvic acids. The chemical degradative techniques were amended with analytical pyrolysis in the 1970s. More and more, bulk soil organic matter was analyzed with these techniques and the advent of solid-stae 13C NMR spectroscopy around the 1980s allowed for the characterization of the composition of bulk soil organic matter. The gas chromatographic separation of organic matter can nowadays be combined with specific detectors, such that specific attributes ofindividual molecules can be analyzed, e.g. the radiocarbon content or the stable isotope composition.

  6. Microbially-mediated fate of {sup 14}C-pyrene in soil organic matter

    SciTech Connect

    Guthroe, E.A.; Pfaender, F.K.

    1995-12-31

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental contaminants that result from both natural and anthropogenic combustion processes. Several microbial processes are known to influence the fate of PAH in soil. Their effect on PAH structure and mobility can affect the potential health risk exposure to humans and indigenous organisms in soil. Microbial metabolism of PAHs can result in the accumulation of more polar by-products or the formation of by-products that may be further metabolized or mineralized by other microorganisms. A third possible fate is the incorporation of PAHs into soil organic matter via various sorption/binding processes. Experiments were conducted to determine the extent of {sup 14}C-pyrene associations with soil organic matter (SOM) in adapted and non-adapted soils. Changes in microbial respiration (CO{sub 2} efflux), {sup 14}C volatile organics, {sup 14}C water soluble metabolites and {sup 14}C SOM were measured in aerated soil systems treated individually with 100 mg/kg [4,5,9,10-{sup 14}C] pyrene over time. Mass balances were generated based on V products in water extracts, CO{sub 2} efflux. SOM, {sup 14}C-volatiles, and residual soil. The {sup 14}C products in SOM were further fractionated into humic acids (HA), fulvic acids (FA), and humin. The presence of an adapted, microbial community enhances {sup 14}C-pyrene mineralization and increases the {sup 14}C product accumulation in water extracts and fulvic acids (FA).

  7. Bacterial biomarkers thermally released from dissolved organic matter

    USGS Publications Warehouse

    Greenwood, P.F.; Leenheer, J.A.; McIntyre, C.; Berwick, L.; Franzmann, P.D.

    2006-01-01

    Hopane biomarker products were detected using microscale sealed vessel (MSSV) pyrolysis gas chromatography-mass spectrometry (GC-MS) analysis of dissolved organic matter from natural aquatic systems colonised by bacterial populations. MSSV pyrolysis can reduce the polyhydroxylated alkyl side chain of bacteriohopanepolyols, yielding saturated hopane products which are more amenable to GC-MS detection than their functionalised precursors. This example demonstrates how the thermal conditions of MSSV pyrolysis can reduce the biologically-inherited structural functionality of naturally occurring organic matter such that additional structural fragments can be detected using GC methods. This approach complements traditional analytical pyrolysis methods by providing additional speciation information useful for establishing the structures and source inputs of recent or extant organic material. ?? 2006.

  8. Nature of particulate organic matter in the River Indus, Pakistan

    NASA Astrophysics Data System (ADS)

    Ittekkot, Venugopalan; Arain, Rafee

    1986-08-01

    Suspended sediments from the Indus River collected during 1981 through 1983 were analyzed for POC and its constituent fractions including amino acids, amino sugars and sugars. Percentage of POC decreased with increasing suspended matter concentrations, which suggested dilution of organic matter by mineral matter. The concentrations of amino acids, amino sugars and sugars varied, respectively, between 180 and 2000 μg/l, 5 and 125 μg/l, and 60 and 1100 μg/l. Their contributions to POC varied between 2 and 60% for amino acids and amino sugars, and between 2 and 15% for sugars. They were high during low sediment discharge (February to June), and low during high sediment discharge (August and September). Suspended sediments associated with high sediment discharge periods were characterized by low ratios of: (i) aspartic acid:β-alanine (ii) glutamic acid:γ-aminobutyric acid (iii) amino acids:amino sugars (iv) hexoses:pentoses. These and the relative distribution pattern of the monosaccharides such as galactose, arabinose, mannose and xylose indicated that, not only dilution, but also differences in the sources and processes affect the POC transport in the Indus River. These result in transport of biodegraded organic matter during high sediment discharge periods: this appears to be common to other major rivers of the region, with depositional centers in deep sea areas. These rivers, with their high sediment loads, could contribute up to 8 to 11% of the global annual organic carbon burial in marine sediments.

  9. Soil Organic Matter Content Effects on Dermal Pesticide ...

    EPA Pesticide Factsheets

    Agricultural landscapes serve as active amphibian breeding grounds despite their seemingly poor habitat value. Activity of adults and dispersal of metamorphs to and from agricultural ponds occurs in most species from spring through late summer or early fall, a time that coincides with pesticide applications on farm fields and crops. In terrestrial landscapes, dermal contact with contaminated soil and plant matter may lead to bioconcentration as well as lethal and sublethal effects in amphibians.Although the physiological structure of the amphibian dermis may facilitate pesticide uptake, soil properties may ultimately dictate bioavailability of pesticides in terrestrial habitats. The organic matter fraction of soil readily binds to pesticides, potentially decreasing the availability of pesticides adhering to biological matter. Soil partition coefficient organic carbon content and soil-specific Koc values may be important to indicating pesticide bioavailability and potential bioconcentration in amphibians. Our study was designed to evaluate dermal uptake of five pesticide active ingredients on either high or low organic matter soils. We predicted that amphibian body burdens would be a function of soil carbon content or Koc. with greater bioconcentration in individuals exposed to pesticides on sa

  10. Cumulative effects of biochar, mineral and organic fertilizers on soil organic matter

    NASA Astrophysics Data System (ADS)

    Plaza, César; López-de-Sá, Esther G.; Gascó, Gabriel; Méndez, Ana; Zaccone, Claudio

    2016-04-01

    We investigated the effect of three consecutive annual applications of biochar at rates of 0 and 20 t ha-1, in a factorial combination with a mineral fertilizer (NPK and nitrosulfate) and two types of organic amendment (municipal solid waste compost and sewage sludge), on soil organic matter in a field experiment under Mediterranean conditions. Biochar increased significantly soil organic C content and C/N ratio. In biochar-amended soils, soil organic C increased significantly with the addition of municipal solid waste compost and sewage sludge. To capture organic matter protection mechanisms related to aggregation and mineral interaction, the soil samples will be fractionated into free (unprotected), intra-macroaggregate, intra-microaggregate, and mineral-associated organic matter pools, and the isolated fractions will be subjected to further chemical and spectroscopic analysis.

  11. Soil type-depending effect of paddy management: composition and distribution of soil organic matter

    NASA Astrophysics Data System (ADS)

    Urbanski, Livia; Kölbl, Angelika; Lehndorff, Eva; Houtermans, Miriam; Schad, Peter; Zhang, Gang-Lin; Rahayu Utami, Sri; Kögel-Knabner, Ingrid

    2016-04-01

    Paddy soil management is assumed to promote soil organic matter accumulation and specifically lignin caused by the resistance of the aromatic lignin structure against biodegradation under anaerobic conditions during inundation of paddy fields. The present study investigates the effect of paddy soil management on soil organic matter composition compared to agricultural soils which are not used for rice production (non-paddy soils). A variety of major soil types, were chosen in Indonesia (Java), including Alisol, Andosol and Vertisol sites (humid tropical climate of Java, Indonesia) and in China Alisol sites (humid subtropical climate, Nanjing). This soils are typically used for rice cultivation and represent a large range of soil properties to be expected in Asian paddy fields. All topsoils were analysed for their soil organic matter composition by solid-state 13C nuclear magnetic resonance spectroscopy and lignin-derived phenols by CuO oxidation method. The soil organic matter composition, revealed by solid-state 13C nuclear magnetic resonance, was similar for the above named different parent soil types (non-paddy soils) and was also not affected by the specific paddy soil management. The contribution of lignin-related carbon groups to total SOM was similar in the investigated paddy and non-paddy soils. A significant proportion of the total aromatic carbon in some paddy and non-paddy soils was attributed to the application of charcoal as a common management practise. The extraction of lignin-derived phenols revealed low VSC (vanillyl, syringyl, cinnamyl) values for all investigated soils, being typical for agricultural soils. An inherent accumulation of lignin-derived phenols due to paddy management was not found. Lignin-derived phenols seem to be soil type-dependent, shown by different VSC concentrations between the parent soil types. The specific paddy management only affects the lignin-derived phenols in Andosol-derived paddy soils which are characterized by

  12. Preservation of organic matter in sediments promoted by iron.

    PubMed

    Lalonde, Karine; Mucci, Alfonso; Ouellet, Alexandre; Gélinas, Yves

    2012-03-07

    The biogeochemical cycles of iron and organic carbon are strongly interlinked. In oceanic waters, organic ligands have been shown to control the concentration of dissolved iron. In soils, solid iron phases shelter and preserve organic carbon, but the role of iron in the preservation of organic matter in sediments has not been clearly established. Here we use an iron reduction method previously applied to soils to determine the amount of organic carbon associated with reactive iron phases in sediments of various mineralogies collected from a wide range of depositional environments. Our findings suggest that 21.5 ± 8.6 per cent of the organic carbon in sediments is directly bound to reactive iron phases. We further estimate that a global mass of (19-45) × 10(15) grams of organic carbon is preserved in surface marine sediments as a result of its association with iron. We propose that these associations between organic carbon and iron, which are formed primarily through co-precipitation and/or direct chelation, promote the preservation of organic carbon in sediments. Because reactive iron phases are metastable over geological timescales, we suggest that they serve as an efficient 'rusty sink' for organic carbon, acting as a key factor in the long-term storage of organic carbon and thus contributing to the global cycles of carbon, oxygen and sulphur.

  13. Rare earth elements and neodymium isotopes in sedimentary organic matter

    NASA Astrophysics Data System (ADS)

    Freslon, Nicolas; Bayon, Germain; Toucanne, Samuel; Bermell, Sylvain; Bollinger, Claire; Chéron, Sandrine; Etoubleau, Joel; Germain, Yoan; Khripounoff, Alexis; Ponzevera, Emmanuel; Rouget, Marie-Laure

    2014-09-01

    We report rare earth element (REE) and neodymium (Nd) isotope data for the organic fraction of sediments collected from various depositional environments, i.e. rivers (n = 25), estuaries (n = 18), open-ocean settings (n = 15), and cold seeps (n = 12). Sedimentary organic matter (SOM) was extracted using a mixed hydrogen peroxide/nitric acid solution (20%-H2O2-0.02 M-HNO3), after removal of carbonate and oxy-hydroxide phases with dilute hydrochloric acid (0.25 M-HCl). A series of experimental tests indicate that extraction of sedimentary organic compounds using H2O2 may be complicated occasionally by partial dissolution of sulphide minerals and residual carbonates. However, this contamination is expected to be minor for REE because measured concentrations in H2O2 leachates are about two-orders of magnitude higher than in the above mentioned phases. The mean REE concentrations determined in the H2O2 leachates for samples from rivers, estuaries, coastal seas and open-ocean settings yield relatively similar levels, with ΣREE = 109 ± 86 ppm (mean ± s; n = 58). The organic fractions leached from cold seep sediments display even higher concentration levels (285 ± 150 ppm; mean ± s; n = 12). The H2O2 leachates for most sediments exhibit remarkably similar shale-normalized REE patterns, all characterized by a mid-REE enrichment compared to the other REE. This suggests that the distribution of REE in leached sedimentary organic phases is controlled primarily by biogeochemical processes, rather than by the composition of the source from which they derive (e.g. pore, river or sea-water). The Nd isotopic compositions for organic phases leached from river sediments are very similar to those for the corresponding detrital fractions. In contrast, the SOM extracted from marine sediments display εNd values that typically range between the εNd signatures for terrestrial organic matter (inferred from the analysis of the sedimentary detrital fractions) and marine organic matter

  14. Understanding dry matter and nitrogen accumulation with time-course for high-yielding wheat production in China.

    PubMed

    Meng, Qingfeng; Yue, Shanchao; Chen, Xinping; Cui, Zhenling; Ye, Youliang; Ma, Wenqi; Tong, Yanan; Zhang, Fusuo

    2013-01-01

    Understanding the time-course of dry matter (DM) and nitrogen (N) accumulation in terms of yield-trait relationships is essential to simultaneously increase grain yield and synchronize N demand and N supply. We collected 413 data points from 11 field experiments to address patterns of DM and N accumulation with time in relation to grain yield and management of winter wheat in China. Detailed growth analysis was conducted at the Zadok growth stages (GS) 25 (regreening), GS30 (stem elongation), GS60 (anthesis), and GS100 (maturity) in all experiments, including DM and N accumulation. Grain yield averaged 7.3 Mg ha(-1), ranging from 2.1 to 11.2 Mg ha(-1). The percent N accumulation was consistent prior to DM accumulation, while both DM and N accumulation increased continuously with growing time. Both the highest and fastest DM and N accumulations were observed from stem elongation to the anthesis stage. Significant correlations between grain yield and DM and N accumulation were found at each of the four growth stages, although no positive relationship was observed between grain yield and harvest index or N harvest index. The yield increase from 7-9 Mg ha(-1) to >9 Mg ha(-1) was mainly attributed to increased DM and N accumulation from stem elongation to anthesis. Although applying more N fertilizer increased N accumulation during this stage, DM accumulation was not improved, indicating that N fertilizer management and related agronomic management should be intensified synchronously across the wheat growing season to simultaneously achieve high yields and match N demand and N supply.

  15. Using fluorescence to characterize dissolved organic matter in Antarctic sea ice brines

    NASA Astrophysics Data System (ADS)

    Stedmon, Colin A.; Thomas, David N.; Papadimitriou, Stathys; Granskog, Mats A.; Dieckmann, Gerhard S.

    2011-09-01

    Sea ice plays a dynamic role in the air-sea exchange of CO2. In addition to abiotic inorganic carbon fluxes, an active microbial community produces and remineralizes organic carbon, which can accumulate in sea ice brines as dissolved organic matter (DOM). In this study, the characteristics of DOM fluorescence in Antarctic sea ice brines from the western Weddell Sea were investigated. Two humic-like components were identified, which were identical to those previously found to accumulate in the deep ocean and represent refractory material. Three amino-acid-like signals were found, one of which was unique to the brines and another that was spectrally very similar to tryptophan and found both in seawater and in brine samples. The tryptophan-like fluorescence in the brines exhibited intensities higher than could be explained by conservative behavior during the freezing of seawater. Its fluorescence was correlated with the accumulation of nitrogen-rich DOM to concentrations up to 900 μmol L-1 as dissolved organic carbon (DOC) and, thus, potentially represented proteins released by ice organisms. A second, nitrogen-poor DOM fraction also accumulated in the brines to concentrations up to 200 μmol L-1 but was not correlated with any of the fluorescence signals identified. Because of the high C:N ratio and lack of fluorescence, this material is thought to represent extracellular polymeric substances, which consist primarily of polysaccharides. The clear grouping of the DOM pool into either proteinaceous or carbohydrate-dominated material indicates that the production and accumulation of these two subpools of DOM in sea ice brines is, to some extent, decoupled.

  16. Evolution of organic matter degradation in Cretaceous black shales inferred from authigenic barite: A reaction-transport model

    NASA Astrophysics Data System (ADS)

    Arndt, Sandra; Hetzel, Almut; Brumsack, Hans-Jürgen

    2009-04-01

    A reaction-transport model was used to infer the long-term evolution of anaerobic organic matter degradation in Cretaceous black shales from the distribution of authigenic barite in sediments drilled at Demerara Rise (ODP Leg 207, Site 1258). In these sediments, sulfate-reduction and methanogenesis are the major pathways of organic matter decomposition and the depth-distribution of authigenic barite serves as an indicator for the temporal evolution of the sulfate-methane transition zone (SMTZ), the strength of the biogenic methane flux and, ultimately, the organic matter reactivity in the black shales over geological timescales. Organic matter degradation is described according to the reactive continuum model approach and parameters values are determined by inverse modeling, based on present-day porewater and authigenic barite profiles. Fully transient simulations were performed over a period of 100 Myrs and indicate that important features of the biogeochemical dynamics are associated to changes in the boundary forcing. Hiatuses in sediment accumulation rate result in quasi-steady-state conditions and lead to distinct accumulations of authigenic barites in the SMTZ. The inversely determined parameters reveal that the reactivity of the organic matter was already low (apparent first order rate constant k≈10-4year-10-6year) at the time of its deposition in the Cretaceous. The geochemical characteristics of sediments drilled at Demerara Rise, as well as the presence of specific biomarkers, suggest that this low reactivity is most likely due to the euxinic palaeo-conditions which favored the sulfurization of the organic matter. Simulation results predict average initial organic carbon contents between 8.1 and 9.5 wt%, implying a high preservation efficiency of the organic matter (between 79% and 89%). Calculated mass accumulation rates (between 0.43 and 0.5 gCmyear) compare well with estimations for the western basin of the Cretaceous southern North Atlantic

  17. Organic matter determination for street dust in Delhi.

    PubMed

    Shandilya, Kaushik K; Khare, Mukesh; Gupta, A B

    2013-06-01

    The organic matter of street dust is considered as one of the causes for high human mortality rate. To understand the association, the street dust samples were collected from four different localities (industrial, residential, residential-commercial, and commercial) situated in the greater Delhi area of India. The loss-on-ignition method was used to determine the organic matter (OM) content in street dust. The OM content, potassium, calcium, sulfate, and nitrate concentrations of street dust in Delhi, India is measured to understand the spatial variation. Correlation analysis, analysis of variance, and factor analysis were performed to define the sources. The dust OM level ranges from 2.63 to 10.22 %. It is found through correlation and factor analysis that OM is primarily contributed from secondary aerosol and vehicular exhaust. The OM levels suggest that the use of a residential-commercial site for commercial purposes is polluting the street dust and creating the environmental and human health problems.

  18. Organic carbon accumulation and preservation in surface sediments on the Peru margin

    USGS Publications Warehouse

    Arthur, M.A.; Dean, W.E.; Laarkamp, K.

    1998-01-01

    Concentrations and characteristics of organic matter in surface sediments deposited under an intense oxygen-minimum zone on the Peru margin were studied in samples from deck-deployed box cores and push cores acquired by submersible on two transects spanning depths of 75 to 1000 m at 12??and 13.5??S. The source of organic matter to the seafloor in these areas is almost entirely marine material as confirmed by the narrow range of ??13C of organic carbon obtained in the present study (-20.3 to -21.6???; PDB) and the lack of any relationship between pyrolysis hydrogen index and carbon isotope composition. Organic carbon contents are highest (up to 16%) on the slope at depths between 75 and 350 m in sediments deposited under intermediate water masses with low dissolved oxygen concentrations (< 5 ??mol/kg). Even at these low concentrations of dissolved oxygen, however, the surface sediments that were recovered from these depths are dominantly unlaminated. Strong currents (up to 30 cm/s) associated with the poleward-flowing Peru Undercurrent were measured at depths between 160 and 300 m on both transects. The seafloor in this range of water depths is characterized by bedforms stabilized by bacterial mats, extensive authigenic mineral crusts, and (or) thick organic flocs. Constant advection of dissolved oxygen, although in low concentrations, active resuspension of surficial organic matter, activity of organisms, and transport of fine-grained sediment to and from more oxygenated zones all contribute to greater degradation and poorer initial preservation of organic matter than might be expected under oxygen-deficient conditions. Dissolved-oxygen concentrations ultimately may be the dominant affect on organic matter characteristics, but reworking of fine-grained sediment and organic matter by strong bottom currents and redeposition on the seafloor in areas of lower energy also exert important controls on organic carbon concentration and degree of oxidation in this region.

  19. Photochemical Degradation of Persistent Organic Pollutants: A Study of Ice Photochemistry Mediated by Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Bobby, R.; Pagano, L.; Grannas, A. M.

    2012-12-01

    It is well established that ice is a reactive medium in the environment and that active photochemistry occurs in frozen systems. Snow and ice contain a number of absorbing species including nitrate, peroxide and organic matter. Upon irradiation, they can generate a variety of reactive intermediates such as hydroxyl radical and singlet oxygen. It has been shown that dissolved organic matter is a ubiquitous component of snow and ice and plays an important role in overall light absorption properties of the sample. Additionally, the reactive intermediates produced can further react with contaminants present and alter their fate in the environment. Unfortunately, the role of dissolved organic matter in ice photochemistry has received little attention. Here we present results from laboratory-based studies aimed at elucidating the role of dissolved organic matter photochemistry on contaminant degradation in ice. Aqueous samples of our target pollutant, aldrin (20 μg/L), in liquid and frozen phases, were irradiated under Q-Panel 340 lamps to simulate the UV radiation profile of natural sunlight. Results indicated that frozen samples degraded more quickly than liquid samples and that the addition of dissolved organic matter increases the aldrin degradation rate significantly. Both terrestrial (Suwannee River, U.S.) and microbial sources (Pony Lake, Antarctica) of DOM were able to sensitize aldrin loss in ice. Scavengers of singlet oxygen, such as furfuryl alcohol and β-carotene, were also added to DOM solutions. Based on the type of organic matter present, the scavengers had different effects on the photochemical degradation of aldrin. Our results indicate that natural organic matter present in ice is an important component of ice photochemical processes.

  20. Terrestrial dominance of organic matter in north temperate lakes

    NASA Astrophysics Data System (ADS)

    Wilkinson, G.; Pace, M. L.; Cole, J. J.

    2012-12-01

    Aquatic ecosystems are hotspots of decomposition and a source of carbon dioxide to the atmosphere that is globally significant. Carbon exported from land (allochthonous) also supplements the carbon fixed by photosynthesis in aquatic ecosystems (autochthonous), contributing to the organic matter (OM) that supports aquatic consumers. Although the presence of terrestrial compounds in aquatic OM is well known, the contribution of terrestrial versus aquatic sources to the composition of OM has been quantified for only a handful of systems. Here we use stable isotopes of hydrogen and carbon to demonstrate that the terrestrial contribution to particulate organic matter (POM) is as large or larger (mean=54.6% terrestrial) than the algal contribution in 39 lakes of the northern highlands region of Wisconsin and Michigan. Further, the largest carbon pool, dissolved organic matter (DOM), is strongly dominated by allochthonous material (mean for the same set of lakes approximately 100% terrestrial). Among lakes, increases in terrestrial contribution to POM are significantly correlated with more acidic pH. Extrapolating this relationship using a survey of pH in 1692 lakes in the region reveals that, with the exception of eutrophic lakes, most of the OM in lakes is of terrestrial origin. These results are consistent with the growing evidence that terrestrial OM may support many lake food webs, and that lakes are significant conduits for returning degraded terrestrial carbon to the atmosphere.

  1. Terrestrial dominance of organic matter in north temperate lakes

    NASA Astrophysics Data System (ADS)

    Wilkinson, Grace M.; Pace, Michael L.; Cole, Jonathan J.

    2013-01-01

    Aquatic ecosystems are hotspots of decomposition and sources of carbon dioxide to the atmosphere that are globally significant. Carbon exported from land (allochthonous) also supplements the carbon fixed by photosynthesis in aquatic ecosystems (autochthonous), contributing to the organic matter (OM) that supports aquatic consumers. Although the presence of terrestrial compounds in aquatic OM is well known, the contribution of terrestrial versus aquatic sources to the composition of OM has been quantified for only a handful of systems. Here we use stable isotopes of hydrogen and carbon to demonstrate that the terrestrial contribution (ΦTerr) to particulate organic matter (POM) is as large or larger (mean = 54.6% terrestrial) than the algal contribution in 39 lakes of the northern highlands region of Wisconsin and Michigan. Further, the largest carbon pool, dissolved organic matter (DOM), is strongly dominated by allochthonous material (mean for the same set of lakes approximately 100% terrestrial). Among lakes, increases in terrestrial contribution to POM are significantly correlated with more acidic pH. Extrapolating this relationship using a survey of pH in 1692 lakes in the region reveals that, with the exception of eutrophic lakes, most of the OM in lakes is of terrestrial origin. These results are consistent with the growing evidence that lakes are significant conduits for returning degraded terrestrial carbon to the atmosphere.

  2. Matrix protected organic matter in a river dominated margin: A possible mechanism to sequester terrestrial organic matter?

    NASA Astrophysics Data System (ADS)

    Mead, Ralph N.; Goñi, Miguel A.

    2008-06-01

    The provenance of organic matter in surface sediments from the northern Gulf of Mexico was investigated by analyzing the compositions of lipid biomarkers ( n-alkanes, fatty acids, sterols) liberated after a series of chemical treatments designed to remove different organo-mineral matrix associations (i.e. freely extractable, base-hydrolyzable, unhydrolyzable). Bulk analyses of the organic matter (carbon content, carbon:nitrogen ratios, stable and radiocarbon isotopic analyses) were also performed on the intact sediments and their non-hydrolyzable, demineralized residue. We found recognizable lipids from distinct sources, including terrestrial vascular plants, bacteria and marine algae and zooplankton, within each of the isolated fractions. Based on the lipid signatures and bulk compositions, the organic matter within the unhydrolyzable fractions appeared to be the most diagenetically altered, was the oldest in age, and had the highest abundance of terrigenous lipids. In contrast, the base-hydrolyzable fraction was the most diagentically unaltered, had the youngest ages and was most enriched in N and marine lipids. Our results indicate that fresh, autochthonous organic matter is the most important contributor to base-hydrolyzable lipids, whereas highly altered allochthonous sources appear to be predominant source of unhydrolyzable lipids in the surface sediments from the Atchafalaya River shelf. Overall, the lipid biomarker signatures of intact sediments were biased towards the autochthonous source because many of the organic compounds indicative of degraded, terrigenous sources were protected from extraction and saponification by organo-mineral matrices. It is only after these protective matrices were removed by treatment with HCl and HF that these compounds became evident.

  3. Comments on D/H ratios in chondritic organic matter

    NASA Astrophysics Data System (ADS)

    Smith, J. W.; Rigby, D.

    1981-06-01

    D/H ratios in chondritic organic matter are investigated. Demineralized organic residues obtained from previous experiments were dried in a quartz reaction vessel under vacuum for 60 minutes at 250-300 C and then combusted in oxygen for 20 minutes at 850 C. The apparatus is described and the results of the experiments such as D/H ratios in water and measurements on total carbon dioxide are given. Atomic H/C ratios calculated directly from the quantities of carbon dioxide and water recovered, are reported according to Standard Mean Ocean Water and Pee Dee Belemnite, using the customary notation.

  4. Organic matter in meteorites and comets - Possible origins

    NASA Technical Reports Server (NTRS)

    Anders, Edward

    1991-01-01

    At least six extraterrestrial environments may have contributed organic compounds to meteorites and comets: solar nebula, giant-planet subnebulae, asteroid interiors containing liquid water, carbon star atmospheres, and diffuse or dark interstellar clouds. The record in meteorites is partly obscured by pervasive reheating that transformed much of the organic matter to kerogen; nonetheless, it seems that all six formation sites contributed. For comets, the large abundance of HCHO, HCN, and unsaturated hydrocarbons suggests an interstellar component of 50 percent or more, but the contributions of various interstellar processes, and of a solar-nebula component, are hard to quantify. A research program is outlined that may help reduce these uncertainties.

  5. Organic matter in meteorites and comets - Possible origins

    NASA Astrophysics Data System (ADS)

    Anders, E.

    1991-04-01

    At least six extraterrestrial environments may have contributed organic compounds to meteorites and comets: solar nebula, giant-planet subnebulae, asteroid interiors containing liquid water, carbon star atmospheres, and diffuse or dark interstellar clouds. The record in meteorites is partly obscured by pervasive reheating that transformed much of the organic matter to kerogen; nonetheless, it seems that all six formation sites contributed. For comets, the large abundance of HCHO, HCN, and unsaturated hydrocarbons suggests an interstellar component of 50 percent or more, but the contributions of various interstellar processes, and of a solar-nebula component, are hard to quantify. A research program is outlined that may help reduce these uncertainties.

  6. Microorganisms and typical organic matter responsible for lacustrine "black bloom".

    PubMed

    Feng, Ziyan; Fan, Chengxin; Huang, Weiyi; Ding, Shiming

    2014-02-01

    Identifying the causation of the black substance in lacustrine "black bloom" is of great significance for forecasting and preventing black bloom in many waters of the world. In this research, an array of black bloom was simulated in a laboratory to investigate how microorganisms and organic matter affect black bloom. Sulphate-reducing bacteria (SRB) are the main biological factor, and protein is the key organic factor contributing to lacustrine black bloom. The black colour of black bloom is strongly associated with a relatively high SRB population density. Hydrogen sulphide concentration can serve as a predictor of black bloom.

  7. Plutonium Immobilization and Mobilization by Soil Organic Matter

    SciTech Connect

    Santschi, Peter H.; Schwehr, Kathleen A.; Xu, Chen; Athon, Matthew; Ho, Yi-Fang; Hatcher, Patrick G.; Didonato, Nicole; Kaplan, Daniel I.

    2016-03-08

    The human and environmental risks associated with Pu disposal, remediation, and nuclear accidents scenarios stems mainly from the very long half-lives of several of its isotopes. The SRS, holding one-third of the nation’s Pu inventory, has a long-term stewardship commitment to investigation of Pu behavior in the groundwater and downgradient vast wetlands. Pu is believed to be essentially immobile due to its low solubility and high particle reactivity to mineral phase or natural organic matter (NOM). For example, in sediments collected from a region of SRS, close to a wetland and a groundwater plume, 239,240Pu concentrations suggest immobilization by NOM compounds, as Pu correlate with NOM contents. Micro-SXRF data indicate, however, that Pu does not correlate with Fe. However, previous studies reported Pu can be transported several kilometers in surface water systems, in the form of a colloidal organic matter carrier, through wind/water interactions. The role of NOM in both immobilizing or re-mobilizing Pu thus has been demonstrated. Our results indicate that more Pu (IV) than (V) was bound to soil colloidal organic matter (COM), amended at far-field concentrations. Contrary to expectations, the presence of NOM in the F-Area soil did not enhance Pu fixation to the organic-rich soil, when compared to the organic-poor soil or the mineral phase from the same soil source, due to the formation of COM-bound Pu. Most importantly, Pu uptake by organic-rich soil decreased with increasing pH because more NOM in the colloidal size desorbed from the particulate fraction at elevated pH, resulting in greater amounts of Pu associated with the COM fraction. This is in contrast to previous observations with low-NOM sediments or minerals, which showed increased Pu uptake with increasing pH levels. This demonstrates that despite Pu immobilization by NOM, COM can convert Pu into a more mobile form. Sediment Pu concentrations in the SRS F-Area wetland were correlated to total organic

  8. Carbon isotopic studies of organic matter in Precambrian rocks.

    NASA Technical Reports Server (NTRS)

    Oehler, D. Z.; Schopf, J. W.; Kvenvolden, K. A.

    1972-01-01

    A survey has been undertaken of the carbon composition of the total organic fraction of a suite of Precambrian sediments to detect isotopic trends possibly correlative with early evolutionary events. Early Precambrian cherts of the Fig Tree and upper and middle Onverwacht groups of South Africa were examined for this purpose. Reduced carbon in these cherts was found to be isotopically similar to photosynthetically produced organic matter of younger geological age. Reduced carbon in lower Onverwacht cherts was found to be anomalously heavy; it is suggested that this discontinuity may reflect a major event in biological evolution.

  9. The Impact of Microbial Metabolism on Marine Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Kujawinski, Elizabeth B.

    2011-01-01

    Microbes mediate global biogeochemical cycles through their metabolism, and all metabolic processes begin with the interaction between the microbial cell wall or membrane and the external environment. For all heterotrophs and many autotrophs, critical growth substrates and factors are present within the dilute and heterogeneous mixture of compounds that constitutes dissolved organic matter (DOM). In short, the microbe-molecule interaction is one of the fundamental reactions within the global carbon cycle. Here, I summarize recent findings from studies that examine DOM-microbe interactions from either the DOM perspective (organic geochemistry) or the microbe perspective (microbial ecology). Gaps in our knowledge are highlighted and future integrative research directions are proposed.

  10. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls

    NASA Astrophysics Data System (ADS)

    Kallenbach, Cynthia M.; Frey, Serita D.; Grandy, A. Stuart

    2016-11-01

    Soil organic matter (SOM) and the carbon and nutrients therein drive fundamental submicron- to global-scale biogeochemical processes and influence carbon-climate feedbacks. Consensus is emerging that microbial materials are an important constituent of stable SOM, and new conceptual and quantitative SOM models are rapidly incorporating this view. However, direct evidence demonstrating that microbial residues account for the chemistry, stability and abundance of SOM is still lacking. Further, emerging models emphasize the stabilization of microbial-derived SOM by abiotic mechanisms, while the effects of microbial physiology on microbial residue production remain unclear. Here we provide the first direct evidence that soil microbes produce chemically diverse, stable SOM. We show that SOM accumulation is driven by distinct microbial communities more so than clay mineralogy, where microbial-derived SOM accumulation is greatest in soils with higher fungal abundances and more efficient microbial biomass production.

  11. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls

    PubMed Central

    Kallenbach, Cynthia M.; Frey, Serita D.; Grandy, A. Stuart

    2016-01-01

    Soil organic matter (SOM) and the carbon and nutrients therein drive fundamental submicron- to global-scale biogeochemical processes and influence carbon-climate feedbacks. Consensus is emerging that microbial materials are an important constituent of stable SOM, and new conceptual and quantitative SOM models are rapidly incorporating this view. However, direct evidence demonstrating that microbial residues account for the chemistry, stability and abundance of SOM is still lacking. Further, emerging models emphasize the stabilization of microbial-derived SOM by abiotic mechanisms, while the effects of microbial physiology on microbial residue production remain unclear. Here we provide the first direct evidence that soil microbes produce chemically diverse, stable SOM. We show that SOM accumulation is driven by distinct microbial communities more so than clay mineralogy, where microbial-derived SOM accumulation is greatest in soils with higher fungal abundances and more efficient microbial biomass production. PMID:27892466

  12. Oxidoreductases and cellulases in lichens: possible roles in lichen biology and soil organic matter turnover.

    PubMed

    Beckett, Richard P; Zavarzina, Anna G; Liers, Christiane

    2013-06-01

    Lichens are symbiotic associations of a fungus (usually an Ascomycete) with green algae and/or a cyanobacterium. They dominate on 8 % of the world's land surface, mainly in Arctic and Antarctic regions, tundra, high mountain elevations and as components of dryland crusts. In many ecosystems, lichens are the pioneers on the bare rock or soil following disturbance, presumably because of their tolerance to desiccation and high temperature. Lichens have long been recognized as agents of mineral weathering and fine-earth stabilization. Being dominant biomass producers in extreme environments they contribute to primary accumulation of soil organic matter. However, biochemical role of lichens in soil processes is unknown. Our recent research has demonstrated that Peltigeralean lichens contain redox enzymes which in free-living fungi participate in lignocellulose degradation and humification. Thus lichen enzymes may catalyse formation and degradation of soil organic matter, particularly in high-stress communities dominated by lower plants. In the present review we synthesize recently published data on lichen phenol oxidases, peroxidases, and cellulases and discuss their possible roles in lichen physiology and soil organic matter transformations.

  13. Soil organic matter quantity and quality shape microbial community compositions of subtropical broadleaved forests.

    PubMed

    Ding, Junjun; Zhang, Yuguang; Wang, Mengmeng; Sun, Xin; Cong, Jing; Deng, Ye; Lu, Hui; Yuan, Tong; Van Nostrand, Joy D; Li, Diqiang; Zhou, Jizhong; Yang, Yunfeng

    2015-10-01

    As two major forest types in the subtropics, broadleaved evergreen and broadleaved deciduous forests have long interested ecologists. However, little is known about their belowground ecosystems despite their ecological importance in driving biogeochemical cycling. Here, we used Illumina MiSeq sequencing targeting 16S rRNA gene and a microarray named GeoChip targeting functional genes to analyse microbial communities in broadleaved evergreen and deciduous forest soils of Shennongjia Mountain of Central China, a region known as 'The Oriental Botanic Garden' for its extraordinarily rich biodiversity. We observed higher plant diversity and relatively richer nutrients in the broadleaved evergreen forest than the deciduous forest. In odds to our expectation that plant communities shaped soil microbial communities, we found that soil organic matter quantity and quality, but not plant community parameters, were the best predictors of microbial communities. Actinobacteria, a copiotrophic phylum, was more abundant in the broadleaved evergreen forest, while Verrucomicrobia, an oligotrophic phylum, was more abundant in the broadleaved deciduous forest. The density of the correlation network of microbial OTUs was higher in the broadleaved deciduous forest but its modularity was smaller, reflecting lower resistance to environment changes. In addition, keystone OTUs of the broadleaved deciduous forest were mainly oligotrophic. Microbial functional genes associated with recalcitrant carbon degradation were also more abundant in the broadleaved deciduous forests, resulting in low accumulation of organic matters. Collectively, these findings revealed the important role of soil organic matter in shaping microbial taxonomic and functional traits.

  14. Decomposition of heterogeneous organic matter and its long-term stabilization in soils

    USGS Publications Warehouse

    Sierra, C.A.; Harmon, M.E.; Perakis, S.S.

    2011-01-01

    Soil organic matter is a complex mixture of material with heterogeneous biological, physical, and chemical properties. Decomposition models represent this heterogeneity either as a set of discrete pools with different residence times or as a continuum of qualities. It is unclear though, whether these two different approaches yield comparable predictions of organic matter dynamics. Here, we compare predictions from these two different approaches and propose an intermediate approach to study organic matter decomposition based on concepts from continuous models implemented numerically. We found that the disagreement between discrete and continuous approaches can be considerable depending on the degree of nonlinearity of the model and simulation time. The two approaches can diverge substantially for predicting long-term processes in soils. Based on our alternative approach, which is a modification of the continuous quality theory, we explored the temporal patterns that emerge by treating substrate heterogeneity explicitly. The analysis suggests that the pattern of carbon mineralization over time is highly dependent on the degree and form of nonlinearity in the model, mostly expressed as differences in microbial growth and efficiency for different substrates. Moreover, short-term stabilization and destabilization mechanisms operating simultaneously result in long-term accumulation of carbon characterized by low decomposition rates, independent of the characteristics of the incoming litter. We show that representation of heterogeneity in the decomposition process can lead to substantial improvements in our understanding of carbon mineralization and its long-term stability in soils. ?? 2011 by the Ecological Society of America.

  15. Chemical characterization of high molecular weight dissolved organic matter in fresh and marine waters

    NASA Astrophysics Data System (ADS)

    Repeta, Daniel J.; Quan, Tracy M.; Aluwihare, Lihini I.; Accardi, AmyMarie

    2002-03-01

    The high molecular weight fraction of dissolved organic matter in a suite of lakes, rivers, seawater, and marine sediment interstitial water samples was collected by ultrafiltration and characterized by molecular level and spectroscopic techniques. Proton nuclear magnetic resonance spectra of all samples show a high degree of similarity, with major contributions from carbohydrates, bound acetate, and lipids. Molecular level analyses of neutral sugars show seven monosaccharides, rhamnose, fucose, arabinose, xylose, mannose, glucose, and galactose, to be abundant, and to occur in comparable relative amounts in each sample. Previous studies have emphasized the distinctive composition of dissolved humic substances in fresh and marine waters, and have attributed these differences to sources and transformations of organic matter unique to each environment. In contrast we find a large fraction of freshwater high molecular weight dissolved organic matter (HMWDOM; > 1kD) to be indistinguishable from marine HMWDOM in bulk and molecular-level chemical properties. Aquatic HMWDOM is similar in chemical composition to biologically derived acylated heteropolysaccharides isolated from marine algal cultures, suggesting a biological source for some fraction of persistent HMWDOM. High molecular weight DOC contributes 51 ± 26% of the total DOC, and monosaccharides 18 ± 8% of the total HMWDOC in our freshwater samples. These contributions are on average higher and more variable, but not significantly different than for surface seawater (30% and 16% respectively). Biogeochemical processes that produce, accumulate, and recycle DOM may therefore share important similarities and be broadly comparable across a range of environmental settings.

  16. Fluxes of phytopigments and labile organic matter to the deep ocean in the NE Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Fabiano, M.; Pusceddu, A.; Dell'Anno, A.; Armeni, M.; Vanucci, S.; Lampitt, R. S.; Wolff, G. A.; Danovaro, R.

    of protein in the sediment corresponded to low vertical fluxes of particulate proteins. These data suggest that there is a decoupling between pelagic input and benthic accumulation. However, bacterial secondary production and sedimentary RNA concentrations displayed temporal patterns similar to those of the vertical fluxes, suggesting that increases in the metabolism of the smallest-sized biota was associated with maxima in the organic matter supply. Our results also suggest that benthic utilisation could exceed the organic matter being supplied by the vertical fluxes.

  17. SOIL NITROGEN TRANSFORMATIONS AND ROLE OF LIGHT FRACTION ORGANIC MATTER IN FOREST SOILS

    EPA Science Inventory

    Depletion of soil organic matter through cultivation may alter substrate availability for microbes, altering the dynamic balance between nitrogen (N) immobilization and mineralization. Soil light fraction (LF) organic matter is an active pool that decreases upon cultivation, and...

  18. Influence of sediment-organic matter quality on growth and polychlorobiphenyl bioavailability in Echinodermata (Amphiura filiformis)

    SciTech Connect

    Gunnarsson, J.S.; Granberg, M.E.; Nilsson, H.C.; Rosenberg, R.; Hellman, B.

    1999-07-01

    Sediment total organic carbon (TOC) content is considered to be a primary food source for benthic invertebrates and a major factor influencing the partitioning and bioavailability of sediment-associated organic contaminants. Most studies report that both toxicity and uptake of sediment-associated contaminants by benthic organisms are inversely proportional to sediment TOC content. The aim of this study was to determine the importance of the TOC quality for the bioavailability of sediment-associated organic contaminants and the growth of benthic macrofauna. The common infaunal brittle star Amphiura filiformis was exposed to a base sediment covered by a {sup 14}C-polychlorobipenyl (3,3{prime}4,4{prime}-{sup 14}C-tetrachlorobiphenyl (TCB)) contaminated top layer (0--2 cm), enriched to the same TOC content with 31 g TOC/m{sup 2} of different quality and origin. The following carbon sources, ranging from labile to refractory, were used: (1) green macroalga (Ulva lactuca), (2) brown macroalga (Ascophyllum nodosum), (3) eelgrass (Zostera Marina), (4) phytoplankton (Ceratium spp.), and (5) lignins of terrestrial origin. Characterization of the organic matter quality was accomplished by measuring the content of amino acids, lipids, C, N, and polyphenolic compounds. The reactivity of the sedimentary organic matter was assessed by means of respiration and dissolved inorganic nitrogen flux measurements. The experiment was carried out in 1-L glass jars, each containing four brittle stars and the contaminated and enriched sediment. The jars were circulated in a flow-through mode with filtered seawater. Somatic growth (regeneration of a precut arm) and bioaccumulation of {sup 14}C-TCB were measured at 10 sampling occasions during 48 d of exposure. Growth rates, TCB uptake rates, and steady-state concentrations differed significantly between treatments and were correlated to the qualities of the organic substrates. The greatest TCB accumulation and growth were observed in

  19. Soil Quality of Restinga Forest: Organic Matter and Aluminum Saturation

    NASA Astrophysics Data System (ADS)

    Rodrigues Almeida Filho, Jasse; Casagrande, José Carlos; Martins Bonilha, Rodolfo; Soares, Marcio Roberto; Silva, Luiz Gabriel; Colato, Alexandre

    2013-04-01

    The restinga vegetation (sand coastal plain vegetation) consists of a mosaic of plant communities, which are defined by the characteristics of the substrates, resulting from the type and age of the depositional processes. This mosaic complex of vegetation types comprises restinga forest in advanced (high restinga) and medium regeneration stages (low restinga), each with particular differentiating vegetation characteristics. Of all ecosystems of the Atlantic Forest, restinga is the most fragile and susceptible to anthropic disturbances. The purpose of this study was evaluating the organic matter and aluminum saturation effects on soil quality index (SQI). Two locations were studied: State Park of the Serra do Mar, Picinguaba, in the city of Ubatuba (23°20' e 23°22' S / 44°48' e 44°52' W), and State Park of Cardoso Island in the city of Cananéia (25°03'05" e 25°18'18" S / 47°53'48" e 48° 05'42" W). The soil samples were collect at a depth of 0-10 cm, where concentrate 70% of vegetation root system. Was studied an additive model to evaluate soil quality index. The shallow root system development occurs due to low calcium levels, whose disability limits their development, but also can reflect on delay, restriction or even in the failure of the development vegetation. The organic matter is kept in the soil restinga ecosystem by high acidity, which reduces the decomposition of soil organic matter, which is very poor in nutrients. The base saturation, less than 10, was low due to low amounts of Na, K, Ca and Mg, indicating low nutritional reserve into the soil, due to very high rainfall and sandy texture, resulting in high saturation values for aluminum. Considering the critical threshold to 3% organic matter and for aluminum saturation to 40%, the IQS ranged from 0.95 to 0.1 as increased aluminum saturation and decreased the soil organic matter, indicating the main limitation to the growth of plants in this type of soil, when deforested.

  20. Using Riverine Natural Organic Matter to Test the Hypothesis that Soil Organic Matter is Modified by Contact with Sodium Hydroxide

    NASA Astrophysics Data System (ADS)

    Perdue, E. Michael; Driver, Shamus; Hertkorn, Norbert; Harir, Mourad; Schmitt-Kopplin, Philippe

    2016-04-01

    It has been postulated by some scientists that soil humic acids and fulvic acids are an artifact of alkaline extractions of soil. Riverine natural organic matter (NOM) is obtained in part by dissolution and transport of organic matter from soils by meteoric waters at acidic to circumneutral pH. The NOM may be fractionated into humic acid (HA), fulvic acid (FA), and hydrophilic NOM by adsorption of HA and FA onto XAD-8 resin at pH < 2, followed by their desorption with NaOH at pH 13. Alternatively, riverine NOM may be concentrated using reverse osmosis (RO) and desalted by cation exchange. Several properties of Suwannee River NOM prior to its isolation, after concentration by RO, and after the XAD-8 process are compared to detect modifications that might have resulted from exposure of the sample to low and high pH.

  1. The composition and degradability of upland dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Moody, Catherine; Worrall, Fred; Clay, Gareth

    2016-04-01

    In order to assess controls on the degradability of DOM in stream water, samples of dissolved organic matter (DOM) and particulate organic matter (POM) were collected every month for a period of 24 months from an upland, peat-covered catchment in northern England. Each month the degradability of the DOM was assessed by exposing river water to light for up to 24 hours, and the change in the dissolved organic carbon (DOC) concentration in the water was measured. To provide context for the analysis of DOM and its degradability, samples of peat, vegetation, and litter were also taken from the same catchment and analysed. The organic matter samples were analysed by several methods including: elemental analysis (CHN and O), bomb calorimetry, thermogravimetric analysis, pyrolysis GC/MS, ICP-OES, stable isotope analysis (13C and 15N) and 13C solid state nuclear magnetic resonance (NMR). The water samples were analysed for pH, conductivity, absorbance at 400nm, anions, cations, particulate organic carbon (POC) and DOC concentrations. River flow conditions and meteorology were also recorded at the site and included in the analysis of the composition and degradability of DOM. The results of multiple regression models showed that the rates of DOC degradation were affected by the N-alkyl, O-alkyl, aldehyde and aromatic relative intensities, gross heat, OR and C:N. Of these, the N-alkyl relative intensity had the greatest influence, and this in turn was found to be dependent on the rainfall and soil temperature in the week before sampling.

  2. Study of the organic matter in the DSDP /JOIDES/ cores, legs 10-15. [Deep Sea Drilling Program

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R. T.; Burlingame, A. L.

    1974-01-01

    The composition of the organic matter collected on legs 10 to 15 of the DSDP (Deep Sea Drilling Project) is described. Distributions of various alkanes, carboxylic acids, steroids and terpenoids, isoprenoid ketones and olefins, and aromatic polycyclic compounds are given. Samples analyzed had terrigenous clay components, with variable organic carbon contents and thus diverse solvent soluble matter. The distribution patterns for the various compound series monitored were of marine derivation, with the terrigenous components superimposed. Diagenesis of steroids appeared to proceed via both stanones and stanols to their respective steranes. Degradative processes were observed to be operative: oxidative products, mainly ketones derived from steroids and phytol, were identified, probably due to microbial alteration prior to or during sedimentation. Loss of alkane and fatty acid C preferences and presence of polycyclic aromatics evinced maturation. Results indicate that the accumulation, degradation, diagenesis and maturation of organic matter occurs in various steps in the deep sea environment.

  3. Pathways of anaerobic organic matter decomposition in tundra soils from Barrow, Alaska

    SciTech Connect

    Herndon, Elizabeth M.; Mann, Benjamin F.; Chowdhury, Taniya Roy; Wullschleger, Stan D.; Graham, David E.; Liang, Liyuan; Gu, Baohua; Yang, Ziming

    2015-11-23

    Arctic tundra soils store a large quantity of organic carbon that is susceptible to decomposition and release to the atmosphere as methane (CH4) and carbon dioxide (CO2) under a warming climate. Anaerobic processes that generate CH4 and CO2 remain unclear because previous studies have focused on aerobic decomposition pathways. To predict releases of CO2 and CH4 from tundra soils, it is necessary to identify pathways of soil organic matter decomposition under the anoxic conditions that are prevalent in Arctic ecosystems. Here molecular and spectroscopic techniques were used to monitor biological degradation of water-extractable organic carbon (WEOC) during anoxic incubation of tundra soils from a region of continuous permafrost in northern Alaska. Organic and mineral soils from the tundra active layer were incubated at –2, +4, or +8°C for up to 60 days to mimic the short-term thaw season. Results suggest that, under anoxic conditions, fermentation converted complex organic molecules into simple organic acids that were used in concomitant Fe-reduction and acetoclastic methanogenesis reactions. Nonaromatic compounds increased over time as WEOC increased. Organic acid metabolites initially accumulated in soils but were mostly depleted by day 60 because organic acids were consumed to produce Fe(II), CO2, and CH4. We conclude that fermentation of nonprotected organic matter facilitates methanogenesis and Fe reduction reactions, and that the proportion of organic acids consumed by methanogenesis increases relative to Fe reduction with increasing temperature. As a result, the decomposition pathways observed in this study are important to consider in numerical modeling of greenhouse gas production in the Arctic.

  4. Pathways of anaerobic organic matter decomposition in tundra soils from Barrow, Alaska

    DOE PAGES

    Herndon, Elizabeth M.; Mann, Benjamin F.; Chowdhury, Taniya Roy; ...

    2015-11-23

    Arctic tundra soils store a large quantity of organic carbon that is susceptible to decomposition and release to the atmosphere as methane (CH4) and carbon dioxide (CO2) under a warming climate. Anaerobic processes that generate CH4 and CO2 remain unclear because previous studies have focused on aerobic decomposition pathways. To predict releases of CO2 and CH4 from tundra soils, it is necessary to identify pathways of soil organic matter decomposition under the anoxic conditions that are prevalent in Arctic ecosystems. Here molecular and spectroscopic techniques were used to monitor biological degradation of water-extractable organic carbon (WEOC) during anoxic incubation ofmore » tundra soils from a region of continuous permafrost in northern Alaska. Organic and mineral soils from the tundra active layer were incubated at –2, +4, or +8°C for up to 60 days to mimic the short-term thaw season. Results suggest that, under anoxic conditions, fermentation converted complex organic molecules into simple organic acids that were used in concomitant Fe-reduction and acetoclastic methanogenesis reactions. Nonaromatic compounds increased over time as WEOC increased. Organic acid metabolites initially accumulated in soils but were mostly depleted by day 60 because organic acids were consumed to produce Fe(II), CO2, and CH4. We conclude that fermentation of nonprotected organic matter facilitates methanogenesis and Fe reduction reactions, and that the proportion of organic acids consumed by methanogenesis increases relative to Fe reduction with increasing temperature. As a result, the decomposition pathways observed in this study are important to consider in numerical modeling of greenhouse gas production in the Arctic.« less

  5. Isotopic composition of pyrite: Relationship to organic matter type and iron availability in some North American cretaceous shales

    USGS Publications Warehouse

    Gautier, D.L.

    1987-01-01

    The S isotope composition of pyrite in Cretaceous shales from the Western Interior of North America is related to organic C abundance, kerogen type and Fe availability. Both calcareous and noncalcareous rocks show a correlation between S and C, but noncalcareous rocks are relatively enriched in S with a higher S C ratio. This higher ratio probably shows that pyrite formation was Fe limited in the calcareous rocks. Organic-carbon-rich noncalcareous shales accumulated slowly beneath anoxic bottom waters. The anoxic bottom waters allowed hydrogen-rich organic matter to be preserved. Such shales have a narrow range of 34S-depleted sulfide and have Fe S ratios like stoichiometric pyrite, suggesting that pyrite formation in organic-rich shales was also limited by Fe availability. Conversely, organic-poor shales commonly accumulated at comparatively high rates, contain hydrogen-poor and refractory organic matter, and have a wide range of pyrite-S isotopic compositions. These organic-poor shales contain post-sulfidic authigenic minerals such as siderite and have excess reactive Fe rather than pyrite stoichiometry. Evidently Fe played a large role in early diagenesis and determined the course of post-sulfidic diagenesis. Fe availability was, however, mainly controlled by provenance, by the rates of sediment accumulation, and by the oxygen content of the depositional environment. ?? 1987.

  6. Organic matter and soil structure in the Everglades Agricultural Area

    SciTech Connect

    Wright, Alan L.; Hanlon, Edward A.

    2013-01-01

    This publication pertains to management of organic soils (Histosols) in the Everglades Agricultural Area (EAA). These former wetland soils are a major resource for efficient agricultural production and are important globally for their high organic matter content. Recognition of global warming has led to considerable interest in soils as a repository for carbon. Soils rich in organic matter essentially sequester or retain carbon in the profile and can contribute directly to keeping that sequestered carbon from entering the atmosphere. Identification and utilization of management practices that minimize the loss of carbon from organic soils to the atmosphere can minimize effects on global warming and increase the longevity of subsiding Histosols for agricultural use. Understanding and predicting how these muck soils will respond to current and changing land uses will help to manage soil carbon. The objectives of this document are to: a. Discuss organic soil oxidation relative to storing or releasing carbon and nitrogen b. Evaluate effects of cultivation (compare structure for sugarcane vs. uncultivated soil) Based upon the findings from the land-use comparison (sugarcane or uncultivated), organic carbon was higher with cultivation in the lower depths. There is considerable potential for minimum tillage and residue management to further enhance carbon sequestration in the sugarcane system. Carbon sequestration is improved and soil subsidence is slowed with sugarcane production, and both of these are positive outcomes. Taking action to increase or maintain carbon sequestration appears to be appropriate but may introduce some risk to farming operations. Additional management methods are needed to reduce this risk. For both the longevity of these organic soils and from a global perspective, slowing subsidence through BMP implementation makes sense. Since these BMPs also have considerable societal benefit, it remains to be seen if society will help to offset a part or all

  7. Organic matter oxidation and aragonite diagenesis in a coral reef

    SciTech Connect

    Tribble, G.W. Univ. of Hawaii, Honolulu )

    1993-05-01

    A combination of field and theoretical work is used to study controls on the saturation state of aragonite inside a coral-reef framework. A closed-system ion-speciation model is used to evaluate the effect of organic-matter oxidation on the saturation state of aragonite. The aragonite saturation state initially drops below 1 but becomes oversaturated during sulfate reduction. The C:N ratio of the organic matter affects the degree of oversaturation with N-poor organic material resulting in a system more corrosive to aragonite. Precipitation of sulfide as FeS strongly affects the aragonite saturation state, and systems with much FeS formation will have a stronger tendency to become oversaturated with respect to aragonite. Both precipitation and dissolution of aragonite are predicted at different stages of the organic reaction pathway if the model system is maintained at aragonite saturation. Field data from a coral-reef framework indicate that the system maintains itself at aragonite saturation, and model-predicted changes in dissolved calcium follow those observed in the interstitial waters of the reef. Aragonite probably acts as a solid-phase buffer in regulating the pH of interstitial waters. Because interstitial water in the reef has a short residence time, the observed equilibration suggests rapid kinetics.

  8. Soil organic matter decomposition follows plant productivity response to sea-level rise

    NASA Astrophysics Data System (ADS)

    Mueller, Peter; Jensen, Kai; Megonigal, James Patrick

    2015-04-01

    The accumulation of soil organic matter (SOM) is an important mechanism for many tidal wetlands to keep pace with sea-level rise. SOM accumulation is governed by the rates of production and decomposition of organic matter. While plant productivity responses to sea-level rise are well understood, far less is known about the response of SOM decomposition to accelerated sea-level rise. Here we quantified the effects of sea-level rise on SOM decomposition by exposing planted and unplanted tidal marsh monoliths to experimentally manipulated flood duration. The study was performed in a field-based mesocosm facility at the Smithsonian Global Change Research Wetland, a micro tidal brackish marsh in Maryland, US. SOM decomposition was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated using a stable carbon isotope approach. Despite the dogma that decomposition rates are inversely related to flooding, SOM mineralization was not sensitive to varying flood duration over a 35 cm range in surface elevation in unplanted mesocoms. In the presence of plants, decomposition rates were strongly and positively related to aboveground biomass (p≤0.01, R2≥0.59). We conclude that rates of soil carbon loss through decomposition are driven by plant responses to sea level in this intensively studied tidal marsh. If our result applies more generally to tidal wetlands, it has important implications for modeling carbon sequestration and marsh accretion in response to accelerated sea-level rise.

  9. Research Highlight: Water-extractable organic matter from sandy loam soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Labile organic matter plays important roles in soil health and nutrient cycling because of its dynamic nature. Water-extractable organic matter is part of the soil labile organic matter. In an article recently published in Agricultural & Environmental Letters, researchers report on the level and na...

  10. Organic matter composition and macrofaunal diversity in sediments of the Condor Seamount (Azores, NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Bongiorni, Lucia; Ravara, Ascensão; Parretti, Paola; Santos, Ricardo S.; Rodrigues, Clara F.; Amaro, Teresa; Cunha, Marina R.

    2013-12-01

    In recent years increasing knowledge has been accumulated on seamounts ecology; however their sedimentary environments and associated biological communities remain largely understudied. In this study we investigated quantity and biochemical composition of organic matter and macrofaunal diversity in sediments of the Condor Seamount (NE Atlantic, Azores). In order to test the effect of the seamount on organic matter distribution, sediment samples were collected in 6 areas: the summit, the northern and southern flanks and bases, and in an external far field site. Macrofauna abundance and diversity were investigated on the summit, the southern flank and in the far field site. The organic matter distribution reflected the complex hydrodynamic conditions occurring on the Condor. Concentrations of organic matter compounds were generally lower on the whole seamount than in the far field site and on the seamount summit compared to flanks and bases. A clear difference was also evident between the northern and southern slopes of the Condor, suggesting a role of the seamount in conditioning sedimentation processes and distribution of food resources for benthic consumers. Macrofauna assemblages changed significantly among the three sampling sites. High abundance and dominance, accompanied by low biodiversity, characterized the macrofauna community on the Condor summit, while low dominance and high biodiversity were observed at the flank. Our results, although limited to five samples on the seamount and two off the seamount, do not necessarily support the paradigm that seamounts are more biodiverse than the surrounding seafloor. However, the abundance (and biomass), functional diversity and taxonomical distinctiveness of the macrofaunal assemblages from the Condor Seamount suggest that seamounts habitats may play a relevant role in adding to the regional biodiversity.

  11. Multidrug efflux transporters limit accumulation of inorganic, but not organic, mercury in sea urchin embryos.

    PubMed

    Bosnjak, Ivana; Uhlinger, Kevin R; Heim, Wesley; Smital, Tvrtko; Franekić-Colić, Jasna; Coale, Kenneth; Epel, David; Hamdoun, Amro

    2009-11-01

    Mercuric compounds are persistent global pollutants that accumulate in marine organisms and in humans who consume them. While the chemical cycles and speciation of mercury in the oceans are relatively well described, the cellular mechanisms that govern which forms of mercury accumulate in cells and why they persist are less understood. In this study we examined the role of multidrug efflux transport in the differential accumulation of inorganic (HgCl(2)) and organic (CH(3)HgCl) mercury in sea urchin (Strongylocentrotus purpuratus) embryos. We found that inhibition of MRP/ABCC-type transporters increases intracellular accumulation of inorganic mercury but had no effect on accumulation of organic mercury. Similarly, pharmacological inhibition of metal conjugating enzymes by ligands GST/GSH significantly increases this antimitotic potency of inorganic mercury, but had no effect on the potency of organic mercury. Our results point to MRP-mediated elimination of inorganic mercury conjugates as a cellular basis for differences in the accumulation and potency of the two major forms of mercury found in marine environments.

  12. Organic speciation of size-segregated atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Tremblay, Raphael

    Particle size and composition are key factors controlling the impacts of particulate matter (PM) on human health and the environment. A comprehensive method to characterize size-segregated PM organic content was developed, and evaluated during two field campaigns. Size-segregated particles were collected using a cascade impactor (Micro-Orifice Uniform Deposit Impactor) and a PM2.5 large volume sampler. A series of alkanes and polycyclic aromatic hydrocarbons (PAHs) were solvent extracted and quantified using a gas chromatograph coupled with a mass spectrometer (GC/MS). Large volume injections were performed using a programmable temperature vaporization (PTV) inlet to lower detection limits. The developed analysis method was evaluated during the 2001 and 2002 Intercomparison Exercise Program on Organic Contaminants in PM2.5 Air Particulate Matter led by the US National Institute of Standards and Technology (NIST). Ambient samples were collected in May 2002 as part of the Tampa Bay Regional Atmospheric Chemistry Experiment (BRACE) in Florida, USA and in July and August 2004 as part of the New England Air Quality Study - Intercontinental Transport and Chemical Transformation (NEAQS - ITCT) in New Hampshire, USA. Morphology of the collected particles was studied using scanning electron microscopy (SEM). Smaller particles (one micrometer or less) appeared to consist of solid cores surrounded by a liquid layer which is consistent with combustion particles and also possibly with particles formed and/or coated by secondary material like sulfate, nitrate and secondary organic aerosols. Source apportionment studies demonstrated the importance of stationary sources on the organic particulate matter observed at these two rural sites. Coal burning and biomass burning were found to be responsible for a large part of the observed PAHs during the field campaigns. Most of the measured PAHs were concentrated in particles smaller than one micrometer and linked to combustion sources

  13. Biotoxicity of nanoparticles: effect of natural organic matter

    NASA Astrophysics Data System (ADS)

    Lee, Sungyun; Kim, Kitae; Shon, H. K.; Kim, Sang Don; Cho, Jaeweon

    2011-07-01

    Various natural organic matters (NOM) with different characteristics in aquatic environment may affect toxicity of leased nanoparticles, owing to interactions between NOM and nanoparticles. This study investigated the effect of NOM and physical characteristics of the effluent organic matter (EfOM) on the ecotoxicity of quantum dots (QD) using Daphnia magna. Organic matter samples were obtained from: Yeongsan River (YR-NOM), Dongbuk Lake (DL-NOM), Damyang wastewater treatment plant (EfOM), and Suwannee River NOM (SR-NOM). The QD was composed of a CdSe core, ZnS shell, and polyethylene glycol coating. The average size of the investigated QD was 4.8, 56.5, and 25.0 nm determined by transmission electron microscopy, dynamic light scattering, and asymmetric flow field-flow fractionation, respectively. The relative hydrophobicity of NOM was investigated using both specific UV absorbance at 254 nm and XAD-8/4 resins. The sorption of NOM on the QD was measured using a fluorescence quenching method. The highest hydrophobicity was exhibited by the SR-NOM, while the lowest was recorded for the DL-NOM. All tested NOMs significantly reduced the acute toxicity of D. magna when adsorbed to QD, and the order of effectiveness for each NOM was as follows: SR-NOM > EfOM > YS-NOM > DL-NOM. The sorption of NOM on the QD surface caused a decrease in the fluorescence intensity of QD at increasing NOM concentration. This suggests that the NOM coating influenced the physicochemical characteristics of QD in the internal organs of D. magna by inducing a reduced bioavailability . Results from this study revealed that NOM with relatively high hydrophobicity had a greater capability of inducing toxicity mitigation.

  14. Effluent organic matter (EfOM) characterization by simultaneous measurement of proteins and humic matter.

    PubMed

    Vakondios, Nikos; Koukouraki, Elisavet E; Diamadopoulos, Evan

    2014-10-15

    This work developed a method, based on the Lowry method and Frølund modification, for the simultaneous determination of proteins and humic matter in wastewater effluent samples at low concentrations. The method was based on simultaneous spectrophotometric measurements of proteins and humic matter at 750 nm in the absence and presence of CuSO4, which is responsible for increasing the absorbance only in the presence of to proteins. Statistical analysis through ANOVA showed that the response surface of the method fit the experimental measurements at significance level lower than 0.05, indicating satisfactory fit. The quantification limits of the proposed method were 0.5-30 mg/l for proteins and 2-30 mg/l for humic matter. The presence of carbohydrates did not interfere with the analysis of proteins and humic matter at carbohydrate concentrations below 35-40 mg/l. The Lowry method overestimated the concentration of the proteins because of the presence of humic substances. A carbon balance indicated that the analytical method developed could provide a satisfactory distribution of the main organic constituents in wastewater and effluents.

  15. Modelling of organic matter dynamics during the composting process.

    PubMed

    Zhang, Y; Lashermes, G; Houot, S; Doublet, J; Steyer, J P; Zhu, Y G; Barriuso, E; Garnier, P

    2012-01-01

    Composting urban organic wastes enables the recycling of their organic fraction in agriculture. The objective of this new composting model was to gain a clearer understanding of the dynamics of organic fractions during composting and to predict the final quality of composts. Organic matter was split into different compartments according to its degradability. The nature and size of these compartments were studied using a biochemical fractionation method. The evolution of each compartment and the microbial biomass were simulated, as was the total organic carbon loss corresponding to organic carbon mineralisation into CO(2). Twelve composting experiments from different feedstocks were used to calibrate and validate our model. We obtained a unique set of estimated parameters. Good agreement was achieved between the simulated and experimental results that described the evolution of different organic fractions, with the exception of some compost because of a poor simulation of the cellulosic and soluble pools. The degradation rate of the cellulosic fraction appeared to be highly variable and dependent on the origin of the feedstocks. The initial soluble fraction could contain some degradable and recalcitrant elements that are not easily accessible experimentally.

  16. Competitive Sorption and Desorption of Chlorinated Organic Solvents (DNAPLs) in Engineered Natural Organic Matter

    SciTech Connect

    Tang, Jixin; Weber, Walter J., Jr.

    2004-03-31

    The effects of artificially accelerated geochemical condensation and maturation of natural organic matter on the sorption and desorption of trichloroethylene (TCE) and tetrachloroethylene (PCE) were studied. The sorption and desorption of TCE in the presence and absence of the competing PCE and 1,2-dichlorobenzene (DCB) were also examined. A sphagnum peat comprising geologically young organic matter was artificially ''aged'' using superheated water, thus increasing the aromaticity and the degree of condensation of its associated organic matter. The sorption of all solutes tested were increased remarkably and their respective desorptions reduced, by the aged peat. The sorption capacities and isotherm nonlinearities of the peat for both TCE and PCE were found to increase as treatment temperature increased. In the competitive sorption studies, both PCE and DCB were found to depress TCE sorption, with PCE having greater effects than DCB, presumably because the molecular structure o f the former is more similar to that of TCE.

  17. Pyrolysis and mass spectrometry studies of meteoritic organic matter.

    PubMed

    Sephton, M A

    2012-01-01

    Meteorites are fragments of extraterrestrial materials that fall to the Earth's surface. The carbon-rich meteorites are derived from ancient asteroids that have remained relatively unprocessed since the formation of the Solar System 4.56 billion years ago. They contain a variety of extraterrestrial organic molecules that are a record of chemical evolution in the early Solar System and subsequent aqueous and thermal processes on their parent bodies. The major organic component (>70%) is a macromolecular material that resists straightforward solvent extraction. In response to its intractable nature, the most common means of investigating this exotic material involves a combination of thermal decomposition (pyrolysis) and mass spectrometry. Recently the approach has also been used to explore controversial claims of organic matter in meteorites from Mars. This review summarizes the pyrolysis data obtained from meteorites and outlines key interpretations.

  18. Social dynamics within decomposer communities lead to nitrogen retention and organic matter build-up in soils

    PubMed Central

    Kaiser, Christina; Franklin, Oskar; Richter, Andreas; Dieckmann, Ulf

    2015-01-01

    The chemical structure of organic matter has been shown to be only marginally important for its decomposability by microorganisms. The question of why organic matter does accumulate in the face of powerful microbial degraders is thus key for understanding terrestrial carbon and nitrogen cycling. Here we demonstrate, based on an individual-based microbial community model, that social dynamics among microbes producing extracellular enzymes (‘decomposers') and microbes exploiting the catalytic activities of others (‘cheaters') regulate organic matter turnover. We show that the presence of cheaters increases nitrogen retention and organic matter build-up by downregulating the ratio of extracellular enzymes to total microbial biomass, allowing nitrogen-rich microbial necromass to accumulate. Moreover, increasing catalytic efficiencies of enzymes are outbalanced by a strong negative feedback on enzyme producers, leading to less enzymes being produced at the community level. Our results thus reveal a possible control mechanism that may buffer soil CO2 emissions in a future climate. PMID:26621582

  19. Impact of dissolved organic matter on bioavailability of chlorotoluron to wheat.

    PubMed

    Song, Ning Hui; Zhang, Shuang; Hong, Min; Yang, Hong

    2010-03-01

    Chlorotoluron (Chl) is a phenylurea herbicide and is widely used for controlling weeds. While it has brought great benefits to crop production, it has also resulted in contamination to ecosystem. In this study, we investigated accumulation of chlorotoluron (Chl) and biological responses of wheat plants as affected by dissolved organic matter (DOM). Wheat seedlings grown under 10 mg kg(-1) Chl for 4 d showed a low level of chlorophyll accumulation and damage to plasma membrane. The growth was inhibited by exposure of chlorotoluron. Treatment with 50 mg DOC kg(-1) DOM derived either from sludge (DOM-SL) or straw (DOM-ST) attenuated the chlorotoluron toxicity to plants. Both DOMs decreased activities of catalase, peroxidase and superoxide dismutase in Chl-treated seedlings. However, an increased glutathione S-transferases activity was observed under the same condition. Wheat plants treated with Chl in the presence of DOM accumulated less Chl than those treated with Chl alone. Moreover, in the presence of DOM, bioconcentration factor (BCF) decreased whereas translocation factors increased. Analyses with FT-IR spectra confirmed the regulatory role of DOMs in reducing Chl accumulation in wheat.

  20. Soft X-Ray Photoionizing Organic Matter from Comet Wild 2: Evidence for the Production of Organic Matter by Impact Processes

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Wirick, S.; Flynn, G. J.; Jacobsen, C.; Na

    2011-01-01

    The Stardust mission collected both mineral and organic matter from Comet Wild 2 [1,2,3,4]. The organic matter discovered in Comet Wild 2 ranges from aromatic hydrocarbons to simple aliphatic chains and is as diverse and complex as organic matter found in carbonaceous chondrites and interplanetary dust particles.[3,5,6,7,8,9]. Compared to insoluble organic matter from carbonaceous chondrites the organic matter in Comet Wild 2 more closely resembles organic matter found in the IDPS both hydrous and anhydrous. Common processes for the formation of organic matter in space include: Fischer-Tropsch, included with this aqueous large body and moderate heating alterations; UV irradiation of ices; and; plasma formation and collisions. The Fischer-Tropsch could only occur on large bodies processes, and the production of organic matter by UV radiation is limited by the penetration depth of UV photons, on the order of a few microns or less for most organic matter, so once organic matter coats the ices it is formed from, the organic production process would stop. Also, the organic matter formed by UV irradiation would, by the nature of the process, be in-sensitive to photodissocation from UV light. The energy of soft X-rays, 280-300 eV occur within the range of extreme ultraviolet photons. During the preliminary examination period we found a particle that nearly completely photoionized when exposed to photons in the energy range 280-310eV. This particle experienced a long exposure time to the soft x-ray beam which caused almost complete mass loss so little chemical information was obtain. During the analysis of our second allocation we have discovered another particle that photoionized at these energies but the exposure time was limited and more chemical information was obtained.

  1. The migration and transformation of dissolved organic matter during the freezing processes of water.

    PubMed

    Xue, Shuang; Wen, Yang; Hui, Xiujuan; Zhang, Lina; Zhang, Zhaohong; Wang, Jie; Zhang, Ying

    2015-01-01

    This study investigated the partitioning behavior of dissolved organic matter (DOM) in liquid and ice phases, as well as the changes in the optical properties and chlorine reactivity of DOM during the freezing processes of water. DOM was rejected from the ice phase and accumulated in the remaining liquid phase during water freezing. Moreover, the decrease in freezing temperature, as well as the increase in dissolved organic carbon (DOC) concentration of feed water, caused an increase in DOM captured in the ice phase. The ultraviolet-absorbing compounds, trihalomethane precursors, as well as fulvic acid- and humic acid-like fluorescent materials, were more liable to be to be rejected from the ice phase and were more easily retained in the unfrozen liquid phase during water freezing, as compared with organics (on average) that comprise DOC. In addition, it was also found a higher accumulation of these organics in the unfrozen liquid phase during water freezing at higher temperature. The freeze/thaw processes altered the quantity, optical properties, and chlorine reactivity of DOM. The decrease in ultraviolet light at 254 nm as well as the production of aromatic protein- and soluble microbial byproduct-like fluorescent materials in DOM due to freeze/thaw were consistently observed. On the other hand, the changes in DOC, trihalomethane formation potential, and fulvic acid- and humic acid-like fluorescence caused by freeze/thaw varied significantly between samples.

  2. The effect of natural organic matter on bioaccumulation and toxicity of chlorobenzenes to green algae.

    PubMed

    Zhang, Shuai; Lin, Daohui; Wu, Fengchang

    2016-07-05

    The effect of natural organic matter (NOM) on toxicity and bioavailability of hydrophobic organic contaminants (HOCs) to aquatic organisms has been investigated with conflicting results and undefined mechanisms, and few studies have been conducted on volatile HOCs. In this study, six volatile chlorobenzenes (CBs) with 1-6 chlorine substitutions were investigated for their bioaccumulation in an acute toxicity to a green alga (Chlorella pyrenoidosa) in the presence/absence of Suwannee River NOM (SRNOM). The fluorescence quenching efficiency of SRNOM increased as the number of chlorine substitutions of CBs increased. SRNOM increased the cell-surface hydrophobicity of algae and decreased the release rates of algae-accumulated CBs, thus increasing the concentration factor (CF) and accumulation of the CBs in the algae. SRNOM increased the toxicity of monochlorobenzene and 1,2-dichlorobenzene, decreased the toxicity of pentachlorobenzene and hexachlorobenzene, and had no significant effect on the toxicity of 1,2,3-trichlorobenzene and 1,2,3,4-tetrachlorobenzene. Relationships between the 96 h CF/IC50 (i.e., the CB concentration leading to a 50% algal growth reduction compared with the control) and physicochemical properties of CBs with/without SRNOM were established, providing reasonable explanations for the experimental results. These findings will help with the accurate assessment of ecological risks of organic pollutants in the presence of NOM.

  3. [Regeneration of photoreceptor organs in freshwater planarians at different levels of accumulation of natural methylmercury compounds].

    PubMed

    Medvedev, I V; Gremiachikh, V A; Zheltov, S V; Bogdanenko, O V; Aksenova, I A

    2006-01-01

    The effects of natural methylmercury compounds on regeneration of photoreceptor organs were studied in three freshwater planarians: Polycelis tenuis, Dugesia lugubris, and D. tigrina. Accumulation of methyl mercury in the planarian body suppressed regeneration of P. tenuis with numerous photoreceptor organs to a greater extent than in two other planarians that have only two eyes. High methyl mercury concentrations inhibited the restoration of photoreceptor organs in asexual and sexual D. tigrina races.

  4. Organic Matter as an Indicator of Soil Degradation

    NASA Astrophysics Data System (ADS)

    Romero Diaz, Asuncion; Damian Ruiz Sinoga, Jose

    2010-05-01

    Numerous and expensive physical-chemical tests are often carried out to determine the level of soil degration. This study was to find one property, as Organic Matter, which is usually analyzed for determine the soil degradation status. To do this 19 areas in the south and southeast of the Iberian Peninsula (provinces of Málaga, Granada, Almería y Murcia) were selected and a wide sampling process was carried out. Sampling points were spread over a wide pluviometric gradient (from 1100 mm/yr to 232 mm/yr) covering the range from Mediterranean wet to dry. 554 soil surface samples were taken from soil (0-10 cm) and the following properties were analyzed: Texture, Organic Matter (OM), Electric Conductivity (EC), Aggregate Stability (AE) y Cation Exchange Capacity (CEC). These properties were intercorrelated and also with rainfall and the K factor of soil erosion, calculated for each sampling point. Los results obtained by applying the Pearson correlation coefficient to the database shows how as rainfall increases so does OM content (0,97) and la CEC (0,89), but K factor (-0,80) reacts inversely. The content of OM in the soil is related to its biological activity and this in turn is the result of available wáter within the system and, consequently, rainfall. This is specially important in fragile and complex ecogeomorphological systems as is the case of the Mediterranean, where greater or lesser rainfall is similarly reflected in the levels of increase or decrease of soil organic matter. This affirmation is reinforced by linking the organic matter of the soil with other indicative properties such as CEC and erosion, as has been shown by various authors (Imeson y Vis, 1984; De Ploey & Poesen, 1985; Le Bissonnais, 1996; Boix-Fayos et al., 2001; Cammeraat y Imeson, 1998; Cerdá, 1998). As has been stated, there is a direct relationship between rainfall, organic matter content, cation exchange capacity, structural stability, and the resistence to soil erosion factor

  5. Complexation of lead by organic matter in Luanda Bay, Angola.

    PubMed

    Leitão, Anabela; Santos, Ana Maria; Boaventura, Rui A R

    2015-10-01

    Speciation is defined as the distribution of an element among different chemical species. Although the relation between speciation and bioavailability is complex, the metal present as free hydrated ion, or as weak complexes able to dissociate, is usually more bioavailable than the metal incorporated in strong complexes or adsorbed on colloidal or particulate matter. Among the analytical techniques currently available, anodic stripping voltammetry (ASV) has been one of the most used in the identification and quantification of several heavy metal species in aquatic systems. This work concerns the speciation study of lead, in original (natural, non-filtered) and filtered water samples and in suspensions of particulate matter and sediments from Luanda Bay (Angola). Complexes of lead with organics were identified and quantified by differential pulse anodic stripping voltammetry technique. Each sample was progressively titrated with a Pb(II) standard solution until complete saturation of the organic ligands. After each addition of Pb(II), the intensity, potential and peak width of the voltammetric signal were measured. The results obtained in this work show that more than 95 % of the lead in the aquatic environment is bound in inert organic complexes, considering all samples from different sampling sites. In sediment samples, the lead is totally (100 %) complexed with ligands adsorbed on the particles surface. Two kinds of dominant lead complexes, very strong (logK >11) and strong to moderately strong (8< logK <11), were found, revealing the lead affinity for the stronger ligands.

  6. Lead Sequestration and Species Redistribution During Soil Organic Matter Decomposition

    SciTech Connect

    Schroth,A.; Bostick, B.; Kaste, J.; Friedland, A.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases ({approx}20-35%) and SOM ({approx}65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility.

  7. Lead sequestration and species redistribution during soil organic matter decomposition

    USGS Publications Warehouse

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases (???20-35%) and SOM (???65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility. ?? 2008 American Chemical Society.

  8. Lead Sequestration And Species Redistribution During Soil Organic Matter Decomposition

    SciTech Connect

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2009-05-27

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-rayfluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest O{sub i} samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases ({approx}20--35%) and SOM ({approx}65--80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility.

  9. Organic matter interactions with natural manganese oxide and synthetic birnessite.

    PubMed

    Allard, Sébastien; Gutierrez, Leonardo; Fontaine, Claude; Croué, Jean-Philippe; Gallard, Hervé

    2017-04-01

    Redox reactions of inorganic and organic contaminants on manganese oxides have been widely studied. However, these reactions are strongly affected by the presence of natural organic matter (NOM) at the surface of the manganese oxide. Interestingly, the mechanism behind NOM adsorption onto manganese oxides remains unclear. Therefore, in this study, the adsorption kinetics and equilibrium of different NOM isolates to synthetic manganese oxide (birnessite) and natural manganese oxide (Mn sand) were investigated. Natural manganese oxide is composed of both amorphous and well-crystallised Mn phases (i.e., lithiophorite, birnessite, and cryptomelane). NOM adsorption on both manganese oxides increased with decreasing pH (from pH7 to 5), in agreement with surface complexation and ligand exchange mechanisms. The presence of calcium enhanced the rate of NOM adsorption by decreasing the electrostatic repulsion between NOM and Mn sand. Also, the adsorption was limited by the diffusion of NOM macromolecules through the Mn sand pores. At equilibrium, a preferential adsorption of high molecular weight molecules enriched in aromatic moieties was observed for both the synthetic and natural manganese oxide. Hydrophobic interactions may explain the adsorption of organic matter on manganese oxides. The formation of low molecular weight UV absorbing molecules was detected with the synthetic birnessite, suggesting oxidation and reduction processes occurring during NOM adsorption. This study provides a deep insight for both environmental and engineered systems to better understand the impact of NOM adsorption on the biogeochemical cycle of manganese.

  10. Unraveling the chemical space of terrestrial and meteoritic organic matter

    NASA Astrophysics Data System (ADS)

    Schmitt-Kopplin, Philippe; Harir, Mourad; Hertkorn, Norbert; Kanawati, Basem; Ruf, Alexander; Quirico, Eric; Bonal, Lydie; Beck, Pierre; Gabelica, Zelimir

    2015-04-01

    In terrestrial environments natural organic matter (NOM) occurs in soils, freshwater and marine environments, in the atmosphere and represents an exceedingly complex mixture of organic compounds that collectively exhibits a nearly continuous range of properties (size-reactivity continuum). In these materials, the "classical" biogeosignatures of the (biogenic and geogenic) precursor molecules, like lipids, lignins, proteins and natural products have been attenuated, often beyond recognition, during a succession of biotic and abiotic (e.g. photo- and redox chemistry) reactions. Because of this loss of biochemical signature, these materials can be designated non-repetitive complex systems. The access to extra-terrestrial organic matter is given i.e. in the analysis of meteoritic materials. Numerous descriptions of organic molecules present in organic chondrites have improved our understanding of the early interstellar chemistry that operated at or just before the birth of our solar system. However, many molecular analyses are so far targeted toward selected classes of compounds with a particular emphasis on biologically active components in the context of prebiotic chemistry. Here we demonstrate that a non-targeted ultrahigh-resolution molecular analysis of the solvent-accessible organic fraction of meteorite extracted under mild conditions allows one to extend its indigenous chemical diversity to tens of thousands of different molecular compositions and likely millions of diverse structures. The description of the molecular complexity provides hints on heteroatoms chronological assembly, shock and thermal events and revealed recently new classes of thousands of novel organic, organometallic compounds uniquely found in extra-terrestrial materials and never described in terrestrial systems. This high polymolecularity suggests that the extraterrestrial chemodiversity is high compared to terrestrial relevant biological and biogeochemical-driven chemical space. (ultra

  11. Conversion from agriculture to grassland builds soil organic matter on decadal timescales

    SciTech Connect

    McLaughlan, Dr. Kendra; Hobbie, Dr. Sarah; Post, Wilfred M

    2006-01-01

    Soil organic matter (SOM) often increases when agricultural fields are converted to perennial vegetation, yet decadal scale rates and the mechanisms that underlie SOM accumulation are not clear. We measured SOM accumulation and changes in soil properties on a replicated chronosequence of former agricultural fields in the midwestern United States that spanned 40 years after perennial-grassland establishment. Over this time period, soil organic carbon (SOC) in the top 10 cm of soil accumulated at a constant rate of 62.0 g x m(-2) x yr(-1), regardless of whether the vegetation type was dominated by C3 or C4 grasses. At this rate, SOC contents will be equivalent to unplowed native prairie sites within 55-75 years after cultivation ceased. Both labile (short turnover time) and recalcitrant (long turnover time) carbon pools increased linearly for 40 years, with recalcitrant pools increasing more rapidly than expected. This result was consistent across several different methods of measuring labile SOC. A model that investigates the mechanisms of SOM formation suggests that rapid formation of stable carbon resulted from biochemically resistant microbial products and plant material. Former agricultural soils of the Great Plains may function as carbon sinks for less than a century, although much of the carbon stored is stable.

  12. Method and apparatus for retorting a substance containing organic matter

    SciTech Connect

    Schulman, B.

    1980-07-01

    A description is given of an apparatus for converting a substance containing organic matter into hydrocarbon vapors and solids residue comprising: (A) a fluidized bed housing having an upstream end and a downstream end; (B) a substantially cylindrical retort, extending through and stationary relative to said fluidized bed housing and having an upstream end and a downstream end, each end being outside of said housing, the longitudinal axis of said retort being substantially parallel to a horizontal plane; (C) feeding means for feeding the substance containing organic matter into said retort, said feeding means communicating with the upstream portion of said retort; (D) means located within said retort for moving the substance containing organic matter from the upstream portion of said retort to the downstream portion thereof; (E) solids residue removing means for removing solids residue from said retort, said solids residue removing means communicating with the downstream portion of said retort; (F) solids residue introducing means for introducing said solids residue removed from said retort into said fluidized bed housing to employ said solids residue as particles of a fluidized bed, one end of said introducing means communicating with said solids residue removing means and the other end therof communicating with the upper upstream portion of said fluidized bed housing; (G) solids residue extracting means for extracting solids residue from said fluidized bed housing and communicating with the lower downstream portion fluidized bed housing; (H) fluidizing menas for maintaining within said fluidized bed housing a fluidized bed of heated particles of solids residue with which to heat said retort; (I) heating means for heating the particles; (J) hydrocarbon vapors removing means.

  13. Priming of soil organic matter decomposition in cryoturbated Arctic soils

    NASA Astrophysics Data System (ADS)

    Richter, A.; Wild, B.; Schnecker, J.; Rusalimova, O.

    2012-12-01

    The Arctic is subjected to particularly high rates of warming, with profound consequences for the carbon cycle: on the one hand plant productivity and C storage in plant biomass have been shown to increase strongly in many parts of the Arctic, on the other hand, increasing rates of soil organic matter (SOM) decomposition have been reported. One of the possibilities that could reconcile these observations is, that increased plant growth may lead to increased root exudation rates, which are known to stimulate microbial turnover of organic matter under certain circumstances, in a process termed "priming" of SOM. Two mechanisms have been brought forward that may be responsible for priming: first, easily assimilable material exuded by plant roots may help microbes to overcome their energy limitation and second, this input of labile carbon could lead to a nitrogen limitation of the microbial community and lead to nitrogen mining, i.e. decomposition of N-rich SOM. We here report on an incubation study with arctic soil investigating potential priming of SOM decomposition in organic topsoil horizons, cryoturbated organic matter and subsoil mineral horizons of tundra soil from the Taymyr peninsula in Siberia. We used arctic soils, that are characterized by cryoturbation (mixing of soil layers due to freezing and thawing), for this study. Turbated cryosols store more than 580 Gt C globally, a significant proportion of which is stored in the cryoturbated organic matter. We hypothesized that an increased availability of labile compounds would increase SOM decomposition rates, and that this effect would be strongest in horizons with a low natural availability of labile C, i.e. in the mineral subsoil. We amended soils with 13C labelled glucose, cellulose, amino acids or proteins, and measured the mineralization of SOM C as well as microbial community composition and potential activities of extracellular enzymes. Our results demonstrate that topsoil organic, cryoturbated and

  14. Distribution of some organic components in two forest soils profiles with evidence of soil organic matter leaching.

    NASA Astrophysics Data System (ADS)

    Álvarez-Romero, Marta; Papa, Stefania; Lozano-García, Beatriz; Parras-Alcántara, Luis; Coppola, Elio

    2015-04-01

    Soil stores organic carbon more often than we can find in living vegetation and atmosphere together. This reservoir is not inert, but it is constantly in a dynamic phase of inputs and losses. Soil organic carbon mainly depends on land cover, environment conditions and soil properties. After soil deposition, the organic residues of different origin and nature, the Soil Organic Matter (SOM) can be seen involved in two different processes during the pedogenesis: mineralization and humification. The transport process along profile happens under certain conditions such as deposition of high organic residues amount on the top soil, high porosity of the soil caused by sand or skeleton particles, that determine a water strong infiltrating capacity, also, extreme temperatures can slow or stop the mineralization and/or humification process in one intermediate step of the degradation process releasing organic metabolites with high or medium solubility and high loads of water percolating in relation to intense rainfall. The transport process along soil profile can take many forms that can end in the formation of Bh horizons (h means accumulation of SOM in depth). The forest cover nature influence to the quantity and quality of the organic materials deposited with marked differences between coniferous and deciduous especially in relation to resistance to degradation. Two soils in the Campania region, located in Lago Laceno (Avellino - Italy) with different forest cover (Pinus sp. and Fagus sp.) and that meets the requirements of the place and pedological formation suitable for the formation and accumulation of SOM in depth (Bh horizon) were studied. The different soil C fractions were determinated and were assessed (Ciavatta C. et al. 1990; Dell'Abate M.T. et al. 2002) for each soil profile the Total Extractable Lipids (TEL). Furthermore, the lignin were considered as a major component of soil organic matter (SOM), influencing its pool-size and its turnover, due to the high

  15. Surface area control of organic carbon accumulation in continental shelf sediments

    SciTech Connect

    Mayer, L.M. )

    1994-02-01

    The relationship between organic carbon (OC) and grain size found in most continental shelf sediments is here reinterpreted in terms of the surface area of the sediments. Cores from many North American shelf environments show downcore decreases in OC to similar refractory background concentrations if expressed relative to the surface area of the sediments. This consistent concentration is 0.86 mg-OC m[sup [minus]2], which is equivalent in concentration to a monolayer of organic matter coating all mineral surfaces. A more global collection of sediment-water interface samples show that this relationship is even more extensive, with exceptions occurring in areas of very high riverine sediment input, organic pollution, or low-oxygen water columns. Density separations indicate that organic matter is largely adsorbed to mineral grains. The microtopography of surfaces was examined with N[sub 2] sorption and most surface area was found to be inside pores of <10 nm width. These data lead to a hypothesis that organic matter is protected by its location inside pores too small to allow functioning of the hydrolytic enzymes necessary for organic matter decay. Such protection would likely work in concert with other protection mechanisms such as humification. This consistent surface area correlation with OC concentration may explain control of spatial and temporal variations in OC burial rates by sedimentation rates; the pore protection hypothesis provides a causal mechanism for this observed control.

  16. Aquatic Organic Matter Fluorescence - from phenomenon to application

    NASA Astrophysics Data System (ADS)

    Reynolds, Darren

    2014-05-01

    The use of fluorescence to quantify and characterise aquatic organic matter in river, ocean, ground water and drinking and waste waters has come along way since its discovery as a phenomenon in the early 20th century. For example, there are over 100 papers published each year in international peer reviewed journals, an order of magnitude increase since a decade ago (see Figure taken from ISI database from 1989 to 2007 for publications in the fields of river water and waste water). Since then it has been extensively used as a research tool since the 1990's by scientists and is currently used for a wide variety of applications within a number of sectors. Universities, organisations and companies that research into aquatic organic matter have either recently readily use appropriate fluorescence based techniques and instrumentation. In industry and government, the technology is being taken up by environmental regulators and water and wastewater companies. This keynote presentation will give an overview of aquatic organic matter fluorescence from its conception as a phenomenon through to its current use in a variety of emerging applications within the sectors concerned with understanding, managing and monitoring the aquatic environment. About the Speaker Darren Reynolds pioneered the use of fluorescence spectroscopy for the analysis of wastewaters in the 1990's. He currently leads a research group within the Centre for Research in Biosciences and sits on the Scientific Advisory Board for the Institute of Bio-Sensing Technology at the University of the West of England, Bristol. He is a multidisciplinary scientist concerned with the development of technology platforms for applications in the fields of environment/agri-food and health. His current research interests include the development of optical technologies and techniques for environmental and biological sensing and bio-prospecting applications. He is currently involved in the development and use of synthetic biology

  17. Persistence of soil organic matter as an ecosystem property.

    PubMed

    Schmidt, Michael W I; Torn, Margaret S; Abiven, Samuel; Dittmar, Thorsten; Guggenberger, Georg; Janssens, Ivan A; Kleber, Markus; Kögel-Knabner, Ingrid; Lehmann, Johannes; Manning, David A C; Nannipieri, Paolo; Rasse, Daniel P; Weiner, Steve; Trumbore, Susan E

    2011-10-05

    Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily--and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.

  18. Persistence of soil organic matter as an ecosystem property

    SciTech Connect

    Schmidt, M.W.; Torn, M. S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; Nannipieri, P.; Rasse, D.P.; Weiner, S.; Trumbore, S.E.

    2011-08-15

    Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily—and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.

  19. Characterization of Biologically Produced Colored Dissolved Organic Matter in Seawater

    DTIC Science & Technology

    2005-11-29

    Seritti, A. Environ. Tech. 1993, 14, 94.1-948. (19) Lombardi, A.T.; Jardim, W.F. Water Research. 1999, 33, 512-520. (20) Parlanti, E .; Morin , B.; Vacher...REPORT DOCUMENTATION PAGE Form Approved Public reporting burden for this collection of I•mo,,ation , e dlat ed to average hour per response. ind•uding... e -mail: drepeta(atwhoi.edu Grant# N00014-98-1-0579 & N00014-03-1-0387 Chromophoric, or colored dissolved organic matter (CDOM), influences the

  20. [Effects of air temperature, solar radiation and soil water on dry matter accumulation and allocation of greenhouse muskmelon seedlings and related simulation models].

    PubMed

    Li, Jian-Ming; Zou, Zhi-Rong

    2007-12-01

    With different sowing dates and irrigation upper limits, the effects of air temperature, solar radiation and soil water on the dry matter accumulation and allocation of greenhouse muskmelon seedlings were studied, with related simulation models established. The results showed that the dry matter accumulation and allocation of the seedlings had correlations with the changes of effective accumulative temperature, accumulative solar radiation, and irrigation upper limits at different seasons in a year, but the correlation coefficients differed with sowing dates and irrigation upper limits. Comprehensive analysis showed that the dry matter accumulation model was an exponential function, while the dry matter allocation model was a conic function, both of which were driven by effective accumulative temperature. The constant term in the functions was driven by accumulative daily temperature difference and accumulative solar radiation, and the correlation was a linear function. Model test showed that the models were able to objectively simulate and predict the changes of plant dry matter accumulation and allocation, and possessed practical value for the growth analysis and production management of muskmelon seedling.

  1. Influence of organic matter on the transport of Cryptosporidium parvum oocysts in a ferric oxyhydroxide-coated quartz sand saturated porous medium

    USGS Publications Warehouse

    Abudalo, R.A.; Ryan, J.N.; Harvey, R.W.; Metge, D.W.; Landkamer, L.

    2010-01-01

    To assess the effect of organic matter on the transport of Cryptosporidium parvum oocysts in a geochemically heterogeneous saturated porous medium, we measured the breakthrough and collision efficiencies of oocysts as a function of dissolved organic matter concentration in a flow-through column containing ferric oxyhydroxide-coated sand. We characterized the surface properties of the oocysts and ferric oxyhydroxide-coated sand using microelectrophoresis and streaming potential, respectively, and the amount of organic matter adsorbed on the ferric oxyhydroxide-coated sand as a function of the concentration of dissolved organic matter (a fulvic acid isolated from Florida Everglades water). The dissolved organic matter had no significant effect on the zeta potential of the oocysts. Low concentrations of dissolved organic matter were responsible for reversing the charge of the ferric oxyhydroxide-coated sand surface from positive to negative. The charge reversal and accumulation of negative charge on the ferric oxyhydroxide-coated sand led to increases in oocyst breakthrough and decreases in oocyst collision efficiency with increasing dissolved organic matter concentration. The increase in dissolved organic matter concentration from 0 to 20 mg L-1 resulted in a two-fold decrease in the collision efficiency. ?? 2009 Elsevier Ltd.

  2. Considerations over the distribution of the organic matter in the soil cover of Transylvania Plain (Romania)

    NASA Astrophysics Data System (ADS)

    Cacovean, Horia; Man, Titus; Rusu, Teodor

    2010-05-01

    Considerations over the distribution of the organic matter in the soil cover of Transylvania Plain (Romania) Horea Cacovean*, Titus Man**, Teodor Rusu*** *OSPA-Cluj- 1Faglui street, Cluj Napoca, RO-40048, Romania- turda75@yahoo.com ** Faculty of Geographie, University of Babes-Bolyai, 5-7 Clinicilor street, Cluj Napoca, RO-400006, Romania *** Faculty of Agriculture, USAMV, 3-5 Calea Manastur street,Cluj Napoca, RO-400372, Romania Soil degradation has become a major concern in the Transylvania Plain. Erosion, landslides, salinization, gleysation, and loss of humus are the main forms of soil deterioration in that region. This factsheet deals with the role of organic matter in soil productivity and the effects of various management practices and abandonment of the lands on soil organic matter. Soils in Transylvania Plain are analyzed concerning the amount of humus they contain. The influence of soil texture, climatic variables, and soil management on the qualitative soil humus content was studied in the top 20 cm of different managed loess soils of more then 100 profiles along a climosequence in that region. Taken together, soil, landform, land use and vegetation data suggest: (1) summit positions are relatively stable with immobilizing humus environments; (2) the content of humus increase progressively down steep at the contact with the floodplains; 3) without the influx of organic materials, erodible backslopes may become humus depleted as it happen the poor inputs of grassland and forest litter are mixed with surface soil horizon; 4) influx of mixed sediment and organic materials from backslopes maintains concentrations of humus on footslopes and toeslopes. This influence was more pronounced in the heavy clayey soils, suggesting that the accumulation of humus was enhanced by organo-mineral interactions. Entrenchment of drainage ways can circumvent these translocation processes. The results underscore the importance of functional connectivity between upland

  3. Conservative or reactive? Mechanistic chemical perspectives on organic matter stability

    NASA Astrophysics Data System (ADS)

    Koch, Boris

    2016-04-01

    Carbon fixation by terrestrial and marine primary production has a fundamental seasonal effect on the atmospheric carbon content and it profoundly contributes to long-term carbon storage in form of organic matter (OM) in soils, water, and sediments. The efficacy of this sequestration process strongly depends on the degree of OM persistence. Therefore, one of the key issues in dissolved and particulate OM research is to assess the stability of reservoirs and to quantify their contribution to global carbon fluxes. Incubation experiments are helpful to assess OM stability during the first, early diagenetic turnover induced by sunlight or microbes. However, net carbon fluxes within the global carbon cycle also act on much longer time scales, which are not amenable in experiments. It is therefore critical to improve our mechanistic understanding to be able to assess potential future changes in the organic matter cycle. This session contribution highlights some achievements and open questions in the field. An improved mechanistic understanding of OM turnover particularly depends on the molecular characterization of biogeochemical processes and their kinetics: (i) in soils and sediments, aggregation/disaggregation of OM is primarily controlled by its molecular composition. Hence, the chemical composition determines the transfer of organic carbon from the large particulate to the small dissolved organic matter reservoir - an important substrate for microbial metabolism. (ii) In estuaries, dissolved organic carbon gradients usually suggest conservative behavior, whereas molecular-level studies reveal a substantial chemical modification of terrestrial DOM along the land-ocean interface. (iii) In the ocean, previous studies have shown that the recalcitrance of OM depends on bulk concentration and energy yield. However, ultrahigh resolution mass spectrometry in combination with radiocarbon analyses also emphasized that stability is tightly connected to molecular composition

  4. Do organic matter matter? Contribution of organic matter on scavenging and fractionation of natural radionuclides in the Oceanic Flux Program (OFP) site of Bermuda

    NASA Astrophysics Data System (ADS)

    Chuang, C.; Santschi, P. H.; Conte, M. H.; Schumann, D.; Ayranov, M.

    2012-12-01

    Natural particle-reactive radionuclides, 234Th, 233Pa, 210Po, 210Pb and 7Be, have been used for estimating particulate organic carbon (POC) export flux in the ocean for decades. However, by simply relying on empirically determined isotope ratios to POC and other parameters, sometimes results from field studies are puzzling and become controversial (e.g., one is summarized in Li, 2005). The picture becomes clearer when it was noticed that a missing fraction, e.g., natural organic matter, could be the cause. For example, a series of field and lab studies demonstrated that biopolymers excreted by marine micro-organisms are likely carrier molecules for a number of these isotopes (e.g., Guo et al., 2002; Quigley et al., 2002; Santschi et al., 2003; Roberts et al., 2009; Hung et al., 2010; Xu et al., 2011; Hung et al., 2012; Yang et al., 2012). To examine the effect of organic composition of the particle on the scavenging and fractionation of selected natural radionuclides (e.g., Th, Pa, Pb, Po, Be), organic composition (e.g., protein, polysaccharides, uronic acid, siderophore and amino acid contents, and etc.) and particle-water partition coefficients (Kd) were determined for sediment trap material collected in the Oceanic Flux Program (OFP) site of Bermuda (500, 1500 and 3200 m). Results showed that different organic components contribute differently to the fractionation of different radionuclides from the three depths. We conclude that natural organic matter control on the particle-water partition coefficients cannot be ignored.

  5. Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching.

    PubMed

    Li, Kun; Xing, Baoshan; Torello, William A

    2005-03-01

    Incorporation of organic fertilizers/amendments has been, and continues to be, a popular strategy for golf course turfgrass management. Dissolved organic matter (DOM) derived from these organic materials may, however, facilitate organic chemical movement through soils. A batch equilibrium technique was used to evaluate the effects of organic fertilizer-derived DOM on sorption of three organic chemicals (2,4-D, naphthalene and chlorpyrifos) in USGA (United States Golf Association) sand, a mixed soil (70% USGA sand and 30% native soil) and a silt loam soil (Typic Fragiochrept). DOM was extracted from two commercial organic fertilizers. Column leaching experiments were also performed using USGA sand. Sorption experiments showed that sorption capacity was significantly reduced with increasing DOM concentration in solution for all three chemicals. Column experimental results were consistent with batch equilibrium data. These results suggest that organic fertilizer-derived DOM might lead to enhanced transport of applied chemicals in turf soils.

  6. Regional Assessment of soil organic matter profile distribution in the boreal forest ecosystems of Russia

    NASA Astrophysics Data System (ADS)

    Meshalkina, Joulia; Belousova, Nataliya; Vasenev, Ivan

    2015-04-01

    Boreal forest ecosystems play one of the key roles in the Global Change challenges responses. The soil carbon stocks are principal regulators of their environmental functions. Boreal forest soil cover is characterized by mutually increased spatial variability in soil organic matter content (SOMC) that one need to take into attention in its current and future environmental functions state assessment including the potential of regional soil organic matter stocks changes due to Global Change and inverse ones. Knowledge of the regional regularities in SOMC profile vertical distribution allows improving their soil environmental functions prediction land quality evaluation. More than 900 profiles of SOMC distribution were studied using the database Boreal that contains data on Russian boreal soils developed in drained conditions on loamy soil forming rocks. These soil profiles belong to seven main types of forest soils of Russian classification and six major regions of Russia. The predomination of accumulation profile type was observed for all cases. Thus the vertical distribution of OMC in the profiles of boreal soils can be described as follow: the layer of maximum OMC is replaced by the layer of dramatic OMC reduction; then the layer of minimal OMC extends up to 2.5 m. The layer of maximal OMC accumulation has the low depth of 5-15 cm. It carried out in different genetic horizons: A1, A1A2, A2, B, AB; sometimes it captures the A2B horizon or the upper part of the illuvial horizon. The OMC in this layer increases from the northern taiga to the southern taiga and from the European part of Russia to Siberia. The second layer is characterized by its depth and by the gradient of OMC decreasing. A great variety of the both parameters is observed. The layer of the sharp OMC fall most often fits with the eluvial horizons A2 or А2В or even the upper part of the Вt (textural) or Bm (metamorphic) horizons. The layer of permanently small OMC may begin in any genetic horizon

  7. Microbial Community Composition of Polyhydroxyalkanoate-Accumulating Organisms in Full-Scale Wastewater Treatment Plants Operated in Fully Aerobic Mode

    PubMed Central

    Oshiki, Mamoru; Onuki, Motoharu; Satoh, Hiroyasu; Mino, Takashi

    2013-01-01

    The removal of biodegradable organic matter is one of the most important objectives in biological wastewater treatments. Polyhydroxyalkanoate (PHA)-accumulating organisms (PHAAOs) significantly contribute to the removal of biodegradable organic matter; however, their microbial community composition is mostly unknown. In the present study, the microbial community composition of PHAAOs was investigated at 8 full-scale wastewater treatment plants (WWTPs), operated in fully aerobic mode, by fluorescence in situ hybridization (FISH) analysis and post-FISH Nile blue A (NBA) staining techniques. Our results demonstrated that 1) PHAAOs were in the range of 11–18% in the total number of cells, and 2) the microbial community composition of PHAAOs was similar at the bacterial domain/phylum/class/order level among the 8 full-scale WWTPs, and dominant PHAAOs were members of the class Alphaproteobacteria and Betaproteobacteria. The microbial community composition of α- and β-proteobacterial PHAAOs was examined by 16S rRNA gene clone library analysis and further by applying a set of newly designed oligonucleotide probes targeting 16S rRNA gene sequences of α- or β-proteobacterial PHAAOs. The results demonstrated that the microbial community composition of PHAAOs differed in the class Alphaproteobacteria and Betaproteobacteria, which possibly resulted in a different PHA accumulation capacity among the WWTPs (8.5–38.2 mg-C g-VSS−1 h−1). The present study extended the knowledge of the microbial diversity of PHAAOs in full-scale WWTPs operated in fully aerobic mode. PMID:23257912

  8. The abiotic degradation of soil organic matter to oxalic acid

    NASA Astrophysics Data System (ADS)

    Studenroth, Sabine; Huber, Stefan; Schöler, H. F.

    2010-05-01

    The abiotic degradation of soil organic matter to volatile organic compounds was studied intensely over the last years (Keppler et al., 2000; Huber et al., 2009). It was shown that soil organic matter is oxidised due to the presence of iron (III), hydrogen peroxide and chloride and thereby produces diverse alkyl halides, which are emitted into the atmosphere. The formation of polar halogenated compounds like chlorinated acetic acids which are relevant toxic environmental substances was also found in soils and sediments (Kilian et al., 2002). The investigation of the formation of other polar halogenated and non-halogenated compounds like diverse mono- and dicarboxylic acids is going to attain more and more importance. Due to its high acidity oxalic acid might have impacts on the environment e.g., nutrient leaching, plant diseases and negative influence on microbial growth. In this study, the abiotic formation of oxalic acid in soil is examined. For a better understanding of natural degradation processes mechanistic studies were conducted using the model compound catechol as representative for structural elements of the humic substances and its reaction with iron (III) and hydrogen peroxide. Iron is one of the most abundant elements on earth and hydrogen peroxide is produced by bacteria or through incomplete reduction of oxygen. To find suitable parameters for an optimal reaction and a qualitative and quantitative analysis method the following reaction parameters are varied: concentration of iron (III) and hydrogen peroxide, time dependence, pH-value and influence of chloride. Analysis of oxalic acid was performed employing an ion chromatograph equipped with a conductivity detector. The time dependent reaction shows a relatively fast formation of oxalic acid, the optimum yield is achieved after 60 minutes. Compared to the concentration of catechol an excess of hydrogen peroxide as well as a low concentration of iron (III) are required. In absence of chloride the

  9. Influence of dissolved organic carbon content on modelling natural organic matter acid-base properties.

    PubMed

    Garnier, Cédric; Mounier, Stéphane; Benaïm, Jean Yves

    2004-10-01

    Natural organic matter (NOM) behaviour towards proton is an important parameter to understand NOM fate in the environment. Moreover, it is necessary to determine NOM acid-base properties before investigating trace metals complexation by natural organic matter. This work focuses on the possibility to determine these acid-base properties by accurate and simple titrations, even at low organic matter concentrations. So, the experiments were conducted on concentrated and diluted solutions of extracted humic and fulvic acid from Laurentian River, on concentrated and diluted model solutions of well-known simple molecules (acetic and phenolic acids), and on natural samples from the Seine river (France) which are not pre-concentrated. Titration experiments were modelled by a 6 acidic-sites discrete model, except for the model solutions. The modelling software used, called PROSECE (Programme d'Optimisation et de SpEciation Chimique dans l'Environnement), has been developed in our laboratory, is based on the mass balance equilibrium resolution. The results obtained on extracted organic matter and model solutions point out a threshold value for a confident determination of the studied organic matter acid-base properties. They also show an aberrant decreasing carboxylic/phenolic ratio with increasing sample dilution. This shift is neither due to any conformational effect, since it is also observed on model solutions, nor to ionic strength variations which is controlled during all experiments. On the other hand, it could be the result of an electrode troubleshooting occurring at basic pH values, which effect is amplified at low total concentration of acidic sites. So, in our conditions, the limit for a correct modelling of NOM acid-base properties is defined as 0.04 meq of total analysed acidic sites concentration. As for the analysed natural samples, due to their high acidic sites content, it is possible to model their behaviour despite the low organic carbon concentration.

  10. Morphological Study of Insoluble Organic Matter Residues from Primitive

    NASA Technical Reports Server (NTRS)

    Changela, H. G.; Stroud, R. M.; Peeters, Z.; Nittler, L. R.; Alexander, C. M. O'D.; DeGregorio, B. T.; Cody, G. D.

    2012-01-01

    Insoluble organic matter (IOM) constitutes a major proportion, 70-99%, of the total organic carbon found in primitive chondrites [1, 2]. One characteristic morphological component of IOM is nanoglobules [3, 4]. Some nanoglobules exhibit large N-15 and D enrichments relative to solar values, indicating that they likely originated in the ISM or the outskirts of the protoplanetary disk [3]. A recent study of samples from the Tagish Lake meteorite with varying levels of hydrothermal alteration suggest that nanoglobule abundance decreases with increasing hydrothermal alteration [5]. The aim of this study is to further document the morphologies of IOM from a range of primitive chondrites in order to determine any correlation of morphology with petrographic grade and chondrite class that could constrain the formation and/or alteration mechanisms.

  11. Nature and transformation of dissolved organic matter in treatment wetlands.

    PubMed

    Barber, L B; Leenheer, J A; Noyes, T I; Stiles, E A

    2001-12-15

    This investigation into the occurrence, character, and transformation of dissolved organic matter (DOM) in treatment wetlands in the western United States shows that (i) the nature of DOM in the source water has a major influence on transformations that occur during treatment, (ii) the climate factors have a secondary effect on transformations, (iii) the wetlands receiving treated wastewater can produce a net increase in DOM, and (iv) the hierarchical analytical approach used in this study can measure the subtle DOM transformations that occur. As wastewater treatment plant effluent passes through treatment wetlands, the DOM undergoes transformation to become more aromatic and oxygenated. Autochthonous sources are contributed to the DOM, the nature of which is governed by the developmental stage of the wetland system as well as vegetation patterns. Concentrations of specific wastewater-derived organic contaminants such as linear alkylbenzene sulfonate, caffeine, and ethylenediaminetetraacetic acid were significantly attenuated by wetland treatment and were not contributed by internal loading.

  12. Nature and transformation of dissolved organic matter in treatment wetlands

    USGS Publications Warehouse

    Barber, L.B.; Leenheer, J.A.; Noyes, T.I.; Stiles, E.A.

    2001-01-01

    This investigation into the occurrence, character, and transformation of dissolved organic matter (DOM) in treatment wetlands in the western United States shows that (i) the nature of DOM in the source water has a major influence on transformations that occur during treatment, (ii) the climate factors have a secondary effect on transformations, (iii) the wetlands receiving treated wastewater can produce a net increase in DOM, and (iv) the hierarchical analytical approach used in this study can measure the subtle DOM transformations that occur. As wastewater treatment plant effluent passes through treatment wetlands, the DOM undergoes transformation to become more aromatic and oxygenated. Autochthonous sources are contributed to the DOM, the nature of which is governed by the developmental stage of the wetland system as well as vegetation patterns. Concentrations of specific wastewaterderived organic contaminants such as linear alkylbenzene sulfonate, caffeine, and ethylenediaminetetraacetic acid were significantly attenuated by wetland treatment and were not contributed by internal loading.

  13. Carbon isotope fractionation of sapropelic organic matter during early diagenesis

    USGS Publications Warehouse

    Spiker, E. C.; Hatcher, P.G.

    1984-01-01

    Study of an algal, sapropelic sediment from Mangrove Lake, Bermuda shows that the mass balance of carbon and stable carbon isotopes in the major organic constituents is accounted for by a relatively straightforward model of selective preservation during diagenesis. The loss of 13C-enriched carbohydrates is the principal factor controlling the intermolecular mass balance of 13C in the sapropel. Results indicate that labile components are decomposed leaving as a residual concentrate in the sediment an insoluble humic substance that may be an original biochemical component of algae and associated bacteria. An overall decrease of up to about 4??? in the ?? 13C values of the organic matter is observed as a result of early diagenesis. ?? 1984.

  14. Literature review of organic matter transport from marshes

    NASA Technical Reports Server (NTRS)

    Dow, D. D.

    1982-01-01

    A conceptual model for estimating a transport coefficient for the movement of nonliving organic matter from wetlands to the adjacent embayments was developed in a manner that makes it compatible with the Earth Resources Laboratory's Productive Capacity Model. The model, which envisages detritus movement from wetland pixels to the nearest land-water boundary followed by movement within the water column from tidal creeks to the adjacent embayment, can be transposed to deal with only the interaction between tidal water and the marsh or to estimate the transport from embayments to the adjacent coastal waters. The outwelling hypothesis postulated wetlands as supporting coastal fisheries either by exporting nutrients, such as inorganic nitrogen, which stimulated the plankton-based grazing food chain in the water column, or through the export of dissolved and particulate organic carbon which provided a benthic, detritus-based food web which provides the food source for the grazing food chain in a more indirect fashion.

  15. Dissolved organic matter photolysis in Canadian arctic thaw ponds

    NASA Astrophysics Data System (ADS)

    Laurion, Isabelle; Mladenov, Natalie

    2013-09-01

    The abundant thaw lakes and ponds in the circumarctic receive a new pool of organic carbon as permafrost peat soils degrade, which can be exposed to significant irradiance that potentially increases as climate warms and ice cover shortens. Exposure to sunlight is known to accelerate the transformation of dissolved organic matter (DOM) into molecules that can be more readily used by microbes. We sampled the water from two common classes of ponds found in the ice-wedge system of continuous permafrost regions of Canada, polygonal and runnel ponds, and followed the transformation of DOM over 12 days by looking at dissolved organic carbon (DOC) concentration and DOM absorption and fluorescence properties. The results indicate a relatively fast decay of color (3.4 and 1.6% loss d-1 of absorption at 320 nm for the polygonal and runnel pond, respectively) and fluorescence (6.1 and 8.3% loss d-1 of total fluorescent components, respectively) at the pond surface, faster in the case of humic-like components, but insignificant losses of DOC over the observed period. This result indicates that direct DOM mineralization (photochemical production of CO2) is apparently minor in thaw ponds compared to the photochemical transformation of DOM into less chromophoric and likely more labile molecules with a greater potential for microbial mineralization. Therefore, DOM photolysis in arctic thaw ponds can be considered as a catalytic mechanism, accelerating the microbial turnover of mobilized organic matter from thawing permafrost and the production of greenhouse gases, especially in the most shallow ponds. Under a warming climate, this mechanism will intensify as summers lengthen.

  16. Black Carbon - Soil Organic Matter abiotic and biotic interactions

    NASA Astrophysics Data System (ADS)

    Cotrufo, Francesca; Boot, Claudia; Denef, Karolien; Foster, Erika; Haddix, Michelle; Jiang, Xinyu; Soong, Jennifer; Stewart, Catherine

    2014-05-01

    Wildfires, prescribed burns and the use of char as a soil amendment all add large quantities of black carbon to soils, with profound, yet poorly understood, effects on soil biology and chemical-physical structure. We will present results emerging from our black carbon program, which addresses questions concerning: 1) black carbon-soil organic matter interactions, 2) char decomposition and 3) impacts on microbial community structure and activities. Our understanding derives from a complementary set of post-fire black carbon field surveys and laboratory and field experiments with grass and wood char amendments, in which we used molecular (i.e., BPCA, PLFA) and isotopic (i.e., 13C and 15N labelled char) tracers. Overall, emerging results demonstrate that char additions to soil are prone to fast erosion, but a fraction remains that increases water retention and creates a better environment for the microbial community, particularly favoring gram negative bacteria. However, microbial decomposition of black carbon only slowly consumes a small fraction of it, thus char still significantly contributes to soil carbon sequestration. This is especially true in soils with little organic matter, where black carbon additions may even induce negative priming.

  17. Terrestrial and marine perspectives on modeling organic matter degradation pathways.

    PubMed

    Burd, Adrian B; Frey, Serita; Cabre, Anna; Ito, Takamitsu; Levine, Naomi M; Lønborg, Christian; Long, Matthew; Mauritz, Marguerite; Thomas, R Quinn; Stephens, Brandon M; Vanwalleghem, Tom; Zeng, Ning

    2016-01-01

    Organic matter (OM) plays a major role in both terrestrial and oceanic biogeochemical cycles. The amount of carbon stored in these systems is far greater than that of carbon dioxide (CO2 ) in the atmosphere, and annual fluxes of CO2 from these pools to the atmosphere exceed those from fossil fuel combustion. Understanding the processes that determine the fate of detrital material is important for predicting the effects that climate change will have on feedbacks to the global carbon cycle. However, Earth System Models (ESMs) typically utilize very simple formulations of processes affecting the mineralization and storage of detrital OM. Recent changes in our view of the nature of this material and the factors controlling its transformation have yet to find their way into models. In this review, we highlight the current understanding of the role and cycling of detrital OM in terrestrial and marine systems and examine how this pool of material is represented in ESMs. We include a discussion of the different mineralization pathways available as organic matter moves from soils, through inland waters to coastal systems and ultimately into open ocean environments. We argue that there is strong commonality between aspects of OM transformation in both terrestrial and marine systems and that our respective scientific communities would benefit from closer collaboration.

  18. Wastewater disinfection and organic matter removal using ferrate (VI) oxidation.

    PubMed

    Bandala, Erick R; Miranda, Jocelyn; Beltran, Margarita; Vaca, Mabel; López, Raymundo; Torres, Luis G

    2009-09-01

    The use of iron in a +6 valence state, (Fe (VI), as FeO4(-2)) was tested as a novel alternative for wastewater disinfection and decontamination. The removal of organic matter (OM) and index microorganisms present in an effluent of a wastewater plant was determined using FeO4(-2) without any pH adjustment. It was observed that concentrations of FeO4(-2) ranging between 5 and 14 mg l(-1) inactivated up to 4-log of the index microorganisms (initial concentration c.a. 10(6) CFU/100 ml) and achieved OM removal up to almost 50%. The performance of FeO4(-2) was compared with OM oxidation and disinfection using hypochlorite. It was observed that hypochlorite was less effective in OM oxidation and coliform inactivation than ferrate. Results of this work suggest that FeO4(-2) could be an interesting oxidant able to deactivate pathogenic microorganisms in water with high OM content and readily oxidize organic matter without jeopardizing its efficiency on microorganism inactivation.

  19. Speciation of The Particulate Organic Matter In Three Remote Areas

    NASA Astrophysics Data System (ADS)

    Masclet, Pierre; Marchand, Nicolas; Jaffrezo, Jean Luc; Besombes, Jean Luc

    Total particulate matter was collected as part of three programs between 1999 and 2001 (EAAS in Finland, ESOMPTE in Marseille/Fos and POVA in french alpine valleys). The speciation of the particulate organic matter (POM) was performed by Gas Chromatography or HPLC coupled with a mass spectrometer. 13 organic families were identified in the 245 samples collected. The presence of some functional groups (- COOH; - OH and - CHO) and the carbon chain length are used in order to identify the sources of the particulate pollutants and the physicochemical behaviour during the long range atmospheric transport of the aerosol. The composition of the POM differs depending on the season (the secondary fraction reaches 27 % in summer and only 6% in winter) and on the remoteness of the sources. Alkanes are always the most abundant compounds. Polycyclic aromatic hydrocarbons, alcohols, esters, carboxylic acids and monoaromatic hydrocarbons are present in significant abundance. Some alkenes, aldehydes, ether oxydes, ketones and halocompounds are also found. Alcohols are more abundant in aerosols collected close to marine sites. Long carbon chain esters are mostly found in aerosols collected in high density vegetation areas and relatively high concentrations of PAH are measured in aerosols collected close to highly populated areas. These three families are good geochemical tracers, respectively of marine, biogenic and anthropic sources.

  20. Photochemical and Nonphotochemical Transformations of Cysteine with Dissolved Organic Matter.

    PubMed

    Chu, Chiheng; Erickson, Paul R; Lundeen, Rachel A; Stamatelatos, Dimitrios; Alaimo, Peter J; Latch, Douglas E; McNeill, Kristopher

    2016-06-21

    Cysteine (Cys) plays numerous key roles in the biogeochemistry of natural waters. Despite its importance, a full assessment of Cys abiotic transformation kinetics, products and pathways under environmental conditions has not been conducted. This study is a mechanistic evaluation of the photochemical and nonphotochemical (dark) transformations of Cys in solutions containing chromophoric dissolved organic matter (CDOM). The results show that Cys underwent abiotic transformations under both dark and irradiated conditions. Under dark conditions, the transformation rates of Cys were moderate and were highly pH- and temperature-dependent. Under UVA or natural sunlight irradiations, Cys transformation rates were enhanced by up to two orders of magnitude compared to rates under dark conditions. Product analysis indicated cystine and cysteine sulfinic acid were the major photooxidation products. In addition, this study provides an assessment of the contributions of singlet oxygen, hydroxyl radical, hydrogen peroxide, and triplet dissolved organic matter to the CDOM-sensitized photochemical oxidation of Cys. The results suggest that another unknown pathway was dominant in the CDOM-sensitized photodegradation of Cys, which will require further study to identify.

  1. Effects of specific organs on seed oil accumulation in Brassica napus L.

    PubMed

    Liu, Jing; Hua, Wei; Yang, Hongli; Guo, Tingting; Sun, Xingchao; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong

    2014-10-01

    Seed oil content is an important agricultural characteristic in rapeseed breeding. Genetic analysis shows that the mother plant and the embryo play critical roles in regulating seed oil accumulation. However, the overwhelming majority of previous studies have focused on oil synthesis in the developing seed of rapeseed. In this study, to elucidate the roles of reproductive organs on oil accumulation, silique, ovule, and embryo from three rapeseed lines with high oil content (zy036, 6F313, and 61616) were cultured in vitro. The results suggest that zy036 silique wall, 6F313 seed coat, and 61616 embryo have positive impacts on the seed oil accumulation. In zy036, our previous studies show that high photosynthetic activity of the silique wall contributes to seed oil accumulation (Hua et al., 2012). Herein, by transcriptome sequencing and sucrose detection, we found that sugar transport in 6F313 seed coat might regulate the efficiency of oil synthesis by controlling sugar concentration in ovules. In 61616 embryos, high oil accumulation efficiency was partly induced by the elevated expression of fatty-acid biosynthesis-related genes. Our investigations show three organ-specific mechanisms regulating oil synthesis in rapeseed. This study provides new insights into the factors affecting seed oil accumulation in rapeseed and other oil crops.

  2. [Effects of controlled release nitrogen fertilizer application on dry matter accumulation and nitrogen balance of summer maize].

    PubMed

    Si, Dong-Xia; Cui, Zhen-Ling; Chen, Xin-Ping; Lü, Fu-Tang

    2014-06-01

    Effects of four controlled release nitrogen (N) fertilizers, including two kinds of polyester coated urea (Ncau, CRU) and phosphate (NhnP) and humic acid (NhnF) coated urea on assimilates accumulation and nitrogen balance of summer maize were investigated in a mode of one-time fertilization at the regional N recommended rate. The results showed that the N release curves of the two controlled release fertilizers CRU and Ncau matched well with the summer maize N uptake. Compared with the regional N recommendation rate, CRU could increase maize yield by 4.2% and Ncau could maintain the same yield level. CRU significantly increased the dry matter accumulation rate after anthesis of summer maize, but Ncau markedly increased the dry matter accumulated ratio before anthesis. Meanwhile, CRU could reduce the apparent N losses by 19 kg N x hm(-2) in the case of large precipitation. However, NhnF and NhnP caused the yield losses by 0.1%-8.9%, and enhanced the apparent N losses. Therefore, both CRU and Ncau with one-time fertilization could be a simplified alternative to the "total control, staging regulation" fertilization technique at the regional N recommended rate for summer maize production.

  3. Towards an understanding of feedbacks between plant productivity, acidity and dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Rowe, Ed; Tipping, Ed; Davies, Jessica; Monteith, Don; Evans, Chris

    2014-05-01

    The recent origin of much dissolved organic carbon (DOC) (Tipping et al., 2010) implies that plant productivity is a major control on DOC fluxes. However, the flocculation, sorption and release of potentially-dissolved organic matter are governed by pH, and widespread increases in DOC concentrations observed in northern temperate freshwater systems seem to be primarily related to recovery from acidification (Monteith et al., 2007). We explore the relative importance of changes in productivity and pH using a model, MADOC, that incorporates both these effects (Rowe et al., 2014). The feedback whereby DOC affects pH is included. The model uses an annual timestep and relatively simple flow-routing, yet reproduces observed changes in DOC flux and pH in experimental (Evans et al., 2012) and survey data. However, the first version of the model probably over-estimated responses of plant productivity to nitrogen (N) deposition in upland semi-natural ecosystems. There is a strong case that plant productivity is an important regulator of DOC fluxes, and theoretical reasons for suspecting widespread productivity increases in recent years due not only to N deposition but to temperature and increased atmospheric CO2 concentrations. However, evidence that productivity has increased in upland semi-natural ecosystems is sparse, and few studies have assessed the major limitations to productivity in these habitats. In systems where phosphorus (P) limitation prevails, or which are co-limited, productivity responses to anthropogenic drivers will be limited. We present a revised version of the model that incorporates P cycling and appears to represent productivity responses to atmospheric N pollution more realistically. Over the long term, relatively small fluxes of nutrient elements into and out of ecosystems can profoundly affect productivity and the accumulation of organic matter. Dissolved organic N (DON) is less easily intercepted by plants and microbes than mineral N, and DON

  4. Land Application of Wastes: An Educational Program. Organic Matter - Module 17, Objectives, and Script.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This module sketches out the impact of sewage organic matter on soils. For convenience, that organic matter is separated into the readily decomposable compounds and the more resistant material (volatile suspended solids, refractory organics, and sludges). The fates of those organics are reviewed along with loading rates and recommended soil…

  5. Sulfur species behavior in soil organic matter during decomposition

    USGS Publications Warehouse

    Schroth, A.W.; Bostick, B.C.; Graham, M.; Kaste, J.M.; Mitchell, M.J.; Friedland, A.J.

    2007-01-01

    Soil organic matter (SOM) is a primary re??servoir of terrestrial sulfur (S), but its role in the global S cycle remains poorly understood. We examine S speciation by X-ray absorption near-edge structure (XANES) spectroscopy to describe S species behavior during SOM decomposition. Sulfur species in SOM were best represented by organic sulfide, sulfoxide, sulfonate, and sulfate. The highest fraction of S in litter was organic sulfide, but as decomposition progressed, relative fractions of sulfonate and sulfate generally increased. Over 6-month laboratory incubations, organic sulfide was most reactive, suggesting that a fraction of this species was associated with a highly labile pool of SOM. During humification, relative concentrations of sulfoxide consistently decreased, demonstrating the importance of sulfoxide as a reactive S phase in soil. Sulfonate fractional abundance increased during humification irrespective of litter type, illustrating its relative stability in soils. The proportion of S species did not differ systematically by litter type, but organic sulfide became less abundant in conifer SOM during decomposition, while sulfate fractional abundance increased. Conversely, deciduous SOM exhibited lesser or nonexistent shifts in organic sulfide and sulfate fractions during decomposition, possibly suggesting that S reactivity in deciduous litter is coupled to rapid C mineralization and independent of S speciation. All trends were consistent in soils across study sites. We conclude that S reactivity is related to spqciation in SOM, particularly in conifer forests, and S species fractions in SOM change, during decomposition. Our data highlight the importance of intermediate valence species (sulfoxide and sulfonate) in the pedochemical cycling of organic bound S. Copyright 2007 by the American Geophysical Union.

  6. Mercury accumulation patterns and biochemical endpoints in wild fish (Liza aurata): a multi-organ approach.

    PubMed

    Mieiro, C L; Duarte, A C; Pereira, M E; Pacheco, M

    2011-11-01

    The integration of bioaccumulation and effect biomarkers in fish has been proposed for risk evaluation of aquatic contaminants. However, this approach is still uncommon, namely in the context of mercury contamination. Furthermore, a multi-organ evaluation allows an overall account of the organisms' condition. Having in mind the organs' role on metal toxicokinetics and toxicodynamics, gills, liver and kidney of golden grey mullet (Liza aurata) were selected and mercury accumulation, antioxidant responses and peroxidative damage were assessed. Two critical locations in terms of mercury occurrence were selected from an impacted area of the Ria de Aveiro, Portugal (L1, L2), and compared with a reference area. Although kidney was the organ with the highest mercury load, only gills and liver were able to distinguish mercury accumulation between reference (R) and contaminated stations. Each organ demonstrated different mercury burdens, whereas antioxidant responses followed similar patterns. Liver and kidney showed an adaptive capacity to the intermediate degree of contamination/accumulation (L1) depicted in a catalase activity increase. In contrast, none of the antioxidants was induced under higher contamination/accumulation (L2) in any organ, with the exception of renal GST. The lack of lipid peroxidation increase observed in the three organs denunciates the existence of an efficient antioxidant system. However, the evidences of limitations on antioxidants performance at L2 cannot be overlooked as an indication of mercury-induced toxicity. Having in mind the responses of the three organs, CAT revealed to be the most suitable parameter for identifying mercury exposure in the field. Overall, organ-specific mercury burdens were unable to distinguish the intermediate degree of contamination, while antioxidant responses revealed limitations on signalizing the worst scenario, reinforcing the need to their combined use.

  7. Origin of sedimentary organic matter at the Northern Cascadia Margin

    NASA Astrophysics Data System (ADS)

    Kaneko, M.; Naraoka, H.

    2007-12-01

    Gas hydrate in marine sediments may have important roles on global carbon cycle and climatic change. We examined origins of sedimentary organic matter and bacterial activity in deep and hydrate-bearing sediment cored in Site U1327 and U1328 at northern Cascadia Margin by IODP Exp311, using σ13C of total organic carbon (TOC), σ15N of total nitrogen (TN), σ34S of total sulfur (TS), and σ13C of biomarkers in hydrocarbon fraction. In both sites, TOC/TN ratios and σ13C of TOC values ranged from 5.5 to 18.0 and -25.7 to -21.5 ‰, respectively, suggesting that sedimentary organic matter is a mixture of terrestrial and marine sources. Long chain (n)-alkanes (C27, C29, and C30), known as biomarkers of terrestrial higher plant were most abundant components (up to ~50 μg/gCorg) through down to 300 mbsf, and their σ13C values (-34.3 to -28.7 ‰) reveal their C3 plant origin. In addition, very long-chain alkene (C37) occurred in some sediments, which suggests the blooming by coccolithophore in the past. σ34S of TS values at both sites show large variation between -30 to +20 ‰. Most of σ34S of TS values were less than present σ34S value of seawater sulfate (+20.3 ‰). This is attributable to isotope fractionation during microbial sulfate reduction. Crocetenes including one double bond occurred in deep sediments with higher σ13C values (-23 ‰) than the reported σ13C values (< ~ -100 ‰, Elvert et al, 2000), providing possibility of heterotrophic archaea using marine organic matter as a carbon source. Pentamethylicosane (PMI) was detected in relatively high concentrations at 249 mbsf at Site U1328 and its σ13C value was -46.4 ‰. This PMI could be chemoautotrophic archaea in origin such as methanogen. Diploptene was also detected in most sediments with the σ13C value of -37 to -35 ‰, probably being characteristic of chemoautotrophic bacteria.

  8. Organic matter protection as affected by the mineral soil matrix: allophanic vs. non-allophanic volcanic ash soils

    NASA Astrophysics Data System (ADS)

    Nierop, K. G. J.; Kaal, J.; Jansen, B.; Naafs, D. F. W.

    2009-04-01

    Volcanic ash soils (Andosols) contain the largest amounts of organic carbon of all mineral soil types. Chemical (complexes of organic matter with allophane, Al/Fe) and physical (aggregation) mechanisms are protecting the carbon from decomposition. While allophanic Andosols are dominated by short range order minerals such as allophane, imogolite and ferrihydrite, organic matter-Al/Fe complexes dominate non-allophanic Andosols. Consequently, chemical interactions between the mineral soil matrix and organic matter differ between these two soil types. This difference could potentially lead to different organic matter compositions. In this study, the organic matter of Ah horizons of an allophanic Andosol with a non-allophanic Andosol from Madeira Island is compared using analytical pyrolysis. Both volcanic soil types showed a relative decrease of lignin-derived pyrolysis products with depth, but this decrease was more pronounced in the allophanic Andosol. Polysaccharides were more abundant in the allophanic Ah horizon, particularly at lower depth, and this was also the case for the non-plant-derived N-containing polysaccharide chitin. Most likely, these biopolymers are adsorbed onto short range order minerals such as allophane and therefore were better protected in the allophanic Andosol. In addition, the higher chitin contents combined with the more pronounced lignin degradation suggests a higher fungal activity. Aliphatic pyrolysis products (n-alkenes/n-alkanes, fatty acids) were relatively more enriched in the non-allophanic Andosol. Lower microbial activity caused by the more acidic pH and higher levels of (toxic) aluminium are the most plausible reasons for the accumulation of these compounds in the non-allophanic Andosol. Although the allophanic and non-allophanic Andosol resembled each other in containing biopolymer groups of the same orders of magnitudes, in particular the contents of chitin and aliphatic compounds were distinctly affected by the differences in

  9. DETOXIFICATION OF OUTFALL WATER USING NATURAL ORGANIC MATTER

    SciTech Connect

    Halverson, N.; Looney, B.; Millings, M.; Nichols, R.; Noonkester, J.; Payne, B.

    2010-07-13

    To protect stream organisms in an ephemeral stream at the Savannah River Site, a proposed National Pollutant Discharge Elimination System (NPDES) permit reduced the copper limit from 25 {micro}g/l to 6 {micro}g/l at Outfall H-12. Efforts to reduce copper in the wastewater and stormwater draining to this outfall did not succeed in bringing copper levels below this limit. Numerous treatment methods were considered, including traditional methods such as ion exchange and natural treatment alternatives such as constructed wetlands and peat beds, all of which act to remove copper. However, the very low target metal concentration and highly variable outfall conditions presented a significant challenge for these treatment technologies. In addition, costs and energy use for most of these alternatives were high and secondary wastes would be generated. The Savannah River National Laboratory developed an entirely new 'detoxification' approach to treat the outfall water. This simple, lower-cost detoxification system amends outfall water with natural organic matter to bind up to 25 {micro}g/l copper rather than remove it, thereby mitigating its toxicity and protecting the sensitive species in the ecosystem. The amendments are OMRI (Organic Materials Review Institute) certified commercial products that are naturally rich in humic acids and are commonly used in organic farming.

  10. Identifying nitrogen limitations to organic sediments accumulation in various vegetation types of arctic tundra (Hornsund, Svalbard)

    NASA Astrophysics Data System (ADS)

    Skrzypek, G.; Wojtuń, B.; Hua, Q.; Richter, D.; Jakubas, D.; Wojczulanis-Jakubas, K.; Samecka-Cymerman, A.

    2015-12-01

    Arctic and subarctic regions play important roles in the global carbon balance. However, nitrogen (N) deficiency is a major constraint for organic carbon sequestration in the High Arctic. Hence, the identification of the relative contributions from different N-sources is critical for understanding the constraints that limit tundra growth. The stable nitrogen composition of the three main N-sources and numerous plants were analyzed in ten tundra types in the Fuglebekken catchment (Hornsund Fjord, Svalbard, 77°N 15°E). The percentage of the total tundra N-pool provided by seabirds' feces (colonially breeding, planktivorous Alle alle), ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by N2-fixation. The results clearly show that N-pool in the tundra is significantly supplemented by nesting seabirds. Thus, if they experienced substantial negative environmental pressure associated with climate change, it would adversely influence the tundra N-budget [1]. The growth rates and the sediment thickness (<15 cm) in different tundra types varied considerably but the tundra age was similar, <450 cal BP. The only exception was Ornithocoprophilous tundra with very diverse ages ranging from 235 to 2300 cal BP and thickness up to 110cm. The growth rates for this tundra (62 cm core, 18 AMS 14C dates) were high (1.5-3.0 mm/yr) between 1568 and 1804 AD and then substantially declined for the period between 1804 and 1929 AD (0.2 mm/yr). These findings deliver an additional argument, that the organic matter accumulation is driven not only directly by climatic conditions but also by birds' contribution to the tundra N-pool. [1] Skrzypek G, Wojtuń B, Richter D, Jakubas D, Wojczulanis-Jakubas K, Samecka-Cymerman A, 2015. Diversification of nitrogen sources in various tundra vegetation types in the high Arctic. PLoS ONE

  11. Study of Organic Matter in Soils of the Amazon Region Employing Laser Induced Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tadini, Amanda Maria; Nicolodelli, Gustavo; Mounier, Stéphane; Montes, Célia Regina; Marcondes Bastos Pereira Milori, Débora

    2014-05-01

    were a discontinuity in the accumulation of humified organic matter in the progress of depth. A hypothesis for occurrence of this behavior might be due to texture sandy and aggregate stability present in these soils, which can be difficulty the degradation of labile chains organic matter, thus promoting carbon sequestration in the long time in these soils. References [1]-Milori, D. M. B. P.; Galeti, H. V .A.; Martin-Neto, L.; Dieckow, J.; González-Pérez, M.; Bayer, C.; Salton, J. Organic matter study of whole soil samples using laser-induced fluorescense spectroscopy. Soil Science Society of America Journal, 70, 57-63, 2006. [2]-Martins, T.; Saab, S. C.; Milori, D. M. B. P.; Brinatti, A. M.; Rosa, J. A.; Cassaro, F. A. M.; Pires, L. F. Soil organic matter humification under diferente tillage managements evaluated by Laser Induced Fluorescence (LIF) and C/N ratio. Soil & Tillage Research, 111, 231-235, 2011. [3]-Milori, D. M. B. P.; Segnini, A.; Silva, W. T. L.; Posadas, A.; Mares, V.; Quiroz, R.; Martin-Neto, L. Emerging techniques for soil carbon measurements. Research Program on Climate Change, Agriculture and Food Security, nº 2, 2011. [4]-Senesi, N.; Plaza, C.; Brunetti, G.; Polo, A. A comparative survey of recente results on humic-like fractions in organic amendments and effects on native soil humic substances. Soil Biology & Biochemistry, 39, 1244-1262, 2007.

  12. Measuring Organic Matter with COSIMA on Board Rosetta

    NASA Astrophysics Data System (ADS)

    Briois, C.; Baklouti, D.; Bardyn, A.; Cottin, H.; Engrand, C.; Fischer, H.; Fray, N.; Godard, M.; Hilchenbach, M.; von Hoerner, H.; Höfner, H.; Hornung, K.; Kissel, J.; Langevin, Y.; Le Roy, L.; Lehto, H.; Lehto, K.; Orthous-Daunay, F. R.; Revillet, C.; Rynö, J.; Schulz, R.; Silen, J. V.; Siljeström, S.; Thirkell, L.

    2014-12-01

    Comets are believed to contain the most pristine material of our Solar System materials and therefore to be a key to understand the origin of the Solar System, and the origin of life. Remote sensing observations have led to the detection of more than twenty simple organic molecules (Bockelée-Morvan et al., 2004; Mumma and Charnley, 2011). Experiments on-board in-situ exploration missions Giotto and Vega and the recent Stardust sample return missions have shown that a significant fraction of the cometary grains consists of organic matter. Spectra showed that both the gaseous (Mitchell et al., 1992) and the solid phase (grains) (Kissel and Krueger, 1987) contained organic molecules with higher masses than those of the molecules detected by remote sensing techniques in the gaseous phase. Some of the grains analyzed in the atmosphere of comet 1P/Halley seem to be essentially made of a mixture of carbon, hydrogen, oxygen and nitrogen (CHON grains, Fomenkova, 1999). Rosetta is an unparalleled opportunity to make a real breakthrough into the nature of cometary matter, both in the gas and in the solid phase. The dust mass spectrometer COSIMA on Rosetta will analyze organic and inorganic phases in the dust. The organic phases may be refractory, but some organics may evaporate with time from the dust and lead to an extended source in the coma. Over the last years, we have prepared the cometary rendezvous by the analysis of various samples with the reference model of COSIMA. We will report on this calibration data set and on the first results of the in-situ analysis of cometary grains as captured, imaged and analyzed by COSIMA. References : Bockelée-Morvan, D., et al. 2004. (Eds.), Comets II. the University of Arizona Press, Tucson, USA, pp. 391-423 ; Fomenkova, M.N., 1999. Space Science Reviews 90, 109-114 ; Kissel, J., Krueger, F.R., 1987. Nature 326, 755-760 ; Mitchell, et al. 1992. Icarus 98, 125-133 ; Mumma, M.J., Charnley, S.B., 2011. Annual Review of Astronomy and

  13. Organic matter loss from cultivated peat soils in Sweden

    NASA Astrophysics Data System (ADS)

    Berglund, Örjan; Berglund, Kerstin

    2015-04-01

    The degradation of drained peat soils in agricultural use is an underestimated source of loss of organic matter. Oxidation (biological degradation) of agricultural peat soils causes a loss of organic matter (OM) of 11 - 22 t ha-1 y-1 causing a CO2 emission of 20 - 40 t ha-1 y-1. Together with the associated N2O emissions from mineralized N this totals in the EU to about 98.5 Mton CO2 eq per year. Peat soils are very prone to climate change and it is expected that at the end of this century these values are doubled. The degradation products pollute surface waters. Wind erosion of peat soils in arable agriculture can cause losses of 3 - 30 t ha-1 y-1 peat also causing air pollution (fine organic particles). Subsidence rates are 1 - 2 cm per year which leads to deteriorating drainage effect and make peat soils below sea or inland water levels prone to flooding. Flooding agricultural peat soils is in many cases not possible without high costs, high GHG emissions and severe water pollution. Moreover sometimes cultural and historic landscapes are lost and meadow birds areas are lost. In areas where the possibility to regulate the water table is limited the mitigation options are either to increase biomass production that can be used as bioenergy to substitute some fossil fuel, try to slow down the break-down of the peat by different amendments that inhibit microbial activity, or permanent flooding. The negative effects of wind erosion can be mitigated by reducing wind speed or different ways to protect the soil by crops or fiber sheets. In a newly started project in Sweden a typical peat soil with and without amendment of foundry sand is cropped with reed canary grass, tall fescue and timothy to investigate the yield and greenhouse gas emissions from the different crops and how the sand effect the trafficability and GHG emissions.

  14. Chromophoric Dissolved Organic Matter in Southwestern Greenland Lakes

    NASA Astrophysics Data System (ADS)

    Osburn, C. L.; Giles, M. E.; Underwood, G. J. C.

    2014-12-01

    Dissolved organic matter (DOM) is an important property of Arctic lake ecosystems, originating from allochthonous inputs from catchments and autochthonous production by plankton in the water column. Little is known about the quality of DOM in Arctic lakes that lack substantial inputs from catchments and such lakes are abundant in southwestern Greenland. Colored dissolved organic matter (CDOM), the fraction that absorbs ultraviolet (UV) and visible light, is the controlling factor for the optical properties of many surface waters and as well informs on the quality of DOM. We examined the quality of CDOM in 21 lakes in southwestern Greenland, from the ice sheet to the coast, as part of a larger study examining the role of DOM in regulating microbial communities in these lakes. DOM was size fractioned and absorbance and fluorescence was measured on each size fraction, as well as on bulk DOM. The specific ultraviolet absorbance (SUVA) at 254 nm (SUVA254), computed by normalizing absorption (a254) to dissolved organic carbon (DOC) concentration, provided an estimate of the aromatic carbon content of DOM. SUVA values were generally <2, indicating low aromatic content. Parallel factor analysis (PARAFAC) of CDOM fluorescence was used to determine the relative abundance of allochthonous and autochthonous DOM in all size fractions. Younger lakes near the ice sheet and lakes near the coast had lower amounts of CDOM and appeared more microbial in quality. However, lakes centrally located between the ice sheet and the coast had the highest CDOM concentrations and exhibited strong humic fluorescence. Overall distinct differences in CDOM quality were observed between lake locations and among DOM size fractions.

  15. Soil Organic Matter Dynamics in the Rothamsted Long-term Experiments

    NASA Astrophysics Data System (ADS)

    MacDonald, A.; Poulton, P.

    2009-04-01

    Soil science research at Rothamsted dates from 1843 when John Bennet Lawes and Joseph Henry Gilbert started the first of a series of what became long-term field experiments. The main object of these experiments was to examine the effect of inorganic and organic fertilisers and manures on crop yield and soil fertility. These "Classical Field Experiments" included studies on winter wheat (Broadbalk 1843), spring barley (Hoos Barley 1852) and permanent grassland (Park Grass 1856). Additional experiments were established in the 20th century to examine the value of ley-arable cropping, including the Highfield and Fosters Ley-arable experiments (1948) and the Woburn Ley-arable experiment (1938). More recently, the effects of incorporating organic manures and cereal straw have been examined. Early results quickly showed the benefits of inorganic N and P fertilisers on crop production, but the effects of contrasting land uses and management practices on soil properties emerged more slowly. Measurements of soil organic carbon (C) and nitrogen (N) in soils taken at intervals from the long-term experiments indicate that the rate of soil organic matter (SOM) accumulation is controlled largely by the balance between the rate of organic matter inputs and its oxidation rate, and that these are strongly influenced by land use and management, soil texture (especially clay content) and climate. A recent examination of soil organic C data from two long-term grassland experiments in the UK (including Park Grass) indicates that any changes observed in soil organic C under long-term grasslands over the past 40 years are more likely to be due to changes in land use and management rather than climate change. Data from the Rothamsted Long-term experiments have been used to develop and test biogeochemical models of C and N dynamics. In particular, the Roth-C model has successfully simulated soil C dynamics in the long-term experiments at Rothamsted and elsewhere. This model uses several

  16. SNC Meteorites, Organic Matter and a New Look at Viking

    NASA Technical Reports Server (NTRS)

    Warmflash, David M.; Clemett, Simon J.; McKay, David S.

    2001-01-01

    Recently, evidence has begun to grow supporting the possibility that the Viking GC-MS would not have detected certain carboxylate salts that could have been present as metastable oxidation products of high molecular weight organic species. Additionally, despite the instrument's high sensitivity, the possibility had remained that very low levels of organic matter, below the instrument's detection limit, could have been present. In fact, a recent study indicates that the degradation products of several million microorganisms per gram of soil on Mars would not have been detected by the Viking GC-MS. Since the strength of the GC-MS findings was considered enough to dismiss the biology packet, particularly the LR results, any subsequent evidence suggesting that organic molecules may in fact be present on the Martian surface necessitates a re-evaluation of the Viking LR data. In addition to an advanced mass spectrometer to look for isotopic signatures of biogenic processes, future lander missions will include the ability to detect methane produced by methanogenic bacteria, as well as techniques based on biotechnology. Meanwhile, the identification of Mars samples already present on Earth in the form of the SNC meteorites has provided us with the ability to study samples of the Martian upper crust a decade or more in advance of any planned sample return missions. While contamination issues are of serious concern, the presence of indigenous organic matter in the form of polycyclic aromatic hydrocarbons has been detected in the Martian meteorites ALH84001 and Nakhla, while there is circumstantial evidence for carbonaceous material in Chassigny. The radiochronological ages of these meteorites are 4.5 Ga, 1.3 Ga, and 165 Ma respectively representing a span of time in Earth history from the earliest single-celled organisms to the present day. Given this perspective on organic material, a biological interpretation to the Viking LR results can no longer be ruled out. In the LR

  17. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes

    PubMed Central

    Wang, Hui; Boutton, Thomas W.; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-01-01

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two 13C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change. PMID:25960162

  18. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Boutton, Thomas W.; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-05-01

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two 13C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change.

  19. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes.

    PubMed

    Wang, Hui; Boutton, Thomas W; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-05-11

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two (13)C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change.

  20. Organic carbon accumulation capability of two typical tidal wetland soils in Chongming Dongtan, China.

    PubMed

    Zhang, Shiping; Wang, Lei; Hu, Jiajun; Zhang, Wenquan; Fu, Xiaohua; Le, Yiquan; Jin, Fangming

    2011-01-01

    We measured organic carbon input and content of soil in two wetland areas of Chongming Dongtan (Yangtze River Estuary) to evaluate variability in organic carbon accumulation capability in different wetland soils. Observed differences were investigated based on the microbial activity and environmental factors of the soil at the two sites. Results showed that the organic carbon content of wetland soil vegetated with Phragmites australis (site A) was markedly lower than that with P. australis and Spartina alterniflora (site B). Sites differences were due to higher microbial activity at site A, which led to higher soil respiration intensity and greater carbon outputs. This indicated that the capability of organic carbon accumulation of the site B soils was greater than at site A. In addition, petroleum pollution and soil salinity were different in the two wetland soils. After bio-remediation, the soil petroleum pollution at site B was reduced to a similar level of site A. However, the culturable microbial biomass and enzyme activity in the remediated soils were also lower than at site A. These results indicated that greater petroleum pollution at site B did not markedly inhibit soil microbial activity. Therefore, differences in vegetation type and soil salinity were the primary factors responsible for the variation in microbial activity, organic carbon output and organic carbon accumulation capability between site A and site B.

  1. Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter

    SciTech Connect

    Arndt Schimmelmann; Maria Mastalerz

    2010-03-30

    Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

  2. Storage and turnover of organic matter in soil

    SciTech Connect

    Torn, M.S.; Swanston, C.W.; Castanha, C.; Trumbore, S.E.

    2008-07-15

    Historically, attention on soil organic matter (SOM) has focused on the central role that it plays in ecosystem fertility and soil properties, but in the past two decades the role of soil organic carbon in moderating atmospheric CO{sub 2} concentrations has emerged as a critical research area. This chapter will focus on the storage and turnover of natural organic matter in soil (SOM), in the context of the global carbon cycle. Organic matter in soils is the largest carbon reservoir in rapid exchange with atmospheric CO{sub 2}, and is thus important as a potential source and sink of greenhouse gases over time scales of human concern (Fischlin and Gyalistras 1997). SOM is also an important human resource under active management in agricultural and range lands worldwide. Questions driving present research on the soil C cycle include: Are soils now acting as a net source or sink of carbon to the atmosphere? What role will soils play as a natural modulator or amplifier of climatic warming? How is C stabilized and sequestered, and what are effective management techniques to foster these processes? Answering these questions will require a mechanistic understanding of how and where C is stored in soils. The quantity and composition of organic matter in soil reflect the long-term balance between plant carbon inputs and microbial decomposition, as well as other loss processes such as fire, erosion, and leaching. The processes driving soil carbon storage and turnover are complex and involve influences at molecular to global scales. Moreover, the relative importance of these processes varies according to the temporal and spatial scales being considered; a process that is important at the regional scale may not be critical at the pedon scale. At the regional scale, SOM cycling is influenced by factors such as climate and parent material, which affect plant productivity and soil development. More locally, factors such as plant tissue quality and soil mineralogy affect

  3. Influence of land use on soil organic matter

    NASA Astrophysics Data System (ADS)

    Rogeon, H.; Lemée, L.; Chabbi, A.; Ambles, A.

    2009-04-01

    Soil organic matter (SOM) is actually of great environmental interest as the amount of organic matter stored in soils represents one of the largest reservoirs of organic carbon on the global scale [1]. Indeed, soil carbon storage capacity represents 1500 to 2000 Gt for the first meter depth, which is twice the concentration of atmospheric CO2 [2]. Furthermore, human activities, such as deforestation (which represents a flux of 1.3 Gt C/year), contribute to the increase in atmospheric CO2 concentration for about one percent a year [3]. Therefore, carbon dioxide sequestration in plant and carbon storage in soil and biomass could be considered as a complementary solution against climate change. The stock of carbon in soils is greatly influenced by land use (ca 70 Gt for a forest soil or a grassland against 40 Gt for an arable land). Furthermore the molecular composition of SOM should be also influenced by vegetation. In this context, four horizons taken between 0-120 cm from the same profile of a soil under grassland and forest located in the vicinity of Poitiers (INRA Lusignan, ORE Prairie) were compared. For the surface horizon, the study is improved with the results from the cultivated soil from INRA Versailles. Soil organic matter was characterized using IR spectroscopy, elemental analysis and thermal analysis. Granulometric fractionation into sand (50-2000 μm), silt (2-50 μm) and clay (<2 μm) was conducted. The organic matter associated with the mineral fractions was thus characterized using thermochemolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS). The total lipidic fractions were extracted with CH2Cl2/MeOH using an accelerated solvent extraction (ASE). In the three soils, lipids are concentrated into the superficial horizon (0-30 cm) which indicates a low mobilisation. Lipids from the superficial horizon are more abundant for the arable soil (1010 ppm) than for the two other (400 ppm). Lipids from the forest and the grassland were

  4. Size fractionated characterization of freshwater organic matter fluorescence

    NASA Astrophysics Data System (ADS)

    Baker, A.; Lead, J.; Elliott, S.; Demomi, A.; Liu, R.; Seredynska-Sobecka, B.; Hudson, N. J.

    2006-12-01

    We employ a range of optical (fluorescence, absorbance) techniques to freshwater organic matter, focusing on samples from urban catchments and using both traditional (filtration, cross flow ultrafiltration) and novel (split cell thin flow (SPLITT)) fractionation techniques to investigate the fluorescence characteristics of both dissolved and colloidal organic matter and to probe different fractions of the size range. We find: (1) As with previous studies, urban freshwaters have high tryptophan-like fluorescence in comparison to humic-like fluorescence. (2) After conventional filtration, our samples demonstrate that humic-like fluorescence is predominantly within the <25 nm fraction and pH dependent, suggesting that it is predominantly `dissolved'. Tryptophan-like fluorescence is associated with either dissolved, colloidal and particulate fractions, and is less pH dependent, depending on the sample, suggesting a variety of sources that are known to include microbial and biological cells and their exudates and the products of decomposition and feeding. (3) When the thermal quenching of fluorescence is investigated at different filter fractions, humic-like fluorescence quenching does not vary with filter fraction, whereas tryptophan-like fluorescence quenching exhibits a size dependency. This confirms at least two sources of tryptophan-like fluorescence that have different sizes and different thermal quenching properties. (4) SPLITT also shows that tryptophan-like fluorescence intensity is found mainly in the particulate material and is not pH dependent, while humic-like fluorescence intensities are dependent on pH but not on size. However, humic-like fluorescence intensity normalised to absorbance, related to fluorescence efficiency and molar mass, varies with size in the SPLITT samples. (5) Cross flow ultrafiltration confirms that, compared with tryptophan standards, freshwater tryptophan-like fluorescence is not dissolved and `free'. However, it is related to the

  5. Root Mediation of Soil Organic Matter Feedbacks to Climate Change

    NASA Astrophysics Data System (ADS)

    Pendall, E.; Carrillo, Y.; Nie, M.; Osanai, Y.; Nelson, L. C.; Sanderman, J.; Baldock, J.; Hovenden, M.

    2014-12-01

    The importance of plant roots in carbon cycling and especially soil organic matter (SOM) formation and decomposition has been recently recognized. Up to eighty percent of net primary production may be allocated to roots in ecosystems such as grasslands, where they contribute substantially to SOM formation. On the other hand, root induced priming of SOM decomposition has been implicated in the loss of soil C stocks. Thus, the accurate prediction of climate change impacts on C sequestration in soils largely depends upon improved understanding of root-mediated SOM formation and loss in the rhizosphere. This presentation represents an initial attempt to synthesize belowground observations from free-air CO2 enrichment and warming experiments in two grassland ecosystems. We found that the chemical composition of root carbon is similar to particulate organic matter (POM), but not to mineral associated organic matter (MOM), suggesting less microbial modification during formation of POM than MOM. While root biomass and production rates increased under elevated CO2, POM and MOM fractions did not increase proportionally. We also observed increased root decomposition with elevated CO2, which was likely due to increased soil water and substrate availability, since root C quality (determined by NMR) and decomposition (in laboratory incubations) were unaltered. Further, C quality and decomposition rates of roots differed between C3 and C4 functional types. Changes in root morphology with elevated CO2 have altered root functioning. Increased root surface area and length per unit mass allow increased exploration for nutrients, and potentially enhanced root exudation, rhizodeposition, and priming of SOM decomposition. Controlled chamber experiments demonstrated that uptake of N from SOM was linearly correlated with specific root length. Taken together, these results indicate that root morphology, chemistry and function all play roles in affecting soil C storage and loss, and that

  6. Nickel as indicator of fresh organic matter in upwelling sediments

    NASA Astrophysics Data System (ADS)

    Böning, Philipp; Shaw, Tim; Pahnke, Katharina; Brumsack, Hans-Jürgen

    2015-08-01

    Trace metals involved in biological cycling (e.g. Cd, Cu, Ni, Zn) typically accumulate in upwelling sediments due to a high productivity-related particle flux and an enhanced preservation at depth. However, poor constraint on the contribution of lithogenic metal fraction, early diagenetic transformation processes and anthropogenic metal inputs may complicate sediment metal signatures. The identification of source and accumulation mechanisms is essential to the validation of these metals as productivity proxies. Here we combine data from various short cores (upper 50 cm) and two longer cores of organic-rich upwelling sediments (Peru, Namibia, Chile and Gulf of California), which suggest a highly significant, linear and uniform relationship between Ni and total organic carbon (TOC). The overall high Ni enrichment may be explained by the occurrence of diatoms, which dominate productivity in these systems. The Peru surface sediments (upper 2 cm) show a less pronounced Ni-TOC relationship and support a transition between lower Ni/TOC ratio of East Pacific water column particles and the higher Ni/TOC ratio observed in deeper sediments. In Peru surface sediments, the process is confirmed as a stoichiometric relation between Ni and total chlorins (the immediate degradation products of chlorophyll pigments), which is not observed for Cu or Zn. Our data strongly support previous findings that Ni is a clear (if not the best) indicator of the organic sinking flux. This is also due to the fact that Ni signatures undergo less alteration associated with sulfur and manganese cycling and low contribution from anthropogenic sources. The apparently exclusive Ni-chlorin stoichiometry suggests that Ni may be associated with enzymes that are involved in photoautotrophic production, which underlines the previous finding from laboratory experiments and field work that diatoms have a dominant role in marine Ni cycling. The Ni/chlorin ratio increases with increasing sediment depth

  7. Structural and functional properties of organic matters in extracellular polymeric substances (EPS) and dissolved organic matters (DOM) after heat pretreatment with waste sludge.

    PubMed

    Sun, Jian; Guo, Liang; Li, Qianqian; Zhao, Yangguo; Gao, Mengchun; She, Zonglian; Wang, Guangce

    2016-11-01

    The effects of heat pretreatment on waste sludge hydrolysis were investigated in this study. Heat pretreatment was conducted at 65°C, 80°C, 100°C and 121°C for 5min, 10min, 15min, 20min, 25min and 30min. Not only analyzed the changes of SCOD (Soluble chemical oxygen demand), carbohydrate and protein, but also evaluated the structural and functional properties of organics in extracellular polymeric substances (EPS) and dissolved organic matters (DOM) by using three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy with fluorescence regional integration (FRI) analysis. The SCOD in DOM increased with pretreated temperatures. The optimal heat hydrolysis temperature and time were selected by further studying the biodegradable and non-biodegradable components. After treated at 80°C for 25min, the fluorescence intensity and percent fluorescence response (Pi,n) of easily biodegradable soluble microbial by-product substance were higher than others, and little non-biodegradable fulvic acid-like substance was accumulated.

  8. Self-organized plasmas formed by accumulated charge in dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Akashi, Haruaki; Yoshinaga, Tomokazu

    2016-09-01

    Atmospheric pressure dielectric barrier discharges (DBDs) have been widely applied to various research fields, such as bio-medical treatment, toxic decomposition and so on. However, the details of DBD have not been understood yet. Because the phenomena occur in nanosecond time scale under atmospheric pressure. It is known that DBDs are significantly affected by accumulated charges on dielectrics, but the distributions and development of accumulated charges are not known for years. To clarify the distributions and the developments of accumulated charges on dielectrics and electron behavior in the vicinity of dielectrics, DBDs in atmospheric pressure oxygen have been simulated using a two dimensional fluid model with relatively high electron emission coefficient. In this condition, DBD simulation results are obtained in so called self-organized form. As a result, the locations of highly accumulated charges are at where the primary streamers reached in a half cycle. And the charges on the dielectrics become almost zero by the electrons after the change of discharge voltage polarity. The electron distribution in the vicinity of the dielectric forms similar to that of accumulated charges to compensate the charges. Excess electrons in front of dielectric become the seed electrons for next half cycle. This continuation makes discharge in self-organized form.

  9. Pacific carbon cycling constrained by organic matter size, age and composition relationships

    NASA Astrophysics Data System (ADS)

    Walker, Brett D.; Beaupré, Steven R.; Guilderson, Thomas P.; McCarthy, Matthew D.; Druffel, Ellen R. M.

    2016-12-01

    Marine organic matter is one of Earth’s largest actively cycling reservoirs of organic carbon and nitrogen. The processes controlling organic matter production and removal are important for carbon and nitrogen biogeochemical cycles, which regulate climate. However, the many possible cycling mechanisms have hindered our ability to quantify marine organic matter transformation, degradation and turnover rates. Here we analyse existing and new measurements of the carbon:nitrogen ratio and radiocarbon age of organic matter spanning sizes from large particulate organic matter to small dissolved organic molecules. We find that organic matter size is negatively correlated with radiocarbon age and carbon:nitrogen ratios in coastal, surface and deep waters of the Pacific Ocean. Our measurements suggest that organic matter is increasingly chemically degraded as it decreases in size, and that small particles and molecules persist in the ocean longer than their larger counterparts. Based on these correlations, we estimate the production rates of small, biologically recalcitrant dissolved organic matter molecules at 0.11-0.14 Gt of carbon and about 0.005 Gt of nitrogen per year in the deep ocean. Our results suggest that the preferential remineralization of large over small particles and molecules is a key process governing organic matter cycling and deep ocean carbon storage.

  10. Sources, Ages, and Alteration of Organic Matter in Estuaries.

    PubMed

    Canuel, Elizabeth A; Hardison, Amber K

    2016-01-01

    Understanding the processes influencing the sources and fate of organic matter (OM) in estuaries is important for quantifying the contributions of carbon from land and rivers to the global carbon budget of the coastal ocean. Estuaries are sites of high OM production and processing, and understanding biogeochemical processes within these regions is key to quantifying organic carbon (Corg) budgets at the land-ocean margin. These regions provide vital ecological services, including nutrient filtration and protection from floods and storm surge, and provide habitat and nursery areas for numerous commercially important species. Human activities have modified estuarine systems over time, resulting in changes in the production, respiration, burial, and export of Corg. Corg in estuaries is derived from aquatic, terrigenous, and anthropogenic sources, with each source exhibiting a spectrum of ages and lability. The complex source and age characteristics of Corg in estuaries complicate our ability to trace OM along the river-estuary-coastal ocean continuum. This review focuses on the application of organic biomarkers and compound-specific isotope analyses to estuarine environments and on how these tools have enhanced our ability to discern natural sources of OM, trace their incorporation into food webs, and enhance understanding of the fate of Corg within estuaries and their adjacent waters.

  11. Sources, Ages, and Alteration of Organic Matter in Estuaries

    NASA Astrophysics Data System (ADS)

    Canuel, Elizabeth A.; Hardison, Amber K.

    2016-01-01

    Understanding the processes influencing the sources and fate of organic matter (OM) in estuaries is important for quantifying the contributions of carbon from land and rivers to the global carbon budget of the coastal ocean. Estuaries are sites of high OM production and processing, and understanding biogeochemical processes within these regions is key to quantifying organic carbon (Corg) budgets at the land-ocean margin. These regions provide vital ecological services, including nutrient filtration and protection from floods and storm surge, and provide habitat and nursery areas for numerous commercially important species. Human activities have modified estuarine systems over time, resulting in changes in the production, respiration, burial, and export of Corg. Corg in estuaries is derived from aquatic, terrigenous, and anthropogenic sources, with each source exhibiting a spectrum of ages and lability. The complex source and age characteristics of Corg in estuaries complicate our ability to trace OM along the river-estuary-coastal ocean continuum. This review focuses on the application of organic biomarkers and compound-specific isotope analyses to estuarine environments and on how these tools have enhanced our ability to discern natural sources of OM, trace their incorporation into food webs, and enhance understanding of the fate of Corg within estuaries and their adjacent waters.

  12. Conversion from cropland to short rotation coppice willow and poplar: Accumulation of soil organic carbon

    NASA Astrophysics Data System (ADS)

    Georgiadis, Petros; Stupak, Inge; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-04-01

    it was not significant. The increasing soil carbon stocks in SRC stands on former cropland can be attributed to the increased leaf and litter input from the perennial SRC plantations as well as less stimulation of organic matter decomposition after cessation of annual. Initial losses of soil carbon after the land use change have also been reported by other studies, but the soil carbon accumulation high rates suggest that SRC can act as sinks at least for some decades. Our results indicate that a steady state has not yet been reached after 29 years. Key words: Bioenergy,Land Use Change, poplar, Short Rotation Coppice, Soil Organic Carbon, willow,

  13. Molecular characterization of dissolved organic matter in pore water of continental shelf sediments

    NASA Astrophysics Data System (ADS)

    Schmidt, Frauke; Elvert, Marcus; Koch, Boris P.; Witt, Matthias; Hinrichs, Kai-Uwe

    2009-06-01

    Dissolved organic matter (DOM) in sediment pore water is a complex molecular mixture reflecting various sources and biogeochemical processes. In order to constrain those sources and processes, molecular variations of pore water DOM in surface sediments from the NW Iberian shelf were analyzed by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and compared to river and marine water column DOM. Weighted average molecular element ratios of oxygen to carbon ((O/C) wa) and hydrogen to carbon ((H/C) wa) provided general information about DOM sources. DOM in local rivers was more oxygenated ((O/C) wa 0.52) and contained less hydrogen ((H/C) wa 1.15) than marine pore water DOM (mean (O/C) wa 0.50, mean (H/C) wa 1.26). The relative abundance of specific compound groups, such as highly oxygenated aromatic compounds or nitrogen-bearing compounds with low H/C ratios, correspond to a high concentration of lignin phenols (160 μg/g sediment dry weight) and a high TOC/TN ratio (13.3) in the sedimentary organic matter and were therefore assigned to terrestrial sources. The lower degree of unsaturation and a higher relative abundance of nitrogen-bearing compounds in the pore water DOM reflected microbial activity within the sediment. One sampling site on the shelf with a high sediment accumulation, and a humic-rich river sample showed a wide range of sulfur compounds in the DOM, accompanied by a higher abundance of lipid biomarkers for sulfate-reducing bacteria, probably indicating early diagenetic sulfurization of organic matter.

  14. Fluorescence spectroscopic characterization of dissolved organic matter fractions in soils in soil aquifer treatment.

    PubMed

    Xue, Shuang; Zhao, Qingliang; Wei, Liangliang; Song, Youtao; Tie, Mei

    2013-06-01

    This work investigated the effect of soil aquifer treatment (SAT) operation on the fluorescence characteristics of dissolved organic matter (DOM) fractions in soils through laboratory-scale soil columns with a 2-year operation. The resin adsorption technique (with XAD-8 and XAD-4 resins) was employed to characterize the dissolved organic matter in soils into five fractions, i.e., hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N), and hydrophilic fraction (HPI). The synchronous fluorescence spectra revealed the presence of soluble microbial byproduct- and humic acid-like components and polycyclic aromatic compounds in DOM in soils, and SAT operation resulted in the enrichment of these fluorescent materials in all DOM fractions in the surface soil (0-12.5 cm). More importantly, the quantitative method of fluorescence regional integration was used in the analysis of excitation-emission matrix (EEM) spectra of DOM fractions in soils. The cumulative EEM volume (Φ T, n ) results showed that SAT operation led to the enrichment of more fluorescent components in HPO-A and TPI-A, as well as the dominance of less fluorescent components in HPO-N, TPI-N, and HPI in the bottom soil (75-150 cm). Total Φ T, n values, which were calculated as [Formula: see text], suggested an accumulation of fluorescent organic matter in the upper 75 cm of soil as a consequence of SAT operation. The distribution of volumetric fluorescence among five regions (i.e., P i, n ) results revealed that SAT caused the increased content of humic-like fluorophores as well as the decreased content of protein-like fluorophores in both HPO-A and TPI-A in soils.

  15. Plants mediate soil organic matter decomposition in response to sea level rise.

    PubMed

    Mueller, Peter; Jensen, Kai; Megonigal, James Patrick

    2016-01-01

    Tidal marshes have a large capacity for producing and storing organic matter, making their role in the global carbon budget disproportionate to land area. Most of the organic matter stored in these systems is in soils where it contributes 2-5 times more to surface accretion than an equal mass of minerals. Soil organic matter (SOM) sequestration is the primary process by which tidal marshes become perched high in the tidal frame, decreasing their vulnerability to accelerated relative sea level rise (RSLR). Plant growth responses to RSLR are well understood and represented in century-scale forecast models of soil surface elevation change. We understand far less about the response of SOM decomposition to accelerated RSLR. Here we quantified the effects of flooding depth and duration on SOM decomposition by exposing planted and unplanted field-based mesocosms to experimentally manipulated relative sea level over two consecutive growing seasons. SOM decomposition was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated via δ(13) CO2 . Despite the dominant paradigm that decomposition rates are inversely related to flooding, SOM decomposition in the absence of plants was not sensitive to flooding depth and duration. The presence of plants had a dramatic effect on SOM decomposition, increasing SOM-derived CO2 flux by up to 267% and 125% (in 2012 and 2013, respectively) compared to unplanted controls in the two growing seasons. Furthermore, plant stimulation of SOM decomposition was strongly and positively related to plant biomass and in particular aboveground biomass. We conclude that SOM decomposition rates are not directly driven by relative sea level and its effect on oxygen diffusion through soil, but indirectly by plant responses to relative sea level. If this result applies more generally to tidal wetlands, it has important implications for models of SOM accumulation and surface elevation change in response to accelerated RSLR.

  16. New monoaromatic steroids in organic matter of the apocatagenesis zone

    NASA Astrophysics Data System (ADS)

    Kashirtsev, V. A.; Fomin, A. N.; Shevchenko, N. P.; Dolzhenko, K. V.

    2016-08-01

    According to the materials of geochemical study in the core of the ultradeep hole SV-27 of aromatic fractions of bitumoids of the Vilyui syneclise (East Siberia) by the method of chromatography-mass spectrometry, starting from the depth of >5000 m, four diastereomers of previously unknown hydrocarbons, which become predominant in the fraction at a depth of ˜6500 m, were distinguished. Similar hydrocarbons were found in organic matter of Upper Paleozoic rocks of the Kharaulakh anticlinorium in the Verkhoyansk folded area. According to the intense molecular ion m/z 366 and the character of the basic fragmental ions (m/z 238, 309, and 323), the major structure of the compounds studied was determined as 17-desmethyl-23-methylmonoaromatic steroid C27. The absence of such steroids in oil of the Vilyui syneclise shows that deep micro-oils did not participate in the formation of oil fringes of gas condensate deposits of the region.

  17. Modeling of natural organic matter transport processes in groundwater.

    PubMed Central

    Yeh, T C; Mas-Pla, J; McCarthy, J F; Williams, T M

    1995-01-01

    A forced-gradient tracer test was conducted at the Georgetown site to study the transport of natural organic matter (NOM) in groundwater. In particular, the goal of this experiment was to investigate the interactions between NOM and the aquifer matrix. A detailed three-dimensional characterization of the hydrologic conductivity heterogeneity of the site was obtained using slug tests. The transport of a conservative tracer (chloride) was successfully reproduced using these conductivity data. Despite the good simulation of the flow field, NOM breakthrough curves could not be reproduced using a two-site sorption model with spatially constant parameters. Preliminary results suggest that different mechanisms for the adsorption/desorption processes, as well as their spatial variability, may significantly affect the transport and fate of NOM. PMID:7621798

  18. Systematic approaches to comprehensive analyses of natural organic matter

    USGS Publications Warehouse

    Leenheer, Jerry A.

    2009-01-01

    The more that is learned of the chemistry of aquatic natural organic matter (NOM) the greater is the scientific appreciation of the vast complexity of this subject. This complexity is due not only to a multiplicity of precursor molecules in any environment but to their associations with each other and with other components of local environments such as clays, mineral acids and dissolved metals. In addition, this complex system is subject to constant change owing to environmental variables and microbial action. Thus, there is a good argument that no two NOM samples are exactly the same even from the same source at nearly the same time. When ubiquity of occurrence, reaction with water treatment chemicals, and subsequent human exposure are added to the list of NOM issues, one can understand the appeal that this subject holds for a wide variety of environmental scientists.

  19. Grown organic matter as a fuel raw material resource

    NASA Technical Reports Server (NTRS)

    Roller, W. L.; Keener, H. M.; Kline, R. D.; Mederski, H. J.; Curry, R. B.

    1975-01-01

    An extensive search was made on biomass production from the standpoint of climatic zones, water, nutrients, costs and energy requirements for many species. No exotic species were uncovered that gave hope for a bonanza of biomass production under culture, location, and management markedly different from those of existing agricultural concepts. A simulation analysis of biomass production was carried out for six species using conventional production methods, including their production costs and energy requirements. These estimates were compared with data on food, fiber, and feed production. The alternative possibility of using residues from food, feed, or lumber was evaluated. It was concluded that great doubt must be cast on the feasibility of producing grown organic matter for fuel, in competition with food, feed, or fiber. The feasibility of collecting residues may be nearer, but the competition for the residues for return to the soil or cellulosic production is formidable.

  20. [Dissolved organic matter (DOM) dynamics in karst aquifer systems].

    PubMed

    Yao, Xin; Zou, Sheng-Zhang; Xia, Ri-Yuan; Xu, Dan-Dan; Yao, Min

    2014-05-01

    Dissolved organic matter (DOM) and nutrients have a unique way of producing, decomposing and storing in southwest karst water systems. To understand the biogeochemical cycle of DOM in karst aquifer systems, we investigated the behavioral changes of DOM fluorescence components in Zhaidi karst river system. Two humic-like components (C1 and C2), and one autochthonous tyrosine-like component (C4) were identified using the parallel factor analysis (PARAFAC) model. Compared with the traditional physical and chemical indicators, spatial heterogeneity of DOM was more obvious, which can reflect the subtle changes in groundwater system. Traditional indicators mainly reflect the regional characteristics of karst river system, while DOM fluorescence components reflect the attribute gaps of sampling types.

  1. Seasonal dynamics of dissolved organic matter on a coastal salinity gradient in the northern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Hoikkala, Laura; Lahtinen, Titta; Perttilä, Matti; Lignell, Risto

    2012-08-01

    During the phytoplankton growth season, the vertical distributions of dissolved organic carbon (DOC), nitrogen (DON) and phosphorus (DOP) were followed biweekly along with key physical, chemical and biological variables on a shore-to-open-sea salinity gradient in the Gulf of Finland. Moreover, bioavailable shares of DOC and DON were evaluated with natural bacterial surface and deepwater samples. Dissolved organic matter (DOM) accumulated in the surface layer throughout the productive season, and the accumulated DOM was N-rich (molar C:N ratio of 10) compared to the bulk DOM pool (C:N 20-29). Redundancy analysis showed a negative correlation between phytoplankton and DOM concentrations, suggesting that most DOM release occurred during declining phases of spring and late summer algal blooms. During the spring bloom, bioavailable shares of DOM were small, whereas during and after the late summer bloom of filamentous cyanobacteria, 3-9% and 10-20% of the respective total DOC and DON pools were degraded by bacteria within 2 weeks. Vertical mixing over the thermocline was estimated by constructing a steady state budget for water and salt mass flows between key GoF basin compartments (inflows equal outflows). The flow estimates suggested that the net changes in surface DOC and DON pools underestimated the respective total accumulations by ca 40% and 20%, respectively, over the 4-mo thermal stratification period. Thus, integral export of surface DOC and DON after autumn overturn amounted to ca 710 mmol C m-2 and 40 mmol N m-2, corresponding respectively to ca 12-25% and 11% of reported annual particulate organic carbon and nitrogen sedimentation in our study area.

  2. Effects of warming on stream biofilm organic matter use capabilities.

    PubMed

    Ylla, Irene; Canhoto, Cristina; Romaní, Anna M

    2014-07-01

    The understanding of ecosystem responses to changing environmental conditions is becoming increasingly relevant in the context of global warming. Microbial biofilm communities in streams play a key role in organic matter cycling which might be modulated by shifts in flowing water temperature. In this study, we performed an experiment at the Candal stream (Portugal) longitudinally divided into two reaches: a control half and an experimental half where water temperature was 3 °C above that of the basal stream water. Biofilm colonization was monitored during 42 days in the two stream halves. Changes in biofilm function (extracellular enzyme activities and carbon substrate utilization profiles) as well as chlorophyll a and prokaryote densities were analyzed. The biofilm in the experimental half showed a higher capacity to decompose cellulose, hemicellulose, lignin, and peptidic compounds. Total leucine-aminopeptidase, cellobiohydrolase and β-xylosidase showed a respective 93, 66, and 61% increase in activity over the control; much higher than would be predicted by only the direct temperature physical effect. In contrast, phosphatase and lipase activity showed the lowest sensitivity to temperature. The biofilms from the experimental half also showed a distinct functional fingerprint and higher carbon usage diversity and richness, especially due to a wider use of polymers and carbohydrates. The changes in the biofilm functional capabilities might be indirectly affected by the higher prokaryote and chlorophyll density measured in the biofilm of the experimental half. The present study provides evidence that a realistic stream temperature increase by 3 °C changes the biofilm metabolism to a greater decomposition of polymeric complex compounds and peptides but lower decomposition of lipids. This might affect stream organic matter cycling and the transfer of carbon to higher trophic levels.

  3. Ocean warming-acidification synergism undermines dissolved organic matter assembly.

    PubMed

    Chen, Chi-Shuo; Anaya, Jesse M; Chen, Eric Y-T; Farr, Erik; Chin, Wei-Chun

    2015-01-01

    Understanding the influence of synergisms on natural processes is a critical step toward determining the full-extent of anthropogenic stressors. As carbon emissions continue unabated, two major stressors--warming and acidification--threaten marine systems on several scales. Here, we report that a moderate temperature increase (from 30°C to 32°C) is sufficient to slow--even hinder--the ability of dissolved organic matter, a major carbon pool, to self-assemble to form marine microgels, which contribute to the particulate organic matter pool. Moreover, acidification lowers the temperature threshold at which we observe our results. These findings carry implications for the marine carbon cycle, as self-assembled marine microgels generate an estimated global seawater budget of ~1016 g C. We used laser scattering spectroscopy to test the influence of temperature and pH on spontaneous marine gel assembly. The results of independent experiments revealed that at a particular point, both pH and temperature block microgel formation (32°C, pH 8.2), and disperse existing gels (35°C). We then tested the hypothesis that temperature and pH have a synergistic influence on marine gel dispersion. We found that the dispersion temperature decreases concurrently with pH: from 32°C at pH 8.2, to 28°C at pH 7.5. If our laboratory observations can be extrapolated to complex marine environments, our results suggest that a warming-acidification synergism can decrease carbon and nutrient fluxes, disturbing marine trophic and trace element cycles, at rates faster than projected.

  4. Photochemical formation of hydroxyl radical from effluent organic matter.

    PubMed

    Dong, Mei Mei; Rosario-Ortiz, Fernando L

    2012-04-03

    The photochemical formation of hydroxyl radical (HO•) from effluent organic matter (EfOM) was evaluated using three bulk wastewater samples collected at different treatment facilities under simulated sunlight. For the samples studied, the formation rates of HO•(R(HO•)) were obtained from the formation rate of phenol following the hydroxylation of benzene. The values of R(HO•) ranged from 2.3 to 3.8 × 10(-10) M s(-1) for the samples studied. The formation rate of HO• from nitrate photolysis (R(NO3)(HO•)) was determined to be 3.0 × 10(-7) M(HO)• M(NO3)(-1) s(-1). The HO• production rate from EfOM (R(EfOM)(HO•)) ranged from 0.76 to 1.3 × 10(-10) M s(-1). For the wastewater samples studied, R(EfOM)(HO•) varied from 1.5 to 2.4 × 10(-7) M(HO)• M(C)(-1) (s-1) on molarcarbon basis, which was close to HO• production from nitrate photolysis. The apparent quantum yield for the formation of HO• from nitrate (Φ(NO3-HO•)(a)) was determined as 0.010 ± 0.001 for the wavelength range 290-400 nm in ultrapure water. The apparent quantum yield for HO• formation in EfOM (Φ(EfOM-HO•)(a)) ranged from 6.1 to 9.8 × 10(-5), compared to 2.99 to 4.56 × 10(-5) for organic matter (OM) isolates. The results indicate that wastewater effluents could produce significant concentrations of HO•, as shown by potential higher nitrate levels and relatively higher quantum yields of HO• formation from EfOM.

  5. Ocean Warming–Acidification Synergism Undermines Dissolved Organic Matter Assembly

    PubMed Central

    Chen, Chi-Shuo; Anaya, Jesse M.; Chen, Eric Y-T; Farr, Erik; Chin, Wei-Chun

    2015-01-01

    Understanding the influence of synergisms on natural processes is a critical step toward determining the full-extent of anthropogenic stressors. As carbon emissions continue unabated, two major stressors—warming and acidification—threaten marine systems on several scales. Here, we report that a moderate temperature increase (from 30°C to 32°C) is sufficient to slow— even hinder—the ability of dissolved organic matter, a major carbon pool, to self-assemble to form marine microgels, which contribute to the particulate organic matter pool. Moreover, acidification lowers the temperature threshold at which we observe our results. These findings carry implications for the marine carbon cycle, as self-assembled marine microgels generate an estimated global seawater budget of ~1016 g C. We used laser scattering spectroscopy to test the influence of temperature and pH on spontaneous marine gel assembly. The results of independent experiments revealed that at a particular point, both pH and temperature block microgel formation (32°C, pH 8.2), and disperse existing gels (35°C). We then tested the hypothesis that temperature and pH have a synergistic influence on marine gel dispersion. We found that the dispersion temperature decreases concurrently with pH: from 32°C at pH 8.2, to 28°C at pH 7.5. If our laboratory observations can be extrapolated to complex marine environments, our results suggest that a warming–acidification synergism can decrease carbon and nutrient fluxes, disturbing marine trophic and trace element cycles, at rates faster than projected. PMID:25714090

  6. Soil organic matter dynamics at the paramo and puna highlands in the Andean mountains

    NASA Astrophysics Data System (ADS)

    Ángeles Muñoz, M.; Faz, Ángel; Mermut, Ahmet R.; Zornoza, Raúl

    2014-05-01

    Mountains and uplands represent the most diverse and fragile ecosystems in the world, cover about 20% of the terrestrial surface and are distributed across all continents and major ecoregions. The Andean Plateau is the main mountain range of the American continent and one of the largest in the world with more than 7,500 km. The soil organic matter is a corner stone in the fertility management of the Andean agriculture as well as in the erosion control. However, its role is still much unknown in these ecosystems. Moreover, the influence of current global climatic change on soil organic C reservoirs and dynamics is still not clearly understood. The aim of this work was to review the soil C dynamics and the implication of the soil organic matter in the fertility management, erosion control, conservation of biodiversity and global climate change to improve the knowledge on the mountain Andean highlands. Climate, landscape, soil C pools, biomass and management were studied. In general, the Andean climate is affected by three main factors: ocean currents, winds and orography characterized by an abrupt topography. The entire Andean belt is segmented into the Northern, Central and Southern Andes. Northern Andes are called paramo and are characterized by humid climate while Central and Southern Andes dryer zones are called puna. Most of the region is tectonically and volcanically active. Sedimentary rocks predominated in the paramo while sedimentary, igneous and metamorphic ones prevailed in the puna. The most common soils were Andosols, Regosols, Umbrisols and Histosols. The cold and wet climate and the low atmospheric pressure favored organic matter accumulation in the soil. The accumulation of organic matter is further enhanced by the formation of organomineral complexes strongly resistant to the microbial breakdown mainly in the paramo. High organic C contents were observed in the paramo (10%) oppositely to the low contents found in the dryer puna (1%). The C/N ratio

  7. Role of minerals in thermal alteration of organic matter--II: a material balance.

    PubMed

    Tannenbaum, E; Huizinga, B J; Kaplan, I R

    1986-09-01

    Pyrolysis experiments were performed on Green River and Monterey Formation kerogens (Types I and II, respectively) with and without calcite, illite, or montmorillonite at 300 degrees C for 2 to 1,000 hours under dry and hydrous conditions. Pyrolysis products were identified and quantified, and a material balance of product and reactants resulted. Significant differences were found in the products generated by pyrolysis of kerogens with and without minerals. Both illite and montmorillonite adsorb a considerable portion (up to 80%) of the generated bitumen. The adsorbed bitumen is almost exclusively composed of polar compounds and asphaltenes that crack to yield low molecular weight compounds and insoluble pyrobitumen during prolonged heating. Montmorillonite shows the most pronounced adsorptive and catalytic effects. With calcite however, the pyrolysis products are similar to those from kerogen heated alone, and bitumen adsorption is negligible. Applying these results to maturation of organic matter in natural environments, we suggest that a given type of organic matter associated with different minerals in source rocks will yield different products. Furthermore, the different adsorption capacities of minerals exert a significant influence on the migration of polar and high molecular weight compounds generated from the breakdown of kerogen. Therefore, the overall accumulated products from carbonate source rocks are mainly heavy oils with some gas, whereas light oils and gases are the main products from source rocks that contain expandable clays with catalytic and adsorptive properties.

  8. Role of nitrogen fertilization in sustaining organic matter in cultivated soils.

    PubMed

    Ladha, Jagdish K; Reddy, C Kesava; Padre, Agnes T; van Kessel, Chris

    2011-01-01

    Soil organic matter (SOM) is essential for sustaining food production and maintaining ecosystem services and is a vital resource base for storing C and N. The impact of long-term use of synthetic fertilizer N on SOM, however, has been questioned recently. Here we tested the hypothesis that long-term application of N results in a decrease in SOM. We used data from 135 studies of 114 long-term experiments located at 100 sites throughout the world over time scales of decades under a range of land-management and climate regimes to quantify changes in soil organic carbon (SOC) and soil organic nitrogen (SON). Published data of a total of 917 and 580 observations for SOC and SON, respectively, from control (unfertilized or zero N) and N-fertilized treatments (synthetic, organic, and combination) were analyzed using the SAS mixed model and by meta-analysis. Results demonstrate declines of 7 to 16% in SOC and 7 to 11% in SON with no N amendments. In soils receiving synthetic fertilizer N, the rate of SOM loss decreased. The time-fertilizer response ratio, which is based on changes in the paired comparisons, showed average increases of 8 and 12% for SOC and SON, respectively, following the application of synthetic fertilizer N. Addition of organic matter (i.e., manure) increased SOM, on average, by 37%. When cropping systems fluctuated between flooding and drying, SOM decreased more than in continuous dryland or flooded systems. Flooded rice ( L.) soils show net accumulations of SOC and SON. This work shows a general decline in SOM for all long-term sites, with and without synthetic fertilizer N. However, our analysis also demonstrates that in addition to its role in improving crop productivity, synthetic fertilizer N significantly reduces the rate at which SOM is declining in agricultural soils, worldwide.

  9. Plutonium(IV) sorption to montmorillonite in the presence of organic matter.

    PubMed

    Boggs, Mark A; Dai, Zurong; Kersting, Annie B; Zavarin, Mavrik

    2015-03-01

    The effect of altering the order of addition in a ternary system of plutonium(IV), organic matter (fulvic acid, humic acid and desferrioxamine B), and montmorillonite was investigated. A decrease in Pu(IV) sorption to montmorillonite in the presence of fulvic and humic acid relative to the binary Pu-montmorillonite system, is attributed to strong organic aqueous complex formation with aqueous Pu(IV). No dependence on the order of addition was observed. In contrast, in the system where Pu(IV) was equilibrated with desferrioxamine B (DFOB) prior to addition of montmorillonite, an increase in Pu(IV) sorption was observed relative to the binary system. When DFOB was equilibrated with montmorillonite prior to addition of Pu(IV), Pu(IV) sorption was equivalent to the binary system. X-ray diffraction and transmission electron microscopy revealed that DFOB accumulated in the interlayer of montmorillonite. The order of DFOB addition plays an important role in the observed sorption/desorption behavior of Pu. The irreversible nature of DFOB accumulation in the montmorillonite interlayer leads to an apparent dependence of Pu sorption on the order of addition in the ternary system. This work demonstrates that the order of addition will be relevant in ternary systems in which at least one component exhibits irreversible sorption behavior.

  10. Characterising organic matter in recirculating aquaculture systems with fluorescence EEM spectroscopy.

    PubMed

    Hambly, A C; Arvin, E; Pedersen, L-F; Pedersen, P B; Seredyńska-Sobecka, B; Stedmon, C A

    2015-10-15

    The potential of recirculating aquaculture systems (RAS) in the aquaculture industry is increasingly being acknowledged. Along with intensified application, the need to better characterise and understand the accumulated dissolved organic matter (DOM) within these systems increases. Mature RASs, stocked with rainbow trout and operated at steady state at four feed loadings, were analysed by dissolved organic carbon (DOC) analysis and fluorescence excitation-emission matrix (EEM) spectroscopy. The fluorescence dataset was then decomposed by PARAFAC analysis using the drEEM toolbox. This revealed that the fluorescence character of the RAS water could be represented by five components, of which four have previously been identified in fresh water, coastal marine water, wetlands and drinking water. The fluorescence components as well as the DOC showed positive correlations with feed loading, however there was considerable variation between the five fluorescence components with respect to the degree of accumulation with feed loading. The five components were found to originate from three sources: the feed; the influent tap water (groundwater); and processes related to the fish and the water treatment system. This paper details the first application of fluorescence EEM spectroscopy to assess DOM in RAS, and highlights the potential applications of this technique within future RAS management strategies.

  11. A quantitative reconstruction of organic matter and nutrient diagenesis in Mediterranean Sea sediments over the Holocene

    NASA Astrophysics Data System (ADS)

    Reed, Daniel C.; Slomp, Caroline P.; de Lange, Gert J.

    2011-10-01

    A multicomponent diagenetic model was developed and applied to reconstruct the conditions under which the most recent sapropel, S1, was deposited in the eastern Mediterranean Sea. Simulations demonstrate that bottom waters must have been anoxic and sulphidic during the formation of S1 and that organic matter deposition was approximately three times higher than at present. Nevertheless, most present day sediment and pore water profiles — with the exception of pyrite, iron oxyhydroxides, iron-bound phosphorus and phosphate — can be reproduced under a wide range of redox conditions during formation of S1 by varying the depositional flux of organic carbon. As a result, paleoredox indicators (e.g., C org:S ratio, C org:P org ratio, trace metals) are needed when assessing the contribution of oxygen-depletion and enhanced primary production to the formation of organic-rich layers in the geological record. Furthermore, simulations show that the organic carbon concentration in sediments is a direct proxy for export production under anoxic bottom waters. The model is also used to examine the post-depositional alteration of the organic-rich layer focussing on nitrogen, phosphorus, and organic carbon dynamics. After sapropel formation, remineralisation is dominated by aerobic respiration at a rate that is inversely proportional to the time since bottom waters became oxic once again. A sensitivity analysis was undertaken to identify the most pertinent parameters in regulating the oxidation of sapropels, demonstrating that variations in sedimentation rate, depositional flux of organic carbon during sapropel formation, bottom water oxygen concentration, and porosity have the largest impact. Simulations reveal that sedimentary nutrient cycling was markedly different during the formation of S1, as well as after reoxygenation of bottom waters. Accumulation of organic nitrogen in sediments doubled during sapropel deposition, representing a significant nitrogen sink. Following

  12. Mechanistic simulation of the vertical soil organic matter profile

    NASA Astrophysics Data System (ADS)

    Braakhekke, M.; Beer, C.; Reichstein, M.; Hoosbeek, M.; Kruijt, B.; Kabat, P.

    2013-12-01

    Soil organic matter (SOM) constitutes a large global pool of carbon that may play a considerable role for future climate. The vertical distribution of SOM in the profile may be important due to depth-dependence of physical, chemical, and biological conditions, and links to physical processes such as heat and moisture transport. The aim of this thesis is to develop a dynamic and mechanistic representation of the vertical SOM profile that can be applied for large scale simulations as a part of global ecosystem and earth system models. A model structure called SOMPROF was developed that dynamically simulates the SOM profile based on above and below ground litter input, decomposition, bioturbation, and liquid phase transport. Furthermore, three organic surface horizons are explicitly represented. Since the organic matter transport processes have been poorly quantified in the past and are difficult to observe directly, the model was calibrated with a Bayesian approach for two contrasting temperate forest sites in Europe. Different types of data were included in the parameter estimation, including: organic carbon stocks and concentrations, respiration rates, and excess lead-210 activity. The calibrations yielded good fits to the observations, and showed that the two sites differ considerably with respect to the relevance of the different processes. These differences agree well with expectations based on local conditions. However, the results also demonstrate the difficulties arising from convolution of the processes. Several parameters are poorly constrained and for one of the sites, several distinct regions in parameter space exist that yield acceptable fit. In a subsequent study it was found that radiocarbon observations can offer much additional constraint on several parameters, most importantly on the turnover rate of the slowest SOM fraction. Additionally, for one site, a prognostic simulation until 2100 was performed using the resulting a posteriori parameter

  13. Response of Dissolved Organic Matter to Warming and Nitrogen Addition

    NASA Astrophysics Data System (ADS)

    Choi, J. H.; Nguyen, H.

    2014-12-01

    Dissolved Organic Matter (DOM) is a ubiquitous mixture of soluble organic components. Since DOM is produced from the terrestrial leachate of various soil types, soil may influence the chemistry and biology of freshwater through the input of leachate and run-off. The increased temperature by climate change could dramatically change the DOM characteristics of soils through enhanced decomposition rate and losses of carbon from soil organic matter. In addition, the increase in the N-deposition affects DOM leaching from soils by changing the carbon cycling and decomposition rate of soil decay. In this study, we conducted growth chamber experiments using two types of soil (wetland and forest) under the conditions of temperature increase and N-deposition in order to investigate how warming and nitrogen addition influence the characteristics of the DOM leaching from different soil types. This leachate controls the quantity and quality of DOM in surface water systems. After 10 months of incubation, the dissolved organic carbon (DOC) concentrations decreased for almost samples in the range of 7.6 to 87.3% (ANOVA, p<0.05). The specific UV absorption (SUVA) values also decreased for almost samples after the first 3 months and then increased gradually afterward in range of 3.3 to 108.4%. Both time and the interaction between time and the temperature had the statistically significant effects on the SUVA values (MANOVA, p<0.05). Humification index (HIX) showed the significant increase trends during the duration of incubation and temperature for almost the samples (ANOVA, p<0.05). Higher decreases in the DOC values and increases in HIX were observed at higher temperatures, whereas the opposite trend was observed for samples with N-addition. The PARAFAC results showed that three fluorescence components: terrestrial humic (C1), microbial humic-like (C2), and protein-like (C3), constituted the fluorescence matrices of soil samples. During the experiment, labile DOM from the soils was

  14. Similarities in chemical composition of soil organic matter across a millennia-old paddy soil chronosequence as revealed by advanced solid-state NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil organic matter (SOM) accumulation in paddy soils has aroused considerable attention due to its vital significance in global food, energy, climate, and environmental issues. Considerable progress has been made toward the understanding of changes in the quantity of SOM in paddy soils over a mille...

  15. Impacts of heterogeneous organic matter on phenanthrene sorption--Equilibrium and kinetic studies with aquifer material

    USGS Publications Warehouse

    Karapanagioti, Hrissi K.; Kleineidam, Sybille; Sabatini, David A.; Grathwohl, Peter; Ligouis, Bertrand

    2000-01-01

    Sediment organic matter heterogeneity in sediments is shown to impact the sorption behavior of contaminants. We investigated the sorptive properties as well as the composition of organic matter in different subsamples (mainly grain size fractions) of the Canadian River Alluvium (CRA). Organic petrography was used as a new tool to describe and characterize the organic matter in the subsamples. The samples studied contained many different types of organic matter including bituminous coal particles. Differences in sorption behavior were explained based on these various types of organic matter. Subsamples containing predominately coaly, particulate organic matter showed the highest Koc, the highest nonlinearity of sorption isotherms and the slowest sorption kinetics. Soil subsamples with organic matter present as organic coatings around the quartz grains evidenced the lowest Koc, the most linear sorption isotherms and the fastest sorption kinetics, which was not limited by slow intraparticle diffusion. Due to the high sorption capacity of the coaly particles even when it is present as only a small fraction of the composite organic content (<3%) causes Koc values which are much higher than expected for soil organic matter (e.g. Koc − Kow relationships). The results show that the identification and quantification of the coaly particles within a sediment or soil sample is a prerequisite in order to understand or predict sorption behavior of organic pollutants.

  16. The endogenous plant hormones and ratios regulate sugar and dry matter accumulation in Jerusalem artichoke in salt-soil.

    PubMed

    Li, Lingling; Shao, Tianyun; Yang, Hui; Chen, Manxia; Gao, Xiumei; Long, Xiaohua; Shao, Hongbo; Liu, Zhaopu; Rengel, Zed

    2017-02-01

    The changes in content of endogenous hormones in stolons and tubers of Jerusalem artichoke (Helianthus tuberosus L.) regulate tuber growth, but the specific knowledge about the importance of balance among the endogenous hormones is lacking. Two varieties of Jerusalem artichoke (NY-1 and QY-2) were tested for the endogenous zeatin (ZT), auxins (IAA), gibberellins (GA3) and abscisic acid (ABA) in regulating sugar and dry matter accumulation in tubers. The dry matter content and sugar accumulation in tubers were correlated positively with endogenous ZT and negatively with GA3 content and GA3/ABA and IAA/ABA content ratios. Throughout the tuber formation, ZT content was higher in NY-1 than QY-2 tubers, whereas ABA content was higher in QY-2 than NY-1 tubers. The content ratios GA3/ABA and IAA/ABA were greater in NY-1 than QY-2 before tuber initiation, but QY-2 surpassed NY-1 during the tuber growth stage. The GA3/ABA and IAA/ABA content ratios declined during tuber growth. The results suggested that a dynamic balance of endogenous hormones played an important role in tuber development.

  17. Geochemical drivers of organic matter decomposition in Arctic tundra soils

    SciTech Connect

    Herndon, Elizabeth M.; Yang, Ziming; Graham, David E.; Wullschleger, Stan D.; Gu, Baohua; Liang, Liyuan; Bargar, John; Janot, Noemie; Regier, Tom Z.

    2015-12-07

    Climate change is warming tundra ecosystems in the Arctic, resulting in the decomposition of previously-frozen soil organic matter (SOM) and release of carbon (C) to the atmosphere; however, the processes that control SOM decomposition and C emissions remain highly uncertain. In this study, we evaluate geochemical factors that influence anaerobic production of carbon dioxide (CO2) and methane (CH4) in the active layers of four ice-wedge polygons. Surface and soil pore waters were collected during the annual thaw season over a two-year period in an area containing waterlogged, low-centered polygons and well-drained, high-centered polygons. We report spatial and seasonal patterns of dissolved gases in relation to the geochemical properties of Fe and organic C as determined using spectroscopic and chromatographic techniques. Iron was present as Fe(II) in soil solution near the permafrost boundary but enriched as Fe(III) in the middle of the active layer, similar to dissolved aromatic-C and organic acids. Dissolved CH4 increased relative to dissolved CO2 with depth and varied with soil moisture in the middle of the active layer in patterns that were positively correlated with the proportion of dissolved Fe(III) in transitional and low-centered polygon soils but negatively correlated in the drier flat- and high-centered polygons. These results suggest that microbial-mediated Fe oxidation and reduction influence respiration/fermentation of SOM and production of substrates (e.g., low-molecular-weight organic acids) for methanogenesis. As a result, we infer that geochemical differences induced by water saturation dictate microbial products of SOM decomposition, and Fe geochemistry is an important factor regulating methanogenesis in anoxic tundra soils.

  18. Geochemical drivers of organic matter decomposition in Arctic tundra soils

    DOE PAGES

    Herndon, Elizabeth M.; Yang, Ziming; Graham, David E.; ...

    2015-12-07

    Climate change is warming tundra ecosystems in the Arctic, resulting in the decomposition of previously-frozen soil organic matter (SOM) and release of carbon (C) to the atmosphere; however, the processes that control SOM decomposition and C emissions remain highly uncertain. In this study, we evaluate geochemical factors that influence anaerobic production of carbon dioxide (CO2) and methane (CH4) in the active layers of four ice-wedge polygons. Surface and soil pore waters were collected during the annual thaw season over a two-year period in an area containing waterlogged, low-centered polygons and well-drained, high-centered polygons. We report spatial and seasonal patterns ofmore » dissolved gases in relation to the geochemical properties of Fe and organic C as determined using spectroscopic and chromatographic techniques. Iron was present as Fe(II) in soil solution near the permafrost boundary but enriched as Fe(III) in the middle of the active layer, similar to dissolved aromatic-C and organic acids. Dissolved CH4 increased relative to dissolved CO2 with depth and varied with soil moisture in the middle of the active layer in patterns that were positively correlated with the proportion of dissolved Fe(III) in transitional and low-centered polygon soils but negatively correlated in the drier flat- and high-centered polygons. These results suggest that microbial-mediated Fe oxidation and reduction influence respiration/fermentation of SOM and production of substrates (e.g., low-molecular-weight organic acids) for methanogenesis. As a result, we infer that geochemical differences induced by water saturation dictate microbial products of SOM decomposition, and Fe geochemistry is an important factor regulating methanogenesis in anoxic tundra soils.« less

  19. Lack of enhanced preservation of organic matter in sediments under the oxygen minimum on the Oman Margin

    SciTech Connect

    Pedersen, T.F. ); Shimmield, G.B.; Price, N.B. )

    1992-01-01

    The impingement of oxygen minima on continental margins is widely thought to promote the accumulation of sedimentary facies enriched in well-preserved organic matter. It is shown here, however, that such a relationship does not clearly apply to the productive Oman Margin in the Arabian Sea, which hosts one of the most severe oxygen minima in the oceans. Measurements made on the 0-1 cm depth interval from fourteen box cores collected from the outer shelf-upper continental slope area off Oman show that (1) deposited organic matter is overwhelmingly of marine origin, (2) there is no significant correlation between the abundance of sedimentary organic carbon (C{sub org}) and the bottom-water O{sub 2} concentration, (3) there is no relation between the sedimentary C{sub org}:N ratio and bottom-water O{sub 2}, and (4) there is no correlation between the hydrogen index (HI) of the organic matter and bottom water oxygen. There are, however, significant correlations between the C{sub org}:N ratio and the I:C{sub org}, Cr:Al, and Zr:Al ratios, as well as between the C{sub org}:N ratio and the hydrogen index. Overall, these data suggest that the bottom water oxygen concentration has little effect in governing either the distribution of the degree of preservation of organic matter on this margin. Thus, the generally high but spatially variable C{sub org} content of the sediments on the Oman Margin may not reflect the occurrence of an oxygen minimum but instead be the result of a high settling flux of organic matter, supported by monsoon-driven upwelling, and post-depositional redistribution of the organic material by hydrodynamic influences.

  20. Opposing effects of different soil organic matter fractions on crop yields.

    PubMed

    Wood, Stephen A; Sokol, Noah; Bell, Colin W; Bradford, Mark A; Naeem, Shahid; Wallenstein, Matthew D; Palm, Cheryl A

    2016-10-01

    Soil organic matter is critical to sustainable agriculture because it provides nutrients to crops as it decomposes and increases nutrient- and water-holding capacity when built up. Fast- and slow-cycling fractions of soil organic matter can have different impacts on crop production because fast-cycling fractions rapidly release nutrients for short-term plant growth and slow-cycling fractions bind nutrients that mineralize slowly and build up water-holding capacity. We explored the controls on these fractions in a tropical agroecosystem and their relationship to crop yields. We performed physical fractionation of soil organic matter from 48 farms and plots in western Kenya. We found that fast-cycling, particulate organic matter was positively related to crop yields, but did not have a strong effect, while slower-cycling, mineral-associated organic matter was negatively related to yields. Our finding that slower-cycling organic matter was negatively related to yield points to a need to revise the view that stabilization of organic matter positively impacts food security. Our results support a new paradigm that different soil organic matter fractions are controlled by different mechanisms, potentially leading to different relationships with management outcomes, like crop yield. Effectively managing soils for sustainable agriculture requires quantifying the effects of specific organic matter fractions on these outcomes.

  1. Partition of nonpolar organic pollutants from water to soil and sediment organic matters

    USGS Publications Warehouse

    Chiou, C.T.

    1995-01-01

    The partition coefficients (Koc) of carbon tetrachloride and 1,2-dichlorobenzene between normal soil/sediment organic matter and water have been determined for a large set of soils, bed sediments, and suspended solids from the United States and the People's Republic of China. The Koc values for both solutes are quite invariant either for the soils or for the bed sediments; the values on bed sediments are about twice those on soils. The similarity of Koc values between normal soils and between normal bed sediments suggests that natural organic matters in soils (or sediments) of different geographic origins exhibit comparable polarities and possibly comparable compositions. The results also suggest that the process that converts eroded soils into bed sediments brings about a change in the organic matter property. The difference between soil and sediment Koc values provides a basis for identifying the source of suspended solids in river waters. The very high Koc values observed for some special soils and sediments are diagnostic of severe anthropogenic contamination.

  2. Global effects of agriculture on fluvial dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Graeber, Daniel; Boëchat, Iola G.; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T.; Silva, Ricky C. S.; von Schiller, Daniel; Zwirnmann, Elke

    2015-11-01

    Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing.

  3. Role of dissolved organic matter in ice photochemistry.

    PubMed

    Grannas, Amanda M; Pagano, Lisa P; Pierce, Brittany C; Bobby, Rachel; Fede, Alexis

    2014-09-16

    In this study, we provide evidence that dissolved organic matter (DOM) plays an important role in indirect photolysis processes in ice, producing reactive oxygen species (ROS) and leading to the efficient photodegradation of a probe hydrophobic organic pollutant, aldrin. Rates of DOM-mediated aldrin loss are between 2 and 56 times faster in ice than in liquid water (depending on DOM source and concentration), likely due to a freeze-concentration effect that occurs when the water freezes, providing a mechanism to concentrate reactive components into smaller, liquid-like regions within or on the ice. Rates of DOM-mediated aldrin loss are also temperature dependent, with higher rates of loss as temperature decreases. This also illustrates the importance of the freeze-concentration effect in altering reaction kinetics for processes occurring in environmental ices. All DOM source types studied were able to mediate aldrin loss, including commercially available fulvic and humic acids and an authentic Arctic snow DOM sample isolated by solid phase extraction, indicating the ubiquity of DOM in indirect photochemistry in environmental ices.

  4. Contaminant-mediated photobleaching of wetland chromophoric dissolved organic matter.

    PubMed

    Langlois, Maureen C; Weavers, Linda K; Chin, Yu-Ping

    2014-09-20

    Photolytic transformation of organic contaminants in wetlands can be mediated by chromophoric dissolved organic matter (CDOM), which in turn can lose its reactivity from photobleaching. We collected water from a small agricultural wetland (Ohio), Kawai Nui Marsh (Hawaii), the Everglades (Florida), and Okefenokee Swamp (Georgia) to assess the effect of photobleaching on the photofate of two herbicides, acetochlor and isoproturon. Analyte-spiked water samples were irradiated using a solar simulator and monitored for changes in CDOM light absorbance and dissolved oxygen. Photobleaching did not significantly impact the indirect photolysis rates of either herbicide over 24 hours of irradiation. Surprisingly, the opposite effect was observed with isoproturon, which accelerated DOM photobleaching. This phenomenon was more pronounced in higher-CDOM waters, and we believe that the redox pathway between triplet-state CDOM and isoproturon may be responsible for our observations. By contrast, acetochlor indirect photolysis was dependent on reaction with the hydroxyl radical and did not accelerate photobleaching of wetland water as much as isoproturon. Finally, herbicide indirect photolysis rate constants did not correlate strongly to any one chemical or optical property of the sampled waters.

  5. Mineral surface-organic matter interactions: basics and applications

    NASA Astrophysics Data System (ADS)

    Valdrè, G.; Moro, D.; Ulian, G.

    2012-03-01

    The ability to control the binding of biological and organic molecules to a crystal surface is central in several fields; for example, in biotechnology, catalysis, molecular microarrays, biosensors preparation and environmental sciences. The nano-morphology and nanostructure at the surface may have physico-chemical properties that are very different from those of the underlying mineral substrate. Recent developments in scanning probe microscopy (SPM) have widened the spectrum of possible investigations that can be performed at the nanometric level on the surface of minerals. They range from the study of physical properties such as surface potential, electric field topological determination, Brønsted-Lowry site distributions, to chemical and spectroscopic analysis in air, in liquid or in gaseous environments. After an introduction to SPM modes of operation and new SPM-based technological developments, we will present recent examples of applications in the study of interactions between organic matter and mineral surface and report on the advances in knowledge that have been made by the use of scanning probe microscopy.

  6. Global effects of agriculture on fluvial dissolved organic matter.

    PubMed

    Graeber, Daniel; Boëchat, Iola G; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T; Silva, Ricky C S; von Schiller, Daniel; Zwirnmann, Elke

    2015-11-06

    Agricultural land covers approximately 40% of Earth's land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing.

  7. Global effects of agriculture on fluvial dissolved organic matter

    PubMed Central

    Graeber, Daniel; Boëchat, Iola G.; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T.; Silva, Ricky C. S.; von Schiller, Daniel; Zwirnmann, Elke

    2015-01-01

    Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing. PMID:26541809

  8. Chromophoric dissolved organic matter export from U.S. rivers

    USGS Publications Warehouse

    Spencer, Robert G. M.; Aiken, George R.; Dornblaser, Mark M.; Butler, Kenna D.; Holmes, R. Max; Fiske, Greg; Mann, Paul J.; Stubbins, Aron

    2013-01-01

    Chromophoric dissolved organic matter (CDOM) fluxes and yields from 15 major U.S. rivers draining an assortment of terrestrial biomes are presented. A robust relationship between CDOM and dissolved organic carbon (DOC) loads is established (e.g., a350 versus DOC; r2 = 0.96, p < 0.001). Calculated CDOM yields are also correlated to watershed percent wetland (e.g. a350; r2 = 0.81, p < 0.001) providing a method for the estimation of CDOM export from ungauged watersheds. A large variation in CDOM yields was found across the rivers. The two rivers in the north-eastern U.S. (Androscoggin and Penobscot), the Edisto draining into the South Atlantic Bight, and some rivers draining into the Gulf of Mexico (Atchafalaya and Mobile) exhibit the highest CDOM yields, linked to extensive wetlands in these watersheds. If the Edisto CDOM yield is representative of other rivers draining into the South Atlantic Bight, this would result in a CDOM load equivalent to that of the Mississippi from a region of approximately 10% of the Mississippi watershed, indicating the importance of certain regions with respect to the role of terrigenous CDOM in ocean color budgets.

  9. [Effects of dissolved organic matter on phenanthrene adsorption by soil].

    PubMed

    Xiong, Wei; Ling, Wan-ting; Gao, Yan-zheng; Li, Qiu-ling; Dai, Jing-yu

    2007-02-01

    This paper studied the effects of exotic and native dissolved organic matter (DOM) on the phenanthrene adsorption by three soils differed in soil organic carbon content (foc). The exotic DOM came from decayed rice straw, while the native DOM was extracted from the test soils. In all cases, the adsorption of phenanthrene by treated soils could be well described with linear-type model, and there was a positive correlation between adsorption coefficient (Kd) and foc Compared with the control, the Kd value of test soils after native DOM removed was increased by 7. 08% -21. 4% , and the increment (deltaKd) was positively correlated with fo,, indicating that the presence of soil native DOM impeded the phenanthrene adsorption by soil. The effects of exotic DOM on phenanthrene adsorption had a close relation with its added concentration in soil-water system. Within the range of 0-106 mg DOC x L(-1) , the K, value increased first, and then decreased with the increase of added exotic DOM concentration. Lower concentrations of added exotic DOM promoted the phenanthrene adsorption by soil, while higher concentrations ( I> or =52 mg DOC x L(-1)) of it obviously impeded this adsorption. These effects of exotic and native DOM on soil phenanthrene adsorption were considered to be related to the association of phenanthrene with DOM in solution, and the ' cumulative adsorption effect' between soil solid and aqueous phases.

  10. Natural Organic Matter and the Event Horizon of Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hertkorn, N.; Frommberger, M.; Witt, M.; Koch, B. P.; Schmitt-Kopplin, P.; Perdue, E. M.

    2009-05-01

    Soils, sediments, freshwaters and marine waters contain natural organic matter (NOM) - an exceedingly complex mixture of organic compounds that collectively exhibit a nearly continuous range of properties (size- reactivity continuum). NOM is composed mainly of carbon, hydrogen and oxygen, with minor contributions from heteroatoms such as sulphur and phosphorus. Suwannee River fulvic acid (SuwFA) is a fraction of NOM that is relatively depleted in heteroatoms. Ultrahigh resolution Fourier transform ion cyclotron (FTICR) mass spectra of SuwFA reveal several thousand molecular formulae, corresponding in turn to several hundred thousand distinct chemical environments of carbon even without accountancy of isomers. The mass difference m among adjoining C,H,O-molecules between and within clusters of nominal mass is inversely related to molecular dissimilarity: any decrease of m imposes an ever growing mandatory difference in molecular composition. Molecular formulae that are expected for likely biochemical precursor molecules are notably absent from these spectra, indicating that SuwFA is the product of diagenetic reactions that have altered the major components of biomass beyond the point of recognition. The degree of complexity of SuwFA can be brought into sharp focus through comparison with the theoretical limits of chemical complexity, as constrained and quantized by the fundamentals of chemical binding. The theoretical C,H,O-compositional space denotes the isomer-filtered complement of the entire, very vast space of molecular structures composed solely of carbon, hydrogen and oxygen. The molecular formulae within SuwFA occupy a sizable proportion of the theoretical C,H,O-compositional space. A one-hundred percent coverage of the theoretically feasible C,H,O-compositional space by SuwFA molecules is attained throughout a sizable range of mass, H/C and O/C elemental ratios. The substantial differences between (and complementarity of) the SuwFA molecular formulae that

  11. Organic matter in the ancient Alpine Tethyan Ocean Continental Transition

    NASA Astrophysics Data System (ADS)

    Mateeva, Tsvetomila; Wolff, George; Kusznir, Nick; Wheeler, John; Manataschal, Gianreto

    2016-04-01

    Studies of hydrothermal vents in modern ocean settings suggest that methane produced by serpentinization can support methanotrophic bio-systems. Are such bio-systems locally restricted to hydrothermal vents or are more pervasive, being linked with the geology of serpentinized mantle in the subsurface? Answering this question has implications for our understanding of the global importance of hidden sub-surface bio-systems, the fate of methane and the carbon cycle. The ocean-continent transition (OCT) of magma-poor rifted continental margins, exhumed within mountain belts by continent collision, provides an opportunity to investigate this question. Initial data from the Totalp unit in the Eastern Swiss Alps, representing exhumed OCT of the Alpine Tethyan rifted continental margin, shows the presence of various hydrocarbons (Mateeva et al., in prep.). Samples from other Tethyan OCT locations, consisting of the Tasna nappe and Platta unit of the Eastern Swiss Alps and Chenaillet in the Western Alps, have also been analysed to investigate the presence or absence of methanotrophic biosystems within serpentinized exhumed mantle and associated ophicalcite and syn-rift sediments. Samples from these remnant Tethyan OCT locations are characterized by low and varied organic carbon concentrations that reflect the large lithological diversity of this area. The samples contain hydrocarbons in the form of n-alkanes mostly in the range C20 - C32, polynuclear aromatic hydrocarbons (PAHs) and various biomarkers (e.g. steranes, hopanes). A typical sample from the hydrothermal system in Platta shows the lithological characteristics of a black smoker, but with no indication of a more developed biosystem. Preliminary results from the examined Tethyan OCT locations (Tasna, Platta, Chenaillet) show evidence for the preservation of marine organic matter in the serpentinized mantle and overlying sediments, although there is no unequivocal indication that the organic matter is generated from

  12. Characterization of water extractable organic matter in a deep soil profile.

    PubMed

    Corvasce, Maddalena; Zsolnay, Adam; D'Orazio, Valeria; Lopez, Raffaele; Miano, Teodoro M

    2006-03-01

    The aim of this study was to identify qualitative and quantitative differences of water extractable organic matter (WEOM) isolated from each horizon along a deep soil profile and to evaluate any relationship between the WEOC and the total organic carbon (TOC) content. The soil profile "Monte Pietroso" is located in the Murge area, Apulia region in Southern Italy. Samples from the eight horizons (Ap1, Ap2, Ab1, Ab2, Bt1, 2B, 2Bt2, and 2B/C) were collected in October 2002. The WEOM characterization was carried out by means of UV absorbance, fluorescence spectroscopy in the emission and excitation/emission matrix (EEM) modes, and additional spectroscopic derived indexes. Soil organic carbon was shown to accumulate in the top horizons (Ap) and, in general, to decrease with depth, whereas, the WEOM/TOC ratio increases with increasing depth. The aromaticity and the humification index of the WEOM decrease dramatically downward the soil profile, whereas the fluorescence efficiency index tends to increase markedly. The WEOM fractions feature three main fluorophores with different wavelength and relative intensity. In general WEOM transport phenomena are suggested to occur downward the soil profile, depending on the nature of the organic material and on the chemical and mineral characteristics of the various horizons.

  13. Uranium(IV) adsorption by natural organic matter in anoxic sediments

    DOE PAGES

    Bone, Sharon E.; Dynes, James J.; Cliff, John; ...

    2017-01-24

    Uranium is an important carbon-free fuel source and environmental contaminant that accumulates in the tetravalent state, U(IV), in anoxic sediments, such as ore deposits, marine basins, and contaminated aquifers. However, little is known about the speciation of U(IV) in low-temperature geochemical environments, inhibiting the development of a conceptual model of U behavior. Until recently, U(IV) was assumed to exist predominantly as the sparingly soluble mineral uraninite (UO2+x) in anoxic sediments; however, studies now show that this is not often the case. Yet a model of U(IV) speciation in the absence of mineral formation under field-relevant conditions has not yet beenmore » developed. Uranium(IV) speciation controls its reactivity, particularly its susceptibility to oxidative mobilization, impacting its distribution and toxicity. Here we show adsorption to organic carbon and organic carbon-coated clays dominate U(IV) speciation in an organic-rich natural substrate under field-relevant conditions. Whereas previous research assumed that U(IV) speciation is dictated by the mode of reduction (i.e., whether reduction is mediated by microbes or by inorganic reductants), our results demonstrate that mineral formation can be diminished in favor of adsorption, regardless of reduction pathway. Projections of U transport and bioavailability, and thus its threat to human and ecosystem health, must consider U(IV) adsorption to organic matter within the sediment environment.« less

  14. Dry matter and nitrogen accumulation are not affected by superoptimal concentration of ammonium in flowing solution culture with pH control

    NASA Technical Reports Server (NTRS)

    Rideout, J. W.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1994-01-01

    While it is known that superoptimal concentrations of the nitrate (NO3-) ion in solution culture do not increase NO3- uptake or dry matter accumulation, the same is not known for the ammonium (NH4+) ion. An experiment was conducted utilizing flowing solution culture with pH control to investigate the influence of superoptimal NH4+ concentrations on dry matter, nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) accumulation by nonnodulated soybean plants. Increasing the NH4+ concentration in solution from 1 to 10 mM did not affect dry matter or N accumulation. Accumulations of K, Ca, and Mg were slightly decreased with increased NH4+ concentration. The NH4+ uptake system, which is saturated at less than 1mM NH4+, is able to regulate uptake of NH4+ at concentrations as high as 10 mM.

  15. Biogeochemical cycling in an organic-rich coastal marine basin: 9. Sources and accumulation rates of vascular plant-derived organic material

    NASA Astrophysics Data System (ADS)

    Haddad, Robert I.; Martens, Christopher S.

    1987-11-01

    The sources, degradation and burial of vascular plant debris deposited over the past several decades in the lagoonal sediments of Cape Lookout Bight, North Carolina, are quantified using alkaline cupric oxide lignin oxidation product (LOP) analysis. Non-woody angiosperms, accounting for 92 ± 32% of the recognizable sedimentary vascular plant debris, are calculated to contribute 23 ± 17% of the total organic carbon buried over the past decade (upper meter of sediment column). When combined with a previously established sedimentary organic carbon budget for this site (Martens and Klump, 1984; Martens et al., 1987, in preparation) a vascular plant derived carbon burial rate of 26 ± 20 mole C m -2 yr -1 is calculated for this same time interval. The refractory nature and invariant depth distributions of the lignin oxidation products (LOP), when coupled with evidence for constant degradation rates of metabolizable materials, indicate that sediment accumulation at this site has been a steady state process with respect to source and burial of organic carbon since its conversion from an inner-continental shelf to a lagoonal environment during the late 1960's. Thus systematic down-core decreases in labile organic matter result from early diagenetic processes rather than input rate variations.

  16. Study of the influence of different organic pollutants on Cu accumulation by Halimione portulacoides

    NASA Astrophysics Data System (ADS)

    Almeida, C. Marisa R.; Claúdia Dias, A.; Mucha, Ana P.; Bordalo, A. A.; Vasconcelos, M. Teresa S. D.

    2009-12-01

    The influence of each of four organic pollutants selected from among those commonly found in coastal areas, 1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene (DDE), monobutyltin (MBT), Triton X-100 and polycyclic aromatic hydrocarbons (PAHs), on Cu accumulation by Halimione portulacoides was investigated. Experiments were carried out in a laboratory setting, either in hydroponics (sediment elutriate) or in a salt marsh sediment ( Cávado River, NW Portugal) soaked in elutriate. Groups of H. portulacoides were exposed to media for 6 days spiked with 10 mg/L Cu(II) and with one of the selected pollutants, at an environmentally realistic concentration. DDE and MBT did not cause any major change on Cu accumulation by H. portulacoides, whereas PAHs slightly increased accumulation only in hydroponics i.e. in the absence of sediment. On the other hand, the non-ionic surfactant Triton X-100 markedly favoured Cu accumulation on plant roots both in the presence and absence of sediment. The addition of DDE, MBT and Triton X-100 also favoured Cu solubility from sediments. Therefore, the simultaneous presence of pollutants from different nature (inorganic and organic) in the estuarine environment may result in a composition of water column, pore water, sediment or biota different of that expected considering the effect of each individual pollutant.

  17. Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems.

    PubMed

    Zhang, Hai-Ling; Sheng, Guo-Ping; Fang, Wei; Wang, Yong-Peng; Fang, Cai-Yun; Shao, Li-Min; Yu, Han-Qing

    2015-11-01

    Phosphorus accumulating organisms (PAOs) have been found to act as glycogen-accumulating organisms (GAOs) under certain conditions, thus, the deterioration in the performance of enhanced biological phosphorus removal systems is not always attributed to the proliferation of GAOs. In this work, the effects of calcium on the metabolic pathway of PAOs were explored. It was found that when the influent Ca(2+) concentration was elevated, the tendency and extent of extracellular calcium phosphate precipitation increased, and the intracellular inert Ca-bound polyphosphate was synthesized, while the microbial population remained almost unchanged. The changes in the ratios of phosphorus released/acetate uptaken, the glycogen degraded/acetate uptaken and the poly-β-hydroxyalkanoates synthesized/acetate uptaken during the anaerobic period confirm that, as the influent Ca(2+) concentration was increased, the polyphosphate-accumulating metabolism was partially shifted to the glycogen-accumulating metabolism. At an influent Ca(2+) around 50 mg/L, in addition to the extracellular calcium phosphate precipitation, the intracellular inert Ca-bound polyphosphate synthesis might also be involved in the metabolic change of PAOs. The results of the present work would be beneficial to better understand the biochemical metabolism of PAOs in enhanced biological phosphorus removal systems.

  18. Sources and accumulation of organic carbon in the Pearl River Estuary surface sediment as indicated by elemental, stable carbon isotopic, and carbohydrate compositions

    NASA Astrophysics Data System (ADS)

    He, B.; Dai, M.; Huang, W.; Liu, Q.; Chen, H.; Xu, L.

    2010-10-01

    Organic matter in surface sediments from the upper reach of the Pearl River Estuary and Lingdingyang Bay, as well as the adjacent northern South China Sea shelf was characterized using a variety of techniques, including elemental (C and N) ratio, bulk stable organic carbon isotopic composition (δ13C), and carbohydrate composition analyses. Total organic carbon (TOC) content was 1.21±0.45% in the upper reach, down to 1.00±0.22% in Lingdingyang Bay and to 0.80±0.10% on the inner shelf and 0.58±0.06% on the outer shelf. δ13C values ranged from -25.1‰ to -21.3‰ in Lingdingyang Bay and the South China Sea shelf, with a trend of enrichment seawards. The spatial trend in C/N ratios mirrored that of δ13C, with a substantial decrease in C/N ratio offshore. Total carbohydrate yields ranged from 22.1 to 26.7 mg (100 mg OC)-1, and typically followed TOC concentrations in the estuarine and shelf sediments. Total neutral sugars, as detected by the nine major monosaccharides (lyxose, rhamnose, ribose, arabinose, fucose, xylose, galactose, mannose, and glucose), were between 4.0 and 18.6 mg (100 mg OC)-1 in the same sediments, suggesting that significant amounts of carbohydrates were not neutral aldoses. Using a two end-member mixing model based on δ13C values and C/N ratios, we estimated that the terrestrial organic carbon contribution to the surface sediment TOC was ca. 78±11% for Lingdingyang Bay, 34±4% for the inner shelf, and 5.5±1% for the outer shelf. The molecular composition of the carbohydrate in the surface sediments also suggested that the inner estuary was rich in terrestrially derived carbohydrates but that their contribution decreased offshore. A relatively high abundance of deoxyhexoses in the estuary and shelf indicated a considerable bacterial source of these carbohydrates, implying that sediment organic matter had undergone extensive degradation and/or transformation during transport. Sediment budget based on calculated regional accumulation rates

  19. Dynamics of soil organic matter pools after agricultural abandonment

    NASA Astrophysics Data System (ADS)

    Novara, Agata; Gristina, Luciano; Rühl Rühl, Juliane; La Mantia, Tommaso; Badalucco, Luigi; Kuzyakov, Yakov; Laudicina, Vito Armando

    2014-05-01

    Changes of land use from croplands to natural vegetation usually increase Carbon (C) stocks in soil. However, the contribution of old and new C to various pools still is not clearly analyzed. We measured the δ13C signature of soil organic carbon (SOC) pools after vegetation change from vineyard (C3) to grassland (C4) under Mediterranean climate to assess the changes of old and new C in total SOC, microbial biomass (MB), dissolved organic C (DOC), and CO2 efflux from soil. Development of the perennial grass Hyparrhenia hirta (C4) on vineyard abandoned for 15 or 35 years ago increased C stocks for 13% and 16%, respectively (in the upper 15 cm). This increase was linked to the incorporation of new C in SOC and with exchange of 25% of old C by new C after 35 years. The maximal incorporation of new C was observed in MB, thus reflecting the maximal turnover and availability of this pool. The DOC was produced mainly from old C of soil organic matter (SOM), showing that under Mediterranean climate DOC will be mainly produced not from fresh litter but from old SOM sources. Decomposition of SOM during a 51 days laboratory incubation was higher in cultivated vineyard than H. hirta soils. Based on changes in δ13C values of SOM, MB, DOC and CO2 in C3 soil and in soils after 15 and 35 years of C4 plant colonization, we separated 13C fractionation in soil from changes of isotopic composition by preferential utilization of substrates with different availability. The utilization pattern in this soil under Mediterranean climate was different from that in temperate ecosystems.

  20. Does plant colour matter? Wax accumulation as an indicator of decline in Juniperus thurifera.

    PubMed

    Esteban, R; Fernández-Marín, B; Olano, J M; Becerril, J M; García-Plazaola, J I

    2014-03-01

    The photosynthesis in evergreen trees living in Mediterranean ecosystems is subjected to multiple climatic stresses due to water shortage and high temperatures during the summer and to low temperatures during the winter. Mediterranean perennials deploy different photoprotective mechanisms to prevent damage to the photosynthetic system. Wax accumulation in leaves is a primary response which by enhancing light scattering in the leaf surface reduces incident radiation in the mesophyll. The existence of high variability in wax accumulation levels between coexisting individuals of a species has a visual effect on colour that provides distinguishable green and glaucous phenotypes. We explored this variability in a Mediterranean evergreen tree Juniperus thurifera (L.) to evaluate the impact of epicuticular wax on optical and ecophysiological properties and on the abundance of photoprotective pigments throughout an annual cycle. Because of light attenuation by waxes, we expected that glaucous phenotypes would lower the need for photoprotective pigments. We evaluated the effect of phenotype and season on reflectance, defoliation levels, photochemical efficiency and photoprotective pigment contents in 20 green and 20 glaucous junipers. Contrary to our expectations, the results showed that glaucous trees suffered from a diminution in photochemical efficiency, but there was no reduction in photoprotective pigments. Differences between glaucous and green phenotypes were greater in winter, which is the most stressful season for this species. Glaucous individuals also showed the highest levels of leaf defoliation. The lower photochemical efficiency of glaucous trees, together with higher defoliation rates and equal or greater number of physiological photoprotective mechanisms, suggests that in spite of wax accumulation, glaucous trees suffer from more severe stress than green ones. This result suggests that changes in colouration in Mediterranean evergreens may be a decline

  1. Key soil functional properties affected by soil organic matter - evidence from published literature

    NASA Astrophysics Data System (ADS)

    Murphy, Brian

    2015-07-01

    The effect of varying the amount of soil organic matter on a range of individual soil properties was investigated using a literature search of published information largely from Australia, but also included relevant information from overseas. Based on published pedotransfer functions, soil organic matter was shown to increase plant available water by 2 to 3 mm per 10 cm for each 1% increase in soil organic carbon, with the largest increases being associated with sandy soils. Aggregate stability increased with increasing soil organic carbon, with aggregate stability decreasing rapidly when soil organic carbon fell below 1.2 to 1.5 5%. Soil compactibility, friability and soil erodibility were favourably improved by increasing the levels of soil organic carbon. Nutrient cycling was a major function of soil organic matter. Substantial amounts of N, P and S become available to plants when the soil organic matter is mineralised. Soil organic matter also provides a food source for the microorganisms involved in the nutrient cycling of N, P, S and K. In soils with lower clay contents, and less active clays such as kaolinites, soil organic matter can supply a significant amount of the cation exchange capacity and buffering capacity against acidification. Soil organic matter can have a cation exchange capacity of 172 to 297 cmol(+)/kg. As the cation exchange capacity of soil organic matter varies with pH, the effectiveness of soil organic matter to contribute to cation exchange capacity below pH 5.5 is often minimal. Overall soil organic matter has the potential to affect a range of functional soil properties.

  2. Exploring Patterns of Soil Organic Matter Decomposition with Students and the Public Through the Global Decomposition Project (GDP)

    NASA Astrophysics Data System (ADS)

    Wood, J. H.; Natali, S.

    2014-12-01

    The Global Decomposition Project (GDP) is a program designed to introduce and educate students and the general public about soil organic matter and decomposition through a standardized protocol for collecting, reporting, and sharing data. This easy-to-use hands-on activity focuses on questions such as "How do environmental conditions control decomposition of organic matter in soil?" and "Why do some areas accumulate organic matter and others do not?" Soil organic matter is important to local ecosystems because it affects soil structure, regulates soil moisture and temperature, and provides energy and nutrients to soil organisms. It is also important globally because it stores a large amount of carbon, and when microbes "eat", or decompose organic matter they release greenhouse gasses such as carbon dioxide and methane into the atmosphere, which affects the earth's climate. The protocol describes a commonly used method to measure decomposition using a paper made of cellulose, a component of plant cell walls. Participants can receive pre-made cellulose decomposition bags, or make decomposition bags using instructions in the protocol and easily obtained materials (e.g., window screen and lignin-free paper). Individual results will be shared with all participants and the broader public through an online database. We will present decomposition bag results from a research site in Alaskan tundra, as well as from a middle-school-student led experiment in California. The GDP demonstrates how scientific methods can be extended to educate broader audiences, while at the same time, data collected by students and the public can provide new insight into global patterns of soil decomposition. The GDP provides a pathway for scientists and educators to interact and reach meaningful education and research goals.

  3. The flux of organic matter through a peatland ecosystem - evidence from thermogravimetric analysis

    NASA Astrophysics Data System (ADS)

    Worrall, Fred; Moody, Catherine; Clay, Gareth

    2016-04-01

    Carbon budgets of peatlands are now common and studies have considered nitrogen, oxygen and energy budgets, but no study has considered the whole composition of the organic matter as it transfers through and into a peatland. Organic matter samples were taken from each organic matter reservoir found in and each fluvial flux from a peatland and analysed the samples by thermogravimetric analysis. The samples analysed were: aboveground, belowground, heather, mosses and sedges, litter layer, a peat core, and monthly samples of particulate and dissolved organic matter. All organic matter samples were taken from a 100% peat catchment within Moor House National Nature Reserve in the North Pennines, UK, and collected samples were compared to standards of lignin, cellulose, humic acid and plant protein. Results showed that the thermogravimetric trace of the sampled organic matter were distinctive with the DOM traces being marked out by very low thermal stability relative other organic matter types. The peat profile shows a significant trend with depth from vegetation- to lignin-like composition. When all traces are weighted according to the observed dry matter and carbon budgets for the catchment then it is possible to judge what has been lost in the transition through and into the ecosystem. By plotting this "lost" trace it possible to assess its composition which is either 97% cellulose and 3% humic acid or 92% and 8% lignin. This has important implications for what controls the organic matter balance of peatlands and it suggests that the oxidation state (OR) of peatland is less than 1.

  4. Chemical composition of dissolved organic matter draining permafrost soils

    NASA Astrophysics Data System (ADS)

    Ward, Collin P.; Cory, Rose M.

    2015-10-01

    Northern circumpolar permafrost soils contain roughly twice the amount of carbon stored in the atmosphere today, but the majority of this soil organic carbon is perennially frozen. Climate warming in the arctic is thawing permafrost soils and mobilizing previously frozen dissolved organic matter (DOM) from deeper soil layers to nearby surface waters. Previous studies have reported that ancient DOM draining deeper layers of permafrost soils was more susceptible to degradation by aquatic bacteria compared to modern DOM draining the shallow active layer of permafrost soils, and have suggested that DOM chemical composition may be an important control for the lability of DOM to bacterial degradation. However, the compositional features that distinguish DOM drained from different depths in permafrost soils are poorly characterized. Thus, the objective of this study was to characterize the chemical composition of DOM drained from different depths in permafrost soils, and relate these compositional differences to its susceptibility to biological degradation. DOM was leached from the shallow organic mat and the deeper permafrost layer of soils within the Imnavait Creek watershed on the North Slope of Alaska. DOM draining both soil layers was characterized in triplicate by coupling ultra-high resolution mass spectrometry, 13C solid-state NMR, and optical spectroscopy methods with multi-variate statistical analyses. Reproducibility of replicate mass spectra was high, and compositional differences resulting from interfering species or isolation effects were significantly smaller than differences between DOM drained from each soil layer. All analyses indicated that DOM leached from the shallower organic mat contained higher molecular weight, more oxidized, and more unsaturated aromatic species compared to DOM leached from the deeper permafrost layer. Bacterial production rates and bacterial efficiencies were significantly higher for permafrost compared to organic mat DOM

  5. Vehicular emissions of organic particulate matter in Sao Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Oyama, B. S.; Andrade, M. F.; Herckes, P.; Dusek, U.; Röckmann, T.; Holzinger, R.

    2015-12-01

    Vehicular emissions have a strong impact on air pollution in big cities. Many factors affect these emissions: type of vehicle, type of fuel, cruising velocity, and brake use. This study focused on emissions of organic compounds by Light (LDV) and Heavy (HDV) duty vehicle exhaust. The study was performed in the city of Sao Paulo, Brazil, where vehicles run on different fuels: gasoline with 25 % ethanol (called gasohol), hydrated ethanol, and diesel (with 5 % of biodiesel). The vehicular emissions are an important source of pollutants and the principal contribution to fine particulate matter (smaller than 2.5 μm, PM2.5) in Sao Paulo. The experiments were performed in two tunnels: Janio Quadros (TJQ) where 99 % of the vehicles are LDV, and Rodoanel Mario Covas (TRA) where up to 30 % of the fleet was HDV. The PM2.5 samples were collected on quartz filters in May and July 2011 at TJQ and TRA, respectively, using two samplers operating in parallel. The samples were analyzed by Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometry (TD-PTR-MS), and by Thermal-Optical Transmittance (TOT). The organic aerosol (OA) desorbed at TD-PTR-MS represented around 30 % of the OA estimated by the TOT method, mainly due to the different desorption temperatures, with a maximum of 870 and 350 °C for TOT and TD-PTR-MS, respectively. Average emission factors (EF) organic aerosol (OA) and organic carbon (OC) were calculated for HDV and LDV fleet. We found that HDV emitted more OA and OC than LDV, and that OC emissions represented 36 and 43 % of total PM2.5 emissions from LDV and HDV, respectively. More than 700 ions were identified by TD-PTR-MS and the EF profiles obtained from HDV and LDV exhibited distinct features. Nitrogen-containing compounds measured in the desorbed material up to 350 °C contributed around 20 % to the EF values for both types of vehicles, possibly associated with incomplete fuel burning. Additionally, 70 % of the organic compounds measured from the aerosol

  6. Photosensitized degradation of amoxicillin in natural organic matter isolate solutions.

    PubMed

    Xu, Haomin; Cooper, William J; Jung, Jinyoung; Song, Weihua

    2011-01-01

    Amoxicillin is a widely used antibiotic and has been detected in natural waters. Its environmental fate is in part determined by hydrolysis, and, direct and indirect photolysis. The hydrolysis rate in distilled water and water to which five different isolated of dissolved organic matter (DOM) was added, were evaluated. In the five different DOM solutions hydrolysis accounted for 5-18% loss of amoxicillin. Direct and indirect photolysis rates were determined using a solar simulator and it appeared that indirect photolysis was the dominant loss mechanism. Direct photolysis, in a solar simulator, accounted for 6-21% loss of amoxicillin in the simulated natural waters. The steady-state concentrations of singlet oxygen, (1)ΔO(2) (∼10(-13) M) and hydroxyl radical, •OH (∼10(-17) M) were obtained in aqueous solutions of five different dissolved organic matter samples using a solar simulator. The bimolecular reaction rate constant of (1)ΔO(2) with amoxicillin was measured in the different solutions, k(ΔO(2)) = 1.44 × 10(4) M(-1) s(-1). The sunlight mediated amoxicillin loss rate with (1)ΔO(2) (∼10(-9) s(-1)), and with •OH (∼10(-7) s(-1)), were also determined for the different samples of DOM. While (1)ΔO(2) only accounted for 0.03-0.08% of the total loss rate, the hydroxyl radical contributed 10-22%. It appears that the direct reaction of singlet and triplet excited state DOM ((3)DOM(∗)) with amoxicillin accounts for 48-74% of the loss of amoxicillin. Furthermore, the pseudo first-order photodegradation rate showed a positive correlation with the sorption of amoxicillin to DOM, which further supported the assumption that excited state DOM∗ plays a key role in the photochemical transformation of amoxicillin in natural waters. This is the first study to report the relative contribution of all five processes to the fate of amoxicillin in aqueous solution.

  7. Do aggregate stability and soil organic matter content increase following organic inputs?

    NASA Astrophysics Data System (ADS)

    Lehtinen, Taru; Gísladóttir, Guðrún; van Leeuwen, Jeroen P.; Bloem, Jaap; Steffens, Markus; Vala Ragnarsdóttir, Kristin

    2014-05-01

    Agriculture is facing several challenges such as loss of soil organic matter (SOM); thus, sustainable farming management practices are needed. Organic farming is growing as an alternative to conventional farming; in Iceland approximately 1% and in Austria 16% of utilized agricultural area is under organic farming practice. We analyzed the effect of different farming practices (organic, and conventional) on soil physicochemical and microbiological properties in grassland soils in Iceland and cropland soils in Austria. Organic farms differed from conventional farms by absence of chemical fertilizers and pesticide use. At these farms, we investigated soil physicochemical (e.g. soil texture, pH, CAL-extractable P and K) and microbiological properties (fungal and bacterial biomass and activity). The effects of farming practices on soil macroaggregate stability and SOM quantity, quality and distribution between different fractions were studied following a density fractionation. In Iceland, we sampled six grassland sites on Brown (BA) and Histic (HA) Andosols; two sites on extensively managed grasslands, two sites under organic and two sites under conventional farming practice. In Austria, we sampled four cropland sites on Haplic Chernozems; two sites under organic and two sites under conventional farming practice. We found significantly higher macroaggregate stability in the organic compared to the conventional grasslands in Iceland. In contrast, slightly higher macroaggregation in conventional compared to the organic farming practice was found in croplands in Austria, although the difference was not significant. Macroaggregates were positively correlated with fungal biomass in Iceland, and with Feo and fungal activity in Austria. In Austria, SOM content and nutrient status (except for lower CAL-extractable P at one site) were similar between organic and conventional farms. Our results show that the organic inputs may have enhanced macroaggregation in organic farming

  8. Evolution of organic matter in Orgueil, Murchison and Renazzo during parent body aqueous alteration: In situ investigations

    NASA Astrophysics Data System (ADS)

    Le Guillou, Corentin; Bernard, Sylvain; Brearley, Adrian J.; Remusat, Laurent

    2014-04-01

    organic and inorganic soluble components. Ultimately, when water was consumed by aqueous alteration reactions or lost from the system, soluble organic compounds accumulated in the immediate vicinity of the precipitated carbonates and phosphates. Additionally, the nanometer scale organic/phyllosilicate relationships provide a petrological environment where some of the initially accreted organic matter could have been modified through clay-mediated reactions.

  9. Electron Shuttling Capacity of Solid-Phase Organic Matter in Forest Soils

    NASA Astrophysics Data System (ADS)

    Patel, A.; Zhao, Q.; Yang, Y.

    2015-12-01

    Soil organic matter, as an electron shuttle, plays an important role in regulating the biogeochemical cycles of metals, especially the redox reactions for iron. Microorganisms can reduce soil organic matter under anaerobic conditions, and biotically-reduced soil organic matter can abiotically donate electrons to ferric oxides. Such soil organic matter-mediated electron transport can facilitate the interactions between microorganisms and insoluble terminal electron acceptors, i.e. iron minerals. Most previous studies have been focused on the electron shuttling processes through dissolved soil organic matter, and scant information is available for solid-phase soil organic matter. In this study, we aim to quantify the electron accepting capacity for solid-phase organic matter in soils collected from four different forests in the United States, including Truckee (CA), Little Valley (NV), Howland (ME) and Hart (MI). We used Shewanella oneidensisMR-1 to biotically reduce soil slurries, and then quantified the electrons transferred to solid-phase and solution-phase organic matter by reacting them with Fe(III)-nitrilotriacetic acid (Fe(III)-NTA). The generation of Fe(II) was measured by a ferrozine assay to calculate the electron accepting capacity of soil organic matter. Our preliminary results showed that the Truckee soil organic matter can accept 0.51±0.07 mM e-/mol carbon. We will measure the electron accepting capacity for four different soils and correlate them to the physicochemical properties of soils. Potential results will provide information about the electron accepting capacity of solid-phase soil organic matter and its governing factors, with broad implication on the coupled biogeochemical cycles of carbon and iron.

  10. [Retrieval of forest topsoil organic matter's spatial pattern based on LiDAR data].

    PubMed

    Li, Chao; Liu, Zhao-Gang; Yue, Shu-Feng; Li, Feng-Ri; Dong, Ling-Bo; Bi, Meng

    2012-09-01

    Forest soil is one of the main carbon pools in terrestrial ecosystem. Its organic matter content can provide basic information for estimating soil carbon storage, and also, is an important index for evaluating the function of soil carbon sink. Based on the LiDAR data and the topsoil organic matter contents in 55 permanent plots at Liangshui National Nature Reserve, Heilongjiang Province of Northeast China in August 2009, and by using partial least squares (PLS) method, this paper retrieved the forest topsoil organic matter's spatial pattern in the Reserve, extracted and screened the variables related to the distribution of the topsoil organic matter (e. g. , intensity, counts, elevation, slope, and aspect), and analyzed and defined the correlations between the screened variables and topsoil organic matter content, with the prediction model of forest soil organic matter content established and validated. In the Reserve, the forest topsoil organic matter content was significantly and positively correlated with three variables (intensity, r = 0.765; counts, r = 0.423; and elevation r = 0.475; all P<0.001). The model prediction on the topsoil organic matter content was reliable (precision = 83.3%, R2 = 0.725, RMSE = 1.955 ). In the areas of forest edge and of low canopy stands, the topsoil organic matter content was less than 100 g x kg(-1). The majority of the study area had a topsoil organic matter content of 100-150 g x kg(-1), while a few areas had the topsoil organic matter content as high as 150-318.4 g x kg(-1).

  11. Effects of Natural Organic Matter on Stability, Transport and Deposition of Engineered Nano-particles in Porous Media

    EPA Science Inventory

    The interaction of nano-particles and organic substances, like natural organic matter, could have significant influence on the fate, transport and bioavailability of toxic substances. Natural organic matter (NOM) is a mixture of chemically complex polyelectrolytes with varying m...

  12. Adsorption of natural dissolved organic matter at the oxide/water interface

    USGS Publications Warehouse

    Davis, James A.

    1982-01-01

    Natural organic matter is readily adsorbed by alumina and kaolinite in the pH range of natural waters. Adsorption occurs by complex formation between surface hydroxyls and the acidic functional groups of the organic matter. Oxides with relatively acidic surface hydroxyls, e.g. silica, do not react strongly with the organic matter. Under conditions typical for natural waters, almost complete surface coverage by adsorbed organic matter may be expected for alumina, hydrous iron oxides and the edge sites of aluminosilicates. Potentiometric titration and electrophoresis indicate that most of the acidic functional groups of the adsorbed organic matter are neutralized by protons from solution. The organic coating is expected to have a great influence on subsequent adsorption of inorganic cations and anions.

  13. Bismuth solubility through binding by various organic compounds and naturally occurring soil organic matter.

    PubMed

    Murata, Tomoyoshi

    2010-01-01

    The present study was performed to examine the effects of soluble organic matter and pH on the solubility of Bi in relation to inference with the behavior of metallic Bi dispersed in soil and water environments using EDTA, citric acid, tartaric acid, L-cysteine, soil humic acids (HA), and dissolved organic matter (DOM) derived from the soil organic horizon. The solubility of Bi by citric acid, tartaric acid, L-cysteine, HA, and DOM showed pH dependence, while that by EDTA did not. Bi solubility by HA seemed to be related to the distribution of pKa (acid dissociation constant) values of acidic functional groups in their molecules. That is, HA extracted at pH 3.2 solubilized Bi preferentially in the acidic range, while HA extracted at pH 8.4 showed preferential solubilization at neutral and alkaline pH. This was related to the dissociation characteristics of functional groups, their binding capacity with Bi, and precipitation of Bi carbonate or hydroxides. In addition to the dissociation characteristics of functional groups, the unique structural configuration of the HA could also contribute to Bi-HA complex formation. The solubility of Bi by naturally occurring DOM derived from the soil organic horizon (Oi) and its pH dependence were different from those associated with HA and varied among tree species.

  14. Enhancement of the natural organic matter removal from drinking water by nanofiltration.

    PubMed

    Matilainen, A; Liikanen, R; Nyström, M; Lindqvist, N; Tuhkanen, T

    2004-03-01

    Finnish surface waters are abundant in natural organic matter. Natural organic matter can be removed from drinking water in a water treatment process by coagulation and filtration. The standard treatment operations are not able to remove the smallest molar mass fraction of organic matter and the intermediate molar mass matter is only partly removed. The removal of residual natural organic matter from drinking water by nanofiltration was evalueted in this study. Three different nanofiltration membranes were compared in filtering six pre-treated surface waters. The total organic carbon content of the feed waters varied from 2.0 to 4.2 mg l(-1). Other water quality parameters measured were conductivity, alkalinity, hardness, UV-absorbance, SUVA, E2/E3 value and molecular size distribution by high-performance size-exclusion chromatography. The natural organic matter removal efficiencies of the membranes were good and varied between 100% and 49%, and between 85% and 47% according to molecular size distribution and total organic carbon measurements, respectively. Removal of different molecular size fractions varied from 100% to 56%, 100% to 54% and 88% to 19%, regarding high molar mass, intermediate molar mass and low molar mass organic matter, respectively. The Desal-5 DL membrane produced the highest natural organic matter removals.

  15. Coupled Ocean-Atmosphere Loss of Refractory Marine Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Kieber, D. J.; Keene, W. C.; Frossard, A. A.; Long, M. S.; Russell, L. M.; Maben, J. R.; Kinsey, J. D.; Tyssebotn, I. M.; Quinn, P.; Bates, T. S.

    2013-12-01

    Marine aerosol produced in the oceans from bursting bubbles and breaking waves is number dominated by submicron aerosol that are highly enriched in marine organic matter relative to seawater. Recent studies suggest that these organic-rich, submicron aerosol have a major impact on tropospheric chemistry and climate. It has been assumed this marine-derived aerosol organic matter is of recent origin stemming from biological activity in the photic zone. However, we deployed a marine aerosol generator on a recent cruise in the Sargasso Sea with seawater collected from 2500 m and showed that the aerosol generated from this seawater was enriched with organic matter to the same level as observed in surface Sargasso seawater, implying that the marine organic matter flux from the oceans into atmospheric aerosol is partly due to marine organic matter not of recent origin. We propose that marine aerosol production and subsequent physical and photochemical atmospheric evolution is the main process whereby old, refractory organic matter is removed from the oceans, thereby closing the carbon budget in the oceans and solving a long-standing conundrum regarding the removal mechanism for this organic matter in the sea. The implications of this study for couplings in the ocean-atmosphere cycling of organic matter will be discussed.

  16. Deposition and accumulation of airborne organic contaminants in Yosemite National Park, Calfornia

    USGS Publications Warehouse

    Mast, Alisa M.; Alvarez, David A.; Zaugg, Steven D.

    2012-01-01

    Deposition and accumulation of airborne organic contaminants in Yosemite National Park were examined by sampling atmospheric deposition, lichen, zooplankton, and lake sediment at different elevations. Passive samplers were deployed in high-elevation lakes to estimate surface-water concentrations. Detected compounds included current-use pesticides chlorpyrifos, dacthal, and endosulfans and legacy compounds chlordane, dichlorodiphenyltrichloroethane-related compounds, dieldrin, hexachlorobenzene, and polychlorinated biphenyls. Concentrations in snow were similar among sites and showed little variation with elevation. Endosulfan concentrations in summer rain appeared to coincide with application rates in the San Joaquin Valley. More than 70% of annual pesticide inputs from atmospheric deposition occurred during the winter, largely because most precipitation falls as snow. Endosulfan and chlordane concentrations in lichen increased with elevation, indicating that mountain cold-trapping might be an important control on accumulation of these compounds. By contrast, chlorpyrifos concentrations were inversely correlated with elevation, indicating that distance from source areas was the dominant control. Sediment concentrations were inversely correlated with elevation, possibly because of the organic carbon content of sediments but also perhaps the greater mobility of organic contaminants at lower elevations. Surface-water concentrations inferred from passive samplers were at sub-parts-per-trillion concentrations, indicating minimal exposure to aquatic organisms from the water column. Concentrations in sediment generally were low, except for dichlorodiphenyldichloroethane in Tenaya Lake, which exceeded sediment guidelines for protection of benthic organisms.

  17. Effect of organic compounds on nitrite accumulation during the nitrification process for coking wastewater.

    PubMed

    Li, H B; Cao, H B; Li, Y P; Zhang, Y; Liu, H R

    2010-01-01

    Coking wastewater is one of the most toxic industrial effluents since it contains high concentrations of ammonia and toxic organic compounds. Nitrification might be upset by the inhibitory effect of organic compounds during the biological treatment of the wastewater. In this study, shortcut nitrification was obtained in a sequencing batch bioreactor (SBR) and the inhibitory effect of organic compounds on the nitrification was examined when temperature was 30±1°C, pH was 7.0-8.5, and dissolved oxygen concentration was 2.0-3.0 mg L(-1). The inhibitory effect of organic compounds was presumed to be one of the main factors to obtain satisfactory nitrite accumulation. The effect of organic compounds on nitrification was examined in the SBR with initial inhibitor concentrations ranging from 0 to 80 mg L(-1), including phenol, pyrocatechol, resorcin, benzene, quinoline, pyridine and indole. The inhibitory effect became stronger with the increase in the concentration, and it was presumed to take place through a direct mechanism resulting from biological toxicity of the inhibitor itself. Furthermore, the inhibitory effect on ammonia oxidation was slighter than that on nitrite oxidation, and the nitrite accumulation ratio during the nitrification was determined by the difference between the reaction rates of above two processes.

  18. Changes in dissolved organic matter composition and metabolic diversity of bacterial community during the degradation of organic matter in swine effluent.

    PubMed

    Li, Lei; Liu, Ming; Li, Yanli; Ma, Xiaoyan; Tang, Xiaoxue; Li, Zhongpei

    2016-07-01

    In this study, an incubation experiment was conducted with effluent collected from the concentrated swine-feeding operations (CSFOs) located in Yujiang County of Jiangxi Province, China. The purpose of this study was to elucidate the relationships between the composition of dissolved organic matter (DOM) and the community-level physiological profiles (CLPPs) of microorganisms in swine effluent. For all samples examined, the concentrations of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were decreased by an average of 58.2 ± 30.4 and 49.2 ± 38.7 %, whereas total dissolved phosphorus (TDP) exhibited an average final accumulation of 141.5 ± 43.0 %. In the original samples, ammonium nitrogen accounted for 88.9 ± 4.9 % of the TDN, which was reduced to a final average of 83.9 ± 9.6 %. Two protein-like (tyrosine and tryptophan) and two humic-like (fulvic acids and humic acids) components were identified using a three-dimensional excitation-emission matrix. With the increase in incubation time, the relative concentrations of two protein-like components in effluent were reduced by an average of 83.2 ± 24.7 %. BIOLOG(™) ECO plates were used to determine the metabolic fingerprint of the bacterial community, and a shift in the utilization patterns of substrates was observed over the study period. Additionally, the Shannon-Wiener index of CLPP was ultimately reduced by an average of 43.5 ± 8.5 %, corresponding to the metabolic diversity of the bacterial community. The redundancy analysis identified significant relationships between environmental parameters and the CLPP of microorganisms. To a certain degree, the DOM compositions were linked with the substrate utilization patterns of the bacterial community during the degradation of organic matter in swine effluent.

  19. The effects of organic matter-mineral interactions and organic matter chemistry on diuron sorption across a diverse range of soils.

    PubMed

    Smernik, Ronald J; Kookana, Rai S

    2015-01-01

    Sorption of non-ionic organic compounds to soil is usually expressed as the carbon-normalized partition coefficient (KOC), because it is assumed that the main factor that influences the amount sorbed is the organic carbon content of the soil. However, KOC can vary by a factor of at least ten across a range of soils. We investigated two potential causes of variation in diuron KOC - organic matter-mineral interactions and organic matter chemistry - for a diverse set of 34 soils from Sri Lanka, representing a wide range of soil types. Treatment with hydrofluoric acid (HF-treatment) was used to concentrate soil organic matter. HF-treatment increased KOC for the majority of soils (average factor 2.4). We attribute this increase to the blocking of organic matter sorption sites in the whole soils by minerals. There was no significant correlation between KOC for the whole soils and KOC for the HF-treated soils, indicating that the importance of organic matter-mineral interactions varied greatly amongst these soils. There was as much variation in KOC across the HF-treated soils as there was across the whole soils, indicating that the nature of soil organic matter is also an important contributor to KOC variability. Organic matter chemistry, determined by solid-state (13)C nuclear magnetic resonance (NMR) spectroscopy, was correlated with KOC for the HF-treated soils. In particular, KOC increased with the aromatic C content (R=0.64, p=1×10(-6)), and decreased with O-alkyl C (R=-0.32, p=0.03) and alkyl C (R=-0.41, p=0.004) content.

  20. PBDE and PCB accumulation in benthos near marine wastewater outfalls: the role of sediment organic carbon.

    PubMed

    Dinn, Pamela M; Johannessen, Sophia C; Ross, Peter S; Macdonald, Robie W; Whiticar, Michael J; Lowe, Christopher J; van Roodselaar, Albert

    2012-12-01

    Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) were measured in sediments and benthic invertebrates near submarine municipal outfalls in Victoria and Vancouver, B.C., Canada, two areas with contrasting receiving environments. PBDE concentrations in wastewater exceeded those of the legacy PCBs by eight times at Vancouver and 35 times at Victoria. Total PBDE concentrations in benthic invertebrates were higher near Vancouver than Victoria, despite lower concentrations in sediments, and correlated with organic carbon-normalized concentrations in sediment. Principal Components Analysis indicated uptake of individual PBDE congeners was determined by sediment properties (organic carbon, grain size), while PCB congener uptake was governed by physico-chemical properties (octanol-water partitioning coefficient). Results suggest the utility of sediment quality guidelines for PBDEs and likely PCBs benefit if based on organic carbon-normalized concentrations. Also, where enhanced wastewater treatment increases the PBDEs to particulate organic carbon ratio in effluent, nearfield benthic invertebrates may face increased PBDE accumulation.

  1. Macroinvertebrate and organic matter export from headwater tributaries of a Central Appalachian stream

    EPA Science Inventory

    Headwater streams export organisms and other materials to their receiving streams and macroinvertebrate drift can shape colonization dynamics in downstream reaches while providing food for downstream consumers. Spring-time macroinvertebrate drift and organic matter export was me...

  2. Influence of soil organic matter composition on the partition of organic compounds

    USGS Publications Warehouse

    Rutherford, D.W.; Chiou, C.T.; Klle, D.E.

    1992-01-01

    The sorption at room temperature of benzene and carbon tetrachloride from water on three high-organic-content soils (muck, peat, and extracted peat) and on cellulose was determined in order to evaluate the effect of sorbent polarity on the solute partition coefficients. The isotherms are highly linear for both solutes on all the organic matter samples, which is consistent with a partition model. For both solutes, the extracted peat shows the greatest sorption capacity while the cellulose shows the lowest capacity; the difference correlates with the polar-to-nonpolar group ratio [(O + N)/C] of the sorbent samples. The relative increase of solute partition coefficient (Kom) with a decrease of sample polar content is similar for both solutes, and the limiting sorption capacity on a given organic matter sample is comparable between the solutes. This observation suggests that one can estimate the polarity effect of a sample of soil organic matter (SOM) on Kom of various nonpolar solutes by determining the partition coefficient of single nonpolar solute when compositional analysis of the SOM is not available. The observed dependence of Kom on sample polarity is used to account for the variation of Kom values of individual compounds on different soils that results from change in the polar group content of SOM. On the assumption that the carbon content of SOM in "ordinary soils" is 53-63%, the calculated variation of Kom is a factor of ???3. This value is in agreement with the limit of variation of most Kom data with soils of relatively high SOM contents.

  3. Impact of Native and Invasive Earthworm Activity on Forest Soil Organic Matter Dynamics

    NASA Astrophysics Data System (ADS)

    Top, Sara; Filley, Timothy

    2010-05-01

    Many northern North American forests are experiencing the introduction of exotic European lumbricid species earthworms with documented losses in litter layers, expansion of A-horizons, loss of the organic horizon, changes in fine root density, and shifts in microbial populations as a result. Some of these forests were previously devoid of these ecosystem engineers. We compare the soil isotope and molecular chemistry from two free air CO2 enrichment (FACE) forest experiments (aspen FACE at Rhinelander, Wisconsin and sweet gum FACE at Oak Ridge National Lab, Tennessee) that lie within the zones of earthworm invasion. These sites exhibit differences in amounts of exotic and native species as well as endogeic (predominantly mineral soil dwelling) and epigeic (litter and organic matter horizon dwelling) types. We investigated the impact of earthworm activity by tracking the relative abundance and stable carbon isotope compositions of lignin and substituted fatty acids extracted from isolated earthworms and their fecal pellets and from host soils. Additionally, 15N-labeled additions to the soil provide additional methods for tracking earthworm impacts. Indications of root vs leaf input to earthworm casts and fecal matter were derived from differences in the chemical composition of cutin, suberin, and lignin. The isotopically depleted CO2 used in FACE and the resulting isotopically depleted plant organic matter afford an excellent opportunity to assess biopolymer-specific turnover dynamics. We find that endogeic species are proportionately more responsible for fine root cycling while some epigeic species are responsible for microaggregation of foliar cutin. CSIA of fecal pellet lignin and SFA indicate how these biopolymer pools can be derived from variable sources, roots, background soil, foliar tissue within one earthworm. Additionally, CSIA indicates the distinct roles that different earthworm types have in "aging" surface soil biopolymer pools through encapsulation and

  4. Chemodiversity of dissolved organic matter in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Gonsior, Michael; Valle, Juliana; Schmitt-Kopplin, Philippe; Hertkorn, Norbert; Bastviken, David; Luek, Jenna; Harir, Mourad; Bastos, Wanderley; Enrich-Prast, Alex

    2016-07-01

    Regions in the Amazon Basin have been associated with specific biogeochemical processes, but a detailed chemical classification of the abundant and ubiquitous dissolved organic matter (DOM), beyond specific indicator compounds and bulk measurements, has not yet been established. We sampled water from different locations in the Negro, Madeira/Jamari and Tapajós River areas to characterize the molecular DOM composition and distribution. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) combined with excitation emission matrix (EEM) fluorescence spectroscopy and parallel factor analysis (PARAFAC) revealed a large proportion of ubiquitous DOM but also unique area-specific molecular signatures. Unique to the DOM of the Rio Negro area was the large abundance of high molecular weight, diverse hydrogen-deficient and highly oxidized molecular ions deviating from known lignin or tannin compositions, indicating substantial oxidative processing of these ultimately plant-derived polyphenols indicative of these black waters. In contrast, unique signatures in the Madeira/Jamari area were defined by presumably labile sulfur- and nitrogen-containing molecules in this white water river system. Waters from the Tapajós main stem did not show any substantial unique molecular signatures relative to those present in the Rio Madeira and Rio Negro, which implied a lower organic molecular complexity in this clear water tributary, even after mixing with the main stem of the Amazon River. Beside ubiquitous DOM at average H / C and O / C elemental ratios, a distinct and significant unique DOM pool prevailed in the black, white and clear water areas that were also highly correlated with EEM-PARAFAC components and define the frameworks for primary production and other aspects of aquatic life.

  5. Natural organic matter fouling behaviors on superwetting nanofiltration membranes.

    PubMed

    Shan, Linglong; Fan, Hongwei; Guo, Hongxia; Ji, Shulan; Zhang, Guojun

    2016-04-15

    Nanofiltration has been widely recognized as a promising technology for the removal of micro-molecular organic components from natural water. Natural organic matter (NOM), a very important precursor of disinfection by-products, is currently considered as the major cause of membrane fouling. It is necessary to develop a membrane with both high NOM rejection and anti-NOM fouling properties. In this study, both superhydrophilic and superhydrophobic nanofiltration membranes for NOM removal have been fabricated. The fouling behavior of NOM on superwetting nanofiltration membranes has been extensively investigated by using humic acid (HA) as the model foulant. The extended Derjaguin-Landau-Verwey-Overbeek approach and nanoindentor scratch tests suggested that the superhydrophilic membrane had the strongest repulsion force to HA due to the highest positive total interaction energy (ΔG(TOT)) value and the lowest critical load. Excitation emission matrix analyses of natural water also indicated that the superhydrophilic membrane showed resistance to fouling by hydrophobic substances and therefore high removal thereof. Conversely, the superhydrophobic membrane showed resistance to fouling by hydrophilic substances and therefore high removal capacity. Long-term operation suggested that the superhydrophilic membrane had high stability due to its anti-NOM fouling capacity. Based on the different anti-fouling properties of the studied superwetting membranes, a combination of superhydrophilic and superhydrophobic membranes was examined to further improve the removal of both hydrophobic and hydrophilic pollutants. With a combination of superhydrophilic and superhydrophobic membranes, the NOM rejection (RUV254) and DOC removal rates (RDOC) could be increased to 83.6% and 73.3%, respectively.

  6. The chemical ecology of soil organic matter molecular constituents.

    PubMed

    Simpson, Myrna J; Simpson, André J

    2012-06-01

    Soil organic matter (OM) contains vast stores of carbon, and directly supports microbial, plant, and animal life by retaining essential nutrients and water in the soil. Soil OM plays important roles in biological, chemical, and physical processes within the soil, and arguably plays a major role in maintaining long-term ecological stability in a changing world. Despite its importance, there is a great deal still unknown about soil OM chemical ecology. The development of sophisticated analytical methods have reshaped our understanding of soil OM composition, which is now believed to be comprised of plant and microbial products at various stages of decomposition. The methods also have recently been applied to study environmental change in various settings and have provided unique insight with respect to soil OM chemical ecology. The goal of this review is to highlight the methods used to characterize soil OM structure, source, and degradation that have enabled precise observations of OM and associated ecological shifts. Although the chemistry of soil OM is important in its overall fate in ecosystems, the studies conducted to date suggest that ecological function is not defined by soil OM chemistry alone. The long-standing questions regarding soil OM stability and recalcitrance will likely be answered when several molecular methods are used in tandem to closely examine structure, source, age, degradation stage, and interactions of specific OM components in soil.

  7. Sorption of endosulphan sulphate in soil organic matter.

    PubMed

    Chowdhury, Raja; Atwater, James W; Hall, Ken J; Parkinson, Paula

    2011-12-01

    Sorption of endosulphan sulphate in soil organic matter was investigated using Standard Elliot soil humic acid (HA) and soil fulvic acid (FA) at two ionic strengths (0.001 and 0.01). It was observed that divalent calcium ion and ionic strength affect the sorption of endosulphan sulphate in HA. All the experiments were carried out at pH 6.7 +/- 0.1. In the presence and absence of calcium (ionic strength 0.001), the solubility enhancement method was used to estimate the sorption coefficients of endosulphan sulphate in HA. For FA, the solubility enhancement method was used to estimate the sorption coefficients at an ionic strength of 0.001 (in the presence of calcium) and 0.01. The presence of calcium was found to significantly enhance (alpha = 0.01) the solubility of endosulphan sulphate in HA. Sorption coefficients at pH 6.7, obtained using the solubility enhancement method, were found to be 10-21 L/g in HA and 6 L/g in FA (in the presence of calcium). Increase in ionic strength from 0.001 to 0.01 decreased the sorption of endosulphan sulphate in HA. The effect of ionic strength and calcium on the sorption of endosulphan sulphate was most satisfactorily explained on the basis of the Donnan volume.

  8. Breakage, regrowth, and fractal nature of natural organic matter flocs.

    PubMed

    Jarvis, Peter; Jefferson, Bruce; Parsons, Simon A

    2005-04-01

    The growth, breakage, regrowth, and fractal nature of flocs was investigated by use of a laser diffraction particle sizing device. A range of coagulants were investigated for the coagulation of natural organic matter (NOM) and compared to other coagulated systems. The results showed NOM floc structural characteristics varied in steady-state size depending upon which coagulant was used. When compared to other systems, the order of floc size was Fe precipitate > Fe-NOM > latex (in NaCl solution). Floc regrowth after exposure to high shear was limited for all of the flocs under investigation other than for latex in an inert electrolyte. This highlighted differences in the internal bonding structure of flocs, with the results suggesting that physical bonds have a capacity to re-form after breakage. Fractal dimension analysis by small-angle laser light scattering (SALLS) had limited applicability to large flocs that dominated all of the systems under investigation, but the degree of compaction increased as flocs were broken in high shear. This provided a possible mechanistic reason for the irreversible breakage seen.

  9. The Organic Matter Biogeochemistry of the Congo River

    NASA Astrophysics Data System (ADS)

    Spencer, R. G.; Hernes, P.; Wabakanghanzi, J.; Bienvenu, D. J.; Six, J.

    2015-12-01

    Organic matter (OM) represents a fundamental link between terrestrial and aquatic carbon cycles and plays an essential role in aquatic ecosystem biogeochemistry. The Congo River, which drains pristine tropical forest and savannah is the second largest exporter of terrestrial carbon to the ocean, and represents a historically understudied basin. Our ongoing projects in the Congo Basin aim to provide pertinent information on transport and emissions of carbon by rivers that need to be incorporated into carbon budgets of terrestrial ecosystems. To date the Congo Basin has seen only limited perturbation but the carbon locked away in the Congo, as in other tropical rainforests is increasingly vulnerable to release into the aquatic system and the atmosphere. However, riverine carbon transport (both of OM to the oceans and release of CO2 to the atmosphere) as a driver of global carbon cycling is still largely overlooked. Here we present data from a multi-season field campaign to quantify the transport fluxes, mineralization fluxes, and chemical character of Congo River OM, and to elucidate how these properties relate to each other and vary seasonally driven by hydrology within the Congo Basin. Existing data demonstrates that although tropical rivers do not experience the seasonal climatic extremes of temperate or northern high-latitude rivers, they all demonstrate similar effects due to changing hydrologic inputs with respect to OM dynamics. Specifically flushing periods appear to warrant further study as maximal export of reactive freshly leached plant material occurs during this time period.

  10. Nutrient Effects on Belowground Organic Matter in a ...

    EPA Pesticide Factsheets

    Belowground structure and carbon dioxide emission rates were examined in minerogenic marshes of the North Inlet estuary, a system dominated by depositional processes and typical of the southeastern USA. Three areas were sampled: a long-term nutrient enrichment experiment (Goat Island); a fringing marsh that only receives drainage from an entirely forested watershed (upper Crab Haul Creek); and three locations along a creek basin that receives drainage from a residential and golf course development situated at its headwaters (Debidue Creek). Responses to fertilization at Goat Island were an increase in soil organic matter, an increase in number of rhizomes, enlarged rhizome diameters, decreased fine root mass, and increased carbon dioxide emission rates. At the Crab Haul Creek, the greatest abundances of coarse roots and rhizomes were observed in the high marsh compared to the low marsh and creekbank. The upper and mid Debidue Creek, which may be influenced by nutrient inputs associated with land development, had significantly fewer rhizomes compared to the mouth, which was dominated by exchange with bay waters. Carbon dioxide emission rates at the fertilized Goat Island plots were similar in magnitude to the upper Debidue Creek and significantly greater than the Goat Island control plots and the Crab Haul Creek. Inputs of sediment and particulates in marshes dominated by depositional processes such as the North Inlet may buffer the system from adverse effects of

  11. Mercury reduction and complexation by natural organic matter

    SciTech Connect

    Gu, Baohua; Bian, Yongrong; Miller, Carrie L; Dong, Wenming; Jiang, Xin; Liang, Liyuan

    2011-01-01

    Mercuric Hg(II) species form complexes with natural dissolved organic matter (DOM) such as humic acid (HA), and this binding is known to affect the chemical and biological transformation and cycling of mercury in aquatic environments. Dissolved elemental mercury, Hg(0), is also widely observed in sediments and water. However, reactions between Hg(0) and DOM have rarely been studied in anoxic environments. Here, under anoxic dark conditions we show strong interactions between reduced HA and Hg(0) through thiol-ligand induced oxidative complexation with an estimated binding capacity of about 3.5 umol Hg(0)/g HA and a partitioning coefficient greater than 10^6 mL/g. We further demonstrate that Hg(II) can be effectively reduced to Hg(0) in the presence of as little as 0.2 mg/L reduced HA, whereas production of purgeable Hg(0) is inhibited by complexation as HA concentration increases. This dual role played by DOM in the reduction and complexation of mercury is likely widespread in anoxic sediments and water and can be expected to significantly influence the mercury species transformations and biological uptake that leads to the formation of toxic methylmercury.

  12. Pyrolysis-combustion 14C dating of soil organic matter

    USGS Publications Warehouse

    Wang, Hongfang; Hackley, Keith C.; Panno, S.V.; Coleman, D.D.; Liu, J.C.-L.; Brown, J.

    2003-01-01

    Radiocarbon (14C) dating of total soil organic matter (SOM) often yields results inconsistent with the stratigraphic sequence. The onerous chemical extractions for SOM fractions do not always produce satisfactory 14C dates. In an effort to develop an alternative method, the pyrolysis-combustion technique was investigated to partition SOM into pyrolysis volatile (Py-V) and pyrolysis residue (Py-R) fractions. The Py-V fractions obtained from a thick glacigenic loess succession in Illinois yielded 14C dates much younger but more reasonable than the counterpart Py-R fractions for the soil residence time. Carbon isotopic composition (??13C) was heavier in the Py-V fractions, suggesting a greater abundance of carbohydrate- and protein-related constituents, and ??13C was lighter in the Py-R fractions, suggesting more lignin- and lipid-related constituents. The combination of 14C dates and ??13C values indicates that the Py-V fractions are less biodegradation resistant and the Py-R fractions are more biodegradation resistant. The pyrolysis-combustion method provides a less cumbersome approach for 14C dating of SOM fractions. With further study, this method may become a useful tool for analyzing unlithified terrestrial sediments when macrofossils are absent. ?? 2003 University of Washington. Published by Elsevier Inc. All rights reserved.

  13. Modeling monochloramine loss in the presence of natural organic matter.

    PubMed

    Duirk, Stephen E; Gombert, Bertrand; Croué, Jean-Philippe; Valentine, Richard L

    2005-09-01

    A comprehensive model describing monochloramine loss in the presence of natural organic matter (NOM) is presented. The model incorporates simultaneous monochloramine autodecomposition and reaction pathways resulting in NOM oxidation. These competing pathways were resolved numerically using an iterative process evaluating hypothesized reactions describing NOM oxidation by monochloramine under various experimental conditions. The reaction of monochloramine with NOM was described as biphasic using four NOM specific reaction parameters. NOM pathway 1 involves a direct reaction of monochloramine with NOM (k(doc1) = 1.05 x 10(4)-3.45 x 10(4) M(-1) h(-1)). NOM pathway 2 is slower in terms of monochloramine loss and attributable to free chlorine (HOCl) derived from monochloramine hydrolysis (k(doc2) = 5.72 x 10(5)-6.98 x 10(5) M(-1) h(-1)), which accounted for the majority of monochloramine loss. Also, the free chlorine reactive site fraction in the NOM structure was found to correlate to specific ultraviolet absorbance at 280 nm (SUVA280). Modeling monochloramine loss allowed for insight into disinfectant reaction pathways involving NOM oxidation. This knowledge is of value in assessing monochloramine stability in distribution systems and reaction pathways leading to disinfection by-product (DBP) formation.

  14. Spectral Induced Polarization Signature of Soil Organic Matter

    NASA Astrophysics Data System (ADS)

    Schwartz, Nimrod; Furman, Alex

    2015-04-01

    Although often composing a non-negligible fraction of soil cation exchange capacity (CEC), the impact of soil organic matter (OM) on the electrical properties of soil has not been thoroughly investigated. In this research the impact of soil OM on the spectral induced polarization (SIP) signature of soil was investigated. Electrical and chemical measurements for two experiments using the same soil, one with calcium as the dominant cation and the other with sodium, with different concentration of OM were performed. Our results show that despite the high CEC of OM, a decrease in polarization and an increase in relaxation time with increasing concentration of OM is observed. For the soil with calcium as the dominant cation, the decreases in polarization and the increase in relaxation time were stronger. We explain these non-trivial results by accounting for the interactions between the OM and the soil minerals. We suggest that the formation of organo-mineral complexes reduce ionic mobility, explaining both the decrease in polarization and the increase in relaxation time. These results demonstrate the important role of OM on SIP response of soil, and call for a further research in order to establish a new polarization model that will include the impact of OM on soil polarization.

  15. On the spectral induced polarization signature of soil organic matter

    NASA Astrophysics Data System (ADS)

    Schwartz, N.; Furman, A.

    2015-01-01

    Although often composing a non-negligible fraction of soil cation exchange capacity (CEC), the impact of soil organic matter (OM) on the electrical properties of soil has not been thoroughly investigated. In this research the impact of soil OM on the spectral induced polarization (SIP) signature of soil was investigated. Electrical and chemical measurements for two experiments using the same soil, one with calcium as the dominant cation and the other with sodium, with different concentration of OM were performed. Our results show that despite the high CEC of OM, a decrease in polarization and an increase in relaxation time with increasing concentration of OM is observed. For the soil with calcium as the dominant cation, the decreases in polarization and the increase in relaxation time were stronger. We explain these non-trivial results by accounting for the interactions between the OM and the soil minerals. We suggest that the formation of organo-mineral complexes reduce ionic mobility, explaining both the decrease in polarization and the increase in relaxation time. These results demonstrate the important role of OM on SIP response of soil, and call for a further research in order to establish a new polarization model that will include the impact of OM on soil polarization.

  16. Temperature responses of individual soil organic matter components

    NASA Astrophysics Data System (ADS)

    Feng, Xiaojuan; Simpson, Myrna J.

    2008-09-01

    Temperature responses of soil organic matter (SOM) remain unclear partly due to its chemical and compositional heterogeneity. In this study, the decomposition of SOM from two grassland soils was investigated in a 1-year laboratory incubation at six different temperatures. SOM was separated into solvent extractable compounds, suberin- and cutin-derived compounds, and lignin-derived monomers by solvent extraction, base hydrolysis, and CuO oxidation, respectively. These SOM components have distinct chemical structures and stabilities and their decomposition patterns over the course of the experiment were fitted with a two-pool exponential decay model. The stability of SOM components was also assessed using geochemical parameters and kinetic parameters derived from model fitting. Compared with the solvent extractable compounds, a low percentage of lignin monomers partitioned into the labile SOM pool. Suberin- and cutin-derived compounds were poorly fitted by the decay model, and their recalcitrance was shown by the geochemical degradation parameter (ω - C16/∑C16), which was observed to stabilize during the incubation. The temperature sensitivity of decomposition, expressed as Q10, was derived from the relationship between temperature and SOM decay rates. SOM components exhibited varying temperature responses and the decomposition of lignin monomers exhibited higher Q10 values than the decomposition of solvent extractable compounds. Our study shows that Q10 values derived from soil respiration measurements may not be reliable indicators of temperature responses of individual SOM components.

  17. Variation in assimilable organic carbon formation during chlorination of Microcystis aeruginosa extracellular organic matter solutions.

    PubMed

    Sun, Xingbin; Yuan, Ting; Ni, Huishan; Li, Yanpeng; Hu, Yang

    2016-07-01

    This study investigated the chlorination of Microcystis aeruginosa extracellular organic matter (EOM) solutions under different conditions, to determine how the metabolites produced by these organisms affect water safety and the formation of assimilable organic carbon (AOC). The effects of chlorine dosages, coagulant dosage, reaction time and temperature on the formation of AOC were investigated during the disinfection of M.aeruginosa metabolite solutions. The concentration of AOC followed a decreasing and then increasing pattern with increasing temperature and reaction time. The concentration of AOC decreased and then increased with increasing chlorination dosage, followed by a slight decrease at the highest level of chlorination. However, the concentration of AOC decreased continuously with increasing coagulant dosage. The formation of AOC can be suppressed under appropriate conditions. In this study, chlorination at 4mg/L, combined with a coagulant dose of 40mg/L at 20°C over a reaction time of 12hr, produced the minimum AOC.

  18. The association of uranium with organic matter in Holocene peat: An experimental leaching study

    USGS Publications Warehouse

    Zielinski, R.A.; Meier, A.L.

    1988-01-01

    Uraniferous peat was sampled from surface layers of a Holocene U deposit in northeastern Washington State. Dried, sized, and homogenized peat that contained 5980 ??307 ppm U was subjected to a variety of leaching conditions to determine the nature and strength of U-organic bonding in recently accumulated organic matter. The results complement previous experimental studies of U uptake on peat and suggest some natural or anthropogenic disturbances that are favorable for remobilizing U. The fraction of U leached in 24 h experiments at 25??C ranged from 0 to 95%. The most effective leach solutions contained anions capable of forming stable dissolved complexes with uranyl (UO2+2) cation. These included H2SO4 (pH = 1.5) and concentrated (>0.01 M) solutions of sodium bicarbonate-carbonate (pH = 7.0-10.0), or sodium pyrophosphate (pH = 10). Effective leaching by carbonate and pyrophosphate in the absence of added oxidant, and the insignificant effect of added oxidant (as pressurized O2) strongly suggest that U is initially fixed on organic matter as an oxidized U(VI) species. Uranium is more strongly bound than some other polyvalent cations, based on its resistance to exchange in the presence of large excesses of dissolved Ca2+ and Cu2+. Measurements of the rate of U leaching indicate faster rates in acid solution compared to carbonate solution, and are consisten with simultaneous attack of sites with different affinities for U. Sulfuric acid appears a good choice for commercial extraction of U from mined peat. In situ disturbances such as overliming of peat soils, addition of fertilizers containing pyrophosphate, or incursions of natural carbonate-rich waters could produce significant remobilization of U, and possibly compromise the quality of local domestic water supplies. ?? 1988.

  19. FACTORS INFLUENCING PHOTOREACTIONS OF DISSOLVED ORGANIC MATTER IN A COASTAL RIVER OF THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    Photoreactions of dissolved organic matter can affect the oxidizing capacity, nutrient dynamics, trace gas exchange, and color of surface waters. This study focuses on factors that affect the photoreactions of the colored dissolved organic matter (CDOM) in the Satilla River, a co...

  20. Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers

    USGS Publications Warehouse

    Stubbins, Aron; Hood, Eran; Raymond, Peter A.; Aiken, George R.; Sleighter, Rachel L.; Hernes, Peter J.; Butman, David; Hatcher, Patrick G.; Striegl, Rob; Schuster, Paul F.; Abdulla, Hussain A.N.; Vermilyea, Andrew W.; Scott, Durelle T.; Spencer, Robert G.M.

    2012-01-01

    Glacier-derived dissolved organic matter represents a quantitatively significant source of ancient, yet highly bioavailable carbon to downstream ecosystems. This finding runs counter to logical perceptions of age–reactivity relationships, in which the least reactive material withstands degradation the longest and is therefore the oldest. The remnants of ancient peatlands and forests overrun by glaciers have been invoked as the source of this organic matter. Here, we examine the radiocarbon age and chemical composition of dissolved organic matter in snow, glacier surface water, ice and glacier outflow samples from Alaska to determine the origin of the organic matter. Low levels of compounds derived from vascular plants indicate that the organic matter does not originate from forests or peatlands. Instead, we show that the organic matter on the surface of the glaciers is radiocarbon depleted, consistent with an anthropogenic aerosol source. Fluorescence spectrophotometry measurements reveal the presence of protein-like compounds of microbial or aerosol origin. In addition, ultrahigh-resolution mass spectrometry measurements document the presence of combustion products found in anthropogenic aerosols. Based on the presence of these compounds, we suggest that aerosols derived from fossil fuel burning are a source of pre-aged organic matter to glacier surfaces. Furthermore, we show that the molecular signature of the organic matter is conserved in snow, glacier water and outflow, suggesting that the anthropogenic carbon is exported relatively unchanged in glacier outflows.

  1. Elemental composition and functional groups in soil labile organic matter fractions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Labile organic matter fractions are major components involved in nutrient cycle in soil. In this chapter, we examine three labile organic matter fraction: light fraction (LF), humic acid (HA) and fulvic acid (HA) in Alabama cotton soils (ultisol) amended with chemical fertilizer (NH4NO3) and poult...

  2. Advances in understanding the molecular structure of soil organic matter: Implications for interactions in the environment

    EPA Science Inventory

    We take a historic approach to explore how concepts of the chemical and physical nature of soil organic matter have evolved over time. We emphasize conceptual and analytical achievements in organic matter research over the last two decades and demonstrate how these developments h...

  3. Occurrence and abundance of carbohydrates and amino compounds in sequentially extracted labile soil organic matter fractions.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aimed to investigate the content of carbohydrates and amino compounds in three labile fraction of soil organic matter (SOM). Soil samples were collected from two agricultural fields in southern Italy and the light fraction (LF), the 500–53-µm particulate organic matter (POM) and the mobil...

  4. Effects of Agronomic and Conservation Management Practices On Organic Matter and Associated Properties in Claypan Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic matter plays several important roles in the biogeochemistry of soil and impacts the sustainability and profitability of agroecosystems. Retention and transformation of soil organic matter (SOM) are affected by agronomic and conservation management practices. The primary objective of this stu...

  5. Composition of whole and water extractable organic matter of cattle manure affected by management practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic matter (OM) is a major component of animal manure. In this chapter, we present two case studies on the multiple spectral features of whole and water extractable organic matter (WEOM) of cattle (beef and dairy) manure affected by differing management practices. Using wet chemistry and Fourie...

  6. Contribution of plant lignin to the soil organic matter formation and stabilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignin is the third most abundant plant constituent after cellulose and hemicellulose and thought to be one of the building blocks for soil organic matter formation. Lignin can be used as a predictor for long-term soil organic matter stabilization and C sequestration. Soils and humic acids from fo...

  7. Soil organic matter on citrus plantation in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Pereira, Paulo; Novara, Agata; Prosdocimi, Massimo

    2015-04-01

    Citrus plantations in Eastern Spain are the main crop and Valencia region is the largest world exporter. The traditional plantation are located on flood irrigated areas and the new plantation are located on slopes were drip irrigation is the source of the wetting. It has been demonstrate that the citrus plantations contribute to high erosion rates on slopes (Cerdà et al., 2009b) as it is usual on agriculture land (Cerdà et al., 2009a), but when organic farming is present the soil erosion is much lower (Cerdà and Jurgensen, 2008; Cerdà et al., 2009; Cerdà and Jurgensen, 2011). This is a worldwide phenomenon (Wu et al., 2007; Wu et al., 2011; Xu et al., 2010; Xu et al., 2012a; Xu et al., 2012b), which are a key factor of the high erosion rates in rural areas (García Orenes et al., 2009: García Orenes et al., 20010; García Orenes et al., 2012; Haregewyn et al., 2013; Zhao et al., 2013). The key factor of the contrasted response of soils to the rain in citrus is the organic matter cover. This is why the Soil Erosion and Degradation Research Team developed a survey to determine the soil erosion rates on citrus orchards under different managements. A hundred of samples were collected in a citrus plantation on slope under conventional management (Chemical management), one on organic farming, one on traditional flood irrigated organic farming and one on traditional chemical flooding farm. The organic farming soils were treated with 10000 Kg ha-1 of manure yearly. The results show that the mean soil organic matter content was 1.24 %, 3.54%, 5,43% and 2.1% respectively, which show a clear impact of organic farming in the recovery of the soil organic matter. meanwhile the on the slopes and the flood-irrigated soils are Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7- ENV-2013- supported this research. References Cerdà, A., Flanagan, D.C., le Bissonnais

  8. Integrated network modelling for identifying microbial mechanisms of particulate organic carbon accumulation in coastal marine systems

    NASA Astrophysics Data System (ADS)

    McDonald, Karlie; Turk, Valentina; Mozetič, Patricija; Tinta, Tinkara; Malfatti, Francesca; Hannah, David; Krause, Stefan

    2016-04-01

    Accumulation of particulate organic carbon (POC) has the potential to change the structure and function of marine ecosystems. High abidance of POC can develop into aggregates, known as marine snow or mucus aggregates that can impair essential marine ecosystem functioning and services. Currently marine POC formation, accumulation and sedimentation processes are being explored as potential pathways to remove CO2 from the atmosphere by CO2 sequestration via fixation into biomass by phytoplankton. However, the current ability of scientists, environmental managers and regulators to analyse and predict high POC concentrations is restricted by the limited understanding of the dynamic nature of the microbial mechanisms regulating POC accumulation events in marine environments. We present a proof of concept study that applies a novel Bayesian Networks (BN) approach to integrate relevant biological and physical-chemical variables across spatial and temporal scales in order to identify the interactions of the main contributing microbial mechanisms regulating POC accumulation in the northern Adriatic Sea. Where previous models have characterised only the POC formed, the BN approach provides a probabilistic framework for predicting the occurrence of POC accumulation by linking biotic factors with prevailing environmental conditions. In this paper the BN was used to test three scenarios (diatom, nanoflagellate, and dinoflagellate blooms). The scenarios predicted diatom blooms to produce high chlorophyll a at the water surface while nanoflagellate blooms were predicted to occur at lower depths (> 6m) in the water column and produce lower chlorophyll a concentrations. A sensitivity analysis identified the variables with the greatest influence on POC accumulation being the enzymes protease and alkaline phosphatase, which highlights the importance of microbial community interactions. The developed proof of concept BN model allows for the first time to quantify the impacts of

  9. Uptake of cadmium, zinc, lead, and copper by earthworms near a zinc-smelting complex: influence of soil pH and organic matter

    SciTech Connect

    Ma, W.; Edelman, T.; van Beersum, I.; Jans, T.

    1983-04-01

    Soil samples were taken from 31 sites near Eindhoven, The Netherlands, mainly along transects of 1 to 15 km from the nearest zinc smelter. Earthworms (Lumbricus rubellus) were taken from the upper 20 cm soil layer and analyzed from accumulation of Cd, Zn, Pb and Cu by atomic absorption spectrophotometry. Cd, Zn, and Pb appeared to be more strongly accumulated by L. rubellus when present in soil with a low pH value. Cu was the only exception in this regard; its uptake by L. rubellus was not significantly influenced by soil pH. The organic matter content of the soil played a significant role only in the worm uptake of Pb. Soil Pb content, soil pH, and soil organic matter content together accounted for almost 70% of the variance in worm Pb content. The results indicate that L. rubellus accumulates Pb more strongly in soil with a low pH and low organic matter content than in soil with higher values of these parameters. The demonstrated influence of pH and organic matter content on element concentration in earthworms emphasizes the importance of soil factors in governing the entrance of toxic metal elements into the food web. (JMT)

  10. Microbial biomass as a significant source of soil organic matter

    NASA Astrophysics Data System (ADS)

    Miltner, Anja; Kindler, Reimo; Schweigert, Michael; Achtenhagen, Jan; Bombach, Petra; Fester, Thomas; Kästner, Matthias

    2014-05-01

    Soil organic matter (SOM) plays an important role for soil fertility and in the global carbon cycle. SOM management should be based on knowledge about the chemical composition as well as the spatial distribution of SOM and its individual components in soils. Both parameters strongly depend on the direct precursors of SOM. In the past, microbial biomass has been neglected as a potential source of SOM, mainly because of its small pool size. Recent studies, however, show that a substantial portion of SOM is derived from microbial biomass residues. We therefore investigated the fate of microbial biomass residues in soils by means of incubation experiments with 13C-labelled microbial biomass. For our studies, we selected model organisms representing the three types of soil microorganisms and their characteristic cell wall structures: Escherichia coli (a Gram-negative bacterium), Bacillus subtilis (a Gram-positive bacterium) and Laccaria bicolor (an ectomycorrhizal fungus). We labelled the organisms by growing them on 13C glucose and incubated them in soil. During incubation, we followed the mineralisation of the labelled C, its incorporation into microbial biomass, and its transformation to non-living SOM. We found that 50-65% of the microbial biomass C remained in the soil during incubation. However, only a small part remained in the microbial biomass, the majority was transformed to SOM. In particular, proteins seemed to be rather stable in our experiments. In addition, we used scanning electron microscopy to identify microbial residues in soils and, for comparison, in artificial groundwater microcosms. Scanning electron micrographs showed a low number of intact cells, but mainly fragments of about 200-500 nm size. Similar fragments were found in artificial groundwater microcosms where the only possible origin was microbial biomass residues. Based on the results obtained, we provide a mechanistic model which explains how microbial biomass residues are formed and

  11. Where is DNA preserved in soil organic matter?

    NASA Astrophysics Data System (ADS)

    Zaccone, Claudio; Beneduce, Luciano; Plaza, César

    2015-04-01

    Deoxyribonucleic acid (DNA) consists of long chains of alternating sugar and phosphate residues twisted in the form of a helix. Upon decomposition of plant and animal debris, this nucleic acid is released into the soil, where its fate is still not completely understood. In fact, although DNA is one of the organic compounds from living cells that is apparently broken down rapidly in soils, it is also potentially capable of being incorporated in (or interact with) the precursors of humic molecules. In order to track DNA occurrence in soil organic matter (SOM) fractions, an experiment was set up as a randomized complete block design with two factors, namely biochar addition and organic amendment. In particular, biochar (BC), applied at a rate of 20 t/ha, was combined with municipal solid waste compost (BC+MC) at a rate equivalent to 75 kg/ha of potentially available N, and with sewage sludge (BC+SS) at a rate equivalent to 75 kg/ha of potentially available N. Using a physical fractionation method, free SOM located between aggregates (unprotected C pool; FR), SOM occluded within macroaggregates (C pool weakly protected by physical mechanisms; MA), SOM occluded within microaggregates (C pool strongly protected by physical mechanisms; MI), and SOM associated with the mineral fractions (chemically-protected C pool; MIN) were separated from soil samples. DNA was then isolated from each fraction of the two series, as well as from the unamended soil (C) and from the bulk soils (WS), using Powersoil DNA isolation kit (MoBio, CA, USA) with a modified protocol. Data clearly show that the DNA survived the SOM fractionation, thus suggesting that physical fractionation methods create less artifacts compared to the chemical ones. Moreover, in both BC+MC and BC+SS series, most of the isolated DNA was present in the FR fraction, followed by the MA and the MI fractions. No DNA was recovered from the MIN fraction. This finding supports the idea that most of the DNA occurring in the SOM

  12. Abiotic emissions of methane and reduced organic compounds from organic matter

    NASA Astrophysics Data System (ADS)

    Roeckmann, T.; Keppler, F.; Vigano, I.; Derendorp, L.; Holzinger, R.

    2012-12-01

    Recent laboratory studies show that the important greenhouse gas methane, but also other reduced atmospheric trace gases, can be emitted by abiotic processes from organic matter, such as plants, pure organic compounds and soils. It is very difficult to distinguish abiotic from biotic emissions in field studies, but in laboratory experiments this is easier because it is possible to carefully prepare/sterilize samples, or to control external parameters. For example, the abiotic emissions always show a strong increase with temperature when temperatures are increased to 70C or higher, well above the temperature optimum for bacterial activity. UV radiation has also been clearly shown to lead to emission of methane and other reduced gases from organic matter. Interesting information on the production mechanism has been obtained from isotope studies, both at natural abundance and with isotope labeling. For example, the methoxyl groups of pectin were clearly identified to produce methane. However, analysis of the isotopic composition of methane from natural samples clearly indicates that there must be other molecular mechanisms that lead to methane production. Abiotic methane generation could be a ubiquitous process that occurs naturally at low rates from many different sources.

  13. Carbon accumulation in arid croplands of northwest China: pedogenic carbonate exceeding organic carbon

    NASA Astrophysics Data System (ADS)

    Wang, Xiujun; Wang, Jiaping; Xu, Minggang; Zhang, Wenju; Fan, Tinglu; Zhang, Juan

    2015-06-01

    Soil carbonate (SIC) exceeds organic carbon (SOC) greatly in arid lands, thus may be important for carbon sequestration. However, field data for quantifying carbonate accumulation have been lacking. This study aims to improve our understanding of SIC dynamics and its role in carbon sequestration. We analyzed two datasets of SOC and SIC and their 13C compositions , one with over 100 soil samples collected recently from various land uses in the Yanqi Basin, Xinjiang, and the other with 18 archived soil samples from a long-term experiment (LTE) in Pingliang, Gansu. The data from the Yanqi Basin showed that SOC had a significant relationship with SIC and pedogenic carbonate (PIC); converting shrub land to cropland increased PIC stock by 5.2 kg C m-2, which was 3.6 times of that in SOC stock. The data from the LTE showed greater accumulation of PIC (21-49 g C m-2 year-1) than SOC (10-39 g C m-2 year-1) over 0-20 cm. Our study points out that intensive cropping in the arid and semi-arid regions leads to an increase in both SOC and PIC. Increasing SOC through straw organic amendments enhances PIC accumulation in the arid cropland of northwestern China.

  14. Perchlorate-induced combustion of organic matter with variable molecular weights: Implications for Mars missions

    NASA Astrophysics Data System (ADS)

    Sephton, Mark A.; Lewis, James M. T.; Watson, Jonathan S.; Montgomery, Wren; Garnier, Carole

    2014-11-01

    Instruments on the Viking landers and Curiosity rover analyzed samples of Mars and detected carbon dioxide and organic compounds of uncertain origin. Mineral-assisted reactions are leading to uncertainty, particularly those involving perchlorate minerals which thermally decompose to produce chlorine and oxygen which can then react with organic matter to generate organochlorine compounds and carbon dioxide. Although generally considered a problem for interpretation, the release profiles of generated gases can indicate the type of organic matter present. We have performed a set of experiments with perchlorate and organic matter of variable molecular weights. Results indicate that organic susceptibility to thermal degradation and mineral-assisted reactions is related to molecular weight. Low molecular weight organic matter reacts at lower temperatures than its high molecular weight counterparts. The natural occurrence and association of organic matter with differing molecular weights helps to discriminate between contamination (usually low molecular weight organic matter only) a