Science.gov

Sample records for accumulated organic matter

  1. Synergy of fresh and accumulated organic matter to bacterial growth.

    PubMed

    Farjalla, Vinicius F; Marinho, Claudio C; Faria, Bias M; Amado, André M; Esteves, Francisco de A; Bozelli, Reinaldo L; Giroldo, Danilo

    2009-05-01

    The main goal of this research was to evaluate whether the mixture of fresh labile dissolved organic matter (DOM) and accumulated refractory DOM influences bacterial production, respiration, and growth efficiency (BGE) in aquatic ecosystems. Bacterial batch cultures were set up using DOM leached from aquatic macrophytes as the fresh DOM pool and DOM accumulated from a tropical humic lagoon. Two sets of experiments were performed and bacterial growth was followed in cultures composed of each carbon substrate (first experiment) and by carbon substrates combined (second experiment), with and without the addition of nitrogen and phosphorus. In both experiments, bacterial production, respiration, and BGE were always higher in cultures with N and P additions, indicating a consistent inorganic nutrient limitation. Bacterial production, respiration, and BGE were higher in cultures set up with leachate DOM than in cultures set up with humic DOM, indicating that the quality of the organic matter pool influenced the bacterial growth. Bacterial production and respiration were higher in the mixture of substrates (second experiment) than expected by bacterial production and respiration in single substrate cultures (first experiment). We suggest that the differences in the concentration of some compounds between DOM sources, the co-metabolism on carbon compound decomposition, and the higher diversity of molecules possibly support a greater bacterial diversity which might explain the higher bacterial growth observed. Finally, our results indicate that the mixture of fresh labile and accumulated refractory DOM that naturally occurs in aquatic ecosystems could accelerate the bacterial growth and bacterial DOM removal. PMID:18985269

  2. Dissolved organic matter reduces algal accumulation of methylmercury

    USGS Publications Warehouse

    Luengen, Allison C.; Fisher, Nicholas S.; Bergamaschi, Brian A.

    2012-01-01

    Dissolved organic matter (DOM) significantly decreased accumulation of methylmercury (MeHg) by the diatom Cyclotella meneghiniana in laboratory experiments. Live diatom cells accumulated two to four times more MeHg than dead cells, indicating that accumulation may be partially an energy-requiring process. Methylmercury enrichment in diatoms relative to ambient water was measured by a volume concentration factor (VCF). Without added DOM, the maximum VCF was 32 x 104, and the average VCF (from 10 to 72 h) over all experiments was 12.6 x 104. At very low (1.5 mg/L) added DOM, VCFs dropped by approximately half. At very high (20 mg/L) added DOM, VCFs dropped 10-fold. Presumably, MeHg was bound to a variety of reduced sulfur sites on the DOM, making it unavailable for uptake. Diatoms accumulated significantly more MeHg when exposed to transphilic DOM extracts than hydrophobic ones. However, algal lysate, a labile type of DOM created by resuspending a marine diatom in freshwater, behaved similarly to a refractory DOM isolate from San Francisco Bay. Addition of 67 μM L-cysteine resulted in the largest drop in VCFs, to 0.28 x 104. Although the DOM composition influenced the availability of MeHg to some extent, total DOM concentration was the most important factor in determining algal bioaccumulation of MeHg.

  3. Molecular nitrogen in natural gas accumulations: Generation from sedimentary organic matter at high temperatures

    SciTech Connect

    Littke, R.; Krooss, B.; Frielingsdorf, J.; Idiz, E.

    1995-03-01

    The occurrence of natural gas accumulations with high percentages (up to 100%) of molecular nitrogen in various hydrocarbon provinces represents a largely unresolved problem and a serious exploration risk. In this context, a geochemical and basin modeling study was performed to evaluate the potential of sedimentary organic matter to generate molecular nitrogen. The masses of nitrogen present in coals - if converted into molecular nitrogen - are sufficient to fill commercial gas reservoirs. A calculation for gas accumulations in northern Germany, where percentages of molecular nitrogen range from less than 5 to greater than 90%, reveals that the molecular nitrogen generated in underlying coal-bearing strata is sufficient to account for the nitrogen gas even in the largest fields. In addition, much of the total nitrogen in clay-rich rock types, such as shales and mudstones, is fixed in sedimentary organic matter and may add to the nitrogen generation capacity of the coals.

  4. Spectral Exploration of Calcium Accumulation in Organic Matter in Gray Desert Soil from Northwest China.

    PubMed

    Wang, Ping; Ma, Yucui; Wang, Xihe; Jiang, Hong; Liu, Hua; Ran, Wei; Shen, Qirong

    2016-01-01

    Little attention has been paid to the accumulation of soil organic matter (SOM) in the fringes of the mid-latitude desert. In this paper, soil samples from a long-term field experiment conducted from 1990 to 2013 at a research station in Urumqi, China by different fertilizer treatments, were used to determine soil properties and soil dissolved organic matter (DOM) by chemical analysis, fluorescence excitation emission matrix (EEM) spectroscopy, and high resolution-transmission electron microscopy (HR-TEM). The binding features of DOM under the addition of Ca(2+) were analyzed using a two-dimensional (2D) Fourier transform infrared (FTIR) spectrometer further to explore the response of the DOM to increasing concentrations of Ca(2+). Long-term application of chemical fertilizers and goat manure increased soil organic carbon (SOC) by 1.34- and 1.86-fold, respectively, relative to the non-fertilized control (8.95 g.kg(-1)). Compared with the control, application of chemical fertilizers and manure significantly increased the concentrations of Ca, Mg, Si, humic and fulvic acid-like substances in DOM but decreased the amounts of trivalent metals (Al and Fe) and protein-like substances. Although crystalline Al/Fe nanoparticles and amorphous or short-range-order Si/Al nanoparticles existed in all DOM samples, crystalline Ca/Si nanoparticles were predominant in the samples treated with goat manure. Although organic matter and Si-O-containing nanoparticles were involved in the binding of Ca(2+) to DOM, application of chemical fertilizers weakened Ca(2+) association with components of the amide II group (1510 cm(-1)) and Si-O linkage (1080 cm(-1)), whereas application of goat manure enhanced the affinity of Ca(2+) for Si-O linkage. Our results suggested that the enrichment of Ca in gray desert soil possibly helps accumulate SOM by forming crystalline Ca/Si nanoparticles in addition to Ca(2+) and organic matter complexes.

  5. Spectral Exploration of Calcium Accumulation in Organic Matter in Gray Desert Soil from Northwest China

    PubMed Central

    Wang, Ping; Ma, Yucui; Wang, Xihe; Jiang, Hong; Liu, Hua; Ran, Wei; Shen, Qirong

    2016-01-01

    Little attention has been paid to the accumulation of soil organic matter (SOM) in the fringes of the mid-latitude desert. In this paper, soil samples from a long-term field experiment conducted from 1990 to 2013 at a research station in Urumqi, China by different fertilizer treatments, were used to determine soil properties and soil dissolved organic matter (DOM) by chemical analysis, fluorescence excitation emission matrix (EEM) spectroscopy, and high resolution-transmission electron microscopy (HR-TEM). The binding features of DOM under the addition of Ca2+ were analyzed using a two-dimensional (2D) Fourier transform infrared (FTIR) spectrometer further to explore the response of the DOM to increasing concentrations of Ca2+. Long-term application of chemical fertilizers and goat manure increased soil organic carbon (SOC) by 1.34- and 1.86-fold, respectively, relative to the non-fertilized control (8.95g.kg-1). Compared with the control, application of chemical fertilizers and manure significantly increased the concentrations of Ca, Mg, Si, humic and fulvic acid-like substances in DOM but decreased the amounts of trivalent metals (Al and Fe) and protein-like substances. Although crystalline Al/Fe nanoparticles and amorphous or short-range-order Si/Al nanoparticles existed in all DOM samples, crystalline Ca/Si nanoparticles were predominant in the samples treated with goat manure. Although organic matter and Si-O-containing nanoparticles were involved in the binding of Ca2+ to DOM, application of chemical fertilizers weakened Ca2+ association with components of the amide II group (1510 cm-1) and Si-O linkage (1080 cm-1), whereas application of goat manure enhanced the affinity of Ca2+ for Si-O linkage. Our results suggested that the enrichment of Ca in gray desert soil possibly helps accumulate SOM by forming crystalline Ca/Si nanoparticles in addition to Ca2+ and organic matter complexes. PMID:26751962

  6. Mobilization and plant accumulation of prometryne in soil by two different sources of organic matter.

    PubMed

    Jiang, Lei; Ma, Li; Sui, Ying; Han, Su Qing; Yang, Hong

    2011-07-01

    Prometryne is a selective herbicide of the s-triazine chemical family. Due to its weak absorption onto soil, it readily leaches down through the soil and contaminates underground water. Application of organic manure to soil has become a widespread practice as a disposal strategy to improve soil properties. In this study, we demonstrated the effect of pig manure compost (PMC) and lake-bed sludge (SL) on the sorption/desorption, mobility and bioavailability of prometryne in soil using comprehensive analysis approaches. Downward movement of prometryne was monitored in the packed soil column. Addition of PMC or SL decreased considerably the mobility and total concentration of prometryne in the soil leachate. Bioavailability analyses with wheat plants revealed that addition of the organic matter reduced accumulation of prometryne in tissues and increased plant elongation and biomass. These results indicate that the organic amendments are effective in modifying adsorption and mobility of the pesticide in soil. PMID:21655603

  7. Stability of soil organic matter accumulated under long-term use as a rice paddy

    NASA Astrophysics Data System (ADS)

    Nakahara, Shiko; Zou, Ping; Ando, Ho; Fu, Jianrong; Cao, Zhihong; Nakamura, Toshio; Sugiura, Yuki; Watanabe, Akira

    2016-01-01

    To understand the mechanism responsible for the enhanced accumulation of soil organic matter (SOM) under long-term use as a rice paddy, soil samples from the plow layer from 16 fields that have been used for irrigated rice production from 5 to 2000 years in the Hangzhou Bay, China, were analyzed. The humin in silt/clay particles was isolated as a representative relatively stable SOM pool, and isotopic signatures (δ13C, δ15N, and 14C concentration), 13C nuclear magnetic resonance (NMR) spectra, and biodegradability in an incubation were examined. The amounts of C and N in the bulk soil, silt/clay, and silt/clay-humin increased with increasing period of use as a rice paddy within the east and west zones, respectively. The degree of humification determined for humic acids indicated that the progression of humification did not contribute to the accumulation of C beyond 100 years. The δ15N of silt/clay-humin suggested an increase in organic N derived from chemical fertilizer or recent biological fixation with increasing amount of this fraction. The 14C concentration showed a negative correlation with the amount of silt/clay-humin C. The structural property with regard to 13C NMR spectra and biodegradability of the silt/clay-humin remained constant with the length of use as a rice paddy or 14C concentration. These results suggest that the larger C or N accumulation in the soils with a longer rice paddy history can be attributed to an enhancement in the accumulation of recently generated SOM rather than the stable accumulation of humus over the years.

  8. Accumulation of organic matter in Cretaceous oxygen-deficient depositional environments in the central Pacific Ocean

    USGS Publications Warehouse

    Dean, W.E.; Claypool, G.E.; Thide, J.

    1984-01-01

    Complete records of organic-carbon-rich Cretaceous strata were continuouslycored on the flanks of the Mid-Pacific Mountains and southern Hess Rise in the central North Pacific Ocean during DSDP Leg 62. Organic-carbon-rich laminated silicified limestones were deposited in the western Mid-Pacific Mountains during the early Aptian, a time when that region was south of the equator and considerably shallower than at present. Organic-carbon-rich, laminated limestone on southern Hess Rise overlies volcanic basement and includes 136 m of stratigraphic section of late Albian to early Cenomanian age. This limestone unit was deposited rapidly as Hess Rise was passing under the equatorial high-productivity zone and was subsiding from shallow to intermediate depths. The association of volcanogenic components with organic-carbon-rich strata on Hess Rise in the Mid-Pacific Mountains is striking and suggests that there was a coincidence of mid-plate volcanic activity and the production and accumulation of organic matter at intermediate water depths in the tropical Pacific Ocean during the middle Cretaceous. Pyrolysis assays and analyses of extractable hydrocarbons indicate that the organic matter in the limestone on Hess Rise is composed mainly of lipid-rich kerogen derived from aquatic marine organisms and bacteria. Limestones from the Mid-Pacific Mountains generally contain low ratios of pyrolytic hydrocarbons to organic carbon and low hydrogen indices, suggesting that the organic matter may contain a significant proportion of land-derived material, possibly derived from numerous volcanic islands that must have existed before the area subsided. The organic carbon in all samples analyzed is isotopically light (??13C - 24 to - 29 per mil) relative to most modern rine organic carbon, and the lightest carbon is also the most lipid-rich. There is a positive linear correlation between sulfur and organic carbon in samples from Hess Rise and from the Mid-Pacific Mountains. The slopes

  9. Ecogeomorphology of Spartina patens-dominated tidal marshes: Soil organic matter accumulation, marsh elevation dynamics, and disturbance

    USGS Publications Warehouse

    Cahoon, D.R.; Ford, M.A.; Hensel, P.F.; Fagherazzi, Sergio; Marani, Marco; Blum, Linda K.

    2004-01-01

    Marsh soil development and vertical accretion in Spartina patens (Aiton) Muhl.-dominated tidal marshes is largely dependent on soil organic matter accumulation from root-rhizome production and litter deposition. Yet there are few quantitative data sets on belowground production and the relationship between soil organic matter accumulation and soil elevation dynamics for this marsh type. Spartina patens marshes are subject to numerous stressors, including sea-level rise, water level manipulations (i.e., flooding and draining) by impoundments, and prescribed burning. These stressors could influence long-term marsh sustainability by their effect on root production, soil organic matter accumulation, and soil elevation dynamics. In this review, we summarize current knowledge on the interactions among vegetative production, soil organic matter accumulation and marsh elevation dynamics, or the ecogeomorphology, of Spartina patens-dominated tidal marshes. Additional studies are needed of belowground production/decomposition and soil elevation change (measured simultaneously) to better understand the links among soil organic matter accumulation, soil elevation change, and disturbance in this marsh type. From a management perspective, we need to better understand the impacts of disturbance stressors, both lethal and sub-lethal, and the interactive effect of multiple stressors on soil elevation dynamics in order to develop better management practices to safeguard marsh sustainability as sea level rises.

  10. Controls over soil organic matter accumulation and turnover in the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Barrett, J. E.; Virginia, R. A.; Wall, D. H.

    2005-12-01

    Terrestrial ecosystems of the Antarctic Dry Valleys are among the most inhospitable soil environments on Earth due to extreme climate and severe substrate limitation on soil food webs. These ecosystems are a challenge to understanding controls over carbon (C) cycling since some of the major events controlling organic matter accumulation likely occurred during the Last Glacial Maximum when paleo-lakes deposited sediments over much of the presently exposed surfaces. It remains unclear to what extent dry valley soil ecosystems are fueled by legacy organic matter derived from these ancient sediments vs. rapid cycling of contemporary organic matter inputs. We report a model to evaluate controls over the soil organic C in the dry valleys. The model is based upon determinations of standing pools of soil C and is driven by rate parameters estimated from 120 d incubations conducted over a range of soil temperature and moisture. Theoretical values for parameters describing internal C transformations are used to generate predictions about the distribution of C among slow and rapidly cycling pools. Potential levels of contemporary C inputs are derived from a previously published primary production model for Antarctic cryptobiotic communities. Simulations (100 y) run under average climate conditions indicated initially high rates of C turnover with mean residence times of 20-50 y followed by equilibration of soil organic C at 25% to 80% of initial standing stocks. The model is very sensitive to temperature resulting from the high Q10 values calculated from the 120 d incubations; hence steady state soil C levels are determined largely by regional differences in climate. Sensitivity analyses indicated that steady state C levels are also very responsive to variation in simulated primary production, microbial efficiency, the distribution of C into labile and recalcitrant pools, and soil moisture. Model simulations run under recently observed climate suggest that C dynamics are

  11. Cover crops alter phosphorus soil fractions and organic matter accumulation in a Peruvian cacao agroforestry system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In many tropical soils, excessive weathering of primary minerals confounded by intense agricultural production has resulted in the depletion of organic matter and plant available forms of phosphorus (P). Long-term growth of cover crops in tropical agroforestry systems have been shown to influence nu...

  12. Accumulation of nitrogen and organic matter during primary succession of Leymus arenarius dunes on the volcanic island Surtsey, Iceland

    NASA Astrophysics Data System (ADS)

    Stefansdottir, G.; Aradottir, A. L.; Sigurdsson, B. D.

    2014-10-01

    Initial soil development and enhanced nutrient retention are often important underlying environmental factors during primary succession. We quantified the accumulation rates of nitrogen (N) and soil organic matter (SOM) in a 37-year-long chronosequence of Leymus arenarius dunes on the pristine volcanic island Surtsey in order to illuminate the spatiotemporal patterns in their build-up. The Leymus dune area, volume and height grew exponentially over time. Aboveground plant biomass, cover or number of shoots per unit area did not change significantly with time, but root biomass accumulated with time, giving a root / shoot ratio of 19. The dunes accumulated on average 6.6 kg N ha-1 year-1, which was 3.5 times more than is received annually by atmospheric deposition. The extensive root system of Leymus seems to effectively retain and accumulate a large part of the annual N deposition, not only deposition directly on the dunes but also from the adjacent unvegetated areas. SOM per unit area increased exponentially with dune age, but the accumulation of roots, aboveground biomass and SOM was more strongly linked to soil N than time: a 1 g m-2 increase in soil N led on average to a 6 kg C m-2 increase in biomass and SOM. The Leymus dunes, where most of the N has been accumulated, will therefore probably act as hot spots for further primary succession of flora and fauna on the tephra sands of Surtsey.

  13. Accumulation of nitrogen and organic matter during primary succession of Leymus arenarius dunes on the volcanic island Surtsey, Iceland

    NASA Astrophysics Data System (ADS)

    Stefansdottir, G.; Aradottir, A. L.; Sigurdsson, B. D.

    2014-05-01

    The volcanic island of Surtsey has been a natural laboratory where the primary succession of flora and fauna has been monitored, since it emerged from the N-Atlantic Ocean in 1963. We quantified the accumulation rates of nitrogen (N) and soil organic matter (SOM) in a 37 year long chronosequence of Leymus arenarius dunes in order to illuminate the spatiotemporal patterns in their build-up in primary succession. The Leymus dune area, volume and height grew exponentially over time. Aboveground plant biomass, cover or number of shoots per unit area did not change significantly with time, but root biomass accumulated with time, giving a root-shoot ratio of 19. The dunes accumulated on average 6.6 kg N ha-1 year-1, which was 3.5 times more than is received annually by atmospheric deposition. The extensive root system of Leymus seems to effectively retain and accumulate large part of the annual N deposition, not only deposition directly on the dunes but also from the adjacent unvegetated areas. SOM per unit area increased exponentially with dune age, but the accumulation of roots, aboveground biomass and SOM was more strongly linked to soil N than time: 1 g m-2 increase in soil N led on the average to 6 kg C m-2 increase in biomass and SOM. The Leymus dunes, where most of the N has been accumulated, will therefore probably act as hot-spots for further primary succession of flora and fauna on the tephra sands of Surtsey.

  14. Chemical Form Matters: Differential Accumulation of Mercury Following Inorganic and Organic Mercury Exposures in Zebrafish Larvae

    SciTech Connect

    Korbas, Malgorzata; MacDonald, Tracy C.; Pickering, Ingrid J.; George, Graham N.; Krone, Patrick H.

    2013-04-08

    Mercury, one of the most toxic elements, exists in various chemical forms each with different toxicities and health implications. Some methylated mercury forms, one of which exists in fish and other seafood products, pose a potential threat, especially during embryonic and early postnatal development. Despite global concerns, little is known about the mechanisms underlying transport and toxicity of different mercury species. To investigate the impact of different mercury chemical forms on vertebrate development, we have successfully combined the zebrafish, a well-established developmental biology model system, with synchrotron-based X-ray fluorescence imaging. Our work revealed substantial differences in tissue-specific accumulation patterns of mercury in zebrafish larvae exposed to four different mercury formulations in water. Methylmercury species not only resulted in overall higher mercury burdens but also targeted different cells and tissues than their inorganic counterparts, thus revealing a significant role of speciation in cellular and molecular targeting and mercury sequestration. For methylmercury species, the highest mercury concentrations were in the eye lens epithelial cells, independent of the formulation ligand (chloride versus L-cysteine). For inorganic mercury species, in absence of L-cysteine, the olfactory epithelium and kidney accumulated the greatest amounts of mercury. However, with L-cysteine present in the treatment solution, mercuric bis-L-cysteineate species dominated the treatment, significantly decreasing uptake. Our results clearly demonstrate that the common differentiation between organic and inorganic mercury is not sufficient to determine the toxicity of various mercury species.

  15. Role of Iron Oxyhydrates in Accumulation and Stabilization of Soil Organic Matter in Rice Paddy: Case Studies from China

    NASA Astrophysics Data System (ADS)

    Pan, G.; Lu, H.; Sun, J.; Li, L.; Liu, X.; Zheng, J.; Zhang, X.; Cheng, K.

    2014-12-01

    Iron is an important element in soils, often in forms either of crystalline mineral or amorphous colloids upon redox cycling in hydromorphic soils. However, role of iron particularly via oxyhydrates in organic matter dynamics n rice soils has been not yet well assessed. Rice paddy soils of China have been recognized as a unique type of Anthrosols mostly with iron accumulation and dynamic movement in soil profile through long term hydroagric management. Soil organic matter contents of rice soils are shown significantly correlated with the contents of free or amorphous iron oxyhydrates. And organic matter accumulation in young rice soils followed iron oxyhydrate content changes as rice cultivation proceed, which could be often traced by the changes in iron oxyhydrate-bound OC fractions. The importance of association of OC with iron oxyhydrates is known by the fact that organic carbon was not related to total free iron oxyhydrates in wetland but in rice soil shifted from the wetlands, with OC contents much higher in rice soils than in the precedent wetland soil. This could be attributed to the chemical binding of OC to oxyhydrate surface, contributing to the stabilization of newly sequestered OC. This has been again confirmed by lab incubation studies, where total mineralization of OC has been found significantly lower in iron-oxyhrate rich soil than in iron-oxyhrate poor soils. This effect has been further explored in an incubation study with experimental warming that the temperature dependence of OC mineralization of rice soils from a long term fertilizer treated trial was linked to the abundance of iron oxyhydrate content, varying with the long term management practice. Initial carbon sequestration in rice soil subject to new carbon input was promoted by the iron oxyhydrates in the soil, showing a fast increase in iron hydrate-bound OC in the initial stage. The bound OC exerted further stabilization through enhanced humification to form residual OC fraction in long

  16. Contributions of pyrogenic materials on the accumulation of soil organic matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil amendment of charcoal co-product (HHVdb as high as coal) from thermochemical waste biomass-to-energy conversion (slow/fast pyrolysis and gasification) has received considerable interests for both contaminated and agricultural lands. Biochar amendment not only increases soil organic carbon cont...

  17. Mineralization of organic-matter labile fragments in the humus-accumulative horizon of soddy-podzolic soil

    NASA Astrophysics Data System (ADS)

    Trofimov, S. Ya.; Lazarev, A. S.; Fokin, A. D.

    2012-12-01

    The mineralization rate of the 14C-labeled organic matter (OM) in the humus-accumulative AE horizon of a soddy-podzolic soil was determined in a laboratory experiment. The labeling was performed in a field experiment when microamounts of 14C-labeled glucose, glycine, and uracil were added to tree waste in sacks embedded in the upper layer of the forest litter. Samples containing 14C were taken from the AE horizon (above which the sacks with the labeled material were placed) 7 and 20 months after the beginning of the experiment. The soil samples were wetted to a water content corresponding to ˜80% of the total water capacity and placed in hermetic vessels containing vials with a periodically renewed alkali solution. The incubation was performed at room temperature for 3.5 months; the alkali solutions in the vials were replaced and titrated 12 times during this period. Mineralization curves were plotted from the amounts of carbon dioxide absorbed by a 0.3 N NaOH solution, which were calculated for each time interval; its 14C content was determined by the scintillation method. The experimental treatments also included the determination of the OM mineralization rate in material from the AE horizon pretreated with a heavy liquid or a heavy liquid and a 0.1 N NaOH solution. The differences between the mineralization rates of the labeled organic matter applied to the soil in the form of glucose, glycine, and uracil under the field conditions after the interaction for 7 and 20 months were revealed. The changes in the mineralization rate after the successive extraction of the labile organic matter with a heavy liquid and a 0.1 N NaOH solution were studied. It was shown that the transformation of the labeled low-molecular-weight organic compounds in the soil over 20 months included their strong inclusion into the humus composition, which was confirmed by the similar values of the mineralization constants of the native and 14C-labeled OM. In addition, the treatments with the

  18. Recent sedimentary history of organic matter and nutrient accumulation in the Ohuira Lagoon, northwestern Mexico.

    PubMed

    Ruiz-Fernández, Ana Carolina; Frignani, Mauro; Tesi, Tommaso; Bojórquez-Leyva, Humberto; Bellucci, Luca Giorgio; Páez-Osuna, Federico

    2007-08-01

    (210)Pb-derived sediment accumulation rates, as well as a suite of geochemical proxies (Al, Fe, delta(13)C, delta(15)N), were used to assess the time-dependent variations of C, N, and P fluxes recorded in two sediment cores collected at Ohuira Lagoon, in the Gulf of California, Mexico, during the last 100 years. Sedimentary C, N, and P concentrations increased with time and were related to land clearing, water impoundment, and agriculture practices, such as fertilization. C:N:P ratios and delta(13)C suggested an estuarine system that is responsive to increased C loading from a N-limited phytoplankton community, whereas delta(15)N values showed the transition between an estuarine-terrestrial to an estuarine-more marine environment, as a consequence of the declining freshwater supply into the estuary due to the channeling and impoundment of El Fuerte River between 1900 and 1956. The recent increases in nutrient fluxes (2- to 9-fold the pre-anthropogenic fluxes of C and N, and 2 to 13 times for P) taking place in the mainland from the 1940s, were related to the expansion of the intensive agriculture fields and to the more recent development of shrimp farming activities.

  19. Accumulation of organic matter in the in the Rome trough of the Appalachian basin and its subsequent thermal history

    SciTech Connect

    Curtis, J.B.; Faure, G.

    1997-03-01

    We used geochemical data to examine the origin and preservation of organic matter contained in the lower part of the Huron Member of the Ohio Shale formation and the Rhinestreet Shale Member of the West Falls Formation (Devonian) in Kentucky, Ohio, West Virginia, and Virginia. The thermal history of the organic matter was determined by relating relative temperatures experienced by the organic matter to the geologic setting. The organic matter in these formations is predominantly marine in origin and was most probably derived largely from algal organisms. Although the rate of production of marine organic matter may have been uniform within the basin, its preservation apparently was controlled by the existence of a set of fault-bounded anoxic subbasins associated with the Rome trough, a Cambrian structural complex. These subbasins apparently were anoxic because they limited oxygen recharge by circulating waters. Preservation of organic matter was also enhanced by periodic blooms of the alga Tasmanites and similar organisms in the waters above the subbasins during both early Huron and Rhinestreet deposition. A significant negative correlation was identified between the vitrinite reflectance peak temperature, and integrated measure of the thermal history of a rock, and the hydrogen index, a measure of the remaining hydrocarbon-generation potential of kerogen. Although peak temperatures were controlled by burial depth, excess heating occurred locally, perhaps by hot brines rising from depth through fractures associated with major structures in the study area.

  20. Organic matter accumulation, sulfate reduction, and methane generation in a turbidite sequence on the Iberia Abyssal Plain

    SciTech Connect

    Meyers, P.A.; Silliman, J.E.; Shaw, T.J.

    1996-12-31

    Organic matter can be transferred and redeposited from continental margins to the deep-sea by turbidity currents and slumps. An opportunity to investigate the consequences of turbidite deposition on sediment organic matter was provided by a transect of four closely spaced drill sites sampled during ODP Leg 149 in a Pliocene-Pleistocene distal turbidite sequence on the landward edge of the Iberia Abyssal Plain. Organic carbon concentrations average ca 0.7% in sediments from Sites 897 and 898 and ca 0.4% at Sites 899 and 900. Headspace concentrations of interstitial methane exceed 100,000 ppm in sediments from Sites 897 and 898 but are essentially zero in those from Sites 899 and 900. Methane concentrations do not rise until interstitial sulfate concentrations are virtually depleted, suggesting the presence of deep in situ methanogenic bacterial activity at Sites 897 and 898 and its absence at Sites 899 and 900. Two factors associated with the turbidity flows that created the sedimentary sequence evidently influenced post-depositional diagenesis at these sites. The principal factor is that the rapidly deposited turbidite sequences at Sites 897 and 898 protected organic matter from oxic, early degradation and thereby permitted anoxic, later degradation to proceed. In contrast, organic matter in the more slowly deposited turbidites at Sites 899 and 900 was oxidized soon after deposition and was therefore not available for later microbial utilization. A lesser factor is that the turbidity flows may have obtained their entrained organic matter from different environments and consequently delivered organic matter with different characteristics.

  1. Influence of soil type and organic matter content on the bioavailability, accumulation, and toxicity of alpha-cypermethrin in the springtail Folsomia candida.

    PubMed

    Styrishave, Bjarne; Hartnik, Thomas; Christensen, Peter; Andersen, Ole; Jensen, John

    2010-05-01

    The influence of organic matter (OM) content on alpha-cypermethrin porewater concentrations and springtail Folsomia candida accumulation was investigated in two soils with different levels of organic matter, a forest soil with a total organic carbon (TOC) content of 5.0% (OM=11.5%) and an agricultural soil with a TOC content of 1.3% (OM=4.0%). Also, the effects of alpha-cypermethrin concentrations in soil and pore water and the influence of soil aging on springtail reproduction were investigated. Springtail reproduction was severely affected by increasing alpha-cypermethrin in soil with 1.3% TOC; the median effective concentration value (EC50) was estimated to 23.4 mg/kg (dry wt). Reproduction was only marginally affected in the soil with 5.0% TOC, and no EC50 value could be estimated. However, when expressing alpha-cypermethrin accumulation as a function of soil alpha-cypermethrin concentrations, no difference was found between the two soil types, and no additional alpha-cypermethrin uptake was observed at soil concentrations above approximately 200 mg/kg (dry wt). By using solid-phase microextraction (SPME), it could be demonstrated that alpha-cypermethrin porewater concentrations were higher in the soil with low organic matter (LOM) content than in the soil with high organic matter (HOM) content. Furthermore, a clear relationship was found between alpha-cypermethrin concentrations in springtails and porewater. Soil aging was not found to exert any effect on alpha-cypermethrin toxicity toward springtails. The study indicates that the springtail's accumulation of alpha-cypermethrin and reproduction is governed by alpha-cypermethrin porewater concentrations rather than the total alpha-cypermethrin concentration in soil. PMID:20821544

  2. Influence of soil type and organic matter content on the bioavailability, accumulation, and toxicity of alpha-cypermethrin in the springtail Folsomia candida.

    PubMed

    Styrishave, Bjarne; Hartnik, Thomas; Christensen, Peter; Andersen, Ole; Jensen, John

    2010-05-01

    The influence of organic matter (OM) content on alpha-cypermethrin porewater concentrations and springtail Folsomia candida accumulation was investigated in two soils with different levels of organic matter, a forest soil with a total organic carbon (TOC) content of 5.0% (OM=11.5%) and an agricultural soil with a TOC content of 1.3% (OM=4.0%). Also, the effects of alpha-cypermethrin concentrations in soil and pore water and the influence of soil aging on springtail reproduction were investigated. Springtail reproduction was severely affected by increasing alpha-cypermethrin in soil with 1.3% TOC; the median effective concentration value (EC50) was estimated to 23.4 mg/kg (dry wt). Reproduction was only marginally affected in the soil with 5.0% TOC, and no EC50 value could be estimated. However, when expressing alpha-cypermethrin accumulation as a function of soil alpha-cypermethrin concentrations, no difference was found between the two soil types, and no additional alpha-cypermethrin uptake was observed at soil concentrations above approximately 200 mg/kg (dry wt). By using solid-phase microextraction (SPME), it could be demonstrated that alpha-cypermethrin porewater concentrations were higher in the soil with low organic matter (LOM) content than in the soil with high organic matter (HOM) content. Furthermore, a clear relationship was found between alpha-cypermethrin concentrations in springtails and porewater. Soil aging was not found to exert any effect on alpha-cypermethrin toxicity toward springtails. The study indicates that the springtail's accumulation of alpha-cypermethrin and reproduction is governed by alpha-cypermethrin porewater concentrations rather than the total alpha-cypermethrin concentration in soil.

  3. Seasonal variability of the organic matter in a sedimentary coastal environment: sources, degradation and accumulation (continental shelf of the Gulf of Lions—northwestern Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Buscail, Roselyne; Pocklington, Roger; Germain, Claire

    1995-06-01

    The temporal variations of the superficial (0-1 cm) sedimentary organic matter were studied at a depth of 26 m on the continental shelf of the Gulf of Lions (northwestern Mediterranean). The samples were analyzed for total organic carbon, coarse organic carbon (>40 μm), hydrolyzable organic carbon, nitrogen, total amino acids, total and individual sugars (HPLC), lignin-derived compounds (HPLC) and kerogens (acid-soluble, humic substances and humin). Seasonal variations of the organic compounds are related to the sedimentological, hydrodynamical and physico-chemical environmental conditions. The mean annual values of the different organic compounds analyzed show the low quantities and their evolved character at the sediment-water interface: 0.5% total org C (TOC) (d.w.), 0.049% N (d.w.), C/N: 11.2, coarse org C (COQ: 62% of TOC, hydrolyzable org C: 45% TOC. The labile compounds represent a low percentage of the total organic matter (TOM), amino-acids: 12% of TOM and sugars: 5% of TOM. The relative proportions of soluble (humic) and insoluble kerogens (humin), respectively 6% and 94% of TOC are typical of a highly evolved organic matter. The large contribution of plant remains confirmed by the high proportion of COC, corresponds to a low proportion of humic substances and a high degree of condensation ( H/C = 1.3 ). The infrared spectroscopy determination of the functional groups of the humic substances permits us to confirm both autochtonous (marine) and allochtonous (terrestrial) sources of organic matter in the Têt prodeltaïc accumulation area. Numerous functional groups identified reveal the fresh quality of the organic inputs at the sediment-water interface. Aliphaticity is well marked and nitrogenous compounds (1 and 2 amines) correspond to autochtonous production (in spring: phyto- and zoo-planktonic blooms in the euphotic zone; in summer: primary production under the thermocline and phytobenthic blooms). Sugars are well represented, but from two origins

  4. Role of sediment organic matter quality and feeding history in dietary absorption and accumulation of pyrene in the mud snail (Hydrobia ulvae).

    PubMed

    Granberg, Maria E; Forbes, Thomas L

    2006-04-01

    Organic matter (OM) input to marine sediments varies seasonally both in quantity and quality. Because sedimentary OM (SOM) constitutes food for many benthic organisms, its properties should affect the dietary uptake of sediment-associated contaminants. We explored the effect of SOM quality/food value on short- and long-term pyrene accumulation in the mud snail (Hydrobia ulvae) and performed dual-tracer pulse-chase experiments to investigate the feeding mechanisms driving dietary pyrene uptake. The quality of the SOM was manipulated by enriching sediments either with high-quality microalgae or low-quality lignin, adding equal amounts of total organic carbon. Long- and short-term bioaccumulation increased with increasing SOM quality, as did pyrene ingestion rate (IR(pyr)), which also was affected by feeding history. By feeding selectively, snails concentrated pyrene 10-fold in ingested compared to ambient sediment, independent of SOM quality. Average pyrene absorption efficiency (AE(pyr): -65%) varied inversely with SOM quality and IR(pyr). Both AE(pyr) and gut passage time (alpha 1/IR(pyr)) agreed with theoretical models incorporating the time-dependence of absorption efficiency. Thus, SOM quality moderates dietary contaminant uptake in deposit feeders, and in H. ulvae, this occurs via OM-induced alterations of ingestion rate. Consequently, enhanced sediment-associated contaminant uptake is predicted for deposit feeders following phytoplankton blooms, principally because of OM quality-driven increases in the ingestion rate. PMID:16629138

  5. Role of sediment organic matter quality and feeding history in dietary absorption and accumulation of pyrene in the mud snail (Hydrobia ulvae).

    PubMed

    Granberg, Maria E; Forbes, Thomas L

    2006-04-01

    Organic matter (OM) input to marine sediments varies seasonally both in quantity and quality. Because sedimentary OM (SOM) constitutes food for many benthic organisms, its properties should affect the dietary uptake of sediment-associated contaminants. We explored the effect of SOM quality/food value on short- and long-term pyrene accumulation in the mud snail (Hydrobia ulvae) and performed dual-tracer pulse-chase experiments to investigate the feeding mechanisms driving dietary pyrene uptake. The quality of the SOM was manipulated by enriching sediments either with high-quality microalgae or low-quality lignin, adding equal amounts of total organic carbon. Long- and short-term bioaccumulation increased with increasing SOM quality, as did pyrene ingestion rate (IR(pyr)), which also was affected by feeding history. By feeding selectively, snails concentrated pyrene 10-fold in ingested compared to ambient sediment, independent of SOM quality. Average pyrene absorption efficiency (AE(pyr): -65%) varied inversely with SOM quality and IR(pyr). Both AE(pyr) and gut passage time (alpha 1/IR(pyr)) agreed with theoretical models incorporating the time-dependence of absorption efficiency. Thus, SOM quality moderates dietary contaminant uptake in deposit feeders, and in H. ulvae, this occurs via OM-induced alterations of ingestion rate. Consequently, enhanced sediment-associated contaminant uptake is predicted for deposit feeders following phytoplankton blooms, principally because of OM quality-driven increases in the ingestion rate.

  6. soil organic matter fractionation

    NASA Astrophysics Data System (ADS)

    Osat, Maryam; Heidari, Ahmad

    2010-05-01

    Carbon is essential for plant growth, due to its effects on other soil properties like aggregation. Knowledge of dynamics of organic matter in different locations in the soil matrix can provide valuable information which affects carbon sequestration and soil the other soil properties. Extraction of soil organic matter (SOM) fractions has been a long standing approach to elucidating the roles of soil organic matter in soil processes. Several kind fractionation methods are used and all provide information on soil organic matter function. Physical fractionation capture the effects on SOM dynamics of the spatial arrangement of primary and secondary organomineral particles in soil while chemical fractionation can not consider the spatial arrangement but their organic fractions are suitable for advanced chemical characterization. Three method of physical separation of soil have been used, sieving, sedimentation and densitometry. The distribution of organic matter within physical fractions of the soil can be assessed by sieving. Sieving separates soil particles based strictly on size. The study area is located on north central Iran, between 35° 41'- 36° 01' N and 50° 42'- 51° 14' E. Mean annual precipitation about 243.8 mm and mean annual air temperature is about 14.95 °C. The soil moisture and temperature regime vary between aridic-thermic in lower altitudes to xeric-mesic in upper altitudes. More than 36 surface soil samples (0-20 cm) were collected according to land-use map units. After preliminary analyzing of samples 10 samples were selected for further analyses in five size fractions and three different time intervals in September, January and April 2008. Fractionation carried out by dry sieving in five classes, 1-2 mm, 0.5-1 mm, 270 μm-0.5mm, 53-270 μm and <53 μm. Organic matter and C/N ratio were determined for all fractions at different time intervals. Chemical fractionation of organic matter also carried out according to Tan (2003), also Mineralogical

  7. Historical accumulation of N and P and sources of organic matter and N in sediment in an agricultural reservoir in Northern China.

    PubMed

    Ni, Zhaokui; Wang, Shengrui; Chu, Zhaosheng; Jin, Xiangcan

    2015-07-01

    Agriculture has significantly intensified in Northern China since the 1980s. This intensification has caused a series of simultaneous lake ecological environment problems in this area. However, little is known about the role of agricultural intensification in historical nutrient dynamics and lake eutrophication processes. The Yanghe reservoir, a typical artificial reservoir characterized by high-yield grain production in Northern China, has been suffering from serious eutrophication and water quality deterioration. This study evaluates the effect of agricultural intensification on nutrient retention and source in the sediments using (210)Pb and (137)Cs dating techniques combined with stable C and N isotopes (δ(13)C, δ(15)N) and total organic carbon/total nitrogen, as well as total nitrogen (TN), total phosphorus (TP), and P fractions. Results suggested that agricultural intensification was keys to the accumulation of nutrients and was a source of organic matter (OM) and N in sediment for the past three decades. N and P pollution started in the 1980s and worsened from the 1990s. Good water quality status and steady sedimentary environment with low nutrient content (mean concentrations of TN and TP were 815 and 387 mg kg(-1), respectively) were observed before the 1980s. Sediment OM was primarily derived from aquatic plants, whereas N was primarily derived from soil erosion and aquatic plants. However, water quality began to deteriorate while sediment nutrient content began to increase after the 1980s, with values of 1186 mg kg(-1) for TN and 434 mg kg(-1) for TP in 1989. Sediment OM was primarily derived from C3 (sweet potato) and aquatic plants, and the major sources of N were soil erosion, fertilizer, and sewage, which accompany the rapid development of agriculture in the watershed. Following the further growth of grain production and fertilizers, excessive external nutrient loading has resulted in dramatic water quality and ecosystem deterioration since 1990

  8. Is old organic matter simple organic matter?

    NASA Astrophysics Data System (ADS)

    Nunan, Naoise; Lerch, Thomas; Pouteau, Valérie; Mora, Philippe; Changey, Fréderique; Kätterer, Thomas; Herrmann, Anke

    2016-04-01

    Bare fallow soils that have been deprived of fresh carbon inputs for prolonged periods contain mostly old, stable organic carbon. In order to shed light on the nature of this carbon, the functional diversity profiles (MicroResp™, Biolog™ and enzyme activity spectra) of the microbial communities of long-term barefallow soils were analysed and compared with those of the microbial communities from their cultivated counterparts. The study was based on the idea that microbial communities adapt to their environment and that therefore the catabolic and enzymatic profiles would reflect the type of substrates available to the microbial communities. The catabolic profiles suggested that the microbial communities in the long-term bare-fallow soil were exposed to a less diverse range of substrates and that these substrates tended to be of simpler molecular forms. Both the catabolic and enzyme activity profiles suggested that the microbial communities from the long-term bare-fallow soils were less adapted to using polymers. These results do not fit with the traditional view of old, stable carbon being composed of complex, recalcitrant polymers. An energetics analysis of the substrate use of the microbial communities for the different soils suggested that the microbial communities from the long-term bare-fallow soils were better adapted to using readily oxidizable,although energetically less rewarding, substrates. Microbial communities appear to adapt to the deprivation of fresh organic matter by using substrates that require little investment.

  9. Protection of organic carbon in soil microaggregates occurs via restructuring of aggregate porosity and filling of pores with accumulating organic matter.

    SciTech Connect

    McCarthy, J. F.; Ilavsky, J.; Jastrow, J. D.; Mayer, L. M.; Perfect, E.; Zhuang, J.; Biosciences Division; Univ. of Tennessee; Univ. of Maine

    2008-10-01

    We examined relationships between the pore structure of microaggregates and the protection of organic matter (OM) within that structure. By using ultra-small angle X-ray scattering (USAXS) before and after combustion of microaggregates at 350 degrees C, we took advantage of differences in X-ray scattering contrast among soil minerals, OM, and air to evaluate the distribution of the total- and OM-filled porosity within microaggregates (53-250 {mu}m in diameter). Systematic changes in microaggregate structure were observed for long-term field manipulations of land use (a chronosequence of tallgrass prairie restorations) and agricultural management (conventional tillage versus no-till at two levels of nitrogen fertilization). Our results imply that OM preservation arose from the evolution of the architectural system of microaggregates during their formation and stabilization. Soils and treatments with increasing OM in microaggregates were associated with encapsulation of colloidal OM by minerals, thereby creating protected OM-filled pores at the submicron scale within the microaggregate structure. For example, in the prairie chronosequence, microaggregates from the cultivated soil had the lowest concentration of OM, but 75% of the OM that had survived cultivation was in OM-filled pores. Following restoration, the concentration of OM in microaggregates increased rapidly, but the proportion of OM in OM-filled pores declined initially and then increased over time until 90% of the OM was in OM-filled pores. OM totally encapsulated within the pore structure can create spatial and kinetic constraints on microbial access to and degradation of OM. Encapsulation of OM increases the capacity for its protection relative to sorption on mineral surfaces, and comparison of its extent among treatments suggests important feedback loops. The use of USAXS, which has not previously been applied to the study of soil aggregate structures and the distribution of OM within those structures

  10. Sedimentary records of δ(13)C, δ(15)N and organic matter accumulation in lakes receiving nutrient-rich mine waters.

    PubMed

    Widerlund, Anders; Chlot, Sara; Öhlander, Björn

    2014-07-01

    Organic C and total N concentrations, C/N ratios, δ(15)N and δ(13)C values in (210)Pb-dated sediment cores were used to reconstruct historical changes in organic matter (OM) accumulation in three Swedish lakes receiving nutrient-rich mine waters. Ammonium-nitrate-based explosives and sodium cyanide (NaCN) used in gold extraction were the major N sources, while lesser amounts of P originated from apatite and flotation chemicals. The software IsoSource was used to model the relative contribution of soil, terrestrial and littoral vegetation, and phytoplankton detritus in the lake sediments. In one lake the IsoSource modelling failed, suggesting the presence of additional, unknown OM sources. In two of the lakes sedimentary detritus of littoral vegetation and phytoplankton had increased by 15-20% and 20-35%, respectively, since ~1950, when N- and P-rich mine waters began to reach the lakes. Today, phytoplankton is the dominating OM component in these lake sediments, which appears to be a eutrophication effect related to mining operations. Changes in the N isotopic composition of biota, lake water, and sediments related to the use of ammonium-nitrate-based explosives and NaCN were evident in the two studied systems. However, N isotope signals in the receiving waters (δ(15)N~+9‰ to +19‰) were clearly shifted from the primary signal in explosives (δ(15)N-NO3=+3.4±0.3‰; δ(15)N-NH4=-8.0±0.3‰) and NaCN (δ(15)N=+1.1±0.5‰), and direct tracing of the primary N isotope signals in mining chemicals was not possible in the receiving waters. Systems where mine waters with a well known discharge history are a major point source of N with well-defined isotopic composition should, however, be suitable for further studies of processes controlling N isotope signatures and their transformation in aquatic systems receiving mine waters. PMID:24727038

  11. Sedimentary records of δ(13)C, δ(15)N and organic matter accumulation in lakes receiving nutrient-rich mine waters.

    PubMed

    Widerlund, Anders; Chlot, Sara; Öhlander, Björn

    2014-07-01

    Organic C and total N concentrations, C/N ratios, δ(15)N and δ(13)C values in (210)Pb-dated sediment cores were used to reconstruct historical changes in organic matter (OM) accumulation in three Swedish lakes receiving nutrient-rich mine waters. Ammonium-nitrate-based explosives and sodium cyanide (NaCN) used in gold extraction were the major N sources, while lesser amounts of P originated from apatite and flotation chemicals. The software IsoSource was used to model the relative contribution of soil, terrestrial and littoral vegetation, and phytoplankton detritus in the lake sediments. In one lake the IsoSource modelling failed, suggesting the presence of additional, unknown OM sources. In two of the lakes sedimentary detritus of littoral vegetation and phytoplankton had increased by 15-20% and 20-35%, respectively, since ~1950, when N- and P-rich mine waters began to reach the lakes. Today, phytoplankton is the dominating OM component in these lake sediments, which appears to be a eutrophication effect related to mining operations. Changes in the N isotopic composition of biota, lake water, and sediments related to the use of ammonium-nitrate-based explosives and NaCN were evident in the two studied systems. However, N isotope signals in the receiving waters (δ(15)N~+9‰ to +19‰) were clearly shifted from the primary signal in explosives (δ(15)N-NO3=+3.4±0.3‰; δ(15)N-NH4=-8.0±0.3‰) and NaCN (δ(15)N=+1.1±0.5‰), and direct tracing of the primary N isotope signals in mining chemicals was not possible in the receiving waters. Systems where mine waters with a well known discharge history are a major point source of N with well-defined isotopic composition should, however, be suitable for further studies of processes controlling N isotope signatures and their transformation in aquatic systems receiving mine waters.

  12. Does a strong pycnocline impact organic-matter preservation and accumulation in an anoxic setting? The case of the Orca Basin, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Tribovillard, Nicolas; Bout-Roumazeilles, Viviane; Sionneau, Thomas; Serrano, Jean Carlos Montero; Riboulleau, Armelle; Baudin, François

    2009-01-01

    The Orca Basin (an intraslope depression located in the Gulf of Mexico) collects sedimentary particles of terrestrial origin (clastic and organic particles mainly supplied by the Mississippi River) and of marine origin (biogenic productivity). The basin is partly filled with dense brines leached from salt diapirs cropping out on the sea floor, and is permanently stratified. A strong pycnocline induces anoxic bottom conditions, expectedly favorable to organic matter (OM) preservation. Here, we report on OM in the upper 750 cm below sea floor of Core MD02-2552 (Holocene). The organic content is dominated by marine-derived amorphous OM. The organic assemblage is unexpectedly degraded to some extent, which may be accounted for by a relatively long residence time of organic particles at the halocline-pycnocline at ˜2240 m. Thus the organic particles are temporarily trapped and kept in contact with the dissolved oxygen-rich overlying water mass. Lastly, the land-derived organic fraction shows co-variations with the land-derived clay mineral supply.

  13. Organic Matter Management

    SciTech Connect

    Izaurralde, Roberto C.; Cerri, Carlos C.

    2002-01-01

    Soil organic matter (S)M) is an essential attribute of soil quality with a key role in soil conservation and sustainable agriculture. Many practices-some involving land use changes-have been shown to increase SOM and thus received considerable attention for their possible role in climate change mitigation. Carbon sequestration in managed soils occurs when there is a net removal of atmospheric CO2 because of the balance between carbon inputs (net primary productivity) and outputs (soil respiration, management-related C emissions). Soil C sequestration has the additional appeal that all its practices conform to principles of sustainable agriculture (e.g., reduced tillage, erosion control, diverse cropping systems, improved soil fertility). Long-term field experiments have been instrumental to increase our understanding of SOM dynamics. This chapter presents fundamental concepts to guide readers on the role of SOM in sustainable agriculture and climate change mitigation.

  14. Arctic River organic matter transport

    NASA Astrophysics Data System (ADS)

    Raymond, Peter; Gustafsson, Orjan; Vonk, Jorien; Spencer, Robert; McClelland, Jim

    2016-04-01

    Arctic Rivers have unique hydrology and biogeochemistry. They also have a large impact on the Arctic Ocean due to the large amount of riverine inflow and small ocean volume. With respect to organic matter, their influence is magnified by the large stores of soil carbon and distinct soil hydrology. Here we present a recap of what is known of Arctic River organic matter transport. We will present a summary of what is known of the ages and sources of Arctic River dissolved and particulate organic matter. We will also discuss the current status of what is known about changes in riverine organic matter export due to global change.

  15. An examination of historic inorganic sedimentation and organic matter accumulation in several marsh types within the Mobile Bay and and Mobile-Tensaw River Delta region

    USGS Publications Warehouse

    Smith, Christopher G.; Osterman, Lisa E.; Poore, Richard Z.

    2013-01-01

    Mass accumulation rates (MAR; g cm-2 y-1), linear sedimentation rates (LSR; cm y-1), and core geochronology derived from excess lead-210 (210Pb) profiles and inventories measured in six sediment cores collected from marsh sites from the MobileTensaw River Delta and Mobile Bay region record the importance of both continuous and event-driven inorganic sedimentation over the last 120 years. MAR in freshwater marshes varied considerably between sites and through time (0.24 and 1.31 g cm-2 y-1). The highest MARs occurred in the 1950s and 1960s and correspond to record discharge events along the Mobile and Tensaw Rivers. In comparison, MAR at salt marsh sites increased almost threefold over the last 120 years (0.05 to 0.18 g cm-2 y-1 or 0.23 to 0.48 cm y-1). From 1880 to 1960, organic accumulation remained fairly constant (20%), while intermittent pulses of high inorganic sedimentation were observed following 1960. The pulses in inorganic sedimentation coincide with several major hurricanes (e.g., Hurricanes Camille, Fredric, Georges, and Ivan). The nearly threefold increase in MAR in salt marshes during the last 120 years would thus appear to be partially dependent on inorganic sedimentation from storm events. This study shows that while hurricanes, floods, and other natural hazards are well-known threats to human infrastructure and coastal ecosystems, these events also transport sediment to marshes that help abate other pressures such as sea-level rise (SLR) and subsidence.

  16. Survival strategies of polyphosphate accumulating organisms and glycogen accumulating organisms under conditions of low organic loading.

    PubMed

    Carvalheira, Mónica; Oehmen, Adrian; Carvalho, Gilda; Reis, Maria A M

    2014-11-01

    Enhanced biological phosphorus removal (EBPR) is usually limited by organic carbon availability in wastewater treatment plants (WWTPs). Polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) were operated under extended periods with low organic carbon loading in order to examine its impact on their activity and survival. The decrease in organic carbon load affected PAOs and GAOs in different ways, where the biomass decay rate of GAOs was approximately 4times higher than PAOs. PAOs tended to conserve a relatively high residual concentration of polyhydroxyalkanoates (PHAs) under aerobic conditions, while GAOs tended to deplete their available PHA more rapidly. This slower oxidation rate of PHA by PAOs at residual concentration levels enabled them to maintain an energy source for aerobic maintenance processes for longer than GAOs. This may provide PAOs with an advantage over GAOs in surviving the low organic loading conditions commonly found in full-scale wastewater treatment plants. PMID:25270044

  17. Organic matter of urban soils: A review

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.

    2015-08-01

    Urban environment exerts an ambiguous effect on the organic pool of soils; it may decrease (as compared to the background values) in some parts of a city and increase in other parts. The organic matter accumulation in urban soils is promoted by the input of aerial organic pollutants; slowed down mineralization of plant residues under the influence of contamination; and increased productivity of the plants owing to elevated temperatures, high content of carbon dioxide in the air, and maintenance of green zones (sodding of vast areas in cities, application of peat, irrigation and drainage of soils.)

  18. Interstellar organic matter in meteorites

    NASA Technical Reports Server (NTRS)

    Yang, J.; Epstein, S.

    1983-01-01

    Deuterium-enriched hydrogen is present in organic matter in such meteorites as noncarbonaceous chondrites. The majority of the unequilibrated primitive meteorites contain hydrogen whose D/H ratios are greater than 0.0003, requiring enrichment (relative to cosmic hydrogen) by isotope exchange reactions taking place below 150 K. The D/H values presented are the lower limits for the organic compounds derived from interstellar molecules, since all processes subsequent to their formation, including terrestrial contamination, decrease their D/H ratios. In contrast, the D/H ratios of hydrogen associated with hydrated silicates are relatively uniform for the meteorites analyzed. The C-13/C-12 ratios of organic matter, irrespective of D/H ratio, lie well within those observed for the earth. Present findings suggest that other interstellar material, in addition to organic matter, is preserved and is present in high D/H ratio meteorites.

  19. Influence of elevated alkalinity and natural organic matter (NOM) on tissue-specific metal accumulation and reproductive performance in fathead minnows during chronic, multi-trophic exposures to a metal mine effluent.

    PubMed

    Ouellet, Jacob D; Dubé, Monique G; Niyogi, Som

    2013-09-01

    Metal bioavailability in aquatic organisms is known to be influenced by various water chemistry parameters. The present study examined the influence of alkalinity and natural organic matter (NOM) on tissue-specific metal accumulation and reproductive performance of fathead minnows (Pimephales promelas) during environmentally relevant chronic exposures to a metal mine effluent (MME). Sodium bicarbonate (NaHCO3) or NOM (as commercial humic acid) were added to a Canadian MME [45 percent process water effluent (PWE)] in order to evaluate whether increases in alkalinity (3-4 fold) or NOM (~1.5-3mg/L dissolved organic carbon) would reduce metal accumulation and mitigate reproductive toxicity in fathead minnows during a 21-day multi-trophic exposure. Eleven metals (barium, boron, cobalt, copper, lithium, manganese, molybdenum, nickel, rubidium, selenium, and strontium) were elevated in the 45 percent PWE relative to the reference water. Exposure to the unmodified 45 percent PWE resulted in a decrease of fathead minnow egg production (~300 fewer eggs/pair) relative to the unmodified reference water, over the 21-day exposure period. Water chemistry modifications produced a modest decrease in free ion activity of some metals (as shown by MINTEQ, Version 3) in the 45 percent PWE exposure water, but did not alter the metal burden in the treatment-matched larval Chironomus dilutus (the food source of fish during exposure). The tissue-specific metal accumulation increased in fish exposed to the 45 percent PWE relative to the reference water, irrespective of water chemistry modifications, and the tissue metal concentrations were found to be similar between fish in the unmodified and modified 45 percent PWE (higher alkalinity or NOM) treatments. Interestingly however, increased alkalinity and NOM markedly improved fish egg production both in the reference water (~500 and ~590 additional eggs/pair, respectively) and 45 percent PWE treatments (~570 and ~260 additional eggs

  20. Accumulation of persistent organic pollutants in parasites.

    PubMed

    Yen Le, T T; Rijsdijk, Laurie; Sures, Bern; Hendriks, A Jan

    2014-08-01

    Organisms are simultaneously exposed to various stressors, including parasites and pollutants, that may interact with each other. Research on the accumulation of organic compounds in host-parasite systems is scant compared to studies on parasite-metal interactions and mainly focuses on intestinal endoparasites. We reviewed factors that determine the accumulation of persistent organic pollutants (POPs) in host-parasite systems. The wet/dry weight-based concentration of POPs in these parasites is usually lower than that in host tissues because of lower lipid contents in the parasites. However, the fractionation of the pollutants into parasites and their hosts may vary, depending on developmental stages in the life cycle of the parasites. Developmental stages determine the trophic relationship and the taxon of the parasite in the host-parasite systems because of different feeding strategies between the stages. Lipid-corrected concentrations of organic chemicals in the host are usually higher than those in the endoparasites studied. This phenomenon is attributed to a number of physiological and behavioural processes, such as feeding selectivity and strategy and excretion. Moreover, no significant relationship was found between the accumulation factor (i.e. the ratio between the lipid-corrected concentrations in parasites and in their hosts) for polychlorinated biphenyls and either hydrophobicity or molecular size. At the intermediate hydrophobicity, larger and more lipophilic compounds are accumulated at higher levels in both parasites and the host than smaller and less lipophilic compounds. The bioaccumulation of POPs in parasites is affected by some other abiotic, e.g. temperature, and biotic factors, e.g. the number of host species infected by parasites.

  1. Organic carbon accumulation in Brazilian mangal sediments

    NASA Astrophysics Data System (ADS)

    Sanders, Christian J.; Smoak, Joseph M.; Sanders, Luciana M.; Sathy Naidu, A.; Patchineelam, Sambasiva R.

    2010-12-01

    This study reviews the organic carbon (OC) accumulation rates in mangrove forests, margins and intertidal mudflats in geographically distinct areas along the Brazilian coastline (Northeastern to Southern). Our initial results indicate that the mangrove forests in the Northeastern region of Brazil are accumulating more OC (353 g/m 2/y) than in the Southeastern areas (192 g/m 2/y) being that the sediment accumulation rates, 2.8 and 2.5 mm/y, and OC content ˜7.1% and ˜5.8% (dry sediment weight) were contributing factors to the discrepancies between the forests. The intertidal mudflats on the other hand showed substantially greater OC accumulation rates, sedimentation rates and content 1129 g/m 2/y and 234 g/m 2/y; 7.3 and 3.4 mm/y; 10.3% and ˜2.7% (OC of dry sediment weight content), respectively, in the Northeastern compared to the Southeastern region. Mangrove forests in the South-Southeastern regions of Brazil may be more susceptible to the rising sea level, as they are geographically constricted by the vast mountain ranges along the coastline.

  2. Extraterrestrial organic matter: a review.

    PubMed

    Irvine, W M

    1998-10-01

    We review the nature of the widespread organic material present in the Milky Way Galaxy and in the Solar System. Attention is given to the links between these environments and between primitive Solar System objects and the early Earth, indicating the preservation of organic material as an interstellar cloud collapsed to form the Solar System and as the Earth accreted such material from asteroids, comets and interplanetary dust particles. In the interstellar medium of the Milky Way Galaxy more than 100 molecular species, the bulk of them organic, have been securely identified, primarily through spectroscopy at the highest radio frequencies. There is considerable evidence for significantly heavier organic molecules, particularly polycyclic aromatics, although precise identification of individual species has not yet been obtained. The so-called diffuse interstellar bands are probably important in this context. The low temperature kinetics in interstellar clouds leads to very large isotopic fractionation, particularly for hydrogen, and this signature is present in organic components preserved in carbonaceous chondritic meteorites. Outer belt asteroids are the probable parent bodies of the carbonaceous chondrites, which may contain as much as 5% organic material, including a rich variety of amino acids, purines, pyrimidines, and other species of potential prebiotic interest. Richer in volatiles and hence less thermally processed are the comets, whose organic matter is abundant and poorly characterized. Cometary volatiles, observed after sublimation into the coma, include many species also present in the interstellar medium. There is evidence that most of the Earth's volatiles may have been supplied by a 'late' bombardment of comets and carbonaceous meteorites, scattered into the inner Solar System following the formation of the giant planets. How much in the way of intact organic molecules of potential prebiotic interest survived delivery to the Earth has become an

  3. Extraterrestrial organic matter: a review

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.

    1998-01-01

    We review the nature of the widespread organic material present in the Milky Way Galaxy and in the Solar System. Attention is given to the links between these environments and between primitive Solar System objects and the early Earth, indicating the preservation of organic material as an interstellar cloud collapsed to form the Solar System and as the Earth accreted such material from asteroids, comets and interplanetary dust particles. In the interstellar medium of the Milky Way Galaxy more than 100 molecular species, the bulk of them organic, have been securely identified, primarily through spectroscopy at the highest radio frequencies. There is considerable evidence for significantly heavier organic molecules, particularly polycyclic aromatics, although precise identification of individual species has not yet been obtained. The so-called diffuse interstellar bands are probably important in this context. The low temperature kinetics in interstellar clouds leads to very large isotopic fractionation, particularly for hydrogen, and this signature is present in organic components preserved in carbonaceous chondritic meteorites. Outer belt asteroids are the probable parent bodies of the carbonaceous chondrites, which may contain as much as 5% organic material, including a rich variety of amino acids, purines, pyrimidines, and other species of potential prebiotic interest. Richer in volatiles and hence less thermally processed are the comets, whose organic matter is abundant and poorly characterized. Cometary volatiles, observed after sublimation into the coma, include many species also present in the interstellar medium. There is evidence that most of the Earth's volatiles may have been supplied by a 'late' bombardment of comets and carbonaceous meteorites, scattered into the inner Solar System following the formation of the giant planets. How much in the way of intact organic molecules of potential prebiotic interest survived delivery to the Earth has become an

  4. Photodissolution of soil organic matter

    USGS Publications Warehouse

    Mayer, L.M.; Thornton, K.R.; Schick, L.L.; Jastrow, J.D.; Harden, J.W.

    2012-01-01

    Sunlight has been shown to enhance loss of organic matter from aquatic sediments and terrestrial plant litter, so we tested for similar reactions in mineral soil horizons. Losses of up to a third of particulate organic carbon occurred after continuous exposure to full-strength sunlight for dozens of hours, with similar amounts appearing as photodissolved organic carbon. Nitrogen dissolved similarly, appearing partly as ammonium. Modified experiments with interruption of irradiation to include extended dark incubation periods increased loss of total organic carbon, implying remineralization by some combination of light and microbes. These photodissolution reactions respond strongly to water content, with reaction extent under air-dry to fully wet conditions increasing by a factor of 3-4 fold. Light limitation was explored using lamp intensity and soil depth experiments. Reaction extent varied linearly with lamp intensity. Depth experiments indicate that attenuation of reaction occurs within the top tens to hundreds of micrometers of soil depth. Our data allow only order-of-magnitude extrapolations to field conditions, but suggest that this type of reaction could induce loss of 10-20% of soil organic carbon in the top 10. cm horizon over a century. It may therefore have contributed to historical losses of soil carbon via agriculture, and should be considered in soil management on similar time scales. ?? 2011 Elsevier B.V.

  5. The contentious nature of soil organic matter.

    PubMed

    Lehmann, Johannes; Kleber, Markus

    2015-12-01

    The exchange of nutrients, energy and carbon between soil organic matter, the soil environment, aquatic systems and the atmosphere is important for agricultural productivity, water quality and climate. Long-standing theory suggests that soil organic matter is composed of inherently stable and chemically unique compounds. Here we argue that the available evidence does not support the formation of large-molecular-size and persistent 'humic substances' in soils. Instead, soil organic matter is a continuum of progressively decomposing organic compounds. We discuss implications of this view of the nature of soil organic matter for aquatic health, soil carbon-climate interactions and land management.

  6. The contentious nature of soil organic matter.

    PubMed

    Lehmann, Johannes; Kleber, Markus

    2015-12-01

    The exchange of nutrients, energy and carbon between soil organic matter, the soil environment, aquatic systems and the atmosphere is important for agricultural productivity, water quality and climate. Long-standing theory suggests that soil organic matter is composed of inherently stable and chemically unique compounds. Here we argue that the available evidence does not support the formation of large-molecular-size and persistent 'humic substances' in soils. Instead, soil organic matter is a continuum of progressively decomposing organic compounds. We discuss implications of this view of the nature of soil organic matter for aquatic health, soil carbon-climate interactions and land management. PMID:26595271

  7. Sources and Distribution of Organic Matter in Sediments of the Louisiana Continental Shelf

    EPA Science Inventory

    Both riverine and marine sources of organic matter (OM) contribute to sediment organic pools, and either source can contribute significantly to sediment accumulation, burial, and remineralization rates on river dominated continental shelf systems. For the Louisiana continental sh...

  8. Priming of native soil organic matter by pyrogenic organic matter

    NASA Astrophysics Data System (ADS)

    DeCiucies, Silene; Dharmakeerthi, Saman; Whitman, Thea; Woolf, Dominic; Lehmann, Johannes

    2015-04-01

    Priming, in relation to pyrogenic organic matter (PyOM), describes the change in mineralization rate of non-pyrogenic ("native") soil organic matter (nSOM) due to the addition of PyOM. Priming may be 'positive', in that the addition of pyC increases the mineralization rate of native SOM, or 'negative', in that the mineralization rate of nSOM is decreased. Reasons for increased mineralization may include: (i) co-metabolism: microbial decomposition of labile C-additions increases microbial activity, and facilitates additional decomposition of npSOC by active enzymes; (ii) stimulation: substrate additions result in lifted pH, nutrient, oxygen, or water constraints resulting in increased microbial activity. Decreased mineralization may be a result of: (i) inhibition: the opposite of stimulation whereby constraints are aggravated by substrate addition. Substrate addition may also cause inhibition by interfering with enzymes or signaling compounds; (ii) preferential substrate utilization: labile fraction of PyOM additions are preferentially used up by microbes thus causing a decrease in nSOC decomposition; (iii) sorption: organic compounds are adsorbed onto PyOM surfaces, decreasing their rate of mineralization; (iv) stabilization: formation of organo-mineral associations forms stable SOC pools. We have conducted a suite of experiments to investigate these potential interactions. In a seven year long incubation study, PyOM additions increased total OM mineralization for the first 2.5 years, was equal to control after 6.2 years, and was 3% lower after 7.1 years. Cumulative nSOM mineralization was 23% less with the PyOM additions than without, and over 60% of the added PyOM was present in the labile soil fraction after the 7.1 year incubation. Two additional incubation studies, one with and without plants, showed greater nSOM mineralization in the short term and lower nSOM mineralization over the long term. Increased nSOC mineralization due to the presence of plants was

  9. Refractory dissolved organic nitrogen accumulation in high-elevation lakes.

    PubMed

    Goldberg, S J; Ball, G I; Allen, B C; Schladow, S G; Simpson, A J; Masoom, H; Soong, R; Graven, H D; Aluwihare, L I

    2015-01-01

    The role of dissolved organic matter (DOM) as either a sink for inorganic nutrients or an additional nutrient source is an often-neglected component of nutrient budgets in aquatic environments. Here, we examined the role of DOM in reactive nitrogen (N) storage in Sierra Nevada (California, USA) lakes where atmospheric deposition of N has shifted the lakes toward seasonal phosphorus (P)-limitation. Nuclear magnetic resonance (NMR) spectroscopy and isotope analyses performed on DOM isolated from Lake Tahoe reveal the accumulation of refractory proteinaceous material with a 100-200-year residence time. In contrast, smaller lakes in the same watershed contain DOM with typical terrestrial characteristics, indicating that proteins in Lake Tahoe are autochthonously produced. These data support the role of DOM as a possible sink for reactive N in these lake ecosystems and identify a potential role for DOM in affecting the inorganic nutrient stoichiometry of these environments. PMID:25704539

  10. Pre-biotic organic matter from comets and asteroids

    NASA Technical Reports Server (NTRS)

    Anders, Edward

    1989-01-01

    Only meteoritic fragments small enough to be gently decelerated by the atmosphere (10 to the -12th g to 10 to the -6th g) can deliver organic matter intact. The amount of such 'soft-landed' organic carbon can be estimated from data for the infall rate of meteoritic matter. At present rates, only about 0.0006 g/sq cm intact organic carbon would accumulate in 100 million years, but at the higher rates of about four billion yr ago, about 20 g/sq cm may have accumulated in the few hundred million years between the last cataclysmic impact and the beginning of life. It may have included some biologically important compounds that did not form by abiotic synthesis on earth.

  11. Environmental factors regulating soil organic matter chlorination

    NASA Astrophysics Data System (ADS)

    Svensson, Teresia; Montelius, Malin; Reyier, Henrik; Rietz, Karolina; Karlsson, Susanne; Lindberg, Cecilia; Andersson, Malin; Danielsson, Åsa; Bastviken, David

    2016-04-01

    Natural chlorination of organic matter is common in soils. Despite the widespread abundance of soil chlorinated soil organic matter (SOM), frequently exceeding soil chloride abundance in surface soils, and a common ability of microorganisms to produce chlorinated SOM, we lack fundamental knowledge about dominating processes and organisms responsible for the chlorination. To take one step towards resolving the terrestrial chlorine (Cl) puzzle, this study aims to analyse how environmental factors influence chlorination of SOM. Four factors were chosen for this study: soil moisture (W), nitrogen (N), chloride (Cl) and organic matter quality (C). These factors are all known to be important for soil processes. Laboratory incubations with 36Cl as a Cl tracer were performed in a two soil incubation experiments. It was found that addition of chloride and nitrogen seem to hamper the chlorination. For the C treatment, on the other hand, the results show that chlorination is enhanced by increased availability of labile organic matter (glucose and maltose). Even higher chlorination was observed when nitrogen and water were added in combination with labile organic matter. The effect that more labile organic matter strongly stimulated the chlorination rates was confirmed by the second separate experiment. These results indicate that chlorination was not primarily a way to cut refractory organic matter into digestible molecules, representing one previous hypothesis, but is related with microbial metabolism in other ways that will be further discussed in our presentation.

  12. [Effects of maize plant types on dry matter accumulation characteristics and yield of soybean in maize-soybean intercropping systems].

    PubMed

    Cui, Liang; Yang, Wen-yu; Huang, Ni; Liu, Jiang; Wang, Yan-ling; Wang, Xiao-hui; Liu, Yang; Yan, Shou

    2015-08-01

    In order to explore the effects of maize plant types on dry matter accumulation and yield of soybean, a field experiment was conducted in 2013, including three maize-soybean relay strip intercropping systems. The relay strip intercropping systems were designed as soybean (Gongxuan 1) intercropped with Denghai 605 (RI1), Chuandan 418 (RI2) or Yayu 13 ( RI3), and the monocultured soybean was used as control. The results demonstrated that the dry matter accumulation rates of intercropped soybean in RI2 and RI3 treatments were lower than in RI1 treatment, and the leaf, stem and pod dry matter accumulation of intercropped soybean in RI1 treatment was 17.6%, 16.5% and 13.7% higher than that in RI2 treatment, and 34.6%, 33.1% and 28.4% higher than that in RI3 treatment, respectively. The distribution proportion of leaf and stem of intercropped soybean was in the order of RI1 > RI2 > RI3. However, the trend of the distribution proportion of pod was opposite. Compared with RI2 and RI3, the dry matter translocation amount, translocation proportion, contribution proportion of soybean vegetative organs to pod of soybean were improved in RI, treatment, and the pod per plant, seeds per plant, seeds per pod, yield per plant and yield of soybean in RI, were higher than RI2 and RI3 by 6.8%, 11.5%, 4.4%, 15.9%, 15.6% and 14.3%, 22.2%, 6.7%, 33.4%, 36.8%, respectively. The results showed that the yield was positively related with the accumulation rate of dry matter, dry matter translocation, dry matter translocation ratio and the contribution of dry matter accumulation, and these indices were highest in RI treatment. The results indicated that the compact maize relay intercropped with soybean could effectively regulate the dry matter accumulation, translocation and distribution, and improve the yield of soybean.

  13. The impact of aeration on the competition between polyphosphate accumulating organisms and glycogen accumulating organisms.

    PubMed

    Carvalheira, Mónica; Oehmen, Adrian; Carvalho, Gilda; Eusébio, Mário; Reis, Maria A M

    2014-12-01

    In wastewater treatment plants (WWTPs), aeration is the major energetic cost, thus its minimisation will improve the cost-effectiveness of the process. This study shows that both the dissolved oxygen (DO) concentration and aerobic hydraulic retention time (HRT) affect the competition between polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs). At low DO levels, Accumulibacter PAOs were shown to have an advantage over Competibacter GAOs, as PAOs had a higher oxygen affinity and thus largely maintained their aerobic activity at low DO levels, while GAO activity decreased. Bioreactor operation at low DO levels was found to increase the PAO fraction of the sludge. Furthermore, an increase in aerobic HRT (at a DO level of 2 mg O2/L), promoted the proliferation of GAOs over PAOs, decreasing the EBPR efficiency. Overall, this study shows that low aeration can be beneficial for EBPR performance through selecting for PAOs over GAOs, which should be incorporated into WWTP models in order to minimise energetic costs and improve WWTP sustainability. PMID:25222333

  14. Pre-biotic organic matter from comets and asteroids.

    PubMed

    Anders, E

    1989-11-16

    Several authors have suggested that comets or carbonaceous asteroids contributed large amounts of organic matter to the primitive Earth, and thus possibly played a vital role in the origin of life. But organic matter cannot survive the extremely high temperatures (>10(4) K) reached on impact, which atomize the projectile and break all chemical bonds. Only fragments small enough to be gently decelerated by the atmosphere--principally meteors of 10(-12)-10(-6) g--can deliver their organic matter intact. The amount of such 'soft-landed' organic carbon can be estimated from data for the infall rate of meteoritic matter. At present rates, only approximately 0.006 g cm-2 intact organic carbon would accumulate in 10(8) yr, but at the higher rates of approximately 4 x 10(9) yr ago, about 20 g cm-2 may have accumulated in the few hundred million years between the last cataclysmic impact and the beginning of life. It may have included some biologically important compounds that did not form by abiotic synthesis on Earth.

  15. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species.

    PubMed

    Norton, Gareth J; Adomako, Eureka E; Deacon, Claire M; Carey, Anne-Marie; Price, Adam H; Meharg, Andrew A

    2013-06-01

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic. PMID:23466730

  16. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species.

    PubMed

    Norton, Gareth J; Adomako, Eureka E; Deacon, Claire M; Carey, Anne-Marie; Price, Adam H; Meharg, Andrew A

    2013-06-01

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic.

  17. Mercury dilution by autochthonous organic matter in a fertilized mangrove wetland.

    PubMed

    Machado, Wilson; Sanders, Christian J; Santos, Isaac R; Sanders, Luciana M; Silva-Filho, Emmanoel V; Luiz-Silva, Wanilson

    2016-06-01

    A dated sediment core from a highly-fertilized mangrove wetland located in Cubatão (SE Brazil) presented a negative correlation between mercury (Hg) and organic carbon contents. This is an unusual result for a metal with well-known affinity to organic matter. A dilution of Hg concentrations by autochthonous organic matter explained this observation, as revealed by carbon stable isotopes signatures (δ(13)C). Mercury dilution by the predominant mangrove-derived organic matter counterbalanced the positive influences of algal-derived organic matter and clay contents on Hg levels, suggesting that deleterious effects of Hg may be attenuated. Considering the current paradigm on the positive effect of organic matter on Hg concentrations in coastal sediments and the expected increase in mangrove organic matter burial due to natural and anthropogenic stimulations of primary production, predictions on the influences of organic matter on Hg accumulation in mangrove wetlands deserve caution.

  18. Chemodestructive fractionation of soil organic matter

    NASA Astrophysics Data System (ADS)

    Popov, A. I.; Rusakov, A. V.

    2016-06-01

    The method of chemodestructive fractionation is suggested to assess the composition of soil organic matter. This method is based on determination of the resilience of soil organic matter components and/or different parts of organic compounds to the impact of oxidizing agents. For this purpose, a series of solutions with similar concentration of the oxidant (K2Cr2O7), but with linearly increasing oxidative capacity was prepared. Chemodestructive fractionation showed that the portion of easily oxidizable (labile) organic matter in humus horizons of different soil types depends on the conditions of soil formation. It was maximal in hydromorphic soils of the taiga zone and minimal in automorphic soils of the dry steppe zone. The portion of easily oxidizable organic matter in arable soils increased with an increase in the rate of organic fertilizers application. The long-lasting agricultural use of soils and burying of the humus horizons within the upper one-meter layer resulted in the decreasing content of easily oxidizable organic matter. It was found that the portion of easily oxidizable organic matter decreases by the mid-summer or fall in comparison with the spring or early summer period.

  19. Accumulation and preservation of organic carbon in marine sediments: The roles of anoxia vs. production

    SciTech Connect

    Calvert, S.E.; Pedersen, T.F. )

    1990-05-01

    Organic carbon enrichments in marine sediments and sedimentary rocks commonly are explained by the preferential preservation of the deposited organic matter under anoxic conditions; the role of primary organic (plankton) production is seldom considered. A review of the available information shows that modern marine sediment accumulating in oxic and anoxic basins in similar topographic and sedimentary settings have very similar carbon contents. On continental slopes, carbon maxima are apparently produced by the complex interplay between the supply of carbon to the sea floor, the texture of the sediment, the dilution of carbon by other sediment components, and the decreasing settling flux of carbon in the deeper waters of the open ocean. Contrary to contemporary thought, there is no causal relationship between such maxima and the position of the oxygen minimum. The degradation of sedimentary organic matter by aerobes and by sulfate reducers is very similar where the supply of fresh organic matter to the sea floor is similar. Hence, there is no evidence for the preferential preservation of organic matter under anoxic conditions. Terrestrial organic matter, however, appears to be degraded to a lesser extent by sulfate reducers. The burial of carbon below the surficial, oxygenated horizons of a sediment removes the easily oxidized fractions leaving material that may be less susceptible to attack by sulfate reducers. Sedimentary carbon maxima in Pleistocene glacial horizons are due to the increased settling flux of organic matter brought about by climatically induced increases in upwelling in the equatorial and marginal areas of the ocean. Changes in bottom water oxygen levels during these periods plays a minor role in producing these signals. Previous work that claimed that anoxic bottom waters were prevalent during the accumulation of organic-rich black shales in the geological record should be reevaluated.

  20. Factors Regulating Soil Organic Matter Chlorination

    NASA Astrophysics Data System (ADS)

    Svensson, T.; Gustavsson, M.; Reyier, H.; Rietz, K.; Karlsson, S.; Göransson, C.; Andersson, M.; Öberg, G.; Bastviken, D.

    2013-12-01

    Natural chlorination of organic matter is a common process in various soils. Despite the widespread abundance of soil organic chlorine, knowledge on the processes and regulation of soil organic matter chlorination are modest. The purpose of this study is to elucidate how environmental factors may influence chlorination of organic matter in soil. Four factors were chosen for this study; water content, and nitrogen, organic carbon, and chloride concentrations. The variables are all known in different ways as important for microbes and transformation of chlorine in soil. The soil was collected from 5-15 cm depth in a coniferous forest southeast of Sweden. To test how the selected factors influenced chlorination of organic matter, we used soil laboratory incubations using 36Cl-chloride as a radioisotopic marker. A multivariate factorial design with two levels of i) soil moisture, ii) chloride amendment, iii) nitrogen amendment, and iv) glucose and maltose addition was used to simultaneously test for possible combination effects for all factors. A known radioactivity of 36chloride was added to the soil samples and incubated with four different factor treatments during an incubation period of 15 and 60 days. This presentation will discuss the results of this study including what combination of factors enhanced or hampered chlorination and thereby discuss previous observed variability of organic chlorine and chloride in soil.

  1. Phosphorus Accumulating Organisms and Biogeochemical Hotspots

    NASA Astrophysics Data System (ADS)

    Archibald, J.; Walter, M. T.

    2008-12-01

    Despite extensive research, many of the processes that control phosphorus (P) movement from agricultural fields to streams and lakes are not well understood. This limits our ability to develop management strategies that will mediate P contamination of freshwater ecosystems and subsequent eutrophication. Recent advances in molecular microbiology have prompted a paradigm shift in wastewater treatment that recognizes and exploits the ways specific microbial processes influence P solubility. Central to this enhanced biological phosphorus removal in wastewater treatment plants is a relatively recently discovered microorganism, Candidatus accumulibacter, which takes-up P and stores it internally as polyphosphate under alternating aerobic and anaerobic conditions. Within the past few months we have discovered this organism in the natural environment and its role in P biogeochemistry is unclear. We speculate that it may function similarly in variable source areas, which experience cycles of saturation and desaturation, as it does in the anaerobic- aerobic cycles in a wastewater treatment plant. If so, there may be potential opportunities to realize similarly new perspectives and advancements in the watershed context as have been seen in wastewater technologies. Here we present some of our preliminary findings.

  2. Accumulation of organic C components in soil and aggregates

    PubMed Central

    Yu, Hongyan; Ding, Weixin; Chen, Zengming; Zhang, Huanjun; Luo, Jiafa; Bolan, Nanthi

    2015-01-01

    To explore soil organic carbon (SOC) accumulation mechanisms, the dynamics of C functional groups and macroaggregation were studied synchronously through aggregate fractionation and 13C NMR spectroscopy in sandy loam soil following an 18-year application of compost and fertilizer in China. Compared with no fertilizer control, both compost and fertilizer improved SOC content, while the application of compost increased macroaggregation. Fertilizer application mainly increased the levels of recalcitrant organic C components characterized by methoxyl/N-alkyl C and alkyl C, whereas compost application mainly promoted the accumulation of methoxyl/N-alkyl C, phenolic C, carboxyl C, O-alkyl C and di-O-alkyl C in bulk soil. The preferential accumulation of organic C functional groups in aggregates depended on aggregate size rather than nutrient amendments. These groups were characterized by phenolic C and di-O-alkyl C in the silt + clay fraction, carboxyl C in microaggregates and phenolic C, carboxyl C and methoxyl/N-alkyl C in macroaggregates. Thus, the differences in accumulated organic C components in compost- and fertilizer-amended soils were primarily attributable to macroaggregation. The accumulation of methoxyl/N-alkyl C in microaggregates effectively promoted macroaggregation. Our results suggest that organic amendment rich in methoxyl/N-alkyl C effectively improved SOC content and accelerated macroaggregation in the test soil. PMID:26358660

  3. Accumulation of organic C components in soil and aggregates

    NASA Astrophysics Data System (ADS)

    Yu, Hongyan; Ding, Weixin; Chen, Zengming; Zhang, Huanjun; Luo, Jiafa; Bolan, Nanthi

    2015-09-01

    To explore soil organic carbon (SOC) accumulation mechanisms, the dynamics of C functional groups and macroaggregation were studied synchronously through aggregate fractionation and 13C NMR spectroscopy in sandy loam soil following an 18-year application of compost and fertilizer in China. Compared with no fertilizer control, both compost and fertilizer improved SOC content, while the application of compost increased macroaggregation. Fertilizer application mainly increased the levels of recalcitrant organic C components characterized by methoxyl/N-alkyl C and alkyl C, whereas compost application mainly promoted the accumulation of methoxyl/N-alkyl C, phenolic C, carboxyl C, O-alkyl C and di-O-alkyl C in bulk soil. The preferential accumulation of organic C functional groups in aggregates depended on aggregate size rather than nutrient amendments. These groups were characterized by phenolic C and di-O-alkyl C in the silt + clay fraction, carboxyl C in microaggregates and phenolic C, carboxyl C and methoxyl/N-alkyl C in macroaggregates. Thus, the differences in accumulated organic C components in compost- and fertilizer-amended soils were primarily attributable to macroaggregation. The accumulation of methoxyl/N-alkyl C in microaggregates effectively promoted macroaggregation. Our results suggest that organic amendment rich in methoxyl/N-alkyl C effectively improved SOC content and accelerated macroaggregation in the test soil.

  4. Organic Matter Loading Affects Lodgepole Pine Seedling Growth

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohua; Li, Qinglin; Waterhouse, M. J.; Armleder, H. M.

    2012-06-01

    Organic matter plays important roles in returning nutrients to the soil, maintaining forest productivity and creating habitats in forest ecosystems. Forest biomass is in increasing demand for energy production, and organic matter has been considered as a potential supply. Thus, an important management question is how much organic matter should be retained after forest harvesting to maintain forest productivity. To address this question, an experimental trial was established in 1996 to evaluate the responses of lodgepole pine seedling growth to organic matter loading treatments. Four organic matter loading treatments were randomly assigned to each of four homogeneous pine sites: removal of all organic matter on the forest floor, organic matter loading quantity similar to whole-tree-harvesting residuals left on site, organic matter loading quantity similar to stem-only-harvesting residuals, and organic matter loading quantity more similar to what would be found in disease- or insect-killed stands. Our 10-year data showed that height and diameter had 29 and 35 % increase, respectively, comparing the treatment with the most organic matter loading to the treatment with the least organic matter loading. The positive response of seedling growth to organic matter loading may be associated with nutrients and/or microclimate change caused by organic matter, and requires further study. The dynamic response of seedling growth to organic matter loading treatments highlights the importance of long-term studies. Implications of those results on organic matter management are discussed in the context of forest productivity sustainability.

  5. Organic matters: investigating the sources, transport, and fate of organic matter in Fanno Creek, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven; Keith, Mackenzie; Goldman, Jami H.; Rounds, Stewart A.

    2015-01-01

    The U.S. Geological Survey (USGS), in cooperation with Clean Water Services, recently completed an investigation into the sources, transport, and fate of organic matter in the Fanno Creek watershed. The information provided by this investigation will help resource managers to implement strategies aimed at decreasing the excess supply of organic matter that contributes to low dissolved-oxygen levels in Fanno Creek and downstream in the Tualatin River during summer. This fact sheet summarizes the findings of the investigation.

  6. Organic Carbon, Nitrogen and Phosphorus Accumulation Rates in the Soils of the Everglades Mangrove Ecotone

    NASA Astrophysics Data System (ADS)

    Smoak, J. M.; Breithaupt, J. L.; Sanders, C. J.

    2015-12-01

    One of the fundamental questions with regard to coastal ecotones relates to their role in the transformation, transport and storage of biogeochemically important constituents and how that role may be altered by climate change. Coastal wetlands provide a range of valuable ecosystem services including sequestering organic carbon (OC) and nutrients in their soils at rates greater than terrestrial ecosystems on a per area basis. As such the Everglades mangrove ecotone, the largest contiguous mangrove forest in North America, is a biogeochemical "hotspot" at the interface of freshwater marsh and the Gulf of Mexico. Over the last one hundred years this region has been impacted by a reduction in freshwater flow and a sea-level rise (SLR) of 2.3 mm/yr which combined to cause a landward shift in the ecotone. This creates an ideal setting to examine climate induced alterations in the mangrove-ecotone biogeochemical cycle. The ability of the Everglades mangrove forest to keep pace with SLR depends largely on the rate of organic matter accumulation as that accumulation is a key contributor to accretion. However, the basic threat from SLR can be exacerbated in some areas by accelerating organic matter mineralization due to increasing salinity. The increase in salinity supplies sulfate which functions as a terminal electron acceptor that soil microbes can utilize to enhance mineralization in the brackish ecotone regions of coastal wetlands. To investigate these processes, we measured mangrove forest soil accretion, OC, N and P accumulation rates over the most recent 10, 50 and 100 year periods (via 210Pb dating) from the Gulf of Mexico to the upper freshwater reaches of the mangrove forest within Everglades National Park. Lower organic carbon accumulation rates compared to the rest of the system were found in the ecotone region most susceptible to enhanced organic matter mineralization.

  7. Organic matter and sandstone-type uranium deposits: a primer

    USGS Publications Warehouse

    Leventhal, Joel S.

    1979-01-01

    Organic material is intimately associated with sandstone-type uranium deposits in the western United States.. This report gives details of the types of organic matter and their possible role in producing a uranium deposit. These steps include mobilization of uranium from igneous rocks, transportation from the surface, concentration by organic matter, reduction by organic matter, and preservation of the uranium deposit.

  8. Subaerial weathering of sedimentary organic matter

    USGS Publications Warehouse

    Clayton, J.L.; Swetland, P.J.

    1978-01-01

    Small diameter core samples were taken from outcrops of the Permian Phosphoria Formation and the Cretaceous Pierre Shale of the Western United States to determine the effects of weathering on organic matter in shale outcrops. While the Pierre Shale core showed no evidence of weathering, the Phosphoria Formation showed significant reduction of overall organic content and pronounced changes in organic composition over the near-surface interval of the core. Total organic carbon is lower by as much as 60% over the upper 2 ft of the core. Chloroform-soluble organic matter and total hydrocarbon (C15+) concentrations are 50% lower over this same interval. The ratio of saturated to aromatic hydrocarbons decreases steadily with core depth over the upper 2.6 ft of the core. Aromatic hydrocarbons are enriched in the stable carbon-13 isotope by an average of 1.7%. over this same interval. Shallow core samples also show a loss of n-paraffins relative to branched/cyclic compounds in the saturated C15+ fraction. Although the extent of weathering is variable, certain characteristic effects are recognizable and can be applied to the interpretation of outcrop data in organic geochemical studies. ?? 1978.

  9. Patterns and rates of organic carbon accumulation in recent pelagic and hemipelagic marine environments

    SciTech Connect

    Cwienk, D.; Leinen, M.S.; Arthur, M.A.

    1987-05-01

    Maps were constructed for the global distribution of percent organic carbon, sedimentation rates, bulk sediment accumulation rates, and organic carbon accumulation rates (OCARs), exclusive of the continental shelves, on the basis of both published and some new data from sediment cores. The OCAR data base uses only cores in which stratigraphic resolution is sufficient to define a mean sedimentation rate for the last 12,000 years and from which bulk density measurements are available or can be calculated using established relationships to carbonate content. Data coverage was adequate for much of the Pacific Ocean basin but was somewhat sparse for the Atlantic, Indian, and Southern oceans. Nonetheless, basic patterns of organic carbon accumulation can be observed from the maps. As expected, the OCARs are highest in the equatorial Pacific, where surface-water productivity is highest, and low under the central gyre regions where surface organic carbon flux and total sediment flux are both low. Higher OCARs also occur in more rapidly accumulating sediments near the continental margins, partly as a function of the enhanced preservation of labile carbon that results from higher sedimentation rates and, in some cases, from higher productivity in surface water masses or increased flux of terrigenous organic matter. The patterns of OCAR are similar, in general, to patterns of accumulation of biogenic opal, thereby reinforcing the link between biological productivity and OCARs. An analysis of the global impact of pelagic-hemipelagic OCARs, using this data base, suggests that no more than 0.21 x 10/sup 14/ gOC/year accumulate over the deep-sea floor at present - only about 16% of the estimated global annual organic carbon burial. However, the deep-sea organic carbon sink may have been more important in the past.

  10. Isotopic analysis of cometary organic matter

    NASA Astrophysics Data System (ADS)

    Kerridge, J. F.

    1991-04-01

    Carbon isotope ratios have been measured for CN in the coma of Comet Halley and for several CHON particles emitted by Halley. Of these, only the CHON-particle data may be reasonably related to organic matter in the cometary nucleus, but the true range of (C-13)/(C-12) values in those particles is quite uncertain. The D/H ratio in H2O in the Halley coma resembles that in Titan/Uranus.

  11. Isotopic analysis of cometary organic matter

    NASA Technical Reports Server (NTRS)

    Kerridge, John F.

    1991-01-01

    Carbon isotope ratios have been measured for CN in the coma of Comet Halley and for several CHON particles emitted by Halley. Of these, only the CHON-particle data may be reasonably related to organic matter in the cometary nucleus, but the true range of (C-13)/(C-12) values in those particles is quite uncertain. The D/H ratio in H2O in the Halley coma resembles that in Titan/Uranus.

  12. Analysis of Organic matter from cloud particles

    NASA Astrophysics Data System (ADS)

    Bank, Shelton; Castillo, Raymond

    1987-03-01

    Organic matter collected from filtration of two separate cloud events was analysed by Fourier Transform Infrared Spectroscopy. Particles collected from different size filters were separated by color and each type of particle gave rise to a characteristic spectrum. The major constituents were identified as complex proteins and cellulose. Additionally, some degraded material (likely protein) and an unidentified orange-brown material were present. Finally some trace components were identified as wax, oil, silicon oil, polyvinyl chloride, calcium carbonate, clay, sand and polyethylene.

  13. Temperature sensitivity of organic-matter decay in tidal marshes

    USGS Publications Warehouse

    Kirwan, Matthew L.; Guntenspergen, Glenn R.; Langley, J.A.

    2014-01-01

    Approximately half of marine carbon sequestration takes place in coastal wetlands, including tidal marshes, where organic matter contributes to soil elevation and ecosystem persistence in the face of sea-level rise. The long-term viability of marshes and their carbon pools depends, in part, on how the balance between productivity and decay responds to climate change. Here, we report the sensitivity of labile soil organic-matter decay in tidal marshes to seasonal and latitudinal variations in temperature measured over a 3-year period. We find a moderate increase in decay rate at warmer temperatures (3-6% per °C, Q10 = 1.3-1.5). Despite the profound differences between microbial metabolism in wetlands and uplands, our results indicate a strong conservation of temperature sensitivity. Moreover, simple comparisons with organic-matter production suggest that elevated atmospheric CO2 and warmer temperatures will accelerate carbon accumulation in marsh soils, and potentially enhance their ability to survive sea-level rise.

  14. Isolation and chemical characterization of dissolved and colloidal organic matter

    USGS Publications Warehouse

    Aiken, G.; Leenheer, J.

    1993-01-01

    Commonly used techniques for the concentration and isolation of organic matter from water, such as preparative chromatography, ultrafiltration and reverse osmosis, and the methods used to analyze the organic matter obtained by these methods are reviewed. The development of methods to obtain organic matter that is associated with fractions of the dissolved organic carbon other than humic substances, such as organic bases, hydrophilic organic acids and colloidal organic matter are discussed. Methods specifically used to study dissolved organic nitrogen and dissolved organic phosphorous are also discussed. -from Authors

  15. Abiotic Bromination of Soil Organic Matter.

    PubMed

    Leri, Alessandra C; Ravel, Bruce

    2015-11-17

    Biogeochemical transformations of plant-derived soil organic matter (SOM) involve complex abiotic and microbially mediated reactions. One such reaction is halogenation, which occurs naturally in the soil environment and has been associated with enzymatic activity of decomposer organisms. Building on a recent finding that naturally produced organobromine is ubiquitous in SOM, we hypothesized that inorganic bromide could be subject to abiotic oxidations resulting in bromination of SOM. Through lab-based degradation treatments of plant material and soil humus, we have shown that abiotic bromination of particulate organic matter occurs in the presence of a range of inorganic oxidants, including hydrogen peroxide and assorted forms of ferric iron, producing both aliphatic and aromatic forms of organobromine. Bromination of oak and pine litter is limited primarily by bromide concentration. Fresh plant material is more susceptible to bromination than decayed litter and soil humus, due to a labile pool of mainly aliphatic compounds that break down during early stages of SOM formation. As the first evidence of abiotic bromination of particulate SOM, this study identifies a mechanistic source of the natural organobromine in humic substances and the soil organic horizon. Formation of organobromine through oxidative treatments of plant material also provides insights into the relative stability of aromatic and aliphatic components of SOM.

  16. Soil organic matter composition affected by potato cropping managements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic matter is a small but important soil component. As a heterogeneous mixture of geomolecules and biomolecules, soil organic matter (SOM) can be fractionated into distinct pools with different solubility and lability. Water extractable organic matter (WEOM) fraction is the most labile and mobil...

  17. Remote sensing of total dry-matter accumulation in winter wheat

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Holben, B. N.; Elgin, J. H., Jr.; Mcmurtrey, J. E., III (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. Red and photographic-infrared spectral data collected on 21 dates over the growing season with a hand-held radiometer was quantitatively correlated with total dry-matter accumulation in winter wheat. The spectral data were found to be highly related to vigor and condition of the plant canopy. Two periods of drought stress and subsequent recovery from it were readily apparent in the spectral data. Simple ratios of the spectral data compensated for variations in solar intensities and, when integrated over the growing season, explained 79% of the variation in total above-ground accumulation of dry matter.

  18. The surface area of soil organic matter

    USGS Publications Warehouse

    Chiou, C.T.; Lee, J.-F.; Boyd, S.A.

    1990-01-01

    The previously reported surface area for soil organic matter (SOM) of 560-800 m2/g as determined by the ethylene glycol (EG) retention method was reexamined by the standard BET method based on nitrogen adsorption at liquid nitrogen temperature. Test samples consisted of two high organic content soils, a freeze-dried soil humic acid, and an oven-dried soil humic acid. The measured BET areas for these samples were less than 1 m2/g, except for the freeze-dried humic acid. The results suggest that surface adsorption of nonionic organic compounds by SOM is practically insignificant in comparison to uptake by partition. The discrepancy between the surface areas of SOM obtained by BET and EG methods was explained in terms of the 'free surface area' and the 'apparent surface area' associated with these measurements.The previously reported surface area for soil organic matter (SOM) of 560-800 m2/g as determined by the ethylene glycol (EG) retention method was reexamined by the standard BET method based on nitrogen adsorption at liquid nitrogen temperature. Test samples consisted of two high organic content soils, a freeze-dried soil humic acid, and an oven-dried soil humic acid. The measured BET areas for these samples were less than 1 m2/g, except for the freeze-dried humic acid. The results suggest that surface adsorption of nonionic organic compounds by SOM is practically insignificant in comparison to uptake by partition. The discrepancy between the surface areas of SOM obtained by BET and EG methods was explained in terms of the 'free surface area' and the 'apparent surface area' associated with these measurements.

  19. Organic geochemical analysis of sedimentary organic matter associated with uranium

    USGS Publications Warehouse

    Leventhal, J.S.; Daws, T.A.; Frye, J.S.

    1986-01-01

    Samples of sedimentary organic matter from several geologic environments and ages which are enriched in uranium (56 ppm to 12%) have been characterized. The three analytical techniqyes used to study the samples were Rock-Eval pyrolysis, pyrolysis-gas chromatography-mass spectrometry, and solid-state C-13 nuclear magnetic resonance (NMR) spectroscopy. In samples with low uranium content, the pyrolysis-gas chromatography products contain oxygenated functional groups (as hydroxyl) and molecules with both aliphatic and aromatic carbon atoms. These samples with low uranium content give measurable Rock-Eval hydrocarbon and organic-CO2 yields, and C-13 NMR values of > 30% aliphatic carbon. In contrast, uranium-rich samples have few hydrocarbon pyrolysis products, increased Rock-Eval organic-CO2 contents and > 70% aromatic carbon contents from C-13 NMR. The increase in aromaticity and decrease in hydrocarbon pyrolysis yield are related to the amount of uranium and the age of the uranium minerals, which correspond to the degree of radiation damage. The three analytical techniques give complementary results. Increase in Rock-Eval organic-CO2 yield correlates with uranium content for samples from the Grants uranium region. Calculations show that the amount of organic-CO2 corresponds to the quantity of uranium chemically reduced by the organic matter for the Grants uranium region samples. ?? 1986.

  20. Organic Illness and Psychic Puberty: An Accumulation of Trauma.

    PubMed

    de Kernier, Nathalie

    2015-08-01

    When an adolescent faces serious organic illness, two traumatic events coincide and reinforce each other. The Oedipus fantasy and its murderous component are exacerbated. Starting psychotherapy in these circumstances is a challenge. Teens suffering from serious organic illness rarely request psychological help. They accumulate aggressive impulses that remain unspoken but are self-directed. We will use excerpts from cases to comment upon the problems and psychical processes experienced by such teens. We will show how expressing murder fantasies can be a motor in psychotherapy. Such expression not only supports therapy but also relieves the patient and contributes to a new psychosomatic equilibrium.

  1. Soil organic matter regulates molybdenum storage and mobility in forests

    USGS Publications Warehouse

    Marks, Jade A; Perakis, Steven; King, Elizabeth K; Pett-Ridge, Julie

    2015-01-01

    The trace element molybdenum (Mo) is essential to a suite of nitrogen (N) cycling processes in ecosystems, but there is limited information on its distribution within soils and relationship to plant and bedrock pools. We examined soil, bedrock, and plant Mo variation across 24 forests spanning wide soil pH gradients on both basaltic and sedimentary lithologies in the Oregon Coast Range. We found that the oxidizable organic fraction of surface mineral soil accounted for an average of 33 %of bulk soil Mo across all sites, followed by 1.4 % associated with reducible Fe, Al, and Mn-oxides, and 1.4 % in exchangeable ion form. Exchangeable Mo was greatest at low pH, and its positive correlation with soil carbon (C) suggests organic matter as the source of readily exchangeable Mo. Molybdenum accumulation integrated over soil profiles to 1 m depth (τMoNb) increased with soil C, indicating that soil organic matter regulates long-term Mo retention and loss from soil. Foliar Mo concentrations displayed no relationship with bulk soil Mo, and were not correlated with organic horizon Mo or soil extractable Mo, suggesting active plant regulation of Mo uptake and/or poor fidelity of extractable pools to bioavailability. We estimate from precipitation sampling that atmospheric deposition supplies, on average, over 10 times more Mo annually than does litterfall to soil. In contrast, bedrock lithology had negligible effects on foliar and soil Mo concentrations and on Mo distribution among soil fractions. We conclude that atmospheric inputs may be a significant source of Mo to forest ecosystems, and that strong Mo retention by soil organic matter limits ecosystem Mo loss via dissolution and leaching pathways.

  2. Fluorescent organic matter in carbonaceous chondrites.

    PubMed

    Murae, T

    1999-01-01

    Fluorescent organic matter in carbonaceous chondrites was investigated using a microscope equipped with a fluorescence spectrophotometer. Fluorescent particles were observed in powdered CM2 carbonaceous chondrites (Y-74662, Y-7791198, and Murchison) without carbon enrichment by acid treatments. Although it was difficult to find fluorescent particles in powdered sample of C3 chondrites (ALH-77307, Y-791717, and Allende) without acid treatments, many fluorescent particles were observed after carbon enrichment by acid treatments. Fluorescence of coronene and shock-altered graphite were observed using the same microscope and the same conditions as those for carbonaceous chondrites.

  3. Mapping Soil Organic Matter with Hyperspectral Imaging

    NASA Astrophysics Data System (ADS)

    Moni, Christophe; Burud, Ingunn; Flø, Andreas; Rasse, Daniel

    2014-05-01

    Soil organic matter (SOM) plays a central role for both food security and the global environment. Soil organic matter is the 'glue' that binds soil particles together, leading to positive effects on soil water and nutrient availability for plant growth and helping to counteract the effects of erosion, runoff, compaction and crusting. Hyperspectral measurements of samples of soil profiles have been conducted with the aim of mapping soil organic matter on a macroscopic scale (millimeters and centimeters). Two soil profiles have been selected from the same experimental site, one from a plot amended with biochar and another one from a control plot, with the specific objective to quantify and map the distribution of biochar in the amended profile. The soil profiles were of size (30 x 10 x 10) cm3 and were scanned with two pushbroomtype hyperspectral cameras, one which is sensitive in the visible wavelength region (400 - 1000 nm) and one in the near infrared region (1000 - 2500 nm). The images from the two detectors were merged together into one full dataset covering the whole wavelength region. Layers of 15 mm were removed from the 10 cm high sample such that a total of 7 hyperspectral images were obtained from the samples. Each layer was analyzed with multivariate statistical techniques in order to map the different components in the soil profile. Moreover, a 3-dimensional visalization of the components through the depth of the sample was also obtained by combining the hyperspectral images from all the layers. Mid-infrared spectroscopy of selected samples of the measured soil profiles was conducted in order to correlate the chemical constituents with the hyperspectral results. The results show that hyperspectral imaging is a fast, non-destructive technique, well suited to characterize soil profiles on a macroscopic scale and hence to map elements and different organic matter quality present in a complete pedon. As such, we were able to map and quantify biochar in our

  4. The fate of airborne polycyclic organic matter.

    PubMed Central

    Nielsen, T; Ramdahl, T; Bjørseth, A

    1983-01-01

    Biological tests have shown that a significant part of the mutagenicity of organic extracts of collected airborne particulate matter is not due to polycyclic aromatic hydrocarbons (PAH). It is possible that part of these unknown compounds are transformation products of PAH. This survey focuses on the reaction of PAH in the atmosphere with other copollutants, such as nitrogen oxides, sulfur oxides, ozone and free radicals and their reaction products. Photochemically induced reactions of PAH are also included. The reactivity of particle-associated PAH is discussed in relation to the chemical composition and the physical properties of the carrier. Recommendations for future work are given. PMID:6825615

  5. Organic Matter in the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Cruiskshank, Dale P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Many solid bodies in the outer Solar System are covered with ices of various compositions, including water, carbon dioxide, methane, nitrogen, and other molecules that are solid at the low temperatures that prevail there. These ices have all been detected by remote sensing observations made with telescopes on Earth, or more recently, spacecraft in orbit (notably Galileo at Jupiter). The data also reveal other solid materials that could be minerals or complex carbon-bearing organic molecules. A study in progress using large ground-based telescopes to acquire infrared spectroscopic data, and laboratory results on the optical properties of complex organic matter, seeks to identify the non-icy materials on several satellites of Saturn, Uranus, and Neptune. The work on the satellites of Saturn is in part preparatory to the Cassini spacecraft investigation of the Saturn system, which will begin in 2004 and extend for four years.

  6. Soil organic matter mineralization in frozen soils

    NASA Astrophysics Data System (ADS)

    Harrysson Drotz, S.; Sparrman, T.; Schleucher, J.; Nilsson, M.; Öquist, M. G.

    2009-12-01

    Boreal forest soils are frozen for a large part of the year and soil organic matter mineralization during this period has been shown to significantly influence the C balance of boreal forest ecosystems. Mineralization proceeds through heterotrophic microbial activity, but the understanding of the environmental controls regulating soil organic matter mineralization under frozen conditions is poor. Through a series of investigations we have addressed this issue in order to elucidate to what extent a range of environmental factors control mineralization processes in frozen soils and also the microbial communities potential to oxidize organic substrates and grow under such conditions. The unfrozen water content in the frozen soils was shown to be an integral control on the temperature response of biogenic CO2 production across the freezing point of bulk soil water. We found that osmotic potential was an important contributor to the total water potential and, hence, the unfrozen water content of frozen soil. From being low and negligible in an unfrozen soil, the osmotic potential was found to contribute up to 70% of the total water potential in frozen soil, greatly influencing the volume of liquid water. The specific factors of how soil organic matter composition affected the unfrozen water content and CO2 production of frozen soil were studied by CP-MAS NMR. We concluded that abundance of aromatics and recalcitrant compounds showed a significant positive correlation with unfrozen water content and these were also the major soil organic fractions that similarly correlated with the microbial CO2 production of the frozen soils. Thus, the hierarchy of environmental factors controlling SOM mineralization changes as soils freeze and environmental controls elucidated from studies of unfrozen systems can not be added on frozen conditions. We have also investigated the potential activity of soil microbial communities under frozen conditions in order to elucidate temperature

  7. Stability of Ferrihydrite and Organic Matter in Ferrihydrite-Organic Matter Associations

    NASA Astrophysics Data System (ADS)

    Eusterhues, K.; Totsche, K. U.

    2015-12-01

    Iron oxides can bind particularly large amounts of organic matter (OM) and seem to be an important control on OM storage in many soils. To better understand the interactions between Fe oxides and OM, we produced ferrihydrite-OM associations by adsorption and coprecipitation in laboratory experiments. Because ferrihydrites are often formed in OM-rich solutions, we assume that coprecipitation is a common process in nature. In contrast to adsorption on pre-existing ferrihydrite surfaces, coprecipitation involves adsorption, occlusion (physical entrapment of OM), formation of Fe-OM complexes, and poisoning of ferrihydrite growth. The reactivity of coprecipitates may therefore differ from ferriydrites with adsorbed OM. Incubation experiments with an inoculum extracted from a Podzol forest-floor were carried out to quantify the mineralization of the adsorbed and coprecipitated organic matter. These experiments showed that the association with ferrihydrite stabilized the associated organic matter, but that differences in the degradability of adsorbed and coprecipitated organic matter were small. We therefore conclude that coprecipitation does not lead to a significant formation of microbial inaccessible organic matter domains. Microbial reduction experiments were performed using Geobacter bremensis. We observed that increasing amounts of associated OM led to decreasing initial reaction rates and a decreasing degree of dissolution. Reduction of coprecipitated ferrihydrites was faster than reduction of ferrihydrites with adsorbed OM. Our data demonstrate that the association with ferrihydrite can effectively stabilize labile polysaccharides. Vice versa, these polysaccharides may protect ferrihydrite from reduction by Geobacter-like bacteria. However, a challenge for future studies will be to link formation and degradation of mineral-organic associations to natural porous systems, that is, to the complex interplay of mass transport and microbial distribution in the

  8. [Characteristics of dry matter production and nitrogen accumulation in barley genotypes with high nitrogen utilization efficiency].

    PubMed

    Huang, Yi; Li, Ting-Xuan; Zhang, Xi-Zhou; Ji, Lin

    2014-07-01

    A pot experiment was conducted under low (125 mg x kg-1) and normal (250 mg x kg(-1)) nitrogen treatments. The nitrogen uptake and utilization efficiency of 22 barley cultivars were investigated, and the characteristics of dry matter production and nitrogen accumulation in barley were analyzed. The results showed that nitrogen uptake and utilization efficiency were different for barley under two nitrogen levels. The maximal values of grain yield, nitrogen utilization efficiency for grain and nitrogen harvest index were 2.87, 2.91 and 2.47 times as those of the lowest under the low nitrogen treatment. Grain yield and nitrogen utilization efficiency for grain and nitrogen harvest index of barley genotype with high nitrogen utilization efficiency were significantly greater than low nitrogen utilization efficiency, and the parameters of high nitrogen utilization efficiency genotype were 82.1%, 61.5% and 50.5% higher than low nitrogen utilization efficiency genotype under the low nitrogen treatment. Dry matter mass and nitrogen utilization of high nitrogen utilization efficiency was significantly higher than those of low nitrogen utilization efficiency. A peak of dry matter mass of high nitrogen utilization efficiency occurred during jointing to heading stage, while that of nitrogen accumulation appeared before jointing. Under the low nitrogen treatment, dry matter mass of DH61 and DH121+ was 34.4% and 38.3%, and nitrogen accumulation was 54. 8% and 58.0% higher than DH80, respectively. Dry matter mass and nitrogen accumulation seriously affected yield before jointing stage, and the contribution rates were 47.9% and 54.7% respectively under the low nitrogen treatment. The effect of dry matter and nitrogen accumulation on nitrogen utilization efficiency for grain was the largest during heading to mature stages, followed by sowing to jointing stages, with the contribution rate being 29.5% and 48.7%, 29.0% and 15.8%, respectively. In conclusion, barley genotype with high

  9. Balance between salt stress and endogenous hormones influence dry matter accumulation in Jerusalem artichoke.

    PubMed

    Shao, Tianyun; Li, Lingling; Wu, Yawen; Chen, Manxia; Long, Xiaohua; Shao, Hongbo; Liu, Zhaopu; Rengel, Zed

    2016-10-15

    Salinity is one of the most serious environmental stresses limiting agricultural production. Production of Jerusalem artichoke on saline land is strategically important for using saline land resources. The interaction between plant hormones and salinity stress in governing Jerusalem artichoke (Helianthus tuberosus) growth is unclear. Jerusalem artichoke (variety Nanyu-1) was grown under variable salinity stress in the field, and a role of endogenous hormones [zeatin (ZT), auxins (IAA), gibberellins (GA3) and abscisic acid (ABA)] in regulating sugar and dry matter accumulation in tubers was characterized. Under mild salt stress (≤2.2gNaClkg(-1) soil), Nanyu-1 grew well with no significant alteration of dry matter distribution to stems and tubers. In contrast, under moderate salt stress (2.7gNaClkg(-1) soil), the distribution to stem decreased and to tubers decreased significantly. Mild salt stress induced sugar accumulation in tubers at the beginning of the tuber-expansion period, but significantly inhibited (i) transfer of non-reducing sugars to tubers, and (ii) polymerization and accumulation of fructan during the tuber-expansion stage. Under different salinity stress, before the stolon growth, the ratio of IAA/ABA in leaves increased significantly and that of GA3/ABA increased slightly; during tuber development, these ratios continued to decrease and reached the minimum late in the tuber-expansion period. While, salt stress inhibited (i) underground dry matter accumulation, (ii) tuber dry matter accumulation efficiency, (iii) transport of non-reducing sugars to tubers, and (iv) fructan accumulation efficiency during the tuber-expansion period; these effects were accompanied by significantly decreased tuber yield with an increase in salinity. With soil salinity increasing, the synthesis of IAA and GA3 was inhibited in leaves and tubers, while ABA synthesis was stimulated. In brief, tuber yield would significantly decreased with the increase of salinity. PMID

  10. Balance between salt stress and endogenous hormones influence dry matter accumulation in Jerusalem artichoke.

    PubMed

    Shao, Tianyun; Li, Lingling; Wu, Yawen; Chen, Manxia; Long, Xiaohua; Shao, Hongbo; Liu, Zhaopu; Rengel, Zed

    2016-10-15

    Salinity is one of the most serious environmental stresses limiting agricultural production. Production of Jerusalem artichoke on saline land is strategically important for using saline land resources. The interaction between plant hormones and salinity stress in governing Jerusalem artichoke (Helianthus tuberosus) growth is unclear. Jerusalem artichoke (variety Nanyu-1) was grown under variable salinity stress in the field, and a role of endogenous hormones [zeatin (ZT), auxins (IAA), gibberellins (GA3) and abscisic acid (ABA)] in regulating sugar and dry matter accumulation in tubers was characterized. Under mild salt stress (≤2.2gNaClkg(-1) soil), Nanyu-1 grew well with no significant alteration of dry matter distribution to stems and tubers. In contrast, under moderate salt stress (2.7gNaClkg(-1) soil), the distribution to stem decreased and to tubers decreased significantly. Mild salt stress induced sugar accumulation in tubers at the beginning of the tuber-expansion period, but significantly inhibited (i) transfer of non-reducing sugars to tubers, and (ii) polymerization and accumulation of fructan during the tuber-expansion stage. Under different salinity stress, before the stolon growth, the ratio of IAA/ABA in leaves increased significantly and that of GA3/ABA increased slightly; during tuber development, these ratios continued to decrease and reached the minimum late in the tuber-expansion period. While, salt stress inhibited (i) underground dry matter accumulation, (ii) tuber dry matter accumulation efficiency, (iii) transport of non-reducing sugars to tubers, and (iv) fructan accumulation efficiency during the tuber-expansion period; these effects were accompanied by significantly decreased tuber yield with an increase in salinity. With soil salinity increasing, the synthesis of IAA and GA3 was inhibited in leaves and tubers, while ABA synthesis was stimulated. In brief, tuber yield would significantly decreased with the increase of salinity.

  11. [Photosynthetic characteristics and dry matter accumulation of hybrid rice varieties under different light conditions].

    PubMed

    Tong, Ping; Yang, Shi-Min; Ma, Jun; Wu, He-Zhou; Fu, Tai-Lu; Li, Min; Wang, Ming-Tian

    2008-03-01

    The study on the photosynthetic characteristics and dry matter accumulation of twelve hybrid rice varieties in the eco-environments with low- and high light intensity showed that the adaptation abiility of the varieties to eco-environment was mainly (depended on the varieties themselves, and there existed greater (differenees among them. The differences in net photosynthetic rate (Pn) and chlorophyll content (Chl) were more significant among the varieties than between the eco-environments. The grain yield had significant positive correlations with Pn and total dry matter mass (TDM), the determination coefficient R2 being 0.584 and 0.590, respectively, but no significant correlations with the export percentage of the matter in stem-sheath (EPMSS) and the transformation percentage of the matter in stem-sheath (TPMSS). In the eco-environment with high light intensity, the leaf thickness and dry matter accumulation increased, while the EPMSS and TPMSS decreased. Under enough sunlight condition, the high proportion of matter in grain yield was mainly come from the photosynthesis at late growth stages; while under insufficient sunlight condition, it was mainly originated from the early growth stages photosynthesis.

  12. Influence of Dissolved Organic Matter and Fe (II) on the Abiotic Reduction of Pentachloronitrobenzene

    EPA Science Inventory

    Nitroaromatic pesticides (NAPs) are hydrophobic contaminants that can accumulate in sediments by the deposition of suspended solids from surface waters. Fe(II) and dissolved organic matter (DOM), present in suboxic and anoxic zones of freshwater sediments, can transform NAPs in n...

  13. Spatial distribution and transport of soil organic matter through a semi-arid catchment

    NASA Astrophysics Data System (ADS)

    Cammeraat, L. H.

    2009-04-01

    Soil erosion and deposition plays an important role in the transport and reallocation of organic matter in terrestrial carbon dynamics. This study discusses the production, transport and storage of organic material in semi-arid, semi-natural shrubland and forest ecosystem in SE Spain. Goal is to study the faith of organic matter in these land use systems and to reveal their possible importance within the terrestrial carbon cycle and the importance of the spatial redistribution of organic matter through the landscape. The study was carried out at the Alquería field station in the Guadalentín basin in SE Spain on calcareous soils. Measurements were carried out at plant, plot and (sub-) catchment scale incorporating Stipa tenacissima tussock dominated shrublands, Pinus halepensis open forests and almond and cereal fields. The determination of organic matter was based on the production and presence of organic matter on the soil surface, the amount of organic matter incorporated in the soil as present under and around individual plants and scaled up using high resolution aerial photographs and remote sensing images. The standing biomass was determined as well, using allometric methods and scaled up also using high resolution aerial photographs to estimate total plant cover. The transport of organic matter is determined using organic matter collected in classical unbounded plots that have been monitored also for runoff and sediment yield. Sediment stored in a 60 year old retention basin was also studied to reveal the sediment and organic matter fluxes at broader spatio-temporal scales. Furthermore also soil material accumulated behind bench terraces was evaluated for soil organic carbon. The results will be discussed in the context of the sources and sinks of organic matter as well as to their linkage to erosion and hydrological processes. The spatial heterogeneity of the accumulated and transported organic matter is strongly related to the frequency-magnitude of

  14. Modelling the metabolic shift of polyphosphate-accumulating organisms.

    PubMed

    Acevedo, B; Borrás, L; Oehmen, A; Barat, R

    2014-11-15

    Enhanced biological phosphorus removal (EBPR) is one of the most important methods of phosphorus removal in municipal wastewater treatment plants, having been described by different modelling approaches. In this process, the PAOs (polyphosphate accumulating organisms) and GAOs (glycogen accumulating organisms) compete for volatile fatty acids uptake under anaerobic conditions. Recent studies have revealed that the metabolic pathways used by PAOs in order to obtain the energy and the reducing power needed for polyhydroxyalkanoates synthesis could change depending on the amount of polyphosphate stored in the cells. The model presented in this paper extends beyond previously developed metabolic models by including the ability of PAO to change their metabolic pathways according to the content of poly-P available. The processes of the PAO metabolic model were adapted to new formulations enabling the change from P-driven VFA uptake to glycogen-driven VFA uptake using the same process equations. The stoichiometric parameters were changed from a typical PAO coefficient to a typical GAO coefficient depending on the internal poly-P with Monod-type expressions. The model was calibrated and validated with seven experiments under different internal poly-P concentrations, showing the ability to correctly represent the PAO metabolic shift at low poly-P concentrations. The sensitivity and error analysis showed that the model is robust and has the ability to describe satisfactorily the change from one metabolic pathway to the other one, thereby encompassing a wider range of process conditions found in EBPR plants.

  15. Modelling the metabolic shift of polyphosphate-accumulating organisms.

    PubMed

    Acevedo, B; Borrás, L; Oehmen, A; Barat, R

    2014-11-15

    Enhanced biological phosphorus removal (EBPR) is one of the most important methods of phosphorus removal in municipal wastewater treatment plants, having been described by different modelling approaches. In this process, the PAOs (polyphosphate accumulating organisms) and GAOs (glycogen accumulating organisms) compete for volatile fatty acids uptake under anaerobic conditions. Recent studies have revealed that the metabolic pathways used by PAOs in order to obtain the energy and the reducing power needed for polyhydroxyalkanoates synthesis could change depending on the amount of polyphosphate stored in the cells. The model presented in this paper extends beyond previously developed metabolic models by including the ability of PAO to change their metabolic pathways according to the content of poly-P available. The processes of the PAO metabolic model were adapted to new formulations enabling the change from P-driven VFA uptake to glycogen-driven VFA uptake using the same process equations. The stoichiometric parameters were changed from a typical PAO coefficient to a typical GAO coefficient depending on the internal poly-P with Monod-type expressions. The model was calibrated and validated with seven experiments under different internal poly-P concentrations, showing the ability to correctly represent the PAO metabolic shift at low poly-P concentrations. The sensitivity and error analysis showed that the model is robust and has the ability to describe satisfactorily the change from one metabolic pathway to the other one, thereby encompassing a wider range of process conditions found in EBPR plants. PMID:25123437

  16. Modeling of the accumulation of organic lipophilic chemicals in earthworms

    SciTech Connect

    Belfroid, A.; Seinen, W.; Leeuwen, K. van; Hermens, J.; Gestel, K. van

    1994-12-31

    For aquatic and terrestrial species living in contaminated sediments and soils it is assumed that the major route of uptake of organic lipophilic compounds is by passive diffusion of the compound dissolved in the interstitial water. Dietary uptake will only be important for extremely lipophilic compounds with log K{sub ow} larger than 5--6. An accumulation study with earthworms in OECD artificial soil confirmed this hypothesis. However, the authors also observed dietary uptake in earthworms after feeding them with food contaminated with three chlorobenzenes, PCB153 and octachloronaphthalene. Still, the question remained whether dietary uptake is an important route of exposure. Therefore, a model was developed that, unlike for example the equilibrium partition theory, incorporates two routes of uptake. The model can be used to estimate the accumulation of inert organic chemicals with log Kow 2--7 in earthworms, but also to determine the relative contribution of the two routes of uptake to the total body burden. It will be shown that the relative contribution depends on the lipophilicity of the compound and also on the type of soil.

  17. [Effects of Tillage on Distribution of Heavy Metals and Organic Matter Within Purple Paddy Soil Aggregates].

    PubMed

    Shi, Qiong-bin; Zhao, Xiu-lan; Chang, Tong-ju; Lu, Ji-wen

    2016-05-15

    A long-term experiment was utilized to study the effects of tillage methods on the contents and distribution characteristics of organic matter and heavy metals (Cu, Zn, Pb, Cd, Fe and Mn) in aggregates with different sizes (including 1-2, 0.25-1, 0.05-0.25 mm and < 0.05 mm) in a purple paddy soil under two tillage methods including flooded paddy field (FPF) and paddy-upland rotation (PR). The relationship between heavy metals and organic matter in soil aggregates was also analyzed. The results showed that the aggregates of two tillage methods were dominated by 0.05-0.25 mm and < 0.05 mm particle size, respectively. The contents of organic matter in each aggregate decreased with the decrease of aggregate sizes, however, compared to PR, FPF could significantly increase the contents of organic matter in soils and aggregates. The tillage methods did not significantly affect the contents of heavy metals in soils, but FPF could enhance the accumulation and distribution of aggregate, organic matter and heavy metals in aggregates with diameters of 1-2 mm and 0.25-1 mm. Correlation analysis found that there was a negative correlation between the contents of heavy metals and organic matter in soil aggregates, but a positive correlation between the amounts of heavy metal and organic matter accumulated in soil aggregates. From the slope of the correlation analysis equations, we could found that the sensitivities of heavy metals to the changes of soil organic matters followed the order of Mn > Zn > Pb > Cu > Fe > Cd under the same tillage. When it came to the same heavy metal, it was more sensitive in PR than in FPF. PMID:27506049

  18. [Effects of Tillage on Distribution of Heavy Metals and Organic Matter Within Purple Paddy Soil Aggregates].

    PubMed

    Shi, Qiong-bin; Zhao, Xiu-lan; Chang, Tong-ju; Lu, Ji-wen

    2016-05-15

    A long-term experiment was utilized to study the effects of tillage methods on the contents and distribution characteristics of organic matter and heavy metals (Cu, Zn, Pb, Cd, Fe and Mn) in aggregates with different sizes (including 1-2, 0.25-1, 0.05-0.25 mm and < 0.05 mm) in a purple paddy soil under two tillage methods including flooded paddy field (FPF) and paddy-upland rotation (PR). The relationship between heavy metals and organic matter in soil aggregates was also analyzed. The results showed that the aggregates of two tillage methods were dominated by 0.05-0.25 mm and < 0.05 mm particle size, respectively. The contents of organic matter in each aggregate decreased with the decrease of aggregate sizes, however, compared to PR, FPF could significantly increase the contents of organic matter in soils and aggregates. The tillage methods did not significantly affect the contents of heavy metals in soils, but FPF could enhance the accumulation and distribution of aggregate, organic matter and heavy metals in aggregates with diameters of 1-2 mm and 0.25-1 mm. Correlation analysis found that there was a negative correlation between the contents of heavy metals and organic matter in soil aggregates, but a positive correlation between the amounts of heavy metal and organic matter accumulated in soil aggregates. From the slope of the correlation analysis equations, we could found that the sensitivities of heavy metals to the changes of soil organic matters followed the order of Mn > Zn > Pb > Cu > Fe > Cd under the same tillage. When it came to the same heavy metal, it was more sensitive in PR than in FPF.

  19. Sedimentary organic matter preservation: A test for selective degradation under oxic conditions

    SciTech Connect

    Hedges, J.I.; Hu, F.S.; Devol, A.H.; Hartnett, H.E.; Tsamakis, E.; Kei, R.G.

    1999-07-01

    The authors report here a test of the hypothesis that the extent of organic matter preservation in continental margin sediments is controlled by the average period accumulating particles reside in oxic porewater immediately beneath the water/sediment interface. Oxygen penetration depths, organic element compositions, and mineral surface areas were determined for 16 sediment cores collected along an offshore transect across the Washington continental shelf, slope, and adjacent Cascadia Basin. Individual amino acid, sugar, and pollen distributions were analyzed for a 11 to 12 cm horizon from each core, and {sup 14}C-based sediment accumulation rates and stable carbon isotope compositions were determined from depth profiles within a subset of six cores from representative sites. Sediment accumulation rates decreased, and dissolved O{sub 2} penetration depths increased offshore along the sampling transect. As a result, oxygen exposure times (OET) increased seaward from decades (mid-shelf and upper slope) to more than a thousand years (outer Cascadia Basin). Organic contents and compositions were essentially constant within individual sediment cores but varied consistently with location. In particular, organic carbon/surface area ratios decreased progressively offshore and with increasing OET. Three independent compositional parameters demonstrated that the remnant organic matter in farther offshore sediments is more degraded. Both concentration and compositional patterns indicated that sedimentary organic matter exhibits a distinct and reproducible oxic effect. OET helps integrate and explain organic matter preservation in accumulating continental margin sediments and hence provides a useful tool for assessing transfer of organic matter from the biosphere to the geosphere.

  20. Accumulation of organic carbon in chernozems (Mollisols) under shelterbelts in Russia and the United States

    NASA Astrophysics Data System (ADS)

    Chendev, Yu. G.; Sauer, T. J.; Gennadiev, A. N.; Novykh, L. L.; Petin, A. N.; Petina, V. I.; Zazdravnykh, E. A.; Burras, C. L.

    2015-01-01

    Shelterbelts that were created in place of meadow and meadow-steppe landscapes of the forest-steppe zone of northern continents serve as areas of carbon accumulation and participate in the formation of soil organic matter. In the Great Plains of the United States (in North Dakota, South Dakota, and Nebraska) and on the Central Russian Upland (Belgorod, Voronezh, and Kursk oblasts), a general tendency toward an increase in the Corg pool in the topsoil (0-30 cm) from the marginal parts of the shelterbelts toward their central parts by about 3.5-10.0 t per each 10 m has been identified. In 55 years of the existence of shelterbelts on chernozems in the European part of Russia, the mean annual rate of the organic carbon accumulation in the upper meter has been varying within 0.7-1.5 t/ha. In 19 years of the existence of a shelterbelt in the area of Huron (South Dakota), the mean annual rate of the organic carbon accumulation in the 1-m-thick layer of the Bonilla soil series (Haplustolls) has reached 1.9 t/ha.

  1. Assessing the Capacity of Plant Species to Accumulate Particulate Matter in Beijing, China

    PubMed Central

    Mo, Li; Ma, Zeyu; Xu, Yansen; Sun, Fengbin; Lun, Xiaoxiu; Liu, Xuhui; Chen, Jungang; Yu, Xinxiao

    2015-01-01

    Air pollution causes serious problems in spring in northern China; therefore, studying the ability of different plants to accumulate particulate matter (PM) at the beginning of the growing season may benefit urban planners in their attempts to control air pollution. This study evaluated deposits of PM on the leaves and in the wax layer of 35 species (11 shrubs, 24 trees) in Beijing, China. Differences in the accumulation of PM were observed between species. Cephalotaxus sinensis, Euonymus japonicus, Broussonetia papyriferar, Koelreuteria paniculata and Quercus variabilis were all efficient in capturing small particles. The plants exhibiting high amounts of total PM accumulation (on leaf surfaces and/or in the wax layer), also showed comparatively high levels of PM accumulation across all particle sizes. A comparison of shrubs and trees did not reveal obvious differences in their ability to accumulate particles based on growth form; a combination of plantings with different growth forms can efficiently reduce airborne PM concentrations near the ground. To test the relationships between leaf traits and PM accumulation, leaf samples of selected species were observed using a scanning electron microscope. Growth forms with greater amounts of pubescence and increased roughness supported PM accumulation; the adaxial leaf surfaces collected more particles than the abaxial surfaces. The results of this study may inform the selection of species for urban green areas where the goal is to capture air pollutants and mitigate the adverse effects of air pollution on human health. PMID:26506104

  2. Effect of organic matter on the sorption activity of heavy loamy soils for volatile organic compounds under low moisture conditions

    NASA Astrophysics Data System (ADS)

    Breus, I. P.; Mishchenko, A. A.; Shinkarev, A. A.; Neklyudov, S. A.; Breus, V. A.

    2014-12-01

    The diverse effect of the organic matter content on the sorption of vapors of aromatic and aliphatic hydrocarbons in soils under low moisture (<10.5%) has been revealed in sorption experiments using profile samples from two virgin heavy loamy dark gray forest soils characterized by relatively stable contents of finely dispersed mineral components. The decrease of the hydrocarbon sorption with increasing the content of organic matter under dry conditions (in the moisture range from 0 to 5-6%) indicates its lower sorption activity than that of the clay components and the blocking of the sorption sites on soil minerals by organic matter. At moisture contents above 5-6%, the effect of the soil composition on the sorption activity changes radically: it increases with increasing the content of organic matter. This is due to the inversion of the ratio between the activities of the soil components because of the hydrophilization of the surface of the mineral soil component. As a result, the sorption of water on the minerals reduces the mineral sorption activity to hydrocarbons to a lower level than the activity of organic matter. The maximum manifestation of the revealed blocking effect has been observed for the low-humus soils and this effect decreased with the accumulation of soil organic matter.

  3. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time.

    PubMed

    Przybysz, A; Sæbø, A; Hanslin, H M; Gawroński, S W

    2014-05-15

    Particulate matter is harmful to human health. To reduce its concentration in air, plants could be used as biological filters, accumulating particulate matter on their foliage. In a study carried out at three sites with differing pollution levels and exposure to precipitation, the capacity of evergreen species (Taxus baccata L., Hedera helix L. and Pinus sylvestris L.) to accumulate particulate matter and trace elements from ambient air in urban areas was investigated. The effects of rainfall and the passage of time on particulate matter deposition on foliage were also determined. The results showed that foliage accumulated an increasing quantity of particulate matter in successive months, but the actual amount of particulate matter and trace elements accumulated differed considerably between sites and plant species. The greatest accumulation of air pollutants occurred on the foliage of plants protected from the rain at a site exposed to traffic related pollution and the smallest accumulation at a rural site. Among the species analysed, the deposited mass of particulate matter and trace elements was the greatest on P. sylvestris. In all species, precipitation removed a considerable proportion of particles accumulated on foliage. Most of the removed particulate matter was large size fraction, but little belong to the smallest size fraction. These results showed that both, the dynamics of deposition and leaf washing by rain during the season need to be considered when evaluating the total effect of vegetation in pollutant remediation.

  4. Low acetate concentrations favor polyphosphate-accumulating organisms over glycogen-accumulating organisms in enhanced biological phosphorus removal from wastewater.

    PubMed

    Tu, Yunjie; Schuler, Andrew J

    2013-04-16

    Glycogen-accumulating organisms (GAOs) are thought to compete with polyphosphate-accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) wastewater treatment systems. A laboratory sequencing batch reactor (SBR) was operated for one year to test the hypothesis that PAOs have a competitive advantage at low acetate concentrations, with a focus on low pH conditions previously shown to favor GAOs. PAOs dominated the system under conventional SBR operation with rapid acetate addition (producing high in-reactor concentrations) and pH values of 7.4-8.4. GAOs dominated when the pH was decreased (6.4-7.0). Decreasing the acetate addition rate led to very low reactor acetate concentrations, and PAOs recovered, supporting the study hypothesis. When the acetate feed rate was increased, EBPR failed again. Dominant PAOs and GAOs were Candidatus Accumulibacter phosphatis and Defluviicoccus Cluster 2, respectively, according to fluorescent in situ hybridization and 454 pyrosequencing. Surprisingly, GAOs were not the immediate causes of PAO failures, based on functional and population measurements. Pyrosequencing results suggested Dechloromonas and Tetrasphaera spp. may have also been PAOs, and additional potential GAOs were also identified. Full-scale systems typically have lower in-reactor acetate concentrations than laboratory SBRs, and so, previous laboratory studies may have overestimated the practical importance of GAOs as causes of EBPR failure. PMID:23477409

  5. Low acetate concentrations favor polyphosphate-accumulating organisms over glycogen-accumulating organisms in enhanced biological phosphorus removal from wastewater.

    PubMed

    Tu, Yunjie; Schuler, Andrew J

    2013-04-16

    Glycogen-accumulating organisms (GAOs) are thought to compete with polyphosphate-accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) wastewater treatment systems. A laboratory sequencing batch reactor (SBR) was operated for one year to test the hypothesis that PAOs have a competitive advantage at low acetate concentrations, with a focus on low pH conditions previously shown to favor GAOs. PAOs dominated the system under conventional SBR operation with rapid acetate addition (producing high in-reactor concentrations) and pH values of 7.4-8.4. GAOs dominated when the pH was decreased (6.4-7.0). Decreasing the acetate addition rate led to very low reactor acetate concentrations, and PAOs recovered, supporting the study hypothesis. When the acetate feed rate was increased, EBPR failed again. Dominant PAOs and GAOs were Candidatus Accumulibacter phosphatis and Defluviicoccus Cluster 2, respectively, according to fluorescent in situ hybridization and 454 pyrosequencing. Surprisingly, GAOs were not the immediate causes of PAO failures, based on functional and population measurements. Pyrosequencing results suggested Dechloromonas and Tetrasphaera spp. may have also been PAOs, and additional potential GAOs were also identified. Full-scale systems typically have lower in-reactor acetate concentrations than laboratory SBRs, and so, previous laboratory studies may have overestimated the practical importance of GAOs as causes of EBPR failure.

  6. [Effects of shading on dry matter accumulation and nutrient absorption of summer maize].

    PubMed

    Cui, Hai-Yan; Jin, Li-Bin; Li, Bo; Dong, Shu-Ting; Liu, Peng; Zhao, Bin; Zhang, Ji-Wang

    2013-11-01

    Taking summer maize cultivars Zhenjie 2 (ZJ2), Denghai 605 (DH605), and Zhengdan 958 (ZD958) as test materials, a field trial was conducted to study the effects of shading on the dry matter accumulation and nitrogen (N), phosphorus (P) and potassium (K) absorption of summer maize. Four treatments were installed, i. e., shading from flowering stage to maturity stage (S1), shading from six-leaf stage to flowering stage (S2), shading all through the growth season (S3), and no shading (CK). After shading, the grain yield and dry matter accumulation decreased significantly, and the decrement was related to shading period, showing S3 > S1 > S2. The grain yield in treatments S1, S2, and S3 was averagely 61.6%, 25.3%, and 92.8% lower than that of CK, respectively, indicating that the effects of shading after flowering were greater than those of shading before flowering. The responses of different cultivars to shading presented a similar trend. The nutrient absorption of summer maize before flowering stage showed K > N > P, and the nutrient absorption amount of whole plant showed N>K>P. After shading, the N and P absorption decreased significantly. The plant relative N and P absorption in different treatments had somewhat increase, because the decrement of dry matter accumulation after shading was larger than that of N and P absorption, as compared with the control. After shading, the plant K absorption decreased significantly, and the decrement in S2 was larger than that of dry matter accumulation. Shading before flowering stage had larger effects on the plant K absorption than on the N and P absorption.

  7. Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area

    USGS Publications Warehouse

    Trumbore, S.E.; Harden, J.W.

    1997-01-01

    Rates of input, accumulation, and turnover of C differ markedly within soil profiles and in soils with different drainage in the BOREAS northern study area. Soil C storage increases from ???3 kg C m-2 in well-drained, sandy soils to greater than 100 kg C m-2 in wetlands. Two modes of C accumulation were observed in upland soil profiles. Large annual C inputs (0.06-0.1 kg C m-2 yr-1) and slow decomposition (turnover times of 6-250 years) lead to rapid C accumulation in regrowing surface moss and detrital layers following fire. Deep organic layers that have accumulated over the millennia since the initiation of soil development, and are located below the most recent charred horizon, show slower rates of input (0.015-0.03 kg C m-2 yr-1) and turnover (100-1600 years) and accumulate C about 10 times slower than surface detrital layers. Rates of C input to soils derived from C and 14C data were in accord with net primary production estimates, with highest rates of input (0.14-0.6 kg C m-2 yr-1) in wetlands. Turnover times for C in surface detrital layers were 6-15 years for well-drained sand soils that showed highest soil temperatures in summer, 30-40 years for wetlands, and 36-250 years for uplands with thick moss cover and black spruce trees. Long (>100 years) turnover times in upland black spruce/clay soils most likely reflect the influence of woody debris incorporated into detrital layers. Turnover times for deep organic and mineral layer C were controlled by drainage, with fastest turnover (80-130 years) in well-drained sand soils and slowest turnover (>3000 years) in wetlands. Total C accumulation rates, which account for C losses from both deep organic and surface detrital layers, are close to zero for sand/jack pine soils, 0.003-0.01 kg C m-2 yr-1 for moderately to poorly drained sites in mature forest stands, and 0.03 kg C m-2 yr-1 for a productive fen. Decomposition of organic matter more than several decades old accounts for 9-22% of total heterotrophic

  8. Soil Organic Matter and Management of Plant-Parasitic Nematodes

    PubMed Central

    Widmer, T. L.; Mitkowski, N. A.; Abawi, G. S.

    2002-01-01

    Organic matter and its replenishment has become a major component of soil health management programs. Many of the soil's physical, chemical, and biological properties are a function of organic matter content and quality. Adding organic matter to soil influences diverse and important biological activities. The diversity and number of free-living and plant-parasitic nematodes are altered by rotational crops, cover crops, green manures, and other sources of organic matter. Soil management programs should include the use of the proper organic materials to improve soil chemical, physical, and biological parameters and to suppress plant-parasitic nematodes and soilborne pathogens. It is critical to monitor the effects of organic matter additions on activities of major and minor plant-parasitic nematodes in the production system. This paper presents a general review of information in the literature on the effects of crop rotation, cover crops, and green manures on nematodes and their damage to economic crops. PMID:19265946

  9. Sensitivity of soil organic matter in anthropogenically disturbed organic soils

    NASA Astrophysics Data System (ADS)

    Säurich, Annelie; Tiemeyer, Bärbel; Bechtold, Michel; Don, Axel; Freibauer, Annette

    2016-04-01

    Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. However, the variability of CO2 emissions increases with disturbance, and little is known on the soil properties causing differences between seemingly similar sites. Furthermore the driving factors for carbon cycling are well studied for both genuine peat and mineral soil, but there is a lack of information concerning soils at the boundary between organic and mineral soils. Examples for such soils are both soils naturally relatively high in soil organic matter (SOM) such as Humic Gleysols and former peat soils with a relative low SOM content due to intensive mineralization or mixing with underlying or applied mineral soil. The study aims to identify drivers for the sensitivity of soil organic matter and therefore for respiration rates of anthropogenically disturbed organic soils, especially those near the boundary to mineral soils. Furthermore, we would like to answer the question whether there are any critical thresholds of soil organic carbon (SOC) concentrations beyond which the carbon-specific respiration rates change. The German agricultural soil inventory samples all agricultural soils in Germany in an 8x8 km² grid following standardized protocols. From this data and sample base, we selected 120 different soil samples from more than 80 sites. As reference sites, three anthropogenically undisturbed peatlands were sampled as well. We chose samples from the soil inventory a) 72 g kg-1 SOC and b) representing the whole range of basic soil properties: SOC (72 to 568 g kg-1), total nitrogen (2 to 29 g kg-1), C-N-ratio (10 to 80) bulk density (0.06 to 1.41 g/cm³), pH (2.5 to 7.4), sand (0 to 95 %) and clay (2 to 70 %) content (only determined for samples with less than 190 g kg-1 SOC) as well as the botanical origin of the peat (if determinable). Additionally, iron oxides were determined for all samples. All samples were sieved (2 mm) and incubated at standardized water content and

  10. Impact of salinity on the anaerobic metabolism of phosphate-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO).

    PubMed

    Welles, L; Lopez-Vazquez, C M; Hooijmans, C M; van Loosdrecht, M C M; Brdjanovic, D

    2014-09-01

    The use of saline water as secondary quality water in urban environments for sanitation is a promising alternative towards mitigating fresh water scarcity. However, this alternative will increase the salinity in the wastewater generated that may affect the biological wastewater treatment processes, such as biological phosphorus removal. In addition to the production of saline wastewater by the direct use of saline water in urban environments, saline wastewater is also generated by some industries. Intrusion of saline water into the sewers is another source of salinity entering the wastewater treatment plant. In this study, the short-term effects of salinity on the anaerobic metabolism of phosphate-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO) were investigated to assess the impact of salinity on enhanced biological phosphorus removal. Hereto, PAO and GAO cultures enriched at a relatively low salinity level (0.02 % W/V) were exposed to salinity concentrations of up to 6 % (as NaCl) in anaerobic batch tests. It was demonstrated that both PAO and GAO are affected by higher salinity levels, with PAO being the more sensitive organisms to the increasing salinity. The maximum acetate uptake rate of PAO decreased by 71 % when the salinity increased from 0 to 1 %, while that of GAO decreased by 41 % for the same salinity increase. Regarding the stoichiometry of PAO, a decrease in the P-release/HAc uptake ratio accompanied with an increase in the glycogen consumption/HAc uptake ratio was observed for PAO when the salinity increased from 0 to 2 % salinity, indicating a metabolic shift from a poly-P-dependent to a glycogen-dependent metabolism. The anaerobic maintenance requirements of PAO and GAO increased as the salinity concentrations risen up to 4 % salinity. PMID:24831025

  11. Impact of salinity on the anaerobic metabolism of phosphate-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO).

    PubMed

    Welles, L; Lopez-Vazquez, C M; Hooijmans, C M; van Loosdrecht, M C M; Brdjanovic, D

    2014-09-01

    The use of saline water as secondary quality water in urban environments for sanitation is a promising alternative towards mitigating fresh water scarcity. However, this alternative will increase the salinity in the wastewater generated that may affect the biological wastewater treatment processes, such as biological phosphorus removal. In addition to the production of saline wastewater by the direct use of saline water in urban environments, saline wastewater is also generated by some industries. Intrusion of saline water into the sewers is another source of salinity entering the wastewater treatment plant. In this study, the short-term effects of salinity on the anaerobic metabolism of phosphate-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO) were investigated to assess the impact of salinity on enhanced biological phosphorus removal. Hereto, PAO and GAO cultures enriched at a relatively low salinity level (0.02 % W/V) were exposed to salinity concentrations of up to 6 % (as NaCl) in anaerobic batch tests. It was demonstrated that both PAO and GAO are affected by higher salinity levels, with PAO being the more sensitive organisms to the increasing salinity. The maximum acetate uptake rate of PAO decreased by 71 % when the salinity increased from 0 to 1 %, while that of GAO decreased by 41 % for the same salinity increase. Regarding the stoichiometry of PAO, a decrease in the P-release/HAc uptake ratio accompanied with an increase in the glycogen consumption/HAc uptake ratio was observed for PAO when the salinity increased from 0 to 2 % salinity, indicating a metabolic shift from a poly-P-dependent to a glycogen-dependent metabolism. The anaerobic maintenance requirements of PAO and GAO increased as the salinity concentrations risen up to 4 % salinity.

  12. TAG, you're it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation.

    PubMed

    Merchant, Sabeeha S; Kropat, Janette; Liu, Bensheng; Shaw, Johnathan; Warakanont, Jaruswan

    2012-06-01

    Photosynthetic organisms are responsible for converting sunlight into organic matter, and they are therefore seen as a resource for the renewable fuel industry. Ethanol and esterified fatty acids (biodiesel) are the most common fuel products derived from these photosynthetic organisms. The potential of algae as producers of biodiesel precursor (or triacylglycerols (TAGs)) has yet to be realized because of the limited knowledge of the underlying biochemistry, cell biology and genetics. Well-characterized pathways from fungi and land plants have been used to identify algal homologs of key enzymes in TAG synthesis, including diacylglcyerol acyltransferases, phospholipid diacylglycerol acyltransferase and phosphatidate phosphatases. Many laboratories have adopted Chlamydomonas reinhardtii as a reference organism for discovery of algal-specific adaptations of TAG metabolism. Stressed Chlamydomonas cells, grown either photoautotrophically or photoheterotrophically, accumulate TAG in plastid and cytoplasmic lipid bodies, reaching 46-65% of dry weight in starch accumulation (sta) mutants. State of the art genomic technologies including expression profiling and proteomics have identified new proteins, including key components of lipid droplets, candidate regulators and lipid/TAG degrading activities. By analogy with crop plants, it is expected that advances in algal breeding and genome engineering may facilitate realizing the potential in algae.

  13. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China.

    PubMed

    Wu, Jianping; Liang, Guohua; Hui, Dafeng; Deng, Qi; Xiong, Xin; Qiu, Qingyan; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2016-02-15

    With the continuing increase in anthropogenic activities, acid rain remains a serious environmental threat, especially in the fast developing areas such as southern China. To detect how prolonged deposition of acid rain would influence soil organic carbon accumulation in mature subtropical forests, we conducted a field experiment with simulated acid rain (SAR) treatments in a monsoon evergreen broadleaf forest at Dinghushan National Nature Reserve in southern China. Four levels of SAR treatments were set by irrigating plants with water of different pH values: CK (the control, local lake water, pH ≈ 4.5), T1 (water pH=4.0), T2 (water pH=3.5), and T3 (water pH=3.0). Results showed reduced pH measurements in the topsoil exposed to simulated acid rains due to soil acidification. Soil respiration, soil microbial biomass and litter decomposition rates were significantly decreased by the SAR treatments. As a result, T3 treatment significantly increased the total organic carbon by 24.5% in the topsoil compared to the control. Furthermore, surface soil became more stable as more recalcitrant organic matter was generated under the SAR treatments. Our results suggest that prolonged acid rain exposure may have the potential to facilitate soil organic carbon accumulation in the subtropical forest in southern China. PMID:26657252

  14. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China.

    PubMed

    Wu, Jianping; Liang, Guohua; Hui, Dafeng; Deng, Qi; Xiong, Xin; Qiu, Qingyan; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2016-02-15

    With the continuing increase in anthropogenic activities, acid rain remains a serious environmental threat, especially in the fast developing areas such as southern China. To detect how prolonged deposition of acid rain would influence soil organic carbon accumulation in mature subtropical forests, we conducted a field experiment with simulated acid rain (SAR) treatments in a monsoon evergreen broadleaf forest at Dinghushan National Nature Reserve in southern China. Four levels of SAR treatments were set by irrigating plants with water of different pH values: CK (the control, local lake water, pH ≈ 4.5), T1 (water pH=4.0), T2 (water pH=3.5), and T3 (water pH=3.0). Results showed reduced pH measurements in the topsoil exposed to simulated acid rains due to soil acidification. Soil respiration, soil microbial biomass and litter decomposition rates were significantly decreased by the SAR treatments. As a result, T3 treatment significantly increased the total organic carbon by 24.5% in the topsoil compared to the control. Furthermore, surface soil became more stable as more recalcitrant organic matter was generated under the SAR treatments. Our results suggest that prolonged acid rain exposure may have the potential to facilitate soil organic carbon accumulation in the subtropical forest in southern China.

  15. The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes

    USGS Publications Warehouse

    Kirwanm, M.L.; Langley, J.A.; Guntenspergen, Gleen R.; Megonigal, J.P.

    2013-01-01

    The balance between organic matter production and decay determines how fast coastal wetlands accumulate soil organic matter. Despite the importance of soil organic matter accumulation rates in influencing marsh elevation and resistance to sea-level rise, relatively little is known about how decomposition rates will respond to sea-level rise. Here, we estimate the sensitivity of decomposition to flooding by measuring rates of decay in 87 bags filled with milled sedge peat, including soil organic matter, roots and rhizomes. Experiments were located in field-based mesocosms along 3 mesohaline tributaries of the Chesapeake Bay. Mesocosm elevations were manipulated to influence the duration of tidal inundation. Although we found no significant influence of inundation on decay rate when bags from all study sites were analyzed together, decay rates at two of the sites increased with greater flooding. These findings suggest that flooding may enhance organic matter decay rates even in water-logged soils, but that the overall influence of flooding is minor. Our experiments suggest that sea-level rise will not accelerate rates of peat accumulation by slowing the rate of soil organic matter decay. Consequently, marshes will require enhanced organic matter productivity or mineral sediment deposition to survive accelerating sea-level rise.

  16. Spectrophotometric discrimination of river dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Baker, Andy

    2002-11-01

    There is a need to be able to differentiate the dissolved organic matter (DOM) fraction in river waters. Research in the 1970s and 1980s has attempted to utilize both absorbance and fluorescence to distinguish between DOM fractions in river waters, but both were limited by the available technology. Total organic carbon content has, therefore, been widely used as a standard method of measuring DOM concentration, although it has little power to differentiate DOM fractions. Recent advances in fluorescence spectrophotometry enable rapid and optically precise analysis of DOM. Here, we show how a combination of both fluorescence and absorbance can be used to discriminate statistically between spatial variations of DOM in tributaries in a small catchment of the Ouseburn, NE England. The results of the discriminant analysis suggest that about 70% of the samples can be correctly classified to its tributary. Discriminant function 1 explains 60·8% of the variance in the data and the fulvic-like fluorescence intensity has the largest absolute correlation within this function; discriminant function 2 explains a further 21·5% of the variance and the fulvic-like fluorescence emission wavelength has the largest absolute correlation within this function. The discriminant analysis does not correctly classify all tributaries every time, and successfully discriminates between the different tributaries 70% of the time. Occasions when the tributary waters are less well discriminated are due to either episodic pollution events (at two sites) or due to tributaries that have strong seasonal trends in spectrophotometric parameters, which allows the sites to be misclassified. Results suggest that spectrophotometric techniques have considerable potential in the discrimination of DOM in rivers.

  17. The evolution of organic matter in space.

    PubMed

    Ehrenfreund, Pascale; Spaans, Marco; Holm, Nils G

    2011-02-13

    Carbon, and molecules made from it, have already been observed in the early Universe. During cosmic time, many galaxies undergo intense periods of star formation, during which heavy elements like carbon, oxygen, nitrogen, silicon and iron are produced. Also, many complex molecules, from carbon monoxide to polycyclic aromatic hydrocarbons, are detected in these systems, like they are for our own Galaxy. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surprisingly high number of molecules that are used in contemporary biochemistry on the Earth are found in the interstellar medium, planetary atmospheres and surfaces, comets, asteroids and meteorites and interplanetary dust particles. Large quantities of extra-terrestrial material were delivered via comets and asteroids to young planetary surfaces during the heavy bombardment phase. Monitoring the formation and evolution of organic matter in space is crucial in order to determine the prebiotic reservoirs available to the early Earth. It is equally important to reveal abiotic routes to prebiotic molecules in the Earth environments. Materials from both carbon sources (extra-terrestrial and endogenous) may have contributed to biochemical pathways on the Earth leading to life's origin. The research avenues discussed also guide us to extend our knowledge to other habitable worlds.

  18. Organic matter quality of deep permafrost carbon - a study from Arctic Siberia

    NASA Astrophysics Data System (ADS)

    Strauss, J.; Schirrmeister, L.; Mangelsdorf, K.; Eichhorn, L.; Wetterich, S.; Herzschuh, U.

    2014-11-01

    The organic carbon (OC) pool accumulated in Arctic permafrost (perennially frozen ground) equals the carbon stored in the recent atmosphere. To give an idea of how Yedoma region permafrost could respond under future climatic warming, we conducted a study to quantify the organic matter quality for future decomposition of late Pleistocene (Yedoma) and Holocene (thermokarst) deposits on the Buor Khaya Peninsula, northeast Siberia. The objective of this study was to develop a stratigraphic classified organic matter quality characterization. For this purpose the degree of organic matter decomposition was estimated by using a multiproxy approach. We applied sedimentological (grain-size analyses, bulk density, ice content) and geochemical parameters (total OC, stable carbon isotopes (δ13C), carbon : nitrogen (C / N) ratios) as well as lipid biomarkers (n-alkanes, n-fatty acids, hopanes, triterpenoids, and biomarker proxies/indices: average chain length, carbon preference index (CPI), and higher plant fatty acid index (HPFA)). Our results show that the Yedoma and thermokarst organic matter qualities exhibit no obvious degradation - depth trend. The C / N, δ13C, and hop-17(21)-ene values and the HPFA index show a better quality of the organic matter stored in thermokarst deposits compared to Yedoma deposits, but the CPI points in the other direction. As the ranges of the proxies mostly overlap, we interpret this as to indicate similar quality for both kind of deposits with perhaps slightly better thermokarst organic matter quality. Supported by principal component analyses, the sediment parameters and quality proxies of Yedoma and thermokarst deposits could not be clearly separated from each other. This lack of clear quality differences revealed that the organic matter vulnerability is heterogeneous, independent from radiocarbon age and depends on different decomposition trajectories and the previous decomposition and preservation history. Elucidating this was one of the

  19. Complexation of trace metals by adsorbed natural organic matter

    USGS Publications Warehouse

    Davis, J.A.

    1984-01-01

    The adsorption behavior and solution speciation of Cu(II) and Cd(II) were studied in model systems containing colloidal alumina particles and dissolved natural organic matter. At equilibrium a significant fraction of the alumina surface was covered by adsorbed organic matter. Cu(II) was partitioned primarily between the surface-bound organic matter and dissolved Cu-organic complexes in the aqueous phase. Complexation of Cu2+ with the functional groups of adsorbed organic matter was stronger than complexation with uncovered alumina surface hydroxyls. It is shown that the complexation of Cu(II) by adsorbed organic matter can be described by an apparent stability constant approximately equal to the value found for solution phase equilibria. In contrast, Cd(II) adsorption was not significantly affected by the presence of organic matter at the surface, due to weak complex formation with the organic ligands. The results demonstrate that general models of trace element partitioning in natural waters must consider the presence of adsorbed organic matter. ?? 1984.

  20. Missing links in the root-soil organic matter continuum

    SciTech Connect

    O'Brien, Sarah L.; Iversen, Colleen M

    2009-01-01

    The soil environment remains one of the most complex and poorly understood research frontiers in ecology. Soil organic matter (SOM), which spans a continuum from fresh detritus to highly processed, mineral-associated organic matter, is the foundation of sustainable terrestrial ecosystems. Heterogeneous SOM pools are fueled by inputs from living and dead plants, driven by the activity of micro- and mesofauna, and are shaped by a multitude of abiotic factors. The specialization required to measure unseen processes that occur on a wide range of spatial and temporal scales has led to the partitioning of soil ecology research across several disciplines. In the organized oral session 'Missing links in the root-soil organic matter continuum' at the annual Ecological Society of America meeting in Albuquerque, NM, USA, we joined the call for greater communication and collaboration among ecologists who work at the root-soil interface (e.g. Coleman, 2008). Our goal was to bridge the gap between scientific disciplines and to synthesize disconnected pieces of knowledge from root-centric and soil-centric studies into an integrated understanding of belowground ecosystem processes. We focused this report around three compelling themes that arose from the session: (1) the influence of the rhizosphere on SOM cycling, (2) the role of soil heterotrophs in driving the transformation of root detritus to SOM, and (3) the controlling influence of the soil environment on SOM dynamics. We conclude with a discussion of new approaches for gathering data to bridge gaps in the root-SOM continuum and to inform the next generation of ecosystem models. Although leaf litter has often been considered to be the main source of organic inputs to soil, Ann Russell synthesized a convincing body of work demonstrating that roots, rather than surface residues, control the accumulation of SOM in a variety of ecosystems. Living roots, which are chemically diverse and highly dynamic, also influence a wide

  1. Subcritical water extraction of organic matter from sedimentary rocks.

    PubMed

    Luong, Duy; Sephton, Mark A; Watson, Jonathan S

    2015-06-16

    Subcritical water extraction of organic matter containing sedimentary rocks at 300°C and 1500 psi produces extracts comparable to conventional solvent extraction. Subcritical water extraction of previously solvent extracted samples confirms that high molecular weight organic matter (kerogen) degradation is not occurring and that only low molecular weight organic matter (free compounds) are being accessed in analogy to solvent extraction procedures. The sedimentary rocks chosen for extraction span the classic geochemical organic matter types. A type I organic matter-containing sedimentary rock produces n-alkanes and isoprenoidal hydrocarbons at 300°C and 1500 psi that indicate an algal source for the organic matter. Extraction of a rock containing type II organic matter at the same temperature and pressure produces aliphatic hydrocarbons but also aromatic compounds reflecting the increased contributions from terrestrial organic matter in this sample. A type III organic matter-containing sample produces a range of non-polar and polar compounds including polycyclic aromatic hydrocarbons and oxygenated aromatic compounds at 300°C and 1500 psi reflecting a dominantly terrestrial origin for the organic materials. Although extraction at 300°C and 1500 psi produces extracts that are comparable to solvent extraction, lower temperature steps display differences related to organic solubility. The type I organic matter produces no products below 300°C and 1500 psi, reflecting its dominantly aliphatic character, while type II and type III organic matter contribute some polar components to the lower temperature steps, reflecting the chemical heterogeneity of their organic inventory. The separation of polar and non-polar organic compounds by using different temperatures provides the potential for selective extraction that may obviate the need for subsequent preparative chromatography steps. Our results indicate that subcritical water extraction can act as a suitable

  2. Extraterrestrial Organic Matter and the Detection of Life

    NASA Astrophysics Data System (ADS)

    Sephton, Mark A.; Botta, Oliver

    A fundamental goal of a number of forthcoming space missions is the detection and characterization of organic matter on planetary surfaces. Successful interpretation of data generated by in situ experiments will require discrimination between abiogenic and biogenic organic compounds. Carbon-rich meteorites provide scientists with examples of authentic extraterrestrial organic matter generated in the absence of life. Outcomes of meteorite studies include clues to protocols that will enable the unequivocal identification of organic matter derived from life. In this chapter we summarize the diagnostic abiogenic features of key compound classes involved in life detection and discuss their implications for analytical instruments destined to fly on future spacecraft missions.

  3. Extraterrestrial Organic Matter and the Detection of Life

    NASA Astrophysics Data System (ADS)

    Sephton, Mark A.; Botta, Oliver

    2008-03-01

    A fundamental goal of a number of forthcoming space missions is the detection and characterization of organic matter on planetary surfaces. Successful interpretation of data generated by in situ experiments will require discrimination between abiogenic and biogenic organic compounds. Carbon-rich meteorites provide scientists with examples of authentic extraterrestrial organic matter generated in the absence of life. Outcomes of meteorite studies include clues to protocols that will enable the unequivocal identification of organic matter derived from life. In this chapter we summarize the diagnostic abiogenic features of key compound classes involved in life detection and discuss their implications for analytical instruments destined to fly on future spacecraft missions.

  4. Subcritical water extraction of organic matter from sedimentary rocks.

    PubMed

    Luong, Duy; Sephton, Mark A; Watson, Jonathan S

    2015-06-16

    Subcritical water extraction of organic matter containing sedimentary rocks at 300°C and 1500 psi produces extracts comparable to conventional solvent extraction. Subcritical water extraction of previously solvent extracted samples confirms that high molecular weight organic matter (kerogen) degradation is not occurring and that only low molecular weight organic matter (free compounds) are being accessed in analogy to solvent extraction procedures. The sedimentary rocks chosen for extraction span the classic geochemical organic matter types. A type I organic matter-containing sedimentary rock produces n-alkanes and isoprenoidal hydrocarbons at 300°C and 1500 psi that indicate an algal source for the organic matter. Extraction of a rock containing type II organic matter at the same temperature and pressure produces aliphatic hydrocarbons but also aromatic compounds reflecting the increased contributions from terrestrial organic matter in this sample. A type III organic matter-containing sample produces a range of non-polar and polar compounds including polycyclic aromatic hydrocarbons and oxygenated aromatic compounds at 300°C and 1500 psi reflecting a dominantly terrestrial origin for the organic materials. Although extraction at 300°C and 1500 psi produces extracts that are comparable to solvent extraction, lower temperature steps display differences related to organic solubility. The type I organic matter produces no products below 300°C and 1500 psi, reflecting its dominantly aliphatic character, while type II and type III organic matter contribute some polar components to the lower temperature steps, reflecting the chemical heterogeneity of their organic inventory. The separation of polar and non-polar organic compounds by using different temperatures provides the potential for selective extraction that may obviate the need for subsequent preparative chromatography steps. Our results indicate that subcritical water extraction can act as a suitable

  5. Dissolved Organic Matter and Emerging Contaminants in Urban Stream Ecosystems

    NASA Astrophysics Data System (ADS)

    Kaushal, S. S.; Findlay, S.; Groffman, P.; Belt, K.; Delaney, K.; Sides, A.; Walbridge, M.; Mayer, P.

    2009-05-01

    We investigated the effects of urbanization on the sources, bioavailability and forms of natural and anthropogenic organic matter found in streams located in Maryland, U.S.A. We found that the abundance, biaoavailability, and enzymatic breakdown of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved organic phosphorus (DOP) increased in streams with increasing watershed urbanization suggesting that organic nutrients may represent a growing form of nutrient loading to coastal waters associated with land use change. Organic carbon, nitrogen, and phosphorus in urban streams were elevated several-fold compared to forest and agricultural streams. Enzymatic activities of stream microbes in organic matter decomposition were also significantly altered across watershed land use. Chemical characterization suggested that organic matter in urban streams originated from a variety of sources including terrestrial, sewage, and in-stream transformation. In addition, a characterization of emerging organic contaminants (polyaromatic cyclic hydrocarbons, organochlorine pesticides, and polybrominated diphenyl ether flame retardents), showed that organic contaminants and dissolved organic matter increase with watershed urbanization and fluctuate substantially with changing climatic conditions. Elucidating the emerging influence of urbanization on sources, transport, and in-stream transformation of organic nutrients and contaminants will be critical in unraveling the changing role of organic matter in urban degraded and restored stream ecosystems.

  6. [Effect of light from flowering to maturity stage on dry matter accumulation and nutrient absorption of summer maize].

    PubMed

    Shi, Jian-guo; Zhu, Kun-lun; Cao, Hui-ying; Dong, Shu-ting; Liu, Peng; Zhao, Bin; Zhang, Ji-wang

    2015-01-01

    Using Denghai 605 (DH4605) as the experimental material, shading (S) and increasing light (L) treatments from flowering to maturity stage were designed in a field experiment to explore effects of light on dry matter accumulation and nutrient absorption of summer maize. Results showed that grain yield, dry matter accumulation and nutrient absorption decreased significantly after shading but increased after increasing light. Yields in S treatment from 2011 to 2013 were reduced by 59.4%, 79.0% and 60.6% compared to those in CK, while that in L treatment were increased by 16.3%, 12.9% and 6.8%, respectively. The relative N and P absorption increased to a certain extent because of the greater effect of shading on dry matter accumulation than that of N and P absorption. After shading, K absorption of whole plant corn decreased significantly to a greater extent than that of dry matter accumulation decrease. The proportion of nutrient allocated to grains decreased significantly after shading. Dry matter accumulation and N and P absorption rates increased significantly after increasing light, and effects of increasing light on N and P absorption were greater than that of dry matter accumulation. Nutrient accumulation and the proportion allocated to grain increased significantly after increasing light.

  7. Correlation of resource plays and biodiversity patterns: accumulation of organic-rich shale tracks taxonomic turnover

    USGS Publications Warehouse

    Eoff, Jennifer D.

    2012-01-01

    Similar paleogeographic and paleotectonic settings characterize most self-sourced shale hydrocarbon plays. Their deposition occurred within similar orders of magnitude of eustatic events and during geologic periods characterized by “warm” (or transitional) climates and calcitic seas. In addition, the stratigraphic occurrence of shale plays parallels certain historical patterns of marine metazoan biodiversity. Such strong agreement among several correlation tools elucidates why these resources may be limited to discrete intervals of geological time. Correlation of self-sourced shale with biodiversity trends indicates that the factors controlling the deposition of marine organic matter may not be independent of those that induced taxonomic turnover. Paleoecological changes promoted accumulation and preservation of Type II kerogen. Deposition of self-sourced shale appears to correspond to reductions in absolute biodiversity and declining percentages of bioturbating taxa, with concomitant increases in proportions of pelagic taxa relative to infaunal and epifaunal organisms. Whereas upwelling and anoxia may have contributed to the deposition of kerogen in source rocks throughout much of the sedimentary record, diminished consumption of biomass by benthic metazoans likely augmented the preservation of organic carbon during deposition of this shale type. Rapid tectonic-plate reconfiguration induced coeval events, creating basins with sufficiently high rates of accommodation creation necessary to preserve additional organic material accumulating as the heterotrophic benthos suffered in response to rapidly changing environments. Combining sea-level curves, paleogeography, climate, and seawater chemistry provides a first-order approximation of the distribution of potential self-sourced shale in the geologic record. A model that predicts the stratigraphic distribution of self-sourced-shale deposition can aid in exploration of continuous hydrocarbon accumulations in self

  8. Changes in River Organic Matter Through Time.

    NASA Astrophysics Data System (ADS)

    Hudson, N.; Baker, A.; Ward, D.

    2006-12-01

    fluorescence, as an increase in pH was also observed in these samples. This work illustrates the dynamic character of river organic matter within a timescale and under conditions that are representative of the natural system.

  9. Characterization of Soil Organic Matter in Peat Soil with Different Humification Levels using FTIR

    NASA Astrophysics Data System (ADS)

    Teong, I. T.; Felix, N. L. L.; Mohd, S.; Sulaeman, A.

    2016-07-01

    Peat soil is defined as an accumulation of the debris and vegetative under the water logging condition. Soil organic matter of peat soil was affected by the environmental, weather, types of vegetative. Peat soil was normally classified based on its level of humification. Humification can be defined as the transformation of numerous group of substances (proteins, carbohydrates, lipids, etc.) and individual molecules present in living organic matter into group of substances with similar properties (humic substances). During the peat transformation process, content of soil organic matter also will change. Hence, that is important to determine out the types of the organic compound. FTIR (Fourier Transform Infrared) is a machine which is used to differential soil organic matter by using infrared. Infrared is a types of low energy which can determine the organic minerals. Hence, FTIR can be suitable as an indicator on its level of humification. The main objective of this study is to identify an optimized method to characterization of the soil organic content in different level of humification. The case study areas which had been chosen for this study are Parit Sulong, Batu Pahat and UCTS, Sibu. Peat soil samples were taken by every 0.5 m depth until it reached the clay layer. However, the soil organic matter in different humification levels is not significant. FTIR is an indicator which is used to determine the types of soil, but it is unable to differentiate the soil organic matter in peat soil FTIR can determine different types of the soil based on different wave length. Generally, soil organic matter was found that it is not significant to the level of humification.

  10. Priming-induced Changes in Permafrost Soil Organic Matter Decomposition

    NASA Astrophysics Data System (ADS)

    Pegoraro, E.; Schuur, E.; Bracho, R. G.

    2015-12-01

    Warming of tundra ecosystems due to climate change is predicted to thaw permafrost and increase plant biomass and litter input to soil. Additional input of easily decomposable carbon can alter microbial activity by providing a much needed energy source, thereby accelerating soil organic matter decomposition. This phenomenon, known as the priming effect, can increase CO2 flux from soil to the atmosphere. However, the extent to which this mechanism can decrease soil carbon stocks in the Arctic is unknown. This project assessed priming effects on permafrost soil collected from a moist acidic tundra site in Healy, Alaska. We hypothesized that priming would increase microbial activity by providing microbes with a fresh source of carbon, thereby increasing decomposition of old and slowly decomposing carbon. Soil from surface and deep layers were amended with multiple pulses of uniformly 13C labeled glucose and cellulose, and samples were incubated at 15° C to quantify whether labile substrate addition increased carbon mineralization. We quantified the proportion of old carbon mineralization by measuring 14CO2. Data shows that substrate addition resulted in higher respiration rates in amended soils; however, priming was only observed in deep layers, where 30% more soil-derived carbon was respired compared to control samples. This suggests that microbes in deep layers are limited in energy, and the addition of labile carbon increases native soil organic matter decomposition, especially in soil with greater fractions of slowly decomposing carbon. Priming in permafrost could exacerbate the effects of climate change by increasing mineralization rates of carbon accumulated over the long-term in deep layers. Therefore, quantifying priming effect in permafrost soils is imperative to understanding the dynamics of carbon turnover in a warmer world.

  11. Effects of agricultural practices on organic matter degradation in ditches

    PubMed Central

    Hunting, Ellard R.; Vonk, J. Arie; Musters, C.J.M.; Kraak, Michiel H.S.; Vijver, Martina G.

    2016-01-01

    Agricultural practices can result in differences in organic matter (OM) and agricultural chemical inputs in adjacent ditches, but its indirect effects on OM composition and its inherent consequences for ecosystem functioning remain uncertain. This study determined the effect of agricultural practices (dairy farm grasslands and hyacinth bulb fields) on OM degradation by microorganisms and invertebrates with a consumption and food preference experiment in the field and in the laboratory using natural OM collected from the field. Freshly cut grass and hyacinths were also offered to control for OM composition and large- and small mesh-sizes were used to distinguish microbial decomposition and invertebrate consumption. Results show that OM decomposition by microorganisms and consumption by invertebrates was similar throughout the study area, but that OM collected from ditches adjacent grasslands and freshly cut grass and hyacinths were preferred over OM collected from ditches adjacent to a hyacinth bulb field. In the case of OM collected from ditches adjacent hyacinth bulb fields, both microbial decomposition and invertebrate consumption were strongly retarded, likely resulting from sorption and accumulation of pesticides. This outcome illustrates that differences in agricultural practices can, in addition to direct detrimental effects on aquatic organisms, indirectly alter the functioning of adjacent aquatic ecosystems. PMID:26892243

  12. Effects of agricultural practices on organic matter degradation in ditches.

    PubMed

    Hunting, Ellard R; Vonk, J Arie; Musters, C J M; Kraak, Michiel H S; Vijver, Martina G

    2016-01-01

    Agricultural practices can result in differences in organic matter (OM) and agricultural chemical inputs in adjacent ditches, but its indirect effects on OM composition and its inherent consequences for ecosystem functioning remain uncertain. This study determined the effect of agricultural practices (dairy farm grasslands and hyacinth bulb fields) on OM degradation by microorganisms and invertebrates with a consumption and food preference experiment in the field and in the laboratory using natural OM collected from the field. Freshly cut grass and hyacinths were also offered to control for OM composition and large- and small mesh-sizes were used to distinguish microbial decomposition and invertebrate consumption. Results show that OM decomposition by microorganisms and consumption by invertebrates was similar throughout the study area, but that OM collected from ditches adjacent grasslands and freshly cut grass and hyacinths were preferred over OM collected from ditches adjacent to a hyacinth bulb field. In the case of OM collected from ditches adjacent hyacinth bulb fields, both microbial decomposition and invertebrate consumption were strongly retarded, likely resulting from sorption and accumulation of pesticides. This outcome illustrates that differences in agricultural practices can, in addition to direct detrimental effects on aquatic organisms, indirectly alter the functioning of adjacent aquatic ecosystems. PMID:26892243

  13. The Effect of paper mill waste and sewage sludge amendments on soil organic matter

    NASA Astrophysics Data System (ADS)

    Méndez, Ana; Barriga, Sandra; Guerrero, Francisca; Gascó, Gabriel

    2013-04-01

    In general, Mediterranean soils have low organic matter content, due to the climate characteristics of this region and inadequate land management. Traditionally, organic wastes such as manure are used as amendment in order to improve the soil quality, increasing soil fertility by the accumulation of nitrogen, phosphorus and other plant nutrients in the soil. In the last decade, other anthropogenic organic wastes such as sewage sludge or paper waste materials have been studied as soil amendments to improve physical, chemical and biological properties of soils. The objective of the present work was to study the influence of waste from a paper mill and sewage sludge amendments on soil organic matter. For this reason, soil organic matter evolution was studied using thermogravimetric analysis (TGA), the derivative (dTG) and differential thermal analysis (DTA). Thermal analytical techniques have the advantage of using full samples without pre-treatments and have been extensively used to study the evolution of organic matter in soils, to evaluate composting process or to study the evolution of organic matter of growing media.

  14. Social dynamics within decomposer communities lead to nitrogen retention and organic matter build-up in soils.

    PubMed

    Kaiser, Christina; Franklin, Oskar; Richter, Andreas; Dieckmann, Ulf

    2015-01-01

    The chemical structure of organic matter has been shown to be only marginally important for its decomposability by microorganisms. The question of why organic matter does accumulate in the face of powerful microbial degraders is thus key for understanding terrestrial carbon and nitrogen cycling. Here we demonstrate, based on an individual-based microbial community model, that social dynamics among microbes producing extracellular enzymes ('decomposers') and microbes exploiting the catalytic activities of others ('cheaters') regulate organic matter turnover. We show that the presence of cheaters increases nitrogen retention and organic matter build-up by downregulating the ratio of extracellular enzymes to total microbial biomass, allowing nitrogen-rich microbial necromass to accumulate. Moreover, increasing catalytic efficiencies of enzymes are outbalanced by a strong negative feedback on enzyme producers, leading to less enzymes being produced at the community level. Our results thus reveal a possible control mechanism that may buffer soil CO2 emissions in a future climate.

  15. Temperature-driven decoupling of key phases of organic matter degradation in marine sediments

    PubMed Central

    Weston, Nathaniel B.; Joye, Samantha B.

    2005-01-01

    The long-term burial of organic carbon in sediments results in the net accumulation of oxygen in the atmosphere, thereby mediating the redox state of the Earth's biosphere and atmosphere. Sediment microbial activity plays a major role in determining whether particulate organic carbon is recycled or buried. A diverse consortium of microorganisms that hydrolyze, ferment, and terminally oxidize organic compounds mediates anaerobic organic matter mineralization in anoxic sediments. Variable temperature regulation of the sequential processes, leading from the breakdown of complex particulate organic carbon to the production and subsequent consumption of labile, low-molecular weight, dissolved intermediates, could play a key role in controlling rates of overall organic carbon mineralization. We examined sediment organic carbon cycling in a sediment slurry and in flow through bioreactor experiments. The data show a variable temperature response of the microbial functional groups mediating organic matter mineralization in anoxic marine sediments, resulting in the temperature-driven decoupling of the production and consumption of organic intermediates. This temperature-driven decoupling leads to the accumulation of labile, low-molecular weight, dissolved organic carbon at low temperatures and low-molecular weight dissolved organic carbon limitation of terminal metabolism at higher temperatures. PMID:16286654

  16. Spatial Complexity of Soil Organic Matter Forms at Nanometre Scales

    SciTech Connect

    Lehmann,J.; Solomon, D.; Kinyangi, J.; Dathe, L.; Wirick, S.; Jacobsen, C.

    2008-01-01

    Organic matter in soil has been suggested to be composed of a complex mixture of identifiable biopolymers1 rather than a chemically complex humic material2. Despite the importance of the spatial arrangement of organic matter forms in soil3, its characterization has been hampered by the lack of a method for analysis at fine scales. X-ray spectromicroscopy has enabled the identification of spatial variability of organic matter forms, but was limited to extracted soil particles4 and individual micropores within aggregates5, 6. Here, we use synchrotron-based near-edge X-ray spectromicroscopy7 of thin sections of entire and intact free microaggregates6 to demonstrate that on spatial scales below 50 nm resolution, highly variable yet identifiable organic matter forms, such as plant or microbial biopolymers, can be found in soils at distinct locations of the mineral assemblage. Organic carbon forms detected at this spatial scale had no similarity to organic carbon forms of total soil. In contrast, we find that organic carbon forms of total soil were remarkably similar between soils from several temperate and tropical forests with very distinct vegetation composition and soil mineralogy. Spatial information on soil organic matter forms at the scale provided here could help to identify processes of organic matter cycling in soil, such as carbon stability or sequestration and responses to a changing climate.

  17. Deformation behaviors of peat with influence of organic matter.

    PubMed

    Yang, Min; Liu, Kan

    2016-01-01

    Peat is a kind of special material rich in organic matter. Because of the high content of organic matter, it shows different deformation behaviors from conventional geotechnical materials. Peat grain has a non-negligible compressibility due to the presence of organic matter. Biogas can generate from peat and can be trapped in form of gas bubbles. Considering the natural properties of peat, a special three-phase composition of peat is described which indicates the existence of organic matter and gas bubbles in peat. A stress-strain-time model is proposed for the compression of organic matter, and the surface tension effect is considered in the compression model of gas bubbles. Finally, a mathematical model has been developed to simulate the deformation behavior of peat considering the compressibility of organic matter and entrapped gas bubbles. The deformation process is the coupling of volume variation of organic matter, gas bubbles and water drainage. The proposed model is used to simulate a series of peat laboratory oedometer tests, and the model can well capture the test results with reasonable model parameters. Effects of model parameters on deformation of peat are also analyzed. PMID:27247870

  18. Deformation behaviors of peat with influence of organic matter.

    PubMed

    Yang, Min; Liu, Kan

    2016-01-01

    Peat is a kind of special material rich in organic matter. Because of the high content of organic matter, it shows different deformation behaviors from conventional geotechnical materials. Peat grain has a non-negligible compressibility due to the presence of organic matter. Biogas can generate from peat and can be trapped in form of gas bubbles. Considering the natural properties of peat, a special three-phase composition of peat is described which indicates the existence of organic matter and gas bubbles in peat. A stress-strain-time model is proposed for the compression of organic matter, and the surface tension effect is considered in the compression model of gas bubbles. Finally, a mathematical model has been developed to simulate the deformation behavior of peat considering the compressibility of organic matter and entrapped gas bubbles. The deformation process is the coupling of volume variation of organic matter, gas bubbles and water drainage. The proposed model is used to simulate a series of peat laboratory oedometer tests, and the model can well capture the test results with reasonable model parameters. Effects of model parameters on deformation of peat are also analyzed.

  19. Pyrogenic organic matter can alter microbial communication

    NASA Astrophysics Data System (ADS)

    Masiello, Caroline; Gao, Xiaodong; Cheng, Hsiao-Ying; Silberg, Jonathan

    2016-04-01

    Soil microbes communicate with each other to manage a large range of processes that occur more efficiently when microbes are able to act simultaneously. This coordination occurs through the continuous production of signaling compounds that are easily diffused into and out of cells. As the number of microbes in a localized environment increases, the internal cellular concentration of these signaling compounds increases, and when a threshold concentration is reached, gene expression shifts, leading to altered (and coordinated) microbial behaviors. Many of these coordinated behaviors have biogeochemically important outcomes. For example, methanogenesis, denitrification, biofilm formation, and the development of plant-rhizobial symbioses are all regulated by a simple class of cell-cell signaling molecules known as acyl homoserine lactones (AHLs). Pyrogenic organic matter in soils can act to disrupt microbial communication through multiple pathways. In the case of AHLs, charcoal's very high surface area can sorb these signaling compounds, preventing microbes from detecting each others' presence (Masiello et al., 2014). In addition, the lactone ring in AHLs is vulnerable to pH increases accompanying PyOM inputs, with soil pH values higher than 7-8 leading to ring opening and compound destabilization. Different microbes use different classes of signaling compounds, and not all microbial signaling compounds are pH-vulnerable. This implies that PyOM-driven pH increases may trigger differential outcomes for Gram negative bacteria vs fungi, for example. A charcoal-driven reduction in microbes' ability to detect cell-cell communication compounds may lead to a shift in the ability of microbes to participate in key steps of C and N cycling. For example, an increase in an archaeon-specific AHL has been shown to lead to a cascade of metabolic processes that eventually results in the upregulation of CH4 production (Zhang et al., 2012). Alterations in similar AHL compounds leads to

  20. Spectral band selection for classification of soil organic matter content

    NASA Technical Reports Server (NTRS)

    Henderson, Tracey L.; Szilagyi, Andrea; Baumgardner, Marion F.; Chen, Chih-Chien Thomas; Landgrebe, David A.

    1989-01-01

    This paper describes the spectral-band-selection (SBS) algorithm of Chen and Landgrebe (1987, 1988, and 1989) and uses the algorithm to classify the organic matter content in the earth's surface soil. The effectiveness of the algorithm was evaluated comparing the results of classification of the soil organic matter using SBS bands with those obtained using Landsat MSS bands and TM bands, showing that the algorithm was successful in finding important spectral bands for classification of organic matter content. Using the calculated bands, the probabilities of correct classification for climate-stratified data were found to range from 0.910 to 0.980.

  1. Interstellar chemistry recorded in organic matter from primitive meteorites.

    PubMed

    Busemann, Henner; Young, Andrea F; Alexander, Conel M O'd; Hoppe, Peter; Mukhopadhyay, Sujoy; Nittler, Larry R

    2006-05-01

    Organic matter in extraterrestrial materials has isotopic anomalies in hydrogen and nitrogen that suggest an origin in the presolar molecular cloud or perhaps in the protoplanetary disk. Interplanetary dust particles are generally regarded as the most primitive solar system matter available, in part because until recently they exhibited the most extreme isotope anomalies. However, we show that hydrogen and nitrogen isotopic compositions in carbonaceous chondrite organic matter reach and even exceed those found in interplanetary dust particles. Hence, both meteorites (originating from the asteroid belt) and interplanetary dust particles (possibly from comets) preserve primitive organics that were a component of the original building blocks of the solar system. PMID:16675696

  2. Understanding soil organic matter formation and stabilization (Philippe Duchaufour Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Kögel-Knabner, Ingrid

    2015-04-01

    During the biomass formation/decomposition cycle carbon dioxide (CO2), the main gas driving global warming, is either released from or stabilized in the organic matter of soils. One of the most fundamental functions of soil organic matter is the provision of metabolic energy which drives soil biological processes. In essence, it is the transformation of carbon by plant, micro- and macro-biological processes that provides energy and results in the establishment of a cycle that connects above- and belowground energy transformations. The amount and type of organic matter accumulated in soils is controlled, among other factors by intrinsic soil properties, specifically soil texture and the associated aggregate structures. Soil development leads to the formation of aggregated structures composed of a highly complex mixture of different mineral and organic constituents. The resulting soil type specific carbon sequestration can strongly be affected by soil management, varying greatly with the type and intensity of land use. The processes of formation and stabilization of organic matter through organo-mineral interactions in aggregated soil structures are controlled at the sub-µm scale. Understanding the binding of organic matter in these fine soil structures is thus key to elucidate the biogeochemical soil processes that are part of the carbon cycle as well as to evaluate the effects of soil management on the carbon cycle. I will discuss open questions for understanding these processes and how we can approach them by combining state-of-the-art analytical techniques with innovative experiments.

  3. Assessment of soil organic matter fluxes at the EU level

    NASA Astrophysics Data System (ADS)

    Gobin, Anne; Campling, Paul

    2010-05-01

    Soil has a complex relationship with climate change. Soil helps take carbon dioxide out of the air and as such it absorbs millions of tons each year, but with the Earth still warming micro-organisms grow faster, consume more soil organic matter and release carbon dioxide. The net result is a relative decline in soil organic carbon. With a growing population and higher bio-energy demands, more land is likely to be required for settlement, for commercial activity and for bio-energy production. Conversions from terrestrial ecosystems to urban and commercial activity will alter both the production and losses of organic matter, and have an indirect impact on potential SOM levels. Conversions between different terrestrial ecosystems have a direct impact on SOM levels. Net SOM losses are reported for several land conversions, e.g. from grassland to arable land, from wetlands to drained agricultural land, from crop rotations to monoculture, reforestation of agricultural land. In the context of looking for measures to support best practices to manage soil organic matter in Europe we propose a method to assess soil organic matter fluxes at the EU level. We adopt a parsimonious approach that is comparable to the nutrient balance approaches developed by the OECD and Eurostat. We describe the methodology and present the initial results of a European carbon balance indicator that uses existing European statistical and land use change databases. The carbon balance consists of the following components: organic matter production (I), organic matter losses (O), land use changes that effect both production and losses (E). These components are set against the (mostly legislative) boundary conditions that determine the maximum input potential (MIP) for soil organic matter. In order to budget SOM losses due to mineralisation, runs will be made with a multi-compartment SOM model that takes into account management practices, climate and different sources of organic matter.

  4. Representativity of mosses as biomonitor organisms for the accumulation of environmental chemicals in plants and soils

    SciTech Connect

    Thomas, W.

    1986-06-01

    The suitability of mosses for air pollution monitoring of benzohexachloride isomers and polyaromatic hydrocarbons is shown by residue data of different samples from Europe. The interpretation of the results makes it obvious that next to regional pattern analysis, hypotheses for atmospheric transport and deposition processes of different environmental chemicals can also be formed. An evaluation of these kinds of bioindicator methods is presented by a quantitative comparison of air pollution data and accumulated residues in plants. The results indicate a high retention efficiency of mosses for pollutants dominantly adsorbed to particulate matter in the air, like polyaromatic hydrocarbons and heavy metals. The comparison of residue data of trace pollutants in mosses and other plants underlines the indicator functions of lower plants for air monitoring patterns with the exception of chlorinated hydrocarbons. They are more effective enriched by coniferous plants which contain ingredients able to absorb and transport these groups of environmental pollutants in the organism.

  5. Alteration of organic matter during infaunal polychaete gut passage and links to sediment organic geochemistry. Part I: Amino acids

    NASA Astrophysics Data System (ADS)

    Woulds, Clare; Middelburg, Jack J.; Cowie, Greg L.

    2012-01-01

    Of the factors which control the quantity and composition of organic matter (OM) buried in marine sediments, the links between infaunal ingestion and gut passage and sediment geochemistry have received relatively little attention. This study aimed to use feeding experiments and novel isotope tracing techniques to quantify amino acid net accumulation and loss during polychaete gut passage, and to link this to patterns of selective preservation and decay in sediments. Microcosms containing either Arenicolamarina or Hediste (formerly Nereis) diversicolor were constructed from defaunated sediment and filtered estuarine water, and maintained under natural temperature and light conditions. They were fed with 13C-labelled diatoms daily for 8 days, and animals were transferred into fresh, un-labelled sediment after ∼20 days. Samples of fauna, microcosm sediment and faecal matter were collected after 8, ∼20 and ∼40 days, and analysed for their bulk isotopic signatures and 13C-labelled amino acid compositions. Bulk isotopic data showed that, consistent with their feeding modes, Hediste assimilated added 13C more quickly, and attained a higher labelling level than Arenicola. Both species retained the added 13C in their biomass even after removal from the food. A principal component analysis of 13C-labelled amino acid mole percentages showed clear differences in composition between the algae, faunal tissues, and sediment plus faecal matter. Further, the two species of polychaete showed different compositions in their tissues. The amino acids phenylalanine, valine, leucine, iso-leucine, threonine and proline showed net accumulation in polychaete tissues. Serine, methionine, lysine, aspartic and glutamic acids and tyrosine were rapidly lost through metabolism, consistent with their presence in easily digestible cell components (as opposed to cell walls which offer physical protection). All sample types (polychaete tissues, sediments and faecal matter) were enriched in

  6. Investigation of the organic matter in inactive nuclear tank liquids

    SciTech Connect

    Schenley, R.L.; Griest, W.H.

    1990-08-01

    Environmental Protection Agency (EPA) methodology for regulatory organics fails to account for the organic matter that is suggested by total organic carbon (TOC) analysis in the Oak Ridge National Laboratory (ORNL) inactive nuclear waste-tank liquids and sludges. Identification and measurement of the total organics are needed to select appropriate waste treatment technologies. An initial investigation was made of the nature of the organics in several waste-tank liquids. This report details the analysis of ORNL wastes.

  7. Characterizing Variability In Ohio River Natural Organic Matter

    EPA Science Inventory

    Surface water contains natural organic matter (NOM) which reacts with disinfectants creating disinfection byproducts (DBPs), some of which are USEPA regulated contaminants. Characterizing NOM can provide important insight on DBP formation and water treatment process adaptation t...

  8. Soil organic matter dynamics and the global carbon cycle

    SciTech Connect

    Post, W.M.; Emanuel, W.R.; King, A.W.

    1992-01-01

    The large size and potentially long residence time of the soil organic matter pool make it an important component of the global carbon cycle. Net terrestrial primary production of about 60 Pg C[center dot]yr[sup -1] is, over a several-year period of time, balanced by an equivalent flux of litter production and subsequent decomposition of detritus and soil organic matter. We will review many of the major factors that influence soil organic matter dynamics that need to be explicitly considered in development of global estimates of carbon turnover in the world's soils. We will also discuss current decomposition models that are general enough to be used to develop a representation of global soil organic matter dynamics.

  9. Soil organic matter dynamics and the global carbon cycle

    SciTech Connect

    Post, W.M.; Emanuel, W.R.; King, A.W.

    1992-12-01

    The large size and potentially long residence time of the soil organic matter pool make it an important component of the global carbon cycle. Net terrestrial primary production of about 60 Pg C{center_dot}yr{sup -1} is, over a several-year period of time, balanced by an equivalent flux of litter production and subsequent decomposition of detritus and soil organic matter. We will review many of the major factors that influence soil organic matter dynamics that need to be explicitly considered in development of global estimates of carbon turnover in the world`s soils. We will also discuss current decomposition models that are general enough to be used to develop a representation of global soil organic matter dynamics.

  10. Biogeochemistry of Mangrove Soil Organic Matter: a Comparison Between Rhizophoraand AvicenniaSoils in South-eastern Brazil

    NASA Astrophysics Data System (ADS)

    Lacerda, L. D.; Ittekkot, V.; Patchineelam, S. R.

    1995-06-01

    Soil core samples from Rhizophora mangleL. and Avicennia schauerianaStapf & Leech forests from south-eastern Brazil were analysed for their total organic matter content and their sugars, amino acid and amino sugars composition. Organic carbon and nitrogen contents were higher in Avicenniathan in Rhizophorasoils. The contribution of sugars and amino acids to the total organic carbon pool was constant with depth in Rhizophorasoils whereas in Avicenniasoils it increased. Spectral distribution of sugars and amino acids showed a dominance of Ca-affine monomers, particularly acidic amino acids, and the sugar arabinose. Biogeochemical indicators derived from ratios of individual sugar and amino acid monomers confirm previous studies which showed that organic matter in both soils is mainly of mangrove origin. The results further suggest accumulation of organic matter in Rhizophorasoils and a continuing degradation of organic matter in Avicenniasoils. The latter may thus release more nutrients to adjacent ecosystems than Rhizophorasoils.

  11. Seasonal Changes in Arctic Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Boot, C. M.; Wallenstein, M. D.; Schimel, J.

    2011-12-01

    The Arctic is a landscape in flux. Temperatures are shifting upward and plant communities are transitioning from tussock to shrub tundra in some regions. Decomposition processes sensitive to temperature, moisture, and plant inputs are controls on the source/sink dynamics of the Arctic C pool. The response of decomposition to warming will, in part, determine if the Arctic C pool feeds back positively or negatively to climate change. The portion of the C pool immediately available to decomposers is dissolved organic matter (DOM). The aim of this is study is to examine the molecular composition of DOM to determine which components vary seasonally in soil pore water among three vegetation types at Toolik Field Station in Alaska. Vegetation types include wet sedge (Carex aquatilis and Eriophorum angustifolium), moist acidic tussock (E. vaginatum) and shrub tundra (Betula nana and Salix sp.). These sites were sampled during winter/summer transitions in 2010 in order to capture both growing season and winter dynamics. We expected the chemical composition of DOM in pore water to be distinct among plant communities due to differences in root exudates, litter chemistry and microbial community; and vary seasonally due to shifting temperature and water availability and their impacts on decomposition of DOM. Soil pore water was isolated through centrifugation and is being characterized with ultra high performance liquid chromatography (UPLC) in line with a quadrupole time of flight mass spectrometer (QTOF-MS) as well as with specific UV absorbance at 254 nm (SUVA), and excitation emission matrices (EEMs) generated by fluorescence spectroscopy. The DOM concentrations across vegetation types show consistent seasonal patterns, spiking at thaw, and declining through late summer. As soils freeze these patterns diverge-in tussock soils DOM concentration decreases slightly, while in shrub and wet sedge sites it increases. SUVA values (indicator of aromaticity) were consistent among

  12. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria

    PubMed Central

    Smriga, Steven; Fernandez, Vicente I.; Mitchell, James G.; Stocker, Roman

    2016-01-01

    The microenvironment surrounding individual phytoplankton cells is often rich in dissolved organic matter (DOM), which can attract bacteria by chemotaxis. These “phycospheres” may be prominent sources of resource heterogeneity in the ocean, affecting the growth of bacterial populations and the fate of DOM. However, these effects remain poorly quantified due to a lack of quantitative ecological frameworks. Here, we used video microscopy to dissect with unprecedented resolution the chemotactic accumulation of marine bacteria around individual Chaetoceros affinis diatoms undergoing lysis. The observed spatiotemporal distribution of bacteria was used in a resource utilization model to map the conditions under which competition between different bacterial groups favors chemotaxis. The model predicts that chemotactic, copiotrophic populations outcompete nonmotile, oligotrophic populations during diatom blooms and bloom collapse conditions, resulting in an increase in the ratio of motile to nonmotile cells and in the succession of populations. Partitioning of DOM between the two populations is strongly dependent on the overall concentration of bacteria and the diffusivity of different DOM substances, and within each population, the growth benefit from phycospheres is experienced by only a small fraction of cells. By informing a DOM utilization model with highly resolved behavioral data, the hybrid approach used here represents a new path toward the elusive goal of predicting the consequences of microscale interactions in the ocean. PMID:26802122

  13. [Effects of dissolved organic matter on copper absorption by ryegrass].

    PubMed

    Tang, Chao; Wang, Bin; Liu, Man-Qiang; Hu, Feng; Li, Hui-Xin; Jiao, Jia-Guo

    2012-08-01

    In this study, dissolved organic matter (DOM) was extracted from earthworm casts and from the cattle manure with which the earthworms were fed, and a water culture experiment was conducted to study the effects of the DOM on the copper (Cu2+) absorption by ryegrass in the presence of different concentration Cu2+ (0, 5 and 10 mg x L(-1)). With the increasing concentration of Cu2+ in the medium, there was a gradual decrease in the dry mass of ryegrass shoots and roots and in the root length, surface area, volume, and tip number. In the presence of medium Cu2+, DOM increased the biomass of shoots and roots and the root length, surface area, volume, and tip number significantly. DOM reduced the Cu2+ concentration in roots, promoted the Cu2+ translocation from roots to shoots, and significantly increased the Cu2+ accumulation in shoots. The DOM from earthworm casts had better effects than that from cattle manure, and high concentration DOM had better effects than low concentration DOM. PMID:23189712

  14. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria.

    PubMed

    Smriga, Steven; Fernandez, Vicente I; Mitchell, James G; Stocker, Roman

    2016-02-01

    The microenvironment surrounding individual phytoplankton cells is often rich in dissolved organic matter (DOM), which can attract bacteria by chemotaxis. These "phycospheres" may be prominent sources of resource heterogeneity in the ocean, affecting the growth of bacterial populations and the fate of DOM. However, these effects remain poorly quantified due to a lack of quantitative ecological frameworks. Here, we used video microscopy to dissect with unprecedented resolution the chemotactic accumulation of marine bacteria around individual Chaetoceros affinis diatoms undergoing lysis. The observed spatiotemporal distribution of bacteria was used in a resource utilization model to map the conditions under which competition between different bacterial groups favors chemotaxis. The model predicts that chemotactic, copiotrophic populations outcompete nonmotile, oligotrophic populations during diatom blooms and bloom collapse conditions, resulting in an increase in the ratio of motile to nonmotile cells and in the succession of populations. Partitioning of DOM between the two populations is strongly dependent on the overall concentration of bacteria and the diffusivity of different DOM substances, and within each population, the growth benefit from phycospheres is experienced by only a small fraction of cells. By informing a DOM utilization model with highly resolved behavioral data, the hybrid approach used here represents a new path toward the elusive goal of predicting the consequences of microscale interactions in the ocean.

  15. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria.

    PubMed

    Smriga, Steven; Fernandez, Vicente I; Mitchell, James G; Stocker, Roman

    2016-02-01

    The microenvironment surrounding individual phytoplankton cells is often rich in dissolved organic matter (DOM), which can attract bacteria by chemotaxis. These "phycospheres" may be prominent sources of resource heterogeneity in the ocean, affecting the growth of bacterial populations and the fate of DOM. However, these effects remain poorly quantified due to a lack of quantitative ecological frameworks. Here, we used video microscopy to dissect with unprecedented resolution the chemotactic accumulation of marine bacteria around individual Chaetoceros affinis diatoms undergoing lysis. The observed spatiotemporal distribution of bacteria was used in a resource utilization model to map the conditions under which competition between different bacterial groups favors chemotaxis. The model predicts that chemotactic, copiotrophic populations outcompete nonmotile, oligotrophic populations during diatom blooms and bloom collapse conditions, resulting in an increase in the ratio of motile to nonmotile cells and in the succession of populations. Partitioning of DOM between the two populations is strongly dependent on the overall concentration of bacteria and the diffusivity of different DOM substances, and within each population, the growth benefit from phycospheres is experienced by only a small fraction of cells. By informing a DOM utilization model with highly resolved behavioral data, the hybrid approach used here represents a new path toward the elusive goal of predicting the consequences of microscale interactions in the ocean. PMID:26802122

  16. Composition and reactivity of ferrihydrite-organic matter associations

    NASA Astrophysics Data System (ADS)

    Eusterhues, Karin; Hädrich, Anke; Neidhardt, Julia; Küsel, Kirsten; Totsche, Kai

    2014-05-01

    The formation of organo-mineral associations affects many soil forming processes. On the one hand, it will influence soil organic matter composition and development, because the complex organic matter mixtures usually fractionate during their association with mineral surfaces. Whereas the associated fraction is supposed to be stabilized, the non-associated fraction remains mobile and available to degradation by microorganisms. On the other hand, the organic coating will completely change the interface properties of Fe oxides such as solubility, charge and hydrophobicity. This in turn will strongly influence their reactivity towards nutrients and pollutants, the adsorption of new organic matter, and the availability of ferric Fe towards microorganisms. To better understand such processes we produced ferrihydrite-organic matter associations by adsorption and coprecipitation in laboratory experiments. As a surrogate for dissolved soil organic matter we used the water-extractable fraction of a Podzol forest-floor layer under spruce. Sorptive fractionation of the organic matter was investigated by 13C NMR and FTIR. Relative to the original forest-floor extract, the ferrihydrite-associated OM was enriched in polysaccharides but depleted in aliphatic C and carbonyl C, especially when adsorption took place. Liquid phase incubation experiments were carried out with an inoculum extracted from the podzol forest-floor under oxic conditions at pH 4.8 to quantify the mineralization of the adsorbed and coprecipitated organic matter. These experiments showed that the association with ferrihydrite stabilized the associated organic matter, but that differences in the degradability of adsorbed and coprecipitated organic matter were small. We therefore conclude that coprecipitation does not lead to a significant formation of microbial inaccessible organic matter domains. Microbial reduction experiments were performed using Geobacter bremensis. We observed that increasing amounts of

  17. The search for indigenous lunar organic matter.

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1972-01-01

    It is argued that the absence of organic compounds from returned lunar samples is to be expected even for a lunar history rich in primordial organics. The sites most likely to yield lunar organic compounds have not been investigated, and there may be an area of investigation conceivably critical to problems in prebiological chemistry and the early history of the solar system awaiting continued lunar exploration, manned or unmanned.

  18. Natural organic matter properties in Swedish agricultural streams

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Kyllmar, Katarina; Bergström, Lars; Köhler, Stephan

    2016-04-01

    We have analysed natural organic matter (NOM) properties in 18 agricultural streams in Sweden covering a broad range of environmental (climate, soil type), land use and water quality (nutrient and concentrations, pH, alkalinity) characteristics. Stream water samples collected every two weeks within an ongoing Swedish Monitoring Programme for Agriculture have been analysed for total/dissolved organic carbon, absorbance and fluorescence spectroscopy. A number of quantitative and qualitative spectroscopic parameters was calculated to help to distinguish between terrestrially-derived, refractory organic material and autochthonous, labile material indicative of biogeochemical transformations of terrestrial NOM and recent biological production. The study provides insights into organic matter properties and carbon budgets in agricultural streams and improves understanding of how agricultural catchments transform natural and anthropogenic fluxes of organic matter and nutrients to signals observed in receiving waters.

  19. High dimensional reflectance analysis of soil organic matter

    NASA Technical Reports Server (NTRS)

    Henderson, T. L.; Baumgardner, M. F.; Franzmeier, D. P.; Stott, D. E.; Coster, D. C.

    1992-01-01

    Recent breakthroughs in remote-sensing technology have led to the development of high spectral resolution imaging sensors for observation of earth surface features. This research was conducted to evaluate the effects of organic matter content and composition on narrowband soil reflectance across the visible and reflective infrared spectral ranges. Organic matter from four Indiana agricultural soils, ranging in organic C content from 0.99 to 1.72 percent, was extracted, fractionated, and purified. Six components of each soil were isolated and prepared for spectral analysis. Reflectance was measured in 210 narrow bands in the 400- to 2500-nm wavelength range. Statistical analysis of reflectance values indicated the potential of high dimensional reflectance data in specific visible, near-infrared, and middle-infrared bands to provide information about soil organic C content, but not organic matter composition. These bands also responded significantly to Fe- and Mn-oxide content.

  20. A demonstration of an affinity between pyrite and organic matter in a hydrothermal setting

    PubMed Central

    2011-01-01

    One of the key-principles of the iron-sulphur world theory is to bring organic molecules close enough to interact with each other, using the surface of pyrite as a substrate in a hydrothermal setting. The present paper explores the relationship of pyrite and organic matter in a hydrothermal setting from the geological record; in hydrothermal calcite veins from Carboniferous limestones in central Ireland. Here, the organic matter is accumulated as coatings around, and through, pyrite grains. Most of the pyrite grains are euhedral-subhedral crystals, ranging in size from ca 0.1-0.5 mm in diameter, and they are scattered throughout the matrix of the vein calcite. The organic matter was deposited from a hydrothermal fluid at a temperature of at least 200°C, and gives a Raman signature of disordered carbon. This study points to an example from a hydrothermal setting in the geological record, demonstrating that pyrite can have a high potential for the concentration and accumulation of organic materials. PMID:21299877

  1. Modeling organic matter stabilization during windrow composting of livestock effluents.

    PubMed

    Oudart, D; Paul, E; Robin, P; Paillat, J M

    2012-01-01

    Composting is a complex bioprocess, requiring a lot of empirical experiments to optimize the process. A dynamical mathematical model for the biodegradation of the organic matter during the composting process has been developed. The initial organic matter expressed by chemical oxygen demand (COD) is decomposed into rapidly and slowly degraded compartments and an inert one. The biodegradable COD is hydrolysed and consumed by microorganisms and produces metabolic water and carbon dioxide. This model links a biochemical characterization of the organic matter by Van Soest fractionating with COD. The comparison of experimental and simulation results for carbon dioxide emission, dry matter and carbon content balance showed good correlation. The initial sizes of the biodegradable COD compartments are explained by the soluble, hemicellulose-like and lignin fraction. Their sizes influence the amplitude of the carbon dioxide emission peak. The initial biomass is a sensitive variable too, influencing the time at which the emission peak occurs. PMID:23393964

  2. Defining the quality of soil organic matter

    EPA Science Inventory

    Soils represent the largest terrestrial pool of carbon (C) and hold approximately two-thirds of all C held in these ecosystems. However, not all C in soils is of equal quality. Some fractions of the organic forms, i.e., soil organic carbon (SOC) have long residence times while ...

  3. Organic-matter quality of deep permafrost carbon - a study from Arctic Siberia

    NASA Astrophysics Data System (ADS)

    Strauss, J.; Schirrmeister, L.; Mangelsdorf, K.; Eichhorn, L.; Wetterich, S.; Herzschuh, U.

    2015-04-01

    The organic-carbon (OC) pool accumulated in Arctic permafrost (perennially frozen ground) equals the carbon stored in the modern atmosphere. To give an idea of how Yedoma region permafrost could respond under future climatic warming, we conducted a study to quantify the organic-matter quality (here defined as the intrinsic potential to be further transformed, decomposed, and mineralized) of late Pleistocene (Yedoma) and Holocene (thermokarst) deposits on the Buor-Khaya Peninsula, northeast Siberia. The objective of this study was to develop a stratigraphic classified organic-matter quality characterization. For this purpose the degree of organic-matter decomposition was estimated by using a multiproxy approach. We applied sedimentological (grain-size analyses, bulk density, ice content) and geochemical parameters (total OC, stable carbon isotopes (δ13C), total organic carbon : nitrogen (C / N) ratios) as well as lipid biomarkers (n-alkanes, n-fatty acids, hopanes, triterpenoids, and biomarker indices, i.e., average chain length, carbon preference index (CPI), and higher-plant fatty-acid index (HPFA)). Our results show that the Yedoma and thermokarst organic-matter qualities for further decomposition exhibit no obvious degradation-depth trend. Relatively, the C / N and δ13C values and the HPFA index show a significantly better preservation of the organic matter stored in thermokarst deposits compared to Yedoma deposits. The CPI data suggest less degradation of the organic matter from both deposits, with a higher value for Yedoma organic matter. As the interquartile ranges of the proxies mostly overlap, we interpret this as indicating comparable quality for further decomposition for both kinds of deposits with likely better thermokarst organic-matter quality. Supported by principal component analyses, the sediment parameters and quality proxies of Yedoma and thermokarst deposits could not be unambiguously separated from each other. This revealed that the organic-matter

  4. Evaluation of factors controlling the distribution of organic matter and phosphorus in the Eastern Arabian Shelf: A geostatistical reappraisal

    NASA Astrophysics Data System (ADS)

    Acharya, Shiba Shankar; Panigrahi, Mruganka K.

    2016-09-01

    The Eastern Arabian Shelf (EAS) is a region of high primary production and a part of an intense oxygen minimum zone as well. The EAS is a zone of significant accumulation of organic matter that is ascribable to either the prevalent anoxic condition or high primary productivity, There has been a considerable amount of debate on the dominant factor responsible for the enrichment of organic matter in the sediments in EAS. The present study is an attempt to resolve the issue through robust geostatistical analysis of published and unpublished data. Results of Empirical Bayesian kriging (EBK) and geographically weighted regression (GWR) of available data help to get a refined distribution of organic carbon and phosphorus in the Eastern Arabian Shelf as compared to the earlier known distribution patterns. The primary productivity, evaluated through the latest satellite dataset using Vertically Generalized Production Model, does not show any similarity with the distribution pattern of either organic carbon (Corg) or phosphorus, that was determined based on the in situ data. The negative correlations of primary production with Corg (r=-0.14) and P (r=-0.4) indicate that primary productivity is the most unlikely modulator of organic matter accumulation in the EAS. The negative correlation of bottom water oxygen concentration with Corg (r=-0.39) and Ti-normalized fraction of organic carbon (r=-0.56) indicates that anoxia plays a major role in the preservation of organic matter in the EAS. The mass accumulation rates of Corg and phosphorus show a strong dependency on sedimentation rate (r>0.88), which indicates that the accumulation rate of sediments outweighs the other depositional parameters in controlling the accumulation of organic matter in the EAS.

  5. Soil Organic Matter in Forest Ecosystems of the Forest-tundra zone of Central Siberia

    NASA Astrophysics Data System (ADS)

    Mukhortova, Liudmila

    2010-05-01

    contribute 57% of the total soil carbon on average, stable humus hence containing only 43% (from 13 to 63%) of the total carbon. This ratio between the main forest-tundra soil carbon pools might be attributed to a small soil depth of thawing and a low rate of plant residue decomposition that enhance easily mineralizable organic matter accumulation. Ecosystems of taiga zones showed different ratios between easily mineralizable and stable organic matter carbon: 53 and 47% in northern taiga (cryogenic soils), 49 and 51 % in central taiga, and 45 and 55 % in southern taiga, respectively. This study is funded by RFFI (project № 09-04-98004), and SB RAS Integrated project № 50.

  6. Spatial variation of salt-marsh organic and inorganic deposition and organic carbon accumulation: Inferences from the Venice lagoon, Italy

    NASA Astrophysics Data System (ADS)

    Roner, M.; D'Alpaos, A.; Ghinassi, M.; Marani, M.; Silvestri, S.; Franceschinis, E.; Realdon, N.

    2016-07-01

    inorganic soil content near the edge is due to the preferential deposition of inorganic sediment from the adjacent creek, and to the rapid decomposition of the relatively large biomass production. The higher organic matter content in the inner part of the marsh results from the small amounts of suspended sediment that makes it to the inner marsh, and to the low decomposition rate which more than compensates for the lower biomass productivity in the low-lying inner zones. Finally, the average soil organic carbon density from the LOI measurements is estimated to be 0.044 g C cm-3. The corresponding average carbon accumulation rate for the San Felice and Rigà salt marshes, 132 g C m-2 yr-1, highlights the considerable carbon stock and sequestration rate associated with coastal salt marshes.

  7. Effects of Crayfish on Quality of Fine Particulate Organic Matter

    NASA Astrophysics Data System (ADS)

    Montemarano, J. J.; Kershner, M. W.; Leff, L. G.

    2005-05-01

    The origin and ontogeny of detritus often determines its bioavailability. Crayfish shred and consume detrital organic matter, influencing fine particulate organic matter (FPOM) availability, composition and quality. Given consumption of FPOM by many invertebrates, crayfish can indirectly affect these organisms by altering FPOM bioavailability through organic matter fragmentation, biofilm disturbance, and defecation. These effects may or may not vary among coarse particulate organic matter (CPOM) from different leaf species. To assess crayfish effects on FPOM quality, crayfish were fed stream-conditioned maple or oak leaves in hanging 1-mm mesh-bottom baskets in aquaria. After 12 h, crayfish and remaining leaves were removed. FPOM fragments that fell through the mesh were vacuum filtered and analyzed for percent organic matter, C:N ratio, and bacterial abundance. The same analyses were conducted on crayfish feces collected using finger cots encasing crayfish abdomens. C:N ratios did not differ between feces and maple leaf CPOM, but were lower in FPOM produced through fragmentation and disturbance (P = 0.023). Overall, crayfish alter the ontogeny of detritus, which may, in turn, affect stream FPOM dynamics.

  8. Soil organic matter contribution to the NW Mediterranean (Invited)

    NASA Astrophysics Data System (ADS)

    Kim, J.; Buscail, R.; Blokker, J.; Kerhervé, P.; Schouten, S.; Ludwig, W.; Sinninghe Damsté, J. S.

    2009-12-01

    The BIT (Branched and Isoprenoid Tetraether) index has recently been introduced as a proxy for soil organic matter input and is based on the relative abundance of non-isoprenoidal glycerol dialkyl glycerol tetraethers (GDGTs) derived from organisms living in terrestrial environments versus a structurally related isoprenoid GDGT “crenarchaeol” produced by marine Crenarchaeota (Hopmans et al., 2004). In this study, detailed spatial distribution patterns of BIT index were investigated in combination with other organic parameters in the continental margin of the north western Mediterranean. Based on a transect sampling strategy from source (land) to sink (sea) via river, we analysed a variety of soils from the Têt and Rhône basins, suspended particulate matter in waters of the Têt and Rhône rivers flowing into the Gulf of Lions, and marine surface sediments from the Gulf of Lions collected before and after a flood occurred in June 2008. Our study allows us to track BIT values along the transport pathway of soil organic matter and thus to estimate soil organic matter contribution in marine sediments in the Gulf of Lions (NW Mediterranean), a river-dominated continental margin. Hopmans, E.C., Weijers, J.W.H., Schefuss, E., Herfort, L., Sinninghe Damsté, J.S., Schouten, S., 2004. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoidtetraether lipids. Earth and Planetary Science Letters 224, 107-116.

  9. Dissolved Organic Matter in the Hudson River Plume

    NASA Astrophysics Data System (ADS)

    Chen, R. F.; Gardner, G. B.

    2004-12-01

    As part of the LATTE (Lagrangian Transport and Transformation Experiment) program, dissolved organic carbon (DOC), total nitrogen (TN), and chromophoric dissolved organic matter (CDOM) were measured in the Hudson River Estuary and Plume. As revealed by high resolution measurements from the Integrated Coastal Observation System (ICOS), dissolved organic matter has several sources within the estuary including the Hudson and Raritan Rivers, and a yet unidentified anthropogenic source off Manhattan. The quantity of dissolved organic matter that is exported from the Hudson River Estuary is significantly greater than that which the Hudson River can supply by simply conservative mixing with coastal seawater. In May, 2004, rhodamine dye was injected at the surface as the plume flowed out onto the New York/New Jersey shelf, once as the plume turned north towards Long Island, and once as the plume flowed south along the New Jersey coast. The ECOShuttle (a towed-undulating vehicle) carrying a rhodamine fluorometer was able to track these dye patches. An examination of dissolved organic matter transformations that occurred over these two to two and one-half day Lagrangian experiments will be discussed. In addition seasonal distributions of dissolved organic matter distributions will be presented from cruises in June 2003, June 2004 and September 2004 under different river flow and wind conditions.

  10. Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Analysis of high-molecular-weight dissolved organic matter (DOM) from two estuaries in the northwest Atlantic Ocean reveals that black carbon (BC) is a significant component of previously uncharacterized DOM, suggesting that river-estuary systems are important exporters of recalcitrant dissolved organic carbon to the ocean.

  11. Organic Matter Application Can Reduce Copper Toxicity in Tomato Plants

    ERIC Educational Resources Information Center

    Campbell, Brian

    2010-01-01

    Copper fungicides and bactericides are often used in tomato cultivation and can cause toxic Cu levels in soils. In order to combat this, organic matter can be applied to induce chelation reactions and form a soluble complex by which much of the Cu can leach out of the soil profile or be taken up safely by plants. Organic acids such as citric,…

  12. PHOTOCHEMICAL TRANSFORMATIONS OF DISSOLVED ORGANIC MATTER IN A BLACKWATER RIVER

    EPA Science Inventory

    We examined photochemical alterations of dissolved organic matter (DOM) from the Satilla River, a high DOC (10-40 mg/liter) blackwater river of southeast Georgia. Water samples were filtered to remove most organisms, placed in quartz tubes, and incubated under natural sunlight a...

  13. Pedogenesis evolution of mine technosols: focus onto organic matter implication

    NASA Astrophysics Data System (ADS)

    Grégoire, Pascaud; Marilyne, Soubrand; Laurent, Lemee; Husseini Amelène, El-Mufleh Al; Marion, Rabiet; Emmanuel, Joussein

    2014-05-01

    Keywords: Mine technosols, pedogenesis, organic matter, environmental impact, pyr-GC-MS Technosols include soils subject to strong anthropogenic pressure and particularly to soil influenced by human transformed materials. In this context, abandoned mine sites contain a large amount of transformed waste materials often enriched with metals and/or metalloids. The natural evolution of technosols (pedogenesis) may induces the change in contaminants behaviour in term of stability of bearing phases, modification of pH oxydo-reduction conditions, organic matter turnover, change in permeability, or influence of vegetation cover. The fate of these elements in the soil can induce major environmental problems (contamination of biosphere and water resource). This will contribute to a limited potential use of these soils, which represent yet a large area around the world. The initial contamination of the parental material suggests that the pedological cover would stabilize the soil; however, the chemical reactivity must be taken in consideration particularly with respect to potential metal leachings. In this case, it is quite important to understand the development of soil in this specific context. Consequently, the global aims of this study are to understand the functioning of mine Technosols focusing onto the organic matter implication in their pedogenesis. Indeed, soil organic matter constitutes an heterogeneous fraction of organic compounds that plays an important role in the fate and the transport of metals and metalloids in soils. Three different soil profiles were collected representative to various mining context (contamination, time, climat), respectively to Pb-Ag, Sn and Au exploitations. Several pedological parameters were determined like CEC, pH, %Corg, %Ntot, C/N ratio, grain size distribution and chemical composition. The evolution of the nature of organic matter in Technosol was studied by elemental analyses and thermochemolysis was realized on the total and

  14. Interstellar and Solar System Organic Matter Preserved in Interplanetary Dust

    NASA Astrophysics Data System (ADS)

    Messenger, Scott R.; Nakamura-Messenger, Keiko

    2015-08-01

    Interplanetary dust particles (IDPs) collected in the Earth’s stratosphere derive from collisions among asteroids and by the disruption and outgassing of short-period comets. Chondritic porous (CP) IDPs are among the most primitive Solar System materials. CP-IDPs have been linked to cometary parent bodies by their mineralogy, textures, C-content, and dynamical histories. CP-IDPs are fragile, fine-grained (< um) assemblages of anhydrous amorphous and crystalline silicates, oxides and sulfides bound together by abundant carbonaceous material. Ancient silicate, oxide, and SiC stardust grains exhibiting highly anomalous isotopic compositions are abundant in CP-IDPs, constituting 0.01 - 1 % of the mass of the particles. The organic matter in CP-IDPs is isotopically anomalous, with enrichments in D/H reaching 50x the terrestrial SMOW value and 15N/14N ratios up to 3x terrestrial standard compositions. These anomalies are indicative of low T (10-100 K) mass fractionation in cold molecular cloud or the outermost reaches of the protosolar disk. The organic matter shows distinct morphologies, including sub-um globules, bubbly textures, featureless, and with mineral inclusions. Infrared spectroscopy and mass spectrometry studies of organic matter in IDPs reveals diverse species including aliphatic and aromatic compounds. The organic matter with the highest isotopic anomalies appears to be richer in aliphatic compounds. These materials also bear similarities and differences with primitive, isotopically anomalous organic matter in carbonaceous chondrite meteorites. The diversity of the organic chemistry, morphology, and isotopic properties in IDPs and meteorites reflects variable preservation of interstellar/primordial components and Solar System processing. One unifying feature is the presence of sub-um isotopically anomalous organic globules among all primitive materials, including IDPs, meteorites, and comet Wild-2 samples returned by the Stardust mission. We will present

  15. GROUNDWATER TRANSPORT OF HYDROPHOBIC ORGANIC COMPOUNDS IN THE PRESENCE OF DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    The effects of dissolved organic matter (DOM) on the transport of hydrophobic organic compounds in soil columns were investigated. Three compounds (naphthalene, phenanthrene and DDT) that spanned three orders of magnitude in water solubility were used. Instead of humic matter, mo...

  16. Sorptive stabilization of organic matter by amorphous Al hydroxide

    NASA Astrophysics Data System (ADS)

    Schneider, M. P. W.; Scheel, T.; Mikutta, R.; van Hees, P.; Kaiser, K.; Kalbitz, K.

    2010-03-01

    Amorphous Al hydroxides (am-Al(OH) 3) strongly sorb and by this means likely protect dissolved organic matter (OM) against microbial decay in soils. We carried out batch sorption experiments (pH 4.5; 40 mg organic C L -1) with OM extracted from organic horizons under a Norway spruce and a European beech forest. The stabilization of OM by sorption was analyzed by comparing the CO 2 mineralized during the incubation of sorbed and non-sorbed OM. The mineralization of OM was evaluated based in terms of (i) the availability of the am-Al(OH) 3, thus surface OM loadings, (ii) spectral properties of OM, and (iii) the presence of phosphate as a competitor for OM. This was done by varying the solid-to-solution ratio (SSR = 0.02-1.2 g L -1) during sorption. At low SSRs, hence limited am-Al(OH) 3 availability, only small portions of dissolved OM were sorbed; for OM from Oa horizons, the mineralization of the sorbed fraction exceeded that of the original dissolved OM. The likely reason is competition with phosphate for sorption sites favouring the formation of weak mineral-organic bindings and the surface accumulation of N-rich, less aromatic and less complex OM. This small fraction controlled the mineralization of sorbed OM even at higher SSRs. At higher SSRs, i.e., with am-Al(OH) 3 more available, competition of phosphate decreased and aromatic compounds were sorbed selectively, which resulted in pronounced resistance of sorbed OM against decay. The combined OC mineralization of sorbed and non-sorbed OM was 12-65% less than that of the original DOM. Sorbed OM contributed only little to the overall OC mineralization. Stabilization of OC increased in direct proportion to am-Al(OH) 3 availability, despite constant aromatic C (˜30%). The strong stabilization at higher mineral availability is primarily governed by strong Al-OM bonds formed under less competitive conditions. Due to these strong bonds and the resulting strong stabilization, the surface loading, a proxy for the

  17. Sustaining effect of soil warming on organic matter decomposition

    NASA Astrophysics Data System (ADS)

    Hou, Ruixing; Ouyang, Zhu; Dorodnikov, Maxim; Wilson, Glenn; Kuzyakov, Yakov

    2015-04-01

    Global warming affects various parts of carbon (C) cycle including acceleration of soil organic matter (SOM) decomposition with strong feedback to atmospheric CO2 concentration. Despite many soil warming studies showed changes of microbial community structure, only very few were focused on sustainability of soil warming on microbial activity associated with SOM decomposition. Two alternative hypotheses: 1) acclimation because of substrate exhaustion and 2) sustaining increase of microbial activity with accelerated decomposition of recalcitrant SOM pools were never proven under long term field conditions. This is especially important in the nowadays introduced no-till crop systems leading to redistribution of organic C at the soil surface, which is much susceptible to warming effects than the rest of the profile. We incubated soil samples from a four-year warming experiment with tillage (T) and no-tillage (NT) practices under three temperatures: 15, 21, and 27 °C, and related the evolved total CO2 efflux to changes of organic C pools. Warmed soils released significantly more CO2 than the control treatment (no warming) at each incubation temperature, and the largest differences were observed under 15 °C (26% increase). The difference in CO2 efflux from NT to T increase with temperature showing high vulnerability of C stored in NT to soil warming. The Q10 value reflecting the sensitivity of SOM decomposition to warming was lower for warmed than non-warmed soil indicating better acclimation of microbes or lower C availability during long term warming. The activity of three extracellular enzymes: β-glucosidase, chitinase, sulphatase, reflecting the response of C, N and S cycles to warming, were significantly higher under warming and especially under NT compared to two other respective treatments. The CO2 released during 2 months of incubation consisted of 85% from recalcitrant SOM and the remaining 15% from microbial biomass and extractable organic C based on the

  18. Distinctive denitrifying capabilities lead to differences in N2O production by denitrifying polyphosphate accumulating organisms and denitrifying glycogen accumulating organisms.

    PubMed

    Ribera-Guardia, Anna; Marques, Ricardo; Arangio, Corrado; Carvalheira, Monica; Oehmen, Adrian; Pijuan, Maite

    2016-11-01

    This study aims at investigating the denitrification kinetics in two separate enriched cultures of denitrifying polyphosphate accumulating organisms (dPAO) and denitrifying glycogen accumulating organisms (dGAO) and compare their N2O accumulation potential under different conditions. Two sequencing batch reactors were inoculated to develop dPAO and dGAO enriched microbial communities separately. Seven batch tests with different combinations of electron acceptors (nitrate, nitrite and/or nitrous oxide) were carried out with the enriched biomass from both reactors. Results indicate that in almost all batch tests, N2O accumulated for both cultures, however dPAOs showed a higher denitrification capacity compared to dGAOs due to their higher nitrogen oxides reduction rates. Additionally, the effect of the simultaneous presence of several electron acceptors in the reduction rates of the different nitrogen oxides was also assessed in dPAOs and dGAOs. PMID:27479801

  19. Compartmental model for organic matter digestion in facultative ponds.

    PubMed

    Giraldo, E; Garzón, A

    2002-01-01

    A model has been developed for the digestion of organic matter in facultative ponds in tropical regions. Complete mixing has been assumed for the aerobic and anaerobic compartments. Settling, aerobic layer oxidation, and anaerobic layer methanogenesis are the main processes for organic matter removal in the water column. Exchange processes between layers are dispersive or soluble exchange, solubilization and transport of organic matter from sediments to water column are also taken into account. Degradation of organic matter in the sediments produces gaseous emissions to the water column. The exchange between bubbles ascending and the water column was measured. The model was calibrated with data obtained from a pilot facultative pond built in Muña Reservoir in Bogotá. The pond was sampled during 4 months to compare data between its water hyacinth covered section and uncovered section. The results clearly show the relative importance of different BOD removal processes in facultative ponds and suggest modifications to further improve performance. The results from the model suggest that internal loadings to facultative ponds due to solubilization and return of organic matter from the sediments to the aerobic layer greatly influence the soluble BOD effluent concentration. Aerobic degradation activity in the facultative pond does not affect significantly the effluent concentration. Anaerobic degradation activity in the facultative pond can more easily achieve increases in the removal efficiencies of BOD.

  20. Compartmental model for organic matter digestion in facultative ponds.

    PubMed

    Giraldo, E; Garzón, A

    2002-01-01

    A model has been developed for the digestion of organic matter in facultative ponds in tropical regions. Complete mixing has been assumed for the aerobic and anaerobic compartments. Settling, aerobic layer oxidation, and anaerobic layer methanogenesis are the main processes for organic matter removal in the water column. Exchange processes between layers are dispersive or soluble exchange, solubilization and transport of organic matter from sediments to water column are also taken into account. Degradation of organic matter in the sediments produces gaseous emissions to the water column. The exchange between bubbles ascending and the water column was measured. The model was calibrated with data obtained from a pilot facultative pond built in Muña Reservoir in Bogotá. The pond was sampled during 4 months to compare data between its water hyacinth covered section and uncovered section. The results clearly show the relative importance of different BOD removal processes in facultative ponds and suggest modifications to further improve performance. The results from the model suggest that internal loadings to facultative ponds due to solubilization and return of organic matter from the sediments to the aerobic layer greatly influence the soluble BOD effluent concentration. Aerobic degradation activity in the facultative pond does not affect significantly the effluent concentration. Anaerobic degradation activity in the facultative pond can more easily achieve increases in the removal efficiencies of BOD. PMID:11833730

  1. Transplanting an organization: how does culture matter.

    PubMed

    Munich, Richard L

    2011-01-01

    Cultural differences are often cited as a major obstacle to the successful transition/integration into new situations of organizations. In this contribution, the author details the changing cultural factors impacting the operation and move of the Menninger Clinic from autonomous status to an affiliation with and first year of operation in the Baylor College of Medicine and Methodist Hospital Health Care System. Both functional and dysfunctional consequences are outlined, and specific examples illustrate how the organization's leadership and staff struggled to adapt during this complicated process. Based on the experience within the Clinic, general recommendations for managing such an acculturation are provided.

  2. Removal of dissolved organic matter by anion exchange: Effect of dissolved organic matter properties

    USGS Publications Warehouse

    Boyer, T.H.; Singer, P.C.; Aiken, G.R.

    2008-01-01

    Ten isolates of aquatic dissolved organic matter (DOM) were evaluated to determine the effect that chemical properties of the DOM, such as charge density, aromaticity, and molecular weight, have on DOM removal by anion exchange. The DOM isolates were characterized asterrestrial, microbial, or intermediate humic substances or transphilic acids. All anion exchange experiments were conducted using a magnetic ion exchange (MIEX) resin. The charge density of the DOM isolates, determined by direct potentiometric titration, was fundamental to quantifying the stoichiometry of the anion exchange mechanism. The results clearly show that all DOM isolates were removed by anion exchange; however, differences among the DOM isolates did influence their removal by MIEX resin. In particular, MIEX resin had the greatest affinity for DOM with high charge density and the least affinity for DOM with low charge density and low aromaticity. This work illustrates that the chemical characteristics of DOM and solution conditions must be considered when evaluating anion exchange treatment for the removal of DOM. ?? 2008 American Chemical Society.

  3. Organic matter on asteroid 130 Elektra

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Brown, R. H.

    1987-01-01

    Infrared absorption spectra of a low-albedo water-rich asteroid appear to show a weak 3.4-micrometer carbon-hydrogen stretching mode band, which suggests the presence of hydrocarbons on asteroid 130 Elektra. The organic extract from the primitive carbonaceous chondritic Murchison meteorite shows similar spectral bands.

  4. Organic matter in the Saturn system

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Khare, B. N.; Lewis, J. S.

    1984-01-01

    Theoretical and experimental predictions of the formation (and outgassing) of organic molecules in the outer solar system are compared with Voyager IRIS spectral data for the Titan atmosphere. The organic molecules of Titan are of interest because the species and processes within the atmosphere of that moon may have had analogs in the early earth atmosphere 4 Gyr ago. The spacecraft data confirmed the presence of alkanes, ethane, propane, ethylene, alkynes, acetylene, butadiene, methylacetylene, nitriles, hydrogen cyanide, cyanoacetylene, and cyanogen, all heavier than the dominant CH4. Experimental simulation of the effects of UV photolysis, alpha and gamma ray irradiation, electrical discharges and proton and electron bombardment of similar gas mixtures has shown the best promise for modeling the reactions producing the Titan atmosphere chemicals.

  5. Biogeochemical Processes That Produce Dissolved Organic Matter From Wheat Straw

    USGS Publications Warehouse

    Wershaw, Robert L.; Rutherford, David W.; Leenheer, Jerry A.; Kennedy, Kay R.; Cox, Larry G.; Koci, Donald R.

    2003-01-01

    The chemical reactions that lead to the formation of dissolved organic matter (DOM) in natural waters are poorly understood. Studies on the formation of DOM generally are complicated because almost all DOM isolates have been derived from mixtures of plant species composed of a wide variety of different types of precursor compounds for DOM formation. This report describes a study of DOM derived mainly from bales of wheat straw that had been left in a field for several years. During this period of time, black water from the decomposing wheat straw accumulated in pools in the field. The nuclear magnetic resonance and infrared spectra of the black water DOM indicate that it is composed almost entirely of lignin and carbohydrate polymeric units. Analysis by high-performance size-exclusion chromatography with multi-angle laser-light scattering detection indicates that the number average molecular weight of the DOM is 124,000 daltons. The results presented in this report indicate that the black water DOM is composed of hemicellulose chains cross-linked to lignin oligomers. These types of structures have been shown to exist in the hemicellulose matrix of plant cell walls. The cross-linked lignin-hemicellulose complexes apparently were released from partially degraded wheat-straw cell walls with little alteration. In solution in the black water, these lignin-hemicellulose polymers fold into compact globular particles in which the nonpolar parts of the polymer form the interiors of the particles and the polar groups are on the exterior surfaces of the particles. The tightly folded, compact conformation of these particles probably renders them relatively resistant to microbial degradation. This should be especially the case for the aromatic lignin structures that will be buried in the interiors of the particles.

  6. Seasonal variation in accumulation of persistent organic pollutants in an Arctic marine benthic food web.

    PubMed

    Evenset, A; Hallanger, I G; Tessmann, M; Warner, N; Ruus, A; Borgå, K; Gabrielsen, G W; Christensen, G; Renaud, P E

    2016-01-15

    The aim of the present study was to investigate seasonal variation in persistent organic pollutant (POP) concentrations, as well as food-web biomagnification, in an Arctic, benthic marine community. Macrozoobenthos, demersal fish and common eiders were collected both inside and outside of Kongsfjorden, Svalbard, during May, July and October 2007. The samples were analysed for a selection of legacy chlorinated POPs. Overall, low levels of POPs were measured in all samples. Although POP levels and accumulation patterns showed some seasonal variation, the magnitude and direction of change was not consistent among species. Overall, seasonality in bioaccumulation in benthic biota was less pronounced than in the pelagic system in Kongsfjorden. In addition, the results indicate that δ(15)N is not a good predictor for POP-levels in benthic food chains. Other factors, such as feeding strategy (omnivory, necrophagy versus herbivory), degree of contact with the sediment, and a high dependence on particulate organic matter (POM), with low POP-levels and high δ(15)N-values (due to bacterial isotope enrichment), seem to govern the uptake of the different POPs and result in loads deviating from what would be expected consulting the trophic position alone.

  7. Seasonal variation in accumulation of persistent organic pollutants in an Arctic marine benthic food web.

    PubMed

    Evenset, A; Hallanger, I G; Tessmann, M; Warner, N; Ruus, A; Borgå, K; Gabrielsen, G W; Christensen, G; Renaud, P E

    2016-01-15

    The aim of the present study was to investigate seasonal variation in persistent organic pollutant (POP) concentrations, as well as food-web biomagnification, in an Arctic, benthic marine community. Macrozoobenthos, demersal fish and common eiders were collected both inside and outside of Kongsfjorden, Svalbard, during May, July and October 2007. The samples were analysed for a selection of legacy chlorinated POPs. Overall, low levels of POPs were measured in all samples. Although POP levels and accumulation patterns showed some seasonal variation, the magnitude and direction of change was not consistent among species. Overall, seasonality in bioaccumulation in benthic biota was less pronounced than in the pelagic system in Kongsfjorden. In addition, the results indicate that δ(15)N is not a good predictor for POP-levels in benthic food chains. Other factors, such as feeding strategy (omnivory, necrophagy versus herbivory), degree of contact with the sediment, and a high dependence on particulate organic matter (POM), with low POP-levels and high δ(15)N-values (due to bacterial isotope enrichment), seem to govern the uptake of the different POPs and result in loads deviating from what would be expected consulting the trophic position alone. PMID:26519572

  8. Floc-forming properties of polyphosphate accumulating organisms in activated sludge.

    PubMed

    Larsen, P; Eriksen, P S; Lou, M A; Thomsen, T R; Kong, Y H; Nielsen, J L; Nielsen, P H

    2006-01-01

    The physico-chemical characteristics of polyphosphate-accumulating organisms (PAO) involved in enhanced biological phosphorus removal (EBPR) was investigated in order to find a novel method for phosphorus recovery. If the physico-chemical characteristics of PAO are different from those of other main floc components, it may be possible to enrich PAO in bulk water or in the floc material for improved recovery of phosphorus. A combination of shear tests, chemical manipulation, and quantification of PAO by fluorescence in situ hybridization was applied. The microcolony strength of both Rhodocyclus-related PAO and Actinobacteria-related PAO was generally high as no treatment could break up more than 20% of all PAO in microcolonies. In contrast, it was possible to remove 20-40% of the organic matter and other bacterial cells by applying a high pH value or adding EDTA. With that a selective enrichment of PAO in the remaining floc material was possible. The feasibility of applying this selective PAO enrichment in flocs remains to be evaluated in full-scale plants for P-recovery. PMID:16898159

  9. Scavenging of soluble organic matter from the prebiotic oceans.

    PubMed

    Nissenbaum, A

    1976-12-01

    The existence of hot or cold "nutrient broth" or "primeval soup" is challenged on the basis of the recent geochemistry of soluble organic carbon in the oceans. Most of the dissolved organic carbon is recycled quickly by organisms, but the residual, biologically refractive, organic matter is efficiently scavenged from the oceans (residence time of 1000 to 3500 years) by nonbiologically mediated chemical and physical processes, such as adsorption on sinking minerals, polymerization and aggregation to humic type polymers or by aggregation to particulate matter through bubbling and sinking of this material to the ocean bottom. Since there is no reason to believe that such nonbiological scavenging was not operative in the prebiotic oceans as well, then the prolonged existence of "organic soup" is very doubtful. The question of the origin of life is thus assumed to be related to solid-liquid interfacial activity, and the answer may be associated with sediment-water interaction rather than with solution chemistry.

  10. Detection of organic matter in interstellar grains.

    PubMed

    Pendleton, Y J

    1997-06-01

    Star formation and the subsequent evolution of planetary systems occurs in dense molecular clouds, which are comprised, in part, of interstellar dust grains gathered from the diffuse interstellar medium (DISM). Radio observations of the interstellar medium reveal the presence of organic molecules in the gas phase and infrared observational studies provide details concerning the solid-state features in dust grains. In particular, a series of absorption bands have been observed near 3.4 microns (approximately 2940 cm-1) towards bright infrared objects which are seen through large column densities of interstellar dust. Comparisons of organic residues, produced under a variety of laboratory conditions, to the diffuse interstellar medium observations have shown that aliphatic hydrocarbon grains are responsible for the spectral absorption features observed near 3.4 microns (approximately 2940 cm-1). These hydrocarbons appear to carry the -CH2- and -CH3 functional groups in the abundance ratio CH2/CH3 approximately 2.5, and the amount of carbon tied up in this component is greater than 4% of the cosmic carbon available. On a galactic scale, the strength of the 3.4 microns band does not scale linearly with visual extinction, but instead increases more rapidly for objects near the Galactic Center. A similar trend is noted in the strength of the Si-O absorption band near 9.7 microns. The similar behavior of the C-H and Si-O stretching bands suggests that these two components may be coupled, perhaps in the form of grains with silicate cores and refractory organic mantles. The ubiquity of the hydrocarbon features seen in the near infrared near 3.4 microns throughout out Galaxy and in other galaxies demonstrates the widespread availability of such material for incorporation into the many newly forming planetary systems. The similarity of the 3.4 microns features in any organic material with aliphatic hydrocarbons underscores the need for complete astronomical observational

  11. Influence of organic matter on collembolan communities in reedbed habitats

    NASA Astrophysics Data System (ADS)

    Uteseny, K.; Drapela, T.; Frouz, J.

    2009-04-01

    The combination of the organic matter, micro-climatic environments and plant cover belongs to important factors for the distribution of soil meso-fauna, especially Collembola. There are no studies attending to these factors on collembolan communities in reedbed vegetation. The main goals of our investigation were therefore to compare diversity of Collembola in redbed habitats of Lake Neudsiedl, eastern Austria, and to assess particularly the role of organic matter with regard to the collembolan community structure. Soil samples were taken from April 1997 to October 1997 at fifteen study sites covered with Phragmatis australis of different age. Changes in the structure and composition of the assemblages of Collembola were examined.

  12. Isotopic composition of hydrogen in insoluble organic matter from cherts

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, R. V.; Epstein, S.

    1991-01-01

    Robert (1989) reported the presence of unusually enriched hydrogen in the insoluble HF-HCl residue extracted from two chert samples of Eocene and Pliocene ages. Since the presence of heavy hydrogen might be due to the incorporation of extraterrestrial materials, we desired to reexamine the same samples to isolate the D-rich components. Our experiments did not reveal any D-rich components, but the hydrogen isotope composition of the insoluble residue of the two chert samples was well within the range expected for terrestrial organic matter. We also describe a protocol that needs to be followed in the hydrogen isotope analysis of any insoluble organic matter.

  13. Organic matter dynamics in four seasonally flooded forest communities of the Dismal Swamp

    SciTech Connect

    Megonigal, J.P.; Day, F.P. Jr. Old Dominion Univ., Norfolk, VA )

    1988-09-01

    Budgets of organic matter dynamics for plant communities of the Great Dismal Swamp were developed to summarize an extensive data base, determine patterns of biomass allocation, transfer and accumulation, and make comparisons with other forested wetlands. Above ground net primary production on the flooded sites (1,050-1,176 g m{sup {minus}2} yr{sup {minus}1}) was significant greater than on a rarely flooded site (831 g m{sup {minus}2} yr{sup {minus}1}). Estimates of below ground net primary production were comparable to above ground production on flooded sites (824-1,221 gm{sup {minus}2} yr{sup {minus}1}). However, productivity was nearly three times greater below ground than above ground on the rarely flooded site (2,256 g m{sup {minus}2} yr{sup {minus}1}). Above ground productivity in Dismal Swamp forests is relatively high compared to other forested wetlands. This is attributed to the timing and periodic nature of flood events. Fine root turnover is shown to be an important source of soil organic matter. Estimates indicate that roots contribute about 60% of the annual increment to soil organic matter. Leaf litter contributes 6-28% and wood debris contributes 5-15%. Comparisons with other forested wetlands suggest that detritus accounts for greater than half of the total organic matter (living + dead) in many wetland systems.

  14. Functional agroecological role of soil organic matter in Yili steppe Chernozem

    NASA Astrophysics Data System (ADS)

    Ilahun, Akbar

    2015-04-01

    Steppe meadow Chernozems are traditionally considered as richest soils in Yili region due to their high content of soil organic matter (SOM), available for crops nitrogen, phosphorus and potassium. In mountain conditions they are characterized by increased spatial variability that need take into consideration in procedure of these lands agroecological evaluation and recommendation development for land-use agroecological optimizing. The regional agroecological monitoring has been done with support of NSFC Project # 41461048 to study local regularities of SOM profile distribution, its effect on the available N, P, K content differentiation with soil depth, and the contrary, profile changes in pH values impact on the humus accumulation (SOM = -82.108* pH+734.124, r2=0.760). The monitoring results have shown the extremely significant correlation (P<0.01) between topsoil organic matter and available N (SOM =1.445*N+24.008, r2=0.511). Usually there are significant or extremely significant positive correlation (P<0.01) between different horizons' soil organic matter and available K too (SOM =0.594*K-85.490, r2=0.672). The correlation between organic matter and available P contents didn't reach significant level, but they are enough closed too (SOM =3.079*P, r2=0.438). Obtained result will be useful for similar land agroecological quality prediction and sustainable land-use planning with maximum use of the steppe meadow Chernozems' resources.

  15. Andic soils : mineralogical effect onto organic matter dynamics, organic matter effect onto mineral dynamics, or both?

    NASA Astrophysics Data System (ADS)

    Basile-Doelsch, Isabelle; Amundson, Ronald; Balesdent, Jérome; Borschneck, Daniel; Bottero, Jean-Yves; Colin, Fabrice; de Junet, Alexis; Doelsch, Emmanuel; Legros, Samuel; Levard, Clément; Masion, Armand; Meunier, Jean-Dominique; Rose, Jérôme

    2014-05-01

    From a strictly mineralogical point of view, weathering of volcanic glass produces secondary phases that are short range ordered alumino-silicates (SRO-AlSi). These are imogolite tubes (2 to 3 nm of diameter) and allophane supposedly spheres (3.5 to 5 nm). Their local structure is composed of a curved gibbsite Al layer and Si tetrahedra in the vacancies (Q0). Proto-imogolites have the same local structure but are roof-shape nanoparticles likely representing the precursors of imogolite and allophanes (Levard et al. 2010). These structures and sizes give to the SRO-AlSi large specific surfaces and high reactivities. In some natural sites, imogolites and allophanes are formed in large quantities. Aging of these phases may lead to the formation of more stable minerals (halloysite, kaolinite and gibbsite) (Torn et al 1997). In natural environments, when the weathering of volcanic glass is associated with the establishment of vegetation, the soils formed are generally andosols. These soils are particularly rich in organic matter (OM), which is explained by the high ability of SRO-AlSi mineral phases to form bonds with organic compounds. In a first order "bulk" approach, it is considered that these bonds strongly stabilize the organic compounds as their mean age can reach more than 10 kyrs in some studied sites (Basile-Doelsch et al. 2005; Torn et al. 1997). However, the structure of the mineral phases present in andosols deserves more attention. Traditionally, the presence in the SRO-AlSi andosols was shown by selective dissolution approaches by oxalate and pyrophosphate. Using spectroscopic methods, mineralogical analysis of SRO-AlSi in andosols samples showed that these mineral phases were neither imogolites nor allophanes as originally supposed, but only less organized structures remained in a state of proto-imogolites (Basile-Doelsch al. 2005 ; Levard et al., 2012). The presence of OM would have an inhibitory effect on the formation of secondary mineral phases, by

  16. Composition of dissolved organic matter in groundwater

    NASA Astrophysics Data System (ADS)

    Longnecker, Krista; Kujawinski, Elizabeth B.

    2011-05-01

    Groundwater constitutes a globally important source of freshwater for drinking water and other agricultural and industrial purposes, and is a prominent source of freshwater flowing into the coastal ocean. Therefore, understanding the chemical components of groundwater is relevant to both coastal and inland communities. We used electrospray ionization coupled with Fourier-transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to examine dissolved organic compounds in groundwater prior to and after passage through a sediment-filled column containing microorganisms. The data revealed that an unexpectedly high proportion of organic compounds contained nitrogen and sulfur, possibly due to transport of surface waters from septic systems and rain events. We matched 292 chemical features, based on measured mass:charge ( m/z) values, to compounds stored in the Kyoto Encyclopedia of Genes and Genomes (KEGG). A subset of these compounds (88) had only one structural isomer in KEGG, thus supporting tentative identification. Most identified elemental formulas were linked with metabolic pathways that produce polyketides or with secondary metabolites produced by plants. The presence of polyketides in groundwater is notable because of their anti-bacterial and anti-cancer properties. However, their relative abundance must be quantified with appropriate analyses to assess any implications for public health.

  17. Characterization of water dissolved organic matter under woody vegetation patches in semi-arid Mediterranean soils.

    PubMed

    Cerdán, M; Sánchez-Sánchez, A; Jordá, J D; Amat, B; Cortina, J; Ruiz-Vicedo, N; El-Khattabi, M

    2016-05-15

    Woody patches in semiarid environments favor the establishment of other plants. Facilitation may be favored by an increase in soil fertility. Dissolved organic matter (DOM), is the most active fraction of soil organic matter and may contain compounds affecting plant establishment, as allelochemicals, hormone-like substances and metal carriers. However, information on DOM contents and composition in these environments is scarce. In this paper, we study the impact of woody patches on DOM in Stipa tenacissima L. steppes and discuss its implications for community dynamics. DOM under patch- and inter-patch areas, was analyzed for elemental composition, UV-Vis indices and organic acid content. Element concentration and composition in DOM, and organic acid concentration were similar in patch- and inter-patch areas. Yet, soils under patches were richer in DOC, aromatic species and organic acids (particularly fumaric acid) than soils in inter-patch areas. Dominant species affected organic matter concentration and quality in complex ways. Thus, patches dominated by Ephedra fragilis showed higher concentrations of TOC and aromatics than those dominated by other species. Rhamnus lycioides patches showed the highest accumulation of fumaric acid, which may contribute to its successful recruitment rate and expansion in the area. Our results show substantial differences in the amount and composition of DOM and specific compounds affecting soil functionality and plant dynamics. Further studies on the effects of such changes on seedling performance are needed to increase our understanding of plant-plant interactions in semiarid environments. PMID:26930307

  18. Interstellar and Solar System Organic Matter Preserved in Interplanetary Dust

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Nakamura-Messenger, Keiko

    2015-01-01

    Interplanetary dust particles (IDPs) collected in the Earth's stratosphere derive from collisions among asteroids and by the disruption and outgassing of short-period comets. Chondritic porous (CP) IDPs are among the most primitive Solar System materials. CP-IDPs have been linked to cometary parent bodies by their mineralogy, textures, C-content, and dynamical histories. CP-IDPs are fragile, fine-grained (less than um) assemblages of anhydrous amorphous and crystalline silicates, oxides and sulfides bound together by abundant carbonaceous material. Ancient silicate, oxide, and SiC stardust grains exhibiting highly anomalous isotopic compositions are abundant in CP-IDPs, constituting 0.01 - 1 % of the mass of the particles. The organic matter in CP-IDPs is isotopically anomalous, with enrichments in D/H reaching 50x the terrestrial SMOW value and 15N/14N ratios up to 3x terrestrial standard compositions. These anomalies are indicative of low T (10-100 K) mass fractionation in cold molecular cloud or the outermost reaches of the protosolar disk. The organic matter shows distinct morphologies, including sub-um globules, bubbly textures, featureless, and with mineral inclusions. Infrared spectroscopy and mass spectrometry studies of organic matter in IDPs reveals diverse species including aliphatic and aromatic compounds. The organic matter with the highest isotopic anomalies appears to be richer in aliphatic compounds. These materials also bear similarities and differences with primitive, isotopically anomalous organic matter in carbonaceous chondrite meteorites. The diversity of the organic chemistry, morphology, and isotopic properties in IDPs and meteorites reflects variable preservation of interstellar/primordial components and Solar System processing. One unifying feature is the presence of sub-um isotopically anomalous organic globules among all primitive materials, including IDPs, meteorites, and comet Wild-2 samples returned by the Stardust mission.

  19. Caracterisation of anthropogenic contribution to the coastal fluorescent organic matter

    NASA Astrophysics Data System (ADS)

    El Nahhal, Ibrahim; Nouhi, Ayoub; Mounier, Stéphane

    2015-04-01

    It is known that most of the coastal fluorescent organic matter is of a terrestrial origin (Parlanti, 2000; Tedetti, Guigue, & Goutx, 2010). However, the contribution of the anthropogenic organic matter to this pool is not well defined and evaluated. In this work the monitoring of little bay (Toulon Bay, France) was done in the way to determine the organic fluorescent response during a winter period. The sampling campaign consisted of different days during the month of December, 2014 ( 12th, 15th, 17th, 19th) on 21 different sampling sites for the fluorescence measurements (without any filtering of the samples) and the whole month of December for the bacterial and the turbidity measurements. Excitation Emission Matrices (EEMs) of fluorescence (from 200 to 400 nm and 220 to 420 nm excitation and emission range) were treated by parallel factor analysis (PARAFAC).The parafac analysis of the EEM datasets was conducted using PROGMEEF software in Matlab langage. On the same time that the turbidity and bacterial measurement (particularly the E.Coli concentration) were determined. The results gives in a short time range, information on the the contribution of the anthropogenic inputs to the coastal fluorescent organic matter. In addition, the effect of salinity on the photochemical degradation of the anthropogenic organic matter (especially those from wastewater treatment plants) will be studied to investigate their fate in the water end member by the way of laboratory experiments. Parlanti, E. (2000). Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organic Geochemistry, 31(12), 1765-1781. doi:10.1016/S0146-6380(00)00124-8 Tedetti, M., Guigue, C., & Goutx, M. (2010). Utilization of a submersible UV fluorometer for monitoring anthropogenic inputs in the Mediterranean coastal waters. Marine Pollution Bulletin, 60(3), 350-62. doi:10.1016/j.marpolbul.2009.10.018

  20. Adsorption combined with ultrafiltration to remove organic matter from seawater.

    PubMed

    Tansakul, Chatkaew; Laborie, Stéphanie; Cabassud, Corinne

    2011-12-01

    Organic fouling and biofouling are the major severe types of fouling of reverse osmosis (RO) membranes in seawater (SW) desalination. Low pressure membrane filtration such as ultrafiltration (UF) has been developed as a pre-treatment before reverse osmosis. However, UF alone may not be an effective enough pre-treatment because of the existence of low-molecular weight dissolved organic matter in seawater. Therefore, the objective of the present work is to study a hybrid process, powdered activated carbon (PAC) adsorption/UF, with real seawater and to evaluate its performance in terms of organic matter removal and membrane fouling. The effect of different PAC types and concentrations is evaluated. Stream-activated wood-based PAC addition increased marine organic matter removal by up to 70% in some conditions. Moreover, coupling PAC adsorption with UF decreased UF membrane fouling and the fouling occurring during short-term UF was totally reversible. It can be concluded that the hybrid PAC adsorption/UF process performed in crossflow filtration mode is a relevant pre-treatment process before RO desalination, allowing organic matter removal of 75% and showing no flux decline for short-term experiments. PMID:21996607

  1. Adsorption combined with ultrafiltration to remove organic matter from seawater.

    PubMed

    Tansakul, Chatkaew; Laborie, Stéphanie; Cabassud, Corinne

    2011-12-01

    Organic fouling and biofouling are the major severe types of fouling of reverse osmosis (RO) membranes in seawater (SW) desalination. Low pressure membrane filtration such as ultrafiltration (UF) has been developed as a pre-treatment before reverse osmosis. However, UF alone may not be an effective enough pre-treatment because of the existence of low-molecular weight dissolved organic matter in seawater. Therefore, the objective of the present work is to study a hybrid process, powdered activated carbon (PAC) adsorption/UF, with real seawater and to evaluate its performance in terms of organic matter removal and membrane fouling. The effect of different PAC types and concentrations is evaluated. Stream-activated wood-based PAC addition increased marine organic matter removal by up to 70% in some conditions. Moreover, coupling PAC adsorption with UF decreased UF membrane fouling and the fouling occurring during short-term UF was totally reversible. It can be concluded that the hybrid PAC adsorption/UF process performed in crossflow filtration mode is a relevant pre-treatment process before RO desalination, allowing organic matter removal of 75% and showing no flux decline for short-term experiments.

  2. A marine sink for chlorine in natural organic matter

    NASA Astrophysics Data System (ADS)

    Leri, Alessandra C.; Mayer, Lawrence M.; Thornton, Kathleen R.; Northrup, Paul A.; Dunigan, Marisa R.; Ness, Katherine J.; Gellis, Austin B.

    2015-08-01

    Chloride--the most abundant ion in sea water--affects ocean salinity, and thereby seawater density and ocean circulation. Its lack of reactivity gives it an extremely long residence time. Other halogens are known to be incorporated into marine organic matter. However, evidence of similar transformations of seawater chloride is lacking, aside from emissions of volatile organochlorine by marine algae. Here we report high organochlorine concentrations from 180 to 700 mg kg-1 in natural particulate organic matter that settled into sediment traps at depths between 800 and 3,200 m in the Arabian Sea, taken between 1994 and 1995. X-ray spectromicroscopic imaging of chlorine bonding reveals that this organochlorine exists primarily in concentrated aliphatic forms consistent with lipid chlorination, along with a more diffuse aromatic fraction. High aliphatic organochlorine in particulate material from cultured phytoplankton suggests that primary production is a source of chlorinated organic matter. We also found that particulate algal detritus can act as an organic substrate for abiotic reactions involving Fe2+, H2O2 or light that incorporate chlorine into organic matter at levels up to several grams per kilogram. We conclude that transformations of marine chloride to non-volatile organochlorine through biological and abiotic pathways represent an oceanic sink for this relatively unreactive element.

  3. [Leaf micro-morphology and features in adsorbing air suspended particulate matter and accumulating heavy metals in seven trees species].

    PubMed

    Liu, Ling; Fang, Yan-Ming; Wang, Shun-Chang; Xie, Ying; Yang, Dan-Dan

    2013-06-01

    The purpose of this study was to assess the relationship between tree leaf micro-morphology and features in adsorbing air suspended particulate matter and accumulating heavy metals. Seven tree species, including Ginkgo biloba, at heavy traffic density site in Huainan were selected to analyze the frequency of air particulate matter retained by leaves, the particle amount of different sizes per unit leaf area retained by leaves and its related micro-morphology structure, and the relationship between particle amount of different sizes per unit leaf area retained by leaves and its related accumulation of heavy metals. We found that the species characterized by small leaf area, special epidemis with abundant fax, and highly uneven cell wall, as well as big and dense stomata and without trichomes mainly absorbed fine particulate matter; while those species with many trichomes mainly retained coarse particulate matter. Accumulation of heavy metals in leaves of the seven species was significantly different except for Ph. Tree species with high capacities in heavy metal accumulation were Ginkgo biloba, Ligustrum lucidum, and Cinnamomum camphora. Accumulation of Cd, Cr, Ni, Zn, Cu and total heavy metal concentration for seven tree species was positively related to the amount of particulate matter absorbed. Correlation coefficients of d10 vs d2.5, d10 vs d1.0, d2.5 vs d1.0 were 0.987, 0.971, 0.996, respective, and the correlate level was significant. The ratios of d2.5/d10, d1.0/d10, d1.0/d2.5 were 0.844, 0.763, 0.822, indicating that the particulate matter from traffic was mainly fine particulates. PMID:23947057

  4. Search for Organic Matter in Leonid Meteoroids

    NASA Technical Reports Server (NTRS)

    Rairden, Richard L.; Jenniskens, Peter; Laux, Christophe O.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Near-ultraviolet 300-410 nm spectra of Leonid meteors were obtained in an effort to measure the strong B to X emission band of the radical CN in Leonid meteor spectra at 387 nm. CN is an expected product of ablation of nitrogen containing organic carbon in the meteoroids as well as a possible product of the aerothermochemistry induced by the kinetic energy of the meteor. A slitless spectrograph with objective grating was deployed on FISTA during the 1999 Leonid Multi-Instrument Aircraft Campaign. Fifteen first-order UV spectra were captured near the 02:00 UT meteor storm peak on November 18. It is found that neutral iron lines dominate the spectrum, with no clear sign of the CN band. The meteor plasma contains less than one CN molecule per three Fe atoms at the observed altitude of about 100 km.

  5. Aggregation of organic matter by pelagic tunicates

    SciTech Connect

    Pomeroy, L.R.; Deibel, D.

    1980-07-01

    Three genera of pelagic tunicates were fed concentrates of natural seston and an axenic diatom culture. Fresh and up to 4-day-old feces resemble flocculent organic aggregates containing populations of microorganisms, as described from highly productive parts of the ocean, and older feces resemble the nearly sterile flocculent aggregates which are ubiquitous in surface waters. Fresh feces consist of partially digested phytoplankton and other inclusions in an amorphous gelatinous matrix. After 18 to 36 h, a population of large bacteria develops in the matrix and in some of the remains of phytoplankton contained in the feces. From 48 to 96 h, protozoan populations arise which consume the bacteria and sometimes the remains of the phytoplankton in the feces. Thereafter only a sparse population of microorganisms remains, and the particles begin to fragment. Water samples taken in or below dense populations of salps and doliolids contained greater numbers of flocculent aggregates than did samples from adjacent stations.

  6. Analysis of the Organic Matter in Interplanetary Dust Particles: Clues to the Organic Matter in Comets, Asteroids, and Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.

    2003-01-01

    Reflection spectroscopy suggests the C- , P-, and D-types of asteroids contain abundant carbon, but these Vis-nearIR spectra are featureless, providing no information on the type(s) of carbonaceous matter. Infrared spectroscopy demonstrates that organic carbon is a significant component in comets and as grains or grain coatings in the interstellar medium. Most of the interplanetary dust particles (IDPs) recovered from the Earth s stratosphere are believed to be fragments from asteroids or comets, thus characterization of the carbon in IDPs provides the opportunity to determine the type(s) and abundance of organic matter in asteroids and comets. Some IDPs exhibit isotopic excesses of D and N-15, indicating the presence of interstellar material. The characterization of the carbon in these IDPs, and particularly any carbon spatially associated with the isotopic anomalies, provides the opportunity to characterize interstellar organic matter.

  7. Factors influencing cadmium accumulation and its toxicity to marine organisms

    PubMed Central

    Engel, David W.; Fowler, Bruce A.

    1979-01-01

    The toxicity of dissolved cadmium to a variety of marine animals has been found to be related to salinity, with decreased toxicity observed at higher salinities. Recent data from our laboratory have demonstrated that the toxicity of cadmium to estuarine shrimp and larval fish is a function of free cadmium ion concentration, which in turn is controlled by the chloride concentration of the water. As the chloride concentration (i.e., salinity of the water) increases, the concentration of free cadmium ion decreases relative to total dissolved metal, due to its complexation with chloride ions. These observations have been given further support by measurements involving the uptake of 115mCd by shrimp which showed that accumulation of 115mCd and chloride concentration also are inversely related. Experiments also have been conducted on the physiological effects of cadmium on the respiration of excised oyster gill tissue. Although tissues from oysters exposed for 14 days to 0.1 ppm total dissolved cadmium accumulated significant quantities of metal, no measurable effects on respiration rates were detected. Higher doses (0.3 and 0.6 ppm) caused both mortalities of oysters and accelerated respiration of excised oyster gill. Exposure to 0.1 ppm cadmium also caused the induction of and/or increased binding of cadmium to a specific low molecular weight protein in oysters. This protein appeared to have a detoxification function at low cadmium exposure levels, but in animals exposed to 0.6 ppm cadmium the induction mechanism apparently became saturated, allowing the excess cadmium to bind critical sites with resultant damage. PMID:488052

  8. White Matter Hyperintensity Accumulation During Treatment of Late-Life Depression.

    PubMed

    Khalaf, Alexander; Edelman, Kathryn; Tudorascu, Dana; Andreescu, Carmen; Reynolds, Charles F; Aizenstein, Howard

    2015-12-01

    White matter hyperintensities (WMHs) have been shown to be associated with the development of late-life depression (LLD) and eventual treatment outcomes. This study sought to investigate longitudinal WMH changes in patients with LLD during a 12-week antidepressant treatment course. Forty-seven depressed elderly patients were included in this analysis. All depressed subjects started pharmacological treatment for depression shortly after a baseline magnetic resonance imaging (MRI) scan. At 12 weeks, patients underwent a follow-up MRI scan, and were categorized as either treatment remitters (n=23) or non-remitters (n=24). Among all patients, there was as a significant increase in WMHs over 12 weeks (t(46)=2.36, P=0.02). When patients were stratified by remission status, non-remitters demonstrated a significant increase in WMHs (t(23)=2.17, P=0.04), but this was not observed in remitters (t(22)=1.09, P=0.29). Other markers of brain integrity were also investigated including whole brain gray matter volume, hippocampal volume, and fractional anisotropy. No significant differences were observed in any of these markers during treatment, including when patients were stratified based on remission status. These results add to existing literature showing the association between WMH accumulation and LLD treatment outcomes. Moreover, this is the first study to demonstrate similar findings over a short interval (ie 12 weeks), which corresponds to the typical length of an antidepressant trial. These findings serve to highlight the acute interplay of cerebrovascular ischemic disease and LLD. PMID:26058663

  9. Microbial community composition of polyhydroxyalkanoate-accumulating organisms in full-scale wastewater treatment plants operated in fully aerobic mode.

    PubMed

    Oshiki, Mamoru; Onuki, Motoharu; Satoh, Hiroyasu; Mino, Takashi

    2013-01-01

    The removal of biodegradable organic matter is one of the most important objectives in biological wastewater treatments. Polyhydroxyalkanoate (PHA)-accumulating organisms (PHAAOs) significantly contribute to the removal of biodegradable organic matter; however, their microbial community composition is mostly unknown. In the present study, the microbial community composition of PHAAOs was investigated at 8 full-scale wastewater treatment plants (WWTPs), operated in fully aerobic mode, by fluorescence in situ hybridization (FISH) analysis and post-FISH Nile blue A (NBA) staining techniques. Our results demonstrated that 1) PHAAOs were in the range of 11-18% in the total number of cells, and 2) the microbial community composition of PHAAOs was similar at the bacterial domain/phylum/class/order level among the 8 full-scale WWTPs, and dominant PHAAOs were members of the class Alphaproteobacteria and Betaproteobacteria. The microbial community composition of α- and β-proteobacterial PHAAOs was examined by 16S rRNA gene clone library analysis and further by applying a set of newly designed oligonucleotide probes targeting 16S rRNA gene sequences of α- or β-proteobacterial PHAAOs. The results demonstrated that the microbial community composition of PHAAOs differed in the class Alphaproteobacteria and Betaproteobacteria, which possibly resulted in a different PHA accumulation capacity among the WWTPs (8.5-38.2 mg-C g-VSS(-1) h(-1)). The present study extended the knowledge of the microbial diversity of PHAAOs in full-scale WWTPs operated in fully aerobic mode. PMID:23257912

  10. Black carbon contributes to organic matter in young soils in the Morteratsch proglacial area (Switzerland)

    NASA Astrophysics Data System (ADS)

    Eckmeier, E.; Mavris, C.; Krebs, R.; Pichler, B.; Egli, M.

    2012-10-01

    Most glacier forefields of the European Alps are progressively exposed since the glaciers reached their maximum expansion in the 1850s. Global warming and climate changes additionally promote the exposure of sediments in previously glaciated areas. In these proglacial areas, initial soils have started to develop so that they may offer a continuous chronosequence from 0 to 150 yr-old soils. The build-up of organic matter is an important factor of soil formation, and not only autochthonous but also distant sources might contribute to its accumulation in young soils and surfaces of glacier forefields. Only little is known about black carbon in soils that develop in glacier forefields, although charred organic matter could be an important component of organic carbon in Alpine soils. The aim of our study was to examine whether black carbon is present in the initial soils of a proglacial area, and to estimate its relative contribution to soil organic matter. We investigated soil samples from 35 sites distributed over the whole proglacial area of Morteratsch, covering a chronosequence from 0 to 150 yr. BC concentrations were determined in fine-earth using the benzene polycarboxylic acid (BPCA) marker method. We found that the proportion of BC to total Corg was related to the time since the surface was exposed. Soils on surfaces exposed less than 40 yr ago contained the highest proportion of BC. The absolute concentrations of BC in fine-earth were generally low but increased in soils that had been exposed for more than 40 yr. Charred organic matter occurred in the whole area, and it was a main component of soil organic matter in young soils, where total Corg concentrations were very low. Specific initial microbial communities consequently may profit from this additional C source during the first years of soil evolution and potentially promote soil development in its early stage.

  11. Black carbon contributes to organic matter in young soils in the Morteratsch proglacial area (Switzerland)

    NASA Astrophysics Data System (ADS)

    Eckmeier, E.; Mavris, C.; Krebs, R.; Pichler, B.; Egli, M.

    2013-03-01

    Most glacier forefields of the European Alps are being progressively exposed since the glaciers reached their maximum expansion in the 1850s. Global warming and climate changes additionally promote the exposure of sediments in previously glaciated areas. In these proglacial areas, initial soils have started to develop so that they may offer a continuous chronosequence from 0 to 150-yr-old soils. The build-up of organic matter is an important factor of soil formation, and not only autochthonous but also distant sources might contribute to its accumulation in young soils and surfaces of glacier forefields. Only little is known about black carbon in soils that develop in glacier forefields, although charred organic matter could be an important component of organic carbon in Alpine soils. The aim of our study was to examine whether black carbon (BC) is present in the initial soils of a proglacial area, and to estimate its relative contribution to soil organic matter. We investigated soil samples from 35 sites distributed over the whole proglacial area of Morteratsch (Upper Engadine, Switzerland), covering a chronosequence from 0 to 150 yr. BC concentrations were determined in fine earth using the benzene polycarboxylic acid (BPCA) marker method. We found that charred organic matter occurred in the whole area, and that it was a main compound of soil organic matter in the youngest soils, where total Corg concentrations were very low. The absolute concentrations of BC in fine earth were generally low but increased in soils that had been exposed for more than 40 yr. Specific initial microbial communities may profit from this additional C source during the first years of soil evolution and potentially promote soil development in its early stage.

  12. The Relationship Between Dissolved Organic Matter Composition and Organic Matter Optical Properties in Freshwaters

    NASA Astrophysics Data System (ADS)

    Aiken, G.; Spencer, R. G.; Butler, K.

    2010-12-01

    Dissolved organic matter (DOM) chemistry and flux are potentially useful, albeit, underutilized, indicators of watershed characteristics, climate influences on watershed hydrology and soils, and changes associated with resource management. Source materials, watershed geochemistry, oxidative processes and hydrology exert strong influences on the nature and reactivity of DOM in aquatic systems. The molecules that comprise DOM, in turn, control a number of environmental processes important for ecosystem function including light penetration and photochemistry, microbial activity, mineral dissolution/precipitation, and the transport and reactivity of hydrophobic compounds and metals (e.g. Hg). In particular, aromatic molecules derived from higher plants exert strong controls on aquatic photochemistry, and on the transport and biogeochemistry of metals. Assessment of DOM composition and transport, therefore, can provide a basis for understanding watershed processes and biogeochemistry of rivers and streams. Here we present results of multi-year studies designed to assess the seasonal and spatial variability of DOM quantity and quality for 57 North American Rivers. DOM concentrations and composition, based on DOM fractionation on XAD resins, ultraviolet (UV)/visible absorption and fluorescence spectroscopic analyses, and specific compound analyses, varied greatly both between sites and seasonally within a given site. DOM in these rivers exhibited a wide range of concentration (<80 to >4000 µM C* L-1) and specific ultra-violet absorbance at 254 nm (SUVA254) (0.6 to 5 L *mg C-1 *m-1), an optical measurement that is an indicator of aromatic carbon content. In almost all systems, UV absorbance measured at specific wavelengths (e.g. 254 nm) correlated strongly with DOM and hydrophobic organic acid (HPOA) content (aquatic humic substances). The relationships between dissolved organic carbon (DOC) concentration and absorbance for the range of systems were quite variable due to

  13. Calculation of the enthalpy of formation of coal organic matter

    SciTech Connect

    A.M. Gyul'maliev; M.Ya. Shpirt

    2008-10-15

    The enthalpy of formation for the organic matter of coals in the coal rank series was calculated from the heat of the complete combustion reaction. Three variants were considered in which the experimental heating values and the values found from the correlation equation or calculated using the Mendeleev formula were taken as the heat of the complete combustion of coals.

  14. Photoproduction of Carbon Monoxide from Natural Organic Matter

    EPA Science Inventory

    Pioneering studies by Valentine provided early kinetic results that used carbon monoxide (CO) production to evaluate the photodecomposition of aquatic natural organic matter (NOM) . (ES&T 1993 27 409-412). Comparatively few kinetic studies have been conducted of the photodegradat...

  15. Lyophilization and Reconstitution of Reverse Osmosis Concentrated Natural Organic Matter

    EPA Science Inventory

    Disinfection by-product (DBP) research can be complicated by difficulties in shipping large water quantities and changing natural organic matter (NOM) characteristics over time. To overcome these issues, it is advantageous to have a reliable method for concentrating and preservin...

  16. Quenching and Sensitizing Fullerene Photoreactions by Natural Organic Matter

    EPA Science Inventory

    Effects of natural organic matter (NOM) on the photoreaction kinetics of fullerenes (i.e., C60 and fullerenol) were investigated using simulated sunlight and monochromatic radiation (365 nm). NOM from several sources quenched (slowed) the photoreaction of C60 aggregates in water ...

  17. Organic matter in a coal ball: Peat or coal?

    USGS Publications Warehouse

    Hatcher, P.G.; Lyons, P.C.; Thompson, C.L.; Brown, F.W.; Maciel, G.E.

    1982-01-01

    Chemical analyses of morphologically preserved organic matter in a Carboniferous coal ball reveal that the material is coalified to a rank approximately equal to that of the surrounding coal. Hence, the plant tissues in the coal ball were chemically altered by coalification processes and were not preserved as peat. Copyright ?? 1982 AAAS.

  18. Tracing organic matter composition and distribution and its role on arsenic release in shallow Cambodian groundwaters

    NASA Astrophysics Data System (ADS)

    Lawson, Michael; Polya, David A.; Boyce, Adrian J.; Bryant, Charlotte; Ballentine, Christopher J.

    2016-04-01

    Biogeochemical processes that utilize dissolved organic carbon are widely thought to be responsible for the liberation of arsenic from sediments to shallow groundwater in south and southeast Asia. The accumulation of this known carcinogen to hazardously high concentrations has occurred in the primary source of drinking water in large parts of densely populated countries in this region. Both surface and sedimentary sources of organic matter have been suggested to contribute dissolved organic carbon in these aquifers. However, identification of the source of organic carbon responsible for driving arsenic release remains enigmatic and even controversial. Here, we provide the most extensive interrogation to date of the isotopic signature of ground and surface waters at a known arsenic hotspot in Cambodia. We present tritium and radiocarbon data that demonstrates that recharge through ponds and/or clay windows can transport young, surface derived organic matter into groundwater to depths of 44 m under natural flow conditions. Young organic matter dominates the dissolved organic carbon pool in groundwater that is in close proximity to these surface water sources and we suggest this is likely a regional relationship. In locations distal to surface water contact, dissolved organic carbon represents a mixture of both young surface and older sedimentary derived organic matter. Ground-surface water interaction therefore strongly influences the average dissolved organic carbon age and how this is distributed spatially across the field site. Arsenic mobilization rates appear to be controlled by the age of dissolved organic matter present in these groundwaters. Arsenic concentrations in shallow groundwaters (<20 m) increase by 1 μg/l for every year increase in dissolved organic carbon age compared to only 0.25 μg/l for every year increase in dissolved organic carbon age in deeper (>20 m) groundwaters. We suggest that, while the rate of arsenic release is greatest in shallow

  19. Fractionation of halogenated organic matter present in rain and snow

    PubMed

    Laniewski; Boren; Grimvall

    1999-01-01

    Organic matter in samples of rain and snow from Sweden, Poland, Germany and the Republic of Ireland was fractionated by employing a series of filtration, purging, evaporation and extraction steps. Determinations of the group parameter AOX (adsorbable organic halogens) in aqueous phases and EOX (extractable organic halogens) in organic phases showed that halogenated organic matter present in bulk precipitation is composed of several different groups of compounds. The largest amounts of organically bound halogens were found in fractions of relatively polar and non-volatile to semivolatile compounds. In particular, a significant part of the AOX could be attributed to alkaline-labile organic bases. Gas chromatographic analysis of different organic extracts in the chlorine channel of an atomic emission detector (AED) resulted in chromatograms with few distinct peaks, and analysis in the bromine channel did not produce any distinct peaks. Chlorinated acetic acids were the most abundant halogenated organic acids, and chlorinated alkyl phosphates were normally responsible for the largest peaks in the chlorine chromatogram of neutral, hexane-extractable compounds. When analysing volatiles, 1,4-dichlorobenzene and a thus far unidentified chloroorganic compound often caused the largest response in the chlorine channel of the AED system.

  20. CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) DERIVED FROM DECOMPOSITION OF VARIOUS VASCULAR PLANT AND ALGAL SOURCES

    EPA Science Inventory

    Chromophoric dissolved organic (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organic matter...

  1. Organic and Inorganic Matter in Louisiana Coastal Waters: Vermilion, Atchafalaya, Terrebonne, Barataria, and Mississippi Regions.

    EPA Science Inventory

    Chromophoric dissolved organic matter (CDOM) spectral absorption, dissolved organic carbon (DOC) concentration, and the particulate fraction of inorganic (PIM) and organic matter (POM) were measured in Louisiana coastal waters at Vermilion, Atchafalaya, Terrebonne, Barataria, and...

  2. Molecular characterization of soil organic matter: a historic overview

    NASA Astrophysics Data System (ADS)

    Kögel-Knabner, Ingrid; Rumpel, Cornelia

    2014-05-01

    The characterization of individual molecular components of soil organic matter started in the early 19th century, but proceeded slowly. The major focus at this time was on the isolation and differentiation of different humic and fulvic acid fractions, which were considered to have a defined chemical composition and structure. The isolation and structural anlysis of specific individual soil organic matter components became more popular in the early 20th century. In 1936 40 different individual compounds had been isolated and a specific chemical strucutre had been attributed. These structural attributions were confirmed later for some, but not all of these individual compounds. In the 1950 much more individual compounds could be isolated and characterized, using complicated and time consuming chromatography. It became obvious that soil also contains a number of compounds of microbial origin, such as e.g., amino sugars and lipids. With the improvement of chrmoatographic separation techniques and the use of gas chromatography in combination with thin layerchromatography in the 1960 hundreds of individual compounds have been isolated and identified, most of them after chemical degradation of humic or fulvic acids. The chemical degradative techniques were amended with analytical pyrolysis in the 1970s. More and more, bulk soil organic matter was analyzed with these techniques and the advent of solid-stae 13C NMR spectroscopy around the 1980s allowed for the characterization of the composition of bulk soil organic matter. The gas chromatographic separation of organic matter can nowadays be combined with specific detectors, such that specific attributes ofindividual molecules can be analyzed, e.g. the radiocarbon content or the stable isotope composition.

  3. Reactivity of recently deposited organic matter: Degradation of lipid compounds near the sediment-water interface

    NASA Astrophysics Data System (ADS)

    Canuel, Elizabeth A.; Martens, Christopher S.

    1996-05-01

    The usefulness of biomarker compounds buried in marine sediments depends upon a quantita tive understanding of the effects of early diagenesis on their distribution. To address this, a new experimental approach was utilized to determine rates of degradation in a coastal sediment. Rates of degradation for solvent-extractable lipid components were quantified in four sediment horizons composed of newly accumulated organic matter (31-144 days since deposition). Sediment accumulation rate data derived from changes in the inventory of Be-7 ( t 1/2 = 53.3 days) were combined with concentration data for lipid biomarker compounds, enabling us to evaluate the reactivity of organic matter in the upper 8 cm of the rapidly accumulating sediments of Cape Lookout Bight, North Carolina, USA (CLB). Net rates of loss and rate constants were calculated for individual compounds belonging to three classes of lipids: fatty acids, sterols, and n-alkanes. Individual components showed a range in reactivity, in some cases (fatty acids), attributable to differences in their biological sources. Rates and rate constants were consistently highest in the surficial sediments (0-2.5 cm), indicating that the reactivity of a given molecule(s) decreases over time, and beginning soon after deposition. Comparison with apparent rate constants ( k') calculated over longer timescales (one and ten years) shows that steady-state diagenetic models underestimate rates of degradation at or near the sediment-water interface by an order of magnitude.

  4. Digestion of cattle manure under mesophilic and thermophilic conditions: characterization of organic matter applying thermal analysis and 1H NMR.

    PubMed

    Gómez, X; Blanco, D; Lobato, A; Calleja, A; Martínez-Núñez, F; Martin-Villacorta, J

    2011-06-01

    Digestion of cattle manure collected from a livestock farm together with bedding material (straw) has been studied under mesophilic and thermophilic conditions in batch reactors. The digestion was carried out for a prolonged period with the aim of evaluating the changes undergone by the organic matter. The mesophilic digestion carried out revealed a greater capacity to produce gas and transform organic matter, while a higher conversion rate, but a lower gas yield, was obtained under thermophilic conditions. Degradation of the organic matter was evaluated by means of thermal analysis and (1)H NMR. Stabilisation through anaerobic digestion (either mesophilic or thermophilic) resulted in an increase in the quality of the organic matter, as characterised by an enrichment in thermostable compounds, and an accumulation of long chain aliphatic materials. The experiments performed demonstrated the transformation of organic matter into complex materials under anaerobic conditions with an accumulation of aliphatic components under both types of conditions tested. Degradation through mesophilic digestion, in comparison to the thermophilic process, resulted in a greater destruction of straw particles.

  5. Digestion of cattle manure under mesophilic and thermophilic conditions: characterization of organic matter applying thermal analysis and 1H NMR.

    PubMed

    Gómez, X; Blanco, D; Lobato, A; Calleja, A; Martínez-Núñez, F; Martin-Villacorta, J

    2011-06-01

    Digestion of cattle manure collected from a livestock farm together with bedding material (straw) has been studied under mesophilic and thermophilic conditions in batch reactors. The digestion was carried out for a prolonged period with the aim of evaluating the changes undergone by the organic matter. The mesophilic digestion carried out revealed a greater capacity to produce gas and transform organic matter, while a higher conversion rate, but a lower gas yield, was obtained under thermophilic conditions. Degradation of the organic matter was evaluated by means of thermal analysis and (1)H NMR. Stabilisation through anaerobic digestion (either mesophilic or thermophilic) resulted in an increase in the quality of the organic matter, as characterised by an enrichment in thermostable compounds, and an accumulation of long chain aliphatic materials. The experiments performed demonstrated the transformation of organic matter into complex materials under anaerobic conditions with an accumulation of aliphatic components under both types of conditions tested. Degradation through mesophilic digestion, in comparison to the thermophilic process, resulted in a greater destruction of straw particles. PMID:21082330

  6. Organic matter variations in transgressive and regressive shales

    USGS Publications Warehouse

    Pasley, M.A.; Gregory, W.A.; Hart, G.F.

    1991-01-01

    Organic matter in the Upper Cretaceous Mancos Shale adjacent to the Tocito Sandstone in the San Juan Basin of New Mexico was characterized using organic petrology and organic geochemistry. Differences in the organic matter found in these regressive and transgressive offshore marine sediments have been documented and assessed within a sequence stratigraphic framework. The regressive Lower Mancos Shale below the Tocito Sandstone contains abundant well preserved phytoclasts and correspondingly low hydrogen indices. Total organic carbon values for the regressive shale are low. Sediments from the transgressive systems tract (Tocito Sandstone and overlying Upper Mancos Shale) contain less terrestrially derived organic matter, more amorphous non-structured protistoclasts, higher hydrogen indices and more total organic carbon. Advanced stages of degradation are characteristic of the phytoclasts found in the transgressive shale. Amorphous material in the transgressive shale fluoresces strongly while that found in the regressive shale is typically non-fluorescent. Data from pyrolysis-gas chromatography confirm these observations. These differences are apparently related to the contrasting depositional styles that were active on the shelf during regression and subsequent transgression. It is suggested that data from organic petrology and organic geochemistry provide greater resolution in sedimentologic and stratigraphic interpretations, particularly when working with basinward, fine-grained sediments. Petroleum source potential for the regressive Lower Mancos Shale below the Tocito Sandstone is poor. Based on abundant fluorescent amorphous material, high hydrogen indices, and high total organic carbon, the transgressive Upper Mancos Shale above the Tocito Sandstone possesses excellent source potential. This suggests that appreciable source potential can be found in offshore, fine-grained sediments of the transgressive systems tract below the condensed section and associated

  7. Characterisation of the organic matter pool in manures.

    PubMed

    Moral, R; Moreno-Caselles, J; Perez-Murcia, M D; Perez-Espinosa, A; Rufete, B; Paredes, C

    2005-01-01

    In this research, different types of animal manure were evaluated with respect to organic matter (OM), total organic carbon (C(ot)), total N (N(t)), C(ot)/N(t) ratio, water-soluble organic carbon (C(w)), organic N (N(org)), carbohydrates, C(w)/N(org) ratio, humic acid-like carbon (C(ha)), fulvic acid-like carbon (C(fa)), humification index ((C(ha)/C(ot))x100) (HI) and the C(ha)/C(fa) and NH(4)(+)-N/NO(3)(-)-N ratios. In comparison with the limits set by the Spanish legislation for organic fertilisers, most of the manures had high OM contents, moderate N(org) concentrations (except in the case of the chicken and pig manures where this parameter was high) and C(ot)/N(t) ratios above the value stated in the legislation. The study of the different fractions of organic matter showed that the horse, pig and rabbit manures had the greatest content of C(ot). However, the fraction of easily-biodegradable organic compounds (C(w)) was significantly higher in the horse, goat and chicken manures. The study also showed that, in most cases, the percentage of fulvic acid-like C was greater than that of the humic acid-like C, indicating that the organic matter of these wastes is not completely humified. Values of HI ((C(ha)/C(ot))x100) and C(ha)/C(fa) ratio in the studied manures were not significantly different. Regarding the parameters related to the organic matter stability such as C(w), carbohydrates and the C(ot)/N(t), C(w)/N(org) and NH(4)(+)-N/NO(3)(-)-N ratios, it has been determined that the organic matter of these materials was not completely stabilised. The heterogeneity in OM composition of the studied manures did not allow the formulation of simple equations for evaluation of the composition of these wastes from easily-determined parameters.

  8. Cumulative effects of biochar, mineral and organic fertilizers on soil organic matter

    NASA Astrophysics Data System (ADS)

    Plaza, César; López-de-Sá, Esther G.; Gascó, Gabriel; Méndez, Ana; Zaccone, Claudio

    2016-04-01

    We investigated the effect of three consecutive annual applications of biochar at rates of 0 and 20 t ha-1, in a factorial combination with a mineral fertilizer (NPK and nitrosulfate) and two types of organic amendment (municipal solid waste compost and sewage sludge), on soil organic matter in a field experiment under Mediterranean conditions. Biochar increased significantly soil organic C content and C/N ratio. In biochar-amended soils, soil organic C increased significantly with the addition of municipal solid waste compost and sewage sludge. To capture organic matter protection mechanisms related to aggregation and mineral interaction, the soil samples will be fractionated into free (unprotected), intra-macroaggregate, intra-microaggregate, and mineral-associated organic matter pools, and the isolated fractions will be subjected to further chemical and spectroscopic analysis.

  9. The significance of the accumulation of cadmium by aquatic organisms

    SciTech Connect

    Taylor, D.

    1983-02-01

    Cadmium, by virtue of its toxicity, persistence, and bioaccumulation appears on the ''black list'' of all the international conventions aimed at protecting the aquatic environment from pollution. Although there is no doubt that cadmium is both persistent and toxic to aquatic life at relatively low concentrations, its bioaccumulation potential appears to have been somewhat exaggerated. Median concentration factors for both marine and freshwater organisms are less than 100 times and for vertebrate (fish) species concentration factors are less than 20 times. There is no evidence in the literature for biomagnification of cadmium and bioconcentration is only likely to be of significance in a restricted range of gastropod mollusks and some crustacea.

  10. Bacterial biomarkers thermally released from dissolved organic matter

    USGS Publications Warehouse

    Greenwood, P.F.; Leenheer, J.A.; McIntyre, C.; Berwick, L.; Franzmann, P.D.

    2006-01-01

    Hopane biomarker products were detected using microscale sealed vessel (MSSV) pyrolysis gas chromatography-mass spectrometry (GC-MS) analysis of dissolved organic matter from natural aquatic systems colonised by bacterial populations. MSSV pyrolysis can reduce the polyhydroxylated alkyl side chain of bacteriohopanepolyols, yielding saturated hopane products which are more amenable to GC-MS detection than their functionalised precursors. This example demonstrates how the thermal conditions of MSSV pyrolysis can reduce the biologically-inherited structural functionality of naturally occurring organic matter such that additional structural fragments can be detected using GC methods. This approach complements traditional analytical pyrolysis methods by providing additional speciation information useful for establishing the structures and source inputs of recent or extant organic material. ?? 2006.

  11. Nature of particulate organic matter in the River Indus, Pakistan

    NASA Astrophysics Data System (ADS)

    Ittekkot, Venugopalan; Arain, Rafee

    1986-08-01

    Suspended sediments from the Indus River collected during 1981 through 1983 were analyzed for POC and its constituent fractions including amino acids, amino sugars and sugars. Percentage of POC decreased with increasing suspended matter concentrations, which suggested dilution of organic matter by mineral matter. The concentrations of amino acids, amino sugars and sugars varied, respectively, between 180 and 2000 μg/l, 5 and 125 μg/l, and 60 and 1100 μg/l. Their contributions to POC varied between 2 and 60% for amino acids and amino sugars, and between 2 and 15% for sugars. They were high during low sediment discharge (February to June), and low during high sediment discharge (August and September). Suspended sediments associated with high sediment discharge periods were characterized by low ratios of: (i) aspartic acid:β-alanine (ii) glutamic acid:γ-aminobutyric acid (iii) amino acids:amino sugars (iv) hexoses:pentoses. These and the relative distribution pattern of the monosaccharides such as galactose, arabinose, mannose and xylose indicated that, not only dilution, but also differences in the sources and processes affect the POC transport in the Indus River. These result in transport of biodegraded organic matter during high sediment discharge periods: this appears to be common to other major rivers of the region, with depositional centers in deep sea areas. These rivers, with their high sediment loads, could contribute up to 8 to 11% of the global annual organic carbon burial in marine sediments.

  12. Organic carbon accumulation and preservation in surface sediments on the Peru margin

    USGS Publications Warehouse

    Arthur, M.A.; Dean, W.E.; Laarkamp, K.

    1998-01-01

    Concentrations and characteristics of organic matter in surface sediments deposited under an intense oxygen-minimum zone on the Peru margin were studied in samples from deck-deployed box cores and push cores acquired by submersible on two transects spanning depths of 75 to 1000 m at 12??and 13.5??S. The source of organic matter to the seafloor in these areas is almost entirely marine material as confirmed by the narrow range of ??13C of organic carbon obtained in the present study (-20.3 to -21.6???; PDB) and the lack of any relationship between pyrolysis hydrogen index and carbon isotope composition. Organic carbon contents are highest (up to 16%) on the slope at depths between 75 and 350 m in sediments deposited under intermediate water masses with low dissolved oxygen concentrations (< 5 ??mol/kg). Even at these low concentrations of dissolved oxygen, however, the surface sediments that were recovered from these depths are dominantly unlaminated. Strong currents (up to 30 cm/s) associated with the poleward-flowing Peru Undercurrent were measured at depths between 160 and 300 m on both transects. The seafloor in this range of water depths is characterized by bedforms stabilized by bacterial mats, extensive authigenic mineral crusts, and (or) thick organic flocs. Constant advection of dissolved oxygen, although in low concentrations, active resuspension of surficial organic matter, activity of organisms, and transport of fine-grained sediment to and from more oxygenated zones all contribute to greater degradation and poorer initial preservation of organic matter than might be expected under oxygen-deficient conditions. Dissolved-oxygen concentrations ultimately may be the dominant affect on organic matter characteristics, but reworking of fine-grained sediment and organic matter by strong bottom currents and redeposition on the seafloor in areas of lower energy also exert important controls on organic carbon concentration and degree of oxidation in this region.

  13. Soil type-depending effect of paddy management: composition and distribution of soil organic matter

    NASA Astrophysics Data System (ADS)

    Urbanski, Livia; Kölbl, Angelika; Lehndorff, Eva; Houtermans, Miriam; Schad, Peter; Zhang, Gang-Lin; Rahayu Utami, Sri; Kögel-Knabner, Ingrid

    2016-04-01

    Paddy soil management is assumed to promote soil organic matter accumulation and specifically lignin caused by the resistance of the aromatic lignin structure against biodegradation under anaerobic conditions during inundation of paddy fields. The present study investigates the effect of paddy soil management on soil organic matter composition compared to agricultural soils which are not used for rice production (non-paddy soils). A variety of major soil types, were chosen in Indonesia (Java), including Alisol, Andosol and Vertisol sites (humid tropical climate of Java, Indonesia) and in China Alisol sites (humid subtropical climate, Nanjing). This soils are typically used for rice cultivation and represent a large range of soil properties to be expected in Asian paddy fields. All topsoils were analysed for their soil organic matter composition by solid-state 13C nuclear magnetic resonance spectroscopy and lignin-derived phenols by CuO oxidation method. The soil organic matter composition, revealed by solid-state 13C nuclear magnetic resonance, was similar for the above named different parent soil types (non-paddy soils) and was also not affected by the specific paddy soil management. The contribution of lignin-related carbon groups to total SOM was similar in the investigated paddy and non-paddy soils. A significant proportion of the total aromatic carbon in some paddy and non-paddy soils was attributed to the application of charcoal as a common management practise. The extraction of lignin-derived phenols revealed low VSC (vanillyl, syringyl, cinnamyl) values for all investigated soils, being typical for agricultural soils. An inherent accumulation of lignin-derived phenols due to paddy management was not found. Lignin-derived phenols seem to be soil type-dependent, shown by different VSC concentrations between the parent soil types. The specific paddy management only affects the lignin-derived phenols in Andosol-derived paddy soils which are characterized by

  14. Loss of organic matter from riverine particles in deltas

    SciTech Connect

    Keil, R.G.; Quay, P.D.; Richey, J.E.

    1997-04-01

    In order to examine the transport and burial of terrigenous organic matter along the coastal zones of large river systems, we assessed organic matter dynamics in coupled river/delta systems using mineral surface area as a conservative tracer for discharged riverine particulate organic matter (POM). Most POM in the rivers studied (n = 6) is tightly associated with suspended mineral materiaL e.g., it is sorbed to mineral surfaces. Average organic loadings in the Amazon River (0.67 - 0.14 Mg C m{sup -2}), the river for which we have the largest dataset, are approximately twice that of sedimentary minerals from the Amazon Delta (-0.35 mg C m{sup -2}). Stable carbon isotope analysis indicate that approximately two-thirds of the total carbon on the deltaic particles is terrestrial. The combined surface-normalized, isotope-distinguished estimate is that >70% of the Amazon fluvial POM is not buried in the delta consistent with other independent evidence. Losses of terrestrial POM have also been quantified for the river/delta systems of Columbia in the USA, Fly in New Guinea. and Huange-He in China. If the losses of riverine POM observed in these river/delta systems are representative of rivers worldwide, then the surface-constrained analyses point toward a global loss of fluvial POM in delta regions of {approximately}0.1 x 10{sup 15} g C y{sup -1}. 28 refs., 2 figs., 1 tab.

  15. Influences of sedimentary organic matter quality on the bioaccumulation of 4-nonylphenol by estuarine amphipods.

    PubMed

    Hecht, Scott A; Gunnarsson, Jonas S; Boese, Bruce L; Lamberson, Janet O; Schaffner, Christian; Giger, Walter; Jepson, Paul C

    2004-04-01

    Nonylphenol (NP) is a moderately persistent, hydrophobic chemical with endocrine-disrupting and acute narcotic effects in aquatic biota. Concern exists about the ultimate fate of NP in aquatic ecosystems and the potential for bioaccumulation by benthic biota from the sediment with the potential for further transfer to higher trophic levels. Our goals were to determine if benthic amphipods bioaccumulate significant amounts of NP from sediment and to determine how additions of organic matter influence NP bioaccumulation by amphipods. Estuarine sediment was spiked with 14C-NP and enriched with two types of organic carbon (OC) sources of different nutritional qualities. Macrophytic algae (Ulva species) were used as a labile and nutritious OC source. Wood lignins were used as a refractory and low-nutrition OC source. Nonylphenol bioaccumulation was measured in Eohaustorius estuarius, Grandidierella japonica, and Corophium salmonis after 16 d of exposure. Nonylphenol accumulation was inversely proportional to OC quantity, but was unaffected by OC nutritional quality. Significant differences were found in the accumulation patterns between the three amphipod species. Mean biota-sediment accumulation factors ranged from 8.1 to 33.9 in E. estuarius, from 4.6 to 17.2 in G. japonica, and averaged 7.1 in male C. salmonis and 16.0 in female C. salmonis. These accumulation factors indicate that estuarine amphipods could constitute an important source of NP to higher trophic levels, such as juvenile fish. PMID:15095881

  16. The effects of soil management on subsoil organic matter

    NASA Astrophysics Data System (ADS)

    Gregory, Andrew; Coleman, Kevin; Jenkinson, David; Powlson, David; Poulton, Paul; Whitmore, Andrew

    2010-05-01

    Soil management has a clear effect on the organic matter (OM) content of soils in agricultural systems. For instance, grassland soils tend to have a greater OM content than arable soils due to the difference in the management of the surface vegetation between the two systems. Our knowledge of this is largely restricted to the topsoil however, as this is the part of the profile that is most obviously influenced by the inputs and losses of OM. How agricultural management at the surface affects OM contents in the subsoil is rarely considered, let alone understood. We present the state of our current knowledge of the effect of soil management on subsoil OM based on measurements made on soils from some of the established field experiments at Rothamsted Research, UK. We have examined subsoil OM data collected by us and other scientists at Rothamsted representing different timescales: long-term (Broadbalk wilderness and arable, Geescroft wilderness, and Park Grass: 130 years), medium-term (Highfield ley-arable: 40-60 years), and short-term (Highfield and Geescroft reversion: 2 years). Samples to depths of up to 96 cm in the profile were collected from the field experiments periodically between 1870 and 2009 and analysed for C and N. Both C and N increased in soils converted from arable to long-term woodland and grassland throughout the profile. The C:N ratio also increased in comparison to long-term arable soils which suggested either the preferential accumulation of C or the preferential decomposition of N at depth in grassland and woodland soils, or the converse at depth in the arable soils. Small increases in C and N in both long-term grassland and arable soils were also apparent. In the medium-term, differences in the pattern of soil C and N with depth were found, with homogenisation in the cultivated layer in arable and fallow soils and a more gradual decrease with depth in the grassland soil. In general, differences between soils subjected to different management

  17. Direct Evidence Linking Soil Organic Matter Development to Microbial Communities

    NASA Astrophysics Data System (ADS)

    Kallenbach, C.; Grandy, S.

    2013-12-01

    Despite increasing recognition of microbial contributions to soil organic matter (SOM) formation there is little experimental evidence linking microbial processes to SOM development and the mechanisms responsible remain unclear. Specifically, if stable SOM is largely comprised of microbial products, we need to better understand the soil conditions that influence microbial biomass production and ultimately its stability. Microbial physiology, such as microbial growth efficiency (MGE) and rate (MGR) have direct influences on microbial biomass production and are highly sensitive to resource quality. Therefore, the importance of resource quality on SOM is not necessarily a function of resistance to decay but the degree to which it optimizes microbial biomass production. While resource quality may have an indirect effect on SOM abundance via its influence on microbial physiology, SOM stabilization of labile microbial products may rely heavily on a soil's capacity to form organo-mineral interactions. To examine the relative importance of soil microbial community function, resource quality and mineralogy on direct microbial contributions to SOM formation and stability, an ongoing 15-mo incubation experiment was set up using artificial, initially C- and microbial-free soils. Soil microcosms were constructed by mixing sand with either kaolinite or montmorillonite clays followed with a natural soil microbial inoculum. For both soil mineral treatments, weekly additions of glucose, cellobiose, or syringol are carried out, with an additional treatment of plant leachate to serve as a reference. This simplified system allows us to determine if, in the absence of plant-derived C, microbial products using simple substrates can result in chemically complex SOM similar to natural soils. Over the course of the incubation, MGE, MGR, microbial activity, and SOM accumulation rates are monitored. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) is used to track the microbial

  18. Composition of organic matter in sediments of the oxygen minimum zone of the Northeastern Mexican Pacific

    NASA Astrophysics Data System (ADS)

    Juarez, M.; Sanchez, A.; Aguiñiga-García, S.; Lara-Mendoza, A.

    2013-05-01

    Total organic carbon (TOC) content, total nitrogen (TN) content, elemental (C and N), and isotopic (δ13C-TOC) composition of organic matter derived from both marine and terrestrial sources constrain the relative contributions from marine productivity, the mangroves, and the continental wind erosion of 36 carbonate-free surface sediments along the southwestern coast of the Baja California Peninsula. In general, the spatial patterns of TOC, TN, C:N ratio and δ13C-TOC are similar. The maximum content of TOC (14.5%) and TN (1.6%) were measured inside the oxygen minimum zone (OMZ). The stable carbon isotopic compositions were enriched in 12C in surface sediments at suboxic sites within the OMZ. The C:N ratio and δ13C-TOC values indicated that the organic sediment material is predominantly of marine origin, with a minor contribution from the terrestrial source or mangroves. In the stations near to the coast, the high values of the C:N ratio and the depleted 13C values suggest a proportionally greater accumulation of terrestrial organic matter. The terrestrial-derived organic carbon content is <10% at the continental margin and >40% at the stations near to the coast, based on a Mixing Model of End Members. Keywords: Total organic carbon, total nitrogen, carbon stable isotopes, oxygen minimum zone, northeastern Pacific.

  19. Redox-controlled preservation of organic matter during "OAE 3" within the Western Interior Seaway

    NASA Astrophysics Data System (ADS)

    Tessin, Allyson; Hendy, Ingrid; Sheldon, Nathan; Sageman, Bradley

    2015-06-01

    During the Cretaceous, widespread black shale deposition occurred during a series of Oceanic Anoxic Events (OAEs). Multiple processes are known to control the deposition of marine black shales, including changes in primary productivity, organic matter preservation, and dilution. OAEs offer an opportunity to evaluate the relative roles of these forcing factors. The youngest of these events—the Coniacian to Santonian OAE 3—resulted in a prolonged organic carbon burial event in shallow and restricted marine environments including the Western Interior Seaway. New high-resolution isotope, organic, and trace metal records from the latest Turonian to early Santonian Niobrara Formation are used to characterize the amount and composition of organic matter preserved, as well as the geochemical conditions under which it accumulated. Redox sensitive metals (Mo, Mn, and Re) indicate a gradual drawdown of oxygen leading into the abrupt onset of organic carbon-rich (up to 8%) deposition. High Hydrogen Indices (HI) and organic carbon to total nitrogen ratios (C:N) demonstrate that the elemental composition of preserved marine organic matter is distinct under different redox conditions. Local changes in δ13C indicate that redox-controlled early diagenesis can also significantly alter δ13Corg records. These results demonstrate that the development of anoxia is of primary importance in triggering the prolonged carbon burial in the Niobrara Formation. Sea level reconstructions, δ18O results, and Mo/total organic carbon ratios suggest that stratification and enhanced bottom water restriction caused the drawdown of bottom water oxygen. Increased nutrients from benthic regeneration and/or continental runoff may have sustained primary productivity.

  20. A modification to the Activated Sludge Model No. 2 based on the competition between phosphorus-accumulating organisms and glycogen-accumulating organisms.

    PubMed

    Manga, J; Ferrer, J; Garcia-Usach, F; Seco, A

    2001-01-01

    A modification to the ASM2 is proposed which permits representation of the competition between phosphorus accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) in a nutrient removal activated sludge system. Some important aspects, which are not considered in ASM2, are discussed. The proposed modification includes denitrification by PAOs, PAO glycogen storage capability and GAO metabolism model. It is shown that the proposed modification is capable of describing pilot plant data using a single set of stoichiometric and kinetic parameters over three different sludge ages (16, 14 and 12 days). The modified ASM2 may be applicable to a wide range of situations where PAOs and GAOs can compete. This modification may well provide a better understanding about GAO behaviour.

  1. Role of organic matter in framboidal pyrite oxidation.

    PubMed

    Rigby, P A; Dobos, S K; Cook, F J; Goonetilleke, A

    2006-08-31

    An experimental system has been set up to investigate the reaction kinetics of framboidal pyrite oxidation in real, reactive acid sulfate soil assemblages. This study was undertaken to determine the degree to which pyrite oxidation rates are reduced by bacteriological reactions and organic matter, which both modify the net reaction mechanisms and compete for available oxygen. The results from these experimental runs not only confirm the role of organic matter in mitigating pyrite oxidation but indicate that at least initially, the acidity produced is consumed or otherwise ameliorated by parallel reactions. Tracking pH or [H+] in both a reactor and in soil does not accurately reflect reaction progress and may not correctly indicate the true level of risk. In comparison, the tracking of pyrite oxidation with the concentration of sulfate in solution is not affected by side reactions or precipitation and is therefore a better indicator for the rate of pyrite destruction. PMID:16839593

  2. Carbon isotopic studies of organic matter in precambrian rocks.

    PubMed

    Oehler, D Z; Schopf, J W; Kvenvolden, K A

    1972-03-17

    Reduced carbon in early Precambrian cherts of the Fig Tree and upper and middle Onverwacht groups of South Africa is isotopically similar (the average value of delta(13)C(PDB) is -28.7 per mil) to photosynthetically produced organic matter of younger geological age. Reduced carbon in lower Onverwacht cherts (Theespruit formation) is anomalously heavy (the average value of delta(13)C(PDB) is -16.5 per mil). This discontinuity may reflect a major event in biological evolution.

  3. Photochemical Degradation of Persistent Organic Pollutants: A Study of Ice Photochemistry Mediated by Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Bobby, R.; Pagano, L.; Grannas, A. M.

    2012-12-01

    It is well established that ice is a reactive medium in the environment and that active photochemistry occurs in frozen systems. Snow and ice contain a number of absorbing species including nitrate, peroxide and organic matter. Upon irradiation, they can generate a variety of reactive intermediates such as hydroxyl radical and singlet oxygen. It has been shown that dissolved organic matter is a ubiquitous component of snow and ice and plays an important role in overall light absorption properties of the sample. Additionally, the reactive intermediates produced can further react with contaminants present and alter their fate in the environment. Unfortunately, the role of dissolved organic matter in ice photochemistry has received little attention. Here we present results from laboratory-based studies aimed at elucidating the role of dissolved organic matter photochemistry on contaminant degradation in ice. Aqueous samples of our target pollutant, aldrin (20 μg/L), in liquid and frozen phases, were irradiated under Q-Panel 340 lamps to simulate the UV radiation profile of natural sunlight. Results indicated that frozen samples degraded more quickly than liquid samples and that the addition of dissolved organic matter increases the aldrin degradation rate significantly. Both terrestrial (Suwannee River, U.S.) and microbial sources (Pony Lake, Antarctica) of DOM were able to sensitize aldrin loss in ice. Scavengers of singlet oxygen, such as furfuryl alcohol and β-carotene, were also added to DOM solutions. Based on the type of organic matter present, the scavengers had different effects on the photochemical degradation of aldrin. Our results indicate that natural organic matter present in ice is an important component of ice photochemical processes.

  4. Thermodynamics of uranium/organic matter interactions in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Richard, L.

    2003-04-01

    Organic matter is commonly encountered in and around uranium and other ore deposits, which raises the question of the role played by organic compounds in the formation of these deposits (Landais and Gize, 1997). One of the best known examples is the observation of uraninite crystals entrapped within solid bitumens in the Oklo natural reactors. This observation led Nagy et al. (1991) to propose that a liquid, aliphatic-rich bitumen may have acted as a reductant to precipitate uraninite from hydrothermal solutions according to the reaction VIUO2+2(aq)+H_2O(l)=IVUO2(c)+2H^+(aq)+0.5 O2(g). The liquid bitumen was simultaneously oxidized into a polyaromatic solid, which may be represented by the reaction 2.7n- C20H42(l) + 17.85 O2(g) = C54H42(c)+35.7 H_2O(l) where n-C20H42(l) denotes n-eicosane present in the liquid bitumen, and C54H42(c) represents an idealized polyaromatic solid. Recent advances in theoretical organic geochemistry made it possible to generate a comprehensive thermodynamic database for hundreds of crystalline, liquid, gas and aqueous organic compounds of geochemical interest (Shock and Helgeson, 1990; Shock, 1995; Amend and Helgeson, 1997; Helgeson et al., 1998; Richard and Helgeson, 1998; Richard, 2001), which can be used together with thermodynamic properties for uranium-bearing minerals and aqueous species (Grenthe et al., 1992; Shock et al., 1997) to characterize uranium/organic matter interactions in hydrothermal systems as a function of temperature, pressure, oxygen fugacity, and organic matter composition. Activity-fO_2 diagrams have been constructed at a series of temperatures and pressures to investigate possible genetic relationships between uranium mineralizations and solid bitumens of various compositions.

  5. Characterization of Soil Organic Matter from African Dark Earth (AfDE) Soils

    NASA Astrophysics Data System (ADS)

    Plante, A. F.; Fujiu, M.; Ohno, T.; Solomon, D.; Lehmann, J.; Fraser, J. A.; Leach, M.; Fairhead, J.

    2014-12-01

    Anthropogenic Dark Earths are soils generated through long-term human inputs of organic and pyrogenic materials. These soils were originally discovered in the Amazon, and have since been found in Australia and in this case in Africa. While tropical soils are typically characterized by low soil organic matter (SOM) concentrations, African Dark Earths (AfDE) are black, highly fertile and carbon-rich soils formed through an extant but ancient soil management system. The objective of this study was to characterize the organic matter accumulated in AfDE and contrast it with non-AfDE soils. Characterization of bulk soil organic matter of several (n=11) AfDE and non-AfDE pairs of surface (0-15 cm) soils using thermal analysis techniques (TG-DSC-EGA) resulted in substantial differences in SOM composition and the presence of pyrogenic C. Such pyrogenic organic matter is generally considered recalcitrant, but the fertility gains in AfDE are generated by labile, more rapidly cycling pools of SOM. As a result, we characterized hot water- and pyrophosphate-extractable pools of SOM using fluorescence (EEM/PARAFAC) and high resolution mass spectrometry (FT-ICR-MS). EEM/PARAFAC data suggests that AfDE samples had a greater fraction of their DOM that was more humic-like than the paired non-AfDE samples. Similarly, FT-ICR-MS analyses of extracts suggest that differences among the sites analyzed were larger than between the paired AfDE and non-AfDE extracts. Overall, in spite of substantial differences in the composition of bulk SOM, the extractable fractions appear to be relatively similar between the AfDE and non-AfDE soils.

  6. Xiphinema americanum as Affected by Soil Organic Matter and Porosity.

    PubMed

    Ponchillia, P E

    1972-07-01

    The effects of four soil types, soil porosity, particle size, and organic matter were tested on survival and migration of Xiphinema americanum. Survival and migration were significantly greater in silt loam than in clay loam and silty clay soils. Nematode numbers were significantly greater in softs planted with soybeans than in fallow softs. Nematode survival was greatest at the higher of two pore space levels in four softs. Migration of X. americanum through soft particle size fractions of 75-150, 150-250, 250-500, 500-700, and 700-1,000 mu was significantly greater in the middle three fractions, with the least occurring in the smallest fraction. Additions of muck to silt loam and loamy sand soils resulted in reductions in survival and migration of the nematode. The fulvic acid fraction of muck, extracted with sodium hydroxide, had a deleterious effect on nematode activity. I conclude that soils with small amounts of air-filled pore space, extremes in pore size, or high organic matter content are deleterious to the migration and survival of X. americanum, and that a naturally occurring toxin affecting this species may be present in native soft organic matter.

  7. Matrix protected organic matter in a river dominated margin: A possible mechanism to sequester terrestrial organic matter?

    NASA Astrophysics Data System (ADS)

    Mead, Ralph N.; Goñi, Miguel A.

    2008-06-01

    The provenance of organic matter in surface sediments from the northern Gulf of Mexico was investigated by analyzing the compositions of lipid biomarkers ( n-alkanes, fatty acids, sterols) liberated after a series of chemical treatments designed to remove different organo-mineral matrix associations (i.e. freely extractable, base-hydrolyzable, unhydrolyzable). Bulk analyses of the organic matter (carbon content, carbon:nitrogen ratios, stable and radiocarbon isotopic analyses) were also performed on the intact sediments and their non-hydrolyzable, demineralized residue. We found recognizable lipids from distinct sources, including terrestrial vascular plants, bacteria and marine algae and zooplankton, within each of the isolated fractions. Based on the lipid signatures and bulk compositions, the organic matter within the unhydrolyzable fractions appeared to be the most diagenetically altered, was the oldest in age, and had the highest abundance of terrigenous lipids. In contrast, the base-hydrolyzable fraction was the most diagentically unaltered, had the youngest ages and was most enriched in N and marine lipids. Our results indicate that fresh, autochthonous organic matter is the most important contributor to base-hydrolyzable lipids, whereas highly altered allochthonous sources appear to be predominant source of unhydrolyzable lipids in the surface sediments from the Atchafalaya River shelf. Overall, the lipid biomarker signatures of intact sediments were biased towards the autochthonous source because many of the organic compounds indicative of degraded, terrigenous sources were protected from extraction and saponification by organo-mineral matrices. It is only after these protective matrices were removed by treatment with HCl and HF that these compounds became evident.

  8. Carbon isotopic studies of organic matter in Precambrian rocks.

    NASA Technical Reports Server (NTRS)

    Oehler, D. Z.; Schopf, J. W.; Kvenvolden, K. A.

    1972-01-01

    A survey has been undertaken of the carbon composition of the total organic fraction of a suite of Precambrian sediments to detect isotopic trends possibly correlative with early evolutionary events. Early Precambrian cherts of the Fig Tree and upper and middle Onverwacht groups of South Africa were examined for this purpose. Reduced carbon in these cherts was found to be isotopically similar to photosynthetically produced organic matter of younger geological age. Reduced carbon in lower Onverwacht cherts was found to be anomalously heavy; it is suggested that this discontinuity may reflect a major event in biological evolution.

  9. Comments on D/H ratios in chondritic organic matter

    NASA Astrophysics Data System (ADS)

    Smith, J. W.; Rigby, D.

    1981-06-01

    D/H ratios in chondritic organic matter are investigated. Demineralized organic residues obtained from previous experiments were dried in a quartz reaction vessel under vacuum for 60 minutes at 250-300 C and then combusted in oxygen for 20 minutes at 850 C. The apparatus is described and the results of the experiments such as D/H ratios in water and measurements on total carbon dioxide are given. Atomic H/C ratios calculated directly from the quantities of carbon dioxide and water recovered, are reported according to Standard Mean Ocean Water and Pee Dee Belemnite, using the customary notation.

  10. Organic matter in meteorites and comets - Possible origins

    NASA Technical Reports Server (NTRS)

    Anders, Edward

    1991-01-01

    At least six extraterrestrial environments may have contributed organic compounds to meteorites and comets: solar nebula, giant-planet subnebulae, asteroid interiors containing liquid water, carbon star atmospheres, and diffuse or dark interstellar clouds. The record in meteorites is partly obscured by pervasive reheating that transformed much of the organic matter to kerogen; nonetheless, it seems that all six formation sites contributed. For comets, the large abundance of HCHO, HCN, and unsaturated hydrocarbons suggests an interstellar component of 50 percent or more, but the contributions of various interstellar processes, and of a solar-nebula component, are hard to quantify. A research program is outlined that may help reduce these uncertainties.

  11. Oxidoreductases and cellulases in lichens: possible roles in lichen biology and soil organic matter turnover.

    PubMed

    Beckett, Richard P; Zavarzina, Anna G; Liers, Christiane

    2013-06-01

    Lichens are symbiotic associations of a fungus (usually an Ascomycete) with green algae and/or a cyanobacterium. They dominate on 8 % of the world's land surface, mainly in Arctic and Antarctic regions, tundra, high mountain elevations and as components of dryland crusts. In many ecosystems, lichens are the pioneers on the bare rock or soil following disturbance, presumably because of their tolerance to desiccation and high temperature. Lichens have long been recognized as agents of mineral weathering and fine-earth stabilization. Being dominant biomass producers in extreme environments they contribute to primary accumulation of soil organic matter. However, biochemical role of lichens in soil processes is unknown. Our recent research has demonstrated that Peltigeralean lichens contain redox enzymes which in free-living fungi participate in lignocellulose degradation and humification. Thus lichen enzymes may catalyse formation and degradation of soil organic matter, particularly in high-stress communities dominated by lower plants. In the present review we synthesize recently published data on lichen phenol oxidases, peroxidases, and cellulases and discuss their possible roles in lichen physiology and soil organic matter transformations.

  12. Decomposition of heterogeneous organic matter and its long-term stabilization in soils

    USGS Publications Warehouse

    Sierra, C.A.; Harmon, M.E.; Perakis, S.S.

    2011-01-01

    Soil organic matter is a complex mixture of material with heterogeneous biological, physical, and chemical properties. Decomposition models represent this heterogeneity either as a set of discrete pools with different residence times or as a continuum of qualities. It is unclear though, whether these two different approaches yield comparable predictions of organic matter dynamics. Here, we compare predictions from these two different approaches and propose an intermediate approach to study organic matter decomposition based on concepts from continuous models implemented numerically. We found that the disagreement between discrete and continuous approaches can be considerable depending on the degree of nonlinearity of the model and simulation time. The two approaches can diverge substantially for predicting long-term processes in soils. Based on our alternative approach, which is a modification of the continuous quality theory, we explored the temporal patterns that emerge by treating substrate heterogeneity explicitly. The analysis suggests that the pattern of carbon mineralization over time is highly dependent on the degree and form of nonlinearity in the model, mostly expressed as differences in microbial growth and efficiency for different substrates. Moreover, short-term stabilization and destabilization mechanisms operating simultaneously result in long-term accumulation of carbon characterized by low decomposition rates, independent of the characteristics of the incoming litter. We show that representation of heterogeneity in the decomposition process can lead to substantial improvements in our understanding of carbon mineralization and its long-term stability in soils. ?? 2011 by the Ecological Society of America.

  13. Chemical characterization of high molecular weight dissolved organic matter in fresh and marine waters

    NASA Astrophysics Data System (ADS)

    Repeta, Daniel J.; Quan, Tracy M.; Aluwihare, Lihini I.; Accardi, AmyMarie

    2002-03-01

    The high molecular weight fraction of dissolved organic matter in a suite of lakes, rivers, seawater, and marine sediment interstitial water samples was collected by ultrafiltration and characterized by molecular level and spectroscopic techniques. Proton nuclear magnetic resonance spectra of all samples show a high degree of similarity, with major contributions from carbohydrates, bound acetate, and lipids. Molecular level analyses of neutral sugars show seven monosaccharides, rhamnose, fucose, arabinose, xylose, mannose, glucose, and galactose, to be abundant, and to occur in comparable relative amounts in each sample. Previous studies have emphasized the distinctive composition of dissolved humic substances in fresh and marine waters, and have attributed these differences to sources and transformations of organic matter unique to each environment. In contrast we find a large fraction of freshwater high molecular weight dissolved organic matter (HMWDOM; > 1kD) to be indistinguishable from marine HMWDOM in bulk and molecular-level chemical properties. Aquatic HMWDOM is similar in chemical composition to biologically derived acylated heteropolysaccharides isolated from marine algal cultures, suggesting a biological source for some fraction of persistent HMWDOM. High molecular weight DOC contributes 51 ± 26% of the total DOC, and monosaccharides 18 ± 8% of the total HMWDOC in our freshwater samples. These contributions are on average higher and more variable, but not significantly different than for surface seawater (30% and 16% respectively). Biogeochemical processes that produce, accumulate, and recycle DOM may therefore share important similarities and be broadly comparable across a range of environmental settings.

  14. Soil organic matter quantity and quality shape microbial community compositions of subtropical broadleaved forests.

    PubMed

    Ding, Junjun; Zhang, Yuguang; Wang, Mengmeng; Sun, Xin; Cong, Jing; Deng, Ye; Lu, Hui; Yuan, Tong; Van Nostrand, Joy D; Li, Diqiang; Zhou, Jizhong; Yang, Yunfeng

    2015-10-01

    As two major forest types in the subtropics, broadleaved evergreen and broadleaved deciduous forests have long interested ecologists. However, little is known about their belowground ecosystems despite their ecological importance in driving biogeochemical cycling. Here, we used Illumina MiSeq sequencing targeting 16S rRNA gene and a microarray named GeoChip targeting functional genes to analyse microbial communities in broadleaved evergreen and deciduous forest soils of Shennongjia Mountain of Central China, a region known as 'The Oriental Botanic Garden' for its extraordinarily rich biodiversity. We observed higher plant diversity and relatively richer nutrients in the broadleaved evergreen forest than the deciduous forest. In odds to our expectation that plant communities shaped soil microbial communities, we found that soil organic matter quantity and quality, but not plant community parameters, were the best predictors of microbial communities. Actinobacteria, a copiotrophic phylum, was more abundant in the broadleaved evergreen forest, while Verrucomicrobia, an oligotrophic phylum, was more abundant in the broadleaved deciduous forest. The density of the correlation network of microbial OTUs was higher in the broadleaved deciduous forest but its modularity was smaller, reflecting lower resistance to environment changes. In addition, keystone OTUs of the broadleaved deciduous forest were mainly oligotrophic. Microbial functional genes associated with recalcitrant carbon degradation were also more abundant in the broadleaved deciduous forests, resulting in low accumulation of organic matters. Collectively, these findings revealed the important role of soil organic matter in shaping microbial taxonomic and functional traits.

  15. Fluxes of phytopigments and labile organic matter to the deep ocean in the NE Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Fabiano, M.; Pusceddu, A.; Dell'Anno, A.; Armeni, M.; Vanucci, S.; Lampitt, R. S.; Wolff, G. A.; Danovaro, R.

    of protein in the sediment corresponded to low vertical fluxes of particulate proteins. These data suggest that there is a decoupling between pelagic input and benthic accumulation. However, bacterial secondary production and sedimentary RNA concentrations displayed temporal patterns similar to those of the vertical fluxes, suggesting that increases in the metabolism of the smallest-sized biota was associated with maxima in the organic matter supply. Our results also suggest that benthic utilisation could exceed the organic matter being supplied by the vertical fluxes.

  16. Flood Pulse Influence on Export of Terrestrial Organic Matter

    NASA Astrophysics Data System (ADS)

    Dalzell, B. J.; Harbor, J. M.; Filley, T. R.

    2004-12-01

    While much attention has been placed on characterizing Terrestrial Organic Matter (TOM) export from large rivers, recent research has shown that in-stream processing of TOM in smaller streams and rivers over shorter time scales can be an important upland component of regional carbon budgets not detected at the outlets of large rivers. With predictions of climate change accompanied by more intense rainfall patterns in some areas, it is important to understand the linkage between flood events and watershed export of TOM. To this end, we have collected water samples from Big Pine Creek watershed, an 850km2 watershed located in west central Indiana. Organic carbon in dissolved, colloidal, and particulate size fractions has been described with molecular and stable carbon isotope techniques to track source, quantity, and compositional changes of TOM over changing flow conditions. Results from these samples show that flood conditions export dramatically more TOM; not only from increases in discharge, but also from increases in concentration of terrestrial organic carbon to all size fractions. While molecular biomarkers show increases in terrestrial organic matter, bulk stable carbon isotope values show that the sources of TOM do not remain constant. Rather, relative contributions from C4 plants (corn in this study area) increase during flood conditions by up to 40 percent. Finally, increases in rainfall intensity are likely to disproportionately increase organic carbon export from terrestrial systems, especially from smaller watersheds where short duration and high intensity flow events dominate annual discharge.

  17. Influence of sediment-organic matter quality on growth and polychlorobiphenyl bioavailability in Echinodermata (Amphiura filiformis)

    SciTech Connect

    Gunnarsson, J.S.; Granberg, M.E.; Nilsson, H.C.; Rosenberg, R.; Hellman, B.

    1999-07-01

    Sediment total organic carbon (TOC) content is considered to be a primary food source for benthic invertebrates and a major factor influencing the partitioning and bioavailability of sediment-associated organic contaminants. Most studies report that both toxicity and uptake of sediment-associated contaminants by benthic organisms are inversely proportional to sediment TOC content. The aim of this study was to determine the importance of the TOC quality for the bioavailability of sediment-associated organic contaminants and the growth of benthic macrofauna. The common infaunal brittle star Amphiura filiformis was exposed to a base sediment covered by a {sup 14}C-polychlorobipenyl (3,3{prime}4,4{prime}-{sup 14}C-tetrachlorobiphenyl (TCB)) contaminated top layer (0--2 cm), enriched to the same TOC content with 31 g TOC/m{sup 2} of different quality and origin. The following carbon sources, ranging from labile to refractory, were used: (1) green macroalga (Ulva lactuca), (2) brown macroalga (Ascophyllum nodosum), (3) eelgrass (Zostera Marina), (4) phytoplankton (Ceratium spp.), and (5) lignins of terrestrial origin. Characterization of the organic matter quality was accomplished by measuring the content of amino acids, lipids, C, N, and polyphenolic compounds. The reactivity of the sedimentary organic matter was assessed by means of respiration and dissolved inorganic nitrogen flux measurements. The experiment was carried out in 1-L glass jars, each containing four brittle stars and the contaminated and enriched sediment. The jars were circulated in a flow-through mode with filtered seawater. Somatic growth (regeneration of a precut arm) and bioaccumulation of {sup 14}C-TCB were measured at 10 sampling occasions during 48 d of exposure. Growth rates, TCB uptake rates, and steady-state concentrations differed significantly between treatments and were correlated to the qualities of the organic substrates. The greatest TCB accumulation and growth were observed in

  18. Bacterial and organic matter distribution in the sediments of the Thracian Sea (NE Aegean Sea)

    NASA Astrophysics Data System (ADS)

    Polymenakou, Paraskevi N.; Fragkioudaki, Glykeria; Tselepides, Anastasios

    2007-10-01

    Recently, black carbon has been introduced as the form of carbon that may be separated from the biologically mediated carbon cycle thereby representing the non-bioavailable fraction of the estimated organic carbon. It has been speculated that the bioavailability of organic matter may be a limiting factor for the presence of active bacteria within the sediments. In order to address this question, marine sediments were collected from the Thracian Sea (Eastern Mediterranean), a complex system impacted by riverine inputs and Black Sea water masses. In addition to counts of total bacteria, we estimated the fraction of active bacteria by using a destaining step to the DAPI staining method. Black carbon was also estimated following the thermal oxidation method in order to determine the fraction of the refractory organic matter. The fraction of black carbon to total organic carbon varied from 16% to 53% indicating that black carbon constitutes a significant pool of sedimentary organic carbon in the Thracian sea. A fraction ranging from 18% to 97% was scored as nucleoid containing cells. We did not record any significant differences in the fraction of nucleoid-containing bacteria among sediment depths ( P<0.05) indicating that there was no accumulation of dead bacterial cells with depth. The same was observed for the fraction of black carbon and bioavailable organic carbon with sediment depth ( P<0.05) indicating that benthic consumers are not the key regulators of the organic matter pool in these sediments but have a minor effect. A possible reason for these observations and for the uncoupling between the active bacterial fraction and the bioavailability of organic matter could be (i) the presence of refractory components in the estimated bioavailable organic matter and (ii) the hydrological and geological complexity of the study area. The North Aegean marginal slopes are highly unstable experiencing frequent seismic events. These events are capable of inducing sediment

  19. Why dissolved organic matter (DOM) enhances photodegradation of methylmercury

    SciTech Connect

    Qian, Yun; Yin, Xiangping Lisa; Brooks, Scott C; Liang, Liyuan; Gu, Baohua

    2014-01-01

    Methylmercury (MeHg) is known to degrade photochemically, but it remains unclear what roles naturally dissolved organic matter (DOM) and complexing organic ligands play in MeHg photodegradation. Here we investigate the rates and mechanisms of MeHg photodegradation using DOM samples with varying oxidation states and origins as well as organic ligands with known molecular structures. All DOM and organic ligands increased MeHg photodegradation under solar irradiation, but the first-order rate constants varied depending on the oxidation state of DOM and the type and concentration of the ligands. Compounds containing both thiols and aromatics (e.g., thiosalicylate and reduced DOM) increased MeHg degradation rates far greater than those containing only aromatic or thiol functional groups (e.g., salicylate or glutathione). Our results suggest that, among other factors, the synergistic effects of thiolate and aromatic moieties in DOM greatly enhance MeHg photodegradation.

  20. Isotopic composition of pyrite: Relationship to organic matter type and iron availability in some North American cretaceous shales

    USGS Publications Warehouse

    Gautier, D.L.

    1987-01-01

    The S isotope composition of pyrite in Cretaceous shales from the Western Interior of North America is related to organic C abundance, kerogen type and Fe availability. Both calcareous and noncalcareous rocks show a correlation between S and C, but noncalcareous rocks are relatively enriched in S with a higher S C ratio. This higher ratio probably shows that pyrite formation was Fe limited in the calcareous rocks. Organic-carbon-rich noncalcareous shales accumulated slowly beneath anoxic bottom waters. The anoxic bottom waters allowed hydrogen-rich organic matter to be preserved. Such shales have a narrow range of 34S-depleted sulfide and have Fe S ratios like stoichiometric pyrite, suggesting that pyrite formation in organic-rich shales was also limited by Fe availability. Conversely, organic-poor shales commonly accumulated at comparatively high rates, contain hydrogen-poor and refractory organic matter, and have a wide range of pyrite-S isotopic compositions. These organic-poor shales contain post-sulfidic authigenic minerals such as siderite and have excess reactive Fe rather than pyrite stoichiometry. Evidently Fe played a large role in early diagenesis and determined the course of post-sulfidic diagenesis. Fe availability was, however, mainly controlled by provenance, by the rates of sediment accumulation, and by the oxygen content of the depositional environment. ?? 1987.

  1. SOIL NITROGEN TRANSFORMATIONS AND ROLE OF LIGHT FRACTION ORGANIC MATTER IN FOREST SOILS

    EPA Science Inventory

    Depletion of soil organic matter through cultivation may alter substrate availability for microbes, altering the dynamic balance between nitrogen (N) immobilization and mineralization. Soil light fraction (LF) organic matter is an active pool that decreases upon cultivation, and...

  2. Study of the organic matter in the DSDP /JOIDES/ cores, legs 10-15. [Deep Sea Drilling Program

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R. T.; Burlingame, A. L.

    1974-01-01

    The composition of the organic matter collected on legs 10 to 15 of the DSDP (Deep Sea Drilling Project) is described. Distributions of various alkanes, carboxylic acids, steroids and terpenoids, isoprenoid ketones and olefins, and aromatic polycyclic compounds are given. Samples analyzed had terrigenous clay components, with variable organic carbon contents and thus diverse solvent soluble matter. The distribution patterns for the various compound series monitored were of marine derivation, with the terrigenous components superimposed. Diagenesis of steroids appeared to proceed via both stanones and stanols to their respective steranes. Degradative processes were observed to be operative: oxidative products, mainly ketones derived from steroids and phytol, were identified, probably due to microbial alteration prior to or during sedimentation. Loss of alkane and fatty acid C preferences and presence of polycyclic aromatics evinced maturation. Results indicate that the accumulation, degradation, diagenesis and maturation of organic matter occurs in various steps in the deep sea environment.

  3. [Regeneration of photoreceptor organs in freshwater planarians at different levels of accumulation of natural methylmercury compounds].

    PubMed

    Medvedev, I V; Gremiachikh, V A; Zheltov, S V; Bogdanenko, O V; Aksenova, I A

    2006-01-01

    The effects of natural methylmercury compounds on regeneration of photoreceptor organs were studied in three freshwater planarians: Polycelis tenuis, Dugesia lugubris, and D. tigrina. Accumulation of methyl mercury in the planarian body suppressed regeneration of P. tenuis with numerous photoreceptor organs to a greater extent than in two other planarians that have only two eyes. High methyl mercury concentrations inhibited the restoration of photoreceptor organs in asexual and sexual D. tigrina races.

  4. Soil Quality of Restinga Forest: Organic Matter and Aluminum Saturation

    NASA Astrophysics Data System (ADS)

    Rodrigues Almeida Filho, Jasse; Casagrande, José Carlos; Martins Bonilha, Rodolfo; Soares, Marcio Roberto; Silva, Luiz Gabriel; Colato, Alexandre

    2013-04-01

    The restinga vegetation (sand coastal plain vegetation) consists of a mosaic of plant communities, which are defined by the characteristics of the substrates, resulting from the type and age of the depositional processes. This mosaic complex of vegetation types comprises restinga forest in advanced (high restinga) and medium regeneration stages (low restinga), each with particular differentiating vegetation characteristics. Of all ecosystems of the Atlantic Forest, restinga is the most fragile and susceptible to anthropic disturbances. The purpose of this study was evaluating the organic matter and aluminum saturation effects on soil quality index (SQI). Two locations were studied: State Park of the Serra do Mar, Picinguaba, in the city of Ubatuba (23°20' e 23°22' S / 44°48' e 44°52' W), and State Park of Cardoso Island in the city of Cananéia (25°03'05" e 25°18'18" S / 47°53'48" e 48° 05'42" W). The soil samples were collect at a depth of 0-10 cm, where concentrate 70% of vegetation root system. Was studied an additive model to evaluate soil quality index. The shallow root system development occurs due to low calcium levels, whose disability limits their development, but also can reflect on delay, restriction or even in the failure of the development vegetation. The organic matter is kept in the soil restinga ecosystem by high acidity, which reduces the decomposition of soil organic matter, which is very poor in nutrients. The base saturation, less than 10, was low due to low amounts of Na, K, Ca and Mg, indicating low nutritional reserve into the soil, due to very high rainfall and sandy texture, resulting in high saturation values for aluminum. Considering the critical threshold to 3% organic matter and for aluminum saturation to 40%, the IQS ranged from 0.95 to 0.1 as increased aluminum saturation and decreased the soil organic matter, indicating the main limitation to the growth of plants in this type of soil, when deforested.

  5. Using Riverine Natural Organic Matter to Test the Hypothesis that Soil Organic Matter is Modified by Contact with Sodium Hydroxide

    NASA Astrophysics Data System (ADS)

    Perdue, E. Michael; Driver, Shamus; Hertkorn, Norbert; Harir, Mourad; Schmitt-Kopplin, Philippe

    2016-04-01

    It has been postulated by some scientists that soil humic acids and fulvic acids are an artifact of alkaline extractions of soil. Riverine natural organic matter (NOM) is obtained in part by dissolution and transport of organic matter from soils by meteoric waters at acidic to circumneutral pH. The NOM may be fractionated into humic acid (HA), fulvic acid (FA), and hydrophilic NOM by adsorption of HA and FA onto XAD-8 resin at pH < 2, followed by their desorption with NaOH at pH 13. Alternatively, riverine NOM may be concentrated using reverse osmosis (RO) and desalted by cation exchange. Several properties of Suwannee River NOM prior to its isolation, after concentration by RO, and after the XAD-8 process are compared to detect modifications that might have resulted from exposure of the sample to low and high pH.

  6. The composition and degradability of upland dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Moody, Catherine; Worrall, Fred; Clay, Gareth

    2016-04-01

    In order to assess controls on the degradability of DOM in stream water, samples of dissolved organic matter (DOM) and particulate organic matter (POM) were collected every month for a period of 24 months from an upland, peat-covered catchment in northern England. Each month the degradability of the DOM was assessed by exposing river water to light for up to 24 hours, and the change in the dissolved organic carbon (DOC) concentration in the water was measured. To provide context for the analysis of DOM and its degradability, samples of peat, vegetation, and litter were also taken from the same catchment and analysed. The organic matter samples were analysed by several methods including: elemental analysis (CHN and O), bomb calorimetry, thermogravimetric analysis, pyrolysis GC/MS, ICP-OES, stable isotope analysis (13C and 15N) and 13C solid state nuclear magnetic resonance (NMR). The water samples were analysed for pH, conductivity, absorbance at 400nm, anions, cations, particulate organic carbon (POC) and DOC concentrations. River flow conditions and meteorology were also recorded at the site and included in the analysis of the composition and degradability of DOM. The results of multiple regression models showed that the rates of DOC degradation were affected by the N-alkyl, O-alkyl, aldehyde and aromatic relative intensities, gross heat, OR and C:N. Of these, the N-alkyl relative intensity had the greatest influence, and this in turn was found to be dependent on the rainfall and soil temperature in the week before sampling.

  7. Isotopic constraints on the origin of meteoritic organic matter

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.

    1991-01-01

    Salient features of the isotopic distribution of H, C and N in the organic material found in carbonaceous meteorites are noted. Most organic fractions are strongly enriched in D with respect to the D/H ratio characteristic of H2 in the protosolar system; substantial variations in C-13/C-12 ratio are found among different molecular species, with oxidised species tending to be C-13 enriched relative to reduced species; some homologous series reveal systematic decrease in C-13/C-12 with increasing C number; considerable variation in N-15/N-14 ratio is observed within organic matter, though no systematic pattern to its distribution has yet emerged; no interelement correlations have been observed between isotope enrichments for the different biogenic elements. The isotopic complexity echoes the molecular diversity observed in meteoritic organic matter and suggests that the organic matter was formed by multiple processes and/or from multiple sources. However, existence of a few systematic patterns points towards survival of isotopic signatures characteristic of one or more specific processes. The widespread D enrichment implies either survival of many species of interstellar molecule or synthesis from a reservoir containing a significant interstellar component. Several of the questions raised above can be addressed by more detailed determination of the distribution of the H, C and N isotopes among different well-characterized molecular fractions. Thus, the present study is aimed at discovering whether the different amino acids have comparable D enrichments, which would imply local synthesis from a D-enriched reservoir, or very viable D enrichments, which would imply survival of some interstellar amino acids. The same approach is also being applied to polycyclic aromatic hydrocarbons. Because the analytical technique employed (secondary ion mass spectrometry) can acquire data for all three isotopic systems from each molecular fraction, any presently obscured interelement

  8. Pathways of anaerobic organic matter decomposition in tundra soils from Barrow, Alaska

    DOE PAGES

    Herndon, Elizabeth M.; Mann, Benjamin F.; Chowdhury, Taniya Roy; Wullschleger, Stan D.; Graham, David E.; Liang, Liyuan; Gu, Baohua; Yang, Ziming

    2015-11-23

    Arctic tundra soils store a large quantity of organic carbon that is susceptible to decomposition and release to the atmosphere as methane (CH4) and carbon dioxide (CO2) under a warming climate. Anaerobic processes that generate CH4 and CO2 remain unclear because previous studies have focused on aerobic decomposition pathways. To predict releases of CO2 and CH4 from tundra soils, it is necessary to identify pathways of soil organic matter decomposition under the anoxic conditions that are prevalent in Arctic ecosystems. Here molecular and spectroscopic techniques were used to monitor biological degradation of water-extractable organic carbon (WEOC) during anoxic incubation ofmore » tundra soils from a region of continuous permafrost in northern Alaska. Organic and mineral soils from the tundra active layer were incubated at –2, +4, or +8°C for up to 60 days to mimic the short-term thaw season. Results suggest that, under anoxic conditions, fermentation converted complex organic molecules into simple organic acids that were used in concomitant Fe-reduction and acetoclastic methanogenesis reactions. Nonaromatic compounds increased over time as WEOC increased. Organic acid metabolites initially accumulated in soils but were mostly depleted by day 60 because organic acids were consumed to produce Fe(II), CO2, and CH4. We conclude that fermentation of nonprotected organic matter facilitates methanogenesis and Fe reduction reactions, and that the proportion of organic acids consumed by methanogenesis increases relative to Fe reduction with increasing temperature. As a result, the decomposition pathways observed in this study are important to consider in numerical modeling of greenhouse gas production in the Arctic.« less

  9. Pathways of anaerobic organic matter decomposition in tundra soils from Barrow, Alaska

    SciTech Connect

    Herndon, Elizabeth M.; Mann, Benjamin F.; Chowdhury, Taniya Roy; Wullschleger, Stan D.; Graham, David E.; Liang, Liyuan; Gu, Baohua; Yang, Ziming

    2015-11-23

    Arctic tundra soils store a large quantity of organic carbon that is susceptible to decomposition and release to the atmosphere as methane (CH4) and carbon dioxide (CO2) under a warming climate. Anaerobic processes that generate CH4 and CO2 remain unclear because previous studies have focused on aerobic decomposition pathways. To predict releases of CO2 and CH4 from tundra soils, it is necessary to identify pathways of soil organic matter decomposition under the anoxic conditions that are prevalent in Arctic ecosystems. Here molecular and spectroscopic techniques were used to monitor biological degradation of water-extractable organic carbon (WEOC) during anoxic incubation of tundra soils from a region of continuous permafrost in northern Alaska. Organic and mineral soils from the tundra active layer were incubated at –2, +4, or +8°C for up to 60 days to mimic the short-term thaw season. Results suggest that, under anoxic conditions, fermentation converted complex organic molecules into simple organic acids that were used in concomitant Fe-reduction and acetoclastic methanogenesis reactions. Nonaromatic compounds increased over time as WEOC increased. Organic acid metabolites initially accumulated in soils but were mostly depleted by day 60 because organic acids were consumed to produce Fe(II), CO2, and CH4. We conclude that fermentation of nonprotected organic matter facilitates methanogenesis and Fe reduction reactions, and that the proportion of organic acids consumed by methanogenesis increases relative to Fe reduction with increasing temperature. As a result, the decomposition pathways observed in this study are important to consider in numerical modeling of greenhouse gas production in the Arctic.

  10. Organic matter dynamics and budgets in the turbidity maximum zone of the Seine Estuary (France)

    NASA Astrophysics Data System (ADS)

    Garnier, Josette; Billen, Gilles; Even, Stéphanie; Etcheber, Henri; Servais, Pierre

    2008-03-01

    Organic matter was studied in the turbidity maximum zone (TMZ) of the Seine Estuary during 8 tidal cycles from April to October in 2001, 2002 and 2003, covering a salinity range from 0 to 27. The hydrological conditions were quite varied (extremely wet in 2001, unusually dry in 2003). A particularly striking feature is the high organic matter content in the suspended solids (SS) of the Seine estuary (4-5%). By determining micro-organism activity and organic carbon partitioning, either linked to particles or in dissolved forms, and estimating the TMZ water volumes, together with SS, we extrapolated these activities and stocks to the whole TMZ. Carbon metabolism in the TMZ and fluxes upstream of the TMZ were compared on the dates of field surveys, and the routes and fate of carbon in the TMZ were quantified in order to learn about the trophic status of this estuarine zone in terms of autotrophy vs. heterotrophy. The upstream total organic carbon (TOC) fluxes (48% of particulate organic carbon (POC), 52% of dissolved organic carbon (DOC) on average) varied fourfold between the surveys, reaching the highest value of 280 TC d -1 during the wet summer of 2001; and the lowest value of about 70 TC d -1 in August 2003. Whereas nearly all of the DOC flux entering the TMZ reaches the coastal marine zone, mostly (at least 85%) in a refractory form, the POC accumulates in the TMZ of the estuarine channel, particle exportation being negligible. In the TMZ, biodegradation of DOC was, on average, much less (only a 2% decrease in the BDOC/DOC ratio between the TMZ upstream and downstream fluxes) than biodegradation of POC (11%). A simplified model of the TMZ (LIFT- Lumped Idealisation of the ecological Functioning in estuarine Turbidity maximum) was constructed for investigating the dynamics of organic matter on a seasonal scale. The agreement between observation and calculation allowed us to run sensitivity tests using new constraints; reductions of the upstream fluxes of

  11. Dry matter accumulation in citrus fruit is not limited by transport capacity of the pedicel.

    PubMed

    Garcia-Luis, A; Oliveira, M E M; Bordon, Y; Siqueira, D L; Tominaga, S; Guardiola, J L

    2002-12-01

    The vascularization of the pedicel in Marisol clementine (Citrus clementina Hort. ex Tanaka) has been characterized in relation to fruit growth. Phloem and xylem formation occurred during the first half of the period of fruit growth. Phloem cross-sectional area reached its maximum value by the end of fruitlet abscission, 78 d after anthesis (DAA), shortly after the rate of accumulation of dry matter in fruitlets reached its maximum value. Secondary xylem formation occurred until day 93, well after the end of fruitlet abscission. At fruit maturity, xylem accounted for 42-46 % of the cross-section of the pedicel. Vessels differentiated in this late-formed xylem. Formation of phloem and early xylem was directly related to fruitlet size (and growth rate). Differences in the rate of formation of conductive tissues in the pedicel of the developing fruitlets followed rather than preceded the differences in growth rate. Specific mass transfer (SMT) in the phloem was highest in the fastest growing fruitlets, and peaked during the late stages of fruitlet abscission (72-78 DAA) and during the main period of fruit growth (107-121 DAA). Application of a synthetic auxin to developing fruits, either at the end of flowering (2,4-D) or by day 64 after flowering (2,4-DP), increased the growth rate of the fruit and fruit size at maturity (8-13 % increase in fruit diameter at maturity). These auxin applications also enhanced the formation of conductive tissues in the pedicel, with a specific effect on phloem formation. Applying auxin at flowering resulted in a reduction in the phloem SMT by days 72-78, whereas auxin application on day 64 increased this parameter. Despite this difference in behaviour, which resulted from the different time-course of the growth response of the fruit to auxin applications, these applications increased fruit size to a similar extent. Severing 37 % of the phloem of the pedicel during the main period of fruit growth resulted in an increase in the specific

  12. Soil organic matter decomposition follows plant productivity response to sea-level rise

    NASA Astrophysics Data System (ADS)

    Mueller, Peter; Jensen, Kai; Megonigal, James Patrick

    2015-04-01

    The accumulation of soil organic matter (SOM) is an important mechanism for many tidal wetlands to keep pace with sea-level rise. SOM accumulation is governed by the rates of production and decomposition of organic matter. While plant productivity responses to sea-level rise are well understood, far less is known about the response of SOM decomposition to accelerated sea-level rise. Here we quantified the effects of sea-level rise on SOM decomposition by exposing planted and unplanted tidal marsh monoliths to experimentally manipulated flood duration. The study was performed in a field-based mesocosm facility at the Smithsonian Global Change Research Wetland, a micro tidal brackish marsh in Maryland, US. SOM decomposition was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated using a stable carbon isotope approach. Despite the dogma that decomposition rates are inversely related to flooding, SOM mineralization was not sensitive to varying flood duration over a 35 cm range in surface elevation in unplanted mesocoms. In the presence of plants, decomposition rates were strongly and positively related to aboveground biomass (p≤0.01, R2≥0.59). We conclude that rates of soil carbon loss through decomposition are driven by plant responses to sea level in this intensively studied tidal marsh. If our result applies more generally to tidal wetlands, it has important implications for modeling carbon sequestration and marsh accretion in response to accelerated sea-level rise.

  13. Differences in spectroscopic characteristics between dissolved and particulate organic matters in sediments: Insight into distribution behavior of sediment organic matter.

    PubMed

    He, Wei; Jung, Heonjae; Lee, Jong-Hyun; Hur, Jin

    2016-03-15

    In this study, we examined the distribution behavior of sediment organic matter (SOM) between dissolved and particulate phases and the potential influencing factors by comparing the spectroscopic features of pore water organic matter (PWOM) and alkaline-extractable organic matter (AEOM) of river sediments. The characteristics of SOM were described by several selected spectral indicators and fluorescence excitation emission matrix (EEM)-parallel factor analysis (PARAFAC). The spectral indicators showed that larger sized SOM molecules with a higher aromatic content were more enriched in sediment particles than in pore water. The relative ratios of humification index between dissolved and particulate phases revealed that the SOM constituents with a higher degree of structural condensation were preferentially distributed onto sediment particles. EEM-PARAFAC demonstrated different distribution behaviors of protein-like (tyrosine-like and tryptophan-like) and humic-like substances in sediments. The relative abundance of tyrosine-like component was much higher in PWOM than in AEOM, whereas the other three components tended to be more abundant in AEOM. The predominant presence of tyrosine-like component suggests its potential operation as a discriminant indicator between PWOM and AEOM. Spearman correlations and non-metric multidimensional scaling further revealed that distribution of protein-like components onto sediment particles might be associated with reductive environments, aluminum minerals, and anthropogenic activities of upstream watersheds. This study demonstrated a successful application of using EEM-PARAFAC to examine the distribution behavior of different SOM constitutes between dissolved and solid phases.

  14. Organic matter oxidation and aragonite diagenesis in a coral reef

    SciTech Connect

    Tribble, G.W. Univ. of Hawaii, Honolulu )

    1993-05-01

    A combination of field and theoretical work is used to study controls on the saturation state of aragonite inside a coral-reef framework. A closed-system ion-speciation model is used to evaluate the effect of organic-matter oxidation on the saturation state of aragonite. The aragonite saturation state initially drops below 1 but becomes oversaturated during sulfate reduction. The C:N ratio of the organic matter affects the degree of oversaturation with N-poor organic material resulting in a system more corrosive to aragonite. Precipitation of sulfide as FeS strongly affects the aragonite saturation state, and systems with much FeS formation will have a stronger tendency to become oversaturated with respect to aragonite. Both precipitation and dissolution of aragonite are predicted at different stages of the organic reaction pathway if the model system is maintained at aragonite saturation. Field data from a coral-reef framework indicate that the system maintains itself at aragonite saturation, and model-predicted changes in dissolved calcium follow those observed in the interstitial waters of the reef. Aragonite probably acts as a solid-phase buffer in regulating the pH of interstitial waters. Because interstitial water in the reef has a short residence time, the observed equilibration suggests rapid kinetics.

  15. Organic matter and nutrient inputs to the Humber Estuary, England.

    PubMed

    Boyes, Suzanne; Elliott, Michael

    2006-01-01

    Estuaries are sinks for organic matter and nutrients entering both from their catchments and also from the adjacent lands and urban areas and in turn they are sources of such materials to the adjacent coast. The present paper quantifies the relative amounts of natural and anthropogenic organic matter and nutrients entering the Humber Estuary, Eastern England, including the allochthonous and autochthonous materials, those from urban and industrial sewage and from the catchment drainage of arable land. These data thus give a budget for the estuary which in turn answers questions fundamental to the management of the estuary. The estimations within the study have been carried out against a background of designating estuaries under the European Union Urban Waste-water Treatment Directive and the EU Nitrates Directive. The assessment has particularly addressed the question, related to the former Directive, of whether the Humber Estuary is eutrophic or likely to become eutrophic unless management measures are taken. Thus the paper indicates the nature and value of control measures such as treatment plant upgrading and the designation of Nitrate Vulnerable Zones. The paper includes the recent national and European discussions on the designation of areas under these Directives. Finally, the study has allowed a quantification of the present organic inputs to the estuary in comparison to those entering prior to large scale land-claim which had removed natural organic-producing wetlands.

  16. Organic matter composition and macrofaunal diversity in sediments of the Condor Seamount (Azores, NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Bongiorni, Lucia; Ravara, Ascensão; Parretti, Paola; Santos, Ricardo S.; Rodrigues, Clara F.; Amaro, Teresa; Cunha, Marina R.

    2013-12-01

    In recent years increasing knowledge has been accumulated on seamounts ecology; however their sedimentary environments and associated biological communities remain largely understudied. In this study we investigated quantity and biochemical composition of organic matter and macrofaunal diversity in sediments of the Condor Seamount (NE Atlantic, Azores). In order to test the effect of the seamount on organic matter distribution, sediment samples were collected in 6 areas: the summit, the northern and southern flanks and bases, and in an external far field site. Macrofauna abundance and diversity were investigated on the summit, the southern flank and in the far field site. The organic matter distribution reflected the complex hydrodynamic conditions occurring on the Condor. Concentrations of organic matter compounds were generally lower on the whole seamount than in the far field site and on the seamount summit compared to flanks and bases. A clear difference was also evident between the northern and southern slopes of the Condor, suggesting a role of the seamount in conditioning sedimentation processes and distribution of food resources for benthic consumers. Macrofauna assemblages changed significantly among the three sampling sites. High abundance and dominance, accompanied by low biodiversity, characterized the macrofauna community on the Condor summit, while low dominance and high biodiversity were observed at the flank. Our results, although limited to five samples on the seamount and two off the seamount, do not necessarily support the paradigm that seamounts are more biodiverse than the surrounding seafloor. However, the abundance (and biomass), functional diversity and taxonomical distinctiveness of the macrofaunal assemblages from the Condor Seamount suggest that seamounts habitats may play a relevant role in adding to the regional biodiversity.

  17. Remote monitoring of organic matter in the ocean

    NASA Astrophysics Data System (ADS)

    Niccolai, Filippo; Bazzani, Marco; Cecchi, Giovanna; Innamorati, Mario; Massi, Luca; Nuccio, Caterina; Santoleri, Rosalia

    1999-12-01

    The monitoring of organic matter, suspended or dissolved in the water column, is relevant for the study of the aquatic environment. Actually, the Dissolved Organic Matter (DOM) represents a major reservoir of reactive carbon in the global carbon cycle, thus influencing significantly the marine ecosystem. Due to the strong absorption in the near ultraviolet, DOM reduces considerably the extinction path of solar light in the water column, affecting phytoplankton population and its vertical distribution. The measurement of the DOM absorption coefficient has to be regarded as a good parameter for the monitoring of water quality. This paper deals with the measurements carried out during the oceanographic campaign 'Marine Fronts,' which took place in the Western Mediterranean Sea and Atlantic Ocean from July 14 to August 5, 1998. In this measurement campaign, a high spectral resolution fluorescence lidar (FLIDAR) was installed on the rear-deck of the O/V 'Urania,' acquiring remote fluorescence spectra both in ship motion and in stations. A particular attention was devoted to the monitoring of DOM distribution in the different water masses in marine frontal areas. The lidar data were compared and integrated with SST satellite data and biological samplings. The results show that FLIDAR data agree with satellite imagery, particularly for marine front detection. The comparison with water sample data gave indications for retrieving the DOM absorption coefficient directly from fluorescence remote spectra. In addition, a protein like fluorescence band was detected in the measurements carried out on total suspended matter filtered from the water samplings.

  18. Organic speciation of size-segregated atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Tremblay, Raphael

    Particle size and composition are key factors controlling the impacts of particulate matter (PM) on human health and the environment. A comprehensive method to characterize size-segregated PM organic content was developed, and evaluated during two field campaigns. Size-segregated particles were collected using a cascade impactor (Micro-Orifice Uniform Deposit Impactor) and a PM2.5 large volume sampler. A series of alkanes and polycyclic aromatic hydrocarbons (PAHs) were solvent extracted and quantified using a gas chromatograph coupled with a mass spectrometer (GC/MS). Large volume injections were performed using a programmable temperature vaporization (PTV) inlet to lower detection limits. The developed analysis method was evaluated during the 2001 and 2002 Intercomparison Exercise Program on Organic Contaminants in PM2.5 Air Particulate Matter led by the US National Institute of Standards and Technology (NIST). Ambient samples were collected in May 2002 as part of the Tampa Bay Regional Atmospheric Chemistry Experiment (BRACE) in Florida, USA and in July and August 2004 as part of the New England Air Quality Study - Intercontinental Transport and Chemical Transformation (NEAQS - ITCT) in New Hampshire, USA. Morphology of the collected particles was studied using scanning electron microscopy (SEM). Smaller particles (one micrometer or less) appeared to consist of solid cores surrounded by a liquid layer which is consistent with combustion particles and also possibly with particles formed and/or coated by secondary material like sulfate, nitrate and secondary organic aerosols. Source apportionment studies demonstrated the importance of stationary sources on the organic particulate matter observed at these two rural sites. Coal burning and biomass burning were found to be responsible for a large part of the observed PAHs during the field campaigns. Most of the measured PAHs were concentrated in particles smaller than one micrometer and linked to combustion sources

  19. Photochemical production of singlet oxygen from particulate organic matter.

    PubMed

    Appiani, Elena; McNeill, Kristopher

    2015-03-17

    Dissolved organic matter is established as one of the most relevant photosensitizers in aquatic environments, producing singlet oxygen (1O2) alongside other photochemically produced reactive intermediates. While the production of 1O2 from DOM has been well studied, the relative importance of particulate organic matter (POM) to the overall 1O2 production is less well understood. POM is known to play an important role in pollutant fate through the sorption and transport of hydrophobic pollutants. If POM is directly involved in 1O2 production, sorbed molecules would be expected to undergo enhanced photodegradation. In this work, synthetic POM was prepared by coating silica particles with commercial humic acid. The photochemical behavior of these POM samples was compared to dissolved commercial humic acids (DOM). Suspended natural sediment was also studied to test the environmental relevance of the synthetic POM model. Synthetic POM particles appear to simulate well the 1O2-production of suspended sediment. The 1O2 concentrations experienced by POM-sorbed probe molecules was up to 30% higher than experienced by DOM-sorbed ones, even though the aqueous concentration of 1O2 in irradiated POM suspensions was much lower than the analogous DOM solutions. These results were interpreted with a reaction-diffusion model, which suggested that the production rate of 1O2 by POM is lower than DOM, but the loss of 1O2 from the POM-phase is also lower than DOM. Based on the experimental results of this study, calculations were conducted to estimate the impact of removing POM on 1O2-mediated processes. These calculations indicate that compounds with a log Koc value near 4 will be most affected by removal of POM and that the magnitude of the effect is proportional to the fraction of the total organic matter represented by POM. This study demonstrates that particles can play an important role in the degradation of organic compounds via aquatic photochemistry.

  20. Missing links in the root-soil organic matter continuum.

    SciTech Connect

    O'Brien, S. L.; Iversen, C. M.; Biosciences Division; ORNL

    2009-01-01

    The soil environment remains one of the most complex and poorly understood research frontiers in ecology. Soil organic matter (SOM), which spans a continuum from fresh detritus to highly processed, mineral-associated organic matter, is the foundation of sustainable terrestrial ecosystems. Heterogeneous SOM pools are fueled by inputs from living and dead plants, driven by the activity of micro- and mesofauna, and are shaped by a multitude of abiotic factors (Fig. 1). The specialization required to measure unseen processes that occur on a wide range of spatial and temporal scales has led to the partitioning of soil ecology research across several disciplines. In the organized oral session 'Missing links in the root-soil organic matter continuum' at the annual Ecological Society of America meeting in Albuquerque, NM, USA, we joined the call for greater communication and collaboration among ecologists who work at the root-soil interface (e.g. Coleman, 2008). Our goal was to bridge the gap between scientific disciplines and to synthesize disconnected pieces of knowledge from root-centric and soil-centric studies into an integrated understanding of belowground ecosystem processes. We focused this report around three compelling themes that arose from the session: (1) the influence of the rhizosphere on SOM cycling, (2) the role of soil heterotrophs in driving the transformation of root detritus to SOM, and (3) the controlling influence of the soil environment on SOM dynamics. We conclude with a discussion of new approaches for gathering data to bridge gaps in the root-SOM continuum and to inform the next generation of ecosystem models.

  1. Competitive Sorption and Desorption of Chlorinated Organic Solvents (DNAPLs) in Engineered Natural Organic Matter

    SciTech Connect

    Tang, Jixin; Weber, Walter J., Jr.

    2004-03-31

    The effects of artificially accelerated geochemical condensation and maturation of natural organic matter on the sorption and desorption of trichloroethylene (TCE) and tetrachloroethylene (PCE) were studied. The sorption and desorption of TCE in the presence and absence of the competing PCE and 1,2-dichlorobenzene (DCB) were also examined. A sphagnum peat comprising geologically young organic matter was artificially ''aged'' using superheated water, thus increasing the aromaticity and the degree of condensation of its associated organic matter. The sorption of all solutes tested were increased remarkably and their respective desorptions reduced, by the aged peat. The sorption capacities and isotherm nonlinearities of the peat for both TCE and PCE were found to increase as treatment temperature increased. In the competitive sorption studies, both PCE and DCB were found to depress TCE sorption, with PCE having greater effects than DCB, presumably because the molecular structure o f the former is more similar to that of TCE.

  2. Social dynamics within decomposer communities lead to nitrogen retention and organic matter build-up in soils

    PubMed Central

    Kaiser, Christina; Franklin, Oskar; Richter, Andreas; Dieckmann, Ulf

    2015-01-01

    The chemical structure of organic matter has been shown to be only marginally important for its decomposability by microorganisms. The question of why organic matter does accumulate in the face of powerful microbial degraders is thus key for understanding terrestrial carbon and nitrogen cycling. Here we demonstrate, based on an individual-based microbial community model, that social dynamics among microbes producing extracellular enzymes (‘decomposers') and microbes exploiting the catalytic activities of others (‘cheaters') regulate organic matter turnover. We show that the presence of cheaters increases nitrogen retention and organic matter build-up by downregulating the ratio of extracellular enzymes to total microbial biomass, allowing nitrogen-rich microbial necromass to accumulate. Moreover, increasing catalytic efficiencies of enzymes are outbalanced by a strong negative feedback on enzyme producers, leading to less enzymes being produced at the community level. Our results thus reveal a possible control mechanism that may buffer soil CO2 emissions in a future climate. PMID:26621582

  3. Application of organic geochemistry to detect signatures of organic matter in the Haughton impact structure

    NASA Astrophysics Data System (ADS)

    Parnell, John; Lee, Pascal; Osinski, Gordon R.; Cockell, Charles S.

    2005-12-01

    Organic geochemistry applied to samples of bedrock and surface sediment from the Haughton impact structure detects a range of signatures representing the impact event and the transfer of organic matter from the crater bedrock to its erosion products. The bedrock dolomite contains hydrocarbon-bearing fluid inclusions which were incorporated before the impact event. Comparison of biomarker data from the hydrocarbons in samples inside and outside of the crater show the thermal signature of an impact. The occurrence of hydrocarbon inclusions in hydrothermal mineral samples shows that organic matter was mobilized and migrated in the immediate aftermath of the impact. The hydrocarbon signature was then transferred from bedrock to the crater-fill lacustrine deposits and present-day sediments in the crater, including wind-blown detritus in snow/ice. Separate signatures are detected from modern microbial life in crater rock and sediment samples. Signatures in Haughton crater samples are readily detectable because they include hydrocarbons generated by the burial of organic matter. This type of organic matter is not expected in crater samples on other planets, but the Haughton data show that, using very high resolution detection of organic compounds, any signature of primitive life in the crater rocks could be transferred to surface detritus and so extend the sampling medium.

  4. Modelling of organic matter dynamics during the composting process.

    PubMed

    Zhang, Y; Lashermes, G; Houot, S; Doublet, J; Steyer, J P; Zhu, Y G; Barriuso, E; Garnier, P

    2012-01-01

    Composting urban organic wastes enables the recycling of their organic fraction in agriculture. The objective of this new composting model was to gain a clearer understanding of the dynamics of organic fractions during composting and to predict the final quality of composts. Organic matter was split into different compartments according to its degradability. The nature and size of these compartments were studied using a biochemical fractionation method. The evolution of each compartment and the microbial biomass were simulated, as was the total organic carbon loss corresponding to organic carbon mineralisation into CO(2). Twelve composting experiments from different feedstocks were used to calibrate and validate our model. We obtained a unique set of estimated parameters. Good agreement was achieved between the simulated and experimental results that described the evolution of different organic fractions, with the exception of some compost because of a poor simulation of the cellulosic and soluble pools. The degradation rate of the cellulosic fraction appeared to be highly variable and dependent on the origin of the feedstocks. The initial soluble fraction could contain some degradable and recalcitrant elements that are not easily accessible experimentally. PMID:21978424

  5. Microbial Community Composition of Polyhydroxyalkanoate-Accumulating Organisms in Full-Scale Wastewater Treatment Plants Operated in Fully Aerobic Mode

    PubMed Central

    Oshiki, Mamoru; Onuki, Motoharu; Satoh, Hiroyasu; Mino, Takashi

    2013-01-01

    The removal of biodegradable organic matter is one of the most important objectives in biological wastewater treatments. Polyhydroxyalkanoate (PHA)-accumulating organisms (PHAAOs) significantly contribute to the removal of biodegradable organic matter; however, their microbial community composition is mostly unknown. In the present study, the microbial community composition of PHAAOs was investigated at 8 full-scale wastewater treatment plants (WWTPs), operated in fully aerobic mode, by fluorescence in situ hybridization (FISH) analysis and post-FISH Nile blue A (NBA) staining techniques. Our results demonstrated that 1) PHAAOs were in the range of 11–18% in the total number of cells, and 2) the microbial community composition of PHAAOs was similar at the bacterial domain/phylum/class/order level among the 8 full-scale WWTPs, and dominant PHAAOs were members of the class Alphaproteobacteria and Betaproteobacteria. The microbial community composition of α- and β-proteobacterial PHAAOs was examined by 16S rRNA gene clone library analysis and further by applying a set of newly designed oligonucleotide probes targeting 16S rRNA gene sequences of α- or β-proteobacterial PHAAOs. The results demonstrated that the microbial community composition of PHAAOs differed in the class Alphaproteobacteria and Betaproteobacteria, which possibly resulted in a different PHA accumulation capacity among the WWTPs (8.5–38.2 mg-C g-VSS−1 h−1). The present study extended the knowledge of the microbial diversity of PHAAOs in full-scale WWTPs operated in fully aerobic mode. PMID:23257912

  6. The effect of natural organic matter on bioaccumulation and toxicity of chlorobenzenes to green algae.

    PubMed

    Zhang, Shuai; Lin, Daohui; Wu, Fengchang

    2016-07-01

    The effect of natural organic matter (NOM) on toxicity and bioavailability of hydrophobic organic contaminants (HOCs) to aquatic organisms has been investigated with conflicting results and undefined mechanisms, and few studies have been conducted on volatile HOCs. In this study, six volatile chlorobenzenes (CBs) with 1-6 chlorine substitutions were investigated for their bioaccumulation in an acute toxicity to a green alga (Chlorella pyrenoidosa) in the presence/absence of Suwannee River NOM (SRNOM). The fluorescence quenching efficiency of SRNOM increased as the number of chlorine substitutions of CBs increased. SRNOM increased the cell-surface hydrophobicity of algae and decreased the release rates of algae-accumulated CBs, thus increasing the concentration factor (CF) and accumulation of the CBs in the algae. SRNOM increased the toxicity of monochlorobenzene and 1,2-dichlorobenzene, decreased the toxicity of pentachlorobenzene and hexachlorobenzene, and had no significant effect on the toxicity of 1,2,3-trichlorobenzene and 1,2,3,4-tetrachlorobenzene. Relationships between the 96 h CF/IC50 (i.e., the CB concentration leading to a 50% algal growth reduction compared with the control) and physicochemical properties of CBs with/without SRNOM were established, providing reasonable explanations for the experimental results. These findings will help with the accurate assessment of ecological risks of organic pollutants in the presence of NOM.

  7. Effects of specific organs on seed oil accumulation in Brassica napus L.

    PubMed

    Liu, Jing; Hua, Wei; Yang, Hongli; Guo, Tingting; Sun, Xingchao; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong

    2014-10-01

    Seed oil content is an important agricultural characteristic in rapeseed breeding. Genetic analysis shows that the mother plant and the embryo play critical roles in regulating seed oil accumulation. However, the overwhelming majority of previous studies have focused on oil synthesis in the developing seed of rapeseed. In this study, to elucidate the roles of reproductive organs on oil accumulation, silique, ovule, and embryo from three rapeseed lines with high oil content (zy036, 6F313, and 61616) were cultured in vitro. The results suggest that zy036 silique wall, 6F313 seed coat, and 61616 embryo have positive impacts on the seed oil accumulation. In zy036, our previous studies show that high photosynthetic activity of the silique wall contributes to seed oil accumulation (Hua et al., 2012). Herein, by transcriptome sequencing and sucrose detection, we found that sugar transport in 6F313 seed coat might regulate the efficiency of oil synthesis by controlling sugar concentration in ovules. In 61616 embryos, high oil accumulation efficiency was partly induced by the elevated expression of fatty-acid biosynthesis-related genes. Our investigations show three organ-specific mechanisms regulating oil synthesis in rapeseed. This study provides new insights into the factors affecting seed oil accumulation in rapeseed and other oil crops.

  8. Soft X-Ray Photoionizing Organic Matter from Comet Wild 2: Evidence for the Production of Organic Matter by Impact Processes

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Wirick, S.; Flynn, G. J.; Jacobsen, C.; Na

    2011-01-01

    The Stardust mission collected both mineral and organic matter from Comet Wild 2 [1,2,3,4]. The organic matter discovered in Comet Wild 2 ranges from aromatic hydrocarbons to simple aliphatic chains and is as diverse and complex as organic matter found in carbonaceous chondrites and interplanetary dust particles.[3,5,6,7,8,9]. Compared to insoluble organic matter from carbonaceous chondrites the organic matter in Comet Wild 2 more closely resembles organic matter found in the IDPS both hydrous and anhydrous. Common processes for the formation of organic matter in space include: Fischer-Tropsch, included with this aqueous large body and moderate heating alterations; UV irradiation of ices; and; plasma formation and collisions. The Fischer-Tropsch could only occur on large bodies processes, and the production of organic matter by UV radiation is limited by the penetration depth of UV photons, on the order of a few microns or less for most organic matter, so once organic matter coats the ices it is formed from, the organic production process would stop. Also, the organic matter formed by UV irradiation would, by the nature of the process, be in-sensitive to photodissocation from UV light. The energy of soft X-rays, 280-300 eV occur within the range of extreme ultraviolet photons. During the preliminary examination period we found a particle that nearly completely photoionized when exposed to photons in the energy range 280-310eV. This particle experienced a long exposure time to the soft x-ray beam which caused almost complete mass loss so little chemical information was obtain. During the analysis of our second allocation we have discovered another particle that photoionized at these energies but the exposure time was limited and more chemical information was obtained.

  9. ENVIRONMENTAL RESEARCH BRIEF: CHARACTERIZATION OF ORGANIC MATTER IN SOIL AND AQUIFER SOLIDS

    EPA Science Inventory

    The focus of this work was the evaluation of analytical methods to determine and characterize fractions of subsurface organic matter. Major fractions of total organic carbon (TOC) include: particulate organic carbon (POC) in aquifer material, dissolved organic carbon (DOC) and ...

  10. Distribution of some organic components in two forest soils profiles with evidence of soil organic matter leaching.

    NASA Astrophysics Data System (ADS)

    Álvarez-Romero, Marta; Papa, Stefania; Lozano-García, Beatriz; Parras-Alcántara, Luis; Coppola, Elio

    2015-04-01

    Soil stores organic carbon more often than we can find in living vegetation and atmosphere together. This reservoir is not inert, but it is constantly in a dynamic phase of inputs and losses. Soil organic carbon mainly depends on land cover, environment conditions and soil properties. After soil deposition, the organic residues of different origin and nature, the Soil Organic Matter (SOM) can be seen involved in two different processes during the pedogenesis: mineralization and humification. The transport process along profile happens under certain conditions such as deposition of high organic residues amount on the top soil, high porosity of the soil caused by sand or skeleton particles, that determine a water strong infiltrating capacity, also, extreme temperatures can slow or stop the mineralization and/or humification process in one intermediate step of the degradation process releasing organic metabolites with high or medium solubility and high loads of water percolating in relation to intense rainfall. The transport process along soil profile can take many forms that can end in the formation of Bh horizons (h means accumulation of SOM in depth). The forest cover nature influence to the quantity and quality of the organic materials deposited with marked differences between coniferous and deciduous especially in relation to resistance to degradation. Two soils in the Campania region, located in Lago Laceno (Avellino - Italy) with different forest cover (Pinus sp. and Fagus sp.) and that meets the requirements of the place and pedological formation suitable for the formation and accumulation of SOM in depth (Bh horizon) were studied. The different soil C fractions were determinated and were assessed (Ciavatta C. et al. 1990; Dell'Abate M.T. et al. 2002) for each soil profile the Total Extractable Lipids (TEL). Furthermore, the lignin were considered as a major component of soil organic matter (SOM), influencing its pool-size and its turnover, due to the high

  11. Organic Matter as an Indicator of Soil Degradation

    NASA Astrophysics Data System (ADS)

    Romero Diaz, Asuncion; Damian Ruiz Sinoga, Jose

    2010-05-01

    Numerous and expensive physical-chemical tests are often carried out to determine the level of soil degration. This study was to find one property, as Organic Matter, which is usually analyzed for determine the soil degradation status. To do this 19 areas in the south and southeast of the Iberian Peninsula (provinces of Málaga, Granada, Almería y Murcia) were selected and a wide sampling process was carried out. Sampling points were spread over a wide pluviometric gradient (from 1100 mm/yr to 232 mm/yr) covering the range from Mediterranean wet to dry. 554 soil surface samples were taken from soil (0-10 cm) and the following properties were analyzed: Texture, Organic Matter (OM), Electric Conductivity (EC), Aggregate Stability (AE) y Cation Exchange Capacity (CEC). These properties were intercorrelated and also with rainfall and the K factor of soil erosion, calculated for each sampling point. Los results obtained by applying the Pearson correlation coefficient to the database shows how as rainfall increases so does OM content (0,97) and la CEC (0,89), but K factor (-0,80) reacts inversely. The content of OM in the soil is related to its biological activity and this in turn is the result of available wáter within the system and, consequently, rainfall. This is specially important in fragile and complex ecogeomorphological systems as is the case of the Mediterranean, where greater or lesser rainfall is similarly reflected in the levels of increase or decrease of soil organic matter. This affirmation is reinforced by linking the organic matter of the soil with other indicative properties such as CEC and erosion, as has been shown by various authors (Imeson y Vis, 1984; De Ploey & Poesen, 1985; Le Bissonnais, 1996; Boix-Fayos et al., 2001; Cammeraat y Imeson, 1998; Cerdá, 1998). As has been stated, there is a direct relationship between rainfall, organic matter content, cation exchange capacity, structural stability, and the resistence to soil erosion factor

  12. Genome-wide association mapping of cadmium accumulation in different organs of barley.

    PubMed

    Wu, Dezhi; Sato, Kazuhiro; Ma, Jian Feng

    2015-11-01

    The threshold value of cadmium (Cd) concentration in grains of barley (Hordeum vulgare) is the lowest among cereal crops; however, it is poorly understood how Cd accumulation in barley grain is genetically controlled. We investigated genotypic variation in Cd accumulation of different organs in 100 accessions from a subset of the barley core collection using both hydroponic and Cd-contaminated soil culture. We also performed a genome-wide association (GWA) mapping for Cd accumulation in different organs. A large genotypic variation in the Cd concentration was found in all organs. There was a good correlation between shoot Cd of solution and soil culture, the shoot Cd and grain Cd, but no correlation between the root Cd and grain Cd. GWA mapping detected 9 quantitative trait loci (QTL) for root Cd, 21 for shoot Cd, 14 for root-to-shoot translocation and 15 for grain Cd. A common QTL for the shoot Cd and root-to-shoot translocation was found at 132.6 cM on chromosome 5H. Two major QTL for grain Cd were identified on chromosome 2H and chromosome 5H. The genetic variation in Cd accumulation and major QTL detected provide useful information helpful for cloning candidate genes for Cd accumulation and breeding low-Cd barley cultivars in future.

  13. Genome-wide association mapping of cadmium accumulation in different organs of barley.

    PubMed

    Wu, Dezhi; Sato, Kazuhiro; Ma, Jian Feng

    2015-11-01

    The threshold value of cadmium (Cd) concentration in grains of barley (Hordeum vulgare) is the lowest among cereal crops; however, it is poorly understood how Cd accumulation in barley grain is genetically controlled. We investigated genotypic variation in Cd accumulation of different organs in 100 accessions from a subset of the barley core collection using both hydroponic and Cd-contaminated soil culture. We also performed a genome-wide association (GWA) mapping for Cd accumulation in different organs. A large genotypic variation in the Cd concentration was found in all organs. There was a good correlation between shoot Cd of solution and soil culture, the shoot Cd and grain Cd, but no correlation between the root Cd and grain Cd. GWA mapping detected 9 quantitative trait loci (QTL) for root Cd, 21 for shoot Cd, 14 for root-to-shoot translocation and 15 for grain Cd. A common QTL for the shoot Cd and root-to-shoot translocation was found at 132.6 cM on chromosome 5H. Two major QTL for grain Cd were identified on chromosome 2H and chromosome 5H. The genetic variation in Cd accumulation and major QTL detected provide useful information helpful for cloning candidate genes for Cd accumulation and breeding low-Cd barley cultivars in future. PMID:26061418

  14. Unraveling the chemical space of terrestrial and meteoritic organic matter

    NASA Astrophysics Data System (ADS)

    Schmitt-Kopplin, Philippe; Harir, Mourad; Hertkorn, Norbert; Kanawati, Basem; Ruf, Alexander; Quirico, Eric; Bonal, Lydie; Beck, Pierre; Gabelica, Zelimir

    2015-04-01

    In terrestrial environments natural organic matter (NOM) occurs in soils, freshwater and marine environments, in the atmosphere and represents an exceedingly complex mixture of organic compounds that collectively exhibits a nearly continuous range of properties (size-reactivity continuum). In these materials, the "classical" biogeosignatures of the (biogenic and geogenic) precursor molecules, like lipids, lignins, proteins and natural products have been attenuated, often beyond recognition, during a succession of biotic and abiotic (e.g. photo- and redox chemistry) reactions. Because of this loss of biochemical signature, these materials can be designated non-repetitive complex systems. The access to extra-terrestrial organic matter is given i.e. in the analysis of meteoritic materials. Numerous descriptions of organic molecules present in organic chondrites have improved our understanding of the early interstellar chemistry that operated at or just before the birth of our solar system. However, many molecular analyses are so far targeted toward selected classes of compounds with a particular emphasis on biologically active components in the context of prebiotic chemistry. Here we demonstrate that a non-targeted ultrahigh-resolution molecular analysis of the solvent-accessible organic fraction of meteorite extracted under mild conditions allows one to extend its indigenous chemical diversity to tens of thousands of different molecular compositions and likely millions of diverse structures. The description of the molecular complexity provides hints on heteroatoms chronological assembly, shock and thermal events and revealed recently new classes of thousands of novel organic, organometallic compounds uniquely found in extra-terrestrial materials and never described in terrestrial systems. This high polymolecularity suggests that the extraterrestrial chemodiversity is high compared to terrestrial relevant biological and biogeochemical-driven chemical space. (ultra

  15. Lead sequestration and species redistribution during soil organic matter decomposition.

    PubMed

    Schroth, Andrew W; Bostick, Benjamin C; Kaste, James M; Friedland, Andrew J

    2008-05-15

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-rayfluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest O(i) samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases (approximately 20-35%) and SOM (-65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility.

  16. Complexation of lead by organic matter in Luanda Bay, Angola.

    PubMed

    Leitão, Anabela; Santos, Ana Maria; Boaventura, Rui A R

    2015-10-01

    Speciation is defined as the distribution of an element among different chemical species. Although the relation between speciation and bioavailability is complex, the metal present as free hydrated ion, or as weak complexes able to dissociate, is usually more bioavailable than the metal incorporated in strong complexes or adsorbed on colloidal or particulate matter. Among the analytical techniques currently available, anodic stripping voltammetry (ASV) has been one of the most used in the identification and quantification of several heavy metal species in aquatic systems. This work concerns the speciation study of lead, in original (natural, non-filtered) and filtered water samples and in suspensions of particulate matter and sediments from Luanda Bay (Angola). Complexes of lead with organics were identified and quantified by differential pulse anodic stripping voltammetry technique. Each sample was progressively titrated with a Pb(II) standard solution until complete saturation of the organic ligands. After each addition of Pb(II), the intensity, potential and peak width of the voltammetric signal were measured. The results obtained in this work show that more than 95 % of the lead in the aquatic environment is bound in inert organic complexes, considering all samples from different sampling sites. In sediment samples, the lead is totally (100 %) complexed with ligands adsorbed on the particles surface. Two kinds of dominant lead complexes, very strong (logK >11) and strong to moderately strong (8< logK <11), were found, revealing the lead affinity for the stronger ligands. PMID:27624745

  17. Lead sequestration and species redistribution during soil organic matter decomposition

    USGS Publications Warehouse

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases (???20-35%) and SOM (???65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility. ?? 2008 American Chemical Society.

  18. Lead Sequestration And Species Redistribution During Soil Organic Matter Decomposition

    SciTech Connect

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2009-05-27

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-rayfluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest O{sub i} samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases ({approx}20--35%) and SOM ({approx}65--80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility.

  19. Lead Sequestration and Species Redistribution During Soil Organic Matter Decomposition

    SciTech Connect

    Schroth,A.; Bostick, B.; Kaste, J.; Friedland, A.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases ({approx}20-35%) and SOM ({approx}65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility.

  20. Priming of soil organic matter decomposition in cryoturbated Arctic soils

    NASA Astrophysics Data System (ADS)

    Richter, A.; Wild, B.; Schnecker, J.; Rusalimova, O.

    2012-12-01

    The Arctic is subjected to particularly high rates of warming, with profound consequences for the carbon cycle: on the one hand plant productivity and C storage in plant biomass have been shown to increase strongly in many parts of the Arctic, on the other hand, increasing rates of soil organic matter (SOM) decomposition have been reported. One of the possibilities that could reconcile these observations is, that increased plant growth may lead to increased root exudation rates, which are known to stimulate microbial turnover of organic matter under certain circumstances, in a process termed "priming" of SOM. Two mechanisms have been brought forward that may be responsible for priming: first, easily assimilable material exuded by plant roots may help microbes to overcome their energy limitation and second, this input of labile carbon could lead to a nitrogen limitation of the microbial community and lead to nitrogen mining, i.e. decomposition of N-rich SOM. We here report on an incubation study with arctic soil investigating potential priming of SOM decomposition in organic topsoil horizons, cryoturbated organic matter and subsoil mineral horizons of tundra soil from the Taymyr peninsula in Siberia. We used arctic soils, that are characterized by cryoturbation (mixing of soil layers due to freezing and thawing), for this study. Turbated cryosols store more than 580 Gt C globally, a significant proportion of which is stored in the cryoturbated organic matter. We hypothesized that an increased availability of labile compounds would increase SOM decomposition rates, and that this effect would be strongest in horizons with a low natural availability of labile C, i.e. in the mineral subsoil. We amended soils with 13C labelled glucose, cellulose, amino acids or proteins, and measured the mineralization of SOM C as well as microbial community composition and potential activities of extracellular enzymes. Our results demonstrate that topsoil organic, cryoturbated and

  1. Influence of organic matter on the transport of Cryptosporidium parvum oocysts in a ferric oxyhydroxide-coated quartz sand saturated porous medium

    USGS Publications Warehouse

    Abudalo, R.A.; Ryan, J.N.; Harvey, R.W.; Metge, D.W.; Landkamer, L.

    2010-01-01

    To assess the effect of organic matter on the transport of Cryptosporidium parvum oocysts in a geochemically heterogeneous saturated porous medium, we measured the breakthrough and collision efficiencies of oocysts as a function of dissolved organic matter concentration in a flow-through column containing ferric oxyhydroxide-coated sand. We characterized the surface properties of the oocysts and ferric oxyhydroxide-coated sand using microelectrophoresis and streaming potential, respectively, and the amount of organic matter adsorbed on the ferric oxyhydroxide-coated sand as a function of the concentration of dissolved organic matter (a fulvic acid isolated from Florida Everglades water). The dissolved organic matter had no significant effect on the zeta potential of the oocysts. Low concentrations of dissolved organic matter were responsible for reversing the charge of the ferric oxyhydroxide-coated sand surface from positive to negative. The charge reversal and accumulation of negative charge on the ferric oxyhydroxide-coated sand led to increases in oocyst breakthrough and decreases in oocyst collision efficiency with increasing dissolved organic matter concentration. The increase in dissolved organic matter concentration from 0 to 20 mg L-1 resulted in a two-fold decrease in the collision efficiency. ?? 2009 Elsevier Ltd.

  2. Considerations over the distribution of the organic matter in the soil cover of Transylvania Plain (Romania)

    NASA Astrophysics Data System (ADS)

    Cacovean, Horia; Man, Titus; Rusu, Teodor

    2010-05-01

    Considerations over the distribution of the organic matter in the soil cover of Transylvania Plain (Romania) Horea Cacovean*, Titus Man**, Teodor Rusu*** *OSPA-Cluj- 1Faglui street, Cluj Napoca, RO-40048, Romania- turda75@yahoo.com ** Faculty of Geographie, University of Babes-Bolyai, 5-7 Clinicilor street, Cluj Napoca, RO-400006, Romania *** Faculty of Agriculture, USAMV, 3-5 Calea Manastur street,Cluj Napoca, RO-400372, Romania Soil degradation has become a major concern in the Transylvania Plain. Erosion, landslides, salinization, gleysation, and loss of humus are the main forms of soil deterioration in that region. This factsheet deals with the role of organic matter in soil productivity and the effects of various management practices and abandonment of the lands on soil organic matter. Soils in Transylvania Plain are analyzed concerning the amount of humus they contain. The influence of soil texture, climatic variables, and soil management on the qualitative soil humus content was studied in the top 20 cm of different managed loess soils of more then 100 profiles along a climosequence in that region. Taken together, soil, landform, land use and vegetation data suggest: (1) summit positions are relatively stable with immobilizing humus environments; (2) the content of humus increase progressively down steep at the contact with the floodplains; 3) without the influx of organic materials, erodible backslopes may become humus depleted as it happen the poor inputs of grassland and forest litter are mixed with surface soil horizon; 4) influx of mixed sediment and organic materials from backslopes maintains concentrations of humus on footslopes and toeslopes. This influence was more pronounced in the heavy clayey soils, suggesting that the accumulation of humus was enhanced by organo-mineral interactions. Entrenchment of drainage ways can circumvent these translocation processes. The results underscore the importance of functional connectivity between upland

  3. Aquatic Organic Matter Fluorescence - from phenomenon to application

    NASA Astrophysics Data System (ADS)

    Reynolds, Darren

    2014-05-01

    The use of fluorescence to quantify and characterise aquatic organic matter in river, ocean, ground water and drinking and waste waters has come along way since its discovery as a phenomenon in the early 20th century. For example, there are over 100 papers published each year in international peer reviewed journals, an order of magnitude increase since a decade ago (see Figure taken from ISI database from 1989 to 2007 for publications in the fields of river water and waste water). Since then it has been extensively used as a research tool since the 1990's by scientists and is currently used for a wide variety of applications within a number of sectors. Universities, organisations and companies that research into aquatic organic matter have either recently readily use appropriate fluorescence based techniques and instrumentation. In industry and government, the technology is being taken up by environmental regulators and water and wastewater companies. This keynote presentation will give an overview of aquatic organic matter fluorescence from its conception as a phenomenon through to its current use in a variety of emerging applications within the sectors concerned with understanding, managing and monitoring the aquatic environment. About the Speaker Darren Reynolds pioneered the use of fluorescence spectroscopy for the analysis of wastewaters in the 1990's. He currently leads a research group within the Centre for Research in Biosciences and sits on the Scientific Advisory Board for the Institute of Bio-Sensing Technology at the University of the West of England, Bristol. He is a multidisciplinary scientist concerned with the development of technology platforms for applications in the fields of environment/agri-food and health. His current research interests include the development of optical technologies and techniques for environmental and biological sensing and bio-prospecting applications. He is currently involved in the development and use of synthetic biology

  4. Persistence of soil organic matter as an ecosystem property

    SciTech Connect

    Schmidt, M.W.; Torn, M. S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; Nannipieri, P.; Rasse, D.P.; Weiner, S.; Trumbore, S.E.

    2011-08-15

    Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily—and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.

  5. Particulate organic matter sinks and sources in high Arctic fjord

    NASA Astrophysics Data System (ADS)

    Kuliński, Karol; Kędra, Monika; Legeżyńska, Joanna; Gluchowska, Marta; Zaborska, Agata

    2014-11-01

    The main aim of this paper is to present results on concentrations, fluxes and isotopic composition (δ13Corg) of particulate and sedimentary organic carbon (measures of particulate and sedimentary organic matter, respectively) in Kongsfjorden, Spitsbergen. The terrestrial particulate organic carbon (POC) input to the Kongsfjorden reached 760 · 106 ± 145 · 106 g Corg y- 1, forced mostly by the glaciers' activity. This constituted 5-10% of the bulk POC supplied to the system. Marine primary production was the main source of the remaining 90-95% of POC. Organic carbon burial rates amounted to 9 ± 1 g Corg m- 2 y- 1 in the central and 13 ± 1 g Corg m- 2 y- 1 in the outer part of the fjord. Two terrestrial POM δ13Corg end members were identified: the ancient organic matter (OM) supplied by glaciers and rivers fed by water discharged from the glaciers (from - 25.4‰ to - 25.1‰), and the fresh terrestrial POM (from - 26.7‰ to - 26.6‰). Marine OM was characterized by a wide range of δ13Corg signatures: from ≤ - 26.1‰ for the phytoplankton depleted in 13Corg to ca. - 15.8‰ for debris of marine phytobenthos. The lack of distinct marine δ13Corg end member and the resemblance of phytoplankton δ13Corg signatures to the terrestrial POM δ13Corg end member precluded the use of the two δ13Corg end member mixing model to trace the terrestrial OM in Kongsfjorden, which is also very likely to happen in other Arctic regions.

  6. Association of organic matter and ferrihydrite: adsorption versus coprecipitation

    NASA Astrophysics Data System (ADS)

    Eusterhues, K.; Rennert, T.; Knicker, H.; Totsche, K. U.

    2009-04-01

    Ferrihydrite (Fh) - even if present at low concentrations - may control the available surface area and therefore, the behaviour of nutrients and pollutants in soils. Its precipitation often takes place in the presence of dissolved organic matter (OM). This involves processes such as adsorption, but also coprecipitation, flocculation/coagulation and poisoning of crystal growth. In this study, we compare coprecipitation of organic matter and ferrihydrite with pure adsorption of OM on ferrihydrite. We therefore prepared an adsorption series and a coprecipitation series using (i) water extractable organic matter from a forest topsoil and (ii) sulfite extractable lignin from paper. Products were investigated by N2-adsorption, XRD and FTIR. In coprecipitation experiments with both types of OM we observed a strong interference of the organic molecules with crystal growth leading to smaller Fh crystals, increased lattice spacings and a lower crystallinity. The highest achieved C loadings were found at approximately 200 mg C per g Fh for the adsorption and coprecipitation of the soil extract as well as for the adsorption of lignin. Coprecipitation of lignin, in contrast, resulted in a much higher maximum loading of 360 mg C per g Fh. The FTIR spectrum of the unreacted soil extract is mainly characterized by carboxyl C and polysaccharide C, with a smaller contribution of phenolic C. Spectra of the adsorbed or coprecipitated soil extract reveal weaker bands and lowered wave numbers indicating removal from solution followed by the formation of chemical bonds between the organic species and Fh by inner-sphere surface complexes. The FTIR spectrum of the lignin material shows a strong contribution of carboxyl C, polysaccharide C, and several aromatic C species. Again, all of these C species seem to form surface complexes after reaction with Fh in adsorption and coprecipitation experiments. Interestingly, at low initial C concentrations in all experiments the sorption of carboxyl

  7. Conservative or reactive? Mechanistic chemical perspectives on organic matter stability

    NASA Astrophysics Data System (ADS)

    Koch, Boris

    2016-04-01

    Carbon fixation by terrestrial and marine primary production has a fundamental seasonal effect on the atmospheric carbon content and it profoundly contributes to long-term carbon storage in form of organic matter (OM) in soils, water, and sediments. The efficacy of this sequestration process strongly depends on the degree of OM persistence. Therefore, one of the key issues in dissolved and particulate OM research is to assess the stability of reservoirs and to quantify their contribution to global carbon fluxes. Incubation experiments are helpful to assess OM stability during the first, early diagenetic turnover induced by sunlight or microbes. However, net carbon fluxes within the global carbon cycle also act on much longer time scales, which are not amenable in experiments. It is therefore critical to improve our mechanistic understanding to be able to assess potential future changes in the organic matter cycle. This session contribution highlights some achievements and open questions in the field. An improved mechanistic understanding of OM turnover particularly depends on the molecular characterization of biogeochemical processes and their kinetics: (i) in soils and sediments, aggregation/disaggregation of OM is primarily controlled by its molecular composition. Hence, the chemical composition determines the transfer of organic carbon from the large particulate to the small dissolved organic matter reservoir - an important substrate for microbial metabolism. (ii) In estuaries, dissolved organic carbon gradients usually suggest conservative behavior, whereas molecular-level studies reveal a substantial chemical modification of terrestrial DOM along the land-ocean interface. (iii) In the ocean, previous studies have shown that the recalcitrance of OM depends on bulk concentration and energy yield. However, ultrahigh resolution mass spectrometry in combination with radiocarbon analyses also emphasized that stability is tightly connected to molecular composition

  8. Regional Assessment of soil organic matter profile distribution in the boreal forest ecosystems of Russia

    NASA Astrophysics Data System (ADS)

    Meshalkina, Joulia; Belousova, Nataliya; Vasenev, Ivan

    2015-04-01

    Boreal forest ecosystems play one of the key roles in the Global Change challenges responses. The soil carbon stocks are principal regulators of their environmental functions. Boreal forest soil cover is characterized by mutually increased spatial variability in soil organic matter content (SOMC) that one need to take into attention in its current and future environmental functions state assessment including the potential of regional soil organic matter stocks changes due to Global Change and inverse ones. Knowledge of the regional regularities in SOMC profile vertical distribution allows improving their soil environmental functions prediction land quality evaluation. More than 900 profiles of SOMC distribution were studied using the database Boreal that contains data on Russian boreal soils developed in drained conditions on loamy soil forming rocks. These soil profiles belong to seven main types of forest soils of Russian classification and six major regions of Russia. The predomination of accumulation profile type was observed for all cases. Thus the vertical distribution of OMC in the profiles of boreal soils can be described as follow: the layer of maximum OMC is replaced by the layer of dramatic OMC reduction; then the layer of minimal OMC extends up to 2.5 m. The layer of maximal OMC accumulation has the low depth of 5-15 cm. It carried out in different genetic horizons: A1, A1A2, A2, B, AB; sometimes it captures the A2B horizon or the upper part of the illuvial horizon. The OMC in this layer increases from the northern taiga to the southern taiga and from the European part of Russia to Siberia. The second layer is characterized by its depth and by the gradient of OMC decreasing. A great variety of the both parameters is observed. The layer of the sharp OMC fall most often fits with the eluvial horizons A2 or А2В or even the upper part of the Вt (textural) or Bm (metamorphic) horizons. The layer of permanently small OMC may begin in any genetic horizon

  9. Do organic matter matter? Contribution of organic matter on scavenging and fractionation of natural radionuclides in the Oceanic Flux Program (OFP) site of Bermuda

    NASA Astrophysics Data System (ADS)

    Chuang, C.; Santschi, P. H.; Conte, M. H.; Schumann, D.; Ayranov, M.

    2012-12-01

    Natural particle-reactive radionuclides, 234Th, 233Pa, 210Po, 210Pb and 7Be, have been used for estimating particulate organic carbon (POC) export flux in the ocean for decades. However, by simply relying on empirically determined isotope ratios to POC and other parameters, sometimes results from field studies are puzzling and become controversial (e.g., one is summarized in Li, 2005). The picture becomes clearer when it was noticed that a missing fraction, e.g., natural organic matter, could be the cause. For example, a series of field and lab studies demonstrated that biopolymers excreted by marine micro-organisms are likely carrier molecules for a number of these isotopes (e.g., Guo et al., 2002; Quigley et al., 2002; Santschi et al., 2003; Roberts et al., 2009; Hung et al., 2010; Xu et al., 2011; Hung et al., 2012; Yang et al., 2012). To examine the effect of organic composition of the particle on the scavenging and fractionation of selected natural radionuclides (e.g., Th, Pa, Pb, Po, Be), organic composition (e.g., protein, polysaccharides, uronic acid, siderophore and amino acid contents, and etc.) and particle-water partition coefficients (Kd) were determined for sediment trap material collected in the Oceanic Flux Program (OFP) site of Bermuda (500, 1500 and 3200 m). Results showed that different organic components contribute differently to the fractionation of different radionuclides from the three depths. We conclude that natural organic matter control on the particle-water partition coefficients cannot be ignored.

  10. [Effects of controlled release nitrogen fertilizer application on dry matter accumulation and nitrogen balance of summer maize].

    PubMed

    Si, Dong-Xia; Cui, Zhen-Ling; Chen, Xin-Ping; Lü, Fu-Tang

    2014-06-01

    Effects of four controlled release nitrogen (N) fertilizers, including two kinds of polyester coated urea (Ncau, CRU) and phosphate (NhnP) and humic acid (NhnF) coated urea on assimilates accumulation and nitrogen balance of summer maize were investigated in a mode of one-time fertilization at the regional N recommended rate. The results showed that the N release curves of the two controlled release fertilizers CRU and Ncau matched well with the summer maize N uptake. Compared with the regional N recommendation rate, CRU could increase maize yield by 4.2% and Ncau could maintain the same yield level. CRU significantly increased the dry matter accumulation rate after anthesis of summer maize, but Ncau markedly increased the dry matter accumulated ratio before anthesis. Meanwhile, CRU could reduce the apparent N losses by 19 kg N x hm(-2) in the case of large precipitation. However, NhnF and NhnP caused the yield losses by 0.1%-8.9%, and enhanced the apparent N losses. Therefore, both CRU and Ncau with one-time fertilization could be a simplified alternative to the "total control, staging regulation" fertilization technique at the regional N recommended rate for summer maize production. PMID:25223033

  11. [Effects of controlled release nitrogen fertilizer application on dry matter accumulation and nitrogen balance of summer maize].

    PubMed

    Si, Dong-Xia; Cui, Zhen-Ling; Chen, Xin-Ping; Lü, Fu-Tang

    2014-06-01

    Effects of four controlled release nitrogen (N) fertilizers, including two kinds of polyester coated urea (Ncau, CRU) and phosphate (NhnP) and humic acid (NhnF) coated urea on assimilates accumulation and nitrogen balance of summer maize were investigated in a mode of one-time fertilization at the regional N recommended rate. The results showed that the N release curves of the two controlled release fertilizers CRU and Ncau matched well with the summer maize N uptake. Compared with the regional N recommendation rate, CRU could increase maize yield by 4.2% and Ncau could maintain the same yield level. CRU significantly increased the dry matter accumulation rate after anthesis of summer maize, but Ncau markedly increased the dry matter accumulated ratio before anthesis. Meanwhile, CRU could reduce the apparent N losses by 19 kg N x hm(-2) in the case of large precipitation. However, NhnF and NhnP caused the yield losses by 0.1%-8.9%, and enhanced the apparent N losses. Therefore, both CRU and Ncau with one-time fertilization could be a simplified alternative to the "total control, staging regulation" fertilization technique at the regional N recommended rate for summer maize production.

  12. Influence of dissolved organic carbon content on modelling natural organic matter acid-base properties.

    PubMed

    Garnier, Cédric; Mounier, Stéphane; Benaïm, Jean Yves

    2004-10-01

    Natural organic matter (NOM) behaviour towards proton is an important parameter to understand NOM fate in the environment. Moreover, it is necessary to determine NOM acid-base properties before investigating trace metals complexation by natural organic matter. This work focuses on the possibility to determine these acid-base properties by accurate and simple titrations, even at low organic matter concentrations. So, the experiments were conducted on concentrated and diluted solutions of extracted humic and fulvic acid from Laurentian River, on concentrated and diluted model solutions of well-known simple molecules (acetic and phenolic acids), and on natural samples from the Seine river (France) which are not pre-concentrated. Titration experiments were modelled by a 6 acidic-sites discrete model, except for the model solutions. The modelling software used, called PROSECE (Programme d'Optimisation et de SpEciation Chimique dans l'Environnement), has been developed in our laboratory, is based on the mass balance equilibrium resolution. The results obtained on extracted organic matter and model solutions point out a threshold value for a confident determination of the studied organic matter acid-base properties. They also show an aberrant decreasing carboxylic/phenolic ratio with increasing sample dilution. This shift is neither due to any conformational effect, since it is also observed on model solutions, nor to ionic strength variations which is controlled during all experiments. On the other hand, it could be the result of an electrode troubleshooting occurring at basic pH values, which effect is amplified at low total concentration of acidic sites. So, in our conditions, the limit for a correct modelling of NOM acid-base properties is defined as 0.04 meq of total analysed acidic sites concentration. As for the analysed natural samples, due to their high acidic sites content, it is possible to model their behaviour despite the low organic carbon concentration.

  13. The abiotic degradation of soil organic matter to oxalic acid

    NASA Astrophysics Data System (ADS)

    Studenroth, Sabine; Huber, Stefan; Schöler, H. F.

    2010-05-01

    The abiotic degradation of soil organic matter to volatile organic compounds was studied intensely over the last years (Keppler et al., 2000; Huber et al., 2009). It was shown that soil organic matter is oxidised due to the presence of iron (III), hydrogen peroxide and chloride and thereby produces diverse alkyl halides, which are emitted into the atmosphere. The formation of polar halogenated compounds like chlorinated acetic acids which are relevant toxic environmental substances was also found in soils and sediments (Kilian et al., 2002). The investigation of the formation of other polar halogenated and non-halogenated compounds like diverse mono- and dicarboxylic acids is going to attain more and more importance. Due to its high acidity oxalic acid might have impacts on the environment e.g., nutrient leaching, plant diseases and negative influence on microbial growth. In this study, the abiotic formation of oxalic acid in soil is examined. For a better understanding of natural degradation processes mechanistic studies were conducted using the model compound catechol as representative for structural elements of the humic substances and its reaction with iron (III) and hydrogen peroxide. Iron is one of the most abundant elements on earth and hydrogen peroxide is produced by bacteria or through incomplete reduction of oxygen. To find suitable parameters for an optimal reaction and a qualitative and quantitative analysis method the following reaction parameters are varied: concentration of iron (III) and hydrogen peroxide, time dependence, pH-value and influence of chloride. Analysis of oxalic acid was performed employing an ion chromatograph equipped with a conductivity detector. The time dependent reaction shows a relatively fast formation of oxalic acid, the optimum yield is achieved after 60 minutes. Compared to the concentration of catechol an excess of hydrogen peroxide as well as a low concentration of iron (III) are required. In absence of chloride the

  14. Morphological Study of Insoluble Organic Matter Residues from Primitive

    NASA Technical Reports Server (NTRS)

    Changela, H. G.; Stroud, R. M.; Peeters, Z.; Nittler, L. R.; Alexander, C. M. O'D.; DeGregorio, B. T.; Cody, G. D.

    2012-01-01

    Insoluble organic matter (IOM) constitutes a major proportion, 70-99%, of the total organic carbon found in primitive chondrites [1, 2]. One characteristic morphological component of IOM is nanoglobules [3, 4]. Some nanoglobules exhibit large N-15 and D enrichments relative to solar values, indicating that they likely originated in the ISM or the outskirts of the protoplanetary disk [3]. A recent study of samples from the Tagish Lake meteorite with varying levels of hydrothermal alteration suggest that nanoglobule abundance decreases with increasing hydrothermal alteration [5]. The aim of this study is to further document the morphologies of IOM from a range of primitive chondrites in order to determine any correlation of morphology with petrographic grade and chondrite class that could constrain the formation and/or alteration mechanisms.

  15. Nature and transformation of dissolved organic matter in treatment wetlands

    USGS Publications Warehouse

    Barber, L.B.; Leenheer, J.A.; Noyes, T.I.; Stiles, E.A.

    2001-01-01

    This investigation into the occurrence, character, and transformation of dissolved organic matter (DOM) in treatment wetlands in the western United States shows that (i) the nature of DOM in the source water has a major influence on transformations that occur during treatment, (ii) the climate factors have a secondary effect on transformations, (iii) the wetlands receiving treated wastewater can produce a net increase in DOM, and (iv) the hierarchical analytical approach used in this study can measure the subtle DOM transformations that occur. As wastewater treatment plant effluent passes through treatment wetlands, the DOM undergoes transformation to become more aromatic and oxygenated. Autochthonous sources are contributed to the DOM, the nature of which is governed by the developmental stage of the wetland system as well as vegetation patterns. Concentrations of specific wastewaterderived organic contaminants such as linear alkylbenzene sulfonate, caffeine, and ethylenediaminetetraacetic acid were significantly attenuated by wetland treatment and were not contributed by internal loading.

  16. Literature review of organic matter transport from marshes

    NASA Technical Reports Server (NTRS)

    Dow, D. D.

    1982-01-01

    A conceptual model for estimating a transport coefficient for the movement of nonliving organic matter from wetlands to the adjacent embayments was developed in a manner that makes it compatible with the Earth Resources Laboratory's Productive Capacity Model. The model, which envisages detritus movement from wetland pixels to the nearest land-water boundary followed by movement within the water column from tidal creeks to the adjacent embayment, can be transposed to deal with only the interaction between tidal water and the marsh or to estimate the transport from embayments to the adjacent coastal waters. The outwelling hypothesis postulated wetlands as supporting coastal fisheries either by exporting nutrients, such as inorganic nitrogen, which stimulated the plankton-based grazing food chain in the water column, or through the export of dissolved and particulate organic carbon which provided a benthic, detritus-based food web which provides the food source for the grazing food chain in a more indirect fashion.

  17. Carbon isotope fractionation of sapropelic organic matter during early diagenesis

    USGS Publications Warehouse

    Spiker, E. C.; Hatcher, P.G.

    1984-01-01

    Study of an algal, sapropelic sediment from Mangrove Lake, Bermuda shows that the mass balance of carbon and stable carbon isotopes in the major organic constituents is accounted for by a relatively straightforward model of selective preservation during diagenesis. The loss of 13C-enriched carbohydrates is the principal factor controlling the intermolecular mass balance of 13C in the sapropel. Results indicate that labile components are decomposed leaving as a residual concentrate in the sediment an insoluble humic substance that may be an original biochemical component of algae and associated bacteria. An overall decrease of up to about 4??? in the ?? 13C values of the organic matter is observed as a result of early diagenesis. ?? 1984.

  18. Ironing out the details of soil organic matter cycling: The unique role of Fe-bearing minerals in regulating organic matter transformation in soils

    NASA Astrophysics Data System (ADS)

    Heckman, K. A.; Lawrence, C. R.; Harden, J. W.; Crate, J.; Swanston, C.

    2015-12-01

    Interest in the influence of mineral chemistry on soil organic matter cycling has been steadily growing, with the role of iron specifically garnering a great deal of attention. Empirical evidence from both lab and field based studies suggest that the interactions of Fe-bearing minerals and colloidal Fe species are unique from the interactions of the soil mineral matrix as a whole and may have a disproportionate influence on soil organic matter. We present results from a suite of studies examining Fe-organic matter interactions which utilize a broad range of technical approaches and highlight the use of radiocarbon analysis in terrestrial carbon cycle studies. Data suggests that interaction of organics with Fe-bearing moieties induces consistent partitioning of organics between dissolved and surface bound organic matter pools, including significant consequences for N and P availability and biodegradability of soil organic matter. Selective dissolution techniques have revealed that Fe-humus complexes comprise a significant pool of soil organic matter which cycles on a shorter-term basis across a variety of ecosystems types, while sequential density separation combined with x-ray diffraction imply concentration and long-term preservation of N-rich organics on Fe-bearing crystalline mineral surfaces. Our results explore the unique and multifaceted roles of Fe in regulating organic matter transformation and preservation in a range of soil types.

  19. Dissolved organic matter photolysis in Canadian arctic thaw ponds

    NASA Astrophysics Data System (ADS)

    Laurion, Isabelle; Mladenov, Natalie

    2013-09-01

    The abundant thaw lakes and ponds in the circumarctic receive a new pool of organic carbon as permafrost peat soils degrade, which can be exposed to significant irradiance that potentially increases as climate warms and ice cover shortens. Exposure to sunlight is known to accelerate the transformation of dissolved organic matter (DOM) into molecules that can be more readily used by microbes. We sampled the water from two common classes of ponds found in the ice-wedge system of continuous permafrost regions of Canada, polygonal and runnel ponds, and followed the transformation of DOM over 12 days by looking at dissolved organic carbon (DOC) concentration and DOM absorption and fluorescence properties. The results indicate a relatively fast decay of color (3.4 and 1.6% loss d-1 of absorption at 320 nm for the polygonal and runnel pond, respectively) and fluorescence (6.1 and 8.3% loss d-1 of total fluorescent components, respectively) at the pond surface, faster in the case of humic-like components, but insignificant losses of DOC over the observed period. This result indicates that direct DOM mineralization (photochemical production of CO2) is apparently minor in thaw ponds compared to the photochemical transformation of DOM into less chromophoric and likely more labile molecules with a greater potential for microbial mineralization. Therefore, DOM photolysis in arctic thaw ponds can be considered as a catalytic mechanism, accelerating the microbial turnover of mobilized organic matter from thawing permafrost and the production of greenhouse gases, especially in the most shallow ponds. Under a warming climate, this mechanism will intensify as summers lengthen.

  20. Terrestrial and marine perspectives on modeling organic matter degradation pathways.

    PubMed

    Burd, Adrian B; Frey, Serita; Cabre, Anna; Ito, Takamitsu; Levine, Naomi M; Lønborg, Christian; Long, Matthew; Mauritz, Marguerite; Thomas, R Quinn; Stephens, Brandon M; Vanwalleghem, Tom; Zeng, Ning

    2016-01-01

    Organic matter (OM) plays a major role in both terrestrial and oceanic biogeochemical cycles. The amount of carbon stored in these systems is far greater than that of carbon dioxide (CO2 ) in the atmosphere, and annual fluxes of CO2 from these pools to the atmosphere exceed those from fossil fuel combustion. Understanding the processes that determine the fate of detrital material is important for predicting the effects that climate change will have on feedbacks to the global carbon cycle. However, Earth System Models (ESMs) typically utilize very simple formulations of processes affecting the mineralization and storage of detrital OM. Recent changes in our view of the nature of this material and the factors controlling its transformation have yet to find their way into models. In this review, we highlight the current understanding of the role and cycling of detrital OM in terrestrial and marine systems and examine how this pool of material is represented in ESMs. We include a discussion of the different mineralization pathways available as organic matter moves from soils, through inland waters to coastal systems and ultimately into open ocean environments. We argue that there is strong commonality between aspects of OM transformation in both terrestrial and marine systems and that our respective scientific communities would benefit from closer collaboration. PMID:26015089

  1. Photochemical and Nonphotochemical Transformations of Cysteine with Dissolved Organic Matter.

    PubMed

    Chu, Chiheng; Erickson, Paul R; Lundeen, Rachel A; Stamatelatos, Dimitrios; Alaimo, Peter J; Latch, Douglas E; McNeill, Kristopher

    2016-06-21

    Cysteine (Cys) plays numerous key roles in the biogeochemistry of natural waters. Despite its importance, a full assessment of Cys abiotic transformation kinetics, products and pathways under environmental conditions has not been conducted. This study is a mechanistic evaluation of the photochemical and nonphotochemical (dark) transformations of Cys in solutions containing chromophoric dissolved organic matter (CDOM). The results show that Cys underwent abiotic transformations under both dark and irradiated conditions. Under dark conditions, the transformation rates of Cys were moderate and were highly pH- and temperature-dependent. Under UVA or natural sunlight irradiations, Cys transformation rates were enhanced by up to two orders of magnitude compared to rates under dark conditions. Product analysis indicated cystine and cysteine sulfinic acid were the major photooxidation products. In addition, this study provides an assessment of the contributions of singlet oxygen, hydroxyl radical, hydrogen peroxide, and triplet dissolved organic matter to the CDOM-sensitized photochemical oxidation of Cys. The results suggest that another unknown pathway was dominant in the CDOM-sensitized photodegradation of Cys, which will require further study to identify. PMID:27172378

  2. Terrestrial and marine perspectives on modeling organic matter degradation pathways.

    PubMed

    Burd, Adrian B; Frey, Serita; Cabre, Anna; Ito, Takamitsu; Levine, Naomi M; Lønborg, Christian; Long, Matthew; Mauritz, Marguerite; Thomas, R Quinn; Stephens, Brandon M; Vanwalleghem, Tom; Zeng, Ning

    2016-01-01

    Organic matter (OM) plays a major role in both terrestrial and oceanic biogeochemical cycles. The amount of carbon stored in these systems is far greater than that of carbon dioxide (CO2 ) in the atmosphere, and annual fluxes of CO2 from these pools to the atmosphere exceed those from fossil fuel combustion. Understanding the processes that determine the fate of detrital material is important for predicting the effects that climate change will have on feedbacks to the global carbon cycle. However, Earth System Models (ESMs) typically utilize very simple formulations of processes affecting the mineralization and storage of detrital OM. Recent changes in our view of the nature of this material and the factors controlling its transformation have yet to find their way into models. In this review, we highlight the current understanding of the role and cycling of detrital OM in terrestrial and marine systems and examine how this pool of material is represented in ESMs. We include a discussion of the different mineralization pathways available as organic matter moves from soils, through inland waters to coastal systems and ultimately into open ocean environments. We argue that there is strong commonality between aspects of OM transformation in both terrestrial and marine systems and that our respective scientific communities would benefit from closer collaboration.

  3. Photosensitizing properties of water-extractable organic matter from soils.

    PubMed

    Nkhili, Ezzhora; Boguta, Patrycja; Bejger, Romualda; Guyot, Ghislain; Sokołowska, Zofia; Richard, Claire

    2014-01-01

    Water-extractable organic matter (WEOM) was extracted using pure water from two black soils and from the Elliott reference soil of the International Humic Substances Society (IHSS). WEOMs were characterized by chemical and spectroscopic methods. The apparent quantum yields of singlet oxygen, triplet excited states and hydroxyl radicals formation upon irradiation within the wavelength range 290-450 nm were determined using chemical probes and compared to those of standard Elliott humic substances. In general, the aromatic content, as measured by the SUVA value, was close in WEOMs and humic substances, while the E2/E3 was higher and the humification index lower in the former. Quantum yield values measured for WEOMs fell within the range of those found for basic medium extracted humic substances or were even higher in one case. Thus, water soluble aromatic moiety of the soil organic matter, especially those with low humification degree, is important for the photosensitizing properties. We also found that WEOMs sensitized the bisphenol A phototransformation with rates of the same order of magnitude for all the samples.

  4. Black Carbon - Soil Organic Matter abiotic and biotic interactions

    NASA Astrophysics Data System (ADS)

    Cotrufo, Francesca; Boot, Claudia; Denef, Karolien; Foster, Erika; Haddix, Michelle; Jiang, Xinyu; Soong, Jennifer; Stewart, Catherine

    2014-05-01

    Wildfires, prescribed burns and the use of char as a soil amendment all add large quantities of black carbon to soils, with profound, yet poorly understood, effects on soil biology and chemical-physical structure. We will present results emerging from our black carbon program, which addresses questions concerning: 1) black carbon-soil organic matter interactions, 2) char decomposition and 3) impacts on microbial community structure and activities. Our understanding derives from a complementary set of post-fire black carbon field surveys and laboratory and field experiments with grass and wood char amendments, in which we used molecular (i.e., BPCA, PLFA) and isotopic (i.e., 13C and 15N labelled char) tracers. Overall, emerging results demonstrate that char additions to soil are prone to fast erosion, but a fraction remains that increases water retention and creates a better environment for the microbial community, particularly favoring gram negative bacteria. However, microbial decomposition of black carbon only slowly consumes a small fraction of it, thus char still significantly contributes to soil carbon sequestration. This is especially true in soils with little organic matter, where black carbon additions may even induce negative priming.

  5. Wastewater disinfection and organic matter removal using ferrate (VI) oxidation.

    PubMed

    Bandala, Erick R; Miranda, Jocelyn; Beltran, Margarita; Vaca, Mabel; López, Raymundo; Torres, Luis G

    2009-09-01

    The use of iron in a +6 valence state, (Fe (VI), as FeO4(-2)) was tested as a novel alternative for wastewater disinfection and decontamination. The removal of organic matter (OM) and index microorganisms present in an effluent of a wastewater plant was determined using FeO4(-2) without any pH adjustment. It was observed that concentrations of FeO4(-2) ranging between 5 and 14 mg l(-1) inactivated up to 4-log of the index microorganisms (initial concentration c.a. 10(6) CFU/100 ml) and achieved OM removal up to almost 50%. The performance of FeO4(-2) was compared with OM oxidation and disinfection using hypochlorite. It was observed that hypochlorite was less effective in OM oxidation and coliform inactivation than ferrate. Results of this work suggest that FeO4(-2) could be an interesting oxidant able to deactivate pathogenic microorganisms in water with high OM content and readily oxidize organic matter without jeopardizing its efficiency on microorganism inactivation.

  6. Wastewater disinfection and organic matter removal using ferrate (VI) oxidation.

    PubMed

    Bandala, Erick R; Miranda, Jocelyn; Beltran, Margarita; Vaca, Mabel; López, Raymundo; Torres, Luis G

    2009-09-01

    The use of iron in a +6 valence state, (Fe (VI), as FeO4(-2)) was tested as a novel alternative for wastewater disinfection and decontamination. The removal of organic matter (OM) and index microorganisms present in an effluent of a wastewater plant was determined using FeO4(-2) without any pH adjustment. It was observed that concentrations of FeO4(-2) ranging between 5 and 14 mg l(-1) inactivated up to 4-log of the index microorganisms (initial concentration c.a. 10(6) CFU/100 ml) and achieved OM removal up to almost 50%. The performance of FeO4(-2) was compared with OM oxidation and disinfection using hypochlorite. It was observed that hypochlorite was less effective in OM oxidation and coliform inactivation than ferrate. Results of this work suggest that FeO4(-2) could be an interesting oxidant able to deactivate pathogenic microorganisms in water with high OM content and readily oxidize organic matter without jeopardizing its efficiency on microorganism inactivation. PMID:19491501

  7. Photochemical and Nonphotochemical Transformations of Cysteine with Dissolved Organic Matter.

    PubMed

    Chu, Chiheng; Erickson, Paul R; Lundeen, Rachel A; Stamatelatos, Dimitrios; Alaimo, Peter J; Latch, Douglas E; McNeill, Kristopher

    2016-06-21

    Cysteine (Cys) plays numerous key roles in the biogeochemistry of natural waters. Despite its importance, a full assessment of Cys abiotic transformation kinetics, products and pathways under environmental conditions has not been conducted. This study is a mechanistic evaluation of the photochemical and nonphotochemical (dark) transformations of Cys in solutions containing chromophoric dissolved organic matter (CDOM). The results show that Cys underwent abiotic transformations under both dark and irradiated conditions. Under dark conditions, the transformation rates of Cys were moderate and were highly pH- and temperature-dependent. Under UVA or natural sunlight irradiations, Cys transformation rates were enhanced by up to two orders of magnitude compared to rates under dark conditions. Product analysis indicated cystine and cysteine sulfinic acid were the major photooxidation products. In addition, this study provides an assessment of the contributions of singlet oxygen, hydroxyl radical, hydrogen peroxide, and triplet dissolved organic matter to the CDOM-sensitized photochemical oxidation of Cys. The results suggest that another unknown pathway was dominant in the CDOM-sensitized photodegradation of Cys, which will require further study to identify.

  8. Towards an understanding of feedbacks between plant productivity, acidity and dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Rowe, Ed; Tipping, Ed; Davies, Jessica; Monteith, Don; Evans, Chris

    2014-05-01

    The recent origin of much dissolved organic carbon (DOC) (Tipping et al., 2010) implies that plant productivity is a major control on DOC fluxes. However, the flocculation, sorption and release of potentially-dissolved organic matter are governed by pH, and widespread increases in DOC concentrations observed in northern temperate freshwater systems seem to be primarily related to recovery from acidification (Monteith et al., 2007). We explore the relative importance of changes in productivity and pH using a model, MADOC, that incorporates both these effects (Rowe et al., 2014). The feedback whereby DOC affects pH is included. The model uses an annual timestep and relatively simple flow-routing, yet reproduces observed changes in DOC flux and pH in experimental (Evans et al., 2012) and survey data. However, the first version of the model probably over-estimated responses of plant productivity to nitrogen (N) deposition in upland semi-natural ecosystems. There is a strong case that plant productivity is an important regulator of DOC fluxes, and theoretical reasons for suspecting widespread productivity increases in recent years due not only to N deposition but to temperature and increased atmospheric CO2 concentrations. However, evidence that productivity has increased in upland semi-natural ecosystems is sparse, and few studies have assessed the major limitations to productivity in these habitats. In systems where phosphorus (P) limitation prevails, or which are co-limited, productivity responses to anthropogenic drivers will be limited. We present a revised version of the model that incorporates P cycling and appears to represent productivity responses to atmospheric N pollution more realistically. Over the long term, relatively small fluxes of nutrient elements into and out of ecosystems can profoundly affect productivity and the accumulation of organic matter. Dissolved organic N (DON) is less easily intercepted by plants and microbes than mineral N, and DON

  9. Conversion from cropland to short rotation coppice willow and poplar: Accumulation of soil organic carbon

    NASA Astrophysics Data System (ADS)

    Georgiadis, Petros; Stupak, Inge; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-04-01

    it was not significant. The increasing soil carbon stocks in SRC stands on former cropland can be attributed to the increased leaf and litter input from the perennial SRC plantations as well as less stimulation of organic matter decomposition after cessation of annual. Initial losses of soil carbon after the land use change have also been reported by other studies, but the soil carbon accumulation high rates suggest that SRC can act as sinks at least for some decades. Our results indicate that a steady state has not yet been reached after 29 years. Key words: Bioenergy,Land Use Change, poplar, Short Rotation Coppice, Soil Organic Carbon, willow,

  10. CO2 Losses from Terrestrial Organic Matter through Photodegradation

    NASA Astrophysics Data System (ADS)

    Rutledge, S.; Campbell, D. I.; Baldocchi, D. D.; Schipper, L. A.

    2010-12-01

    Net ecosystem exchange (NEE) is the sum of CO2 uptake by plants and CO2 losses from both living plants and dead organic matter. In all but a few ecosystem scale studies on terrestrial carbon cycling, losses of CO2 from dead organic matter are assumed to be the result of microbial respiration alone. Here we provide evidence for an alternative, previously largely underestimated mechanism for ecosystem-scale CO2 emissions. The process of photodegradation, the direct breakdown of organic matter by solar radiation, was found to contribute substantially to the ecosystem scale CO2 losses at both a bare peatland in New Zealand, and a summer-dead grassland in California. Comparisons of daytime eddy covariance (EC) data with data collected at the same time using an opaque chamber and the CO2 soil gradient technique, or with night-time EC data collected during similar moisture and temperature conditions were used to quantify the direct effect of exposure of organic matter to solar radiation. At a daily scale, photodegradation contributed up to 62% and 92% of summer mid-day CO2 fluxes at the de-vegetated peatland and at the grassland during the dry season, respectively. Irradiance-induced CO2 losses were estimated to be 19% of the total annual CO2 loss at the peatland, and almost 60% of the dry season CO2 loss at the grassland. Small-scale measurements using a transparent chamber confirmed that CO2 emissions from air-dried peat and grass occurred within seconds of exposure to light when microbial activity was inhibited. Our findings imply that photodegradation could be important for many ecosystems with exposed soil organic matter, litter and/or standing dead material. Potentially affected ecosystems include sparsely vegetated arid and semi-arid ecosystems (e.g. shrublands, savannahs and other grasslands), bare burnt areas, agricultural sites after harvest or cultivation (especially if crop residues are left on the surface), deciduous forests after leaf fall, or ecosystems

  11. Land Application of Wastes: An Educational Program. Organic Matter - Module 17, Objectives, and Script.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This module sketches out the impact of sewage organic matter on soils. For convenience, that organic matter is separated into the readily decomposable compounds and the more resistant material (volatile suspended solids, refractory organics, and sludges). The fates of those organics are reviewed along with loading rates and recommended soil…

  12. Climate Change Impacts on Soil Organic Matter: New Insights from Molecular-Level Studies

    NASA Astrophysics Data System (ADS)

    Simpson, M. J.; Feng, X.; Simpson, A.

    2009-05-01

    Natural organic matter is ubiquitously found in the environment and plays a critical role in several biogeochemical processes such as the regulation of atmospheric CO2, agricultural sustainability, and the fate and transport of problematic organic chemicals in the environment. Organic matter preserved within the sedimentary record also holds key information about early life on earth, insights into past climates, and the presence of specific organic matter structures is often used in the search for life on other planets. Despite the importance of natural organic matter in several disciplines, the vast majority of organic matter remains "molecularly uncharacterized" (Hedges et al. 2000, Org. Geochem. 31:945-958). The lack of organic matter structural information is mostly due to the complex nature and uniqueness of organic matter but also due to the lack of sophisticated analytical strategies designed specifically for the study of organic matter structure and environmental reactivity. Organic matter is a collection of compounds from various plant, microbial, and anthropogenic sources, all at various stages of oxidation (decomposition) and represents the most naturally occurring complex mixture on earth. Organic geochemists have long used biomarker methods to study the sources, structures, and stage of organic matter oxidation however biomarker methods only extract and measure a small fraction of the total organic matter composition. Nuclear magnetic resonance (NMR), namely solid-state 13C NMR spectroscopy, has been used extensively to study organic matter structure but suffers from poor spectral resolution due to organic matter heterogeneity and strong dipolar coupling in solids. This presentation will highlight the development of molecular-level analytical methods for organic matter and demonstrate their utility in studying soil organic matter biogeochemistry with global warming. The use of biomarker methods with conventional and innovative NMR methods in tandem

  13. Sulfur species behavior in soil organic matter during decomposition

    USGS Publications Warehouse

    Schroth, A.W.; Bostick, B.C.; Graham, M.; Kaste, J.M.; Mitchell, M.J.; Friedland, A.J.

    2007-01-01

    Soil organic matter (SOM) is a primary re??servoir of terrestrial sulfur (S), but its role in the global S cycle remains poorly understood. We examine S speciation by X-ray absorption near-edge structure (XANES) spectroscopy to describe S species behavior during SOM decomposition. Sulfur species in SOM were best represented by organic sulfide, sulfoxide, sulfonate, and sulfate. The highest fraction of S in litter was organic sulfide, but as decomposition progressed, relative fractions of sulfonate and sulfate generally increased. Over 6-month laboratory incubations, organic sulfide was most reactive, suggesting that a fraction of this species was associated with a highly labile pool of SOM. During humification, relative concentrations of sulfoxide consistently decreased, demonstrating the importance of sulfoxide as a reactive S phase in soil. Sulfonate fractional abundance increased during humification irrespective of litter type, illustrating its relative stability in soils. The proportion of S species did not differ systematically by litter type, but organic sulfide became less abundant in conifer SOM during decomposition, while sulfate fractional abundance increased. Conversely, deciduous SOM exhibited lesser or nonexistent shifts in organic sulfide and sulfate fractions during decomposition, possibly suggesting that S reactivity in deciduous litter is coupled to rapid C mineralization and independent of S speciation. All trends were consistent in soils across study sites. We conclude that S reactivity is related to spqciation in SOM, particularly in conifer forests, and S species fractions in SOM change, during decomposition. Our data highlight the importance of intermediate valence species (sulfoxide and sulfonate) in the pedochemical cycling of organic bound S. Copyright 2007 by the American Geophysical Union.

  14. Biomass accumulation patterns for removing volatile organic compounds in rotating drum biofilters.

    PubMed

    Yang, C; Suidan, M T; Zhu, X; Kim, B J

    2003-01-01

    A rotating drum biofilter (RDB) with multi-layered foam media was developed for the improvement of current biofiltration technology. The biofilter was used to investigate the effects of organic loadings and influent volatile organic compound (VOC) concentrations on VOC removal efficiency and biomass accumulation. These effects were evaluated using diethyl ether and toluene separately as model VOCs at an empty bed contact time (EBCT) of 30 s. When the toluene loading increased from 2.0 to 4.0 and 8.0 kgCOD m(-3) day(-1), toluene removal efficiency of the biofilter decreased from over 99% to 78% and 74%, respectively. The biomass distribution was found to be more even within the medium when removing toluene than when removing diethyl ether. Higher organic loading also resulted in the more even distribution of the biomass. The ratios of biomass accumulation rates in the medium of the outermost, middle and innermost layers ranged from 1:0.11:0.02 when removing diethyl ether at 2.0 kgCOD m(-3) day(-1) to 1:0.69:0.51 when removing toluene at 8.0 kgCOD m(-3) day(-1). Review of these ratios revealed three biomass accumulation patterns: surface pattern, in-depth pattern and shallow pattern. Different patterns represent different removal mechanisms in the biofiltration process. Improved biofilter design and operation should be based on the biomass accumulation pattern. PMID:14682574

  15. Potential enzyme activities in cryoturbated organic matter of arctic soils

    NASA Astrophysics Data System (ADS)

    Schnecker, J.; Wild, B.; Rusalimova, O.; Mikutta, R.; Guggenberger, G.; Richter, A.

    2012-12-01

    An estimated 581 Gt organic carbon is stored in arctic soils that are affected by cryoturbtion, more than in today's atmosphere (450 Gt). The high amount of organic carbon is, amongst other factors, due to topsoil organic matter (OM) that has been subducted by freeze-thaw processes. This cryoturbated OM is usually hundreds to thousands of years old, while the chemical composition remains largely unaltered. It has therefore been suggested, that the retarded decomposition rates cannot be explained by unfavourable abiotic conditions in deeper soil layers alone. Since decomposition of soil organic material is dependent on extracellular enzymes, we measured potential and actual extracellular enzyme activities in organic topsoil, mineral subsoil and cryoturbated material from three different tundra sites, in Zackenberg (Greenland) and Cherskii (North-East Siberia). In addition we analysed the microbial community structure by PLFAs. Hydrolytic enzyme activities, calculated on a per gram dry mass basis, were higher in organic topsoil horizons than in cryoturbated horizons, which in turn were higher than in mineral horizons. When calculated on per gram carbon basis, the activity of the carbon acquiring enzyme exoglucanase was not significantly different between cryoturbated and topsoil organic horizons in any of the three sites. Oxidative enzymes, i.e. phenoloxidase and peroxidase, responsible for degradation of complex organic substances, showed higher activities in topsoil organic and cryoturbated horizons than in mineral horizons, when calculated per gram dry mass. Specific activities (per g C) however were highest in mineral horizons. We also measured actual cellulase activities (by inhibiting microbial uptake of products and without substrate addition): calculated per g C, the activities were up to ten times as high in organic topsoil compared to cryoturbated and mineral horizons, the latter not being significantly different. The total amount of PLFAs, as a proxy for

  16. DETOXIFICATION OF OUTFALL WATER USING NATURAL ORGANIC MATTER

    SciTech Connect

    Halverson, N.; Looney, B.; Millings, M.; Nichols, R.; Noonkester, J.; Payne, B.

    2010-07-13

    To protect stream organisms in an ephemeral stream at the Savannah River Site, a proposed National Pollutant Discharge Elimination System (NPDES) permit reduced the copper limit from 25 {micro}g/l to 6 {micro}g/l at Outfall H-12. Efforts to reduce copper in the wastewater and stormwater draining to this outfall did not succeed in bringing copper levels below this limit. Numerous treatment methods were considered, including traditional methods such as ion exchange and natural treatment alternatives such as constructed wetlands and peat beds, all of which act to remove copper. However, the very low target metal concentration and highly variable outfall conditions presented a significant challenge for these treatment technologies. In addition, costs and energy use for most of these alternatives were high and secondary wastes would be generated. The Savannah River National Laboratory developed an entirely new 'detoxification' approach to treat the outfall water. This simple, lower-cost detoxification system amends outfall water with natural organic matter to bind up to 25 {micro}g/l copper rather than remove it, thereby mitigating its toxicity and protecting the sensitive species in the ecosystem. The amendments are OMRI (Organic Materials Review Institute) certified commercial products that are naturally rich in humic acids and are commonly used in organic farming.

  17. Spectroscopic characterization of dissolved organic matter isolated from rainwater.

    PubMed

    Santos, Patrícia S M; Otero, Marta; Duarte, Regina M B O; Duarte, Armando C

    2009-02-01

    Rainwater is a matrix containing extremely low concentrations (in the range of muM C) of dissolved organic carbon (DOC) and for its characterization, an efficient extraction procedure is essential. A recently developed procedure based on adsorption onto XAD-8 and XAD-4 resins in series was used in this work for the extraction and isolation of rainwater dissolved organic matter (DOM). Prior to the isolation and fractionation of DOM, and to obtain sufficient mass for the spectroscopic analyses, individual rainwater samples were batched together according to similar meteorological conditions on a total of three composed samples. The results of the isolation procedure indicated that the resin tandem procedure is not applicable for rainwater DOM since the XAD-4 resin caused samples contamination. On the other hand, the XAD-8 resin allowed DOM recoveries of 39.9-50.5% of the DOC of the original combined samples. This recovered organic fraction was characterized by UV-visible, molecular fluorescence, FTIR-ATR and 1H NMR spectroscopies. The chemical characterization of the rainwater DOM showed that the three samples consist mostly of hydroxylated and carboxylic acids with a predominantly aliphatic character, containing a minor component of aromatic structures. The obtained results suggest that the DOM in rainwater, and consequently in the precursor atmospheric particles, may have a secondary origin via the oxidation of volatile organic compounds from different origins.

  18. Iron traps terrestrially derived dissolved organic matter at redox interfaces.

    PubMed

    Riedel, Thomas; Zak, Dominik; Biester, Harald; Dittmar, Thorsten

    2013-06-18

    Reactive iron and organic carbon are intimately associated in soils and sediments. However, to date, the organic compounds involved are uncharacterized on the molecular level. At redox interfaces in peatlands, where the biogeochemical cycles of iron and dissolved organic matter (DOM) are coupled, this issue can readily be studied. We found that precipitation of iron hydroxides at the oxic surface layer of two rewetted fens removed a large fraction of DOM via coagulation. On aeration of anoxic fen pore waters, >90% of dissolved iron and 27 ± 7% (mean ± SD) of dissolved organic carbon were rapidly (within 24 h) removed. Using ultra-high-resolution MS, we show that vascular plant-derived aromatic and pyrogenic compounds were preferentially retained, whereas the majority of carboxyl-rich aliphatic acids remained in solution. We propose that redox interfaces, which are ubiquitous in marine and terrestrial settings, are selective yet intermediate barriers that limit the flux of land-derived DOM to oceanic waters. PMID:23733946

  19. Hydrogen and carbon isotopes of petroleum and related organic matter

    NASA Astrophysics Data System (ADS)

    Yeh, Hsueh-Wen; Epstein, Samuel

    1981-05-01

    D/H and 13C /12C ratios were measured for 114 petroleum samples and for several samples of related organic matter. δD of crude oil ranges from -85 to -181‰, except for one distillate (-250‰) from the Kenai gas field; δ13C of crude oil ranges from -23.3 to -32.5‰, Variation in δD and δ13C values of compound-grouped fractions of a crude oil is small, 3 and 1.1%., respectively, and the difference in δD and δ13C between oil and coeval wax is slight. Gas fractions are 53-70 and 22.6-23.2‰ depleted in D and 13C, respectively, relative to the coexisting oil fractions. The δD and δ13C values of the crude oils appear to be largely determined by the isotopic compositions of their organic precursors. The contribution of terrestrial organic debris to the organic precursors of most marine crude oils may be significant.

  20. Study of Organic Matter in Soils of the Amazon Region Employing Laser Induced Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tadini, Amanda Maria; Nicolodelli, Gustavo; Mounier, Stéphane; Montes, Célia Regina; Marcondes Bastos Pereira Milori, Débora

    2014-05-01

    were a discontinuity in the accumulation of humified organic matter in the progress of depth. A hypothesis for occurrence of this behavior might be due to texture sandy and aggregate stability present in these soils, which can be difficulty the degradation of labile chains organic matter, thus promoting carbon sequestration in the long time in these soils. References [1]-Milori, D. M. B. P.; Galeti, H. V .A.; Martin-Neto, L.; Dieckow, J.; González-Pérez, M.; Bayer, C.; Salton, J. Organic matter study of whole soil samples using laser-induced fluorescense spectroscopy. Soil Science Society of America Journal, 70, 57-63, 2006. [2]-Martins, T.; Saab, S. C.; Milori, D. M. B. P.; Brinatti, A. M.; Rosa, J. A.; Cassaro, F. A. M.; Pires, L. F. Soil organic matter humification under diferente tillage managements evaluated by Laser Induced Fluorescence (LIF) and C/N ratio. Soil & Tillage Research, 111, 231-235, 2011. [3]-Milori, D. M. B. P.; Segnini, A.; Silva, W. T. L.; Posadas, A.; Mares, V.; Quiroz, R.; Martin-Neto, L. Emerging techniques for soil carbon measurements. Research Program on Climate Change, Agriculture and Food Security, nº 2, 2011. [4]-Senesi, N.; Plaza, C.; Brunetti, G.; Polo, A. A comparative survey of recente results on humic-like fractions in organic amendments and effects on native soil humic substances. Soil Biology & Biochemistry, 39, 1244-1262, 2007.

  1. Soil Organic Matter Dynamics in the Rothamsted Long-term Experiments

    NASA Astrophysics Data System (ADS)

    MacDonald, A.; Poulton, P.

    2009-04-01

    Soil science research at Rothamsted dates from 1843 when John Bennet Lawes and Joseph Henry Gilbert started the first of a series of what became long-term field experiments. The main object of these experiments was to examine the effect of inorganic and organic fertilisers and manures on crop yield and soil fertility. These "Classical Field Experiments" included studies on winter wheat (Broadbalk 1843), spring barley (Hoos Barley 1852) and permanent grassland (Park Grass 1856). Additional experiments were established in the 20th century to examine the value of ley-arable cropping, including the Highfield and Fosters Ley-arable experiments (1948) and the Woburn Ley-arable experiment (1938). More recently, the effects of incorporating organic manures and cereal straw have been examined. Early results quickly showed the benefits of inorganic N and P fertilisers on crop production, but the effects of contrasting land uses and management practices on soil properties emerged more slowly. Measurements of soil organic carbon (C) and nitrogen (N) in soils taken at intervals from the long-term experiments indicate that the rate of soil organic matter (SOM) accumulation is controlled largely by the balance between the rate of organic matter inputs and its oxidation rate, and that these are strongly influenced by land use and management, soil texture (especially clay content) and climate. A recent examination of soil organic C data from two long-term grassland experiments in the UK (including Park Grass) indicates that any changes observed in soil organic C under long-term grasslands over the past 40 years are more likely to be due to changes in land use and management rather than climate change. Data from the Rothamsted Long-term experiments have been used to develop and test biogeochemical models of C and N dynamics. In particular, the Roth-C model has successfully simulated soil C dynamics in the long-term experiments at Rothamsted and elsewhere. This model uses several

  2. Profile distribution and accumulation characteristics of organic carbon in a karst hillslope based on particle-size fractionation and stable isotope analysis.

    PubMed

    Liu, Taoze; Zhao, Zhiqi; Lang, Yunchao; Ding, Hu

    2015-07-01

    Recent studies have highlighted tight coupling between soil aggregate fractions and soil organic carbon (SOC) turnover. However, large uncertainties remain and a mechanistic understanding of geomorphic and land use change effects on carbon storage in soil is still lacking. Taking typical slope of vegetation recovery in karst area as object, the present study analyzed organic carbon content and stable carbon isotope composition (δ13C value) of soil organic matter in bulk and particle size separates of soil on profiles at different topographic positions. The results showed that SOC content decreased gradually in downhill direction. Organic carbon content of sandy soil (50-2000 μm) accounted above 50% in the upper slope positions but in the middle and lower slope soil profiles, organic carbon was mainly stored in silts (2-50 μm) and clays (< 2 μm) which belonged to stable and highly humified SOC. The composition difference of δ13C values in soil profiles reflected the input of plant residues and accumulation characteristics. Organic matter was deposited in different soil particle sizes owing to different degrees of decomposition. Hence, δ13C value can help in identifying the storage and decomposition rates of soil organic matter.

  3. Measuring Organic Matter with COSIMA on Board Rosetta

    NASA Astrophysics Data System (ADS)

    Briois, C.; Baklouti, D.; Bardyn, A.; Cottin, H.; Engrand, C.; Fischer, H.; Fray, N.; Godard, M.; Hilchenbach, M.; von Hoerner, H.; Höfner, H.; Hornung, K.; Kissel, J.; Langevin, Y.; Le Roy, L.; Lehto, H.; Lehto, K.; Orthous-Daunay, F. R.; Revillet, C.; Rynö, J.; Schulz, R.; Silen, J. V.; Siljeström, S.; Thirkell, L.

    2014-12-01

    Comets are believed to contain the most pristine material of our Solar System materials and therefore to be a key to understand the origin of the Solar System, and the origin of life. Remote sensing observations have led to the detection of more than twenty simple organic molecules (Bockelée-Morvan et al., 2004; Mumma and Charnley, 2011). Experiments on-board in-situ exploration missions Giotto and Vega and the recent Stardust sample return missions have shown that a significant fraction of the cometary grains consists of organic matter. Spectra showed that both the gaseous (Mitchell et al., 1992) and the solid phase (grains) (Kissel and Krueger, 1987) contained organic molecules with higher masses than those of the molecules detected by remote sensing techniques in the gaseous phase. Some of the grains analyzed in the atmosphere of comet 1P/Halley seem to be essentially made of a mixture of carbon, hydrogen, oxygen and nitrogen (CHON grains, Fomenkova, 1999). Rosetta is an unparalleled opportunity to make a real breakthrough into the nature of cometary matter, both in the gas and in the solid phase. The dust mass spectrometer COSIMA on Rosetta will analyze organic and inorganic phases in the dust. The organic phases may be refractory, but some organics may evaporate with time from the dust and lead to an extended source in the coma. Over the last years, we have prepared the cometary rendezvous by the analysis of various samples with the reference model of COSIMA. We will report on this calibration data set and on the first results of the in-situ analysis of cometary grains as captured, imaged and analyzed by COSIMA. References : Bockelée-Morvan, D., et al. 2004. (Eds.), Comets II. the University of Arizona Press, Tucson, USA, pp. 391-423 ; Fomenkova, M.N., 1999. Space Science Reviews 90, 109-114 ; Kissel, J., Krueger, F.R., 1987. Nature 326, 755-760 ; Mitchell, et al. 1992. Icarus 98, 125-133 ; Mumma, M.J., Charnley, S.B., 2011. Annual Review of Astronomy and

  4. Organic matter loss from cultivated peat soils in Sweden

    NASA Astrophysics Data System (ADS)

    Berglund, Örjan; Berglund, Kerstin

    2015-04-01

    The degradation of drained peat soils in agricultural use is an underestimated source of loss of organic matter. Oxidation (biological degradation) of agricultural peat soils causes a loss of organic matter (OM) of 11 - 22 t ha-1 y-1 causing a CO2 emission of 20 - 40 t ha-1 y-1. Together with the associated N2O emissions from mineralized N this totals in the EU to about 98.5 Mton CO2 eq per year. Peat soils are very prone to climate change and it is expected that at the end of this century these values are doubled. The degradation products pollute surface waters. Wind erosion of peat soils in arable agriculture can cause losses of 3 - 30 t ha-1 y-1 peat also causing air pollution (fine organic particles). Subsidence rates are 1 - 2 cm per year which leads to deteriorating drainage effect and make peat soils below sea or inland water levels prone to flooding. Flooding agricultural peat soils is in many cases not possible without high costs, high GHG emissions and severe water pollution. Moreover sometimes cultural and historic landscapes are lost and meadow birds areas are lost. In areas where the possibility to regulate the water table is limited the mitigation options are either to increase biomass production that can be used as bioenergy to substitute some fossil fuel, try to slow down the break-down of the peat by different amendments that inhibit microbial activity, or permanent flooding. The negative effects of wind erosion can be mitigated by reducing wind speed or different ways to protect the soil by crops or fiber sheets. In a newly started project in Sweden a typical peat soil with and without amendment of foundry sand is cropped with reed canary grass, tall fescue and timothy to investigate the yield and greenhouse gas emissions from the different crops and how the sand effect the trafficability and GHG emissions.

  5. BiOMAS: Biochip for Organic Matter Analysis in Space

    NASA Astrophysics Data System (ADS)

    Dobrijevic, Michel; Incerti, Sebastien; Baque, Mickael; Le Postollec, Aurelie; Coussot, Gaelle; Moretto, Philippe; Vandenabeele Trambouze, Odile

    The search for the first steps of a prebiotic chemistry and the detection of life in the Solar System are ones of the great challenges of new upcoming space missions. In particular, some instruments will be designed to detect traces of organic matter on extra-terrestrial objects like Mars, Titan, comets, etc. A new and promising technique based on biochips is recommended by space agencies (ESA and NASA). A biochip is a miniaturized device composed of biological sensitive systems grafted on a slide. It allows the quantification of numerous target molecules simultaneously (from hundreds to thousands). With the support of the French space agency (CNES), our team currently develops a biochip especially designed for planetary exploration. The BiOMAS (Biochip for Organic Matter Analysis in Space) project, in progress for four years, has an interdisciplinary dimension bringing together specialists evolving in different area (planetology, physics, chemistry, biology and materials science) and developing complementary competences. A space biochip should be highly sensitive, specific and robust, allowing the detection of traces of various organic molecules (individuals and families). Since the conception of the biochip is at the heart of the instrumental specification, our aim is to optimize all the components (including the slide material, the ligands, the chemical bonds and the detection system) in order to meet both analytical and space constraints. Two different types of ligands (antibodies and aptamers) are under study to reach this objective. In space conditions, a lot of constraints might alter the efficiency of this analytical tool (irradiation by cosmic rays, temperature variations, vacuum, long duration mission, etc). Therefore, designing such a biochip requires testing the resistance of all its components to space conditions. Main concepts and current developments of the project are presented.

  6. Geochemical drivers of organic matter decomposition in the active layer of Arctic tundra

    NASA Astrophysics Data System (ADS)

    Herndon, E.; Roy Chowdhury, T.; Mann, B.; Graham, D. E.; Wullschleger, S. D.; Gu, B.; Liang, L.

    2014-12-01

    Arctic tundra soils store large quantities of organic carbon that are susceptible to decomposition and release to the atmosphere as CO2 and CH4. Decomposition rates are limited by cold temperatures and widespread anoxia; however, ongoing changes in soil temperature, thaw depth, and water saturation are expected to influence rates and pathways of organic matter decomposition. In order to predict greenhouse gas releases from high-latitude ecosystems, it is necessary to identify how geochemical factors (e.g. terminal electron acceptors, carbon substrates) influence CO2 and CH4 production in tundra soils. This study evaluates spatial patterns of aqueous geochemistry in the active layer of low- to high-centered polygons located at the Barrow Environmental Observatory in northern Alaska. Pore waters from saturated soils were low in sulfate and nitrate but contained abundant Fe which may serve a major terminal electron acceptor for anaerobic microbial metabolism. Relatively high concentrations of soluble Fe accumulated in the middle of the active layer near the boundary between the organic and mineral horizon, and we infer that Fe-oxide reduction and dissolution in the mineral horizon produced soluble Fe that diffused upwards and was stabilized by complexation with dissolved organic matter. Fe concentrations in the bulk soil were higher in organic than mineral horizons due to the presence of these organic-Fe complexes and Fe-oxide precipitates. Dissolved CH4 increased with increasing proportions of dissolved Fe(III) in saturated soils from transitional and low-centered polygons. The opposite trend was observed in drier soils from flat- and high-centered polygons where deeper oxidation fronts may inhibit methanogenesis. Using multiple spectroscopic and molecular methods (e.g. UV-Vis, Fourier transform infrared, ultrahigh resolution mass spectrometry), we also observed that pore waters from the middle of the active layer contained more aromatic organics than in mineral

  7. Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter

    SciTech Connect

    Arndt Schimmelmann; Maria Mastalerz

    2010-03-30

    Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

  8. SNC Meteorites, Organic Matter and a New Look at Viking

    NASA Technical Reports Server (NTRS)

    Warmflash, David M.; Clemett, Simon J.; McKay, David S.

    2001-01-01

    Recently, evidence has begun to grow supporting the possibility that the Viking GC-MS would not have detected certain carboxylate salts that could have been present as metastable oxidation products of high molecular weight organic species. Additionally, despite the instrument's high sensitivity, the possibility had remained that very low levels of organic matter, below the instrument's detection limit, could have been present. In fact, a recent study indicates that the degradation products of several million microorganisms per gram of soil on Mars would not have been detected by the Viking GC-MS. Since the strength of the GC-MS findings was considered enough to dismiss the biology packet, particularly the LR results, any subsequent evidence suggesting that organic molecules may in fact be present on the Martian surface necessitates a re-evaluation of the Viking LR data. In addition to an advanced mass spectrometer to look for isotopic signatures of biogenic processes, future lander missions will include the ability to detect methane produced by methanogenic bacteria, as well as techniques based on biotechnology. Meanwhile, the identification of Mars samples already present on Earth in the form of the SNC meteorites has provided us with the ability to study samples of the Martian upper crust a decade or more in advance of any planned sample return missions. While contamination issues are of serious concern, the presence of indigenous organic matter in the form of polycyclic aromatic hydrocarbons has been detected in the Martian meteorites ALH84001 and Nakhla, while there is circumstantial evidence for carbonaceous material in Chassigny. The radiochronological ages of these meteorites are 4.5 Ga, 1.3 Ga, and 165 Ma respectively representing a span of time in Earth history from the earliest single-celled organisms to the present day. Given this perspective on organic material, a biological interpretation to the Viking LR results can no longer be ruled out. In the LR

  9. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Boutton, Thomas W.; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-05-01

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two 13C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change.

  10. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes.

    PubMed

    Wang, Hui; Boutton, Thomas W; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-01-01

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two (13)C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change. PMID:25960162

  11. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes.

    PubMed

    Wang, Hui; Boutton, Thomas W; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-01-01

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two (13)C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change.

  12. Relating changes of organic matter composition of two German peats to climatic conditions during peat formation

    NASA Astrophysics Data System (ADS)

    Knicker, Heike; Nikolova, Radoslava; Rumpel, Cornelia; González-Vila, Francisco, J.; Drösler, Matthias

    2010-05-01

    Peatlands have been recognized as an important factor within the global C-cycle, since they store about one-third of the global terrestrial C-pool. Furthermore, peat deposits have the potential to record detailed paleoclimatic and - vegetational changes. They are formed in peculiar paleoecosystems where the slow biodegradation of plant residues depends on a series of pedo-climatic and hydromorphic factors leading to a progressive accumulation of organic matter stabilized in different evolutionary stages. Thus, its chemical composition should be applicable as a fingerprint of former prevailing environmental conditions and vegetation configurations. The aim of the present work was to identify this fingerprint in the cores of two German fens, one derived from the Havelland close to Berlin (Großer Bolchow) and the other derived from the alpine region of Bavaria (Kendlmühlfilzen) by investigating the organic matter transformation as a function of peat depths. The C/N ratios and δ13C values revealed several distinctive trends in the two profiles related to prevailing peat forming conditions. Compared to the other layers, at depths of 14-85 cm and 132-324 cm in the Kendlmühlfilzen fen, high C/N ratios and less depleted δ13C values, indicated that the accumulation of these two layers occurred during a humid and cold period. In the case of the "Großer Bolchow", algal contributions were clearly detected using δ13C values. Solid-state 13C NMR spectroscopy demonstrated loss of celluloses and accumulation of lipids and lignin derivatives during peatification, confirming that under the mostly O2-depleted conditions in peats, decomposition was selective. The results obtained by pyrolysis-GC/MS were in good agreement with the NMR data showing that processes ascribed to gradual biotransformation of the lignin occurred in both peats. However, the "Großer Bolchow" peat revealed a more advanced decomposition stage then the "Kendlmühlfilzen" peat, which is in agreement with

  13. Influence of land use on soil organic matter

    NASA Astrophysics Data System (ADS)

    Rogeon, H.; Lemée, L.; Chabbi, A.; Ambles, A.

    2009-04-01

    Soil organic matter (SOM) is actually of great environmental interest as the amount of organic matter stored in soils represents one of the largest reservoirs of organic carbon on the global scale [1]. Indeed, soil carbon storage capacity represents 1500 to 2000 Gt for the first meter depth, which is twice the concentration of atmospheric CO2 [2]. Furthermore, human activities, such as deforestation (which represents a flux of 1.3 Gt C/year), contribute to the increase in atmospheric CO2 concentration for about one percent a year [3]. Therefore, carbon dioxide sequestration in plant and carbon storage in soil and biomass could be considered as a complementary solution against climate change. The stock of carbon in soils is greatly influenced by land use (ca 70 Gt for a forest soil or a grassland against 40 Gt for an arable land). Furthermore the molecular composition of SOM should be also influenced by vegetation. In this context, four horizons taken between 0-120 cm from the same profile of a soil under grassland and forest located in the vicinity of Poitiers (INRA Lusignan, ORE Prairie) were compared. For the surface horizon, the study is improved with the results from the cultivated soil from INRA Versailles. Soil organic matter was characterized using IR spectroscopy, elemental analysis and thermal analysis. Granulometric fractionation into sand (50-2000 μm), silt (2-50 μm) and clay (<2 μm) was conducted. The organic matter associated with the mineral fractions was thus characterized using thermochemolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS). The total lipidic fractions were extracted with CH2Cl2/MeOH using an accelerated solvent extraction (ASE). In the three soils, lipids are concentrated into the superficial horizon (0-30 cm) which indicates a low mobilisation. Lipids from the superficial horizon are more abundant for the arable soil (1010 ppm) than for the two other (400 ppm). Lipids from the forest and the grassland were

  14. Storage and turnover of organic matter in soil

    SciTech Connect

    Torn, M.S.; Swanston, C.W.; Castanha, C.; Trumbore, S.E.

    2008-07-15

    Historically, attention on soil organic matter (SOM) has focused on the central role that it plays in ecosystem fertility and soil properties, but in the past two decades the role of soil organic carbon in moderating atmospheric CO{sub 2} concentrations has emerged as a critical research area. This chapter will focus on the storage and turnover of natural organic matter in soil (SOM), in the context of the global carbon cycle. Organic matter in soils is the largest carbon reservoir in rapid exchange with atmospheric CO{sub 2}, and is thus important as a potential source and sink of greenhouse gases over time scales of human concern (Fischlin and Gyalistras 1997). SOM is also an important human resource under active management in agricultural and range lands worldwide. Questions driving present research on the soil C cycle include: Are soils now acting as a net source or sink of carbon to the atmosphere? What role will soils play as a natural modulator or amplifier of climatic warming? How is C stabilized and sequestered, and what are effective management techniques to foster these processes? Answering these questions will require a mechanistic understanding of how and where C is stored in soils. The quantity and composition of organic matter in soil reflect the long-term balance between plant carbon inputs and microbial decomposition, as well as other loss processes such as fire, erosion, and leaching. The processes driving soil carbon storage and turnover are complex and involve influences at molecular to global scales. Moreover, the relative importance of these processes varies according to the temporal and spatial scales being considered; a process that is important at the regional scale may not be critical at the pedon scale. At the regional scale, SOM cycling is influenced by factors such as climate and parent material, which affect plant productivity and soil development. More locally, factors such as plant tissue quality and soil mineralogy affect

  15. Organic matter and metamorphic history of CO chondrites

    NASA Astrophysics Data System (ADS)

    Bonal, Lydie; Bourot-Denise, Michèle; Quirico, Eric; Montagnac, Gilles; Lewin, Eric

    2007-03-01

    The metamorphic grades of a series of eight CO3 chondrites (ALHA77307, Colony, Kainsaz, Felix, Lancé, Ornans, Warrenton and Isna) have been quantified. The method used was based on the structural grade of the organic matter trapped in the matrix, which is irreversibly transformed by thermal metamorphism. The maturation of the organic matter is independent with respect to the mineralogical context and aqueous alteration. This metamorphic tracer is thus valid whatever the chemical class of chondrites. Moreover, it is sensitive to the peak metamorphic temperature. The structural grade of the organic matter was used along with other metamorphic tracers such as petrography of opaque minerals, Fa and Fs silicate composition in type I chondrules, presolar grains and noble gas (P3 component) abundance. The deduced metamorphic hierarchy and the attributed petrographic types are the following: ALHA77307 (3.03) < Colony (3.1) < Kainsaz (3.6) < Felix (3.6 (1)) < Ornans (3.6 (2)) < Lancé (3.6 (3)) < Warrenton (3.7 (1)) < Isna (3.7 (2)). For most metamorphosed objects, the peak metamorphic temperature can be estimated using a geothermometer calibrated with terrestrial metasediments [Beyssac O., Goffe B., Chopin C., and Rouzaud J. N. (2002) Raman spectrum of carbonaceous material in metasediments: a new geothermometer. J. Metamorph. Geol., 20, 859-871]. A value of 330 °C was obtained for Allende (CV chondrite), Warrenton and Isna, consistent with temperatures estimated from Fe diffusion [Weinbruch S., Armstrong J., and Palme H. (1994). Constraints on the thermal history of the Allende parent body as derive from olivine-spinel thermometry and Fe/Mg interdiffusion in olivine. Geochim. Cosmochim. Acta58(2), 1019-1030.], from the Ni content in sulfide-metal assemblages [Zanda B., Bourot-Denise M., and Hewins R. (1995) Condensate sulfide and its metamorphic transformations in primitive chondrites. Meteorit. Planet. Sci.30, A605.] and from the d002 interlayer spacing in poorly

  16. Structural and functional properties of organic matters in extracellular polymeric substances (EPS) and dissolved organic matters (DOM) after heat pretreatment with waste sludge.

    PubMed

    Sun, Jian; Guo, Liang; Li, Qianqian; Zhao, Yangguo; Gao, Mengchun; She, Zonglian; Wang, Guangce

    2016-11-01

    The effects of heat pretreatment on waste sludge hydrolysis were investigated in this study. Heat pretreatment was conducted at 65°C, 80°C, 100°C and 121°C for 5min, 10min, 15min, 20min, 25min and 30min. Not only analyzed the changes of SCOD (Soluble chemical oxygen demand), carbohydrate and protein, but also evaluated the structural and functional properties of organics in extracellular polymeric substances (EPS) and dissolved organic matters (DOM) by using three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy with fluorescence regional integration (FRI) analysis. The SCOD in DOM increased with pretreated temperatures. The optimal heat hydrolysis temperature and time were selected by further studying the biodegradable and non-biodegradable components. After treated at 80°C for 25min, the fluorescence intensity and percent fluorescence response (Pi,n) of easily biodegradable soluble microbial by-product substance were higher than others, and little non-biodegradable fulvic acid-like substance was accumulated. PMID:27544911

  17. Sources of organic matter in first flush runoff from urban roadways.

    PubMed

    Wada, K; Takei, N; Sato, T; Tsuno, H

    2015-01-01

    This study aims to explore the influential sources of organic matter in first flush runoff from urban roadways by comparing organic carbon content and particle size distribution in road dust with those from discharge from vehicles during rainfall. Samples on first flush runoff and road dust were collected from urban roadways. In addition, vehicle drainage was assumed to flow from vehicles during rainfall events, so vehicle wash-off water was collected by spraying water onto the top and from the underside of vehicles to simulate accumulation during a vehicle run. In road dust, the organic carbon content in the <0.2 mm fraction was about twice that of the 0.2-2 mm fraction. The particle size distributions of both first flush runoff and vehicle wash-off water were similar, and particles <0.2 mm contributed to over 95% of the total volume. The dissolved organic carbon concentration in the vehicle wash-off water was considerably higher than that in the road dust/water mixture. The total organic carbon content in road dust was positively correlated with annual daily traffic. Therefore, vehicles were thought to strongly influence the nature of road dust. PMID:26398040

  18. Molecular characterization of dissolved organic matter in pore water of continental shelf sediments

    NASA Astrophysics Data System (ADS)

    Schmidt, Frauke; Elvert, Marcus; Koch, Boris P.; Witt, Matthias; Hinrichs, Kai-Uwe

    2009-06-01

    Dissolved organic matter (DOM) in sediment pore water is a complex molecular mixture reflecting various sources and biogeochemical processes. In order to constrain those sources and processes, molecular variations of pore water DOM in surface sediments from the NW Iberian shelf were analyzed by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and compared to river and marine water column DOM. Weighted average molecular element ratios of oxygen to carbon ((O/C) wa) and hydrogen to carbon ((H/C) wa) provided general information about DOM sources. DOM in local rivers was more oxygenated ((O/C) wa 0.52) and contained less hydrogen ((H/C) wa 1.15) than marine pore water DOM (mean (O/C) wa 0.50, mean (H/C) wa 1.26). The relative abundance of specific compound groups, such as highly oxygenated aromatic compounds or nitrogen-bearing compounds with low H/C ratios, correspond to a high concentration of lignin phenols (160 μg/g sediment dry weight) and a high TOC/TN ratio (13.3) in the sedimentary organic matter and were therefore assigned to terrestrial sources. The lower degree of unsaturation and a higher relative abundance of nitrogen-bearing compounds in the pore water DOM reflected microbial activity within the sediment. One sampling site on the shelf with a high sediment accumulation, and a humic-rich river sample showed a wide range of sulfur compounds in the DOM, accompanied by a higher abundance of lipid biomarkers for sulfate-reducing bacteria, probably indicating early diagenetic sulfurization of organic matter.

  19. Plants mediate soil organic matter decomposition in response to sea level rise.

    PubMed

    Mueller, Peter; Jensen, Kai; Megonigal, James Patrick

    2016-01-01

    Tidal marshes have a large capacity for producing and storing organic matter, making their role in the global carbon budget disproportionate to land area. Most of the organic matter stored in these systems is in soils where it contributes 2-5 times more to surface accretion than an equal mass of minerals. Soil organic matter (SOM) sequestration is the primary process by which tidal marshes become perched high in the tidal frame, decreasing their vulnerability to accelerated relative sea level rise (RSLR). Plant growth responses to RSLR are well understood and represented in century-scale forecast models of soil surface elevation change. We understand far less about the response of SOM decomposition to accelerated RSLR. Here we quantified the effects of flooding depth and duration on SOM decomposition by exposing planted and unplanted field-based mesocosms to experimentally manipulated relative sea level over two consecutive growing seasons. SOM decomposition was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated via δ(13) CO2 . Despite the dominant paradigm that decomposition rates are inversely related to flooding, SOM decomposition in the absence of plants was not sensitive to flooding depth and duration. The presence of plants had a dramatic effect on SOM decomposition, increasing SOM-derived CO2 flux by up to 267% and 125% (in 2012 and 2013, respectively) compared to unplanted controls in the two growing seasons. Furthermore, plant stimulation of SOM decomposition was strongly and positively related to plant biomass and in particular aboveground biomass. We conclude that SOM decomposition rates are not directly driven by relative sea level and its effect on oxygen diffusion through soil, but indirectly by plant responses to relative sea level. If this result applies more generally to tidal wetlands, it has important implications for models of SOM accumulation and surface elevation change in response to accelerated RSLR. PMID:26342160

  20. Plants mediate soil organic matter decomposition in response to sea level rise.

    PubMed

    Mueller, Peter; Jensen, Kai; Megonigal, James Patrick

    2016-01-01

    Tidal marshes have a large capacity for producing and storing organic matter, making their role in the global carbon budget disproportionate to land area. Most of the organic matter stored in these systems is in soils where it contributes 2-5 times more to surface accretion than an equal mass of minerals. Soil organic matter (SOM) sequestration is the primary process by which tidal marshes become perched high in the tidal frame, decreasing their vulnerability to accelerated relative sea level rise (RSLR). Plant growth responses to RSLR are well understood and represented in century-scale forecast models of soil surface elevation change. We understand far less about the response of SOM decomposition to accelerated RSLR. Here we quantified the effects of flooding depth and duration on SOM decomposition by exposing planted and unplanted field-based mesocosms to experimentally manipulated relative sea level over two consecutive growing seasons. SOM decomposition was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated via δ(13) CO2 . Despite the dominant paradigm that decomposition rates are inversely related to flooding, SOM decomposition in the absence of plants was not sensitive to flooding depth and duration. The presence of plants had a dramatic effect on SOM decomposition, increasing SOM-derived CO2 flux by up to 267% and 125% (in 2012 and 2013, respectively) compared to unplanted controls in the two growing seasons. Furthermore, plant stimulation of SOM decomposition was strongly and positively related to plant biomass and in particular aboveground biomass. We conclude that SOM decomposition rates are not directly driven by relative sea level and its effect on oxygen diffusion through soil, but indirectly by plant responses to relative sea level. If this result applies more generally to tidal wetlands, it has important implications for models of SOM accumulation and surface elevation change in response to accelerated RSLR.

  1. Study of the influence of different organic pollutants on Cu accumulation by Halimione portulacoides

    NASA Astrophysics Data System (ADS)

    Almeida, C. Marisa R.; Claúdia Dias, A.; Mucha, Ana P.; Bordalo, A. A.; Vasconcelos, M. Teresa S. D.

    2009-12-01

    The influence of each of four organic pollutants selected from among those commonly found in coastal areas, 1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene (DDE), monobutyltin (MBT), Triton X-100 and polycyclic aromatic hydrocarbons (PAHs), on Cu accumulation by Halimione portulacoides was investigated. Experiments were carried out in a laboratory setting, either in hydroponics (sediment elutriate) or in a salt marsh sediment ( Cávado River, NW Portugal) soaked in elutriate. Groups of H. portulacoides were exposed to media for 6 days spiked with 10 mg/L Cu(II) and with one of the selected pollutants, at an environmentally realistic concentration. DDE and MBT did not cause any major change on Cu accumulation by H. portulacoides, whereas PAHs slightly increased accumulation only in hydroponics i.e. in the absence of sediment. On the other hand, the non-ionic surfactant Triton X-100 markedly favoured Cu accumulation on plant roots both in the presence and absence of sediment. The addition of DDE, MBT and Triton X-100 also favoured Cu solubility from sediments. Therefore, the simultaneous presence of pollutants from different nature (inorganic and organic) in the estuarine environment may result in a composition of water column, pore water, sediment or biota different of that expected considering the effect of each individual pollutant.

  2. Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems.

    PubMed

    Zhang, Hai-Ling; Sheng, Guo-Ping; Fang, Wei; Wang, Yong-Peng; Fang, Cai-Yun; Shao, Li-Min; Yu, Han-Qing

    2015-11-01

    Phosphorus accumulating organisms (PAOs) have been found to act as glycogen-accumulating organisms (GAOs) under certain conditions, thus, the deterioration in the performance of enhanced biological phosphorus removal systems is not always attributed to the proliferation of GAOs. In this work, the effects of calcium on the metabolic pathway of PAOs were explored. It was found that when the influent Ca(2+) concentration was elevated, the tendency and extent of extracellular calcium phosphate precipitation increased, and the intracellular inert Ca-bound polyphosphate was synthesized, while the microbial population remained almost unchanged. The changes in the ratios of phosphorus released/acetate uptaken, the glycogen degraded/acetate uptaken and the poly-β-hydroxyalkanoates synthesized/acetate uptaken during the anaerobic period confirm that, as the influent Ca(2+) concentration was increased, the polyphosphate-accumulating metabolism was partially shifted to the glycogen-accumulating metabolism. At an influent Ca(2+) around 50 mg/L, in addition to the extracellular calcium phosphate precipitation, the intracellular inert Ca-bound polyphosphate synthesis might also be involved in the metabolic change of PAOs. The results of the present work would be beneficial to better understand the biochemical metabolism of PAOs in enhanced biological phosphorus removal systems. PMID:26233656

  3. Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems.

    PubMed

    Zhang, Hai-Ling; Sheng, Guo-Ping; Fang, Wei; Wang, Yong-Peng; Fang, Cai-Yun; Shao, Li-Min; Yu, Han-Qing

    2015-11-01

    Phosphorus accumulating organisms (PAOs) have been found to act as glycogen-accumulating organisms (GAOs) under certain conditions, thus, the deterioration in the performance of enhanced biological phosphorus removal systems is not always attributed to the proliferation of GAOs. In this work, the effects of calcium on the metabolic pathway of PAOs were explored. It was found that when the influent Ca(2+) concentration was elevated, the tendency and extent of extracellular calcium phosphate precipitation increased, and the intracellular inert Ca-bound polyphosphate was synthesized, while the microbial population remained almost unchanged. The changes in the ratios of phosphorus released/acetate uptaken, the glycogen degraded/acetate uptaken and the poly-β-hydroxyalkanoates synthesized/acetate uptaken during the anaerobic period confirm that, as the influent Ca(2+) concentration was increased, the polyphosphate-accumulating metabolism was partially shifted to the glycogen-accumulating metabolism. At an influent Ca(2+) around 50 mg/L, in addition to the extracellular calcium phosphate precipitation, the intracellular inert Ca-bound polyphosphate synthesis might also be involved in the metabolic change of PAOs. The results of the present work would be beneficial to better understand the biochemical metabolism of PAOs in enhanced biological phosphorus removal systems.

  4. Sources, Ages, and Alteration of Organic Matter in Estuaries.

    PubMed

    Canuel, Elizabeth A; Hardison, Amber K

    2016-01-01

    Understanding the processes influencing the sources and fate of organic matter (OM) in estuaries is important for quantifying the contributions of carbon from land and rivers to the global carbon budget of the coastal ocean. Estuaries are sites of high OM production and processing, and understanding biogeochemical processes within these regions is key to quantifying organic carbon (Corg) budgets at the land-ocean margin. These regions provide vital ecological services, including nutrient filtration and protection from floods and storm surge, and provide habitat and nursery areas for numerous commercially important species. Human activities have modified estuarine systems over time, resulting in changes in the production, respiration, burial, and export of Corg. Corg in estuaries is derived from aquatic, terrigenous, and anthropogenic sources, with each source exhibiting a spectrum of ages and lability. The complex source and age characteristics of Corg in estuaries complicate our ability to trace OM along the river-estuary-coastal ocean continuum. This review focuses on the application of organic biomarkers and compound-specific isotope analyses to estuarine environments and on how these tools have enhanced our ability to discern natural sources of OM, trace their incorporation into food webs, and enhance understanding of the fate of Corg within estuaries and their adjacent waters. PMID:26407145

  5. Sources, Ages, and Alteration of Organic Matter in Estuaries.

    PubMed

    Canuel, Elizabeth A; Hardison, Amber K

    2016-01-01

    Understanding the processes influencing the sources and fate of organic matter (OM) in estuaries is important for quantifying the contributions of carbon from land and rivers to the global carbon budget of the coastal ocean. Estuaries are sites of high OM production and processing, and understanding biogeochemical processes within these regions is key to quantifying organic carbon (Corg) budgets at the land-ocean margin. These regions provide vital ecological services, including nutrient filtration and protection from floods and storm surge, and provide habitat and nursery areas for numerous commercially important species. Human activities have modified estuarine systems over time, resulting in changes in the production, respiration, burial, and export of Corg. Corg in estuaries is derived from aquatic, terrigenous, and anthropogenic sources, with each source exhibiting a spectrum of ages and lability. The complex source and age characteristics of Corg in estuaries complicate our ability to trace OM along the river-estuary-coastal ocean continuum. This review focuses on the application of organic biomarkers and compound-specific isotope analyses to estuarine environments and on how these tools have enhanced our ability to discern natural sources of OM, trace their incorporation into food webs, and enhance understanding of the fate of Corg within estuaries and their adjacent waters.

  6. Sources, Ages, and Alteration of Organic Matter in Estuaries

    NASA Astrophysics Data System (ADS)

    Canuel, Elizabeth A.; Hardison, Amber K.

    2016-01-01

    Understanding the processes influencing the sources and fate of organic matter (OM) in estuaries is important for quantifying the contributions of carbon from land and rivers to the global carbon budget of the coastal ocean. Estuaries are sites of high OM production and processing, and understanding biogeochemical processes within these regions is key to quantifying organic carbon (Corg) budgets at the land-ocean margin. These regions provide vital ecological services, including nutrient filtration and protection from floods and storm surge, and provide habitat and nursery areas for numerous commercially important species. Human activities have modified estuarine systems over time, resulting in changes in the production, respiration, burial, and export of Corg. Corg in estuaries is derived from aquatic, terrigenous, and anthropogenic sources, with each source exhibiting a spectrum of ages and lability. The complex source and age characteristics of Corg in estuaries complicate our ability to trace OM along the river-estuary-coastal ocean continuum. This review focuses on the application of organic biomarkers and compound-specific isotope analyses to estuarine environments and on how these tools have enhanced our ability to discern natural sources of OM, trace their incorporation into food webs, and enhance understanding of the fate of Corg within estuaries and their adjacent waters.

  7. Biogeochemical cycling in an organic-rich coastal marine basin. 9. Sources and accumulation rates of vascular plant-derived organic material

    SciTech Connect

    Haddad, R.I.; Martens, C.S. )

    1987-11-01

    The sources, degradation and burial of vascular plant debris deposited over the past several decades in the lagoonal sediments of Cape Lookout Bight, North Carolina, are quantified using alkaline cupric oxide lignin oxidation product (LOP) analysis. Non-woody angiosperms, accounting for 92 {plus minus} 32% of the recognizable sedimentary vascular plant debris, are calculated to contribute 23 {plus minus} 17% of the total organic carbon buried over the past decade. When combined with a previously established sedimentary organic carbon budget for this site a vascular plant derived carbon burial rate of 26 {plus minus}20 mole C m{sup {minus}2} yr{sup {minus}1} is calculated for this same time interval. The refractory nature and invariant depth distributions of the lignin oxidation products (LOP), when coupled with evidence for constant degradation rates of metabolizable materials, indicate that sediment accumulation at this site has been a steady state process with respect to source and burial of organic carbon since its conversion from an inner-continental shelf to a lagoonal environment during the late 1960's. Thus systematic down-core decreases in labile organic matter result from early diagenetic processes rather than input rate variations.

  8. Impact of natural organic matter (NOM) on freshwater amphipods.

    PubMed

    Timofeyev, Maxim A; Wiegand, Claudia; Kent Burnison, B; Shatilina, Zhanna M; Pflugmacher, Stephan; Steinberg, Christian E W

    2004-02-01

    Natural organic matter (NOM) isolated from the eutrophic Sanctuary Pond (Point Pelee National Park, Canada) has an adverse impact on amphipod species (Gammarus tigrinus and Chaetogammarus ischnus from Lake Müggelsee, Germany, and Eulimnogammarus cyaneus, from Lake Baikal, Russia). Increases in amphipod mortality, changes in peroxidase activity and increases of heat shock protein (hsp70) expression were observed upon exposure to NOM. The highest resistance to the adverse impact of NOM was observed with the endemic Baikalian amphipod E. cyaneus. However, the mechanisms behind this finding remains obscure. If differences in the sensitivity of the hsp70 antibody may be excluded, different modes of action may be postulated: because the adverse impact of NOM may be caused by reactive oxygen species (ROS) and the NOM itself, the observed differences may be due to the action of ROS alone (with E. cyaneus) and a combination of both adverse modes of action (European species). PMID:14967505

  9. Modeling of natural organic matter transport processes in groundwater.

    PubMed Central

    Yeh, T C; Mas-Pla, J; McCarthy, J F; Williams, T M

    1995-01-01

    A forced-gradient tracer test was conducted at the Georgetown site to study the transport of natural organic matter (NOM) in groundwater. In particular, the goal of this experiment was to investigate the interactions between NOM and the aquifer matrix. A detailed three-dimensional characterization of the hydrologic conductivity heterogeneity of the site was obtained using slug tests. The transport of a conservative tracer (chloride) was successfully reproduced using these conductivity data. Despite the good simulation of the flow field, NOM breakthrough curves could not be reproduced using a two-site sorption model with spatially constant parameters. Preliminary results suggest that different mechanisms for the adsorption/desorption processes, as well as their spatial variability, may significantly affect the transport and fate of NOM. PMID:7621798

  10. [Dissolved organic matter (DOM) dynamics in karst aquifer systems].

    PubMed

    Yao, Xin; Zou, Sheng-Zhang; Xia, Ri-Yuan; Xu, Dan-Dan; Yao, Min

    2014-05-01

    Dissolved organic matter (DOM) and nutrients have a unique way of producing, decomposing and storing in southwest karst water systems. To understand the biogeochemical cycle of DOM in karst aquifer systems, we investigated the behavioral changes of DOM fluorescence components in Zhaidi karst river system. Two humic-like components (C1 and C2), and one autochthonous tyrosine-like component (C4) were identified using the parallel factor analysis (PARAFAC) model. Compared with the traditional physical and chemical indicators, spatial heterogeneity of DOM was more obvious, which can reflect the subtle changes in groundwater system. Traditional indicators mainly reflect the regional characteristics of karst river system, while DOM fluorescence components reflect the attribute gaps of sampling types.

  11. Systematic approaches to comprehensive analyses of natural organic matter

    USGS Publications Warehouse

    Leenheer, Jerry A.

    2009-01-01

    The more that is learned of the chemistry of aquatic natural organic matter (NOM) the greater is the scientific appreciation of the vast complexity of this subject. This complexity is due not only to a multiplicity of precursor molecules in any environment but to their associations with each other and with other components of local environments such as clays, mineral acids and dissolved metals. In addition, this complex system is subject to constant change owing to environmental variables and microbial action. Thus, there is a good argument that no two NOM samples are exactly the same even from the same source at nearly the same time. When ubiquity of occurrence, reaction with water treatment chemicals, and subsequent human exposure are added to the list of NOM issues, one can understand the appeal that this subject holds for a wide variety of environmental scientists.

  12. New monoaromatic steroids in organic matter of the apocatagenesis zone

    NASA Astrophysics Data System (ADS)

    Kashirtsev, V. A.; Fomin, A. N.; Shevchenko, N. P.; Dolzhenko, K. V.

    2016-08-01

    According to the materials of geochemical study in the core of the ultradeep hole SV-27 of aromatic fractions of bitumoids of the Vilyui syneclise (East Siberia) by the method of chromatography-mass spectrometry, starting from the depth of >5000 m, four diastereomers of previously unknown hydrocarbons, which become predominant in the fraction at a depth of ˜6500 m, were distinguished. Similar hydrocarbons were found in organic matter of Upper Paleozoic rocks of the Kharaulakh anticlinorium in the Verkhoyansk folded area. According to the intense molecular ion m/z 366 and the character of the basic fragmental ions (m/z 238, 309, and 323), the major structure of the compounds studied was determined as 17-desmethyl-23-methylmonoaromatic steroid C27. The absence of such steroids in oil of the Vilyui syneclise shows that deep micro-oils did not participate in the formation of oil fringes of gas condensate deposits of the region.

  13. A search for presolar organic matter in meteorite

    NASA Technical Reports Server (NTRS)

    Yang, J.; Epstein, S.

    1985-01-01

    The D/H ratios and the C-13/C-12 ratios of acid-insoluble organic matter of 4 meteorites, Ochansk (H4), Plainview (H5), Gladstone (H6) and Odessa (IA), were measured. delta-D values for hydrogen extracted by stepwise combustion were negative, down to -280 deg/infinity. delta-C-13 values were also negative except in the case of the carbon coming off at the highest temperature steps for Plainview and Odessa meteorites. The concentrations of C-13-rich carbon were 3-5 orders of magnitude smaller than those found in Murchison meteorite, suggesting that relic grains of stellar condensates were mostly destroyed in the meteorites examined.

  14. Grown organic matter as a fuel raw material resource

    NASA Technical Reports Server (NTRS)

    Roller, W. L.; Keener, H. M.; Kline, R. D.; Mederski, H. J.; Curry, R. B.

    1975-01-01

    An extensive search was made on biomass production from the standpoint of climatic zones, water, nutrients, costs and energy requirements for many species. No exotic species were uncovered that gave hope for a bonanza of biomass production under culture, location, and management markedly different from those of existing agricultural concepts. A simulation analysis of biomass production was carried out for six species using conventional production methods, including their production costs and energy requirements. These estimates were compared with data on food, fiber, and feed production. The alternative possibility of using residues from food, feed, or lumber was evaluated. It was concluded that great doubt must be cast on the feasibility of producing grown organic matter for fuel, in competition with food, feed, or fiber. The feasibility of collecting residues may be nearer, but the competition for the residues for return to the soil or cellulosic production is formidable.

  15. Plutonium(IV) sorption to montmorillonite in the presence of organic matter.

    PubMed

    Boggs, Mark A; Dai, Zurong; Kersting, Annie B; Zavarin, Mavrik

    2015-03-01

    The effect of altering the order of addition in a ternary system of plutonium(IV), organic matter (fulvic acid, humic acid and desferrioxamine B), and montmorillonite was investigated. A decrease in Pu(IV) sorption to montmorillonite in the presence of fulvic and humic acid relative to the binary Pu-montmorillonite system, is attributed to strong organic aqueous complex formation with aqueous Pu(IV). No dependence on the order of addition was observed. In contrast, in the system where Pu(IV) was equilibrated with desferrioxamine B (DFOB) prior to addition of montmorillonite, an increase in Pu(IV) sorption was observed relative to the binary system. When DFOB was equilibrated with montmorillonite prior to addition of Pu(IV), Pu(IV) sorption was equivalent to the binary system. X-ray diffraction and transmission electron microscopy revealed that DFOB accumulated in the interlayer of montmorillonite. The order of DFOB addition plays an important role in the observed sorption/desorption behavior of Pu. The irreversible nature of DFOB accumulation in the montmorillonite interlayer leads to an apparent dependence of Pu sorption on the order of addition in the ternary system. This work demonstrates that the order of addition will be relevant in ternary systems in which at least one component exhibits irreversible sorption behavior. PMID:25562752

  16. Plutonium(IV) sorption to montmorillonite in the presence of organic matter.

    PubMed

    Boggs, Mark A; Dai, Zurong; Kersting, Annie B; Zavarin, Mavrik

    2015-03-01

    The effect of altering the order of addition in a ternary system of plutonium(IV), organic matter (fulvic acid, humic acid and desferrioxamine B), and montmorillonite was investigated. A decrease in Pu(IV) sorption to montmorillonite in the presence of fulvic and humic acid relative to the binary Pu-montmorillonite system, is attributed to strong organic aqueous complex formation with aqueous Pu(IV). No dependence on the order of addition was observed. In contrast, in the system where Pu(IV) was equilibrated with desferrioxamine B (DFOB) prior to addition of montmorillonite, an increase in Pu(IV) sorption was observed relative to the binary system. When DFOB was equilibrated with montmorillonite prior to addition of Pu(IV), Pu(IV) sorption was equivalent to the binary system. X-ray diffraction and transmission electron microscopy revealed that DFOB accumulated in the interlayer of montmorillonite. The order of DFOB addition plays an important role in the observed sorption/desorption behavior of Pu. The irreversible nature of DFOB accumulation in the montmorillonite interlayer leads to an apparent dependence of Pu sorption on the order of addition in the ternary system. This work demonstrates that the order of addition will be relevant in ternary systems in which at least one component exhibits irreversible sorption behavior.

  17. Characterising organic matter in recirculating aquaculture systems with fluorescence EEM spectroscopy.

    PubMed

    Hambly, A C; Arvin, E; Pedersen, L-F; Pedersen, P B; Seredyńska-Sobecka, B; Stedmon, C A

    2015-10-15

    The potential of recirculating aquaculture systems (RAS) in the aquaculture industry is increasingly being acknowledged. Along with intensified application, the need to better characterise and understand the accumulated dissolved organic matter (DOM) within these systems increases. Mature RASs, stocked with rainbow trout and operated at steady state at four feed loadings, were analysed by dissolved organic carbon (DOC) analysis and fluorescence excitation-emission matrix (EEM) spectroscopy. The fluorescence dataset was then decomposed by PARAFAC analysis using the drEEM toolbox. This revealed that the fluorescence character of the RAS water could be represented by five components, of which four have previously been identified in fresh water, coastal marine water, wetlands and drinking water. The fluorescence components as well as the DOC showed positive correlations with feed loading, however there was considerable variation between the five fluorescence components with respect to the degree of accumulation with feed loading. The five components were found to originate from three sources: the feed; the influent tap water (groundwater); and processes related to the fish and the water treatment system. This paper details the first application of fluorescence EEM spectroscopy to assess DOM in RAS, and highlights the potential applications of this technique within future RAS management strategies.

  18. Soil organic matter dynamics at the paramo and puna highlands in the Andean mountains

    NASA Astrophysics Data System (ADS)

    Ángeles Muñoz, M.; Faz, Ángel; Mermut, Ahmet R.; Zornoza, Raúl

    2014-05-01

    Mountains and uplands represent the most diverse and fragile ecosystems in the world, cover about 20% of the terrestrial surface and are distributed across all continents and major ecoregions. The Andean Plateau is the main mountain range of the American continent and one of the largest in the world with more than 7,500 km. The soil organic matter is a corner stone in the fertility management of the Andean agriculture as well as in the erosion control. However, its role is still much unknown in these ecosystems. Moreover, the influence of current global climatic change on soil organic C reservoirs and dynamics is still not clearly understood. The aim of this work was to review the soil C dynamics and the implication of the soil organic matter in the fertility management, erosion control, conservation of biodiversity and global climate change to improve the knowledge on the mountain Andean highlands. Climate, landscape, soil C pools, biomass and management were studied. In general, the Andean climate is affected by three main factors: ocean currents, winds and orography characterized by an abrupt topography. The entire Andean belt is segmented into the Northern, Central and Southern Andes. Northern Andes are called paramo and are characterized by humid climate while Central and Southern Andes dryer zones are called puna. Most of the region is tectonically and volcanically active. Sedimentary rocks predominated in the paramo while sedimentary, igneous and metamorphic ones prevailed in the puna. The most common soils were Andosols, Regosols, Umbrisols and Histosols. The cold and wet climate and the low atmospheric pressure favored organic matter accumulation in the soil. The accumulation of organic matter is further enhanced by the formation of organomineral complexes strongly resistant to the microbial breakdown mainly in the paramo. High organic C contents were observed in the paramo (10%) oppositely to the low contents found in the dryer puna (1%). The C/N ratio

  19. Molecular characterization of dissolved organic matter (DOM): a critical review.

    PubMed

    Nebbioso, Antonio; Piccolo, Alessandro

    2013-01-01

    Advances in water chemistry in the last decade have improved our knowledge about the genesis, composition, and structure of dissolved organic matter, and its effect on the environment. Improvements in analytical technology, for example Fourier-transform ion cyclotron (FT-ICR) mass spectrometry (MS), homo and hetero-correlated multidimensional nuclear magnetic resonance (NMR) spectroscopy, and excitation emission matrix fluorimetry (EEMF) with parallel factor (PARAFAC) analysis for UV-fluorescence spectroscopy have resulted in these advances. Improved purification methods, for example ultrafiltration and reverse osmosis, have enabled facile desalting and concentration of freshly collected DOM samples, thereby complementing the analytical process. Although its molecular weight (MW) remains undefined, DOM is described as a complex mixture of low-MW substances and larger-MW biomolecules, for example proteins, polysaccharides, and exocellular macromolecules. There is a general consensus that marine DOM originates from terrestrial and marine sources. A combination of diagenetic and microbial processes contributes to its origin, resulting in refractory organic matter which acts as carbon sink in the ocean. Ocean DOM is derived partially from humified products of plants decay dissolved in fresh water and transported to the ocean, and partially from proteinaceous and polysaccharide material from phytoplankton metabolism, which undergoes in-situ microbial processes, becoming refractory. Some of the DOM interacts with radiation and is, therefore, defined as chromophoric DOM (CDOM). CDOM is classified as terrestrial, marine, anthropogenic, or mixed, depending on its origin. Terrestrial CDOM reaches the oceans via estuaries, whereas autochthonous CDOM is formed in sea water by microbial activity; anthropogenic CDOM is a result of human activity. CDOM also affects the quality of water, by shielding it from solar radiation, and constitutes a carbon sink pool. Evidence in support

  20. Effects of warming on stream biofilm organic matter use capabilities.

    PubMed

    Ylla, Irene; Canhoto, Cristina; Romaní, Anna M

    2014-07-01

    The understanding of ecosystem responses to changing environmental conditions is becoming increasingly relevant in the context of global warming. Microbial biofilm communities in streams play a key role in organic matter cycling which might be modulated by shifts in flowing water temperature. In this study, we performed an experiment at the Candal stream (Portugal) longitudinally divided into two reaches: a control half and an experimental half where water temperature was 3 °C above that of the basal stream water. Biofilm colonization was monitored during 42 days in the two stream halves. Changes in biofilm function (extracellular enzyme activities and carbon substrate utilization profiles) as well as chlorophyll a and prokaryote densities were analyzed. The biofilm in the experimental half showed a higher capacity to decompose cellulose, hemicellulose, lignin, and peptidic compounds. Total leucine-aminopeptidase, cellobiohydrolase and β-xylosidase showed a respective 93, 66, and 61% increase in activity over the control; much higher than would be predicted by only the direct temperature physical effect. In contrast, phosphatase and lipase activity showed the lowest sensitivity to temperature. The biofilms from the experimental half also showed a distinct functional fingerprint and higher carbon usage diversity and richness, especially due to a wider use of polymers and carbohydrates. The changes in the biofilm functional capabilities might be indirectly affected by the higher prokaryote and chlorophyll density measured in the biofilm of the experimental half. The present study provides evidence that a realistic stream temperature increase by 3 °C changes the biofilm metabolism to a greater decomposition of polymeric complex compounds and peptides but lower decomposition of lipids. This might affect stream organic matter cycling and the transfer of carbon to higher trophic levels.

  1. Ocean warming-acidification synergism undermines dissolved organic matter assembly.

    PubMed

    Chen, Chi-Shuo; Anaya, Jesse M; Chen, Eric Y-T; Farr, Erik; Chin, Wei-Chun

    2015-01-01

    Understanding the influence of synergisms on natural processes is a critical step toward determining the full-extent of anthropogenic stressors. As carbon emissions continue unabated, two major stressors--warming and acidification--threaten marine systems on several scales. Here, we report that a moderate temperature increase (from 30°C to 32°C) is sufficient to slow--even hinder--the ability of dissolved organic matter, a major carbon pool, to self-assemble to form marine microgels, which contribute to the particulate organic matter pool. Moreover, acidification lowers the temperature threshold at which we observe our results. These findings carry implications for the marine carbon cycle, as self-assembled marine microgels generate an estimated global seawater budget of ~1016 g C. We used laser scattering spectroscopy to test the influence of temperature and pH on spontaneous marine gel assembly. The results of independent experiments revealed that at a particular point, both pH and temperature block microgel formation (32°C, pH 8.2), and disperse existing gels (35°C). We then tested the hypothesis that temperature and pH have a synergistic influence on marine gel dispersion. We found that the dispersion temperature decreases concurrently with pH: from 32°C at pH 8.2, to 28°C at pH 7.5. If our laboratory observations can be extrapolated to complex marine environments, our results suggest that a warming-acidification synergism can decrease carbon and nutrient fluxes, disturbing marine trophic and trace element cycles, at rates faster than projected.

  2. Ocean warming-acidification synergism undermines dissolved organic matter assembly.

    PubMed

    Chen, Chi-Shuo; Anaya, Jesse M; Chen, Eric Y-T; Farr, Erik; Chin, Wei-Chun

    2015-01-01

    Understanding the influence of synergisms on natural processes is a critical step toward determining the full-extent of anthropogenic stressors. As carbon emissions continue unabated, two major stressors--warming and acidification--threaten marine systems on several scales. Here, we report that a moderate temperature increase (from 30°C to 32°C) is sufficient to slow--even hinder--the ability of dissolved organic matter, a major carbon pool, to self-assemble to form marine microgels, which contribute to the particulate organic matter pool. Moreover, acidification lowers the temperature threshold at which we observe our results. These findings carry implications for the marine carbon cycle, as self-assembled marine microgels generate an estimated global seawater budget of ~1016 g C. We used laser scattering spectroscopy to test the influence of temperature and pH on spontaneous marine gel assembly. The results of independent experiments revealed that at a particular point, both pH and temperature block microgel formation (32°C, pH 8.2), and disperse existing gels (35°C). We then tested the hypothesis that temperature and pH have a synergistic influence on marine gel dispersion. We found that the dispersion temperature decreases concurrently with pH: from 32°C at pH 8.2, to 28°C at pH 7.5. If our laboratory observations can be extrapolated to complex marine environments, our results suggest that a warming-acidification synergism can decrease carbon and nutrient fluxes, disturbing marine trophic and trace element cycles, at rates faster than projected. PMID:25714090

  3. Similarities in chemical composition of soil organic matter across a millennia-old paddy soil chronosequence as revealed by advanced solid-state NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil organic matter (SOM) accumulation in paddy soils has aroused considerable attention due to its vital significance in global food, energy, climate, and environmental issues. Considerable progress has been made toward the understanding of changes in the quantity of SOM in paddy soils over a mille...

  4. Inventory of released inorganic carbon from organic matter remineralization in the deeper Arabian Sea

    NASA Astrophysics Data System (ADS)

    Hupe, Axel; Thomas, Helmuth; Ittekkot, Venugopalan; Lendt, Ralf

    2001-12-01

    An attempt is made to quantify the biological carbon pump in Arabian Sea subsurface waters by estimating the total concentrations of remineralized dissolved inorganic carbon (DICrem) and its water column inventory. The influence of different sets of -ΔO2/ΔCorg ratios, which are either constant or variable with depth, on the estimate is assessed. Throughout the water column the horizontally mapped DICrem concentrations increase northward due to enlarged export fluxes of organic matter and subsequently enhanced remineralization processes as well as to the accumulation of remineralization products along the trajectory path of the water masses ventilating the Arabian Sea from the southern Indian Ocean. The choice of the remineralization ratios generates significant differences in the DICrem concentrations at specific depth horizons. The DICrem inventory of the Arabian Sea between 500 and 4500 m in the years 1995-1997 amounts to ˜39-44 Gt C depending on the applied remineralization ratios.

  5. Sources and accumulation of organic carbon in the Pearl River Estuary surface sediment as indicated by elemental, stable carbon isotopic, and carbohydrate compositions

    NASA Astrophysics Data System (ADS)

    He, B.; Dai, M.; Huang, W.; Liu, Q.; Chen, H.; Xu, L.

    2010-10-01

    Organic matter in surface sediments from the upper reach of the Pearl River Estuary and Lingdingyang Bay, as well as the adjacent northern South China Sea shelf was characterized using a variety of techniques, including elemental (C and N) ratio, bulk stable organic carbon isotopic composition (δ13C), and carbohydrate composition analyses. Total organic carbon (TOC) content was 1.21±0.45% in the upper reach, down to 1.00±0.22% in Lingdingyang Bay and to 0.80±0.10% on the inner shelf and 0.58±0.06% on the outer shelf. δ13C values ranged from -25.1‰ to -21.3‰ in Lingdingyang Bay and the South China Sea shelf, with a trend of enrichment seawards. The spatial trend in C/N ratios mirrored that of δ13C, with a substantial decrease in C/N ratio offshore. Total carbohydrate yields ranged from 22.1 to 26.7 mg (100 mg OC)-1, and typically followed TOC concentrations in the estuarine and shelf sediments. Total neutral sugars, as detected by the nine major monosaccharides (lyxose, rhamnose, ribose, arabinose, fucose, xylose, galactose, mannose, and glucose), were between 4.0 and 18.6 mg (100 mg OC)-1 in the same sediments, suggesting that significant amounts of carbohydrates were not neutral aldoses. Using a two end-member mixing model based on δ13C values and C/N ratios, we estimated that the terrestrial organic carbon contribution to the surface sediment TOC was ca. 78±11% for Lingdingyang Bay, 34±4% for the inner shelf, and 5.5±1% for the outer shelf. The molecular composition of the carbohydrate in the surface sediments also suggested that the inner estuary was rich in terrestrially derived carbohydrates but that their contribution decreased offshore. A relatively high abundance of deoxyhexoses in the estuary and shelf indicated a considerable bacterial source of these carbohydrates, implying that sediment organic matter had undergone extensive degradation and/or transformation during transport. Sediment budget based on calculated regional accumulation rates

  6. Organic Matter Development and Turnover depending on Mineral Composition in an Artificial Soil Incubation Experiment

    NASA Astrophysics Data System (ADS)

    Pronk, G. J.; Heister, K.; Kogel-Knabner, I.

    2012-12-01

    Recent research indicates that minerals play an important role in the formation and stabilization of soil organic matter (SOM). However, it is difficult to determine the effect of mineral composition on SOM development in natural soils where mineral composition is usually not well defined and initial conditions are generally unknown. Therefore, we performed an incubation experiment with so-called "artificial soils" composed of mixtures of clean and well-defined model materials where the development of organic matter could be followed from known initial conditions. The artificial soils were composed of 8 different mixtures of quartz, illite, montmorillonite, ferrihydrite, boehmite and charcoal, manure as carbon substrate and a microbial inoculum extracted from a natural arable soil. These mixtures were incubated in the dark and sampled 4 times over a total incubation time of 18 months. The organic matter (OM) turnover during incubation was followed by measuring CO2 respiration and C and N contents and distribution over particle size fractions with time. Solid-state 13C nuclear magnetic resonance (NMR) spectroscopy and acid hydrolysis were used to determine the development of OM composition. The artificial soil mixtures developed quickly into complex, aggregated, soil-like materials. CO2 respiration was the same for all artificial soil compositions, indicating that microbial degradation was probably limited by nutrient or substrate availability. With increasing incubation time, nitrogen-rich, proteinaceous material, became enriched in the smallest particle size fraction, indicating the accumulation of microbial debris. There was some difference in the distribution of hydrolysable and non-hydrolysable N and organic carbon after 3 months of incubation depending on the type of clay mineral and charcoal presence. However, the artificial soils developed towards more similar systems with increasing incubation time. The artificial soil incubation experiment provided a

  7. Response of Dissolved Organic Matter to Warming and Nitrogen Addition

    NASA Astrophysics Data System (ADS)

    Choi, J. H.; Nguyen, H.

    2014-12-01

    Dissolved Organic Matter (DOM) is a ubiquitous mixture of soluble organic components. Since DOM is produced from the terrestrial leachate of various soil types, soil may influence the chemistry and biology of freshwater through the input of leachate and run-off. The increased temperature by climate change could dramatically change the DOM characteristics of soils through enhanced decomposition rate and losses of carbon from soil organic matter. In addition, the increase in the N-deposition affects DOM leaching from soils by changing the carbon cycling and decomposition rate of soil decay. In this study, we conducted growth chamber experiments using two types of soil (wetland and forest) under the conditions of temperature increase and N-deposition in order to investigate how warming and nitrogen addition influence the characteristics of the DOM leaching from different soil types. This leachate controls the quantity and quality of DOM in surface water systems. After 10 months of incubation, the dissolved organic carbon (DOC) concentrations decreased for almost samples in the range of 7.6 to 87.3% (ANOVA, p<0.05). The specific UV absorption (SUVA) values also decreased for almost samples after the first 3 months and then increased gradually afterward in range of 3.3 to 108.4%. Both time and the interaction between time and the temperature had the statistically significant effects on the SUVA values (MANOVA, p<0.05). Humification index (HIX) showed the significant increase trends during the duration of incubation and temperature for almost the samples (ANOVA, p<0.05). Higher decreases in the DOC values and increases in HIX were observed at higher temperatures, whereas the opposite trend was observed for samples with N-addition. The PARAFAC results showed that three fluorescence components: terrestrial humic (C1), microbial humic-like (C2), and protein-like (C3), constituted the fluorescence matrices of soil samples. During the experiment, labile DOM from the soils was

  8. Distribution and accumulation of hexachlorobutadiene in soils and terrestrial organisms from an agricultural area, East China.

    PubMed

    Tang, Zhenwu; Huang, Qifei; Cheng, Jiali; Qu, Dan; Yang, Yufei; Guo, Wei

    2014-10-01

    Hexachlorobutadiene (HCBD) is a potential persistent organic pollutant that has been found in abiotic environments and organisms. However, information on HCBD in soils and its accumulation in terrestrial food chains is scarce. This study investigated the accumulation of HCBD in soils, plants, and terrestrial fauna in a typical agricultural area in Eastern China, and drew comparisons with organochlorine pesticides (OCPs). The HCBD concentrations in soils were <0.02-3.1ng/g dry weight, which were similar to α-endosulfan concentrations but much lower than the concentrations of some other OCPs. The HCBD soil-plant accumulation factors, 8.5-38.1, were similar to those of o,p'-DDT and higher than those of HCHs and p,p'-DDT, indicating that HCBD is strongly bioaccumulated by rice and vegetables. HCBD concentrations of 1.3-8.2ng/g lipid weight were found in herbivorous insects, earthworms, and Chinese toads. The biomagnification factor, the ratio between the lipid-normalized concentrations in the predator and the prey, was found to be 0.16-0.64 for different food chains of Chinese toads, so HCBD was found not to biomagnify, which is in contrast with OCPs. Further research into whether HCBD is biomagnified in high trophic level organisms or through the entire terrestrial food web is required. PMID:25124679

  9. Dry matter and nitrogen accumulation are not affected by superoptimal concentration of ammonium in flowing solution culture with pH control

    NASA Technical Reports Server (NTRS)

    Rideout, J. W.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1994-01-01

    While it is known that superoptimal concentrations of the nitrate (NO3-) ion in solution culture do not increase NO3- uptake or dry matter accumulation, the same is not known for the ammonium (NH4+) ion. An experiment was conducted utilizing flowing solution culture with pH control to investigate the influence of superoptimal NH4+ concentrations on dry matter, nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) accumulation by nonnodulated soybean plants. Increasing the NH4+ concentration in solution from 1 to 10 mM did not affect dry matter or N accumulation. Accumulations of K, Ca, and Mg were slightly decreased with increased NH4+ concentration. The NH4+ uptake system, which is saturated at less than 1mM NH4+, is able to regulate uptake of NH4+ at concentrations as high as 10 mM.

  10. Lack of enhanced preservation of organic matter in sediments under the oxygen minimum on the Oman Margin

    SciTech Connect

    Pedersen, T.F. ); Shimmield, G.B.; Price, N.B. )

    1992-01-01

    The impingement of oxygen minima on continental margins is widely thought to promote the accumulation of sedimentary facies enriched in well-preserved organic matter. It is shown here, however, that such a relationship does not clearly apply to the productive Oman Margin in the Arabian Sea, which hosts one of the most severe oxygen minima in the oceans. Measurements made on the 0-1 cm depth interval from fourteen box cores collected from the outer shelf-upper continental slope area off Oman show that (1) deposited organic matter is overwhelmingly of marine origin, (2) there is no significant correlation between the abundance of sedimentary organic carbon (C{sub org}) and the bottom-water O{sub 2} concentration, (3) there is no relation between the sedimentary C{sub org}:N ratio and bottom-water O{sub 2}, and (4) there is no correlation between the hydrogen index (HI) of the organic matter and bottom water oxygen. There are, however, significant correlations between the C{sub org}:N ratio and the I:C{sub org}, Cr:Al, and Zr:Al ratios, as well as between the C{sub org}:N ratio and the hydrogen index. Overall, these data suggest that the bottom water oxygen concentration has little effect in governing either the distribution of the degree of preservation of organic matter on this margin. Thus, the generally high but spatially variable C{sub org} content of the sediments on the Oman Margin may not reflect the occurrence of an oxygen minimum but instead be the result of a high settling flux of organic matter, supported by monsoon-driven upwelling, and post-depositional redistribution of the organic material by hydrodynamic influences.

  11. Geochemical drivers of organic matter decomposition in Arctic tundra soils

    SciTech Connect

    Herndon, Elizabeth M.; Yang, Ziming; Graham, David E.; Wullschleger, Stan D.; Gu, Baohua; Liang, Liyuan; Bargar, John; Janot, Noemie; Regier, Tom Z.

    2015-12-07

    Climate change is warming tundra ecosystems in the Arctic, resulting in the decomposition of previously-frozen soil organic matter (SOM) and release of carbon (C) to the atmosphere; however, the processes that control SOM decomposition and C emissions remain highly uncertain. In this study, we evaluate geochemical factors that influence anaerobic production of carbon dioxide (CO2) and methane (CH4) in the active layers of four ice-wedge polygons. Surface and soil pore waters were collected during the annual thaw season over a two-year period in an area containing waterlogged, low-centered polygons and well-drained, high-centered polygons. We report spatial and seasonal patterns of dissolved gases in relation to the geochemical properties of Fe and organic C as determined using spectroscopic and chromatographic techniques. Iron was present as Fe(II) in soil solution near the permafrost boundary but enriched as Fe(III) in the middle of the active layer, similar to dissolved aromatic-C and organic acids. Dissolved CH4 increased relative to dissolved CO2 with depth and varied with soil moisture in the middle of the active layer in patterns that were positively correlated with the proportion of dissolved Fe(III) in transitional and low-centered polygon soils but negatively correlated in the drier flat- and high-centered polygons. These results suggest that microbial-mediated Fe oxidation and reduction influence respiration/fermentation of SOM and production of substrates (e.g., low-molecular-weight organic acids) for methanogenesis. As a result, we infer that geochemical differences induced by water saturation dictate microbial products of SOM decomposition, and Fe geochemistry is an important factor regulating methanogenesis in anoxic tundra soils.

  12. Geochemical drivers of organic matter decomposition in Arctic tundra soils

    DOE PAGES

    Herndon, Elizabeth M.; Yang, Ziming; Graham, David E.; Wullschleger, Stan D.; Gu, Baohua; Liang, Liyuan; Bargar, John; Janot, Noemie; Regier, Tom Z.

    2015-12-07

    Climate change is warming tundra ecosystems in the Arctic, resulting in the decomposition of previously-frozen soil organic matter (SOM) and release of carbon (C) to the atmosphere; however, the processes that control SOM decomposition and C emissions remain highly uncertain. In this study, we evaluate geochemical factors that influence anaerobic production of carbon dioxide (CO2) and methane (CH4) in the active layers of four ice-wedge polygons. Surface and soil pore waters were collected during the annual thaw season over a two-year period in an area containing waterlogged, low-centered polygons and well-drained, high-centered polygons. We report spatial and seasonal patterns ofmore » dissolved gases in relation to the geochemical properties of Fe and organic C as determined using spectroscopic and chromatographic techniques. Iron was present as Fe(II) in soil solution near the permafrost boundary but enriched as Fe(III) in the middle of the active layer, similar to dissolved aromatic-C and organic acids. Dissolved CH4 increased relative to dissolved CO2 with depth and varied with soil moisture in the middle of the active layer in patterns that were positively correlated with the proportion of dissolved Fe(III) in transitional and low-centered polygon soils but negatively correlated in the drier flat- and high-centered polygons. These results suggest that microbial-mediated Fe oxidation and reduction influence respiration/fermentation of SOM and production of substrates (e.g., low-molecular-weight organic acids) for methanogenesis. As a result, we infer that geochemical differences induced by water saturation dictate microbial products of SOM decomposition, and Fe geochemistry is an important factor regulating methanogenesis in anoxic tundra soils.« less

  13. Deposition and accumulation of airborne organic contaminants in Yosemite National Park, Calfornia

    USGS Publications Warehouse

    Mast, Alisa M.; Alvarez, David A.; Zaugg, Steven D.

    2012-01-01

    Deposition and accumulation of airborne organic contaminants in Yosemite National Park were examined by sampling atmospheric deposition, lichen, zooplankton, and lake sediment at different elevations. Passive samplers were deployed in high-elevation lakes to estimate surface-water concentrations. Detected compounds included current-use pesticides chlorpyrifos, dacthal, and endosulfans and legacy compounds chlordane, dichlorodiphenyltrichloroethane-related compounds, dieldrin, hexachlorobenzene, and polychlorinated biphenyls. Concentrations in snow were similar among sites and showed little variation with elevation. Endosulfan concentrations in summer rain appeared to coincide with application rates in the San Joaquin Valley. More than 70% of annual pesticide inputs from atmospheric deposition occurred during the winter, largely because most precipitation falls as snow. Endosulfan and chlordane concentrations in lichen increased with elevation, indicating that mountain cold-trapping might be an important control on accumulation of these compounds. By contrast, chlorpyrifos concentrations were inversely correlated with elevation, indicating that distance from source areas was the dominant control. Sediment concentrations were inversely correlated with elevation, possibly because of the organic carbon content of sediments but also perhaps the greater mobility of organic contaminants at lower elevations. Surface-water concentrations inferred from passive samplers were at sub-parts-per-trillion concentrations, indicating minimal exposure to aquatic organisms from the water column. Concentrations in sediment generally were low, except for dichlorodiphenyldichloroethane in Tenaya Lake, which exceeded sediment guidelines for protection of benthic organisms.

  14. Deposition and accumulation of airborne organic contaminants in Yosemite National Park, California.

    PubMed

    Mast, M Alisa; Alvarez, David A; Zaugg, Steven D

    2012-03-01

    Deposition and accumulation of airborne organic contaminants in Yosemite National Park were examined by sampling atmospheric deposition, lichen, zooplankton, and lake sediment at different elevations. Passive samplers were deployed in high-elevation lakes to estimate surface-water concentrations. Detected compounds included current-use pesticides chlorpyrifos, dacthal, and endosulfans and legacy compounds chlordane, dichlorodiphenyltrichloroethane-related compounds, dieldrin, hexachlorobenzene, and polychlorinated biphenyls. Concentrations in snow were similar among sites and showed little variation with elevation. Endosulfan concentrations in summer rain appeared to coincide with application rates in the San Joaquin Valley. More than 70% of annual pesticide inputs from atmospheric deposition occurred during the winter, largely because most precipitation falls as snow. Endosulfan and chlordane concentrations in lichen increased with elevation, indicating that mountain cold-trapping might be an important control on accumulation of these compounds. By contrast, chlorpyrifos concentrations were inversely correlated with elevation, indicating that distance from source areas was the dominant control. Sediment concentrations were inversely correlated with elevation, possibly because of the organic carbon content of sediments but also perhaps the greater mobility of organic contaminants at lower elevations. Surface-water concentrations inferred from passive samplers were at sub-parts-per-trillion concentrations, indicating minimal exposure to aquatic organisms from the water column. Concentrations in sediment generally were low, except for dichlorodiphenyldichloroethane in Tenaya Lake, which exceeded sediment guidelines for protection of benthic organisms.

  15. Does plant colour matter? Wax accumulation as an indicator of decline in Juniperus thurifera.

    PubMed

    Esteban, R; Fernández-Marín, B; Olano, J M; Becerril, J M; García-Plazaola, J I

    2014-03-01

    The photosynthesis in evergreen trees living in Mediterranean ecosystems is subjected to multiple climatic stresses due to water shortage and high temperatures during the summer and to low temperatures during the winter. Mediterranean perennials deploy different photoprotective mechanisms to prevent damage to the photosynthetic system. Wax accumulation in leaves is a primary response which by enhancing light scattering in the leaf surface reduces incident radiation in the mesophyll. The existence of high variability in wax accumulation levels between coexisting individuals of a species has a visual effect on colour that provides distinguishable green and glaucous phenotypes. We explored this variability in a Mediterranean evergreen tree Juniperus thurifera (L.) to evaluate the impact of epicuticular wax on optical and ecophysiological properties and on the abundance of photoprotective pigments throughout an annual cycle. Because of light attenuation by waxes, we expected that glaucous phenotypes would lower the need for photoprotective pigments. We evaluated the effect of phenotype and season on reflectance, defoliation levels, photochemical efficiency and photoprotective pigment contents in 20 green and 20 glaucous junipers. Contrary to our expectations, the results showed that glaucous trees suffered from a diminution in photochemical efficiency, but there was no reduction in photoprotective pigments. Differences between glaucous and green phenotypes were greater in winter, which is the most stressful season for this species. Glaucous individuals also showed the highest levels of leaf defoliation. The lower photochemical efficiency of glaucous trees, together with higher defoliation rates and equal or greater number of physiological photoprotective mechanisms, suggests that in spite of wax accumulation, glaucous trees suffer from more severe stress than green ones. This result suggests that changes in colouration in Mediterranean evergreens may be a decline

  16. Does plant colour matter? Wax accumulation as an indicator of decline in Juniperus thurifera.

    PubMed

    Esteban, R; Fernández-Marín, B; Olano, J M; Becerril, J M; García-Plazaola, J I

    2014-03-01

    The photosynthesis in evergreen trees living in Mediterranean ecosystems is subjected to multiple climatic stresses due to water shortage and high temperatures during the summer and to low temperatures during the winter. Mediterranean perennials deploy different photoprotective mechanisms to prevent damage to the photosynthetic system. Wax accumulation in leaves is a primary response which by enhancing light scattering in the leaf surface reduces incident radiation in the mesophyll. The existence of high variability in wax accumulation levels between coexisting individuals of a species has a visual effect on colour that provides distinguishable green and glaucous phenotypes. We explored this variability in a Mediterranean evergreen tree Juniperus thurifera (L.) to evaluate the impact of epicuticular wax on optical and ecophysiological properties and on the abundance of photoprotective pigments throughout an annual cycle. Because of light attenuation by waxes, we expected that glaucous phenotypes would lower the need for photoprotective pigments. We evaluated the effect of phenotype and season on reflectance, defoliation levels, photochemical efficiency and photoprotective pigment contents in 20 green and 20 glaucous junipers. Contrary to our expectations, the results showed that glaucous trees suffered from a diminution in photochemical efficiency, but there was no reduction in photoprotective pigments. Differences between glaucous and green phenotypes were greater in winter, which is the most stressful season for this species. Glaucous individuals also showed the highest levels of leaf defoliation. The lower photochemical efficiency of glaucous trees, together with higher defoliation rates and equal or greater number of physiological photoprotective mechanisms, suggests that in spite of wax accumulation, glaucous trees suffer from more severe stress than green ones. This result suggests that changes in colouration in Mediterranean evergreens may be a decline

  17. PBDE and PCB accumulation in benthos near marine wastewater outfalls: the role of sediment organic carbon.

    PubMed

    Dinn, Pamela M; Johannessen, Sophia C; Ross, Peter S; Macdonald, Robie W; Whiticar, Michael J; Lowe, Christopher J; van Roodselaar, Albert

    2012-12-01

    Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) were measured in sediments and benthic invertebrates near submarine municipal outfalls in Victoria and Vancouver, B.C., Canada, two areas with contrasting receiving environments. PBDE concentrations in wastewater exceeded those of the legacy PCBs by eight times at Vancouver and 35 times at Victoria. Total PBDE concentrations in benthic invertebrates were higher near Vancouver than Victoria, despite lower concentrations in sediments, and correlated with organic carbon-normalized concentrations in sediment. Principal Components Analysis indicated uptake of individual PBDE congeners was determined by sediment properties (organic carbon, grain size), while PCB congener uptake was governed by physico-chemical properties (octanol-water partitioning coefficient). Results suggest the utility of sediment quality guidelines for PBDEs and likely PCBs benefit if based on organic carbon-normalized concentrations. Also, where enhanced wastewater treatment increases the PBDEs to particulate organic carbon ratio in effluent, nearfield benthic invertebrates may face increased PBDE accumulation.

  18. Adsorption of paraquat on soil organic matter: effect of exchangeable cations and dissolved organic carbon.

    PubMed

    Gondar, Dora; López, Rocío; Antelo, Juan; Fiol, Sarah; Arce, Florencio

    2012-10-15

    Herbicides that interact with soil organic matter do so with both the solid and the dissolved fractions, so that the distribution of herbicide between the soil solution and solid phases is determined by competitive effects. In the present study, adsorption experiments were carried out with the cationic herbicide paraquat and untreated and acid-washed samples of a peat soil, at different values of pH and ionic strength. Less herbicide was adsorbed onto the untreated peat than onto the acid-washed peat; the difference was due to the presence of exchangeable cations, as demonstrated in experiments carried out by adding Ca(2+) to suspensions of acid-washed peat. The results were interpreted by an electrostatic model and the fitting parameters indicated that the adsorption constants were the same for both samples of peat, although the number of binding sites available was different. Simultaneous resolution of the adsorption equilibrium of paraquat for the soil organic matter (SOM) and of the binding equilibrium between paraquat and dissolved organic matter (DOM) enabled the distribution of paraquat between the solid and solution phases to be determined. The increased solubility of the SOM with increasing pH led to a decrease in the fraction of paraquat retained on the peat surface above pH 5.5, which favors the mobility of the herbicide in the soil.

  19. Partition of nonpolar organic pollutants from water to soil and sediment organic matters

    USGS Publications Warehouse

    Chiou, C.T.

    1995-01-01

    The partition coefficients (Koc) of carbon tetrachloride and 1,2-dichlorobenzene between normal soil/sediment organic matter and water have been determined for a large set of soils, bed sediments, and suspended solids from the United States and the People's Republic of China. The Koc values for both solutes are quite invariant either for the soils or for the bed sediments; the values on bed sediments are about twice those on soils. The similarity of Koc values between normal soils and between normal bed sediments suggests that natural organic matters in soils (or sediments) of different geographic origins exhibit comparable polarities and possibly comparable compositions. The results also suggest that the process that converts eroded soils into bed sediments brings about a change in the organic matter property. The difference between soil and sediment Koc values provides a basis for identifying the source of suspended solids in river waters. The very high Koc values observed for some special soils and sediments are diagnostic of severe anthropogenic contamination.

  20. Composition and sources of sedimentary organic matter in the deep Eastern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Pedrosa-Pàmies, R.; Parinos, C.; Sanchez-Vidal, A.; Gogou, A.; Calafat, A.; Canals, M.; Bouloubassi, I.; Lampadariou, N.

    2015-07-01

    Surface sediments collected from deep slopes and basins (1018-4087 m depth) of the oligotrophic Eastern Mediterranean Sea have been analysed for bulk elemental and isotopic composition of organic carbon, total nitrogen and selected lipid biomarkers, jointly with grain size distribution and other geochemical proxies. The distribution and sources of sedimentary organic matter (OM) have been subsequently assessed and general environmental variables, such as water depth and currents, have been examined as causative factors of deep-sea sediment characteristics. Lithogenic and biogenic carbonates are the dominant sedimentary fractions, while both bulk and molecular organic tracers reflect a mixed contribution from autochthonous and allochthonous sources for the sedimentary OM, as indicated by relatively degraded marine OM, terrestrial plant waxes and anthropogenic OM including degraded petroleum by-products, respectively. Wide regional variations have been observed amongst the studied proxies, which reflect the multiple factors controlling sedimentation in the deep Eastern Mediterranean Sea. Our findings highlight the role of deep Eastern Mediterranean basins as depocentres of organic-rich fine-grained sediments (mean 5.4 ± 2.4 μm), with OM accumulation and burial due to aggregation mechanisms and hydrodynamic sorting. A multi-proxy approach is hired to investigate the biogeochemical composition of sediment samples, which sheds new light on the sources and transport mechanisms along with the impact of preservation vs. diagenetic processes on the composition of sedimentary OM in the deep basins of the oligotrophic Eastern Mediterranean Sea.

  1. Molecular-level dynamics of refractory dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Niggemann, J.; Gerdts, G.; Dittmar, T.

    2012-04-01

    Refractory dissolved organic matter (DOM) accounts for most of the global oceanic organic carbon inventory. Processes leading to its formation and factors determining its stability are still largely unknown. We hypothesize that refractory DOM carries a universal molecular signature. Characterizing spatial and temporal variability in this universal signature is a key to understanding dynamics of refractory DOM. We present results from a long-term study of the DOM geo-metabolome in the open North Sea. Geo-metabolomics considers the entity of DOM as a population of compounds, each characterized by a specific function and reactivity in the cycling of energy and elements. Ten-thousands of molecular formulae were identified in DOM by ultrahigh resolution mass spectrometry analysis (FT-ICR-MS, Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry). The DOM pool in the North Sea was influenced by a complex interplay of processes that produced, transformed and degraded dissolved molecules. We identified a stable fraction in North Sea DOM with a molecular composition similar to deep ocean DOM. Molecular-level changes in this stable fraction provide novel information on dynamics and interactions of refractory DOM.

  2. Removal of bromide and natural organic matter by anion exchange.

    PubMed

    Hsu, Susan; Singer, Philip C

    2010-04-01

    Bromide removal by anion exchange was explored for various water qualities, process configurations, and resin characteristics. Simulated natural waters containing different amounts of natural organic matter (NOM), bicarbonate, chloride, and bromide were treated with a polyacrylate-based magnetic ion exchange (MIEX) resin on a batch basis to evaluate the effectiveness of the resin for removal of bromide. While bromide removal was achieved to some degree, alkalinity (bicarbonate), dissolved organic carbon (DOC), and chloride were shown to inhibit bromide removal in waters with bromide concentrations of 100 and 300 microg/L. Water was also treated using a two-stage batch MIEX process. Two-stage treatment resulted in only a slight improvement in bromide removal compared to single-stage treatment, presumably due to competition with the high concentration of chloride which is present along with bromide in natural waters. In view of the relatively poor bromide removal results for the MIEX resin, a limited set of experiments was performed using polystyrene resins. DOC and bromide removal were compared by treating model waters with MIEX and two polystyrene resins, Ionac A-641 and Amberlite IRA910. The two polystyrene resins were seen to be more effective for bromide removal, while the MIEX resin was more effective at removing DOC.

  3. Precipitates in landfill leachate mediated by dissolved organic matters.

    PubMed

    Li, Zhenze; Xue, Qiang; Liu, Lei; Li, Jiangshan

    2015-04-28

    Clogging of landfill leachate collection system is so ubiquitous that it causes problems to landfills. Although precipitations of calcite and other minerals have been widely observed, the mechanism of precipitation remains obscure. We examined the clog composition, dissolved organic matters, leachate chemical compositions and the correlation of these variables in view of the precipitation process. It is shown that Dissolved Organic Carbon (DOC) inhibits precipitation of landfill leachate. Using the advanced NICA-Donnan model, the analysis of aqueous chemical reactions between Mg-Ca-DOC-CO2 suggests a good agreement with experimental observations. Calcite and dolomite are both found to be oversaturated in most of the landfill leachate samples. DOC is found to preferentially bind with Mg than Ca, leading to more likely precipitation of Calcite than dolomite from landfill leachate. The NICA-Donnan model gives a reasonable estimation of dolomite saturation index in a wide range of DOC. Modeling confirms the major precipitation mechanism in terms of alkaline earth metal carbonate. Uncertainties in model parameters are discussed with particular focus on DOC composition, functional group types and density concentration and the influential factors. PMID:25661175

  4. Transformation of organic matters in animal wastes during composting.

    PubMed

    Wang, Ke; He, Chao; You, Shijie; Liu, Weijie; Wang, Wei; Zhang, Ruijun; Qi, Huanhuan; Ren, Nanqi

    2015-12-30

    The transformation of organic matters in swine, cow and chicken manures was compared and evaluated using elemental analysis, FTIR, (13)C NMR, pyrolysis/GC/MS, Biolog and multiple fluorochrome over 60 days composting. The results revealed that cow manure exhibited the greatest C/N and aromaticity, whereas chicken manure exhibited the highest nitrogen and sulfur contents. O-alkyl-C was predominant carbon structure in the three manures. Alkyl-C and carboxyl-C were decomposed dramatically in initial 10 days, and mineralization of O-alkyl-C dominated the curing stage. During pyrolysis of chicken, cow, and swine manures, the majority products were fatty acids, phenols and cholestene derivatives, respectively, however, phenols and cholestene derivatives were strongly reduced in the mature manures. Furthermore, microorganisms in the raw cow, chicken and swine manure demonstrated the highest degradation capabilities for carbohydrates, lipids and amino acids, respectively. Spatial differences in the contents of solid organics in the manure particles were negligible through detection by multiple staining methods during composting.

  5. Effects of pressure on thermal evolution of organic matter

    SciTech Connect

    Goffe, B.; Domine, F. )

    1989-09-01

    In the internal metamorphic zones of the French Alps, organic matter-bearing terrestrial sediments of Dogger age underwent an Eocene high-pressure metamorphic event (607 kbar at 300{degree}-330{degree}C). These metasediments now contain, trapped in metamorphic minerals, low evolved kerogen (small extent of molecular orientation), heavy hydrocarbon compounds (aromatic and aliphatic up to C{sup 30} with traces of pristane and phytane molecules), and gases with low C{sup 1}/C{sup 2}-C{sup 6} ratios. However, the degree of organic maturation (equivalent to catagenesis) is much less than that predicted by classical models. This field example indicates that the oil window opens with increasing pressure. Experimental pyrolysis of supercritical hexane performed in a closed, constant-pressure gold reactor at 210-15,600 bars pressure range and 290{degree}-365{degree}C, clearly demonstrates the important influence of pressure on the product distribution of hexane pyrolysis: as pressure is increased, relative light product yields decrease and heavy products increase. This can be interpreted mainly by considering the activation volumes of the reactions involved. In conclusion, the experimental and natural examples presented here indicate that the rate of thermal maturation decreases with pressure.

  6. Transformation of organic matters in animal wastes during composting.

    PubMed

    Wang, Ke; He, Chao; You, Shijie; Liu, Weijie; Wang, Wei; Zhang, Ruijun; Qi, Huanhuan; Ren, Nanqi

    2015-12-30

    The transformation of organic matters in swine, cow and chicken manures was compared and evaluated using elemental analysis, FTIR, (13)C NMR, pyrolysis/GC/MS, Biolog and multiple fluorochrome over 60 days composting. The results revealed that cow manure exhibited the greatest C/N and aromaticity, whereas chicken manure exhibited the highest nitrogen and sulfur contents. O-alkyl-C was predominant carbon structure in the three manures. Alkyl-C and carboxyl-C were decomposed dramatically in initial 10 days, and mineralization of O-alkyl-C dominated the curing stage. During pyrolysis of chicken, cow, and swine manures, the majority products were fatty acids, phenols and cholestene derivatives, respectively, however, phenols and cholestene derivatives were strongly reduced in the mature manures. Furthermore, microorganisms in the raw cow, chicken and swine manure demonstrated the highest degradation capabilities for carbohydrates, lipids and amino acids, respectively. Spatial differences in the contents of solid organics in the manure particles were negligible through detection by multiple staining methods during composting. PMID:26311195

  7. Chromophoric dissolved organic matter export from U.S. rivers

    NASA Astrophysics Data System (ADS)

    Spencer, Robert G. M.; Aiken, George R.; Dornblaser, Mark M.; Butler, Kenna D.; Holmes, R. Max; Fiske, Greg; Mann, Paul J.; Stubbins, Aron

    2013-04-01

    Chromophoric dissolved organic matter (CDOM) fluxes and yields from 15 major U.S. rivers draining an assortment of terrestrial biomes are presented. A robust relationship between CDOM and dissolved organic carbon (DOC) loads is established (e.g., a350 versus DOC; r2 = 0.96, p < 0.001). Calculated CDOM yields are also correlated to watershed percent wetland (e.g. a350; r2 = 0.81, p < 0.001) providing a method for the estimation of CDOM export from ungauged watersheds. A large variation in CDOM yields was found across the rivers. The two rivers in the north-eastern U.S. (Androscoggin and Penobscot), the Edisto draining into the South Atlantic Bight, and some rivers draining into the Gulf of Mexico (Atchafalaya and Mobile) exhibit the highest CDOM yields, linked to extensive wetlands in these watersheds. If the Edisto CDOM yield is representative of other rivers draining into the South Atlantic Bight, this would result in a CDOM load equivalent to that of the Mississippi from a region of approximately 10% of the Mississippi watershed, indicating the importance of certain regions with respect to the role of terrigenous CDOM in ocean color budgets.

  8. Chromophoric Dissolved Organic Matter Export from U.S. Rivers

    NASA Astrophysics Data System (ADS)

    Spencer, R. G.; Aiken, G.; Dornblaser, M.; Butler, K. D.; Holmes, R. M.; Fiske, G.; Mann, P. J.; Stubbins, A.

    2012-12-01

    Chromophoric dissolved organic matter (CDOM) fluxes and yields from 15 major U.S. rivers draining an assortment of terrestrial biomes are presented. Utilizing CDOM and dissolved organic carbon (DOC) flux data we establish a robust universal relationship between CDOM and DOC loads. The application of this relationship allows future studies to derive DOC loads from CDOM utilizing emerging in-situ or remote sensing technologies and thus refine river-to-ocean DOC fluxes, as well as exploit historic imagery to examine how fluxes may have changed. Calculated CDOM yields from the 15 U.S. rivers highlight the importance of certain regions with respect to CDOM flux to the coastal ocean. This approach indicates that future studies might predict CDOM and DOC yields for different watershed types that could then be readily converted to loads providing for the estimation of CDOM and DOC export from ungauged watersheds. Examination of CDOM yields also highlights important geographical regions for future study with respect to the role of terrigenous CDOM in ocean color budgets and CDOM's role in biogeochemical processes.

  9. Toward an experimental synthesis of the chondritic insoluble organic matter

    NASA Astrophysics Data System (ADS)

    Biron, Kasia; Derenne, Sylvie; Robert, FrançOis; Rouzaud, Jean-NoëL.

    2015-08-01

    Based on the statistical model proposed for the molecular structure of the insoluble organic matter (IOM) isolated from the Murchison meteorite, it was recently proposed that, in the solar T-Tauri disk regions where (photo)dissociation of gaseous molecules takes place, aromatics result from the cyclization/aromatization of short aliphatics. This hypothesis is tested in this study, with n-alkanes being submitted to high-frequency discharge at low pressure. The contamination issue was eliminated using deuterated precursor. IOM was formed and studied using solid-state nuclear magnetic resonance, pyrolysis coupled to gas chromatography and mass spectrometry, RuO4 oxidation, and high-resolution transmission electron microscopy. It exhibits numerous similarities at the molecular level with the hydrocarbon backbone of the natural IOM, reinforcing the idea that the initial precursors of the IOM were originally chains in the gas. Moreover, a fine comparison between the chemical structure of several meteorite IOM suggests either that (i) the meteorite IOMs share a common precursor standing for the synthetic IOM or that (ii) the slight differences between the meteorite IOMs reflect differences in their environment at the time of their formation i.e., related to plasma temperature that, in turn, dictates the dissociation-recombination rates of organic fragments.

  10. Precipitates in landfill leachate mediated by dissolved organic matters.

    PubMed

    Li, Zhenze; Xue, Qiang; Liu, Lei; Li, Jiangshan

    2015-04-28

    Clogging of landfill leachate collection system is so ubiquitous that it causes problems to landfills. Although precipitations of calcite and other minerals have been widely observed, the mechanism of precipitation remains obscure. We examined the clog composition, dissolved organic matters, leachate chemical compositions and the correlation of these variables in view of the precipitation process. It is shown that Dissolved Organic Carbon (DOC) inhibits precipitation of landfill leachate. Using the advanced NICA-Donnan model, the analysis of aqueous chemical reactions between Mg-Ca-DOC-CO2 suggests a good agreement with experimental observations. Calcite and dolomite are both found to be oversaturated in most of the landfill leachate samples. DOC is found to preferentially bind with Mg than Ca, leading to more likely precipitation of Calcite than dolomite from landfill leachate. The NICA-Donnan model gives a reasonable estimation of dolomite saturation index in a wide range of DOC. Modeling confirms the major precipitation mechanism in terms of alkaline earth metal carbonate. Uncertainties in model parameters are discussed with particular focus on DOC composition, functional group types and density concentration and the influential factors.

  11. Global effects of agriculture on fluvial dissolved organic matter.

    PubMed

    Graeber, Daniel; Boëchat, Iola G; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T; Silva, Ricky C S; von Schiller, Daniel; Zwirnmann, Elke

    2015-11-06

    Agricultural land covers approximately 40% of Earth's land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing.

  12. Mineral surface-organic matter interactions: basics and applications

    NASA Astrophysics Data System (ADS)

    Valdrè, G.; Moro, D.; Ulian, G.

    2012-03-01

    The ability to control the binding of biological and organic molecules to a crystal surface is central in several fields; for example, in biotechnology, catalysis, molecular microarrays, biosensors preparation and environmental sciences. The nano-morphology and nanostructure at the surface may have physico-chemical properties that are very different from those of the underlying mineral substrate. Recent developments in scanning probe microscopy (SPM) have widened the spectrum of possible investigations that can be performed at the nanometric level on the surface of minerals. They range from the study of physical properties such as surface potential, electric field topological determination, Brønsted-Lowry site distributions, to chemical and spectroscopic analysis in air, in liquid or in gaseous environments. After an introduction to SPM modes of operation and new SPM-based technological developments, we will present recent examples of applications in the study of interactions between organic matter and mineral surface and report on the advances in knowledge that have been made by the use of scanning probe microscopy.

  13. Role of dissolved organic matter in ice photochemistry.

    PubMed

    Grannas, Amanda M; Pagano, Lisa P; Pierce, Brittany C; Bobby, Rachel; Fede, Alexis

    2014-09-16

    In this study, we provide evidence that dissolved organic matter (DOM) plays an important role in indirect photolysis processes in ice, producing reactive oxygen species (ROS) and leading to the efficient photodegradation of a probe hydrophobic organic pollutant, aldrin. Rates of DOM-mediated aldrin loss are between 2 and 56 times faster in ice than in liquid water (depending on DOM source and concentration), likely due to a freeze-concentration effect that occurs when the water freezes, providing a mechanism to concentrate reactive components into smaller, liquid-like regions within or on the ice. Rates of DOM-mediated aldrin loss are also temperature dependent, with higher rates of loss as temperature decreases. This also illustrates the importance of the freeze-concentration effect in altering reaction kinetics for processes occurring in environmental ices. All DOM source types studied were able to mediate aldrin loss, including commercially available fulvic and humic acids and an authentic Arctic snow DOM sample isolated by solid phase extraction, indicating the ubiquity of DOM in indirect photochemistry in environmental ices. PMID:25157605

  14. Role of dissolved organic matter in ice photochemistry.

    PubMed

    Grannas, Amanda M; Pagano, Lisa P; Pierce, Brittany C; Bobby, Rachel; Fede, Alexis

    2014-09-16

    In this study, we provide evidence that dissolved organic matter (DOM) plays an important role in indirect photolysis processes in ice, producing reactive oxygen species (ROS) and leading to the efficient photodegradation of a probe hydrophobic organic pollutant, aldrin. Rates of DOM-mediated aldrin loss are between 2 and 56 times faster in ice than in liquid water (depending on DOM source and concentration), likely due to a freeze-concentration effect that occurs when the water freezes, providing a mechanism to concentrate reactive components into smaller, liquid-like regions within or on the ice. Rates of DOM-mediated aldrin loss are also temperature dependent, with higher rates of loss as temperature decreases. This also illustrates the importance of the freeze-concentration effect in altering reaction kinetics for processes occurring in environmental ices. All DOM source types studied were able to mediate aldrin loss, including commercially available fulvic and humic acids and an authentic Arctic snow DOM sample isolated by solid phase extraction, indicating the ubiquity of DOM in indirect photochemistry in environmental ices.

  15. Global effects of agriculture on fluvial dissolved organic matter

    PubMed Central

    Graeber, Daniel; Boëchat, Iola G.; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T.; Silva, Ricky C. S.; von Schiller, Daniel; Zwirnmann, Elke

    2015-01-01

    Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing. PMID:26541809

  16. Organic matter in the ancient Alpine Tethyan Ocean Continental Transition

    NASA Astrophysics Data System (ADS)

    Mateeva, Tsvetomila; Wolff, George; Kusznir, Nick; Wheeler, John; Manataschal, Gianreto

    2016-04-01

    Studies of hydrothermal vents in modern ocean settings suggest that methane produced by serpentinization can support methanotrophic bio-systems. Are such bio-systems locally restricted to hydrothermal vents or are more pervasive, being linked with the geology of serpentinized mantle in the subsurface? Answering this question has implications for our understanding of the global importance of hidden sub-surface bio-systems, the fate of methane and the carbon cycle. The ocean-continent transition (OCT) of magma-poor rifted continental margins, exhumed within mountain belts by continent collision, provides an opportunity to investigate this question. Initial data from the Totalp unit in the Eastern Swiss Alps, representing exhumed OCT of the Alpine Tethyan rifted continental margin, shows the presence of various hydrocarbons (Mateeva et al., in prep.). Samples from other Tethyan OCT locations, consisting of the Tasna nappe and Platta unit of the Eastern Swiss Alps and Chenaillet in the Western Alps, have also been analysed to investigate the presence or absence of methanotrophic biosystems within serpentinized exhumed mantle and associated ophicalcite and syn-rift sediments. Samples from these remnant Tethyan OCT locations are characterized by low and varied organic carbon concentrations that reflect the large lithological diversity of this area. The samples contain hydrocarbons in the form of n-alkanes mostly in the range C20 - C32, polynuclear aromatic hydrocarbons (PAHs) and various biomarkers (e.g. steranes, hopanes). A typical sample from the hydrothermal system in Platta shows the lithological characteristics of a black smoker, but with no indication of a more developed biosystem. Preliminary results from the examined Tethyan OCT locations (Tasna, Platta, Chenaillet) show evidence for the preservation of marine organic matter in the serpentinized mantle and overlying sediments, although there is no unequivocal indication that the organic matter is generated from

  17. Surface-charge accumulation effects on open-circuit voltage in organic solar cells based on photoinduced impedance analysis.

    PubMed

    Zang, Huidong; Hsiao, Yu-Che; Hu, Bin

    2014-03-14

    The accumulation of dissociated charge carriers plays an important role in reducing the loss occurring in organic solar cells. We find from light-assisted capacitance measurements that the charge accumulation inevitably occurred at the electrode and photovoltaic layer interface for bulk-heterojunction ITO/PEDOT:PSS/P3HT:PCBM/Ca/Al solar cells. Our results indicate, for the first time through impedance measurements, that the charge accumulation exists at the anode side of the device, and more importantly, we successfully identify the type of charge accumulated. Further study shows that the charge accumulation can significantly affect open circuit voltage and short circuit current. As a result, our experimental results from light assisted capacitance measurements provide a new understanding of the loss in open-circuit voltage and short-circuit photocurrent based on charge accumulation. Clearly, controlling charge accumulation presents a new mechanism to improve the photovoltaic performance of organic solar cells.

  18. Do Long-Term Changes in Organic Matter Inputs to Forest Soils Affect Dissolved Organic Matter Chemistry and Export?

    NASA Astrophysics Data System (ADS)

    Lajtha, K.; Strid, A.; Lee, B. S.

    2014-12-01

    Dissolved organic matter (DOM) production and transport play an important role in regulating organic matter (OM) distribution through a soil profile and ultimately, OM stabilization or export to aquatic systems. The contributions of varying OM inputs to the quality and amount of DOM as it passes through a soil profile remain relatively unknown. The Detrital Input and Removal Treatment (DIRT) site at the H. J. Andrews Experimental Forest in Oregon has undergone 17 years of litter, wood and root input manipulations and allows us to guage shifts in DOM chemistry induced by long-term changes to aboveground and belowground OM additions and exclusions. Using fluorescence and UV spectroscopy to characterize fluorescent properties, extent of decomposition, and sources of DOM in streams and soil solutions collected with lysimeters and soil extractions, we have assessed the importance of fresh OM inputs to DOM chemistry. Soil extracts from DIRT plots had a higher fluorescence index (FI) than lysimeter solutions or stream water. A high FI in surface water is generally interpreted as indicative of a high proportion of microbially-derived DOM. However, we suspect that the high FI in soil extracts is due to a higher proportion of non-aromatic DOM from fresh soil that microorganisms consume in transit through the soil profile to lysimeters or to streams. High redox index (RI) values were observed in lysimeters from the April 2014 sampling compared with the November 2013 sampling. These RI values show evidence of more reducing conditions at the end of the rainy season in the spring compared to the onset of the rainy season in the fall. Lysimeter water collected in No Input, No Litter, and No Root treatments contained high proportions of protein, suggesting the absence of carbon inputs changes activities of the microbial community. Observed variations reflect the viability of using fluorescent properties to explore the terrestrial-aquatic interface.

  19. Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic

    NASA Astrophysics Data System (ADS)

    Schirrmeister, Lutz; Grosse, Guido; Wetterich, Sebastian; Overduin, Pier Paul; Strauss, Jens; Schuur, Edward A. G.; Hubberten, Hans-Wolfgang

    2011-06-01

    Permafrost deposits constitute a large organic carbon pool highly vulnerable to degradation and potential carbon release due to global warming. Permafrost sections along coastal and river bank exposures in NE Siberia were studied for organic matter (OM) characteristics and ice content. OM stored in Quaternary permafrost grew, accumulated, froze, partly decomposed, and refroze under different periglacial environments, reflected in specific biogeochemical and cryolithological features. OM in permafrost is represented by twigs, leaves, peat, grass roots, and plant detritus. The vertical distribution of total organic carbon (TOC) in exposures varies from 0.1 wt % of the dry sediment in fluvial deposits to 45 wt % in Holocene peats. Variations in OM parameters are related to changes in vegetation, bioproductivity, pedogenic processes, decomposition, and sedimentation rates during past climate variations. High TOC, high C/N, and low δ13C reflect less decomposed OM accumulated under wet, anaerobic soil conditions characteristic of interglacial and interstadial periods. Glacial and stadial periods are characterized by less variable, low TOC, low C/N, and high δ13C values indicating stable environments with reduced bioproductivity and stronger OM decomposition under dryer, aerobic soil conditions. Based on TOC data and updated information on bulk densities, we estimate average organic carbon inventories for ten different stratigraphic units in northeast Siberia, ranging from 7.2 kg C m-3 for Early Weichselian fluvial deposits, to 33.2 kg C m-3 for Middle Weichselian Ice Complex deposits, to 74.7 kg C m-3 for Holocene peaty deposits. The resulting landscape average is likely about 25% lower than previously published permafrost carbon inventories.

  20. Tracing organic matter sources in a tropical mangrove ecosystem (Pichavaram, India) - a stable isotopic approach

    NASA Astrophysics Data System (ADS)

    Mohan Sappal, Swati; Jennerjahn, Tim; Ramanathan, Alagappan

    2014-05-01

    Mangroves are among the most productive ecosystems on earth and thus highly efficient carbon sinks with most of the carbon stored in the sediments. These are the sites for accumulation and preservation of both autochthonous and allochthonous organic matter (OM) due to their strategic location at the interface between land and sea and prevailing reducing environment. Recent studies suggest that vegetated coastal habitats are more important quantitative carbon sinks than previously thought. However, for global carbon budgets it is important to know whether the carbon buried is freshly fixed from atmospheric CO2 or relocated, and possibly very old, carbon from another reservoir. Therefore, the identification of OM sources is a critical issue for constructing the carbon budget in mangrove ecosystems so as to differentiate between the recent autochthonous or relocated allochthonous carbon that gets accumulated in the sediments. In this context the Pichavaram mangrove complex (comprising of a core mangrove area and the Vellar and Coleroon rivers) in the South of India was sampled along the estuarine gradient and in its different environmental settings, as these influence the carbon dynamics through differences in tidal flushing and relative importance of allochthonous versus autochthonous inputs. A total of 11 sediment cores, 18 surface sediments, 18 suspended sediment samples, 13 true mangrove plant species, 2 mangrove associate plants, 4 marsh shrub samples and 4 algae samples were collected from the Pichavaram mangrove complex in January 2012 and January 2013. The samples were analysed for carbon (C), nitrogen (N), stable carbon (δ13Corg) and stable nitrogen (δ15N) isotope composition. Our results highlight the relative abundance of terrestrial and mangrove derived organic matter over the marine dominated organic matter in the mangrove sediments. The sites with dense mangrove vegetation showed higher sediment carbon content as compared to the sites with degraded

  1. Integrated network modelling for identifying microbial mechanisms of particulate organic carbon accumulation in coastal marine systems

    NASA Astrophysics Data System (ADS)

    McDonald, Karlie; Turk, Valentina; Mozetič, Patricija; Tinta, Tinkara; Malfatti, Francesca; Hannah, David; Krause, Stefan

    2016-04-01

    Accumulation of particulate organic carbon (POC) has the potential to change the structure and function of marine ecosystems. High abidance of POC can develop into aggregates, known as marine snow or mucus aggregates that can impair essential marine ecosystem functioning and services. Currently marine POC formation, accumulation and sedimentation processes are being explored as potential pathways to remove CO2 from the atmosphere by CO2 sequestration via fixation into biomass by phytoplankton. However, the current ability of scientists, environmental managers and regulators to analyse and predict high POC concentrations is restricted by the limited understanding of the dynamic nature of the microbial mechanisms regulating POC accumulation events in marine environments. We present a proof of concept study that applies a novel Bayesian Networks (BN) approach to integrate relevant biological and physical-chemical variables across spatial and temporal scales in order to identify the interactions of the main contributing microbial mechanisms regulating POC accumulation in the northern Adriatic Sea. Where previous models have characterised only the POC formed, the BN approach provides a probabilistic framework for predicting the occurrence of POC accumulation by linking biotic factors with prevailing environmental conditions. In this paper the BN was used to test three scenarios (diatom, nanoflagellate, and dinoflagellate blooms). The scenarios predicted diatom blooms to produce high chlorophyll a at the water surface while nanoflagellate blooms were predicted to occur at lower depths (> 6m) in the water column and produce lower chlorophyll a concentrations. A sensitivity analysis identified the variables with the greatest influence on POC accumulation being the enzymes protease and alkaline phosphatase, which highlights the importance of microbial community interactions. The developed proof of concept BN model allows for the first time to quantify the impacts of

  2. Exploring Patterns of Soil Organic Matter Decomposition with Students and the Public Through the Global Decomposition Project (GDP)

    NASA Astrophysics Data System (ADS)

    Wood, J. H.; Natali, S.

    2014-12-01

    The Global Decomposition Project (GDP) is a program designed to introduce and educate students and the general public about soil organic matter and decomposition through a standardized protocol for collecting, reporting, and sharing data. This easy-to-use hands-on activity focuses on questions such as "How do environmental conditions control decomposition of organic matter in soil?" and "Why do some areas accumulate organic matter and others do not?" Soil organic matter is important to local ecosystems because it affects soil structure, regulates soil moisture and temperature, and provides energy and nutrients to soil organisms. It is also important globally because it stores a large amount of carbon, and when microbes "eat", or decompose organic matter they release greenhouse gasses such as carbon dioxide and methane into the atmosphere, which affects the earth's climate. The protocol describes a commonly used method to measure decomposition using a paper made of cellulose, a component of plant cell walls. Participants can receive pre-made cellulose decomposition bags, or make decomposition bags using instructions in the protocol and easily obtained materials (e.g., window screen and lignin-free paper). Individual results will be shared with all participants and the broader public through an online database. We will present decomposition bag results from a research site in Alaskan tundra, as well as from a middle-school-student led experiment in California. The GDP demonstrates how scientific methods can be extended to educate broader audiences, while at the same time, data collected by students and the public can provide new insight into global patterns of soil decomposition. The GDP provides a pathway for scientists and educators to interact and reach meaningful education and research goals.

  3. Key soil functional properties affected by soil organic matter - evidence from published literature

    NASA Astrophysics Data System (ADS)

    Murphy, Brian

    2015-07-01

    The effect of varying the amount of soil organic matter on a range of individual soil properties was investigated using a literature search of published information largely from Australia, but also included relevant information from overseas. Based on published pedotransfer functions, soil organic matter was shown to increase plant available water by 2 to 3 mm per 10 cm for each 1% increase in soil organic carbon, with the largest increases being associated with sandy soils. Aggregate stability increased with increasing soil organic carbon, with aggregate stability decreasing rapidly when soil organic carbon fell below 1.2 to 1.5 5%. Soil compactibility, friability and soil erodibility were favourably improved by increasing the levels of soil organic carbon. Nutrient cycling was a major function of soil organic matter. Substantial amounts of N, P and S become available to plants when the soil organic matter is mineralised. Soil organic matter also provides a food source for the microorganisms involved in the nutrient cycling of N, P, S and K. In soils with lower clay contents, and less active clays such as kaolinites, soil organic matter can supply a significant amount of the cation exchange capacity and buffering capacity against acidification. Soil organic matter can have a cation exchange capacity of 172 to 297 cmol(+)/kg. As the cation exchange capacity of soil organic matter varies with pH, the effectiveness of soil organic matter to contribute to cation exchange capacity below pH 5.5 is often minimal. Overall soil organic matter has the potential to affect a range of functional soil properties.

  4. Soil organic matter on citrus plantation in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Pereira, Paulo; Novara, Agata; Prosdocimi, Massimo

    2015-04-01

    Citrus plantations in Eastern Spain are the main crop and Valencia region is the largest world exporter. The traditional plantation are located on flood irrigated areas and the new plantation are located on slopes were drip irrigation is the source of the wetting. It has been demonstrate that the citrus plantations contribute to high erosion rates on slopes (Cerdà et al., 2009b) as it is usual on agriculture land (Cerdà et al., 2009a), but when organic farming is present the soil erosion is much lower (Cerdà and Jurgensen, 2008; Cerdà et al., 2009; Cerdà and Jurgensen, 2011). This is a worldwide phenomenon (Wu et al., 2007; Wu et al., 2011; Xu et al., 2010; Xu et al., 2012a; Xu et al., 2012b), which are a key factor of the high erosion rates in rural areas (García Orenes et al., 2009: García Orenes et al., 20010; García Orenes et al., 2012; Haregewyn et al., 2013; Zhao et al., 2013). The key factor of the contrasted response of soils to the rain in citrus is the organic matter cover. This is why the Soil Erosion and Degradation Research Team developed a survey to determine the soil erosion rates on citrus orchards under different managements. A hundred of samples were collected in a citrus plantation on slope under conventional management (Chemical management), one on organic farming, one on traditional flood irrigated organic farming and one on traditional chemical flooding farm. The organic farming soils were treated with 10000 Kg ha-1 of manure yearly. The results show that the mean soil organic matter content was 1.24 %, 3.54%, 5,43% and 2.1% respectively, which show a clear impact of organic farming in the recovery of the soil organic matter. meanwhile the on the slopes and the flood-irrigated soils are Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7- ENV-2013- supported this research. References Cerdà, A., Flanagan, D.C., le Bissonnais

  5. Accumulation patterns of Cr in Callitriche organs--qualitative and quantitative analysis.

    PubMed

    Augustynowicz, Joanna; Gajewski, Zbigniew; Kostecka-Gugała, Anna; Wróbel, Paweł; Kołton, Anna

    2016-02-01

    The aims of this study were both the qualitative and quantitative analysis of chromium accumulation in the shoots of Callitriche cophocarpa. This globally distributed, submersed macrophyte exhibits outstanding Cr phytoremediation capacity in an aquatic environment. Cr was applied separately for 7 days at two stable forms as Cr(VI) and Cr(III), known from their diverse physicochemical properties and toxicities. The maps of Cr depositions in young leaves, mature leaves, and stems were obtained by micro X-ray fluorescence spectroscopy (μXRF). The detailed analysis of XRF maps was done based on Image-Pro PLUS (Media Cybernetics) software. Cr was accumulated either in trichomes or vascular bundles in respect to the element speciation and the plant organ. The concentration of Cr significantly increased in the following order: Cr(VI) mature leaves < Cr(VI) young leaves = Cr(VI) stems < Cr(III) young leaves ≤ Cr(III) mature leaves ≤ Cr(III) stems. The observed differences in distribution and accumulation of Cr were correlated with the different reduction potential of Cr(VI) by particular plant organs. The reduction of Cr(VI) is considered the main detoxification mechanism of the highly toxic Cr(VI) form. The unique L-band electron resonance spectrometer (L-band EPR) was applied to follow the reduction of Cr(VI) to Cr(III) in the studied material. PMID:26438365

  6. Carbon accumulation in arid croplands of northwest China: pedogenic carbonate exceeding organic carbon.

    PubMed

    Wang, Xiujun; Wang, Jiaping; Xu, Minggang; Zhang, Wenju; Fan, Tinglu; Zhang, Juan

    2015-06-19

    Soil carbonate (SIC) exceeds organic carbon (SOC) greatly in arid lands, thus may be important for carbon sequestration. However, field data for quantifying carbonate accumulation have been lacking. This study aims to improve our understanding of SIC dynamics and its role in carbon sequestration. We analyzed two datasets of SOC and SIC and their (13)C compositions , one with over 100 soil samples collected recently from various land uses in the Yanqi Basin, Xinjiang, and the other with 18 archived soil samples from a long-term experiment (LTE) in Pingliang, Gansu. The data from the Yanqi Basin showed that SOC had a significant relationship with SIC and pedogenic carbonate (PIC); converting shrub land to cropland increased PIC stock by 5.2 kg C m(-2), which was 3.6 times of that in SOC stock. The data from the LTE showed greater accumulation of PIC (21-49 g C m(-2) year(-1)) than SOC (10-39 g C m(-2) year(-1)) over 0-20 cm. Our study points out that intensive cropping in the arid and semi-arid regions leads to an increase in both SOC and PIC. Increasing SOC through straw organic amendments enhances PIC accumulation in the arid cropland of northwestern China.

  7. Carbon accumulation in arid croplands of northwest China: pedogenic carbonate exceeding organic carbon

    NASA Astrophysics Data System (ADS)

    Wang, Xiujun; Wang, Jiaping; Xu, Minggang; Zhang, Wenju; Fan, Tinglu; Zhang, Juan

    2015-06-01

    Soil carbonate (SIC) exceeds organic carbon (SOC) greatly in arid lands, thus may be important for carbon sequestration. However, field data for quantifying carbonate accumulation have been lacking. This study aims to improve our understanding of SIC dynamics and its role in carbon sequestration. We analyzed two datasets of SOC and SIC and their 13C compositions , one with over 100 soil samples collected recently from various land uses in the Yanqi Basin, Xinjiang, and the other with 18 archived soil samples from a long-term experiment (LTE) in Pingliang, Gansu. The data from the Yanqi Basin showed that SOC had a significant relationship with SIC and pedogenic carbonate (PIC); converting shrub land to cropland increased PIC stock by 5.2 kg C m-2, which was 3.6 times of that in SOC stock. The data from the LTE showed greater accumulation of PIC (21-49 g C m-2 year-1) than SOC (10-39 g C m-2 year-1) over 0-20 cm. Our study points out that intensive cropping in the arid and semi-arid regions leads to an increase in both SOC and PIC. Increasing SOC through straw organic amendments enhances PIC accumulation in the arid cropland of northwestern China.

  8. Metabolic characteristics of a glycogen-accumulating organism in Defluviicoccus cluster II revealed by comparative genomics.

    PubMed

    Wang, Zhiping; Guo, Feng; Mao, Yanping; Xia, Yu; Zhang, Tong

    2014-11-01

    Glycogen-accumulating organisms (GAOs) may compete with phosphate-accumulating organisms (PAOs) for short-chain fatty acids (VFAs) in anaerobic polyhydroxyalkanoates (PHA) synthesis, but no consequently aerobic polyphosphate accumulation in enhanced biological phosphorus removal (EBPR) process, thus deteriorating the EBPR process. They are detected frequently in the deteriorated EBPR process, but their metabolisms are still far from our comprehensions for there is seldom pure culture. In this study, a nearly complete draft genome of a GAOs in Defluviicoccus cluster II, GAO-HK, is recruited from the metagenome of activated sludge in a full-scale industrial anoxic/aerobic wastewater plant. Comparative genomics reveal similar metabolisms of PHA and glycogen in GAOs of GAO-HK, Defluviicoccus tetraformis TFO71 (TFO71) and Competibacter phosphatis clade IIA (CPIIA), and PAOs of Accumulibacter clade IIA UW-1 (UW-1) and Tetrasphaera elongata Lp2 (Lp2). Although there are similar gene cassettes related with polyphosphate metabolism in these GAOs and PAOs, especially for Defluviicoccus-relative bacteria and UW-1, ppk1 in GAOs are diverse from those in the identified PAOs, implying the difference of polyphosphate metabolism in GAOs and PAOs. Additionally, genes related to the dissimilatory denitrification are absent in TFO71 and GAO-HK, implying that additional nitrate or nitrite may favor PAOs over Defluviicoccus-relative GAOs. Therefore, PAOs suffering from competition of Defluviicoccus-relative GAOs might be rescued with the additional nitrate/nitrite, which is important to improve the stability of EBPR processes. PMID:24889288

  9. Carbon accumulation in arid croplands of northwest China: pedogenic carbonate exceeding organic carbon

    PubMed Central

    Wang, Xiujun; Wang, Jiaping; Xu, Minggang; Zhang, Wenju; Fan, Tinglu; Zhang, Juan

    2015-01-01

    Soil carbonate (SIC) exceeds organic carbon (SOC) greatly in arid lands, thus may be important for carbon sequestration. However, field data for quantifying carbonate accumulation have been lacking. This study aims to improve our understanding of SIC dynamics and its role in carbon sequestration. We analyzed two datasets of SOC and SIC and their 13C compositions , one with over 100 soil samples collected recently from various land uses in the Yanqi Basin, Xinjiang, and the other with 18 archived soil samples from a long-term experiment (LTE) in Pingliang, Gansu. The data from the Yanqi Basin showed that SOC had a significant relationship with SIC and pedogenic carbonate (PIC); converting shrub land to cropland increased PIC stock by 5.2 kg C m−2, which was 3.6 times of that in SOC stock. The data from the LTE showed greater accumulation of PIC (21–49 g C m−2 year−1) than SOC (10–39 g C m−2 year−1) over 0–20 cm. Our study points out that intensive cropping in the arid and semi-arid regions leads to an increase in both SOC and PIC. Increasing SOC through straw organic amendments enhances PIC accumulation in the arid cropland of northwestern China. PMID:26091554

  10. The flux of organic matter through a peatland ecosystem - evidence from thermogravimetric analysis

    NASA Astrophysics Data System (ADS)

    Worrall, Fred; Moody, Catherine; Clay, Gareth

    2016-04-01

    Carbon budgets of peatlands are now common and studies have considered nitrogen, oxygen and energy budgets, but no study has considered the whole composition of the organic matter as it transfers through and into a peatland. Organic matter samples were taken from each organic matter reservoir found in and each fluvial flux from a peatland and analysed the samples by thermogravimetric analysis. The samples analysed were: aboveground, belowground, heather, mosses and sedges, litter layer, a peat core, and monthly samples of particulate and dissolved organic matter. All organic matter samples were taken from a 100% peat catchment within Moor House National Nature Reserve in the North Pennines, UK, and collected samples were compared to standards of lignin, cellulose, humic acid and plant protein. Results showed that the thermogravimetric trace of the sampled organic matter were distinctive with the DOM traces being marked out by very low thermal stability relative other organic matter types. The peat profile shows a significant trend with depth from vegetation- to lignin-like composition. When all traces are weighted according to the observed dry matter and carbon budgets for the catchment then it is possible to judge what has been lost in the transition through and into the ecosystem. By plotting this "lost" trace it possible to assess its composition which is either 97% cellulose and 3% humic acid or 92% and 8% lignin. This has important implications for what controls the organic matter balance of peatlands and it suggests that the oxidation state (OR) of peatland is less than 1.

  11. Vehicular emissions of organic particulate matter in Sao Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Oyama, B. S.; Andrade, M. F.; Herckes, P.; Dusek, U.; Röckmann, T.; Holzinger, R.

    2015-12-01

    Vehicular emissions have a strong impact on air pollution in big cities. Many factors affect these emissions: type of vehicle, type of fuel, cruising velocity, and brake use. This study focused on emissions of organic compounds by Light (LDV) and Heavy (HDV) duty vehicle exhaust. The study was performed in the city of Sao Paulo, Brazil, where vehicles run on different fuels: gasoline with 25 % ethanol (called gasohol), hydrated ethanol, and diesel (with 5 % of biodiesel). The vehicular emissions are an important source of pollutants and the principal contribution to fine particulate matter (smaller than 2.5 μm, PM2.5) in Sao Paulo. The experiments were performed in two tunnels: Janio Quadros (TJQ) where 99 % of the vehicles are LDV, and Rodoanel Mario Covas (TRA) where up to 30 % of the fleet was HDV. The PM2.5 samples were collected on quartz filters in May and July 2011 at TJQ and TRA, respectively, using two samplers operating in parallel. The samples were analyzed by Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometry (TD-PTR-MS), and by Thermal-Optical Transmittance (TOT). The organic aerosol (OA) desorbed at TD-PTR-MS represented around 30 % of the OA estimated by the TOT method, mainly due to the different desorption temperatures, with a maximum of 870 and 350 °C for TOT and TD-PTR-MS, respectively. Average emission factors (EF) organic aerosol (OA) and organic carbon (OC) were calculated for HDV and LDV fleet. We found that HDV emitted more OA and OC than LDV, and that OC emissions represented 36 and 43 % of total PM2.5 emissions from LDV and HDV, respectively. More than 700 ions were identified by TD-PTR-MS and the EF profiles obtained from HDV and LDV exhibited distinct features. Nitrogen-containing compounds measured in the desorbed material up to 350 °C contributed around 20 % to the EF values for both types of vehicles, possibly associated with incomplete fuel burning. Additionally, 70 % of the organic compounds measured from the aerosol

  12. Chemical composition of dissolved organic matter draining permafrost soils

    NASA Astrophysics Data System (ADS)

    Ward, Collin P.; Cory, Rose M.

    2015-10-01

    Northern circumpolar permafrost soils contain roughly twice the amount of carbon stored in the atmosphere today, but the majority of this soil organic carbon is perennially frozen. Climate warming in the arctic is thawing permafrost soils and mobilizing previously frozen dissolved organic matter (DOM) from deeper soil layers to nearby surface waters. Previous studies have reported that ancient DOM draining deeper layers of permafrost soils was more susceptible to degradation by aquatic bacteria compared to modern DOM draining the shallow active layer of permafrost soils, and have suggested that DOM chemical composition may be an important control for the lability of DOM to bacterial degradation. However, the compositional features that distinguish DOM drained from different depths in permafrost soils are poorly characterized. Thus, the objective of this study was to characterize the chemical composition of DOM drained from different depths in permafrost soils, and relate these compositional differences to its susceptibility to biological degradation. DOM was leached from the shallow organic mat and the deeper permafrost layer of soils within the Imnavait Creek watershed on the North Slope of Alaska. DOM draining both soil layers was characterized in triplicate by coupling ultra-high resolution mass spectrometry, 13C solid-state NMR, and optical spectroscopy methods with multi-variate statistical analyses. Reproducibility of replicate mass spectra was high, and compositional differences resulting from interfering species or isolation effects were significantly smaller than differences between DOM drained from each soil layer. All analyses indicated that DOM leached from the shallower organic mat contained higher molecular weight, more oxidized, and more unsaturated aromatic species compared to DOM leached from the deeper permafrost layer. Bacterial production rates and bacterial efficiencies were significantly higher for permafrost compared to organic mat DOM

  13. Do aggregate stability and soil organic matter content increase following organic inputs?

    NASA Astrophysics Data System (ADS)

    Lehtinen, Taru; Gísladóttir, Guðrún; van Leeuwen, Jeroen P.; Bloem, Jaap; Steffens, Markus; Vala Ragnarsdóttir, Kristin

    2014-05-01

    Agriculture is facing several challenges such as loss of soil organic matter (SOM); thus, sustainable farming management practices are needed. Organic farming is growing as an alternative to conventional farming; in Iceland approximately 1% and in Austria 16% of utilized agricultural area is under organic farming practice. We analyzed the effect of different farming practices (organic, and conventional) on soil physicochemical and microbiological properties in grassland soils in Iceland and cropland soils in Austria. Organic farms differed from conventional farms by absence of chemical fertilizers and pesticide use. At these farms, we investigated soil physicochemical (e.g. soil texture, pH, CAL-extractable P and K) and microbiological properties (fungal and bacterial biomass and activity). The effects of farming practices on soil macroaggregate stability and SOM quantity, quality and distribution between different fractions were studied following a density fractionation. In Iceland, we sampled six grassland sites on Brown (BA) and Histic (HA) Andosols; two sites on extensively managed grasslands, two sites under organic and two sites under conventional farming practice. In Austria, we sampled four cropland sites on Haplic Chernozems; two sites under organic and two sites under conventional farming practice. We found significantly higher macroaggregate stability in the organic compared to the conventional grasslands in Iceland. In contrast, slightly higher macroaggregation in conventional compared to the organic farming practice was found in croplands in Austria, although the difference was not significant. Macroaggregates were positively correlated with fungal biomass in Iceland, and with Feo and fungal activity in Austria. In Austria, SOM content and nutrient status (except for lower CAL-extractable P at one site) were similar between organic and conventional farms. Our results show that the organic inputs may have enhanced macroaggregation in organic farming

  14. Evolution of organic matter in Orgueil, Murchison and Renazzo during parent body aqueous alteration: In situ investigations

    NASA Astrophysics Data System (ADS)

    Le Guillou, Corentin; Bernard, Sylvain; Brearley, Adrian J.; Remusat, Laurent

    2014-04-01

    organic and inorganic soluble components. Ultimately, when water was consumed by aqueous alteration reactions or lost from the system, soluble organic compounds accumulated in the immediate vicinity of the precipitated carbonates and phosphates. Additionally, the nanometer scale organic/phyllosilicate relationships provide a petrological environment where some of the initially accreted organic matter could have been modified through clay-mediated reactions.

  15. Vertical transport of particulate organic matter regulated by fjord topography

    NASA Astrophysics Data System (ADS)

    Erlandsson, Carina P.

    2008-03-01

    The deepwater in many areas with restricted water exchange suffers from low oxygen concentrations due to degradation of organic matter. The objective of this study was to investigate how topography may influence the vertical transport, Fc, of particulate organic matter, POM, to the deepwater. A conceptual/analytical model for Fc was developed covering the combination of the three possible sources of POM/nutrients to an enclosed area; the coastal water, local supply, and nutrient rich local deepwater. The mathematical formulation of the conceptual model includes several factors describing to which degree various physical mechanisms in the fjord are influencing Fc. The model consists of submodels for the different sources of POM/nutrients. A one-dimensional process oriented numerical model was used to test the conceptual model. Restricted water exchange with the coastal water led to decreased import of POM and thereby decreased vertical transport, Fc, of coastal POM. The contribution to Fc by local input of nutrients to the surface layer was described by a function of the residence time of the water above sill level, Tsw and the time Tp it takes for POM produced in the surface layer to settle below sill level. The recirculation of POM produced due to basin water renewals was shown to be a function of several factors: The relation between the depth of photic zone, Hp and the sill depth, Ht, the vertical velocity of the rising nutrient rich water mass versus the settling velocity of POM, etc. The results based on the conceptual submodels agreed well with the results from the process oriented numerical model. Methods to identify the trophic state of coastal waters, and also simple models to calculate the effect of a local point source, can be found in literature. However, using the model developed in this paper the effects of nutrient enrichment from different sources can be quantified in a simple and more efficient way than earlier. The model can thus be used to

  16. Charge injection and accumulation in organic light-emitting diode with PEDOT:PSS anode

    SciTech Connect

    Weis, Martin; Otsuka, Takako; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2015-04-21

    Organic light-emitting diode (OLED) displays using flexible substrates have many attractive features. Since transparent conductive oxides do not fit the requirements of flexible devices, conductive polymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has been proposed as an alternative. The charge injection and accumulation in OLED devices with PEDOT:PSS anodes are investigated and compared with indium tin oxide anode devices. Higher current density and electroluminescence light intensity are achieved for the OLED device with a PEDOT:PSS anode. The electric field induced second-harmonic generation technique is used for direct observation of temporal evolution of electric fields. It is clearly demonstrated that the improvement in the device performance of the OLED device with a PEDOT:PSS anode is associated with the smooth charge injection and accumulation.

  17. Characterisation of Phosphate Accumulating Organisms and Techniques for Polyphosphate Detection: A Review

    PubMed Central

    Tarayre, Cédric; Nguyen, Huu-Thanh; Brognaux, Alison; Delepierre, Anissa; De Clercq, Lies; Charlier, Raphaëlle; Michels, Evi; Meers, Erik; Delvigne, Frank

    2016-01-01

    Phosphate minerals have long been used for the production of phosphorus-based chemicals used in many economic sectors. However, these resources are not renewable and the natural phosphate stocks are decreasing. In this context, the research of new phosphate sources has become necessary. Many types of wastes contain non-negligible phosphate concentrations, such as wastewater. In wastewater treatment plants, phosphorus is eliminated by physicochemical and/or biological techniques. In this latter case, a specific microbiota, phosphate accumulating organisms (PAOs), accumulates phosphate as polyphosphate. This molecule can be considered as an alternative phosphate source, and is directly extracted from wastewater generated by human activities. This review focuses on the techniques which can be applied to enrich and try to isolate these PAOs, and to detect the presence of polyphosphate in microbial cells. PMID:27258275

  18. Characterisation of Phosphate Accumulating Organisms and Techniques for Polyphosphate Detection: A Review.

    PubMed

    Tarayre, Cédric; Nguyen, Huu-Thanh; Brognaux, Alison; Delepierre, Anissa; De Clercq, Lies; Charlier, Raphaëlle; Michels, Evi; Meers, Erik; Delvigne, Frank

    2016-01-01

    Phosphate minerals have long been used for the production of phosphorus-based chemicals used in many economic sectors. However, these resources are not renewable and the natural phosphate stocks are decreasing. In this context, the research of new phosphate sources has become necessary. Many types of wastes contain non-negligible phosphate concentrations, such as wastewater. In wastewater treatment plants, phosphorus is eliminated by physicochemical and/or biological techniques. In this latter case, a specific microbiota, phosphate accumulating organisms (PAOs), accumulates phosphate as polyphosphate. This molecule can be considered as an alternative phosphate source, and is directly extracted from wastewater generated by human activities. This review focuses on the techniques which can be applied to enrich and try to isolate these PAOs, and to detect the presence of polyphosphate in microbial cells. PMID:27258275

  19. Characterisation of Phosphate Accumulating Organisms and Techniques for Polyphosphate Detection: A Review.

    PubMed

    Tarayre, Cédric; Nguyen, Huu-Thanh; Brognaux, Alison; Delepierre, Anissa; De Clercq, Lies; Charlier, Raphaëlle; Michels, Evi; Meers, Erik; Delvigne, Frank

    2016-01-01

    Phosphate minerals have long been used for the production of phosphorus-based chemicals used in many economic sectors. However, these resources are not renewable and the natural phosphate stocks are decreasing. In this context, the research of new phosphate sources has become necessary. Many types of wastes contain non-negligible phosphate concentrations, such as wastewater. In wastewater treatment plants, phosphorus is eliminated by physicochemical and/or biological techniques. In this latter case, a specific microbiota, phosphate accumulating organisms (PAOs), accumulates phosphate as polyphosphate. This molecule can be considered as an alternative phosphate source, and is directly extracted from wastewater generated by human activities. This review focuses on the techniques which can be applied to enrich and try to isolate these PAOs, and to detect the presence of polyphosphate in microbial cells.

  20. Heavy metals fractionation and organic matter mineralisation in contaminated calcareous soil amended with organic materials.

    PubMed

    Clemente, Rafael; Escolar, Angeles; Bernal, M Pilar

    2006-10-01

    Degradation of organic matter (OM) from organic amendments used in the remediation of metal contaminated soils leads to changes in soil chemical properties shortly after their addition, which may affect the soil metal distribution. The effects of two differing organic amendments on OM mineralisation and fractionation of heavy metals in a contaminated soil were investigated in an incubation experiment. The treatments were: control unamended soil, soil amended with fresh cow manure, and soil amended with a compost having a high maturity degree. The soil used was characteristic of the mining area at La Unión (Murcia, Spain) with 28% CaCO(3) and sandy-loam texture (pH 7.7; 2602 mg kg(-1)Zn; 1572 mg kg(-1)Pb). Manure and compost C-mineralisation after 56 days (24% and 3.8%, respectively) were below values reported previously for uncontaminated soils. Both amendments favoured Zn and Pb fixation, particularly the manure. Mn solubility increased at the beginning of the experiment due to a pH effect, and only Cu solubility increased through organic matter chelation in both amended soils.

  1. The Isiokpo oil-pipeline leakage: total organic carbon/organic matter contents of affected soils.

    PubMed

    Osuji, Leo C; Adesiyan, Samuel O

    2005-08-01

    The environmental impact of the 1997 leakage of the high-pressure crude-oil pipeline at Isiokpo in the Niger Delta in the southeast of Nigeria was evaluated, with particular reference to total-organic-carbon (TOC) and total-organic-matter (TOM) contents of soils within the vicinity of the oil spillage. The soils, taken from depths of 0-15 cm (surface) and 15-30 cm (subsurface), were found to be more acidic (pH 4.2-5.6) than the unpolluted soils, with a high average moisture content of 6.8%. The extractable hydrocarbon content ranged from 2.71-3.48 mg/kg, indicating hydrocarbon contamination. However, contrary to expectation, the TOC and TOM contents of the polluted soils did not show any significant increase in concentration, supposedly due to natural rehabilitation of the affected mat layer of soils. Thus, notwithstanding the possible proliferation of heterotrophic organisms by the presence of the added petroleum hydrocarbons, environmental conditions such as weathering and climatic predispositions, as well as physico-chemical parameters such as pH, moisture content, and temperature must have encumbered the carbon-mineralizing capacity of the heterotrophs, thereby reducing the turnover of carbon and the decomposition of organic matter. The restrictions by high moisture content might not come directly from H(2)O itself, but are probably a consequence of hindered soil ventilation, which reduces O(2) supply and gaseous diffusion, conditions that might have been substantially aggravated by the added petroleum hydrocarbons.

  2. Electron Shuttling Capacity of Solid-Phase Organic Matter in Forest Soils

    NASA Astrophysics Data System (ADS)

    Patel, A.; Zhao, Q.; Yang, Y.

    2015-12-01

    Soil organic matter, as an electron shuttle, plays an important role in regulating the biogeochemical cycles of metals, especially the redox reactions for iron. Microorganisms can reduce soil organic matter under anaerobic conditions, and biotically-reduced soil organic matter can abiotically donate electrons to ferric oxides. Such soil organic matter-mediated electron transport can facilitate the interactions between microorganisms and insoluble terminal electron acceptors, i.e. iron minerals. Most previous studies have been focused on the electron shuttling processes through dissolved soil organic matter, and scant information is available for solid-phase soil organic matter. In this study, we aim to quantify the electron accepting capacity for solid-phase organic matter in soils collected from four different forests in the United States, including Truckee (CA), Little Valley (NV), Howland (ME) and Hart (MI). We used Shewanella oneidensisMR-1 to biotically reduce soil slurries, and then quantified the electrons transferred to solid-phase and solution-phase organic matter by reacting them with Fe(III)-nitrilotriacetic acid (Fe(III)-NTA). The generation of Fe(II) was measured by a ferrozine assay to calculate the electron accepting capacity of soil organic matter. Our preliminary results showed that the Truckee soil organic matter can accept 0.51±0.07 mM e-/mol carbon. We will measure the electron accepting capacity for four different soils and correlate them to the physicochemical properties of soils. Potential results will provide information about the electron accepting capacity of solid-phase soil organic matter and its governing factors, with broad implication on the coupled biogeochemical cycles of carbon and iron.

  3. Changes in dissolved organic matter composition and metabolic diversity of bacterial community during the degradation of organic matter in swine effluent.

    PubMed

    Li, Lei; Liu, Ming; Li, Yanli; Ma, Xiaoyan; Tang, Xiaoxue; Li, Zhongpei

    2016-07-01

    In this study, an incubation experiment was conducted with effluent collected from the concentrated swine-feeding operations (CSFOs) located in Yujiang County of Jiangxi Province, China. The purpose of this study was to elucidate the relationships between the composition of dissolved organic matter (DOM) and the community-level physiological profiles (CLPPs) of microorganisms in swine effluent. For all samples examined, the concentrations of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were decreased by an average of 58.2 ± 30.4 and 49.2 ± 38.7 %, whereas total dissolved phosphorus (TDP) exhibited an average final accumulation of 141.5 ± 43.0 %. In the original samples, ammonium nitrogen accounted for 88.9 ± 4.9 % of the TDN, which was reduced to a final average of 83.9 ± 9.6 %. Two protein-like (tyrosine and tryptophan) and two humic-like (fulvic acids and humic acids) components were identified using a three-dimensional excitation-emission matrix. With the increase in incubation time, the relative concentrations of two protein-like components in effluent were reduced by an average of 83.2 ± 24.7 %. BIOLOG(™) ECO plates were used to determine the metabolic fingerprint of the bacterial community, and a shift in the utilization patterns of substrates was observed over the study period. Additionally, the Shannon-Wiener index of CLPP was ultimately reduced by an average of 43.5 ± 8.5 %, corresponding to the metabolic diversity of the bacterial community. The redundancy analysis identified significant relationships between environmental parameters and the CLPP of microorganisms. To a certain degree, the DOM compositions were linked with the substrate utilization patterns of the bacterial community during the degradation of organic matter in swine effluent.

  4. Effects of Natural Organic Matter on Stability, Transport and Deposition of Engineered Nano-particles in Porous Media

    EPA Science Inventory

    The interaction of nano-particles and organic substances, like natural organic matter, could have significant influence on the fate, transport and bioavailability of toxic substances. Natural organic matter (NOM) is a mixture of chemically complex polyelectrolytes with varying m...

  5. Coupled Ocean-Atmosphere Loss of Refractory Marine Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Kieber, D. J.; Keene, W. C.; Frossard, A. A.; Long, M. S.; Russell, L. M.; Maben, J. R.; Kinsey, J. D.; Tyssebotn, I. M.; Quinn, P.; Bates, T. S.

    2013-12-01

    Marine aerosol produced in the oceans from bursting bubbles and breaking waves is number dominated by submicron aerosol that are highly enriched in marine organic matter relative to seawater. Recent studies suggest that these organic-rich, submicron aerosol have a major impact on tropospheric chemistry and climate. It has been assumed this marine-derived aerosol organic matter is of recent origin stemming from biological activity in the photic zone. However, we deployed a marine aerosol generator on a recent cruise in the Sargasso Sea with seawater collected from 2500 m and showed that the aerosol generated from this seawater was enriched with organic matter to the same level as observed in surface Sargasso seawater, implying that the marine organic matter flux from the oceans into atmospheric aerosol is partly due to marine organic matter not of recent origin. We propose that marine aerosol production and subsequent physical and photochemical atmospheric evolution is the main process whereby old, refractory organic matter is removed from the oceans, thereby closing the carbon budget in the oceans and solving a long-standing conundrum regarding the removal mechanism for this organic matter in the sea. The implications of this study for couplings in the ocean-atmosphere cycling of organic matter will be discussed.

  6. Enhancement of the natural organic matter removal from drinking water by nanofiltration.

    PubMed

    Matilainen, A; Liikanen, R; Nyström, M; Lindqvist, N; Tuhkanen, T

    2004-03-01

    Finnish surface waters are abundant in natural organic matter. Natural organic matter can be removed from drinking water in a water treatment process by coagulation and filtration. The standard treatment operations are not able to remove the smallest molar mass fraction of organic matter and the intermediate molar mass matter is only partly removed. The removal of residual natural organic matter from drinking water by nanofiltration was evalueted in this study. Three different nanofiltration membranes were compared in filtering six pre-treated surface waters. The total organic carbon content of the feed waters varied from 2.0 to 4.2 mg l(-1). Other water quality parameters measured were conductivity, alkalinity, hardness, UV-absorbance, SUVA, E2/E3 value and molecular size distribution by high-performance size-exclusion chromatography. The natural organic matter removal efficiencies of the membranes were good and varied between 100% and 49%, and between 85% and 47% according to molecular size distribution and total organic carbon measurements, respectively. Removal of different molecular size fractions varied from 100% to 56%, 100% to 54% and 88% to 19%, regarding high molar mass, intermediate molar mass and low molar mass organic matter, respectively. The Desal-5 DL membrane produced the highest natural organic matter removals.

  7. Influence of soil organic matter composition on the partition of organic compounds

    USGS Publications Warehouse

    Rutherford, D.W.; Chiou, C.T.; Klle, D.E.

    1992-01-01

    The sorption at room temperature of benzene and carbon tetrachloride from water on three high-organic-content soils (muck, peat, and extracted peat) and on cellulose was determined in order to evaluate the effect of sorbent polarity on the solute partition coefficients. The isotherms are highly linear for both solutes on all the organic matter samples, which is consistent with a partition model. For both solutes, the extracted peat shows the greatest sorption capacity while the cellulose shows the lowest capacity; the difference correlates with the polar-to-nonpolar group ratio [(O + N)/C] of the sorbent samples. The relative increase of solute partition coefficient (Kom) with a decrease of sample polar content is similar for both solutes, and the limiting sorption capacity on a given organic matter sample is comparable between the solutes. This observation suggests that one can estimate the polarity effect of a sample of soil organic matter (SOM) on Kom of various nonpolar solutes by determining the partition coefficient of single nonpolar solute when compositional analysis of the SOM is not available. The observed dependence of Kom on sample polarity is used to account for the variation of Kom values of individual compounds on different soils that results from change in the polar group content of SOM. On the assumption that the carbon content of SOM in "ordinary soils" is 53-63%, the calculated variation of Kom is a factor of ???3. This value is in agreement with the limit of variation of most Kom data with soils of relatively high SOM contents.

  8. Are Roots the Source of All Soil Organic Matter? Results From Isotopic Experiments in Temperate Forests

    NASA Astrophysics Data System (ADS)

    Torn, M. S.

    2005-12-01

    Plants produce organic detritus through roots and aboveground senescence, mainly litterfall. In soil science and biogeochemistry, the main source of soil carbon (C) inputs has been assumed to be litter. For example, litterfall is used as a measure of primary productivity relevant to belowground processes and decomposition, and properties of litter decay have been used to parameterize soil C models. There is little empirical evidence, however, that aboveground C inputs make a quantitatively important contribution to mineral soil organic matter (SOM). In a series of experiments in Mediterranean conifer and eastern deciduous forests, we used 13-C and 14-C analysis to quantify the contribution of leaf /needle C versus root C into soil organic matter pools (separated by density, physical, and chemical fractionation). Because dissolved organic C (DOC) leaching into soil may be rapidly decomposed by microbes, we also examine incorporation of isotopic tracers into microbial biomass (using chloroform-fumigation extraction, 13-C PLFA, and handpicked ectomycorrhizal fungi). We have found that aboveground inputs make almost no contribution to soil organic matter or microbial biomass in the mineral soil of these forests, at least within five years of substrate deposition. A new model of the litter layer might have the litter layer accumulating and decaying in relative isolation from the mineral soil. In that case, DOC leaching from the litter layer may be providing energy but not biomass to microbes, be mineralized in abiotic reactions with soil minerals, or be moving rapidly in macro pores. We note that these sites have low earth worm populations; sites with more bioturbation might have more surface C input to SOM. We have found that fine root lifetimes are much longer than typical leaf or needle lifespan, such that the two sources must be treated differently in biogeochemical models. It also means that the stock of SOM in these forests is derived from a much smaller flux of C

  9. The effects of organic matter-mineral interactions and organic matter chemistry on diuron sorption across a diverse range of soils.

    PubMed

    Smernik, Ronald J; Kookana, Rai S

    2015-01-01

    Sorption of non-ionic organic compounds to soil is usually expressed as the carbon-normalized partition coefficient (KOC), because it is assumed that the main factor that influences the amount sorbed is the organic carbon content of the soil. However, KOC can vary by a factor of at least ten across a range of soils. We investigated two potential causes of variation in diuron KOC - organic matter-mineral interactions and organic matter chemistry - for a diverse set of 34 soils from Sri Lanka, representing a wide range of soil types. Treatment with hydrofluoric acid (HF-treatment) was used to concentrate soil organic matter. HF-treatment increased KOC for the majority of soils (average factor 2.4). We attribute this increase to the blocking of organic matter sorption sites in the whole soils by minerals. There was no significant correlation between KOC for the whole soils and KOC for the HF-treated soils, indicating that the importance of organic matter-mineral interactions varied greatly amongst these soils. There was as much variation in KOC across the HF-treated soils as there was across the whole soils, indicating that the nature of soil organic matter is also an important contributor to KOC variability. Organic matter chemistry, determined by solid-state (13)C nuclear magnetic resonance (NMR) spectroscopy, was correlated with KOC for the HF-treated soils. In particular, KOC increased with the aromatic C content (R=0.64, p=1×10(-6)), and decreased with O-alkyl C (R=-0.32, p=0.03) and alkyl C (R=-0.41, p=0.004) content.

  10. The effects of organic matter-mineral interactions and organic matter chemistry on diuron sorption across a diverse range of soils.

    PubMed

    Smernik, Ronald J; Kookana, Rai S

    2015-01-01

    Sorption of non-ionic organic compounds to soil is usually expressed as the carbon-normalized partition coefficient (KOC), because it is assumed that the main factor that influences the amount sorbed is the organic carbon content of the soil. However, KOC can vary by a factor of at least ten across a range of soils. We investigated two potential causes of variation in diuron KOC - organic matter-mineral interactions and organic matter chemistry - for a diverse set of 34 soils from Sri Lanka, representing a wide range of soil types. Treatment with hydrofluoric acid (HF-treatment) was used to concentrate soil organic matter. HF-treatment increased KOC for the majority of soils (average factor 2.4). We attribute this increase to the blocking of organic matter sorption sites in the whole soils by minerals. There was no significant correlation between KOC for the whole soils and KOC for the HF-treated soils, indicating that the importance of organic matter-mineral interactions varied greatly amongst these soils. There was as much variation in KOC across the HF-treated soils as there was across the whole soils, indicating that the nature of soil organic matter is also an important contributor to KOC variability. Organic matter chemistry, determined by solid-state (13)C nuclear magnetic resonance (NMR) spectroscopy, was correlated with KOC for the HF-treated soils. In particular, KOC increased with the ar