Science.gov

Sample records for accumulated shear strain

  1. Strain accumulation and rotation in the Eastern California Shear Zone

    USGS Publications Warehouse

    Savage, J.C.; Gan, Weijun; Svarc, J.L.

    2001-01-01

    Although the Eastern California Shear Zone (ECSZ) (strike ???N25??W) does not quite coincide with a small circle drawn about the Pacific-North America pole of rotation, trilateration and GPS measurements demonstrate that the motion within the zone corresponds to right-lateral simple shear across a vertical plane (strike N33??W??5??) roughly parallel to the tangent to that local small circle (strike ???N40??W). If the simple shear is released by slip on faults subparallel to the shear zone, the accumulated rotation is also released, leaving no secular rotation. South of the Garlock fault the principal faults (e.g., Calico-Blackwater fault) strike ???N40??W, close enough to the strike of the vertical plane across which maximum right-lateral shear accumulates to almost wholly accommodate that accumulation of both strain and rotation by right-lateral slip. North of the Garlock fault dip slip as well as strike slip on the principal faults (strike ???N20??W) is required to accommodate the simple shear accumulation. In both cases the accumulated rotation is released with the shear strain. The Garlock fault, which transects the ECSZ, is not offset by north-northwest striking faults nor, despite geological evidence for long-term left-lateral slip, does it appear at the present time to be accumulating left-lateral simple shear strain across the fault due to slip at depth. Rather the motion is explained by right-lateral simple shear across the orthogonal ECSZ. Left-lateral slip on the Garlock fault will release the shear strain accumulating there but would augment the accumulating rotation, resulting in a secular clockwise rotation rate ???80 nrad yr-1 (4.6?? Myr-1).

  2. Strain accumulation across the Eastern California Shear Zone at latitude 36°30'N

    USGS Publications Warehouse

    Gan, Weijun; Svarc, Jerry L.; Savage, J.C.; Prescott, W.H.

    2000-01-01

    The motion of a linear array of monuments extending across the Eastern California Shear Zone (ECSZ) has been measured from 1994 to 1999 with the Global Positioning System. The linear array is oriented N54°E, perpendicular to the tangent to the local small circle drawn about the Pacific-North America pole of rotation, and the observed motion across the ECSZ is approximated by differential rotation about that pole. The observations suggest uniform deformation within the ECSZ (strike N23°W) (26 nstrain yr−1 extension normal to the zone and 39 nstrain yr−1 simple right-lateral shear across it) with no significant deformation in the two blocks (the Sierra Nevada mountains and southern Nevada) on either side. The deformation may be imposed by right-lateral slip at depth on the individual major fault systems within the zone if the slip rates are: Death Valley-Furnace Creek fault 3.2±0.9 mm yr−1, Hunter Mountain-Panamint Valley fault 3.3±1.6 mm yr−1, and Owens Valley fault 6.9±1.6 mm yr−1. However, this estimate of the slip rate on the Owens Valley fault is 3 times greater than the geologic estimate.

  3. Shear-wave Velocity Structure and Inter-Seismic Strain Accumulation in the Up-Dip Region of the Cascadia Subduction Zone: Similarities to Tohoku?

    NASA Astrophysics Data System (ADS)

    Collins, J. A.; McGuire, J. J.; Wei, M.

    2013-12-01

    The up-dip region of subduction zone thrusts is difficult to study using land-based seismic and geodetic networks, yet documenting its ability to store and release elastic strain is critical for understanding the mechanics of great subduction earthquakes and tsunami generation. The 2011 Tohoku earthquake produced extremely large slip in the shallowest portion of the subduction zone beneath a region of the fore-arc that is comprised of extremely low-velocity, unconsolidated sediments [Tsuru et al. JGR 2012]. The influence of the sediment material properties on the co-seismic slip distribution and tsunami generation can be considerable through both the effects on the dynamic wavefield during the rupture [Kozdon and Dunham, BSSA 2012] and potentially the build up of strain during the inter-seismic period. As part of the 2010-2011 SeaJade experiment [Scherwath et al, EOS 2011], we deployed 10 ocean bottom seismographs (OBS) on the continental slope offshore of Vancouver Island in the region of the NEPTUNE Canada observatory. One goal of the experiment is to measure the shear modulus of the sediments lying above the subducting plate using the seafloor compliance technique. Using seafloor acceleration measured by broadband seismometer and seafloor pressure measured by Differential Pressure Gauge (DPG), we estimate the compliance spectrum in the infra-gravity wave band (~0.002-0.04 Hz) at 9 sites following the methodology of Crawford et al. [JGR, 1991]. We calibrated DPG sensitivities using laboratory measurements and by comparing teleseismic Rayleigh arrivals recorded on the seismometer and DPG channels [Webb, pers. comm]. We correct the vertical-component seismometer data for tilt using the procedure of Crawford and Webb [BSSA, 2000], Corrections for the gravitational attraction of the surface gravity waves [Crawford et al., JGR, 1998] are important at frequencies of 0.003-0.006 Hz only. Typically, the coherences are high (>0.7) in the 0.006 to 0.03 Hz range. We invert

  4. Strain accumulation in quasicrystalline solids

    NASA Technical Reports Server (NTRS)

    Nori, Franco; Ronchetti, Marco; Elser, Veit

    1988-01-01

    The relaxation of two-dimensional quasicrystalline elastic networks when their constituent bonds are perturbed homogeneously is studied. Whereas ideal, quasi-periodic networks are stable against such perturbations, significant accumulations of strain in a class of disordered networks generated by a growth process are found. The grown networks are characterized by root mean square phason fluctuations which grow linearly with system size. The strain accumulation observed in these networks also grows linearly with system size. Finally, dependence of strain accumulation on cooling rate is found.

  5. Shear jamming in highly strained granular system without shear banding

    NASA Astrophysics Data System (ADS)

    Zhao, Yiqiu; Barés, Jonathan; Zheng, Hu; Behringer, Robert

    2016-11-01

    Bi et al. have shown that, if sheared, a granular material can jam even if its packing fraction (ϕ) is lower than the critical isotropic jamming point ϕJ. They have introduced a new critical packing fraction value ϕS such that for ϕS< ϕ< ϕJ the system jams if sheared. Nevertheless, the value of ϕS as a function of the shear profile or the strain necessary to observe jamming remain poorly understood because of the experimental complexity to access high strain without shear band. We present a novel 2D periodic shear apparatus made of 21 independent, aligned and mirrored glass rings. Each ring can be moved independently which permits us to impose any desired shear profile. The circular geometry allows access to any strain value. The forces between grains are measured using reflective photoelasticity. By performing different shear profiles for different packing fractions we explored the details of jamming diagram including the location of the yield surface. This work is supported by NSF No.DMR1206351, NASA No.NNX15AD38G and W. M. Keck Foundation.

  6. Resolution of axial shear strain elastography

    NASA Astrophysics Data System (ADS)

    Thitaikumar, Arun; Righetti, Raffaella; Krouskop, Thomas A.; Ophir, Jonathan

    2006-10-01

    The technique of mapping the local axial component of the shear strain due to quasi-static axial compression is defined as axial shear strain elastography. In this paper, the spatial resolution of axial shear strain elastography is investigated through simulations, using an elastically stiff cylindrical lesion embedded in a homogeneously softer background. Resolution was defined as the smallest size of the inclusion for which the strain value at the inclusion/background interface was greater than the average of the axial shear strain values at the interface and inside the inclusion. The resolution was measured from the axial shear strain profile oriented at 45° to the axis of beam propagation, due to the absence of axial shear strain along the normal directions. The effects of the ultrasound system parameters such as bandwidth, beamwidth and transducer element pitch along with signal processing parameters such as correlation window length (W) and axial shift (ΔW) on the estimated resolution were investigated. The results show that the resolution (at 45° orientation) is determined by the bandwidth and the beamwidth. However, the upper bound on the resolution is limited by the larger of the beamwidth and the window length, which is scaled inversely to the bandwidth. The results also show that the resolution is proportional to the pitch and not significantly affected by the axial window shift.

  7. Strain patterns and strain accumulation along plate margins

    NASA Technical Reports Server (NTRS)

    Savage, J. C.

    1978-01-01

    Observations of strain accumulation along plate margins in Japan, New Zealand, and the United States indicate that: (1) a typical maximum rate of secular strain accumulation is on the order of 0.3 ppm/a, (2) a substantial part of the strain accumulation process can be attributed to slip at depth on the major plate boundary faults, and (3) some plastic deformation in a zone 100 km or more in width is apparently involved in the strain accumulation process.

  8. Rapid intraplate strain accumulation in the new madrid seismic zone.

    PubMed

    Liu, L; Zoback, M D; Segall, P

    1992-09-18

    Remeasurement of a triangulation network in the southern part of the New Madrid seismic zone with the Global Positioning System has revealed rapid crustal strain accumulation since the 1950s. This area experienced three large (moment magnitudes >8) earthquakes in 1811 to 1812. The orientation and sense of shear is consistent with right-lateral strike slip motion along a northeast-trending fault zone (as indicated by current seismicity). Detection of crustal strain accumulation may be a useful discriminant for identifying areas where potentially damaging intraplate earthquakes may occur despite the absence of large earthquakes during historic time.

  9. Rapid intraplate strain accumulation in the New Madrid seismic zone

    SciTech Connect

    Liu, L.; Zoback, M.D.; Segall, P. USGS, Menlo Park, CA )

    1992-09-01

    Remeasurement of a triangulation network in the southern part of the New Madrid seismic zone with the Global Positioning System has revealed rapid crustal strain accumulation since the 1950s. This area experienced three large (moment magnitudes greater than 8) earthquakes in 1811 to 1812. The orientation and sense of shear is consistent with right-lateral strike slip motion along a northeast-trending fault zone (as indicated by current seismicity). Detection of crustal strain accumulation may be a useful discriminant for identifying areas where potentially damaging intraplate earthquakes may occur despite the absence of large earthquakes during historic time. 34 refs.

  10. Rapid intraplate strain accumulation in the New Madrid seismic zone

    USGS Publications Warehouse

    Liu, L.; Zoback, M.D.; Segall, P.

    1992-01-01

    Remeasurement of a triangulation network in the southern part of the New Madrid seismic zone with the Global Positioning System has revealed rapid crustal strain accumulation since the 1950s. This area experienced three large (moment magnitudes >8) earthquakes in 1811 to 1812. The orientation and sense of shear is consistent with right-lateral strike slip motion along a northeast-trending fault zone (as indicated by current seismicity). Detection of crustal strain accumulation may be a useful discriminant for identifying areas where potentially damaging intraplate earthquakes may occur despite the absence of large earthquakes during historic time.

  11. Shear-strain contours from moire interferometry

    NASA Technical Reports Server (NTRS)

    Post, D.; Czarnek, R.; Joh, D.

    1985-01-01

    The development of whole-field contour maps of shear strains gamma (xy), derived from displacement fields obtained by moire interferometry with 2400 lines/mm, is described. The use of mechanical differentiation to obtain cross-derivatives of displacements and the use of graphical additive moire to sum the cross-derivatives are explained. Quantitative analysis in the small-strain domain is possible because of the high sensitivity of moire interferometry. The applicability of this technique is shown by the testing of a short epoxy beam under three-point bending.

  12. Dynamic Shear Band Development in Plane Strain,

    DTIC Science & Technology

    1987-11-01

    dicular to the initial propagation direction slows (town and further straining occurs inl a hand. The ul1timlate course of events is essentially...pr scribed velocita oal ysiave e n/sec. lie order of ilacint fiie V1 = -3 I/seecorrspon i toean avera elcirt of -300/etersos(i setal *" increase inl ...Spitzig, WV.A., 1980, *Initiation of Localized Shear Bands inl Plane Siraiii..1. .1lcch. Phys. Solids. \\Vol. 28, pp. 113-128. Asaro. R.J., 1983

  13. Strain accumulation at Yucca Mountain, Nevada, 1983-1998

    NASA Astrophysics Data System (ADS)

    Savage, J. C.; Svarc, J. L.; Prescott, W. H.

    1999-08-01

    A 14-station, 50-km aperture geodetic array centered on the proposed radioactive waste disposal site at Yucca Mountain, Nevada, was surveyed in 1983, 1984, 1993, and 1998 to determine the rate of strain accumulation there. The coseismic effects of the 1992 (MS=5.4) Little Skull Mountain earthquake, which occurred within the array, were calculated from a dislocation model and removed from the data. The measured principal strain accumulation rates determined over the 1983-1998 interval are ɛ1 = 2±12 nanostrain/yr N87°W±12° and ɛ2 = -22±12 nanostrain/yr N03°E±12° (extension reckoned positive and quoted uncertainties are standard deviations). The N65°W extension rate is -2±12 nanostrain/yr, significantly less than the 1991-1997 N65°W rate of 50±9 nanostrain/yr reported by Wernicke et al. [1998]. The implied maximum right-lateral engineering-shear, strain accumulation rate is γ=ɛ1-ɛ2 = 23±10 nanostrain/yr, a marginally significant rate. Almost half (ɛ1 = 6 nanostrain/yr N90°W, ɛ2 = -6 nanostrain/yr N00°E, and γ = 12 nanostrain/yr ) of the measured strain rate can be attributed to strain accumulation on the Death Valley-Furnace Creek (50 km distant) and Hunter Mountain-Panamint Valley (90 km distant) faults. The residual strain rate after the removal of those fault contributions is not significant at the 95% confidence level.

  14. Theoretical and natural strain patterns in ductile simple shear zones

    NASA Astrophysics Data System (ADS)

    Ingles, Jacques

    1985-06-01

    A simple empirical model representing the variation of shear strain throughout a simple shear zone allows us to determine the evolution of finite strain as well as the progressive shape changes of passive markers. Theoretical strain patterns (intensity and orientation of finite strain trajectories, deformed shapes of initially planar, equidimensional and non-equidimensional passive markers) compare remarkably well with patterns observed in natural and experimental zones of ductile simple shear (intensity and orientation of schistosity, shape changes of markers, foliation developed by deformation of markers). The deformed shapes of initially equidimensional and non-equidimensional passive markers is controlled by a coefficient P, the product of (1) the ratio between marker size and shear zone thickness (2) the shear gradient across the zone. For small values of P (approximately P < 2), the original markers change nearly into ellipses, while large values of P lead to " retort" shaped markers. This theoretical study also allows us to predict, throughout a simple shear zone, various relationships between the principal finite strain trajectory, planar passive markers and foliations developed by deformation of initially equidimensional passive markers.

  15. Computer modelling of bone's adaptation: the role of normal strain, shear strain and fluid flow.

    PubMed

    Tiwari, Abhishek Kumar; Prasad, Jitendra

    2017-04-01

    Bone loss is a serious health problem. In vivo studies have found that mechanical stimulation may inhibit bone loss as elevated strain in bone induces osteogenesis, i.e. new bone formation. However, the exact relationship between mechanical environment and osteogenesis is less clear. Normal strain is considered as a prime stimulus of osteogenic activity; however, there are some instances in the literature where osteogenesis is observed in the vicinity of minimal normal strain, specifically near the neutral axis of bending in long bones. It suggests that osteogenesis may also be induced by other or secondary components of mechanical environment such as shear strain or canalicular fluid flow. As it is evident from the literature, shear strain and fluid flow can be potent stimuli of osteogenesis. This study presents a computational model to investigate the roles of these stimuli in bone adaptation. The model assumes that bone formation rate is roughly proportional to the normal, shear and fluid shear strain energy density above their osteogenic thresholds. In vivo osteogenesis due to cyclic cantilever bending of a murine tibia has been simulated. The model predicts results close to experimental findings when normal strain, and shear strain or fluid shear were combined. This study also gives a new perspective on the relation between osteogenic potential of micro-level fluid shear and that of macro-level bending shear. Attempts to establish such relations among the components of mechanical environment and corresponding osteogenesis may ultimately aid in the development of effective approaches to mitigating bone loss.

  16. The importance of strain localisation in shear zones

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Finch, Melanie; Gomez-Rivas, Enrique; Griera, Albert; Llorens, Maria-Gema; Steinbach, Florian; Weikusat, Ilka

    2016-04-01

    The occurrence of various types of shear bands (C, C', C'') in shear zones indicate that heterogeneity of strain is common in strongly deformed rocks. However, the importance of strain localisation is difficult to ascertain if suitable strain markers are lacking, which is usually the case. Numerical modelling with the finite-element method has so far not given much insight in the development of shear bands. We suggest that this is not only because the modelled strains are often not high enough, but also because this technique (that usually assumes isotropic material properties within elements) does not properly incorporate mineral deformation behaviour. We simulated high-strain, simple-shear deformation in single- and polyphase materials with a full-field theory (FFT) model coupled to the Elle modelling platform (www.elle.ws; Lebensohn 2001; Bons et al. 2008). The FFT-approach simulates visco-plastic deformation by dislocation glide, taking into account the different available slip systems and their critical resolved shear stresses in relations to the applied stresses. Griera et al. (2011; 2013) have shown that this approach is particularly well suited for strongly anisotropic minerals, such as mica and ice Ih (Llorens 2015). We modelled single- and polyphase composites of minerals with different anisotropies and strengths, roughly equivalent to minerals such as ice Ih, mica, quartz and feldspar. Single-phase polycrystalline aggregates show distinct heterogeneity of strain rate, especially in case of ice Ih, which is mechanically close to mica (see also Griera et al. 2015). Finite strain distributions are heterogeneous as well, but the patterns may differ from that of the strain rate distribution. Dynamic recrystallisation, however, usually masks any strain and strain rate localisation (Llorens 2015). In case of polyphase aggregates, equivalent to e.g. a granite, we observe extensive localisation in both syn- and antithetic shear bands. The antithetic shear bands

  17. Ismetpasa and Destek regions; Creeping or accumulating strain

    NASA Astrophysics Data System (ADS)

    Yavasoglu, Hakan; Alkan, M. Nurullah; Aladogan, Kayhan; Ozulu, I. Murat; Ilci, Veli; Sahin, Murat; Tombus, F. Engin; Tiryakioglu, Ibrahim

    2016-04-01

    The North Anatolian Fault (NAF) is one of the most destructive fault system all over the world. In the last century, many devastating seismic event happened on it and its shear zone (NAFZ). Especially, after the 1999 Izmit and Duzce earthquakes, the earth science studies increase to save human life. To better understand the mechanism of the active fault system, tectonic stress and strain are important phenomena. According to elastic rebound theory, the locked active faults release the accumulated strain abruptly in four periods; interseismic, preseismic, coseismic and postseismic. In the literature, this phase is called the earthquake cycle. On the other hand, there is another scenario (aseismic deformation or creep) to release the strain without any remarkable seismic event. For the creep procedure, the important subject is threshold of the aseismic slip rate. If it is equal or larger than long-term slip rate, the destructive earthquakes will not occur along the fault which has aseismic slip rate. On the contrary, if the creep motion is lower than long-term slip rate along the fault, the fault has potential to produce moderate-to-large size earthquakes. In this study, the regions, Ismetpasa and Destek, have been studied to determine the aseismic deformation using GPS data. The first and second GPS campaigns have been evaluated with GAMIT/GLOBK software. Preliminary results of the project (slip-rate along the NAF in this region and aseismic deformation) will be presented.

  18. Strain localization driven by structural relaxation in sheared amorphous solids.

    PubMed

    Jagla, E A

    2007-10-01

    A two dimensional amorphous material is modeled as an assembly of mesoscopic elemental pieces coupled together to form an elastically coherent structure. Plasticity is introduced as the existence of different minima in the energy landscape of the elemental constituents. Upon the application of an external strain rate, the material shears through the appearance of elemental slip events with quadrupolar symmetry. When the energy landscape of the elemental constituents is kept fixed, the slip events distribute uniformly throughout the sample, producing on average a uniform deformation. However, when the energy landscape at different spatial positions can be rearranged dynamically to account for structural relaxation, the system develops inhomogeneous deformation in the form of shear bands at low shear rates, and stick-slip-like motion at the shear bands for the lowest shear rates. The origin of strain localization is traced back to a region of negative correlation between strain rate and stress, which appears only if structural relaxation is present. The model also reproduces other well known effects in the rheology of amorphous materials, as a stress peak in a strain rate controlled experiment staring from rest, and the increase of the maximum of this peak with sample age.

  19. Critical scaling with strain rate in overdamped sheared disordered solids

    NASA Astrophysics Data System (ADS)

    Clemmer, Joel; Salerno, Kenneth; Robbins, Mark

    In the limit of quasistatic shear, disordered solids demonstrate non-equilibrium critical behavior including power-law distributions of avalanches. Using molecular dynamics simulations of 2D and 3D overdamped binary LJ glasses, we explore the critical behavior in the limit of finite strain rate. We use finite-size scaling to find the critical exponents characterizing shear stress, kinetic energy, and measures of temporal and spatial correlations. The shear stress of the system rises as a power β of the strain rate. Larger system size extends this power law to lower rates. This behavior is governed by a power law drop of the dynamic correlation length with increasing shear stress defined by the exponent ν. This finite-size effect also impacts the scaling of the RMS kinetic energy with strain rate as avalanches begin nucleating simultaneously leading to continuous deformation of the solid. As system size increases, avalanches begin overlapping at lower rates. The correlation function of non-affine displacement exhibits novel anisotropic power law scaling with the magnitude of the wave vector. Its strain rate dependence is used to determine the scaling of the dynamic correlation length. Support provided by: DMR-1006805; NSF IGERT-0801471; OCI-0963185; CMMI-0923018.

  20. Winged inclusions under high-strain simple shear

    NASA Astrophysics Data System (ADS)

    Grasemann, Bernhard; Dabrowski, Marcin

    2014-05-01

    In this study we investigate pinch-and-swell objects, which have been subjected to layer parallel shear deformation. We use a high-resolution mechanical numerical model, which allows to model finite strains up to γ = 40. The developing structures have been called winged inclusions, which have geometrically similarities with δ-clast systems and rolling structures. However, our model results suggest markedly different mechanical evolution for winged inclusions, which has to be considered when these structures are used as shear sense indicator or finite strain gauge. During the early stages of formation winged inclusions may resemble mirror images of sigmoidal objects and miss-interpretations will lead to a wrong interpretation of the shear sense. During high-shear strain, the structures may be approximately described as consisting of a pulsating faster rotating core and thinning tails that experience differential slower rotation. The viscosity ratio and the shape of the winged inclusion have a significant influence on the rotation rate. The tails are subject to ptygmatic folding when they rotate through the field of instantaneous shortening and may unfold again in the field of instantaneous stretching. During on-going shearing the trailing wing may become the leading wing and finally unfold after rotation of 180° resulting again in a pinch and swell shaped objects. Therefore winged inclusions record little information about the finite strain. Rootless intrafolial folds with opposing closures have geometrically strong similarities with winged inclusions. It is speculated that the formation of winged inclusions might be an efficient mechanisms to produce rootless intrafolial folds, which might influence the rheological behaviour of natural highly strained rocks.

  1. Theory and Practice of Shear/Stress Strain Gage Hygrometry

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Fenner, Ralph L.

    2006-01-01

    Mechanical hygrometry has progressed during the last several decades from crude hygroscopes to state-of-the art strain-gage sensors. The strain-gage devices vary from different metallic beams to strain-gage sensors using cellulose crystallite elements, held in full shear restraint. This old technique is still in use but several companies are now actively pursuing development of MEMS miniaturized humidity sensors. These new sensors use polyimide thin film for water vapor adsorption and desorption. This paper will provide overview about modern humidity sensors.

  2. Strain stiffening and stress heterogeneities in sheared collagen networks

    NASA Astrophysics Data System (ADS)

    Urbach, Jeffrey

    2014-03-01

    Disordered networks of stiff or semi-flexible filaments display unusual mechanical properties, including dramatic stiffening when sheared, but little is known about the spatial distribution of stresses. This talk will introduce the technique of Boundary Stress Microscopy, which adapts the approach of traction force microscopy to rheological measurements in order to quantify the non-uniform surface stresses in sheared soft materials. Our results on networks of the biopolymer collagen, a major component of the extracellular matrix, show stress variations over length scales much larger than the network mesh size. We find that the heterogeneity increases with strain stiffening, with stresses at high strains exceeding average stresses by an order of magnitude. The strain stiffening behavior over a wide range of mesh sizes can be parameterized by a single characteristic strain and associated stress, which describes both the strain stiffening regime and network yielding. The characteristic stress is approximately proportional to network density, but the peak stress at both the characteristic strain and at yielding are remarkably insensitive to concentration. These results show the power of Boundary Stress Microscopy to reveal the nature of stress propagation in disordered soft materials, which is critical for understanding many important mechanical properties, including the ultimate strength of a material and the nature of appropriate microscopic constitutive equations. Supported by the AFOSR (FA9550-10-1-0473) and the NSF (DMR-0804782).

  3. Shear Weakening and Strain Localization in the Deeper Mantle?

    NASA Astrophysics Data System (ADS)

    Hernlund, J. W.

    2011-12-01

    Shear weakening and strain localization is an essential component of plate tectonics on Earth, and is ubiquitously observed in both crustal and mantle rocks exposed at Earth's surface at a variety of scales. However, it is commonly assumed that this process is only important in the lithosphere (because it would otherwise be strong and inhibit plate-like behavior), and that at greater depths the mantle's style of deformation is inherently diffuse and broadly distributed. This assumption strongly influences our view of processes in Earth's deep interior, such as styles of mantle mixing, and is the basis for the rheological formulation implemented in most mantle convection models. However, there are many possibilities that would permit shear localization at large scales, in a way that could alter our view of internal mantle deformation in important ways. One example is the possible presence of very weak rocks (e.g., owing to localized volatile enrichment) that may become sheared and stretched in flows to create effective weak zones between stronger bodies of rock. Another example is the possibility that weaker mineral phases in a rock can become sheared between stronger grains such that the weakest phase dominates the long-term dynamic processes operating in the mantle. Simple modeling of various scenarios reveals that differences in long-term behavior for shear localized mantle convection largely depend upon the scale of the shear zone. If the weak zones are large in scale, they acan persist over long time scales, and may be advected laterally away from the buoyancy centers where they are produced (giving rise to toroidal motion). On the other hand, if the weakening fabric occurs at the grain-scale, then the fabric can be healed by processes such as Ostwald ripening that operate on shorter time scales at higher temperatures. Regardless of the scale of shear zones, subduction of slabs through the lower mantle can occur relatively rapidly when accommodated by localized

  4. Surface strain measurements of fingertip skin under shearing

    PubMed Central

    2016-01-01

    The temporal evolution of surface strain, resulting from a combination of normal and tangential loading forces on the fingerpad, was calculated from high-resolution images. A customized robotic device loaded the fingertip with varying normal force, tangential direction and tangential speed. We observed strain waves that propagated from the periphery to the centre of the contact area. Consequently, different regions of the contact area were subject to varying degrees of compression, stretch and shear. The spatial distribution of both the strains and the strain energy densities depended on the stimulus direction. Additionally, the strains varied with the normal force level and were substantial, e.g. peak strains of 50% with a normal force of 5 N, i.e. at force levels well within the range of common dexterous manipulation tasks. While these observations were consistent with some theoretical predictions from contact mechanics, we also observed substantial deviations as expected given the complex geometry and mechanics of fingertips. Specifically, from in-depth analyses, we conclude that some of these deviations depend on local fingerprint patterns. Our data provide useful information for models of tactile afferent responses and background for the design of novel haptic interfaces. PMID:26888949

  5. Shear Band Formation in Plane Strain Experiments of Sand

    NASA Technical Reports Server (NTRS)

    Alshibli, Khalid A.; Sture, Stein

    2000-01-01

    A series of biaxial (plane strain) experiments were conducted on three sands under low (15 kPa) and high (100 kPa) confining pressure conditions to investigate the effects of specimen density, confining pressure, and sand grain size and shape on the constitutive and stability behavior of granular materials. The three sands used in the experiments were fine-, medium-, and coarse-grained uniform silica sands with rounded, subangular, and angular grains, respectively. Specimen deformation was readily monitored and analyzed with the help of a grid pattern imprinted on the latex membrane. The overall stress-strain behavior is strongly dependent on the specimen density, confining pressure, sand grain texture, and the resulting failure mode(s). That became evident in different degrees of softening responses at various axial strains. The relationship between the constitutive behavior and the specimens' modes of instability is presented. The failure in all specimens was characterized by two distinct and opposite shear bands. It was found that the measured dilatancy angles increase as the sand grains' angularities and sizes increase. The measured shear band inclination angles are also presented and compared with classical Coulomb and Roscoe solutions.

  6. Pressure-strain-rate events in homogeneous turbulent shear flow

    NASA Technical Reports Server (NTRS)

    Brasseur, James G.; Lee, Moon J.

    1988-01-01

    A detailed study of the intercomponent energy transfer processes by the pressure-strain-rate in homogeneous turbulent shear flow is presented. Probability density functions (pdf's) and contour plots of the rapid and slow pressure-strain-rate show that the energy transfer processes are extremely peaky, with high-magnitude events dominating low-magnitude fluctuations, as reflected by very high flatness factors of the pressure-strain-rate. A concept of the energy transfer class was applied to investigate details of the direction as well as magnitude of the energy transfer processes. In incompressible flow, six disjoint energy transfer classes exist. Examination of contours in instantaneous fields, pdf's and weighted pdf's of the pressure-strain-rate indicates that in the low magnitude regions all six classes play an important role, but in the high magnitude regions four classes of transfer processes, dominate. The contribution to the average slow pressure-strain-rate from the high magnitude fluctuations is only 50 percent or less. The relative significance of high and low magnitude transfer events is discussed.

  7. Deformation and failure of OFHC copper under high strain rate shear compression

    NASA Astrophysics Data System (ADS)

    Ruggiero, Andrew; Testa, Gabriel; Bonora, Nicola; Iannitti, Gianluca; Persechino, Italo; Colliander, Magnus Hörnqvist

    2017-01-01

    Hat-shaped specimen geometries were developed to generate high strain, high-strain-rates deformation under prescribed conditions. These geometries offer also the possibility to investigate the occurrence of ductile rupture under low or negative stress triaxiality, where most failure models fail. In this work, three tophat geometries were designed, by means of extensive numerical simulation, to obtain desired stress triaxiality values within the shear region that develops across the ligament. Material failure was simulated using the Continuum Damage Model (CDM) formulation with a unilateral condition for damage accumulation and validated by comparing with quasi-static and high strain rate compression tests results on OFHC copper. Preliminary results seem to indicate that ductile tearing initiates at the specimen corner location where positive stress triaxiality occurs because of local rotation and eventually propagates along the ligament.

  8. Shear band evolution and accumulated microstructural development in Cosserat media

    NASA Astrophysics Data System (ADS)

    Tordesillas, A.; Peters, J. F.; Gardiner, B. S.

    2004-08-01

    This paper prepares the ground for the continuum analysis of shear band evolution using a Cosserat/micropolar constitutive equation derived from micromechanical considerations. The nature of the constitutive response offers two key advantages over other existing models. Firstly, its non-local character obviates the mathematical difficulties of traditional analyses, and facilitates an investigation of the shear band evolution (i.e. the regime beyond the onset of localization). Secondly, the constitutive model parameters are physical properties of particles and their interactions (e.g. particle stiffness coefficients, coefficients of inter-particle rolling friction and sliding friction), as opposed to poorly understood fitting parameters. In this regard, the model is based on the same material properties used as model inputs to a discrete element (DEM) analysis, therefore, the micromechanics approach provides the vehicle for incorporating results not only from physical experiments but also from DEM simulations. Although the capabilities of such constitutive models are still limited, much can be discerned from their general rate form. In this paper, an attempt is made to distinguish between those aspects of the continuum theory of localization that are independent of the constitutive model, and those that require significant advances in the understanding of micromechanics. Copyright

  9. In-situ shear stress indicator using heated strain gages at the flow boundary

    NASA Astrophysics Data System (ADS)

    Yeh, Chi-An; Yang, Fuling

    2011-11-01

    This work borrows the concept of hot-wire anemometry and sketch a technique that uses local heat transfer to infer the flow field and the corresponding stress. Conventional strain gages were mounted at the flow solid boundary as the heat source and acrylic boundary was chosen for its low thermal conductivity ensuring heat accumulation when a gage is energized. The gage would now work in slightly overheated state and its self-heating leads to an additional thermal strain. When exposed to a flow field, heat is brought away by local forced convection, resulting in deviations in gage signal from that developed in quiescent liquid. We have developed a facility to achieve synchronous gage measurements at different locations on a solid boundary. Three steady flow motions were considered: circular Couette flow, rectilinear uniform flow, and rectilinear oscillating flow. Preliminary tests show the gage reading does respond to the imposed flow through thermal effects and greater deviation was measured in flows of higher shear strain rates. The correlation between the gage signals and the imposed flow field is further examined by theoretical analysis. We also introduced a second solid boundary to the vicinity of the gage in the two rectilinear flows. The gage readings demonstrate rises in its magnitudes indicating wall amplification effect on the local shear strain, agreeing to the drag augmentation by a second solid boundary reported in many multiphase flow literatures.

  10. A physical model for strain accumulation in the San Francisco Bay Region

    USGS Publications Warehouse

    Pollitz, F.F.; Nyst, M.

    2005-01-01

    Strain accumulation in tectonically active regions is generally a superposition of the effects of background tectonic loading, steady-state dislocation processes, such as creep, and transient deformation. In the San Francisco Bay region (SFBR), the most uncertain of these processes is transient deformation, which arises primarily in association with large earthquakes. As such, it depends upon the history of faulting and the rheology of the crust and mantle, which together determine the pattern of longer term (decade-scale) post-seismic response to earthquakes. We utilize a set of 102 GPS velocity vectors in the SFBR in order to characterize the strain rate field and construct a physical model of its present deformation. We first perform an inversion for the continuous velocity gradient field from the discrete GPS velocity field, from which both tensor strain rate and rotation rate may be extracted. The present strain rate pattern is well described as a nearly uniform shear strain rate oriented approximately N34??W (140 nanostrain yr-1) plus a N56??E uniaxial compression rate averaging 20 nanostrain yr-1 across the shear zone. We fit the velocity and strain rate fields to a model of time-dependent deformation within a 135-kin-wide, arcuate shear zone bounded by strong Pacific Plate and Sierra Nevada block lithosphere to the SW and NE, respectively. Driving forces are purely lateral, consisting of shear zone deformation imposed by the relative motions between the thick Pacific Plate and Sierra Nevada block lithospheres. Assuming a depth-dependent viscoelastic structure within the shear zone, we account for the effects of steady creep on faults and viscoelastic relaxation following the 1906 San Francisco and 1989 Loma Prieta earthquakes, subject to constant velocity boundary conditions on the edges of the shear zone. Fault creep is realized by evaluating dislocations on the creeping portions of faults in the fluid limit of the viscoelastic model. A priori plate

  11. Visualization of bonding at an inclusion boundary using axial-shear strain elastography: a feasibility study

    NASA Astrophysics Data System (ADS)

    Thitaikumar, Arun; Krouskop, Thomas A.; Garra, Brian S.; Ophir, Jonathan

    2007-05-01

    Ultrasound elastography produces strain images of compliant tissues under quasi-static compression. In axial-shear strain elastography, the local axial-shear strain resulting from application of quasi-static axial compression to an inhomogeneous material is imaged. The overall hypothesis of this work is that the pattern of axial-shear strain distribution around the inclusion/background interface is completely determined by the bonding at the interface after normalization for inclusion size and applied strain levels, and that it is feasible to extract certain features from the axial-shear strain elastograms to quantify this pattern. The mechanical model used in this study consisted of a single stiff circular inclusion embedded in a homogeneous softer background. First, we performed a parametric study using finite-element analysis (FEA) (no ultrasound involved) to identify possible features that quantify the pattern of axial-shear strain distribution around an inclusion/background interface. Next, the ability to extract these features from axial-shear strain elastograms, estimated from simulated pre- and post-compression noisy RF data, was investigated. Further, the feasibility of extracting these features from in vivo breast data of benign and malignant tumors was also investigated. It is shown using the FEA study that the pattern of axial-shear strain distribution is determined by the degree of bonding at the inclusion/background interface. The results suggest the feasibility of using normalized features that capture the region of positive and negative axial-shear strain area to quantify the pattern of the axial-shear strain distribution. The simulation results showed that it was feasible to extract the features, as identified in the FEA study, from axial-shear strain elastograms. However, an effort must be made to obtain axial-shear strain elastograms with the highest signal-to-noise ratio (SNRasse) possible, without compromising the resolution. The in vivo

  12. Nonuniform Shear Strains in Torsional Kolsky Bar Tests on Soft Specimens

    DTIC Science & Technology

    2015-02-01

    ARL-RP-0519 ● FEB 2015 US Army Research Laboratory Nonuniform Shear Strains in Torsional Kolsky Bar Tests on Soft Specimens...originator. ARL-RP-0519 ● FEB 2015 US Army Research Laboratory Nonuniform Shear Strains in Torsional Kolsky Bar Tests on Soft Specimens...

  13. Strain localization in direct shear experiments on Solnhofen limestone at high temperature Effects of transpression

    NASA Astrophysics Data System (ADS)

    Llana-Fúnez, Sergio; Rutter, Ernest H.

    2008-11-01

    Some features of natural shear zones formed under non-coaxial strain geometries, including some effects of transpression, can be simulated in the laboratory by using the direct shear experimental configuration. Slices of ˜1 mm thick Solnhofen limestone were deformed in direct shear between two stronger forcing blocks of cores of Tennessee sandstone pre-cut at 45° to the cylinder axis. Experiments were run dry at 600 °C, 200 MPa confining pressure and bulk shear strain rates of ˜5 × 10 -3 s -1, at which conditions Solnhofen limestone deformed by dislocation creep with a stress exponent of 4.7. When loaded, strain concentrates in the limestone band, producing non-coaxial deformation as one pre-cut block slides past the other. The orientation and intensity of the shape fabric developed in calcite grains indicate that strain is heterogeneous across the specimen, with the formation of two high-strain shear bands close to the limestone-sandstone interface, separated by a central zone of low strain. Crystallographic preferred orientation patterns in the calcite grains measured by electron backscatter diffraction are consistent with a switch in deformation geometry from flattening-dominated in the middle of the specimen towards shear-dominated in the high-strain bands. From tests on thin slices of the same material compressed axisymmetrically (without shearing) normal to the layer, heterogeneous thinning of the slice develops, from a maximum in the centre of the slice to zero at the edges. The formation of the paired shear zones observed in the sheared experiments is interpreted in terms of superposed strain fields, with shearing in the centre of the slice being inhibited by the strain hardening that accompanies the higher flattening strain in the centre of the specimen.

  14. Strain localization driven by thermal decomposition during seismic shear

    NASA Astrophysics Data System (ADS)

    Platt, J. D.; Brantut, N.; Rice, J. R.

    2011-12-01

    De Paola et al. [2008] analyzed a series of faults in the Northern Apennines, Italy, hosted in anhydrite and dolomite rocks. They found a highly localized band of less than 100 microns, contained within a broader damage zone. Recent High-Velocity Friction (HVF) experiments on kaolinite-bearing gouge samples (Brantut et al. [2008]) have also shown extreme localization in samples undergoing thermal decomposition. They performed microstructural analysis on HVF samples and found an "ultralocalized deformation zone", less than ten microns wide, interpreted to be the main slipping zone in the experiment. By measuring relative humidity in the sample chamber they were also able to observe the thermal dehydration of kaolinite. These laboratory and field observations indicate that straining is extremely localized in fault materials where thermal decomposition reactions may occur. During thermal decomposition reactions pore fluid is released, leading to increases in pore pressure, and a corresponding drop in frictional heating. The reactions are endothermic, so heat is also absorbed as the reactions progress. Previous work by Sulem and Famin [2009] has investigated how these effects influence the evolution of pore pressure and temperature in a uniformly sheared gouge layer. They found that accounting for thermal decomposition reactions leads to significant pore pressure increases, and that the endothermic nature of the reaction acts to cap the maximum temperature achieved. In previous work (Platt, Rudnicki and Rice [2010]) we investigated strain localization using a model for shearing of a fluid-saturated gouge material, finding a formula for the localized zone width as a function of physical properties of the gouge. We now extend this model to include thermal decomposition. Using linear stability methods and an idealized reaction kinetic we infer a new localized zone width when decomposition is accounted for. Numerical simulations then allow us to compare this prediction to

  15. Strain accumulation in southern California, 1973-1980.

    USGS Publications Warehouse

    Savage, J.C.; Prescott, W.H.; Lisowski, M.; King, N.E.

    1981-01-01

    Frequent surveys of seven trilateration networks in southern California over the interval 1973-1980 suggest that a regional increment in strain may have occurred in 1978-1979. Prior to 1978 and after late 1979 the strain accumulation has been predominantly a uniaxial north-south compression. This secular trend was interrupted sometime in 1978-1979 by an increment in both north-south and east-west extension in five of the seven networks. The onset of this change appears to have occurred first in the networks farthest south. The changes occurred without any unusual seismicity within the networks, but the overall seismicity in southern California was unusually low prior to and has been unusually high since the occurrence. The average principal strain rates for the seven networks in the 1973-1980 interval are 0.17 mu strain/yr north- south contraction and 0.08 mu strain/yr east-west extension. Although the observed increment in strain could be related to unidentified systematic error in the measuring system, a careful review of the measurements and comparisons with three other measuring systems reveal no appreciable cumulative systematic error. -Authors

  16. Large enhancement of superconducting transition temperature in single-element superconducting rhenium by shear strain.

    PubMed

    Mito, Masaki; Matsui, Hideaki; Tsuruta, Kazuki; Yamaguchi, Tomiko; Nakamura, Kazuma; Deguchi, Hiroyuki; Shirakawa, Naoki; Adachi, Hiroki; Yamasaki, Tohru; Iwaoka, Hideaki; Ikoma, Yoshifumi; Horita, Zenji

    2016-11-04

    Finding a physical approach for increasing the superconducting transition temperature (Tc) is a challenge in the field of material science. Shear strain effects on the superconductivity of rhenium were investigated using magnetic measurements, X-ray diffraction, transmission electron microscopy, and first-principles calculations. A large shear strain reduces the grain size and simultaneously expands the unit cells, resulting in an increase in Tc. Here we show that this shear strain approach is a new method for enhancing Tc and differs from that using hydrostatic strain. The enhancement of Tc is explained by an increase in net electron-electron coupling rather than a change in the density of states near the Fermi level. The shear strain effect in rhenium could be a successful example of manipulating Bardeen-Cooper-Schrieffer-type Cooper pairing, in which the unit cell volumes are indeed a key parameter.

  17. Large enhancement of superconducting transition temperature in single-element superconducting rhenium by shear strain

    NASA Astrophysics Data System (ADS)

    Mito, Masaki; Matsui, Hideaki; Tsuruta, Kazuki; Yamaguchi, Tomiko; Nakamura, Kazuma; Deguchi, Hiroyuki; Shirakawa, Naoki; Adachi, Hiroki; Yamasaki, Tohru; Iwaoka, Hideaki; Ikoma, Yoshifumi; Horita, Zenji

    2016-11-01

    Finding a physical approach for increasing the superconducting transition temperature (Tc) is a challenge in the field of material science. Shear strain effects on the superconductivity of rhenium were investigated using magnetic measurements, X-ray diffraction, transmission electron microscopy, and first-principles calculations. A large shear strain reduces the grain size and simultaneously expands the unit cells, resulting in an increase in Tc. Here we show that this shear strain approach is a new method for enhancing Tc and differs from that using hydrostatic strain. The enhancement of Tc is explained by an increase in net electron–electron coupling rather than a change in the density of states near the Fermi level. The shear strain effect in rhenium could be a successful example of manipulating Bardeen–Cooper–Schrieffer-type Cooper pairing, in which the unit cell volumes are indeed a key parameter.

  18. Large enhancement of superconducting transition temperature in single-element superconducting rhenium by shear strain

    PubMed Central

    Mito, Masaki; Matsui, Hideaki; Tsuruta, Kazuki; Yamaguchi, Tomiko; Nakamura, Kazuma; Deguchi, Hiroyuki; Shirakawa, Naoki; Adachi, Hiroki; Yamasaki, Tohru; Iwaoka, Hideaki; Ikoma, Yoshifumi; Horita, Zenji

    2016-01-01

    Finding a physical approach for increasing the superconducting transition temperature (Tc) is a challenge in the field of material science. Shear strain effects on the superconductivity of rhenium were investigated using magnetic measurements, X-ray diffraction, transmission electron microscopy, and first-principles calculations. A large shear strain reduces the grain size and simultaneously expands the unit cells, resulting in an increase in Tc. Here we show that this shear strain approach is a new method for enhancing Tc and differs from that using hydrostatic strain. The enhancement of Tc is explained by an increase in net electron–electron coupling rather than a change in the density of states near the Fermi level. The shear strain effect in rhenium could be a successful example of manipulating Bardeen–Cooper–Schrieffer-type Cooper pairing, in which the unit cell volumes are indeed a key parameter. PMID:27811983

  19. A comparative study of strain and shear-wave elastography in an elasticity phantom.

    PubMed

    Carlsen, Jonathan F; Pedersen, Malene R; Ewertsen, Caroline; Săftoiu, Adrian; Lönn, Lars; Rafaelsen, Søren R; Nielsen, Michael B

    2015-03-01

    OBJECTIVE. The purpose of this study was to assess the diagnostic accuracy of strain and shear-wave elastography for determining targets of varying stiffness in a phantom. The effect of target diameter on elastographic assessments and the effect of depth on shear-wave velocity were also investigated. MATERIALS AND METHODS. We examined 20 targets of varying diameters (2.5-16.7 mm) and stiffnesses (8, 14, 45, and 80 kPa) with a 4-9-MHz linear-array transducer. Targets were evaluated 10 times with three different methods-shear-wave elastography, strain ratio, and strain histogram analysis-yielding 600 evaluations. AUCs were calculated for data divided between different stiffnesses. A 1.5-6-MHz curved-array transducer was used to assess the effect of depth (3.5 vs 6 cm) on shear-wave elastography in 80 scans. Mixed model analysis was performed to assess the effect of target diameter and depth. RESULTS. Strain ratio and strain histogram AUCs were higher than the shear-wave velocity AUC (p < 0.001) in data divided as 80 versus 45, 14, and 8 kPa. In data divided as 80 and 45 versus 14 and 8 kPa, the methods were equal (p = 0.959 and p = 1.000, respectively). Strain ratios were superior (p = 0.030), whereas strain histograms were not significantly better (p = 0.083) than shear-wave elastography in data divided as 80, 45, and 14 versus 8 kPa. Target diameter had an effect on all three methods (p = 0.001). Depth had an effect on shear-wave velocity (p = 0.001). CONCLUSION. The ability to discern different target stiffnesses varies between shear-wave and strain elastography. Target diameter affected all methods. Shear-wave elastography is affected by target depth.

  20. Analysis of strain paths of sheared edges during hole expansion tests

    NASA Astrophysics Data System (ADS)

    Koebel, Philipp; Van Tyne, Chester J.; Hora, Pavel; Manopulo, Niko

    2013-12-01

    One of the limitations to the widespread use of advanced high strength steel (AHSS) sheets is the cracking of sheared edges during subsequent stretching operations, as nearly all stamped parts are sheared prior to sheet forming. Cracking at the edge occurs at levels below the conventional forming limit criteria. Understanding the strain path of the sheared edge during a hole expansion test should provide insight into the strain path of a sheared edge when it is stretched during production. As a result, experimental as well as finite element simulations are used for analyzing the strain path behavior of a sheared edge during hole expansion tests. The shearing process changes the global behavior in the sheet during a hole expansion, and the finite element results indicate that the strain paths for points near the edge of the hole during expansion are non-linear due to the presence of the shear affected zone (SAZ). These results are consistent with previously measured experimental values for the strain path.

  1. An octahedral shear strain-based measure of SNR for 3D MR elastography

    NASA Astrophysics Data System (ADS)

    McGarry, M. D. J.; Van Houten, E. E. W.; Perriñez, P. R.; Pattison, A. J.; Weaver, J. B.; Paulsen, K. D.

    2011-07-01

    A signal-to-noise ratio (SNR) measure based on the octahedral shear strain (the maximum shear strain in any plane for a 3D state of strain) is presented for magnetic resonance elastography (MRE), where motion-based SNR measures are commonly used. The shear strain, γ, is directly related to the shear modulus, μ, through the definition of shear stress, τ = μγ. Therefore, noise in the strain is the important factor in determining the quality of motion data, rather than the noise in the motion. Motion and strain SNR measures were found to be correlated for MRE of gelatin phantoms and the human breast. Analysis of the stiffness distributions of phantoms reconstructed from the measured motion data revealed a threshold for both strain and motion SNR where MRE stiffness estimates match independent mechanical testing. MRE of the feline brain showed significantly less correlation between the two SNR measures. The strain SNR measure had a threshold above which the reconstructed stiffness values were consistent between cases, whereas the motion SNR measure did not provide a useful threshold, primarily due to rigid body motion effects.

  2. An Octahedral Shear Strain Based measure of SNR for 3D MR Elastography

    PubMed Central

    McGarry, MDJ; Van Houten, EEW; Perriñez, PR; Pattison, AJ; Weaver, JB; Paulsen, KD

    2011-01-01

    A signal to noise ratio (SNR) measure based on the octahedral shear strain (the maximum shear strain in any plane for a 3D state of strain) is presented for MR elastography, where motion-based SNR measures are commonly used. The shear strain, γ, is directly related to the shear modulus, μ, through the definition of shear stress, τ = μγ. Therefore, noise in the strain is the important factor in determining the quality of motion data, rather than the noise in the motion. Motion and strain SNR measures were found to be correlated for MRE of gelatin phantoms and human breast. Analysis of the stiffness distributions of phantoms reconstructed from the measured motion data revealed a threshold for both strain and motion SNR where MRE stiffness estimates match independent mechanical testing. MRE of the feline brain showed significantly less correlation between the two SNR measures. The strain SNR measure had a threshold above which the reconstructed stiffness values were consistent between cases, whereas the motion SNR measure did not provide a useful threshold, primarily due to rigid body motion effects. PMID:21654044

  3. An octahedral shear strain-based measure of SNR for 3D MR elastography.

    PubMed

    McGarry, M D J; Van Houten, E E W; Perriñez, P R; Pattison, A J; Weaver, J B; Paulsen, K D

    2011-07-07

    A signal-to-noise ratio (SNR) measure based on the octahedral shear strain (the maximum shear strain in any plane for a 3D state of strain) is presented for magnetic resonance elastography (MRE), where motion-based SNR measures are commonly used. The shear strain, γ, is directly related to the shear modulus, μ, through the definition of shear stress, τ = μγ. Therefore, noise in the strain is the important factor in determining the quality of motion data, rather than the noise in the motion. Motion and strain SNR measures were found to be correlated for MRE of gelatin phantoms and the human breast. Analysis of the stiffness distributions of phantoms reconstructed from the measured motion data revealed a threshold for both strain and motion SNR where MRE stiffness estimates match independent mechanical testing. MRE of the feline brain showed significantly less correlation between the two SNR measures. The strain SNR measure had a threshold above which the reconstructed stiffness values were consistent between cases, whereas the motion SNR measure did not provide a useful threshold, primarily due to rigid body motion effects.

  4. Method for obtaining simple shear material properties of the intervertebral disc under high strain rates.

    PubMed

    Ott, Kyle A; Armiger, Robert S; Wickwire, Alexis C; Carneal, Catherine M; Trexler, Morgana M; Lennon, Andrew M; Zhang, Jiangyue; Merkle, Andrew C

    2012-01-01

    Predicting spinal injury under high rates of vertical loading is of interest, but the success of computational models in modeling this type of loading scenario is highly dependent on the material models employed. Understanding the response of these biological materials at high strain rates is critical to accurately model mechanical response of tissue and predict injury. While data exists at lower strain rates, there is a lack of the high strain rate material data that are needed to develop constitutive models. The Split Hopkinson Pressure Bar (SHPB) has been used for many years to obtain properties of various materials at high strain rates. However, this apparatus has mainly been used for characterizing metals and ceramics and is difficult to apply to softer materials such as biological tissue. Recently, studies have shown that modifications to the traditional SHPB setup allow for the successful characterization of mechanical properties of biological materials at strain rates and peak strain values that exceed alternate soft tissue testing techniques. In this paper, the previously-reported modified SHPB technique is applied to characterize human intervertebral disc material under simple shear. The strain rates achieved range from 5 to 250 strain s-1. The results demonstrate the sensitivity to the disc composition and structure, with the nucleus pulposus and annulus fibrosus exhibiting different behavior under shear loading. Shear tangent moduli are approximated at varying strain levels from 5 to 20% strain. This data and technique facilitates determination of mechanical properties of intervertebral disc materials under shear loading, for eventual use in constitutive models.

  5. A Shear Strain Route Dependency of Martensite Formation in 316L Stainless Steel.

    PubMed

    Kang, Suk Hoon; Kim, Tae Kyu; Jang, Jinsung; Oh, Kyu Hwan

    2015-06-01

    In this study, the effect of simple shearing on microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. Two different shear strain routes were obtained by twisting cylindrical specimens in the forward and backward directions. The strain-induced martensite phase was effectively obtained by alteration of the routes. Formation of the martensite phase clearly resulted in significant hardening of the steel. Grain-size reduction and strain-induced martensitic transformation within the deformed structures of the strained specimens were characterized by scanning electron microscopy - electron back-scattered diffraction, X-ray diffraction, and the TEM-ASTAR (transmission electron microscopy - analytical scanning transmission atomic resolution, automatic crystal orientation/phase mapping for TEM) system. Significant numbers of twin networks were formed by alteration of the shear strain routes, and the martensite phases were nucleated at the twin interfaces.

  6. Dynamical properties of the brain tissue under oscillatory shear stresses at large strain range

    NASA Astrophysics Data System (ADS)

    Boudjema, F.; Khelidj, B.; Lounis, M.

    2017-01-01

    In this experimental work, we study the viscoelastic behaviour of in vitro brain tissue, particularly the white matter, under oscillatory shear strain. The selective vulnerability of this tissue is the anisotropic mechanical properties of theirs different regions lead to a sensitivity to the angular shear rate and magnitude of strain. For this aim, shear storage modulus (G‧) and loss modulus (G″) were measured over a range of frequencies (1 to 100 Hz), for different levels of strain (1 %, to 50 %). The mechanical responses of the brain matter samples showed a viscoelastic behaviour that depend on the correlated strain level and frequency range and old age sample. The samples have been showed evolution behaviour by increasing then decreasing the strain level. Also, the stiffness anisotropy of brain matter was showed between regions and species.

  7. Strain accumulation along the San Andreas fault system East of San Francisco Bay, California

    USGS Publications Warehouse

    Prescott, W.H.; Lisowski, M.

    1983-01-01

    The occurrence of several large earthquakes to the east of San Francisco Bay during historical times, and present high levels of microseismicity, indicate that a significant part of the relative plate motion may be occurring east of San Francisco Bay. Furthermore, the Hayward fault is known to be slipping aseismically at the surface, and the Calaveras fault may be slipping aseismically also. These facts raise an important question: Is the observed creep rate accommodating all of the east bay deformation or is there a significant amount of strain accumulating along these faults? Several small survey networks (< 2 km diameter) located along the Hayward and Calaveras faults, have been measured occasionally since 1965. Recent observations of these and other networks have been made by the U.S. Geological Survey. These observations imply a surface slip rate on the Hayward fault at Fremont, Hayward, Berkeley, and Richmond of about 6 mm/yr. On the Calaveras fault, north of the Hayward-Calaveras fault junction, surface slip rates have been determined from only four data sets. Three of which give a rate of 3 mm/yr. The U.S. Geological Survey annually measures 32 longer lines (10-30 km) in the east bay. Observations of these lines extend back to 1977 for most and to 1970 for some of the lines. The observed creep rates and the data for the longer east-bay lines provide constraints on the amount and position of deeper slip on the Hayward and Calaveras faults. After correcting for line-length changes due to fault slip, we calculated the strain accumulation rate. The shear strain rate parallel to east bay faults is 0.07 ?? 0.02 ??strain/yr, a rate well below that of other areas along the San Andreas fault system, suggesting that creep is relieving a large part of the strain in this area. ?? 1983.

  8. Analysis of shear strain imaging for classifying breast masses: Finite element and phantom results

    PubMed Central

    Xu, Haiyan; Varghese, Tomy; Madsen, Ernest L.

    2011-01-01

    Purpose: Features extracted from axial-shear strain images of breast masses have been previously utilized to differentiate and classify benign from malignant breast masses. In this paper, we compare shear strain patterns exhibited by both the full-shear (axial and lateral component) versus only the axial-shear strain component for differentiating between bound masses (malignant) when compared to unbound masses (benign). Methods: We examine different breast mass characteristics such as mass shape, asymmetric location of masses, stiffness variations, and mass bonding characteristics to background tissue to assess their impact on shear strain patterns generated due to a uniaxial applied deformation. Two-dimensional finite element simulations of both circular and elliptical inclusions embedded within a uniform background were utilized. Different degrees of bonding were characterized using friction coefficient values ranging from 0.01 to 100 denoting loosely bound to firmly bound masses. Single-inclusion tissue-mimicking phantoms mimicking firmly bound and loosely bound ellipsoidal masses oriented at four different angles to the applied deformation were studied to corroborate the mass differentiation performance. Results: Our results indicate that the normalized axial-shear strain and full-shear strain area features are larger for bound when compared to unbound masses. A higher stiffness ratio or contrast between the inclusion and background also improves differentiation. Larger applied deformations reduce the discrimination performance for masses with friction coefficients lower than 0.4, due to increased mass slippage with applied deformations. Potential errors with the use of these features would occur for unbound inclusions at larger applied deformations and for asymmetric mass positions within the background normal tissue. Conclusions: Finite element and tissue-mimicking phantom results demonstrate the feasibility of utilizing both the normalized axial-shear and

  9. Shear-strain-induced chemical reactivity of layered molecular crystals

    SciTech Connect

    M. M. Kuklja; Sergey N. Rashkeev

    2007-04-01

    A density-functional-theory study of shear-related dissociation of two molecular crystals, diamino-dinitroethylene (FOX-7) and triamino-trinitrobenzine (TATB), is presented. A detailed explanation is proposed for the fact that FOX-7 is more sensitive than TATB while their sensitivities to initiation of chemistry have been expected to be comparable. We suggest that shear plays a crucial role in dissociation of molecules in organic energetic crystals and may be imperative in providing specific recommendations on ways for materials design.

  10. Strain accumulation and rotation in western Nevada, 1993-2000

    USGS Publications Warehouse

    Svarc, J.L.; Savage, J.C.; Prescott, W.H.; Ramelli, A.R.

    2002-01-01

    The positions of 44 GPS monuments in an array extending from the Sierra Nevada at the latitude of Reno to near Austin, Nevada, have been measured several times in the 1993-2000 interval. The western half of the array spans the Walker Lane belt, whereas the eastern half spans the central Nevada seismic zone (CNSZ). The principal strain rates in the Walker Lane belt are 29.6 ?? 5.3 nstrain yr-1 N88.4??E ?? 5.4?? and -12.8 ?? 6.0 nanostrain yr-1 N01.6??W ?? 5.4??, extension reckoned positive, and the clockwise (as seen from above the Earth) rotation rate about a vertical axis is 13.6 ?? 4.0 nrad yr-1. The quoted uncertainties are standard deviations. The motion in the Walker Lane belt can then be represented by a zone striking N35??W subject to 16.8 ?? 4.9 nstrain yr-1 extension perpendicular to it and 19.5 ?? 4.0 nstrain yr-1 right-lateral, simple shear across it. The N35??W strike of the zone is the same as the direction of the local tangent to the small circle drawn about the Pacific-North America pole of rotation. The principal strain rates for the CNSZ are 46.2 ?? 11.0 nstrain yr-1 N49.9??W ?? 6.0?? and -13.6 ?? 6.1 nstrain yr-1 N40.1??E ?? 6.0??, and the clockwise rotation rate about a vertical axis is 20.3 ?? 6.3 nrad yr-1. The motion across the CNSZ can then be represented by a zone striking N12??E subject to 32.6 ?? 11.0 nstrain yr-1 extension perpendicular to it and 25.1 ?? 6.3 nstrain yr-1 right-lateral, simple shear across it. The N12??E strike of the zone is similar to the strikes of the faults (Rainbow Mountain, Fairview Peak, and Dixie Valley) within it.

  11. Deformation and Shear Band Development in an Ultrahigh Carbon Steel During High Strain Rate Deformation

    SciTech Connect

    Lesuer, D R; Syn, C K; Sherby, O D

    2004-07-06

    The mechanical response of a pearlitic UHCS-1.3C steel deformed at approximately 4000 s{sup -1} to large strains ({var_epsilon} = -0.9) has been studied. Failure, at both the macroscopic and the microscopic levels has been evaluated, and the ability of the material to absorb energy in compression has been examined. Failure occurred by the development of a shear band. However before failure, extensive buckling of the carbide plates was observed and the UHCS-1.3C material exhibited significant potential for compressive ductility and energy absorption due to the distributed buckling of these plates. Strain localization during adiabatic shear band development resulted in the formation of austenite. Subsequent cooling produced a divorced-eutectoid transformation with associated deformation, which resulted in a microstructure consisting of 50 to 100 nm sized grains. The stress-strain behavior within the shear band has also been determined. The results are used to critically evaluate the maximum shear stress criterion of shear band development. New criteria for the development of shear bands are developed based on a strain energy concept.

  12. Measuring Local Strain Rates In Ductile Shear Zones: A New Approach From Deformed Syntectonic Dykes

    NASA Astrophysics Data System (ADS)

    Sassier, C.; Leloup, P.; Rubatto, D.; Galland, O.; Yue, Y.; Ding, L.

    2006-12-01

    At the Earth surface, deformation is mostly localized in fault zones in between tectonic plates. In the upper crust, the deformation is brittle and the faults are narrow and produce earthquakes. In contrast, deformation in the lower ductile crust results in larger shear zones. While it is relatively easy to measure in situ deformation rates at the surface using for example GPS data, it is more difficult to determinate in situ values of strain rate in the ductile crust. Such strain rates can only be estimated in paleo-shear zones. Various methods have been used to assess paleo-strain rates in paleo-shear zones. For instance, cooling and/or decompression rates associated with assumptions on geothermic gradients and shear zone geometry can lead to such estimates. Another way to estimate strain rates is the integration of paleo-stress measurements in a power flow law. But these methods are indirect and imply strong assumptions. Dating of helicitic garnets or syntectonic fibres are more direct estimates. However these last techniques have been only applied in zones of low deformation and not in major shear zones. We propose a new direct method to measure local strain rates in major ductile shear zones from syntectonic dykes by coupling quantification of deformation and geochronology. We test our method in a major shear zone in a well constrained tectonic setting: the Ailao-Shan - Red River Shear Zone (ASRRsz) located in SE Asia. For this 10 km wide shear zone, large-scale fault rates, determined in three independent ways, imply strain rates between 1.17×10^{-13 s-1 and 1.52×10^{-13 s-1 between 35 and 16 Ma. Our study focused on one outcrop where different generations of syntectonic dykes are observed. First, we quantified the minimum shear strain γ for each dyke using several methods: (1) by measuring the stretching of dykes with a surface restoration method (2) by measuring the final angle of the dykes with respect to the shear direction and (3) by combining the two

  13. Effect of viscoelastic postseismic relaxation on estimates of interseismic crustal strain accumulation at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Hammond, William C.; Kreemer, Corné; Blewitt, Geoffrey; Plag, Hans-Peter

    2010-03-01

    We estimate the long-term crustal strain rate at Yucca Mountain (YM), Nevada from GPS velocities taking into account viscoelastic relaxation following recent earthquakes to remove bias associated with transient deformation. The YM data reveal postseismic relaxation in time series non-linearity and geographic variation of the transient signal. From the data we estimate best-fitting lower crust and upper mantle viscosities of 1019.5 Pa s and 1018.5 Pa s, respectively. Once the relaxation model predictions are subtracted from the data, the long-term shear strain accumulation rate is between 16.3 and 25.1 nanostrains/year (ns/yr) to 99% confidence, a range much larger than the formal uncertainties from GPS measurement. We conclude that 1) a Maxwell viscoelastic model cannot explain all the deformation observed at YM, 2) uncertainty in viscosities dominates uncertainty in YM strain rates, and 3) the effects of large, recent earthquakes must be accounted for in seismic hazard studies using GPS.

  14. Room temperature shear properties of the strain isolator pad for the shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Sawyer, J. W.; Waters, W. A., Jr.

    1981-01-01

    Tests were conducted at room temperature to determine the shear properties of the strain isolator pad (SIP) material used in the thermal protection system of the space shuttle. Tests were conducted on both the .23 cm and .41 cm thick SIP material in the virgin state and after fifty fully reversed shear cycles. The shear stress displacement relationships are highly nonlinear, exhibit large hysteresis effects, are dependent on material orientation, and have a large low modulus region near the zero stress level where small changes in stress can result in large displacements. The values at the higher stress levels generally increase with normal and shear force load conditioning. Normal forces applied during the shear tests reduces the low modulus region for the material. Shear test techniques which restrict the normal movement of the material give erroneous stress displacement results. However, small normal forces do not significantly effect the shear modulus for a given shear stress. Poisson's ratio values for the material are within the range of values for many common materials. The values are not constant but vary as a function of the stress level and the previous stress history of the material. Ultimate shear strengths of the .23 cm thick SIP are significantly higher than those obtained for the .41 cm thick SIP.

  15. The plane strain shear fracture of the advanced high strength steels

    NASA Astrophysics Data System (ADS)

    Sun, Li

    2013-12-01

    The "shear fracture" which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of "shear fracture" phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a "shear fracture" in the component.

  16. The plane strain shear fracture of the advanced high strength steels

    SciTech Connect

    Sun, Li

    2013-12-16

    The “shear fracture” which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of “shear fracture” phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a “shear fracture” in the component.

  17. Anisotropic Power Law Strain Correlations in Sheared Amorphous 2D Solids

    SciTech Connect

    Maloney, C. E.; Robbins, M. O.

    2009-06-05

    The local deformation of steadily sheared two-dimensional Lennard-Jones glasses is studied via computer simulations at zero temperature. In the quasistatic limit, spatial correlations in the incremental strain field are highly anisotropic. The data show power law behavior with a strong angular dependence of the scaling exponent, and the strongest correlations along the directions of maximal shear stress. These results support the notion that the jamming transition at the onset of flow is critical, but suggest unusual critical behavior. The predicted behavior is testable through experiments on sheared amorphous materials such as bubble rafts, foams, emulsions, granular packings, and other systems where particle displacements can be tracked.

  18. Interseismic Strain Accumulation Across Metropolitan Los Angeles: Puente Hills Thrust

    NASA Astrophysics Data System (ADS)

    Argus, D.; Liu, Z.; Heflin, M. B.; Moore, A. W.; Owen, S. E.; Lundgren, P.; Drake, V. G.; Rodriguez, I. I.

    2012-12-01

    Twelve years of observation of the Southern California Integrated GPS Network (SCIGN) are tightly constraining the distribution of shortening across metropolitan Los Angeles, providing information on strain accumulation across blind thrust faults. Synthetic Aperture Radar Interferometry (InSAR) and water well records are allowing the effects of water and oil management to be distinguished. The Mojave segment of the San Andreas fault is at a 25° angle to Pacific-North America plate motion. GPS shows that NNE-SSW shortening due to this big restraining bend is fastest not immediately south of the San Andreas fault across the San Gabriel mountains, but rather 50 km south of the fault in northern metropolitan Los Angeles. The GPS results we quote next are for a NNE profile through downtown Los Angeles. Just 2 mm/yr of shortening is being taken up across the San Gabriel mountains, 40 km wide (0.05 micro strain/yr); 4 mm/yr of shortening is being taken up between the Sierra Madre fault, at the southern front of the San Gabriel mountains, and South Central Los Angeles, also 40 km wide (0.10 micro strain/yr). We find shortening to be more evenly distributed across metropolitan Los Angeles than we found before [Argus et al. 2005], though within the 95% confidence limits. An elastic models of interseismic strain accumulation is fit to the GPS observations using the Back Slip model of Savage [1983]. Rheology differences between crystalline basement and sedimentary basin rocks are incorporated using the EDGRN/EDCMP algorithm of Wang et al. [2003]. We attempt to place the Back Slip model into the context of the Elastic Subducting Plate Model of Kanda and Simons [2010]. We find, along the NNE profile through downtown, that: (1) The deep Sierra Madre Thrust cannot be slipping faster than 2 mm/yr, and (2) The Puente Hills Thrust and nearby thrust faults (such as the upper Elysian Park Thrust) are slipping at 9 ±2 mm/yr beneath a locking depth of 12 ±5 km (95% confidence limits

  19. Interseismic strain accumulation and anthropogenic motion in metropolitan Los Angeles

    NASA Astrophysics Data System (ADS)

    Argus, D. F.; Heflin, M. B.; Peltzer, G.; Crampe, F.; Webb, F. H.

    2005-05-01

    We use global positioning system (GPS) geodesy and synthetic aperture radar (SAR) interferometry to distinguish between interseismic strain accumulation and anthropogenic motion in metropolitan Los Angeles. We establish a relationship between horizontal and vertical seasonal oscillations of the Santa Ana aquifer, use this relationship to infer cumulative horizontal anthropogenic motions from cumulative vertical motions caused by water and oil resource management, and estimate horizontal interseismic velocities corrected for anthropogenic effects. Vertical anthropogenic rates from 1992 to 1999 are slower than 3 mm/yr in the Santa Ana and San Gabriel aquifers and faster than 5 mm/yr in the Chino aquifer and in many oil fields. Inferred horizontal anthropogenic velocities are faster than 1 mm/yr at 18 of 46 GPS sites. Northern metropolitan Los Angeles is contracting, with the 25 km south of the San Gabriel mountains shortening at 4.5 ±1 mm/yr (95% confidence limits). The thrust fault in an elastic edge dislocation model of the observed strain is creeping at 9 ±2 mm/yr beneath and north of a position 6 ±2 km deep and 8 ±8 km north of downtown Los Angeles. The model fault is near the Los Angeles segment of the Puente Hills thrust but south of the Sante Fe Springs segment of the thrust. Disagreement between the 6 km locking depth in the model and the 15 km seismogenic depth inferred from earthquakes suggests that the elastic continuum model may be unsatisfactory; models with different stiffnesses of sedimentary basin and crystalline basement must be investigated.

  20. Interseismic strain accumulation and anthropogenic motion in metropolitan Los Angeles

    NASA Astrophysics Data System (ADS)

    Argus, Donald F.; Heflin, Michael B.; Peltzer, Gilles; Crampé, FréDeric; Webb, Frank H.

    2005-04-01

    We use global positioning system (GPS) geodesy and synthetic aperture radar (SAR) interferometry to distinguish between interseismic strain accumulation and anthropogenic motion in metropolitan Los Angeles. We establish a relationship between horizontal and vertical seasonal oscillations of the Santa Ana aquifer, use this relationship to infer cumulative horizontal anthropogenic motions from cumulative vertical motions caused by water and oil resource management, and estimate horizontal interseismic velocities corrected for anthropogenic effects. Vertical anthropogenic rates from 1992 to 1999 are slower than 3 mm yr-1 in the Santa Ana and San Gabriel aquifers and faster than 5 mm yr-1 in the Chino aquifer and in many oil fields. Inferred horizontal anthropogenic velocities are faster than 1 mm yr-1 at 18 of 46 GPS sites. Northern metropolitan Los Angeles is contracting, with the 25 km south of the San Gabriel Mountains shortening at 4.5 ± 1 mm yr-1 (95% confidence limits). The thrust fault in an elastic edge dislocation model of the observed strain is creeping at 9 ± 2 mm yr-1 beneath and north of a position 6 ± 2 km deep and 8 ± 8 km north of downtown Los Angeles. The model fault is near the Los Angeles segment of the Puente Hills thrust but south of the Sante Fe Springs segment of the thrust. Disagreement between the 6 km locking depth in the model and the 15 km seismogenic depth inferred from earthquakes suggests that the elastic continuum model may be unsatisfactory; models with different stiffnesses of sedimentary basin and crystalline basement must be investigated.

  1. Constraints on accumulated strain near the ETS zone along Cascadia

    NASA Astrophysics Data System (ADS)

    Krogstad, Randy D.; Schmidt, David A.; Weldon, Ray J.; Burgette, Reed J.

    2016-04-01

    Current national seismic hazard models for Cascadia use the zone of episodic tremor and slip (ETS) to denote the lower boundary of the seismogenic zone. Recent numerical models have suggested that an appreciable amount of long-term strain may accumulate at the depth of ETS and questions this assumption. We use uplift rates from leveling campaigns spanning approximately 50-70 yrs in Washington and Oregon to investigate the amount of potential long-term locking near the ETS zone. We evaluate the potential for deeper locking in Cascadia by exploring a range of locking parameters along the subduction zone, including the ETS zone. Of the four east-west leveling profiles studied, three show a reduction in the misfit when secondary locking near the ETS zone is included; however the reduction in misfit values is only statistically significant for one profile. This would suggest that models including a small amount of secondary locking are broadly indistinguishable from models without any secondary locking. If secondary locking is considered, the leveling data allow for locking up to ∼20% of the plate rate near the updip edge of the ETS zone. These results are consistent with, but less resolved, by GPS observations.

  2. Endothelial cell alignment as a result of anisotropic strain and flow induced shear stress combinations.

    PubMed

    Sinha, Ravi; Le Gac, Séverine; Verdonschot, Nico; van den Berg, Albert; Koopman, Bart; Rouwkema, Jeroen

    2016-07-12

    Endothelial cells (ECs) are continuously exposed in vivo to cyclic strain and shear stress from pulsatile blood flow. When these stimuli are applied in vitro, ECs adopt an appearance resembling their in vivo state, most apparent in their alignment (perpendicular to uniaxial strain and along the flow). Uniaxial strain and flow perpendicular to the strain, used in most in vitro studies, only represent the in vivo conditions in straight parts of vessels. The conditions present over large fractions of the vasculature can be better represented by anisotropic biaxial strains at various orientations to flow. To emulate these biological complexities in vitro, we have developed a medium-throughput device to screen for the effects on cells of variously oriented anisotropic biaxial strains and flow combinations. Upon the application of only strains for 24 h, ECs (HUVECs) aligned perpendicular to the maximum principal strain and the alignment was stronger for a higher maximum:minimum principal strain ratio. A 0.55 Pa shear stress, when applied alone or with strain for 24 h, caused cells to align along the flow. Studying EC response to such combined physiological mechanical stimuli was not possible with existing platforms and to our best knowledge, has not been reported before.

  3. Endothelial cell alignment as a result of anisotropic strain and flow induced shear stress combinations

    PubMed Central

    Sinha, Ravi; Le Gac, Séverine; Verdonschot, Nico; van den Berg, Albert; Koopman, Bart; Rouwkema, Jeroen

    2016-01-01

    Endothelial cells (ECs) are continuously exposed in vivo to cyclic strain and shear stress from pulsatile blood flow. When these stimuli are applied in vitro, ECs adopt an appearance resembling their in vivo state, most apparent in their alignment (perpendicular to uniaxial strain and along the flow). Uniaxial strain and flow perpendicular to the strain, used in most in vitro studies, only represent the in vivo conditions in straight parts of vessels. The conditions present over large fractions of the vasculature can be better represented by anisotropic biaxial strains at various orientations to flow. To emulate these biological complexities in vitro, we have developed a medium-throughput device to screen for the effects on cells of variously oriented anisotropic biaxial strains and flow combinations. Upon the application of only strains for 24 h, ECs (HUVECs) aligned perpendicular to the maximum principal strain and the alignment was stronger for a higher maximum:minimum principal strain ratio. A 0.55 Pa shear stress, when applied alone or with strain for 24 h, caused cells to align along the flow. Studying EC response to such combined physiological mechanical stimuli was not possible with existing platforms and to our best knowledge, has not been reported before. PMID:27404382

  4. Strain Rate Sensitivity of Epoxy Resin in Tensile and Shear Loading

    NASA Technical Reports Server (NTRS)

    Gilat, Amos; Goldberg, Robert K.; Roberts, Gary D.

    2005-01-01

    The mechanical response of E-862 and PR-520 resins is investigated in tensile and shear loadings. At both types of loading the resins are tested at strain rates of about 5x10(exp 5), 2, and 450 to 700 /s. In addition, dynamic shear modulus tests are carried out at various frequencies and temperatures, and tensile stress relaxation tests are conducted at room temperature. The results show that the toughened PR-520 resin can carry higher stresses than the untoughened E-862 resin. Strain rate has a significant effect on the response of both resins. In shear both resins show a ductile response with maximum stress that is increasing with strain rate. In tension a ductile response is observed at low strain rate (approx. 5x10(exp 5) /s), and brittle response is observed at the medium and high strain rates (2, and 700 /s). The hydrostatic component of the stress in the tensile tests causes premature failure in the E-862 resin. Localized deformation develops in the PR-520 resin when loaded in shear. An internal state variable constitutive model is proposed for modeling the response of the resins. The model includes a state variable that accounts for the effect of the hydrostatic component of the stress on the deformation.

  5. Strain localization in a shear transformation zone model for amorphous solids.

    PubMed

    Manning, M L; Langer, J S; Carlson, J M

    2007-11-01

    We model a sheared disordered solid using the theory of shear transformation zones (STZs). In this mean-field continuum model the density of zones is governed by an effective temperature that approaches a steady state value as energy is dissipated. We compare the STZ model to simulations by Shi [Phys. Rev. Lett. 98, 185505 (2007)], finding that the model generates solutions that fit the data, exhibit strain localization, and capture important features of the localization process. We show that perturbations to the effective temperature grow due to an instability in the transient dynamics, but unstable systems do not always develop shear bands. Nonlinear energy dissipation processes interact with perturbation growth to determine whether a material exhibits strain localization. By estimating the effects of these interactions, we derive a criterion that determines which materials exhibit shear bands based on the initial conditions alone. We also show that the shear band width is not set by an inherent diffusion length scale but instead by a dynamical scale that depends on the imposed strain rate.

  6. Stick-slip instabilities and shear strain localization in amorphous materials.

    PubMed

    Daub, Eric G; Carlson, Jean M

    2009-12-01

    We study the impact of strain localization on the stability of frictional slipping in dense amorphous materials. We model the material using shear transformation zone (STZ) theory, a continuum approximation for plastic deformation in amorphous solids. In the STZ model, the internal state is quantified by an effective disorder temperature, and the effective temperature dynamics capture the spontaneous localization of strain. We study the effect of strain localization on stick-slip instabilities by coupling the STZ model to a noninertial spring slider system. We perform a linear stability analysis to generate a phase diagram that connects the small scale physics of strain localization to the macroscopic stability of sliding. Our calculations determine the values of spring stiffness and driving velocity where steady sliding becomes unstable and we confirm our results through numerical integration. We investigate both homogeneous deformation, where no shear band forms, and localized deformation, where a narrow shear band spontaneously forms and accommodates all of the deformation. Our results show that at a given velocity, strain localization leads to unstable frictional sliding at a much larger spring stiffness compared to homogeneous deformation, and that localized deformation cannot be approximated by a homogeneous model with a narrower material. We also find that strain localization provides a physical mechanism for irregular stick-slip cycles in certain parameter ranges. Our results quantitatively connect the internal physics of deformation in amorphous materials to the larger scale frictional dynamics of stick-slip.

  7. Suppression of repeated adiabatic shear banding by dynamic large strain extrusion machining

    NASA Astrophysics Data System (ADS)

    Cai, S. L.; Dai, L. H.

    2014-12-01

    High speed machining (HSM) is an advanced production technology with great future potential. Chip serration or segmentation is a commonly observed phenomenon during high speed machining of metals, which is found to be ascribed to a repeated shear band formation fueled by thermo-plastic instability occurring within the primary shear zone. The occurrence of serrated chips leads to the cutting force fluctuation, decreased tool life, degradation of the surface finish and less accuracy in machine parts during high speed machining. Hence, understanding and controlling serrated chip formation in HSM are extremely important. In this work, a novel dynamic large strain extrusion machining (DLSEM) technique is developed for suppressing formation of serrated chips. The systematic DLSEM experiments of Ti-6Al-4V and Inconel 718 alloy with varying degrees of imposed extrusion constraint were carried out. It is found that there is a prominent chip morphology transition from serrated to continuous state and shear band spacing decreases with the constraint degree increasing. In order to uncover underlying mechanism of the imposed extrusion constraint suppressing repeated adiabatic shear banding in DLSEM, new theoretical models are developed where the effects of extrusion constraint, material convection due to chip flow and momentum diffusion during shear band propagation are included. The analytical expressions for the onset criterion of adiabatic shear band and shear band spacing in DLSEM are obtained. The theoretical predictions are in agreement with the experimental results.

  8. Cesium Accumulation and Growth Characteristics of Rhodococcus erythropolis CS98 and Rhodococcus sp. Strain CS402

    PubMed Central

    Tomioka, Noriko; Uchiyama, Hiroo; Yagi, Osami

    1994-01-01

    Growth and cesium accumulation characteristics of two cesium-accumulating bacteria isolated from soils were investigated. Rhodococcus erythropolis CS98 and Rhodococcus sp. strain CS402 accumulated high levels of cesium (approximately 690 and 380 μmol/g [dry weight] of cells or 92 and 52 mg/g [dry weight] of cells, respectively) after 24 h of incubation in the presence of 0.5 mM cesium. The optimum pH for cesium uptake by both Rhodococcus strains was 8.5. Rubidium and cesium assumed part of the role of potassium in the growth of both Rhodococcus strains. Potassium and rubidium inhibited cesium accumulation by these Rhodococcus strains. It is likely that both Rhodococcus strains accumulated cesium through a potassium transport system. PMID:16349312

  9. High shear strain behaviour of synthetic muscovite fault gouges under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Van Diggelen, Esther W. E.; De Bresser, Johannes H. P.; Peach, Colin J.; Spiers, Christopher J.

    2010-11-01

    Major continental fault zones typically contain phyllosilicates and have long been recognised as zones of persistent weakness. To establish whether the presence of micas can explain this weakness, we studied the frictional behaviour of simulated muscovite fault gouge by performing rotary shear experiments in the temperature range 20-700 °C, under constant effective normal stresses of 20-100 MPa, a fixed fluid pressure of 100 MPa and at sliding velocities of 0.03-3.7 μm/s, reaching shear strains up to 100. Cataclasis causes substantial grain size reduction up to 600 °C. With increasing strain, both pervasive and localized cataclasis and related compaction result in strain hardening, until steady state is reached. This reflects the progressive development of a continuous network of fine grained, hardening bands. Coarse grained relict lenses between these bands show folded and kinked muscovite grains indicative of ductile mechanisms. Samples deformed at 700 °C show evidence for chemical alteration and partial melting. Since our data suggest that muscovite gouge strengthens with depth and strain, it is questionable whether its presence can contribute to the long-term weakness of major crustal fault zones, unless a substantial decrease in strength occurs at shear strain rates lower than attained in our study.

  10. Strain-induced outgassing of three-phase magmas during simple shear

    NASA Astrophysics Data System (ADS)

    Shields, J. K.; Mader, H. M.; Pistone, M.; Caricchi, L.; Floess, D.; Putlitz, B.

    2014-09-01

    A major factor determining the explosivity of silicic eruptions is the removal of volatiles from magma through permeability-controlled outgassing. We studied the microstructural development of permeability during deformation of highly viscous magma by performing simple shear experiments on bubble (0.12-0.36 volume fraction) and crystal-bearing (0-0.42 volume fraction) silicate melts. Experiments were performed under torsion, at high temperature and pressure (723-873 K and 150-200 MPa) in a Paterson deformation apparatus at bulk shear strains between 0 and 10. The experimental setup allows for gas escape if bubble connectivity is reached on the sample periphery. Three-dimensional imaging and analysis of deformed bubbles was performed using X-ray tomography. The development of localized deformation in all samples, enhanced by crystal content, leads to brittle fracture at bulk strains > 2 and sample-wide fracturing in samples deformed to strains >5. A decrease in both bubble fraction and dissolved volatile content with increasing strain, along with strain-hardening rheological behavior, suggests significant shear-induced outgassing through the fracture networks, applicable to shallow conduit degassing in magmas containing crystal fractions of 0-0.42. This study contributes to our understanding of highly viscous magma outgassing and processes governing the effusive-explosive transition.

  11. Grain fragmentation in sheared granular flow: weakening effects, energy dissipation, and strain localization.

    PubMed

    Lieou, Charles K C; Elbanna, Ahmed E; Carlson, Jean M

    2014-02-01

    We describe the shear flow of a disordered granular material in the presence of grain fracture using the shear-transformation-zone theory of amorphous plasticity adapted to systems with a hard-core interparticle interaction. To this end, we develop the equations of motion for this system within a statistical-thermodynamic framework analogous to that used in the analysis of molecular glasses. For hard-core systems, the amount of internal, configurational disorder is characterized by the compactivity X = ∂V / ∂S(C), where V and S(C) are, respectively, the volume and configurational entropy. Grain breakage is described by a constitutive equation for the temporal evolution of a characteristic grain size a, based on fracture mechanics. We show that grain breakage is a weakening mechanism, significantly lowering the flow stress at large strain rates, if the material is rate strengthening in character. We show in addition that if the granular material is sufficiently aged, spatial inhomogeneity in configurational disorder results in strain localization. We also show that grain splitting contributes significantly to comminution at small shear strains, while grain abrasion becomes dominant at large shear displacements.

  12. Grain fragmentation in sheared granular flow: weakening effects, energy dissipation, and strain localization

    NASA Astrophysics Data System (ADS)

    Lieou, Charles K. C.; Elbanna, Ahmed E.; Carlson, Jean M.

    2014-03-01

    We describe the shear flow of a disordered granular material subject to grain fracture using the shear-transformation-zone (STZ) theory of amorphous plasticity adapted to systems with a hard-core inter-particle interaction. To this end, we develop the equations of motion for this system within a statistical-thermodynamic framework analogous to that used in the analysis of molecular glasses. For hard-core systems, the amount of internal, configurational disorder is characterized by the compactivity X = ∂V / ∂SC , where V and SC are respectively the volume and configurational entropy. Grain breakage is described by a constitutive equation for the temporal evolution of a characteristic grain size a, based on fracture mechanics. We show that grain breakage is a weakening mechanism, significantly lowering the flow stress at large strain rates, if the material is rate-strengthening in character. We show in addition that if the granular material is sufficiently aged, spatial inhomogeneity in configurational disorder results in strain localization. We also show that grain splitting contributes significantly to comminution at small shear strains, while grain abrasion becomes dominant at large shear displacements.

  13. Grain fragmentation in sheared granular flow: Weakening effects, energy dissipation, and strain localization

    NASA Astrophysics Data System (ADS)

    Lieou, Charles K. C.; Elbanna, Ahmed E.; Carlson, Jean M.

    2014-02-01

    We describe the shear flow of a disordered granular material in the presence of grain fracture using the shear-transformation-zone theory of amorphous plasticity adapted to systems with a hard-core interparticle interaction. To this end, we develop the equations of motion for this system within a statistical-thermodynamic framework analogous to that used in the analysis of molecular glasses. For hard-core systems, the amount of internal, configurational disorder is characterized by the compactivity X =∂V/∂SC, where V and SC are, respectively, the volume and configurational entropy. Grain breakage is described by a constitutive equation for the temporal evolution of a characteristic grain size a, based on fracture mechanics. We show that grain breakage is a weakening mechanism, significantly lowering the flow stress at large strain rates, if the material is rate strengthening in character. We show in addition that if the granular material is sufficiently aged, spatial inhomogeneity in configurational disorder results in strain localization. We also show that grain splitting contributes significantly to comminution at small shear strains, while grain abrasion becomes dominant at large shear displacements.

  14. Shear strain mediated magneto-electric effects in composites of piezoelectric lanthanum gallium silicate or tantalate and ferromagnetic alloys

    SciTech Connect

    Sreenivasulu, G.; Piskulich, E.; Srinivasan, G.; Qu, P.; Qu, Hongwei; Petrov, V. M.; Fetisov, Y. K.; Nosov, A. P.

    2014-07-21

    Shear strain mediated magneto-electric (ME) coupling is studied in composites of piezoelectric Y-cut lanthanum gallium silicate (LGS) or tantalate (LGT) and ferromagnetic Fe-Co-V alloys. It is shown that extensional strain does not result in ME effects in these layered composites. Under shear strain generated by an ac and dc bias magnetic fields along the length and width of the sample, respectively, strong ME coupling is measured at low-frequencies and at mechanical resonance. A model is discussed for the ME effects. These composites of Y-cut piezoelectrics and ferromagnetic alloys are of importance for shear strain based magnetic field sensors.

  15. Interaponeurosis shear strain modulates behavior of myotendinous junction of the human triceps surae.

    PubMed

    Kinugasa, Ryuta; Oda, Toshiaki; Komatsu, Toshihiko; Edgerton, V Reggie; Sinha, Shantanu

    2013-11-01

    Muscle fascicles insert into a sheet-like aponeurosis. Adjacent aponeuroses are structurally in contact with each other, and ultimately merge into a common tendon. Consequently, fascicle shortening in planes of tissue layers in adjacent compartments must cause sliding between aponeuroses parallel to the acting forces. In this study, we used velocity-encoded, phase-contrast, and water-saturated spin-lattice relaxation time-weighted imaging to identify and track fascicle and aponeurosis behaviors of human medial gastrocnemius (MG) and soleus (Sol) during 15° dorsiflexion to 30° plantarflexion contractions of the ankle. Interaponeurosis shear strain, which was defined as the relative displacement of the aponeurosis at the fascicle end points (insertion) of the MG and Sol, was an average of 1.35 ± 0.27% (range 1.12 ∼ 1.87%), indicating that the strain is greater in the aponeurosis of MG fascicle insertion than the Sol. The myotendinous junction (MTJ) displacement increased significantly with decreasing interaponeurosis shear strain (P < 0.05). The magnitude of interaponeurosis shear strain had significant correlation with the temporal difference between the time at which the peak aponeurosis displacement of the MG and Sol occurred (P < 0.05). Our model also indicated that theoretical MTJ displacement varies in relation to temporal difference: no temporal difference caused the largest MTJ displacement and presence of temporal differences indicated a reduction in MTJ displacement. Therefore, we concluded that interaponeurosis shear strain is a mechanism enabling individual muscle contraction and thus specific loading of the tendon and joint.

  16. Interaponeurosis shear strain modulates behavior of myotendinous junction of the human triceps surae

    PubMed Central

    Kinugasa, Ryuta; Oda, Toshiaki; Komatsu, Toshihiko; Edgerton, V Reggie; Sinha, Shantanu

    2013-01-01

    Muscle fascicles insert into a sheet-like aponeurosis. Adjacent aponeuroses are structurally in contact with each other, and ultimately merge into a common tendon. Consequently, fascicle shortening in planes of tissue layers in adjacent compartments must cause sliding between aponeuroses parallel to the acting forces. In this study, we used velocity-encoded, phase-contrast, and water-saturated spin-lattice relaxation time-weighted imaging to identify and track fascicle and aponeurosis behaviors of human medial gastrocnemius (MG) and soleus (Sol) during 15° dorsiflexion to 30° plantarflexion contractions of the ankle. Interaponeurosis shear strain, which was defined as the relative displacement of the aponeurosis at the fascicle end points (insertion) of the MG and Sol, was an average of 1.35 ± 0.27% (range 1.12 ∼ 1.87%), indicating that the strain is greater in the aponeurosis of MG fascicle insertion than the Sol. The myotendinous junction (MTJ) displacement increased significantly with decreasing interaponeurosis shear strain (P < 0.05). The magnitude of interaponeurosis shear strain had significant correlation with the temporal difference between the time at which the peak aponeurosis displacement of the MG and Sol occurred (P < 0.05). Our model also indicated that theoretical MTJ displacement varies in relation to temporal difference: no temporal difference caused the largest MTJ displacement and presence of temporal differences indicated a reduction in MTJ displacement. Therefore, we concluded that interaponeurosis shear strain is a mechanism enabling individual muscle contraction and thus specific loading of the tendon and joint. PMID:24400149

  17. Monitoring dyke injection and strain field evolution using shear-wave splitting.

    NASA Astrophysics Data System (ADS)

    Kendall, J.-M.; Verdon, J. P.; Keir, D.; Baird, A.

    2012-04-01

    Magma storage and dyke injection in the shallow crust is a fundamental process in rifting and volcanic environments. The dyking will tend to align with directions of maximum compressive stress, and the associated aligned fracturing and melt migration provides a very effective means of generating seismic anisotropy. Observations of shear-wave splitting provide one of the most unambiguous indicators of such anisotropy. As such, shear-wave splitting can be used to monitor the evolving strain field in volcanic and rifting environments. Here we apply lessons learned from monitoring fracture propagation during the hydraulic stimulation of tight-gas reservoirs. In a number of experiments we observe spatial and temporal variations in shear-wave splitting magnitude and orientation. We invert shear-wave observations for fracture properties, including the tangential and normal compliance, the ratio of which is a good indicator of fluid flow and permeability. Frequency dependent affects can be also used to indicate the length scales of the causative cracks or fractures. We apply these insights to microseismic data recently acquired across the volcanically active Afar triple junction in Ethiopia. The pattern of S-wave splitting in Afar is best explained by anisotropy from deformation-related structures, with the dramatic change in splitting parameters into the rift axis from the increased density of dyke-induced faulting combined with a contribution from oriented melt pockets near volcanic centres. The results help in our understanding of the role of melt in strain accommodation in rifting and volcanic environments.

  18. Repetitive differential finger motion increases shear strain between the flexor tendon and subsynovial connective tissue.

    PubMed

    Tat, Jimmy; Kociolek, Aaron M; Keir, Peter J

    2013-10-01

    Non-inflammatory fibrosis and thickening of the subsynovial connective tissue (SSCT) are characteristic in carpal tunnel syndrome (CTS) patients. These pathological changes have been linked to repetitive hand tasks that create shear forces between the flexor tendons and SSCT. We measured the relative motion of the flexor digitorum superficialis tendon and SSCT during two repetitive finger tasks using color Doppler ultrasound. Twelve participants performed flexion-extension cycles for 30 min with the long finger alone (differential movement) and with all four fingers together (concurrent movement). Shear strain index (SSI, a relative measure of excursion in flexion and extension) and maximum velocity ratio (MVR, the ratio of SSCT versus tendon during flexion and extension) were used to represent shear. A linear effect of exertion time was significant and corresponded with larger tendon shear in differential motion. The flexion SSI increased 20.4% from the first to the 30th minute, while MVR decreased 8.9% in flexion and 8.7% in extension. No significant changes were found during concurrent motion. These results suggest that exposure to repetitive differential finger tasks may increase the risk of shear injury in the carpal tunnel.

  19. Deriving strain from crystallographic preferred orientation for a ductile shear zone in north western Turkey.

    NASA Astrophysics Data System (ADS)

    Farrell, K.; Lloyd, G. E. E.; Wallis, D.; Phillips, R. J.

    2015-12-01

    Understanding the behaviour of active continental-scale fault zones at depth, and in particular how displacements observed at the Earth's surface are accommodated through the crust, is crucial to improving understanding of the earthquake cycle. This behaviour can be inferred by study of exhumed portions of ductile shear zones using methods such as recording strain profile(s) across the fault zone. However, due to the nature of mid-crustal rocks, strain markers tend to be rare and/or discontinuously distributed. The intensity (I) of crystallographic preferred orientation (CPO) of deformed minerals provides a proxy for strain that is continuous across fault zones. CPO are collected via electron back scattered diffraction in the scanning electron microscope. The strength of the CPO can be quantified using eigenvalue-based intensity parameters. Calibration of intensity with strain is achieved via comparison with visco-plastic self-consistency models of CPO evolution, although the temperature-dependent critical resolved shear stresses of potential crystal slip systems must be known. As an example, we consider the dextral strike-slip Eskişehir shear zone, NW Turkey, which was active during the Oligocene and accommodated ~100km of displacement, including a component of late oblique-normal slip. An exhumed mid-crustal section of this fault zone is exposed in the Uludağ Massif, comprising of high-grade metamorphic rocks of the Uludağ Group, intruded by the Central and South Uludağ granites. Sample transects focussed on the pure calcic marbles that dominate the stratigraphy. Fortunately, the availability of experimental data for calcite crystal slip behaviour at different temperatures makes the application of the CPO intensity strain proxy method relatively straightforward. The Uludağ Massif and Eskişehir shear zone provide a field based analogue for the ductile shear zone beneath the currently active North Anatolian Fault. The results of our CPO intensity-based strain

  20. Scaling of the critical slip distance for seismic faulting with shear strain in fault zones

    USGS Publications Warehouse

    Marone, C.; Kilgore, B.

    1993-01-01

    THEORETICAL and experimentally based laws for seismic faulting contain a critical slip distance1-5, Dc, which is the slip over which strength breaks down during earthquake nucleation. On an earthquake-generating fault, this distance plays a key role in determining the rupture nucleation dimension6, the amount of premonitory and post-seismic slip7-10, and the maximum seismic ground acceleration1,11. In laboratory friction experiments, Dc has been related to the size of surface contact junctions2,5,12; thus, the discrepancy between laboratory measurements of Dc (??? 10-5 m) and values obtained from modelling earthquakes (??? 10-2 m) has been attributed to differences in roughness between laboratory surfaces and natural faults5. This interpretation predicts a dependence of Dc on the particle size of fault gouge 2 (breccia and wear material) but not on shear strain. Here we present experimental results showing that Dc scales with shear strain in simulated fault gouge. Our data suggest a new physical interpretation for the critical slip distance, in which Dc is controlled by the thickness of the zone of localized shear strain. As gouge zones of mature faults are commonly 102-103 m thick13-17, whereas laboratory gouge layers are 1-10 mm thick, our data offer an alternative interpretation of the discrepancy between laboratory and field-based estimates of Dc.

  1. Phase field simulations of plastic strain-induced phase transformations under high pressure and large shear

    NASA Astrophysics Data System (ADS)

    Javanbakht, Mahdi; Levitas, Valery I.

    2016-12-01

    Pressure and shear strain-induced phase transformations (PTs) in a nanograined bicrystal at the evolving dislocations pile-up have been studied utilizing a phase field approach (PFA). The complete system of PFA equations for coupled martensitic PT, dislocation evolution, and mechanics at large strains is presented and solved using the finite element method (FEM). The nucleation pressure for the high-pressure phase (HPP) under hydrostatic conditions near a single dislocation was determined to be 15.9 GPa. Under shear, a dislocation pile-up that appears in the left grain creates strong stress concentration near its tip and significantly increases the local thermodynamic driving force for PT, which causes nucleation of HPP even at zero pressure. At pressures of 1.59 and 5 GPa and shear, a major part of a grain transforms to HPP. When dislocations are considered in the transforming grain as well, they relax stresses and lead to a slightly smaller stationary HPP region than without dislocations. However, they strongly suppress nucleation of HPP and require larger shear. Unexpectedly, the stationary HPP morphology is governed by the simplest thermodynamic equilibrium conditions, which do not contain contributions from plasticity and surface energy. These equilibrium conditions are fulfilled either for the majority of points of phase interfaces or (approximately) in terms of stresses averaged over the HPP region or for the entire grain, despite the strong heterogeneity of stress fields. The major part of the driving force for PT in the stationary state is due to deviatoric stresses rather than pressure. While the least number of dislocations in a pile-up to nucleate HPP linearly decreases with increasing applied pressure, the least corresponding shear strain depends on pressure nonmonotonously. Surprisingly, the ratio of kinetic coefficients for PT and dislocations affect the stationary solution and the nanostructure. Consequently, there are multiple stationary solutions

  2. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains.

    PubMed

    Wang, Pin-Mei; Zheng, Dao-Qiong; Chi, Xiao-Qin; Li, Ou; Qian, Chao-Dong; Liu, Tian-Zhe; Zhang, Xiao-Yang; Du, Feng-Guang; Sun, Pei-Yong; Qu, Ai-Min; Wu, Xue-Chang

    2014-01-01

    The protective effect and the mechanisms of trehalose accumulation in industrial Saccharomyces cerevisiae strains were investigated during ethanol fermentation. The engineered strains with more intercellular trehalose achieved significantly higher fermentation rates and ethanol yields than their wild strain ZS during very high gravity (VHG) fermentation, while their performances were not different during regular fermentation. The VHG fermentation performances of these strains were consistent with their growth capacity under osmotic stress and ethanol stress, the key stress factors during VHG fermentation. These results suggest that trehalose accumulation is more important for VHG fermentation of industrial yeast strains than regular one. The differences in membrane integrity and antioxidative capacity of these strains indicated the possible mechanisms of trehalose as a protectant under VHG condition. Therefore, trehalose metabolic engineering may be a useful strategy for improving the VHG fermentation performance of industrial yeast strains.

  3. Strain accumulation near Yucca Mountain, Nevada, 1993-1998

    NASA Astrophysics Data System (ADS)

    Savage, J. C.; Svarc, J. L.; Prescott, W. H.

    2001-01-01

    A 50-km aperture geodetic network centered on the proposed high-level radioactive waste disposal site at Yucca Mountain, Nevada, was surveyed with GPS in 1993 and 1998. The average deformation rate across the area is described by the principal strain rates 22.8±8.8 nstrain yr-1 N77.6°W±13.5° and -8.8±11.9 nstrain yr-1 N12.5°E±13.5° (extension reckoned positive) and a clockwise rotation rate about a vertical axis of 9.6±7.4 nrad yr-1 relative to fixed North America. Quoted uncertainties are standard deviations. Those strain rates are consistent with the geodetic strain rates (2±12 nstrain yr-1 N87°±12°W and -22±12 nstrain yr-1 N03°±12°E) previously reported by Savage et al. [1999] for the 1983-1998 interval and with the low extension rate (5-20 nstrain yr-1) [Marrett et al., 1998] inferred from the geologic record. None of those strain rates is consistent with the 50±9 nstrain yr-1 N65°W extension rate for the area reported by Wernicke et al. [1998].

  4. Large strain variable stiffness composites for shear deformations with applications to morphing aircraft skins

    NASA Astrophysics Data System (ADS)

    McKnight, G. P.; Henry, C. P.

    2008-03-01

    Morphing or reconfigurable structures potentially allow for previously unattainable vehicle performance by permitting several optimized structures to be achieved using a single platform. The key to enabling this technology in applications such as aircraft wings, nozzles, and control surfaces, are new engineered materials which can achieve the necessary deformations but limit losses in parasitic actuation mass and structural efficiency (stiffness/weight). These materials should exhibit precise control of deformation properties and provide high stiffness when exercised through large deformations. In this work, we build upon previous efforts in segmented reinforcement variable stiffness composites employing shape memory polymers to create prototype hybrid composite materials that combine the benefits of cellular materials with those of discontinuous reinforcement composites. These composites help overcome two key challenges for shearing wing skins: the resistance to out of plane buckling from actuation induced shear deformation, and resistance to membrane deflections resulting from distributed aerodynamic pressure loading. We designed, fabricated, and tested composite materials intended for shear deformation and address out of plane deflections in variable area wing skins. Our designs are based on the kinematic engineering of reinforcement platelets such that desired microstructural kinematics is achieved through prescribed boundary conditions. We achieve this kinematic control by etching sheets of metallic reinforcement into regular patterns of platelets and connecting ligaments. This kinematic engineering allows optimization of materials properties for a known deformation pathway. We use mechanical analysis and full field photogrammetry to relate local scale kinematics and strains to global deformations for both axial tension loading and shear loading with a pinned-diamond type fixture. The Poisson ratio of the kinematically engineered composite is ~3x higher than

  5. Analysis of bonded joints. [shear stress and stress-strain diagrams

    NASA Technical Reports Server (NTRS)

    Srinivas, S.

    1975-01-01

    A refined elastic analysis of bonded joints which accounts for transverse shear deformation and transverse normal stress was developed to obtain the stresses and displacements in the adherends and in the bond. The displacements were expanded in terms of polynomials in the thicknesswise coordinate; the coefficients of these polynomials were functions of the axial coordinate. The stress distribution was obtained in terms of these coefficients by using strain-displacement and stress-strain relations. The governing differential equations were obtained by integrating the equations of equilibrium, and were solved. The boundary conditions (interface or support) were satisfied to complete the analysis. Single-lap, flush, and double-lap joints were analyzed, along with the effects of adhesive properties, plate thicknesses, material properties, and plate taper on maximum peel and shear stresses in the bond. The results obtained by using the thin-beam analysis available in the literature were compared with the results obtained by using the refined analysis. In general, thin-beam analysis yielded reasonably accurate results, but in certain cases the errors were high. Numerical investigations showed that the maximum peel and shear stresses in the bond can be reduced by (1) using a combination of flexible and stiff bonds, (2) using stiffer lap plates, and (3) tapering the plates.

  6. Streptomycin Accumulation in Susceptible and Resistant Strains of Escherichia coli and Pseudomonas aeruginosa

    PubMed Central

    Bryan, L. E.; Elzen, H. M. Van Den

    1976-01-01

    Streptomycin accumulation by susceptible strains of Escherichia coli and Pseudomonas aeruginosa has been shown to be prevented or inhibited by inhibitors of electron transport, sulfhydryl groups and protein synthesis, and agents that uncouple oxidative phosphorylation. Streptomycin is recovered from cells in an unchanged form and is intracellularly concentrated above extracellular concentrations. Accumulation kinetics are multiphasic; an initial phase which cannot be prevented by the above inhibitors is unable to cause inhibition of cell growth or loss of cell viability. Prevention of further phases of uptake does prevent these events. Inhibitor-susceptible accumulation is time dependent and begins almost immediately upon exposure of cells to streptomycin. Streptomycin accumulation remains energy dependent even when cells are losing acid-soluble [3H]adenine, presumably through loss of permeability control. These results demonstrate that streptomycin accumulation necessary for inhibition of cell growth or cell death requires energy and is not a process of diffusion or secondary to membrane leakage. Streptomycin accumulation in ribosomally resistant mutants of E. coli and P. aeruginosa is similar in that both energy-independent and energy-dependent accumulation can be demonstrated. The total energy-dependent accumulation is, however, significantly lower than that in streptomycin-susceptible cells due to the absence of an additional energy-dependent phase of accumulation, which seems dependent on ribosomal binding of streptomycin. Ribosomally resistant strains can be shown to concentrate streptomycin accumulated by the energy-dependent process above the external concentration in nutrient broth but not in Trypticase soy broth. The energy-dependent accumulation can be saturated in the Strr strain of E. coli in nutrient broth, implying limited accumulation sites. PMID:820248

  7. Biological Effects of Low-Frequency Shear Strain: Physical Descriptors.

    PubMed

    Carstensen, Edwin L; Parker, Kevin J; Dalecki, Diane; Hocking, Denise C

    2016-01-01

    Biological effects of megahertz-frequency diagnostic ultrasound are thoroughly monitored by professional societies throughout the world. A corresponding, thorough, quantitative evaluation of the archival literature on the biological effects of low-frequency vibration is needed. Biological effects, of course, are related directly to what those exposures do physically to the tissue-specifically, to the shear strains that those sources produce in the tissues. Instead of the simple compressional strains produced by diagnostic ultrasound, realistic sources of low-frequency vibration produce both fast (∼1,500 m/s) and slow (1-10 m/s) waves, each of which may have longitudinal and transverse shear components. Part 1 of this series illustrates the resulting strains, starting with those produced by longitudinally and transversely oscillating planes, through monopole and dipole sources of fast waves and, finally, to the case of a sphere moving in translation-the simplest model of the fields produced by realistic sources.

  8. Comminution of solids caused by kinetic energy of high shear strain rate, with implications for impact, shock, and shale fracturing.

    PubMed

    Bazant, Zdenek P; Caner, Ferhun C

    2013-11-26

    Although there exists a vast literature on the dynamic comminution or fragmentation of rocks, concrete, metals, and ceramics, none of the known models suffices for macroscopic dynamic finite element analysis. This paper outlines the basic idea of the macroscopic model. Unlike static fracture, in which the driving force is the release of strain energy, here the essential idea is that the driving force of comminution under high-rate compression is the release of the local kinetic energy of shear strain rate. The density of this energy at strain rates >1,000/s is found to exceed the maximum possible strain energy density by orders of magnitude, making the strain energy irrelevant. It is shown that particle size is proportional to the -2/3 power of the shear strain rate and the 2/3 power of the interface fracture energy or interface shear stress, and that the comminution process is macroscopically equivalent to an apparent shear viscosity that is proportional (at constant interface stress) to the -1/3 power of this rate. A dimensionless indicator of the comminution intensity is formulated. The theory was inspired by noting that the local kinetic energy of shear strain rate plays a role analogous to the local kinetic energy of eddies in turbulent flow.

  9. Microstructural and mechanical effects of strong fine-grained muscovite in soft halite matrix: Shear strain localization in torsion

    NASA Astrophysics Data System (ADS)

    Marques, F. O.; Burlini, L.; Burg, J.-P.

    2011-08-01

    Torsion experiments were performed on polymer jacketed samples of 80% halite + 20% fine mica at 373, 473, and 573 K; a confining pressure of 250 MPa; and a shear strain rate of 3 × 10-4 s-1. The strength of the aggregate depended on temperature, strain rate, mica distribution produced by cold pressing, and mica orientation emerging during experiments. Comparison with synthetic aggregates of pure halite shows that halite-mica mixtures were stronger in all cases. From strain rate stepping tests, we deduced stress exponents of 12 and 10 at 373 and 473 K, respectively, in contrast to values of approximately 4 and 3 for halite at the same temperatures. Strain localized only at 573 K, except for one run at 373 K, and high-strain shear bands formed parallel to the applied shear plane at 573 K. We infer that the strength contrast between halite and mica increased with temperature and promoted strain localization, which occurred where the local mica content was low, while unstrained domains persisted where the locally high mica content formed a strong framework. Mica reorientation and strain softening at 573 K increased with strain, from which we deduce that mica alignment promoted softening. We conclude that small amounts of a strong mineral phase can significantly increase the strength and stress dependence of a rock and that the heterogeneous connectivity between strong grains can trigger shear strain localization.

  10. Strain distribution within a km-scale, mid-crustal shear zone: The Kuckaus Mylonite Zone, Namibia

    NASA Astrophysics Data System (ADS)

    Rennie, S. F.; Fagereng, Å.; Diener, J. F. A.

    2013-11-01

    The subvertical Kuckaus Mylonite Zone (KMZ) is a km-wide, crustal-scale, Proterozoic, dextral strike-slip shear zone in the Aus granulite terrain, SW Namibia. The KMZ was active under retrograde, amphibolite to greenschist facies conditions, and deformed felsic (and minor mafic) gneisses which had previously experienced granulite facies metamorphism during the Namaqua Orogeny. Lenses of pre- to syn-tectonic leucogranite bodies are also deformed in the shear zone. Pre-KMZ deformation (D1) is preserved as moderately dipping gneissic foliations and tightly folded migmatitic layering. Shear strain within the KMZ is heterogeneous, and the shear zone comprises anastomosing high strain ultramylonite zones wrapping around less deformed to nearly undeformed lozenges. Strain is localized along the edge of leucogranites and between gneissic lozenges preserving D1 migmatitic foliations. Strain localization appears controlled by pre-existing foliations, grain size, and compositional anisotropy between leucogranite and granulite. The local presence of retrograde minerals indicate that fluid infiltration occurred in places, but most ultramylonite in the KMZ is free of retrograde minerals. In particular, rock composition and D1 fabric heterogeneity are highlighted as major contributors to the strain distribution in time and space, with deformation localization along planes of rheological contrast and along pre-existing foliations. Therefore, the spatial distribution of strain in crustal-scale ductile shear zones may be highly dependent on lithology and the orientation of pre-existing fabric elements. In addition, foliation development and grain size reduction in high strain zones further localizes strain during progressive shear, maintaining the anastomosing shear zone network established by the pre-existing heterogeneity.

  11. Strain accumulation and rotation in western Oregon and southwestern Washington

    USGS Publications Warehouse

    Svarc, J.L.; Savage, J.C.; Prescott, W.H.; Murray, M.H.

    2002-01-01

    Velocities of 75 geodetic monuments in western Oregon and southwestern Washington extending from the coast to more than 300 km inland have been determined from GPS surveys over the interval 1992-2000. The average standard deviation in each of the horizontal velocity components is ??? 1 mm yr-1. The observed velocity field is approximated by a combination of rigid rotation (Euler vector relative to interior North America: 43. 40??N ?? 0.14??, 119.33??W ?? 0.28??, and 0.822 ?? 0.057?? Myr-1 clockwise; quoted uncertainties are standard deviations), uniform regional strain rate (??EE = -7.4 ?? 1.8, ??EN = -3.4 ?? 1.0, and ??NN = -5.0 ?? 0.8 nstrain yr-1, extension reckoned positive), and a dislocation model representing subduction of the Juan de Fuca plate beneath North America. Subduction south of 44.5??N was represented by a 40-km-wide locked thrust and subduction north of 44.5??N by a 75-km-wide locked thrust.

  12. Strain accumulation in the Santa Barbara Channel, 1971-1987

    NASA Technical Reports Server (NTRS)

    Larsen, Shawn; King, Nancy; Agnew, Duncan; Hager, Bradford

    1988-01-01

    Geophysical evidence suggests a significant amount of north-south convergence occurs across the Santa Barbara Channel. Tectonic studies indicate a discrepancy between observed fault slip in California and the North American-Pacific plate motion. Newer plate motion models (NUVEL-1) yield a lower rate of convergence. Global Positioning System (GPS) data collected in the Santa Barbara Channel in 1987, when combined with 1971 trilateration measurements, should be sufficient to resolve the present-day convergence rate. In early 1987. from January 3 to 7, GPS data were collected at 14 sites in California and at 5 additional stations throughout North America. The data can be used to estimate the rate of crustal deformation (convergence) ocurring across the Santa Barbara Channel. The GPS baselines were computed with the Bernese 2nd generation software. A comparison was made between baseline lengths obtained with the Burnese and MIT softwares. Baseline changes from 1971 to January, 1987 (GPS-Bernese) across the Santa Barbara Channel were computed. A uniform strain model was calculated from the baseline changes. The present-day rate of convergence across the Santa Barbara Channel was determined to be 8 to 10 mm/yr. This conclusion is obtained from changes in the baseline length measured with a 1971 trilateration survey and a January, 1987, GPS survey. The rapid convergence rate, in addition to the history of large seismic events, suggests this region is a prime target for future geodetic and geophysical studies.

  13. Magnetic fabric of sheared till: A strain indicator for evaluating the bed deformation model of glacier flow

    USGS Publications Warehouse

    Hooyer, T.S.; Iverson, N.R.; Lagroix, F.; Thomason, J.F.

    2008-01-01

    Wet-based portions of ice sheets may move primarily by shearing their till beds, resting in high sediment fluxes and the development of subglacial landforms. This model of glacier movement, which requires high bed shear strains, can be tested using till microstructural characteristics that evolve during till deformation. Here we examine the development of magnetic fabric using a ring shear device to defom two Wisconsin-age basal tills to shear strains as high as 70. Hysteresis experiments and the dependence of magnetic susceptibility of these tills on temperature demonstrate that anisotropy of magnetic susceptibility (AMS) develops during shear due to the rotation of primarily magnetite particles that are silt sized or smaller. At moderate shear strains (???6-25), principal axes of maximum magnetic susceptibility develop a strong fabric (S1 eignevalues of 0.83-0.96), without further strengthening at higher strains, During deformation, directions of maximum susceptibility cluster strongly in the direction of shear and plunge 'up-glacier,' consistent with the behavior of pebbles and sand particles studied in earlier experiments. In contrast, the magnitude of AMS does not vary systematically with strain and is small relative to its variability among samples; this is because most magnetite grains are contained as inclusions in larger particles and hence do not align during shear. Although processes other than pervasive bed deformation may result in strong flow parallel fabrics, AMS fabrics provide a rapid and objective means of identifying basal tills that have not been sheared sufficiently to be compatible with the bed deformation model. Copyright 2008 by the American Geophysical Union.

  14. Constraints on strain rates during large-scale mid-crustal shearing: An example from the basal Vaddas shear zone, northern Caledonides

    NASA Astrophysics Data System (ADS)

    Gasser, Deta; Stünitz, Holger; Nasipuri, Pritam; Menegon, Luca

    2013-04-01

    The Caledonian orogen in Scandinavia is characterized by large-scale crustal nappe stacks which were emplaced east-/southeast-wards onto the Baltica shield. Whereas original thrust relationships are generally obscured by syn- to post-collisional extensional deformation in the southern and central Scandinavian Caledonides, several large-scale thrust systems are well-preserved in the northern Scandinavian Caledonides in Troms and Finnmark. One example is the mid-crustal Vaddas shear zone, which emplaced the Vaddas nappe on top of the Kalak nappe complex. In this contribution we present a structural, petrological and geochronological analysis of the rocks under- and overlying the Vaddas shear zone in northern Troms, in order to estimate the strain rate associated with thrusting along this major shear zone. The Vaddas nappe above the investigated shear zone consists mainly of Upper Ordovician to Silurian metasediments, which were deposited in a marine environment and which were intruded by voluminous gabbroic intrusions, before they were sheared off from their substratum and transported on top of the Kalak nappe complex during the Caledonian orogeny. PT conditions from one of these gabbroic bodies indicate that the body intruded the metasediments at ~9 kbar (Getsinger et al., subm to G3), which corresponds to a depth of ~34 km. U-Pb SIMS dating of zircons from this gabbro indicate that intrusion occurred at 439±2 Ma. The Vaddas nappe is separated from the Kalak nappe by an at least ~150 m thick, amphibolite-facies shear zone with a subhorizontal fabric and top-to-the-SE shear sense. It has developed within the lowest part of the Vaddas nappe as well as the upper part of the Kalak nappe complex and PT calculations indicate that final shearing occurred at ~450° C and ~6 kbar (depth of ~23 km). U-Pb TIMS dating of titanites, which grow parallel to the shear fabric in the Kalak nappe complex, gives 206Pb/238U ages ranging from 442±1 to 429±1 Ma, indicating that

  15. Microstructural characteristics of adiabatic shear localization in a metastable beta titanium alloy deformed at high strain rate and elevated temperatures

    SciTech Connect

    Zhan, Hongyi; Zeng, Weidong; Wang, Gui; Kent, Damon; Dargusch, Matthew

    2015-04-15

    The microstructural evolution and grain refinement within adiabatic shear bands in the Ti6554 alloy deformed at high strain rates and elevated temperatures have been characterized using transmission electron microscopy. No stress drops were observed in the corresponding stress–strain curve, indicating that the initiation of adiabatic shear bands does not lead to the loss of load capacity for the Ti6554 alloy. The outer region of the shear bands mainly consists of cell structures bounded by dislocation clusters. Equiaxed subgrains in the core area of the shear band can be evolved from the subdivision of cell structures or reconstruction and transverse segmentation of dislocation clusters. It is proposed that dislocation activity dominates the grain refinement process. The rotational recrystallization mechanism may operate as the kinetic requirements for it are fulfilled. The coexistence of different substructures across the shear bands implies that the microstructural evolution inside the shear bands is not homogeneous and different grain refinement mechanisms may operate simultaneously to refine the structure. - Graphical abstract: Display Omitted - Highlights: • The microstructure within the adiabatic shear band was characterized by TEM. • No stress drops were observed in the corresponding stress–strain curve. • Dislocation activity dominated the grain refinement process. • The kinetic requirements for rotational recrystallization mechanism were fulfilled. • Different grain refinement mechanisms operated simultaneously to refine the structure.

  16. Stability of elastic and viscoelastic plates in a gas flow taking into account shear strains

    NASA Astrophysics Data System (ADS)

    Potapov, V. D.

    2004-09-01

    It is well known that the internal friction in a material can have a considerable destabilizing effect on the stability of non-conservative systems. Apart from the Voigt model, the viscoelastic body model is sometimes utilized to describe material damping. This relates the stability problem for non-conservative elastic systems with that for viscoelastic system. The Bubnov-Galerkin method is usually applied for solving the problems. In this case, the displacement functions are represented by series in terms of natural vibration modes ϕ i( x) of the elastic system. To provide a high degree of accuracy for the solution, one should involve a fairly large number of modes. For a viscoelastic plate, the number of terms to be kept in the expansion of the deflection can be substantially more. One should bear in mind, however, that as the number of modes preserved in the expansion increases, the influence of shear strains and rotational inertia on the behavior of the solution becomes more pronounced. In view of this, it is important to study the stability of non-conservative viscoelastic systems with the shear strain and rotational inertia being taken into account. In the present paper this problem is solved for a viscoelastic plate in a supersonic gas flow.

  17. Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics

    PubMed Central

    Cao, Xuan; van Oosten, Anne; Shenoy, Vivek B.; Janmey, Paul A.; Wells, Rebecca G.

    2016-01-01

    Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G’ and G” and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver. PMID:26735954

  18. Evaluation of shear stress accumulation on blood components in normal and dysfunctional bileaflet mechanical heart valves using smoothed particle hydrodynamics.

    PubMed

    Shahriari, S; Maleki, H; Hassan, I; Kadem, L

    2012-10-11

    Evaluating shear induced hemodynamic complications is one of the major concerns in design of the mechanical heart valves (MHVs). The monitoring of these events relies on both numerical simulations and experimental measurements. Currently, numerical approaches are mainly based on a combined Eulerian-Lagrangian approach. A more straightforward evaluation can be based on the Lagrangian analysis of the whole blood. As a consequence, Lagrangian meshfree methods are more adapted to such evaluation. In this study, smoothed particle hydrodynamics (SPH), a fully meshfree particle method originated to simulate compressible astrophysical flows, is applied to study the flow through a normal and a dysfunctional bileaflet mechanical heart valves (BMHVs). The SPH results are compared with the reference data. The accumulation of shear stress patterns on blood components illustrates the important role played by non-physiological flow patterns and mainly vortical structures in this issue. The statistical distribution of particles with respect to shear stress loading history provides important information regarding the relative number of blood components that can be damaged. This can be used as a measure of the response of blood components to the presence of the valve implant or any implantable medical device. This work presents the first attempt to simulate pulsatile flow through BMHVs using SPH method.

  19. Normal and shear strain imaging using 2D deformation tracking on beam steered linear array datasets

    PubMed Central

    Xu, Haiyan; Varghese, Tomy

    2013-01-01

    Purpose: Previous publications have reported on the use of one-dimensional cross-correlation analysis with beam-steered echo signals. However, this approach fails to accurately track displacements at larger depths (>4.5 cm) due to lower signal-to-noise. In this paper, the authors present the use of adaptive parallelogram shaped two-dimensional processing blocks for deformation tracking. Methods: Beam-steered datasets were acquired using a VFX 9L4 linear array transducer operated at a 6 MHz center frequency for steered angles from −15 to 15° in increments of 1°, on both uniformly elastic and single-inclusion tissue-mimicking phantoms. Echo signals were acquired to a depth of 65 mm with the focus set at 40 mm corresponding to the center of phantom. Estimated angular displacements along and perpendicular to the beam direction are used to compute axial and lateral displacement vectors using a least-squares approach. Normal and shear strain tensor component are then estimated based on these displacement vectors. Results: Their results demonstrate that parallelogram shaped two-dimensional deformation tracking significantly improves spatial resolution (factor of 7.79 along the beam direction), signal-to-noise (5 dB improvement), and contrast-to-noise (8–14 dB improvement) associated with strain imaging using beam steering on linear array transducers. Conclusions: Parallelogram shaped two-dimensional deformation tracking is demonstrated in beam-steered radiofrequency data, enabling its use in the estimation of normal and shear strain components. PMID:23298118

  20. Accommodation of missing shear strain in the Central Walker Lane, western North America: Constraints from dense GPS measurements

    NASA Astrophysics Data System (ADS)

    Bormann, Jayne M.; Hammond, William C.; Kreemer, Corné; Blewitt, Geoffrey

    2016-04-01

    We present 264 new interseismic GPS velocities from the Mobile Array of GPS for Nevada Transtension (MAGNET) and continuous GPS networks that measure Pacific-North American plate boundary deformation in the Central Walker Lane. Relative to a North America-fixed reference frame, northwestward velocities increase smoothly from ∼4 mm/yr in the Basin and Range province to 12.2 mm/yr in the central Sierra Nevada resulting in a Central Walker Lane deformation budget of ∼8 mm/yr. We use an elastic block model to estimate fault slip and block rotation rates and patterns of deformation from the GPS velocities. Right-lateral shear is distributed throughout the Central Walker Lane with strike-slip rates generally <1.5 mm/yr predicted by the block model, but extension rates are highest near north-striking normal faults found along the Sierra Nevada frontal fault system and in a left-stepping, en-echelon series of asymmetric basins that extend from Walker Lake to Lake Tahoe. Neotectonic studies in the western Central Walker Lane find little evidence of strike-slip or oblique faulting in the asymmetric basins, prompting the suggestion that dextral deformation in this region is accommodated through clockwise block rotations. We test this hypothesis and show that a model relying solely on the combination of clockwise block rotations and normal faulting to accommodate dextral transtensional strain accumulation systematically misfits the GPS data in comparison with our preferred model. This suggests that some component of oblique or partitioned right-lateral fault slip is needed to accommodate shear in the asymmetric basins of the western Central Walker Lane. Present-day clockwise vertical axis rotation rates in the Bodie Hills, Carson Domain, and Mina Deflection are between 1-4°/Myr, lower than published paleomagnetic rotation rates, suggesting that block rotation rates have decreased since the Late to Middle Miocene.

  1. Interseismic strain accumulation across the Ashkabad fault (NE Iran) from MERIS-corrected ASAR data

    NASA Astrophysics Data System (ADS)

    Walters, R. J.; Elliott, J. R.; Li, Z.; Parsons, B. E.

    2011-12-01

    The right-lateral Ashkabad Fault separates deforming NE Iran from the stable Turkmenistan platform to the north, and also facilitates the north-westwards extrusion of the South Caspian block (along with the left-lateral Shahrud fault zone). The fault represents the northernmost boundary of significant deformation of the Arabia-Eurasia collision in NE Iran. The 1948 M 7.3 Ashkabad earthquake, which killed around 110,000 people and was the deadliest earthquake to hit Europe or the Middle East in the 20th Century, also possibly occurred on this fault. However, the slip rate and therefore the seismic hazard that the Ashkabad fault represents are not well known. GPS data in NE Iran are sparse, and there are no direct geological or quaternary rates for the main strand of the fault. We use Envisat ASAR data acquired between 2003 and 2010 to measure interseismic strain accumulation across the fault, and hence estimate the slip rate across it. Due to the proximity of this region to the Caspian Sea and the presence of highly variable weather systems, we use data from Envisat's Medium Resolution Imaging Spectrometer (MERIS) instrument, as well as modelled weather data from the European Centre for Medium-Range Weather Forecasting (ECMWF), to correct interferograms for differences in water vapour and atmospheric pressure. We mitigate the effects of remaining noise by summing the 13 corrected interferograms that cover the fault, effectively creating a 30 year interferogram with improved signal-to-noise ratio, and we empirically correct for orbital errors. Our measurements of rates of displacement are consistent with an interseismic model for the Ashkabad fault where deformation occurs at depth on a narrow shear zone below a layer in which the fault is locked. We invert the data to solve for best fitting model parameters, estimating both the slip rate and the depth to which the fault is locked. Our measurements show that the Ashkabad fault is accumulating strain at a rate of 9 mm

  2. Implementation of Improved Transverse Shear Calculations and Higher Order Laminate Theory Into Strain Rate Dependent Analyses of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Lin-Fa; Kim, Soo; Chattopadhyay, Aditi; Goldberg, Robert K.

    2004-01-01

    A numerical procedure has been developed to investigate the nonlinear and strain rate dependent deformation response of polymer matrix composite laminated plates under high strain rate impact loadings. A recently developed strength of materials based micromechanics model, incorporating a set of nonlinear, strain rate dependent constitutive equations for the polymer matrix, is extended to account for the transverse shear effects during impact. Four different assumptions of transverse shear deformation are investigated in order to improve the developed strain rate dependent micromechanics model. The validities of these assumptions are investigated using numerical and theoretical approaches. A method to determine through the thickness strain and transverse Poisson's ratio of the composite is developed. The revised micromechanics model is then implemented into a higher order laminated plate theory which is modified to include the effects of inelastic strains. Parametric studies are conducted to investigate the mechanical response of composite plates under high strain rate loadings. Results show the transverse shear stresses cannot be neglected in the impact problem. A significant level of strain rate dependency and material nonlinearity is found in the deformation response of representative composite specimens.

  3. The influence of strain localisation on the rotation behaviour of rigid objects in experimental shear zones

    NASA Astrophysics Data System (ADS)

    ten Grotenhuis, Saskia M.; Passchier, Cees W.; Bons, Paul D.

    2002-03-01

    Mica fish and tourmaline fish from natural mylonites were analysed in thin section to determine their orientation distribution. They are oriented with their long axes tilted with respect to the mylonitic foliation, and fish with a small aspect ratio exhibit a slightly larger angle than fish with a large aspect ratio. This orientation seems to be a stable orientation for the mica and tourmaline fish. Analogue experiments with two rheologically different matrix materials were performed to explain the data. One material was PDMS, a linear viscous polymer. The other was tapioca pearls, a granular material with low cohesion and Mohr-Coulomb type behaviour. In contrast to a fairly homogeneous strain distribution in PDMS, distinct small-scale shear bands developed in tapioca pearls during deformation. Experiments modelled different vorticity numbers and parallelogram-shaped rigid objects with different aspect ratios were used. Rotation rates of objects in a viscous matrix are very similar to analytical solutions for ellipses in viscous flow, but stable orientations differ from data of natural examples. In all experiments with a Mohr-Coulomb matrix elongated objects had a stable orientation due to small-scale strain localisation. We therefore suggest that small-scale strain localisation (≤mm) that might be hidden by ongoing deformation and recrystallisation processes, is an important characteristic of the rheology of mylonites.

  4. Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil

    NASA Astrophysics Data System (ADS)

    Tommasi, AndréA.; Vauchez, Alain; Femandes, Luis A. D.; Porcher, Carla C.

    1994-04-01

    In a lithospheric-scale, orogen-parallel transcurrent shear zone of the Pan-African Dom Feliciano belt of southern Brazil, two successive generations of magmas, an early calc-alkaline and a late peraluminous, have been emplaced during deformation. Microstructures show that these granitoids experienced a progressive deformation from magmatic to solid state under decreasing temperature conditions. Magmatic deformation is indicated by the coexistence of aligned K-feldspar, plagioclase, micas, and/or tourmaline with undeformed quartz. Submagmatic deformation is characterized by strain features, such as fractures, lattice bending, or replacement reactions affecting only the early crystallized phases. High-temperature solid-state deformation is characterized by extensive grain boundary migration in quartz, myrmekitic K-feldspar replacement, and dynamic recrystallization of both K-feldspar and plagioclase. Decreasing temperature during solid-state deformation is inferred from changes in quartz crystallographic fabrics, decrease in grain size of recrystallized feldspars, and lower Ti amount in recrystallized biotites. Final low-temperature deformation is characterized by feldspar replacement by micas. The geochemical evolution of the synkinematic magmatism, from calc-alkaline metaluminous granodiorites with intermediate 87Sr/86Sr initial ratio to peraluminous granites with very high 87Sr/86Sr initial ratio, suggests an early lower crustal source or a mixed mantle/crustal source, followed by a middle to upper crustal source for the melts. Shearing in lithospheric faults may induce partial melting in the lower crust by shear heating in the upper mantle, but, whatever the process initiating partial melting, lithospheric transcurrent shear zones may collect melt at different depths. Because they enhance the vertical permeability of the crust, these zones may then act as heat conductors (by advection), promoting an upward propagation of partial melting in the crust

  5. The influence of void ratio on small strain shear modulus of granular materials: A micromechanical perspective

    NASA Astrophysics Data System (ADS)

    Xu, Xiaomin; Cheng, Yipik; Ling, Dongsheng

    2013-06-01

    The small strain shear modulus Gmax of granular materials is highly dependent on their current void ratio and stress state, generally expressed as the famous Hardin and Richart equation. Various forms of void ratio functions have been proposed, either based on experimental or theoretical research. It is noted that each of them can be applied for a certain soil within a limited void ratio range. Micromechanical studies on the influence of void ratio on Gmax are conducted in this paper, using Discrete Element Method. After each sample being isotropically consolidated, shear wave velocity is measured by applying a velocity pulse to the transmitter in a certain direction, and monitoring the corresponding average velocity of the receiver. The capabilities of various existing void ratio functions are examined, together with the relationship between coordination number and void ratio, distribution of coordination number, as well as the contact force network. The void ratio effect on Gmax is further explained in terms of the wave travel length and the travel time for different contact connectivity networks.

  6. Mechanical anisotropy control on strain localization in upper mantle shear zones

    NASA Astrophysics Data System (ADS)

    Herwegh, Marco; Mercolli, Ivan; Linckens, Jolien; Müntener, Othmar

    2016-05-01

    Mantle rocks at oceanic spreading centers reveal dramatic rheological changes from partially molten to solid-state ductile to brittle deformation with progressive cooling. Using the crustal-scale Wadi al Wasit mantle shear zone (SZ, Semail ophiolite, Oman), we monitor such changes based on quantitative field and microstructural investigations combined with petrological and geochemical analyses. The spatial distribution of magmatic dikes and high strain zones gives important information on the location of magmatic and tectonic activity. In the SZ, dikes derived from primitive melts (websterites) are distributed over the entire SZ but are more abundant in the center; dikes from more evolved, plagioclase saturated melts (gabbronorites) are restricted to the SZ center. Accordingly, harzburgite deformation fabrics show a transition from protomylonite (1100°C), mylonite (900-800°C) to ultramylonite (<700°C) and a serpentine foliation (<500°C) from the SZ rim to the center. The spatial correlation between solid-state deformation fabrics and magmatic features indicates progressive strain localization in the SZ on the cooling path. Three stages can be discriminated: (i) Cycles of melt injection (dunite channels and websterite dikes) and solid-state deformation (protomylonites-mylonites; 1100-900°C), (ii) dominant solid-state deformation in harzburgite mylonites (900-800°C) with some last melt injections (gabbronorites) and ultramylonites (<700°C), and (iii) infiltration of seawater inducing a serpentine foliation (<500°C) followed by cataclasis during obduction. The change of these processes in space and time indicates that early dike-related ridge-parallel deformation controls the onset of the entire strain localization history promoting nucleation sites for different strain weakening processes as a consequence of changing physicochemical conditions.

  7. The Cora Lake Shear Zone: Strain Localization in an Ultramylonitic, Deep Crustal Shear Zone, Athabasca Granulite Terrain, Western Churchill Province, Canada

    NASA Astrophysics Data System (ADS)

    Regan, S.; Williams, M. L.; Mahan, K. H.; Orlandini, O. F.; Jercinovic, M. J.; Leslie, S. R.; Holland, M.

    2012-12-01

    Ultramylonitic shear zones typically involve intense strain localization, and when developed over large regions can introduce considerable heterogeneity into the crust. The Cora Lake shear zone (CLsz) displays several 10's to 100's of meters-wide zones of ultramylonite distributed throughout its full 3-5 km mylonitized width. Detailed mapping, petrography, thermobarometry, and in-situ monazite geochronology suggest that it formed during the waning phases of granulite grade metamorphism and deformation, within one of North America's largest exposures of polydeformed lower continental crust. Anastomosing zones of ultramylonite contain recrystallized grain-sizes approaching the micron scale and might appear to suggest lower temperature mylonitization. However, feldspar and even clinopyroxene are dynamically recrystallized, and quantitative thermobarometry of syn-deformational assemblages indicate high P and T conditions ranging from 0.9 -10.6 GPa and 775-850 °C. Even at these high T's, dynamic recovery and recrystallization were extremely limited. Rocks with low modal quartz have extremely small equilibrium volumes. This is likely the result of inefficient diffusion, which is further supported by the unannealed nature of the crystals. Local carbonate veins suggests that H2O poor, CO2 rich conditions may have aided in the preservation of fine grain sizes, and may have inhibited dynamic recovery and recrystallization. The Cora Lake shear zone is interpreted to have been relatively strong and to have hardened during progressive deformation. Garnet is commonly fractured perpendicular to host rock fabric, and statically replaced by both biotite and muscovite. Pseudotachylite, with the same sense of shear, occurs in several ultramylonitized mafic granulites. Thus, cataclasis and frictional melt are interpreted to have been produced in the lower continental crust, not during later reactivation. We suggest that strengthening of rheologically stiffer lithologies led to

  8. Frictional properties of DFDP-1 Alpine Fault rocks under hydrothermal conditions and high shear strain

    NASA Astrophysics Data System (ADS)

    Niemeijer, André R.; Boulton, Carolyn; Toy, Virginia; Townend, John; Sutherland, Rupert

    2015-04-01

    The Alpine Fault, New Zealand, is a major plate-bounding fault that accommodates 65-75% of the total relative motion between the Australian and Pacific plates. Paleoseismic evidence of large-displacement surface-rupturing events, as well as an absence of measurable contemporary surface deformation, indicates that the fault slips mostly in quasi-periodic large-magnitude earthquakes (< Mw 8.0). To understand the mechanics of earthquakes, it is important to study the evolution of frictional properties of the fault rocks under conditions representative of the potential hypocentral depth. Here, we present data obtained on drill core samples of rocks that surround the principal slip zone(s) (PSZ) of the Alpine Fault and the PSZ itself. The drill core samples were obtained during phase 1 of the Deep Fault Drilling Project (DFDP-1) in 2011 at relatively shallow depths (down to ~150 m). Simulated fault gouges were sheared under elevated pressure and temperature conditions in a hydrothermal ring shear apparatus. We performed experiments at temperatures of 25, 150, 300, 450 ° C, and 600 oC. Using the shallow geothermal gradient of 63 ° C/km determined in DFDP-1, our highest temperature corresponds to a depth of ~7 km (Sutherland et al. 2012); it would correspond to 10 km depth using a more moderate geotherm of 45 oC/km (Toy et al. 2010). All samples show a transition from velocity-strengthening behavior, i.e. a positive value of (a-b), to velocity-weakening behavior, i.e. a negative value of (a-b) at a temperature of 150 ° C. The transition depends on the absolute value of sliding velocity, with velocity-weakening dominating at lower sliding velocities. At 600 oC, velocity-strengthening dominates at low sliding velocity, whereas the high-velocity steps are all velocity-weakening. Moreover, shear stress depends linearly on effective normal stress at 600 oC, indicating that shearing is essentially frictional and that no transition to ductile (normal stress independent) flow

  9. Determination of the Shear Buckling Load of a Large Polymer Composite I-Section Using Strain and Displacement Sensors

    PubMed Central

    Park, Jin Y.; Lee, Jeong Wan

    2012-01-01

    This paper presents a method and procedure of sensing and determining critical shear buckling load and corresponding deformations of a comparably large composite I-section using strain rosettes and displacement sensors. The tested specimen was a pultruded composite beam made of vinyl ester resin, E-glass and carbon fibers. Various coupon tests were performed before the shear buckling test to obtain fundamental material properties of the I-section. In order to sensitively detect shear buckling of the tested I-section, twenty strain rosettes and eight displacement sensors were applied and attached on the web and flange surfaces. An asymmetric four-point bending loading scheme was utilized for the test. The loading scheme resulted a high shear and almost zero moment condition at the center of the web panel. The web shear buckling load was determined after analyzing the obtained test data from strain rosettes and displacement sensors. Finite element analysis was also performed to verify the experimental results and to support the discussed experimental approach. PMID:23443364

  10. Comparison of clenbuterol and salbutamol accumulation in the liver of two different mouse strains.

    PubMed

    Vulić, Ana; Pleadin, Jelka; Durgo, Ksenija; Scortichini, Giampiero; Stojković, Ranko

    2014-06-01

    In the European Union, β(2)-adrenergic agonists like clenbuterol and salbutamol are banned from use as growth promoters. Although clenbuterol and salbutamol both accumulate in the liver, differences in the accumulation rate can be seen among animal species due to different β(2)-adrenoreceptor distributions. The aim of this study was to compare the accumulation of the two in the liver tissue of two different mouse strains. The study included 200 8-week-old BALB/c and C57/BL/6 mice. One group of BALB/c (40) and one group of C57/BL/6 (40) mice were treated with 2.5 mg/kg body mass clenbuterol per os for 28 days. The remaining two animal groups were treated with salbutamol in the same manner. The animals were then randomly sacrificed on day 1, 15 and 30 post treatments. Despite of the same treatment dose, the results revealed clenbuterol to persist in the liver tissue longer than salbutamol. On post treatment day 30, the concentration of clenbuterol residue in C57/BL/6 and BALB/c mice liver tissue were 0.23 ± 0.02 and 0.21 ± 0.03 ng/g, respectively, while residues of salbutamol were not detected. When comparing the accumulation of both compounds between the two mouse strains, it becomes apparent that no significant difference (P > 0.05) in the accumulation rate can be found.

  11. Onset of failure in finitely strained layered composites subjected to combined normal and shear loading

    NASA Astrophysics Data System (ADS)

    Nestorović, M. D.; Triantafyllidis, N.

    2004-04-01

    A limiting factor in the design of fiber-reinforced composites is their failure under axial compression along the fiber direction. These critical axial stresses are significantly reduced in the presence of shear stresses. This investigation is motivated by the desire to study the onset of failure in fiber-reinforced composites under arbitrary multi-axial loading and in the absence of the experimentally inevitable imperfections and finite boundaries. By using a finite strain continuum mechanics formulation for the bifurcation (buckling) problem of a rate-independent, perfectly periodic (layered) solid of infinite extent, we are able to study the influence of load orientation, material properties and fiber volume fraction on the onset of instability in fiber-reinforced composites. Two applications of the general theory are presented in detail, one for a finitely strained elastic rubber composite and another for a graphite-epoxy composite, whose constitutive properties have been determined experimentally. For the latter case, extensive comparisons are made between the predictions of our general theory and the available experimental results as well as to the existing approximate structural theories. It is found that the load orientation, material properties and fiber volume fraction have substantial effects on the onset of failure stresses as well as on the type of the corresponding mode (local or global).

  12. Strain rate and shear stress at the grain scale generated during near equilibrium antigorite dehydration

    NASA Astrophysics Data System (ADS)

    Padrón-Navarta, José Alberto; Tommasi, Andréa; Garrido, Carlos J.; Mainprice, David; Clément, Maxime

    2016-04-01

    has not been previously reported and offers an unique opportunity to estimate a lower bound for the strain rates and local shear stresses generated during the grain growth and coeval compaction. Estimated values based on experimental creep rates on pyroxene aggregates [3] result in strain rates in the order of 10-12 to 10-13 s-1 and shear stresses of 60-70 MPa. Lower shear stress values (20-40 MPa) are retrieved using the thermodynamic model clinoenstatite inversion of Coe [4] in combination with the hydrostatic high-pressure experimental data on the stability of low clinoenstatite (P21/c). These data suggest that, under low deviatoric stress, fluid extraction and compaction near equilibrium in natural systems are only marginally higher than the strain rate of the solid matrix. These observations support the relatively long residence time of fluids in dehydration fronts and the necessity to further explore and quantify the feedback between mineral grain growth and fluid migration. [1] Connolly (2010) Elements 6(3):165-172; [2] Padrón-Navarta et al. (2015). Contrib Miner Petrol 169:35 [3] Raleigh et al. (1971). J Geophys Res 76(17): 4011-4022; [4] Coe (1970). Contrib Miner Petrol 26(3):247-264

  13. A new fungal isolate, Penidiella sp. strain T9, accumulates the rare earth element dysprosium.

    PubMed

    Horiike, Takumi; Yamashita, Mitsuo

    2015-05-01

    With an aim to develop a highly efficient method for the recovery of rare earth elements (REEs) by using microorganisms, we attempted to isolate dysprosium (Dy)-accumulating microorganisms that grow under acidic conditions from environmental samples containing high concentrations of heavy metals. One acidophilic strain, T9, which was isolated from an abandoned mine, decreased the concentration of Dy in medium that contained 100 mg/liter Dy to 53 mg/liter Dy after 3 days of cultivation at pH 2.5. The Dy content in the cell pellet of the T9 strain was 910 μg/mg of dry cells. The T9 strain also accumulated other REEs. Based on the results of 28S-D1/D2 rRNA gene sequencing and morphological characterization, we designated this fungal strain Penidiella sp. T9. Bioaccumulation of Dy was observed on the cell surface of the T9 strain by elemental mapping using scanning electron microscopy-energy dispersive X-ray spectroscopy. Our results indicate that Penidiella sp. T9 has the potential to recover REEs such as Dy from mine drainage and industrial liquid waste under acidic conditions.

  14. A New Fungal Isolate, Penidiella sp. Strain T9, Accumulates the Rare Earth Element Dysprosium

    PubMed Central

    Horiike, Takumi

    2015-01-01

    With an aim to develop a highly efficient method for the recovery of rare earth elements (REEs) by using microorganisms, we attempted to isolate dysprosium (Dy)-accumulating microorganisms that grow under acidic conditions from environmental samples containing high concentrations of heavy metals. One acidophilic strain, T9, which was isolated from an abandoned mine, decreased the concentration of Dy in medium that contained 100 mg/liter Dy to 53 mg/liter Dy after 3 days of cultivation at pH 2.5. The Dy content in the cell pellet of the T9 strain was 910 μg/mg of dry cells. The T9 strain also accumulated other REEs. Based on the results of 28S-D1/D2 rRNA gene sequencing and morphological characterization, we designated this fungal strain Penidiella sp. T9. Bioaccumulation of Dy was observed on the cell surface of the T9 strain by elemental mapping using scanning electron microscopy-energy dispersive X-ray spectroscopy. Our results indicate that Penidiella sp. T9 has the potential to recover REEs such as Dy from mine drainage and industrial liquid waste under acidic conditions. PMID:25710372

  15. Normal and shear strains of the left ventricle in healthy human subjects measured by two-dimensional speckle tracking echocardiography

    PubMed Central

    2014-01-01

    Background Animal studies have shown that shear deformation of myocardial sheets in transmural planes of left ventricular (LV) wall is an important mechanism for systolic wall thickening, and normal and shear strains of the LV free wall differ from those of the interventricular septum (IVS). We sought to test whether these also hold for human hearts. Methods Thirty healthy volunteers (male 23 and female 7, aged 34 ± 6 years) from Outpatient Department of the University of Tokyo Hospital were included. Echocardiographic images were obtained in the left decubitus position using a commercially available system (Aloka SSD-6500, Japan) equipped with a 3.5-MHz transducer. The ECG was recorded simultaneously. The peak systolic radial normal strain (length change), shear strain (angle change) and time to peak systolic radial normal strain were obtained non-invasively by two-dimensional speckle tracking echocardiography. Results The peak systolic radial normal strain in both IVS and LV posterior wall (LVPW) showed a trend to increase progressively from the apical level to the basal level, especially at short axis views, and the peak systolic radial normal strain of LVPW was significantly greater than that of IVS at all three levels. The time to peak systolic radial normal strain was the shortest at the basal IVS, and increased progressively from the base to the apical IVS. It gradually increased from the apical to the basal LVPW in sequence, especially at short axis views. The peak of radial normal strain of LVPW occurred much later than the peak of IVS at all three levels. For IVS, the shear deformation was clockwise at basal level, and counterclockwise at mid and apical levels in LV long-axis view. For LVPW, the shear deformations were all counterclockwise in LV long-axis view and increased slightly from base to the apex. LVPW showed larger shear strains than IVS at all three levels. Bland-Altman analysis shows very good agreement between measurements taken by the

  16. Comparison of game-farm and wild-strain mallard ducks in accumulation of methylmercury

    USGS Publications Warehouse

    Heinz, G.H.

    1979-01-01

    The accumulation of mercury was compared in game-farm and wild-strain mallard ducks fed a diet containing 0.5 ppm mercury in the form of methylmercury dicyandiamide. There were no significant differences between the two strains in levels of mercury that accumulated in blood, kidney, liver, breast muscle, brain, eggs, or ducklings. Mercury levels in blood were significantly correlated with levels in other tissues and eggs, as were levels in down feathers of ducklings with levels in carcasses of ducklings. The results indicate that game-farm mallards are probably suitable substitutes for wild mallards in toxicological work, that blood samples can be used to estimate levels of mercury in other tissues of adults, and that down feathers are predictive of mercury levels in duckling carcasses.

  17. Magnetism and Raman Spectroscopy of Pristine and Hydrogenated TaSe2 Monolayer tuned by Tensile and Pure Shear Strain

    NASA Astrophysics Data System (ADS)

    Chowdhury, Sugata; Simpson, Jeffrey; Einstein, T. L.; Walker, Angela R. Hight

    2D-materials with controllable optical, electronic and magnetic properties are desirable for novel nanodevices. Here we studied these properties for both pristine and hydrogenated TaSe2 (TaSe2-H) monolayer (ML) in the framework of DFT using the PAW method. We considered uniaxial and biaxial tensile strain, as well as shear strain along the basal planes in the range between 1% and 16%. Previous theoretical works (e.g.) considered only symmetrical biaxial tensile. Pristine ML is ferromagnetic for uniaxial tensile strain along ◯ or ŷ. For tensile strain in ŷ, the calculated magnetic moments of the Ta atoms are twice those for the same strain in ◯. Under pure shear strain (expansion along ŷ and compression along ◯), a pristine ML is ferromagnetic, but becomes non-magnetic when the strain directions are interchanged. Due to carrier-mediated double-exchange, the pristine ML is ferromagnetic when the Se-Ta-Se bond angle is < 82° and the ML thickness is < 3.25Å. We find that all Raman-active phonon modes show obvious red-shifting due to bond elongation and the E2 modes degeneracy is lifted as strain increases. For a TaSe2-H ML, the same trends were observed. Results show the ability to tune the properties of 2D-materials.

  18. Draft Genome Sequence of Halomonas sp. HG01, a Polyhydroxyalkanoate-Accumulating Strain Isolated from Peru

    PubMed Central

    Cardinali-Rezende, Juliana; Nahat, Rafael Augusto Teodoro Pereira de Souza; Guzmán Moreno, César Wilber; Carreño Farfán, Carmen Rosa; Silva, Luiziana Ferreira; Taciro, Marilda Keico

    2016-01-01

    Halomonas sp. strain HG01, isolated from a salt mine in Peru, is a halophilic aerobic heterotrophic bacterium accumulating poly-3-hydroxybutyrate and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from different carbon sources. Here, we report the draft genome sequence of this isolate, which was found to be 3,665,487 bp long, with a G+C content of 68%. PMID:26798101

  19. Lactobacillus casei strains isolated from cheese reduce biogenic amine accumulation in an experimental model.

    PubMed

    Herrero-Fresno, Ana; Martínez, Noelia; Sánchez-Llana, Esther; Díaz, María; Fernández, María; Martin, Maria Cruz; Ladero, Victor; Alvarez, Miguel A

    2012-07-02

    Tyramine and histamine are the biogenic amines (BAs) most commonly found in cheese, in which they appear as a result of the microbial enzymatic decarboxylation of tyrosine and histidine respectively. Given their toxic effects, their presence in high concentrations in foods should be avoided. In this work, samples of three cheeses (Zamorano, Cabrales and Emmental) with long ripening periods, and that often have high BA concentrations, were screened for the presence of BA-degrading lactic acid bacteria (LAB). Seventeen isolates were found that were able to degrade tyramine and histamine in broth culture. All 17 isolates were identified by 16S rRNA sequencing as belonging to Lactobacillus casei. They were typed by plasmid S1-PFGE and genomic macrorestriction-PFGE analysis. Two strains (L. casei 4a and 5b) associated with high degradation rates for both BAs were selected to test how this ability might affect histamine and tyramine accumulation in a Cabrales-like mini-cheese manufacturing model. The quantification of BAs and the monitoring of the strains' growth over ripening were undertaken by RP-HPLC and qPCR respectively. Both strains were found to reduce histamine and tyramine accumulation. These two strains might be suitable for use as adjunct cultures for reducing the presence of BAs in cheese.

  20. Studies of Shear Band Velocity Using Spatially and Temporally Resolved Measurements of Strain During Quasistatic Compression of Bulk Metallic Glass

    SciTech Connect

    Wright, W J; Samale, M; Hufnagel, T; LeBlanc, M; Florando, J

    2009-06-15

    We have made measurements of the temporal and spatial features of the evolution of strain during the serrated flow of Pd{sub 40}Ni{sub 40}P{sub 20} bulk metallic glass tested under quasistatic, room temperature, uniaxial compression. Strain and load data were acquired at rates of up to 400 kHz using strain gages affixed to all four sides of the specimen and a piezoelectric load cell located near the specimen. Calculation of the displacement rate requires an assumption about the nature of the shear displacement. If one assumes that the entire shear plane displaces simultaneously, the displacement rate is approximately 0.002 m/s. If instead one assumes that the displacement occurs as a localized propagating front, the velocity of the front is approximately 2.8 m/s. In either case, the velocity is orders of magnitude less than the shear wave speed ({approx}2000 m/s). The significance of these measurements for estimates of heating in shear bands is discussed.

  1. Construction and characterization of Salmonella typhimurium strains that accumulate and excrete alpha- and beta-isopropylmalate.

    PubMed

    Fultz, P N; Choung, K K; Kemper, J

    1980-05-01

    Two Salmonella typhimurium strains, which could be used as sources for the leucine biosynthetic intermediates alpha- and beta-isopropylmalate were constructed by a series of P22-mediated transductions. One strain, JK527 [flr-19 leuA2010 Delta(leuD-ara)798 fol-162], accumulated and excreted alpha-isopropylmalate, whereas the second strain, JK553 (flr-19 leuA2010 leuB698), accumulated and excreted alpha- and beta-isopropylmalate. The yield of alpha-isopropylmalate isolated from the culture medium of JK527 was more than five times the amount obtained from a comparable volume of medium in which Neurospora crassa strain FLR(92)-1-216 (normally used as the source for alpha- and beta-isopropylmalate) was grown. Not only was the yield greater, but S. typhimurium strains are much easier to handle and grow to saturation much faster than N. crassa strains. The combination of the two regulatory mutations flr-19, which results in constitutive expression of the leucine operon, and leuA2010, which renders the first leucine-specific biosynthetic enzyme insensitive to feedback inhibition by leucine, generated limitations in the production of valine and pantothenic acid. The efficient, irreversible, and unregulated conversion of alpha-ketoisovaleric acid into alpha-isopropylmalate (alpha-isopropylmalate synthetase K(m) for alpha-ketoisovaleric acid, 6 x 10(-5) M) severely restricted the amount of alpha-ketoisovaleric acid available for conversion into valine and pantothenic acid (ketopantoate hydroxymethyltransferase K(m) for alpha-ketoisovaleric acid, 1.1 x 10(-3) M; transaminase B K(m) for alpha-ketoisovaleric acid, 2 x 10(-3) M).

  2. Investigation of high-speed free shear flows using improved pressure-strain correlated Reynolds stress turbulence model

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Lakshmanan, B.

    1993-01-01

    A high-speed shear layer is studied using compressibility corrected Reynolds stress turbulence model which employs newly developed model for pressure-strain correlation. MacCormack explicit prediction-corrector method is used for solving the governing equations and the turbulence transport equations. The stiffness arising due to source terms in the turbulence equations is handled by a semi-implicit numerical technique. Results obtained using the new model show a sharper reduction in growth rate with increasing convective Mach number. Some improvements were also noted in the prediction of the normalized streamwise stress and Reynolds shear stress. The computed results are in good agreement with the experimental data.

  3. Strain localization in brittle-ductile shear zones: fluid abundant vs fluid limited conditions (an example from Wyangala area, Australia)

    NASA Astrophysics Data System (ADS)

    Spruzeniece, L.; Piazolo, S.

    2015-04-01

    This study focuses on physiochemical processes occurring in a brittle-ductile shear zone at both fluid-present and fluid-limited conditions. In the studied shear zone (Wyangala, SE Australia), a coarse-grained two feldspar-quartz-biotite granite is transformed into a medium grained orthogneiss at the shear zone margins and a fine-grained quartz-muscovite phyllonite in the central parts. The orthogneiss displays cataclasis of feldspar and crystal-plastic deformation of quartz. Quartz accommodates most of the deformation and is extensively recrystallized showing distinct crystallographic preferred orientation (CPO). Feldspar-to-muscovite, biotite-to-muscovite and albitization reactions occur locally at porphyroclasts' fracture surfaces and margins. However, the bulk rock composition shows very little change in respect to the wall rock composition. In contrast, in the shear zone centre quartz occurs as large, weakly deformed porphyroclasts, in sizes similar to that in the wall rock, suggesting that it has undergone little deformation. Feldspars and biotite are almost completely reacted to muscovite, which is arranged in a fine-grained interconnected matrix. Muscovite-rich layers contain significant amounts of fine-grained intermixed quartz with random CPO. These domains are interpreted to have accommodated most of the strain. Bulk rock chemistry data shows a significant increase in SiO2 and depletion in NaO content compared to the wall rock composition. We suggest that the high and low strain fabrics represent markedly different scenarios and cannot be interpreted as a simple sequential development with respect to strain. We suggest that the fabrics and mineralogical changes in the shear zone centre have formed due to fluid influx probably along an initially brittle fracture. Here, hydration reactions dramatically changed the rheological properties of the rock. In the newly produced muscovite-quartz layers creep cavitation associated with grain boundary sliding and

  4. Measurement of local strains in intervertebral disc anulus fibrosus tissue under dynamic shear: contributions of matrix fiber orientation and elastin content.

    PubMed

    Michalek, Arthur J; Buckley, Mark R; Bonassar, Lawrence J; Cohen, Itai; Iatridis, James C

    2009-10-16

    Shear strain has been implicated as an initiator of intervertebral disc anulus failure, however a clear, multi-scale picture of how shear strain affects the tissue microstructure has been lacking. The purposes of this study were to measure microscale deformations in anulus tissue under dynamic shear in two orientations, and to determine the role of elastin in regulating these deformations. Bovine AF tissue was simultaneously shear loaded and imaged using confocal microscopy following either a buffer or elastase treatment. Digital image analysis was used to track through time local shear strains in specimens sheared transversely, and stretch and rotation of collagen fiber bundles in specimens sheared circumferentially. The results of this study suggest that sliding does not occur between AF plies under shear, and that interlamellar connections are governed by collagen and fibrilin rather than elastin. The transverse shear modulus was found to be approximately 1.6 times as high in plies the direction of the collagen fibers as in plies across them. Under physiological levels of in-plane shear, fiber bundles stretched and re-oriented linearly. Elastin was found to primarily stiffen plies transversely. We conclude that alterations in the elastic fiber network, as found with IVD herniation and degeneration, can therefore be expected to significantly influence the AF response to shear making it more susceptible to micro failure under bending or torsion loading.

  5. Single myosin cross-bridge orientation in cardiac papillary muscle detects lever-arm shear strain in transduction.

    PubMed

    Burghardt, Thomas P; Josephson, Matthew P; Ajtai, Katalin

    2011-09-13

    Myosin motors transduce ATP free energy into mechanical work. Transduction models allocate specific functions to motor structural domains beginning with ATP hydrolysis in the active site and ending in a lever-arm rotating power-stroke. Myosin light chains, regulatory (RLC) and essential (ELC), bind IQ-domains on the lever-arm and track its movement. Strong evidence exists that light chains stabilize the lever-arm and that light chain mutation undermines stability. Human ventricular RLC tagged with photoactivatable GFP (HCRLC-PAGFP) replaces native RLC in porcine papillary muscle fibers, restores native contractility, and situates PAGFP for single molecule orientation tracking within the crowded fiber lattice. The spatial emission pattern from single photoactivated PAGFP tagged myosins was observed in z-stacks fitted simultaneously to maximize accuracy in estimated dipole orientation. Emitter dipole polar and azimuthal angle pair scatter plots identified an area where steric and molecular crowding constraints depopulated orientations unfavorable for actin interaction. Transitions between pre- and post-power-stroke states represent the lever-arm trajectory sampled by the data and quantify lever-arm shear strain in transduction at three tension levels. These data identify forces acting on myosin in the in situ fiber system due to crowding, steric hindrance, and actomyosin interaction. They induce lever-arm shear strain observed with single molecule orientation detection. A single myosin work histogram reveals discretized power-stroke substates reminiscent of the Huxley-Simmons model for myosin based contraction [Huxley and Simmons ( 1971 ) Nature 233 , 533]. RLC or ELC mutation, should it impact lever-arm shear strain, will be detected as changes in single myosin shear strain or power-stroke substate distribution.

  6. Single Myosin Cross-Bridge Orientation in Cardiac Papillary Muscle Detects Lever-Arm Shear Strain in Transduction

    PubMed Central

    Burghardt, Thomas P.; Josephson, Matthew P.; Ajtai, Katalin

    2011-01-01

    Myosin motors transduce ATP free energy into mechanical work. Transduction models allocate specific functions to motor structural domains beginning with ATP hydrolysis in the active site and ending in a lever-arm rotating power-stroke. Myosin light chains, regulatory (RLC) and essential (ELC), bind IQ-domains on the lever-arm and track its movement. Strong evidence exists that light chains stabilize the lever-arm and that light chain mutation undermines stability. Human ventricular RLC tagged with photoactivatable GFP (HCRLC-PAGFP) replaces native RLC in porcine papillary muscle fibers, restores native contractility, and situates PAGFP for single molecule orientation tracking within the crowded fiber lattice. The spatial emission pattern from single photoactivated PAGFP tagged myosins was observed in z-stacks fitted simultaneously to maximize accuracy in estimated dipole orientation. Emitter dipole polar and azimuthal angle pair scatter plots identified an area where steric and molecular crowding constraints depopulated orientations unfavorable for actin interaction. Transitions between pre- and post-power-stroke states represent the lever-arm trajectory sampled by the data and quantify lever-arm shear strain in transduction at three tension levels. These data identify forces acting on myosin in the in situ fiber system due to crowding, steric hindrance, and actomyosin interaction. They induce lever-arm shear strain observed with single molecule orientation detection. A single myosin work histogram reveals discretized power-stroke substates reminiscent of the Huxley–Simmons model for myosin based contraction [Huxley and Simmons (1971) Nature 233, 533]. RLC or ELC mutation, should it impact lever-arm shear strain, will be detected as changes in single myosin shear strain or power-stroke substate distribution. PMID:21819137

  7. Present-day Block Motions and Strain Accumulation on Active Faults in the Caribbean

    NASA Astrophysics Data System (ADS)

    Symithe, S. J.; Calais, E.; Freed, A. M.

    2014-12-01

    The quasi-frontal subduction of the north and south American plates under the Lesser Antilles and the left and right lateral strike-slip along the northern and southern margins of the Caribbean plate offer the opportunity to study the transition from subduction to strike-slip between major plates. In addition, the segmentation and degree of interplate coupling at the Lesser Antilles subduction is key to our understanding of the earthquake potential of a subduction whose length is similar to the rupture area of the Mw9.0, 2011, Tohoku earthquake in Japan. We used the block modeling approach described in Meade and Loveless (2009) to test the optimal block geometry for the northern, eastern and southern boundaries of the Caribbean plate. We solved for angular velocities for each block/plate and strain accumulation rates for all major faults in the region. Then we calculated the variations in interplate coupling along the subduction plate boundaries using the accumulated strain rates. We tested 11 different block geometries; they are all based on geological evidences unless they are suggested by discrepancies within the GPS and seismological data or by previously published results. We confirm the existence of the micro Gonave plate. The boundary between the Micro-Gonave plate and the Hispaniola crustal block is better suited along the Haitian-Thrust-Belt instead of the Neiba-Matheux fault. The interseismic GPS velocities do not show evidence for a distinct North Lesser Antilles block. We found a totally uncoupled section of the subduction starting from the Puerto-Rico trench to the end of the Lesser Antilles section. All the relative motion of the Caribbean block is lost aseismically along the boundary of that portion of the subduction. While we found strong coupling along the northern Hispaniola section, most of the deformation on this region is being accumulated along intrablock faults with very low strain (~2mm/yr) along the intraplate subduction interface. We also

  8. Accumulator

    NASA Technical Reports Server (NTRS)

    Fenwick, J. R.; Karigan, G. H. (Inventor)

    1977-01-01

    An accumulator particularly adapted for use in controlling the pressure of a stream of fluid in its liquid phase utilizing the fluid in its gaseous phase was designed. The accumulator is characterized by a shell defining a pressure chamber having an entry throat for a liquid and adapted to be connected in contiguous relation with a selected conduit having a stream of fluid flowing through the conduit in its liquid phase. A pressure and volume stabilization tube, including an array of pressure relief perforations is projected into the chamber with the perforations disposed adjacent to the entry throat for accommodating a discharge of the fluid in either gaseous or liquid phases, while a gas inlet and liquid to gas conversion system is provided, the chamber is connected with a source of the fluid for continuously pressuring the chamber for controlling the pressure of the stream of liquid.

  9. Coronary artery atherectomy reduces plaque shear strains: an endovascular elastography imaging study.

    PubMed

    Keshavarz-Motamed, Zahra; Saijo, Yoshifumi; Majdouline, Younes; Riou, Laurent; Ohayon, Jacques; Cloutier, Guy

    2014-07-01

    Mechanical response and properties of the arterial wall can be used to identify the biomechanical instability of plaques and predict their vulnerability to rupture. Shear strain elastography (SSE) is proposed to identify vulnerable plaque features attributed to mechanical structural heterogeneities. The aims of this study were: 1) to report on the potential of SSE to identify atherosclerotic plaques; and 2) to use SSE maps to highlight biomechanical changes in lesion characteristics after directional coronary atherectomy (DCA) interventions. For this purpose, SSE was imaged using in vivo intravascular ultrasound (IVUS) radio-frequency data collected from 12 atherosclerotic patients before and after DCA intervention. Coronary atherosclerotic plaques (pre-DCA) showed high SSE magnitudes with large affected areas. There were good correlations between SSE levels and soft plaque content (i.e., cellular fibrosis, thrombosis and fibrin) (mean |SSE| vs. soft plaque content: r = 0.82, p < 0.01). Significant differences were noticed between SSE images before and after DCA. Stable arteries (post-DCA) exhibited lower values than pre-DCA vessels (e.g., pre-DCA: mean |SSE| = 3.9 ± 0.2% vs. 1.1 ± 0.2% post-DCA, p < 0.001). Furthermore, SSE magnitude was statistically higher in plaques with a high level of inflammation (e.g., mean |SSE| had values of 4.8 ± 0.4% in plaques with high inflammation, whereas it was reduced to 1.8 ± 0.2% with no inflammation, p < 0.01). This study demonstrates the potential of the IVUS-based SSE technique to detect vulnerable plaques in vivo.

  10. Grainsize evolution in ductile shear zones: Implications for strain localization and the strength of the lithosphere

    NASA Astrophysics Data System (ADS)

    Platt, J. P.; Behr, W. M.

    2011-04-01

    At high stresses and low temperatures, grainsize reduction by dynamic recrystallization profoundly modifies rock rheology. Strain energy driven grain-boundary migration (ρGBM) is involved both in the nucleation of new grains by the grain-boundary bulging mechanism (BLG), and in the subsequent evolution of the microstructure. Above the Dmin line, which is a line in stress/grainsize space that defines the minimum size of nucleus that can form by BLG, ρGBM dominates the microstructure, and grain growth by surface energy driven grain-boundary migration (γGBM) is inhibited. The recrystallized grainsize is therefore dominated by the nucleation process, possibly controlled by the size of subgrains or dislocation cells within the old grains. This provides a first-order explanation for the experimentally observed grainsize-stress relationship. ρGBM is an important agent of recovery in rocks deformed by dislocation creep, sweeping out dislocations and counteracting work-hardening. We have derived a new flow law (DRX-assisted dislocation creep) based on this process, which exhibits grainsize sensitivity as a result of the role of ρGBM. If grainsize obeys the empirically-determined grainsize-stress relationship, DRX creep has an effective stress exponent of a little over 4, consistent with experimental observations and inferences from naturally deformed rocks. DRX creep may be an important agent in weakening quartz at low temperatures, whereas current flow law data suggest it may not be important in olivine. Rocks deformed and dynamically recrystallized above the Dmin line may switch from climb-assisted dislocation creep to grainsize-sensitive creep (Coble creep, DRX creep, or creep dominated by grain-boundary sliding), resulting in weakening. Lithospheric-scale shear zones are likely to evolve at approximately constant stress; under these conditions weakening results in an increase in strain rate, not a stress drop. The rate of dislocation motion, the dislocation density

  11. Transient rheological behavior of natural polysaccharide xanthan gum solutions in start-up shear flow fields: An experimental study using a strain-controlled rheometer

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Seok; Kim, Yong-Seok; Song, Ki-Won

    2015-08-01

    The objective of the present study is to experimentally investigate the transient rheological behavior of concentrated xanthan gum solutions in start-up shear flow fields. Using a strain-controlled rheometer, a number of constant shear rates were suddenly imposed to aqueous xanthan gum solutions with different concentrations and the resultant shear stress responses were measured with time. The main findings obtained from this study can be summarized as follows: (1) For all shear rates imposed, however low it may be, the shear stress is rapidly increased with time (stress overshoot) upon inception of steady shear flow before passing through the maximum stress value and then gradually decreased with time (stress decay) until reaching a steady state flow. (2) As the imposed shear rate is increased, a more pronounced stress overshoot takes place and the maximum stress value becomes larger, whereas both times at which the maximum stress is observed and needed to reach a steady state flow are shortened. (3) The maximum shear stress is linearly increased with shear rate in a double logarithmic scale and becomes larger with increasing concentration at equal shear rates. In addition, the time at which the maximum stress occurs exhibits a linear relationship with the inverse of shear rate in a double logarithmic scale for all xanthan gum solutions, regardless of their concentrations. (4) The shear stress is sharply increased with an increase in strain until reaching the maximum stress at small range of deformations. The maximum stress is observed at similar strain values, irrespective of the imposed shear rates lower than 10 1/s. (5) The Bird-Leider model can be successfully used with regard to quantitatively predicting the transient behavior of concentrated xanthan gum solutions. However, this model has a fatal weakness in terms of describing a decrease in shear stress (stress decay).

  12. Using Local Second Gradient Model and Shear Strain Localisation to Model the Excavation Damaged Zone in Unsaturated Claystone

    NASA Astrophysics Data System (ADS)

    Pardoen, Benoît; Levasseur, Séverine; Collin, Frédéric

    2015-03-01

    The drilling of galleries induces damage propagation in the surrounding medium and creates, around them, the excavation damaged zone (EDZ). The prediction of the extension and fracture structure of this zone remains a major issue, especially in the context of underground nuclear waste storage. Experimental studies on geomaterials indicate that localised deformation in shear band mode usually appears prior to fractures. Thus, the excavation damaged zone can be modelled by considering the development of shear strain localisation bands. In the classical finite element framework, strain localisation suffers a mesh-dependency problem. Therefore, an enhanced model with a regularisation method is required to correctly model the strain localisation behaviour. Among the existing methods, we choose the coupled local second gradient model. We extend it to unsaturated conditions and we include the solid grain compressibility. Furthermore, air ventilation inside underground galleries engenders a rock-atmosphere interaction that could influence the damaged zone. This interaction has to be investigated in order to predict the damaged zone behaviour. Finally, a hydro-mechanical modelling of a gallery excavation in claystone is presented and leads to a fairly good representation of the EDZ. The main objectives of this study are to model the fractures by considering shear strain localisation bands, and to investigate if an isotropic model accurately reproduces the in situ measurements. The numerical results provide information about the damaged zone extension, structure and behaviour that are in very good agreement with in situ measurements and observations. For instance, the strain localisation bands that develop in chevron pattern during the excavation and rock desaturation, due to air ventilation, are observed close to the gallery.

  13. Slip distribution, strain accumulation and aseismic slip on the Chaman Fault system

    NASA Astrophysics Data System (ADS)

    Amelug, F.

    2015-12-01

    The Chaman fault system is a transcurrent fault system developed due to the oblique convergence of the India and Eurasia plates in the western boundary of the India plate. To evaluate the contemporary rates of strain accumulation along and across the Chaman Fault system, we use 2003-2011 Envisat SAR imagery and InSAR time-series methods to obtain a ground velocity field in radar line-of-sight (LOS) direction. We correct the InSAR data for different sources of systematic biases including the phase unwrapping errors, local oscillator drift, topographic residuals and stratified tropospheric delay and evaluate the uncertainty due to the residual delay using time-series of MODIS observations of precipitable water vapor. The InSAR velocity field and modeling demonstrates the distribution of deformation across the Chaman fault system. In the central Chaman fault system, the InSAR velocity shows clear strain localization on the Chaman and Ghazaband faults and modeling suggests a total slip rate of ~24 mm/yr distributed on the two faults with rates of 8 and 16 mm/yr, respectively corresponding to the 80% of the total ~3 cm/yr plate motion between India and Eurasia at these latitudes and consistent with the kinematic models which have predicted a slip rate of ~17-24 mm/yr for the Chaman Fault. In the northern Chaman fault system (north of 30.5N), ~6 mm/yr of the relative plate motion is accommodated across Chaman fault. North of 30.5 N where the topographic expression of the Ghazaband fault vanishes, its slip does not transfer to the Chaman fault but rather distributes among different faults in the Kirthar range and Sulaiman lobe. Observed surface creep on the southern Chaman fault between Nushki and north of City of Chaman, indicates that the fault is partially locked, consistent with the recorded M<7 earthquakes in last century on this segment. The Chaman fault between north of the City of Chaman to North of Kabul, does not show an increase in the rate of strain

  14. Estimating Strain Accumulation in the New Madrid and Wabash Valley Seismic Zones

    NASA Astrophysics Data System (ADS)

    Craig, T. J.; Calais, E.

    2014-12-01

    The mechanical behaviour -- and hence earthquake potential -- of faults in continental interiors is a question of critical importance for the resultant seismic hazard, but no consensus has yet been reached on this controversial topic. The debate has focused on the central and eastern United States, in particular the New Madrid Seismic Zone, struck by three magnitude 7 or greater earthquakes in 1811--1812, and to a lesser extent the Wabash Valley Seismic Zone just to the north. A key aspect of this issue is the rate at which strain is currently accruing on those faults in the plate interior, a quantity that remains debated. Understanding if the present-day strain rates indicate sufficient motion to account for the historical and paleoseismological earthquakes by steady-state fault behaviour, or if strain accumulation is time-dependent in this area, is critical for investigating the causative process driving this seismicity in the plate interior, and how regional strain reflects the interplay between stresses arising from different geological processes. Here we address this issue with an analysis of up to 14 years of continuous GPS data from a network of 200 sites in the central United States centred on the New Madrid and Wabash Valley seismic zones. We find that high-quality sites in these regions show motions that are consistently within the 95% confidence limit of zero deformation relative to a rigid background. These results place an upper bound on regional strain accrual of 0.2 mm/yr and 0.5 mm/yr in the New Madrid and Wabash Valley Seismic Zones, respectively. These results, together with increasing evidence for temporal clustering and spatial migration of earthquake sequences in continental interiors, indicate that either tectonic loading rates or fault properties vary with time in the NMSZ and possibly plate-wide.

  15. Investigating a continuous shear strain function for depth-dependent properties of native and tissue engineering cartilage using pixel-size data.

    PubMed

    Motavalli, Mostafa; Whitney, G Adam; Dennis, James E; Mansour, Joseph M

    2013-12-01

    A previously developed novel imaging technique for determining the depth dependent properties of cartilage in simple shear is implemented. Shear displacement is determined from images of deformed lines photobleached on a sample, and shear strain is obtained from the derivative of the displacement. We investigated the feasibility of an alternative systematic approach to numerical differentiation for computing the shear strain that is based on fitting a continuous function to the shear displacement. Three models for a continuous shear displacement function are evaluated: polynomials, cubic splines, and non-parametric locally weighted scatter plot curves. Four independent approaches are then applied to identify the best-fit model and the accuracy of the first derivative. One approach is based on the Akaiki Information Criteria, and the Bayesian Information Criteria. The second is based on a method developed to smooth and differentiate digitized data from human motion. The third method is based on photobleaching a predefined circular area with a specific radius. Finally, we integrate the shear strain and compare it with the total shear deflection of the sample measured experimentally. Results show that 6th and 7th order polynomials are the best models for the shear displacement and its first derivative. In addition, failure of tissue-engineered cartilage, consistent with previous results, demonstrates the qualitative value of this imaging approach.

  16. Impact comminution of solids due to local kinetic energy of high shear strain rate: II-Microplane model and verification

    NASA Astrophysics Data System (ADS)

    Caner, Ferhun C.; Bažant, Zdeněk P.

    2014-03-01

    The new theory presented in the preceding paper, which models the dynamic comminution of concrete due to very high shear strain rate, is now compared to recent test data on the penetration of projectiles through concrete walls of different thicknesses, ranging from 127 to 254 mm. These data are analyzed by an explicit finite element code using the new microplane constitutive model M7 for concrete, which was previously shown to provide the most realistic description of the quasi-static uni-, bi- and tri-axial test data with complex loading path and unloading. Model M7 incorporates the quasi-static strain rate effects due viscoelasticity and to the rate of cohesive crack debonding based on activation energy of bond ruptures, which are expected to extend to very high rates. Here model M7 is further enhanced by apparent viscosity capturing the energy dissipation due to the strain-rate effect of comminution. The maximum shear strain rates in the computations are of the order of 105 s-1. The simulations document that, within the inevitable uncertainties, the measured exit velocities of the projectiles can be matched quite satisfactorily and the observed shapes of the entry and exit craters can be reproduced correctly.

  17. An effective ultrasonic strain measurement-based shear modulus reconstruction technique for superficial tissues - demonstration on in vitro pork ribs and in vivo human breast tissues

    NASA Astrophysics Data System (ADS)

    Sumi, Chikayoshi; Nakayama, Kiyoshi; Kubota, Mitsuhiro

    2000-06-01

    An effective shear modulus reconstruction technique is described which uses ultrasonic strain measurements for diagnosis of superficial tissues, i.e. our previously developed ultrasonic strain measurement and shear modulus reconstruction methods are combined and enhanced. The technique realizes very low computational load, yet yields fairly high quantitativeness, high stability and spatial resolution, and large dynamic range. The suitability of the method is demonstrated on in vitro pork ribs and in vivo human breast tissues (fibroadenoma and scirrhous carcinoma).

  18. Charts for Determining Preliminary Values of Span-load, Shear, Bending-moment, and Accumulated-torque Distributions of Swept Wings of Various Taper Ratios

    NASA Technical Reports Server (NTRS)

    Wollner, Bertram C

    1948-01-01

    Contains charts for use in determining preliminary values of the spanwise-load, shear, bending-moment, and accumulated-torque distributions of swept wings. The charts are based on strip theory and include four aerodynamic-load distributions, two section-moment distributions, and two inertia-load distributions. The taper ratios considered cover the range from 1.0 to 0 and the results are applicable to any angle of sweep.

  19. Signal-to-noise ratio, contrast-to-noise ratio and their trade-offs with resolution in axial-shear strain elastography

    NASA Astrophysics Data System (ADS)

    Thitaikumar, Arun; Krouskop, Thomas A.; Ophir, Jonathan

    2007-01-01

    In axial-shear strain elastography, the local axial-shear strain resulting from the application of quasi-static axial compression to an inhomogeneous material is imaged. In this paper, we investigated the image quality of the axial-shear strain estimates in terms of the signal-to-noise ratio (SNRasse) and contrast-to-noise ratio (CNRasse) using simulations and experiments. Specifically, we investigated the influence of the system parameters (beamwidth, transducer element pitch and bandwidth), signal processing parameters (correlation window length and axial window shift) and mechanical parameters (Young's modulus contrast, applied axial strain) on the SNRasse and CNRasse. The results of the study show that the CNRasse (SNRasse) is maximum for axial-shear strain values in the range of 0.005-0.03. For the inclusion/background modulus contrast range considered in this study (<10), the CNRasse (SNRasse) is maximum for applied axial compressive strain values in the range of 0.005%-0.03%. This suggests that the RF data acquired during axial elastography can be used to obtain axial-shear strain elastograms, since this range is typically used in axial elastography as well. The CNRasse (SNRasse) remains almost constant with an increase in the beamwidth while it increases as the pitch increases. As expected, the axial shift had only a weak influence on the CNRasse (SNRasse) of the axial-shear strain estimates. We observed that the differential estimates of the axial-shear strain involve a trade-off between the CNRasse (SNRasse) and the spatial resolution only with respect to pitch and not with respect to signal processing parameters. Simulation studies were performed to confirm such an observation. The results demonstrate a trade-off between CNRasse and the resolution with respect to pitch.

  20. Signal-to-noise ratio, contrast-to-noise ratio and their trade-offs with resolution in axial-shear strain elastography.

    PubMed

    Thitaikumar, Arun; Krouskop, Thomas A; Ophir, Jonathan

    2007-01-07

    In axial-shear strain elastography, the local axial-shear strain resulting from the application of quasi-static axial compression to an inhomogeneous material is imaged. In this paper, we investigated the image quality of the axial-shear strain estimates in terms of the signal-to-noise ratio (SNR(asse)) and contrast-to-noise ratio (CNR(asse)) using simulations and experiments. Specifically, we investigated the influence of the system parameters (beamwidth, transducer element pitch and bandwidth), signal processing parameters (correlation window length and axial window shift) and mechanical parameters (Young's modulus contrast, applied axial strain) on the SNR(asse) and CNR(asse). The results of the study show that the CNR(asse) (SNR(asse)) is maximum for axial-shear strain values in the range of 0.005-0.03. For the inclusion/background modulus contrast range considered in this study (<10), the CNR(asse) (SNR(asse)) is maximum for applied axial compressive strain values in the range of 0.005%-0.03%. This suggests that the RF data acquired during axial elastography can be used to obtain axial-shear strain elastograms, since this range is typically used in axial elastography as well. The CNR(asse) (SNR(asse)) remains almost constant with an increase in the beamwidth while it increases as the pitch increases. As expected, the axial shift had only a weak influence on the CNR(asse) (SNR(asse)) of the axial-shear strain estimates. We observed that the differential estimates of the axial-shear strain involve a trade-off between the CNR(asse) (SNR(asse)) and the spatial resolution only with respect to pitch and not with respect to signal processing parameters. Simulation studies were performed to confirm such an observation. The results demonstrate a trade-off between CNR(asse) and the resolution with respect to pitch.

  1. Following the Evolution of Hard Sphere Glasses in Infinite Dimensions under External Perturbations: Compression and Shear Strain

    NASA Astrophysics Data System (ADS)

    Rainone, Corrado; Urbani, Pierfrancesco; Yoshino, Hajime; Zamponi, Francesco

    2015-01-01

    We consider the adiabatic evolution of glassy states under external perturbations. The formalism we use is very general. Here we use it for infinite-dimensional hard spheres where an exact analysis is possible. We consider perturbations of the boundary, i.e., compression or (volume preserving) shear strain, and we compute the response of glassy states to such perturbations: pressure and shear stress. We find that both quantities overshoot before the glass state becomes unstable at a spinodal point where it melts into a liquid (or yields). We also estimate the yield stress of the glass. Finally, we study the stability of the glass basins towards breaking into sub-basins, corresponding to a Gardner transition. We find that close to the dynamical transition, glasses undergo a Gardner transition after an infinitesimal perturbation.

  2. Shear bands formation after a strain path change for AA1050 alloy pre-deformed by ECAP and subsequently plane strain compressed

    NASA Astrophysics Data System (ADS)

    Paul, H.; Tarasek, A.; Wajda, W.; Berent, K.

    2014-08-01

    Crystal lattice rotations induced by shear bands developed in an AA1050 aluminium alloy have been examined in order to investigate the influence of the finegrained structure on the slip propagation across the grain boundaries and the resulting texture evolution. Samples of the AA1050 alloy were pre-deformed in ECAP up to 6 passes via route C, then machined and further compressed in a channel-die up to ~25% at room temperature. The microstructure and texture were characterized by SEM equipped with a high resolution EBSD facility. The ECAP-processing leads to the formation of a fine grained structure. The grains were grouped into nearly complementarily oriented layers. During the secondary straining in the channel-die, the layers of fine grains, initially situated almost parallel to the compression plane, undergo deflection within some narrow areas. This is the beginning stage of the macroscopic shear band (MSB) formation. In all the deformed grains examined (within MSB) a strong tendency for strain-induced re-orientation could be observed. The SEM orientation mapping shows how the layers of flattened grains are incorporated into the MSB area, and what kinds of mechanisms are responsible for the strain accommodation at the macro-scale. Finally, a crystallographic description of the mechanism of MSB formation in AA1050 aluminium alloy is proposed based on the local lattice re-orientations due to localized kinking.

  3. InSAR velocity field across the North Anatolian Fault (eastern Turkey): Implications for the loading and release of interseismic strain accumulation

    NASA Astrophysics Data System (ADS)

    Cakir, Ziyadin; Ergintav, Semih; Akoǧlu, Ahmet M.; ćakmak, Rahşan; Tatar, Orhan; Meghraoui, Mustapha

    2014-10-01

    We use the Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) technique with the European Space Agency's Envisat and ERS SAR data acquired on three neighboring descending tracks (T350, T078, and T307) to map the interseismic strain accumulation along a ~225 km long, NW-SE trending section of the North Anatolian Fault that ruptured during the 1939, 1942, and 1943 earthquakes in eastern Turkey. We derive a line-of-sight velocity map of the region with a high spatial resolution and accuracy which, together with the maps of earthquake surface ruptures, shed light on the style of continental deformation and the relationships between the loading and release of interseismic strain along segmented continental strike-slip faults. In contrast with the geometric complexities at the ground surface that appear to control rupture propagation of the 1939 event, modeling of the high-resolution PS-InSAR velocity field reveals a fairly linear and narrow throughgoing shear zone with an overall 20 ± 3 mm/yr slip rate above an unexpectedly shallow 7 ± 2 km locking depth. Such a shallow locking depth may result from the postseismic effects following recent earthquakes or from a simplified model that assumes a uniform degree of locking with depth on the fault. A narrow throughgoing shear zone supports the thick lithosphere model in which continental strike-slip faults are thought to extend as discrete shear zones through the entire crust. Fault segmentation previously reported from coseismic surface ruptures is thus likely inherited from heterogeneities in the upper crust that either preexist and/or develop during coseismic rupture propagation. The geometrical complexities that apparently persist for long periods may guide the dynamic rupture propagation surviving thousands of earthquake cycles.

  4. Correlation of data on strain accumulation adjacent to the San Andreas Fault with available models

    NASA Technical Reports Server (NTRS)

    Turcotte, Donald L.

    1986-01-01

    Theoretical and numerical studies of deformation on strike slip faults were performed and the results applied to geodetic observations performed in the vicinity of the San Andreas Fault in California. The initial efforts were devoted to an extensive series of finite element calculations of the deformation associated with cyclic displacements on a strike-slip fault. Measurements of strain accumulation adjacent to the San Andreas Fault indicate that the zone of strain accumulation extends only a few tens of kilometers away from the fault. There is a concern about the tendency to make geodetic observations along the line to the source. This technique has serious problems for strike slip faults since the vector velocity is also along the fault. Use of a series of stations lying perpendicular to the fault whose positions are measured relative to a reference station are suggested to correct the problem. The complexity of faulting adjacent to the San Andreas Fault indicated that the homogeneous elastic and viscoelastic approach to deformation had serious limitations. These limitation led to the proposal of an approach that assumes a fault is composed of a distribution of asperities and barriers on all scales. Thus, an earthquake on a fault is treated as a failure of a fractal tree. Work continued on the development of a fractal based model for deformation in the western United States. In order to better understand the distribution of seismicity on the San Andreas Fault system a fractal analog was developed. The fractal concept also provides a means of testing whether clustering in time or space is a scale-invariant process.

  5. Effect of Shear Strain on the α-ε Phase Transition of Iron: a New Approach in the Rotational Diamond Anvil Cell

    SciTech Connect

    Ma,Y.; Selvi, E.; Levitas, V.; Hashemi, J.

    2006-01-01

    The effect of shear strain on the iron {alpha}-{var_epsilon} phase transformation has been studied using a rotational diamond anvil cell (RDAC). The initial transition is observed to take place at the reduced pressure of 10.8 GPa under pressure and shear operation. Complete phase transformation was observed at 15.4 GPa. The rotation of an anvil causes limited pressure elevation and makes the pressure distribution symmetric in the sample chamber before the phase transition. However, it causes a significant pressure increase at the center of the sample and brings about a large pressure gradient during the phase transformation. The resistance to the phase interface motion is enhanced due to strain hardening during the pressure and shear operations on iron and this further increases the transition pressure. The work of macroscopic shear stress and the work of the pressure and shear stress at the defect tips account for the pressure reduction of the iron phase transition.

  6. Rheology and microstructure of non-Brownian suspensions in the liquid and crystal coexistence region: strain stiffening in large amplitude oscillatory shear.

    PubMed

    Lee, Young Ki; Nam, Jaewook; Hyun, Kyu; Ahn, Kyung Hyun; Lee, Seung Jong

    2015-05-28

    Concentrated hard-sphere suspensions in the liquid and crystal coexistence region show a unique nonlinear behavior under a large amplitude oscillatory shear flow, the so-called strain stiffening, in which the viscosity or modulus suddenly starts to increase near a critical strain amplitude. Even though this phenomenon has been widely reported in experiments, its key mechanism has never been investigated in a systematic way. To have a good understanding of this behavior, a numerical simulation was performed using the lattice Boltzmann method (LBM). Strain stiffening was clearly observed at large strain amplitudes, and the critical strain amplitude showed an angular frequency dependency. The distortion of the shear stress appeared near the critical strain amplitude, and the nonlinear behavior was quantified by the Fourier transformation (FT) and the stress decomposition methods. Above the critical strain amplitude, an increase in the global bond order parameter Ψ(6) was observed at the flow reversal. The maximum of Ψ(6) and the maximum shear stress occurred at the same strain. These results show how strongly the ordered structure of the particles is related to the stress distortion. The ordered particles maintained a bond number of "two" with alignment with the compressive axis, and they were distributed over a narrow range of angular distribution (110°-130°). In addition, the ordered structure was formed near the lowest shear rate region (the flow reversal). The characteristics of the ordered structure were remarkably different from those of the hydroclusters which are regarded as the origin of shear thickening. It is clear that strain stiffening and shear thickening originate from different mechanisms. Our results clearly demonstrate how the ordering of the particles induces strain stiffening in the liquid and crystal coexistence region.

  7. Spontaneous mutation accumulation in multiple strains of the green alga, Chlamydomonas reinhardtii.

    PubMed

    Morgan, Andrew D; Ness, Rob W; Keightley, Peter D; Colegrave, Nick

    2014-09-01

    Estimates of mutational parameters, such as the average fitness effect of a new mutation and the rate at which new genetic variation for fitness is created by mutation, are important for the understanding of many biological processes. However, the causes of interspecific variation in mutational parameters and the extent to which they vary within species remain largely unknown. We maintained multiple strains of the unicellular eukaryote Chlamydomonas reinhardtii, for approximately 1000 generations under relaxed selection by transferring a single cell every ~10 generations. Mean fitness of the lines tended to decline with generations of mutation accumulation whereas mutational variance increased. We did not find any evidence for differences among strains in any of the mutational parameters estimated. The overall change in mean fitness per cell division and rate of input of mutational variance per cell division were more similar to values observed in multicellular organisms than to those in other single-celled microbes. However, after taking into account differences in genome size among species, estimates from multicellular organisms and microbes, including our new estimates from C. reinhardtii, become substantially more similar. Thus, we suggest that variation in genome size is an important determinant of interspecific variation in mutational parameters.

  8. Along-strike Variations in Active Strain Accumulation in the Northwest Himalaya

    NASA Astrophysics Data System (ADS)

    Morell, K. D.; Ahmad, T.; Sandiford, M.; Codilean, A. T.; Fulop, R. H.

    2015-12-01

    The spatial distribution of channel steepness, erosion rate, and physiographic data highlight pronounced along-strike changes in active strain accumulation in the northwest Himalaya. In particular, the data suggest that the mid-crustal ramp of the Main Himalayan Thrust could merge along-strike with an active portion of the Main Boundary Thrust near longitude ~77º E. This along-strike change in active fault geometry also coincides with the lateral termination of both lesser and greater Himalayan sequences, a significant reduction in total shortening within the wedge, and pronounced variations in regional seismicity. Recent activity along extensional structures in the high Himalaya of this same region appears to have led to significant reorganization, modification and capture of the Sutlej River basin, one of the largest Himalayan river systems. Given the recent 2015 Gorkha earthquake along a comparable section ~500-km along strike, these new constraints on active fault architecture could have regional implications for how strain is partitioned along seismogenic faults in the northwest Himalaya.

  9. Speckle shearing pattern interferometry to assess mechanical strain in the human mandible jaw bone under physiological stress

    NASA Astrophysics Data System (ADS)

    Moreno, V.; Vázquez-Vázquez, C.; Gallas, M.; Crespo, J.

    2011-05-01

    Electronic Speckle Pattern Interferometry (ESPI) has been used in experiments to measure displacement on the surface of bones undergoing external forces. However in order to asses directly the derivative of the displacements a related technique, Shearography, is used. This technique has been applied in biomechanical experiments although limited to small pieces of bone to determine their elastic properties. In this work we propose the use of Shearing Speckle Interferometry to evaluate the mechanical behaviour of the human mandible under compressive stress, simulating masticatory forces or impacts, in order to analyze the strain distribution on mandibular bone.

  10. Application of strain analysis to estimate pressure solution processes in regional shear zones

    NASA Astrophysics Data System (ADS)

    Voytenko, V. N.; Khlebalin, I. Yu.; Senotrusov, V. A.

    2016-01-01

    This paper considers the basic principles of the strain analysis method based on the analysis of antitaxial regeneration fibrous fringes around linear rigid inclusions in a low-viscosity rock matrix. This method has been developed for pressure shadows composed of fibrous minerals, whose orientation is controlled by the major elongation direction rather than the orientation of rigid inclusions. This approach is applicable only for rocks exposed to uniform coaxial straining. The strain ellipse is calculated in two ways: for three variably oriented strain markers, it is calculated using Mohr's circles, and for numerous strain markers by average body ellipse. The strain ellipsoid is calculated using the parameters of a few strain ellipses calculated with three and more non-parallel planes. This paper provides the data on the method testing in reference sites of Dora-Pil' ore field in the Upper Indigirka district and Vangash area in the Yenisei Range. Regeneration fibrous fringes around fragments of fern fossils and linear rutile metacrystals were used as markers. The results of strain analysis obtained for the reference sites in the Upper Indigirka district made it possible to describe the signs of variable strain stages of developing strike-slip zones making up the Adycha-Taryn Fault Zone. Sublatitudinal ore-bearing strike-slip zones are characterized by a subvertical orientation of the elongation axes X of elongated strain ellipsoids, which are subperpendicular to quartz-carbonate veins and slope kink zones. NW-trending strike-slip zones are characterized by subhorizontal orientation of the Z shortening axes of flattened strain ellipsoids, which are subparallel to the normals of quartz-carbonate veins and veinlets. The results of strain analysis obtained for reference sites in the Vangash area made it possible to describe the thrust strain environment following the metamorphism stage and to reveal specific features in the formation of the strain textures of ore

  11. DYNAMIC PLANE-STRAIN SHEAR RUPTURE WITH A SLIP-WEAKENING FRICTION LAW CALCULATED BY A BOUNDARY INTEGRAL METHOD.

    USGS Publications Warehouse

    Andrews, D.J.

    1985-01-01

    A numerical boundary integral method, relating slip and traction on a plane in an elastic medium by convolution with a discretized Green function, can be linked to a slip-dependent friction law on the fault plane. Such a method is developed here in two-dimensional plane-strain geometry. Spontaneous plane-strain shear ruptures can make a transition from sub-Rayleigh to near-P propagation velocity. Results from the boundary integral method agree with earlier results from a finite difference method on the location of this transition in parameter space. The methods differ in their prediction of rupture velocity following the transition. The trailing edge of the cohesive zone propagates at the P-wave velocity after the transition in the boundary integral calculations. Refs.

  12. The effects of molecular weight on the single lap shear creep and constant strain rate behavior of thermoplastic polyimidesulfone adhesive

    NASA Technical Reports Server (NTRS)

    Dembosky, Stanley K.; Sancaktar, Erol

    1985-01-01

    The bonded shear creep and constant strain rate behaviors of zero, one, and three percent endcapped thermoplastic polyimidesulfone adhesive were examined at room and elevated temperatures. Endcapping was accomplished by the addition of phthalic anhydrides. The primary objective was to determine the effects of molecular weight on the mechanical properties of the adhesive. Viscoelastic and nonlinear elastic constitutive equations were utilized to model the adhesive. Ludwik's and Crochet's relations were used to describe the experimental failure data. The effects of molecular weight changes on the above mentioned mechanical behavior were assessed. The viscoelastic Chase-Goldsmith and elastic nonlinear relations gave a good fit to the experimental stress strain behavior. Crochet's relations based on Maxwell and Chase-Goldsmith models were fit to delayed failure data. Ludwik's equations revealed negligible rate dependence. Ultimate stress levels and the safe levels for creep stresses were found to decrease as molecular weight was reduced.

  13. Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions.

    PubMed

    Takeshita, Tsuyoshi; Ota, Shuhei; Yamazaki, Tomokazu; Hirata, Aiko; Zachleder, Vilém; Kawano, Shigeyuki

    2014-04-01

    The microalgae family Chlorella species are known to accumulate starch and lipids. Although nitrogen or phosphorous deficiencies promote starch and lipids formation in many microalgae, these deficiencies also limit their growth and productivity. Therefore, the Chlorellaceae strains were attempted to increase starch and lipids productivity under high-light-intensity conditions (600-μmol photons m(-2)s(-1)). The 12:12-h light-dark (LD) cycle conditions elicited more stable growth than the continuous light (LL) conditions, whereas the starch and lipids yields increased in LL conditions. The amount of starch and lipids per cell increased in Chlorella viscosa and Chlorella vulgaris in sulfur-deficient medium, and long-chain fatty acids with 20 or more carbon atoms accumulated in cells grown in sulfur-deficient medium. Accumulation of starch and lipids was investigated in eight strains. The accumulation was strain-dependent, and varied according to the medium and light conditions. Five of the eight Chlorella strains exhibited similar accumulation patterns.

  14. Shear Strain and Motion of the Subsynovial Connective Tissue and Median Nerve During Single Digit Motion

    PubMed Central

    Yoshii, Yuichi; Zhao, Chunfeng; Henderson, Jacqueline; Zhao, Kristin D.; An, Kai-Nan; Amadio, Peter C.

    2010-01-01

    Purpose The objective of this study was to measure the relative motion of the middle finger flexor digitorum superficialis tendon, its adjacent subsynovial connective tissue, and the median nerve during single digit motion within the carpal tunnel in human cadaver specimens, and estimate the relative motions of these structures in different wrist positions. Methods Using fluoroscopy during simulated single digit flexion, we measured the relative motion of the middle finger flexor digitorum superficialis (FDS) tendon, subsynovial connective tissue and median nerve within the carpal tunnel in twelve human cadavers. Measurements were obtained for three wrist positions: neutral; 60 degrees flexion; and 60 degrees extension. After testing with an intact carpal tunnel was completed, the flexor retinaculum was cut with a scalpel and the same testing procedure was repeated for each wrist position. The relative motions of the tendon, subsynovial connective tissue and median nerve were compared using a shear index, defined as the ratio of the difference in motion along the direction of tendon excursion between two tissues divided by tendon excursion, expressed as a percentage. Results Both tendon-subsynovial connective tissue and tendon-nerve shear index were significantly higher in the 60 degrees of wrist flexion and extension positions, compared to the neutral position. After division of the flexor retinaculum, the shear index in the 60 degrees of wrist extension position remained significantly different, compared to the neutral position. Conclusions In summary, we have found that the relative motion between a tendon and subsynovial connective tissue in the carpal tunnel is maximal at extremes of wrist motion. These positions may predispose the subsynovial connective tissue to shear injury. PMID:19121732

  15. Ciliates rapidly enhance the frequency of conjugation between Escherichia coli strains through bacterial accumulation in vesicles.

    PubMed

    Matsuo, Junji; Oguri, Satoshi; Nakamura, Shinji; Hanawa, Tomoko; Fukumoto, Tatsuya; Hayashi, Yasuhiro; Kawaguchi, Kouhei; Mizutani, Yoshihiko; Yao, Takashi; Akizawa, Kouzi; Suzuki, Haruki; Simizu, Chikara; Matsuno, Kazuhiko; Kamiya, Shigeru; Yamaguchi, Hiroyuki

    2010-10-01

    The mechanism underlying bacterial conjugation through protozoa was investigated. Kanamycin-resistant Escherichia coli SM10λ+ carrying pRT733 with TnphoA was used as donor bacteria and introduced by conjugation into ciprofloxacin-resistant E. coli clinical isolate recipient bacteria. Equal amounts of donor and recipient bacteria were mixed together in the presence or absence of protozoa (ciliates, free-living amoebae, myxamoebae) in Page's amoeba saline for 24 h. Transconjugants were selected with Luria broth agar containing kanamycin and ciprofloxacin. The frequency of conjugation was estimated as the number of transconjugants for each recipient. Conjugation frequency in the presence of ciliates was estimated to be approximately 10⁻⁶, but in the absence of ciliates, or in the presence of other protozoa, it was approximately 10⁻⁸. Conjugation also occurred in culture of ciliates at least 2 h after incubation. Successful conjugation was confirmed by the polymerase chain reaction. Addition of cycloheximide or latrunculin B resulted in suppression of conjugation. Heat killing the ciliates or bacteria had no effect on conjugation frequency. Co-localization of green fluorescent protein-expressing E. coli and PKH-67-vital-stained E. coli was observed in the same ciliate vesicles, suggesting that both donor and recipient bacteria had accumulated in the same vesicle. In this study, the conjugation frequency of bacteria was found to be significantly higher in vesicles purified from ciliates than those in culture suspension. We conclude that ciliates rapidly enhance the conjugation of E. coli strains through bacterial accumulation in vesicles.

  16. Rapid strain accumulation on the Ashkabad fault (Turkmenistan) from atmosphere-corrected InSAR

    NASA Astrophysics Data System (ADS)

    Walters, R. J.; Elliott, J. R.; Li, Z.; Parsons, B.

    2013-07-01

    We have measured interseismic deformation across the Ashkabad strike-slip fault using 13 Envisat interferograms covering a total effective timespan of ˜30 years. Atmospheric contributions to phase delay are significant and variable due to the close proximity of the Caspian Sea. In order to retrieve the pattern of strain accumulation, we show it is necessary to use data from Envisat's Medium-Resolution Imaging Spectrometer (MERIS) instrument, as well as numerical weather model outputs from the European Centre for Medium-Range Weather Forecasts (ECMWF), to correct interferograms for differences in water vapor and atmospheric pressure, respectively. This has enabled us to robustly estimate the slip rate and locking depth for the Ashkabad fault using a simple elastic dislocation model. Our data are consistent with a slip rate of 5-12 mm/yr below a locking depth of 5.5-17 km for the Ashkabad fault, and synthetic tests support the magnitude of the uncertainties on these estimates. Our estimate of slip rate is 1.25-6 times higher than some previous geodetic estimates, with implications for both seismic hazard and regional tectonics, in particular supporting fast relative motion between the South Caspian Block and Eurasia. This result reinforces the importance of correcting for atmospheric contributions to interferometric phase for small strain measurements. We also attempt to validate a recent method for atmospheric correction based on ECMWF ERA-Interim model outputs alone and find that this technique does not work satisfactorily for this region when compared to the independent MERIS estimates.

  17. Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain.

    PubMed

    Yilancioglu, Kaan; Cokol, Murat; Pastirmaci, Inanc; Erman, Batu; Cetiner, Selim

    2014-01-01

    Green algae offer sustainable, clean and eco-friendly energy resource. However, production efficiency needs to be improved. Increasing cellular lipid levels by nitrogen depletion is one of the most studied strategies. Despite this, the underlying physiological and biochemical mechanisms of this response have not been well defined. Algae species adapted to hypersaline conditions can be cultivated in salty waters which are not useful for agriculture or consumption. Due to their inherent extreme cultivation conditions, use of hypersaline algae species is better suited for avoiding culture contamination issues. In this study, we identified a new halophilic Dunaliella salina strain by using 18S ribosomal RNA gene sequencing. We found that growth and biomass productivities of this strain were directly related to nitrogen levels, as the highest biomass concentration under 0.05 mM or 5 mM nitrogen regimes were 495 mg/l and 1409 mg/l, respectively. We also confirmed that nitrogen limitation increased cellular lipid content up to 35% under 0.05 mM nitrogen concentration. In order to gain insight into the mechanisms of this phenomenon, we applied fluorometric, flow cytometric and spectrophotometric methods to measure oxidative stress and enzymatic defence mechanisms. Under nitrogen depleted cultivation conditions, we observed increased lipid peroxidation by measuring an important oxidative stress marker, malondialdehyde and enhanced activation of catalase, ascorbate peroxidase and superoxide dismutase antioxidant enzymes. These observations indicated that oxidative stress is accompanied by increased lipid content in the green alga. In addition, we also showed that at optimum cultivation conditions, inducing oxidative stress by application of exogenous H2O2 leads to increased cellular lipid content up to 44% when compared with non-treated control groups. Our results support that oxidative stress and lipid overproduction are linked. Importantly, these results also suggest that

  18. Strain localization on different scales and the importance of brittle precursors during deformation in the lower crust (Davenport Shear Zone, Central Australia)

    NASA Astrophysics Data System (ADS)

    Hawemann, Friedrich; Mancktelow, Neil; Wex, Sebastian; Camacho, Alfredo; Pennacchioni, Giorgio

    2014-05-01

    High strain rocks in the Musgrave Ranges (Central Australia) provide a rather unique insight into the development of lower crustal shear zones during the 550 Ma Petermann Orogeny, allowing common models for lower crustal deformation to be critically evaluated. The observed structures in the study area are, from south to north: (1) The Mann Fault, which is poorly exposed but evident on airborne geomagnetic maps. This regional scale fault with a component of dextral shear shows a step-over resulting in the formation of a pull-apart basin. (2) The Davenport Shear Zone, accommodating the horizontal extension in a 7 km wide WNW-ESE-trending mylonitic zone developed under subeclogitic, lower crustal conditions. This high strain zone is bounded to the north by a more than 50 km long, continuous, sheared dolerite dyke. North of this dyke, the ~1200 Ma Musgravian fabric is still preserved, only slightly rotated and typically N-S trending. (3) The Woodroffe Thrust, marking the northern boundary of the Musgrave Ranges, brings these lower crustal rocks on top of amphibolite facies units, with a top-to-north sense of movement. Strain in the Davenport Shear Zone is very heterogeneously distributed, with localization and partitioning from the kilometre down to the millimetre scale. Pseudotachylyte is commonly associated with dykes, especially on the boundaries, and is often sheared. The orientation of sheared dykes and localized shear zones is typically at a high angle to either side of the shortening direction, resulting in a variable sense of shear and a major component of flattening, with a nearly horizontal extension direction. Detailed outcrop-scale mapping shows that compositional inhomogeneities, such as quartz veins, are generally not exploited, even when favourably oriented for shear reactivation. Ultramylonitic shear zones are sometimes only a few millimetres wide but extend for several metres and are generally oblique to the background foliation. Pseudotachylyte often

  19. GPS measurements of strain accumulation across the Imperial Valley, California: 1986-1989

    NASA Technical Reports Server (NTRS)

    Larsen, Shawn; Reilinger, Robert

    1989-01-01

    The Global Positioning System (GPS) data collected in southern California from 1986 to 1989 indicate considerable strain accumulation across the Imperial Valley. Displacements are computed at 29 stations in and near the valley from 1986 to 1988, and at 11 sites from 1988 to 1989. The earlier measurements indicate 5.9 +/- 1.0 cm/yr right-lateral differential velocity across the valley, although the data are heavily influenced by the 1987 Superstition Hills earthquake sequence. Some measurements, especially the east-trending displacements, are suspects for large errors. The 1988 to 1989 GPS displacements are best modeled by 5.2 +/- 0.9 cm/yr of valley crossing deformation, but rates calculated from conventional geodetic measurements (3.4 to 4.3 cm/yr) fit the data nearly as well. There is evidence from GPS and Very Long Base Interferometry (VLBI) observations that the present slip rate along the southern San Andreas fault is smaller than the long-term geologic estimate, suggesting a lower earthquake potential than is currently assumed. Correspondingly, a higher earthquake potential is indicated for the San Jacinto fault. The Imperial Valley GPS sites form part of a 183 station network in southern California and northern Baja California, which spans a cross-section of the North American-Pacific plate boundary.

  20. Global Positioning System measurements of strain accumulation across the Imperial Valley, California - 1986-1989

    NASA Technical Reports Server (NTRS)

    Larsen, Shawn; Reilinger, Robert

    1992-01-01

    The Global Positioning System (GPS) data collected in southern California from 1986 to 1989 indicate considerable strain accumulation across the Imperial Valley. Displacements are computed at 29 stations in and near the valley from 1986 to 1988, and at 11 sites from 1988 to 1989. The earlier measurements indicate 5.9 =/- 1.0 cm/yr right-lateral differential velocity across the valley, although the data are heavily influenced by the 1987 Superstition Hills earthquake sequence. Some measurements, especially the east-trending displacements, are suspects for large errors. The 1988 to 1989 GPS displacements are best modeled by 5.2 =/- 0.9 cm/yr of valley crossing deformation, but rates calculated from conventional geodetic measurements (3.4 to 4.3 cm/yr) fit the data nearly as well. There is evidence from GPS and Very Long Base Interferometry (VLBI) observations that the present slip rate along the southern San Andreas fault is smaller than the long-term geologic estimate, suggesting a lower earthquake potential than is currently assumed. Correspondingly, a higher earthquake potential is indicated for the San Jacinto fault. The Imperial Valley GPS sites form part of a 183 station network in southern California and northern Baja California, which spans a cross-section of the North American-Pacific plate boundary.

  1. Interseismic strain accumulation in south central Chile from GPS measurements, 1996-1999

    NASA Astrophysics Data System (ADS)

    Ruegg, J. C.; Campos, J.; Madariaga, R.; Kausel, E.; de Chabalier, J. B.; Armijo, R.; Dimitrov, D.; Georgiev, I.; Barrientos, S.

    2002-06-01

    Two campaigns of Global Positioning System (GPS) measurements were carried out in the Concepción-Constitución area of Chile in 1996 and 1999. It is very likely that this area is a mature seismic gap, since no subduction earthquake has occurred there since 1835. In 1996, 32 sites were occupied in the range 35°S-37°S, between the Pacific coast of Chile and the Andes near the Chile-Argentina border. In 1999, the network was extended by the installation of 9 new points in the Arauco region whereas 13 points among the 1996 stations were reoccupied. The analysis of this campaign data set, together with the data recorded at eight continuous GPS sites (mostly IGS stations) in South America and surrounding regions, indicates a velocity of about 40 +/- 10 mm/yr in the direction N80-90°S for the coastal sites with respect to stable cratonic South America. This velocity decreases to about 20-25 mm/yr towards the Andes. We interpret this result as reflecting interseismic strain accumulation above the Nazca-South America subduction zone, due to a locked thrust zone extending down to about 60 km depth.

  2. Dislocation pileup as a representation of strain accumulation on a strike-slip fault

    USGS Publications Warehouse

    Savage, J.C.

    2006-01-01

    The conventional model of strain accumulation on a vertical transform fault is a discrete screw dislocation in an elastic half-space with the Burgers vector of the dislocation increasing at the rate of relative plate motion. It would be more realistic to replace that discrete dislocation by a dislocation distribution, presumably a pileup in which the individual dislocations are in equilibrium. The length of the pileup depends upon the applied stress and the amount of slip that has occurred at depth. I argue here that the dislocation pileup (the transition on the fault from no slip to slip at the full plate rate) occupies a substantial portion of the lithosphere thickness. A discrete dislocation at an adjustable depth can reproduce the surface deformation profile predicted by a pileup so closely that it will be difficult to distinguish between the two models. The locking depth (dislocation depth) of that discrete dislocation approximation is substantially (???30%) larger than that (depth to top of the pileup) in the pileup model. Thus, in inverting surface deformation data using the discrete dislocation model, the locking depth in the model should not be interpreted as the true locking depth. Although dislocation pileup models should provide a good explanation of the surface deformation near the fault trace, that explanation may not be adequate at greater distances from the fault trace because approximating the expected horizontally distributed deformation at subcrustal depths by uniform slip concentrated on the fault is not justified.

  3. Moderate ischemic mitral regurgitation after postero-lateral myocardial infarction in sheep alters left ventricular shear but not normal strain in the infarct and infarct borderzone

    PubMed Central

    Ge, Liang; Wu, Yife; Soleimani, Mehrdad; Khazalpour, Michael; Takaba, Kiyoaki; Tartibi, Mehrzad; Zhang, Zhihong; Acevedo-Bolton, Gabriel; Saloner, David A.; Wallace, Arthur W.; Mishra, Rakesh; Grossi, Eugene A.; Guccione, Julius M.; Ratcliffe, Mark B.

    2016-01-01

    Background Chronic ischemic mitral regurgitation (CIMR: MR) is associated with poor outcome. Left ventricular (LV) strain after postero-lateral myocardial infarction (MI) may drive LV remodeling. Although moderate CIMR has been previously shown to effect LV remodeling, the effect of CIMR on LV strain after postero-lateral MI remains unknown. We tested the hypothesis that moderate CIMR alters LV strain after postero-lateral MI. Methods/Results Postero-lateral MI was created in 10 sheep. Cardiac MRI with tags was performed 2 weeks before and 2, 8 and 16 weeks after MI. LV and right ventricular (RV) volumes were measured and regurgitant volume indexed to body surface area (BSA; RegurgVolume Index) calculated as the difference between LV and RV stroke volumes / BSA. Three-dimensional strain was calculated. Circumferential (Ecc)and longitudinal (Ell) strains were reduced in the infarct proper, MI borderzone (BZ) and remote myocardium 16 weeks after MI. In addition, radial circumferential (Erc) and radial longitudinal (Erl) shear strains were reduced in remote myocardium but increased in the infarct and BZ 16 weeks after MI. Of all strain components, however, only Erc was effected by RegurgVolume Index (p=0.0005). There was no statistically significant effect of RegurgVolume Index on Ecc, Ell, Erl, or circumferential longitudinal shear strain (Ecl). Conclusions Moderate CIMR alters radial circumferential shear strain after postero-lateral MI in the sheep. Further studies are needed to determine the effect of shear strain on myocyte hypertrophy and the effect of mitral repair on myocardial strain. PMID:26857634

  4. Impact of Strain Accumulation on InGaAs/GaAsP Multiple-Quantum-Well Solar Cells: Direct Correlation between In situ Strain Measurement and Cell Performances

    NASA Astrophysics Data System (ADS)

    Sodabanlu, Hassanet; Ma, Shaojun; Watanabe, Kentaroh; Sugiyama, Masakazu; Nakano, Yoshiaki

    2012-10-01

    The effects of accumulating strain inside InGaAs/GaAsP multiple-quantum-well (MQW) solar cells were investigated and their correlation with in situ wafer curvature measurement was examined. The p-i-n GaAs solar cells, containing 20-period InGaAs/GaAsP MQWs in an i-GaAs layer, were fabricated by metalorganic vapor phase epitaxy. The strain inside MQWs was varied by changing In content in an InGaAs well, while maintaining other parameters. As evidenced by curvature transience, the excessive strain led to lattice relaxation, resulting in defects, dislocations, and poor crystal quality. Consequently, short circuit current density and open circuit voltage deteriorated, and solar cell performance degraded. The highest conversion efficiency was obtained in a strain-balanced MQW solar cell. InGaAs/GaAsP MQWs have a great potential for extending the absorption edge of GaAs cells and for enhancing the efficiency of III/V multijunction solar cells by current matching. Hence, the growth of InGaAs/GaAsP MQWs for photovoltaic application requires a strain monitoring system and careful control such that the accumulating strain is minimized.

  5. Asymptotic analysis of the shear strain effect on the wave characteristics of a multilayered cylindrical shell filled with fluid

    NASA Astrophysics Data System (ADS)

    Amenzade, R. Yu.; Kiiko, I. A.

    2007-06-01

    It is commonly assumed that the theory based on the Kirchhoff hypotheses describes the properties inherent in the wave processes occurring in shells filled with fluids. But there are several new effects that cannot be described by this theory (in particular, the appearance of new types of waves). In this paper, we present a linearized description of axisymmetric wave motion of a perfect incompressible fluid in a multilayered cylindrical shell with allowance for shear strain; the shell is assumed to be infinite and simply supported. This description is aimed at finding new mechanical effects and hence at estimating the influence of the multiple layers and the shear strain on the wave characteristics. In a sense, it generalizes and develops well-known studies of this type. Practice necessitates deriving equations constructed under the assumption that the physical and mechanical properties of the shell material are inhomogeneous along the thickness direction or the shell is multilayered; the development of refined theories (compared with the classical theory based on the Kirchhoff—Love straight normal hypothesis) is also inspired by practice. This is primarily related to the fact that multilayered thin-walled shells made of composite materials are used in various fields of technology. It is of interest to note that, as a result of long evolution, the phenomenon of being multilayered also predominates in living organisms. For example, this is typical of big blood vessels [1] (arteries and veins). In [2], on the basis of a three-dimensional variational principle of mixed type, the equations of motion and physical relations for elastic anisotropic shells rigidly inhomogeneous in the thickness direction are derived under the assumptions of the theory of thin shells and with shear strains taken into account. It is also noted that the case of multilayered shells can be modeled by introducing functions with integrable singularities. When studying wave propagation in

  6. Prion Strain Differences in Accumulation of PrPSc on Neurons and Glia Are Associated with Similar Expression Profiles of Neuroinflammatory Genes: Comparison of Three Prion Strains

    PubMed Central

    Carroll, James A.; Striebel, James F.; Rangel, Alejandra; Woods, Tyson; Phillips, Katie; Peterson, Karin E.; Race, Brent; Chesebro, Bruce

    2016-01-01

    Misfolding and aggregation of host proteins are important features of the pathogenesis of neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia and prion diseases. In all these diseases, the misfolded protein increases in amount by a mechanism involving seeded polymerization. In prion diseases, host prion protein is misfolded to form a pathogenic protease-resistant form, PrPSc, which accumulates in neurons, astroglia and microglia in the CNS. Here using dual-staining immunohistochemistry, we compared the cell specificity of PrPSc accumulation at early preclinical times post-infection using three mouse scrapie strains that differ in brain regional pathology. PrPSc from each strain had a different pattern of cell specificity. Strain 22L was mainly associated with astroglia, whereas strain ME7 was mainly associated with neurons and neuropil. In thalamus and cortex, strain RML was similar to 22L, but in substantia nigra, RML was similar to ME7. Expression of 90 genes involved in neuroinflammation was studied quantitatively using mRNA from thalamus at preclinical times. Surprisingly, despite the cellular differences in PrPSc accumulation, the pattern of upregulated genes was similar for all three strains, and the small differences observed correlated with variations in the early disease tempo. Gene upregulation correlated with activation of both astroglia and microglia detected in early disease prior to vacuolar pathology or clinical signs. Interestingly, the profile of upregulated genes in scrapie differed markedly from that seen in two acute viral CNS diseases (LaCrosse virus and BE polytropic Friend retrovirus) that had reactive gliosis at levels similar to our prion-infected mice. PMID:27046083

  7. Experimental and Computational Study of the Shearing Resistance of Polyurea at High Pressures and High Strain Rates

    NASA Astrophysics Data System (ADS)

    Grujicic, Mica; Yavari, R.; Snipes, J. S.; Ramaswami, S.; Jiao, T.; Clifton, R. J.

    2015-02-01

    Mechanical response of polyurea, a nanophase segregated elastomeric co-polymer, is investigated using all-atom, equilibrium, molecular-dynamics methods and tools. Specifically, the effects of high pressure (1-30 GPa) and high strain rate (105-106 s-1) on the shearing resistance of polyurea are examined. Such loading conditions are encountered by polyurea coatings subjected to impact by high-velocity projectiles, shell shrapnel, and improvised explosive device fragments. Computed results are compared with their experimental counterparts obtained using the so-called pressure-shear plate impact experiments. Computed results have also been rationalized in terms of the nanosegregated polyurea microstructure consisting of rod-shaped, discrete, the so-called hard domains embedded in a highly compliant, the so-called soft matrix. By analyzing molecular-level microstructure and its evolution during high-rate deformation and under high imposed pressures, an attempt is made to identify and quantify main phenomena in viscous/inelastic deformation and microstructure-reorganization processes that are most likely responsible for the observed mechanical response of polyurea.

  8. Strain Accumulation Estimated from Seafloor Crustal Deformation at the Nankai Trough, Japan

    NASA Astrophysics Data System (ADS)

    Tadokoro, K.; Watanabe, T.; Nagai, S.; Ikuta, R.; Okuda, T.; Kenji, Y.; Sakata, T.

    2012-12-01

    Our research has developed an observation system for seafloor crustal deformation composed of the kinematic GPS and acoustic ranging techniques [Tadokoro et al., 2006; Ikuta et al., 2008]. We monitored crustal deformation at the Nankai Trough, Japan, where the Philippine Sea Plate subducts beneath the Amurian Plate. The convergence rate is predicted at 60 mm/y in the N59W direction by the Euler vector of REVEL [Sella et al., 2002]. We installed three monitoring sites (named KMN, KMS, and KME) on the seafloor at depths of about 1920-2030 m. The sites KMN and KMS are installed perpendicular to the trough axis with a spacing of 20 km; the site KME is 50 km from KMN and KMS in the direction parallel to the trough axis. The monitoring was started in 2004, 2005, and 2008 at KMS, KMN, and KME, respectively. The numbers of measurements are 16, 20, and 5 times at KMN, KMS, and KME, respectively. We obtained 3-7 years averaged horizontal site velocities within ITRF2000 adopting a robust estimation method with Tukey's biweight function to the time series of site position measured until the end of 2011. Substituting the synthetic rigid block motions of the Amurian Plate from the velocities within ITRF2000, we obtained the following site velocities with respect to the Amurian Plate [Tadokoro et al., 2012]: KMN 41±4 mm/y, N77±7W KMS 43±5 mm/y, N80±6W KME 42±5 mm/y, N80±7W In contrast, the on-land GPS horizontal velocities along the coast is 23-33 mm/y toward N74-80W. The present observational results show: (1) the velocity vectors are all the same length and direction, which indicates no internal deformation in this region; (2) the back-slip model predicts that the plate interface beneath the region is uniformly locked with coupling ratios of 60-80 %, indicating strain accumulation that will be released during the anticipated mega-thrust Tonankai earthquake; and (3) the directions of site velocities differ from that of convergence vector by 20 degrees, which is affected by

  9. Universal classification of twisted, strained and sheared graphene moiré superlattices

    NASA Astrophysics Data System (ADS)

    Artaud, A.; Magaud, L.; Le Quang, T.; Guisset, V.; David, P.; Chapelier, C.; Coraux, J.

    2016-05-01

    Moiré superlattices in graphene supported on various substrates have opened a new avenue to engineer graphene’s electronic properties. Yet, the exact crystallographic structure on which their band structure depends remains highly debated. In this scanning tunneling microscopy and density functional theory study, we have analysed graphene samples grown on multilayer graphene prepared onto SiC and on the close-packed surfaces of Re and Ir with ultra-high precision. We resolve small-angle twists and shears in graphene, and identify large unit cells comprising more than 1,000 carbon atoms and exhibiting non-trivial nanopatterns for moiré superlattices, which are commensurate to the graphene lattice. Finally, a general formalism applicable to any hexagonal moiré is presented to classify all reported structures.

  10. Universal classification of twisted, strained and sheared graphene moiré superlattices

    PubMed Central

    Artaud, A.; Magaud, L.; Le Quang, T.; Guisset, V.; David, P.; Chapelier, C.; Coraux, J.

    2016-01-01

    Moiré superlattices in graphene supported on various substrates have opened a new avenue to engineer graphene’s electronic properties. Yet, the exact crystallographic structure on which their band structure depends remains highly debated. In this scanning tunneling microscopy and density functional theory study, we have analysed graphene samples grown on multilayer graphene prepared onto SiC and on the close-packed surfaces of Re and Ir with ultra-high precision. We resolve small-angle twists and shears in graphene, and identify large unit cells comprising more than 1,000 carbon atoms and exhibiting non-trivial nanopatterns for moiré superlattices, which are commensurate to the graphene lattice. Finally, a general formalism applicable to any hexagonal moiré is presented to classify all reported structures. PMID:27181495

  11. The Interaction between Fluid Wall Shear Stress and Solid Circumferential Strain Affects Endothelial Gene Expression.

    PubMed

    Amaya, Ronny; Pierides, Alexis; Tarbell, John M

    2015-01-01

    Endothelial cells lining the walls of blood vessels are exposed simultaneously to wall shear stress (WSS) and circumferential stress (CS) that can be characterized by the temporal phase angle between WSS and CS (stress phase angle - SPA). Regions of the circulation with highly asynchronous hemodynamics (SPA close to -180°) such as coronary arteries are associated with the development of pathological conditions such as atherosclerosis and intimal hyperplasia whereas more synchronous regions (SPA closer to 0°) are spared of disease. The present study evaluates endothelial cell gene expression of 42 atherosclerosis-related genes under asynchronous hemodynamics (SPA=-180 °) and synchronous hemodynamics (SPA=0 °). This study used a novel bioreactor to investigate the cellular response of bovine aortic endothelial cells (BAECS) exposed to a combination of pulsatile WSS and CS at SPA=0 or SPA=-180. Using a PCR array of 42 genes, we determined that BAECS exposed to non-reversing sinusoidal WSS (10±10 dyne/cm2) and CS (4 ± 4%) over a 7 hour testing period displayed 17 genes that were up regulated by SPA = -180 °, most of them pro-atherogenic, including NFκB and other NFκB target genes. The up regulation of NFκB p50/p105 and p65 by SPA =-180° was confirmed by Western blots and immunofluorescence staining demonstrating the nuclear translocation of NFκB p50/p105 and p65. These data suggest that asynchronous hemodynamics (SPA=-180 °) can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics without shear stress reversal, indicating that SPA may be an important parameter characterizing arterial susceptibility to disease.

  12. Complex Toxin Profile of French Mediterranean Ostreopsis cf. ovata Strains, Seafood Accumulation and Ovatoxins Prepurification

    PubMed Central

    Brissard, Charline; Herrenknecht, Christine; Séchet, Véronique; Hervé, Fabienne; Pisapia, Francesco; Harcouet, Jocelyn; Lémée, Rodolphe; Chomérat, Nicolas; Hess, Philipp; Amzil, Zouher

    2014-01-01

    Ostreopsis cf. ovata produces palytoxin analogues including ovatoxins (OVTXs) and a putative palytoxin (p-PLTX), which can accumulate in marine organisms and may possibly lead to food intoxication. However, purified ovatoxins are not widely available and their toxicities are still unknown. The aim of this study was to improve understanding of the ecophysiology of Ostreopsis cf. ovata and its toxin production as well as to optimize the purification process for ovatoxin. During Ostreopsis blooms in 2011 and 2012 in Villefranche-sur-Mer (France, NW Mediterranean Sea), microalgae epiphytic cells and marine organisms were collected and analyzed both by LC-MS/MS and hemolysis assay. Results obtained with these two methods were comparable, suggesting ovatoxins have hemolytic properties. An average of 223 μg·kg−1 of palytoxin equivalent of whole flesh was found, thus exceeding the threshold of 30 μg·kg−1 in shellfish recommended by the European Food Safety Authority (EFSA). Ostreopsis cells showed the same toxin profile both in situ and in laboratory culture, with ovatoxin-a (OVTX-a) being the most abundant analogue (~50%), followed by OVTX-b (~15%), p-PLTX (12%), OVTX-d (8%), OVTX-c (5%) and OVTX-e (4%). Ostreopsis cf. ovata produced up to 2 g of biomass per L of culture, with a maximum concentration of 300 pg PLTX equivalent cell−1. Thus, an approximate amount of 10 mg of PLTX-group toxins may be produced with 10 L of this strain. Toxin extracts obtained from collected biomass were purified using different techniques such as liquid-liquid partition or size exclusion. Among these methods, open-column chromatography with Sephadex LH20 phase yielded the best results with a cleanup efficiency of 93% and recovery of about 85%, representing an increase of toxin percentage by 13 fold. Hence, this purification step should be incorporated into future isolation exercises. PMID:24828292

  13. A physical model for strain accumulation in the San Francisco Bay region: Stress evolution since 1838

    USGS Publications Warehouse

    Pollitz, F.; Bakun, W.H.; Nyst, M.

    2004-01-01

    Understanding of the behavior of plate boundary zones has progressed to the point where reasonably comprehensive physical models can predict their evolution. The San Andreas fault system in the San Francisco Bay region (SFBR) is dominated by a few major faults whose behavior over about one earthquake cycle is fairly well understood. By combining the past history of large ruptures on SFBR faults with a recently proposed physical model of strain accumulation in the SFBR, we derive the evolution of regional stress from 1838 until the present. This effort depends on (1) an existing compilation of the source properties of historic and contemporary SFBR earthquakes based on documented shaking, geodetic data, and seismic data (Bakun, 1999) and (2) a few key parameters of a simple regional viscoelastic coupling model constrained by recent GPS data (Pollitz and Nyst, 2004). Although uncertainties abound in the location, magnitude, and fault geometries of historic ruptures and the physical model relies on gross simplifications, the resulting stress evolution model is sufficiently detailed to provide a useful window into the past stress history. In the framework of Coulomb failure stress, we find that virtually all M ??? 5.8 earthquakes prior to 1906 and M ??? 5.5 earthquakes after 1906 are consistent with stress triggering from previous earthquakes. These events systematically lie in zones of predicted stress concentration elevated 5-10 bars above the regional average. The SFBR is predicted to have emerged from the 1906 "shadow" in about 1980, consistent with the acceleration in regional seismicity at that time. The stress evolution model may be a reliable indicator of the most likely areas to experience M ??? 5.5 shocks in the future.

  14. Interseismic Strain Accumulation in the Imperial Valley and Implications for Triggering of Large Earthquakes in Southern California

    NASA Astrophysics Data System (ADS)

    Crowell, B. W.; Bock, Y.; Sandwell, D. T.

    2009-12-01

    From February, 2008 to March, 2009, we performed three rapid-static Global Positioning System (GPS) surveys of 115 geodetic monuments stretching from the United States-Mexico border into the Coachella Valley using the method of instantaneous positioning. The monuments are located in key areas near the Imperial, Superstition Hills, San Jacinto, San Andreas and Brawley Faults with nominal baselines generally less than 10 km. We perform a bicubic spline interpolation on the crustal motion vectors from the campaign measurements and 1005 continuous GPS monuments in western North America and solve for the velocity gradient tensor to look at the maximum shear strain, dilatation and rotation rates in the Imperial Valley. We then compare our computed strain field to that computed using the Southern California Earthquake Center Crustal Motion Map 3.0, which extends through 2003 and includes 840 measurements. We show that there is an interseismic strain transient that corresponds to an increase in the maximum shear strain rate of 0.7 μstrain/yr near Obsidian Buttes since 2003 along a fault referred to as the Obsidian Buttes Fault (OBF). A strong subsidence signal of 27 mm/yr and a left-lateral increase of 10 mm/yr are centered along the OBF. Changes in the dilatation and rotation rates confirm the increase in left-lateral motion, as well as infer a strong increase in spreading rate in the southern Salton Sea. The increase in spreading rate has caused an accelerated slip rate along the southern San Andreas near Durmid Hill as evidenced by continuous GPS, which has the potential for earthquake triggering.

  15. Strain anisotropy and shear strength of shock compressed tantalum from in-situ Laue diffraction

    NASA Astrophysics Data System (ADS)

    Wehrenberg, C.; Comley, A. J.; Rudd, R. E.; Terry, M.; Hawreliak, J.; Maddox, B. R.; Prisbrey, S. T.; Park, H.-S.; Remington, B. A.

    2014-05-01

    Laser driven shock experiments were performed at the Omega facility to study the dynamic yield strength of ~5 μm thick single crystal tantalum using in-situ Laue diffraction. Tantalum samples were shocked along the [001] direction to peak stresses up to 50 GPa and probed using a 150 ps pulse of bremsstrahlung radiation from an imploding CH capsule x-ray source timed for when the shock was halfway through the sample. The capsule implosion was monitored by a combination of pinhole cameras and DANTE x-ray diode scopes. Diffraction spots for both the undriven and driven regions of the sample were recorded simultaneously on image plate detectors. The strain state of the material was found by combining the strain anisotropy found from the driven diffraction pattern and with simultaneous VISAR measurements.

  16. ANS shell elements with improved transverse shear accuracy. [Assumed Natural Coordinate Strain

    NASA Technical Reports Server (NTRS)

    Jensen, Daniel D.; Park, K. C.

    1992-01-01

    A method of forming assumed natural coordinate strain (ANS) plate and shell elements is presented. The ANS method uses equilibrium based constraints and kinematic constraints to eliminate hierarchical degrees of freedom which results in lower order elements with improved stress recovery and displacement convergence. These techniques make it possible to easily implement the element into the standard finite element software structure, and a modified shape function matrix can be used to create consistent nodal loads.

  17. Scale dependence of the alignment between strain rate and rotation in turbulent shear flow

    NASA Astrophysics Data System (ADS)

    Fiscaletti, D.; Elsinga, G. E.; Attili, A.; Bisetti, F.; Buxton, O. R. H.

    2016-10-01

    The scale dependence of the statistical alignment tendencies of the eigenvectors of the strain-rate tensor ei, with the vorticity vector ω , is examined in the self-preserving region of a planar turbulent mixing layer. Data from a direct numerical simulation are filtered at various length scales and the probability density functions of the magnitude of the alignment cosines between the two unit vectors | ei.ω ̂| are examined. It is observed that the alignment tendencies are insensitive to the concurrent large-scale velocity fluctuations, but are quantitatively affected by the nature of the concurrent large-scale velocity-gradient fluctuations. It is confirmed that the small-scale (local) vorticity vector is preferentially aligned in parallel with the large-scale (background) extensive strain-rate eigenvector e1, in contrast to the global tendency for ω to be aligned in parallel with the intermediate strain-rate eigenvector [Hamlington et al., Phys. Fluids 20, 111703 (2008), 10.1063/1.3021055]. When only data from regions of the flow that exhibit strong swirling are included, the so-called high-enstrophy worms, the alignment tendencies are exaggerated with respect to the global picture. These findings support the notion that the production of enstrophy, responsible for a net cascade of turbulent kinetic energy from large scales to small scales, is driven by vorticity stretching due to the preferential parallel alignment between ω and nonlocal e1 and that the strongly swirling worms are kinematically significant to this process.

  18. Partial ligation-induced carotid artery occlusion induces leukocyte recruitment and lipid accumulation--a shear stress model of atherosclerosis.

    PubMed

    Merino, Hilda; Parthasarathy, Sampath; Singla, Dinender K

    2013-01-01

    Recent studies suggest that disturbed blood flow-induced shear stress can induce atherosclerosis (ATH) in humans and animals without a high fat diet. Therefore, we hypothesize that partial ligation of the left carotid artery can generate disturbed blood flow and shear stress and would lead to ATH in a predisposed genetic model of Apo E(-/-) mice. The partial left carotid artery model was generated by ligating three out of four branches of the left carotid artery compared with controls which experienced similar surgery conditions but no ligation. Animals were sacrificed 2 weeks post-ligation and examined for plaque formation, infiltration of leukocytes, pro-inflammatory immune response, and blood flow velocity. Our findings suggest a significant (p < 0.05) increase in plaque formation and lipid deposition in the partial ligated animals compared with controls, confirmed with hematoxylin and eosin and oil red O staining. Furthermore, there was a significant (p < 0.05) increase in the number of M1 macrophages and release of pro-inflammatory cytokines, IL-6 and TNFα, as compared with the control. Moreover, partial ligated carotid arteries demonstrated disturbed blood flow as their systolic velocity was significantly reduced. In conclusion, our data suggest that partial ligation of the left carotid artery induces disturbed flow and shear stress in the predisposed genetic model of Apo E(-/-) mice and leads to significantly developed ATH. Similarities to clinical patients who develop ATH independent of a high fat diet show that this could be a potential animal model to examine various parameters in ATH.

  19. Rock mechanics observations pertinent to the rheology of the continental lithosphere and the localization of strain along shear zones

    USGS Publications Warehouse

    Kirby, S.H.

    1985-01-01

    the general phenomenon of ductile faulting in which ductile strains are localized into shear zones. Ductile faults have been produced in experiments of five different rock types and is generally expressed as strain softening in constant-strain-rate tests or as an accelerating-creep-rate stage at constant differential stress. A number of physical mechanisms have been identified that may be responsible for ductile faulting, including the onset of dynamic recrystallization, phase changes, hydrothermal alteration and hydrolytic weakening. Microscopic evidence for these processes as well as larger-scale geological and geophysical observations suggest that ductile faulting in the middle to lower crust and upper mantle may greatly influence the distribution and magnitudes of differential stresses and the style of deformation in the overlying upper continental lithosphere. ?? 1985.

  20. Shear strain localization and fracture evolution in rock. Progress report, April 15, 1993--February 15, 1994

    SciTech Connect

    Rudnicki, J.W.

    1994-03-01

    Work during this Period has concentrated on refinements of a constitutive relation based on damage due to oriented microcracks. The goal of this portion of the study is to determine whether this relation satisfactorily describes axisymmetric and multi-axial (compression-torsion) test data on Tennessee marble. We have studied the predictions of the relation for the crack lengths and orientations in axisymmetric compression, for peak stress and for the damage surface for combined torsion and compression. A key result is that the damage surface for combined torsion and compression is initially elliptical but forms a vertex with axial loading beyond the initial damage stress. The vertex angle continues to narrow with further axial loading and depends additionally on the coefficient of friction and the range of angles of cracks that have been activated. A consequence of vertex formation is that the stiffness of response to an increment of shear imposed on axial compression, as occurs in localization, will be much less than the elastic modulus and will continue to diminish with further axial deformation.

  1. Comparison of ultrasound B-mode, strain imaging, acoustic radiation force impulse displacement and shear wave velocity imaging using real time clinical breast images

    NASA Astrophysics Data System (ADS)

    Manickam, Kavitha; Machireddy, Ramasubba Reddy; Raghavan, Bagyam

    2016-04-01

    It has been observed that many pathological process increase the elastic modulus of soft tissue compared to normal. In order to image tissue stiffness using ultrasound, a mechanical compression is applied to tissues of interest and local tissue deformation is measured. Based on the mechanical excitation, ultrasound stiffness imaging methods are classified as compression or strain imaging which is based on external compression and Acoustic Radiation Force Impulse (ARFI) imaging which is based on force generated by focused ultrasound. When ultrasound is focused on tissue, shear wave is generated in lateral direction and shear wave velocity is proportional to stiffness of tissues. The work presented in this paper investigates strain elastography and ARFI imaging in clinical cancer diagnostics using real time patient data. Ultrasound B-mode imaging, strain imaging, ARFI displacement and ARFI shear wave velocity imaging were conducted on 50 patients (31 Benign and 23 malignant categories) using Siemens S2000 machine. True modulus contrast values were calculated from the measured shear wave velocities. For ultrasound B-mode, ARFI displacement imaging and strain imaging, observed image contrast and Contrast to Noise Ratio were calculated for benign and malignant cancers. Observed contrast values were compared based on the true modulus contrast values calculated from shear wave velocity imaging. In addition to that, student unpaired t-test was conducted for all the four techniques and box plots are presented. Results show that, strain imaging is better for malignant cancers whereas ARFI imaging is superior than strain imaging and B-mode for benign lesions representations.

  2. Crustal shortening, exhumation, and strain localization in a collisional orogen: The Bajo Pequeño Shear Zone, Sierra de Pie de Palo, Argentina

    NASA Astrophysics Data System (ADS)

    Garber, Joshua M.; Roeske, Sarah M.; Warren, Jessica; Mulcahy, Sean R.; McClelland, William C.; Austin, Lauren J.; Renne, Paul R.; Vujovich, Graciela I.

    2014-07-01

    The Bajo Pequeño Shear Zone (BPSZ) is a lower-crustal shear zone that records shortening and exhumation associated with the establishment of a new plate boundary, and its placement in a regional structural context suggests that local- to regional-scale strain localization occurred with progressive deformation. A kilometer-scale field and analytical cross section through the ~80 m thick BPSZ and its adjacent rocks indicates an early Devonian (405-400 Ma) phase of deformation on the western margin of Gondwanan continental crust. The earliest stages of the BPSZ, recorded by metamorphic and microstructural data, involved thrusting of a hotter orthogneiss over a relatively cool pelitic unit, which resulted in footwall garnet growth and reset footwall white mica 40Ar/39Ar ages in proximity to the shear zone. Later stages of BPSZ activity, as recorded by additional microstructures and quartz c-axis opening angles, were characterized by strain localization to the center of the shear zone coincident with cooling and exhumation. These and other data suggest that significant regional tectonism persisted in the Famatinian orogenic system for 60-70 million years after one microplate collision (the Precordillera) but ceased 5-10 million years prior to another (Chilenia). A survey of other synchronous structures shows that strain was accommodated on progressively narrower structures with time, indicating a regional pattern of strain localization and broad thermal relaxation as the Precordillera collision evolved.

  3. Accumulation of astaxanthin by a new Haematococcus pluvialis strain BM1 from the white sea coastal rocks (Russia).

    PubMed

    Chekanov, Konstantin; Lobakova, Elena; Selyakh, Irina; Semenova, Larisa; Sidorov, Roman; Solovchenko, Alexei

    2014-08-15

    We report on a novel arctic strain BM1 of a carotenogenic chlorophyte from a coastal habitat with harsh environmental conditions (wide variations in solar irradiance, temperature, salinity and nutrient availability) identified as Haematococcus pluvialis Flotow. Increased (25‰) salinity exerted no adverse effect on the growth of the green BM1 cells. Under stressful conditions (high light, nitrogen and phosphorus deprivation), green vegetative cells of H. pluvialis BM1 grown in BG11 medium formed non-motile palmelloid cells and, eventually, hematocysts capable of a massive accumulation of the keto-carotenoid astaxanthin with a high nutraceutical and therapeutic potential. Routinely, astaxanthin was accumulated at the level of 4% of the cell dry weight (DW), reaching, under prolonged stress, 5.5% DW. Astaxanthin was predominantly accumulated in the form of mono- and diesters of fatty acids from C16 and C18 families. The palmelloids and hematocysts were characterized by the formation of red-colored cytoplasmic lipid droplets, increasingly large in size and number. The lipid droplets tended to merge and occupied almost the entire volume of the cell at the advanced stages of stress-induced carotenogenesis. The potential application of the new strain for the production of astaxanthin is discussed in comparison with the H. pluvialis strains currently employed in microalgal biotechnology.

  4. Analysis of strains lacking known osmolyte accumulation mechanisms reveals contributions of osmolytes and transporters to protection against abiotic stress.

    PubMed

    Murdock, Lindsay; Burke, Tangi; Coumoundouros, Chelsea; Culham, Doreen E; Deutch, Charles E; Ellinger, James; Kerr, Craig H; Plater, Samantha M; To, Eric; Wright, Geordie; Wood, Janet M

    2014-09-01

    Osmolyte accumulation and release can protect cells from abiotic stresses. In Escherichia coli, known mechanisms mediate osmotic stress-induced accumulation of K(+) glutamate, trehalose, or zwitterions like glycine betaine. Previous observations suggested that additional osmolyte accumulation mechanisms (OAMs) exist and their impacts may be abiotic stress specific. Derivatives of the uropathogenic strain CFT073 and the laboratory strain MG1655 lacking known OAMs were created. CFT073 grew without osmoprotectants in minimal medium with up to 0.9 M NaCl. CFT073 and its OAM-deficient derivative grew equally well in high- and low-osmolality urine pools. Urine-grown bacteria did not accumulate large amounts of known or novel osmolytes. Thus, CFT073 showed unusual osmotolerance and did not require osmolyte accumulation to grow in urine. Yeast extract and brain heart infusion stimulated growth of the OAM-deficient MG1655 derivative at high salinity. Neither known nor putative osmoprotectants did so. Glutamate and glutamine accumulated after growth with either organic mixture, and no novel osmolytes were detected. MG1655 derivatives retaining individual OAMs were created. Their abilities to mediate osmoprotection were compared at 15°C, 37°C without or with urea, and 42°C. Stress protection was not OAM specific, and variations in osmoprotectant effectiveness were similar under all conditions. Glycine betaine and dimethylsulfoniopropionate (DMSP) were the most effective. Trimethylamine-N-oxide (TMAO) was a weak osmoprotectant and a particularly effective urea protectant. The effectiveness of glycine betaine, TMAO, and proline as osmoprotectants correlated with their preferential exclusion from protein surfaces, not with their propensity to prevent protein denaturation. Thus, their effectiveness as stress protectants correlated with their ability to rehydrate the cytoplasm.

  5. Analysis of Strains Lacking Known Osmolyte Accumulation Mechanisms Reveals Contributions of Osmolytes and Transporters to Protection against Abiotic Stress

    PubMed Central

    Murdock, Lindsay; Burke, Tangi; Coumoundouros, Chelsea; Culham, Doreen E.; Deutch, Charles E.; Ellinger, James; Kerr, Craig H.; Plater, Samantha M.; To, Eric; Wright, Geordie

    2014-01-01

    Osmolyte accumulation and release can protect cells from abiotic stresses. In Escherichia coli, known mechanisms mediate osmotic stress-induced accumulation of K+ glutamate, trehalose, or zwitterions like glycine betaine. Previous observations suggested that additional osmolyte accumulation mechanisms (OAMs) exist and their impacts may be abiotic stress specific. Derivatives of the uropathogenic strain CFT073 and the laboratory strain MG1655 lacking known OAMs were created. CFT073 grew without osmoprotectants in minimal medium with up to 0.9 M NaCl. CFT073 and its OAM-deficient derivative grew equally well in high- and low-osmolality urine pools. Urine-grown bacteria did not accumulate large amounts of known or novel osmolytes. Thus, CFT073 showed unusual osmotolerance and did not require osmolyte accumulation to grow in urine. Yeast extract and brain heart infusion stimulated growth of the OAM-deficient MG1655 derivative at high salinity. Neither known nor putative osmoprotectants did so. Glutamate and glutamine accumulated after growth with either organic mixture, and no novel osmolytes were detected. MG1655 derivatives retaining individual OAMs were created. Their abilities to mediate osmoprotection were compared at 15°C, 37°C without or with urea, and 42°C. Stress protection was not OAM specific, and variations in osmoprotectant effectiveness were similar under all conditions. Glycine betaine and dimethylsulfoniopropionate (DMSP) were the most effective. Trimethylamine-N-oxide (TMAO) was a weak osmoprotectant and a particularly effective urea protectant. The effectiveness of glycine betaine, TMAO, and proline as osmoprotectants correlated with their preferential exclusion from protein surfaces, not with their propensity to prevent protein denaturation. Thus, their effectiveness as stress protectants correlated with their ability to rehydrate the cytoplasm. PMID:24951793

  6. On the influence of dynamic stress variations on strain accumulation in fault zones

    NASA Astrophysics Data System (ADS)

    Grigoriev, A. S.; Shilko, E. V.; Astafurov, S. V.; Dimaki, A. V.; Vysotsky, E. M.; Psakhie, S. G.

    2015-10-01

    In this paper, a numerical study of the influence of the stress state of interface of the block medium structural elements on the deformation response of interface to the dynamic impacts. It is shown that the basic characteristics of the stress state determining the deformation response of the interface are the values of shear stress and mean stress. It is found that the dependence of the irreversible displacement at the interface zone initiated by dynamic impact on the reduced shear stress is described by the logistic function. Herewith, the influence of the mean stress and dynamic impact energy on the value of displacement initiated by dynamic impact can be taken into account by dependence of the logistic function numerator on these parameters.

  7. Identification of oleaginous yeast strains able to accumulate high intracellular lipids when cultivated in alkaline pretreated corn stover

    PubMed Central

    Sitepu, Irnayuli R.; Jin, Mingjie; Fernandez, J. Enrique; da Costa Sousa, Leonardo; Balan, Venkatesh; Boundy-Mills, Kyria L.

    2015-01-01

    Microbial oil is a potential alternative to food/plant-derived biodiesel fuel. Our previous screening studies identified a wide range of oleaginous yeast species, using a defined laboratory medium known to stimulate lipid accumulation. In this study, the ability of these yeasts to grow and accumulate lipids was further investigated in synthetic hydrolysate (SynH) and authentic ammonia fiber expansion (AFEX™)-pretreated corn stover hydrolysate (ACSH). Most yeast strains tested were able to accumulate lipids in SynH, but only a few were able to grow and accumulate lipids in ACSH medium. Cryptococcus humicola UCDFST 10-1004 was able to accumulate as high as 15.5 g/L lipids, out of a total of 36 g/L cellular biomass when grown in ACSH, with a cellular lipid content of 40% of cell dry weight. This lipid production is among the highest reported values for oleaginous yeasts grown in authentic hydrolysate. Pre-culturing in SynH media with xylose as sole carbon source enabled yeasts to assimilate both glucose and xylose more efficiently in the subsequent hydrolysate medium. This study demonstrates that ACSH is a suitable medium for certain oleaginous yeasts to convert lignocellullosic sugars to triacylglycerols for production of biodiesel and other valuable oleochemicals. PMID:25052467

  8. FE Analysis on Shear Deformation for Asymmetrically Hot-Rolled High-Manganese Steel Strip

    NASA Astrophysics Data System (ADS)

    Sui, Feng-Li; Wang, Xin; Li, Chang-Sheng; Zhao, Jun

    2016-11-01

    Shear deformation along the longitudinal cross section of the high-manganese steel strip has been analyzed in hot asymmetrical rolling process using rigid-plastic finite element model. The friction coefficient between the rolls and the strip surfaces, the diameter of the work rolls, the speed ratio for the lower/upper rolls, the reduction rate and the initial temperature of the billet were all taken into account. Influence of these process parameters on the shear stress, the shear strain and the related shear strain energy in the center layer of the hot-rolled strip was analyzed. It is indicated that increasing the speed ratio, the reduction rate and the work roll diameter is an effective way to accumulate more shear strain energy in the strip center. A mathematical model reflecting the relationship between the shear strain energy and the process parameters has been established.

  9. Experimental and Computational Investigation of the Shearing Resistance of an Elastomer at Pressures Up to 18 GPa and Strain Rates of 105 -106s-1

    NASA Astrophysics Data System (ADS)

    Jiao, Tong; Clifton, Rodney

    2015-06-01

    Pressure-shear plate impact (PSPI) experiments have been conducted to study the mechanical response of an elastomer (polyurea) at high pressures and high strain rates. The previously determined isentrope has been extended to 18 GPa. At this pressure, the high-strain-rate shearing resistance of polyurea is approximately 1 GPa-comparable to, or greater than, that of high strength steels and at much lower weight. From the PSPI experiments it is evident that the shearing resistance of polyurea increases essentially proportionately with increasing pressure. Polyurea's response to volumetric changes is largely reversible whereas its response to distortional changes is largely dissipative. These effects are modeled by introducing a constitutive model that incorporates a finite deformation isotropic elasticity model for the instantaneous response and a quasilinear viscoelasticity model-with distributed relaxation times-to model relaxation from the instantaneous elastic response. In order to model a dependence of shear wave speed on pressure, the strain energy function for the instantaneous elastic response is comprised of a distortion-dependent term multiplied by a factor that depends only on the change in volume. This model has been implemented into Abaqus™ to simulate the response of polyurea P1000 under the impact conditions of a variety of PSPI experiments. Results of these simulations suggest that the main features of the experimental results can be explained by such a model.

  10. Growth and lipid accumulation in three Chlorella strains from different regions in response to diurnal temperature fluctuations.

    PubMed

    Yang, Weinan; Zou, Shanmei; He, Meilin; Fei, Cong; Luo, Wei; Zheng, Shiyan; Chen, Bo; Wang, Changhai

    2016-02-01

    It was economically feasible to screen strains adaptive to wide temperature fluctuation for outdoor cultivation without temperature control. In this research, three Chlorella strains from arctic glacier, desert soil and temperate native lake were isolated and identified. The growth, biochemical composition, lipid content and fatty acid composition of each strain cultured under the mode of diurnal temperature fluctuations were compared. All the three Chlorella strains showed desirable abilities of accumulating lipid under diurnal temperature fluctuations and their fatty acid profiles were suitable for biodiesel production, although the growth and biochemical composition were seemed to be region-specific. The highest lipid content was at 51.83±2.49% DW, 42.80±2.97% DW and 36.13±2.27% DW under different temperature fluctuation of 11 °C, 25 °C, 7 °C, respectively. The results indicated that the three Chlorella strains could be promising biodiesel feedstock for outdoor cultivation by the cultural mode of diurnal temperature fluctuations.

  11. Free mycolic acid accumulation in the cell wall of the mce1 operon mutant strain of Mycobacterium tuberculosis.

    PubMed

    Cantrell, Sally A; Leavell, Michael D; Marjanovic, Olivera; Iavarone, Anthony T; Leary, Julie A; Riley, Lee W

    2013-10-01

    The lipid-rich cell wall of Mycobacterium tuberculosis, the agent of tuberculosis, serves as an effective barrier against many chemotherapeutic agents and toxic host cell effector molecules, and it may contribute to the mechanism of persistence. Mycobacterium tuberculosis strains mutated in a 13-gene operon called mce1, which encodes a putative ABC lipid transporter, induce aberrant granulomatous response in mouse lungs. Because of the postulated role of the mce1 operon in lipid importation, we compared the cell wall lipid composition of wild type and mce1 operon mutant M. tuberculosis H37Rv strains. High resolution mass spectrometric analyses of the mce1 mutant lipid extracts showed unbound mycolic acids to accumulate in the cell wall. Quantitative analysis revealed a 10.7 fold greater amount of free mycolates in the mutant compared to that of the wild type strain. The free mycolates were comprised of alpha, methoxy and keto mycolates in the ratio 1:0.9:0.6, respectively. Since the mce1 operon is regulated in vivo, the free mycolates that accumulate during infection may serve as a barrier for M. tuberculosis against toxic products and contribute to the pathogen's persistence.

  12. Influence of Additive Manufactured Scaffold Architecture on the Distribution of Surface Strains and Fluid Flow Shear Stresses and Expected Osteochondral Cell Differentiation.

    PubMed

    Hendrikson, Wim J; Deegan, Anthony J; Yang, Ying; van Blitterswijk, Clemens A; Verdonschot, Nico; Moroni, Lorenzo; Rouwkema, Jeroen

    2017-01-01

    Scaffolds for regenerative medicine applications should instruct cells with the appropriate signals, including biophysical stimuli such as stress and strain, to form the desired tissue. Apart from that, scaffolds, especially for load-bearing applications, should be capable of providing mechanical stability. Since both scaffold strength and stress-strain distributions throughout the scaffold depend on the scaffold's internal architecture, it is important to understand how changes in architecture influence these parameters. In this study, four scaffold designs with different architectures were produced using additive manufacturing. The designs varied in fiber orientation, while fiber diameter, spacing, and layer height remained constant. Based on micro-CT (μCT) scans, finite element models (FEMs) were derived for finite element analysis (FEA) and computational fluid dynamics (CFD). FEA of scaffold compression was validated using μCT scan data of compressed scaffolds. Results of the FEA and CFD showed a significant impact of scaffold architecture on fluid shear stress and mechanical strain distribution. The average fluid shear stress ranged from 3.6 mPa for a 0/90 architecture to 6.8 mPa for a 0/90 offset architecture, and the surface shear strain from 0.0096 for a 0/90 offset architecture to 0.0214 for a 0/90 architecture. This subsequently resulted in variations of the predicted cell differentiation stimulus values on the scaffold surface. Fluid shear stress was mainly influenced by pore shape and size, while mechanical strain distribution depended mainly on the presence or absence of supportive columns in the scaffold architecture. Together, these results corroborate that scaffold architecture can be exploited to design scaffolds with regions that guide specific tissue development under compression and perfusion. In conjunction with optimization of stimulation regimes during bioreactor cultures, scaffold architecture optimization can be used to improve

  13. Influence of Additive Manufactured Scaffold Architecture on the Distribution of Surface Strains and Fluid Flow Shear Stresses and Expected Osteochondral Cell Differentiation

    PubMed Central

    Hendrikson, Wim J.; Deegan, Anthony J.; Yang, Ying; van Blitterswijk, Clemens A.; Verdonschot, Nico; Moroni, Lorenzo; Rouwkema, Jeroen

    2017-01-01

    Scaffolds for regenerative medicine applications should instruct cells with the appropriate signals, including biophysical stimuli such as stress and strain, to form the desired tissue. Apart from that, scaffolds, especially for load-bearing applications, should be capable of providing mechanical stability. Since both scaffold strength and stress–strain distributions throughout the scaffold depend on the scaffold’s internal architecture, it is important to understand how changes in architecture influence these parameters. In this study, four scaffold designs with different architectures were produced using additive manufacturing. The designs varied in fiber orientation, while fiber diameter, spacing, and layer height remained constant. Based on micro-CT (μCT) scans, finite element models (FEMs) were derived for finite element analysis (FEA) and computational fluid dynamics (CFD). FEA of scaffold compression was validated using μCT scan data of compressed scaffolds. Results of the FEA and CFD showed a significant impact of scaffold architecture on fluid shear stress and mechanical strain distribution. The average fluid shear stress ranged from 3.6 mPa for a 0/90 architecture to 6.8 mPa for a 0/90 offset architecture, and the surface shear strain from 0.0096 for a 0/90 offset architecture to 0.0214 for a 0/90 architecture. This subsequently resulted in variations of the predicted cell differentiation stimulus values on the scaffold surface. Fluid shear stress was mainly influenced by pore shape and size, while mechanical strain distribution depended mainly on the presence or absence of supportive columns in the scaffold architecture. Together, these results corroborate that scaffold architecture can be exploited to design scaffolds with regions that guide specific tissue development under compression and perfusion. In conjunction with optimization of stimulation regimes during bioreactor cultures, scaffold architecture optimization can be used to improve

  14. The resistance to detachment of dairy strains of Listeria monocytogenes from stainless steel by shear stress is related to the fluid dynamic characteristics of the location of isolation.

    PubMed

    Perni, Stefano; Aldsworth, Timothy G; Jordan, Suzanne J; Fernandes, Isabel; Barbosa, Manuela; Sol, Manuela; Tenreiro, Rogério P; Chambel, Lélia; Zilhão, Isabel; Barata, Belarmino; Adrião, Andrea; Leonor Faleiro, M; Andrew, Peter W; Shama, Gilbert

    2007-05-30

    Strains of Listeria monocytogenes isolated from artisanal Portuguese cheese-making dairies were divided into two categories on the basis of the locations from which they were isolated: strains from dynamic locations were those that were habitually exposed to flowing liquids during the process of cheese-making, whereas those from static locations were rarely, if ever, exposed to the shear stresses generated by liquid flows. The strength of attachment to stainless steel discs of all of these strains was obtained using a radial flow chamber. Initial attachment strengths to stainless steel (after a 0.5 h contact time) of L. monocytogenes strains were greater for the 5 isolates from surfaces exposed to flow (dynamic isolates) than for most (3 out of 4) of those that were not (static isolates). After a 24 h contact time, attachment strength of all isolates reached similar levels. These results suggest that strains having high initial attachment strength are more likely to persist on surfaces exposed to flow than strains having low initial attachment strength. The numerical values of shear forces obtained could prove useful in the rational design of cleaning and decontamination procedures in food processing facilities.

  15. Earthquake depths and the relation to strain accumulation and stress near strike-slip faults in southern California

    SciTech Connect

    Sanders, C.O. )

    1990-04-10

    Earthquakes in the major fault zones are predominantly deep. Earthquakes in the crustal blocks bounding the fault zones are predominantly shallow. In the San Jacinto fault zone, maximum earthquake depths correlate with surface heat flow. These relations together with focal mechanisms, geodetic strain measurements, and fault zone models are consistent with the following ideas: (1) Interseismic plate motion is accommodated by aseismic slip along an extension of the major fault zone below a brittle zone that is locked between large earthquakes. (2) The aseismic slip in a narrow fault zone in the brittle-plastic transition region concentrates strain at the base of the brittle fault zone. (3) Deep earthquakes occur in thelower part of the brittle fault zone due to stick-slip failure of highly stressed patches. (4) Background earhtquakes and aftershocks that occur several kilometers deeper than large earthquake hypocenters suggest that a zone of mixed slip behavior may exist between the stable sliding (deep) and stick-slip (shallow) regions of the fault zone. Furthermore, the difference in seismicity between the San Jacinto and southern San Andreas faults suggests that the nature of this mixed zone may evolve as total displacement in the fault zone increases. (5) Shear stress may be less in the crustal blocks than in the deep brittle fault zones and generally at a level sufficient to cause brittle failure only shallow in the crustal blocks. (6) In the stress field produced by plate motion and slip in the deep fault zone, the upper brittle fault zone is not oriented favorably for shear failure. Lack of shallow earthquakes in the fault zones and the predominance of shallow earthquakes on favorably oriented fractures in the adjacent crustal blocks suggest that either stress in the upper brittle fault zone is relatively low or the upper fault zone is effectively strong due to its orientation.

  16. Strain localization in brittle-ductile shear zones: fluid-abundant vs. fluid-limited conditions (an example from Wyangala area, Australia)

    NASA Astrophysics Data System (ADS)

    Spruzeniece, L.; Piazolo, S.

    2015-07-01

    This study focuses on physiochemical processes occurring in a brittle-ductile shear zone at both fluid-present and fluid-limited conditions. In the studied shear zone (Wyangala, SE Australia), a coarse-grained two-feldspar-quartz-biotite granite is transformed into a medium-grained orthogneiss at the shear zone margins and a fine-grained quartz-muscovite phyllonite in the central parts. The orthogneiss displays cataclasis of feldspar and crystal-plastic deformation of quartz. Quartz accommodates most of the deformation and is extensively recrystallized, showing distinct crystallographic preferred orientation (CPO). Feldspar-to-muscovite, biotite-to-muscovite and albitization reactions occur locally at porphyroclasts' fracture surfaces and margins. However, the bulk rock composition shows very little change in respect to the wall rock composition. In contrast, in the shear zone centre quartz occurs as large, weakly deformed porphyroclasts in sizes similar to that in the wall rock, suggesting that it has undergone little deformation. Feldspars and biotite are almost completely reacted to muscovite, which is arranged in a fine-grained interconnected matrix. Muscovite-rich layers contain significant amounts of fine-grained intermixed quartz with random CPO. These domains are interpreted to have accommodated most of the strain. Bulk rock chemistry data show a significant increase in SiO2 and depletion in NaO content compared to the wall rock composition. We suggest that the high- and low-strain microstructures in the shear zone represent markedly different scenarios and cannot be interpreted as a simple sequential development with respect to strain. Instead, we propose that the microstructural and mineralogical changes in the shear zone centre arise from a local metasomatic alteration around a brittle precursor. When the weaker fine-grained microstructure is established, the further flow is controlled by transient porosity created at (i) grain boundaries in fine

  17. Cesium accumulation of Rhodococcus erythropolis CS98 strain immobilized in hydrogel matrices.

    PubMed

    Takei, Takayuki; Yamasaki, Mika; Yoshida, Masahiro

    2014-04-01

    Agarose gels were superior to calcium-alginate gels for immobilizing Rhodococcus erythropolis CS98 strain to remove cesium from water. Suitable incubation time of the immobilized cells in cesium solutions, cell number in the gels and volume ratio of the cesium solution to the gels for efficient cesium removal were identified.

  18. Physiological diversity and trehalose accumulation in Schizosaccharomyces pombe strains isolated from spontaneous fermentations during the production of the artisanal Brazilian cachaça.

    PubMed

    Gomes, Fátima C O; Pataro, Carla; Guerra, Juliana B; Neves, Maria J; Corrêa, Soraya R; Moreira, Elizabeth S A; Rosa, Carlos A

    2002-05-01

    Twenty-seven Schizosaccharomyces pombe isolates from seven cachaça distilleries were tested for maximum temperature of growth and fermentation, osmotolerance, ethanol resistance, invertase production, and trehalose accumulation. Two isolates were selected for studies of trehalose accumulation under heat shock and ethanol stress. The S. pombe isolates were also characterized by RAPD-PCR. The isolates were able to grow and ferment at 41 degrees C, resisted concentrations of 10% ethanol, and grew on 50% glucose medium. Four isolates yielded invertase activity of more than 100 micromol of reducing sugar x mg(-1) x min(-1). The S. pombe isolates were able to accumulate trehalose during stationary phase. Two isolates, strains UFMG-A533 and UFMG-A1000, submitted to a 15 min heat shock, were able to accumulate high trehalose levels. Strain UFMG-A533 had a marked reduction in viability during heat shock, but strain UFMG-A1000 preserved a viability rate of almost 20% after 15 min at 48 degrees C. No clear correlation was observed between trehalose accumulation and cell survival during ethanol stress. Strain UFMG-A1000 had higher trehalose accumulation levels than strain UFMG-A533 under conditions of combined heat treatment and ethanol stress. Molecular analysis showed that some strains are maintained during the whole cachaça production period; using the RAPD-PCR profiles, it was possible to group the isolates according to their isolation sites.

  19. Prediction of fracture healing under axial loading, shear loading and bending is possible using distortional and dilatational strains as determining mechanical stimuli

    PubMed Central

    Steiner, Malte; Claes, Lutz; Ignatius, Anita; Niemeyer, Frank; Simon, Ulrich; Wehner, Tim

    2013-01-01

    Numerical models of secondary fracture healing are based on mechanoregulatory algorithms that use distortional strain alone or in combination with either dilatational strain or fluid velocity as determining stimuli for tissue differentiation and development. Comparison of these algorithms has previously suggested that healing processes under torsional rotational loading can only be properly simulated by considering fluid velocity and deviatoric strain as the regulatory stimuli. We hypothesize that sufficient calibration on uncertain input parameters will enhance our existing model, which uses distortional and dilatational strains as determining stimuli, to properly simulate fracture healing under various loading conditions including also torsional rotation. Therefore, we minimized the difference between numerically simulated and experimentally measured courses of interfragmentary movements of two axial compressive cases and two shear load cases (torsional and translational) by varying several input parameter values within their predefined bounds. The calibrated model was then qualitatively evaluated on the ability to predict physiological changes of spatial and temporal tissue distributions, based on respective in vivo data. Finally, we corroborated the model on five additional axial compressive and one asymmetrical bending load case. We conclude that our model, using distortional and dilatational strains as determining stimuli, is able to simulate fracture-healing processes not only under axial compression and torsional rotation but also under translational shear and asymmetrical bending loading conditions. PMID:23825112

  20. Determination of interlaminar shear strength for glass/epoxy and carbon/epoxy laminates at impact rates of strain

    NASA Astrophysics Data System (ADS)

    Harding, J.; Li, Y. L.

    A new technique is proposed for determining the interlaminar shear strength of fiber-reinforced polymer matrix composites using a double-lap shear specimen in which failure occurs on a predetermined plane. by using different ply layups in the double-lap shear specimen, the effect of loading rate on the interfacial shear strength is determined for (1) two plain-weave carbon/epoxy plies, (2) two plain-weave glass/epoxy plies, and (3) a plain-weave carbon/epoxy ply and a plain-weave carbon/epoxy ply and a plain-weave glass/epoxy ply. An increase in loading rate of about six orders of magnitude is found to raise the average value of the shear stress on the failure plane by about 70 percent for the carbon/carbon and glass/glass interfaces and by about 50 percent for the hybrid carbon/glass interface.

  1. Interseismic Strain Accumulation at the Northern Costa Rica Seismogenic Zone From Integration of InSAR and GPS

    NASA Astrophysics Data System (ADS)

    Schwartz, S. Y.; Xue, L.

    2012-12-01

    The presence of the Nicoya Peninsula directly above the seismogenic zone in northern Costa Rica has allowed detailed studies of its seismic and aseismic behavior. This segment of the Middle American Trench generates large earthquakes about every 50 years with the last event occurring in 1950. Abundant seismicity, multiple episodes of slow slip and tremor and years of surface deformation have been recorded here between 2000 and 2011, since the first GPS and seismic instruments were installed. Several models of interseismic strain accumulation have been produced using the GPS data. These models reveal different patterns of locking and variations in locking magnitude that range between 50% to 100% of the plate convergence rate. The GPS data provide excellent temporal coverage but relatively sparse spatial coverage and poor quality vertical measurements of ground deformation. To improve on this, we combine InSAR and GPS observations to produce the first interseismic deformation estimates obtained by InSAR at a subduction zone. We use 18 ALOS SAR acquisitions between 2007 and 2011 covering the Nicoya Peninsula and ROI_PAC software to construct 120 interferograms with perpendicular baselines under 1200m. GPS data are used to correct for orbital errors and corrected interferograms are stacked to produce a deformation rate map that strongly resembles a synthetic interferogram constructed using a GPS based interseismic deformation model. To detect accumulated interseismic deformation over a longer time period we use the small baseline subset (SBAS) method to construct InSAR time series. The resulting linear rate map agrees very well with the GPS measurements along two profiles perpendicular to the coast where GPS observations are the densest. Maximum displacements reach ~10-15 mm/yr near the coastline. Future work will integrate these results with GPS observations to obtain a high-resolution strain accumulation model for the Nicoya Peninsula.

  2. New Insights into Strain Accumulation and Release in the Central and Northern Walker Lane, Pacific-North American Plate Boundary, California and Nevada, USA

    NASA Astrophysics Data System (ADS)

    Bormann, Jayne M.

    The Walker Lane is a 100 km-wide distributed zone of complex transtensional faulting that flanks the eastern margin of the Sierra Nevada. Up to 25% of the total Pacific-North American relative right-lateral plate boundary deformation is accommodated east of the Sierra Nevada, primarily in the Walker Lane. The results of three studies in the Central and Northern Walker Lane offer new insights into how constantly accumulating plate boundary shear strain is released on faults in the Walker Lane and regional earthquake hazards. This research is based on the collection and analysis of new of geologic and geodetic datasets. Two studies are located in the Central Walker Lane, where plate boundary deformation is accommodated on northwest trending right-lateral faults, east-northeast trending left-lateral faults, and north trending normal faults. In this region, a prominent set of left-stepping, en-echelon, normal fault-bounded basins between Walker Lake and Lake Tahoe fill a gap in Walker Lane strike slip faults. Determining how these basins accommodate shear strain is a primary goal of this research. Paleoseismic and neotectonic observations from the Wassuk Range fault zone in the Walker Lake basin record evidence for at least 3 Holocene surface rupturing earthquakes and Holocene/late Pleistocene vertical slip rates between 0.4-0.7 mm/yr on the normal fault, but record no evidence of right-lateral slip along the rangefront fault. A complementary study presents new GPS velocity data that measures present-day deformation across the Central Walker Lane and infers fault slip and block rotation rates using an elastic block model. The model results show a clear partitioning between distinct zones of strain accommodation characterized by (1) right-lateral translation of blocks on northwest trending faults, (2) left-lateral slip and clockwise block rotations between east and northeast trending faults, and (3) right-lateral oblique normal slip with minor clockwise block rotations

  3. Strain-dependent evolution of garnets in a high pressure ductile shear zone using Synchroton x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Macente, Alice; Fusseis, Florian; Menegon, Luca; John, Timm

    2016-04-01

    Synkinematic reaction microfabrics carry important information on the kinetics, timing and rheology of tectonometamorphic processes. Despite being routinely interpreted in metamorphic and structural studies, reaction and deformation microfabrics are usually described in two dimensions. We applied Synchrotron-based x-ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite-garnet eclogite in 3D. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway) previously described by John et al., (2009), we focused on the spatial transformation of garnet coronas into elongated clusters of garnets. Our microtomographic data allowed us to quantify changes to the garnet volume, their shapes and their spatial arrangement. We combined microtomographic observations with light microscope- and backscatter electron images as well as electron microprobe- (EMPA) and electron backscatter diffraction (EBSD) analyses to correlate mineral composition and orientation data with the x-ray absorption signal of the same mineral grains. This allowed us to extrapolate our interpretation of the metamorphic microfabric evolution to the third dimension, effectively yielding a 4-dimensional dataset. We found that: - The x-ray absorption contrast between individual mineral phases in our microtomographic data is sufficient to allow the same petrographic observations than in light- and electron microscopy, but extended to 3D. - Amongst the major constituents of the synkinematic reactions, garnet is the only phase that can be segmented confidently from the microtomographic data. - With increasing deformation, the garnet volume increases from about 9% to 25%. - Garnet coronas in the gabbros never completely encapsulate olivine grains. This may indicate that the reaction progressed preferentially in some directions, but also leaves pathways for element transport to and from the olivines that are

  4. Determining Recoverable and Irrecoverable Contributions to Accumulated Strain in a NiTiPd High-Temperature Shape Memory Alloy During Thermomechanical Cycling

    NASA Technical Reports Server (NTRS)

    Monroe, J. A.; Karaman, I.; Lagoudas, D. C.; Bigelow, G.; Noebe, R. D.; Padula, S., II

    2011-01-01

    When Ni(29.5)Ti(50.5)Pd30 shape memory alloy is thermally cycled under stress, significant strain can accumulate due to elasticity, remnant oriented martensite and plasticity. The strain due to remnant martensite can be recovered by further thermal cycling under 0 MPa until the original transformation-induced volume change and martensite coefficient of thermal expansion are obtained. Using this technique, it was determined that the 8.15% total accumulated strain after cycling under 200 MPa consisted of 0.38%, 3.97% and 3.87% for elasticity, remnant oriented martensite and creep/plasticity, respectively.

  5. The Bibenzyl Canniprene Inhibits the Production of Pro-Inflammatory Eicosanoids and Selectively Accumulates in Some Cannabis sativa Strains.

    PubMed

    Allegrone, Gianna; Pollastro, Federica; Magagnini, Gianmaria; Taglialatela-Scafati, Orazio; Seegers, Julia; Koeberle, Andreas; Werz, Oliver; Appendino, Giovanni

    2017-02-06

    Canniprene (1), an isoprenylated bibenzyl unique to Cannabis sativa, can be vaporized and therefore potentially inhaled from marijuana. Canniprene (1) potently inhibited the production of inflammatory eicosanoids via the 5-lipoxygenase pathway (IC50 0.4 μM) and also affected the generation of prostaglandins via the cyclooxygenase/microsomal prostaglandin E2 synthase pathway (IC50 10 μM), while the related spiranoid bibenzyls cannabispiranol (2) and cannabispirenone (3) were almost inactive in these bioassays. The concentration of canniprene (1) was investigated in the leaves of 160 strains of C. sativa, showing wide variations, from traces to >0.2%, but no correlation was found between its accumulation and a specific phytocannabinoid profile.

  6. InSAR observations of strain accumulation and fault creep along the Chaman Fault system, Pakistan and Afghanistan

    NASA Astrophysics Data System (ADS)

    Fattahi, Heresh; Amelung, Falk

    2016-08-01

    We use 2004-2011 Envisat synthetic aperture radar imagery and InSAR time series methods to estimate the contemporary rates of strain accumulation in the Chaman Fault system in Pakistan and Afghanistan. At 29 N we find long-term slip rates of 16 ± 2.3 mm/yr for the Ghazaband Fault and of 8 ± 3.1 mm/yr for the Chaman Fault. This makes the Ghazaband Fault one of the most hazardous faults of the plate boundary zone. We further identify a 340 km long segment displaying aseismic surface creep along the Chaman Fault, with maximum surface creep rate of 8.1 ± 2 mm/yr. The observation that the Chaman Fault accommodates only 30% of the relative plate motion between India and Eurasia implies that the remainder is accommodated south and east of the Katawaz block microplate.

  7. Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite radar interferometry

    NASA Astrophysics Data System (ADS)

    Wright, Tim; Parsons, Barry; Fielding, Eric

    In recent years, interseismic crustal velocities and strains have been determined for a number of tectonically active areas through repeated measurements using the Global Positioning System. The terrain in such areas is often remote and difficult, and the density of GPS measurements relatively sparse. In principle, satellite radar interferometry can be used to make millimetric-precision measurements of surface displacement over large surface areas. In practice, the small crustal deformation signal is dominated over short time intervals by errors due to atmospheric, topographic and orbital effects. Here we show that these effects can be over-come by stacking multiple interferograms, after screening for atmospheric anomalies, effectively creating a new interferogram that covers a longer time interval. In this way, we have isolated a 70 km wide region of crustal deformation across the eastern end of the North Anatolian Fault, Turkey. The distribution of deformation is consistent with slip of 17-32 mm/yr below 5-33 km on the extension of the surface fault at depth. If the GPS determined slip rate of 24±1 mm/yr is accepted, the locking depth is constrained to 18±6 km.

  8. Interseismic strain accumulation in seismic gap of south central Chile from GPS measurements

    NASA Astrophysics Data System (ADS)

    Rudloff, A.; Vigny, C.; Ruegg, J. C.; Campos, J.

    2003-04-01

    Three campaigns of Global Positioning System (GPS) measurements were carried out in the Concepcion-Constitucion seismic gap in South Central Chile in 1996, 1999, and 2002. We observed a network of about 40 sites, made of 2 east-west transects roughly perpendicular to the trench ranging from the coastal area to the Argentina border and 1 north-south profile along the coast. Data sets were processed with MIT's GAMIT/GLOBK package. Horizontal velocities have formal uncertainties around 1 to 2 mm/yr in average. Vertical velocities are also determined and have uncertainties around 2 to 5 mm/yr. We find that the convergence between Nazca and South-America plates better matches the pole previously estimated by (Larson et al, 1997) than the Nuvel-1A estimate. Our estimate predicts a convergence of 72 mm/yr at N70 to be compared with Nuvel-1A 80 mm/yr at N79. With respect to stable South America, horizontal velocities decrease from 35 mm/yr on the coast to 14 mm/yr in the Cordillera. Vertical velocities help constraint lithospheric flecture. Partionning of the slightly oblique convergence will be investigated. The gradient of convergent parallel velocities reflects aseismic elastic loading on a zone of about 400 km width. Interestingly enough, this gradient exhibit a linear pattern, marginally compatible with the expected arctangent shape. 70 mm/yr of motion accumulated since the last big event in this area (1835 Earthquake described by Darwin) represent more than 10 m of displacement. Therefore, this area is probably mature for a next large earthquake, the magnitude of which could reach 8.5.

  9. Shear avalanches in metallic glasses under nanoindentation: Deformation units and rate dependent strain burst cut-off

    SciTech Connect

    Bian, X. L.; Wang, G.; Gao, Y. L.; Zhai, Q. J.; Chan, K. C.; Ren, J. L.

    2013-09-02

    Indented metallic glasses at the nanoscale deform via strain bursts. Conventional continuum descriptions are not appropriate for such highly stochastic, intermittent deformations. In this study, after a statistical analysis of strain bursts in five metallic glasses, the dependence of the cut-off of the strain burst size on deformation units and loading rate is established. For soft metallic glasses with smaller deformation units, cut-off of the strain burst size truncates the scale-free behavior at larger strain burst sizes. For hard metallic glasses, scale-free behavior occurs in a wide range of strain burst sizes.

  10. Brittle grain-size reduction of feldspar, phase mixing and strain localization in granitoids at mid-crustal conditions (Pernambuco shear zone, NE Brazil)

    NASA Astrophysics Data System (ADS)

    Viegas, Gustavo; Menegon, Luca; Archanjo, Carlos

    2016-03-01

    The Pernambuco shear zone (northeastern Brazil) is a large-scale strike-slip fault that, in its eastern segment, deforms granitoids at mid-crustal conditions. Initially coarse-grained (> 50 µm) feldspar porphyroclasts are intensively fractured and reduced to an ultrafine-grained mixture consisting of plagioclase and K-feldspar grains (< 15 µm) localized in C' shear bands. Detailed microstructural observations and electron backscatter diffraction (EBSD) analysis do not show evidence of intracrystalline plasticity in feldspar porphyroclasts and/or fluid-assisted replacement reactions. Quartz occurs either as thick (˜ 1-2 mm) monomineralic veins transposed along the shear zone foliation or as thin ribbons ( ≤ 25 µm width) dispersed in the feldspathic mixture. The microstructure and c axis crystallographic-preferred orientation are similar in the thick monomineralic veins and in the thin ribbons, and they suggest dominant subgrain rotation recrystallization and activity of prism < a > and rhomb < a > slip systems. However, the grain size in monophase recrystallized domains decreases when moving from the quartz monomineralic veins to the thin ribbons embedded in the feldspathic C' bands (14 µm vs. 5 µm respectively). The fine-grained feldspar mixture has a weak crystallographic-preferred orientation interpreted as the result of shear zone parallel-oriented growth during diffusion creep, as well as the same composition as the fractured porphyroclasts, suggesting that it generated by mechanical fragmentation of rigid porphyroclasts with a negligible role of chemical disequilibrium. Once C' shear bands were generated and underwent viscous deformation at constant stress conditions, the polyphase feldspathic aggregate would have deformed at a strain rate 1 order of magnitude faster than the monophase quartz monomineralic veins, as evidenced by applying experimentally and theoretically calibrated flow laws for dislocation creep in quartz and diffusion creep in

  11. Interseismic Strain Accumulation in Metropolitan Los Angeles Distinguished from Oil and Water management using InSAR and GPS

    NASA Astrophysics Data System (ADS)

    Argus, D. F.; Agram, P. S.; Rollins, C.; Avouac, J. P.; Barbot, S.

    2015-12-01

    Thesis.InSAR measurements from 1992 to 2012 are detecting deformation due to oil pumping and groundwater changes throughout metropolitan Los Angeles. This is allowing elastic strain build up on blind thrusts beneath the city to be accurately evaluated using GPS. Oil Fields.Pumping and repressurization of oil fields have generated substantial displacement in metropolitan Los Angeles, causing Beverly Hills, downtown, and Whittier to subside at 3-10 mm/yr and Santa Fe Springs and La Mirada to rise at 5-9 mm/yr. Aquifers.Displacements of the Santa Ana and San Gabriel Valley aquifers accumulate in response to sustained changes in groundwater over periods of either drought or heavy precipitation. Santa Ana aquifer has subsided nearly 0.1 m in response to lowering of the groundwater level by about 25 m over the past 18 years. Anthropogenic Vs. Tectonic Motion.We are assessing horizontal motions due to changes groundwater using an empirical relationship established on the basis of seasonal oscillations of Santa Ana aquifer. Anthropogenic horizontal motion is estimated to be proportional to the directional gradient in vertical motion inferred with InSAR. We are finding this rough approximation to be quite useful for evaluating deviations of GPS positions from a constant velocity. We are also constructing Mogi models of volume change in oil fields to evaluate GPS deviations. Earthquake Strain Buildup on Blind Thrust Faults.NNE contraction perpendicular to the big restraining bend in the San Andreas fault is fastest not immediately south of the San Andreas in the San Gabriel Mountains, but instead 50 km south of the fault in northern metropolitan Los Angeles. An elastic model of interseismic strain accumulation fit to GPS data and incorporating a 1D approximation of the rheology of the Los Angeles basin indicates the deep segment of the Puente Hills (-upper Elysian Park) Thrust to be slipping at 9 ±2 mm/yr beneath a locking depth of 12 ±5 km. Please see also our

  12. Reconciling patterns of interseismic strain accumulation with thermal observations across the Carrizo segment of the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Fulton, P. M.; Schmalzle, G. M.; Harris, R. N.; Dixon, T. H.

    2009-12-01

    The thermal state of the lithosphere has significant influence on crustal deformation and the depth extent of seismicity. Additional factors such as lithology and stress state are generally thought to impart smaller contributions. Along the Carrizo segment of the San Andreas Fault (SAF), however, observed strain accumulation across the fault is counter to that expected based on contrasts in heat flow and microseismicity cutoff depths [Schmalzle et al., JGR, 2006]. We reconcile this discrepancy by suggesting that large overpressures and/or anomalous basement rocks make an important contribution to the crustal rheology in this area. The Carrizo segment of the SAF separates rocks of the Salinian Block to the SW characterized by high heat flow (~75 - 95 mW/m2) and shallow microseismicity (~10 km depth or less) from rocks of the Franciscan Complex and Great Valley Group to the NE associated with low heat flow (50 - 60 mW/m2) and deeper microseismicity (less than ~20 km deep). Intriguingly, GPS data from this region suggest that the NE side of the fault accommodates more strain than the SW side, inconsistent with what is generally expected based on the thermal data and cutoff depth of microseismicity. Viscoelastic models have been able to explain this asymmetric strain accumulation well with a constant elastic thickness coupled with a ~20 km wide soft (i.e., low Young’s modulus) zone NE of the fault. We show that by using this model in combination with the contrast in elastic thickness inferred from heat flow and microseismicity observations, we achieve better agreement with geologically accepted long-term average slip rates. Interestingly, the ~20 km wide soft zone NE of the fault is required to achieve this result. We suggest that this soft zone may be a result of either large overpressures or anomalous basement lithology. The presence of large overpressures is consistent with the subsurface extent of a hydrologic seal that extends ~10 - 20 km NE from the fault

  13. Endovascular shear strain elastography for the detection and characterization of the severity of atherosclerotic plaques: in vitro validation and in vivo evaluation.

    PubMed

    Majdouline, Younes; Ohayon, Jacques; Keshavarz-Motamed, Zahra; Roy Cardinal, Marie-Hélène; Garcia, Damien; Allard, Louise; Lerouge, Sophie; Arsenault, Frédéric; Soulez, Gilles; Cloutier, Guy

    2014-05-01

    This work explores the potential of shear strain elastograms to identify vulnerable atherosclerotic plaques. The Lagrangian speckle model estimator (LSME) elasticity imaging method was further developed to estimate shear strain elasticity (SSE). Three polyvinyl alcohol cryogel vessel phantoms were imaged with an intravascular ultrasound (IVUS) scanner. The estimated SSE maps were validated against finite-element results. Atherosclerosis was induced in carotid arteries of eight Sinclair mini-pigs using a combination of surgical techniques, diabetes and a high-fat diet. IVUS images were acquired in vivo in 14 plaques before euthanasia and histology. All plaques were characterized by high magnitudes in SSE maps that correlated with American Heart Association atherosclerosis stage classifications (r = 0.97, p < 0.001): the worse the plaque condition the higher was the absolute value of SSE, i.e. |SSE| (e.g., mean |SSE| was 3.70 ± 0.40% in Type V plaques, whereas it was reduced to 0.11 ± 0.01% in normal walls). This study indicates the feasibility of using SSE to highlight atherosclerotic plaque vulnerability characteristics.

  14. The Lima-Peru seismic gap: a study of inter-seismic strain accumulation from a decade of GPS measurements

    NASA Astrophysics Data System (ADS)

    Norabuena, E. O.; Pollitz, F. F.; Dixon, T. H.

    2013-05-01

    The Peruvian subduction zone between the Mendaña Fracture zone and Arica, northern Chile, has been source of large megathrust earthquakes since historical to present times, The two last major events affecting the southern segment corresponds to Arequipa 2001 (Mw 8.3) and Pisco 2007 (Mw 8.1). A noteworthy event is the Lima 1746 earthquake with an assigned magnitude of Mw 8.5 and which is assumed to have broken several km of the seismogenic zone off Lima. The great shock was followed by a devastating tsunami that destroyed the main port of Callao, killing about 99 percent of its population. This extreme event was followed by quiescence of a few hundred years until the XX century when the Lima subduction zone was broken again by the earthquakes of May 1940 (Mw 8.0), October 1966 (Mw 8.0) and Lima 1974 (Mw 8.0). The broken areas overlap partially with the estimated area of the 1746 earthquake and put the region in a state of seismic gap representing a major hazard for Lima city - Peru's capital and its about 9 million of inhabitants. Our study reports the interseismic strain accumulation derived from a decade of GPS measurement at 11 geodetic monuments including one measurement in an island 80 km offshore and models variations of coupling along the plate interface.

  15. Shear Yielding and Shear Jamming of Dense Hard Sphere Glasses

    NASA Astrophysics Data System (ADS)

    Urbani, Pierfrancesco; Zamponi, Francesco

    2017-01-01

    We investigate the response of dense hard sphere glasses to a shear strain in a wide range of pressures ranging from the glass transition to the infinite-pressure jamming point. The phase diagram in the density-shear strain plane is calculated analytically using the mean-field infinite-dimensional solution. We find that just above the glass transition, the glass generically yields at a finite shear strain. The yielding transition in the mean-field picture is a spinodal point in presence of disorder. At higher densities, instead, we find that the glass generically jams at a finite shear strain: the jamming transition prevents yielding. The shear yielding and shear jamming lines merge in a critical point, close to which the system yields at extremely large shear stress. Around this point, highly nontrivial yielding dynamics, characterized by system-spanning disordered fractures, is expected.

  16. Strain-induced disorder, phase transformations, and transformation-induced plasticity in hexagonal boron nitride under compression and shear in a rotational diamond anvil cell: in situ x-ray diffraction study and modeling.

    PubMed

    Levitas, Valery I; Ma, Yanzhang; Hashemi, Javad; Holtz, Mark; Guven, Necip

    2006-07-28

    Plastic shear significantly reduces the phase transformation (PT) pressure when compared to hydrostatic conditions. Here, a paradoxical result was obtained: PT of graphitelike hexagonal boron nitride (hBN) to superhard wurtzitic boron nitride under pressure and shear started at about the same pressure ( approximately 10 GPa) as under hydrostatic conditions. In situ x-ray diffraction measurement and modeling of the turbostratic stacking fault concentration (degree of disorder) and PT in hBN were performed. Under hydrostatic pressure, changes in the disorder were negligible. Under a complex compression and shear loading program, a strain-induced disorder was observed and quantitatively characterized. It is found that the strain-induced disorder suppresses PT which compensates the promotion effect of plastic shear. The existence of transformation-induced plasticity (TRIP) was also proved during strain-induced PT. The degree of disorder is proposed to be used as a physical measure of plastic straining. This allows us to quantitatively separate the conventional plasticity and transformation-induced plasticity. Surprisingly, it is found that TRIP exceeds the conventional plasticity by a factor of 20. The cascade structural changes were revealed, defined as the reoccurrence of interacting processes including PTs, disordering, conventional plasticity, and TRIP. In comparison with hydrostatic loading, for the same degree of disorder, plastic shear indeed reduces the PT pressure (by a factor of 3-4) while causing a complete irreversible PT. The analytical results based on coupled strain-controlled kinetic equations for disorder and PT confirm our conclusions.

  17. The Influence of Strain-Rate History and Temperature on the Shear Strength of Copper, Titanium and Mild Steel

    DTIC Science & Technology

    1976-03-01

    AFA <r-76.90 o THE INFLUENCE OF S~I~ T IT~ NSTEM PER~ATURE~ O N THE SHEAR STRE N T OF C P E STITANIUM AND MILD STEEL UNIEARrSITY o, ENrGN,,RINSCNE...High-temperature titanium specimen and stainless - steel grips 100 C3 Transmission of torsional wave through mechanical connectors, at (a) 2000C (b...Sellers (1974) showed from hot torsion tests on stainless stcel that the equation does not hold if Z changes by more than about two orders of

  18. The Effects of Light, Temperature, and Nutrition on Growth and Pigment Accumulation of Three Dunaliella salina Strains Isolated from Saline Soil

    PubMed Central

    Wu, Zhe; Duangmanee, Promchup; Zhao, Pu; Juntawong, Niran; Ma, Chunhong

    2016-01-01

    Background: Developing algal industries in saline-alkali areas is necessary. However, suitable strains and optimal production conditions must be studied before widespread commercial use. Objectives: The effects of light, temperature, KNO3, and CO(NH2)2 on beta-carotene and biomass accumulation were compared and evaluated in order to provide scientific guidance for commercial algal production in northeastern Thailand. Materials and Methods: An orthogonal design was used for evaluating optimal conditions for the algal production of three candidate Dunaliella salina strains (KU XI, KU 10 and KU 31) which were isolated from saline soils and cultured in the column photobioreactor. Results: The optimal light and temperature for algae growth were 135.3 μmol m-2 s-1 and 22°C, while the conditions of 245.6 μmol m-2 s-1 and 22°C induced the highest level of beta-carotene production (117.99 mg L-1). The optimal concentrations of KNO3, CO(NH2)2, and NaHCO3 for algae growth were 0.5 g L-1, 0.36 g L-1, and 1.5 g L-1, respectively, while 0, 0.12 g L-1 and 1.5 g L-1 were best suited for beta-carotene accumulation. The highest beta-carotene rate per cell appeared with the highest light intensity (12.21 pg) and lowest temperature (12.47 pg), and the lowest total beta-carotene content appeared at the lowest temperature (15°C). There was not a significant difference in biomass accumulation among the three Dunaliella strains; however, the beta-carotene accumulation of KU XI was higher than that of the other two strains. Conclusions: Light and temperature were both relevant factors that contributed to the growth and beta-carotene accumulation of the three D. salina strains, and NaHCO3 had significantly positive effects on growth. The degree of impact of the different factors on cell growth was temperature > NaHCO3 > light intensity > KNO3 > CO (NH2)2 > strains; the impact on beta-carotene accumulation was temperature > light intensity > KNO3 > CO (NH2)2 > strains > NaHCO3 PMID

  19. Stress-strain behavior of block-copolymers and their nanocomposites filled with uniform or Janus nanoparticles under shear: a molecular dynamics simulation.

    PubMed

    Wang, Lu; Liu, Hongji; Li, Fanzhu; Shen, Jianxiang; Zheng, Zijian; Gao, Yangyang; Liu, Jun; Wu, Youping; Zhang, Liqun

    2016-10-05

    Although numerous research studies have been focused on studying the self-assembled morphologies of block-copolymers (BCPs) and their nanocomposites, little attention has been directed to explore the relation between their ordered structures and the resulting mechanical properties. We adopt coarse-grained molecular dynamics simulation to study the influence of the morphologies on the stress-strain behavior of pure block copolymers and block copolymers filled with uniform or Janus nanoparticles (NPs). At first, we examine the effect of the arrangement (di-block, tri-block, alternating-block) and the components of the pure block copolymers, and by varying the component ratio between A and B blocks, spherical, cylindrical and lamellar phases are all formed, showing that spherical domains bring the largest reinforcing effect. Then by studying BCPs filled with NPs, the Janus NPs induce stronger bond orientation of polymer chains and greater mechanical properties than the uniform NPs, when these two kinds of NPs are both located in the interface region. Meanwhile, some other anisotropic Janus NPs, such as Janus rods and Janus sheets, are incorporated to examine the effect on the morphology and the stress-strain behavior. These findings deepen our understanding of the morphology-mechanics relation of BCPs and their nanocomposites, opening up a vast number of approaches such as designing the arrangement and components of BCPs, positioning uniform or Janus NPs with different shapes and shear flow to tailor their stress-strain performance.

  20. Interseismic strain accumulation at the Mw8.8 2010 Maule earthquake by means of finite element modeling

    NASA Astrophysics Data System (ADS)

    Contreras, M.; Tassara, A.; Araya, R.; Bataille, K.

    2012-04-01

    We implemented a two-dimensional finite element model that simulates the accumulation of crustal deformation due to the tectonic loading on a locked subduction fault and applied this model to study the seismic cycle of the Mw8.8 2010 Maule (Central Chile) earthquake. Our goal is to gain insigth into the fundamental factors controling elastic strain build-up and release in subduction zones and to evaluate different approaches proposed for modeling surface deformation as observed by GPS-based crustal velocities. By applying the finite element technique we developed a linear elasticity solver that allows us to assess a realistic plate geometry, rheology and relative velocity of subducting plate in a coupled seismic zone. Constraining parameters such as convergence velocity as well as the geometry of the subduction zone are supported by independent geophysical data so we concentrate on the influence of mechanical slab thickness, variations in the updip and downdip limit, degree of coupling and rheology. We have introduced idealized geometric models, noting that our numerical solution reproduce the analytical solution for an elastic half-space and that the surface displacement field obtained for a curved fault and non-zero slab thickness model mimics the predictions of a simple backslip model when the slab thickness tends to zero. We compared model predictions with GPS observations in a EW profile crossing the Maule earthquake rupture area in an attempt for determining the parameters of the seismogenic zone most suitable for this region. Our preliminary results, that consider a realistic geometry and uniform convergence velocity, suggest little influence of the subducting plate thickness for the same downdip limit and the fit to observations is only locally achieved within the margin of error of GPS speeds. We will show results for the inter- and co-seismic phases of the seismic cycle.

  1. Effect of Shear Strain on the Structure and Properties of Chromium-Nickel Corrosion-Resistant Steels

    NASA Astrophysics Data System (ADS)

    Dobatkin, S. V.; Rybal'chenko, O. V.; Kliauga, A.; Tokar', A. A.

    2015-07-01

    The structure and properties of metastable austenitic steel 08Kh18N10T and stable austenitic steel ASTM F138 under shear deformation implemented by torsion under hydrostatic pressure (THP) at T = 300 and 450°C and by equichannel angular pressing (ECAP) at T = 400°C are studied. The THP yields an ultrafine-grain structure in a fully austenitic matrix with grain size 45 - 70 nm in steel ASTM F138 and 87 - 123 nm in steel 08Kh1810T. The ECAP at 400°C yields a grain-subgrain structure with structural elements 100 - 300 nm in size in steel 08Kh18N10T and 200 - 400 nm in size in steel ASTM F138.

  2. A musculoskeletal modeling approach for estimating anterior cruciate ligament strains and knee anterior-posterior shear forces in stop-jumps performed by young recreational female athletes.

    PubMed

    Kar, Julia; Quesada, Peter M

    2013-02-01

    The central goal of this study was to contribute to the advancements being made in determining the underlying causes of anterior cruciate ligament (ACL) injuries. ACL injuries are frequently incurred by recreational and professional young female athletes during non-contact impact activities in sports like volleyball and basketball. This musculoskeletal-neuromuscular study investigated stop-jumps and factors related to ACL injury like knee valgus and internal-external moment loads, knee anterior-posterior (AP) shear forces, ACL strains and internal forces. Motion capture data was obtained from the landing phase of stop-jumps performed by eleven young recreational female athletes and electromyography (EMG) data collected from quadriceps, hamstring and gastrocnimius muscles which were then compared to numerically estimated activations. Numerical simulation tools used were Inverse Kinematics, Computed Muscle Control and Forward Dynamics and the knee modeled as a six degree of freedom joint. Results showed averaged peak strains of 12.2 ± 4.1% in the right and 11.9 ± 3.0% in the left ACL. Averaged peak knee AP shear forces were 482.3 ± 65.7 N for the right and 430.0 ± 52.4 N for the left knees, approximately equal to 0.7-0.8 times body weight across both knees. A lack of symmetry was observed between the knees for valgus angles (p < 0.04), valgus moments (p < 0.001) and muscle activations (p < 0.001), all of which can be detrimental to ACL stability during impact activities. Comparisons between recorded EMG data and estimated muscle activations show the relation between electrical signal and muscle depolarization. In summary, this study outlines a musculoskeletal simulation approach that provides numerical estimations for a number of variables associated with ACL injuries in female athletes performing stop-jumps.

  3. Three hen strains fed photoisomerized trans,trans CLA-rich soy oil exhibit different yolk accumulation rates and source-specific isomer deposition.

    PubMed

    Shinn, Sara E; Gilley, Alex D; Proctor, Andrew; Anthony, Nicholas B

    2015-04-01

    Most CLA chicken feeding trials used cis,trans (c,t) and trans,cis (t,c) CLA isomers to produce CLA-rich eggs, while reports of trans,trans (t,t) CLA enrichment in egg yolks are limited. The CLA yolk fatty acid profile changes and the 10-12 days of feeding needed for maximum CLA are well documented, but there is no information describing CLA accumulation during initial feed administration. In addition, no information on CLA accumulation rates in different hen strains is available. The aim of this study was to determine a mathematical model that described yolk CLA accumulation and depletion in three hen strains by using t,t CLA-rich soybean oil produced by photoisomerization. Diets of 30-week Leghorns, broilers, and jungle fowl were supplemented with 15% CLA-rich soy oil for 16 days, and eggs were collected for 32 days. Yolk fatty acid profiles were measured by GC-FID. CLA accumulation and depletion was modeled by both quadratic and piecewise regression analysis. A strong quadratic model was proposed, but it was not as effective as piecewise regression in describing CLA accumulation and depletion. Broiler hen eggs contained the greatest concentration of CLA at 3.2 mol/100 g egg yolk, then jungle fowl at 2.9 mol CLA, and Leghorns at 2.3 mol CLA. The t,t CLA isomer levels remained at 55% of total yolk CLA during CLA feeding. However, t-10,c-12 (t,c) CLA concentration increased slightly during CLA accumulation and was significantly greater than c-9,t-11 CLA. Jungle fowl had the smallest increase in yolk saturated fat with CLA yolk accumulation.

  4. Ultrasonic characterization of the nonlinear properties of canine livers by measuring shear wave speed and axial strain with increasing portal venous pressure.

    PubMed

    Rotemberg, Veronica; Byram, Brett; Palmeri, Mark; Wang, Michael; Nightingale, Kathryn

    2013-07-26

    Elevated hepatic venous pressure is the primary source of complications in advancing liver disease. Ultrasound imaging is ideal for potential noninvasive hepatic pressure measurements as it is widely used for liver imaging. Specifically, ultrasound based stiffness measures may be useful for clinically monitoring pressure, but the mechanism by which liver stiffness increases with hepatic pressure has not been well characterized. This study is designed to elucidate the nonlinear properties of the liver during pressurization by measuring both hepatic shear wave speed (SWS) and strain with increasing pressure. Tissue deformation during hepatic pressurization was tracked in 8 canine livers using successively acquired 3-D B-mode volumes and compared with concurrently measured SWS. When portal venous pressure was increased from clinically normal (0-5mmHg) to pressures representing highly diseased states at 20mmHg, the liver was observed to expand with axial strain measures up to 10%. At the same time, SWS estimates were observed to increase from 1.5-2m/s at 0-5mmHg (baseline) to 3.25-3.5m/s at 20mmHg.

  5. Investigation of interfacial shear stresses, shape fixity, and actuation strain in composites incorporating shape memory polymers and shape memory alloys

    NASA Astrophysics Data System (ADS)

    Park, Jungkyu; Headings, Leon; Dapino, Marcelo; Baur, Jeffery; Tandon, Gyaneshwar

    2015-03-01

    Shape memory composites (SMCs) based on shape memory alloys (SMAs) and shape memory polymers (SMPs) allow many design possibilities due to their controllable temperature-dependent mechanical properties. The complementary characteristics of SMAs and SMPs can be utilized in systems with shape recovery created by the SMA and shape fixity provided by the SMP. In this research, three SMC operating regimes are identified and the behavior of SMC structures is analyzed by focusing on composite shape fixity and interfacial stresses. Analytical models show that SMPs can be used to adequately fix the shape of SMA actuators and springs. COMSOL finite element simulations are in agreement with analytical expressions for shape fixity and interfacial stresses. Analytical models are developed for an end-coupled linear SMP-SMA two-way actuator and the predicted strain is shown to be in good agreement with experimental test results.

  6. An apparent shear zone trending north-northwest across the Mojave Desert into Owens Valley, eastern California

    NASA Astrophysics Data System (ADS)

    Savage, J. C.; Lisowski, M.; Prescott, W. H.

    1990-11-01

    Strain rates measured at four geodetic networks in eastern California situated between northern Owens Valley and the Transverse Ranges along a small circle drawn about the Pacific-North America pole of rotation are remarkably consistent. Each exhibits 0.14 μrad/yr simple right-lateral engineering-shear-strain accumulation across the local vertical plane tangent to the small circle. Local faults (e.g., Owens Valley, Garlock, Helendale) traversing these networks are not as closely aligned with the vertical planes of maximum shear-strain accumulation as is the local tangent to the small circle. A fifth network slightly east of the small circle shows no significant strain accumulation. Thus, a shear zone trending N35° W from near the eastern end of the big bend of the San Andreas fault to northern Owens Valley is indicated by these data. This corresponds to the Eastern California shear zone proposed on geological evidence by Dokka and Travis. The shear zone carries ˜8 mm/yr of the Pacific-North America relative plate motion from the San Andreas fault north-northwest across the Mojave Desert into Owens Valley and the northern Basin and Range province. The shear zone observed at the surface may be a manifestation of a through-going subcrustal fault.

  7. Instabilities in shear and simple shear deformations of gold crystals

    NASA Astrophysics Data System (ADS)

    Pacheco, A. A.; Batra, R. C.

    We use the tight-binding potential and molecular mechanics simulations to study local and global instabilities in shear and simple shear deformations of three initially defect-free finite cubes of gold single crystal containing 3480, 7813, and 58,825 atoms. Displacements on all bounding surfaces are prescribed while studying simple shear deformations, but displacements on only two opposite surfaces are assigned during simulations of shear deformations with the remaining four surfaces kept free of external forces. The criteria used to delineate local instabilities in the system include the following: (i) a component of the second-order spatial gradients of the displacement field having large values relative to its average value in the body, (ii) the minimum eigenvalue of the Hessian of the energy of an atom becoming non-positive, and (iii) structural changes represented by a high value of the common neighborhood parameter. It is found that these criteria are met essentially simultaneously at the same atomic position. Effects of free surfaces are evidenced by different deformation patterns for the same specimen deformed in shear and simple shear. The shear strength of a specimen deformed in simple shear is more than three times that of the same specimen deformed in shear. It is found that for each cubic specimen deformed in simple shear the evolution with the shear strain of the average shear stress, prior to the onset of instabilities, is almost identical to that in an equivalent hyperelastic material with strain energy density derived from the tight-binding potential and the assumption that it obeys the Cauchy-Born rule. Even though the material response of the hyperelastic body predicted from the strain energy density is stable over the range of the shear strain simulated in this work, the molecular mechanics simulations predict local and global instabilities in the three specimens.

  8. Documentation of programs that compute 1) quasi-static tilts produced by an expanding dislocation loop in an elastic and viscoelastic material, and 2) surface shear stresses, strains, and shear displacements produced by screw dislocations in a vertical slab with modulus contrast

    USGS Publications Warehouse

    McHugh, Stuart

    1976-01-01

    The material in this report can be grouped into two categories: 1) programs that compute tilts produced by a vertically oriented expanding rectangular dislocation loop in an elastic or viscoelastic material and 2) programs that compute the shear stresses, strains, and shear displacements in a three-phase half-space (i.e. a half-space containing a vertical slab). Each section describes the relevant theory, and provides a detailed guide to the operation of the programs. A series of examples is provided at the end of each section.

  9. Cosmogenic 10Be and 36Cl geochronology of offset alluvial fans along the northern Death Valley fault zone: Implications for transient strain in the eastern California shear zone

    USGS Publications Warehouse

    Frankel, K.L.; Brantley, K.S.; Dolan, J.F.; Finkel, R.C.; Klinger, R.E.; Knott, J.R.; Machette, M.N.; Owen, L.A.; Phillips, F.M.; Slate, J.L.; Wernicke, B.P.

    2007-01-01

    The northern Death Valley fault zone (NDVFZ) has long been recognized as a major right-lateral strike-slip fault in the eastern California shear zone (ECSZ). However, its geologic slip rate has been difficult to determine. Using high-resolution digital topographic imagery and terrestrial cosmogenic nuclide dating, we present the first geochronologically determined slip rate for the NDVFZ. Our study focuses on the Red Wall Canyon alluvial fan, which exposes clean dextral offsets of seven channels. Analysis of airborne laser swath mapping data indicates ???297 ?? 9 m of right-lateral displacement on the fault system since the late Pleistocene. In situ terrestrial cosmogenic 10Be and 36C1 geochronology was used to date the Red Wall Canyon fan and a second, correlative fan also cut by the fault. Beryllium 10 dates from large cobbles and boulders provide a maximum age of 70 +22/-20 ka for the offset landforms. The minimum age of the alluvial fan deposits based on 36Cl depth profiles is 63 ?? 8 ka. Combining the offset measurement with the cosmogenic 10Be date yields a geologic fault slip rate of 4.2 +1.9/-1.1 mm yr-1, whereas the 36Cl data indicate 4.7 +0.9/-0.6 mm yr-1 of slip. Summing these slip rates with known rates on the Owens Valley, Hunter Mountain, and Stateline faults at similar latitudes suggests a total geologic slip rate across the northern ECSZ of ???8.5 to 10 mm yr-1. This rate is commensurate with the overall geodetic rate and implies that the apparent discrepancy between geologic and geodetic data observed in the Mojave section of the ECSZ does not extend north of the Garlock fault. Although the overall geodetic rates are similar, the best estimates based on geology predict higher strain rates in the eastern part of the ECSZ than to the west, whereas the observed geodetic strain is relatively constant. Copyright 2007 by the American Geophysical Union.

  10. Strain accumulation in the New Madrid and Wabash Valley seismic zones from 14 years of continuous GPS observation

    NASA Astrophysics Data System (ADS)

    Craig, Timothy J.; Calais, Eric

    2014-12-01

    The mechanical behavior—and hence earthquake potential—of faults in continental interiors is an issue of critical importance for the resultant seismic hazard, but no consensus has yet been reached on this controversial topic. The debate has focused on the central and eastern United States, in particular, the New Madrid Seismic Zone, struck by four magnitude 7 or greater earthquakes in 1811-1812, and to a lesser extent the Wabash Valley Seismic Zone just to the north. A key aspect of this issue is the rate at which strain is currently accruing on those plate interior faults, a quantity that remains debated. Here we address this issue with an analysis of up to 14.6 years of continuous GPS data from a network of 200 sites in the central United States centered on the New Madrid and Wabash Valley seismic zones. We find that the high-quality sites in these regions show motions that are consistently within the 95% confidence limit of zero deformation. These results place an upper bound on strain accrual on faults of 0.2 mm/yr and 0.6 mm/yr in the New Madrid and Wabash Valley Seismic Zones, respectively. For the New Madrid region, where a paleoseismic record is available for the past ˜5000 years, we argue that strain accrual—if any—does not permit the 500-900 year repeat time of paleo-earthquakes observed in the Upper Mississippi Embayment. These results, together with increasing evidence for temporal clustering and spatial migration of earthquake sequences in continental interiors, indicate that either tectonic loading rates or fault properties vary with time in the New Madrid Seismic Zone and possibly plate wide.

  11. Failure During Sheared Edge Stretching

    NASA Astrophysics Data System (ADS)

    Levy, B. S.; van Tyne, C. J.

    2008-12-01

    Failure during sheared edge stretching of sheet steels is a serious concern, especially in advanced high-strength steel (AHSS) grades. The shearing process produces a shear face and a zone of deformation behind the shear face, which is the shear-affected zone (SAZ). A failure during sheared edge stretching depends on prior deformation in the sheet, the shearing process, and the subsequent strain path in the SAZ during stretching. Data from laboratory hole expansion tests and hole extrusion tests for multiple lots of fourteen grades of steel were analyzed. The forming limit curve (FLC), regression equations, measurement uncertainty calculations, and difference calculations were used in the analyses. From these analyses, an assessment of the primary factors that contribute to the fracture during sheared edge stretching was made. It was found that the forming limit strain with consideration of strain path in the SAZ is a major factor that contributes to the failure of a sheared edge during stretching. Although metallurgical factors are important, they appear to play a somewhat lesser role.

  12. NITZSCHIA OVALIS (BACILLARIOPHYCEAE) MONO LAKE STRAIN ACCUMULATES 1,4/2,5 CYCLOHEXANETETROL IN RESPONSE TO INCREASED SALINITY(1).

    PubMed

    Garza-Sánchez, Fernando; Chapman, David J; Cooper, James B

    2009-04-01

    The growth of microalgae in hypersaline conditions requires that cells accumulate osmoprotectants. In many instances, these are polyols. We isolated the diatom Nitzschia ovalis H. J. Arn. from the saline and alkaline water body Mono Lake (CA, USA). This isolate can grow in salinities ranging from 5 to 120 parts per thousand (ppt) of salt but normally at 90 ppt salinity. In this report, we identified the major polyol osmoprotectant as 1,4/2,5 cyclohexanetetrol by electron ionization-mass spectrometry (EI-MS), (1) H, (13) C nuclear magnetic resonance spectroscopy (NMR), and infrared (IR) and showed an increase in cellular concentration in response to rising salinity. This increase in the cyclitol concentration was evaluated by gas chromatography of the derived tetraacetylated cyclohexanetetrol obtaining an average of 0.7 fmol · cell(-1) at 5 ppt and rising to 22.5 fmol · cell(-1) at 120 ppt. The 1,4/2,5 cyclohexanetetrol was also detected in the red alga Porphyridium purpureum. Analysis of the free amino acid content in N. ovalis cultures exposed to changes in salinity showed that proline and lysine also accumulate with increased salinity, but the cellular concentration of these amino acids is about 10-fold lower than the concentration of 1,4/2,5 cyclohexanetetrol. The comparison of amino acid concentration per cell with cyclitol suggests that this polyol is important in compensating the cellular osmotic pressure due to increased salinity, but other physiological functions could also be considered.

  13. Construction of a Vibrio cholerae prototype vaccine strain O395-N1-E1 which accumulates cell-associated cholera toxin B subunit.

    PubMed

    Rhie, Gi-eun; Jung, Hae-Mi; Kim, Bong Su; Mekalanos, John J

    2008-10-09

    Because of its production and use in Vietnam, the most widely used oral cholera vaccine consists of heat- or formalin-killed Vibrio cholerae whole cells (WC). An earlier version of this type of vaccine called whole cell-recombinant B subunit vaccine (BS-WC) produced in Sweden also contained the B subunit of cholera toxin (CTB). Both WC and BS-WC vaccines produced moderate levels of protection in field trials designed to evaluate their cholera efficacy. V. cholerae cells in these vaccines induce antibacterial immunity, and CTB contributes to the vaccine's efficacy presumably by stimulating production of anti-toxin neutralizing antibody. Although more effective than the WC vaccine, the BS-WC vaccine has not been adopted for manufacture by developing world countries primarily because the CTB component is difficult to manufacture and include in the vaccine in the doses needed to induce significant immune responses. We reasoned this was a technical problem that might be solved by engineering strains of V. cholerae that express cell-associated CTB that would co-purify with the bacterial cell fraction during the manufacture of WC vaccine. Here we report that construction of a V. cholerae O1 classical strain, O395-N1-E1, that has been engineered to accumulate CTB in the periplasmic fraction by disrupting the epsE gene of type II secretion pathway. O395-N1-E1 induces anti-CTB IgG and vibriocidal antibodies in mice immunized with two doses of formalin killed whole cells. Intraperitoneal immunization of mice with O395-N1-E1 induced a significantly higher anti-CTB antibody response compared to that of the parental strain, O395-N1. Our results suggest that this prototype cholera vaccine candidate strain may assist in preparing improved and inexpensive oral BS-WC cholera vaccine without the need to purify CTB separately.

  14. Relaxation of densely packed gel particles under cyclic shearing

    NASA Astrophysics Data System (ADS)

    Tsai, J. C.; Chou, M. R.; Huang, P. C.; Fei, H. T.; Huang, J. R.

    2015-11-01

    We study experimentally the rheological response of fluid-immersed hydrogel particles. The particles are centimeter-sized and are driven by a roughened cone-shaped upper boundary, which imposes a cyclic shearing with a substantial stall period inserted between each reversal of its motion. The stall period reveals a characteristic timescale of relaxation belonging to these soft materials, in contrast to the build-up of stress that reflects a characteristic strain accumulated since each re-start of the shearing. We provide a coherent explanation on how the relaxation and the residual stress are related to observed steady-state rheology at different strain rates, and the use of a previously developed tomographical imaging technique allows us to look into the particle displacements during the relaxation.

  15. Effect of light intensity on algal biomass accumulation and biodiesel production for mixotrophic strains Chlorella kessleri and Chlorella protothecoide cultivated in highly concentrated municipal wastewater.

    PubMed

    Li, Yecong; Zhou, Wenguang; Hu, Bing; Min, Min; Chen, Paul; Ruan, Roger R

    2012-09-01

    In this research, the effect of light intensity on biomass accumulation, wastewater nutrient removal through algae cultivation, and biodiesel productivity was investigated with algae species Chlorella kessleri and Chlorella protothecoide. The light intensities studied were 0, 15, 30, 60, 120, and 200 µmol m(-2) s(-1). The results showed that light intensity had profound impact on tested responses for both strains, and the dependence of these responses on light intensity varied with different algae strains. For C. kessleri, the optimum light intensity was 120 µmol m(-2) S(-1) for all responses except for COD removal. For C. protothecoide, the optimum light intensity was 30 µmol m(-2) S(-1). The major components of the biodiesel produced from algae biomass were 16-C and 18-C FAME, and the highest biodiesel contents were 24.19% and 19.48% of dried biomass for C. kessleri and C. protothecoide, respectively. Both species were capable of wastewater nutrients removal under all lighting conditions with high removal efficiencies.

  16. On the structure of the internal wave field: The impact of the distribution of shear and strain variance in wavenumber-frequency space on mixing estimates

    NASA Astrophysics Data System (ADS)

    Chinn, Brian

    Data from an archive of McLane Moored Profiler (MP) deployments are used to investigate the role of internal waves, and in general physical processes occupying this frequency range, on the dissipation of kinetic energy and to study how these processes work to shape the spectral characteristics of the wavefield. The data used come from 5 separate field programs, and by analyzing them as a set, provides the opportunity to not only compare and contrast an unprecedented range of different forcing regimes, but also supports the discovery of unique observations of physical processes at individual sites. This dissertation is composed of four separate chapters that address different aspects of this idea. First, two records, one to the North (MP1) and one to the South (MP2), of Mindoro strait, which lies between the South China Sea and the Sulu Sea, were used to study the processes driving mixing in the Strait. The records are dominated by near inertial variability and internal tides at both the diurnal and semidiurnal frequencies. Analysis of the velocity records from MP1 reveals suggestive evidence for the presence of parametric subharmonic instability of the diurnal tide as well as curious rectilinear bottom trapped near inertial waves. Diffusivities estimated via Thorpe scale analysis at MP1 reveal weak mixing over much of the water column that increases nearly an order of magnitude near the bottom and is strongly tied to the tides. Average mixing rates are found to be insufficient to produce observed changes in water mass properties suggesting additional processes are at play. Second, variability in the shear to strain ratio (Ro) is investigated with the goal of understanding the factors that influence Ro variability, quantifying its time and space scales, and determining how variability impacts estimates of parameterized diffusivity. Time mean Ro from each of the sites spans a range from 1 to 10 and within each record, temporal variability around the mean is

  17. Micromechanics of shear banding

    SciTech Connect

    Gilman, J.J.

    1992-08-01

    Shear-banding is one of many instabilities observed during the plastic flow of solids. It is a consequence of the dislocation mechanism which makes plastic flow fundamentally inhomogeneous, and is exacerbated by local adiabatic heating. Dislocation lines tend to be clustered on sets of neighboring glide planes because they are heterogeneously generated; especially through the Koehler multiple-cross-glide mechanism. Factors that influence their mobilities also play a role. Strain-hardening decreases the mobilities within shear bands thereby tending to spread (delocalize) them. Strain-softening has the inverse effect. This paper reviews the micro-mechanisms of these phenomena. It will be shown that heat production is also a consequence of the heterogeneous nature of the microscopic flow, and that dislocation dipoles play an important role. They are often not directly observable, but their presence may be inferred from changes in thermal conductivity. It is argued that after deformation at low temperatures dipoles are distributed a la Pareto so there are many more small than large ones. Instability at upper yield point, the shapes of shear-band fronts, and mechanism of heat generation are also considered. It is shown that strain-rate acceleration plays a more important role than strain-rate itself in adiabatic instability.

  18. Shear banding and its contribution to texture evolution in rotated Goss orientations of BCC structured materials

    NASA Astrophysics Data System (ADS)

    Nguyen-Minh, T.; Sidor, J. J.; Petrov, R. H.; Kestens, L. A. I.

    2015-04-01

    Due to progressive deformation, the dislocation densities in crystals are accumulated and the resistance of grains to further deformation increases. Homogeneous deformation becomes energetically less favorable, which may result for some orientations in strain localization. In-grain shear banding, a typical kind of localized deformation in metals with BCC crystal structure, has been accounted for by the geometric softening of crystals. In this study, the occurrence of shear bands in rotated Goss ({110}<110>) orientations of Fe-Si steel is predicted by crystal plasticity simulations and validated by EBSD measurements. It was observed and confirmed by crystal plasticity modeling that such shear bands exhibit stable cube orientations The orientation evolution of crystals in shear bands and its impact on annealing texture of materials are also described.

  19. Iosipescu shear properties of graphite fabric/epoxy composite laminates

    NASA Technical Reports Server (NTRS)

    Walrath, D. E.; Adams, D. F.

    1985-01-01

    The Iosipescu shear test method is used to measure the in-plane and interlaminar shear properties of four T300 graphite fabric/934 epoxy composite materials. Different weave geometries tested include an Oxford weave, a 5-harness satin weave, an 8-harness satin weave, and a plain weave with auxiliary warp yarns. Both orthogonal and quasi-isotropic layup laminates were tested. In-plane and interlaminar shear properties are obtained for laminates of all four fabric types. Overall, little difference in shear properties attributable to the fabric weave pattern is observed. The auxiliary warp material is significantly weaker and less stiff in interlaminar shear parallel to its fill direction. A conventional strain gage extensometer is modified to measure shear strains for use with the Iosipescu shear test. While preliminary results are encouraging, several design iterations failed to produce a reliable shear transducer prototype. Strain gages are still the most reliable shear strain transducers for use with this test method.

  20. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  1. Localization in inelastic rate dependent shearing deformations

    NASA Astrophysics Data System (ADS)

    Katsaounis, Theodoros; Lee, Min-Gi; Tzavaras, Athanasios

    2017-01-01

    Metals deformed at high strain rates can exhibit failure through formation of shear bands, a phenomenon often attributed to Hadamard instability and localization of the strain into an emerging coherent structure. We verify formation of shear bands for a nonlinear model exhibiting strain softening and strain rate sensitivity. The effects of strain softening and strain rate sensitivity are first assessed by linearized analysis, indicating that the combined effect leads to Turing instability. For the nonlinear model a class of self-similar solutions is constructed, that depicts a coherent localizing structure and the formation of a shear band. This solution is associated to a heteroclinic orbit of a dynamical system. The orbit is constructed numerically and yields explicit shear localizing solutions.

  2. Frictional properties of Zuccale Fault rocks from room temperature to in-situ conditions: results from high strain rotary shear experiments

    NASA Astrophysics Data System (ADS)

    Niemeijer, A. R.; Collettini, C.; Smith, S.; Spiers, C.

    2011-12-01

    The Zuccale fault is a regionally-important, low-angle normal fault, exposed on the Isle of Elba in Central Italy, that accommodated a total shear displacement of 6-8 km.The fault zone structure and fault rocks formed at less than 8 km crustal depth. The present-day fault structure is the final product of several deformation processes superposed during the fault history. Here, we focus on a series of highly foliated and phyllosilicate-rich fault rocks that represent the basal horizon of the detachment. Previous experimental work on foliated, intact samples, sheared in their in-situ microstructural (foliated) condition, demonstrated a markedly lower friction coefficient compared to homogeneously mixed powdered samples of the same material. We concluded from these experiments that the existence of a continuous, through-going foliation provides numerous planes of weakness on which shear deformation could be accommodated. However, these experiments were performed under room-dry and room temperature conditions. Moreover, the question remains as to how foliation is formed in these rocks in the first place. In this study, we report results from a series of preliminary rotary shear experiments performed on two fault rock types obtained from the Zuccale Fault. The tests were done under conditions ranging from room temperature to in-situ conditions (i.e. at temperatures up to 350 °C, applied normal stresses up to 200 MPa and fluid-saturated). Samples consisting of calcite, talc, chlorite and kaolinite (sample ZF01) and of calcite, tremolite, hornblende, kaolinite, chlorite and quartz (sample ZF02) were sheared at sliding velocities of 0.3-300 μm/s to displacements larger than 40 mm (i.e. γ > 40). Sample ZF01 was weaker than sample ZF02 at all conditions investigated. We attribute the lower strength to the weak talc present in this sample which is absent in sample ZF02. Both samples showed inherently stable, velocity-strengthening behaviour at room temperature, in

  3. Frictional properties of Zuccale Fault rocks from room temperature to in-situ conditions: results from high strain rotary shear experiments

    NASA Astrophysics Data System (ADS)

    Niemeijer, A.; Collettini, C.; Smith, S. A. F.; Spiers, C. J.

    2012-04-01

    The Zuccale fault is a regionally-important, low-angle normal fault, exposed on the Isle of Elba in Central Italy, that accommodated a total shear displacement of 6-8 km.The fault zone structure and fault rocks formed at less than 8 km crustal depth. The present-day fault structure is the final product of several deformation processes superposed during the fault history. Here, we focus on a series of highly foliated and phyllosilicate-rich fault rocks that represent the basal horizon of the detachment. Previous experimental work on foliated, intact samples, sheared in their in-situ microstructural (foliated) condition, demonstrated a markedly lower friction coefficient compared to homogeneously mixed powdered samples of the same material. In this study, we report results from a series of rotary shear experiments performed on 1 mm thick powdered gouges made from several fault rock types obtained from the Zuccale Fault. The tests were done under conditions ranging from room temperature to in-situ conditions (i.e. at temperatures up to 300 °C, applied normal stresses up to 200 MPa and fluid-saturated.) The ratio of fluid pressure to effective normal stress was held constant at either λ=0.4 or λ=0.8 to simulate an over-pressurized fault. The samples were sheared at a constant sliding velocity of 10 μm/s for at least 5 mm, after which a velocity-stepping sequence from 1 to 300 μm/s was started to determine the velocity dependence of friction. This can be represented by the rate-and-state parameter (a-b), which was determined by an inversion of the data to the rate-and-state equations. Friction of the various fault rocks is between 0.3 and 0.7, similar to values obtained in a previous study, and decreases with increasing phyllosilicate content. Friction decreases mildly with temperature whereas normal stress and fluid pressure do not affect friction values systematically. All samples exhibited velocity-strengthening, inherently stable behavior under room temperature

  4. Time series analysis of strain accumulation along the Haiyuan fault (Gansu, China) over the 1993-2009 period, from ERS and ENVISAT InSAR data

    NASA Astrophysics Data System (ADS)

    Jolivet, Romain; Lasserre, Cecile; Doin, Marie-Pierre; Guillaso, Stéphane; Cavalié, Olivier; Peltzer, Gilles; Sun, Jianbao; Rong, Dailu; Shen, Zheng-Kang; Xu, Xiwei

    2010-05-01

    We use SAR interferometry to measure the strain accumulation along the left-lateral Haiyuan fault system (HFS), that marks the north-eastern boundary of the tibetan plateau. The last major earthquakes that occured along the HFS are the M~8 1920 Haiyuan earthquake (strike-slip mechanism) and the Ml=8-8.3 1927 Gulang earthquake that ruptured a thrust fault system. No large earthquake is reported on the central section of the HFS, the "Tianzhu seismic gap", since ~1000 years. We first analyze the complete ENVISAT SAR data archive along 4 descending and 2 ascending tracks for the 2003-2009 period and construct an InSAR-based mean Line-Of-Sight (LOS) velocity map around the HFS from the eastern end of the Qilian shan (102° E), to the west, to the Liupan shan (106° E), to the east. Data are processed using a small baseline chain type. For each track, all radar images are coregistrated to a single master and interferograms are produced using a local adaptative range filtering. Residual orbital and atmospheric delays are jointly inverted and corrected for each unwrapped interferogram. Atmospheric corrections are validated using the ERA40 global atmospheric model (ECMWF). The interferograms series on each track are then inverted to obtain the increments of LOS radar delays between acquisition dates, adapting the Lopez-Quiroz et al. 2009 time series analysis. The obtained LOS mean velocity maps show a dominant left-lateral motion across the fault with along-strike variations: some fault sections are locked at shallow depth while others are creeping and local vertical movements are observed (subsidence in the "Jingtai" pull-apart basin). For various fault slip rates imposed below 20 km (4-10 mm/yr), we model the shallow velocity by inverting the mean LOS velocity maps for both strike-slip and dip-slip motion on vertical, 5km x 2.5km discretized patches, using a least-square method with an appropriate degree of smoothing. The fault geometry follows the surface trace of the

  5. Zipper and freeway shear zone junctions

    NASA Astrophysics Data System (ADS)

    Passchier, Cees; Platt, John

    2016-04-01

    Ductile shear zones are usually presented as isolated planar high-strain domains in a less deformed wall rock, characterised by shear sense indicators such as characteristic deflected foliation traces. Many shear zones, however, form branched systems and if movement on such branches is contemporaneous, the resulting geometry can be complicated and lead to unusual fabric geometries in the wall rock. For Y-shaped shear zone junctions with three simultaneously operating branches, and with slip directions at a high angle to the branch line, eight basic types of shear zone triple junctions are possible, divided into three groups. The simplest type, called freeway junctions, have similar shear sense on all three branches. If shear sense is different on the three branches, this can lead to space problems. Some of these junctions have shear zone branches that join to form a single branch, named zipper junctions, or a single shear zone which splits to form two, known as wedge junctions. Closing zipper junctions are most unusual, since they form a non-active high-strain zone with opposite deflection of foliations. Shear zipper and shear wedge junctions have two shear zones with similar shear sense, and one with the opposite sense. All categories of shear zone junctions show characteristic flow patterns in the shear zone and its wall rock. Shear zone junctions with slip directions normal to the branch line can easily be studied, since ideal sections of shear sense indicators lie in the plane normal to the shear zone branches and the branch line. Expanding the model to allow slip oblique and parallel to the branch line in a full 3D setting gives rise to a large number of geometries in three main groups. Slip directions can be parallel on all branches but oblique to the branch line: two slip directions can be parallel and a third oblique, or all three branches can have slip in different directions. Such more complex shear zone junctions cannot be studied to advantage in a

  6. Dynamic shear deformation in high purity Fe

    SciTech Connect

    Cerreta, Ellen K; Bingert, John F; Trujillo, Carl P; Lopez, Mike F; Gray, George T

    2009-01-01

    The forced shear test specimen, first developed by Meyer et al. [Meyer L. et al., Critical Adiabatic Shear Strength of Low Alloyed Steel Under Compressive Loading, Metallurgical Applications of Shock Wave and High Strain Rate Phenomena (Marcel Decker, 1986), 657; Hartmann K. et al., Metallurgical Effects on Impact Loaded Materials, Shock Waves and High Strain rate Phenomena in Metals (Plenum, 1981), 325-337.], has been utilized in a number of studies. While the geometry of this specimen does not allow for the microstructure to exactly define the location of shear band formation and the overall mechanical response of a specimen is highly sensitive to the geometry utilized, the forced shear specimen is useful for characterizing the influence of parameters such as strain rate, temperature, strain, and load on the microstructural evolution within a shear band. Additionally, many studies have utilized this geometry to advance the understanding of shear band development. In this study, by varying the geometry, specifically the ratio of the inner hole to the outer hat diameter, the dynamic shear localization response of high purity Fe was examined. Post mortem characterization was performed to quantify the width of the localizations and examine the microstructural and textural evolution of shear deformation in a bcc metal. Increased instability in mechanical response is strongly linked with development of enhanced intergranular misorientations, high angle boundaries, and classical shear textures characterized through orientation distribution functions.

  7. Differential responses to different light spectral ranges of violaxanthin de-epoxidation and accumulation of Cbr, an algal homologue of plant early light inducible proteins, in two strains of Dunaliella.

    PubMed

    Banet; Pick; Malkin; Zamir

    1999-11-01

    Unicellular green algae of the genus Dunaliella, similar to higher plants, respond to light stress by enhanced de-epoxidation of violaxanthin and accumulation of Cbr, a protein homologous to early light inducible proteins (Elips) in plants. These proteins belong to the superfamily of chlorophyll a/b binding proteins. Two Dunaliella strains, D. bardawil and D. salina, were compared for these two responses under light in the UVA, blue, green and red spectral ranges. In D. bardawil, the two stress responses were similarly induced under UVA, blue or red light and to a lesser extent under green light. In D. salina, a similar spectral range dependence was exhibited for violaxanthin de-epoxidation. However, Cbr accumulated only under UVA or blue light but not under green or red light. A strong synergistic effect of a low dose of blue light superimposed on red light resulted in Cbr accumulation. These results reveal strain-specific differences in spectral range requirements of the two light-stress responses. In the two strains, violaxanthin de-epoxidation is triggered under photosynthetically-active spectral ranges but at least in D. salina, Cbr accumulation appears to require a specific light signal additionally to a signal(s) generated by light stress.

  8. Time series and MinTS analysis of strain accumulation along the Haiyuan fault (Gansu, China) over the 2003-2010 period, from ENVISAT InSAR data

    NASA Astrophysics Data System (ADS)

    Jolivet, R.; Lasserre, C.; Lin, N.; Simons, M.; Doin, M.; Hetland, E. A.; Muse, P.; Peltzer, G.; Jianbao, S.; Dailu, R.

    2010-12-01

    We use SAR interferometry to measure the strain accumulation along the left-lateral Haiyuan fault system (hereafter HFS), that marks the north-eastern boundary of the tibetan plateau. The last major earthquakes that occured along the HFS are the M~8 1920 Haiyuan earthquake (strike-slip mechanism) and the Ml=8-8.3 1927 Gulang earthquake that ruptured a thrust fault system. There has been no known large earthquake on the central section of the HFS, the “Tianzhu seismic gap”, in the last ~1000 years. We first analyze the complete ENVISAT SAR data archive along three descending and two ascending tracks for the 2003-2009 period and construct an InSAR-based mean line-of-sight (LOS) velocity map around the HFS from the eastern end of the Qilian Shan (102° E), to the west, to the Liupan Shan (106° E), to the east. We empirically correct our interferograms for propagation delays associated with changes on the stratified atmospheric structure. We then estimate the mean LOS velocity for each track using a time series analysis which reveals the existence of a 40 km long creeping segment located at the western end of the 1920 rupture. Extending from the Jingtai pull-apart basin, which shows a 2-3 mm/yr subsidence rate, to the Mao Mao Shan, the creep rate is estimated to reach 8 mm/yr locally and is higher than the long term loading rate of the Haiyuan fault, estimated geodetically at 5±1 mm/yr. The surface extension of the creeping segment is colocated with strong micro- and moderate seismic activity. We also explore the possibility of transient creep during the 2003-2010 time period, using a SBAS style, smoothed, time series analysis and the Multiscale Interferometric Time Series method (MinTS, CalTech, see Hetland et al. 2010 AGU abstract). While classic time series methods are based on a pixel-by-pixel approach and do not consider spatial data covariances, due to residual atmospheric noise, the wavelet decomposition of each interferograms and the time inversion in the

  9. Effects of Trophic Modes, Carbon Sources, and Salinity on the Cell Growth and Lipid Accumulation of Tropic Ocean Oilgae Strain Desmodesmus sp. WC08.

    PubMed

    Zhao, Zhenyu; Ma, Shasha; Li, Ang; Liu, Pinghuai; Wang, Meng

    2016-10-01

    The effects of trophic modes, carbon sources, and salinity on the growth and lipid accumulation of a marine oilgae Desmodesmus sp. WC08 in different trophic cultures were assayed by single factor experiment based on the blue-green algae medium (BG-11). The results implied that biomass and lipid accumulation culture process were optimized depending on the tophic modes, sorts, and concentration of carbon sources and salinity in the cultivation. There was no significant difference in growth or lipid accumulation with Na2CO3 amendment or NaHCO3 amendment. However, Na2CO3 amendment did enhance the biomass and lipid accumulation to some extent. The highest Desmodesmus sp. WC08 biomass and lipid accumulation was achieved in the growth medium with photoautotrophic cultivation, 0.08 g L(-1) Na2CO3 amendment and 15 g L(-1) sea salt, respectively.

  10. Determining brittle extension and shear strain using fault length and displacement systematics: Part II: Data evaluation and test of the theory

    NASA Astrophysics Data System (ADS)

    Twiss, Robert J.; Marrett, Randall

    2010-12-01

    We use the theoretical relations developed in Part I of this work to evaluate the self-consistency of fault-length and fault-displacement data gathered in domains of one and two dimensions from the Yucca Mountain area and from the coalfields in south Yorkshire, U.K. These data sets are not all self-consistent. For the Yucca Mt. area, the theory shows that, the volume over which the sampling of the faults must occur should have a horizontal width no smaller than 2.4 times the horizontal length of the largest fault, and a depth no smaller than 1.6 times the vertical extent of the largest vertical-equivalent-fault. It also shows that the volumetric extension must be ≥95% of the extension of a two-dimensional domain and ≥80% of the extension of a one-dimensional domain. The theory successfully accounts for the observed cumulative extensional strain derived from fault-displacement data from a one-dimensional sampling domain at Yucca Mt., Nevada, U.S.A. Faults up to about four orders of magnitude smaller than the largest fault make a significant contribution to the strain. The most robust calculation of cumulative fractional strain requires the parameters inferred from sampling displacement in a one-dimensional domain. This sampling procedure therefore provides the most reliable results.

  11. Large Amplitude Oscillatory Shear near Jamming

    NASA Astrophysics Data System (ADS)

    Tighe, Brian; Dagois-Bohy, Simon; Somfai, Ellak; van Hecke, Martin

    2014-11-01

    Jammed solids such as foams and emulsions can be driven with oscillatory shear at finite strain amplitude and frequency. On a macro scale, this induces nonlinearities such as strain softening and shear thinning. On the micro scale one observes the onset of irreversibility, caging, and long-time diffusion. Using simulations of soft viscous spheres, we systematically vary the distance to the jamming transition. We correlate crossovers in the microscopic and macroscopic response, and construct scaling arguments to explain their relationships.

  12. Shear-strength signatures of mass movements, continental slope of Campos Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Kowsmann, R. O.; da Costa, A. M.; Amaral, C. S.

    2003-04-01

    Downhole shear-strength profiles, obtained from cone-penetrometer and lab tests were tied to sedimentary facies from adjacent continuous cores. The geotechnical response of mass-transport deposits was investigated. In the Campos Basin, sediments have evacuated from the upper continental slope and have accumulated as folded deposits on the middle slope. Sediment removal is recognised by an abrupt step-like increase in shear-strength at the level of the unconformity. The folded deposits are characterised by a belly-shaped increase in shear-strength coinciding with a zone of intense lamination within the deposit, induced by internal shearing and fluid loss (strain hardening). In contrast, highly disintegrated muddy debris-flow deposits are indistinguishable, in terms of shear-strength, from normal hemipelagic slope sediments. Debris-flow tongues emanating from canyon mouths, which contain a significant amount of more consolidated mud clasts can however be differentiated from in situ sediments by their serrated signature and higher shear-strength.

  13. Some observations on the effects of shear stress on a polymorphic transformation in perovskite-structured lead-zirconate-titanate ceramic

    NASA Astrophysics Data System (ADS)

    Zeuch, David H.; Montgomery, Stephen T.; Keck, Jeffrey D.

    1993-02-01

    We performed a series of hydrostatic and constant-stress-difference (CSD) experiments at room temperature on modified lead-zirconate-titanate (PZT 95/5-2Nb) ceramic in order to quantify the influence of shear stress on the displacive, and possibly martensitic, first-order, ferroelectric/rhombohedral → antiferroelectric/orthorhombic phase transformation. In hydrostatic compression, the transformation began at approximately 260 MPa and was incompletely reversed upon return to ambient conditions. Strains associated with the transformation were isotropic, both on the first and subsequent hydrostatic cycles. Results for the CSD tests were quite different. First, the confining pressure and mean stress at which the transition begins decreased approximately linearly with increasing stress difference. Second, we observed that the rate of transformation apparently decreased with increasing shear stress and the accompanying purely elastic shear strain. This result contrasts with the almost universal assertion that shear stresses accelerate reaction and transformation kinetics. Finally, strain was not isotropic during the transformation: axial strains were greater and lateral strains smaller than for the hydrostatic case, though volumetric strain behavior was comparable for the two types of tests. However, this last effect does not appear to be an example of transformational plasticity but, rather, a "one-time" occurrence: no additional unexpected strains accumulated during subsequent cycles through the transition under nonhydrostatic loading. If subsequent hydrostatic cycles were performed on samples previously run under CSD conditions, strain anisotropy was again observed, indicating that the earlier superimposed shear stress produced a permanent mechanical anisotropy in the material. The mechanical anisotropy probably results from a crystallographic preferred orientation that developed during the transformation under shear stress.

  14. Evidence for lower crustal ductile strain localization in southern New York

    USGS Publications Warehouse

    Zoback, M.D.; Prescott, W.H.; Krueger, S.W.

    1985-01-01

    Historic triangulation data have been analysed to determine whether intraplate seismicity is associated with ongoing ductile deformation in the lower crust. The model we have attempted to test is basically analogous to strain accumulation and release along plate-boundary strike-slip faults like the San Andreas Fault in California. That is, beneath an elastic-seismogenic upper crust ???20 km thick, strain is preferentially localized within ductile shear zones in the lower crust due to broad-scale plate driving forces. The localized lower-crustal ductile strain causes stress and strain to accumulate elastically in the brittle crust which is eventually released in crustal earthquakes. At greater depths, this localized shear deformation probably develops into pervasive ductile flow. Numerous geodetic measurements along the San Andreas Fault confirm that earthquakes in the brittle upper crust are produced by the release of elastic strain that results from ongoing ductile shear or slip in the lower crust1,2. We have found evidence of high rates of crustal deformation in southern New York which suggest that localized ductile shear is occurring in the lower crust. ?? 1985 Nature Publishing Group.

  15. Shear-enhanced compaction and strain localization in porous limestone: a study based on X-ray Computed Tomography and Digital Image Correlation

    NASA Astrophysics Data System (ADS)

    Ji, Y.; Baud, P.; Hall, S.; Wong, T.

    2011-12-01

    The brittle-ductile transition in porous sandstones has now been studied extensively. Microstructural studies combining various techniques on samples deformed in the laboratory documented the development of a wide variety on strain localization patterns and failure modes in overall agreement with the field observations in various sandstone formations. In contrast, there is a paucity of mechanical and microstructural laboratory data on the brittle-ductile transition in porous carbonates, particularly for the high porosity end-members. This lack of data is related to various specific difficulties associated with the study of inelastic deformation in high porosity limestones: the interplay between microcracking and crystal plasticity even at room temperature, dissolution of calcite in presence of water, etc... The question of strain localization is in particular hard to tackle as conventional microstructural analyses cannot as in sandstone be guided by acoustic emission statistics. In this context, X-ray Computed Tomography (CT) imaging provides a promising technique to accurately describe the various failure modes associated with the brittle-ductile transition in porous limestone. In this study, we focused on a grainstone from the Majella Mountain, central Italy. Detailed field observations performed in this formation by Tondi et al. (2006) have revealed some complex interplay between deformation/compaction bands and stylolites. Our samples of Majella grainstone had a nominal porosity of 31% and were primarily composed of calcite. A series of hydrostatic and conventional triaxial experiments were performed at room temperature, constant strain rate and at confining pressures ranging from 5 to 50 MPa. Several sets of CT images at resolutions between 4 and 40 microns were acquired before and after deformation. Statistics on the macropores and spatial distribution of microporosity were characterized. Digital Image Correlation (DIC) was performed on images of the intact

  16. Haptic Edge Detection Through Shear

    NASA Astrophysics Data System (ADS)

    Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent

    2016-03-01

    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.

  17. Haptic Edge Detection Through Shear

    PubMed Central

    Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent

    2016-01-01

    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals. PMID:27009331

  18. Accumulate-Repeat-Accumulate-Accumulate-Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Thorpe, Jeremy

    2004-01-01

    Inspired by recently proposed Accumulate-Repeat-Accumulate (ARA) codes [15], in this paper we propose a channel coding scheme called Accumulate-Repeat-Accumulate-Accumulate (ARAA) codes. These codes can be seen as serial turbo-like codes or as a subclass of Low Density Parity Check (LDPC) codes, and they have a projected graph or protograph representation; this allows for a high-speed iterative decoder implementation using belief propagation. An ARAA code can be viewed as a precoded Repeat-and-Accumulate (RA) code with puncturing in concatenation with another accumulator, where simply an accumulator is chosen as the precoder; thus ARAA codes have a very fast encoder structure. Using density evolution on their associated protographs, we find examples of rate-lJ2 ARAA codes with maximum variable node degree 4 for which a minimum bit-SNR as low as 0.21 dB from the channel capacity limit can be achieved as the block size goes to infinity. Such a low threshold cannot be achieved by RA or Irregular RA (IRA) or unstructured irregular LDPC codes with the same constraint on the maximum variable node degree. Furthermore by puncturing the accumulators we can construct families of higher rate ARAA codes with thresholds that stay close to their respective channel capacity thresholds uniformly. Iterative decoding simulation results show comparable performance with the best-known LDPC codes but with very low error floor even at moderate block sizes.

  19. Growth and (137)Cs uptake and accumulation among 56 Japanese cultivars of Brassica rapa, Brassica juncea and Brassica napus grown in a contaminated field in Fukushima: Effect of inoculation with a Bacillus pumilus strain.

    PubMed

    Djedidi, Salem; Kojima, Katsuhiro; Ohkama-Ohtsu, Naoko; Bellingrath-Kimura, Sonoko Dorothea; Yokoyama, Tadashi

    2016-06-01

    Fifty six local Japanese cultivars of Brassica rapa (40 cultivars), Brassica juncea (10 cultivars) and Brassica napus (6 cultivars) were assessed for variability in growth and (137)Cs uptake and accumulation in association with a Bacillus pumilus strain. Field trial was conducted at a contaminated farmland in Nihonmatsu city, in Fukushima prefecture. Inoculation resulted in different responses of the cultivars in terms of growth and radiocesium uptake and accumulation. B. pumilus induced a significant increase in shoot dry weight in 12 cultivars that reached up to 40% in one B. rapa and three B. juncea cultivars. Differences in radiocesium uptake were observed between the cultivars of each Brassica species. Generally, inoculation resulted in a significant increase in (137)Cs uptake in 22 cultivars, while in seven cultivars it was significantly decreased. Regardless of plant cultivar and bacterial inoculation, the transfer of (137)Cs to the plant shoots (TF) varied by a factor of up to 5 and it ranged from to 0.011 to 0.054. Five inoculated cultivars, showed enhanced shoot dry weights and decreased (137)Cs accumulations, among which two B. rapa cultivars named Bitamina and Nozawana had a significantly decreased (137)Cs accumulation in their shoots. Such cultivars could be utilized to minimize the entry of radiocesium into the food chain; however, verifying the consistency of their radiocesium accumulation in other soils is strongly required. Moreover, the variations in growth and radiocesium accumulation, as influenced by Bacillus inoculation, could help selecting well grown inoculated Brassica cultivars with low radiocesium accumulation in their shoots.

  20. Vortex simulation of reacting shear flow

    NASA Astrophysics Data System (ADS)

    Ghoniem, Ahmed F.

    Issues involved in the vortex simulation of reacting shear flow are discussed. It is shown that maintaining accuracy in the vortex methods requires the application of elaborate vorticity-updating schemes as vortex elements are moved along particle trajectories when shear or a strong strain field is represented. Solutions using 2D and 3D methods are discussed to illustrate some of the most common instabilities encountered in nonreacting and reacting shear flows and to reveal the mechanisms by which the maturation of these instabilities enhance mixing and hence burning in a reacting flow. The transport element method is developed and its application to compute scalar mixing in a shear layer is reviewed. The method is then combined with the vortex method to solve the problem of nonuniform-density shear flow. The results of incompressible reacting flow models are used to examine reaction extinction due to the formation of localized regions of strong strains as instabilities grow into their nonlinear range.

  1. Shear shocks in fragile networks.

    PubMed

    Ulrich, Stephan; Upadhyaya, Nitin; van Opheusden, Bas; Vitelli, Vincenzo

    2013-12-24

    A minimal model for studying the mechanical properties of amorphous solids is a disordered network of point masses connected by unbreakable springs. At a critical value of its mean connectivity, such a network becomes fragile: it undergoes a rigidity transition signaled by a vanishing shear modulus and transverse sound speed. We investigate analytically and numerically the linear and nonlinear visco-elastic response of these fragile solids by probing how shear fronts propagate through them. Our approach, which we tentatively label shear front rheology, provides an alternative route to standard oscillatory rheology. In the linear regime, we observe at late times a diffusive broadening of the fronts controlled by an effective shear viscosity that diverges at the critical point. No matter how small the microscopic coefficient of dissipation, strongly disordered networks behave as if they were overdamped because energy is irreversibly leaked into diverging nonaffine fluctuations. Close to the transition, the regime of linear response becomes vanishingly small: the tiniest shear strains generate strongly nonlinear shear shock waves qualitatively different from their compressional counterparts in granular media. The inherent nonlinearities trigger an energy cascade from low to high frequency components that keep the network away from attaining the quasi-static limit. This mechanism, reminiscent of acoustic turbulence, causes a superdiffusive broadening of the shock width.

  2. Accumulate-Repeat-Accumulate-Accumulate Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Thorpe, Jeremy

    2007-01-01

    Accumulate-repeat-accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate-repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity-check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.

  3. Microbial uptake and accumulation of (/sup 14/C Carbofuran) 1,3-dihydro-2,2-dimethyl-7 benzofuranylmethyl carbamate in twenty fungal strains isolated by miniecosystem studies

    SciTech Connect

    Arunachalam, K.D.; Lakshmanan, M.

    1988-07-01

    Studies have amply demonstrated that members of the microbial world vary widely in their response to pesticides and that several factors may influence the toxicity of pesticides. Similarly, the microbial tolerance of pesticides may be affected by growth conditions, physiological conditions of cells and various stress factors which might exist in natural population. The pesticides are incorporated into microorganisms by an active or passive accumulation mechanism. Most observations of pesticide accumulation within the cells were recorded with chlorinated hydrocarbons. It was found that not only live bacterial cells, but autoclaved cells also, show a similar uptake of pesticides. Since aquatic microorganisms and plankton in freshwater and marine environments are an important nutrient source for a broad spectrum of aquatic filter-feeding organisms, their accumulation of pesticides can constitute a hazardous link in the food chain to fish and higher vertebrates.

  4. Small scale shear zone in calcite: AMS and microstructure

    NASA Astrophysics Data System (ADS)

    Roxerová, Zuzana; Machek, Matěj; Kusbach, Vladimír; Racek, Martin; Silva, Pedro F.

    2016-04-01

    Two structural profiles across thin shear zone in calcite from quarry in Estremoz (Portugal) were studied to find a relationship between AMS and strain in natural rocks. The mesoscopic fabric is characterized by the change from the subhorizontal coarse-grained foliation towards the ~2cm-wide shear zone center with subvertical fine-grained foliation. In microstructure, the shear zone records dynamic recrystallization of calcite aggregate which resulted in development of porphyroclastic microstructure with increasing proportion of fine-grained recrystallized matrix towards the shear zone center. Two distinct crystallographic preferred orientations of calcite were recorded. One related with porphyroclasts, characterized by subvertical orientation of calcite axes and another associated with recrystallized matrix showing subhorizontal calcite axes orientation. The magnetic susceptibility ranges from -8e-6SI to 9e-6SI, with the average -4e-6SI. The majority of the rock mass is diamagnetic, corresponding well with the thermomagnetic curves, with local paramagnetic accumulations in form of thin bands. The AMS of the both profiles exhibits stable subvertical foliation bearing vertical lineation which is locally alternated by the medium-angle foliation. We interpret the AMS fabric pattern which is perpendicular to the mineral one as a type of inverse AMS fabric, due to high iron content in major part of calcite grains The magnetic and microstructural description of the shear zone is accompanied by numerical modeling of AMS based on CPO and different proportion of porphyroclasts, matrix and mica for purposes of deciphering the influence of present microstructural features on AMS.

  5. Empirical paths of poles to planes (eppps) constrain the kinematics of geological shear zones

    NASA Astrophysics Data System (ADS)

    Talbot, Christopher J.

    2014-09-01

    Ductile shear zones are tabular bodies of deformed rocks bound by less deformed wall rocks. This work introduces a simple empirical approach to analysing the 3D kinematics of shear zones. The orientations of pre-shear planar markers distorted across natural shear zones by local strains are systematically measured and plotted as poles on lower hemisphere equal area projections that constrain smooth empiricalpaths ofpoles toplanes (eppps). Such eppps recording local strain gradients are used to fix a reference frame to the plane of greatest shear in any homogeneous bulk strain. Assuming that space can be taken as a proxy for time, the curvatures of pre-shear planar markers across shear zones are interpreted as the records of the 3D bulk strain histories of shear zones. The sig- or zig-moidal symmetries of sheared markers record different amounts of the same general strain within the same overall movement pattern (i.e. in a constant flow field) whatever its geometry or history. In effect eppps represent the strain memories of shear zones with successively inward readings recording successively younger shearing. In planes other than the bulk XY, great circle eppps indicate simple shear while hyperbolic eppps indicate pure shear. Eppps for suites of shear zones in Proterozoic gneisses in Sweden exhibit the parabolic shapes indicative of pure rather than simple shear.

  6. Stress buildup under start-up shear flows in self-assembled transient networks of telechelic associating polymers.

    PubMed

    Koga, Tsuyoshi; Tanaka, Fumihiko; Kaneda, Isamu; Winnik, Françoise M

    2009-08-04

    The nonaffine transient network theory is used to study the time development of the shear and normal stresses under start-up shear flows in networks formed by self-assembled telechelic, hydrophobically modified water-soluble polymers. The initial slope, strain hardening, and overshoot of the shear stress are studied in detail in relation to the nonlinear tension-elongation curve of the elastically active chains in the network. The condition for the occurrence of strain hardening (upward deviation of the stress from the reference curve defined by the linear moduli) is found to be gamma > gammac(A), where gamma is the shear rate, gamma(c) is its critical value for strain hardening, and A is the amplitude of the nonlinear term in the tension of a chain. The critical shear rate gamma(c) is calculated as a function of A. It is approximately 6.3 (in the time unit of the reciprocal thermal dissociation rate) for a nonlinear chain with A = 10. The overshoot time t(max) when the stress reaches a maximum and the total deformation gamma(max) = gamma(t max) accumulated before the peak time are obtained in terms of the molecular parameters of the polymer chain. The maximum deformation gamma(max) turns out to depend weakly upon the shear rate gamma. The first and second normal stress differences are also studied on the basis of the exact numerical integration of the theoretical model by paying special attention to their overshoot, undershoot, and sign change as a function of the shear rate. These theoretical results are compared with recent rheological experiments of the solutions of telechelic hydrophobically modified poly(ethylene oxide)s carrying short branched alkyl chains (2-decyl-tetradecyl) at both ends.

  7. Development of a deep-crustal shear zone in response to syntectonic intrusion of mafic magma into the lower crust, Ivrea-Verbano zone, Italy

    USGS Publications Warehouse

    Snoke, A.W.; Kalakay, T.J.; Quick, J.E.; Sinigoi, S.

    1999-01-01

    A 1 to 1.5 km-thick, high-temperature shear zone is localized in wall rocks subparallel to the eastern intrusive contact of the Permian Mafic Complex of the Ivrea-Verbano zone (IVZ), Italy. The shear zone is characterized by concentrated ductile deformation manifested by a penetrative foliation subparallel to the intrusive contact and a northeast-plunging sillimanite lineation. Evidence of noncoaxial strain and transposition is widespread in the shear zone including such features as rootless isoclinal folds, dismemberment of competent layers, and scattered kinematic indicators. The metasedimentary rocks in the shear zone are migmatitic, and the accumulation of leucosome is variable within the shear zone. Near the intrusive contact with the Mafic Complex leucosome forms ~20 vol% of the wall rock, whereas leucosome concentrations may locally reach ~60 vol% of the wall rock near the outer limits of the shear zone. This variation in vol% leucosome suggests melt/magma migration from the inferred site of anatexis along the intrusive contact to lower-strain regions within and near the margins of the shear zone. The leucosome accumulations chiefly occur as layer-parallel concentrations, but are also folded and boudined, and locally are associated with tension gashes and fracture arrays. Networks of granitic dikes and small plutons in the eastern IVZ suggest that some magmas migrated out of the high-temperature shear zone. Some magma apparently migrated laterally along the strike of the shear zone and concentrated in areas of lower strain where the intrusive contact takes a major westward bend. The high-temperature shear zone is interpreted as a 'stretching fault' (or stretching shear zone) after Means [W.D. Means, Stretching faults, Geology 17 (1989) 893-896], whereupon the metasedimentary wall rocks and associated leucosome deformed synchronously with the multistage emplacement and deformation flow of the Mafic Complex. The recognition of a high-temperature shear zone

  8. Periodic Viscous Shear Heating Instability in Fine-Grained Shear Zones: Mechanism for Intermediate Depth Earthquakes

    NASA Astrophysics Data System (ADS)

    Coon, E.; Kelemen, P.; Hirth, G.; Spiegelman, M.

    2005-12-01

    Kelemen and Hirth (Fall 2004 AGU) presented a model for periodic, viscous shear heating instabilities along pre-existing, fine grained shear zones. This provides an attractive alternative to dehydration embrittlement for explaining intermediate-depth earthquakes, especially those in a narrow thermal window within the mantle section of subducting oceanic plates (Hacker et al JGR03). Ductile shear zones with widths of cm to m are common in shallow mantle massifs and peridotite along oceanic fracture zones. Pseudotachylites in a mantle shear zone show that shear heating temperatures exceeded the mantle solidus (Obata & Karato Tectonophys95). Olivine grain growth in shear zones is pinned by closely spaced pyroxenes; thus, once formed, these features do not `heal' on geological time scales in the absence of melt or fluid (Warren & Hirth EPSL05). Grain-size sensitive creep will be localized within these shear zones, in preference to host rocks with olivine grain size from 1 to 10 mm. Inspired by the work of Whitehead & Gans (GJRAS74), we proposed that such pre-existing shear zones might undergo repeated shear heating instabilities. This is not a new concept; what is new is that viscous deformation is limited to a narrow shear zone, because grain boundary sliding, sensitive to both stress and grain size, may accommodate creep even at high stress and high temperature. These new ideas yield a new result: simple models for a periodic shear heating instability. Last year, we presented a 1D numerical model using olivine flow laws, assuming that viscous deformation remains localized in shear zones, surrounded by host rocks undergoing elastic deformation. Stress evolves due to elastic strain and drives viscous deformation in a shear zone of specified width. Shear heating and thermal diffusion control T. A maximum of 1400 C (substantial melting of peridotite ) was imposed. Grain size evolves due to recrystallization and diffusion. For strain rates of E-13 to E-14 per sec and

  9. Complete Genome Sequence of Sedimenticola thiotaurini Strain SIP-G1, a Polyphosphate- and Polyhydroxyalkanoate-Accumulating Sulfur-Oxidizing Gammaproteobacterium Isolated from Salt Marsh Sediments.

    PubMed

    Flood, Beverly E; Jones, Daniel S; Bailey, Jake V

    2015-06-18

    We report the closed genome sequence of Sedimenticola thiotaurini strain SIP-G1 and an unnamed plasmid obtained through PacBio sequencing with 100% consensus concordance. The genome contained several distinctive features not found in other published Sedimenticola genomes, including a complete nitrogen fixation pathway, a complete ethanolamine degradation pathway, and an alkane-1-monooxygenase.

  10. Shear zone junctions: Of zippers and freeways

    NASA Astrophysics Data System (ADS)

    Passchier, Cees W.; Platt, John P.

    2017-02-01

    Ductile shear zones are commonly treated as straight high-strain domains with uniform shear sense and characteristic curved foliation trails, bounded by non-deforming wall rock. Many shear zones, however, are branched, and if movement on such branches is contemporaneous, the resulting shape can be complicated and lead to unusual shear sense arrangement and foliation geometries in the wall rock. For Y-shaped shear zone triple junctions with three joining branches and transport direction at a high angle to the branchline, only eight basic types of junction are thought to be stable and to produce significant displacement. The simplest type, called freeway junctions, have similar shear sense in all three branches. The other types show joining or separating behaviour of shear zone branches similar to the action of a zipper. Such junctions may have shear zone branches that join to form a single branch (closing zipper junction), or a single shear zone that splits to form two branches, (opening zipper junction). All categories of shear zone junctions show characteristic foliation patterns and deflection of markers in the wall rock. Closing zipper junctions are unusual, since they form a non-active zone with opposite deflection of foliations in the wall rock known as an extraction fault or wake. Shear zipper junctions can form domains of overprinting shear sense along their flanks. A small and large field example are given from NE Spain and Eastern Anatolia. The geometry of more complex, 3D shear zone junctions with slip parallel and oblique to the branchline is briefly discussed.

  11. Stress and strain relaxation in magnesium AZ31 rolled plate: In-situ neutron measurement and elastic viscoplastic polycrystal modeling

    DOE PAGES

    Wang, Huamiao; Clausen, Bjorn; Capolungo, Laurent; ...

    2015-07-16

    Continuous mechanical tests with strain holds (stress relaxation) and with stress holds (strain relaxation) are performed simultaneously with in-situ neutron measurements to analyze the mechanisms of stress and strain relaxation in Mg AZ31 rolled plate. A dislocation activity based constitutive model, accounting for internal stress statistical distributions, is proposed and implemented into an elastic viscoplastic self-consistent (EVPSC) framework to simultaneously describe both stress and strain relaxation. The model captures the experimental data in terms of macroscopic stress strain curves, evolution of stress and strain during holding, as well as evolution of the internal elastic strains. Model results indicate that themore » magnitude of the stress relaxed during strain holding is dependent on both, the magnitude of the flow stress and the spread of the resolved shear stress distribution. The magnitude of strain accumulated during stress holding is, on the other hand, dependent on the magnitude of the hardening rate and on the spread of the resolved shear stress distribution. Furthermore, the internal elastic strains are directly correlated with the stress state, and hence the stress relaxation during strain holds has a greater influence on the lattice strains than strain relaxation during stress holds.« less

  12. Versatility of Biofilm Matrix Molecules in Staphylococcus epidermidis Clinical Isolates and Importance of Polysaccharide Intercellular Adhesin Expression during High Shear Stress

    PubMed Central

    Schaeffer, Carolyn R.; Hoang, Tra-My N.; Sudbeck, Craig M.; Alawi, Malik; Tolo, Isaiah E.; Robinson, D. Ashley; Horswill, Alexander R.; Rohde, Holger

    2016-01-01

    ABSTRACT Staphylococcus epidermidis is a leading cause of hospital-associated infections, including those of intravascular catheters, cerebrospinal fluid shunts, and orthopedic implants. Multiple biofilm matrix molecules with heterogeneous characteristics have been identified, including proteinaceous, polysaccharide, and nucleic acid factors. Two of the best-studied components in S. epidermidis include accumulation-associated protein (Aap) and polysaccharide intercellular adhesin (PIA), produced by the enzymatic products of the icaADBC operon. Biofilm composition varies by strain as well as environmental conditions, and strains producing PIA-mediated biofilms are more robust. Clinically, biofilm-mediated infections occur in a variety of anatomical sites with diverse physiological properties. To test the hypothesis that matrix composition exhibits niche specificity, biofilm-related genetic and physical properties were compared between S. epidermidis strains isolated from high-shear and low-shear environments. Among a collection of 105 clinical strains, significantly more isolates from high-shear environments carried the icaADBC operon than did those from low-shear settings (43.9% versus 22.9%, P < 0.05), while there was no significant difference in the presence of aap (77.2% versus 75.0%, P > 0.05). Additionally, a significantly greater number of high-shear isolates were capable of forming biofilm in vitro in a microtiter assay (82.5% versus 45.8%, P < 0.0001). However, even among high-shear clinical isolates, less than half contained the icaADBC locus; therefore, we selected for ica-negative variants with increased attachment to abiotic surfaces to examine PIA-independent biofilm mechanisms. Sequencing of selected variants identified substitutions capable of enhancing biofilm formation in multiple genes, further highlighting the heterogeneity of S. epidermidis biofilm molecules and mechanisms. IMPORTANCE Staphylococcus epidermidis is a leading cause of

  13. Versatility of Biofilm Matrix Molecules in Staphylococcus epidermidis Clinical Isolates and Importance of Polysaccharide Intercellular Adhesin Expression during High Shear Stress.

    PubMed

    Schaeffer, Carolyn R; Hoang, Tra-My N; Sudbeck, Craig M; Alawi, Malik; Tolo, Isaiah E; Robinson, D Ashley; Horswill, Alexander R; Rohde, Holger; Fey, Paul D

    2016-01-01

    Staphylococcus epidermidis is a leading cause of hospital-associated infections, including those of intravascular catheters, cerebrospinal fluid shunts, and orthopedic implants. Multiple biofilm matrix molecules with heterogeneous characteristics have been identified, including proteinaceous, polysaccharide, and nucleic acid factors. Two of the best-studied components in S. epidermidis include accumulation-associated protein (Aap) and polysaccharide intercellular adhesin (PIA), produced by the enzymatic products of the icaADBC operon. Biofilm composition varies by strain as well as environmental conditions, and strains producing PIA-mediated biofilms are more robust. Clinically, biofilm-mediated infections occur in a variety of anatomical sites with diverse physiological properties. To test the hypothesis that matrix composition exhibits niche specificity, biofilm-related genetic and physical properties were compared between S. epidermidis strains isolated from high-shear and low-shear environments. Among a collection of 105 clinical strains, significantly more isolates from high-shear environments carried the icaADBC operon than did those from low-shear settings (43.9% versus 22.9%, P < 0.05), while there was no significant difference in the presence of aap (77.2% versus 75.0%, P > 0.05). Additionally, a significantly greater number of high-shear isolates were capable of forming biofilm in vitro in a microtiter assay (82.5% versus 45.8%, P < 0.0001). However, even among high-shear clinical isolates, less than half contained the icaADBC locus; therefore, we selected for ica-negative variants with increased attachment to abiotic surfaces to examine PIA-independent biofilm mechanisms. Sequencing of selected variants identified substitutions capable of enhancing biofilm formation in multiple genes, further highlighting the heterogeneity of S. epidermidis biofilm molecules and mechanisms. IMPORTANCEStaphylococcus epidermidis is a leading cause of infections related

  14. Characterization of plant-growth-promoting effects and concurrent promotion of heavy metal accumulation in the tissues of the plants grown in the polluted soil by Burkholderia strain LD-11.

    PubMed

    Huang, Gui-Hai; Tian, Hui-Hui; Liu, Hai-Ying; Fan, Xian-Wei; Liang, Yu; Li, You-Zhi

    2013-01-01

    Plant-growth-promoting (PGP) bacteria especially with the resistance to multiple heavy metals are helpful to phytoremediation. Further development of PGP bacteria is very necessary because of the extreme diversity of plants, soils, and heavy metal pollution. A Burkholderia sp. strain, numbered LD-11, was isolated, which showed resistances to multiple heavy metals and antibiotics. It can produce indole-3-acetic acid, 1-aminocyclopropane-1-carboxylic acid deaminase and siderophores. Inoculation with the LD-11 improved germination of seeds of the investigated vegetable plants in the presence of Cu, promoted elongation of roots and hypocotyledonary axes, enhanced the dry weights of the plants grown in the soils polluted with Cu and/or Pb, and increased activity of the soil urease and the rhizobacteria diversity. Inoculation with the LD-11 significantly enhanced Cu and/or Pb accumulation especially in the roots of the plants grown in the polluted soils. Notably, LD-11 could produce siderophores in the presence of Cu. Conclusively, the PGP effects and concurrent heavy metal accumulation in the plant tissues results from combined effects of the above-mentioned multiple factors. Cu is an important element that represses production of the siderophore by the bacteria. Phytoremediation by synergistic use of the investigated plants and the bacterial strain LD-11 is a phytoextraction process.

  15. Compact forced simple-shear sample for studying shear localization in materials

    DOE PAGES

    Gray, George Thompson; Vecchio, K. S.; Livescu, Veronica

    2015-11-06

    In this paper, a new specimen geometry, the compact forced-simple-shear specimen (CFSS), has been developed as a means to achieve simple shear testing of materials over a range of temperatures and strain rates. The stress and strain state in the gage section is designed to produce essentially “pure” simple shear, mode II in-plane shear, in a compact-sample geometry. The 2-D plane of shear can be directly aligned along specified directional aspects of a material's microstructure of interest; i.e., systematic shear loading parallel, at 45°, and orthogonal to anisotropic microstructural features in a material such as the pancake-shaped grains typical inmore » many rolled structural metals, or to specified directions in fiber-reinforced composites. Finally, the shear-stress shear-strain response and the damage evolution parallel and orthogonal to the pancake grain morphology in 7039-Al are shown to vary significantly as a function of orientation to the microstructure.« less

  16. Compact forced simple-shear sample for studying shear localization in materials

    SciTech Connect

    Gray, George Thompson; Vecchio, K. S.; Livescu, Veronica

    2015-11-06

    In this paper, a new specimen geometry, the compact forced-simple-shear specimen (CFSS), has been developed as a means to achieve simple shear testing of materials over a range of temperatures and strain rates. The stress and strain state in the gage section is designed to produce essentially “pure” simple shear, mode II in-plane shear, in a compact-sample geometry. The 2-D plane of shear can be directly aligned along specified directional aspects of a material's microstructure of interest; i.e., systematic shear loading parallel, at 45°, and orthogonal to anisotropic microstructural features in a material such as the pancake-shaped grains typical in many rolled structural metals, or to specified directions in fiber-reinforced composites. Finally, the shear-stress shear-strain response and the damage evolution parallel and orthogonal to the pancake grain morphology in 7039-Al are shown to vary significantly as a function of orientation to the microstructure.

  17. Origins of Shear Jamming for Frictional Grains

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Zheng, Hu; Ren, Jie; Dijksman, Joshua; Bares, Jonathan; Behringer, Robert

    2016-11-01

    Granular systems have been shown to be able to behave like solids, under shear, even when their densities are below the critical packing fraction for frictionless isotropic jamming. To understand such a phenomena, called shear jamming, the question we address here is: how does shear bring a system from a unjammed state to a jammed state, where the coordination number, Z, is no less than 3, the isotropic jamming point for frictional grains? Since Z can be used to distinguish jammed states from unjammed ones, it is vital to understand how shear increases Z. We here propose a set of three particles in contact, denoted as a trimer, as the basic unit to characterize the deformation of the system. Trimers, stabilized by inter-grain friction, fail under a certain amount of shear and bend to make extra contacts to regain stability. By defining a projection operator of the opening angle of the trimer to the compression direction in the shear, O, we see a systematically linear decrease of this quantity with respect to shear strain, demonstrating the bending of trimers as expected. In addition, the average change of O from one shear step to the next shows a good collapse when plotted against Z, indicating a universal behavior in the process of shear jamming. We acknowledge support from NSF DMR1206351, NASA NNX15AD38G, the William M. Keck Foundation and a RT-MRSEC Fellowship.

  18. Two-axis direct fluid shear stress sensor

    NASA Technical Reports Server (NTRS)

    Bajikar, Sateesh (Inventor); Scott, Michael A. (Inventor); Adcock, Edward E. (Inventor)

    2011-01-01

    A micro sized multi-axis semiconductor skin friction/wall shear stress induced by fluid flow. The sensor design includes a shear/strain transduction gimble connected to a force collecting plate located at the flow boundary surface. The shear force collecting plate is interconnected by an arm to offset the tortional hinges from the fluid flow. The arm is connected to the shear force collecting plate through dual axis torsional hinges with piezoresistive torsional strain gauges. These gauges are disposed on the tortional hinges and provide a voltage output indicative of applied shear stress acting on the force collection plate proximate the flow boundary surface. Offsetting the torsional hinges creates a force concentration and resolution structure that enables the generation of a large stress on the strain gauge from small shear stress, or small displacement of the collecting plate. The design also isolates the torsional sensors from exposure to the fluid flow.

  19. Enhancing shear thickening

    NASA Astrophysics Data System (ADS)

    Madraki, Yasaman; Hormozi, Sarah; Ovarlez, Guillaume; Guazzelli, Élisabeth; Pouliquen, Olivier

    2017-03-01

    A cornstarch suspension is the quintessential particulate system that exhibits shear thickening. By adding large non-Brownian spheres to a cornstarch suspension, we show that shear thickening can be significantly enhanced. More precisely, the shear-thickening transition is found to be increasingly shifted to lower critical shear rates. This influence of the large particles on the discontinuous shear-thickening transition is shown to be more dramatic than that on the viscosity or the yield stress of the suspension.

  20. Rapamycin causes down-regulation of CCR5 and accumulation of anti-HIV beta-chemokines: an approach to suppress R5 strains of HIV-1.

    PubMed

    Heredia, A; Amoroso, A; Davis, C; Le, N; Reardon, E; Dominique, J K; Klingebiel, E; Gallo, R C; Redfield, R R

    2003-09-02

    Propagation of R5 strains of HIV-1 on CD4 lymphocytes and macrophages requires expression of the CCR5 coreceptor on the cell surface. Individuals lacking CCR5 (CCR5 Delta 32 homozygous genotype) are phenotypically normal and resistant to infection with HIV-1. CCR5 expression on lymphocytes depends on signaling through the IL-2 receptor. By FACS analysis we demonstrate that rapamycin (RAPA), a drug that disrupts IL-2 receptor signaling, reduces CCR5 surface expression on T cells at concentrations as low as 1 nM. In addition, lower concentrations of RAPA (0.01 nM) were sufficient to reduce CCR5 surface expression on maturing monocytes. PCR analysis on peripheral blood mononuclear cells (PBMCs) showed that RAPA interfered with CCR5 expression at the transcriptional level. Reduced expression of CCR5 on PBMCs cultured in the presence of RAPA was associated with increased extracellular levels of macrophage inflammatory protein (MIP)-1 alpha and MIP-1 beta. In infectivity assays, RAPA suppressed the replication of R5 strains of HIV-1 both in PBMC and macrophage cultures. In total PBMC cultures, RAPA-mediated inhibition of CCR5-using strains of HIV-1 occurred at 0.01 nM, a concentration of drug that is approximately 103 times lower than therapeutic through levels of drug in renal transplant recipients. In addition, RAPA enhanced the antiviral activity of the CCR5 antagonist TAK-779. These results suggest that low concentrations of RAPA may have a role in both the treatment and prevention of HIV-1 infection.

  1. Shear band foliation as an indicator of sense of shear: Field observations in central Spain

    NASA Astrophysics Data System (ADS)

    Weijermars, Ruud; Rondeel, Harm E.

    1984-10-01

    The Macizo de Nevera, a Paleozoic basement inlier surrounded by essentially flat-lying Mesozoic cover rocks of central Spain, exhibits an extremely consistent system of steep, dextral strike-slip faults. Different faults have a variable amount of displacement, but their en echelon arrangement and similar sense of displacement imply a cogenetic origin. A maximum displacement of 1.0 km, corresponding to an averaged angular shear strain of 1.5 and peak values of 6.6, occurs along the central part of the 6-km-long Truchas ductile shear zone. An early axial-plane cleavage is locally deflected into the Truchas shear zone and superposed by coarse shear band foliation. The consistent angular relationship between the new foliation and the shear zone boundary confirms the megascopic sense of shear.

  2. Shear modulus of kaolin containing methane bubbles

    SciTech Connect

    Duffy, S.M. ); Wheeler, S.J. . Dept. of Engineering Science); Bennell, J.D. )

    1994-05-01

    Measurements of undrained shear moduli are reported from a program of laboratory tests on reconstituted kaolin samples containing relatively large bubbles of methane gas. The experimental program included low-frequency torsional stress-strain loops and torsional resonant column tests, providing values of shear moduli for shear-strain similitudes from 0.0004% to 0.1%. At all values of strain amplitude, the reduction of shear moduli caused by the presence of gas bubbles was greater than predicted by a theoretical elastic expression. This pattern of behavior was attributed to te formation of local yield zones around the gas-bubble cavities during consolidation prior to shear testing (a phenomenon that would also occur in-situ within offshore sediments). The results of the research program suggest that reductions in shear moduli of up to 50% could be caused by relatively small volumes of gas bubbles, occupying just a few percent of the total soil volume. This would have considerable significance for the displacements of offshore foundations constructed on sediments containing undissolved gas.

  3. Study of shear-stiffened elastomers

    NASA Astrophysics Data System (ADS)

    Tian, Tongfei; Li, Weihua; Ding, Jie; Alici, Gursel; Du, Haiping

    2013-06-01

    Shear thickening fluids, which are usually concentrated colloidal suspensions composed of non-aggregating solid particles suspended in fluids, exhibit a marked increase in viscosity beyond a critical shear rate. This increased viscosity is seen as being both 'field-activated', due to the dependence on shearing rate, as well as reversible. Shear thickening fluids have found good applications as protection materials, such as in liquid body armor, vibration absorber or dampers. This research aims to expand the protection material family by developing a novel solid status shear thickening material, called shear-stiffened elastomers. These new shear-stiffened elastomers were fabricated with the mixture of silicone rubber and silicone oil. A total of four SSE samples were fabricated in this study. Their mechanical and rheological properties under both steady-state and dynamic loading conditions were tested with a parallel-plate. The effects of silicone oil composition and angular frequency were summarized. When raising the angular frequency in dynamic shear test, the storage modulus of conventional silicone rubber shows a small increasing trend with the frequency. However, if silicone oil is selected to be mixed with silicone rubber, the storage modulus increases dramatically when the frequency and strain are both beyond the critical values.

  4. Simple shear deformation of partially molten aplite

    NASA Astrophysics Data System (ADS)

    Stipp, Michael; Tullis, Jan; Berger, Alfons

    2013-04-01

    The tectonic processes which are important for melt distribution and transport in the intermediate and lower crust and which can result in crustal weakening are not yet well understood. Natural migmatites are usually overprinted by annealing and retrogression during uplift and exhumation, largely obliterating the deformation structures and microstructures of their partially molten history. Deformation experiments on partially molten crustal rocks have so far been conducted in pure shear geometry and mostly under low confining pressures in the brittle deformation field, both of which are not representative of nature. We carried out deformation experiments in simple shear that predominates in the crust and especially crustal shear zones. Undrained experiments were carried out on Enfield aplite at ~1.5 GPa, 900° -1000° C, and ˜ 5*10-6 s-1, conditions which favor crystal plastic deformation of quartz and feldspar (Dell'Angelo and Tullis, 1988). Sample slices 1.0-1.5 mm thick were placed between the shear pistons with the shear plane at a 45° -angle to the compression direction. Maximum shear strain in the experiments is ? ?2.8. Despite difficulties in controlling the melt content by varying the amount of added water, we were able to achieve the full range of brittle to crystal plastic deformation mechanisms. With decreasing melt content Enfield aplite displays a transition from discrete fracturing at a high angle (~70-90° ) to the shear plane (>20 vol.% melt), to cataclastic shearing (10-20 vol.% melt) and to crystal plastic deformation (

  5. Viscoelastic shear properties of porcine temporomandibular joint disc

    PubMed Central

    Wu, Yongren; Kuo, Jonathan; Wright, Gregory J.; Cisewski, Sarah E.; Wei, Feng; Kern, Michael J.; Yao, Hai

    2016-01-01

    Objectives To investigate the intrinsic viscoelastic shear properties in porcine TMJ discs. Materials and Methods Twelve fresh porcine TMJ discs from young adult pigs (6-8 months) were used. Cylindrical samples (5 mm diameter) with uniform thickness (~1.2 mm) were prepared from five regions of the TMJ disc. Torsional shear tests were performed under 10% compressive strain. Dynamic shear was applied in two methods: (1) a frequency sweep test over the frequency range of 0.01-10 rad/s with a constant shear strain amplitude of 0.025 rad, and (2) a strain sweep test over the range of 0.005-0.05 rad at a constant frequency of 10 rad/s. Transient stress-relaxation tests were also performed to determine the equilibrium shear properties. Results As the frequency increased in the frequency sweep test, the dynamic shear complex modulus increased, with values ranging from 7 to 17 kPa. The phase angle, ranging from 11 to 15 degrees, displayed no pattern of regional variation as the frequency increased. The dynamic shear modulus decreased as the shear strain increased. The equilibrium shear modulus had values ranging from 2 to 4.5 kPa. The posterior region had significantly higher values for dynamic shear modulus than those in the anterior region while no significant regional difference was found for equilibrium shear modulus. Conclusion Our results suggest that the intrinsic region-dependent viscoelastic shear characteristics of TMJ disc may play a crucial role in determining the local strain of the TMJ disc under mechanical loading. PMID:25865544

  6. Non-Saccharomyces and Saccharomyces strains co-fermentation increases acetaldehyde accumulation: effect on anthocyanin-derived pigments in Tannat red wines.

    PubMed

    Medina, Karina; Boido, Eduardo; Fariña, Laura; Dellacassa, Eduardo; Carrau, Francisco

    2016-07-01

    During fermentation, Saccharomyces cerevisiae releases into the medium secondary metabolic products, such as acetaldehyde, able to react with anthocyanins, producing more stable derived pigments. However, very limited reports are found about non-Saccharomyces effects on grape fermentation. In this study, six non-Saccharomyces yeast strains, belonging to the genera Metschnikowia and Hanseniaspora, were screened for their effect on red wine colour and wine-making capacity under pure culture conditions and mixed with Saccharomyces. An artificial red grape must was prepared, containing a phenolic extract of Tannat grapes that allows monitoring changes of key phenol parameters during fermentation, but without skin solids in the medium. When fermented in pure cultures, S. cerevisiae produced higher concentrations of acetaldehyde and vitisin B (acetaldehyde reaction-dependent) compared to M. pulcherrima M00/09G, Hanseniaspora guillermondii T06/09G, H. opuntiae T06/01G, H. vineae T02/05F and H. clermontiae (A10/82Fand C10/54F). However, co-fermentation of H. vineae and H. clermontiae with S. cerevisiae resulted in a significantly higher concentration of acetaldehyde compared with the pure S. cerevisiae control. HPLC-DAD-MS analysis confirmed an increased formation of vitisin B in co-fermentation treatments when compared to pure Saccharomyces fermentation, suggesting the key role of acetaldehyde. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Dislocation Modeling and Comparison With GPS Data to Assess Possible Elastic Strain Accumulation in the Central Lesser Antilles: New Constraints From the NSF REU Site in Dominica Between 2001 and 2007

    NASA Astrophysics Data System (ADS)

    Staisch, L.; Styron, R. H.; James, S.; Turner, H. L.; Ashlock, A.; Cavness, C. L.; Collier, X.; Fauria, K.; Feinstein, R.; Murphy, R.; Williams, B.; Mattioli, G. S.; Jansma, P. E.; Cothren, J.

    2007-12-01

    The Caribbean, North and South American plates are converging at a rate of 2 cm/yr in the central region of the Lesser Antilles arc. Here we report high-precision GPS data in concert with forward modeling of a simplified subduction zone geometry to assess strain accumulation for the Lesser Antilles trench. We are able to constrain both vertical and horizontal surface deformation from campaign and continuous GPS observations from 28 geodetic benchmarks located in Guadeloupe, Dominica and Aves Island. Precise station positions were estimated with GIPSY-OASIS II using an absolute point positioning strategy and final, precise orbits, clocks, earth orientation parameters, and x-files. All position estimates were updated to ITRF05 and a revised Caribbean Euler pole was used to place our observations in a CAR-fixed frame. Surface displacements for each site were estimated over 2-7 years. CAR-fixed velocities are projected onto a 500 kilometer transect from the LA trench to Aves Island and compared to calculated displacements for 88 different subduction models. Finite dislocations within an elastic half-space with variable parameters such as angle of the subducting slab, the downdip extent of the locked zone, and percentage of plate interface locking were investigated. Other parameters, such as trench length and slip remained constant. Using a chi-squared, best-fit statistical criterion, the GPS data constrain the subduction interface to a 75 kilometer downdip extent, a 10° dip angle, and near 50% locking. This implies that the subduction zone offshore Dominica is in an interseismic state, thus accumulating strain and causing small westward and upward displacement of the Lesser Antilles relative to the stable Caribbean interior.

  8. Stress and strain relaxation in magnesium AZ31 rolled plate: In-situ neutron measurement and elastic viscoplastic polycrystal modeling

    SciTech Connect

    Wang, Huamiao; Clausen, Bjorn; Capolungo, Laurent; Beyerlein, Irene Jane; Wang, Jian; Tome, Carlos N.

    2015-07-16

    Continuous mechanical tests with strain holds (stress relaxation) and with stress holds (strain relaxation) are performed simultaneously with in-situ neutron measurements to analyze the mechanisms of stress and strain relaxation in Mg AZ31 rolled plate. A dislocation activity based constitutive model, accounting for internal stress statistical distributions, is proposed and implemented into an elastic viscoplastic self-consistent (EVPSC) framework to simultaneously describe both stress and strain relaxation. The model captures the experimental data in terms of macroscopic stress strain curves, evolution of stress and strain during holding, as well as evolution of the internal elastic strains. Model results indicate that the magnitude of the stress relaxed during strain holding is dependent on both, the magnitude of the flow stress and the spread of the resolved shear stress distribution. The magnitude of strain accumulated during stress holding is, on the other hand, dependent on the magnitude of the hardening rate and on the spread of the resolved shear stress distribution. Furthermore, the internal elastic strains are directly correlated with the stress state, and hence the stress relaxation during strain holds has a greater influence on the lattice strains than strain relaxation during stress holds.

  9. Reduced shear power spectrum

    SciTech Connect

    Dodelson, Scott; Shapiro, Charles; White, Martin J.; /UC, Berkeley, Astron. Dept. /UC, Berkeley

    2005-08-01

    Measurements of ellipticities of background galaxies are sensitive to the reduced shear, the cosmic shear divided by (1-{kappa}) where {kappa} is the projected density field. They compute the difference between shear and reduced shear both analytically and with simulations. The difference becomes more important an smaller scales, and will impact cosmological parameter estimation from upcoming experiments. A simple recipe is presented to carry out the required correction.

  10. Rail Shear and Short Beam Shear Properties of Various 3-Dimensional (3-D) Woven Composites

    DTIC Science & Technology

    2016-01-01

    from stress-strain response. A 0.2% plastic strain offset method was used to calculate the yield of the material. Table 4 compares the maximum... plastic region where the progressive damages began to form in the samples. Based on the stress-strain curves, it was notable that the 12° configuration...outperformed the other architectures in terms of shear strength and moduli. Another observation made from the curvatures was that the plastic portion

  11. Rotatable shear plate interferometer

    DOEpatents

    Duffus, Richard C.

    1988-01-01

    A rotatable shear plate interferometer comprises a transparent shear plate mounted obliquely in a tubular supporting member at 45.degree. with respect to its horizontal center axis. This tubular supporting member is supported rotatably around its center axis and a collimated laser beam is made incident on the shear plate along this center axis such that defocus in different directions can be easily measured.

  12. Interseismic strain accumulation measured by GPS in the seismic gap between Constitución and Concepción in Chile

    NASA Astrophysics Data System (ADS)

    Ruegg, J. C.; Rudloff, A.; Vigny, C.; Madariaga, R.; de Chabalier, J. B.; Campos, J.; Kausel, E.; Barrientos, S.; Dimitrov, D.

    2009-06-01

    The Concepción-Constitución area [35-37°S] in South Central Chile is very likely a mature seismic gap, since no large subduction earthquake has occurred there since 1835. Three campaigns of global positioning system (GPS) measurements were carried out in this area in 1996, 1999 and 2002. We observed a network of about 40 sites, including two east-west transects ranging from the coastal area to the Argentina border and one north-south profile along the coast. Our measurements are consistent with the Nazca/South America relative angular velocity (55.9°N, 95.2°W, 0.610°/Ma) discussed by Vigny et al. (2008, this issue) which predicts a convergence of 68 mm/year oriented 79°N at the Chilean trench near 36°S. With respect to stable South America, horizontal velocities decrease from 45 mm/year on the coast to 10 mm/year in the Cordillera. Vertical velocities exhibit a coherent pattern with negative values of about 10 mm/year on the coast and slightly positive or near zero in the Central Valley or the Cordillera. Horizontal velocities have formal uncertainties in the range of 1-3 mm/year and vertical velocities around 3-6 mm/year. Surface deformation in this area of South Central Chile is consistent with a fully coupled elastic loading on the subduction interface at depth. The best fit to our data is obtained with a dip of 16 ± 3°, a locking depth of 55 ± 5 km and a dislocation corresponding to 67 mm/year oriented 78°N. However in the northern area of our network the fit is improved locally by using a lower dip around 13°. Finally a convergence motion of about 68 mm/year represents more than 10 m of displacement accumulated since the last big interplate subduction event in this area over 170 years ago (1835 earthquake described by Darwin). Therefore, in a worst case scenario, the area already has a potential for an earthquake of magnitude as large as 8-8.5, should it happen in the near future.

  13. A comparison of three popular test methods for determining the shear modulus of composite materials

    NASA Technical Reports Server (NTRS)

    Ho, Henjen; Tsai, Ming-Yi; Morton, John; Farley, Gary L.

    1991-01-01

    Three popular shear tests (the 10 degree off-axis, the plus or minus 45 degree tensile, and the Iosipescu specimen tested in the modified Wyoming fixture) for shear modulus measurement are evaluated for a graphite-epoxy composite material system. A comparison of the shear stress-strain response for each test method is made using conventional strain gage instrumentation and moire interferometry. The uniformity and purity of the strain fields in the test sections of the specimens are discussed, and the shear responses obtained from each test technique are presented and compared. For accurate measurement of shear modulus, the 90 degree Iosipescu specimen is recommended.

  14. Evolution of Continental Lower Crust Recorded By an Exhumed Deep Crustal Intracontinental Shear Zone

    NASA Astrophysics Data System (ADS)

    Dumond, G.; Mahan, K. H.; Regan, S. P.; Williams, M. L.; Goncalves, P.; Wood, V. R.

    2014-12-01

    Exposures of deep crustal shear zones are fundamental records of strain localization and the temporal evolution of ductile to brittle behavior as these tectonites were exhumed to the surface. We present results from a decade of field-based research on a deeply exhumed (~35 km-paleodepths) strike-slip shear zone in the western Churchill province of the Canadian Shield. The Grease River shear zone is a >400 km-long and 7 km-thick structure that cuts the Athabasca granulite terrane, North America's largest exposure of continental lower crust (>20,000 km2). The shear zone is dominated by granulite- to amphibolite-grade L-S and L>S tectonites characterized by penetrative NE-striking steeply-dipping foliations with gently-plunging to sub-horizontal stretching and intersection lineations. These fabrics are locally overprinted by pseudotachylyte and narrow (<500 m-thick) greenschist-grade zones of cataclasite. Dextral kinematics are defined by deflected foliation trajectories, C' shear bands, and well-developed σ- and δ-type porphyroclasts of Kfs + Pl + Opx + Grt + Hb in felsic to intermediate granulite paragneisses and orthogneisses. Data collected along a well-exposed, nearly 150 km-long segment of the shear zone documents a >100 m.y. episodic record of transpressive to strike-slip intracontinental strain accumulation that coincided with two oppositely convergent orogenies: the east-vergent arc-continent collision of the 1.94-1.90 Ga Taltson orogen and the west-vergent continent-continent collision of the 1.9-1.8 Ga Trans-Hudson orogen. Deformation mechanisms evolved from distributed ductile dynamic recrystallization and grain-size reduction to localized pseudotachylyte development, cataclastic flow, and brittle faulting. Lower crustal behavior during strain localization was dynamic. Melt-weakened mono-cyclic crust was juxtaposed against strong isobarically-cooled poly-cyclic crust along the shear zone at 1.92-1.90 Ga. Brittle-ductile reactivation of the structure

  15. Physical models of tissue in shear fields.

    PubMed

    Carstensen, Edwin L; Parker, Kevin J

    2014-04-01

    This review considers three general classes of physical as opposed to phenomenological models of the shear elasticity of tissues. The first is simple viscoelasticity. This model has a special role in elastography because it is the language in which experimental and clinical data are communicated. The second class of models involves acoustic relaxation, in which the medium contains inner time-dependent systems that are driven through the external bulk medium. Hysteresis, the phenomenon characterizing the third class of models, involves losses that are related to strain rather than time rate of change of strain. In contrast to the vast efforts given to tissue characterization through their bulk moduli over the last half-century, similar research using low-frequency shear data is in its infancy. Rather than a neat summary of existing facts, this essay is a framework for hypothesis generation-guessing what physical mechanisms give tissues their shear properties.

  16. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  17. Probing the shear-band formation in granular media with sound waves

    NASA Astrophysics Data System (ADS)

    Khidas, Y.; Jia, X.

    2012-05-01

    We investigate the mechanical responses of dense granular materials, using a direct shear box combined with simultaneous acoustic measurements. Measured shear wave speeds evidence the structural change of the material under shear, from the jammed state to the flowing state. There is a clear acoustic signature when the shear band is formed. Subjected to cyclic shear, both shear stress and wave speed show the strong hysteretic dependence on the shear strain, likely associated with the geometry change in the packing structure. Moreover, the correlation function of configuration-specific multiply scattered waves reveals an intermittent behavior before the failure of material.

  18. Analysis of axial deformation response during reverse shear

    NASA Astrophysics Data System (ADS)

    Lowe, T. C.; Lipkin, J.

    T HE RESPONSE of a polycrystalline metal undergoing torsional shearing deformation is examined in detail using a strain-rate dependent model of the deformation of polycrystals. Several boundary value problems are solved to determine the roles of anisotropic elasticity and boundary constraints on the stresses and strains that develop along the torsion axis during forward and reverse shearing deformation. An initially random orientation distribution of 300 grains is assumed, and boundary conditions are chosen to represent a thin-walled tube with fixed, free and intermediate stiffness end constraints. A constant quasi-static shear strain rate of γ = 0.00775 s -1 is imposed to prestrain the polycrystal to a maximum shear strain γ = 1.6. At this point the sign of the shear strain rale is reversed and deformation is continued until the shear strain is reduced to essentially zero. For calculations in which some degree of axial constraint is imposed, the axial stress increases monotonically in compression during forward shearing. During reverse shearing, the axial stress response depends sensitively upon the degree of axial constraint, the textural anisotropy induced during forward shearing of the polycrystal. and the elastic anisotropy of the constituent grains. The model predictions demonstrate the role of anisotropic elasticity and the importance of minor strain components when modeling elastic plastic transients in textured polycrystals. Finally, the model predictions are compared with the results of experiments on short, thin-walled tubes of 304L stainless steel. Satisfactory agreement between a number of predicted and measured features of the response was obtained.

  19. The effects of lower crustal strength and preexisting midcrustal shear zones on the formation of continental core complexes and low-angle normal faults

    NASA Astrophysics Data System (ADS)

    Wu, Guangliang; Lavier, Luc L.

    2016-09-01

    To investigate the formation of core complexes and low-angle normal faults, we devise thermomechanical simulations on a simplified wedge-like orogenic hinterland that has initial topography, Moho relief, and a preexisting midcrustal shear zone that can accommodate shear at very low angles (<20°). We mainly vary the strength of the lower crust and the frictional strength of the preexisting midcrustal shear zone. We find that the strength of the lower crust and the existence and strength of a preexisting shear zone significantly affect the formation and evolution of core complexes. With increasing lower crustal strength, we recognize varying extensional features with decreasing exhumation rate: these are characterized by bivergent metamorphic massifs, classic Cordilleran metamorphic core complexes, multiple consecutive core complexes (or boudinage structures), and a flexural core complex underlined by a large subsurface low-angle detachment fault with a small convex curvature. Topographic loading and mantle buoyancy forces, together with divergent boundaries, drive a regional lower crustal flow that leads to the exhumation of the lower crust where intensive upper crustal faulting induces strong unloading. The detachment fault is a decoupling zone that accommodates large displacement and accumulates sustained shear strain at very low angle between upper and lower crust. Though the regional stress is largely Andersonian, we find non-Andersonian stress in regions adjacent to the preexisting shear zone and those with high topographic gradient. Our new models provide a view that is generally consistent with geological and geophysical observations on how core complexes form and evolve.

  20. Shear Strength of Aluminum Oxynitride

    NASA Astrophysics Data System (ADS)

    Dandekar, Dattatraya P.; Vaughan, Brian A. M.; Proud, William G.

    2007-06-01

    Aluminum oxynitride (AlON) is a transparent, polycrystalline cubic spinel. The results of investigations^1-4 on shock response of AlON permit determination of the equation of state, and shear strength retained under shock compression. Whereas the values of the HEL of AlON holds no surprises, the inelastic response of AlON reported in Ref. 1-4 differ significantly and is stress dependent. The results of Ref. 1-2 show that AlON retains a shear strength of 3 to 4 GPa when shocked up to around 20 GPa, but the results of Ref, 3-4 seem to suggest a possible loss of shear strength when shocked to 16 GPa and beyond. Our analysis examines the observed differences in the inelastic response of AlON reported in these four studies . 1. J. U. Cazamias, et. al., in Fundamental Issues and Applications of Shock-Wave and High Strain Rate Phenomena, Eds. Staudhammer, Murr, and Meyers, Elsevier, NY, 173 (2001). 2. B. A. M. Vaughn, et.al., Shock Physics, Cavendish Laboratory, Report SP/1092 (2001) 3. T. Sekine, et.al., J. Appl. Phys. 94, 4803 (2003). 4. T. F. Thornhill, et.al., Shock Compression of Matter-2005, Eds. Furnish, Elert, Russell, White, AIP, NY, 143 (2006).

  1. Minimum cut and shear bands

    NASA Astrophysics Data System (ADS)

    Tordesillas, Antoinette; Cramer, Andrew; Walker, David M.

    2013-06-01

    We explore the efficacy of network optimisation theory for minimum cut to quantify the evolution of granular fabric and its functionality as a transmission medium in deforming dense granular media. Our focus here is on force transmission in a sheared assembly of polydisperse particles, in a biaxial compression test under constant confining pressure. The granular fabric is examined with respect to the material's force-bearing contact network over that regime when the material has reached its residual strength, and is deforming under a near constant volume in the presence of a fully developed shear band. The structural evolution of the fabric is quantitatively characterized using a representative weighted-directed network that is similarly evolving as the sample deforms. The edges or links, representing the interparticle contacts, are each weighted by the capacity of the contact to transmit force: a scalar that depends solely on the relative motion of the contacting grains. In the large strain failure regime, the minimum cut which represents the bottleneck in force transmission is found to lie in the persistent shear band. This study paves the way for the future analysis of flows and force transmission through an evolving contact network and, in turn, the characterisation of the relationship between the material's contact topology and its capacity to transmit forces through its contact network.

  2. Shearing stability of lubricants

    NASA Technical Reports Server (NTRS)

    Shiba, Y.; Gijyutsu, G.

    1984-01-01

    Shearing stabilities of lubricating oils containing a high mol. wt. polymer as a viscosity index improver were studied by use of ultrasound. The oils were degraded by cavitation and the degradation generally followed first order kinetics with the rate of degradation increasing with the intensity of the ultrasonic irradiation and the cumulative energy applied. The shear stability was mainly affected by the mol. wt. of the polymer additive and could be determined in a short time by mechanical shearing with ultrasound.

  3. The effect of shearing rate and slope angle on the simple shear response of marine clays

    NASA Astrophysics Data System (ADS)

    Biscontin, G.; Rutherford, C.

    2010-12-01

    The response of submarine slopes to seismic or storm loading has become an important element in the risk assessment for offshore structures and local tsunami hazard. Evaluation of submarine slope stability requires characterization of soil behavior and relies on the selection of appropriate parameter values. Although the traditional simple shear device has been used to investigate cyclic loading effects on marine clay, it does not allow for complex loading conditions which often contribute to the failure on submarine slopes. Understanding the interaction between the initial shear stress, the slope angle, and the multi-directional shaking due to earthquakes or storm loading is an important aspect to understanding the failure mechanisms of submarine slope failures. The initial static driving force on the slope is combined with the dynamic loading by storms and earthquakes to create complex loading paths. Therefore, the ability to apply complex stress or strain paths is important to fully study the shear response of marine clays on submarine slopes. A new multi-directional simple shear device developed at Texas A&M University allows loading along three independent axes, two perpendicular horizontal directions to allow any stress or strain paths in the horizontal plane, and a third in the vertical direction. This device is used to investigate the response of Gulf of Mexico marine deposits to different loading conditions. To study the effect of slope angle on the shear response of the soil, samples are subjected to a shear stress during consolidation, Kα consolidation. One-dimensional monotonic and cyclic shearing of Ko consolidated specimens is used to simulate level ground conditions, whereas sloping surfaces were simulated using Kα consolidation for both monotonic and cyclic tests. The effects of shearing rate on the soil response are investigated using strain controlled tests at varying frequencies.

  4. Enhancing Shear Thickening

    NASA Astrophysics Data System (ADS)

    Madraki, Fatemeh; Hormozi, Sarah; Ovarlez, Guillaume; Guazzelli, Elisabeth; Pouliquen, Olivier

    2016-11-01

    A cornstarch suspension is the quintessential particulate system that exhibits shear thickening. By adding large non-Brownian spheres to a cornstarch suspension, we show that shear thickening can be significantly enhanced. More precisely, the shear thickening transition is found to be increasingly shifted to lower critical shear rates. This enhancement is found to be mainly controlled by the concentration of the large particles. ANR(ANR-13-IS09-0005-01), ANR(ANR-11-LABX-0092), MIDEX (ANR-11-IDEX-0001-02), NSF (CBET-1554044-CAREER).

  5. Shear Thinning in Xenon

    NASA Technical Reports Server (NTRS)

    Bergm Robert F.; Moldover, Michael R.; Yao, Minwu; Zimmerli, Gregory A.

    2009-01-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids such as molten plastics or ketchup, near the critical point of xenon. The data span a wide range of dimensionless shear rate: the product of the shear rate and the relaxation time of critical fluctuations was greater than 0.001 and was less than 700. As predicted by theory, shear thinning occurred when this product was greater than 1. The measurements were conducted aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity.

  6. Atomic mechanism of flow in simple liquids under shear

    SciTech Connect

    Iwashita, T.; Egami, Takeshi

    2012-01-01

    Atomic correlations in a simple liquid in steady-state flow under shear stress are studied by molecular dynamics simulation. The local atomic level strain is determined through the anisotropic pair-density function. The atomic level strain has a limited spatial extension whose range is dependent on the strain rate and extrapolates to zero at the critical strain rate. A failure event is identified with altering the local topology of atomic connectivity by exchanging bonds among neighboring atoms.

  7. An Experimental Investigation into Failure and Localization Phenomena in the Extension to Shear Fracture Transition in Rock

    NASA Astrophysics Data System (ADS)

    Choens, R. C., II; Chester, F. M.; Bauer, S. J.; Flint, G. M.

    2014-12-01

    Fluid-pressure assisted fracturing can produce mesh and other large, interconnected and complex networks consisting of both extension and shear fractures in various metamorphic, magmatic and tectonic systems. Presently, rock failure criteria for tensile and low-mean compressive stress conditions is poorly defined, although there is accumulating evidence that the transition from extension to shear fracture with increasing mean stress is continuous. We report on the results of experiments designed to document failure criteria, fracture mode, and localization phenomena for several rock types (sandstone, limestone, chalk and marble). Experiments were conducted in triaxial extension using a necked (dogbone) geometry to achieve mixed tension and compression stress states with local component-strain measurements in the failure region. The failure envelope for all rock types is similar, but are poorly described using Griffith or modified Griffith (Coulomb or other) failure criteria. Notably, the mode of fracture changes systematically from pure extension to shear with increase in compressive mean stress and display a continuous change in fracture orientation with respect to principal stress axes. Differential stress and inelastic strain show a systematic increase with increasing mean stress, whereas the axial stress decreases before increasing with increasing mean stress. The stress and strain data are used to analyze elastic and plastic strains leading to failure and compare the experimental results to predictions for localization using constitutive models incorporating on bifurcation theory. Although models are able to describe the stability behavior and onset of localization qualitatively, the models are unable to predict fracture type or orientation. Constitutive models using single or multiple yield surfaces are unable to predict the experimental results, reflecting the difficulty in capturing the changing micromechanisms from extension to shear failure. Sandia

  8. Pure shear and simple shear calcite textures. Comparison of experimental, theoretical and natural data

    USGS Publications Warehouse

    Wenk, H.-R.; Takeshita, T.; Bechler, E.; Erskine, B.G.; Matthies, S.

    1987-01-01

    The pattern of lattice preferred orientation (texture) in deformed rocks is an expression of the strain path and the acting deformation mechanisms. A first indication about the strain path is given by the symmetry of pole figures: coaxial deformation produces orthorhombic pole figures, while non-coaxial deformation yields monoclinic or triclinic pole figures. More quantitative information about the strain history can be obtained by comparing natural textures with experimental ones and with theoretical models. For this comparison, a representation in the sensitive three-dimensional orientation distribution space is extremely important and efforts are made to explain this concept. We have been investigating differences between pure shear and simple shear deformation incarbonate rocks and have found considerable agreement between textures produced in plane strain experiments and predictions based on the Taylor model. We were able to simulate the observed changes with strain history (coaxial vs non-coaxial) and the profound texture transition which occurs with increasing temperature. Two natural calcite textures were then selected which we interpreted by comparing them with the experimental and theoretical results. A marble from the Santa Rosa mylonite zone in southern California displays orthorhombic pole figures with patterns consistent with low temperature deformation in pure shear. A limestone from the Tanque Verde detachment fault in Arizona has a monoclinic fabric from which we can interpret that 60% of the deformation occurred by simple shear. ?? 1987.

  9. Self-organized criticality of plastic shear bands in rocks

    SciTech Connect

    Poliakov, A.N.B.; Herrmann, H.J.

    1994-09-01

    We show that the shear bands that appear during the pure shear numerical simulations of rocks with a non-associated plastic flow rule form fractal networks. The system drives spontaneously into a state in which the length distribution of shear bands follows a power law (self-organized criticality) with exponent 2.07. The distribution of local gradients in deviatoric strain rate has different scaling exponents for each moment, in particular the geometrical fractal dimension is 1.7. Samples of granodiorite sheared under high confining pressure from the Pyrenees are analyzed and their properties compared with the numerical results.

  10. Rheological Transition of Sheared Frictionless Disks with Rotational Motion

    NASA Astrophysics Data System (ADS)

    Olsson, Peter; Teitel, Steve

    We consider the massive Durian bubble model for sheared bidisperse disks, but modified so as to include the rotational motion of particles due to dissipative collisional torques. In such a model, particles possess a viscous tangential dissipation, though no elastic tangential friction. As the packing fraction is increased, we find a discontinuous transition from Bagnoldian to Newtonian rheology, at a packing fraction that lies below the jamming transition. At this transition we find a region of coexisting shear bands of Bagnoldian and Newtonian rheology, and suggestions of discontinuous shear thickening upon increasing the shear strain rate. This work has been supported by NSF Grant No. DMR-1205800.

  11. Vibration analysis by digital speckle pattern shearing interferometry

    NASA Astrophysics Data System (ADS)

    Steinchen, Wolfgang; Yang, Lian Xiang; Kupfer, Gerhard; Maeckel, Peter; Thiemich, Anderas

    1997-09-01

    Digital speckle pattern shearing interferometry is described as a robust measuring method due to its simple optical setup and the insensitivity against ambient noise. It has been sued in industry for nondestructive testing and strain measuring. This paper explores the possibilities for vibration analysis using digital speckle pattern shearing interferometry. The measuring device performing both time- average and stroboscopic methods is described. The time average digital speckle patten shearing interferometry in conjunction with the stroboscopic technique is suited well for both qualitative and quantitative vibration analyses. The determination of dynamic deformation and strain fields form the phase map of shearogram is demonstrated, and some preliminary results are shown.

  12. Instrumented Bolts Would Measure Shear Forces In Joints

    NASA Technical Reports Server (NTRS)

    Sawyer, James Wayne; Mcwithey, Robert R.

    1994-01-01

    Bolts instrumented with strain gauges used to measure shear forces. Bolts installed in multiple-bolt lap joints to obtain data on distribution of stresses and deformations in and around joints. Strain gauges indicate share of applied load borne by each individual bolt. In original application, bolted panels made of advanced refractory composite materials designed to withstand use at temperatures up to 4,000 degrees F. Also applicable to other joint materials and measurement of shear loads in other connections such as, shear loads on shafts in pulleys or gears.

  13. Experimental shear zones and magnetic fabrics

    NASA Astrophysics Data System (ADS)

    Borradaile, G. J.; Alford, C.

    Magnetic fabric analysis has been used as a non-destructive means of detecting petrofabric development during experimentally produced multi-stage, transpressive deformations in 'shear zones'. Artificial, magnetic-bearing silicate sands and calcite sands, bonded with Portland cement, were deformed at room temperature and at 100 and 150 MPa confining pressure. The slip-rate for the shear zone walls was 0.73 × 10 -4 mm s -1 and the maximum shear strains were about 0.38, across zones that were initially about 5 mm thick. The magnetic fabric ellipsoid rapidly spins so that the maximum and intermediate susceptibilities tend to become parallel to the shear zone walls throughout the sheared zone. The ellipsoid becomes increasingly oblate with progressive deformation. However, in all cases, the anisotropy is strongly influenced by the pre-deformation magnetic fabric. During deformation the cement gel collapses so that cataclasis of the mineral grains is suppressed. In the quartz-feldspar aggregates the magnetite's alignment is accommodated by particulate flow (intergranular displacements) of the grains. In the calcite aggregates stronger magnetic fabrics develop due to plastic deformation of calcite grains as well as particulate flow. However, the calcite grain fabrics are somewhat linear ( L ≥ S) whereas the magnetic fabrics are planar ( S > L). The preferred dimensional orientations of magnetite are weak and it is possible that the magnetic fabrics are due to intragranular rearrangements of magnetic domains. The transpressive shear zones are much more efficient than axial-symmetric shortening in the increase of anisotropy of the magnetic fabrics, especially in the case of the calcite aggregates. This suggests that flow laws derived for axial-symmetric shortening experiments may not be appropriate for non-coaxial strain histories such as those of shear zones.

  14. Colloidal polycrystalline monolayers under oscillatory shear

    NASA Astrophysics Data System (ADS)

    Buttinoni, Ivo; Steinacher, Mathias; Spanke, Hendrik Th.; Pokki, Juho; Bahmann, Severin; Nelson, Bradley; Foffi, Giuseppe; Isa, Lucio

    2017-01-01

    In this paper we probe the structural response to oscillatory shear deformations of polycrystalline monolayers of soft repulsive colloids with varying area fraction over a broad range of frequencies and amplitudes. The particles are confined at a fluid interface, sheared using a magnetic microdisk, and imaged through optical microscopy. The structural and mechanical response of soft materials is highly dependent on their microstructure. If crystals are well understood and deform through the creation and mobilization of specific defects, the situation is much more complex for disordered jammed materials, where identifying structural motifs defining plastically rearranging regions remains an elusive task. Our materials fall between these two classes and allow the identification of clear pathways for structural evolution. In particular, we demonstrate that large enough strains are able to fluidize the system, identifying critical strains that fulfill a local Lindemann criterion. Conversely, smaller strains lead to localized and erratic irreversible particle rearrangements due to the motion of structural defects. In this regime, oscillatory shear promotes defect annealing and leads to the growth of large crystalline domains. Numerical simulations help identify the population of rearranging particles with those exhibiting the largest deviatoric stresses and indicate that structural evolution proceeds towards the minimization of the stress stored in the system. The particles showing high deviatoric stresses are localized around grain boundaries and defects, providing a simple criterion to spot regions likely to rearrange plastically under oscillatory shear.

  15. Verification and application of the Iosipescu shear test method

    NASA Technical Reports Server (NTRS)

    Walrath, D. E.; Adams, D. F.

    1984-01-01

    Finite element models were used to study the effects of notch angle variations on the stress state within an Iosipescu shear test speciment. These analytical results were also studied to determine the feasibility of using strain gage rosettes and a modified extensometer to measure shear strains in this test specimen. Analytical results indicate that notch angle variations produced only small differences in simulated shear properties. Both strain gage rosettes and the modified extensometer were shown to be feasible shear strain transducers for the test method. The Iosipoescu shear test fixture was redesigned to incorporate several improvements. These improvements include accommodation of a 50 percent larger specimen for easier measurement of shear train, a clamping mechanism to relax strict tolerances on specimen width, and a self contained alignment tool for use during specimen installation. A set of in-plane and interlaminar shear properties were measured for three graphite fabric/epoxy composites of T300/934 composite material. The three weave patterns were Oxford, 5-harness satin, and 8-harness satin.

  16. Shear elasticity and strength of the liquid structure by an example of diethylene glycol

    NASA Astrophysics Data System (ADS)

    Badmaev, B. B.; Dembelova, T. S.; Makarova, D. N.; Gulgenov, Ch. Zh.

    2017-01-01

    Experimental data for the dependence of the low-frequency (105 Hz) shear elasticity of diethylene glycol on the shear deformation angle have been presented. At small shear angles, the range of linear elasticity has been observed, which narrows with rising strain. The effective viscosity behaves similarly.

  17. Enhancing Rotational Diffusion Using Oscillatory Shear

    NASA Astrophysics Data System (ADS)

    Leahy, Brian D.; Cheng, Xiang; Ong, Desmond C.; Liddell-Watson, Chekesha; Cohen, Itai

    2013-05-01

    Taylor dispersion—shear-induced enhancement of translational diffusion—is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle’s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids.

  18. Compressible homogeneous shear: Simulation and modeling

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.

    1992-01-01

    Compressibility effects were studied on turbulence by direct numerical simulation of homogeneous shear flow. A primary observation is that the growth of the turbulent kinetic energy decreases with increasing turbulent Mach number. The sinks provided by compressible dissipation and the pressure dilatation, along with reduced Reynolds shear stress, are shown to contribute to the reduced growth of kinetic energy. Models are proposed for these dilatational terms and verified by direct comparison with the simulations. The differences between the incompressible and compressible fields are brought out by the examination of spectra, statistical moments, and structure of the rate of strain tensor.

  19. Shear flexibility for structures

    NASA Technical Reports Server (NTRS)

    Stangeland, Maynard L. (Inventor)

    1976-01-01

    This device comprises a flexible sheet member having cross convolutions oriented 45.degree. to the shear vector with spherical reliefs at the convolution junctions. The spherical reliefs are essential to the shear flexibility by interrupting the principal stress lines that act along the ridges of the convolutions. The spherical reliefs provide convolutions in both directions in the plane of the cross-convolution ridges.

  20. Shear flexibility for structures

    NASA Technical Reports Server (NTRS)

    Stangeland, Maynard L. (Inventor)

    1977-01-01

    This device comprises a flexible sheet member having cross convolutions oriented 45.degree. to the shear vector with spherical reliefs at the convolution junctions. The spherical reliefs are essential to the shear flexibility by interrupting the principal stress lines that act along the ridges of the convolutions. The spherical reliefs provide convolutions in both directions in the plane of the cross-convolution ridges.

  1. Attenuated Escherichia coli strains expressing the colonization factor antigen I (CFA/I) and a detoxified heat-labile enterotoxin (LThK63) enhance clearance of ETEC from the lungs of mice and protect mice from intestinal ETEC colonization and LT-induced fluid accumulation.

    PubMed

    Byrd, Wyatt; Boedeker, Edgar C

    2013-03-15

    Although enterotoxigenic Escherichia coli (ETEC) infections are important causes of infantile and traveler's diarrhea there is no licensed vaccine available for those at-risk. Our goal is to develop a safe, live attenuated ETEC vaccine. We used an attenuated E. coli strain (O157:H7, Δ-intimin, Stx1-neg, Stx2-neg) as a vector (ZCR533) to prepare two vaccine strains, one strain expressing colonization factor antigen I (ZCR533-CFA/I) and one strain expressing CFA/I and a detoxified heat-labile enterotoxin (ZCR533-CFA/I+LThK63) to deliver ETEC antigens to mucosal sites in BALB/c mice. Following intranasal and intragastric immunization with the vaccine strains, serum IgG and IgA antibodies were measured to the CFA/I antigen, however, only serum IgG antibodies were detected to the heat-labile enterotoxin. Intranasal administration of the vaccine strains induced respiratory and intestinal antibody responses to the CFA/I and LT antigens, while intragastric administration induced only intestinal antibody responses with no respiratory antibodies detected to the CFA/I and LT antigens. Mice immunized intranasally with the vaccine strains showed enhanced clearance of wild-type (wt) ETEC bacteria from the lungs. Mice immunized intranasally and intragastrically with the vaccine strains were protected from intestinal colonization following oral challenge with ETEC wt bacteria. Mice immunized intragastrically with the ZCR533-CFA/I+LThK63 vaccine strain had less fluid accumulate in their intestine following challenge with ETEC wt bacteria or with purified LT as compared to the sham mice indicating that the immunized mice were protected from LT-induced intestinal fluid accumulation. Thus, mice intragastrically immunized with the ZCR533-CFA/I+LThK63 vaccine strain were able to effectively neutralize the activity of the LT enterotoxin. However, no difference in intestinal fluid accumulation was detected in the mice immunized intranasally with the vaccine strain as compared to the sham

  2. Shear Strains, Strain Rates and Temperature Changes in Adiabatic Shear Bands

    DTIC Science & Technology

    1980-05-01

    threshold stress of alpha iron is 0.3 GPa• it is clear that the intensity of the stress waves transmitted to the sample through the buffer and the...the tempering temperature to transform the microstructure to alpha iron (ferrite) and Fe3 C in any short-time anneal. 1 5 Presumably, heating to just

  3. Numerical modeling of shear band formation in PBX-9501

    SciTech Connect

    Dey, T.N.; Kamm, J.R.

    1998-12-31

    Adiabatic shear bands in explosives may be a source of ignition and lead to detonation. Three possible mechanisms leading to shear banding are (1) thermal softening, (2) mechanical softening due to microcracking, and (3) quasi-granular constitutive response. The latter two mechanisms can lead to shear band formation in PBXs at nominal strains much smaller than those required for the thermal softening mechanism. The authors study formation of shear bands with models including the latter two mechanisms under unconfined compression. Statistical variation of numerical results is similar to that observed in some experiments. However, the commonly used methods of calibrating constitutive models can be misleading because of effects due to shear band formation. One model currently being used for studies of shear band formation and ignition in PBX 9501 was calibrated in this way and may need re-examination.

  4. Study of shear banding in simulated amorphous solids in the context of shear transformation zone theory

    NASA Astrophysics Data System (ADS)

    Alix-Williams, Darius; Falk, Michael L.

    2015-03-01

    We examine the general framework of the effective temperature formalism of the shear transformation zone (STZ) theory of plasticity via molecular dynamics simulation of two distinct amorphous systems - Silicon and Cu-Zr. In both systems strain localization is observed during simple shear loading. The shear bands differ in the rate of broadening and the sharpness of the interface between the flowing and jammed material. We examine both systems for scaling expected to arise between effective temperature and shear rate. For each system a local dimensionless effective temperature that quantifies structural disorder is extracted by assuming a linear relation to the local potential energy per atom. Research possible through support from National Science Foundation Grant No. 0801471.

  5. Behavior of Rapidly Sheared Bubble Suspensions

    NASA Technical Reports Server (NTRS)

    Sangani, A. S.; Kushch, V. I.; Hoffmann, M.; Nahra, H.; Koch, D. L.; Tsang, Y.

    2002-01-01

    An experiment to be carried out aboard the International Space Station is described. A suspension consisting of millimeter-sized bubbles in water containing some dissolved salt, which prevents bubbles from coalescing, will be sheared in a Couette cylindrical cell. Rotation of the outer cylinder will produce centrifugal force which will tend to accumulate the bubbles near the inner wall. The shearing will enhance collisions among bubbles creating thereby bubble phase pressure that will resist the tendency of the bubbles to accumulate near the inner wall. The bubble volume fraction and velocity profiles will be measured and compared with the theoretical predictions. Ground-based research on measurement of bubble phase properties and flow in vertical channel are described.

  6. Geometric aspects of shear jamming induced by deformation of frictionless sphere packings

    NASA Astrophysics Data System (ADS)

    Vinutha, H. A.; Sastry, Srikanth

    2016-09-01

    It has recently been demonstrated that shear deformation of frictionless sphere packings leads to structures that will undergo jamming in the presence of friction, at densities well below the isotropic jamming point {φj}≈ 0.64 , and at high enough strains. Here, we show that the geometric features induced by strain are robust with respect to finite size effects, and include the feature of hyperuniformity, previously studied in the context of jamming, and more recently in driven systems. We study the approach to jamming as strain is increased, by evolving frictionless sheared configurations through frictional dynamics, and thereby identify a critical, or jamming, strain for each density, for a chosen value of the coefficient of friction. In the presence of friction above a certain strain value the sheared frictionless packings begin to develop finite stresses, which marks the onset of shear jamming. At a higher strain value, the shear stress reaches a saturation value after rising rapidly above the onset of shear jamming, which permits identification of the shear jamming transition. The onset of shear jamming and shear jamming are found to occur when the coordination number Z reaches values of Z  =  3 and Z  =  4 respectively. By considering percolation probabilities for the contact network, clusters of four coordinated and six coordinated spheres, we show that the percolation of four coordinated spheres corresponds to the onset of shear jamming behaviour, whereas the percolation of six coordinated spheres corresponds to shear jamming, for the chosen friction coefficients. At the onset of shear jamming, the force distribution begins to develop a peak at finite value and the force network is anisotropic and heterogeneous. And at the shear jamming transition, the force distribution has a well defined peak close to < f> and the force network is less anisotropic and homogeneous. We briefly discuss mechanical aspects of the jamming behaviour by

  7. Shear-induced conformation change in α-crystalline nylon6

    SciTech Connect

    Arabnejad, Saeid; Manzhos, Sergei; Shim, V. P. W.; He, Chaobin

    2014-12-01

    A study of shear deformation of α-crystalline nylon6 is undertaken, using dispersion-corrected density functional theory. The shear stress-strain relationship and shear strength for interlayer shear deformation are computed. A conformation change induced by shear is identified along twinning deformation, whereby the conformation of chains, specifically the location of non-H-bonded hydrogen atoms, changes continuously. This paves a way for the modulation of properties of this group of materials by small shear deformation, if the non-H-bonded hydrogens are chemically substituted to form non-equivalent conformations when deformed.

  8. Monitoring of thermal therapy based on shear modulus changes: II. Shear wave imaging of thermal lesions.

    PubMed

    Arnal, Bastien; Pernot, Mathieu; Tanter, Mickael

    2011-08-01

    The clinical applicability of high-intensity focused ultrasound (HIFU) for noninvasive therapy is currently hampered by the lack of robust and real-time monitoring of tissue damage during treatment. The goal of this study is to show that the estimation of local tissue elasticity from shear wave imaging (SWI) can lead to a precise mapping of the lesion. HIFU treatment and monitoring were respectively performed using a confocal setup consisting of a 2.5-MHz single element transducer focused at 34 mm on ex vivo samples and an 8-MHz ultrasound diagnostic probe. Ultrasound-based strain imaging was combined with shear wave imaging on the same device. The SWI sequences consisted of 2 successive shear waves induced at different lateral positions. Each wave was created with pushing beams of 100 μs at 3 depths. The shear wave propagation was acquired at 17,000 frames/s, from which the elasticity map was recovered. HIFU sonications were interleaved with fast imaging acquisitions, allowing a duty cycle of more than 90%. Thus, elasticity and strain mapping was achieved every 3 s, leading to real-time monitoring of the treatment. When thermal damage occurs, tissue stiffness was found to increase up to 4-fold and strain imaging showed strong shrinkages that blur the temperature information. We show that strain imaging elastograms are not easy to interpret for accurate lesion characterization, but SWI provides a quantitative mapping of the thermal lesion. Moreover, the concept of shear wave thermometry (SWT) developed in the companion paper allows mapping temperature with the same method. Combined SWT and shear wave imaging can map the lesion stiffening and temperature outside the lesion, which could be used to predict the eventual lesion growth by thermal dose calculation. Finally, SWI is shown to be robust to motion and reliable in vivo on sheep muscle.

  9. Fighting wind shear

    NASA Astrophysics Data System (ADS)

    A “coherent and sustained program” of improved radar detection of weather, pilot training, and better communication between pilots and air controllers can greatly reduce the risk of wind shear to airplanes landing or taking off, according to a National Research Council (NRC) committee.Wind shear, characterized by winds rapidly changing direction and speed, has caused several serious accidents in recent years; among the most notable is the July 8, 1982, crash of a Pan American World Airlines jetliner at the New Orleans International Airport, which killed 153 persons. Following the accident, Congress directed the Federal Aviation Administration (FAA) to contract with the NRC to study wind shear.

  10. Predicting km-scale shear zone formation

    NASA Astrophysics Data System (ADS)

    Gerbi, Christopher; Culshaw, Nicholas; Shulman, Deborah; Foley, Maura; Marsh, Jeffrey

    2015-04-01

    Because km-scale shear zones play a first-order role in lithospheric kinematics, accurate conceptual and numerical models of orogenic development require predicting when and where they form. Although a strain-based algorithm in the upper crust for weakening due to faulting appears to succeed (e.g., Koons et al., 2010, doi:10.1029/2009TC002463), a comparable general rule for the viscous crust remains unestablished. Here we consider two aspects of the geological argument for a similar algorithm in the viscous regime, namely (1) whether predicting km-scale shear zone development based on a single parameter (such as strain or shear heating) is reasonable; and (2) whether lithologic variability inherent in most orogenic systems precludes a simple predictive rule. A review of tectonically significant shear zones worldwide and more detailed investigations in the Central Gneiss belt of the Ontario segment of the Grenville Province reveals that most km-scale shear zones occur at lithological boundaries and involve mass transfer, but have fairly little else in common. As examples, the relatively flat-lying Twelve Mile Bay shear zone in the western Central Gneiss belt bounds the Parry Sound domain and is likely the product of both localized anatexis and later retrograde hydration with attendant metamorphism. Moderately dipping shear zones in granitoids of the Grenville Front Tectonic Zone apparently resulted from cooperation among several complementary microstructural processes, such as grain size reduction, enhanced diffusion, and a small degree of metamorphic reaction. Localization into shear zones requires the operation of some spatially restricted processes such as stress concentration, metamorphism/fluid access, textural evolution, and thermal perturbation. All of these could be due in part to strain, but not necessarily linearly related to strain. Stress concentrations, such as those that form at rheological boundaries, may be sufficient to nucleate high strain

  11. In situ observation of shear-driven amorphization in silicon crystals

    SciTech Connect

    He, Yang; Zhong, Li; Fan, Feifei; Wang, Chongmin; Zhu, Ting; Mao, Scott X.

    2016-09-19

    Amorphous materials have attracted great interest in the scientific and technological fields. An amorphous solid usually forms under the externally driven conditions of melt-quenching, irradiation and severe mechanical deformation. However, its dynamic formation process remains elusive. Here we report the in situ atomic-scale observation of dynamic amorphization processes during mechanical straining of nanoscale silicon crystals by high resolution transmission electron microscopy (HRTEM). We observe the shear-driven amorphization (SDA) occurring in a dominant shear band. The SDA involves a sequence of processes starting with the shear-induced diamond-cubic to diamond-hexagonal phase transition that is followed by dislocation nucleation and accumulation in the newly formed phase, leading to the formation of amorphous silicon. The SDA formation through diamond-hexagonal phase is rationalized by its structural conformity with the order in the paracrystalline amorphous silicon, which maybe widely applied to diamond-cubic materials. Besides, the activation of SDA is orientation-dependent through the competition between full dislocation nucleation and partial gliding.

  12. Softening by void nucleation and growth in tension and shear

    NASA Astrophysics Data System (ADS)

    Fleck, N. A.; Hutchinson, J. W.; Tvergaard, V.

    THE EFFECT of void nucleation and growth on overall stress-strain behavior is investigated for solids undergoing plastic straining under axisymmetric and shearing conditions. Contact between the void surface and the nucleating particle is taken into account and is found to be important under shear and under axisymmetric straining when the stress triaxiality is low. The notion of the macroscopic stress drop due to nucleation of a void is defined and computed, both for isolated voids and for voids in periodic arrays. The stress drop for an isolated void in an infinite matrix can be used to predict softening due to void nucleation when the void concentration is dilute. Interaction between voids in shear during nucleation is analysed numerically and softening effects are calculated along with large strain aspects of void deformation during subsequent growth.

  13. Creep Behavior in Interlaminar Shear of a SiC/SiC Ceramic Composite with a Self-healing Matrix

    NASA Astrophysics Data System (ADS)

    Ruggles-Wrenn, M. B.; Pope, M. T.

    2014-02-01

    Creep behavior in interlaminar shear of a non-oxide ceramic composite with a multilayered matrix was investigated at 1,200 °C in laboratory air and in steam environment. The composite was produced via chemical vapor infiltration (CVI). The composite had an oxidation inhibited matrix, which consisted of alternating layers of silicon carbide and boron carbide and was reinforced with laminated Hi-Nicalon™ fibers woven in a five-harness-satin weave. Fiber preforms had pyrolytic carbon fiber coating with boron carbide overlay applied. The interlaminar shear properties were measured. The creep behavior was examined for interlaminar shear stresses in the 16-22 MPa range. Primary and secondary creep regimes were observed in all tests conducted in air and in steam. In air and in steam, creep run-out defined as 100 h at creep stress was achieved at 16 MPa. Larger creep strains were accumulated in steam. However, creep strain rates and creep lifetimes were only moderately affected by the presence of steam. The retained properties of all specimens that achieved run-out were characterized. Composite microstructure, as well as damage and failure mechanisms were investigated.

  14. Creep Cavitation in Lower Crustal Shear Zones

    NASA Astrophysics Data System (ADS)

    Menegon, L. M.; Fusseis, F.; Stunitz, H. H.

    2014-12-01

    Shear zones channelize fluid flow in the Earth's crust. A number of mechanisms have been suggested to control fluid migration pathways in upper- and mid-crustal shear zones, amongst them creep cavitation, which is well-known from deforming metals and ceramics. However, little is known on deep crustal fluid migration and on how fluids are channelized and distributed in actively deforming lower crustal shear zones.This study investigates the deformation mechanisms, fluid-rock interaction, and development of porosity in a monzonite ultramylonite from Lofoten, northern Norway. The rock was deformed under lower crustal conditions (T=700-730° C, P=0.65-0.8 GPa). The ultramylonite consists of feldspathic layers and of domains of amphibole + quartz + calcite, which represent the products of hydration reactions of magmatic clinopyroxene. The average grain size in both domains is <25 μm. Microstructural observations and EBSD analysis are consistent with diffusion creep as the dominant deformation mechanism in both domains. In feldspathic layers, isolated quartz grains without a crystallographic preferred orientation occur along C'-type shear bands. All microstructures suggest that quartz precipitated in cavities. The orientation of such quartz bands overlaps with the preferred orientation of pores in the ultramylonites, as evidenced from synchrotron X-ray microtomography. Such C'-type shear bands are interpreted as high-strain cavitation bands resulting from diffusion creep deformation associated with grain boundary sliding. Mass-balance calculation indicates a 2% volume increase during the protolith-ultramylonite transformation. The volume increase is consistent with a synkinematic formation of cavities. Thus, this study presents clear evidence that high-strain cavitation bands may control deep crustal porosity and fluid flow. Nucleation of new phases in cavitation bands inhibits grain growth and enhances the activity of grain-size sensitive creep, thereby maintaining

  15. Orientation of shear bands for a rigid plastic frictional material in simple shear

    NASA Astrophysics Data System (ADS)

    Papon, A.; Liu, X.; Muhlhaus, H.; Gross, L.

    2012-10-01

    The orientation of shear bands is investigated analytically and numerically for a rigid plastic frictional material in simple shear. The model is based on co-axial flow rule, incompressible deformations and a friction factor which depends on the strain history. Since we are focussing on geological timescales, the influence of elasticity is neglected. Firstly, a linear stability analysis is performed confirming Rice's 1976 assertion [The localization of plastic deformation, in Proceedings of the 14th International Congress on Theoretical and Applied Mechanics, W.T. Koiter, ed., North Holland, Amsterdam, 1976, p.207] that, in the hardening regime, bifurcation is possible at every stage. Orientation of shear bands against the less compressive principal axis lies anywhere between the Roscoe and Coulomb angles, namely between π/4+ψ/2 and π/4 + ϕ/2, where ϕ and ψ are the mobilised angles of friction and dilatancy, respectively (in our study, we assume ψ = 0). The linear stability analysis leaves open the question of which orientation will actually emerge in a boundary value problem that consider all nonlinearities. This question is addressed in a finite element study of simple shear with periodic boundary conditions in the shear direction. Our simulations show temporary inclined shear bands in the hardening regime followed by a persistent horizontal shear band. A sensitivity study with respect to geometric and constitutive parameters indicates that the height of the sample controls the orientation of the inclined shear bands. Finally, we extend our analytical and numerical studies to Cosserat plasticity. It turns out that inclined shear bands are suppressed for large values of the internal length R (narrow bands). The case of a standard continuum is gradually recovered for small R (wide bands).

  16. Transition of dislocation glide to shear transformation in shocked tantalum

    DOE PAGES

    Hsiung, Luke L.; Campbell, Geoffrey H.

    2017-02-28

    A TEM study of pure tantalum and tantalum-tungsten alloys explosively shocked at a peak pressure of 30 GPa (strain rate: ~1 x 104 sec-1) is presented. While no ω (hexagonal) phase was found in shock-recovered pure Ta and Ta-5W that contain mainly a low-energy cellular dislocation structure, shock-induced ω phase was found to form in Ta-10W that contains evenly distributed dislocations with a stored dislocation density higher than 1 x 1012 cm-2. The TEM results clearly reveal that shock-induced α (bcc) → ω (hexagonal) shear transformation occurs when dynamic recovery reactions which lead the formation low-energy cellular dislocation structure becomemore » largely suppressed in Ta-10W shocked under dynamic (i.e., high strain-rate and high-pressure) conditions. A novel dislocation-based mechanism is proposed to rationalize the transition of dislocation glide to twinning and/or shear transformation in shock-deformed tantalum. Lastly, twinning and/or shear transformation take place as an alternative deformation mechanism to accommodate high-strain-rate straining when the shear stress required for dislocation multiplication exceeds the threshold shear stresses for twinning and/or shear transformation.« less

  17. Analysis of serrations and shear bands fractality in UFGs

    NASA Astrophysics Data System (ADS)

    Iliopoulos, Aggelos C.; Nikolaidis, Nikolaos S.; Aifantis, Elias C.

    2015-05-01

    Tsallis nonextensive statistics is employed to characterize serrated flow, as well as multiple shear band formation in ultrafine grain (UFG) size materials. Two such UFG materials, a bi-modal Al-Mg alloy and a Fe-Cu alloy, were chosen. In the first case, at low strain rates serrated flow emerges as recorded in the stress-strain graphs, whereas at high strain rates, extensive shear banding occurs. In the second case, multiple shear banding is the only mechanism for plastic deformation, but serrations in the stress-strain graph are not recorded. The analysis aims at the estimation of Tsallis entropic index qstat (stat denotes stationary state), as well as the estimation of fractal dimension. The results reveal that the distributions of serrations and shear bands do not follow Gaussian statistics as implied by Boltzmann-Gibbs extensive thermodynamics, but are approximated instead by Tsallis q-Gaussian distributions, as suggested by nonextensive thermodynamics. In addition, fractal analysis of multiple shear band images reveals a (multi)fractal and hierarchical profile of the spatial arrangement of shear bands.

  18. Strain Pattern in Supercooled Liquids

    NASA Astrophysics Data System (ADS)

    Illing, Bernd; Fritschi, Sebastian; Hajnal, David; Klix, Christian; Keim, Peter; Fuchs, Matthias

    2016-11-01

    Investigations of strain correlations at the glass transition reveal unexpected phenomena. The shear strain fluctuations show an Eshelby-strain pattern [˜cos (4 θ ) /r2 ], characteristic of elastic response, even in liquids, at long times. We address this using a mode-coupling theory for the strain fluctuations in supercooled liquids and data from both video microscopy of a two-dimensional colloidal glass former and simulations of Brownian hard disks. We show that the long-ranged and long-lived strain signatures follow a scaling law valid close to the glass transition. For large enough viscosities, the Eshelby-strain pattern is visible even on time scales longer than the structural relaxation time τ and after the shear modulus has relaxed to zero.

  19. Shear-stress relaxation and ensemble transformation of shear-stress autocorrelation functions

    NASA Astrophysics Data System (ADS)

    Wittmer, J. P.; Xu, H.; Baschnagel, J.

    2015-02-01

    We revisit the relation between the shear-stress relaxation modulus G (t ) , computed at finite shear strain 0 <γ ≪1 , and the shear-stress autocorrelation functions C(t ) | γ and C(t ) | τ computed, respectively, at imposed strain γ and mean stress τ . Focusing on permanent isotropic spring networks it is shown theoretically and computationally that in general G(t ) =C (t ) | τ=C(t ) | γ+Geq for t >0 with Geq being the static equilibrium shear modulus. G (t ) and C(t ) | γ thus must become different for solids and it is impossible to obtain Geq alone from C(t ) | γ as often assumed. We comment briefly on self-assembled transient networks where Geq(f ) must vanish for a finite scission-recombination frequency f . We argue that G(t ) =C (t ) | τ=C(t ) | γ should reveal an intermediate plateau set by the shear modulus Geq(f =0 ) of the quenched network.

  20. Shear with comminution of a granular material: microscopic deformations outside the shear band.

    PubMed

    Chambon, G; Schmittbuhl, J; Corfdir, A; Vilotte, J P; Roux, S

    2003-07-01

    A correlation imaging velocimetry technique is applied to recover displacement fields in a granular material subjected to extended shear. A thick (10 cm) annular sand sample (grain size: 1 mm) is confined at constant pressure (sigma=0.5 MPa) against a rough moving wall displacing at very low speed (delta=83 microm s(-1)). Localization of the strain rapidly forms a shear band (seven particles wide) in which comminution develops. We focused on the strain field outside this shear band and observed a rich dynamics of large and intermittent mechanical clusters (up to 50 particles wide). Quantitative description of the radial velocity profile outside the shear band reveals an exponential decrease. However, a significant slip evolution of the associated characteristic length is observed, indicative of a slow decoupling between the shear band and the rest of the sample. This slow evolution is shown to be well described by power laws with the imposed slip, and has important implications for friction laws and earthquake physics.

  1. Periodic Viscous Shear Heating Instability in Fine-Grained Shear Zones: Possible Mechanism for Intermediate Depth Earthquakes and Slow Earthquakes?

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.; Hirth, G.

    2004-12-01

    Localized ductile shear zones with widths of cm to m are observed in exposures of Earth's shallow mantle (e.g., Kelemen & Dick JGR 95; Vissers et al. Tectonophys 95) and dredged from oceanic fracture zones (e.g., Jaroslow et al. Tectonophys 96). These are mylonitic (grain size 10 to 100 microns) and record mineral cooling temperatures from 1100 to 600 C. Pseudotachylites in a mantle shear zone show that shear heating temperatures can exceed the mantle solidus (e.g., Obata & Karato Tectonophys 95). Simple shear, recrystallization, and grain boundary sliding all decrease the spacing between pyroxenes, so olivine grain growth at lower stress is inhibited; thus, once formed, these shear zones do not "heal" on geological time scales. Reasoning that grain-size sensitive creep will be localized within these shear zones, rather than host rocks (grain size 1 to 10 mm), and inspired by the work of Whitehead & Gans (GJRAS 74), we thought these might undergo repeated shear heating instabilities. In this view, as elastic stress increases, the shear zone weakens via shear heating; rapid deformation of the weak shear zone releases most stored elastic stress; lower stress and strain rate coupled with diffusion of heat into host rocks leads to cooling and strengthening, after which the cycle repeats. We constructed a simple numerical model incorporating olivine flow laws for dislocation creep, diffusion creep, grain boundary sliding, and low T plasticity. We assumed that viscous deformation remains localized in shear zones, surrounded by host rocks undergoing elastic deformation. We fixed the velocity along one side of an elastic half space, and calculated stress due to elastic strain. This stress drives viscous deformation in a shear zone of specified width. Shear heating and thermal diffusion control temperature evolution in the shear zone and host rocks. A maximum of 1400 C (where substantial melting of peridotite would occur) is imposed. Grain size evolves during dislocation

  2. Shear wave elastography with a new reliability indicator.

    PubMed

    Dietrich, Christoph F; Dong, Yi

    2016-09-01

    Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral) to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s). The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed). The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France), point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany) and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France). More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies.

  3. Direct shear of olivine single crystals

    NASA Astrophysics Data System (ADS)

    Tielke, Jacob A.; Zimmerman, Mark E.; Kohlstedt, David L.

    2016-12-01

    Knowledge of the strengths of the individual dislocation slip systems in olivine is fundamental to understanding the flow behavior and the development of lattice-preferred orientation in olivine-rich rocks. The most direct measurements of the strengths of individual slip systems are from triaxial compression experiments on olivine single crystals. However, such experiments only allow for determination of flow laws for two of the four dominant slip systems in olivine. In order to measure the strengths of the (001)[100] and (100)[001] slip systems independently, we performed deformation experiments on single crystals of San Carlos olivine in a direct shear geometry. Experiments were carried out at temperatures of 1000 ° to 1300 °C, a confining pressure of 300 MPa, shear stresses of 60 to 334 MPa, and resultant shear strain rates of 7.4 × 10-6 to 2.1 × 10-3 s-1. At high-temperature (≥1200 °C) and low-stress (≤200 MPa) conditions, the strain rate of crystals oriented for direct shear on either the (001)[100] or the (100)[001] slip system follows a power law relationship with stress, whereas at lower temperatures and higher stresses, strain rate depends exponentially on stress. The flow laws derived from the mechanical data in this study are consistent with a transition from the operation of a climb-controlled dislocation mechanism during power-law creep to the operation of a glide-controlled dislocation mechanism during exponential creep. In the climb-controlled regime, crystals oriented for shear on the (001)[100] slip system are weaker than crystals orientated for shear on the (100)[001] slip system. In contrast, in the glide-controlled regime the opposite is observed. Extrapolation of flow laws determined for crystals sheared in orientations favorable for slip on these two slip systems to upper mantle conditions reveals that the (001)[100] slip system is weaker at temperatures and stresses that are typical of the asthenospheric mantle, whereas the (100

  4. Direct Shear of Olivine Single Crystals

    NASA Astrophysics Data System (ADS)

    Tielke, Jacob; Zimmerman, Mark; Kohlstedt, David

    2016-04-01

    Knowledge of the strength of individual dislocation slip systems in olivine is fundamental to understanding the flow behavior and the development of lattice-preferred orientation in olivine-rich rocks. The most direct measurements of the strengths of individual slip systems are from triaxial compression experiments on olivine single crystals. However, such experiments only allow for determination of flow laws for two of the four dominate slip systems in olivine. In order to measure the strengths of the (001)[100] and (100)[001] slip systems independently, we performed deformation experiments on single crystals of San Carlos olivine in a direct shear geometry. Experiments were carried out at temperatures of 1000° to 1300°C, a confining pressure of 300 MPa, shear stresses of 60 to 334 MPa, and resultant shear strain rates of 7.4 x 10-6 to 6.7 x 10-4 s-1. At high-temperature (≥1200°C) and low-stress (≤200 MPa) conditions, the strain rate of crystals oriented for direct shear on either the (001)[100] or the (100)[001] slip system follows a power law relationship with stress, whereas at lower temperatures and higher stresses, strain rate depends exponentially on stress. The flow laws derived from the mechanical data in this study are consistent with a transition from the operation of a climb-controlled dislocation mechanism during power-law creep to the operation of a glide-controlled dislocation mechanism during exponential creep. In the climb-controlled regime, crystals oriented for shear on the (001)[100] slip system are weaker than crystals orientated for shear on the (100)[001] slip system. In contrast, in the glide-controlled regime the opposite is observed. Extrapolation of flow laws determined for crystals sheared in orientations favorable for slip on these two slip systems to upper mantle conditions reveals that the (001)[100] slip system is weaker at temperatures and stresses that are typical of the asthenospheric mantle, whereas the (100)[001] slip

  5. Shear heating in continental strike-slip shear zones:model and field examples

    NASA Astrophysics Data System (ADS)

    Leloup, Philippe Hervé; Ricard, Yannick; Battaglia, Jean; Lacassin, Robin

    1999-01-01

    of fluids. Rise of magmas and/or hot fluids in the shear zone will further enhance the temperature increase in shallower parts of the fault zone. In nature, shear heating would inevitably cause strain localization in the deeper parts of strike-slip faults, as is often observed in the field for crustal shear zones.

  6. Shear ligament phenomena in Fe3Al intermetallics and micromechanics of shear ligament toughening

    NASA Astrophysics Data System (ADS)

    Chiu, H.; Mao, X.

    1996-12-01

    The environment-assisted cracking behavior of a Fe3Al intermetallic in an air moisture environment was studied. At room temperature, tensile ductility was found to be increased with strain rate, from 10.1 pct at 1×10-6 s-1 to 14.3 pct at 2 × 10-3 s-1. When tensile tests were done in heat-treated mineral oil on specimens that have been heated in the oil for 4 hours at 200°C, ductility was found to be recovered. These results suggest the existence of hydrogen embrittlement. Shear ligaments, which are ligament-like structures connected between microcracks, were observed on the tensile specimens. They undergo ductile fracture by shearing and enhance fracture toughness. This toughness enhancement (represented by J l ) was estimated by a micromechanical model. The values of the unknown parameters, which are the average ligament lengthbar l, the area fraction V l , and the work-to-fracture τ 1 γ 1, were obtained from scanning electron microscopy (SEM) observation. The total fracture toughness K c and J l were reduced toward a slower strain rate. The experimental fracture toughness, K Q , was found to be increased with strain rate, from 35 MPasqrt m at 2.54×10-5 mm·s-1 to 47 MPasqrt m at 2.54×10-2 mm·s-1. The fact that strain rate has a similar effect on K Q and K c verifies the importance of shear ligament in determining fracture toughness of the alloy. With the presence of hydrogen, length and work-to-fracture of the shear ligament were reduced. The toughening effect caused by shear ligament was reduced, and the alloy would behave in a brittle manner.

  7. A new parallel plate shear cell for in situ real-space measurements of complex fluids under shear flow.

    PubMed

    Wu, Yu Ling; Brand, Joost H J; van Gemert, Josephus L A; Verkerk, Jaap; Wisman, Hans; van Blaaderen, Alfons; Imhof, Arnout

    2007-10-01

    We developed and tested a parallel plate shear cell that can be mounted on top of an inverted microscope to perform confocal real-space measurements on complex fluids under shear. To follow structural changes in time, a plane of zero velocity is created by letting the plates move in opposite directions. The location of this plane is varied by changing the relative velocities of the plates. The gap width is variable between 20 and 200 microm with parallelism better than 1 microm. Such a small gap width enables us to examine the total sample thickness using high numerical aperture objective lenses. The achieved shear rates cover the range of 0.02-10(3) s(-1). This shear cell can apply an oscillatory shear with adjustable amplitude and frequency. The maximum travel of each plate equals 1 cm, so that strains up to 500 can be applied. For most complex fluids, an oscillatory shear with such a large amplitude can be regarded as a continuous shear. We measured the flow profile of a suspension of silica colloids in this shear cell. It was linear except for a small deviation caused by sedimentation. To demonstrate the excellent performance and capabilities of this new setup we examined shear induced crystallization and melting of concentrated suspensions of 1 microm diameter silica colloids.

  8. A shear localization mechanism for lubricity of amorphous carbon materials

    PubMed Central

    Ma, Tian-Bao; Wang, Lin-Feng; Hu, Yuan-Zhong; Li, Xin; Wang, Hui

    2014-01-01

    Amorphous carbon is one of the most lubricious materials known, but the mechanism is not well understood. It is counterintuitive that such a strong covalent solid could exhibit exceptional lubricity. A prevailing view is that lubricity of amorphous carbon results from chemical passivation of dangling bonds on surfaces. Here we show instead that lubricity arises from shear induced strain localization, which, instead of homogeneous deformation, dominates the shearing process. Shear localization is characterized by covalent bond reorientation, phase transformation and structural ordering preferentially in a localized region, namely tribolayer, resulting in shear weakening. We further demonstrate an anomalous pressure induced transition from stick-slip friction to continuous sliding with ultralow friction, due to gradual clustering and layering of graphitic sheets in the tribolayer. The proposed shear localization mechanism sheds light on the mechanism of superlubricity, and would enrich our understanding of lubrication mechanism of a wide variety of amorphous materials. PMID:24412998

  9. Coexistence and transition between shear zones in slow granular flows.

    PubMed

    Moosavi, Robabeh; Shaebani, M Reza; Maleki, Maniya; Török, János; Wolf, Dietrich E; Losert, Wolfgang

    2013-10-04

    We report experiments on slow granular flows in a split-bottom Couette cell that show novel strain localization features. Nontrivial flow profiles have been observed which are shown to be the consequence of simultaneous formation of shear zones in the bulk and at the boundaries. The fluctuating band model based on a minimization principle can be fitted to the experiments over a large variation of morphology and filling height with one single fit parameter, the relative friction coefficient μ(rel) between wall and bulk. The possibility of multiple shear zone formation is controlled by μ(rel). Moreover, we observe that the symmetry of an initial state, with coexisting shear zones at both side walls, breaks spontaneously below a threshold value of the shear velocity. A dynamical transition between two asymmetric flow states happens over a characteristic time scale which depends on the shear strength.

  10. A shear localization mechanism for lubricity of amorphous carbon materials

    NASA Astrophysics Data System (ADS)

    Ma, Tian-Bao; Wang, Lin-Feng; Hu, Yuan-Zhong; Li, Xin; Wang, Hui

    2014-01-01

    Amorphous carbon is one of the most lubricious materials known, but the mechanism is not well understood. It is counterintuitive that such a strong covalent solid could exhibit exceptional lubricity. A prevailing view is that lubricity of amorphous carbon results from chemical passivation of dangling bonds on surfaces. Here we show instead that lubricity arises from shear induced strain localization, which, instead of homogeneous deformation, dominates the shearing process. Shear localization is characterized by covalent bond reorientation, phase transformation and structural ordering preferentially in a localized region, namely tribolayer, resulting in shear weakening. We further demonstrate an anomalous pressure induced transition from stick-slip friction to continuous sliding with ultralow friction, due to gradual clustering and layering of graphitic sheets in the tribolayer. The proposed shear localization mechanism sheds light on the mechanism of superlubricity, and would enrich our understanding of lubrication mechanism of a wide variety of amorphous materials.

  11. A shear localization mechanism for lubricity of amorphous carbon materials.

    PubMed

    Ma, Tian-Bao; Wang, Lin-Feng; Hu, Yuan-Zhong; Li, Xin; Wang, Hui

    2014-01-13

    Amorphous carbon is one of the most lubricious materials known, but the mechanism is not well understood. It is counterintuitive that such a strong covalent solid could exhibit exceptional lubricity. A prevailing view is that lubricity of amorphous carbon results from chemical passivation of dangling bonds on surfaces. Here we show instead that lubricity arises from shear induced strain localization, which, instead of homogeneous deformation, dominates the shearing process. Shear localization is characterized by covalent bond reorientation, phase transformation and structural ordering preferentially in a localized region, namely tribolayer, resulting in shear weakening. We further demonstrate an anomalous pressure induced transition from stick-slip friction to continuous sliding with ultralow friction, due to gradual clustering and layering of graphitic sheets in the tribolayer. The proposed shear localization mechanism sheds light on the mechanism of superlubricity, and would enrich our understanding of lubrication mechanism of a wide variety of amorphous materials.

  12. Higher Himalayan Shear Zone, Sutlej section: structural geology and extrusion mechanism by various combinations of simple shear, pure shear and channel flow in shifting modes

    NASA Astrophysics Data System (ADS)

    Mukherjee, Soumyajit; Koyi, Hemin A.

    2010-09-01

    The Higher Himalayan Shear Zone (HHSZ) in the Sutlej section reveals (1) top-to-SW ductile shearing, (2) top-to-NE ductile shearing in the upper- and the lower strands of the South Tibetan Detachment System (STDSU, STDSL), and (3) top-to-SW brittle shearing corroborated by trapezoid-shaped minerals in micro-scale. In the proposed extrusion model of the HHSZ, the E1-phase during 25-19 Ma is marked by simple shearing of the upper sub-channel defined by the upper strand of the Main Central Thrust (MCTU) and the top of STDSU as the lower- and the upper boundaries, respectively. Subsequently, the E2a-pulse during 15-14 Ma was characterized by simple shear, pure shear, and channel flow of the entire HHSZ. Finally, the E2b-pulse during 14-12 Ma observed simple shearing and channel flow of the lower sub-channel defined by the lower strand of the Main Central Thrust (MCTL) and the top of the STDSL as the lower- and the upper boundaries, respectively. The model explains the constraints of thicknesses of the STDSU and the STDSL along with spatially variable extrusion rate and the inverted metamorphism of the HHSZ. The model predicts (1) shear strain after ductile extrusion to be maximum at the boundaries of the HHSZ, which crudely matches with the existing data. The other speculations that cannot be checked are (2) uniform shear strain from the MCTU to the top of the HHSZ in the E1-phase; (3) fastest rates of extrusion of the lower boundaries of the STDSU and the STDSL during the E2a- and E2b-pulses, respectively; and (4) variable thickness of the STDSL and rare absence of the STDSU. Non-parabolic shear fabrics of the HHSZ possibly indicate heterogeneous strain. The top-to-SW brittle shearing around 12 Ma augmented the ductile extruded rocks to arrive a shallower depth. The brittle-ductile extension leading to boudinage possibly did not enhance the extrusion.

  13. Influence of Through-Thickness Pinning on Composite Shear Properties

    NASA Astrophysics Data System (ADS)

    Maurin, Romain; Baley, Christophe; Cartié, Denis D. R.; Davies, Peter

    2012-12-01

    This paper describes results from tests to examine the influence of through-thickness pinning on in-plane shear behaviour, measured by tensile loading of ±45° specimens. Samples were produced by both aeronautical and marine manufacturing processes. As few previous studies have investigated pinning of marine composites these were also subjected to out-of-plane shear delamination tests. For both carbon/epoxy laminates the pins reduce the apparent in-plane shear modulus and strength. Pins modify the strain field measured by full-field image analysis, and slow damage development. A new damage mechanism, transverse pin cracking, was observed.

  14. Shear strength of metals under uniaxial deformation and pure shear

    NASA Astrophysics Data System (ADS)

    Latypov, F. T.; Mayer, A. E.

    2015-11-01

    In this paper, we investigate the dynamic shear strength of perfect monocrystalline metals using the molecular dynamics simulation. Three types of deformation (single shear, uniaxial compression and tension) are investigated for five metals of different crystallographic systems (fcc, bcc and hcp). A strong dependence of the calculated shear strength on the deformation type is observed. In the case of bcc (iron) and hcp (titanium) metals, the maximal shear strength is achieved at the uniaxial compression, while the minimal shear strength is observed at the uniaxial tension. In the case of fcc metals (aluminum, copper, nickel) the largest strength is achieved at the pure shear, the lowest strength is obtained at the uniaxial compression.

  15. Probe Oscillation Shear Elastography (PROSE): A High Frame-Rate Method for Two-Dimensional Ultrasound Shear Wave Elastography.

    PubMed

    Mellema, Daniel C; Song, Pengfei; Kinnick, Randall R; Urban, Matthew W; Greenleaf, James F; Manduca, Armando; Chen, Shigao

    2016-09-01

    Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) "push beam" to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a "strain-like" compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300 Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥ 19 dB) between the target and

  16. Ultrasonic shear wave couplant

    DOEpatents

    Kupperman, David S.; Lanham, Ronald N.

    1985-01-01

    Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.

  17. Shear response and design of RC beams strengthened using CFRP laminates

    NASA Astrophysics Data System (ADS)

    Singh, Shamsher B.

    2013-12-01

    The present investigation addresses the shear strengthening of deficient reinforced concrete (RC) beams using carbon fiber-reinforced polymer (CFRP) sheets. The effect of the pattern and orientation of the strengthening fabric on the shear capacity of the strengthened beams were examined. Three beams with various lay-ups of strengthening fabric, 45°, 0°/90°, and 0°/90°/45° were examined, in addition to an unstrengthened control beam. Principal and shear strains were measured at different locations at the critical sections of the strengthened beams corresponding to each applied shear force. Experimental results showing the advantage of beam strengthened using the various lay-ups of CFRP sheets are discussed. It is concluded that Beam-45°, Beam-0°/90°, and Beam-0°/90°/45° show about 25%, 19%, and 40% increases in shear-load carrying capacity in comparison to the control beam, respectively. Also, there exists a critical value of shear force up to which there is no appreciable shear strain in the CFRP sheets/beam. This shear force marks the ultimate shear resistance of the control beam. However, the strengthened beams exhibited significant strength and stiffness even beyond the critical value of the shear force. A design example for shear strengthening shows that the design equations available in the literature underestimate the actual shear strength of the beams.

  18. Two-dimensional shear bands growing dynamically in plates: An investigation of transient deformation fields, temperature fields and shear band toughness

    SciTech Connect

    Rosakis, A.J.

    1995-12-31

    The phenomenon of dynamic initiation and propagation of two-dimensional adiabatic shear bands is experimentally and numerically investigated. Prenotched metal plates are subjected to asymmetric impact load histories (dynamic mode-II loading). Dynamic shear bands emanate from the notch-tip and propagate rapidly in a direction nearly parallel to the direction of impact. Real time temperature histories along a line intersecting and perpendicular to the shear band paths are recorded by means of a high speed infrared detector system. The materials studied are C-300 (a maraging steel), HY-100 steel and Ti-6Al-4V. Experiments show that the peak temperatures inside the propagating shear bands are approaching 90% of the melting point for C-300 and are significantly lower for the titanium alloy (up to 6000C). Additionally, measured distances of shear band propagation indicate stronger resistance to shear banding by HY-100 steel and Ti-6Al-4V. Deformation fields around the propagating shear band are recorded using high speed photography. Shear band speeds are found to strongly depend on impact velocity are as high as 1200 m/s for C-300 steel. Finite element simulations of the experiment are carried out under the context of plane strain, considering finite deformations, inertia, heat conduction, thermal softening, strain hardening and strain-rate hardening. In the simulations, the shear band propagation is assumed to be governed by a critical plastic strain criterion. The results are compared with experimental measurements obtained using the high speed infrared detectors and high speed photography. Finally, the numerical calculations are used to investigate motions of shear band toughness. The shear band driving force is calculated as a function of shear band velocity and compared to the crack driving force versus velocity relations for mode-I, opening cracks in the same material.

  19. Shear wave transmissivity measurement by color Doppler shear wave imaging

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Yoshiki; Yamazaki, Mayuko; Kasahara, Toshihiro; Sunaguchi, Naoki; Yuminaka, Yasushi

    2016-07-01

    Shear wave elastography is a useful method for evaluating tissue stiffness. We have proposed a novel shear wave imaging method (color Doppler shear wave imaging: CD SWI), which utilizes a signal processing unit in ultrasound color flow imaging in order to detect the shear wave wavefront in real time. Shear wave velocity is adopted to characterize tissue stiffness; however, it is difficult to measure tissue stiffness with high spatial resolution because of the artifact produced by shear wave diffraction. Spatial average processing in the image reconstruction method also degrades the spatial resolution. In this paper, we propose a novel measurement method for the shear wave transmissivity of a tissue boundary. Shear wave wavefront maps are acquired by changing the displacement amplitude of the shear wave and the transmissivity of the shear wave, which gives the difference in shear wave velocity between two mediums separated by the boundary, is measured from the ratio of two threshold voltages required to form the shear wave wavefronts in the two mediums. From this method, a high-resolution shear wave amplitude imaging method that reconstructs a tissue boundary is proposed.

  20. Measuring the reduced shear

    NASA Astrophysics Data System (ADS)

    Zhang, Jun

    2011-11-01

    Neglecting the second order corrections in weak lensing measurements can lead to a few percent uncertainties on cosmic shears, and becomes more important for cluster lensing mass reconstructions. Existing methods which claim to measure the reduced shears are not necessarily accurate to the second order when a point spread function (PSF) is present. We show that the method of Zhang (2008) exactly measures the reduced shears at the second order level in the presence of PSF. A simple theorem is provided for further confirming our calculation, and for judging the accuracy of any shear measurement method at the second order based on its properties at the first order. The method of Zhang (2008) is well defined mathematically. It does not require assumptions on the morphologies of galaxies and the PSF. To reach a sub-percent level accuracy, the CCD pixel size is required to be not larger than 1/3 of the Full Width at Half Maximum (FWHM) of the PSF, regardless of whether the PSF has a power-law or exponential profile at large distances. Using a large ensemble (gtrsim107) of mock galaxies of unrestricted morphologies, we study the shear recovery accuracy under different noise conditions. We find that contaminations to the shear signals from the noise of background photons can be removed in a well defined way because they are not correlated with the source shapes. The residual shear measurement errors due to background noise are consistent with zero at the sub-percent level even when the amplitude of such noise reaches about 1/10 of the source flux within the half-light radius of the source. This limit can in principle be extended further with a larger galaxy ensemble in our simulations. On the other hand, the source Poisson noise remains to be a cause of systematic errors. For a sub-percent level accuracy, our method requires the amplitude of the source Poisson noise to be less than 1/80 ~ 1/100 of the source flux within the half-light radius of the source, corresponding to

  1. Measuring the reduced shear

    SciTech Connect

    Zhang, Jun

    2011-11-01

    Neglecting the second order corrections in weak lensing measurements can lead to a few percent uncertainties on cosmic shears, and becomes more important for cluster lensing mass reconstructions. Existing methods which claim to measure the reduced shears are not necessarily accurate to the second order when a point spread function (PSF) is present. We show that the method of Zhang (2008) exactly measures the reduced shears at the second order level in the presence of PSF. A simple theorem is provided for further confirming our calculation, and for judging the accuracy of any shear measurement method at the second order based on its properties at the first order. The method of Zhang (2008) is well defined mathematically. It does not require assumptions on the morphologies of galaxies and the PSF. To reach a sub-percent level accuracy, the CCD pixel size is required to be not larger than 1/3 of the Full Width at Half Maximum (FWHM) of the PSF, regardless of whether the PSF has a power-law or exponential profile at large distances. Using a large ensemble (∼>10{sup 7}) of mock galaxies of unrestricted morphologies, we study the shear recovery accuracy under different noise conditions. We find that contaminations to the shear signals from the noise of background photons can be removed in a well defined way because they are not correlated with the source shapes. The residual shear measurement errors due to background noise are consistent with zero at the sub-percent level even when the amplitude of such noise reaches about 1/10 of the source flux within the half-light radius of the source. This limit can in principle be extended further with a larger galaxy ensemble in our simulations. On the other hand, the source Poisson noise remains to be a cause of systematic errors. For a sub-percent level accuracy, our method requires the amplitude of the source Poisson noise to be less than 1/80 ∼ 1/100 of the source flux within the half-light radius of the source

  2. Thermal effects in dislocation theory. II. Shear banding

    NASA Astrophysics Data System (ADS)

    Langer, J. S.

    2017-01-01

    The thermodynamic dislocation theory presented in previous papers is used here to describe shear-banding instabilities. Central ingredients of the theory are a thermodynamically defined effective configurational temperature and a formula for the plastic strain rate determined by thermally activated depinning of entangled dislocations. This plastic strain rate is extremely sensitive to variations of the stress and the ordinary temperature. As a result of this sensitivity, the system undergoes rapid shear banding instabilities when ordinary thermal relaxation is slow. It also undergoes rapid changes from elastic to plastic behaviors at yielding transitions.

  3. A direct measurement of shear fracture energy in rocks

    NASA Astrophysics Data System (ADS)

    Cox, S. J. D.; Scholz, C. H.

    Shear fracture energy has been measured for a granite and a limestone using a torsional method. We monitor failure with periodic stiffness determinations and measure strain energy released by integrating the load-displacement record. Values of strain energy release rate (G3C) obtained for zero normal stress lie in the range 10²-10³ Jm-2. These fall between the values of G1C from tensile experiments and of shear fracture energy measured under high normal stress in triaxial tests.

  4. Interaction of monopoles, dipoles, and turbulence with a shear flow

    NASA Astrophysics Data System (ADS)

    Marques Rosas Fernandes, V. H.; Kamp, L. P. J.; van Heijst, G. J. F.; Clercx, H. J. H.

    2016-09-01

    Direct numerical simulations have been conducted to examine the evolution of eddies in the presence of large-scale shear flows. The numerical experiments consist of initial-value-problems in which monopolar and dipolar vortices as well as driven turbulence are superposed on a plane Couette or Poiseuille flow in a periodic two-dimensional channel. The evolution of the flow has been examined for different shear rates of the background flow and different widths of the channel. Results found for retro-grade and pro-grade monopolar vortices are consistent with those found in the literature. Boundary layer vorticity, however, can significantly modify the straining and erosion of monopolar vortices normally seen for unbounded domains. Dipolar vortices are shown to be much more robust coherent structures in a large-scale shear flow than monopolar eddies. An analytical model for their trajectories, which are determined by self-advection and advection and rotation by the shear flow, is presented. Turbulent kinetic energy is effectively suppressed by the shearing action of the background flow provided that the shear is linear (Couette flow) and of sufficient strength. Nonlinear shear as present in the Poiseuille flow seems to even increase the turbulence strength especially for high shear rates.

  5. Shear of ordinary and elongated granular mixtures

    NASA Astrophysics Data System (ADS)

    Hensley, Alexander; Kern, Matthew; Marschall, Theodore; Teitel, Stephen; Franklin, Scott

    2015-03-01

    We present an experimental and computational study of a mixture of discs and moderate aspect-ratio ellipses under two-dimensional annular planar Couette shear. Experimental particles are cut from acrylic sheet, are essentially incompressible, and constrained in the thin gap between two concentric cylinders. The annular radius of curvature is much larger than the particles, and so the experiment is quasi-2d and allows for arbitrarily large pure-shear strains. Synchronized video cameras and software identify all particles and track them as they move from the field of view of one camera to another. We are particularly interested in the global and local properties as the mixture ratio of discs to ellipses varies. Global quantities include average shear rate and distribution of particle species as functions of height, while locally we investigate the orientation of the ellipses and non-affine events that can be characterized as shear transformational zones or possess a quadrupole signature observed previously in systems of purely circular particles. Discrete Element Method simulations on mixtures of circles and spherocylinders extend the study to the dynamics of the force network and energy dissipated as the system evolves. Supported by NSF CBET #1243571 and PRF #51438-UR10.

  6. Shear degradation in fiber reinforced laminates due to matrix damage

    NASA Astrophysics Data System (ADS)

    Salavatian, Mohammedmahdi

    The objective of this study was to develop and implement a shear modulus degradation model to improve the failure analysis of the fiber reinforced composite structures. Matrix damage, involving transverse and shear cracks, is a common failure mode for composite structures, yet little is known concerning their interaction. To understand the material behavior after matrix failure, the nonlinear response of the composite laminate was studied using pressure vessels made from a [+/-o] bias orientation, which tend to exhibit a matrix dominated failure. The result of this work showed laminate matrix hardening in shear and softening in the transverse direction. A modified Iosipescu coupon was proposed to study the evolution of shear and transverse damage and their mutual effects. The proposed method showed good agreement with tubular results and has advantages of simplified specimen fabrication using standard test fixtures. The proposed method was extended by introducing a novel experimental technique to study the shear degradation model under biaxial loading. Experimental results of the transverse modulus reduction were in good agreement with material degradation models, while the predicted shear modulus reduction was higher than experiment. The discrepancy between available models and observations was due to the presence of a traction between the crack surfaces. Accordingly, a closed form solution was proposed for the shear stress-strain field of a cracked laminate by replacing the cracks with cohesive zones. The constitutive equations of the crack laminate were derived including the effects of internal tractions and transverse stress on the shear modulus. The proposed analytical model was shown to be the most comprehensive model for shear modulus degradation reduction of the fiber reinforced laminates. A numerical implementation of the shear degradation model was done using continuum damage mechanics. Through this work it was shown the common assumption of a linear

  7. The Application of Strain Range Partitioning Method to Torsional Creep-Fatigue Interaction

    NASA Technical Reports Server (NTRS)

    Zamrik, S. Y.

    1975-01-01

    The method of strain range partitioning was applied to a series of torsional fatigue tests conducted on tubular 304 stainless steel specimens at 1200 F. Creep strain was superimposed on cycling strain, and the resulting strain range was partitioned into four components; completely reversed plastic shear strain, plastic shear strain followed by creep strain, creep strain followed by plastic strain and completely reversed creep strain. Each strain component was related to the cyclic life of the material. The damaging effects of the individual strain components were expressed by a linear life fraction rule. The plastic shear strain component showed the least detrimental factor when compared to creep strain reversed by plastic strain. In the latter case, a reduction of torsional fatigue life in the order of magnitude of 1.5 was observed.

  8. Shear Thinning of Noncolloidal Suspensions

    NASA Astrophysics Data System (ADS)

    Vázquez-Quesada, Adolfo; Tanner, Roger I.; Ellero, Marco

    2016-09-01

    Shear thinning—a reduction in suspension viscosity with increasing shear rates—is understood to arise in colloidal systems from a decrease in the relative contribution of entropic forces. The shear-thinning phenomenon has also been often reported in experiments with noncolloidal systems at high volume fractions. However its origin is an open theoretical question and the behavior is difficult to reproduce in numerical simulations where shear thickening is typically observed instead. In this letter we propose a non-Newtonian model of interparticle lubrication forces to explain shear thinning in noncolloidal suspensions. We show that hidden shear-thinning effects of the suspending medium, which occur at shear rates orders of magnitude larger than the range investigated experimentally, lead to significant shear thinning of the overall suspension at much smaller shear rates. At high particle volume fractions the local shear rates experienced by the fluid situated in the narrow gaps between particles are much larger than the averaged shear rate of the whole suspension. This allows the suspending medium to probe its high-shear non-Newtonian regime and it means that the matrix fluid rheology must be considered over a wide range of shear rates.

  9. The rheology of chain molecules under shear

    NASA Astrophysics Data System (ADS)

    Moore, Jonathan David

    The rheology of chain molecules is a subject that comprises a wide variety of complex physical phenomena, challenging scientific questions, and fundamentally important practical applications. In this work, nonequilibrium molecular dynamics (NEMD) is employed to study linear and branched alkane chains in the melt state under transient and steady-state shearing conditions. This study focuses on three isomers of C30H62 (n- triacontane, squalane, and 9-n- octyldocosane) as well as a linear short-chain polyethylene (C100H202). A transferable united atom potential is used to model these alkane chains, and the simulations of planar Couette flow are performed using the SLLOD algorithm and a multi- timestep, simulation technique. The strain rates studied in this work (108-10 12 s-1) are extremely difficult to study experimentally yet typical of the severe conditions commonly found in engines and other machinery. NEMD and the united atom model underpredict the kinematic viscosities of n-triacontane and 9- n-octyldocosane but accurately predict the values for squalane (within 15%) at temperatures of 311 and 372 K. The predicted kinematic viscosity index values for both 9- n-octyldocosane and squalane are in quantitative agreement with experiment and represent the first such predictions by molecular simulation. Thus, this same general potential model and computational approach can be used to predict this important lubricant property for potential lubricants prior to their synthesis, offering the possibility of simulation-guided lubricant design. Simulations of C100H202 under steady-state shearing conditions reveal a pronounced minimum in the hydrostatic pressure at an intermediate strain rate that is associated with a minimum in the intermolecular potential energy as well as transitions in the strain-rate-dependent behavior of several other viscous and structural properties of the system. Upon onset of shear, the stress overshoot curves calculated for C100 are in good

  10. Pulsatile Fluid Shear in Bone Remodeling

    NASA Technical Reports Server (NTRS)

    Frangos, John A.

    1997-01-01

    The objective of this investigation was to elucidate the sensitivity to transients in fluid shear stress in bone remodeling. Bone remodeling is clearly a function of the local mechanical environment which includes interstitial fluid flow. Traditionally, load-induced remodeling has been associated with low frequency (1-2 Hz) signals attributed to normal locomotion. McLeod and Rubin, however, demonstrated in vivo remodeling events associated with high frequency (15-30 Hz) loading. Likewise, other in vivo studies demonstrated that slowly applied strains did not trigger remodeling events. We therefore hypothesized that the mechanosensitive pathways which control bone maintenance and remodeling are differentially sensitive to varying rates of applied fluid shear stress.

  11. CAT LIDAR wind shear studies

    NASA Technical Reports Server (NTRS)

    Goff, R. W.

    1978-01-01

    The studies considered the major meteorological factors producing wind shear, methods to define and classify wind shear in terms significant from an aircraft perturbation standpoint, the significance of sensor location and scan geometry on the detection and measurement of wind shear, and the tradeoffs involved in sensor performance such as range/velocity resolution, update frequency and data averaging interval.

  12. A theoretical model of sheath fold morphology in simple shear

    NASA Astrophysics Data System (ADS)

    Reber, Jacqueline E.; Dabrowski, Marcin; Galland, Olivier; Schmid, Daniel W.

    2013-04-01

    Sheath folds are highly non-cylindrical structures often associated with shear zones. The geometry of sheath folds, especially cross-sections perpendicular to the stretching direction that display eye-patterns, have been used in the field to deduce kinematic information such as shear sense and bulk strain type. However, how sheath folds form and how they evolve with increasing strain is still a matter of debate. We investigate the formation of sheath folds around a weak inclusion acting as a slip surface in simple shear by means of an analytical model. We systematically vary the slip surface orientation and shape and evaluate the impact on the evolving eye-pattern. In addition we compare our results to existing classifications. Based on field observations it has been suggested that the shear sense of a shear zone can be determined by knowing the position of the center of an eye-pattern and the closing direction of the corresponding sheath fold. In our modeled sheath folds we can observe for a given strain that the center of the eye-structure is subject to change in height with respect to the upper edge of the outermost closed contour for different cross-sections perpendicular to the shear direction. This results in a large variability in layer thickness, questioning the usefulness of sheath folds as shear sense indicators. The location of the center of the eye structure, however, is largely invariant to the initial configurations of the slip surface as well as to strain. It has been suggested that the ratio of the aspect ratio of the innermost and outermost closed contour in eye-patterns could be linked to the bulk strain type based on filed observations. We apply this classification to our modeled sheath folds and we observe that the values of the aspect ratios of the closed contours within the eye-pattern are dependent on the strain and the cross-section location. The ratio (R') of the aspect ratios of the outermost closed contour (Ryz) and the innermost closed

  13. Spatial periodicity in growth plate shear mechanical properties is disrupted by vitamin D deficiency

    PubMed Central

    Sevenler, Derin; Buckley, Mark R.; Kim, Grace; van der Meulen, Marjolein C.H.; Cohen, Itai; Bonassar, Lawrence J.

    2013-01-01

    The growth plate is a highly organized section of cartilage in the long bones of growing children that is susceptible to mechanical failure as well as structural and functional disruption caused by a dietary deficiency of vitamin D. The shear mechanical properties of the proximal tibial growth plate of rats raised either on normal or vitamin D and calcium deficient diets were measured. A sinusoidal oscillating shear load was applied to small excised growth plate specimens perpendicular to the direction of growth while imaging the deformation in real time with a fast confocal microscope. Local deformations and shear strains were quantified using image correlation. The proliferative zone of the growth plate bores the majority of the shear strain and the resting, hypertrophic and calcification zones deformed less. Surprisingly, we regularly observed discontinuous deformations in the proliferative zone in both groups that resembled cell columns sliding past one another in the direction of growth. These discontinuities manifested as regions of concentrated longitudinal shear strain. Furthermore, these shear strain concentrations were spaced evenly in the proliferative zone and the spacing between them was similar across growth plate regions and across control specimens. In contrast to the healthy controls, the vitamin D deficient growth plate exhibited larger variations in the size and orientation of cellular columns in the proliferative and hypertrophic zones. High strains were observed between columns, much as they were in the controls. However, the regular spacing of shear strain concentrations was not preserved, echoing the observation of decreased structural organization. PMID:23706979

  14. Rheology linked with phase changes as recorded by development of shear bands in the South Armorican Shear Zone

    NASA Astrophysics Data System (ADS)

    Jeřábek, Petr; Bukovská, Zita

    2015-04-01

    recrystallization along thin shear bands records strain rates of ~10^-14 whereas the recrystallization along thick shear bands records strain rates of ~10^-15. The contemporaneous operation of solution-precipitation creep in shear bands and dislocation creep in quartz along the shear band boundary suggests low viscosity contrast between the mixed phase shear band matrix and pure quartz aggregate implying that the solution-precipitation creep reflect similar stress and strain rate conditions as the dislocation creep in quartz. Stage III of shear band evolution is characterized by interconnection of dispersed muscovite grains and the deformation becomes accommodated by dislocation creep in thin muscovite bands separating the inactive domains of stage II microstructure. References: Holyoke III, C. W., & Kronenberg, A. K. (2010). Accurate differential stress measurement using the molten salt cell and solid salt assemblies in the Griggs apparatus with applications to strength, piezometers and rheology. Tectonophysics, 494(1-2), 17-31. Paterson, M. S., & Luan, F. C. (1990). Quartzite rheology under geological conditions. In R. J. Knipe & E. H. Rutter (Eds.), Deformation Mechanisms, Rheology and Tectonics (pp. 299-307). London: Geological Society Special Publications. Stipp, M., & Tullis, J. (2003). The recrystallized grain size piezometer for quartz. Geophysical Research Letters, 30(21), 1-5.

  15. Finite element analyses for Seismic Shear Wall International Standard Problem

    SciTech Connect

    Park, Y.; Hofmayer, C.; Chokshi, N.

    1997-04-01

    In the seismic design of shear wall structures, e.g., nuclear reactor buildings, a linear FEM analysis is frequently used to quantify the stresses under the design loading condition. The final design decisions, however, are still based on empirical design rules established over decades from accumulated laboratory test data. This paper presents an overview of the state-of-the-art on the application of nonlinear FEM analysis to reinforced concrete (RC) shear wall structures under severe earthquake loadings based on the findings obtained during the Seismic Shear Wall International Standard Problem (SSWISP) Workshop in 1996. Also, BNL`s analysis results of the International Standard Problem (ISP) shear walls under monotonic static, cyclic static and dynamic loading conditions are described.

  16. Dynamics of Vorticity Defects in Stratified Shear

    DTIC Science & Technology

    2010-10-19

    Balmforth, and R. V. Craster, Dynamics of defects in visco-elastic shear. J. Non - Newtonian Fluids, 72 (1997), pp. 281-304. [5] N. J. Balmforth, and W. R...vorticity being swept into nodes like B. Thus, accumulation of vorticity at points like B takes place unboundedly in the linear, non -dissipative...buoyancy formulation, in the Bousinessq approximation can be written in the following non -dimensional form, ∂ω ∂t + ∂(Ψ, ω) ∂(x, y) = ∂B ∂x + 1 Re ∇2ω

  17. Shear bands in concentrated bacterial suspensions under oscillatory shear

    NASA Astrophysics Data System (ADS)

    Cheng, Xiang; Samanta, Devranjan; Xu, Xinliang

    2016-11-01

    Bacterial suspensions show interesting rheological behaviors such as a remarkable "superfluidic" state with vanishing viscosity. Although the bulk rheology of bacterial suspensions has been experimentally studied, shear profiles within bacterial suspensions have not been systematically explored so far. Here, by combining confocal rheometry with PIV, we investigated the flow behaviors of concentrated E. coli suspensions under planar oscillatory shear. We found that concentrated bacterial suspensions exhibit strong non-homogeneous flow profiles at low shear rates, where shear rates vanish away from the moving shear plate. We characterized the shape of the nonlinear shear profiles at different applied shear rates and bacterial concentrations and activities. The shear profiles follow a simple scaling relation with the applied shear rates and the enstrophy of suspensions, unexpected from the current hydrodynamic models of active fluids. We demonstrated that this scaling relation can be quantitatively understood by considering the power output of bacteria at different orientations with respect to shear flows. Our experiments reveal a profound influence of shear flows on the locomotion of bacteria and provide new insights into the dynamics of active fluids. The research is funded by ACS Petroleum Research Fund (54168-DNI9) and by the David & Lucile Packard Foundation. X. X. acknowledges support by the National Natural Science Foundation of China No. 11575020.

  18. Microstructural evolution and rheology of quartz in a mid-crustal shear zone

    NASA Astrophysics Data System (ADS)

    Rahl, Jeffrey M.; Skemer, Philip

    2016-06-01

    We present microstructural and crystallographic preferred orientation (CPO) data on quartz deformed in the middle crust to explore the interaction and feedback between dynamic recrystallization, deformation processes, and CPO evolution. The sample investigated here is a moderately deformed quartz-rich mylonite from the Blue Ridge in Virginia. We have created high-resolution crystallographic orientation maps using electron backscatter diffraction (EBSD) of 51 isolated quartz porphyroclasts with recrystallized grain fractions ranging from 10 to 100%. Recrystallized grains are internally undeformed and display crystallographic orientations dispersed around the orientation of the associated parent porphyroclast. We document a systematic decrease in fabric intensity with recrystallization, suggesting that progressive deformation of the recrystallized domains involves processes that can weaken a pre-existing CPO. Relationships between recrystallization fraction and shear strain suggest that complete microstructural re-equilibration requires strains in excess of γ = 5. Variation in the degree of recrystallization implies that strain was accumulated heterogeneously, and that a steady-state microstructure and rheology were not achieved.

  19. Standing shear waves in anisotropic viscoelastic media

    NASA Astrophysics Data System (ADS)

    Krit, T.; Golubkova, I.; Andreev, V.

    2015-10-01

    We studied standing shear waves in anisotropic resonator represented by a rectangular parallelepiped (layer) fixed without slipping between two wooden plates of finite mass. The viscoelastic layer with edges of 70 mm × 40 mm × 15 mm was made of a rubber-like polymer plastisol with rubber bands inside. The bands were placed vertical between the top and the bottom plate. Mechanical properties of the plastisol itself were carefully measured previously. It was found that plastisol shows a cubic nonlinear behavior, i.e. the stress-strain curve could be represented as: σ = μɛ + βμɛ3, where ɛ stands for shear strain and σ is an applied shear stress. The value of shear modulus μ depends on frequency and was found to be several kilopascals which is common for such soft solids. Nonlinear parameter β is frequency dependent too and varies in range from tenths to unity at 1-100 Hz frequency range, decreasing with frequency growth. Stretching the rubber bands inside the layer leads to change of elastic properties in resonator. Such effect could be noticed due to frequency response of the resonator. The numerical model of the resonator was based on finite elements method (FEM) and performed in MatLab. The resonator was cut in hundreds of right triangular prisms. Each prism was provided with viscoelastic properties of the layer except for the top prisms provided with the wooden plate properties and the prisms at the site of the rubber bands provided with the rubber properties. The boundary conditions on each prism satisfied the requirements that resonator is inseparable and all its boundaries but bottom are free. The bottom boundary was set to move horizontally with constant acceleration amplitude. It was shown numerically that the resonator shows anisotropic behavior expressed in different frequency response to oscillations applied to a bottom boundary in different directions.

  20. Gelation under shear

    SciTech Connect

    Butler, B.D.; Hanley, H.J.M.; Straty, G.C.; Muzny, C.D.

    1995-12-31

    An experimental small angle neutron scattering (SANS) study of dense silica gels, prepared from suspensions of 24 nm colloidal silica particles at several volume fractions {theta} is discussed. Provided that {theta}{approx_lt}0.18, the scattered intensity at small wave vectors q increases as the gelation proceeds, and the structure factor S(q, t {yields} {infinity}) of the gel exhibits apparent power law behavior. Power law behavior is also observed, even for samples with {theta}>0.18, when the gel is formed under an applied shear. Shear also enhances the diffraction maximum corresponding to the inter-particle contact distance of the gel. Difficulties encountered when trying to interpret SANS data from these dense systems are outlined. Results of computer simulations intended to mimic gel formation, including computations of S(q, t), are discussed. Comments on a method to extract a fractal dimension characterizing the gel are included.

  1. Shear-thinning Fluid

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Whipped cream and the filling for pumpkin pie are two familiar materials that exhibit the shear-thinning effect seen in a range of industrial applications. It is thick enough to stand on its own atop a piece of pie, yet flows readily when pushed through a tube. This demonstrates the shear-thinning effect that was studied with the Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002. CVX observed the behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The principal investigator was Dr. Robert Berg of the National Institutes of Standards and Technology in Gaithersburg, MD.

  2. Fiber bundle models for stress release and energy bursts during granular shearing

    NASA Astrophysics Data System (ADS)

    Michlmayr, Gernot; Or, Dani; Cohen, Denis

    2012-12-01

    Fiber bundle models (FBMs) offer a versatile framework for representing transitions from progressive to abrupt failure in disordered material. We report a FBM-based description of mechanical interactions and associated energy bursts during shear deformation of granular materials. For strain-controlled shearing, where elements fail in a sequential order, we present analytical expressions for strain energy release and failure statistics. Results suggest that frequency-magnitude characteristics of fiber failure vary considerably throughout progressive shearing. Predicted failure distributions were in good agreement with experimentally observed shear stress fluctuations and associated bursts of acoustic emissions. Experiments also confirm a delayed release of acoustic emission energy relative to shear stress buildup, as anticipated by the model. Combined with data-rich acoustic emission measurements, the modified FBM offers highly resolved contact-scale insights into granular media dynamics of shearing processes.

  3. Shear Roll Mill Reactivation

    DTIC Science & Technology

    2012-09-13

    process equipment sprinkler protection systems , and the 5 psig steam supply serving the building heating and make-up air systems . It also included...control system can be run for maintenance and/or checkout while the fire alarm panel is bypassed. A sprinkler line and gate valve serving the Primac...the 440 v. electrical system providing power for process equipment motors, shear roll hydraulic pump motors, the air compressor motor, as well as

  4. Shear-thinning of molecular fluids in Couette flow

    NASA Astrophysics Data System (ADS)

    Raghavan, Bharath V.; Ostoja-Starzewski, Martin

    2017-02-01

    We use non-equilibrium molecular dynamics simulations, the Boltzmann equation, and continuum thermomechanics to investigate and characterize the shear-thinning behavior of molecular fluids undergoing Couette flow, interacting via a Lennard-Jones (LJ) potential. In particular, we study the shear-stress under steady-state conditions and its dependency on fluid density and applied shear-strain rate. Motivated by kinetic theory, we propose a rheological equation of state that fits observed system responses exceptionally well and captures the extreme shear-thinning effect. We notice that beyond a particular strain-rate threshold, the fluid exhibits shear-thinning, the degree of which is dependent on the density and temperature of the system. In addition, we obtain a shear-rate dependent model for the viscosity which matches the well established Cross viscosity model. We demonstrate how this model arises naturally from the Boltzmann equation and possesses an inherent scaling parameter that unifies the rheological properties of the LJ fluid. We compare our model with those in the literature. Finally, we formulate a dissipation function modeling the LJ fluid as a quasilinear fluid.

  5. Numerical Simulation of Systems of Shear Bands in Ductile Metal with Inclusions

    SciTech Connect

    Plohr, JeeYeon N.

    2016-08-11

    These are slides for a presentation on numerical simulation of systems of shear bands in ductile metal with inclusions, performed at Los Alamos National Laboratory. The conclusions are the following: A shear band is much thinner (0.1 μm) than the spacing between inclusions (100μm). Therefore fully resolved simulation is not feasible; asymptotic analysis allows modeling of a shear band as a velocity discontinuity within a moderately sized cell; formation criterion (critical strain) is determined by rate-dependent viscoplastic flow rule; inclusions cause shear bands to form at smaller strain; under expansion, shear bands form at the same strain than under compression; this can be applied to crystal plasticity.

  6. Acoustic Emission Parameters of Three Gorges Sandstone during Shear Failure

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Liu, Yixin; Peng, Shoujian

    2016-12-01

    In this paper, an experimental investigation of sandstone samples from the Three Gorges during shear failure was conducted using acoustic emission (AE) and direct shear tests. The AE count rate, cumulative AE count, AE energy, and amplitude of the sandstone samples were determined. Then, the relationships among the AE signals and shearing behaviors of the samples were analyzed in order to detect micro-crack initiation and propagation and reflect shear failure. The results indicated that both the shear strength and displacement exhibited a logarithmic relationship with the displacement rate at peak levels of stress. In addition, the various characteristics of the AE signals were apparent in various situations. The AE signals corresponded with the shear stress under different displacement rates. As the displacement rate increased, the amount of accumulative damage to each specimen decreased, while the AE energy peaked earlier and more significantly. The cumulative AE count primarily increased during the post-peak period. Furthermore, the AE count rate and amplitude exhibited two peaks during the peak shear stress period due to crack coalescence and rock bridge breakage. These isolated cracks later formed larger fractures and eventually caused ruptures.

  7. X-ray speckle measurements of concentrated nanoemulsions under shear

    NASA Astrophysics Data System (ADS)

    Abidib, Samy; Rogers, Michael; Leheny, Robert; Chen, Kui; Mason, Thomas; Harden, James

    We present in situ X-ray Photon Correlation Spectroscopy (XPCS) measurements of a set of concentrated nanoemulsions subjected to oscillatory shear. The nanoemulsion set contained samples with varying packing fractions of oil droplets (r 20nm) above the jamming transition. In order to study their elasticity, yielding, and flow at various shear amplitudes, we employed stroboscopic coherent X-ray scattering measurements triggered at the maximums of the shear cycle. The degree of correlation between speckle in images taken a full period apart is a direct measurement of particle rearrangements during cycling. A comparison of such XPCS ``echo'' measurements with rheological measurements shows an onset of irreversible particle motion at shear strains below the crossover of the storage and loss moduli, which is typically used to indicate the transition to viscoplastic flow. Moreover, the XPCS echo measurements indicate that particle irreversibility increases rapidly with shear amplitude, in contrast to the comparably smooth transition to yielding shown in bulk rheology measurements. However, the macroscopic yield strain observed in rheology and the microscopic yield strain identified from XPCS, which were strong functions of droplet packing fraction, tracked each other closely.

  8. The 3-D strain patterns in Turkey using geodetic velocity fields from the RTK-CORS (TR) network

    NASA Astrophysics Data System (ADS)

    Kutoglu, Hakan Senol; Toker, Mustafa; Mekik, Cetin

    2016-03-01

    This study presents our use of GPS data to obtain and quantify the full continuous strain tensor using a 3-D velocity field in Turkey. In this study, GPS velocities improve the estimation of short-term strain tensor fields for determining the seismic hazard of Turkey. The tensorial analysis presents different aspects of deformation, such as the normal and shear strains, including their directions, the compressional and extensional strains. This analysis is appropriate for the characterizing the state of the current seismic deformation. GPS velocity data from continuous measurements (2009-2012) to estimate deformations were processed using the GAMIT/GLOBK software. Using high-rate GPS data from permanent 146 GNSS stations (RTK-CORS-TR network), the strain distribution was determined and interpolated using a biharmonic spline technique. We show the strain field patterns within axial and plane form at several critical locations, and discuss these results within the context of the seismic and tectonic deformation of Turkey. We conclude that the knowledge of the crustal strain patterns provides important information on the location of the main faults and strain accumulation for the hazard assessment. The results show an agreement between the seismic and tectonic strains confirming that there are active crustal deformations in Turkey.

  9. The influence of water and LPO on the initiation and evolution of mantle shear zones

    NASA Astrophysics Data System (ADS)

    Skemer, Philip; Warren, Jessica M.; Hansen, Lars N.; Hirth, Greg; Kelemen, Peter B.

    2013-08-01

    We present data from the Josephine Peridotite (SW Oregon, USA) that constrain the underlying physical processes responsible for the initiation of shear localization and the evolution of ductile shear zones in Earth's mantle. Field measurements of narrow (2-60 m wide) ductile shear zones in harzburgite were used to construct strain profiles, which have maximum shear strains ranging from γ=5.25 to γ>20. Measurements of pyroxene water concentrations from harzburgite samples within and immediately adjacent to the shear zones indicate that gradients in water concentration exist on a 10-100 m scale, even after exhumation. Water concentration measurements are correlated with olivine lattice-preferred orientation (LPO), corroborating experimental results on the influence of water on slip system activity. Using empirical olivine flow laws and the diffusivity of water in olivine, we model initiation of a ductile shear zone through localized water weakening. We demonstrate that this mechanism can readily generate spatial perturbations in both effective viscosity and strain. However this model is not able to reproduce both the observed shear strain gradients and water concentration data from the Josephine shear zones. We evaluate other plausible localization mechanisms, which may amplify this initial strain perturbation. The most relevant at these conditions is the development of viscous anisotropy associated with the evolution of olivine LPO. Using recent experimental results, we demonstrate that progressive rotation of olivine LPO into the shear plane enhances deformation within a shear zone. We conclude that feedback between at least two microphysical processes is needed to account for observed outcrop-scale shear localization.

  10. The experimental basis for interpreting particle and magnetic fabrics of sheared till

    USGS Publications Warehouse

    Iverson, N.R.; Hooyer, T.S.; Thomason, J.F.; Graesch, M.; Shumway, J.R.

    2008-01-01

    Particle fabrics of basal tills may allow testing of the bed-deformation model of glacier flow, which requires high bed shear strains (>100). Field studies, however, have not yielded a systematic relationship between shear-strain magnitude and fabric development. To isolate this relationship four basal tills and viscous putty were sheared in a ring-shear device to strains as high as 714. Fabric was characterized within a zone of shear deformation using the long-axis orientations of fine-gravel and sand particles and the anisotropy of magnetic susceptibility (AMS) of small (???5-8 cm3) intact samples. Results indicate that till particles rotate toward the plane of shearing with long-axis orientations that become tightly clustered in the direction of shear (0??78 < S1 < 0??94 for three-dimensional data). These strong, steady-state fabrics are attained at shear strains of 7-30, with no evidence of fabric weakening with further strain, regardless of the specific till or particle-size fraction under consideration. These results do not support the Jeffery model of particle rotation, which correctly describes particle rotation in the viscous putty but not in the tills, owing to fluid-mechanical assumptions of the model that are violated in till. The sensitivity of fabric development to shear-strain magnitude indicates that, for most till units where shear-strain magnitude is poorly known, attributing fabric variations to spatial differences in other variables, such as till thickness or water content, will be inherently speculative. Attributing fabric characteristics to particular basal till facies is uncertain because shear-strain magnitude is unlikely to be closely correlated to till facies. Weak or spatially variable fabrics, in the absence of post-depositional disturbance or major deviations from unidirectional simple shear, indicate that till has not been pervasively sheared to the high strains required by the bed-deformation model. Strong flow-parallel fabrics are a

  11. Large-scale ordering of nanoparticles using viscoelastic shear processing

    NASA Astrophysics Data System (ADS)

    Zhao, Qibin; Finlayson, Chris E.; Snoswell, David R. E.; Haines, Andrew; Schäfer, Christian; Spahn, Peter; Hellmann, Goetz P.; Petukhov, Andrei V.; Herrmann, Lars; Burdet, Pierre; Midgley, Paul A.; Butler, Simon; Mackley, Malcolm; Guo, Qixin; Baumberg, Jeremy J.

    2016-06-01

    Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong tunable structural colour. With oscillatory strain amplitudes of 300%, crystallization initiates at the wall and develops quickly across the bulk within only five oscillations. The resulting structure of random hexagonal close-packed layers is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonic materials, and forms a generic tool for ordering nanoparticles.

  12. Shear-banding Induced Indentation Size Effect in Metallic Glasses

    PubMed Central

    Lu, Y. M.; Sun, B. A.; Zhao, L. Z.; Wang, W. H.; Pan, M. X.; Liu, C. T.; Yang, Y.

    2016-01-01

    Shear-banding is commonly regarded as the “plasticity carrier” of metallic glasses (MGs), which usually causes severe strain localization and catastrophic failure if unhindered. However, through the use of the high-throughput dynamic nanoindentation technique, here we reveal that nano-scale shear-banding in different MGs evolves from a “distributed” fashion to a “localized” mode when the resultant plastic flow extends over a critical length scale. Consequently, a pronounced indentation size effect arises from the distributed shear-banding but vanishes when shear-banding becomes localized. Based on the critical length scales obtained for a variety of MGs, we unveil an intrinsic interplay between elasticity and fragility that governs the nanoscale plasticity transition in MGs. Our current findings provide a quantitative insight into the indentation size effect and transition mechanisms of nano-scale plasticity in MGs. PMID:27324835

  13. Large-scale ordering of nanoparticles using viscoelastic shear processing

    PubMed Central

    Zhao, Qibin; Finlayson, Chris E.; Snoswell, David R. E.; Haines, Andrew; Schäfer, Christian; Spahn, Peter; Hellmann, Goetz P.; Petukhov, Andrei V.; Herrmann, Lars; Burdet, Pierre; Midgley, Paul A.; Butler, Simon; Mackley, Malcolm; Guo, Qixin; Baumberg, Jeremy J.

    2016-01-01

    Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong tunable structural colour. With oscillatory strain amplitudes of 300%, crystallization initiates at the wall and develops quickly across the bulk within only five oscillations. The resulting structure of random hexagonal close-packed layers is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonic materials, and forms a generic tool for ordering nanoparticles. PMID:27255808

  14. Constant load and constant volume response of municipal solid waste in simple shear.

    PubMed

    Zekkos, Dimitrios; Fei, Xunchang

    2016-09-28

    Constant load and constant volume simple shear testing was conducted on relatively fresh municipal solid waste (MSW) from two landfills in the United States, one in Michigan and a second in Texas, at respective natural moisture content below field capacity. The results were assessed in terms of two failure strain criteria, at 10% and 30% shear strain, and two interpretations of effective friction angle. Overall, friction angle obtained assuming that the failure plane is horizontal and at 10% shear strain resulted in a conservative estimation of shear strength of MSW. Comparisons between constant volume and constant load simple shear testing results indicated significant differences in the shear response of MSW with the shear resistance in constant volume being lower than the shear resistance in constant load. The majority of specimens were nearly uncompacted during specimen preparation to reproduce the state of MSW in bioreactor landfills or in uncontrolled waste dumps. The specimens had identical percentage of <20mm material but the type of <20mm material was different. The <20mm fraction from Texas was finer and of high plasticity. MSW from Texas was overall weaker in both constant load and constant volume conditions compared to Michigan waste. The results of these tests suggest the possibility of significantly lower shear strength of MSW in bioreactor landfills where waste is placed with low compaction effort and constant volume, i.e., "undrained", conditions may occur. Compacted MSW specimens resulted in shear strength parameters that are higher than uncompacted specimens and closer to values reported in the literature. However, the normalized undrained shear strength in simple shear for uncompacted and compacted MSW was still higher than the normalized undrained shear strength reported in the literature for clayey and silty soils.

  15. In situ observation of shear-driven amorphization in silicon crystals

    NASA Astrophysics Data System (ADS)

    He, Yang; Zhong, Li; Fan, Feifei; Wang, Chongmin; Zhu, Ting; Mao, Scott X.

    2016-10-01

    Amorphous materials are used for both structural and functional applications. An amorphous solid usually forms under driven conditions such as melt quenching, irradiation, shock loading or severe mechanical deformation. Such extreme conditions impose significant challenges on the direct observation of the amorphization process. Various experimental techniques have been used to detect how the amorphous phases form, including synchrotron X-ray diffraction, transmission electron microscopy (TEM) and Raman spectroscopy, but a dynamic, atomistic characterization has remained elusive. Here, by using in situ high-resolution TEM (HRTEM), we show the dynamic amorphization process in silicon nanocrystals during mechanical straining on the atomic scale. We find that shear-driven amorphization occurs in a dominant shear band starting with the diamond-cubic (dc) to diamond-hexagonal (dh) phase transition and then proceeds by dislocation nucleation and accumulation in the newly formed dh-Si phase. This process leads to the formation of an amorphous Si (a-Si) band, embedded with dh-Si nanodomains. The amorphization of dc-Si via an intermediate dh-Si phase is a previously unknown pathway of solid-state amorphization.

  16. Earthquakes initiation and thermal shear instability in the Hindu Kush intermediate depth nest

    NASA Astrophysics Data System (ADS)

    Poli, Piero; Prieto, German; Rivera, Efrain; Ruiz, Sergio

    2016-02-01

    Intermediate depth earthquakes often occur along subducting lithosphere, but despite their ubiquity the physical mechanism responsible for promoting brittle or brittle-like failure is not well constrained. Large concentrations of intermediate depth earthquakes have been found to be related to slab break-off, slab drip, and slab tears. The intermediate depth Hindu Kush nest is one of the most seismically active regions in the world and shows the correlation of a weak region associated with ongoing slab detachment process. Here we study relocated seismicity in the nest to constraint the geometry of the shear zone at the top of the detached slab. The analysis of the rupture process of the Mw 7.5 Afghanistan 2015 earthquake and other several well-recorded events over the past 25 years shows an initially slow, highly dissipative rupture, followed by a dramatic dynamic frictional stress reduction and corresponding large energy radiation. These properties are typical of thermal driven rupture processes. We infer that thermal shear instabilities are a leading mechanism for the generation of intermediated-depth earthquakes especially in presence of weak zone subjected to large strain accumulation, due to ongoing detachment process.

  17. Healing and Shear Stress Reduction on Single Fracture of Rock Salt and Limestone under Slide-Hold-Slide Direct Shear Condition

    NASA Astrophysics Data System (ADS)

    Kishida, K.; Yano, T.; Yasuhara, H.

    2012-12-01

    In order to clarify the influence of the holding state on the shear strength in the shear process of a single rock fracture, slide-hold-slide (SHS) direct shear-flow coupling tests were carried out on single rock fractures at several confining stresses and under saturated/unsaturated conditions (Kishida, et al., 2011). Consequently, the mortar specimen could be confirmed as the significant shear strength recovery on the SHS process. In this research, the SHS direct shear tests are carried out on the halite (rock salt) and the limestone. In the case of rock salt, a single tensile fracture is artificially created by cutting away. On the other hand, the limestone has a natural rock joint. The experiments are carried out under various normal confining stress conditions and are employed various holding period at the residual state. Figure 1 shows the shear stress - shear displacement of the SHS direct shear experiments on the rock salt. From all cases, the shear stress increases at the initial phase of the experiments, and then, the shear stress reaches at the peak shear strength. After that, the shear stress slightly decreases such as strain softening. Finally, the shear stress reaches to the residual stress state. In every SHS processes, the shear stress is reducing in various hold period. And then, the shear stress is increasing in the process of re-sliding. The shear stress in the process of re-sliding takes over the value at the start time of the holding process. The shear stress reaches at the peak, and then, it reaches the residual stress state. In all cases, as the holding period becomes longer, it is confirmed that the decrement of the shear stress in the holding process is increasing and the increment of the shear stress at the re-sliding process is increasing. Therefore, it is confirmed that the time dependence of shear strength recovery can be observed. In addition, Dieterich's A constant value for the regression lines (Dieterich, 1972, 1994) is plotted

  18. Material characterization of structural adhesives in the lap shear mode

    NASA Technical Reports Server (NTRS)

    Sancaktar, E.; Schenck, S. C.

    1983-01-01

    A general method for characterizing structual adhesives in the bonded lap shear mode is proposed. Two approaches in the form of semiempirical and theoretical approaches are used. The semiempirical approach includes Ludwik's and Zhurkov's equations to describe respectively, the failure stresses in the constant strain rate and constant stress loading modes with the inclusion of the temperature effects. The theoretical approach is used to describe adhesive shear stress-strain behavior with the use of viscoelastic or nonlinear elastic constitutive equations. Two different model adhesives are used in the single lap shear mode with titanium adherends. These adhesives (one of which was developed at NASA Langley Research Center) are currently considered by NASA for possible aerospace applications. Use of different model adhesives helps in assessment of the generality of the method.

  19. A comparative evaluation of in-plane shear test methods for laminated graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Morton, John; Ho, Henjen

    1992-01-01

    The objectives were to evaluate popular shear test methods for various forms of graphite-epoxy composite materials and to determine the shear response of graphite-epoxy composites with various forms of fiber architecture. Numerical and full-field experimental stress analyses were performed on four shear test configurations for unidirectional and bidirectional graphite-epoxy laminates to assess the uniformity and purity of the shear stress (strain) fields produced in the specimen test section and to determine the material in-plane shear modulus and shear response. The test methods were the 10 deg off-axis, the +/- 45 deg tension, the Iosipescu V-notch, and a compact U-notch specimen. Specimens were prepared from AS4/3501-6 graphite-epoxy panels, instrumented with conventional strain gage rosettes and with a cross-line moire grating, and loaded in a convenient testing machine. The shear responses obtained for each test method and the two methods of specimen instrumentation were compared. In a second phase of the program the shear responses obtained from Iosipescu V-notch beam specimens were determined for woven fabric geometries of different weave and fiber architectures. Again the responses of specimens obtained from strain gage rosettes and moire interferometry were compared. Additional experiments were performed on a bidirectional cruciform specimen which was also instrumented with strain gages and a moire grating.

  20. Deformation measurements of composite multi-span beam shear specimens by Moire interferometry

    NASA Technical Reports Server (NTRS)

    Post, D.; Czarnek, R.; Joh, D.; Wood, J.

    1984-01-01

    Experimental analyses were performed for determination of in plane deformations and shear strains in unidirectional and quasi-isotropic graphite-epoxy beams. Forty-eight ply beams were subjected to 5 point and 3 point flexure. Whole field measurements were recorded at load levels from about 20% to more than 90% of failure loads. Contour maps of U and W displacement fields were obtained by moire interferometry, using reference gratings of 2400 lines/mm. Clearly defined fringes with fringe orders exceeding 1000 were obtained. Whole field contour maps of shear strains were obtained by a method developed for these tests. Various anomalous effects were detected in the displacement fields. Their analysis indicated excess shear strains in resin rich zones in regions of shear tractions; free edge shear strains in quasi-isotropic specimens in regions of normal stresses; and shear stresses associated with cyclic shear compliances of quasi-isotropic plies in regions of shear tractions. Their contributions could occur independently or in superposition. Qualitative analyses addressed questions of relaxation; influence of contact stress distribution; specimen failure; effect of specimen overhang; nonlinearity; and qualities of 5 and 3 point flexure tests.

  1. Strength enhancement of a biomedical titanium alloy through a modified accumulative roll bonding technique.

    PubMed

    Kent, Damon; Wang, Gui; Yu, Zhentao; Ma, Xiqun; Dargusch, Matthew

    2011-04-01

    The strength of a biomedical β-type alloy, Ti-25Nb-3Zr-3Mo-2Sn, was enhanced through severe plastic deformation using a modified accumulative roll bonding technique. Incremental strength increases were observed after each cycle, while ductility initially fell but showed some recovery with further cycles. After 4 cycles there was a 70% improvement in the ultimate tensile strength to 1220 MPa, a two-fold increase in the 0.5% proof stress to 946 MPa and the ductility was 4.5%. The microstructure comprised of ultrafine grain β grains heavily elongated in the rolling direction with a fine dispersion of nanocrystalline α phase precipitates on the β grain boundaries. Shear bands formed in order to accommodate large plastic strains during processing and the grains within the bands were significantly finer than the surrounding matrix.

  2. Modeling of Mesoscale Variability in Biofilm Shear Behavior

    PubMed Central

    Barai, Pallab; Kumar, Aloke; Mukherjee, Partha P.

    2016-01-01

    Formation of bacterial colonies as biofilm on the surface/interface of various objects has the potential to impact not only human health and disease but also energy and environmental considerations. Biofilms can be regarded as soft materials, and comprehension of their shear response to external forces is a key element to the fundamental understanding. A mesoscale model has been presented in this article based on digitization of a biofilm microstructure. Its response under externally applied shear load is analyzed. Strain stiffening type behavior is readily observed under high strain loads due to the unfolding of chains within soft polymeric substrate. Sustained shear loading of the biofilm network results in strain localization along the diagonal direction. Rupture of the soft polymeric matrix can potentially reduce the intercellular interaction between the bacterial cells. Evolution of stiffness within the biofilm network under shear reveals two regimes: a) initial increase in stiffness due to strain stiffening of polymer matrix, and b) eventual reduction in stiffness because of tear in polymeric substrate. PMID:27806068

  3. Measurement of Oblique Impact-generated Shear Waves

    NASA Technical Reports Server (NTRS)

    Dahl, J. M.; Schultz, P. H.

    2001-01-01

    Experimental strain measurements reveal that oblique impacts can generate shear waves with displacements as large as those in the P-wave. Large oblique impacts may thus be more efficient sources of surface disruption than vertical impacts. Additional information is contained in the original extended abstract.

  4. Bolt Shear Force Sensor

    DTIC Science & Technology

    2015-03-12

    cross-sections and a wire egress hole. The ring surrounds a bolt or fastener to be tested. The channel-like cross sections face exterior to a center...capture hoop strain from surrounding plates of the operating system which holds the fastener. A signal conditioner operationally connected via wire ...grating sensor 1 to an external connector 4. Other devices use washers instrumented with wire (foil) strain gages in which the gages only measure the

  5. Hydrolytic weakening and penetrative deformation within a natural shear zone

    NASA Astrophysics Data System (ADS)

    Kronenberg, Andreas K.; Segall, Paul; Wolf, George H.

    Processes of fluid infiltration, hydrolytic weakening, and penetrative deformation within a small ductile shear zone within granitic rocks of the central Sierra Nevada have been investigated using integrated field observations, strain analysis, infrared spectroscopy, and transmission electron microscopy. Several lines of evidence suggest that tensile fracturing accompanied by fluid infiltration preceded the ductile shearing event and that shear strains have localized on a pre-existing sealed fracture. Finite shear strains within an aplite dike and granodiorite host increase sharply from nominally O outside the shear zone to values of 10±2 near its center. Water contents of quartz grains exhibit similar spatial trends to that of strain, rising from 60 and 2000 ppm within the undeformed aplite and granodiorite, respectively, to 4000 and 11,000 ppm within their highly sheared equivalents. Infrared signatures of absorptions measured at room temperature and at 77 K show that most of the intragranular water within quartz and feldspar resides in fluid inclusions. Two distinct populations of fluid inclusions have been observed by optical and electron microscopy; one decorating healed microcracks and the second decorating dislocations. We interpret these relations to record interactions between fluids and processes of brittle failure and ductile flow. Fluid inclusions, forming planar arrays along the traces of healed microcracks, are relatively large (˜0.4-3 μm in diameter) and irregular in shape. A second set of fluid inclusions consists of extremely fine (20-140 nm in diameter), more nearly spherical inclusions which consistently lie along free dislocations and dislocation nodes, and exhibit relationships with dislocations similar to those observed in hydrolytically-weakened synthetic quartz. These observations suggest that water-related defects gained access to grain interiors and dislocation cores by fluid infiltration along open microcracks followed by pipe

  6. A microcomputer-based data acquisition and control system for the direct shear, ring shear, triaxial shear, and consolidation tests

    USGS Publications Warehouse

    Powers, Philip S.

    1983-01-01

    This report is intended to provide internal documentation for the U.S. Geological Survey laboratory's automatic data acquisition system. The operating procedures for each type of test are designed to independently lead a first-time user through the various stages of using the computer to control the test. Continuing advances in computer technology and the availability of desktop microcomputers with a wide variety of peripheral equipment at a reasonable cost can create an efficient automated geotechnical testing environment. A geotechnical testing environment is shown in figure 1. Using an automatic data acquisition system, laboratory test data from a variety of sensors can be collected, and manually or automatically recorded on a magnetic device at the same apparent time. The responses of a test can be displayed graphically on a CRT in a matter of seconds, giving the investigator an opportunity to evaluate the test data, and to make timely, informed decisions on such matters as whether to continue testing, abandon a test, or modify procedures. Data can be retrieved and results reported in tabular form, or graphic plots, suitable for publication. Thermistors, thermocouples, load cells, pressure transducers, and linear variable differential transformers are typical sensors which are incorporated in automated systems. The geotechnical tests which are most practical to automate are the long-term tests which often require readings to be recorded outside normal work hours and on weekends. Automation applications include incremental load consolidation tests, constant-rate-of-strain consolidation tests, direct shear tests, ring shear tests, and triaxial shear tests.

  7. An Evaluation of the Iosipescu Specimen for Composite Materials Shear Property Measurement. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Ho, Henjen

    1991-01-01

    A detailed evaluation of the suitability of the Iosipescu specimen tested in the modified Wyoming fixture is presented. An experimental investigation using conventional strain gage instrumentation and moire interferometry is performed. A finite element analysis of the Iosipescu shear test for unidirectional and cross-ply composites is used to assess the uniformity of the shear stress field in the vicinity of the notch, and demonstrate the effect of the nonuniform stress field upon the strain gage measurements used for the determination of composite shear moduli. From the test results for graphite-epoxy laminates, it is shown that the proximity of the load introduction point to the test section greatly influences the individual gage readings for certain fiber orientations but the effect upon shear modulus measurement is relatively unimportant. A numerical study of the load contact effect shows the sensitivity of some fiber configurations to the specimen/fixture contact mechanism and may account for the variations in the measured shear moduli. A comparison of the strain gage readings from one surface of a specimen with corresponding data from moire interferometry on the opposite face documented an extreme sensitivity of some fiber orientations to eccentric loading which induced twisting and yielded spurious shear stress-strain curves. In the numerical analysis, it is shown that the Iosipescu specimens for different fiber orientations have to be modeled differently in order to closely approximate the true loading conditions. Correction factors are needed to allow for the nonuniformity of the strain field and the use of the average shear stress in the shear modulus evaluation. The correction factors, which are determined for the region occupied by the strain gage rosette, are found to be dependent upon the material orthotropic ratio and the finite element models. Based upon the experimental and numerical results, recommendations for improving the reliability and

  8. Numerical simulation of systems of shear bands in ductile metal with inclusions

    SciTech Connect

    Plohr, JeeYeon N. Plohr, Bradley J.

    2016-02-15

    We develop a method for numerical simulations of high strain-rate loading of mesoscale samples of ductile metal with inclusions. Because of its small-scale inhomogeneity, the composite material is prone to localized shear deformation (adiabatic shear bands). This method employs the Generalized Method of Cells of Paley and Aboudi [Mech. Materials, vol. 14, pp. 127–139, 1992] to ensure that the micro mechanical behavior of the metal and inclusions is reflected properly in the behavior of the composite at the mesoscale. To find the effective plastic strain rate when shear bands are present, we extend and apply the analytic and numerical analysis of shear bands of Glimm, Plohr, and Sharp [Mech. Materials, vol. 24, pp. 31–41, 1996]. Our tests of the method focus on the stress/strain response in uniaxial-strain flow, both compressive and tensile, of depleted uranium metal containing silicon carbide inclusions. We use the Preston-Tonks-Wallace viscoplasticity model [J. Appl. Phys., vol. 93, pp. 211–220, 2003], which applies to the high strain-rate regime of an isotropic viscoplastic solid. In results, we verify the elevated temperature and thermal softening at shear bands in our simulations of pure DU and DU/SiC composites. We also note that in composites, due the asymmetry caused by the inclusions, shear band form at different times in different subcells. In particular, in the subcells near inclusions, shear band form much earlier than they do in pure DU.

  9. Smoothing and roughening of slip surfaces in direct shear experiments

    NASA Astrophysics Data System (ADS)

    Sagy, Amir; Badt, Nir; Hatzor, Yossef H.

    2015-04-01

    , increases as a function of slip amount. The roughness measured after slip can be fitted by a power-law similar to that of the initial tensile surface. In the next series of experiments a similar procedure is applied when the roughness evolution is measured as a function of increasing normal stress for a fixed displacement amount of 10 mm. While samples sheared under a constant normal stress of 5 MPa generated surface smoothing, shearing under normal stress of 7.5 MPa to 15 MPa exhibited surface roughening at the measured range of scales. We find that roughening is correlated with the attained peak shear stress values, stress drop (peak shear stress minus residual shear stress) and with wear accumulation, a novel measurement procedure of which is developed here. Analysis of the sheared samples shows that roughening is generated by sets of dense fractures that significantly damaged the sample in the immediate proximity to large asperities. This roughening is related to penetrative damage during transient wear in rough surfaces.

  10. Shear mode grinding

    SciTech Connect

    Brown, N.J.; Fuchs, B.A.

    1989-04-24

    The thesis of this paper is that shear mode grinding of glass (1) occurs with abrasive particle sizes less than 1/mu/m, (2) that it is the mechanical limit of the the more common mechanical-chemical glass polishing, and (3) that the debris is insufficient in size to perform the function of eroding the binder in the grinding wheel and thus necessitates the addition of an abrasive and/or chemical additions to the coolant to effect wheel-dressing. 13 refs.

  11. Yielding of glass under shear: A directed percolation transition precedes shear-band formation

    NASA Astrophysics Data System (ADS)

    Shrivastav, Gaurav Prakash; Chaudhuri, Pinaki; Horbach, Jürgen

    2016-10-01

    Under external mechanical loading, glassy materials, ranging from soft matter systems to metallic alloys, often respond via formation of inhomogeneous flow patterns, during yielding. These inhomogeneities can be precursors to catastrophic failure, implying that a better understanding of their underlying mechanisms could lead to the design of smarter materials. Here, extensive molecular dynamics simulations are used to reveal the emergence of heterogeneous dynamics in a binary Lennard-Jones glass, subjected to a constant strain rate. At a critical strain, this system exhibits for all considered strain rates a transition towards the formation of a percolating cluster of mobile regions. We give evidence that this transition belongs to the universality class of directed percolation. Only at low shear rates, the percolating cluster subsequently evolves into a transient (but long-lived) shear band with a diffusive growth of its width. Finally, the steady state with a homogeneous flow pattern is reached. In the steady state, percolation transitions also do occur constantly, albeit over smaller strain intervals, to maintain the stationary plastic flow in the system.

  12. Comparison Of Direct Simple Shear Confinement Methods On Clay And Silt Specimens

    DTIC Science & Technology

    2011-12-20

    Shape of a Rubber Specimen Under Constant Height Direct Simple Shear Condition: (a) strain < 10%, (b) strain >10% (DeGroot et al, 1992...wire-reinforced rubber membrane constructed at the Norwegian Geotechnical Institute (NGI) (Figure 1-3). Figure 1-3 – Direct Simple Shear Confinement...confined specimens using a rubber membrane and aluminum rings. The rings were packed tightly together and the sample was consolidated using lead weights

  13. Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Hao, Xiao-Li; Wang, Cui-Xia; Wei, Ning; Rabczuk, Timon

    2017-01-01

    Tensile strain and compress strain can greatly affect the thermal conductivity of graphene nanoribbons (GNRs). However, the effect of GNRs under shear strain, which is also one of the main strain effect, has not been studied systematically yet. In this work, we employ reverse nonequilibrium molecular dynamics (RNEMD) to the systematical study of the thermal conductivity of GNRs (with model size of 4 nm × 15 nm) under the shear strain. Our studies show that the thermal conductivity of GNRs is not sensitive to the shear strain, and the thermal conductivity decreases only 12–16% before the pristine structure is broken. Furthermore, the phonon frequency and the change of the micro-structure of GNRs, such as band angel and bond length, are analyzed to explore the tendency of thermal conductivity. The results show that the main influence of shear strain is on the in-plane phonon density of states (PDOS), whose G band (higher frequency peaks) moved to the low frequency, thus the thermal conductivity is decreased. The unique thermal properties of GNRs under shear strains suggest their great potentials for graphene nanodevices and great potentials in the thermal managements and thermoelectric applications.

  14. Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation.

    PubMed

    Zhang, Chao; Hao, Xiao-Li; Wang, Cui-Xia; Wei, Ning; Rabczuk, Timon

    2017-01-25

    Tensile strain and compress strain can greatly affect the thermal conductivity of graphene nanoribbons (GNRs). However, the effect of GNRs under shear strain, which is also one of the main strain effect, has not been studied systematically yet. In this work, we employ reverse nonequilibrium molecular dynamics (RNEMD) to the systematical study of the thermal conductivity of GNRs (with model size of 4 nm × 15 nm) under the shear strain. Our studies show that the thermal conductivity of GNRs is not sensitive to the shear strain, and the thermal conductivity decreases only 12-16% before the pristine structure is broken. Furthermore, the phonon frequency and the change of the micro-structure of GNRs, such as band angel and bond length, are analyzed to explore the tendency of thermal conductivity. The results show that the main influence of shear strain is on the in-plane phonon density of states (PDOS), whose G band (higher frequency peaks) moved to the low frequency, thus the thermal conductivity is decreased. The unique thermal properties of GNRs under shear strains suggest their great potentials for graphene nanodevices and great potentials in the thermal managements and thermoelectric applications.

  15. Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation

    PubMed Central

    Zhang, Chao; Hao, Xiao-Li; Wang, Cui-Xia; Wei, Ning; Rabczuk, Timon

    2017-01-01

    Tensile strain and compress strain can greatly affect the thermal conductivity of graphene nanoribbons (GNRs). However, the effect of GNRs under shear strain, which is also one of the main strain effect, has not been studied systematically yet. In this work, we employ reverse nonequilibrium molecular dynamics (RNEMD) to the systematical study of the thermal conductivity of GNRs (with model size of 4 nm × 15 nm) under the shear strain. Our studies show that the thermal conductivity of GNRs is not sensitive to the shear strain, and the thermal conductivity decreases only 12–16% before the pristine structure is broken. Furthermore, the phonon frequency and the change of the micro-structure of GNRs, such as band angel and bond length, are analyzed to explore the tendency of thermal conductivity. The results show that the main influence of shear strain is on the in-plane phonon density of states (PDOS), whose G band (higher frequency peaks) moved to the low frequency, thus the thermal conductivity is decreased. The unique thermal properties of GNRs under shear strains suggest their great potentials for graphene nanodevices and great potentials in the thermal managements and thermoelectric applications. PMID:28120921

  16. The genesis of adiabatic shear bands

    PubMed Central

    Landau, P.; Osovski, S.; Venkert, A.; Gärtnerová, V.; Rittel, D.

    2016-01-01

    Adiabatic shear banding (ASB) is a unique dynamic failure mechanism that results in an unpredicted catastrophic failure due to a concentrated shear deformation mode. It is universally considered as a material or structural instability and as such, ASB is hardly controllable or predictable to some extent. ASB is modeled on the premise of stability analyses. The leading paradigm is that a competition between strain (rate) hardening and thermal softening determines the onset of the failure. It was recently shown that microstructural softening transformations, such as dynamic recrystallization, are responsible for adiabatic shear failure. These are dictated by the stored energy of cold work, so that energy considerations can be used to macroscopically model the failure mechanism. The initial mechanisms that lead to final failure are still unknown, as well as the ASB formation mechanism(s). Most of all - is ASB an abrupt instability or rather a gradual transition as would be dictated by microstructural evolutions? This paper reports thorough microstructural characterizations that clearly show the gradual character of the phenomenon, best described as a nucleation and growth failure mechanism, and not as an abrupt instability as previously thought. These observations are coupled to a simple numerical model that illustrates them. PMID:27849023

  17. Strain avalanches in plasticity

    NASA Astrophysics Data System (ADS)

    Argon, A. S.

    2013-09-01

    Plastic deformation at the mechanism level in all solids occurs in the form of discrete thermally activated individual stress relaxation events. While there are clear differences in mechanisms between dislocation mediated events in crystalline solids and by individual shear transformations in amorphous metals and semiconductors, such relaxation events interact strongly to form avalanches of strain bursts. In all cases the attendant distributions of released energy as amplitudes of acoustic emissions, or in serration amplitudes in flow stress, the levels of strain bursts are of fractal character with fractal exponents in the range from -1.5 to -2.0, having the character of phenomena of self-organized criticality, SOC. Here we examine strain avalanches in single crystals of ice, hcp metals, the jerky plastic deformations of nano-pillars of fcc and bcc metals deforming in compression, those in the plastic flow of bulk metallic glasses, all demonstrating the remarkable universality of character of plastic relaxation events.

  18. Wind shear test

    NASA Astrophysics Data System (ADS)

    Techniques for forecasting and detecting a type of wind shear called microbursts are being tested this month in an operational program at Denver's Stapleton International Airport as part of an effort to reduce hazards to airplanes and passengers.Wind shear, which can be spawned by convective storms, can occur as a microburst. These downbursts of cool air are usually recognizable as a visible rain shaft beneath a thundercloud. Sometimes, however, the rain shaft evaporates before reaching the ground, leaving the downdraft invisible. Although thunderstorms are traditionally avoided by airplane pilots, these invisible downdrafts also harbor hazards in what usually appear to be safe skies. When the downdraft reaches the earth's surface, the downdraft spreads out horizontally, much like a stream of water gushing from a garden hose on a concrete surface, explained John McCarthy, director of the operational program. Airplanes can encounter trouble when the downdraft from the microburst causes sudden shifts in wind direction, which may reduce lift on the wing, an especially dangerous situation during takeoff.

  19. TUBE SHEARING VALVE

    DOEpatents

    Wilner, L.B.

    1960-05-24

    Explosive operated valves can be used to join two or more containers in fluid flow relationship, one such container being a sealed reservoir. The valve is most simply disposed by mounting it on the reservoir so thst a tube extends from the interior of the reservoir through the valve body, terminating at the bottom of the bore in a closed end; other containers may be similarly connected or may be open connected, as desired. The piston of the valve has a cutting edge at its lower end which shears off the closed tube ends and a recess above the cutting edge to provide a flow channel. Intermixing of the fluid being transferred with the explosion gases is prevented by a copper ring at the top of the piston which is force fitted into the bore at the beginning of the stroke. Although designed to avoid backing up of the piston at pressures up to 10,000 psi in the transferred fluid, proper operation is independent of piston position, once the tube ends were sheared.

  20. Excited waves in shear layers

    NASA Technical Reports Server (NTRS)

    Bechert, D. W.

    1982-01-01

    The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.

  1. Experimental deformation tests on natural gypsum in simple shear

    NASA Astrophysics Data System (ADS)

    Barberini, V.; Burlini, L.; Rutter, E.; Dapiaggi, M.

    2003-04-01

    Gypsum, together with anhydrite and halite, is the main mineral forming evaporitic rocks. These rocks, interlayered within sedimentary sequences, play an important role in structural development in several ways on accounts of their particular physical properties. Evaporites are more plastic and less permeable compared to sandstones, limestones and shales. Moreover, gypsum starts to dehydrate at less than 100 °C. High plasticity at relatively low temperature, together with the possible presence of pressurised water, imply that, when sedimentary sequences are involved in thrust tectonics, deformation is often localised in evaporitic levels (Apennines, South Alpine region, Zagros, Gulf of Mexico, etc.); in some cases the deformation is accompanied by seismicity as in the Northern Apennines extensional systems. Low permeability of evaporitic rocks allow them to be a good sealing rock for oil reservoirs and a very efficient rock to localise waste disposal. In this framework, a set of experiments was performed on gypsum samples from Volterra (Tuscany, Italy) in order to investigate how gypsum behaves at increasing stress/strain conditions. Experimental deformation tests were performed at confining pressures up to 300 MPa, at different temperatures (20, 70, 90 and 130 °C) and at strain rates ranging between 1*10-4 and 5*10-6 s-1. In order to reach high shear strain values (up to gamma = 4), we used: 1) gypsum cores deformed using the newly developed torsion technique in a Paterson-type apparatus and 2) both gypsum slices and powder in sawcut assembly at 35°, deformed in a Heard-type triaxial apparatus. All the deformed samples have been studied both by optical microscopy, to investigate the evolution of the microstructure with strain, and by XRD analysis, to determine if and to what extent gypsum dehydrated during deformation. A peak in the shear stress value (60-120 MPa) was reached at shear strains between gamma = 0.2 and gamma = 1, followed by strain softening or

  2. High spatial resolution PIV and CH-PLIF measurements of a Shear Layer Stabilized Flame

    NASA Astrophysics Data System (ADS)

    Foley, Christopher; Chterev, Ianko; Seitzman, Jerry; Lieuwen, Tim

    2014-11-01

    In practical combustors, flames stabilize in thin shear layers with very high strain rates, which alter the flame burning rate - either enhancing or diminishing reaction rates, and even leading to extinction. Therefore, the bulk velocity that provides stable operation in these combustors is limited, presumably due to the associated maximum stretch rate that the flame is able to withstand. The focus of this work is to develop a deeper understanding of the interaction between flow and flame for a shear layer stabilized, premixed flame. This study consists of planar, high resolution, simultaneous PIV and CH-PLIF measurements, in a 8 x 6 mm plane with 0.11 mm and 0.16 mm PIV vector and CH-PLIF image resolution, respectively, of the flame stabilization region in a swirling jet. The hydrodynamic strain induced stretch rate along the high CH concentration layer of the flame front is calculated from these measurements. In addition, this study elucidates the unsteady behavior of the flame in the thin shear layer. The measured flame stretch is highly spatially and temporally dependent, and dominated by contributions from normal and shear strain terms of axial velocity. Although normal strain is much greater than shear, the near horizontal flame orientation results in neither strain term dominating flame stretch. Furthermore, the flame angle changes the sign of the shear strain contributions as observed experimentally, an important implication for reduced order modeling approaches.

  3. Fluid migration in ductile shear zones

    NASA Astrophysics Data System (ADS)

    Fusseis, Florian; Menegon, Luca

    2014-05-01

    Fluid migration in metamorphic environments depends on a dynamically evolving permeable pore space, which was rarely characterised in detail. The data-base behind our understanding of the 4-dimensional transport properties of metamorphic rocks is therefore fragmentary at best, which leaves conceptual models poorly supported. Generally, it seems established that deformation is a major driver of permeability generation during regional metamorphism, and evidence for metamorphic fluids being channelled in large scale shear zones has been found in all depth segments of the continental crust. When strain localizes in ductile shear zones, the microfabric is modified until a steady state mylonite is formed that supports large deformations. A dynamic porosity that evolves during mylonitisation controls the distinct transport pathways along which fluid interacts with the rock. This dynamic porosity is controlled by a limited number of mechanisms, which are intrinsically linked to the metamorphic evolution of the rock during its deformational overprint. Many mid- and lower-crustal mylonites comprise polyphase mixtures of micron-sized grains that show evidence for deformation by dissolution/precipitation-assisted viscous grain boundary sliding. The establishment of these mineral mixtures is a critical process, where monomineralic layers are dispersed and grain growth is inhibited by the heterogeneous nucleation of secondary mineral phases at triple junctions. Here we show evidence from three different mid- and lower-crustal shear zones indicating that heterogeneous nucleation occurs in creep cavities. Micro- and nanotomographic observations show that creep cavities provide the dominant form of porosity in these ultramylonites. They control a "granular fluid pump" that directs fluid migration and hence mass transport. The granular fluid pump operates on the grain scale driven by viscous grain boundary sliding, and requires only small amounts of fluid. The spatial arrangement of

  4. Development of Shear Banding in Berea Sandstone

    NASA Astrophysics Data System (ADS)

    Riedel, J. J.; Labuz, J. F.

    2004-05-01

    Closed-loop, servo-controlled testing was used to investigate the development of shear failure in Berea sandstone under low confining pressure. The experiments were performed with the University of Minnesota Plane-Strain Apparatus, designed to allow the failure plane to propagate in an unrestricted manner. Deformation was imposed into the strain softening regime and controlled so that the specimens remained intact. Thin-section microscopy provided direct observation in, adjacent to, and around the tip of the rupture zone. The shear band appeared to initiate near a stress concentration, either the corner of the specimen or, when present, an imperfection (3 mm diameter hole) introduced into the specimen. Intragranular microcracking was the dominant observable failure mechanism. The intensity of grain cracking was greatest near the initiation point and decreased as the failure surface was traced towards the tip. Areas of high crack density also appeared to have the greatest amount of grain size reduction and there seemed to be a larger amount of pore space. In areas where intragranular microcracks were distinguishable, (e.g. near the tip of the rupture zone), microcracks showed very little or no shear displacement, suggesting the features were not reoriented after formation. Microcrack orientations showed a dominant direction of -16 degrees from the maximum principal stress direction and -26 degrees from the failure surface. A numerical imaging technique was developed to provide an efficient means for analyzing the relative porosity of epoxy-impregnated thin-sections. The code was set up to receive a digital image (*.bmp), where three parameters (R, G, and B) describe the color of each pixel. The intensity of the R channel consistently defined the boundary of grain and pore space and was used to differentiate blue pore space from the white grains composing the matrix. Porosity increase within the rupture zone was 3-4 grain diameters wide. An absence of notable

  5. Numerical simulations of pattern evolution of shear bands during pure shear of geomaterials

    NASA Astrophysics Data System (ADS)

    Chen, Tielin; Liu, Jingjing; Jie, Yuxin; Zhang, Dingli

    2015-07-01

    Numerical simulations with finite element method were carried out and five types of patterns of shear bands and their process of self-organization were obtained. The elasto-plastic theory of constitutive relationship with the non-associated flow rule, vertex-like yielding surfaces and strain softening of strength were adopted to describe the mechanical behavior of geomaterials of rock or soil. The non-symmetrical matrix due to the adoption of the non-associated flow rule was solved with the algorithm of dynamical relaxation of finite element method. The discrete or banded patterns of shear strain in the form of superlattice, parallel strips, super lattice turned parallel strips, rhomboid net and concentric rhomboid loops, were gradually formed as the loading increased. The mechanism of the structural pattern generation and the process of pattern self-organization in geomaterials of rock and soil were a process of mechanical equilibrium of stresses and the allocation of material deformation between the elastic sites and plastic sites. The approach provided a way for researching mechanical origin of shear band pattern.

  6. Inductive shearing of drilling pipe

    SciTech Connect

    Ludtka, Gerard M.; Wilgen, John; Kisner, Roger; Mcintyre, Timothy

    2016-04-19

    Induction shearing may be used to cut a drillpipe at an undersea well. Electromagnetic rings may be built into a blow-out preventer (BOP) at the seafloor. The electromagnetic rings create a magnetic field through the drillpipe and may transfer sufficient energy to change the state of the metal drillpipe to shear the drillpipe. After shearing the drillpipe, the drillpipe may be sealed to prevent further leakage of well contents.

  7. Study, Development, and Design of Replaceable Shear Yielding Steel Panel Damper

    SciTech Connect

    Murakami, Katsuhide; Keii, Michio

    2008-07-08

    For middle-high rise buildings, vibration controlled structures to reduce the damage of main frames are recently becoming general in Japan. A steel material damper is low price and excellent in the energy absorption efficiency at a large earthquake. Though the exchange of the dampers are necessary when an excessive accumulation of plasticity deformation occurs, a steel material damping system, which received an excessive accumulation of plasticity deformation after a large earthquake, can recover a seismic-proof performance and property value of the building after the replacement. In the paper, shear yielding steel panel dampers installed in the web of a beam connected with high tension bolt joint is introduced. This damper is made of low-yield point steel, and the advantages of this system are low cost, easy-production and easy-replacement. For this steel panel damper, the finite element method (FEM) analysis using the shell element model adjusted to 1/2 of 6.4 m beam span is executed to make the design most effective. Yielding property of the beam installing this damper, shape of the splice plate and the bolt orientation for the connecting are examined in this analysis. As a result, we found that the plastic strain extends uniformly to the entire damping panel when making the splice plate a trapezoidal shape. The basic performance confirmation examination was also done using the real scale examination model besides the FEM analysis, and the performance of the system was confirmed. In addition, design of a high rise building in which the steel shear-yielding panel dampers and oil dampers were adopted without disturbing an architectural plan is also introduced.

  8. True Shear Parallel Plate Viscometer

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin; Kaukler, William

    2010-01-01

    This viscometer (which can also be used as a rheometer) is designed for use with liquids over a large temperature range. The device consists of horizontally disposed, similarly sized, parallel plates with a precisely known gap. The lower plate is driven laterally with a motor to apply shear to the liquid in the gap. The upper plate is freely suspended from a double-arm pendulum with a sufficiently long radius to reduce height variations during the swing to negligible levels. A sensitive load cell measures the shear force applied by the liquid to the upper plate. Viscosity is measured by taking the ratio of shear stress to shear rate.

  9. Shearing dynamics and jamming density

    NASA Astrophysics Data System (ADS)

    Olsson, Peter; Vâgberg, Daniel; Teitel, Stephen

    2009-03-01

    We study the effect of a shearing dynamics on the properties of a granular system, by examining how the jamming density depends on the preparation of the starting configurations. Whereas the jamming density at point J was obtained by relaxing random configurations [O'Hern et al, Phys. Rev. E 68, 011306 (2003)], we apply this method to configurations obtained after shearing the system at a certain shear rate. We find that the jamming density increases somewhat and that this effect is more pronounced for configurations produced at smaller shear rates. Different measures of the order of the jammed configurations are also discussed.

  10. Tunable shear thickening in suspensions

    PubMed Central

    Lin, Neil Y.C.; Ness, Christopher; Cates, Michael E.; Sun, Jin; Cohen, Itai

    2016-01-01

    Shear thickening, an increase of viscosity with shear rate, is a ubiquitous phenomenon in suspended materials that has implications for broad technological applications. Controlling this thickening behavior remains a major challenge and has led to empirical strategies ranging from altering the particle surfaces and shape to modifying the solvent properties. However, none of these methods allows for tuning of flow properties during shear itself. Here, we demonstrate that by strategic imposition of a high-frequency and low-amplitude shear perturbation orthogonal to the primary shearing flow, we can largely eradicate shear thickening. The orthogonal shear effectively becomes a regulator for controlling thickening in the suspension, allowing the viscosity to be reduced by up to 2 decades on demand. In a separate setup, we show that such effects can be induced by simply agitating the sample transversely to the primary shear direction. Overall, the ability of in situ manipulation of shear thickening paves a route toward creating materials whose mechanical properties can be controlled. PMID:27621472

  11. Displacement-length scaling of brittle faults in ductile shear.

    PubMed

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-11-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.

  12. Displacement–length scaling of brittle faults in ductile shear

    PubMed Central

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-01-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996

  13. Shear banding in drying films of colloidal nanoparticles.

    PubMed

    Yang, Bin; Sharp, James S; Smith, Michael I

    2015-04-28

    Drying suspensions of colloidal nanoparticles exhibit a variety of interesting strain release mechanisms during film formation. These result in the selection of characteristic length scales during failure processes such as cracking and subsequent delamination. A wide range of materials (e.g., bulk metallic glasses) release strain through plastic deformations which occur in a narrow band of material known as a shear band. Here we show that drying colloidal films also exhibit shear banding. Bands are observed to form a small distance behind the drying front and then to propagate rapidly at ∼45° to the direction of drying. It is shown that the spacing of the bands depends on salt concentration and the evaporation rate of the colloidal suspension. These combined observations suggest that there is a critical shear rate (related to the film yield stress) which controls the ratio of bandwidth to band spacing. Local deformations were measured in the early stages of drying using fluorescent tracer particles. The measurements were used to show that the existence of shear bands is linked to the compaction of particles perpendicular to the drying front. The spacing of shear bands was also found to be strongly correlated with the characteristic length scale of the compaction process. These combined studies elucidate the role of plastic deformation during pattern formation in drying films of colloidal nanoparticles.

  14. Ordered Packing Induced by Simultaneous Shear and Compaction

    NASA Astrophysics Data System (ADS)

    Hancock, Bruno; Dutt, Meenakshi; Bentham, Craig; Elliott, James

    2005-03-01

    We study a system of monodisperse frictional particles confined between two surfaces and being simultaneously sheared and unaxially compacted by the upper surface. The upper surface is made of particles identical to those in the bulk, arranged randomly, or in a square or triangular lattice. The particles between the surfaces are allowed to compact under gravity after being poured onto the bottom surface, followed by simultaneous constant strain compaction and shear by the upper surface. We focus on the evolution of the packing structure with interparticle friction, arrangements of the particles on the surfaces, initial height of the confined gravitationally compacted particles and the shear and compaction strain rates. We compute the coordination number, packing fraction, contact orientation, distribution of contacts and other relevant quantities to provide quantitative insight on the packing structure. We have found, for a 5 diameter layer of confined particles, the compaction speed has a greater effect on the packing structure of the particles in comparison to the shear speed. For a shearing surface formed of particles arranged in a square lattice, the packing structure of the confined particles evolves to interdigitating layers of 3D close-packed spheres. The numerical experiments have been performed via Discrete Element Method simulations (Dutt et al., 2004 to be published) using Microcrystalline Cellulose spheres.

  15. Multiplicative earthquake likelihood models incorporating strain rates

    NASA Astrophysics Data System (ADS)

    Rhoades, D. A.; Christophersen, A.; Gerstenberger, M. C.

    2017-01-01

    SUMMARYWe examine the potential for <span class="hlt">strain</span>-rate variables to improve long-term earthquake likelihood models. We derive a set of multiplicative hybrid earthquake likelihood models in which cell rates in a spatially uniform baseline model are scaled using combinations of covariates derived from earthquake catalogue data, fault data, and <span class="hlt">strain</span>-rates for the New Zealand region. Three components of the <span class="hlt">strain</span> rate estimated from GPS data over the period 1991-2011 are considered: the <span class="hlt">shear</span>, rotational and dilatational <span class="hlt">strain</span> rates. The hybrid model parameters are optimised for earthquakes of M 5 and greater over the period 1987-2006 and tested on earthquakes from the period 2012-2015, which is independent of the <span class="hlt">strain</span> rate estimates. The <span class="hlt">shear</span> <span class="hlt">strain</span> rate is overall the most informative individual covariate, as indicated by Molchan error diagrams as well as multiplicative modelling. Most models including <span class="hlt">strain</span> rates are significantly more informative than the best models excluding <span class="hlt">strain</span> rates in both the fitting and testing period. A hybrid that combines the <span class="hlt">shear</span> and dilatational <span class="hlt">strain</span> rates with a smoothed seismicity covariate is the most informative model in the fitting period, and a simpler model without the dilatational <span class="hlt">strain</span> rate is the most informative in the testing period. These results have implications for probabilistic seismic hazard analysis and can be used to improve the background model component of medium-term and short-term earthquake forecasting models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ApPhL.106o1902J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ApPhL.106o1902J"><span>The role of <span class="hlt">shear</span> in the transition from continuous <span class="hlt">shear</span> thickening to discontinuous <span class="hlt">shear</span> thickening</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Weifeng; Xuan, Shouhu; Gong, Xinglong</p> <p>2015-04-01</p> <p>Dense non-Brownian suspension has rich rheology and is hard to understand, especially for distinguishing continuous <span class="hlt">shear</span> thickening (CST) from discontinuous <span class="hlt">shear</span> thickening (DST). By studying the <span class="hlt">shear</span> stress dependent rheology of a well-known DST suspension of cornstarch in water, we find that the transition from CST to DST could occur not only by increasing the volume fraction ϕ but also by increasing the <span class="hlt">shear</span> stress σ. For the recovery process of jammed suspension, we observe that the <span class="hlt">shear</span> activates the time-dependent nature of particle rearrangement. DST can then be interpreted as the consequence of <span class="hlt">shear</span>-induced jamming. Based on the test data, we plot the schematic phase diagram in the ϕ-σ plane and find out that ϕ and σ perform almost the same effect on flow-state transition.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4586493','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4586493"><span>The role of <span class="hlt">shear</span> in crystallization kinetics: From suppression to enhancement</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Richard, David; Speck, Thomas</p> <p>2015-01-01</p> <p>In many technical applications crystallization proceeds in the presence of stresses and flows, hence the importance to understand the crystallization mechanism in simple situations. We employ molecular dynamics simulations to study the crystallization kinetics of a nearly hard sphere liquid that is weakly <span class="hlt">sheared</span>. We demonstrate that <span class="hlt">shear</span> flow both enhances and suppresses the crystallization kinetics of hard spheres. The effect of <span class="hlt">shear</span> depends on the quiescent mechanism: suppression in the activated regime and enhancement in the diffusion-limited regime for small <span class="hlt">strain</span> rates. At higher <span class="hlt">strain</span> rates crystallization again becomes an activated process even at densities close to the glass transition. PMID:26416556</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/22489730','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/22489730"><span><span class="hlt">Shear</span>-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Amann, Christian P. Fuchs, Matthias; Denisov, Dmitry; Dang, Minh Triet; Schall, Peter; Struth, Bernd</p> <p>2015-07-21</p> <p>We employ x-ray scattering on <span class="hlt">sheared</span> colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under <span class="hlt">shear</span>. We find a transition from quadrupolar elastic distortion at small <span class="hlt">strains</span> to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with <span class="hlt">strain</span>, we identify characteristic <span class="hlt">strain</span> and length-scale values where these plastic rearrangements dominate. This characteristic <span class="hlt">strain</span> coincides with the maximum of the <span class="hlt">shear</span> stress versus <span class="hlt">strain</span> curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPhCS.734c2049M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPhCS.734c2049M"><span>Crack initiation observation and local stress analysis in <span class="hlt">shear</span> fracture tests of ultra-high strength steels</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, Ninshu; Takada, Kenji; Sugimoto, Nao</p> <p>2016-08-01</p> <p>To investigate the local <span class="hlt">strain</span> and stress at the crack initiation position in <span class="hlt">shear</span> fracture test pieces of ultra-high strength steels, a butterfly <span class="hlt">shear</span> fracture specimen was employed. The crack initiation position and propagation direction were observed during <span class="hlt">shear</span> fracture tests by high speed cameras and investigated through analysing the fracture surface by scanning electron microscope. Further, the finite element method was employed and the stress-triaxiality at the crack initiation position was investigated. It can be obtained that the crack initiated at the position where the stress state is close to uniaxial tensile state or plane <span class="hlt">strain</span> state more than pure <span class="hlt">shear</span> stress state.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A43L..06Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A43L..06Z"><span>Predictability of <span class="hlt">Sheared</span> Tropical Cyclones</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, F.; Tao, D.</p> <p>2015-12-01</p> <p>Predictability of the formation, rapid intensification and eyewall replacement of <span class="hlt">sheared</span> tropical cyclones (TCs) are explored through a series of convection-permitting ensemble simulations using the Weather Research and Forecasting (WRF) model with different environmental vertical wind <span class="hlt">shear</span>, sea-surface temperature (SST), and ambient moisture conditions. It is found that the intrinsic predictability of the RI onset time is more limited with increasing <span class="hlt">shear</span> magnitude until the <span class="hlt">shear</span> magnitude is large enough to prevent the TC formation. Based on ensemble sensitivity and correlation analysis, the RI onset timing within one set is largely related to the vortex tilt magnitude, the diabatic heating distribution and the strength of the primary vortex circulation. Systematic differences amongst the ensemble members begin to arise right after the initial burst of moist convection associated with the incipient vortex. This difference from the randomness inherent in moist convection in terms of both location and intensity first changes the TC vortex structure subtly and then leads to the deviations in system scales and eventually in the development (and precession) of the TC. On average, a higher SST has a positive effect on the TC formation and reduces the uncertainty of development under all <span class="hlt">shear</span> conditions, while a drier environment has a negative impact on the TCs development and either broadens the ensemble spread of RI onset time or prevents the storm from forming when the <span class="hlt">shear</span>-induced tilt is large. Nevertheless, the uncertainty in environmental <span class="hlt">shear</span> magnitudes may dominate over the effect of randomness in moist convection in terms of TC formation and predictability. A byproduct of tropical cyclones under vertical wind <span class="hlt">shear</span> is the secondary eyewall formation (SEF). It is found that the eyewall formation is more often observed in TCs with moderate to high <span class="hlt">shear</span>, which was inherently more unpredictable. The inward contraction/axisymmeterization of <span class="hlt">shear</span></p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997Nonli..10.1755D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997Nonli..10.1755D"><span><span class="hlt">Shear</span> rotation numbers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Doeff, E.; Misiurewicz, M.</p> <p>1997-11-01</p> <p>This paper presents results on rotation numbers for orientation-preserving torus homeomorphisms homotopic to a Dehn twist. Rotation numbers and the rotation set for such homeomorphisms have been defined and initially investigated by the first author in a previous paper. Here we prove that each rotation number 0951-7715/10/6/017/img5 in the interior of the rotation set is realized by some compact invariant set, and that there is an ergodic measure on that set with mean rotation number 0951-7715/10/6/017/img5. It is also proved that the function which assigns its rotation set to such a homeomorphism is continuous. Finally, a counterexample is presented that shows that rational extremal points of the <span class="hlt">shear</span> rotation set do not necessarily correspond to any periodic orbits.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160001622','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160001622"><span>Flexible Micropost Arrays for <span class="hlt">Shear</span> Stress Measurement</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wohl, Christopher J.; Palmieri, Frank L.; Hopkins, John W.; Jackson, Allen M.; Connell, John W.; Lin, Yi; Cisotto, Alexxandra A.</p> <p>2015-01-01</p> <p>Increased fuel costs, heightened environmental protection requirements, and noise abatement continue to place drag reduction at the forefront of aerospace research priorities. Unfortunately, shortfalls still exist in the fundamental understanding of boundary-layer airflow over aerodynamic surfaces, especially regarding drag arising from skin friction. For example, there is insufficient availability of instrumentation to adequately characterize complex flows with strong pressure gradients, heat transfer, wall mass flux, three-dimensionality, separation, shock waves, and transient phenomena. One example is the acoustic liner efficacy on aircraft engine nacelle walls. Active measurement of <span class="hlt">shear</span> stress in boundary layer airflow would enable a better understanding of how aircraft structure and flight dynamics affect skin friction. Current <span class="hlt">shear</span> stress measurement techniques suffer from reliability, complexity, and airflow disruption, thereby compromising resultant <span class="hlt">shear</span> stress data. The state-of-the-art for <span class="hlt">shear</span> stress sensing uses indirect or direct measurement techniques. Indirect measurements (e.g., hot-wire, heat flux gages, oil interferometry, laser Doppler anemometry, small scale pressure drag surfaces, i.e., fences) require intricate knowledge of the studied flow, restrictive instrument arrangements, large surface areas, flow disruption, or seeding material; with smaller, higher bandwidth probes under development. Direct measurements involve <span class="hlt">strain</span> displacement of a sensor element and require no prior knowledge of the flow. Unfortunately, conventional "floating" recessed components for direct measurements are mm to cm in size. Whispering gallery mode devices and Fiber Bragg Gratings are examples of recent additions to this type of sensor with much smaller (?m) sensor components. Direct detection techniques are often single point measurements and difficult to calibrate and implement in wind tunnel experiments. In addition, the wiring, packaging, and installation</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EPJWC..2602002B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EPJWC..2602002B"><span>On the persistence of adiabatic <span class="hlt">shear</span> bands</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boakye-Yiadom, S.; Bassim, M. N.; Al-Ameeri, S.</p> <p>2012-08-01</p> <p>It is generally agreed that the initiation and development of adiabatic <span class="hlt">shear</span> bands (ASBs) are manifestations of damage in metallic materials subjected to high <span class="hlt">strain</span> rates and large <span class="hlt">strains</span> as those due to impact in a Hopkinson Bar system. Models for evolution of these bands have been described in the literature. One question that has not received attention is how persistent these bands are and whether their presence and effect can be reversed or eliminated by using a process of thermal (heat treatment) or thermo-mechanical treatment that would relieve the material from the high <span class="hlt">strain</span> associated with ASBs and their role as precursors to crack initiation and subsequent failure. Since ASBs are more prevalent and more defined in BCC metals including steels, a study was conducted to investigate the best conditions of generating ASBs in a heat treatable steel, followed by determining the best conditions for heat treatment of specimens already damaged by the presence of ASBs in order to relieve the <span class="hlt">strains</span> due to ASBs and restore the material to an apparent microstructure without the "scars" due to the previous presence of ASBs. It was found that heat treatment achieves the curing from ASBs. This presentation documents the process undertaken to achieve this objective.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26893196','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26893196"><span>The Critical Criterion on Runaway <span class="hlt">Shear</span> Banding in Metallic Glasses.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, B A; Yang, Y; Wang, W H; Liu, C T</p> <p>2016-02-19</p> <p>The plastic flow of metallic glasses (MGs) in bulk is mediated by nanoscale <span class="hlt">shear</span> bands, which is known to proceed in a stick-slip manner until reaching a transition state causing catastrophic failures. Such a slip-to-failure transition controls the plasticity of MGs and resembles many important phenomena in natural science and engineering, such as friction, lubrication and earthquake, therefore has attracted tremendous research interest over past decades. However, despite the fundamental and practical importance, the physical origin of this slip-to-failure transition is still poorly understood. By tracking the behavior of a single <span class="hlt">shear</span> band, here we discover that the final fracture of various MGs during compression is triggered as the velocity of the dominant <span class="hlt">shear</span> band rises to a critical value, the magnitude of which is independent of alloy composition, sample size, <span class="hlt">strain</span> rate and testing frame stiffness. The critical <span class="hlt">shear</span> band velocity is rationalized with the continuum theory of liquid instability, physically originating from a <span class="hlt">shear</span>-induced cavitation process inside the <span class="hlt">shear</span> band. Our current finding sheds a quantitative insight into deformation and fracture in disordered solids and, more importantly, is useful to the design of plastic/tough MG-based materials and structures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4759565','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4759565"><span>The Critical Criterion on Runaway <span class="hlt">Shear</span> Banding in Metallic Glasses</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sun, B. A.; Yang, Y.; Wang, W. H.; Liu, C. T.</p> <p>2016-01-01</p> <p>The plastic flow of metallic glasses (MGs) in bulk is mediated by nanoscale <span class="hlt">shear</span> bands, which is known to proceed in a stick-slip manner until reaching a transition state causing catastrophic failures. Such a slip-to-failure transition controls the plasticity of MGs and resembles many important phenomena in natural science and engineering, such as friction, lubrication and earthquake, therefore has attracted tremendous research interest over past decades. However, despite the fundamental and practical importance, the physical origin of this slip-to-failure transition is still poorly understood. By tracking the behavior of a single <span class="hlt">shear</span> band, here we discover that the final fracture of various MGs during compression is triggered as the velocity of the dominant <span class="hlt">shear</span> band rises to a critical value, the magnitude of which is independent of alloy composition, sample size, <span class="hlt">strain</span> rate and testing frame stiffness. The critical <span class="hlt">shear</span> band velocity is rationalized with the continuum theory of liquid instability, physically originating from a <span class="hlt">shear</span>-induced cavitation process inside the <span class="hlt">shear</span> band. Our current finding sheds a quantitative insight into deformation and fracture in disordered solids and, more importantly, is useful to the design of plastic/tough MG-based materials and structures. PMID:26893196</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AcMSn..30..223K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AcMSn..30..223K"><span><span class="hlt">Shear</span> deformable finite beam elements for composite box beams</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Nam-Il; Choi, Dong-Ho</p> <p>2014-04-01</p> <p>The <span class="hlt">shear</span> deformable thin-walled composite beams with closed cross-sections have been developed for coupled flexural, torsional, and buckling analyses. A theoretical model applicable to the thin-walled laminated composite box beams is presented by taking into account all the structural couplings coming from the material anisotropy and the <span class="hlt">shear</span> deformation effects. The current composite beam includes the transverse <span class="hlt">shear</span> and the restrained warping induced <span class="hlt">shear</span> deformation by using the first-order <span class="hlt">shear</span> deformation beam theory. Seven governing equations are derived for the coupled axial-flexural-torsional-<span class="hlt">shearing</span> buckling based on the principle of minimum total potential energy. Based on the present analytical model, three different types of finite composite beam elements, namely, linear, quadratic and cubic elements are developed to analyze the flexural, torsional, and buckling problems. In order to demonstrate the accuracy and superiority of the beam theory and the finite beam elements developed by this study, numerical solutions are presented and compared with the results obtained by other researchers and the detailed three-dimensional analysis results using the shell elements of ABAQUS. Especially, the influences of the modulus ratio and the simplified assumptions in stress-<span class="hlt">strain</span> relations on the deflection, twisting angle, and critical buckling loads of composite box beams are investigated. [Figure not available: see fulltext.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PrOce.151....1S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PrOce.151....1S"><span>A model for <span class="hlt">shear</span> response in swimming plankton</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shaw, Justin; Stastna, Marek</p> <p>2017-02-01</p> <p>Observations of zooplankton populations below their preferred light level have been attributed to a <span class="hlt">shear</span> response. We propose a measure of <span class="hlt">shear</span> based on the second invariant of the rate of <span class="hlt">strain</span> tensor. This quantification allows the <span class="hlt">shear</span> response mechanism to be modelled numerically. The importance of this mechanism is examined by modifying a light-biased stochastic swimming model of the run and tumble type for plankton moving in a velocity field induced by internal waves in a channel. It is found that a model which includes the mechanisms of settling, biased swimming, and a "freeze in <span class="hlt">shear</span>" response predicts aggregation of plankton populations below their preferred light level, which is consistent with acoustic data observations. Depending on the geometry of the high <span class="hlt">shear</span> region, the population is either shifted downward, or aggregates as a thin layer along the bottom boundary of the high <span class="hlt">shear</span> region. A pair of timescales is defined in order to determine which of these two cases will occur.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990100864&hterms=latex&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dlatex','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990100864&hterms=latex&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dlatex"><span>Sand <span class="hlt">Shear</span> Band Thickness Measurements by Digital Imaging Techniques</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Alshibli, Khalid A.; Sture, Stein</p> <p>1998-01-01</p> <p>Digital imaging analysis was used to study localized deformations in granular materials tested under plane <span class="hlt">strain</span> condition. Two independent techniques were applied and compared. In the first, the digitized optical images of a grid printed on the latex membrane were used to measure the <span class="hlt">shear</span> band orientation angle and thickness, and were found to be 54.5' and 3.01 mm respectively. The second technique involved introducing an ultra-low viscosity resin into the specimen in preparation for thin- sectioning and microscopic study of the internal fabric. A total of 24 microscopic images obtained from four thin sections were analyzed and void ratio variation was measured. The <span class="hlt">shear</span> band thickness measurements from images located along the <span class="hlt">shear</span> band axis (at two locations) were equal to 3.19 mm and 3.29 mm which are very close to the average value obtained from surface analysis. The study was then extended to investigate the effects of sand grain-size and properties, specimen density, and confining pressure on <span class="hlt">shear</span> band thickness. It was found that the normalized <span class="hlt">shear</span> band thickness decreases as grain-size and confining pressure increase and as density decreases. Finally, <span class="hlt">shear</span> band thickness is highly influenced by the specimen dilatancy.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...621388S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...621388S"><span>The Critical Criterion on Runaway <span class="hlt">Shear</span> Banding in Metallic Glasses</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, B. A.; Yang, Y.; Wang, W. H.; Liu, C. T.</p> <p>2016-02-01</p> <p>The plastic flow of metallic glasses (MGs) in bulk is mediated by nanoscale <span class="hlt">shear</span> bands, which is known to proceed in a stick-slip manner until reaching a transition state causing catastrophic failures. Such a slip-to-failure transition controls the plasticity of MGs and resembles many important phenomena in natural science and engineering, such as friction, lubrication and earthquake, therefore has attracted tremendous research interest over past decades. However, despite the fundamental and practical importance, the physical origin of this slip-to-failure transition is still poorly understood. By tracking the behavior of a single <span class="hlt">shear</span> band, here we discover that the final fracture of various MGs during compression is triggered as the velocity of the dominant <span class="hlt">shear</span> band rises to a critical value, the magnitude of which is independent of alloy composition, sample size, <span class="hlt">strain</span> rate and testing frame stiffness. The critical <span class="hlt">shear</span> band velocity is rationalized with the continuum theory of liquid instability, physically originating from a <span class="hlt">shear</span>-induced cavitation process inside the <span class="hlt">shear</span> band. Our current finding sheds a quantitative insight into deformation and fracture in disordered solids and, more importantly, is useful to the design of plastic/tough MG-based materials and structures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009APS..SES.NA005C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009APS..SES.NA005C"><span><span class="hlt">Shear</span> Induced Structural Relaxation in a Supercooled Colloidal Liquid</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Dandan; Semwogerere, Denis; Weeks, Eric R.</p> <p>2009-11-01</p> <p>Amorphous materials include many common products we use everyday, such as window glass, moisturizer, shaving cream and peanut butter. These materials have liquid-like disordered structure, but keep their shapes like a solid. The rheology of dense amorphous materials under large <span class="hlt">shear</span> <span class="hlt">strain</span> is not fully understood, partly due to the difficulty of directly viewing the microscopic details of such materials. We use a colloidal suspension to simulate amorphous materials, and study the <span class="hlt">shear</span>- induced structural relaxation with fast confocal microscopy. We quantify the plastic rearrangements of the particles using standard analysis techniques based on the motion of the particles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/22283183','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/22283183"><span>Actuating dielectric elastomers in pure <span class="hlt">shear</span> deformation by elastomeric conductors</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Wang, Yin; Chen, Baohong; Zhou, Jinxiong; Bai, Yuanyuan; Wang, Hong</p> <p>2014-02-10</p> <p>Pure <span class="hlt">shear</span> experiments are commonly used to characterize dielectric elastomer (DE) material properties and to evaluate DE actuator/generator performance. It is increasingly important for many applications to replace conventional carbon grease electrodes with stretchable elastomeric conductors. We formulate a theory for DE with elastomeric conductors, synthesize transparent hydrogel as ionic conductors, and measure actuation of DE in pure <span class="hlt">shear</span> deformation. Maximum 67% actuation <span class="hlt">strain</span> is demonstrated. The theory agrees well with our measurement and also correlates well with reported experiments on DE with electronic conductors.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25445984','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25445984"><span>Development of a <span class="hlt">shear</span> measurement sensor for measuring forces at human-machine interfaces.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cho, Young Kuen; Kim, Seong Guk; Kim, Donghyun; Kim, Hyung Joo; Ryu, Jeicheong; Lim, Dohyung; Ko, Chang-Yong; Kim, Han Sung</p> <p>2014-12-01</p> <p>Measuring <span class="hlt">shear</span> force is crucial for investigating the pathology and treatment of pressure ulcers. In this study, we introduced a bi-axial <span class="hlt">shear</span> transducer based on <span class="hlt">strain</span> gauges as a new <span class="hlt">shear</span> sensor. The sensor consisted of aluminum and polyvinyl chloride plates placed between quadrangular aluminum plates. On the middle plate, two <span class="hlt">strain</span> gauges were placed orthogonal to one another. The <span class="hlt">shear</span> sensor (54 mm × 54 mm × 4.1 mm), which was validated by using standard weights, displayed high accuracy and precision (measurement range, -50 to 50 N; sensitivity, 0.3N; linear relationship, R(2)=0.9625; crosstalk error, 0.635% ± 0.031%; equipment variation, 4.183). The <span class="hlt">shear</span> force on the interface between the human body and a stand-up wheelchair was measured during sitting or standing movements, using two mats (44.8 cm × 44.8 cm per mat) that consisted of 24 <span class="hlt">shear</span> sensors. <span class="hlt">Shear</span> forces on the sacrum and ischium were almost five times higher (15.5 N at last posture) than those on other sites (3.5 N on average) during experiments periods. In conclusion, the proposed <span class="hlt">shear</span> sensor may be reliable and useful for measuring the <span class="hlt">shear</span> force on human-machine interfaces.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MRE.....3d5601K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MRE.....3d5601K"><span>Transformation-deformation bands in C60 after the treatment in a <span class="hlt">shear</span> diamond anvil cell</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kulnitskiy, B. A.; Blank, V. D.; Levitas, V. I.; Perezhogin, I. A.; Popov, M. Yu; Kirichenko, A. N.; Tyukalova, E. V.</p> <p>2016-04-01</p> <p>The C60 fullerene has been investigated by high-resolution transmission electron microscopy and electron energy loss spectroscopy in a <span class="hlt">shear</span> diamond anvil cell after applying pressure and <span class="hlt">shear</span> deformation treatment of fcc phase. <span class="hlt">Shear</span> transformation-deformation bands are revealed consisting of <span class="hlt">shear-strain</span>-induced nanocrystals of linearly polymerized fullerene and polytypes, the triclinic, monoclinic, and hcp C60, fragments of amorphous structures, and voids. Consequently, after pressure release, the plastic <span class="hlt">strain</span> retains five high pressure phases, which is potentially important for their engineering applications. Localized <span class="hlt">shear</span> deformation initially seems contradictory because high pressure phases of C60 are stronger than the initial low pressure phase. However, this was explained by transformation-induced plasticity during localized phase transformations. It occurs due to a combination of applied stresses and internal stresses from a volume reduction during phase transformations. Localized phase transformations and plastic <span class="hlt">shear</span> deformation promote each other, which produce positive mechanochemical feedback and cascading transformation-deformation processes. Since the plastic <span class="hlt">shear</span> in a band is much larger than is expected based on the torsion angle, five phase transformations occur in the same region with no transformation outside the band. The results demonstrate that transformation kinetics cannot be analyzed in terms of prescribed <span class="hlt">shear</span>, and methods to measure local <span class="hlt">shear</span> should be developed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27415319','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27415319"><span>Molecularly based criteria for <span class="hlt">shear</span> banding in transient flow of entangled polymeric fluids.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mohagheghi, Mouge; Khomami, Bamin</p> <p>2016-06-01</p> <p>Dissipative particle dynamics simulations of polymeric melts in a start-up of <span class="hlt">shear</span> flow as a function of ramp time to its steady state value is studied. Herein, we report the molecular findings showing the effect of ramp time on the formation of <span class="hlt">shear</span> banded structures and chain relaxation behavior. Specifically, it is shown that <span class="hlt">shear</span> banding emerges at a rapid start-up; however, homogeneous <span class="hlt">shear</span> prevails when the deformation rate ramp time is sufficiently slow. This finding is in full consistency with prior continuum level linear stability analysis of <span class="hlt">shear</span> banding in start-up of <span class="hlt">shear</span> flows as well as experimental observations of entangled DNA and polymer solutions. Further, it has been revealed that the ratio of the longest chain orientation relaxation time to that of the time for the imposed deformation rate to reach its steady state value plays a central role in determining whether local <span class="hlt">strain</span> inhomogeneities that lead to the formation of <span class="hlt">shear</span> banded flow structures are created. In addition, we have shown that the gradient of the number of entanglements along the velocity gradient direction should reach a critical value for the creation of localized <span class="hlt">strain</span> inhomogeneity. Moreover, the relation between the local process leading to <span class="hlt">shear</span> banded flows and the relaxation mechanism of the chain is discussed. Overall, a molecular picture for the interrelation between the longest chain orientation and stress relaxation time, local inhomogeneities, and <span class="hlt">shear</span> banding has been proposed and corroborated with extensive analysis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/4782348','DOE-PATENT-XML'); return false;" href="http://www.osti.gov/scitech/biblio/4782348"><span>APPARATUS FOR <span class="hlt">SHEARING</span> TUBULAR JACKETS</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Simon, J.P.</p> <p>1962-09-01</p> <p>A machine is designed for removing the jacket from the core of a used rod-like fuel element by <span class="hlt">shearing</span> the jacket into a spiral ribbon. Three skewed rolls move the fuel element axially and rotatively, and a tool cooperates with one of the rolls to carry out the <span class="hlt">shearing</span> action. (AEC)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013Tectp.603..162A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013Tectp.603..162A"><span>Seismic anisotropy in the Morcles nappe <span class="hlt">shear</span> zone: Implications for seismic imaging of crustal scale <span class="hlt">shear</span> zones</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Almqvist, Bjarne S. G.; Hirt, Ann M.; Herwegh, Marco; Ebert, Andreas; Walter, Jens M.; Leiss, Bernd; Burlini, Luigi</p> <p>2013-09-01</p> <p>Microstructures and textures of calcite mylonites from the Morcles nappe large-scale <span class="hlt">shear</span> zone in southwestern Switzerland develop principally as a function of 1) extrinsic physical parameters including temperature, stress, <span class="hlt">strain</span>, <span class="hlt">strain</span> rate and 2) intrinsic parameters, such as mineral composition. We collected rock samples at a single location from this <span class="hlt">shear</span> zone, on which laboratory ultrasonic velocities, texture and microstructures were investigated and quantified. The samples had different concentration of secondary mineral phases (< 5 up to 40 vol.%). Measured seismic P wave anisotropy ranges from 6.5% for polyphase mylonites (~ 40 vol.%) to 18.4% in mylonites with < 5 vol.% secondary phases. Texture strength of calcite is the main factor governing the seismic P wave anisotropy. Measured S wave splitting is generally highest in the foliation plane, but its origin is more difficult to explain solely by calcite texture. Additional texture measurements were made on calcite mylonites with low concentration of secondary phases (≤ 10 vol.%) along the metamorphic gradient of the <span class="hlt">shear</span> zone (15 km distance). A systematic increase in texture strength is observed moving from the frontal part of the <span class="hlt">shear</span> zone (anchimetamorphism; 280 °C) to the higher temperature, basal part (greenschist facies; 350-400 °C). Calculated P wave velocities become increasingly anisotropic towards the high-<span class="hlt">strain</span> part of the nappe, from an average of 5.8% in the frontal part to 13.2% in the root of the basal part. Secondary phases raise an additional complexity, and may act either to increase or decrease seismic anisotropy of <span class="hlt">shear</span> zone mylonites. In light of our findings we reinterpret the origin of some seismically reflective layers in the Grône-Zweisimmen line in southwestern Switzerland (PNR20 Swiss National Research Program). We hypothesize that reflections originate in part from the lateral variation in textural and microstructural arrangement of calcite mylonites in <span class="hlt">shear</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23005405','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23005405"><span><span class="hlt">Shear</span> flow of dense granular materials near smooth walls. I. <span class="hlt">Shear</span> localization and constitutive laws in the boundary region.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shojaaee, Zahra; Roux, Jean-Noël; Chevoir, François; Wolf, Dietrich E</p> <p>2012-07-01</p> <p>We report on a numerical study of the <span class="hlt">shear</span> flow of a simple two-dimensional model of a granular material under controlled normal stress between two parallel smooth frictional walls moving with opposite velocities ± V. Discrete simulations, which are carried out with the contact dynamics method in dense assemblies of disks, reveal that, unlike rough walls made of strands of particles, smooth ones can lead to <span class="hlt">shear</span> <span class="hlt">strain</span> localization in the boundary layer. Specifically, we observe, for decreasing V, first a fluidlike regime (A), in which the whole granular layer is <span class="hlt">sheared</span>, with a homogeneous <span class="hlt">strain</span> rate except near the walls, then (B) a symmetric velocity profile with a solid block in the middle and <span class="hlt">strain</span> localized near the walls, and finally (C) a state with broken symmetry in which the <span class="hlt">shear</span> rate is confined to one boundary layer, while the bulk of the material moves together with the opposite wall. Both transitions are independent of system size